
Oracle® Fusion Middleware
Configuring and Using the Diagnostics
Framework for Oracle WebLogic Server

14c (14.1.1.0.0)
F18301-04
September 2022

Oracle Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server,
14c (14.1.1.0.0)

F18301-04

Copyright © 2007, 2022, Oracle and/or its affiliates.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or related
documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S.
Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software,
any programs embedded, installed, or activated on delivered hardware, and modifications of such programs)
and Oracle computer documentation or other Oracle data delivered to or accessed by U.S. Government end
users are "commercial computer software," "commercial computer software documentation," or "limited rights
data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental
regulations. As such, the use, reproduction, duplication, release, display, disclosure, modification, preparation
of derivative works, and/or adaptation of i) Oracle programs (including any operating system, integrated
software, any programs embedded, installed, or activated on delivered hardware, and modifications of such
programs), ii) Oracle computer documentation and/or iii) other Oracle data, is subject to the rights and
limitations specified in the license contained in the applicable contract. The terms governing the U.S.
Government's use of Oracle cloud services are defined by the applicable contract for such services. No other
rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle®, Java, and MySQL are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc,
and the AMD logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered
trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be
responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

This preface describes the document accessibility features and conventions used in this guide—Configuring
and Using the Diagnostics Framework for Oracle WebLogic Server.

Contents

 Preface

Documentation Accessibility xiv

Preface xv

1 Introduction and Roadmap

What Is the WebLogic Diagnostics Framework? 1-1

Guide to This Document 1-2

Samples and Tutorials 1-4

Avitek Medical Records Application (MedRec) and Tutorials 1-4

WLDF Samples Available for Download 1-4

What’s New in This Guide 1-4

2 Overview of the WLDF Architecture

Overview of the WebLogic Diagnostics Framework 2-2

Data Creation, Collection, and Instrumentation 2-2

Archive 2-3

Policies and Actions 2-4

Data Accessor 2-5

Monitoring Dashboard and Request Performance Pages 2-5

Monitoring Dashboard 2-5

Diagnostics Request Performance Page 2-6

Diagnostic Image Capture 2-6

How It All Fits Together 2-7

3 Using the Built-in Diagnostic System Modules

Overview 3-1

Types of Built-in Diagnostic System Modules 3-2

Data Collected by Built-in Diagnostic System Modules 3-2

Configuring a Built-in Diagnostic Module 3-3

Accessing Data Collected by a Built-in Diagnostic System Module 3-4

iii

Using the Monitoring Dashboard 3-5

Using the Metrics Log Table in the Administration Console 3-5

Creating a Custom Diagnostic System Module Based on a Built-in 3-7

4 Using WLDF with Java Flight Recorder

About Java Flight Recorder 4-1

Using Java Flight Recorder with Oracle HotSpot 4-3

Key Features of WLDF Integration with Java Flight Recorder 4-3

Java Flight Recorder Use Cases 4-5

Diagnosing a Critical Failure — The "Black Box" 4-5

Profiling During Performance Testing or in Production 4-5

Real-Time Application Diagnostics and Reporting 4-6

Obtaining the Flight Recording File 4-7

Analyzing Java Flight Recorder Data 4-7

Java Flight Recorder Graphical User Interface 4-7

Analyzing Execution Flow — A Sample Walkthrough 4-9

Displaying Event Data for a Product Subcomponent 4-9

Viewing the Event Log to Display Details 4-10

Tracking Execution Flow by Analyzing an Operative Set 4-12

Expanding the Operative Set and Viewing Correlated Diagnostic Data 4-14

Changing the Location of Temporary JFR Files 4-16

5 Understanding WLDF Configuration

Configuration MBeans and XML 5-2

Tools for Configuring WLDF 5-2

How WLDF Configuration Is Partitioned 5-3

Server-Level Configuration 5-3

Application-Level Configuration 5-3

Configuring Diagnostic Image Capture and Diagnostic Archives 5-4

Configuring Diagnostic Image Capture for Java Flight Recorder 5-4

Configuring Diagnostic System Modules 5-5

About the Resource Descriptor 5-6

WLDF Runtime Control 5-8

Creating a Diagnostic System Module Based on a Configured Resource Descriptor 5-8

Creating a Diagnostic System Module Based on an External Resource Descriptor 5-10

Targeting a Diagnostic System Module to a Server or Cluster 5-11

Dynamically Activating or Deactivating Diagnostic System Modules 5-11

Using WLST to Activate and Deactivate Diagnostic System Modules 5-12

More Information About Configuring Diagnostic System Modules 5-15

iv

Configuring Diagnostic Modules for Applications 5-16

WLDF Configuration MBeans and Their Mappings to XML Elements 5-16

6 Configuring and Capturing Diagnostic Images

How to Initiate Image Captures 6-1

Configuring Diagnostic Image Captures 6-2

Configuring WLDF Diagnostic Volume 6-2

Low Volume Setting 6-3

Medium Volume Setting 6-4

High Volume Setting 6-5

WLST Commands for Generating an Image Capture 6-5

How Diagnostic Image Capture Is Persisted in the Server's Configuration 6-5

Content of the Captured Image File 6-6

Data Included in the Diagnostics Image Capture File 6-7

WLST Online Commands for Downloading Diagnostics Image Captures 6-8

7 Configuring Diagnostic Archives

Configuring the Archive 7-1

Configuring a File-Based Store 7-2

Configuring a JDBC-Based Store 7-2

Creating WLDF Tables in the Database 7-3

Apache Derby 7-3

Oracle Database 7-4

MySQL 7-7

Configuring JDBC Resources for WLDF 7-8

Retiring Data from the Archives 7-9

Configuring Data Retirement at the Server Level 7-9

Configuring Age-Based Data Retirement Policies for Diagnostic Archives 7-10

Sample Configuration 7-10

8 Configuring the Harvester for Metric Collection

Harvesting, Harvestable Data, and Harvested Data 8-1

Harvesting Data from the Different Harvestable Entities 8-2

Configuring the Harvester 8-2

Configuring the Harvester Sampling Period 8-3

Configuring the Types of Data to Harvest 8-3

Specifying Type Names for WebLogic Server MBeans and Custom MBeans 8-4

Harvesting from the Domain Runtime MBean Server 8-4

When Configuration Settings Are Validated 8-5

v

Sample Configurations for Different Harvestable Types 8-5

Harvester Performance Considerations 8-6

9 Configuring Policies and Actions

Policies and Actions 9-1

Overview of Policies and Actions Configuration 9-2

Sample Policies and Actions Configuration 9-4

10

Configuring Policies

How Policies Are Configured 10-1

Rule Type 10-3

Expression Language 10-4

Policy Expression 10-4

Actions 10-5

Policy Schedule 10-5

Alarm Options 10-7

Severity Option 10-8

Enablement Option 10-9

Configuring Scheduled Policies 10-9

Configuring Calendar Based Policies 10-9

Configuring Smart Rule Based Policies 10-10

Types of Diagnostic Data that Smart Rules Evaluate 10-11

Smart Rule Example 10-11

Chaining Policies 10-12

Configuring Log Policies 10-13

Configuring Instrumentation Policies 10-13

Creating Complex Policy Expressions Using WLDF Java EL Extensions 10-14

Writing Collected Metrics Policy Expressions Using Beans 10-15

Accessing MBean Data in Collected Metrics 10-16

Working with Complex MBean Attributes 10-17

Performing Bulk Queries on Collected Metrics from MBeans 10-18

Writing Collected Metrics Policy Expressions Using Functions 10-20

Examining Trends in Metric Values over Time 10-20

Extracting and Examining Collected Metrics in Policy Expressions 10-22

Lifecycle of Data Collection 10-23

11

Configuring Actions

Actions Overview 11-2

Types of Actions 11-2

vi

Variables for Customizable Actions 11-3

Action Timeout 11-4

Configuring JMX Actions 11-4

Configuring JMS Actions 11-5

Configuring SNMP Actions 11-6

Configuring Log Actions 11-6

Configuring REST Actions 11-7

Configuring SMTP Actions 11-7

Configuring Image Actions 11-9

Configuring Elastic Actions 11-9

Elastic Scaling Operations Cannot Be Cancelled After Starting 11-11

Limiting Server Shutdown Time During Scale Down Operations 11-11

Configuring Script Actions 11-11

Configuring Heap Dump Actions 11-12

Configuring Thread Dump Actions 11-14

12

Configuring Instrumentation

Concepts and Terminology 12-2

Instrumentation Scope 12-2

Configuration and Deployment 12-2

Joinpoints, Pointcuts, and Diagnostic Locations 12-2

Diagnostic Monitor Types 12-3

Diagnostic Actions 12-4

Instrumentation Configuration Files 12-5

XML Elements Used for Instrumentation 12-6

<Instrumentation> XML Elements 12-6

<wldf-instrumentation-monitor> XML Elements 12-8

Mapping <wldf-instrumentation-monitor> XML Elements to Monitor Types 12-11

Configuring Server-Scoped Instrumentation 12-11

Configuring Application-Scoped Instrumentation 12-12

Comparing System-Scoped to Application-Scoped Instrumentation 12-13

Overview of the Steps Required to Instrument an Application 12-14

Creating a Descriptor File for a Delegating Monitor 12-15

Creating a Descriptor File for a Custom Monitor 12-16

Defining Pointcuts for Custom Monitors 12-17

Annotation-based Pointcuts 12-18

Creating Request Performance Data 12-20

vii

13

Configuring the DyeInjection Monitor to Manage Diagnostic Contexts

Contents, Life Cycle, and Configuration of a Diagnostic Context 13-2

Context Life Cycle and the Context ID 13-2

Dyes, Dye Flags, and Dye Vectors 13-2

Where Diagnostic Context Is Configured 13-3

Overview of the Process 13-3

Configuring the Dye Vector by Using the DyeInjection Monitor 13-4

Dyes Supported by the DyeInjection Monitor 13-6

PROTOCOL Dye Flags 13-7

THROTTLE Dye Flag 13-7

When Diagnostic Contexts Are Created 13-7

Configuring Delegating Monitors to Use Dye Filtering 13-8

How Dye Masks Filter Requests to Pass to Monitors 13-10

Dye Filtering Example 13-10

Using Throttling to Control the Volume of Instrumentation Events 13-11

Configuring the THROTTLE Dye 13-12

How Throttling is Handled by Delegating and Custom Monitors 13-13

Using weblogic.diagnostics.context 13-14

14

Accessing Diagnostic Data With the Data Accessor

Data Stores Accessed by the Data Accessor 14-1

Accessing Diagnostic Data Online 14-2

Accessing Data Using the Administration Console 14-2

Accessing Data Programmatically Using Runtime MBeans 14-3

Using WLST to Access Diagnostic Data Online 14-3

Using the WLDF Query Language with the Data Accessor 14-3

Accessing Diagnostic Data Offline 14-3

Accessing Diagnostic Data Programmatically 14-4

Resetting the System Clock Can Affect How Data Is Archived and Retrieved 14-9

15

Deploying WLDF Application Modules

Deploying a Diagnostic Module as an Application-Scoped Resource 15-2

Using Deployment Plans to Dynamically Control Instrumentation Configuration 15-3

Using a Deployment Plan: Overview 15-4

Creating a Deployment Plan Using weblogic.PlanGenerator 15-4

Sample Deployment Plan for Diagnostics 15-5

Enabling Java HotSwap 15-6

Deploying an Application with a Deployment Plan 15-6

viii

Updating an Application with a Modified Plan 15-7

16

Using the Monitoring Dashboard

Running the Monitoring Dashboard 16-1

Scope of the Diagnostic Information Displayed 16-1

About the Monitoring Dashboard Interface 16-2

View List 16-3

Metric Browser 16-3

View Display Panel 16-6

Understanding How Metrics Are Collected and Presented 16-7

About Metrics and Chart Types 16-7

Current Time Range Charts 16-8

Custom Time Range Charts 16-8

Sequence in which Metrics Data is Displayed 16-8

Notes about Metric Data Retention 16-9

The Parts of a Chart 16-9

17

Configuring and Using WLDF Programmatically

How WLDF Generates and Retrieves Data 17-1

Mapping WLDF Components to Beans and Packages 17-2

Programming Tools 17-4

Configuration and Runtime APIs 17-5

Configuration APIs 17-5

Runtime APIs 17-6

WLDF Packages 17-6

Programming WLDF: Examples 17-7

Example: DiagnosticContextExample.java 17-7

Example: HarvesterMonitor.java 17-8

Notification Listeners 17-8

HarvesterMonitor.java 17-9

Example: JMXAccessorExample.java 17-13

18

Using Debug Patches

Dynamic Application of Debug Patches 18-1

Specifying the Debug Patch Directory 18-1

Configuring the WLDF Debug Patch Agent 18-2

WLST Commands for Debug Patches 18-2

Dynamically Activating a Debug Patch 18-3

ix

Dynamically Deactivating Debug Patches 18-3

A Smart Rule Reference

About the Parameters You Specify for Smart Rules A-1

Cluster Scope Smart Rules A-3

ClusterLowThroughput A-5

ClusterHighProcessCpuLoadAverage A-6

ClusterHighThroughput A-8

ClusterLowPendingUserRequests A-10

ClusterHighStuckThreads A-11

ClusterLowQueueLength A-13

ClusterHighPendingUserRequests A-14

ClusterLowProcessCpuLoadAverage A-16

ClusterHighIdleThreads A-18

ClusterLowSystemLoadAverage A-19

ClusterHighQueueLength A-21

ClusterLowHeapFreePercent A-22

ClusterHighSystemLoadAverage A-24

ClusterHighHeapFreePercent A-26

ClusterLowSystemCpuLoadAverage A-27

ClusterLowIdleThreads A-29

ClusterGenericMetricRule A-31

ClusterHighSystemCpuLoadAverage A-33

Server Scope Smart Rules A-34

ServerLowIdleThreads A-37

ServerHighThroughput A-39

ServerGenericMetricRule A-40

ServerLowPendingUserRequests A-42

ServerLowProcessCpuLoadAverage A-43

ServerHighSystemLoadAverage A-44

ServerLowQueueLength A-46

ServerLowThroughput A-47

ServerHighQueueLength A-48

ServerHighSystemCpuLoadAverage A-50

ServerHighPendingUserRequests A-51

ServerLowSystemCpuLoadAverage A-52

ServerHighHeapFreePercent A-54

ServerHighStuckThreads A-55

ServerHighProcessCpuLoadAverage A-56

ServerLowSystemLoadAverage A-58

x

ServerLowHeapFreePercent A-59

ServerHighIdleThreads A-61

B WLDF Beans and Functions Reference

WLDF Beans Reference B-1

clusterRuntime B-2

domainRuntime B-3

instrumentationEvent B-4

log B-6

platform B-7

resource B-8

runtime B-8

Functions Reference B-9

wls:tableChanges B-10

wls:tableAverages B-10

wls:extract B-10

wls:average B-11

wls:changes B-12

wls:aliveServersCount B-12

C WLDF Query Language

Components of a Query Expression C-1

Supported Operators C-1

Operator Precedence C-3

Numeric Relational Operations Supported on String Column Types C-3

Supported Numeric Constants and String Literals C-3

About Variables in Expressions C-4

Creating Policy Expressions C-4

Creating Log Event Policy Expressions C-5

Creating Instrumentation Event Policy Expressions C-5

Creating Harvester Policy Expressions C-6

Creating Data Accessor Queries C-7

Data Store Logical Names C-8

Data Store Column Names C-8

Creating Log Filter Expressions C-9

Building Complex Expressions C-10

D WLDF Instrumentation Library

Diagnostic Monitor Library D-1

xi

Diagnostic Action Library D-9

TraceAction D-10

DisplayArgumentsAction D-11

TraceElapsedTimeAction D-11

TraceMemoryAllocationAction D-12

StackDumpAction D-12

ThreadDumpAction D-13

MethodInvocationStatisticsAction D-14

Instrumenting an Application with MethodInvocationStatisticsAction and Querying
the Results D-15

Configuring the Harvester to Collect MethodInvocationStatisticsAction Data D-20

Configuring Policies Based on MethodInvocationStatistics Metrics D-22

Using JMX to Collect Data D-22

MemoryAllocationStatisticsAction D-22

E Using Wildcards in Expressions

Using Wildcards in Harvester Instance Names E-1

Examples E-1

Specifying Complex and Nested Harvester Attributes E-2

Examples E-3

Using the Accessor with Harvested Complex or Nested Attributes E-4

Using Wildcards in Policy Instance Names E-5

Specifying Complex Attributes in Harvester Policies E-6

F WebLogic Scripting Tool Examples

WLST Commands for Diagnostics F-1

Example: Dynamically Creating DyeInjection Monitors F-2

Example: Configuring a Policy and a JMX Action F-4

Example: Writing a JMXWatchNotificationListener Class F-7

Example: Registering MBeans and Attributes For Harvesting F-9

Example: Setting the WLDF Diagnostic Volume F-12

Example: Capturing a Diagnostic Image F-13

Example: Retrieving a JFR File from a Diagnostic Image Capture F-14

G WLDF Query Language-Based Policies

Types of Policies G-1

Policy Configuration Options G-2

Configuring Harvester Policies Using the WLDF Query Language G-2

Configuring Log Policies Using the WLDF Query Language G-4

xii

Configuring Instrumentation Policies Using the WLDF Query Language G-4

Glossary

xiii

Preface

This preface describes the document accessibility features and conventions used in
this guide—Configuring and Using the Diagnostics Framework for Oracle WebLogic
Server.

• Audience

• Documentation Accessibility

• Diversity and Inclusion

• Related Documentation

• Conventions

Audience
WLDF provides features for monitoring and diagnosing problems in running WebLogic
Server instances and clusters and in applications deployed to them. Therefore, the
information in this document is directed both to system administrators and to
application developers. It also contains information for third-party tool developers who
want to build tools to support and extend WLDF.

It is assumed that readers are familiar with Web technologies and the operating
system and platform where WebLogic Server is installed.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at http://www.oracle.com/pls/topic/lookup?
ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support
through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/
lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?
ctx=acc&id=trs if you are hearing impaired.

Diversity and Inclusion
Oracle is fully committed to diversity and inclusion. Oracle respects and values having
a diverse workforce that increases thought leadership and innovation. As part of our
initiative to build a more inclusive culture that positively impacts our employees,
customers, and partners, we are working to remove insensitive terms from our
products and documentation. We are also mindful of the necessity to maintain
compatibility with our customers' existing technologies and the need to ensure

Preface

xiv

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

continuity of service as Oracle's offerings and industry standards evolve. Because of these
technical constraints, our effort to remove insensitive terms is ongoing and will take time and
external cooperation.

Related Documentation
• Configuring Log Files and Filtering Log Messages for Oracle WebLogic Server describes

how to use WLDF logging services to monitor server, subsystem, and application events.

• Configure the WebLogic Diagnostics Framework in the Oracle WebLogic Server
Administration Console Online Help describes how to use the visual tools in the
WebLogic Server Administration Console to configure WLDF.

• The WLDF system resource descriptor conforms to the weblogic-diagnostics.xsd
schema, available at http://xmlns.oracle.com/weblogic/weblogic-diagnostics/2.0/weblogic-
diagnostics.xsd.

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated with an
action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for which
you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code in
examples, text that appears on the screen, or text that you enter.

Preface
This preface describes the document accessibility features and conventions used in this
guide—Configuring and Using the Diagnostics Framework for Oracle WebLogic Server.

• Audience

• Documentation Accessibility

• Diversity and Inclusion

• Related Documentation

• Conventions

Audience
WLDF provides features for monitoring and diagnosing problems in running WebLogic Server
instances and clusters and in applications deployed to them. Therefore, the information in this
document is directed both to system administrators and to application developers. It also
contains information for third-party tool developers who want to build tools to support and
extend WLDF.

It is assumed that readers are familiar with Web technologies and the operating system and
platform where WebLogic Server is installed.

Preface

xv

http://xmlns.oracle.com/weblogic/weblogic-diagnostics/2.0/weblogic-diagnostics.xsd
http://xmlns.oracle.com/weblogic/weblogic-diagnostics/2.0/weblogic-diagnostics.xsd

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at http://www.oracle.com/pls/topic/lookup?
ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support
through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/
lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?
ctx=acc&id=trs if you are hearing impaired.

Diversity and Inclusion
Oracle is fully committed to diversity and inclusion. Oracle respects and values having
a diverse workforce that increases thought leadership and innovation. As part of our
initiative to build a more inclusive culture that positively impacts our employees,
customers, and partners, we are working to remove insensitive terms from our
products and documentation. We are also mindful of the necessity to maintain
compatibility with our customers' existing technologies and the need to ensure
continuity of service as Oracle's offerings and industry standards evolve. Because of
these technical constraints, our effort to remove insensitive terms is ongoing and will
take time and external cooperation.

Related Documentation
• Configuring Log Files and Filtering Log Messages for Oracle WebLogic Server

describes how to use WLDF logging services to monitor server, subsystem, and
application events.

• Configure the WebLogic Diagnostics Framework in the Oracle WebLogic Server
Administration Console Online Help describes how to use the visual tools in the
WebLogic Server Administration Console to configure WLDF.

• The WLDF system resource descriptor conforms to the weblogic-
diagnostics.xsd schema, available at http://xmlns.oracle.com/weblogic/weblogic-
diagnostics/2.0/weblogic-diagnostics.xsd.

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

Preface

xvi

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
http://xmlns.oracle.com/weblogic/weblogic-diagnostics/2.0/weblogic-diagnostics.xsd
http://xmlns.oracle.com/weblogic/weblogic-diagnostics/2.0/weblogic-diagnostics.xsd

1
Introduction and Roadmap

The WebLogic Diagnostics Framework (WLDF) is a monitoring and diagnostic framework that
defines and implements a set of services that run within WebLogic Server processes and
participate in the standard server life cycle. Using WLDF, you can create, collect, analyze,
archive, and access diagnostic data generated by a running server and the applications
deployed within its containers.This data provides insight into the run-time performance of
servers and applications and enables you to isolate and diagnose faults when they occur.

• What Is the WebLogic Diagnostics Framework?

• Guide to This Document

• Samples and Tutorials

• What’s New in This Guide

What Is the WebLogic Diagnostics Framework?
The WebLogic Diagnostics Framework (WLDF) is a suite of services and APIs that provide
the ability to collect and surface metrics that provide visibility into server and application
performance.Independent Software Vendors (ISVs) can use these APIs, using standard
interfaces such as WLST, REST, and JMX, to develop custom monitoring and diagnostic tools
for integration with WLDF.
The suite of services, components, and APIs provided by WLDF for collecting and analyzing
data includes the following:

• Integration with Oracle HotSpot—If WebLogic Server is configured with Oracle HotSpot,
WLDF can generate diagnostic information about WebLogic Server that is captured in the
Java Flight Recorder file.

• Built-in diagnostic system modules—A set of diagnostic modules available out-of-the-box
that you can enable dynamically to capture basic performance data about the JVM, the
WebLogic Server run time, and primary WebLogic Server subsystems, including JDBC
data sources, messaging, and Java EE containers, such as servlets, EJBs, and resource
adapters. The built-in diagnostic modules can also be cloned and modified, providing a
simple way to create custom diagnostic system modules.

• Monitoring Dashboard—Graphically presents the current and historical operating state of
WebLogic Server and hosted applications, including information gathered by the built-in
diagnostic system modules. The Monitoring Dashboard, which is accessed from the
WebLogic Server Administration Console, provides a set of tools for organizing and
displaying diagnostic data into views, which surface some of the more critical run-time
WebLogic Server performance metrics and the change in those metrics over time.

• Diagnostic Image Capture—Creates a diagnostic snapshot from the server that can be
used for post-failure analysis. The diagnostic image capture includes Java Flight
Recorder data, if it is available, that can be viewed in Java Mission Control.

• Archive—Captures and persists data events, log records, and metrics from server
instances and applications.

1-1

• Instrumentation—Adds diagnostic code to WebLogic Server instances and the
applications running on them to execute diagnostic actions at specified locations in
the code. The Instrumentation component provides the means for associating a
diagnostic context with requests so they can be tracked as they flow through the
system. The WebLogic Server Administration Console includes a Request
Performance page, which shows real-time and historical views of method
performance information that has been captured through the WLDF
instrumentation capabilities, serving as a tool that can help identify performance
problems in applications.

• Harvester—Captures metrics from run-time MBeans, including WebLogic Server
MBeans and custom MBeans, which can be archived and later accessed for
viewing historical data.

• Policies and Actions—Provides the means for monitoring server and application
states and sending notifications based on criteria set in the policies.

• Logging services—Manage logs for monitoring server, subsystem, and application
events. The WebLogic Server logging services are documented separately from
the rest of the WebLogic Diagnostics Framework. See Related Documentation.

WLDF provides a set of standardized application programming interfaces (APIs) that
enable dynamic access and control of diagnostic data, as well as improved monitoring
that provides visibility into the server. These APIs can be accessed using the JMX and
the WebLogic Scripting Tool (WLST), as described in Configuring and Using WLDF
Programmatically.

WLDF enables dynamic access to server data through standard interfaces, and the
volume of data accessed at any given time can be modified without shutting down and
restarting the server.

Guide to This Document
This document is organized as follows:

• This chapter, "Introduction and Roadmap", provides an overview of WLDF
components and describes the audience for this guide.

• Overview of the WLDF Architecture provides a high-level view of the WLDF
architecture.

• Using the Built-in Diagnostic System Modules describes the built-in system
diagnostic modules, which are provided by the WebLogic Diagnostics Framework
(WLDF) as a simple and easy-to-use mechanism for performing basic health and
performance monitoring of a WebLogic Server instance

• Using WLDF with Java Flight Recorder describes the WLDF integration features
with Java Flight Recorder, describes basic usage scenarios, and provides a
sample walkthrough of using Java Mission Control to examine WebLogic Server
events captured in a Java Flight Recorder file.

• Understanding WLDF Configuration provides an overview of how WLDF features
are configured for servers and applications.

• Configuring and Capturing Diagnostic Images describes how to configure and use
the WLDF Diagnostic Image Capture component to capture a snapshot of
significant server configuration settings and the server state.

Chapter 1
Guide to This Document

1-2

• Configuring Diagnostic Archives describes how to configure and use the WLDF
Diagnostic Archive component to persist diagnostic data to a file store or database.

• Configuring the Harvester for Metric Collection describes how to configure and use the
WLDF Harvester component to harvest metrics from run-time MBeans, including
WebLogic Server MBeans and custom MBeans.

• Configuring Policies and Actions provides an overview of WLDF policies and actions.

• Configuring Policies describes how to configure policies to monitor server instances and
applications for specific conditions and execute actions when those conditions are met.

• Configuring Actions describes how to configure actions that can be executed by policies.

• Configuring Instrumentation describes how to add diagnostic instrumentation code to
WebLogic Server classes and to the classes of applications running on the server.

• Configuring the DyeInjection Monitor to Manage Diagnostic Contexts describes how to
use the DyeInjection monitor and how to use dye filtering with diagnostic monitors.

• Accessing Diagnostic Data With the Data Accessor tells how to use the WLDF Data
Accessor component to retrieve diagnostic data.

• Deploying WLDF Application Modules explains how to configure and manage
instrumentation for an application as a diagnostics application module.

• Using the Monitoring Dashboard explains how to graphically present the current and
historical operating state of WebLogic Server and hosted applications using, in part,
diagnostic data captured by WLDF.

• Configuring and Using WLDF Programmatically provides an overview of how you can use
the JMX API and the WebLogic Scripting Tool (WLST) to configure and use WLDF
components.

• Using Debug Patches describes how to apply debug patches dynamically, allowing you to
capture diagnostic information using a patch that is activated and deactivated without
requiring a server restart.

• Smart Rule Reference contains a comprehensive reference of all smart rules provided in
WLDF are used as policy predicates, typically for elastic scaling operations in dynamic
clusters.

• WLDF Beans and Functions Reference provides a reference for the beans provided by
WLDF, and Java EL functions, that can be used in collected metrics policy expressions to
obtain access to common WebLogic Server JMX data sources.

• WLDF Query Language describes the WLDF query language that is used for constructing
expressions to query diagnostic data using the Data Accessor, constructing watch rules,
and constructing rules for filtering logs.

• WLDF Instrumentation Library describes the predefined diagnostic monitors and
diagnostic actions that are included in the WLDF Instrumentation Library.

• Using Wildcards in Expressions discusses how to use wildcards in WLDF expressions.

• WebLogic Scripting Tool Examples provides examples of how to perform WLDF
monitoring and diagnostic activities using the WebLogic Scripting Tool.

• WLDF Query Language-Based Policies explains how to configure policies with
expressions that use the deprecated WLDF query language.

• Glossary is a glossary of terms used in WLDF.

Chapter 1
Guide to This Document

1-3

Samples and Tutorials
In addition to this document, we provide a variety of samples and tutorials that show
WLDF configuration and use.

• Avitek Medical Records Application (MedRec) and Tutorials

• WLDF Samples Available for Download

Avitek Medical Records Application (MedRec) and Tutorials
MedRec is an end-to-end sample Java EE application shipped with WebLogic Server
that simulates an independent, centralized medical record management system. The
MedRec application provides a framework for patients, doctors, and administrators to
manage patient data using a variety of different clients.

MedRec demonstrates WebLogic Server and Java EE features, and highlights
recommended best practices. MedRec is optionally installed in the WebLogic Server
distribution and is available by selecting the Complete Installation type. By default,
Medrec is configured post-installation in the ORACLE_HOME/user_projects/domains/
medrec directory, where ORACLE_HOME represents the Oracle home directory on your
machine. See Sample Applications and Code Examples in Understanding Oracle
WebLogic Server.

WLDF Samples Available for Download
Additional WLDF samples for download can be found at http://www.oracle.com/
technetwork/indexes/samplecode/index.html. These examples are distributed
as .zip files that you can unzip into an existing WebLogic Server samples directory
structure. These samples include Oracle-certified ones, as well as samples submitted
by fellow developers.

What’s New in This Guide
For a comprehensive listing of the new WebLogic Server features introduced in this
release, see What's New in Oracle WebLogic Server.

Chapter 1
Samples and Tutorials

1-4

http://www.oracle.com/technetwork/indexes/samplecode/index.html
http://www.oracle.com/technetwork/indexes/samplecode/index.html

2
Overview of the WLDF Architecture

WebLogic Diagnostics Framework (WLDF) consists of various components that work
together to collect, archive, and access diagnostic information about a WebLogic Server
instance and the application it hosts.This chapter provides an overview of the WLDF
architecture, describes its components, and illustrates how all components work together to
collect and access diagnostic information about a WebLogic Server and the application it
hosts.

Note:

Concepts are presented in this section in a way to help you understand how WLDF
works. Some of this differs from the way WLDF is surfaced in its configuration and
run-time APIs and in the WebLogic Server Console. If you want to start configuring
and using WLDF right away, you can safely skip this discussion and start with Using
the Built-in Diagnostic System Modules.

The following topics summarize WLDF and its architectural components:

• Overview of the WebLogic Diagnostics Framework

• Data Creation, Collection, and Instrumentation

• Archive
The Archive component of WLDF captures the state of the system and archives it for
future access in diagnosing critical faults in the system. It creates a historical archive
using several persistent components.

• Policies and Actions
The Policies and Actions component of WLDF is used to create automated monitors that
observe specific diagnostic states and send notifications based on configured rules.

• Data Accessor
The Data Accessor component of WLDF provides access to all the data collected by
WLDF, including log, event, and metric data. It interacts with the Archive component to
get historical data including logged event data and persisted metrics.

• Monitoring Dashboard and Request Performance Pages
The WebLogic Server Administration Console displays the Monitoring Dashboard and
Diagnostics Request Performance pages. The diagnostics data collected is visually
represented in these pages. The Monitoring Dashboard displays the current and
historical operating state of WebLogic Server and hosted applications. The Diagnostics
Request Performance page shows real-time and historical views of method performance
information.

• Diagnostic Image Capture
The Diagnostic Image Capture component captures the key server state as a diagnostic
image. The diagnostic image is a diagnostic snapshot of the server state used in
diagnosing problems.

2-1

• How It All Fits Together
The components of the WLDF work together to collect data and diagnose faults in
running server.

Overview of the WebLogic Diagnostics Framework
The WLDF components interact with each other to process data at the server
level.WLDF consists of the following components:

• Data creators (data publishers and data providers that are distributed across
WLDF components)

• Data collectors (the Logger and the Harvester components)

• Archive component

• Accessor component

• Instrumentation component

• Policies and Actions component

• Image Capture component

• Monitoring Dashboard

Data creators generate diagnostic data that is consumed by the Logger and the
Harvester. Those components coordinate with the Archive to persist the data, and they
coordinate with the Policies and Actions subsystem to provide automated monitoring.
The Accessor interacts with the Logger and the Harvester to expose current diagnostic
data and with the Archive to present historical data. The Image Capture facility
provides the means for capturing a diagnostic snapshot of a key server state. The
Major WLDF components are shown in Figure 2-1.

Figure 2-1 Major WLDF Components

Data Creators

Data Publishers

Data Providers

Data Collectors

Logger

Harvester

Instrumentation

Image
Capture

Archive

Policies
and Actions

Accessor

Monitoring
Dashboard

All of the framework components operate at the server level and are only aware of
server scope. All the components exist entirely within the server process and
participate in the standard server lifecycle. All artifacts of the framework are configured
and stored on a per server basis.

Data Creation, Collection, and Instrumentation
Diagnostic data is collected from a number of logically classified sources.The sources
are logically classified as either data providers, data creators that are sampled at

Chapter 2
Overview of the WebLogic Diagnostics Framework

2-2

regular intervals to harvest current values, or data publishers, data creators that
synchronously generate events.
Data providers and data publishers are distributed across components, and the generated
data can be collected by the Logger or the Harvester, as shown in Figure 2-2.

Figure 2-2 Relationship of Data Creation Components to Data Collection
Components

Service Codebase

Catalog
Logging

Debugging

Instrumentation

Monitors

MBean Server

WLS Runtime
MBeans

Custom
MBeans

Logger

Archiver

Harvester

Database

Database

Figure 2-2 shows that invocations of the server logging infrastructure serve as inline data
publishers, and that the generated data is collected as events. (The logging infrastructure can
be invoked through the catalog infrastructure, the debugging model, or directly through the
Logger.)

The Instrumentation component creates monitors and inserts them at well-defined points in
the flow of execution. These monitors publish data directly to the Archive.

Components registered with the MBean Server may also make themselves known as data
providers by registering with the Harvester. Collected data is then exposed to both the
Policies and Actions system for automated monitoring and to the Archive for persistence.

Archive
The Archive component of WLDF captures the state of the system and archives it for future
access in diagnosing critical faults in the system. It creates a historical archive using several
persistent components.

The past state is often critical in diagnosing faults in a system. This requires that the state be
captured and archived for future access, creating a historical archive. In WLDF, the Archive
meets this need with several persistence components. Both events and harvested metrics
can be persisted and made available for historical review.

Traditional logging information, which is human readable and intended for inclusion in the
server log, is persisted through the standard logging appenders. New event data that is
intended for system consumption is persisted into an event store using an event archiver.

Chapter 2
Archive

2-3

Metric data is persisted into a data store using a data archiver. The relationship of the
Archive to the Logger and the Harvester is shown in Figure 2-3.

The Archive provides access interfaces so that the Accessor may expose any of the
persisted historical data.

Figure 2-3 Relationship of the Archive to the Logger and the Harvester

Logger

Filters

Archive

Log Appenders

Event Archive

Data Archive

Log Storage

Event Storage

Data Storage

Instrumentation

Monitors

Harvester

Harvest Table

Policies and Actions
The Policies and Actions component of WLDF is used to create automated monitors
that observe specific diagnostic states and send notifications based on configured
rules.

A policy can monitor log data, event data from the Instrumentation component, or
metric data from a data provider that is harvested by the Harvester. The Policy
Manager is capable of managing policies that are composed of a number of policy
expressions. These relationships are shown in Figure 2-4.

Figure 2-4 Relationship of the Logger and the Harvester to the Policies and
Actions System

Logger

Policy Appender

Instrumentation

Monitors

Harvester

Harvest Table

Policies and Actions

Policy Action

Policy Expression

One or more actions can be configured for use by a policy. By default, every policy
logs an event in the server log. SMTP, SNMP, JMX, elastic, REST, script, log, and JMS
actions are also supported.

Chapter 2
Policies and Actions

2-4

Data Accessor
The Data Accessor component of WLDF provides access to all the data collected by WLDF,
including log, event, and metric data. It interacts with the Archive component to get historical
data including logged event data and persisted metrics.

When accessing data in a running server, a JMX-based access service is used. The
Accessor provides for data lookup by type, by component, and by attribute. It permits time-
based filtering and, in the case of events, filtering by severity, source and content.

Tools may need to access data that was persisted by a currently inactive server. In this case,
an offline Accessor is also provided. You can use it to export archived data to an XML file for
later access. To use the Accessor in this way, you must use the WebLogic Scripting Tool
(WLST) and must have physical access to the machine.

The relationship of the Accessor to the Harvester and the Archive is shown in Figure 2-5.

Figure 2-5 Relationship of the Online and Offline Accessors to the Archive

Accessor

Historical

Archive

Log Appenders

Event Archive

Data Archive

Offline Accessor

Historical

Monitoring Dashboard and Request Performance Pages
The WebLogic Server Administration Console displays the Monitoring Dashboard and
Diagnostics Request Performance pages. The diagnostics data collected is visually
represented in these pages. The Monitoring Dashboard displays the current and historical
operating state of WebLogic Server and hosted applications. The Diagnostics Request
Performance page shows real-time and historical views of method performance information.

The following sections provide more information about the web pages that visually display the
diagnostic data:

• Monitoring Dashboard

• Diagnostics Request Performance Page

Monitoring Dashboard
The Monitoring Dashboard displays the current and historical operating state of WebLogic
Server and hosted applications by providing visualizations of metric runtime MBean
attributes, which surface some of the more critical runtime performance metrics and the
change in those metrics over time. Historical operating state is represented by collected
metrics that have been persisted into the Archive. To view collected metrics from the Archive,
you must configure the Harvester to capture the data you want to monitor.

The Monitoring Dashboard displays metric information in a series of views. A view is a
collection of one or more charts that display metrics. The Monitoring Dashboard includes a

Chapter 2
Data Accessor

2-5

predefined set of built-in views of available runtime metrics for all running WebLogic
Server instances in the domain. Built-in views surface some of the more critical
runtime WebLogic Server performance metrics and serve as examples of the
Monitoring Dashboard's graphic capabilities.

Custom views are available only to the user who creates them. Custom views are
automatically persisted and can be accessed again when you restart the Monitoring
Dashboard sessions. See Using the Monitoring Dashboard.

Diagnostics Request Performance Page
The Diagnostics Request Performance page of the WebLogic Server Administration
Console shows real-time and historical views of method performance information that
is captured using the Instrumentation component. To view request performance
information, you must first configure the Instrumentation component to make that data
available. See Creating Request Performance Data.

Diagnostic Image Capture
The Diagnostic Image Capture component captures the key server state as a
diagnostic image. The diagnostic image is a diagnostic snapshot of the server state
used in diagnosing problems.

Diagnostic Image Capture support gathers the most common sources of the key
server state used in diagnosing problems. It packages that state into a single artifact
which can be made available to support technicians, as shown in Figure 2-6. The
diagnostic image is in essence a diagnostic snapshot or dump from the server,
analogous to a UNIX core dump.

If WebLogic Server is configured with Oracle HotSpot, and Java Flight Recorder is
enabled, the diagnostic image capture includes all available Java Flight Recorder data
from all producers. Furthermore, if WLDF is configured to generate WebLogic Server
diagnostic information captured by Java Flight Recorder, the JFR file includes that
information as well. The JFR file can be extracted from the diagnostic image capture
and viewed in Java Mission Control. See Using WLDF with Java Flight Recorder.

Image Capture support includes:

• On-demand capture, which is the creation of a diagnostic image capture by means
of an operation or command issued from the WebLogic Server Administration
Console, WLST script, or JMX application.

• Image action, which is automatically creating a diagnostic image capture in
response to the triggering of an associated Harvester policy, Log policy, or
Instrumentation policy expression. For example, a Harvester policy that monitors
runtime MBean attributes in a running server can execute an image action if the
metrics harvested from specific runtime MBean instances indicate a performance
issue. Data in the diagnostic image capture can be analyzed to determine the
likely causes of the issue.

For more information about diagnostic image capture, see:

• Configuring and Capturing Diagnostic Images

• Configuring Image Actions

Chapter 2
Diagnostic Image Capture

2-6

Figure 2-6 Diagnostic Image Capture

Console

WLST

JMX

Image Capture

Image Action

Image
Source

Image
Artifact

Image
Manager

How It All Fits Together
The components of the WLDF work together to collect data and diagnose faults in running
server.

Figure 2-7 shows how all the parts of WLDF fit together.

Chapter 2
How It All Fits Together

2-7

Figure 2-7 Overall View of the WebLogic Diagnostics Framework

Instrumentation

Data Creators

Data
Publishers

Data
Providers

Collectors

Logger Harvester

Image Artifact
without Flight
Recorder Data

Config

Descriptor

Smart
Rules

Expression
Beans

Image Artifact
with Flight

Recorder Data

Log
Storage

Event
Storage

Data
Storage

Archive

Log
Appenders

Event
Archiver

Data
Achiver

Accessor

Historical

Image Capture

Image
Source

Image
Manager

Oracle HotSpot

WLDF Flight
Recorder Event

Producers

Java
Flight

Recorder

Flight Recorder
Image

Resource

Policies and Actions

Policy Action

Policy
Expresion

Chapter 2
How It All Fits Together

2-8

3
Using the Built-in Diagnostic System Modules

The built-in diagnostic system modules are provided by the WebLogic Diagnostics
Framework (WLDF) as a simple and easy-to-use mechanism for performing basic health and
performance monitoring of a WebLogic Server instance.

• Overview

• Configuring a Built-in Diagnostic Module
You can configure a built-in diagnostic module to collect data from key WebLogic Server
runtime MBeans. Use the WebLogic Server Administration Console or WLST command
to configure the diagnostic module.

• Accessing Data Collected by a Built-in Diagnostic System Module
The built-in diagnostic modules collect data from the WebLogic Server. The collected
data is visually represented as graph in the Monitoring Dashboard and as Metric Log
tables in the Administration Console.

• Creating a Custom Diagnostic System Module Based on a Built-in
You can use one of the built-in diagnostic modules as the starting point and create
customized diagnostic modules to suit your requirements. Using the built-in diagnostic
modules simplifies the process of creating new diagnostic modules.

Overview
The WLDF built-in diagnostic modules collect data from key WebLogic Server run-time
MBeans that monitor the main components of a server instance.Those main components are:

• JVM

• WebLogic Server run time

• JDBC, JMS, transaction, and logging services

• Java EE containers hosting servlets, EJBs, and Connector Architecture resource
adapters

When configured in a WebLogic Server instance, the built-in diagnostic modules are
particularly useful for providing a low-overhead, historical record of server performance. As
server workload changes over time, or the performance characteristics change as a result of
updates made to the server's configuration, you can examine the data collected by the built-
ins to obtain details about performance changes. For example, if you notice a slowdown in
the response time of one or more deployed applications, you can use the Monitoring
Dashboard or the Metrics Log table in the WebLogic Server Administration Console to
examine the data collected by the built-ins for performance bottlenecks associated with one
or more WebLogic Server subsystems. Then using other diagnostic tools, such as custom
diagnostic modules, policies and actions, or Java Flight Recorder, you can drill down further
into details about those bottlenecks to pinpoint specific causes and test the effectiveness of
solutions.

In WebLogic domains configured to run in production mode, a built-in diagnostic module is
enabled by default in each server instance. (In domains configured to run in development
mode, built-ins are disabled by default.) However, a built-in diagnostic module can be

3-1

enabled or disabled for a server instance easily and dynamically, using either the
WebLogic Server Administration Console or WLST.

Data collected by the built-in diagnostic modules can be accessed easily, using tools
such as the Metrics Log table in the WebLogic Server Administration Console or the
Monitoring Dashboard. The data can also be accessed programmatically using JMX,
WLST, or REST.

• Types of Built-in Diagnostic System Modules

• Data Collected by Built-in Diagnostic System Modules

Types of Built-in Diagnostic System Modules
WLDF provides three built-in diagnostic system module types:

• Low — Captures the most important data from key WebLogic Server runtime
MBeans (enabled by default in production mode).

• Medium — Captures additional attributes from the WebLogic Server runtime
MBeans captured by Low, and also includes data from additional runtime MBeans.

• High — Captures the most verbose data from attributes on the WebLogic Server
runtime MBeans captured by Medium, and also includes data from a larger number
of runtime MBeans.

The built-in diagnostic system module type configured for a server instance is
specified in the
WLDFServerDiagnosticMBean.WLDFBuiltinSystemResourceType=string MBean
attribute, where string can be set to one of Low, Medium, High, or None.

Data Collected by Built-in Diagnostic System Modules
When you enable a built-in diagnostic module in a WebLogic Server instance, WLDF
begins collecting data from key WebLogic Server run-time MBeans to obtain
information, such as the following:

Data Category Example of Information Collected

JVM statistics Amount of available free memory and JVM processor load on host
machine.

Thread statistics Threads being held by a request and the number of pending user
requests.

JDBC subsystem
statistics

Examples of information collected may include:

• Number of connections currently in use by applications.
• Average amount of time taken to create a physical connection to

the database.
• Number of leaked connections (that is, connections reserved from

the data source but not returned to the data source).
• Number of available and idle database connections.
• Cumulative, running count of requests for a connection from a

data source.

Chapter 3
Overview

3-2

Data Category Example of Information Collected

JMS subsystem
statistics

Examples of information collected may include statistics about:

• WebLogic JMS consumers and producers, such as number of
messages pending by a consumer or producer.

• JMS destinations, such as current number of messages in the
destination, and number of pending messages in the destination.

• The current number of connections to WebLogic Server.

Logging subsystem
statistics

The number of log messages that the WebLogic Server instance has
generated.

JTA subsystem Examples of information collected may include:

• Number of active transactions on the server.
• Total number of seconds that transactions were active for all

committed transactions.

Java EE container
statistics

Examples of information collected may include statistics about:

• EJBs, such as the EJB cache, EJB pool, and EJB transaction
statistics.

• Servlets, such as the average amount of time all invocations of a
servlet have executed since the servlet was created.

Note:

The specific configuration of each built-in diagnostic module is internal to WebLogic
Server and subject to change in a future release.

Configuring a Built-in Diagnostic Module
You can configure a built-in diagnostic module to collect data from key WebLogic Server
runtime MBeans. Use the WebLogic Server Administration Console or WLST command to
configure the diagnostic module.

Using the WebLogic Server Administration Console, you can perform the following steps to
configure the built-in diagnostic module:

1. Select Built-in Diagnostic Modules in the Diagnostics area of the WebLogic Server
Administration Console home page.

Chapter 3
Configuring a Built-in Diagnostic Module

3-3

Figure 3-1 WebLogic Server Administration Console home page

2. In the Summary of Built-in Diagnostic Modules page, select the server instance for
which you want to configure a built-in diagnostics module.

3. In the Settings for server-name page, select the built-in diagnostics module type
you want to configure: Low, Medium, or High.

By default, once you select a built-in diagnostics module for a server instance, it is
automatically activated and begins collecting the data in the Archive. From the
Summary of Built-in Diagnostic Modules page, you can later deactivate the built-in
module if desired by setting it to None.

Note:

Although WebLogic Server allows you to target multiple diagnostic system
modules to a server instance, only one built-in diagnostic module type may
be activated at any time.

For more information about configuring built-in system diagnostic modules in the
WebLogic Server Administration Console, see the following topics in Oracle WebLogic
Server Administration Console Online Help.

• Activate a built-in diagnostic system module

• Select a built-in diagnostics system module

• Disable a built-in diagnostic system module

Accessing Data Collected by a Built-in Diagnostic System
Module

The built-in diagnostic modules collect data from the WebLogic Server. The collected
data is visually represented as graph in the Monitoring Dashboard and as Metric Log
tables in the Administration Console.

Chapter 3
Accessing Data Collected by a Built-in Diagnostic System Module

3-4

The following sections describe the different ways you can access the data collected by a
built-in diagnostic system module:

• Using the Monitoring Dashboard

• Using the Metrics Log Table in the Administration Console

Using the Monitoring Dashboard
The Monitoring Dashboard is a good choice for viewing the data collected by the built-in
diagnostic system modules. The Metric Browser simplifies selecting the specific MBean
attributes you want to graph, and the tools available for customizing views and drilling down
on data of interest are easy to use.

The Monitoring Dashboard does not provide a means to select the data collected by a
particular diagnostic system module, including any of the built-ins. However, for a given
server instance, you can easily select the runtime MBean instance and corresponding metrics
you want to display. See Using the Monitoring Dashboard, for complete details about the
Monitoring Dashboard.

To view data collected by a built-in module:

1. Launch the Monitoring Dashboard, which you can do from the WebLogic Server
Administration Console or separately in a Web browser. See Running the Monitoring
Dashboard.

2. In the Monitoring Dashboard, create a custom view, as described in Create custom views
in the Oracle WebLogic Server Administration Console Online Help.

3. Navigate to the Metric Browser and select the following:

• The server instance for which you want to display data collected by the built-in
diagnostic system module.

• The Collected Metrics Only button.

• The MBean type and instance corresponding to the runtime MBean for which the
data was collected.

4. Create a chart.

5. Open the Chart Properties dialog box, select Custom (only applies to collected
metrics), and specify the time range during which the data you wish to view was
collected.

6. In the Metric Browser, select the metrics you want to display.

Using the Metrics Log Table in the Administration Console
You can access data collected by the built-in diagnostic system modules in the Metrics Log
table, which is displayed by selecting the log file name HarvestedDataArchive in the
Summary of Log Files console page.

Chapter 3
Accessing Data Collected by a Built-in Diagnostic System Module

3-5

Figure 3-2 Summary of Log Files

To display the metrics collected by a built-in diagnostic module in the Metrics Log table
of the WebLogic Server Administration Console, complete the following steps:

1. Select HarvestedDataArchive in the Summary of Log Files console page, and
click View.

2. In the Metrics Log console page, click Customize this table.

3. To constrain the table to display only metrics collected by a built-in diagnostic
module, enter a string in the WLDF Query Expression field that specifies that
built-in, such as the following:

• WLDFMODULE = 'wldf-server-low' — Specifies metrics collected by the Low
built-in diagnostic module.

• WLDFMODULE LIKE 'wldf-server-%' — Specifies metrics collected by any of
the built-in diagnostic modules.

4. In the Available column display box, select WLDF Module, and click the right
arrow to move it to the Chosen box.

Chapter 3
Accessing Data Collected by a Built-in Diagnostic System Module

3-6

Figure 3-3 Metrics Log

5. Click Apply.

If the Archive contains a large amount of data, you can filter the Metrics Log table further by
adding expressions to the WLDF query string. For example:

• (WLDFMODULE LIKE 'wldf-server-%') AND (NAME LIKE '%Name=examples-demo%')
restricts the number of metrics displayed to harvested attributes with an instance name
that includes the string examples-demo.

• (WLDFMODULE LIKE 'wldf-server-%') AND (TYPE LIKE '%ServletRuntime%') restricts
the number of metrics displayed to harvested attributes of the ServletRuntimeMBean.

• (WLDFMODULE LIKE 'wldf-server-%') AND (TYPE LIKE '%JMSDestination%' AND
ATTRNAME = 'MessagesCurrentCount') restricts the number of metrics displayed to
harvested instances of the JMSDestinationRuntimeMBean.MessagesCurrentCount
attribute.

For more information about WLDF query expressions, see WLDF Query Language.

Creating a Custom Diagnostic System Module Based on a Built-
in

You can use one of the built-in diagnostic modules as the starting point and create
customized diagnostic modules to suit your requirements. Using the built-in diagnostic
modules simplifies the process of creating new diagnostic modules.

From the Create a Diagnostics System Module page of the WebLogic Server Administration
Console, you can select Use a built-in diagnostic system module as a template, and then
select the particular built-in module upon which you want to base your new diagnostic
module.

Chapter 3
Creating a Custom Diagnostic System Module Based on a Built-in

3-7

Figure 3-4 Create a Diagnostics System Module

After you select the particular built-in module you want to use as a template, and click
OK, you can navigate to the Settings for module-name page and make the following
customizations as appropriate:

• The Collected Metrics tab displays the set of metrics configured for the particular
built-in you are using as a template. By default, all the metrics configured in the
built-in are enabled in your custom diagnostic module:

– To delete a configured metric, select it and click Delete.

– To add a metric not configured with the built-in used as a template, click New,
and use the Create a Metric assistant to specify the metric.

For more information about customizing the metrics configured for your diagnostic
system module, see Configure metric collection for a diagnostic system module in
Oracle WebLogic Server Administration Console Online Help.

• The Policies and Actions tab displays a set of policies and actions that are
configured but not actually enabled in the built-in module you are using for a
template. The set of policies and actions available represent those that cover
typical server-level situations for which actions are generally desirable when
certain state criteria thresholds are met. You can delete, or add to the set of
policies and actions as appropriate. You may also update threshold values to suit
your situations.

Chapter 3
Creating a Custom Diagnostic System Module Based on a Built-in

3-8

Note:

If you use one or more policies and actions that are configured in the built-in
module, you must make sure that they are enabled in your diagnostic system
module. In the Policies and Actions tab of the WebLogic Server Administration
Console, select Enabled then click Save.

For more information about targeting and activating diagnostic system modules, see
Configuring Diagnostic System Modules.

Chapter 3
Creating a Custom Diagnostic System Module Based on a Built-in

3-9

4
Using WLDF with Java Flight Recorder

The integration of the WebLogic Diagnostics Framework (WLDF) with Java Flight Recorder
enables WebLogic Server events to be propagated to the Java Flight Recorder for inclusion
in a common data set for runtime or post-incident analysis.The Flight Recording data is also
included in WLDF diagnostic image captures, which enables you to capture flight recording
snapshots based on WLDF policies. You can use this capability to capture and analyze, in a
single view, the runtime system information for both the JVM and the Fusion Middleware
components running on it.
This chapter also explains common usage scenarios that show how this integration can
provide for a comprehensive performance analysis and diagnostic foundation for production
systems based on WebLogic Server.

• About Java Flight Recorder
Java Flight Recorder is a performance monitoring and profiling tool that records
diagnostic information on a continuous basis. The Java Flight Recorder is available even
when there is a catastrophic failure such as a system crash.

• Using Java Flight Recorder with Oracle HotSpot
Java Flight Recorder is available with Oracle Hotspot. If WebLogic Server is configured
with Oracle HotSpot, Java Flight Recorder is disabled by default. Enable the Java Flight
Recorder to capture the WLDF diagnostic data.

• Key Features of WLDF Integration with Java Flight Recorder
WLDF integration with Java Flight Recorder provides several useful features, including
having WebLogic Server events captured in the flight recording, the ability to throttle the
volume of data captured, tools for downloading diagnostic image captures, and more.

• Java Flight Recorder Use Cases
Java Flight Recorder helps to resolve important diagnostic issues such as diagnosing
critical failure, and examining and reporting runtime data. When a critical failure occurs,
the data captured by Java Flight Recorder is useful for failure analysis. Likewise,
capturing data at specific time and at runtime help to diagnose data after and before a
particular event.

• Obtaining the Flight Recording File
The diagnostic image capture is a single Java Flight Recorder (JFR) file that contains
individual images produced by different server subsystems. The JFR file is included in
the diagnostic image as FlightRecording.jfr.

• Analyzing Java Flight Recorder Data
You can extract the JFR file from the diagnostic image capture and use Java Mission
Control to examine the contents of the JFR file. JFR provides graphical user interface
which gives view of all the event information recorded in the JFR file.

About Java Flight Recorder
Java Flight Recorder is a performance monitoring and profiling tool that records diagnostic
information on a continuous basis. The Java Flight Recorder is available even when there is
a catastrophic failure such as a system crash.

4-1

Java Flight Recorder is available in Oracle HotSpot. When WebLogic Server is
configured with HotSpot, Java Flight Recorder is not enabled by default. See Using
Java Flight Recorder with Oracle HotSpot for information about how to enable Java
Flight Recorder with WebLogic Server.

Note:

For the most current information about configurations supported in this
release of WebLogic Server, see Oracle Fusion Middleware Supported
System Configurations on the Oracle Technology Network.

Java Flight Recorder maintains a buffer of diagnostics and profiling data, called a flight
recording or a JFR file, that you can access whenever you need it. The flight recording
functions in a manner similar to an aircraft "black box" in which new data is
continuously added and older data is stripped out, as shown in Figure 4-1.

Figure 4-1 Circular Flight Recording Buffer

Time

New
Data

Old
Data

Flight
Recording

The data contained in the JFR file includes events from the JVM and from any other
event producer, such as WebLogic Server and Oracle Dynamic Monitoring System
(DMS). The JFR file can be analyzed at any time, using Java Mission Control, to
examine the details of system execution flow that occurred leading up to an event.

The amount of additional processing overhead that results when Java Flight Recorder
is enabled, and also configure WLDF to generate WebLogic Server diagnostics to be
captured by Java Flight Recorder, is minimal. This makes it ideal to be used on a full
time basis, especially in production environments where it adds the greatest value.

Java Flight Recorder provides the following key benefits:

• Designed to run continuously — When Java Flight Recorder is configured to run
full-time, with both JVM and WLDF events captured in the flight recording,
diagnostic data is always available at the time an event occurs, including a system
crash. This ensures that a record of diagnostic data leading up to the event is
available, allowing you to diagnose the event without having to recreate it.

Chapter 4
About Java Flight Recorder

4-2

• Comprehensive data — Java Flight Recorder combines data generated by tools such as
the Runtime Analyzer and the Latency Analysis Tool and presents it in one place.

• Integration with event providers — HotSpot includes a set of APIs that allow Java Flight
Recorder to monitor additional system components, including WebLogic Server, Oracle
Dynamic Monitoring System (DMS), and other Oracle products.

For more information about Java Flight Recorder, see Java Flight Recorder Runtime Guide at
the following location:

http://docs.oracle.com/javacomponents/index.html

Using Java Flight Recorder with Oracle HotSpot
Java Flight Recorder is available with Oracle Hotspot. If WebLogic Server is configured with
Oracle HotSpot, Java Flight Recorder is disabled by default. Enable the Java Flight Recorder
to capture the WLDF diagnostic data.

To enable Java Flight Recorder, you must specify the following JVM options in the WebLogic
Server instance in which the JVM runs:

-XX:+UnlockCommercialFeatures -XX:+FlightRecorder

Note:

The sequence in which you specify JVM options to Hotspot is very important. The
options are processed from left to right, and option values are overwritten if there
are duplicates. Therefore, note the following:

• HotSpot does not recognize the FlightRecorder option unless it is preceded by
the UnlockCommercialFeatures option.

• If you specify only the FlightRecorder option, or you specify FlightRecorder
before specifying UnlockCommercialFeatures, the HotSpot JVM does not start.

Key Features of WLDF Integration with Java Flight Recorder
WLDF integration with Java Flight Recorder provides several useful features, including
having WebLogic Server events captured in the flight recording, the ability to throttle the
volume of data captured, tools for downloading diagnostic image captures, and more.

The key features provided by WLDF to leverage integration with Java Flight Recorder include
the following:

• WLDF diagnostic data captured in a flight recording

WLDF can be configured to generate diagnostic data about WebLogic Server events that
is captured in the flight recording. Captured events include those from components such
as: web applications; EJBs; JDBC, JTA, and JMS resources; resource adapters; and
WebLogic web services.

• WLDF diagnostic volume control

The ability to generate WebLogic Server event data for the Flight Recording is controlled
by the WLDF diagnostic volume configuration. This control also determines the amount of
WebLogic Server event data that is captured by Java Flight Recorder, and can be

Chapter 4
Using Java Flight Recorder with Oracle HotSpot

4-3

http://docs.oracle.com/javacomponents/index.html

adjusted to include more, or less, data for each WebLogic Server event that is
generated. See Configuring WLDF Diagnostic Volume.

Note:

– By default, the WLDF diagnostic volume is set to Low.

– The WLDF diagnostic volume setting does not affect explicitly
configured diagnostic modules or the built-in diagnostic modules.

• Automatic throttling of generated events under load

As processing load rises on a given WebLogic Server instance, WLDF
automatically begins throttling the number of incoming WebLogic Server requests
that are selected for event generation and recording into the JFR file. The degree
of throttling is adjusted continuously as system load rises and falls.

Throttling provides three key benefits:

– The overhead of capturing events generated by WLDF for Java Flight
Recorder remains minimized, which is especially important when systems are
under load.

– The time interval encompassed in the flight recording buffer is maximized,
giving you a better historical record of data.

– Throttling has the effect of sampling incoming WebLogic Server requests,
maintaining high performance while still providing an accurate overall view of
system activity under load.

Note:

Throttling affects only the Flight Recording data that is captured by
WLDF. It does not affect data captured by other event producers, such
as the JVM.

• WLDF diagnostic image capture support for JFR files

WLDF diagnostic image capture automatically includes the JFR file, if one has
been generated by Java Flight Recorder. The JFR file includes data generated by
all active event producers, including WebLogic Server. An image captured using
the Policies and Actions component may contain the JFR file, if available.

• WLST commands for downloading the contents of diagnostic image captures

WLST includes a set of commands for downloading the contents of diagnostic
image captures, described in WLST Online Commands for Downloading
Diagnostics Image Captures. Although these commands are generally useful for
listing, copying, and downloading all entries contained in the diagnostic image
capture, they can also be used for obtaining the JFR file, if available. Once
obtained from the diagnostic image capture, the JFR file can be viewed in Java
Mission Control.

Chapter 4
Key Features of WLDF Integration with Java Flight Recorder

4-4

Java Flight Recorder Use Cases
Java Flight Recorder helps to resolve important diagnostic issues such as diagnosing critical
failure, and examining and reporting runtime data. When a critical failure occurs, the data
captured by Java Flight Recorder is useful for failure analysis. Likewise, capturing data at
specific time and at runtime help to diagnose data after and before a particular event.

This section summarizes the three common business cases of using the Java Flight
Recorder to resolve diagnostic issues:

For more information about scenarios using Java Flight Recorder, see also About Java Flight
Recorder in Java Flight Recorder Runtime Guide, available at the following URL:

http://docs.oracle.com/javacomponents/index.html
• Diagnosing a Critical Failure — The "Black Box"

• Profiling During Performance Testing or in Production

• Real-Time Application Diagnostics and Reporting

Diagnosing a Critical Failure — The "Black Box"
When a "catastrophic" failure occurs, the content of the Java Flight Recorder buffer can be
made available for post-failure analysis in a manner analogous to the use of an aircraft's
black box. Examples of such failures include a JVM crash or an out-of-memory error (OOME)
resulting in an application terminating.

When these situations arise, the flight recording contains the following information, which can
be helpful in determining the cause of the failure:

• JVM core dump, including metadata about the Java Flight Recorder configuration at the
time of the crash. Furthermore, depending on the disk storage parameters that are set,
the Java Flight Recorder data buffer might contain a certain amount of data.

• WebLogic Server events, captured by WLDF, that preceded the failure.

Java Flight Recorder uses a combination of memory and disk to store its buffer. The most
recent data is stored in memory and is flushed out to disk as it "ages". In this way, the on-disk
data can be available even after a power failure or similar catastrophic event; only the most
recent data will be unavailable (for example, the data that had not yet been flushed to disk).
The text dump file will contain metadata about the Java Flight Recorder configuration at the
time of the crash, including the path to the data buffer file when applicable.

Profiling During Performance Testing or in Production
Profiling involves capturing data beginning at a specific point in time so that, later, you can
analyze the events that were generated after that point. In contrast to real-time diagnostics
reporting, described in the following section, profiling involves analyzing the diagnostic data
generated after a particular event occurs, as opposed to the data that precedes it.

Profiling with Java Flight Recorder optimizes the ability to perform deep analysis of lock
contention and causes of latency.

Chapter 4
Java Flight Recorder Use Cases

4-5

http://docs.oracle.com/javacomponents/index.html

Real-Time Application Diagnostics and Reporting
It is particularly useful to examine diagnostic data generated during run time when a
particular event occurs for the purposes of understanding the system activity that
preceded the event; for example, system activity occurring moments before a serious
error message is generated. By using the diagnostic capabilities available in WLDF in
conjunction with Java Flight Recorder, you can capture a large amount of system-wide
diagnostic data the moment a problem occurs. You can then leverage the capabilities
of Java Mission Control to quickly correlate that event with other system activity and
process execution data within the "snapshot in time" that the JFR file provides,
enabling you to quickly isolate likely causes of the problem.

One WLDF feature that is particularly useful in conjunction with Java Flight Recorder is
the image action. An image action generates a diagnostic image capture in response
to the triggering of a policy that is configured in a diagnostic system module. The
policy monitors the server environment for one or more specific conditions, and when
those conditions occur, the policy can automatically executes an image action. When
Flight Recorder is enabled, the diagnostic image capture automatically includes the
JFR file. The JFR file can then be extracted from the diagnostic image capture and
examined immediately in Java Mission Control or stored for later analysis. An image
action, used when WLDF data is captured by Java Flight Recorder, is particularly well
suited for real-time diagnosis of intermittent problems.

Image action is part of the Policies and Actions system in WLDF. To set up an image
action, you create one or more individual policies. A policy includes a Java EL
expression to specify the event for the policy to detect. For example, the following log
policy expression detects the server log message with severity level Critical and ID
BEA-149618:

log.severityString == 'Critical' && log.messageId == 'BEA-149618'

Policies can monitor any of the following:

• Runtime MBean instances in the local runtime MBean server

A scheduled policy can execute an image action if runtime MBean attributes detect
a performance issue, such as high memory utilization rates or problems with open
socket connections to the server.

• Messages published to the server log

A log policy can execute an image action if a specific message, severity level, or
string is issued.

• Event generated by the WLDF Instrumentation component

An event policy can execute an image action if an instrumentation service
generates a particular event.

See the following topics:

• Configuring Policies and Actions

• Configuring Image Actions

The following sections explain how to obtain the JFR file from the diagnostic image
capture and provide an example of using Java Mission Control to examine the
WebLogic Server events contained in the JFR file:

• Obtaining the Flight Recording File

Chapter 4
Java Flight Recorder Use Cases

4-6

• Analyzing Java Flight Recorder Data

Obtaining the Flight Recording File
The diagnostic image capture is a single Java Flight Recorder (JFR) file that contains
individual images produced by different server subsystems. The JFR file is included in the
diagnostic image as FlightRecording.jfr.

A diagnostic image capture can be generated on-demand — for example, from the WebLogic
Server Administration Console, Fusion Middleware Control, WLST, or a JMX application — or
it can be generated as the result of an image action. For information about how to generate a
diagnostic image captures and configure the location in which they are created, see
Configure and capture diagnostic images in Oracle WebLogic Server Administration Console
Online Help.

To view the contents of the JFR file, you first need to extract it from the diagnostic image
capture as described in Configuring and Capturing Diagnostic Images. Once you have
extracted the JFR file, you can view its contents in Java Mission Control.

For an example WLST script that retrieves the JFR file from a diagnostic image file and saves
it to a local directory, see Example: Retrieving a JFR File from a Diagnostic Image Capture.

Analyzing Java Flight Recorder Data
You can extract the JFR file from the diagnostic image capture and use Java Mission Control
to examine the contents of the JFR file. JFR provides graphical user interface which gives
view of all the event information recorded in the JFR file.

The following sections highlight some of the capabilities of Java Mission Control's graphical
user interface, which provides a lot of tooling support for drilling down into the diagnostic data
generated not only by WLDF for WebLogic Server events, but also from all other available
event producers, including HotSpot:

• Java Flight Recorder Graphical User Interface

• Analyzing Execution Flow — A Sample Walkthrough

• Changing the Location of Temporary JFR Files

For complete details about the Java Mission Control interface, see Java Mission Control
User's Guide at the following location:

http://docs.oracle.com/javacomponents/index.html
• Java Flight Recorder Graphical User Interface

• Analyzing Execution Flow — A Sample Walkthrough

• Changing the Location of Temporary JFR Files

Java Flight Recorder Graphical User Interface
Java Mission Control includes the Java Flight Recorder graphical user interface, which allows
users who are running a Java Flight Recorder-compliant version of Oracle HotSpot to view
JVM recordings, current recording settings, and runtime parameters. The JFR interface
includes the Events Type View, which gives you direct access to event information that has
been recorded in the JFR file, such as event producers and types, event logging and
graphing, event by thread, event stack traces, and event histograms.

Chapter 4
Obtaining the Flight Recording File

4-7

http://docs.oracle.com/javacomponents/index.html

The Overview tab in the Java Flight Recorder interface is useful for analyzing a
system's general health because it can reveal behavior that might indicate bottlenecks
or other sources of poor system performance. Figure 4-2 shows an example of the
Overview tab in the Events Type View.

Note the following regarding the information shown in Figure 4-2:

• The Events Type View is available by selecting the Events tab group icon.

• The name of the Java Flight Recorder file appears at the top of the Overview tab.
Note that the Java Flight Recorder is always named FlightRecording.jfr, it is
useful to rename it descriptively after downloading it from the diagnostic image
capture.

• The Event Types Browser, on the left side, is a tree that shows the available event
types in a recording. It works in conjunction with the Events tab group to provide a
means to select events or groups of events in a recording that might be of interest
to you and to obtain more granular information about them.

As you select and deselect entries in the Event Types Browser, the information
displayed in the Overview tab is filtered dynamically. For example, by selecting
only WebLogic Server, event data from all non-WebLogic event producers is
filtered out.

• The range navigator, which is the graph displayed below the Overview tab title, is
a time line that shows all events in a recording that pertain to the data displayed
on the selected tab. A set of buttons are available for adjusting the range of data
that is displayed, which can simplify the process of drilling down into the details of
Java Flight Recorder data.

• The Producers section identifies each event producer that generated the data that
is displayed. Metrics are included for each producer, indicating the volume of event
activity generated by each as a proportion of the total set of event data displayed.

• The Event Types section lists all events represented in the Overview tab, along
with key metric data about each event.

Chapter 4
Analyzing Java Flight Recorder Data

4-8

Figure 4-2 Example Overview Page of Java Flight Recorder File in Java Mission Control

Analyzing Execution Flow — A Sample Walkthrough
This section shows an example of the steps that a developer or support engineer might use
to identify the event activity associated with a particular request in a Web application hosted
on WebLogic Server. This example is not meant to recommend a specific way to diagnose
performance problems, but simply shows how the Java Flight Recorder graphical user
interface can be used to greatly simplify the process of locating and analyzing performance
issues.

The following examples are shown in this section:

• Displaying Event Data for a Product Subcomponent

• Viewing the Event Log to Display Details

• Tracking Execution Flow by Analyzing an Operative Set

• Expanding the Operative Set and Viewing Correlated Diagnostic Data

Displaying Event Data for a Product Subcomponent
When you start Java Mission Control and open a JFR file, you can use the Event Types View
to quickly select the specific events you want to analyze. As you select and deselect items in
the Event Types Browser (which is available in the Event Types View), the information

Chapter 4
Analyzing Java Flight Recorder Data

4-9

displayed in the Java Flight Recorder graphical user interface is updated instantly to
show information about only the selected event types.

Figure 4-3 shows the Event Types Browser with only servlet event types selected.

Figure 4-3 Event Types Browser

Viewing the Event Log to Display Details
To view details about the events logged by one or more event types, select the Log
tab, which is available at the bottom of the Java Flight Recorder graphical user
interface. An example of the Log tab for servlet event types is shown in Figure 4-4.

Chapter 4
Analyzing Java Flight Recorder Data

4-10

Figure 4-4 Servlet Event Log

When using the Log tab, you can view details about events as follows:

• You can click on individual column heads in the Event Log table to modify the sort order
of the events. For example, by clicking the Duration column, you can quickly identify the
events that took the longest time to execute.

• When you select an event in the Event Log table, details about that event are displayed
in the Event Attributes table. For example, Figure 4-4 shows the following attributes:

– Event start, end, and duration times

– User ID of person who issued the request on the servlet

– Method, class name, and URI of invoked servlet

– Relationship ID (RID), which distinguishes the work done in one thread on one
process, from work done by any other threads on this and other processes on behalf
of the same request. See Understanding ECIDs and RIDs in Correlating Messages in
Administering Oracle Fusion Middleware.

– Execution context ID (ECID)

Different event types have different attributes. For example, if this were a JDBC event, you
could scroll among the attributes to see the SQL statement, the JDBC connection pool used,
and the stack from which it was called. The interface makes it easy to scan for unexpected
behavior that can be analyzed in deeper detail.

Chapter 4
Analyzing Java Flight Recorder Data

4-11

Note:

The value of the ECID is a unique identifier that can be used to correlate
individual events as being part of the same request execution flow. For
example, events that are identified as being related to a particular request
typically have the same ECID value, as shown in Tracking Execution Flow by
Analyzing an Operative Set. However, the format of the ECID string itself is
determined by an internal mechanism that is subject to change; therefore,
you should not have or place any dependencies on that format.

Tracking Execution Flow by Analyzing an Operative Set
The Java Flight Recorder graphical user interface in Java Mission Control allows you
to analyze the run-time trail of system activity that occurs as the result of a particular
event. In this example, the run-time trail is analyzed by first defining an operative set.
An operative set is any set of events that you choose to work in Java Mission Control.

In the example shown in this section, an operative set is created for the events that
have the same execution context ID (ECID) attribute as the servlet invocation event
selected in the Event Log table, shown in Figure 4-4. The operative set is then
analyzed to see the execution flow that resulted from that servlet invocation. (Note that
this operative set could be expanded to include events that match on different
attributes as well; for example, events containing a specific SQL statement but not
necessarily the same ECID.)

This operative set is defined by right-clicking the desired event in the Event Log, and
then selecting Operative Set > Add Related Events > With ECID=<ecid>. See
Figure 4-5.

Chapter 4
Analyzing Java Flight Recorder Data

4-12

Figure 4-5 Defining an Operative Set by Matching ECID

The operative set is then displayed by selecting Show Only Operative Set above the event
log table, shown in Figure 4-6. Note how the operative set is indicated in the range navigator.

Figure 4-6 Displaying an Operative Set

The runtime trail of execution flow that results from the request that generated the servlet
invocation event can be viewed by including additional event types. For example, Figure 4-7
shows the operative set when all WebLogic Server event types are added, using the Event

Chapter 4
Analyzing Java Flight Recorder Data

4-13

Type Browser, and listing the events in chronological order. (You can sort the events
chronologically by selecting the Start Time column head.)

Figure 4-7 Adding all WebLogic Server Events to Operative Set

In this example, note a portion of the execution flow shown in the Event Log:

1. The servlet URI is invoked.

2. The servlet uses an EJB, which requires access to the database.

3. A JDBC connection is obtained and a transaction is started.

Expanding the Operative Set and Viewing Correlated Diagnostic Data
The operative set can be further analyzed by constraining the time interval of the
execution flow and adding correlated events from additional producers. By
constraining the time interval for displayed events, you can add events to the Event
Log that occurred simultaneously with the operative set. This allows you to see
additional details about the execution context that can help diagnose performance
issues.

The time interval can be constrained by using the range selection bars in the range
navigator. You can grab these bars with your pointer and drag them inward or outward
to change the range of events displayed in the Event Log. The range selection bars
are activated when you hover your pointer over either end of the navigator, as shown
in Figure 4-8.

Chapter 4
Analyzing Java Flight Recorder Data

4-14

Figure 4-8 Range Navigator Selection Bars

Events from additional producers, such as HotSpot, can be selected in the Event Types
Browser. Note that JVM events do not have ECID attributes, so they cannot be included
among the WLDF events in the operative set. So to view the JVM events, you need to de-
select Show Only Operative Set.

At this point the events that are displayed in the Event Log are those that occurred during the
selected time interval but not correlated otherwise. Figure 4-9 shows drilling down into JDBC
activity by selecting only JDBC events and JVM events. The Event Log is updated and listed
in chronological order to show the JVM activity that occurred simultaneously to the flow of the
JDBC events in the selected time interval.

Figure 4-9 Adding JVM Events to JDBC Event Log

Chapter 4
Analyzing Java Flight Recorder Data

4-15

Changing the Location of Temporary JFR Files
The temporary JFR files created in the operating system's temp directory are managed
directly by the JVM. WLDF does not control these files. (By default, WLDF temporary
files related to Java Flight Recorder are placed in the DOMAIN_HOME/servers/
SERVER_NAME/server/logs/diagnostic_images directory.)

However, you can change the location in which the JVM places its temporary files by
using the following command-line option when starting Java Flight Recorder, where
path represents the preferred location:

-XX:FlightRecorderOptions=repository=path

For more information about Java Flight Recorder configuration settings, see Java
Flight Recorder Runtime Guide at the following location:

http://docs.oracle.com/javacomponents/index.html

Chapter 4
Analyzing Java Flight Recorder Data

4-16

http://docs.oracle.com/javacomponents/index.html

5
Understanding WLDF Configuration

The WebLogic Diagnostics Framework (WLDF) provides several features for generating,
gathering, analyzing, and persisting diagnostic data from WebLogic Server instances and
from applications deployed to them.For server-scoped diagnostics, some WLDF features are
configured as part of the configuration for a server in a domain. Other features are configured
as system resource descriptors that can be targeted to servers (or clusters). For application-
scoped diagnostics, diagnostic features are configured as resource descriptors for the
application.
For general information about WebLogic Server domain configuration, see Understanding
Oracle WebLogic Server Domains in Understanding Domain Configuration for Oracle
WebLogic Server.

• Configuration MBeans and XML
WLDF is configured using configuration MBeans (Managed Beans), and the configuration
is persisted in the XML configuration files. The configuration MBeans are instantiated at
startup, based on the configuration settings in config.xml. When you modify a
configuration by changing the values of MBean attributes, those changes are persisted in
the XML files.

• Tools for Configuring WLDF
You can configure the WLDF in several ways such as using the built-in diagnostic
modules, WebLogic Administration Console, WebLogic Scripting Tool (WLST), JMX and
WLDF configuration beans, and editing the XML configuration files.

• How WLDF Configuration Is Partitioned
You can use WLDF to perform diagnostics tasks for server instances, clusters, and for
applications.

• Configuring Diagnostic Image Capture and Diagnostic Archives
Configure the Diagnostic Image Capture and Diagnostic Archive components in the
config.xml file for a domain. The server configuration details are defined in the <server-
diagnostic-config > element of the XML configuration file.

• Configuring Diagnostic Image Capture for Java Flight Recorder
The JFR file contains data for all events procedures that are enabled. When WebLogic
Server is configured with a supported version of Oracle HotSpot and Java Flight
Recorder is enabled, the JFR file is automatically included in the diagnostic image
capture.

• Configuring Diagnostic System Modules
To configure and use the Instrumentation, Harvester, and Policies and Actions
components at the server level, you must first create a system resource called
a diagnostic system module, which will contain the configurations for all those
components. The configuration of diagnostic system module is defined in a resource
descriptor.

• Configuring Diagnostic Modules for Applications

• WLDF Configuration MBeans and Their Mappings to XML Elements
The set of WLDF configuration MBeans, along with the diagnostic system module beans
for WLDF objects, are organized into a specific hierarchy in a WebLogic domain.

5-1

Configuration MBeans and XML
WLDF is configured using configuration MBeans (Managed Beans), and the
configuration is persisted in the XML configuration files. The configuration MBeans are
instantiated at startup, based on the configuration settings in config.xml. When you
modify a configuration by changing the values of MBean attributes, those changes are
persisted in the XML files.

Configuration MBean attributes map directly to configuration XML elements. For
example, the Enable attribute of the WLDFInstrumentationBean maps directly to the
<enabled> sub-element of the <instrumentation> element in the resource descriptor
file (configuration file) for a diagnostic module. If you change the value of the MBean
attribute, the content of the XML element is changed when the configuration is saved.
Conversely, if you were to edit an XML element in the configuration file directly (which
is not recommended), the change to an MBean value would take effect after the next
session is started.

For more information about WLDF Configuration MBeans, see WLDF Configuration
MBeans and Their Mappings to XML Elements. For general information about how
MBeans are implemented and used in WebLogic Server, see Understanding WebLogic
Server MBeans in Developing Custom Management Utilities Using JMX for Oracle
WebLogic Server.

Tools for Configuring WLDF
You can configure the WLDF in several ways such as using the built-in diagnostic
modules, WebLogic Administration Console, WebLogic Scripting Tool (WLST), JMX
and WLDF configuration beans, and editing the XML configuration files.

Refer to the following sections for more information about the tools:

• Use the built-in diagnostic system modules, which provide a simple and easy-to-
use mechanism for performing basic health and performance monitoring of a
WebLogic Server instance. See Using the Built-in Diagnostic System Modules.

• Use the WebLogic Server Administration Console to configure WLDF for server
instances and clusters. See Configure the WebLogic Diagnostics Framework in
the Oracle WebLogic Server Administration Console Online Help.

• Write scripts to be run in the WebLogic Scripting Tool (WLST). For specific
information about using WLST with WLDF, see WebLogic Scripting Tool
Examples. Also see Introduction in Understanding the WebLogic Scripting Tool for
general information about using WLST.

• Configure WLDF programmatically using JMX and the WLDF configuration
MBeans. See Configuring and Using WLDF Programmatically for specific
information about programming WLDF. See MBean Reference for Oracle
WebLogic Server and browse or search for specific MBeans for programming
reference.

• Edit the XML configuration files directly. This documentation explains many
configuration tasks by showing and explaining the XML elements in the
configuration files. The XML is easy to understand, and you can edit the
configuration files directly, although it is recommended that you do not. (If you
have a good reason to edit the files directly, you should first generate the XML files

Chapter 5
Configuration MBeans and XML

5-2

by configuring WLDF in the WebLogic Server Administration Console. Doing so provides
a blueprint for valid XML.)

Note:

If you make changes to a configuration by editing configuration files, you must
restart the server for the changes to take effect.

How WLDF Configuration Is Partitioned
You can use WLDF to perform diagnostics tasks for server instances, clusters, and for
applications.

• Server-Level Configuration

• Application-Level Configuration

Server-Level Configuration
You configure the following WLDF components as part of a server instance in a domain. The
configuration settings are controlled using MBeans and are persisted in the domain's
config.xml file.

• Diagnostic Image Capture

• Diagnostic Archives

See Configuring Diagnostic Image Capture and Diagnostic Archives.

You configure the following WLDF components as the parts of one or more diagnostic system
modules that can be deployed to one or more server instances or clusters. These
configuration settings are controlled using beans and are persisted in one or more diagnostic
resource descriptor files (configuration files) that can be targeted to one or more server
instances or clusters.

• Harvester (for collecting metrics)

• Policies and Actions

• Instrumentation

See Configuring Diagnostic System Modules.

Application-Level Configuration
You can use the WLDF Instrumentation component with applications, as well as at the server
level. The Instrumentation component is configured in a resource descriptor file deployed with
the application in the application's archive file. See Configuring Diagnostic Modules for
Applications.

Chapter 5
How WLDF Configuration Is Partitioned

5-3

Configuring Diagnostic Image Capture and Diagnostic
Archives

Configure the Diagnostic Image Capture and Diagnostic Archive components in the
config.xml file for a domain. The server configuration details are defined in the
<server-diagnostic-config > element of the XML configuration file.

The <server-diagnostic-config> element is a child of the <server> element in a
domain, as shown in Example 5-1.

Example 5-1 Sample WLDF Configuration Information in the config.xml File for
a Domain

<domain>
 <server>
 <name>myserver</name>
 <server-diagnostic-config>
 <image-dir>logs/diagnostic_images</image-dir>
 <image-timeout>3</image-timeout>
 <diagnostic-store-dir>data/store/diagnostics</diagnostic-store-dir>
 <diagnostic-data-archive-type>FileStoreArchive
 </diagnostic-data-archive-type>
 </server-diagnostic-config>
 </server>
 <!-- Other server elements to configure other servers in this domain -->
 <!-- Other domain-based configuration elements, including references to
 WLDF system resources, or diagnostic system modules. -->
</domain>

Note:

If WebLogic Server is configured with Oracle HotSpot, and Java Flight
Recorder is enabled, the diagnostic image capture can optionally include a
Java Flight Recorder file, also called a JFR file, that includes WebLogic
Server events. The JFR file can then be viewed in Java Mission Control. See
Using WLDF with Java Flight Recorder.

See the following topics:

• Configuring and Capturing Diagnostic Images

• Configuring Diagnostic Archives

Configuring Diagnostic Image Capture for Java Flight
Recorder

The JFR file contains data for all events procedures that are enabled. When WebLogic
Server is configured with a supported version of Oracle HotSpot and Java Flight

Chapter 5
Configuring Diagnostic Image Capture and Diagnostic Archives

5-4

Recorder is enabled, the JFR file is automatically included in the diagnostic image capture.

The amount of WebLogic Server event data that is included in the JFR file is determined by
the configuration of the WLDF diagnostic volume.

Note:

Note the following:

• If WebLogic Server is configured with Oracle HotSpot, Java Flight Recorder is
disabled by default unless HotSpot is started using the JVM parameters
described in Using Java Flight Recorder with Oracle HotSpot.

• By default, the WLDF diagnostic volume is set to Low.

• For the most current information about configurations supported in this release
of WebLogic Server, including HotSpot support, see Oracle Fusion Middleware
Supported System Configurations on the Oracle Technology Network.

To include WebLogic Server event data in the JFR file:

1. Ensure that WebLogic Server is configured with Oracle HotSpot, which installed
separately from WebLogic Server.

See Planning the Oracle WebLogic Server Installation in Installing and Configuring
Oracle WebLogic Server and Coherence.

2. Ensure that Java Flight Recorder is enabled.

In a default installation of Oracle HotSpot with WebLogic Server, Java Flight Recorder is
disabled. For information about enabling Java Flight Recorder with HotSpot and
WebLogic Server, see Using Java Flight Recorder with Oracle HotSpot.

3. Set the WLDF diagnostic volume as appropriate. For general use, Oracle recommends
the default setting of Low. However, you can increase the volume of WebLogic Server
event data that is generated, as appropriate, by setting the volume to Medium or High.

Note that the WLDF diagnostic volume setting has no impact on data recorded for other
event producers, such as the JVM.

See Configure WLDF diagnostic volume in Oracle WebLogic Server Administration
Console Online Help.

Note:

If the WLDF diagnostic volume is set to Off, and Java Flight Recorder has not been
explicitly disabled, the JFR file continues to include JVM event data and is always
included in the diagnostic image capture.

Configuring Diagnostic System Modules
To configure and use the Instrumentation, Harvester, and Policies and Actions components at
the server level, you must first create a system resource called a diagnostic system module,

Chapter 5
Configuring Diagnostic System Modules

5-5

which will contain the configurations for all those components. The configuration of
diagnostic system module is defined in a resource descriptor.

The diagnostic system module created at the server level contains the configurations
for the components. When creating a diagnostic system module, note the following:

• Diagnostic system modules are globally available for targeting to servers and
clusters configured in a domain.

• In a given domain, you can create multiple diagnostic system modules with distinct
configurations.

• You can target multiple diagnostic system modules to any given server or cluster.

• WLDF Runtime Control allows you to dynamically enable or disable a diagnostic
system module without changing the domain configuration.

• Runtime control also allows you to deploy, activate, deactivate, and undeploy a
diagnostic system module on-the-fly that is not defined in the domain
configuration.

The following sections described the configuration of diagnostic system modules:

• About the Resource Descriptor

• WLDF Runtime Control

• Creating a Diagnostic System Module Based on a Configured Resource
Descriptor

• Creating a Diagnostic System Module Based on an External Resource Descriptor

• Targeting a Diagnostic System Module to a Server or Cluster

• Dynamically Activating or Deactivating Diagnostic System Modules

• Using WLST to Activate and Deactivate Diagnostic System Modules

• More Information About Configuring Diagnostic System Modules

About the Resource Descriptor
A diagnostic system module has a corresponding resource descriptor that defines the
diagnostic module's configuration. A resource descriptor can be either configured or
external:

• A configured resource descriptor is one that is defined as part of the domain
configuration, and exists as a file in the DOMAIN_HOME/config/diagnostics
directory. A configured resource descriptor is referenced by the domain
config.xml file, and the corresponding diagnostic system module:

– Is persisted in the domain configuration.

– Is available to all servers and clusters in the domain.

– Can be targeted to a server or cluster through the domain configuration.

– Can be activated or deactivated dynamically using Runtime Control,
regardless of whether it is explicitly targeted to a server or cluster.

Any dynamic changes made to the activation state of the diagnostic system
module are not persisted across server restarts.

• An external resource descriptor is one that is not referenced by the domain
config.xml file; that is, it is defined outside the domain configuration. The

Chapter 5
Configuring Diagnostic System Modules

5-6

diagnostic system module that is configured by an external resource descriptor may be
deployed and activated on a server using Runtime Control. However, this diagnostic
system module:

– Is not persisted in the domain configuration (that is, it is not referenced by the domain
config.xml file.

– Can be deployed, activated, and deactivated only dynamically.

– Cannot have its deployment and activation state persisted in the domain
configuration.

– Remains in memory only until the server or cluster on which it is activated is shut
down.

– Cannot be automatically available on server restart.

An external resource descriptor may exist in a file located outside the DOMAIN_HOME/
config/diagnostics directory, or may be passed as a String object using the WLDF
Runtime Control API (see Creating a Diagnostic System Module Based on an External
Resource Descriptor).

Note:

The configuration of a diagnostic module conforms to the diagnostics.xsd
schema, available at http://xmlns.oracle.com/weblogic/weblogic-
diagnostics/2.0/weblogic-diagnostics.xsd.

Except for the name and list of targets for the diagnostic system module, all configuration
information for a diagnostic system module is contained in its resource descriptor file.
Example 5-2 shows portions of the descriptor file for a diagnostic system module named
myDiagnosticModule.

Example 5-2 Sample Structure of a Diagnostic System Module Descriptor File,
MyDiagnosticModule.xml

<wldf-resource xmlns="http://xmlns.oracle.com/weblogic/weblogic-diagnostics"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://xmlns.oracle.com/weblogic/weblogic-diagnostics/2.0/
weblogic-diagnostics.xsd">
 <name>MyDiagnosticModule</name>
 <instrumentation>
 <!-- Configuration elements for zero or more diagnostic monitors -->
 </instrumentation>
 <harvester>
 <!-- Configuration elements for harvesting metrics from zero or more
 MBean types, instances, and attributes -->
 </harvester>
 <watch-notification>
 <!-- Configuration elements for one or more policies and one or more
 actions-->
 </watch-notification>
</wldf-resource>

Chapter 5
Configuring Diagnostic System Modules

5-7

http://xmlns.oracle.com/weblogic/weblogic-diagnostics/2.0/weblogic-diagnostics.xsd
http://xmlns.oracle.com/weblogic/weblogic-diagnostics/2.0/weblogic-diagnostics.xsd

WLDF Runtime Control
WLDF Runtime Control allows you to control the activation or deactivation of
diagnostics system modules dynamically at run time without making a change to the
domain configuration. This allows you to perform specific, targeted diagnostic analysis
tasks, and optionally of limited duration, without interfering with the operation of the
server instances themselves.

You can use Runtime Control to do the following:

• Dynamically activate and deactivate diagnostic system modules that are persisted
in the domain configuration without restarting the servers or clusters to which they
are targeted.

• Dynamically deploy, activate, deactivate, and undeploy diagnostic system modules
that are configured by an external resource descriptor.

Note:

Note the following:

• Changes applied to diagnostic system modules using Runtime Control,
whether defined by configured or external resource descriptors, are not
persisted. When a server instance is restarted, that server returns to its
configured state, and any changes prior to that restart that were made
using Runtime Control are lost.

• If you use the Runtime Control to activate a diagnostic system module
that is based on an external resource descriptor (see Creating a
Diagnostic System Module Based on an External Resource Descriptor),
the diagnostic resource name that you specify in the
createSystemResourceControl() command to create that diagnostic
system module is used as the WLDF Module name in Harvester records
in the archive.

Creating a Diagnostic System Module Based on a Configured
Resource Descriptor

You create a diagnostic system module based on a configured resource descriptor
using either the WebLogic Server Administration Console or the WebLogic Scripting
Tool (WLST). It is created as a WLDFResourceBean, and the configuration is
persisted in a resource descriptor file named DIAG_MODULE.xml, where DIAG_MODULE is
the name of the diagnostic system module. You can specify a name for the descriptor
file, but it is not required. If you do not provide a file name, a file name is generated
based on the value in the descriptor file's <name> element. The file is created by default
in the DOMAIN_HOME\config\diagnostics directory, and a reference to the module is
added to the domain's config.xml file.

Chapter 5
Configuring Diagnostic System Modules

5-8

Note:

Oracle recommends that you do not write XML configuration files directly. But if you
have a valid reason to do so, you should first create a diagnostic module from the
Console. That way, you can start with the valid XML that the Console creates. For
instructions, see Create diagnostic system modules in the Oracle WebLogic Server
Administration Console Online Help.

The config.xml file can contain references to multiple diagnostic system modules, in one or
more <wldf-system-resource> elements. The <wldf-system-resource> element includes the
name of the diagnostic system module file and the list of servers and clusters to which the
module is targeted.

For example, Example 5-3 shows a config.xml file with a module named
myDiagnosticModule targeted to the server myserver and another module named
newDiagnosticMod targeted to servers myserver and ManagedServer2. Note that
myDiagnosticModule and newDiagnosticMod are both targeted to myserver.

Example 5-3 Sample WLDF Configuration Information in the config.xml File for a
Domain

<domain>
 <!-- Other domain-level configuration elements -->
 <wldf-system-resource
 xmlns="http://xmlns.oracle.com/weblogic/weblogic-diagnostics">
 <name>myDiagnosticModule</name>
 <target>myserver</target>
 <descriptor-file-name>diagnostics/MyDiagnosticModule.xml
 </descriptor-file-name>
 <description>My diagnostic module</description>
 </wldf-system-resource>
 <wldf-system-resource>
 <name>newDiagnosticMod</name>
 <target>myserver,ManagedServer2</target>
 <descriptor-file-name>diagnostics/newDiagnosticMod.xml
 </descriptor-file-name>
 <description>A diagnostic module for my managed servers</description>
 </wldf-system-resource>
<!-- Other WLDF system resource configurations -->
</domain>

The relationship of the config.xml file and the MyDiagnosticModule.xml file is shown in
Figure 5-1.

Chapter 5
Configuring Diagnostic System Modules

5-9

Figure 5-1 Relationship of config.xml to System Descriptor File

Domain\config Directory Domain\config\diagnostics Directory

config.xml

<wldf-system-resource>
 <name>myDiagnosticModule</name>
 <target>myserver</target>
 <descriptor-file-name>
 diagnostics/MyDiagnosticModule.xml
 </descriptor-file-name>
</wldf-system-resource>

MyDiagnosticModule.xml

<wldf-resource>
 <name>myDiagnosticModule</name>
 <instrumentation>
 ...
 <instrumentation>
 <harvester>
 ...
 </harvester>
 <watch-notification>
 ...
 </watch-notification>
</wldf-resource>

For instructions on creating a diagnostic system module that is persisted in the
domain, see Create diagnostic system modules in the Oracle WebLogic Server
Administration Console Online Help.

Creating a Diagnostic System Module Based on an External Resource
Descriptor

WLDF provides the following API that you can use to pass an external resource
descriptor and create a diagnostic system module on-the-fly. You can use this API to
dynamically create and activate a diagnostic system module for a server, but neither
its deployment nor activation state is persisted when the servers or clusters on which it
was activated are rebooted. This API is provided by the following MBeans:

• weblogic.management.runtime.WLDFControlRuntimeMBean
• weblogic.management.runtime.WLDFSystemResourceControlRuntimeMBean
Using this API, you can pass the resource descriptor as a String object on-the-fly. For
ease-of-use, WLDF also provides the following WLST commands, which you can use
with a resource descriptor file that exists externally to the domain configuration:

• createSystemResourceControl() — Creates (deploys) a diagnostics system
module on-the-fly using a specified descriptor file.

• destroySystemResourceControl() — Destroys (undeploys) a diagnostics system
module previously created on-the-fly.

Externally configured diagnostic system modules that are deployed and activated in a
server or cluster are automatically destroyed when that server or cluster is shut down.

If you activate a diagnostic system module that is based on an external resource
descriptor, the diagnostic resource name that you specify in the
createSystemResourceControl command is used as the module name. For example,
this is the name that appears in the WLDF Module column when displaying the
contents of the Harvester archive in the WebLogic Server Administration Console. For
more information about the createSystemResourceControl command, see
Diagnostics Commands in WLST Command Reference for WebLogic Server.

For an example of using WLST to create, activate, and destroy a diagnostic system
module that is based on an external resource descriptor, see Using WLST to Activate
and Deactivate Diagnostic System Modules.

Chapter 5
Configuring Diagnostic System Modules

5-10

Targeting a Diagnostic System Module to a Server or Cluster
A diagnostic system module can be targeted by the domain config.xml file to zero, one, or
more servers or clusters. In addition, a given server can have multiple modules targeted to it
simultaneously. Typically you create multiple modules that monitor different aspects of your
system. You can then choose which modules to target to a server or cluster, based on what
you want to monitor at that time.

Because you can target the same module to multiple servers or clusters, you can write
general purpose modules that you want to use across a domain.

You can change the target of a diagnostic module without restarting the server instances to
which it is targeted or untargeted. This gives you considerable flexibility in writing and using
diagnostic monitors that address a specific diagnostic goal, without interfering with the
operation of the server instances themselves.

For information about how to use the WebLogic Server Administration Console to target a
diagnostic system module that is persisted in the domain configuration, see Target and
untarget diagnostic system modules in Oracle WebLogic Server Administration Console
Online Help.

Note:

You cannot use the WebLogic Server Administration Console to target diagnostic
system modules that are configured by an external descriptor. However, you can
use WLST as described in Using WLST to Activate and Deactivate Diagnostic
System Modules.

Dynamically Activating or Deactivating Diagnostic System Modules
After you configure a diagnostic system module, you can activate or deactivate it without
making a configuration change or rebooting the server instance to which it is targeted. This
capability gives you control over the operative state of diagnostic system modules without
restarting the targeted server or cluster instance or making a change to the domain
configuration.

Because the domain configuration and all resource files are replicated to all servers in the
domain, all configured WLDF resources are available for dynamic activation and deactivation
on all servers in the domain. Note that if you dynamically activate or deactivate a diagnostics
system module, and restart the targeted server, the module's activation state is reverted to
whatever is configured in the domain.

For information about using this capability in the WebLogic Server Administration Console for
diagnostic system modules that are persisted in the domain configuration, see Dynamically
activate or deactivate a diagnostic system module in Oracle WebLogic Server Administration
Console Online Help. (Note that you cannot use the WebLogic Server Administration Console
to dynamically activate or deactivate diagnostic system modules that are configured by an
external descriptor.)

You can also use WLST to dynamically activate or deactivate diagnostic system modules,
including those configured by an external descriptor, as described in Using WLST to Activate
and Deactivate Diagnostic System Modules.

Chapter 5
Configuring Diagnostic System Modules

5-11

Using WLST to Activate and Deactivate Diagnostic System Modules
You can also use WLST to dynamically activate or deactivate a diagnostic system
module. This capability is provided by the WLST commands listed and described in
Table 5-1:

Table 5-1 WLST Commands to Dynamically Activate and Deactivate Diagnostic
Modules

Command Summary

enableSystemResource Enables a diagnostic system module on a WebLogic
Server instance.

disableSystemResource Disables a diagnostic system module on a WebLogic
Server instance.

createSystemResourceControl Creates a diagnostics system module from an external
diagnostic descriptor file. Note that the diagnostics
system module remains in memory only until the server
is shut down and is not deployed the next time the
server is restarted.

destroySystemResourceControl Destroys, or undeploys, a diagnostics system module
configured in an external diagnostic descriptor without
changing the domain configuration.

listSystemResourceControls Lists the diagnostic system modules currently
configured on a WebLogic Server instance.

For complete details about these WLST commands, see Diagnostics Commands in
WLST Command Reference for WebLogic Server.

Example

This example describes the steps for using WLST to dynamically activate and
deactivate the following diagnostic system modules:

• Module-0, configured in the domain and defined by the resource descriptor file
Module-0-3905.xml located in the DOMAIN_HOME/config/diagnostics directory

• Module-1, configured in the domain and defined by the resource descriptor file
Module-0-3905.xml located in the DOMAIN_HOME/config/diagnostics directory

• External-1, not a part of the domain configuration, but defined by the external
resource descriptor external-wldf. This external resource descriptor is
configured in the file external-wldf.xml, which is external to the domain
configuration.

This example assumes the following has been set up:

• The domain config.xml file references two diagnostic system modules that are
part of the domain configuration, as follows:

<wldf-system-resource>
 <name>Module-0</name>
 <descriptor-file-name>diagnostics/Module-0-3905.xml</descriptor-file-name>
 <description></description>
</wldf-system-resource>
<wldf-system-resource>

Chapter 5
Configuring Diagnostic System Modules

5-12

 <name>Module-1</name>
 <descriptor-file-name>diagnostics/Module-1-3904.xml</descriptor-file-name>
 <description></description>
</wldf-system-resource>

• The server name shown in these examples is myserver.

• The external descriptor file external-wldf.xml is located in the domain's root directory,
wl_domain. It contains the following lines for configuring the diagnostic system module
named External-1:

<?xml version='1.0' encoding='UTF-8'?>
<wldf-resource xmlns="http://xmlns.oracle.com/weblogic/weblogic-diagnostics"
xmlns:sec="http://xmlns.oracle.com/weblogic/security"
xmlns:wls="http://xmlns.oracle.com/weblogic/security/wls"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://xmlns.oracle.com/weblogic/weblogic-diagnostics
http://xmlns.oracle.com/weblogic/weblogic-diagnostics/2.0/weblogic-diagnostics.xsd">
 <name>External-1</name>
 <harvester>
 <enabled>true</enabled>
 <sample-period>10000</sample-period>
 <harvested-type>
 <name>weblogic.management.runtime.ServerRuntimeMBean</name>
 <harvested-attribute>OverallHealthState.ReasonCodeSummary</harvested-attribute>
 <harvested-attribute>OverallHealthState.State</harvested-attribute>
 <namespace>ServerRuntime</namespace>
 </harvested-type>
 </harvester>
</wldf-resource>

Step 1: List Diagnostic System Modules

The following WLST command, shown in bold, lists the diagnostic system modules that are
currently configured:

wls:/wl_domain/Server1> listSystemResourceControls()
External Enabled Name
-------- ------- ------------------------------
false false Module-0
false false Module-1

The preceding command shows that Module-0 and Module-1 are configured in the domain
(that is, they are referenced from config.xml and are not configured by external resource
descriptors), but that they have not been activated.

Step 2: Activate Module-0

The following WLST command activates Module-0:

wls:/mydomain/serverConfig> enableSystemResource('Module-0')

You can also supply a server name to all of the WLDF system resource runtime control
functions. If you do not specify a server name, the enableSystemResource() command
defaults to the server instance to which WLST is currently connected. (However, by default,
all configured WLDF system resources are available for runtime control operations on all
servers in the domain.)

wls:/mydomain/serverConfig> enableSystemResource('Module-0', Server='myserver')

Chapter 5
Configuring Diagnostic System Modules

5-13

Step 3: Verify that Module-0 is Activated

The following WLST command shows that Module-0 is now activated:

wls:/mydomain/serverConfig> listSystemResourceControls()
External Enabled Name
-------- ------- ------------------------------
false true Module-0
false false Module-1

Step 4: Activate Module-1

The following WLST commands activate Module-1 and verify the activation state of all
diagnostic system modules:

wls:/mydomain/serverConfig> enableSystemResource('Module-1', Server='myserver')
wls:/mydomain/serverConfig> listSystemResourceControls()
External Enabled Name
-------- ------- ------------------------------
false true Module-0
false true Module-1

Step 5: Deactivate Configured Diagnostic Modules

The following WLST commands deactivate all diagnostic system modules that are
configured in the domain and verify their state:

wls:/mydomain/serverConfig> disableSystemResource('Module-0')
wls:/mydomain/serverConfig> disableSystemResource("Module-1")
wls:/mydomain/serverConfig> listSystemResourceControls()
External Enabled Name
-------- ------- ------------------------------
false false Module-0
false false Module-1

Step 6: Create a Diagnostic System Module from an External Resource
Descriptor File

The external resource descriptor needs to be accessible by the WLST client. The
following WLST command creates and deploys the diagnostic system module
External-1 from the external resource descriptor in the file external-wldf.xml, and
verifies its activation state. ()

wls:/mydomain/serverConfig> createSystemResourceControl('external-wldf',
'external-wldf.xml')
wls:/mydomain/serverConfig> listSystemResourceControls()
External Enabled Name
-------- ------- ------------------------------
false false Module-0
true false external-wldf
false false Module-1

Note that the External column identifies External-1 as being configured by an
external resource descriptor.

Chapter 5
Configuring Diagnostic System Modules

5-14

Step 7: Activate External-1

Because the createSystemResourceControl() command only deploys the diagnostic system
module, the following WLST command activates it. The subsequent command verifies the
diagnostic system module's activation state.

wls:/mydomain/serverConfig> enableSystemResource("external-wldf")
wls:/mydomain/serverConfig> listSystemResourceControls()
External Enabled Name
-------- ------- ------------------------------
false false Module-0
true true external-wldf
false false Module-1

Step 8: Deactivate External-1

The following WLST commands deactivate External-1 and verify its deactivation status:

wls:/mydomain/serverConfig> disableSystemResource("external-wldf")
wls:/mydomain/serverConfig> listSystemResourceControls()
External Enabled Name
-------- ------- ------------------------------
false false Module-0
true false external-wldf
false false Module-1

Step 9: Destroy External-1

The following WLST command destroys the diagnostic system module that is configured by
an external resource descriptor:

wls:/mydomain/serverConfig> destroySystemResourceControl("external-wldf")

Step 10: Verify Original State of Configured Diagnostic Modules

The following WLST command verifies that the domain's configuration is reverted to its
original state, showing only the two diagnostic system modules whose configuration is
persisted in the config.xml file:

wls:/mydomain/serverConfig> listSystemResourceControls()
External Enabled Name
-------- ------- ------------------------------
false false Module-0
false false Module-1

More Information About Configuring Diagnostic System Modules
See the following sections for detailed instructions about configuring WLDF system modules:

• Configuring the Harvester for Metric Collection

• Configuring Policies and Actions

• Configuring Instrumentation

• Configuring the DyeInjection Monitor to Manage Diagnostic Contexts

Chapter 5
Configuring Diagnostic System Modules

5-15

Configuring Diagnostic Modules for Applications
WLDF supports the ability to configure instrumentation of an application by means of a
diagnostic application module. A diagnostic application module is similar to a
diagnostic system module, with the exception that you configure it in an XML
descriptor file that you package with the application archive file. A diagnostic
application module deployed this way is available only to the application in which that
module is enclosed. This ensures that the application can be reliably deployed into
new environments with access to all required resources in the diagnostic module.
You configure and deploy application-scoped instrumentation as a diagnostic module,
which is similar to a diagnostic system module. However, an application module is
configured in an XML descriptor (configuration) file named weblogic-
diagnostics.xml, which is packaged with the application archive in the
ARCHIVE_PATH/META-INF directory for the deployed application. For example,
C:\Oracle\Middleware\Oracle_Home\user_projects\applications\medrec\dist\st
andalone\exploded\medrec\META-INF\weblogic-diagnostics.xml.

Note:

The DyeInjection monitor, which is used to configure diagnostic context (a
way of tracking requests as they flow through the system), can be configured
only at the server level. But once a diagnostic context is created, the context
attached to incoming requests remains with the requests as they flow
through the application. For information about the diagnostic context, see
Configuring the DyeInjection Monitor to Manage Diagnostic Contexts.

For more information about configuring and deploying diagnostic modules for
applications, see:

• Configuring Application-Scoped Instrumentation

• Deploying WLDF Application Modules

WLDF Configuration MBeans and Their Mappings to XML
Elements

The set of WLDF configuration MBeans, along with the diagnostic system module
beans for WLDF objects, are organized into a specific hierarchy in a WebLogic
domain.

Figure 5-2 shows the hierarchy of the WLDF configuration MBeans and the diagnostic
system module beans for WLDF objects in a WebLogic Server domain.

Chapter 5
Configuring Diagnostic Modules for Applications

5-16

Figure 5-2 WLDF Configuration Bean Tree

JavaBean representations of WLDF descriptor elements

ServerMBean

WLDFServerDiagnosticMBean

WLDFDataRetirementsByAgeMBean

WLDFSystemResourceMBean

WLDFHarvesterBean

WLDFResolution

WLDFWatchNotificationBean

WLDFInstrumentationBean

DomainMBean

The following WLDF MBeans configure WLDF at the server level. They map to XML
elements in the config.xml configuration file for a domain:

• WLDFServerDiagnosticMBean controls configuration settings for the Data Archive and
Diagnostic Images components for a server. It also controls whether diagnostic context
for a diagnostic module is globally enabled or disabled. (Diagnostic context is a way to
uniquely identify requests and track them as they flow through the system. See
Configuring the DyeInjection Monitor to Manage Diagnostic Contexts.)

This MBean is represented by a <server-diagnostic-config> child element of the <server>
element in the config.xml file for the server's domain.

• WLDFDataRetirementByAgeMBean specifies how data retirement for a WLDF archive is
performed based on the age of records in that archive.

• WLDFSystemResourceMBean contains the name of a descriptor file for a diagnostic
module in the DOMAIN_HOME/config/diagnostics directory and the names of one or more
the target servers on which that module is deployed.

This MBean is represented by a <wldf-system-resource> element in the config.xml file
for the domain.

Note:

You can create multiple diagnostic system modules in a domain. The
configurations for the modules are saved in multiple descriptor files in the
config/diagnostics directory for the domain. The domain's config.xml file,
therefore, can contain the multiple <wldf-system-resource> elements that
represent those modules.

Chapter 5
WLDF Configuration MBeans and Their Mappings to XML Elements

5-17

• WLDFResourceBean contains the configuration settings for a diagnostic system
module. This bean is represented by a <wldf-resource> element in a
DIAG_MODULE.xml diagnostics descriptor file in the domain's config/diagnostics
directory. (See Figure 5-1 and Example 5-2.) The WLDFResourceBean contains
configuration settings for the following components:

– Harvester: The WLDFHarvesterBean is represented by the <harvester>
element in a DIAG_MODULE.xml file.

– Instrumentation: The WLDFInstrumentationBean is represented by the
<instrumentation> element in a DIAG_MODULE.xml file.

– Policies and Actions: The WLDFWatchNotificationBean is represented by the
<watch-notification> element in a DIAG_MODULE.xml file.

If a WLDFResourceBean is linked from a WLDFSystemResourceMBean, the
settings for WLDF components apply to the targeted server. If a
WLDFResourceBean is contained within a weblogic-diagnostics.xml descriptor
file which is deployed as part of an application archive, you can configure only the
Instrumentation component, and the settings apply only to that application. In the
latter case, the WLDFResourceMBean is not a child of a
WLDFSystemResourceMBean.

Chapter 5
WLDF Configuration MBeans and Their Mappings to XML Elements

5-18

6
Configuring and Capturing Diagnostic Images

You can use the Diagnostic Image Capture component of the WebLogic Diagnostics
Framework (WLDF) to create a diagnostic snapshot or dump of a server's internal runtime
state at the time of the capture. The captured information is useful for analyzing the cause of
a server failure.If WebLogic Server is configured with Oracle HotSpot, and Java Flight
Recorder is enabled, the diagnostic image capture includes WebLogic Server diagnostic data
that can be viewed in Java Mission Control. See Using Java Flight Recorder with Oracle
HotSpot.

• How to Initiate Image Captures
The Diagnostic Image Capture component gathers the most common sources of key
server state used in diagnosing problems, and packages that state into a single file or
diagnostic image. You can initiate the image capture of a server using the WebLogic
Administration Console or WLST command.

• Configuring Diagnostic Image Captures
When you initiate the capture of diagnostic image, you can configure the capture details
such as the destination location of the image capture, WLDF diagnostic volume, and how
often an image must be captured during failures.

• How Diagnostic Image Capture Is Persisted in the Server's Configuration
The configuration for Diagnostic Image Capture is persisted in the config.xml file for a
domain.

• Content of the Captured Image File
The Diagnostic Image Capture component captures and combines the images produced
by the different server subsystems into a single .zip file. In addition to capturing the most
common sources of the server state, this component captures images from all the server
subsystems including, for example, images produced by the JMS, JDBC, EJB, and JNDI
subsystems.

How to Initiate Image Captures
The Diagnostic Image Capture component gathers the most common sources of key server
state used in diagnosing problems, and packages that state into a single file or diagnostic
image. You can initiate the image capture of a server using the WebLogic Administration
Console or WLST command.

A diagnostic image capture can be initiated by:

• A configured policy. See Configuring Actions.

• A request initiated by a user in the WebLogic Server Administration Console (and
requests initiated from third-party diagnostic tools). See Configure and capture diagnostic
images in the Oracle WebLogic Server Administration Console Online Help.

• A direct API call, using JMX. See Example 6-1.

• WLST command

6-1

Configuring Diagnostic Image Captures
When you initiate the capture of diagnostic image, you can configure the capture
details such as the destination location of the image capture, WLDF diagnostic
volume, and how often an image must be captured during failures.

Because the diagnostic image capture is meant primarily as a post-failure analysis
tool, there is little control over what information is captured. Available configuration
options are:

• The destination for the image.

• For a specific capture, a destination that is different from the default destination.

• A lockout, or timeout, period, to control how often an image is taken during a
sequence of failures and recoveries.

• WLDF diagnostics volume, which determines the volume of WebLogic Server
event information that is captured in the Java Flight Recorder file.

As with other WLDF components, you can configure Diagnostic Image Capture using
the WebLogic Server Administration Console (see Configure and capture diagnostic
images in the Oracle WebLogic Server Administration Console Online Help), the
WebLogic Scripting Tool (WLST), or programmatically.

The following example shows a simple policy expression that returns true when the
value of HeapFreePercent attribute of JVMRuntimeMBean is less than 20:

wls.runtime.serverRuntime.JVMRuntime.heapFreePercent < 20

See Configuring Scheduled Policies and Configuring Image Actions. Also, see
Configure Policies and Actions in the Oracle WebLogic Server Administration Console
Online Help.

• Configuring WLDF Diagnostic Volume

• WLST Commands for Generating an Image Capture

Configuring WLDF Diagnostic Volume
If WebLogic Server is configured with Oracle HotSpot, and the Java Flight Recorder is
enabled, the Java Flight Recorder data is automatically also captured in the diagnostic
image capture. This data can be extracted from the diagnostic image capture and
viewed in Java Mission Control. If Java Flight Recorder is not enabled, or if WebLogic
Server is configured with a different JVM, the Java Flight Recorder data is not
captured in the diagnostics image capture.

Note:

When WebLogic Server is configured with HotSpot, by default Java Flight
Recorder is disabled. For information about how to enable it, see Using Java
Flight Recorder with Oracle HotSpot.

Chapter 6
Configuring Diagnostic Image Captures

6-2

The volume of Java Flight Recorder data that is captured can be configured from the
WebLogic Server Administration Console, which allows you to specify the following settings:

Volume Setting Description

Off Disables the collection of data in the Java Flight Recorder diagnostic image.

Low Enabled by default. For information about data that is collected, see Low
Volume Setting.

Medium Captures a moderate amount of data. See Medium Volume Setting.

High Captures in-depth data. See High Volume Setting.

Note:

The specific set of events for which diagnostic data is collected using the diagnostic
volume settings is subject to change in future releases of WebLogic Server.

For information about how to set the diagnostic volume, see Configure WLDF diagnostics
volume in the Oracle WebLogic Server Administration Console Online Help. For an example
using WLST, see Example: Setting the WLDF Diagnostic Volume.

• Low Volume Setting

• Medium Volume Setting

• High Volume Setting

Low Volume Setting
The Low diagnostic volume setting is enabled by default. With this setting, basic information is
generated and captured, and log messages with the "emergency", "alert", or "critical" levels
are recorded.

In the current release of WebLogic Server, the following events are captured at the Low
setting:

ThrottleInformation
WLDF Logging Snapshot
WLDF LogRecord Snapshot
WLDF WLLogRecord Snapshot
Connector Activate Endpoint
Connector Deactivate Endpoint
Connector Inbound Transaction Rollback
Connector Outbound Connection Closed
Connector Outbound Connection Error
Connector Outbound Destroy Connection
Connector Outbound Register Resource
Connector Outbound Release Connection
Connector Outbound Reserve Connection
Connector Outbound Transaction Rollback
Connector Outbound Unregister Resource
Deployment Complete
Deployment Do Cancel
Deployment Do Prepare
Deployment Operation
EJB Business Method Invoke

Chapter 6
Configuring Diagnostic Image Captures

6-3

EJB Business Method Post Invoke
EJB Business Method Pre Invoke
JDBC Connection Rollback
JDBC Statement Execute
JDBC Statement Execute Begin
JDBC Transaction Rollback
Servlet Invocation
Servlet Request Run
Servlet Request Run Begin
Web Application Load
Web Application Unload
Webservices JAXRPC Client Request
Webservices JAXRPC Client Response
Webservices JAXRPC Dispatch
Webservices JAXRPC Request
Webservices JAXRPC Response
Webservices JAXWS Endpoint
Webservices JAXWS Request
Webservices JAXWS Resource

Medium Volume Setting
With the Medium diagnostic volume setting, additional information is captured, and
messages with the "error" level and above are recorded. For example, User IDs are
captured by the Medium and High volume settings (capturing them imposes a
performance overhead not appropriate for the Low setting).

In the current release of WebLogic Server, the following events are captured at the
Medium setting, in addition to those captured at the Low setting:

Connector Inbound Transaction Commit
Connector Inbound Transaction Start
Connector Outbound Transaction Commit
Connector Outbound Transaction Start
EJB Home Create
EJB Home Remove
EJB PoolManager Create
EJB Pool Manager Post Invoke
EJB Pool Manager Pre Invoke
JDBC Connection Close
JDBC Connection Commit
JDBC Connection Create Statement
JDBC Connection Get Vendor Connection
JDBC Connection Prepare
JDBC Connection Release
JDBC Connection Reserve
JDBC Data Source Get Connection
JDBC Driver Connect
JDBC Statement Creation
Servlet Execute
Servlet Request Dispatch
Servlet Request
Servlet Filter
Servlet Async Action
Servlet Context Execute
Servlet Response Write Headers
Servlet Response Send
Servlet Stale Resource
Servlet Check Access
JMS BE Consumer Log

Chapter 6
Configuring Diagnostic Image Captures

6-4

High Volume Setting
With the High diagnostic volume setting, in-depth information is captured, and messages with
the "error" level and above are recorded. Stack traces are also captured with the High setting,
but only for events for which a stack trace add value (for example, stack traces where
application code would normally be visible are generated, but stack traces that only show
internal code and that do not vary at all are not generated).

In the current release of WebLogic Server, the following events are captured at the High
setting in addition to those captured at the Medium setting:

EJB Database Access
EJB Business Method Post Invoke Cleanup
EJB Pool Manager Remove
EJB Replicated Session Manager
EJB Timer Manager
JDBC Transaction Commit
JDBC Transaction End
JDBC Transaction Get XA Resource
JDBC Transaction Is Same RM
JDBC Transaction Prepare
JDBC Transaction Start
JTA Transaction Commit
JTA Transaction End
JTA Transaction Prepared
JTA Transaction Prepare
JTA Transaction Start
Servlet Request Overload
Servlet Request Cancel
Servlet Context Handle Throwable

WLST Commands for Generating an Image Capture
Example 6-1 shows an example of WLST commands for generating an image capture.

Example 6-1 Sample WLST Commands for Generating a Diagnostic Image

url='t3://localhost:7001'
username='system'
password='password'
server='myserver'
timeout=120
connect(username, password, url)
serverRuntime()
cd('WLDFRuntime/WLDFRuntime/WLDFImageRuntime/Image')
argTypes = jarray.array(['java.lang.Integer'],java.lang.String)
argValues = jarray.array([timeout],java.lang.Object)
invoke('captureImage', argValues, argTypes)

How Diagnostic Image Capture Is Persisted in the Server's
Configuration

The configuration for Diagnostic Image Capture is persisted in the config.xml file for a
domain.

Chapter 6
How Diagnostic Image Capture Is Persisted in the Server's Configuration

6-5

In the config.xml file, the image capture is described under the <server-diagnostic-
config> subelement of the <server> element for the server, as shown in Example 6-2:

Example 6-2 Sample Diagnostic Image Capture Configuration

<domain>
 <!-- Other domain configuration elements -->
 <server>
 <name>myserver</name>
 <server-diagnostic-config>
 <image-dir>logs\diagnostic_images</image-dir>
 <image-timeout>2</image-timeout>
 </server-diagnostic-config>
 <!-- Other configuration details for this server -->
 </server>
 <!-- Other server configurations in this domain-->
</domain>

Note:

Oracle recommends that you do not edit the config.xml file directly.

Content of the Captured Image File
The Diagnostic Image Capture component captures and combines the images
produced by the different server subsystems into a single .zip file. In addition to
capturing the most common sources of the server state, this component captures
images from all the server subsystems including, for example, images produced by the
JMS, JDBC, EJB, and JNDI subsystems.

The most common sources of a server state are captured in a diagnostic image
capture, including:

• Configuration

• Log cache state

• Java Virtual Machine (JVM)

• Work Manager state

• JNDI state

• Most recent harvested data

If WebLogic Server is configured with Oracle HotSpot, and Java Flight Recorder is
enabled, the diagnostic image capture includes a Java Flight Recorder image,
FlightRecording.jfr, that can be viewed in Java Mission Control. The contents of
the Java Flight Recorder image contains all available data from the Java Flight
Recorder, and the volume of data produced by WLDF depends on the diagnostics
volume setting. When Java Flight Recorder is enabled, data is always provided by the
JVM, and optionally includes data provided by WebLogic Server. Data from additional
Oracle components, such as Oracle Dynamic Monitoring System (DMS), may be
included in the Java Flight Recorder image as well.

Chapter 6
Content of the Captured Image File

6-6

Note:

• A diagnostic image is a heavyweight artifact meant to serve as a server-level
state dump for the purpose of diagnosing significant failures. It enables you to
capture a significant amount of important data in a structured format and then to
provide that data to support personnel for analysis.

• If a non-WebLogic event producer in the WebLogic Server environment, such
as DMS, has configured Java Flight Recorder to record data, the WLDF
diagnostic image capture includes a Java Flight Recorder image file with the
recorded data even if the WLDF diagnostics volume is set to Off.

• When WebLogic Server is configured with HotSpot, Java Flight Recorder is not
enabled by default. For information about how to enable it, see Using Java
Flight Recorder with Oracle HotSpot.

• Data Included in the Diagnostics Image Capture File

• WLST Online Commands for Downloading Diagnostics Image Captures

Data Included in the Diagnostics Image Capture File
Each image is captured as a single file for the entire server. The default location is
SERVER_NAME\logs\diagnostic_images. Each image instance has a unique name, as follows:

 diagnostic_image_DOMAIN_SERVER_YYYY_MM_DD_HH_MM_SS.zip

The contents of the file include at least the following information:

• Creation date and time of the image

• Source of the capture request

• Name of each image source included in the image and the time spent processing each of
those image sources

• JVM and OS information, if available

• Command line arguments, if available

• WebLogic Server version including patch and build number information

If WLDF is configured with Oracle HotSpot, as described in Configuring Diagnostic Image
Capture for Java Flight Recorder, the image also contains the Java Flight Recorder file,
FlightRecording.jfr. The JFR file can be extracted as described in WLST Online
Commands for Downloading Diagnostics Image Captures, and viewed in Java Mission
Control. See Analyzing Java Flight Recorder Data.

Figure 6-1 shows the contents of an image file. You can open most of the files in this .zip file
with a text editor to examine the contents.

Chapter 6
Content of the Captured Image File

6-7

Figure 6-1 Contents of an Image File

WLST Online Commands for Downloading Diagnostics Image
Captures

WLST online provides the following commands for downloading diagnostic image
captures from the server to which WLST is connected:

Table 6-1 WLST Commands for Downloading Image Captures

Command Summary

captureAndSaveDiagnosticImage Captures a diagnostic image and downloads it locally.

getAvailableCapturedImages Returns a list of diagnostic images that have been created in the
image destination directory configured on the server.

saveDiagnosticImageCaptureFile Downloads a specified diagnostic image capture file.

saveDiagnosticImageCaptureEntryFil
e

Downloads a specific entry within a diagnostic image capture. This
command is particularly useful for obtaining the Java Flight
Recorder diagnostics data for viewing in Java Mission Control.

For information about these commands, and examples of using them, see Diagnostics
Commands in WLST Command Reference for WebLogic Server. For examples of
WLST scripts that return a list of diagnostic images and retrieve JFR files in them, see
WebLogic Scripting Tool Examples.

Chapter 6
Content of the Captured Image File

6-8

7
Configuring Diagnostic Archives

The Archive component captures and persists all data events, log records, and metrics
collected by the WebLogic Diagnostics Framework (WLDF) from server instances and
applications running on them. You can subsequently access archived diagnostic data in
online mode (that is, on a running server), or in off-line mode using the WebLogic Scripting
Tool (WLST).

This chapter explains how to configure the Archive, and also how to configure WLDF to
archive diagnostic data to a file store or a Java Database Connectivity (JDBC) data source:

You can also specify when and under what conditions old data will be removed from the
archive, as described in Retiring Data from the Archives.

• Configuring the Archive
You can configure the diagnostic archive on a per-server basis. The configuration is
persisted in the config.xml file for a domain, under the <server-diagnostic-config>
element for the server.

• Configuring a File-Based Store
WLDF supports the ability to use a file-based store for the Archive. If you choose the use
of a file-based store, the only configuration option you must set is the location of the
directory where the store is to be maintained. The default directory is DOMAIN_HOME/
servers/SERVER_NAME/data/store/diagnostics.

• Configuring a JDBC-Based Store

• Retiring Data from the Archives
To maintain the archived data, you must delete the old archived data periodically. WLDF
includes a configuration-based data retirement feature for doing this. The data can be
deleted based on the size of the data and time period when it was created.

Configuring the Archive
You can configure the diagnostic archive on a per-server basis. The configuration is persisted
in the config.xml file for a domain, under the <server-diagnostic-config> element for the
server.

Example configurations for file-based stores and JDBC-based stores are shown in
Example 7-1 and Example 7-7.

Note:

Resetting the system clock while diagnostic data is being written to the archive can
produce unexpected results. See Resetting the System Clock Can Affect How Data
Is Archived and Retrieved.

7-1

Configuring a File-Based Store
WLDF supports the ability to use a file-based store for the Archive. If you choose the
use of a file-based store, the only configuration option you must set is the location of
the directory where the store is to be maintained. The default directory is
DOMAIN_HOME/servers/SERVER_NAME/data/store/diagnostics.

When you save to a file-based store, WLDF uses the WebLogic Server persistent
store. See Using the WebLogic Persistent Store in Administering the WebLogic
Persistent Store.

An example configuration for a file-based store is shown in Example 7-1.

Example 7-1 Sample Configuration for File-based Diagnostic Archive (in
config.xml)

<domain>
 <!-- Other domain configuration elements -->
 <server>
 <name>myserver</name>
 <server-diagnostic-config>
 <diagnostic-store-dir>data/store/diagnostics</diagnostic-store-dir>
 <diagnostic-data-archive-type>FileStoreArchive
 </diagnostic-data-archive-type>
 </server-diagnostic-config>
 </server>
 <!-- Other server configurations in this domain -->
</domain>

Configuring a JDBC-Based Store
WLDF supports the ability to create the Archive in a JDBC-based store.To use a JDBC
store, the appropriate tables must exist in a database, and JDBC must be configured
to connect to that database. For information about how to configure JDBC using the
WebLogic Server Administration Console, see Configure database connectivity in
Oracle WebLogic Server Administration Console Online Help. For additional
information about JDBC configuration, see Administering JDBC Data Sources for
Oracle WebLogic Server.

Note:

If you install multiple WLDF schemas in the same database, you need to
provide a way to distinguish among them when accessing the diagnostic
archives. You can do this when you configure the diagnostic archive for a
server instance by specifying the schema name to use for accessing JDBC-
based archive tables in that database. See Configuring JDBC Resources for
WLDF.

• Creating WLDF Tables in the Database

• Configuring JDBC Resources for WLDF

Chapter 7
Configuring a File-Based Store

7-2

Creating WLDF Tables in the Database
If they do not already exist, you must create the database tables used by WLDF to store data
in a JDBC-based store. Two tables are required:

• The wls_events table stores data generated from WLDF Instrumentation events.

• The wls_hvst table stores data generated from the WLDF Harvester component.

The SQL Data Definition Language (DDL) used to create tables may differ for different
databases, depending on the SQL variation supported by the database.

• Apache Derby

• Oracle Database

• MySQL

Apache Derby
Example 7-2 shows the DDL that you can use to create the wls_events and wls_hvst tables
in Apache Derby.

Example 7-2 DDL Definition of the WLDF Tables for Apache Derby

-- WLDF Instrumentation and Harvester archive DDLs using Derby

AUTOCOMMIT OFF;

-- DDL for creating wls_events table for instrumentation events

DROP TABLE wls_events;

CREATE TABLE wls_events (
 RECORDID INTEGER NOT NULL GENERATED ALWAYS AS IDENTITY (START WITH 1, INCREMENT BY 1),
 TIMESTAMP BIGINT default NULL,
 CONTEXTID varchar(128) default NULL,
 TXID varchar(32) default NULL,
 USERID varchar(32) default NULL,
 TYPE varchar(64) default NULL,
 DOMAIN varchar(64) default NULL,
 SERVER varchar(64) default NULL,
 SCOPE varchar(64) default NULL,
 MODULE varchar(64) default NULL,
 MONITOR varchar(64) default NULL,
 FILENAME varchar(64) default NULL,
 LINENUM INTEGER default NULL,
 CLASSNAME varchar(250) default NULL,
 METHODNAME varchar(64) default NULL,
 METHODDSC varchar(4000) default NULL,
 ARGUMENTS clob(100000) default NULL,
 RETVAL varchar(4000) default NULL,
 PAYLOAD blob(100000),
 CTXPAYLOAD VARCHAR(4000),
 DYES BIGINT default NULL,
 THREADNAME varchar(250) default NULL
);

-- DDL for creating wls_events table for instrumentation events

Chapter 7
Configuring a JDBC-Based Store

7-3

DROP TABLE wls_hvst;

CREATE TABLE wls_hvst (
 RECORDID INTEGER NOT NULL GENERATED ALWAYS AS IDENTITY (START WITH 1, INCREMENT BY 1),
 TIMESTAMP BIGINT default NULL,
 DOMAIN varchar(64) default NULL,
 SERVER varchar(64) default NULL,
 TYPE varchar(64) default NULL,
 NAME varchar(250) default NULL,
 ATTRNAME varchar(64) default NULL,
 ATTRTYPE INTEGER default NULL,
 ATTRVALUE VARCHAR(4000),
 WLDFMODULE VARCHAR(250) default NULL
);

COMMIT;

Consult the documentation for your database or your database administrator for
specific instructions for creating these tables for your database.

Oracle Database
Example 7-3 shows the DDL that you can use to create the wls_events table in Oracle
database.

Example 7-3 DDL Definition of the wls_events Table for Oracle Database

SET SERVEROUTPUT ON;

DECLARE
 vCtr Number;
 vSQL VARCHAR2(2000);
 vcurr VARCHAR2(256);
BEGIN

 SELECT sys_context('userenv', 'current_schema') into vcurrSchema from dual;
 dbms_output.put_line('Current Schema: '||vcurrSchema);

 SELECT COUNT(*)
 INTO vCtr
 FROM user_tables
 WHERE table_name = 'WLS_EVENTS';

 IF vCtr = 0 THEN
 dbms_output.put_line('Creating WLS_EVENTS table');
 vSQL := 'CREATE TABLE "WLS_EVENTS" (
 "RECORDID" NUMBER(20,0) DEFAULT NULL,
 "TIMESTAMP" NUMBER(20,0) DEFAULT NULL,
 "CONTEXTID" VARCHAR2(250 BYTE) DEFAULT NULL,
 "TXID" VARCHAR2(250 BYTE) DEFAULT NULL,
 "USERID" VARCHAR2(250 BYTE) DEFAULT NULL,
 "TYPE" VARCHAR2(250 BYTE) DEFAULT NULL,
 "DOMAIN" VARCHAR2(250 BYTE) DEFAULT NULL,
 "SERVER" VARCHAR2(250 BYTE) DEFAULT NULL,
 "SCOPE" VARCHAR2(250 BYTE) DEFAULT NULL,
 "MODULE" VARCHAR2(250 BYTE) DEFAULT NULL,
 "MONITOR" VARCHAR2(250 BYTE) DEFAULT NULL,
 "FILENAME" VARCHAR2(250 BYTE) DEFAULT NULL,
 "LINENUM" NUMBER(10,0) DEFAULT NULL,
 "CLASSNAME" VARCHAR2(250 BYTE) DEFAULT NULL,
 "METHODNAME" VARCHAR2(250 BYTE) DEFAULT NULL,

Chapter 7
Configuring a JDBC-Based Store

7-4

 "METHODDSC" VARCHAR2(4000 BYTE) DEFAULT NULL,
 "ARGUMENTS" CLOB DEFAULT NULL,
 "RETVAL" VARCHAR2(4000 BYTE) DEFAULT NULL,
 "PAYLOAD" BLOB DEFAULT NULL,
 "CTXPAYLOAD" VARCHAR2(4000 BYTE) DEFAULT NULL,
 "DYES" NUMBER(20,0) DEFAULT NULL,
 "THREADNAME" VARCHAR2(250 BYTE) DEFAULT NULL
)';
 EXECUTE IMMEDIATE vSQL;
 vSQL := 'CREATE UNIQUE INDEX WLS_EVENTS_RECORD_IDX ON WLS_EVENTS(RECORDID)';
 EXECUTE IMMEDIATE vSQL;
 vSQL := 'CREATE INDEX WLS_EVENTS_TS_IDX ON WLS_EVENTS(TIMESTAMP)';
 EXECUTE IMMEDIATE vSQL;
 END IF;

 SELECT COUNT(*)
 INTO vCtr
 FROM user_tab_columns
 WHERE table_name = 'WLS_EVENTS' AND column_name = 'THREADNAME';

 IF vCtr = 0 THEN
 dbms_output.put_line('Creating THREADNAME column in WLS_EVENTS table');
 vSQL := 'ALTER TABLE WLS_EVENTS ADD("THREADNAME" VARCHAR2(250 BYTE) DEFAULT NULL)';
 EXECUTE IMMEDIATE vSQL;
 END IF;

 SELECT COUNT(*) INTO vCtr FROM user_sequences
 WHERE sequence_name = 'SEQ_WLS_EVENTS_RECORDID';

 IF vCtr = 0 THEN
 vSQL := 'CREATE SEQUENCE SEQ_WLS_EVENTS_RECORDID MINVALUE 1 MAXVALUE 99999999999999999999 START
WITH 1 INCREMENT BY 1 NOCACHE';
 EXECUTE IMMEDIATE vSQL;
 END IF;

 SELECT COUNT(*) INTO vCtr FROM user_triggers
 WHERE table_name = 'WLS_EVENTS';

 IF vCtr = 0 THEN
 vSQL := 'CREATE OR REPLACE TRIGGER TRG_WLS_EVENTS_INSERT
 BEFORE INSERT ON WLS_EVENTS
 REFERENCING NEW AS newRow
 FOR EACH ROW
 BEGIN
 IF :newRow.RECORDID IS NULL THEN
 SELECT SEQ_WLS_EVENTS_RECORDID.nextval INTO :newRow.RECORDID FROM DUAL;
 END IF;
 END;';
 EXECUTE IMMEDIATE vSQL;
 END IF;

END;
/

Example 7-4 shows the DDL that you can use to create the wls_hvst table in Oracle
database.

Example 7-4 DDL Definition of the wls_hvst Table for Oracle Database

SET SERVEROUTPUT ON;

Chapter 7
Configuring a JDBC-Based Store

7-5

DECLARE
 vCtr Number;
 vSQL VARCHAR2(1000);
 vcurrSchema VARCHAR2(256);
BEGIN

 SELECT sys_context('userenv', 'current_schema') into vcurrSchema from dual;
 dbms_output.put_line('Current Schema: '||vcurrSchema);

 SELECT COUNT(*)
 INTO vCtr
 FROM user_tables
 WHERE table_name = 'WLS_HVST';

 IF vCtr = 0 THEN
 dbms_output.put_line('Creating WLS_HVST table');
 vSQL := 'CREATE TABLE "WLS_HVST"
 (
 "RECORDID" NUMBER(20,0) NOT NULL,
 "TIMESTAMP" NUMBER(20,0) DEFAULT NULL,
 "DOMAIN" VARCHAR2(250 BYTE) DEFAULT NULL,
 "SERVER" VARCHAR2(250 BYTE) DEFAULT NULL,
 "TYPE" VARCHAR2(250 BYTE) DEFAULT NULL,
 "NAME" VARCHAR2(250 BYTE) DEFAULT NULL,
 "ATTRNAME" VARCHAR2(250 BYTE) DEFAULT NULL,
 "ATTRTYPE" NUMBER(10,0) DEFAULT NULL,
 "ATTRVALUE" VARCHAR2(4000 BYTE) DEFAULT NULL,
 "WLDFMODULE" VARCHAR2(250 BYTE) DEFAULT NULL
)';
 EXECUTE IMMEDIATE vSQL;
 vSQL := 'CREATE UNIQUE INDEX WLS_HVST_RECORD_IDX ON WLS_HVST(RECORDID)';
 EXECUTE IMMEDIATE vSQL;
 vSQL := 'CREATE INDEX WLS_HVST_TS_IDX ON WLS_HVST(TIMESTAMP)';
 EXECUTE IMMEDIATE vSQL;
 END IF;

 SELECT COUNT(*)
 INTO vCtr FROM user_tab_columns
 WHERE table_name = 'WLS_HVST' AND column_name = 'WLDFMODULE';

 IF vCtr = 0 THEN
 dbms_output.put_line('Creating WLDFMODULE column in WLS_HVST table');
 vSQL := 'ALTER TABLE WLS_HVST ADD("WLDFMODULE" VARCHAR2(250 BYTE) DEFAULT NULL)';
 EXECUTE IMMEDIATE vSQL;
 END IF;

 SELECT COUNT(*) INTO vCtr FROM user_sequences
 WHERE sequence_name = 'SEQ_WLS_HVST_RECORDID';

 IF vCtr = 0 THEN
 vSQL := 'CREATE SEQUENCE SEQ_WLS_HVST_RECORDID MINVALUE 1 MAXVALUE 99999999999999999999
START WITH 1 INCREMENT BY 1 NOCACHE';
 EXECUTE IMMEDIATE vSQL;
 END IF;

 SELECT COUNT(*) INTO vCtr FROM user_triggers
 WHERE table_name = 'WLS_HVST';

 IF vCtr = 0 THEN
 vSQL := 'CREATE OR REPLACE TRIGGER TRG_WLS_HVST_INSERT
 BEFORE INSERT ON WLS_HVST

Chapter 7
Configuring a JDBC-Based Store

7-6

 REFERENCING NEW AS newRow
 FOR EACH ROW
 BEGIN
 IF :newRow.RECORDID IS NULL THEN
 SELECT SEQ_WLS_HVST_RECORDID.nextval INTO :newRow.RECORDID FROM DUAL;
 END IF;
 END;';
 EXECUTE IMMEDIATE vSQL;
 END IF;

END;
/

Consult the documentation for your database or your database administrator for specific
instructions for creating these tables for your database.

MySQL
Example 7-5 shows the DDL that you can use to create the wls_events table in MySQL
database.

Example 7-5 DDL Definition of the wls_events Table in MySql Database

DROP PROCEDURE if exists create_alter_wls_events
/

CREATE PROCEDURE create_alter_wls_events()
language sql
BEGIN
 CREATE TABLE IF NOT EXISTS WLS_EVENTS
 (
 RECORDID BIGINT AUTO_INCREMENT PRIMARY KEY,
 TIMESTAMP BIGINT NOT NULL,
 CONTEXTID VARCHAR(250) default NULL,
 TXID VARCHAR(250) default NULL,
 USERID VARCHAR(250) default NULL,
 TYPE VARCHAR(250) default NULL,
 DOMAIN VARCHAR(250) default NULL,
 SERVER VARCHAR(250) default NULL,
 SCOPE VARCHAR(250) default NULL,
 MODULE VARCHAR(250) default NULL,
 MONITOR VARCHAR(250) default NULL,
 FILENAME VARCHAR(250) default NULL,
 LINENUM INT UNSIGNED default NULL,
 CLASSNAME VARCHAR(250) default NULL,
 METHODNAME VARCHAR(250) default NULL,
 METHODDSC VARCHAR(4000) default NULL,
 ARGUMENTS TEXT(100000) default NULL,
 RETVAL VARCHAR(4000) default NULL,
 PAYLOAD BLOB(100000),
 CTXPAYLOAD VARCHAR(4000),
 DYES BIGINT UNSIGNED default NULL,
 THREADNAME VARCHAR(250) default NULL,
 INDEX(TIMESTAMP)
);

 IF NOT EXISTS(
 SELECT * FROM `information_schema`.`COLUMNS`
 WHERE COLUMN_NAME='THREADNAME' AND TABLE_NAME='WLS_EVENTS') THEN
 ALTER TABLE `WLS_EVENTS` ADD `THREADNAME` varchar(250) default NULL;
 END IF;

Chapter 7
Configuring a JDBC-Based Store

7-7

END
/

CALL create_alter_wls_events()
/

DROP PROCEDURE if exists create_alter_wls_events
/

Example 7-6 shows the DDL that you can use to create the wls_hvst table in MySQL
database.

Example 7-6 DDL Definition of wls_hvst Table in MySql Database

DROP PROCEDURE if exists create_alter_wls_hvst
/

CREATE PROCEDURE create_alter_wls_hvst()
language sql
BEGIN
 CREATE TABLE IF NOT EXISTS WLS_HVST
 (
 RECORDID BIGINT AUTO_INCREMENT PRIMARY KEY,
 TIMESTAMP BIGINT NOT NULL,
 DOMAIN VARCHAR(250) default NULL,
 SERVER VARCHAR(250) default NULL,
 TYPE VARCHAR(250) default NULL,
 NAME VARCHAR(250) default NULL,
 SCOPE VARCHAR(250) default NULL,
 ATTRNAME VARCHAR(250) default NULL,
 ATTRTYPE INT default NULL,
 ATTRVALUE VARCHAR(4000) default NULL,
 WLDFMODULE VARCHAR(250) default NULL,
 INDEX(TIMESTAMP)
);

 IF NOT EXISTS(
 SELECT * FROM `information_schema`.`COLUMNS`
 WHERE COLUMN_NAME='WLDFMODULE' AND TABLE_NAME='WLS_HVST') THEN
 ALTER TABLE `WLS_HVST` ADD `WLDFMODULE` varchar(250) default NULL;
 END IF;

END
/

CALL create_alter_wls_hvst()
/

DROP PROCEDURE if exists create_alter_wls_hvst
/

Consult the documentation for your database or your database administrator for
specific instructions for creating these tables for your database.

Configuring JDBC Resources for WLDF
After you create the tables in your database, you must configure JDBC to access the
tables. (See Administering JDBC Data Sources for Oracle WebLogic Server.) Then, as

Chapter 7
Configuring a JDBC-Based Store

7-8

part of your server configuration, you specify that JDBC resource as the data store to be used
for a server's archive.

If multiple WLDF JDBC archive schemas exist in the same database, you can specify the
particular schema to use for accessing JDBC-based archive tables in that database. There is
no default value for a schema name: If you do not specify one, no schema name is applied
when WLDF validates the runtime table, and no schema name is used for the SQL
statements. You specify the schema name in the
WLDFServerDiagnosticMBean.DiagnosticJDBCSchemaName attribute, which you can access
from the Diagnostic Archives: Configuration page in the WebLogic Server Administration
Console. See Configure diagnostic archives in Oracle WebLogic Server Administration
Console Online Help.

An example configuration for a JDBC-based store is shown in Example 7-7.

Example 7-7 Sample configuration for JDBC-based Diagnostic Archive (in
config.xml)

<domain>
 <!-- Other domain configuration elements -->
 <server>
 <name>myserver</name>
 <server-diagnostic-config>
 <diagnostic-data-archive-type>JDBCArchive
 </diagnostic-data-archive-type>
 <diagnostic-jdbc-resource>JDBCResource</diagnostic-jdbc-resource>
 <server-diagnostic-config>
 </server>
 <!-- Other server configurations in this domain -->
</domain>

If you specify a JDBC resource but it is configured incorrectly, or if the required tables do not
exist in the database, WLDF uses the default file-based persistent store.

Retiring Data from the Archives
To maintain the archived data, you must delete the old archived data periodically. WLDF
includes a configuration-based data retirement feature for doing this. The data can be deleted
based on the size of the data and time period when it was created.

You can configure size-based data retirement at the server level and age-based retirement at
the individual archive level, as described in the following sections:

• Configuring Data Retirement at the Server Level

• Configuring Age-Based Data Retirement Policies for Diagnostic Archives

• Sample Configuration

Configuring Data Retirement at the Server Level
You can set the following data retirement options for a server instance:

• The preferred maximum size of the server instance's data store (<preferred-store-size-
limit>) and the interval at which it is checked, on the hour, to see if it exceeds that size
(<store-size-check-period>).

Chapter 7
Retiring Data from the Archives

7-9

When the size of the store is found to exceed the preferred maximum, an
appropriate number of the oldest records in the store are deleted to reduce the
size below the specified threshold. This is called "size-based data retirement."

Note:

Size-based data retirement can be used only for file-based stores. These
options are ignored for database-based stores.

• Enable or disable data retirement for the server instance.

For file-based diagnostic stores, this enables or disables the size-based data
retirement options discussed above. For both file-based stores and database-
based stores, this also enables or disables any age-based data retirement policies
defined for individual archives in the store. See Configuring Age-Based Data
Retirement Policies for Diagnostic Archives.

Configuring Age-Based Data Retirement Policies for Diagnostic
Archives

The data store for a server instance can contain the following types of diagnostic data
archives whose records can be retired using the data retirement feature:

• Harvested metrics data (logical name: HarvestedDataArchive)

• Instrumentation events data (logical name: EventsDataArchive)

• Custom data (user-defined name)

Note:

WebLogic Server log files are maintained both at the server level and the
domain level. Data is retired from the current log using the log rotation
feature. See Configuring WebLogic Logging Services in Configuring Log
Files and Filtering Log Messages for Oracle WebLogic Server.

Age-based policies apply to individual archives. The data store for a server instance
can have one age-based policy for the HarvestedDataArchive, one for the
EventsDataArchive, and one each for any custom archives.

When records in an archive exceed the age limit specified for records in that archive,
those records are deleted.

Sample Configuration
Data retirement configuration settings are persisted in the config.xml configuration
file for the server's domain, as shown in Example 7-8.

Example 7-8 Data Retirement Configuration Settings in config.xml

<domain>
<!-- other domain configuration settings -->
 <server>

Chapter 7
Retiring Data from the Archives

7-10

 <name>MedRecServer</name>
 <!-- other server configuration settings -->
 <server-diagnostic-config>
 <diagnostic-store-dir>data/store/diagnostics</diagnostic-store-dir>
 <diagnostic-data-archive-type>FileStoreArchive
 </diagnostic-data-archive-type>
 <data-retirement-enabled>true</data-retirement-enabled>
 <preferred-store-size-limit>120</preferred-store-size-limit>
 <store-size-check-period>1</store-size-check-period>
 <wldf-data-retirement-by-age>
 <name>HarvestedDataRetirementPolicy</name>
 <enabled>true</enabled>
 <archive-name>HarvestedDataArchive</archive-name>
 <retirement-time>1</retirement-time>
 <retirement-period>24</retirement-period>
 <retirement-age>45</retirement-age>
 </wldf-data-retirement-by-age>
 <wldf-data-retirement-by-age>
 <name>EventsDataRetirementPolicy</name>
 <enabled>true</enabled>
 <archive-name>EventsDataArchive</archive-name>
 <retirement-time>10</retirement-time>
 <retirement-period>24</retirement-period>
 <retirement-age>72</retirement-age>
 </wldf-data-retirement-by-age>
 </server-diagnostic-config>
 </server>
</domain>

Chapter 7
Retiring Data from the Archives

7-11

8
Configuring the Harvester for Metric
Collection

The Harvester component of the WebLogic Diagnostics Framework (WLDF) gathers metrics
from attributes on qualified MBeans instantiated in a running server. The Harvester can also
collect metrics from WebLogic Server MBeans and from custom MBeans.

This chapter includes the following sections about the Harvester and how to configure it:

• Harvesting, Harvestable Data, and Harvested Data

• Harvesting Data from the Different Harvestable Entities

• Configuring the Harvester
The Harvester is configured, and metrics are collected, in the scope of a diagnostic
module targeted to one or more server instances. The Harvester configuration includes
the sampling period, the type of data to harvest, and the type names for WebLogic Server
MBeans and custom MBeans.

• Harvester Performance Considerations

Harvesting, Harvestable Data, and Harvested Data
Harvesting metrics is the process of gathering data that is useful for monitoring the system
state and performance.Metrics are exposed to WLDF as attributes on qualified MBeans. The
Harvester gathers values from selected MBean attributes at a specified sampling rate.
Therefore, you can track potentially fluctuating values over time.
Data must meet certain requirements in order to be harvestable, and it must meet further
requirements in order to be harvested:

• Harvestable data is data that can potentially be harvested from harvestable entities,
including MBean types, instances, and attributes. To be harvestable, an MBean must be
registered in the local WebLogic Server Runtime MBean server. Only simple type
attributes of an MBean can be harvestable.

• Harvested data is data that is currently being harvested. To be harvested, the data must
meet all the following criteria:

– The data must be harvestable.

– The data must be configured to be harvested.

– For custom MBeans, the MBean must be currently registered with the JMX server.

– The data must not throw exceptions while being harvested.

The WLDFHarvesterRuntimeMBean provides the set of harvestable data and harvested data.
The information returned by this MBean is a snapshot of a potentially changing state. For a
description of the information about the data provided by this MBean, see the description of
the WLDFHarvesterRuntimeMBean in the Oracle WebLogic Server MBean Reference.

You can use the WebLogic Server Administration Console, the WebLogic Scripting Tool
(WLST), or JMX to configure the Harvester to collect and archive the metrics that the server
MBeans and the custom MBeans contain.

8-1

Harvesting Data from the Different Harvestable Entities
You can configure the Harvester to harvest data from named MBean types, instances,
and attributes.In all cases, the Harvester collects the values of attributes of MBean
instances, as explained in Table 8-1.

Table 8-1 Sources of Harvested Data from Different Configurations

When this entity is configured to
be harvested as...

Data is collected from...

A type (only) All harvestable attributes in all instances of the specified
type

An attribute of a type

(type + attribute(s))

The specified attribute in all instances of the specified
type

An instance of a type

(type + instance(s))

All harvestable attributes in the specified instance of the
specified type

An attribute of an instance of a type

(type + instance(s) + attribute(s))

The specified attribute in the specified instance of the
specified type

All WebLogic Server runtime MBean types and attributes are known at startup.
Therefore, when the Harvester configuration is loaded, the set of harvestable
WebLogic Server entities is the same as the set of WebLogic Server runtime MBean
types and attributes. As types are instantiated, those instances also become known
and thus harvestable.

The set of harvestable custom MBean types is dynamic. A custom MBean must be
instantiated before its type can be known. (The type does not exist until at least one
instance is created.) Therefore, as custom MBeans are registered with and removed
from the MBean server, the set of custom harvestable types grows and shrinks. This
process of detecting a new type based on the registration of a new MBean is called
type discovery.

When you configure the Harvester through the WebLogic Server Administration
Console, the Console provides a list of harvestable entities that can be configured.
The list is always complete for WebLogic Server MBeans, but for custom MBeans, the
list contains only the currently discovered types. See Configure metrics to collect in a
diagnostic system module in the Oracle WebLogic Server Administration Console
Online Help.

Configuring the Harvester
The Harvester is configured, and metrics are collected, in the scope of a diagnostic
module targeted to one or more server instances. The Harvester configuration
includes the sampling period, the type of data to harvest, and the type names for
WebLogic Server MBeans and custom MBeans.

Example 8-1 shows Harvester configuration elements in a WLDF system resource
descriptor file, myWLDF.xml. This sample configuration harvests from the
ServerRuntimeMBean, the WLDFHarvesterRuntimeMBean, and from a custom (that
is, non-WebLogic Server) MBean. The text following the listing explains each element
in the listing.

Chapter 8
Harvesting Data from the Different Harvestable Entities

8-2

Example 8-1 Sample Harvester Configuration (in DIAG_MODULE.xml)

<wldf-resource xmlns="http://xmlns.oracle.com/weblogic/weblogic-diagnostics"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
<name>myWLDF</name>
 <harvester>
 <enabled>true</enabled>
 <sample-period>5000</sample-period>
 <harvested-type>
 <name>weblogic.management.runtime.ServerRuntimeMBean</name>
 </harvested-type>
 <harvested-type>
 <name>weblogic.management.runtime.WLDFHarvesterRuntimeMBean</name>
 <harvested-attribute>TotalSamplingTime</harvested-attribute>
 <harvested-attribute>CurrentSnapshotElapsedTime
 </harvested-attribute>
 </harvested-type>
 <harvested-type>
 <name>myMBeans.MySimpleStandard</name>
 <harvested-instance>myCustomDomain:Name=myCustomMBean1
 </harvested-instance>
 <harvested-instance>myCustomDomain:Name=myCustomMBean2
 </harvested-instance>
 </harvested-type>
 </harvester>
<!-- ----- Other elements ----- -->
</wldf-resource>

• Configuring the Harvester Sampling Period

• Configuring the Types of Data to Harvest

• Specifying Type Names for WebLogic Server MBeans and Custom MBeans

• Harvesting from the Domain Runtime MBean Server

• When Configuration Settings Are Validated

• Sample Configurations for Different Harvestable Types

Configuring the Harvester Sampling Period
The <sample-period> element sets the sample period for the Harvester, in milliseconds. For
example:

 <sample-period>5000</sample-period>

The sample period specifies the time between each cycle. For example, if the Harvester
begins execution at time T, and the sample period is I, then the next harvest cycle begins at
T+I. If a cycle takes A seconds to complete and if A exceeds I, then the next cycle begins at
T+A. If this occurs, the Harvester tries to start the next cycle sooner, to ensure that the
average interval is I.

Configuring the Types of Data to Harvest
One or more <harvested-type> elements determine the types of data to harvest. Each
<harvested-type> element specifies an MBean type from which metrics are to be collected.
Optional sub-elements specify the instances and/or attributes to be collected for that type.
Set these options as follows:

Chapter 8
Configuring the Harvester

8-3

• The optional <harvested-instance> element specifies that metrics are to be
collected only from the listed instances of the specified type. In general, an
instance is specified by providing its JMX ObjectName in JMX canonical form.
However, you can use pattern-matching to specify instance names in non-
canonical form, as described in Using Wildcards in Harvester Instance Names.

• If no <harvested-instance> is present, all instances that are present at the time of
each harvest cycle are collected.

• The optional <harvested-attribute> element specifies that metrics are to be
collected only for the listed attributes of the specified type. An attribute is specified
by providing its name. The first character should be capitalized. For example, an
attribute defined with getter method getFoo() is named Foo.

The <harvested-attribute> element also supports an expression syntax for "drilling
down" into attributes that are complex or aggregate objects, such as lists, maps,
simple POJOs (Plain Old Java Objects), and various nestings of these types. See
Specifying Complex and Nested Harvester Attributes, for details on this syntax.
However, note that the result of these expressions must be a simple intrinsic type
(int, boolean, String, and so on) in order to be harvested.

• If no <harvested-attribute> is present, all harvestable attributes defined for the type
are collected.

• Attribute and instance lists can be combined in a type.

Specifying Type Names for WebLogic Server MBeans and Custom
MBeans

The Harvester supports WebLogic Server MBeans and custom MBeans. WebLogic
Server MBeans are those that come packaged as part of the WebLogic Server.
Custom MBeans can be harvested as long as they are registered in the local runtime
MBean server.

There is a difference in how WebLogic Server and customer types are specified. For
WebLogic Server types, the type name is the name of the Java interface that defines
the MBean. For example, the server runtime MBean's type name is
weblogic.management.runtime.ServerRuntimeMBean.

For custom MBeans, the Harvester follows these rules:

• If the MBean is not a ModelMBean, the type name is the implementing class
name. (See Example 8-1.)

• If the MBean is a ModelMBean, the type name is the value of the MBean
Descriptor field DiagnosticTypeName.

If neither of these conditions is satisfied (if the MBean is a ModelMBean and there is
no value for the MBean Descriptor field DiagnosticTypeName) then the MBean cannot
be harvested.

Harvesting from the Domain Runtime MBean Server
The <harvested-type> element supports a <namespace> attribute that lets you harvest
metrics from MBeans registered in the Domain Runtime MBean Server. However,
Oracle recommends that you limit the usage to harvesting only Domain Runtime-
specific MBeans, such as the ServerLifeCycleRuntimeMBean. Harvesting of remote
managed server MBeans through the Domain Runtime MBean Server is possible, but

Chapter 8
Configuring the Harvester

8-4

is discouraged for performance reasons. It is a best practice to use the resident Harvester in
each managed server to capture metrics related to that managed server instance.

The <namespace> attribute can have one of two values:

• ServerRuntime

• DomainRuntime

If the <namespace> attribute is omitted, it defaults to ServerRuntime.

Note:

Harvesting from the Domain Runtime MBean server is available only on the
Administration Server. Attempts to harvest Domain Runtime MBeans on a Managed
Server are ignored. See Example 8-5.

When Configuration Settings Are Validated
WLDF attempts to validate configuration as soon as possible. Most configuration is validated
at system startup and whenever a dynamic change is committed. However, due to limitations
in JMX, custom MBeans cannot be validated until instances of those MBeans have been
registered in the MBean server.

Sample Configurations for Different Harvestable Types
In Example 8-2, the <harvested-type> element in the DIAG_MODULE.xml configuration file
specifies that the ServerRuntimeMBean is to be harvested. Because no <harvested-
instance> subelement is present, all instances of the type will be collected. However,
because there is always only one instance of the server runtime MBean, there is no need to
provide a specific list of instances. And because there are no <harvested-attribute>
subelements present, all available attributes of the MBean are harvested for each of the two
instances.

Example 8-2 Sample Configuration for Collecting All Instances and All Attributes of a
Type (in DIAG_MODULE.xml)

 <harvested-type>
 <name>weblogic.management.runtime.ServerRuntimeMBean</name>
 </harvested-type>

In Example 8-3, the <harvested-type> element in the DIAG_MODULE.xml configuration file
specifies that the WLDFHarvesterRuntimeMBean is to be harvested. As above, because
there is only one WLDFHarvesterRuntimeMBean, there is no need to provide a specific list of
instances. The subelement <harvested-attribute> specifies that only two of the available
attributes of the WLDFHarvesterRuntimeMBean will be harvested: TotalSamplingTime and
CurrentSnapshotElapsedTime.

Example 8-3 Sample Configuration for Collecting Specified Attributes of All
Instances of a Type (in DIAG_MODULE.xml)

 <harvested-type>
 <name>weblogic.management.runtime.WLDFHarvesterRuntimeMBean</name>
 <harvested-attribute>TotalSamplingTime</harvested-attribute>
 <harvested-attribute>CurrentSnapshotElapsedTime

Chapter 8
Configuring the Harvester

8-5

 </harvested-attribute>
 </harvested-type>

In Example 8-4, the <harvested-type> element in the DIAG_MODULE.xml configuration
file specifies that a single instance of a custom MBean type is to be harvested.
Because this is a custom MBean, the type name is the implementation class. In this
example, the two <harvested-instance> elements specify that only two instances of
this type will be harvested. Each instance is specified using the canonical
representation of its JMX ObjectName. Because no instances of <harvested-attribute>
are specified, all attributes will be harvested.

Example 8-4 Sample Configuration for Collecting All Attributes of a Specified
Instance of a Type (in DIAG_MODULE.xml)

 <harvested-type>
 <name>myMBeans.MySimpleStandard</name>
 <harvested-instance>myCustomDomain:Name=myCustomMBean1
 </harvested-instance>
 <harvested-instance>myCustomDomain:Name=myCustomMBean2
 </harvested-instance>
 </harvested-type>

In Example 8-5, the <harvested-type> element in the DIAG_MODULE.xml configuration
file specifies that the ServerLifeCycleRuntimeMBean is to be harvested. The
<namespace> attribute specifies that this is a DomainRuntime MBean, so this
configuration will only be honored on the administration server (see the note in
Harvesting from the DomainRuntime MBeanServer). The subelement <harvested-
attribute> specifies that only the StateVal attribute will be harvested.

Example 8-5 Sample configuration for Collecting Specified Attributes of the
ServerLifeCycleMBean Type (in DIAG_MODULE.xml)

 <harvested-type>
 <name>weblogic.management.runtime.ServerLifeCycleRuntimeMBean</name>
 <namespace>DomainRuntime</namespace>
 <known-type>true</known-type>
 <harvested-attribute>StateVal</harvested-attribute>
 </harvested-type>

Harvester Performance Considerations
Because the Harvester tracks all MBeans that are registered in the local WebLogic
Server Runtime MBean server, applications that create a high volume of transient
MBeans can create performance issues in WLDF.Here, a transient MBean is an
MBean with a very short life span that can be registered and unregistered very quickly,
typically within the space of a few milliseconds. Such MBeans can create a load stress
in the Harvester and the Policies and Actions system, which tracks MBean
registrations. This performance problem is particularly a risk when high-volume JMS
applications are not coded according to recommended best practices.
When JMS connections are not cached properly, a scenario can develop in which
hundreds of connections (and consequently, the corresponding connection, producer,
and consumer runtime MBeans) are created and destroyed every second when the
system is operating under heavy load. This situation can cause load stress on both the
Harvester and the Policies and Actions system.

To avoid this problem, make sure your JMS applications conform to the best coding
practices described in Cache and Re-use Client Resources in Tuning Performance of

Chapter 8
Harvester Performance Considerations

8-6

Oracle WebLogic Server. As a result, you will not only obtain better WLDF performance, but
you will also improve your JMS and overall server performance.

Chapter 8
Harvester Performance Considerations

8-7

9
Configuring Policies and Actions

The Policies and Actions component of the WebLogic Diagnostics Framework (WLDF)
provides the means for monitoring server and application states and then executing actions
based on criteria set in the policies.Policies and actions are configured as part of a diagnostic
module that is targeted to one or more server instances in a domain.

Note:

As of WebLogic Server 12.2.1, the terms watch and notification are replaced by
policy and action, respectively. However, the definition of these terms has not
changed.

The following sections give an overview of the Policies and Actions component, and also
provide an example of a Policies and Actions configuration:

• Policies and Actions
You can configure policies to analyze log records, data events, and harvested metrics.

• Overview of Policies and Actions Configuration
A complete policy and action configuration includes settings for one or more policies, one
or more actions, and any underlying configurations required for the action media; for
example, the SNMP configuration required for an SNMP-based action.

• Sample Policies and Actions Configuration
A set of policies and actions is configured in a diagnostic module file named
DIAG_MODULE.xml.

Policies and Actions
You can configure policies to analyze log records, data events, and harvested metrics.

A policy identifies a situation that you want to trap for monitoring or diagnostic purposes.

A policy includes:

• A policy expression (with the exception of calendar-based policies)

The default language for policy expressions is the WLDF query language; however, the
WLDF query language is deprecated. You can also use Java Expression Language (EL)
for policy expressions.

• An alarm setting

• One or more action handlers

You can also configure policies to enable elasticity in dynamic clusters; that is, to
automatically scale a dynamic cluster up or down by a specific number of server instances.
You can define policies to enable two broad categories of elasticity:

9-1

• Calendar-based scaling — Scaling operations on a dynamic cluster that are
executed on a particular date and time.

• Policy-based scaling — Scaling operations on a dynamic cluster that are executed
in response to changes in demand.

Note:

To configure an elastic scaling policy for a dynamic cluster, you must create a
domain-scope diagnostic system module in which you define the scaling
policy, and then target that diagnostic module to the Administration Server.

For more information about enabling elasticity in WebLogic Server, including
instructions for downloading and running a demonstration example, see Policy-Based
Scaling in Configuring Elasticity in Dynamic Clusters for Oracle WebLogic Server.

An action is an operation that is executed when a policy expression evaluates to true.
WLDF supports the following types of actions:

• Scaling a dynamic cluster

• Java Management Extensions (JMX)

• Java Message Service (JMS)

• Simple Mail Transfer Protocol (SMTP), for example, e-mail

• Simple Network Management Protocol (SNMP)

• Diagnostic image

• Log

• REST

• Script

• Heap dump

• Thread dump

You must associate a policy with an action for a useful diagnostic activity to occur; for
example, to notify an administrator about specified states or activities in a running
server.

Policies and actions are configured separately from each other. An action can be
associated with multiple policies, and a policy can be associated with multiple actions.
This provides the flexibility to recombine and re-use policies and actions, according to
current needs.

Overview of Policies and Actions Configuration
A complete policy and action configuration includes settings for one or more policies,
one or more actions, and any underlying configurations required for the action media;
for example, the SNMP configuration required for an SNMP-based action.

The main elements required for configuring policies and actions in a WLDF system
resource descriptor file, DIAG_MODULE.xml, are shown in Example 9-1. As the listing
shows, the base element for defining policies and actions is <watch-notification>.

Chapter 9
Overview of Policies and Actions Configuration

9-2

Policies are defined in <watch> elements, and actions are defined in elements named for
each of the types of action; for example, <jms-notification>, <jmx-notification>, <smtp-
notification>, and <image-notification>.

Example 9-1 A Skeleton Policy and Action Configuration (in DIAG_MODULE.xml)

<wldf-resource>
<!-- ----- Other system resource configuration elements ----- -->
 <watch-notification>
 <log-watch-severity>
 <!-- Threshold severity for a log watch to be evaluated further
 (This can be narrowed further at the watch level.) -->
 </log-watch-severity>
 <wldf-resource>
<!-- ----- Other system resource configuration elements ----- -->
 <watch-notification>
 <log-watch-severity>
 <!-- Threshold severity for a log policy to be evaluated further
 (This can be narrowed further at the policy level.) -->
 </log-watch-severity>
 <!-- ----- Policy configuration elements: ----- -->
 <watch>
 <!-- A policy expression -->
 </watch>
 <watch>
 <!-- A policy expression -->
 </watch>
 <!-- Any other policy configurations -->

 <!-- ----- Action configuration elements: ----- -->
 <!-- The following action configuration elements show one of each
 type of supported actions. However, not all types are
 required in any one system resource configuration, and multiples
 of any type are permitted. -->
 <jms-notification>
 <!-- Configuration for a JMS-based action; requires a
 corresponding JMS configuration via a jms-server element and a
 jms-system-resource element -->
 </jms-notification>

 <jmx-notification>
 <!-- Configuration for a JMX-based action -->
 </jmx-notification>
 <smtp-notification>
 <!-- Configuration for an SMTP-based action; requires a
 corresponding SMTP configuration via a mail-session element -->
 </smtp-notification>
 <snmp-notification>
 <!-- Configuration for an SNMP-based action; requires a
 corresponding SNMP agent configuration via an snmp-agent
 element -->
 </snmp-notification>
 <image-notification>
 <!-- Configuration for an image-based action -->
 </image-notification>
 <watch-notification>
<!-- ----- Other configuration elements ----- -->
</wldf-resource>

Chapter 9
Overview of Policies and Actions Configuration

9-3

Note:

While the notification media must be configured so they can be used by the
actions that depend on them, those configurations are not part of the
configuration of the diagnostic module itself. That is, they are not configured
in the <wldf-resource> element in the diagnostic module's configuration file.

Each policy and action can be individually enabled and disabled by setting
<enabled>true</enabled> or <enabled>false</enabled> for the individual policy or
action. In addition, the entire policy and action facility can be enabled and disabled by
setting <enabled>true</enabled> or <enabled>false</enabled> for all policies and
actions. The default value is <enabled>true</enabled>.

The <watch-notification> element contains a <log-watch-severity> sub-element, which
affects how actions are executed by log policies.

If the maximum severity level of the log messages that triggered the policy do not at
least equal the provided severity level, then the resulting actions are not executed.
Note that this only applies to actions executed by log policies. Do not confuse this
element with the <severity> element defined on policies. The <severity> element
assigns a severity to the policy itself, whereas the <log-watch-severity> element
controls which actions are executed by log-type policies.

For information about how to configure policies and actions using the WebLogic Server
Administration Console, see Configure policies and actions in Oracle WebLogic Server
Administration Console Online Help.

Sample Policies and Actions Configuration
A set of policies and actions is configured in a diagnostic module file named
DIAG_MODULE.xml.

Example 9-2 shows a complete configuration. The details of this example are
explained in the following topics:

• Configuring Policies

• Configuring Actions

Example 9-2 Sample Policies and Actions Configuration (in
DIAG_MODULE.xml)

<?xml version='1.0' encoding='UTF-8'?>
<wldf-resource xmlns="http://xmlns.oracle.com/weblogic/weblogic-diagnostics"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://xmlns.oracle.com/weblogic/weblogic-diagnostics/2.0/
weblogic-diagnostics.xsd">
 <name>mywldf1</name>
 <!-- Instrumentation must be configured and enabled for instrumentation
 policies -->
 <instrumentation>
 <enabled>true</enabled>
 <wldf-instrumentation-monitor>
 <name>DyeInjection</name>
 <description>Dye Injection monitor</description>
 <dye-mask xsi:nil="true"></dye-mask> <properties>ADDR1=127.0.0.1</

Chapter 9
Sample Policies and Actions Configuration

9-4

properties>
 </wldf-instrumentation-monitor>
 </instrumentation>
 <!-- Harvesting does not have to be configured and enabled for harvester
 policies. However, configuring the Harvester can provide advantages;
 for example the data will be archived. -->
 <harvester>
 <name>mywldf1</name>
 <sample-period>20000</sample-period>
 <harvested-type>
 <name>weblogic.management.runtime.ServerRuntimeMBean</name>
 </harvested-type>
 <harvested-type>
 <name>weblogic.management.runtime.WLDFHarvesterRuntimeMBean</name>
 </harvested-type>
 </harvester>
 <!-- All policies and actions are defined under the
 watch-notification element -->
 <watch-notification>
 <enabled>true</enabled>
 <log-watch-severity>Info</log-watch-severity>
 <!-- A harvester policy configuration -->
 <watch>
 <name>myWatch</name>
 <enabled>true</enabled>
 <rule-type>Harvester</rule-type>
 <rule-expression>${com.bea:Name=myserver,Type=ServerRuntime//
SocketsOpenedTotalCount} >= 1</rule-expression>
 <alarm-type>AutomaticReset</alarm-type>
 <alarm-reset-period>60000</alarm-reset-period>
 <notification>myMailNotif,myJMXNotif,mySNMPNotif</notification>
 </watch>
 <!-- An instrumentation policy configuration -->
 <watch>
 <name>myWatch2</name>
 <enabled>true</enabled>
 <rule-type>EventData</rule-type>
 <rule-expression>
 (MONITOR LIKE 'JDBC_After_Execute') AND
 (DOMAIN = 'MedRecDomain') AND
 (SERVER = 'medrec-adminServer') AND
 ((TYPE = 'ThreadDumpAction') OR (TYPE = TraceElapsedTimeAction')) AND
 (SCOPE = 'MedRecEAR')
 </rule-expression>
 <notification>JMXNotifInstr</notification>
 </watch>
 <!-- A log policy configuration -->
 <watch>
 <name>myLogWatch</name>
 <rule-type>Log</rule-type>
 <rule-expression>MSGID='BEA-000360'</rule-expression>
 <severity>Info</severity>
 <notification>myMailNotif2</notification>
 </watch>
 <!-- A JMX notification -->
 <jmx-notification>
 <name>myJMXNotif</name>
 </jmx-notification>
 <!-- Two SMTP actions -->
 <smtp-notification>
 <name>myMailNotif</name>

Chapter 9
Sample Policies and Actions Configuration

9-5

 <enabled>true</enabled>
 <mail-session-jndi-name>myMailSession</mail-session-jndi-name>
 <subject>This is a harvester alert</subject>
 <recipient>username@emailservice.com</recipient>
 </smtp-notification>
 <smtp-notification>
 <name>myMailNotif2</name>
 <enabled>true</enabled>
 <mail-session-jndi-name>myMailSession</mail-session-jndi-name>
 <subject>This is a log alert</subject>
 <recipient>username@emailservice.com</recipient>
 </smtp-notification>
 <!-- An SNMP notification -->
 <snmp-notification>
 <name>mySNMPNotif</name>
 <enabled>true</enabled>
 </snmp-notification>
 </watch-notification>
</wldf-resource>

Chapter 9
Sample Policies and Actions Configuration

9-6

10
Configuring Policies

The WebLogic Diagnostics Framework (WLDF) provides three main types of policies, which
are differentiated by the sorts of data each can monitor. The policy types are:

• Scheduled policies, which monitor diagnostic data that is generated by runtime MBeans
according to a specific schedule. These policies can also be used to execute an action at
a specific time or on a schedule.

• Log policies, which monitor messages generated into the server or domain logs.

• Instrumentation policies, also known as Event Data policies, which monitor events
generated by the WLDF Instrumentation component.

This chapter explains how to configure each policy type and includes the following sections:

For information about how to create a policy using the WebLogic Server Administration
Console, see Create policies for a diagnostic system module in Oracle WebLogic Server
Administration Console Online Help.

• How Policies Are Configured
There are several components of a policy that you configure, such as the type,
expression, corresponding actions to be executed when the policy is evaluated to true,
and more.

• Configuring Scheduled Policies

• Configuring Log Policies
Use log policies to monitor the occurrence of specific messages or strings in the server or
domain log. Policies of this type are triggered as a result of a log message containing the
specified data being issued.

• Configuring Instrumentation Policies
You use instrumentation policies to monitor the events from the WLDF Instrumentation
component. Policies of this type are evaluated as a result of an event being posted by the
Instrumentation component, which occurs when code that matches a deployed
Instrumentation monitor is exercised.

• Creating Complex Policy Expressions Using WLDF Java EL Extensions
Oracle expects that the library of smart rules packaged with WLDF are sufficient for
meeting the needs of creating scheduled policies that evaluate runtime performance data
in a server or cluster. However, if you have a specific scheduled policy need that cannot
be satisfied by a smart rule, WLDF also provides a set of extensions to Java EL. These
extensions are intended for use in policies that evaluate very specific characteristics or
trends in metrics collected from runtime MBean servers in your WebLogic domain.

How Policies Are Configured
There are several components of a policy that you configure, such as the type, expression,
corresponding actions to be executed when the policy is evaluated to true, and more.

You can use any of the following tools to configure policies for diagnostic system modules:

• WebLogic Server Administration Console

10-1

• WLST

• REST

• JMX application

This chapter refers primarily to using the WebLogic Server Administration Console or
WLST.

The following table summarizes the attributes, elements, and options that you
configure when creating a policy, and also identifies any requirements each
configuration item has for specific policy types.

Table 10-1 Elements, Properties, and Options Configured in a WLDF Policy

Item Description Policy Requirement

Rule Type Attribute that determines the policy's type.

The default is Harvester.

Must be specified for log and
instrumentation policies. Optional for
scheduled policies.

Expression
Language

Attribute that establishes the language
used in the policy expression. The two
supported languages are Java
Expression Language (EL), and WLDF
query language (deprecated).

Use EL in all policy types. The WLDF
query language is supported, but
deprecated.

Policy
Expression

Expression that identifies a situation or
condition that you want to trap for
monitoring or diagnostic purposes. The
expression can analyze log records, data
events, or MBean metrics, depending on
the rule type setting.

Optional for scheduled policies, but
required for all others.

If a scheduled policy does not
include an expression, the policy
always executes the associated
actions according to the Policy
Schedule.

Actions One or more operations that are executed
when a policy expression is evaluated to
true.

Optional.

Policy
Schedule

A calendar-based schedule that
determines when a scheduled policy is
evaluated.

Required for all scheduled policies.
Not available for log or
instrumentation policies.

Alarm
Options

Options that determine whether, or when,
a policy can be evaluated again after it
has been evaluated to true.

The default is None, which enables the
policy to always be evaluated again.

Optional for all policy types.

Severity
Option

Log message severity value that, when
the policy is evaluated to true, is:

1. Specified for the log message that is
generated in the logging system.

2. Passed to the actions that are
configured with the policy.

The default is Notice.

Optional for all policy types.

Enablement
Option

Flags that either enable or disable a
policy from being evaluated.

The default is enabled.

Optional for all policy types.

Chapter 10
How Policies Are Configured

10-2

• Rule Type

• Expression Language

• Policy Expression

• Actions

• Policy Schedule

• Alarm Options

• Severity Option

• Enablement Option

Rule Type
When creating a policy, you must define its type in its rule type attribute. Policies with
different rule types differ in two ways:

• The syntax for specifying the conditions being monitored are unique to the rule type.

• Log and instrumentation policies are triggered in real time, whereas scheduled policies
are triggered by settings on the WLDFScheduleBean interface, described in Policy
Schedule.

The way to define the rule type depends on the tool you use to create the policy:

• If you are using the WebLogic Server Administration Console or Fusion Middleware
Control, the rule type is determined by the policy type you are creating. For each of the
policy types you can choose in either console, the following table identifies the
corresponding rule type and WLDFWatchBean.RuleType attribute value that is defined for
that policy:

Table 10-2 WLDFWatchBean.RuleType Attribute Values for Policy Types Created
Using Administration Console or Fusion Middleware Control

Policy Type Rule Type WLDFWatchBean.RuleType Value

Smart Rule Harvester Harvester
Calendar Based Harvester Harvester
Collected Metrics Harvester Harvester
Server Log Log Log
Domain Log Log DomainLog
Event Data Instrumentation EventData

For information about choosing a policy type using the WebLogic Server Administration
Console, see Create policies for a diagnostic system module in Oracle WebLogic Server
Administration Console Online Help.

• If you are using WLST, REST, or JMX to configure a policy, you set the
WLDFWatchBean.RuleType attribute as follows:

Chapter 10
How Policies Are Configured

10-3

Table 10-3 WLDFWatchBean.RuleType Attribute Values for Policy Types
Created Using WLST, REST, or JMX

Policy Type Rule Type Attribute

Scheduled policy Harvester
Log policy Log - for server log monitoring

DomainLog - for domain log monitoring

Instrumentation EventData - for instrumentation event monitoring

Expression Language
Policy expressions can be created using either of the following languages:

• Java Expression Language (EL) (recommended)

• WLDF query language (deprecated in WebLogic Server 12.2.1)

See Expression Language in The Java EE 8 Tutorial. For more information about Java
(EL), see the JSR-000341 Expression Language 3.0 specification at https://jcp.org/
aboutJava/communityprocess/final/jsr341/index.html.

If you have diagnostic system modules created with a previous release of WebLogic
Server, WLDF supports expressions that use the WLDF query language. If you are
creating new policies for either an existing or a new diagnostic system module, Oracle
strongly recommends using Java EL as the policy expression language.

Note:

The policies described in this chapter are Java EL based. For information
about configuring policies that use the WLDF query language, see WLDF
Query Language-Based Policies.

Policy Expression
A policy expression encapsulates all information necessary for specifying a rule that,
when evaluated to true, causes the associated actions to be executed. When you use
Java EL as the expression language, you can construct a policy expression that uses
the following out-of-the-box resources to set the conditions that determine whether to
fire an associated action:

• Beans

A bean is a Java object that represents the data available for a policy expression
to use, such as metrics from MBeans, log event information, or structured data
surfaced by other beans. Beans are accessed in policy expressions using
standard JavaBean conventions.

• Functions

Functions are a set of operations that are provided either by EL itself, or by WLDF,
that can be utilized from policy expressions to transform or evaluate data.

• Smart rules

Chapter 10
How Policies Are Configured

10-4

https://javaee.github.io/tutorial/jsf-el.html#GJDDD
https://jcp.org/aboutJava/communityprocess/final/jsr341/index.html
https://jcp.org/aboutJava/communityprocess/final/jsr341/index.html

Smart Rules are special set of functions that encapsulate more complex logic and
monitoring capabilities, and have specialized support in both the WebLogic Server
Administration Console and Fusion Middleware Control. They can be used by
themselves, or with other expression components as part of a larger, more complex
expression.

Actions
Each policy can be associated with one or more actions that are executed whenever the
policy evaluates to true. See Configuring Actions.

Policy Schedule
All scheduled policies must be configured with a schedule. Scheduling allows policies to be
evaluated according to a calendar schedule, at a specific time, after a duration of time, or at
timed intervals.

You configure a policy schedule by setting attributes on the WLDFScheduleBean interface,
which is a property of the WLDFWatchBean. You can set these attributes using the WebLogic
Server Administration Console, WLST, REST, or a JMX application. When you are
configuring new policies, the WebLogic Server Administration Console and Fusion
Middleware Control provide convenient assistants and workflows for configuring common
scheduling scenarios.

Note:

The WLDFScheduleBean is used for policy evaluation only when:

• The configured policy rule type is "Harvester".

• The configured expression language for the policy is "EL".

Note also that although scheduled policies that use the WLDFScheduleBean for
scheduling are configured as Harvester types, the WLDF Harvester component is
not used for scheduling.

Table 10-4 lists the attributes of the WLDFScheduleBean and their default values, which are the
same as for the javax.ejb.ScheduleExpression interface. In addition, the syntax for
specifying a value, range, list, or interval for a specific unit of time is also the same as that
described for the ScheduleExpression interface. See https://javaee.github.io/javaee-
spec/javadocs/javax/ejb/ScheduleExpression.html.

Chapter 10
How Policies Are Configured

10-5

https://javaee.github.io/javaee-spec/javadocs/javax/ejb/ScheduleExpression.html
https://javaee.github.io/javaee-spec/javadocs/javax/ejb/ScheduleExpression.html

Table 10-4 WLDFScheduleBean Attributes and Default Values

Attribute Description Default Allowable Values and Examples

second One or more
seconds within
a minute

0 Allowable values: 0 to 59
Can be a value, range, list, or interval. To specify every n seconds of the
minute, specify "*/n".

For example:

• second = "30" — (value) run policy every 30 seconds within the
minute

• second = "10,20,30" — (list) run policy on seconds 10, 20 and 30
within the minute

• second = "1-10" — (range) run policy on each of seconds 1
through 10 within the minute

• second = "30/10" — (interval) run policy every 10 seconds within
the minute, starting at second 30

• second = "*/5" — (interval) run policy every 5 seconds within the
minute

minute One or more
minutes within
an hour

*/5 Allowable values: 0 to 59
Can be a value, range, list, or interval. To specify every n minutes of the
hour, specify "*/n".

For example:

• minute = "30" — (value) run policy every 30 minutes

minute = "*/2" — (interval) run policy every two minutes of the
hour

hour One or more
hours within a
day

* Allowable values: 0 to 23
Can be a value, range, list, or interval.

For example:

• hour="16" — (value) run policy at 16:00.

• hour = "*" — (range) run policy at every hour within a day.

dayOfWe
ek

One or more
days within a
week

* Allowable values:

• 0 to 7, where 0 and 7 represent Sunday. For example,
dayOfWeek="3"

• Sun, Mon, Tue, Wed, Thu, Fri, Sat. For example, dayOfWeek="Mon"
Can be a value, range, or list. For example:

• dayOfWeek = "3" — run policy on Wednesday

• dayOfWeek = "Mon-Fri" — run policy each day from Monday to
Friday

• dayOfWeek = "Mon, Wed, Fri" — run policy on Monday,
Wednesday, and Friday

Chapter 10
How Policies Are Configured

10-6

Table 10-4 (Cont.) WLDFScheduleBean Attributes and Default Values

Attribute Description Default Allowable Values and Examples

dayOfMo
nth

One or more
days within a
month

* Allowable values:

• 1 to 31
• Last
• -7 to -1
• {1st, 2nd, 3rd, 4th, 5th, Last} {Sun, Mon, Tue, Wed, Thu, Fri, Sat}

Last represents the last day of the month.

-x (where x is in the range 7 to 1) means x days before the last day of the
month.

1st, 2nd, and so on, specified with a day of the week identifies a single
occurrence of that day within the month.

Can be a value, range, or list. For example:

• dayOfMonth = "1" — run policy on first day of the month

• dayOfMonth = "-3" — run policy on the third day before the end of
the month

• dayOfMonth = "2nd Mon" — run policy on the second Monday of
the month

• dayOfMonth = "1st Fri, 3rd Fri" — run policy on the first and
third Friday of the month

• dayOfMonth = "1 to 10" — run policy on each of the first 10 days
of the month

month One or more
months within a
year

* Allowable values:

• 1 to 12.

• Jan, Feb, Mar, Apr, May, Jun, Jul, Aug, Sep, Oct, Nov, Dec
Can be a value, range, or list. For example:

• month = "7" — run policy on the 7th month of the year

• month = "Feb" — run policy in February

• month = "1 - 3" — run policy on the first three months of the year

• month = "Jan, Apr, Jul, Oct" — run policy in January, April,
July, and October

year A specific
calendar year

* Allowable values: a four-digit calendar year.

You can specify one value. For example:

• year = "2015" — run policy in 2015

timezon
e

Time zone for
the schedule

null Defaults to the local VM time zone. You may use this attribute to specify a
non-default time zone ID in whose context the schedule specification is to
be evaluated.

Alarm Options
A policy that has been evaluated to true is referred to as having been triggered. For policies
that are run repeatedly, an alarm determines when a policy can be evaluated again after it
has been triggered. If a policy is configured with an alarm, a triggered policy is not evaluated
again until the alarm is reset. For policies that are evaluated repeatedly, you can optionally
define a minimum time that must transpire after a policy has been triggered before the policy
can be evaluated again.

An alarm is important to configure for a policy that is run repeatedly to prevent the associated
actions from being executed too frequently, such as generating a flood of emails or JMX

Chapter 10
How Policies Are Configured

10-7

notifications. For example, if you have a scheduled policy that executes a scale up
action on a dynamic cluster, you should set an alarm that delays evaluating the policy
again until the dynamic cluster is fully scaled up and is processing incoming requests.
This delay is referred to as the alarm reset period. Without a proper alarm reset period,
the scale up action could be executed again prematurely and counter-productively.

To configure an alarm for a policy, specify the following:

• The alarm type

• The alarm reset period

The following table lists and describes each of the available alarm types:

Table 10-5 Alarm Types

Alarm Type Description

None Allows the policy to be triggered whenever possible. This is the default.

AutomaticReset Allows the policy to be triggered whenever possible, except that
subsequent occurrences cannot occur any sooner than the interval
specified in the alarm reset period.

ManualReset Allows the policy to be triggered only once. After it is triggered, you
must manually reset it to fire again. You can reset an alarm using a
run-time MBean operation, either programmatically or with WLST. For
example, you can use the resetWatchAlarm operation on the
WLDFWatchNotificationRuntimeMBean.

Note the following alarm state behaviors:

• When the alarm type is AutomaticReset, a policy enters the alarm state when
triggered and stays in that state until the time interval specified by the alarm reset
period has expired.

• If a policy is configured with a ManualReset alarm, the policy enters the alarm state
when triggered, and remains in that state until you manually reset it.

• When a policy is in the alarm state, the policy is not evaluated again until the alarm
is reset.

• If a policy's alarm type is None, the configured action can be executed every time
that the policy is triggered. The alarm state is never set in these cases.

Severity Option
Whenever a policy is triggered, a message is automatically generated in the logging
system. The severity option is an optional value you can configure that:

1. Gets assigned as the severity value of the log message generated in the logging
system.

2. Is also passed to the actions that are configured with the policy.

The severity option must be one that is defined for the WebLogic logging service in the
weblogic.logging.Severities class. The accepted values are Info, Notice,
Warning, Error, Critical, Alert, and Emergency. The default is Notice.

Chapter 10
How Policies Are Configured

10-8

Enablement Option
Each policy can be individually enabled and disabled by using the Enabled attribute on that
policy. The value you specify for this attribute is true or false. When disabled, a policy is not
evaluated and its configured actions are not executed.

However, note that the WLDFWatchNotificationBean, which is the parent of all policy and
action configurations in a diagnostic system module, also has an Enabled attribute. If the
value of the WLDFWatchNotificationBean.Enabled attribute is false, all individual policies in
the diagnostic system modules are disabled regardless of whether its policies are individually
configured as enabled.

Configuring Scheduled Policies
Scheduled policies monitor diagnostic data that consists of data coming from MBeans within
the WebLogic Server Runtime MBean Server, including the read-only configuration MBeans
in the WebLogic Server Runtime MBean Server.These values, called metrics, originate from
common WebLogic Server JMX data sources such as the following:

• WebLogic Server Runtime MBean Server

• Domain Runtime MBean Server

• JVM platform MBean server

Scheduled policies are useful for monitoring run-time state information in the WebLogic
Server environment. Examples of diagnostic data that is useful to monitor using scheduled
policies are:

• Changes over time in average JVM heap usage

If the average amount of free heap reaches a particular threshold that is defined in the
policy expression, the configured action is executed, such as sending an email to the
system administrator.

• Data from multiple services that are considered together, such as response-time metrics
reported by a load balancer and message-backlog metrics from a message queue

If the combination of data meets a particular set of criteria defined in the policy
expression, the policy can fire a scaling action

See also Chaining Policies for information about how to create a policy expression that can
reference the state of other policies defined within the same WLDF module as the beans.
Policy chaining allows the state of one policy to be part of the expression of another.

The following sections explain how to configure, and show examples of, the three scheduled
policy types:

• Configuring Calendar Based Policies

• Configuring Smart Rule Based Policies

• Chaining Policies

Configuring Calendar Based Policies
The simplest type of scheduled policy is the calendar based policy. You can use a calendar
based policy to fire any associated actions according to the policy's schedule.

Chapter 10
Configuring Scheduled Policies

10-9

Calendar-based policies are simply scheduled policies with no associated expression.
This enables purely schedule-driven action execution; that is, the ability to
unconditionally perform a set of actions on a specified schedule. If no expression is
provided, when the scheduled time occurs, the policy treats the empty expression as a
true result and executes the associated actions.

Note:

Calendar based policies are supported only for policies that: have the
following configuration attributes:

• The rule type specified as 'Harvester'
• The expression language specified as 'EL'

The following example shows the configuration of a calendar based policy using
WLST. This policy fires a scale up action at 3:00 a.m. on December 26.

calendarScaleUp=wn.lookupWatch('ChristmasReturnsScaleUpWatch')
if calendarScaleUp == None:
 print "Creating scale-up for the post-Christmas returns rush on Dec 26 at 3am"
 calendarScaleUp=wn.createWatch('ChristmasReturnsScaleUpWatch')
calendarScaleUp.setRuleType('Harvester')
calendarScaleUp.setExpressionLanguage('EL')
calendarScaleUp.getSchedule().setHour('3')
calendarScaleUp.getSchedule().setMinute('0')
calendarScaleUp.getSchedule().setSecond('0')
calendarScaleUp.getSchedule().setDayOfMonth('26')
calendarScaleUp.getSchedule().setMonth('Dec')
calendarScaleUp.setEnabled(false)
calendarScaleUp.addNotification(scaleUp)

Configuring Smart Rule Based Policies
Smart rules are prepackaged functions that greatly simplify the creation of policy
expressions. The WebLogic Server Administration Console and Fusion Middleware
Control, in particular, each contain a smart rule editor to greatly simplify the task of
configuring a smart rule for the policy you are creating.

Smart rules perform a number of complex operations, but surface only a small number
of configuration parameters that you set. Details about the specific low level metrics
that are collected, how they are used, and so on, are hidden, thereby making them
easy to use. Smart rules return only a Boolean value, which determines whether the
policy is evaluated to true.

You use a smart rule as a predicate in policy expression by simply specifying the
parameters required by that smart rule. For example, to evaluate whether a particular
increase exists in the average thread pool queue length in the local server, you create
a policy that specifies the ServerHighQueueLength smart rule as the policy expression
and provide the following parameters:

• The sampling period for collecting the value of the
ThreadPoolRuntimeMBean.QueueLength attribute

• Duration, or the most recent window of time, in which samples are retained

Chapter 10
Configuring Scheduled Policies

10-10

• A threshold value that establishes the maximum acceptable number of threads in the
queue

The smart rule takes responsibility for sampling the appropriate metrics over the specified
time interval, computing averages, comparing threshold values, and determining whether the
smart rule evaluates to true.

Note:

Smart rules are supported for use only in scheduled policies that are configured
with Java EL as the expression language.

• Types of Diagnostic Data that Smart Rules Evaluate

• Smart Rule Example

Types of Diagnostic Data that Smart Rules Evaluate
Smart rules can monitor trends in metrics in a server or cluster over time, including:

• Average system throughput

• Process CPU load

• Pending user request count

• Idle or stuck thread count

• Incoming request queue size

• System load average

• JVM free heap size

• Any metric value visible from JMX, such as custom MBean values

You can use smart rules as building blocks in policy expressions. In the simplest case, a
single smart rule can be used by itself in a policy expression. You can also combine a smart
rule with others, as well as with other EL constructs, to form more complex expressions.

For example, you can construct a policy that sends an email notification if all of the following
conditions occur simultaneously in a server instance or cluster:

• Low JVM free heap percentage

• High number of stuck threads

• High incoming requests queue size

For details about all the smart rules provided by WLDF, see Smart Rule Reference.

Smart Rule Example
The ClusterLowHeapFreePercent smart rule compares the average free heap across all
Managed Servers in a cluster by monitoring the value of the
JVMRuntimeMBean.HeapFreePercent attribute. A policy expression that uses this smart rule
will be evaluated to true if a minimum percentage of Managed Servers in the cluster have an
average free heap that is less than a particular threshold value.

Chapter 10
Configuring Scheduled Policies

10-11

The ClusterLowHeapFreePercent smart rule takes the following input parameters:

• Cluster name

• Sampling period — The frequency with which the value of the HeapFreePercent
metric is collected

• Retention window — A sliding window of time during which samples are retained.
For example, the most recent five minutes.

• percentFreeLimit — A value that represents the low free heap percentage
threshold.

• percentServersLimit — A percentage of Managed Servers in the cluster that
must have an average free heap that is less than percentFreeLimit to cause the
expression to evaluate to true.

The following is an example configuration of the ClusterLowHeapFreePercent smart
rule:

wls:ClusterLowHeapFreePercent("myCluster","30 seconds","10 minutes",20,60)

For every Managed Server in myCluster, this smart rule collects the value of the
HeapFreePercent every 30 seconds, retaining the most recent 10 minutes of data, and
evaluates to true if at least 60 per cent of the Managed Servers in myCluster have an
average free heap percentage that is less than 20 per cent.

This smart rule could be configured to fire an action when it evaluates to true, such as
sending an email to the system administrator to report that a low free heap condition
exists in the cluster. The system administrator can then take remedial action as
necessary.

You can use smart rules in conjunction with scaling actions, described in Configuring
Elastic Actions, to configure policy based scaling of a dynamic cluster. This capability
enables automated elasticity in that cluster. For more information, including a demo
that you can download and run, see Policy-Based Scaling in Configuring Elasticity in
Dynamic Clusters for Oracle WebLogic Server.

Chaining Policies
Within the same diagnostics system module, the expression in one policy can
reference other policies as beans within that expression. In this way, complex policy
expressions can be reused and "chained" together to allow the state of one policy to
be part of the expression of another. This allows more complex, interrelated policies to
be written, while keeping such policy configurations more readable and maintainable.

To allow access to policy states within an expression, you can use the resource bean
within the global bean name space for each policy. The resource bean supports a Map
attribute named watches, where each key in the map is the name of a policy defined
within the same diagnostics system module.

Each value in the policy's map is a bean representing the named policy. These policy
beans support a simple Boolean alarm attribute, which has the following semantics:

• If the policy is configured with an alarm type other than None, the alarm attribute
returns true if the policy is currently in the alarm state.

• If no alarm type is configured on the policy, the alarm attribute yields the most
recently evaluated result.

Chapter 10
Configuring Scheduled Policies

10-12

• If the alarm attribute on a policy bean is accessed before the named policy has
successfully completed an evaluation cycle, a NotEnoughDataException is thrown. This
occurrence also has the effect of invalidating the expression during that evaluation cycle:
the policy isn't disabled, but it is effectively a non-result when it occurs.

Configuring Log Policies
Use log policies to monitor the occurrence of specific messages or strings in the server or
domain log. Policies of this type are triggered as a result of a log message containing the
specified data being issued.

When creating a log policy, you can use the log bean in a policy expression to obtain access
to data to log message fields. See log for details about the available log bean attributes.

The following example looks for a log message indicating that the server is entering the
RUNNING state:

 w=cmo.createWatch("ServerLogRunningState")
 w.setExpressionLanguage('EL')
 w.setRuleType('Log')
 w.setRuleExpression("log.messageId == 'BEA-000365' and
log.logMessage.contains('RUNNING')")

You can also use java methods and field accessors to access the data in log, since the log
bean is a simple JavaBean object. An equivalent policy expression of the above example is:

 w=cmo.createWatch("ServerLogRunningState2")
 w.setExpressionLanguage('EL')
 w.setRuleType('Log')
 w.setRuleExpression("log.getMessageId().contains('000365') &&
log.getLogMessage().contains('RUNNING')")

Note:

Any log policies that search for the RUNNING state message ID should search for
message ID BEA-000365, and not BEA-000360. The message ID BEA-000360 is
issued immediately before the state change to RUNNING, and BEA-000365 is
issued immediately afterward. WLDF does not start rule evaluation until the server
is in the RUNNING state. Therefore, such log policies are able to find only message
ID BEA-000365.

Configuring Instrumentation Policies
You use instrumentation policies to monitor the events from the WLDF Instrumentation
component. Policies of this type are evaluated as a result of an event being posted by the
Instrumentation component, which occurs when code that matches a deployed
Instrumentation monitor is exercised.

Instrumentation policy expressions utilize a single bean named instrumentationEvent. This
bean provides access to the data that is captured in an Instrumentation event. As with Log,

Chapter 10
Configuring Log Policies

10-13

DomainLog, and Collected Metrics policies, you can access data in the
Instrumentation event using JavaBean conventions in the policy expression. See the
set of fields that are accessible on the instrumentationEvent bean.

The following example shows how to access data in an Instrumentation policy using
the instrumentationEvent bean:

instrumentationEvent.payload > 100000000 && instrumentationEvent.monitor
== 'Servlet_Around_Service'
This policy triggers when the monitor event is of type “Servlet_Around_Service” and
the payload value (in this case, the execution time of the servlet recorded by the
Servlet_Around_Service monitor) is greater than 100000000 nanoseconds (100
milliseconds). You can also use java methods and field accessors to access data in
instrumentationEvent, since the instrumentationEvent bean is a simple JavaBean
object . An equivalent policy expression of the example above can be given as:

instrumentationEvent.getPayload() > 100000000 &&
instrumentationEvent.getMonitor().equals(‘Servlet_Around_Service')
Example 10-1 shows an example configuration for an Instrumentation policy.

Example 10-1 Sample Configuration for an Instrumentation Policy (in
DIAG_MODULE.xml)

 <watch-notification>
 <watch>
 <name>myInstWatch</name>
 <enabled>true</enabled>
 <rule-type>EventData</rule-type>
 <rule-expression>instrumentationEvent.payload > 100000000 &&
instrumentationEvent.monitor == 'Servlet_Around_Service'</rule-expression>
 <expression-language>EL</expression-language>
 <alarm-type>ManualReset</alarm-type>
 <notification>mySMTPNotification</notification>
 </watch>
 <smtp-notification>
 <name>mySMTPNotification</name>
 <enabled>true</enabled>
 <mail-session-jndi-name>myMailSession</mail-session-jndi-name>
 <subject xsi:nil="true"></subject>
 <body xsi:nil="true"></body>
 <recipient>username@emailservice.com</recipient>
 </smtp-notification>
</watch-notification>

Creating Complex Policy Expressions Using WLDF Java EL
Extensions

Oracle expects that the library of smart rules packaged with WLDF are sufficient for
meeting the needs of creating scheduled policies that evaluate runtime performance
data in a server or cluster. However, if you have a specific scheduled policy need that
cannot be satisfied by a smart rule, WLDF also provides a set of extensions to Java
EL. These extensions are intended for use in policies that evaluate very specific
characteristics or trends in metrics collected from runtime MBean servers in your
WebLogic domain.

Chapter 10
Creating Complex Policy Expressions Using WLDF Java EL Extensions

10-14

The contents of this section are targeted to developers who are knowledgeable of complex
programming techniques. Experience with Java EL is highly recommended.

Using WLDF Beans and Functions

WLDF leverages Java EL as the language for writing policy expressions. Java EL is a
standard, extensible, and robust scripting language. WLDF has adopted and extended Java
EL to provide access to WebLogic diagnostic data and events for writing policy expressions.
WLDF provides a set of functions and JavaBean objects for writing policy expressions that
use the following diagnostic data and events:

• WebLogic Runtime MBean data

• WebLogic Logging events

• WebLogic Instrumentation events

You can utilize all the features available within Java EL in conjunction with these WLDF
extensions to write policy expressions. Collected metrics based policies, which are a type of
scheduled policy, can use WLDF-provided beans and functions within their policy
expressions. These beans are JavaBean objects that can obtain access to common
WebLogic Server JMX data sources, such as the following:

• WebLogic Server Runtime MBean Server

• Domain Runtime MBean Server

• JVM platform MBean server

The following sections explain how to configure collected metrics based policies using beans
and functions:

• Writing Collected Metrics Policy Expressions Using Beans

• Writing Collected Metrics Policy Expressions Using Functions

Writing Collected Metrics Policy Expressions Using Beans
Table 10-6 summarizes the beans provided by WebLogic Server. For complete reference
information about each of these beans, see WLDF Beans Reference.

Table 10-6 Beans Provided by WebLogic Server

Name Prefix Scope Summary

runtime wls Only available from partition
scope diagnostic system
module deployments and
partitions

Provides access to MBeans in the local
WebLogic Server Runtime MBean Server.
These MBeans include both the read-only
configuration MBean and RuntimeMBean
instances.

domainRuntime wls Administration Server Provides access to MBeans on the Domain
Runtime MBean Server (Administration Server
only).

clusterRuntime wls Administration Server Provides domain-wide access to cluster
member data (Administraton Server only).

Chapter 10
Creating Complex Policy Expressions Using WLDF Java EL Extensions

10-15

Table 10-6 (Cont.) Beans Provided by WebLogic Server

Name Prefix Scope Summary

platform wls Administration Server or
Managed Server

Provides access to the JVM's platform MBean
server.

Note that in the majority of cases, the
platform bean is functionally equivalent to the
runtime bean: WebLogic Server uses the
JVM's platform MBean server to contain the
WebLogic run-time MBeans by default.

resource n/a Administration Server and
Managed Servers

Provides access to beans and state information
within a diagnostic system module deployment.

Access is restricted to policies that are
configured within the same diagnostic system
module.

• Accessing MBean Data in Collected Metrics

• Working with Complex MBean Attributes

• Performing Bulk Queries on Collected Metrics from MBeans

Accessing MBean Data in Collected Metrics
The beans described in Table 10-6 provide access to WebLogic Server Runtime
MBean metrics. In policy expressions that use Java EL, metric data from each of these
runtime MBeans is accessed using a WLDF-provided bean using the following syntax:

wls.bean-name.attribute-or-operation.attribute-or-operation…
All EL-based policy expressions that use the WLDF beans must begin with the
namespace prefix wls . The prefix wls is similar to a namespace that contains all the
WLDF beans that can be used in the policy expressions. Beans and their attributes
and methods are accessed using standard JavaBean conventions. The following
example shows a simple policy expression that returns true when the value of
HeapFreePercent attribute of JVMRuntimeMBean is less than 20:

wls.runtime.serverRuntime.JVMRuntime.heapFreePercent < 20
The preceding policy expression example accesses the value of HeapFreePercent in
the following sequence:

1. The runtime bean is accessed from the wls bean namespace.

The runtime bean provides an entry point into the metrics collected by the local
runtime MBean and also into the read-only configuration MBean data in the
WebLogic Server Runtime MBean Server.

2. The serverRuntime attribute is accessed from the runtime bean.

The serverRuntime attribute of the runtime bean corresponds directly to the
ServerRuntimeMBean instance in the local running server instance wherever the
expression is being evaluated.

3. The JVMRuntime attribute, which corresponds to the JVMRuntimeMBean instance
under the local ServerRuntimeMBean, is accessed from the serverRuntime bean.

Chapter 10
Creating Complex Policy Expressions Using WLDF Java EL Extensions

10-16

4. The heapFreePercent attribute is accessed from the returned JVMRuntime instance.

From the runtime bean, runtime metrics and monitoring data are available through the
serverRuntime attribute, and the domain attribute provides access to the current configuration
data in the local read-only DomainMBean tree. This access allows policies to examine the
current in-memory configuration within a policy expression.

MBeans that are accessed as bean attributes from the WLDF-provided expression beans
have read-only access to most of the attributes and some operations available to the
expression as defined in the MBean Reference for Oracle WebLogic Server, with some
exceptions for security purposes.

Note:

There are slight differences in syntax between JMX and JavaBean conventions
when accessing attributes. For example, JavaBean conventions for accessing the
JMX attribute HeapFreePercent require using “camel-case” syntax. When using
JMX, the attribute is accessed by the name HeapFreePercent. However, in EL
expressions, the same attribute is accessed as heapFreePercent.

Working with Complex MBean Attributes
Some MBean attributes return complex objects; for example, the HealthState attribute of the
ServerRuntimeMBean. Such attributes can be accessed using JavaBean conventions. In the
following example, the policy expression returns true if the health state of the server is a
non-zero value:

wls.runtime.serverRuntime.healthState.state != 0

Working with Array Attributes

Many WLDF bean attributes return arrays of child MBeans. To work with collections, such as
arrays, Java EL provides the stream operator to convert arrays and lists into stream objects
that can be fed into other Java EL and WLDF functions and operators. In the following
example, the policy expression examines the state of all JDBCDataSourceRuntimeMBean
instances in the local server instance, and returns true if any of them are in the Overloaded
state:

wls.runtime.serverRuntime.JDBCServiceRuntime.JDBCDataSourceRuntimeMBeans.stream(
).anyMatch(ds -> ds.state == “Overloaded”)
The policy expression executes in the following sequence:

1. The JDBCServiceRuntimeMBean child is accessed from the ServerRuntimeMBean.

2. The array attribute JDBCDataSourceRuntimeMBeans is accessed from the
JDBCServiceRuntimeMBean.

3. The Java EL stream operator is utilized to convert the array to a stream so that it can be
used with WLDF and standard Java EL collection operations.

4. The anyMatch collection operation is used to look for the Overloaded state on any of the
returned JDBCDataSourceRuntimeMBean instances.

5. If the anyMatch operation matches the Overloaded state, returns true.

Chapter 10
Creating Complex Policy Expressions Using WLDF Java EL Extensions

10-17

Performing Bulk Queries on Collected Metrics from MBeans
The MBeans defined in Table 10-6 are used in collected metrics policy expressions. All
of these beans support a query method that allows to perform a query for a set of
MBean attribute values against a homogeneous set of MBeans.

The method takes the following syntax:

query(target-list, object-name-pattern, attribute-expression)
The query method returns an iterable list of values that is obtained using the
attribute-expression on each matching MBean instance.

Table 10-7 Method Parameters

Parameter Description

target-list This argument is applicable only for
domainRuntime bean which is available only for
policies executing on the Administration Server.
The bean supports an overloaded variant that takes
an array of targets.

It is a list of servers or clusters in the domain. The
argument allows the policy expression to examine
MBean values across the domain in the same
expression.

object-name-pattern This argument takes any valid JMX ObjectName
pattern that is specified as a string value enclosed
by single quote (') characters. For example:
'com.bea:Type=ServletRuntime,*'

attribute-expression This argument is a quoted EL subexpression that is
used to access an attribute from each of the
MBeans matching the object-name-pattern
argument. The attribute-expression argument
can be either of the following types:
• A simple attribute available on the MBean.
• An attribute of a complex type that uses a

JavaBean-style expression to access the
values within that complex structure.

Note: It is expected that attribute-expression
ultimately resolves to a single scalar value, and not
a complex structure.

The values returned by the query method can be used as a part of the larger policy
expression that examines those values.

Note:

The intended use of the query method is to operate against a homogeneous
set of MBean instances, but there is no enforcement mechanism to ensure
that the specified MBeans must all be of the same type. Therefore, if you do
specify an object-name-pattern that encompasses MBeans of different
types, errors can result when the policy expression is evaluated.

Chapter 10
Creating Complex Policy Expressions Using WLDF Java EL Extensions

10-18

Example 10-2 Examples of Using the query Method

Table 10-8 lists some examples of using the query method in policy expressions.

Note:

The examples show how to use the query method and are not complete policy
expressions.

Table 10-8 query Method Examples

Example Description

wls.runtime.query('com.bea:Type=Servlet
Runtime,*', 'ExecutionTimeAverage')

The query method is used for all the instances of
ServletRuntimeMBean in the local server and
returns the value of ExecutionTimeAverage for
each instance in the returned iterable stream.

wls.domainRuntime.query(['cluster1'],
'com.bea:Type=ThreadPoolRuntime,*',
'PendingUserRequestCount')

The domainRuntime bean is used to query all
values of PendingUserRequestCount across all
instances of ThreadPoolRuntimeMBean in the
cluster cluster1. Any values found are returned
in the Iterable set returned by the method call.

The use of query method in policy expression and the result set are represented in the
following illustration:

Figure 10-1 Result Set of query in Policy Expression

The following is a complete example of a policy expression that uses the query method
to determine whether the StuckThreadCount attribute on any WorkManagerRuntimeMBean in
the local WebLogic Server instance is greater than zero:

wls.runtime.query('com.bea:Type=WorkManagerRuntime,*',
'StuckThreadCount').stream().anyMatch(x -> x > 0)
The values of StuckThreadCount for all instances of WorkManagerRuntimeMBean are queried,
and each value is examined to see if it is greater than zero, which indicates a stuck thread in
the server. The stream collection operation is part of the Java EL standard, and is used for

Chapter 10
Creating Complex Policy Expressions Using WLDF Java EL Extensions

10-19

converting an iterable set into a stream that can be used with Java EL collection
operations, such as anyMatch in the example.

Writing Collected Metrics Policy Expressions Using Functions
In addition to the bundled functions and collection operations that come with Java EL
by default, there are also a set of WLDF-provided functions for use within policy
expressions for common operations with metric data and for retaining a set of metrics
with history.

The set of WLDF-provided functions includes:

• wls:tableChanges
• wls:tableAverages
• wls:extract
• wls:average
• wls:changes
• wls:aliveServersCount
For complete details about each EL function provided by WLDF, see Functions
Reference.

Functions are invoked using the prefix wls:

wls:<function-call>
For example, wls:aliveServersCount('cluster1') invokes the
aliveServersCount() function provided by WLDF for the cluster cluster1.

Collection Operations

WLDF also provides a set of collection operations that can be invoked similar to the
collection operations provided by Java EL. The set of WLDF-provided collection
operations includes:

• tableAverages
• percenMatch
• collection
• flatten
• Examining Trends in Metric Values over Time

• Extracting and Examining Collected Metrics in Policy Expressions

• Lifecycle of Data Collection

Examining Trends in Metric Values over Time
You can look for trends in metric data over time instead of assessing the instantaneous
values. Use the wls:extract function to extract a table of time series from a specified
set of input sources, based on a specified sampling rate schedule and time window.

The extract function has the following syntax:

Chapter 10
Creating Complex Policy Expressions Using WLDF Java EL Extensions

10-20

wls:extract(sources, sampling rate, retention window)
The method returns an iterable set that consists of a two dimensional set of results. The
metric input to the function comes from multiple MBean instances during the course of a
specific interval of time defined by the retention window parameter. The resulting data is
similar to a table where each row is a set of values from a particular MBean instance over the
time window.

Parameters

Table 10-9 Parameters Description for extract() Function

Parameters Description

sources Set of metric sources, which can be identified as a query
method or as a quoted Java EL expression.

sampling rate String that identifies the frequency with which data is
collected. You can specify this string as hours, minutes, or
seconds. The syntax is flexible, allowing you to specify 30
seconds, for example, as “30s”, “30sec”, or “30 seconds”.

Note: The frequency only applies to the rate of collection of
the metric, and is independent of the overall policy evaluation
schedule.

retention window String that identifies the retention window over which to
observe values from the sources input with syntax identical
to the sampling rate parameter.

It implements the sliding window algorithm in which the
oldest data in the set is aged out when the array is full.

See retention window.

Example 10-3 Examples of Using the extract Function

Table 10-10 lists example usages of the extract function.

Note:

The examples show how to invoke the extract function and are not complete policy
expressions.

Table 10-10 extract Function Examples

Example Description

wls:extract("wls.runtime.serverRun
time.threadPoolRuntime.pendingUser
RequestCount", "30s", "2m")

The extract function is invoked with an EL expression
as the first argument which observes and collects the
values of the PendingUserRequestCount attribute on
the ThreadPoolRuntimeMBean at 30-second intervals
and retains them over a period of 2 minutes. In this
example, ThreadPoolRuntimeMBean is a singleton,
and only the local WebLogic Server instance is
monitored. Therefore, only a single row of values is
returned in the table of values.

Chapter 10
Creating Complex Policy Expressions Using WLDF Java EL Extensions

10-21

Table 10-10 (Cont.) extract Function Examples

Example Description

wls:extract(wls.runtime.query("com
.bea:Type=ThreadPoolRuntime,*",
"PendingUserRequestCount"), "30s",
"2m")

The extract function is used with the result of a query
method invocation as input.

wls:extract(wls.domainRuntime.quer
y(['cluster1'],
'com.bea:Type=ThreadPoolRuntime,*'
, 'PendingUserRequestCount'),
'30s', '2m')

The extract function is used with the query method of
the domainRuntime bean to collect the value of
PendingUserRequestCount attribute on all
ThreadPoolRuntimeMBean instances on every server
in cluster1. The result set for this call consists of a
row of values for each ThreadPoolRuntimeMBean
instance in each active server instance in cluster1 .

Extracting and Examining Collected Metrics in Policy Expressions
The extract function returns a table of scalar values. You can use any collection
operation to examine or manipulate the result set. WLDF provides more collection
operations that are intended for use with the data returned from extract function, such
as tableAverages, percentMatch, collection, and flatten.

Operations Description

tableAverages Computes the average value for each row in the table.

percentMatch Examines all the computed averages from tableAverages.

collection Returns the two dimensional set of values in tabular form,
which can be then converted to Java EL collection stream
using the stream operator and can be directly manipulated in
other Java EL collection operators.

flatten Converts the two dimensional set of values returned by
extract function into a linear collection of values.

The result of extract can then be fed into other functions or operations as part of an
overall policy expression.

In the following example of a policy expression, the extract function collects the value
for the PendingUserRequestCount attribute across the servers in cluster1. The result
is combined with the tableAverages and percentMatch collection operations to
produce a boolean value.

wls:extract(wls.domainRuntime.query({'cluster1'},
'com.bea:Type=ThreadPoolRuntime,*', 'PendingUserRequestCount'), '30s',
'2m').tableAverages().stream().percentMatch(pendingCount -> pendingCount >
100) > 0.75
This policy expression returns true when the average value of the attribute
PendingUserRequestCount over the 2-minutes window is greater than 100 on 75% of
the servers in cluster1. The policy expression executes in the following sequence:

Chapter 10
Creating Complex Policy Expressions Using WLDF Java EL Extensions

10-22

1. The extract function creates a table of values for the attribute
PendingUserRequestCount, where each row is one set of values from a server in
cluster1 over a 2-minutes window.

2. The tableAverages operation computes the average value over the 2-minutes window
for each row in the table returned by the extract function.

3. stream is a standard Java EL collection operation used to convert the vector result of
tableAverages to a Java EL stream.

4. The percentMatch operation examines all the computed averages from tableAverages,
and computes the percentage of values in that set that are greater than 100.

5. The result of percentMatch is a value between 0 and 1 and is compared with 0.75, the
desired threshold.

Lifecycle of Data Collection
The extract function extracts data from a specified input source over a defined period of
time. When the extract function is first encountered in an expression by the WLDF policy
engine, it starts the collection of the desired metrics indicated in the policy expression.
Samples are collected by the policy engine until the policy using the extract function is
disabled or undeployed.

Policy expressions that use the extract function is not evaluated until enough data has been
collected for the desired metrics to satisfy the sliding window interval specified in the
invocation. If the function invocation specifies that a 5-minutes window of data is required,
then 5 minutes of data collection must take place from the moment the policy is deployed
before the expression can be successfully evaluated.

In the following example, the expression does not evaluate until 2 minutes of data for the
PendingUserRequestCount attribute is collected.

wls:extract(wls.runtime.query("com.bea:Type=ThreadPoolRuntime,*",
"PendingUserRequestCount"), "30s", "2m")

Chapter 10
Creating Complex Policy Expressions Using WLDF Java EL Extensions

10-23

11
Configuring Actions

The WebLogic Diagnostics Framework (WLDF) provides several types of actions that can be
executed when a policy evaluates to true, such as triggering an elastic scaling action,
sending a JMS notification, executing an external command line script, and more.

For information about how to create an action using the WebLogic Server Administration
Console, see Create actions for policies in a diagnostic system module in Oracle WebLogic
Server Administration Console Online Help.

• Actions Overview
An action is an operation that is executed when a policy expression evaluates to true.
WLDF supports different types of action based on the delivery mechanism of the
notification.

• Configuring JMX Actions
WLDF issues JMX events when an associated policy is triggered for each defined JMX
action. You can configure the JMX action to receive all the JMX notification and filter the
output as required.

• Configuring JMS Actions
You can configure JMS actions to send JMS notifications through the JMS topics or
queues when the corresponding policy is triggered. You can define how the notification
must be delivered such as defining the destination and the connection factory.

• Configuring SNMP Actions

• Configuring Log Actions
You can create a log action to send a customized message to the server log.

• Configuring REST Actions
You can use a REST action to send a notification to a REST endpoint that includes a
customized message in the notification payload. You can configure the REST endpoint
invocation for no authentication or basic authentication.

• Configuring SMTP Actions
Simple Mail Transfer Protocol (SMTP) actions are used to send messages (e-mail) over
the SMTP protocol in response to the triggering of an associated policy. You provide a list
of recipients to whom the message is distributed through the configured SMTP session.

• Configuring Image Actions
An image action causes a diagnostic image to be generated in response to the triggering
of an associated policy. You can configure two options for image actions: a directory and
a lockout period.

• Configuring Elastic Actions
WLDF provides scale up and scale down elastic actions that can be performed on
dynamic clusters.

• Configuring Script Actions
You can use the script action to execute an external command-line script. The script can
be written in any scripting language.

11-1

• Configuring Heap Dump Actions
You can use a heap dump action to capture heap dumps when certain runtime
conditions, defined by a policy expression, are met. Each heap dump is produced
in HPROF format, which you can analyze with tools such as the jmap utility, which
is available in the JDK.

• Configuring Thread Dump Actions
You can use a thread dump action to capture a specific number of thread dumps,
separated by configured time interval, when the runtime conditions that are
specified in a corresponding policy are met. Each thread dump file is produced in
an individual text file.

Actions Overview
An action is an operation that is executed when a policy expression evaluates to true.
WLDF supports different types of action based on the delivery mechanism of the
notification.

Topics

The following sections contain background information pertaining to WLDF actions:

• Types of Actions

• Variables for Customizable Actions
The log, SMTP, and REST action types support the generation of customized
strings that contain one or more of the variables listed in this topic.

• Action Timeout
All WLDF actions support a timeout, which determines the time, in seconds, for the
action to complete execution. By default, the timeout is 0, which disables the
action timeout.

Types of Actions
WLDF supports the following types of diagnostic actions, based on the delivery
mechanism:

• Java Management Extensions (JMX)

• Java Message Service (JMS)

• Simple Network Management Protocol (SNMP)

• Simple Mail Transfer Protocol (SMTP)

• Diagnostic image capture

• Elasticity framework

• REST

• WebLogic logging system

• WebLogic Scripting Tool (WLST)

• Heap dump

• Thread dump

In the configuration file for a diagnostic module, the different types of actions are
identified by the following elements in the config.xml file for the domain:

Chapter 11
Actions Overview

11-2

• <jmx-notification>

• <jms-notification>

• <snmp-notification>

• <smtp-notification>

• <image-notification>

• <scale-up-action>

• <scale-down-action>

• <rest-notification>

• <log-action>

• <script-action>

• <heap-dump-action>

• <thread-dump-action>

These action types all have <name> and <enabled> configuration options. The value of
<name> is used as the value in a <notification> element for a policy, to map the policy to its
corresponding action. The <enabled> element, when set to true, enables that action. In other
words, the action is executed when an associated policy evaluates to true. Other than
<name> and <enabled>, each action type is unique.

Variables for Customizable Actions
The log, SMTP, and REST action types support the generation of customized strings that
contain one or more of the variables listed in this topic.

When a triggered policy invokes one of these action types, each variable used in the
customized string that is generated by the action is replaced with the value shown in the
following table.

Table 11-1 Substitution Variables

Variable Name Value

WatchName Name of policy that corresponds to the action

WatchRuleType Policy type (for example, Harvester, Log, or EventData)

WatchRule Policy expression

WatchTime Timestamp identifying when the corresponding policy was triggered

WatchSeverityLevel Policy severity option

WatchData Log message

WatchAlarmType Specifies the policy alarm type, which can be None, AutomaticReset, or
ManualReset.

WatchAlarmResetPeri
od

Alarm reset period configured on the
WLDFWatchNotificationRuntimeMBean.

WatchDomainName WebLogic domain name

WatchServerName Server instance name

Chapter 11
Actions Overview

11-3

Log, REST, and SMTP actions send different types of messages when executed. Each
of these actions, while different, has one or more properties that support the use of
one or more of the variables defined in . For example, an SMTP message body can be
specified as follows to include the policy name, expression, and timestamp indicating
when the policy was triggered:

"Test ${WatchName} with policy ${WatchRule} fired at ${WatchTime}."

For more information about using these substitution variables, see:

• Configuring Log Actions

• Configuring REST Actions

• Configuring SMTP Actions

Action Timeout
All WLDF actions support a timeout, which determines the time, in seconds, for the
action to complete execution. By default, the timeout is 0, which disables the action
timeout.

You can specify the action timeout using the WLDFNotificationBean.Timeout attribute.

See the following topics to set the timeout when configuring an action:

• Create actions for policies in a diagnostic system module in Oracle WebLogic
Server Administration Console Online Help

Configuring JMX Actions
WLDF issues JMX events when an associated policy is triggered for each defined JMX
action. You can configure the JMX action to receive all the JMX notification and filter
the output as required.

For each defined JMX action, WLDF issues JMX events (notifications) whenever an
associated policy is triggered. Applications can register an action listener with the
server's WLDFWatchNotificationSourceRuntimeMBean to receive all JMX notifications
and filter the provided output. You can also specify a JMX "notification type" string that
a JMX client can use as a filter.

Example 11-1 shows an example of a JMX action configuration.

Example 11-1 Example Configuration for a JMX Action

<wldf-resource xmlns="http://xmlns.oracle.com/weblogic/weblogic-diagnostics"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://xmlns.oracle.com/weblogic/weblogic-diagnostics/2.0/
weblogic-diagnostics.xsd">
 <name>mywldf1</name>
 <watch-notification>
 <!-- One or more policy configurations -->
 <jmx-notification>
 <name>myJMXNotif</name>
 <enabled>true</enabled>
 </jmx-notification>
 <!-- Other action configurations -->
 </watch-notification>
</wldf-resource>

Chapter 11
Configuring JMX Actions

11-4

Here is an example of a JMX action:

 Notification name: myjmx called. Count= 42.
 Watch severity: Notice
 Watch time: Jul 19, 2005 3:40:38 PM EDT
 Watch ServerName: myserver
 Watch RuleType: Harvester
 Watch Rule: ${com.bea:Name=myserver,Type=ServerRuntime//
OpenSocketsCurrentCount} > 1
 Watch Name: mywatch
 Watch DomainName: mydomain
 Watch AlarmType: None
 Watch AlarmResetPeriod: 10000

Configuring JMS Actions
You can configure JMS actions to send JMS notifications through the JMS topics or queues
when the corresponding policy is triggered. You can define how the notification must be
delivered such as defining the destination and the connection factory.

In the system resource configuration file, the elements <destination-jndi-name> and
<connection-factory-jndi-name> define how the notification is to be delivered.

Example 11-2 shows two JMS actions that cause JMS notifications to be sent through the
provided topics and queues using the specified connection factory. For this to work properly,
JMS must be properly configured in the config.xml configuration file for the domain, and the
JMS resource must be targeted to this server.

Example 11-2 Example JMS Actions

<wldf-resource xmlns="http://xmlns.oracle.com/weblogic/weblogic-diagnostics"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://xmlns.oracle.com/weblogic/weblogic-diagnostics/2.0/
weblogic-diagnostics.xsd">
 <name>mywldf1</name>
 <watch-notification>
 <!-- One or more policy configurations -->
 <jms-notification>
 <name>myJMSTopicNotif</name>
 <destination-jndi-name>MyJMSTopic</destination-jndi-name>
 <connection-factory-jndi-name>weblogic.jms.ConnectionFactory
 </connection-factory-jndi-name>
 </jms-notification>
 <jms-notification>
 <name>myJMSQueueNotif</name>
 <destination-jndi-name>MyJMSQueue</destination-jndi-name>
 <connection-factory-jndi-name>weblogic.jms.ConnectionFactory
 </connection-factory-jndi-name>
 </jms-notification>
 <!-- Other action configurations -->
 </watch-notification>
</wldf-resource>

The content of the action message gives details of the policy and action.

Chapter 11
Configuring JMS Actions

11-5

Configuring SNMP Actions
Simple Network Management Protocol (SNMP) actions are used to post SNMP traps
when an associated policy is triggered. Provide the action name to define an SNMP
action.To define an SNMP action, provide the action name as shown in Example 11-3.
Generated traps contain the names of both the policy and action that caused the trap
to be generated. For an SNMP trap to work properly, SNMP must be properly
configured in the config.xml configuration file for the domain.

Example 11-3 An Example Configuration for an SNMP Action

<wldf-resource xmlns="http://xmlns.oracle.com/weblogic/weblogic-diagnostics"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://xmlns.oracle.com/weblogic/weblogic-diagnostics/2.0/
weblogic-diagnostics.xsd">
 <name>mywldf1</name>
 <watch-notification>
 <!-- One or more policy configurations -->
 <snmp-notification>
 <name>mySNMPNotif</name>
 </snmp-notification>
 <!-- Other action configurations -->
 </watch-notification>
</wldf-resource>

The trap resulting from the SNMP action configuration shown in Example 11-3 is of
type 85. It contains the following values (configured values are shown in angle
brackets "<>"):

 .1.3.6.1.4.1.140.625.100.5 timestamp (e.g. Dec 9, 2004 6:46:37 PM EST
 .1.3.6.1.4.1.140.625.100.145 domainName (e.g. mydomain")
 .1.3.6.1.4.1.140.625.100.10 serverName (e.g. myserver)
 .1.3.6.1.4.1.140.625.100.120 <severity> (e.g. Notice)
 .1.3.6.1.4.1.140.625.100.105 <name> [of watch] (e.g.
 simpleWebLogicMBeanWatchRepeatingAfterWait)
 .1.3.6.1.4.1.140.625.100.110 <rule-type> (e.g. HarvesterRule)
 .1.3.6.1.4.1.140.625.100.115 <rule-expression>
 .1.3.6.1.4.1.140.625.100.125 values which caused rule to
 fire (e.g..State =
 null,weblogic.management.runtime.WLDFHarvesterRuntimeMBean.
 TotalSamplingTime = 886,.Enabled =
 null,weblogic.management.runtime.ServerRuntimeMBean.
 OpenSocketsCurrentCount = 1,)
 .1.3.6.1.4.1.140.625.100.130 <alarm-type> (e.g. None)
 .1.3.6.1.4.1.140.625.100.135 <alarm-reset-period> (e.g. 10000)
 .1.3.6.1.4.1.140.625.100.140 <name> [of notification]
 (e.g.mySNMPNotif)

Configuring Log Actions
You can create a log action to send a customized message to the server log.

The customized message can optionally include any of the variables described in
Variables for Customizable Actions. The following WLST example shows the
configuration of a log action:

wn=res.getWatchNotification()

Chapter 11
Configuring SNMP Actions

11-6

actionName="myaction"
action = wn.lookupLogAction(actionName);
if action is None:
 action = wn.createScriptAction(actionName);
action.setMessage("Message with substitution on server ${WatchServerName} in domain $
{WatchDomainName}");
action.setSubsystemName("SpecialLogAction);
action.setSeverity("Info");

When the preceding log action is executed, the custom message, shown in bold, uses
variables to identify:

• The WebLogic Server instance name, represented by the ${WatchServerName} variable

• The WebLogic domain name, represented by the variable ${WatchDomainName}

Configuring REST Actions
You can use a REST action to send a notification to a REST endpoint that includes a
customized message in the notification payload. You can configure the REST endpoint
invocation for no authentication or basic authentication.

When configuring a REST action, you can create a customized set of notification properties
that can optionally use any of the variables described in Variables for Customizable Actions.
For example, the following WLST example shows the configuration of a REST action that
sends a customized message:

wn = res.getWatchNotification();

#No Auth REST invocation
rest1 = wn.createRESTNotification('r1')
rest1.setEndpointURL("http://localhost:7001/rest-no-auth/resources/watch-listener")
customNotif = java.util.Properties()
customNotif.put('message','Policy ${WatchName} with rule ${WatchRule} fired.')
rest1.setCustomNotificationProperties(customNotif)
rest1.setEnabled(true)

#Basic Auth REST invocation
rest2 = wn.createRESTNotification('r2')
rest2.setEndpointURL("http://localhost:7001/rest-basic-auth/resources/watch-listener")
rest2.setHttpAuthenticationMode('Basic')
rest2.setHttpAuthenticationUserName('restuser1')
rest2.setHttpAuthenticationPassword('restuser1')
rest2.setEnabled(true)

When the preceding REST action is executed, the REST endpoint is invoked with a
message, shown in bold, that identifies:

• The name of the triggered policy that executed the corresponding REST action,
represented by the ${WatchName} variable

• The policy expression, represented by the ${WatchRule} variable

Configuring SMTP Actions
Simple Mail Transfer Protocol (SMTP) actions are used to send messages (e-mail) over the
SMTP protocol in response to the triggering of an associated policy. You provide a list of
recipients to whom the message is distributed through the configured SMTP session.

Chapter 11
Configuring REST Actions

11-7

To define an SMTP action, first configure the SMTP session. That configuration is
persisted in the config.xml configuration file for the domain. In DIAG_MODULE.xml, you
provide the configured SMTP session using subelement <mail-session-jndi-name>,
and provide a list of at least one recipient using subelement <recipients>. An optional
subject and/or body can be provided using subelements <subject> and <body>
respectively. If these are not provided, they will be defaulted.

Example 11-4 shows an SMTP action that causes an SMTP (e-mail) message to be
distributed through the configured SMTP session, to the configured recipients. In this
action configuration, a custom subject and body are provided. If a subject or body are
not specified, defaults are provided, showing details of the policy and action.

Example 11-4 Sample Configuration for SMTP Action (in DIAG_MODULE.xml)

<wldf-resource xmlns="http://xmlns.oracle.com/weblogic/weblogic-diagnostics"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://xmlns.oracle.com/weblogic/weblogic-diagnostics/2.0/
weblogic-diagnostics.xsd">
 <name>mywldf1</name>
 <watch-notification>
 <!-- One or more policy configurations -->
 <smtp-notification>
 <name>mySMTPNotif</name>
 <mail-session-jndi-name>MyMailSession</mail-session-jndi-name>
 <subject>Critical Problem!</subject>
 <body>A system issue occurred. Call Winston ASAP.
 Reference number 81767366662AG-USA23.</body>
 <recipients>administrator@myCompany.com</recipients>
 </smtp-notification>
 <!-- Other action configurations -->
 </watch-notification>
</wldf-resource>

The content of the action message gives details of the policy and action.

WLDF also supports customizing the subject and body elements in the sent email by
using any of the variables described in Variables for Customizable Actions.

The following WLST example shows the configuration of an SMTP action that contains
customized subject and body text. The subject and body of the message utilize
variables to specify the policy name and the timestamp indicating when the policy was
triggered:

smtp=wn.lookupSMTPNotification('smtp1')
if smtp is None:
 smtp=wn.createSMTPNotification('smtp1')

smtp.setMailSessionJNDIName('test.MailSession')
smtp.setSubject("WatchRule ${WatchName} alert")
smtp.setBody("Test ${WatchName} with rule ${WatchRule} fired at ${WatchTime}.")
smtp.setRecipients(["john.smith@example.com"])

When the preceding SMTP action is executed, an email is generated with a custom
subject and body, shown in bold, that identifies:

• The name of the policy that executed the SMTP action, represented by the
variable ${WatchName}. This variable is used in both the subject and body.

• The policy expression, represented by the ${WatchRule} variable

Chapter 11
Configuring SMTP Actions

11-8

• The timestamp identifying when the corresponding policy was triggered, represented by
the ${WatchTime} variable

Configuring Image Actions
An image action causes a diagnostic image to be generated in response to the triggering of
an associated policy. You can configure two options for image actions: a directory and a
lockout period.

The directory name indicates where the images will be generated. The lockout period
determines the number of seconds that must elapse before a new image can be generated
after the last one. This is useful for limiting the number of images that will be generated when
there is a sequence of server failures and recoveries.

You can specify the directory name relative to the DOMAIN_HOME\servers\SERVER_NAME. The
default directory is DOMAIN_HOME\servers\SERVER_NAME\logs\diagnostic-images.

Image file names are generated using the current timestamp (for example,
diagnostic_image_myserver_2005_08_09_13_40_34.zip), so an action can execute many
times, resulting in a separate image file each time.

The configuration is persisted in the DIAG_MODULE.xml configuration file. Example 11-5 shows
an image action configuration that specifies that the lockout time will be two minutes and that
the image will be generated to the DOMAIN_HOME\servers\SERVER_NAME\images directory.

Example 11-5 Sample Configuration for Image Action (in DIAG_MODULE.xml)

<wldf-resource xmlns="http://xmlns.oracle.com/weblogic/weblogic-diagnostics"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://xmlns.oracle.com/weblogic/weblogic-diagnostics/2.0/
weblogic-diagnostics.xsd">
 <name>mywldf1</name>
 <watch-notification>
 <!-- One or more policy configurations -->
 <image-notification>
 <name>myImageNotif</name>
 <enabled>true</enabled>
 <image-lockout>2</image-lockout>
 <image-directory>images</image-directory>
 </image-notification>
 <!-- Other action configurations -->
 </watch-notification>
</wldf-resource>

For more information about Diagnostic Images, see Configuring and Capturing Diagnostic
Images.

Configuring Elastic Actions
WLDF provides scale up and scale down elastic actions that can be performed on dynamic
clusters.

• scale up — Configured using the WLDFScaleUpActionBean
• scale down — Configured using the WLDFScaleDownActionBean
Each action bean has the following configuration attributes:

Chapter 11
Configuring Image Actions

11-9

• clusterName — The name of the dynamic cluster that needs to be scaled

• scalingSize — The number of Managed Server instances by which the dynamic
cluster needs to be scaled up or down

The scale up and scale down actions attempt to scale the dynamic cluster specified by
the clusterName parameter, by the number of servers specified as the scalingSize
value. WLDF interacts with the elasticity framework to scale the dynamic cluster
accordingly.

Note:

Note the following:

• To configure automated elasticity for a dynamic cluster, you must create
a domain-scope diagnostic system module in which you define the
scaling policy, along with its corresponding elastic action, and then target
that diagnostic module to the Administration Server.

• After a scale up or scale down action has been invoked, the scaling
action can't be subsequently cancelled.

The following WLST snippet shows the commands for configuring a scale up action. In
this example, the dynamic cluster myCluster is scaled up by one Managed Server
instance:

wn=res.getWatchNotification()

scaleUp=wn.lookupScaleUpAction('scaleUp')
if scaleUp == None:
 print "Creating scale up action”
 scaleUp=wn.createScaleUpAction('scaleUp')
scaleUp.setScalingSize(1)
scaleUp.setClusterName(myCluster)

The following example shows the WLST commands for configuring a scale down
action on myCluster:

wn=res.getWatchNotification()

scaleDown=wn.lookupScaleDownAction('scaleDown')
if scaleDown == None:
 print "Creating scale down action”
 scaleDown=wn.createScaleDownAction('scaleDown')
scaleDown.setScalingSize(1)
scaleDown.setClusterName(myCluster)

For complete details about using these elastic actions, see:

• Elastic Actions in Configuring Elasticity in Dynamic Clusters for Oracle WebLogic
Server

• Expanding or Reducing Dynamic Clusters in Administering Clusters for Oracle
WebLogic Server

• Elastic Scaling Operations Cannot Be Cancelled After Starting
Note that the moment a scaling operation has begun, regardless of whether it is a
scale up or scale down operation, it cannot be cancelled. If you configure

Chapter 11
Configuring Elastic Actions

11-10

automated elasticity in a dynamic cluster, such as with calendar-based or policy-based
scaling, the elasticity framework does not provide the means to cancel a scaling
operation after it has been initiated.

• Limiting Server Shutdown Time During Scale Down Operations
Shutting down servers during a scale down operation can take a significant amount of
time, especially if there are unreplicated sessions. Until unreplicated sessions time out,
which can potentially be a long time, the server will not be shut down.

Elastic Scaling Operations Cannot Be Cancelled After Starting
Note that the moment a scaling operation has begun, regardless of whether it is a scale up or
scale down operation, it cannot be cancelled. If you configure automated elasticity in a
dynamic cluster, such as with calendar-based or policy-based scaling, the elasticity
framework does not provide the means to cancel a scaling operation after it has been
initiated.

Consequently, if a postprocessor script (invoked by a script interceptor) fails, the parts of the
scaling operation that were completed can't be reverted. For more information about script
interceptors and postprocessor scripts, see Configuring the Script Interceptor in Configuring
Elasticity in Dynamic Clusters for Oracle WebLogic Server.

Limiting Server Shutdown Time During Scale Down Operations
Shutting down servers during a scale down operation can take a significant amount of time,
especially if there are unreplicated sessions. Until unreplicated sessions time out, which can
potentially be a long time, the server will not be shut down.

To limit the length of time required to complete a scale down operation, you can configure the
following attributes on the DynamicServersMBean:

Attribute Description

DynamicClusterShutdownT
imeoutSeconds

Timeout period, in seconds, to use while gracefully shutting down a
dynamic server instance. If the dynamic server instance does not shut
down before the specified timeout period, then it will be forcibly shut
down.

The default value is 0.

IgnoreSessionsDuringShu
tdown

Specifies whether to ignore inflight HTTP requests while shutting down
dynamic server instances.

WaitForAllSessionsDurin
gShutdown

Specifies whether to wait for all persisted and nonpersisted inflight
HTTP sessions to complete before shutting down dynamic server
instances.

By specifying a timeout or ignoring inflight HTTP sessions during shutdown, the shutdown
time can be limited. However, note that remaining inflight HTTP sessions may be lost.

Configuring Script Actions
You can use the script action to execute an external command-line script. The script can be
written in any scripting language.

To set the execution environment in which the script is run, you can configure the following
attributes of the WLDFScriptActionBean:

Chapter 11
Configuring Script Actions

11-11

• PathToScript — The full path to the script, which must be located in the
DOMAIN_HOME/bin/scripts directory

• WorkingDirectory — The directory from which the WebLogic Server process was
run, which is typically the domain root directory.

• Environment — A map of environment variables to set for the child process

• Parameters — An array of parameters or command options to pass to the script

• Timeout — The time, in seconds, for the script action to complete execution. By
default, the timeout is 0, which disables the script action timeout.

When the script action is executed by a triggered policy, WLDF invokes the configured
script, which is run with the identity of the configured script. The script process
executes as a child process of the WebLogic Server process that spawned it.
Therefore, the script process has the same operating system identity as the WebLogic
Server process; however, it does not inherit any of the parent process environment.

The following example shows configuring a script action using WLST:

wn=res.getWatchNotification()

actionName="myaction"
action = wn.lookupScriptAction(actionName);
if action is None:
 action = wn.createScriptAction(actionName);

action.setWorkingDirectory("somedir");
action.setPathToScript("myScript.sh");
action.setParameters(["param1", "param2"]);
action.setTimeout(300);

Configuring Heap Dump Actions
You can use a heap dump action to capture heap dumps when certain runtime
conditions, defined by a policy expression, are met. Each heap dump is produced in
HPROF format, which you can analyze with tools such as the jmap utility, which is
available in the JDK.

You create a heap dump action by configuring the WLDFHeapDumpActionBean and the
WLDFServerDiagnosticMBean in a domain scope diagnostic system module – that is, a
diagnostic system modules that is deployed in the domain partition. When configuring
a heap dump action, you can specify the following:

• Whether or not to include only objects that can be referenced (that is, not garbage-
collected, or awaiting garbage collection), which you specify in the LiveSetOnly
attribute of the WLDFHeapDumpActionBean. The default value is true.

• The location each server's diagnostic dumps directory where the heap dumps are
stored. You can specify this directory in the DiagnosticDumpsDir attribute of the
WLDFServerDiagnosticMBean.

• The number of heap dump files that are retained, which prevents filling up the file
system with generated heap dumps. You can specify the number in the
MaxHeapDumpCount attribute of the WLDFServerDiagnosticMBean. The default value
is 8.

The generated heap dump files are named using the following syntax:

Chapter 11
Configuring Heap Dump Actions

11-12

HeapDump_$SERVER_$MODULE_$POLICY_$ACTION_$timestamp.hprof

In the preceding syntax:

• $SERVER represents the name of the WebLogic Server instance that generated the heap
dump.

• $MODULE represents the name of the diagnostics system module that contains the action
configuration.

• $POLICY represents the name of the policy that executed the heap dump action.

• $ACTION represents the name of the WLDFHeapDumpActionBean.

• $timestamp represents time when the heap dump was generated, which takes the form
of yyyy_mm_dd_HH_MM_SS.

Note:

Note the following:

• Heap dumps may contain sensitive information. Therefore, make sure that you
place appropriate access protections on the directories into which heap dumps
are generated.

• If a heap dump action is in progress, an attempt by another heap dump action
to generate a heap dump is rejected and a message is generated in the server
log.

For information about how to create and configure a heap dump action using the WebLogic
Server Administration Console, see Create a heap dump action and Configure a heap dump
action in Oracle WebLogic Server Administration Console Online Help.

The jmap utility is described in the Java SE 8 documentation, available at http://
docs.oracle.com/javase/8/.

Example 11-6 An Example Configuration for a Heap Dump Action

The following WLST example shows the configuration of a heap dump action:

Start an edit session in edit tree
edit()
startEdit()
cd("/")

if cmo.lookupWLDFSystemResource("mywldf") == None:
 print "Creating WLDF resource"
 cmo.createWLDFSystemResource("mywldf")

cd("/WLDFSystemResources/mywldf/WLDFResource/mywldf/WatchNotification/mywldf")

Create a heap dump action
cmo.createHeapDumpAction('myHeapDump')
cd("HeapDumpActions/myHeapDump")
Set it to capture a full heap, not just the live setLiveSetOnly - default is "true"
cmo.setLiveSetOnly(false)

save()
activate()

Chapter 11
Configuring Heap Dump Actions

11-13

http://docs.oracle.com/javase/8/
http://docs.oracle.com/javase/8/

Configuring Thread Dump Actions
You can use a thread dump action to capture a specific number of thread dumps,
separated by configured time interval, when the runtime conditions that are specified in
a corresponding policy are met. Each thread dump file is produced in an individual text
file.

You create a thread dump action by configuring the WLDFThreadDumpActionBean and
the WLDFServerDiagnosticMBean in a domain scope diagnostic system module – that
is, a diagnostic system modules that is deployed in the domain partition. When
configuring a thread dump action, you specify the following:

• The number of thread dumps to be captured, which you specify in the
ThreadDumpCount attribute of the WLDFThreadDumpActionBean. The default value is
3.

• The interval between successive thread dumps, which you specify in the
ThreadDumpDelaySeconds attribute of the WLDFThreadDumpActionBean. The default
value is 10 seconds.

• The location each server's diagnostic dumps directory where the thread dumps are
stored, which you can specify with the DiagnosticDumpsDir attribute of the
WLDFServerDiagnosticMBean.

• The number of thread dump files that are retained, which prevents filling up the file
system with generated thread dumps. You specify the number using the
MaxThreadDumpCount attribute of the WLDFServerDiagnosticMBean. The default
value is 100.

The generated thread dump files are named using the following syntax:

HeapDump_$SERVER_$MODULE_$POLICY_$ACTION_$timestamp.hprof

In the preceding syntax:

• $SERVER represents the name of the WebLogic Server instance that generated the
thread dump.

• $MODULE represents the name of the diagnostics system module that contains the
action configuration.

• $POLICY represents the name of the policy that executed the thread dump action.

• $ACTION represents the name of the WLDFThreadDumpActionBean.

• $timestamp represents time when the thread dump was generated, which takes
the form of yyyy_mm_dd_HH_MM_SS.

Chapter 11
Configuring Thread Dump Actions

11-14

Note:

• Thread dumps may contain sensitive information. Therefore, make sure that
you place appropriate access protections on the directories into which thread
dumps are generated.

• If a thread dump action is in progress, an attempt by another thread dump
action to generate a thread dump is rejected and a message is generated in the
server log.

For information about how to create and configure a thread dump action using the WebLogic
Server Administration Console, see Create a thread dump action and Configure a thread
dump action in Oracle WebLogic Server Administration Console Online Help.

Example 11-7 An Example Configuration for a Thread Dump Action

The following WLST example shows the configuration of a thread dump action:

Start an edit session in edit tree
edit()
startEdit()
cd("/")

if cmo.lookupWLDFSystemResource("mywldf") == None:
 print "Creating WLDF resource"
 cmo.createWLDFSystemResource("mywldf")

cd("WLDFSystemResources/mywldf/WLDFResource/mywldf/WatchNotification/mywldf")

Create a Thread Dump action
cmo.createThreadDumpAction('myThreadDump')
cd("ThreadDumpActions/myThreadDump")

set it to capture 5 dumps at 30 second intervals
cmo.setThreadDumpCount(5)
cmo.setThreadDumpDelaySeconds(30)

save()
activate()

Chapter 11
Configuring Thread Dump Actions

11-15

12
Configuring Instrumentation

The Instrumentation component of the WebLogic Diagnostics Framework (WLDF) provides a
mechanism for adding diagnostic code to WebLogic Server instances and the applications
running on them.The key features provided by WLDF Instrumentation are:

• Diagnostic monitors

A diagnostic monitor is a dynamically manageable unit of diagnostic code that is inserted
into server or application code at specific locations. You define monitors by scope
(system or application) and type (standard, delegating, or custom).

• Diagnostic actions

A diagnostic action is the action a monitor takes when it is triggered during program
execution.

• Diagnostic context

A diagnostic context is contextual information, such as unique request identifier and flags
that indicate the presence of certain request properties such as originating IP address or
user identity. The diagnostic context provides a means for tracking program execution
and for controlling when monitors trigger their diagnostic actions. See Configuring the
DyeInjection Monitor to Manage Diagnostic Contexts.

WLDF provides a library of predefined diagnostic monitors and actions. You can also create
application-scoped custom monitors in which you control the locations in the application
where diagnostic code is inserted.

The following sections introduce the Instrumentation components and explain how to
configure them and also the different kinds of diagnostic monitors and actions:

• Concepts and Terminology
Learn a comprehensive list of common terms and some basic concepts that apply to the
Instrumentation component of WLDF.

• Instrumentation Configuration Files
Instrumentation is configured as part of a diagnostics descriptor, which is an XML
configuration file whose name and location depend on whether you are implementing
system-level (server-scoped) or application-level (application-scoped) instrumentation.

• XML Elements Used for Instrumentation
You can configure instrumentation and diagnostic monitors using the XML elements such
as <Instrumentation> and <wldf-instrumentation-monitor>.

• Configuring Server-Scoped Instrumentation
You can configure instrumentation as part of diagnostic descriptor file to implement the
system-level instrumentation. You can define the configuration of one or more server-
scope diagnostic monitors in the descriptor file.

• Configuring Application-Scoped Instrumentation
Instrumentation is the only component that is deployable to applications. It must be
enabled on the server to which the application is deployed. You can enable and disable
diagnostic monitors without redeploying an application.

12-1

• Creating Request Performance Data
You can display request performance data in the WebLogic Server Administration
Console for configured server-scoped or application-scoped instrumentation. In
the console, the Request Performance page displays information about the real-
time and historical views of method performance.

Concepts and Terminology
Learn a comprehensive list of common terms and some basic concepts that apply to
the Instrumentation component of WLDF.

• Instrumentation Scope

• Configuration and Deployment

• Joinpoints, Pointcuts, and Diagnostic Locations

• Diagnostic Monitor Types

• Diagnostic Actions

Instrumentation Scope
You can provide instrumentation services at the system level (servers and clusters)
and at the application level. Many concepts, services, configuration options, and
implementation features are the same for both levels. However, there are differences,
which are discussed throughout this document. The term server-scoped
instrumentation refers to instrumentation configuration and features specific to
WebLogic Server instances and clusters. By contrast, application-scoped
instrumentation refers to configuration and features specific to applications deployed
on WebLogic Server instances. The scope is built in to each diagnostic monitor; you
cannot modify a monitor's scope.

Configuration and Deployment
Server-scoped instrumentation for a server or cluster is configured and deployed as
part of a diagnostic module, an XML configuration file located in the DOMAIN_HOME/
config/diagnostics directory, and linked from config.xml.

Application-scoped instrumentation is also configured and deployed as a diagnostics
module, in this case an XML configuration file named weblogic-diagnostics.xml,
which is packaged with the application archive in the ARCHIVE_PATH/META-INF
directory for the deployed application.

Joinpoints, Pointcuts, and Diagnostic Locations
Instrumentation code is inserted (or woven) into server and application code at
precise locations. The following terms are used to describe these locations:

• A joinpoint is a specific location in a class; for example, the entry point, or exit
point, or both, of a method or a call site within a method.

• A pointcut is an expression that specifies a set of joinpoints, for example all
methods related to scheduling, starting, and executing work items. The XML
element that specifies a pointcut is <pointcut>. Pointcuts are described in Defining
Pointcuts for Custom Monitors.

Chapter 12
Concepts and Terminology

12-2

• A diagnostic location is the position relative to a joinpoint where the diagnostic activity
will take place. Diagnostic locations are Before, After, and Around. The XML element
that identifies a diagnostic location is <location-type>.

Diagnostic Monitor Types
A diagnostic monitor is categorized by its scope and its type. The scope is either server-
scoped or application-scoped. The type is determined by the monitor's pointcut, diagnostic
location, and actions. For example, Servlet_Around_Service is an application-scoped
delegating monitor that can be used to trigger diagnostic actions at the entry to and exit from
specific servlet and JSP methods.

There are three types of diagnostic monitors:

• A standard monitor performs specific, predefined diagnostic actions at specific,
predefined pointcuts and locations. These actions, pointcuts, and locations are hard-
coded in the monitor. You can enable or disable the monitor, but you cannot modify its
behavior.

The only standard server-scoped monitor is the DyeInjection monitor, which you can use
to create diagnostic context and to configure dye injection at the server level. See
Configuring the DyeInjection Monitor to Manage Diagnostic Contexts.

The only standard application-scoped monitor is HttpSessionDebug, which you can use
to inspect an HTTP Session object.

• A delegating monitor has its scope, pointcuts, and locations hard-coded in the monitor,
but you select the actions that the monitor performs. That is, the monitor delegates its
actions to the ones you select. Delegating monitors are either server-scoped or
application-scoped.

A delegating monitor by itself is incomplete. To have a delegating monitor perform useful
work, you must assign at least one action to it.

Not all actions are compatible with all monitors. When you configure a delegating monitor
from the WebLogic Server Administration Console, you can choose only those actions
that are appropriate for the selected monitor. If you configure a delegating monitor using
WLST or by editing a descriptor file manually, you must make sure that the actions are
compatible with that monitor. WLDF validates a delegating monitor when its XML
configuration file is loaded at deployment time.

See WLDF Instrumentation Library, for a list of the delegating monitors and actions
provided by the WLDF Instrumentation Library.

• A custom monitor is a special case of delegating monitor that:

– Is available only for application-scoped instrumentation

– Does not have a predefined pointcut or location

To configure a custom monitor, you assign it a name, define the pointcut and the
diagnostics location that the monitor uses, and assign actions from the set of predefined
diagnostic actions. The <pointcut> and <location type> elements are mandatory for a
custom monitor.

Table 12-1 summarizes the differences among the types of monitors.

Chapter 12
Concepts and Terminology

12-3

Table 12-1 Diagnostic Monitor Types

Monitor Type Scope Pointcut Location Action

Standard monitor Server Fixed Fixed Fixed

Delegating monitor Server or
Application

Fixed Fixed Configurable

Custom monitor Application Configurable Configurable Configurable

You can restrict when a diagnostic action is triggered by setting a dye mask on a
monitor. This mask determines the dye flags in the diagnostic context that trigger
actions. See <wldf-instrumentation-monitor> XML Elements, for information about
setting a dye mask for a monitor.

Note:

Diagnostic context, dye injection, and dye filtering are described in
Configuring the DyeInjection Monitor to Manage Diagnostic Contexts.

Diagnostic Actions
Diagnostic actions execute diagnostic code that is appropriate for the associated
delegating or custom monitor (standard monitors have predefined actions). For a
delegating or custom monitor to perform any useful work, you must configure at least
one action for that monitor.

The WLDF diagnostics library provides the following actions, which you can attach to a
monitor by including the action's name in an <action> element of the DIAG_MODULE.xml
configuration file:

• DisplayArgumentsAction

• MethodInvocationStatisticsAction

• MemoryAllocationStatisticsAction

• StackDumpAction

• ThreadDumpAction

• TraceAction

• TraceElapsedTimeAction

• TraceMemoryAllocationAction

Actions must be correctly matched with monitors. For example, the TraceElapsedTime
action is compatible with a delegating or custom monitor whose diagnostic location
type is Around. See WLDF Instrumentation Library, for more information.

Chapter 12
Concepts and Terminology

12-4

Instrumentation Configuration Files
Instrumentation is configured as part of a diagnostics descriptor, which is an XML
configuration file whose name and location depend on whether you are implementing system-
level (server-scoped) or application-level (application-scoped) instrumentation.

The Instrumentation component is configured as follows:

• System-level instrumentation configuration is stored in one or more diagnostics
descriptors in the following directory:

DOMAIN_HOME/config/diagnostics
This directory can contain multiple system-level diagnostic descriptor files. File names
are arbitrary but must be terminated with .xml; for example, myDiag.xml. Each file can
contain configuration information for one or more of the following deployable diagnostic
components:

– Harvester

– Instrumentation

– Policies and Actions

The configuration of one or more diagnostic monitors can be defined in an
<instrumentation> section in the descriptor file. Server-scoped instrumentation can be
enabled, disabled, and reconfigured without restarting the server.

Only one WLDF system resource (and hence one system-level diagnostics descriptor
file) can be active for a server or cluster at any given time. The active descriptor is linked
to and targeted from the following configuration file:

DOMAIN_HOME/config/config.xml
See Configuring Diagnostic System Modules. For general information about the creation,
content, and parsing of configuration files in WebLogic Server, see Domain Configuration
Files in Understanding Domain Configuration for Oracle WebLogic Server.

• Application-level instrumentation configuration is packaged within an application's archive
in the following location:

META-INF/weblogic-diagnostics.xml
Because instrumentation is the only diagnostics component that is deployable to
applications, this descriptor can contain only instrumentation configuration information.

Note:

For instrumentation to be available for an application, instrumentation must be
enabled on the server to which the application is deployed. (Server-scoped
instrumentation is enabled and disabled in the <instrumentation> element of the
diagnostics descriptor for the server.

You can enable and disable diagnostic monitors without redeploying an application.
However, you may need to redeploy the application after modifying other instrumentation
features; for example, defining pointcuts or adding or removing monitors. Whether you

Chapter 12
Instrumentation Configuration Files

12-5

need to redeploy depends on how you configure the instrumentation and how you
deploy the application. There are three options:

– Define and change the instrumentation configuration for the application
directly, without using a JSR-88 deployment plan

– Configure and deploy the application using a deployment plan that has
placeholders for instrumentation settings

– Enable the HotSwap feature when starting the server, and deploy using a
deployment plan that has placeholders for instrumentation settings

For more information about these choices, see Using Deployment Plans to
Dynamically Control Instrumentation Configuration.

For more information about deploying and modifying diagnostic application
modules, see Deploying WLDF Application Modules.

The diagnostics XML schema is located at:

http://xmlns.oracle.com/weblogic/weblogic-diagnostics/2.0/weblogic-
diagnostics.xsd
Each diagnostics descriptor file must begin with the following lines:

<wldf-resource xmlns="http://xmlns.oracle.com/weblogic/weblogic-diagnostics"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

For an overview of WLDF resource configuration, see Understanding WLDF
Configuration .

XML Elements Used for Instrumentation
You can configure instrumentation and diagnostic monitors using the XML elements
such as <Instrumentation> and <wldf-instrumentation-monitor>.

This section provides descriptor fragments and tables that summarize information
about the XML elements used to configure:

• <Instrumentation> XML Elements, describes the top-level elements used within an
<instrumentation> element.

• <wldf-instrumentation-monitor> XML Elements, describes the elements used
within a <wldf-instrumentation-monitor> element.

• Mapping <wldf-instrumentation-monitor> XML Elements to Monitor Types,
identifies the instrumentation elements that apply to each monitor.

• <Instrumentation> XML Elements

• <wldf-instrumentation-monitor> XML Elements

• Mapping <wldf-instrumentation-monitor> XML Elements to Monitor Types

<Instrumentation> XML Elements
Table 12-2 describes the <instrumentation> elements in the DIAG_MODULE.xml file.
The following configuration fragment illustrates the use of those elements:

<wldf-resource>
 <name>MyDiagnosticModule</name>
<instrumentation>

Chapter 12
XML Elements Used for Instrumentation

12-6

http://xmlns.oracle.com/weblogic/weblogic-diagnostics/2.0/weblogic-diagnostics.xsd
http://xmlns.oracle.com/weblogic/weblogic-diagnostics/2.0/weblogic-diagnostics.xsd

 <enabled>true</enabled>
 <!-- The following <include> element would apply only to an
 application-scoped Instrumentation descriptor -->
 <include>example.com.*</include>
 <!-- <wldf-instrumentation-monitor> elements to define diagnostic
 monitors for this diagnostic module -->
</instrumentation>
<!-- Other elements to configure this diagnostic module -->
</wldf-resource>

Table 12-2 <instrumentation> XML Elements in the DIAG_MODULE.xml Configuration
File

Element Description

<instrumentation> The element that begins an instrumentation configuration.

<enabled> If true, instrumentation is enabled. If false, no instrumented code is inserted
in classes in this instrumentation scope, and all diagnostic monitors within
this scope are disabled. The default value is false.

You must enable instrumentation at the server level to enable
instrumentation for the server and for any applications deployed to it. You
must further enable instrumentation at the application level to enable
instrumentation for the application (that is, in addition to enabling the server-
scoped instrumentation).

<include> An optional element specifying the list of classes where instrumented code
can be inserted. Wildcards (*) are supported. You can specify multiple
<include> elements. If specified, a class must satisfy an <include>
pattern for it to be instrumented.

Applies only to application-scoped instrumentation. Any specified
<include> or <exclude> patterns are applied to the application scope as a
whole.

Note: You can also specify <include> and <exclude> patterns for specific
diagnostic monitors. See the entries for <include> and <exclude> in
Table 12-1.

As classes are loaded, they must pass an include/exclude pattern check
before any instrumentation code is inserted. Even if a class passes the
include/exclude pattern checks, whether or not it is instrumented depends on
the diagnostic monitors included in the configuration descriptor. An
application-scoped delegating monitor from the library has its own
predefined classes and pointcuts. A custom monitor specifies its own
pointcut expression. Therefore, a class can pass the include/exclude checks
and still not be instrumented.

Note: Instrumentation is inserted in applications at class load time. A large
application that is loaded often may benefit from a judicious use of
<include> elements, <exclude> elements, or both. You can probably
ignore these elements for small applications or for medium-to-large
applications that are loaded infrequently.

<exclude> An optional element specifying the list of classes where instrumented code
cannot be inserted. Wildcards (*) are supported. You can specify multiple
<exclude> elements. If specified, classes satisfying an <exclude> pattern
are not instrumented.

Applies only to application-scoped instrumentation. See the preceding
description of the <include> element.

Chapter 12
XML Elements Used for Instrumentation

12-7

<wldf-instrumentation-monitor> XML Elements
Diagnostic monitors are defined in <wldf-instrumentation-monitor> elements, which
are children of the <instrumentation> element in the following descriptor:

• The DIAG_MODULE.xml descriptor for server-scoped instrumentation

• The META-INF/weblogic-diagnostics.xml descriptor for application-scoped
instrumentation

The following fragment shows the configuration for a delegating monitor and a custom
monitor in an application. (You could modify this fragment for server-scoped
instrumentation by replacing the application-scoped monitors with server-scoped
monitors.)

<instrumentation>
 <enabled>true</enabled>
 <wldf-instrumentation-monitor>
 <name>Servlet_Before_Service</name>
 <enabled>true</enabled>
 <dye-mask>USER1</dye-mask>
 <dye-filtering-enabled>true</dye-filtering-enabled>
 <action>TraceAction</action>
 </wldf-instrumentation-monitor>
 <wldf-instrumentation-monitor>
 <name>MyCustomMonitor</name>
 <enabled>true</enabled>
 <action>TraceAction</action>
 <location-type>before</location-type>
 <pointcut>call(* com.example. * get*(...));</pointcut>
 </wldf-instrumentation-monitor>
</instrumentation>

Note that the Servlet_Before_Service monitor sets a dye mask and enables dye
filtering. This will be useful only if instrumentation is enabled at the server level and the
DyeInjection monitor is enabled and properly configured. See Configuring the
DyeInjection Monitor to Manage Diagnostic Contexts, for information about configuring
the DyeInjection monitor.

Table 12-3 describes the <wldf-instrumentation-monitor> elements.

Table 12-3 <wldf-instrumentation-monitor> XML Elements in the
DIAG_MODULE.xml or weblogic-diagnostics.xml file

Element Description

<wldf-
instrumentation-
monitor>

The element that begins a diagnostic monitor configuration.

<enabled> If true, the monitor is enabled. If false, the monitor is disabled. You
enable or disable each monitor separately. The default value is
true.

Chapter 12
XML Elements Used for Instrumentation

12-8

Table 12-3 (Cont.) <wldf-instrumentation-monitor> XML Elements in the
DIAG_MODULE.xml or weblogic-diagnostics.xml file

Element Description

<name> The name of the monitor. For standard and delegating monitors,
use the names of the predefined monitors in WLDF
Instrumentation Library, For custom monitors, an arbitrary string
that identifies the monitor. The name for a custom monitor must
be unique; that is, it cannot duplicate the name of any monitor in
the library.

<description> An optional element describing the monitor.

<action> An optional element, which applies to delegating and custom
monitors. If you do not specify at least one action, the monitor will
not generate any information. You can specify multiple <action>
elements. An action must be compatible with the monitor type. For
the list of predefined actions for use by delegating and custom
monitors, see WLDF Instrumentation Library.

<dye-filtering-
enabled>

An optional element. If true, dye filtering is enabled for the
monitor. If false, dye-filtering is disabled. The default value is false.

In order to use dye filtering, the DyeInjection monitor must be
configured appropriately at the server level.

<dye-mask> An optional element. If dye filtering is enabled, the dye mask,
when compared with the values in the diagnostic context,
determines whether actions are taken. See Configuring the
DyeInjection Monitor to Manage Diagnostic Contexts, for
information about dyes and dye filtering.

<properties> An optional element. Sets name=value pairs for dye flags.

Currently applies only to the DyeInjection monitor.

<location-type> An optional element, whose value is one of before, after, or
around. The location type determines when an action is triggered
at a pointcut: before the pointcut, after the pointcut, or both before
and after the pointcut.

Applies only to custom monitors; standard and delegating
monitors have predefined location types. A custom monitor must
define a location type and a pointcut.

<pointcut> An optional element. A pointcut element contains an expression
that defines joinpoints where diagnostic code will be inserted.

Applies only to custom monitors; standard and delegating
monitors have predefined pointcuts. A custom monitor must define
a location type and a pointcut.

Pointcut syntax is documented in Defining Pointcuts for Custom
Monitors.

Chapter 12
XML Elements Used for Instrumentation

12-9

Table 12-3 (Cont.) <wldf-instrumentation-monitor> XML Elements in the
DIAG_MODULE.xml or weblogic-diagnostics.xml file

Element Description

<include> An optional element specifying the list of classes where
instrumented code can be inserted. Wildcards (*) are supported.
You can specify multiple <include> elements. If specified, a
class must satisfy an <include> pattern for it to be instrumented.

Applies only to application-scoped instrumentation. Any specified
<include> or <exclude> patterns are applied only to the
monitor defined in the parent <wldf-instrumentation-
monitor> element.

Note: You can also specify <include> and <exclude> patterns
for an entire instrumented application scope. See the entries for
<include> and <exclude> in Table 12-1.

As classes are loaded, they must pass an include/exclude pattern
check before any instrumentation code is inserted. Even if a class
passes the include/exclude pattern checks, whether or not it is
instrumented depends on the diagnostic monitors included in the
configuration descriptor. An application-scoped delegating monitor
from the library has its own predefined classes and pointcuts. A
custom monitor specifies its own pointcut expression. Therefore a
class can pass the include/exclude checks and still not be
instrumented.

Note: Instrumentation is inserted in applications at class load
time. A large application that is loaded often may benefit from a
judicious use of <include> and/or <exclude> elements. You can
probably ignore these elements for small applications or for
medium-to-large applications that are loaded infrequently.

<exclude> An optional element specifying the list of classes where
instrumented code cannot be inserted. Wildcards (*) are
supported. You can specify multiple <exclude> elements. If
specified, classes satisfying an <exclude> pattern are not
instrumented.

Applies only to diagnostic monitors in application-scoped
instrumentation. See the <include> description, above.

Note the following additional information about the <dye-filtering-enabled> and
<dye-mask> elements:

• When a DyeInjection monitor is enabled and configured for a server or a cluster,
you can use dye filtering in downstream delegating and custom monitors to inspect
the dyes injected into a request's diagnostic context by that DyeInjection monitor.

• The configuration of the DyeInjection monitor determines which bits are set in the
64-bit dye vector associated with a diagnostic context. When the <dye-filtering-
enabled> attribute is enabled for a monitor, its diagnostic activity is suppressed if
the dye vector in a request's diagnostic context does not match the monitor's
configured dye mask. If the dye vector matches the dye mask (a bitwise AND), the
application can execute its diagnostic actions:

(dye_vector & dye_mask == dye_mask)
Thus, the dye filtering mechanism allows monitors to take diagnostic actions only for
specific requests, without slowing down other requests. See Configuring the

Chapter 12
XML Elements Used for Instrumentation

12-10

DyeInjection Monitor to Manage Diagnostic Contexts, for detailed information about
diagnostic contexts and dye vectors.

Mapping <wldf-instrumentation-monitor> XML Elements to Monitor Types
Table 12-4 identifies the <wldf-instrumentation-monitor> elements that apply to each
monitor type. An X indicates that an element applies to the corresponding monitor; N/A
indicates that it does not.

Table 12-4 Mapping Instrumentation XML Elements to Monitor Types

Element Standard Delegating Custom

<wldf-instrumentation-monitor> X X X

<name> X X X

<description> X X X

<enabled> X X X

<action> N/A X X

<dye-filtering-enabled> N/A X X

<dye-mask> N/A X X

<properties> X1 N/A N/A

<location-type> N/A N/A X

<pointcut> N/A N/A X

1 Currently used only by the DyeInjection monitor to set name=value pairs for dye flags.

Configuring Server-Scoped Instrumentation
You can configure instrumentation as part of diagnostic descriptor file to implement the
system-level instrumentation. You can define the configuration of one or more server-scope
diagnostic monitors in the descriptor file.

To enable instrumentation at the server level, and to configure server-scoped monitors,
perform the following steps:

1. Decide how many WLDF system resources you want to create.

You can have multiple DIAG_MODULE.xml diagnostic descriptor files in a domain. In
addition, for each server or cluster in a domain, you can deploy multiple diagnostic
descriptor files simultaneously. However, one reason for creating more than one file is for
flexibility. For example, you could have five diagnostic descriptor files in the
DOMAIN_HOME/config/diagnostics directory. Each file contains a different
instrumentation (and perhaps Harvester and Policies and Actions) configuration. You then
deploy the descriptor file that corresponds to the particular monitors you want active.

2. Decide which server-scoped monitors you want to include in a configuration:

• If you plan to use dye filtering on a server, or on any applications deployed on that
server, configure the DyeInjection monitor.

• If you plan to use one or more of the server-scoped delegating monitors, decide
which monitors to use and which actions to associate with each monitor.

Chapter 12
Configuring Server-Scoped Instrumentation

12-11

3. Create and configure the configuration file(s).

• If you use the WebLogic Server Administration Console to create the
DIAG_MODULE.xml file (recommended), for delegating monitors the console
displays only the actions that are compatible with the monitor. If you create a
configuration file with an editor or with the WebLogic Scripting Tool (WLST),
you must correctly match actions to monitors.

• See the Domain Configuration Files in Understanding Domain Configuration
for Oracle WebLogic Server for information about configuring config.xml.

4. Validate and deploy the descriptor file. For server-scoped instrumentation, you can
add and remove monitors and enable or disable monitors while the server is
running.

Example 12-1 contains a sample server-scoped instrumentation configuration file that
enables instrumentation and configures the DyeInjection standard monitor and the
Connector_Before_Work delegating monitor. A single <instrumentation> element
contains all instrumentation configuration for the module. Each diagnostic monitor is
defined in a separate <wldf-instrumentation-monitor> element.

Example 12-1 Sample Server-Scoped Instrumentation (in DIAG_MODULE.xml)

<wldf-resource xmlns="http://xmlns.oracle.com/weblogic/weblogic-diagnostics"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://xmlns.oracle.com/weblogic/weblogic-diagnostics/2.0/
weblogic-diagnostics.xsd">
 <instrumentation>
 <enabled>true</enabled>
 <wldf-instrumentation-monitor>
 <name>DyeInjection</name>
 <description>Inject USER1 and ADDR1 dyes</description>
 <enabled>true</enabled>
 <properties>USER1=weblogic
 ADDR1=127.0.0.1</properties>
 </wldf-instrumentation-monitor>
 <wldf-instrumentation-monitor>
 <name>Connector_Before_Work</name>
 <enabled>true</enabled>
 <action>TraceAction</action>
 <dye-filtering-enabled>true</dye-filtering-enabled>
 <dye-mask>USER1</dye-mask>
 </wldf-instrumentation-monitor>
 </instrumentation>
</wldf-resource>

Configuring Application-Scoped Instrumentation
Instrumentation is the only component that is deployable to applications. It must be
enabled on the server to which the application is deployed. You can enable and
disable diagnostic monitors without redeploying an application.

At the application level, WLDF instrumentation is configured as a deployable module,
which is then deployed as part of the application.

Chapter 12
Configuring Application-Scoped Instrumentation

12-12

Note:

Application classes and libraries that are put on the system classpath are not
instrumented. Application class instrumentation works only on classes that are
loaded by application classloaders. If application classes are put on the system
classpath, either deliberately or inadvertently, they will be loaded by the system
classloader. As a result no deployment time weaving is performed on those classes.

The following sections provide information you need to configure application-scoped
instrumentation:

• Comparing System-Scoped to Application-Scoped Instrumentation

• Overview of the Steps Required to Instrument an Application

• Creating a Descriptor File for a Delegating Monitor

• Creating a Descriptor File for a Custom Monitor

Comparing System-Scoped to Application-Scoped Instrumentation
Instrumenting an application is similar to instrumenting at the system level, but with the
following differences:

• Applications can use standard, delegating, and custom monitors.

– The only server-scoped standard monitor is DyeInjection. The only application-
scoped standard monitor is HttpSessionDebug. See the entry for HttpSessionDebug
in Diagnostic Monitor Library.

– Delegating monitors are either server-scoped or application-scoped. Applications
must use the application-scoped delegating monitors.

– All custom monitors are application-scoped.

• The server's instrumentation settings affect the application. In order to enable
instrumentation for an application, instrumentation must be enabled for the server on
which the application is deployed. If server instrumentation is enabled at the time of
deployment, instrumentation will be available for the application. If instrumentation is not
enabled on the server at the time of deployment, enabling instrumentation in an
application will have no effect.

• Application instrumentation is configured with a weblogic-diagnostics.xml descriptor
file. You create a META-INF/weblogic-diagnostics.xml file, configure the
instrumentation, and put the file in the application's archive. When the archive is
deployed, the instrumentation is automatically inserted when the application is loaded.

• You can use a deployment plan to dynamically update configuration elements without
redeploying the application. See Using Deployment Plans to Dynamically Control
Instrumentation Configuration.

The XML descriptors for application-scoped instrumentation are defined in the same way as
for server-scoped instrumentation. You can configure instrumentation for an application solely
by using the delegating monitors and diagnostic actions available in the WLDF
Instrumentation Library. You can also create your own custom monitors; however, the
diagnostic actions that you attach to these monitors must be taken from the WLDF
Instrumentation Library.

Chapter 12
Configuring Application-Scoped Instrumentation

12-13

Table 12-5 compares the function and scope of system and application diagnostic
modules.

Table 12-5 Comparing System and Application Modules

Module Type Add or
Remove
Objects
Dynamically

Add or
Remove
Objects with
Console

Modify with
JMX
Remotely

Modify with
JSR-88 (non-
remote)

Modify with
Console

Enable/Disable
Dye Filtering
and Dye Mask
Dynamically

System
Module

Yes Yes Yes No Yes

(via JMX)

Yes

Application
Module

Yes, when
HotSwap is
enabled

No, when
HotSwap is
not enabled:
module must
be redeployed

Yes No Yes Yes

(via plan)

Yes

Overview of the Steps Required to Instrument an Application

Note:

As of WebLogic Server 10.3, you are not required to create a weblogic-
diagnostics.xml file in the application's META-INF directory, as was the case
in previous WebLogic Server releases. However, you can still use this
method to initially configure diagnostic monitors for your application.

To implement a diagnostic monitor for an application, perform the following steps:

1. Make sure that instrumentation is enabled on the server. See Configuring Server-
Scoped Instrumentation.

2. Create a well formed META-INF/weblogic-diagnostics.xml descriptor file for the
application. If you want to add any monitors that will be automatically enabled
each time the application is deployed:

• Enable the <instrumentation> element: <enabled>true</enabled>.

• Add and enable at least one diagnostic monitor, with appropriate actions
attached to it. (A monitor will generate diagnostic events only if the monitor is
enabled and actions that generate events are attached to it.).

See Creating a Descriptor File for a Delegating Monitor, and Creating a Descriptor
File for a Custom Monitor, for samples of well-formed descriptor files.

See Defining Pointcuts for Custom Monitors, for information about creating a
pointcut expression.

3. Put the descriptor file in the application archive.

4. Deploy the application. See Deploying WLDF Application Modules.

Keep the following points in mind:

Chapter 12
Configuring Application-Scoped Instrumentation

12-14

• The diagnostic monitors defined in weblogic-diagnostics.xml is listed on the
Deployments: <server_name>: Configuration: Instrumentation page of the WebLogic
Server Administration Console.

• If the META-INF/weblogic-diagnostics.xml descriptor in the application archive defines
a monitor, it cannot be removed using the WebLogic Server Administration Console.
However, it can be disabled or enabled using the WebLogic Server Administration
Console.

• You can add additional monitors from the WebLogic Server Administration Console. Any
monitors you add from the WebLogic Server Administration Console will not be persisted
to weblogic-diagnostics.xml; they will be saved in the application's deployment plan.
Any monitors that were added in this way can be deleted using the WebLogic Server
Administration Console.

• Application classes and libraries that are put on the server's classpath are not
instrumented. Application class instrumentation works only on classes that are loaded by
application classloaders.

If application classes are put on the system classpath, either deliberately or inadvertently,
they will be loaded by the system classloader. As a result no deployment time weaving is
performed on those classes.

Creating a Descriptor File for a Delegating Monitor
The following example shows a well-formed META-INF/weblogic-diagnostics.xml descriptor
file for an application-scoped delegating monitor. At a minimum, this file must contain the
lines shown in bold. In this example, there is only one monitor defined
(Servlet_Before_Service). However, you can define multiple monitors in the descriptor file.

<wldf-resource xmlns="http://xmlns.oracle.com/weblogic/weblogic-diagnostics"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://xmlns.oracle.com/weblogic/weblogic-diagnostics/2.0/
weblogic-diagnostics.xsd">
 <instrumentation>
 <enabled>true</enabled>
 <wldf-instrumentation-monitor>
 <name>Servlet_Before_Service</name>
 <enabled>true</enabled>
 <dye-mask>USER1</dye-mask>
 <dye-filtering-enabled>true</dye-filtering-enabled>
 <action>TraceAction</action>
 </wldf-instrumentation-monitor>
 </instrumentation>
</wldf-resource>

The Servlet_Before_Service monitor is an application-scoped monitor selected from the
WLDF monitor library. It is hard coded with a pointcut that sets joinpoints at method entry for
several servlet or JSP methods. Because the application enables dye filtering and sets the
USER1 flag in its dye mask, the TraceAction action will be invoked only when the dye vector
in the diagnostic context passed to the application also has its USER1 flag set.

The dye vector is set at the system level via the DyeInjection monitor as per the DyeInjection
monitor configuration when the request enters the server. For example, if the DyeInjection
monitor is configured with property USER1=weblogic and the request was originated by user
weblogic, the USER1 dye flag in the dye vector will be set.

Therefore, the Servlet_Before_Service monitor in this application is essentially quiescent until
it inspects a dye vector and finds the USER1 flag set. This filtering reduces the amount of

Chapter 12
Configuring Application-Scoped Instrumentation

12-15

diagnostic data generated, and ensures that the generated data is of interest to the
administrator.

Creating a Descriptor File for a Custom Monitor
The following is an example of a well-formed META-INF/weblogic-diagnostics.xml
file for a custom monitor. At a minimum, the file must contain the lines shown in bold.

Example 12-2 Sample Custom Monitor Configuration (in DIAG_MODULE.xml)

<?xml version="1.0" encoding="UTF-8"?>
<wldf-resource xmlns="http://xmlns.oracle.com/weblogic/weblogic-diagnostics"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://xmlns.oracle.com/weblogic/weblogic-diagnostics/2.0/
weblogic-diagnostics.xsd">
 <instrumentation>
 <enabled>true</enabled>
 <wldf-instrumentation-monitor>
 <name>MyCustomMonitor</name>
 <enabled>true</enabled>
 <action>TraceAction</action>
 <location-type>before</location-type>
 <pointcut>call(* com.example.* get* (...));</pointcut>
 </wldf-instrumentation-monitor>
 </instrumentation>
</wldf-resource>

The <name> for a custom monitor is an arbitrary string chosen by the developer.
Because this monitor is custom, it has no predefined locations when actions should be
invoked; the descriptor file must define the location type and pointcut expression. In
this example, the TraceAction action will be invoked before (<location-type>before</
location-type) any methods defined by the pointcut expression is invoked. Table 12-6
shows how the pointcut expression from Example 12-2 is parsed. (Note the use of
wildcard characters.)

Table 12-6 Description of a Sample Pointcut Expression

Pointcut Expression Description

call(* com.example.* get* (...)) call(): Trigger any defined actions when
the methods whose joinpoints are defined by
the remainder of this pointcut expression are
invoked.

call(* com.example.* get* (...)) *: Return value. The wildcard indicates that
the methods can have any type of return value.

call(* com.example.* get* (...)) com.example.*: Methods from class
com.example and its sub-packages are
eligible.

call(* com.example.* get* (...)) get*: Any methods whose name starts with
the string get is eligible.

call(* com.example.* get* (...)) (...): The ellipsis indicates that the methods
can have any number of arguments.

Chapter 12
Configuring Application-Scoped Instrumentation

12-16

This pointcut expression matches all methods in all classes in package com.example and its
sub-packages. The methods can return values of any type, including void, and can have any
number of arguments of any type. Instrumentation code will be inserted before these
methods are called, and, just before those methods are called, the TraceAction action will be
invoked.

See Defining Pointcuts for Custom Monitors, for a description of the grammar used to define
pointcuts.

• Defining Pointcuts for Custom Monitors

• Annotation-based Pointcuts

Defining Pointcuts for Custom Monitors
Custom monitors provide more flexibility than delegating monitors because you create
pointcut expressions to control where diagnostics actions are invoked. As with delegating
monitors, you must select actions from the action library.

A joinpoint is a specific, well-defined location in a program. A pointcut is an expression that
specifies a set of joinpoints. This section describes how you define expressions for pointcuts
using the following pointcut syntax.

You can specify two types of pointcuts for custom monitors:

• call: Take an action when a method is invoked.

• execution: Take an action when a method is executed.

The syntax for defining a pointcut expression is as follows:

pointcutExpr := orExpr ('OR' orExpr) *
orExpr := andExpr ('AND' andExpr) *
andExpr := 'NOT' ? termExpr
termExpr := exec_pointcut | call_pointcut | '(' pointcutExpr ')'
exec_pointcut := 'execution' '(' modifiers?
 returnSpec
 classSpecWithAnnotations
 methodSpec '(' parameterList ')'
 ')'
call_pointcut := 'call' '(' returnSpec
 classSpec
 methodSpec '(' parameterList ')'
 ')'
modifiers := modifier ('OR' modifier) * modifier := 'public' | 'protected' |
'private' | 'static'
returnSpec := '*' | typeSpec
classSpecWithAnnotations := '@' IDENTIFIER ('OR' IDENTIFIER) * | classSpec
classSpec := '+' ? classOrMethodPattern | '*'
typeSpec := '%' ? (primitiveType | classSpec) ('[]')*
methodSpec := classOrMethodPattern
parameterList := param (',' param) *
param := typeSpec | '...'
primitiveType := 'byte' | 'char' | 'boolean' | 'short' | 'int' | 'float' | 'long' |
'double' | 'void'
classOrMethodPattern := '*' ? IDENTIFIER '*'? | '*'

The following rules apply:

• The asterisk wildcard character (*) can be used in class types and method names.

Chapter 12
Configuring Application-Scoped Instrumentation

12-17

• An ellipsis (...) in the argument list signifies a variable number of arguments of any
types beyond the argument.

• A percent character (%) prefix designates the value of a non-static class
instantiation, parameter, or return specification as not containing nor exposing
sensitive information. The use of this operator is particularly useful with the
DisplayArgumentsAction action, which captures method arguments or return
values. If this prefix character is not explicitly used, an asterisk string is substituted
for the value that is returned; this behavior ensures that sensitive data in your
application is not inadvertently transmitted when an instrumentation event
captures input arguments to, or return values from, a joinpoint.

Note:

The % operator cannot be applied to an ellipsis or to a wildcarded type
within a pointcut expression.

• A plus sign (+) prefix to a class type identifies all subclasses, sub-interfaces or
concrete classes implementing the specified class/interface pattern.

• A pointcut expression specifies a pattern to identify matching joinpoints. An
attempt to match a joinpoint against it will return a boolean, indicating a valid
match (or not).

• Pointcut expressions can be combined with AND, OR and NOT boolean operators
to build complex pointcut expression trees.

For example, the following pointcut matches method executions of all public initialize
methods in all classes in package com.foo.bar and its sub-packages. The initialize
methods may return values of any type, including void, and may have any number of
arguments of any types.

 execution(public * com.example.* initialize(...))

The following pointcut matches the method calls (call sites) on all classes that directly
or indirectly implement the com.example.MyInterface interface (or a subclass, if it
happens to be a class). The method names must start with get, be public, and return
an int value. The method must accept exactly one argument of type java.lang.String:

call(int +com.example.MyInterface get*(java.lang.String))

The following example shows how to use boolean operators to build a pointcut
expression tree:

 call(void com.example.* set*(java.lang.String)) OR
 call(* com.example.* get*())

The following example illustrates how the previous expression tree would be rendered
as a <pointcut> element in a configuration file:

 <pointcut>call(void com.example.* set*(java.lang.String)) OR
 call(* com.example.* get*())</pointcut>

Annotation-based Pointcuts
You can use JDK-style annotations in class and method specifiers of execution points.
A class or method specifier starting with @ is interpreted as an annotation name.

Chapter 12
Configuring Application-Scoped Instrumentation

12-18

When used as a class specifier, the annotation matches all classes that are annotated with it.
While performing the match, only annotation names are considered. Annotation attributes are
ignored.

For example, consider the following pointcut:

execution(public void @Service @Invocation (...)

The preceding pointcut matches methods that:

• Are public method

• Return void

• Are contained in a class that is annotated with @Service

• Have a method annotated with @Invocation

• Contain any number of arguments.

Note:

Annotation-based specifiers can be used only with execution pointcuts. They
cannot be used with call pointcuts.

Annotation-based class and method specifiers can use the following wildcard characters:

• The asterisk wildcard (*) matches everything.

• The asterisk wildcard (*) at the beginning matches class/interface or method names that
end with the given string. For example, *Bean matches with
weblogic.management.configuration.ServerMBean.

• The asterisk wildcard (*) at the end matches class/interface or method names that end
with the given string. For example, weblogic.* matches all classes and interfaces that are
in weblogic and its sub-packages.

• You can specify a pointcut based on names of inner classes. For example:

public class Foo {
 class Bar {
 public int getValue() {...}
 }
 }

You can define a pointcut that covers the getValue method of the inner class Bar using
the following specification:

execution (public int Foo$Bar getValue(...));

You can also use wildcard characters as follows. The following pointcut matches only the
getter methods in the inner class Bar of class Foo:

execution (* Foo$Bar get*(...));

You can also use leading and trailing wildcard characters. The following examples also match
the getter methods in class Foo$Bar:

Chapter 12
Configuring Application-Scoped Instrumentation

12-19

execution (* Foo$Ba* get*(...));
 execution (* *oo$Bar get*(...));
 execution (* *oo$Ba* get*(...));

Creating Request Performance Data
You can display request performance data in the WebLogic Server Administration
Console for configured server-scoped or application-scoped instrumentation. In the
console, the Request Performance page displays information about the real-time and
historical views of method performance.

To create request performance data, the following criteria must be met:

• A WLDF system resource must be created and targeted to the server. Create the
system resource as described in Instrumentation Configuration Files . You can do
this using the WebLogic Server Administration Console or the WebLogic Scripting
Tool (WLST).

• Instrumentation in the targeted WLDF system resource must be enabled.

• Application instrumentation must be enabled with a weblogic-diagnostics.xml
descriptor, which you create in the application's META-INF directory, as described in
Instrumentation Configuration Files .

• Application instrumentation descriptors must use TraceElapsedTimeAction
diagnostic actions attached to Around diagnostic monitor types. For example, a
descriptor could contain the following:

<instrumentation>
 <enabled>true</enabled>
 <wldf-instrumentation-monitor>
 <name>Connector_Around_Inbound</name>
 <action>TraceElapsedTimeAction</action>
 </wldf-instrumentation-monitor>
</instrumentation>

Chapter 12
Creating Request Performance Data

12-20

Note:

WebLogic Server does not require the weblogic-diagnostics.xml descriptor to
be bundled in your application's archive in order to make instrumentation
changes to a deployed application.

– If your application uses a deployment plan, and you enable Oracle
HotSwap before deploying your application, you can make instrumentation
changes at run time without redeploying your application.

– If your deployed application does not have a deployment plan and you
modify the application's instrumentation configuration, the WebLogic Server
Administration Console automatically creates a deployment plan for you
and prompts you for the location in which to save it.

– If Oracle HotSwap is not enabled in your deployment plan, or if you do not
use a deployment plan, changes to some instrumentation settings require
redeployment.

See Deploying WLDF Application Modules.

See WLDF Instrumentation Library, for a list of "Around" type monitors.

For information about creating and analyzing request performance data in the WebLogic
Server Administration Console, see Analyze request performance in the Oracle WebLogic
Server Administration Console Online Help.

Chapter 12
Creating Request Performance Data

12-21

13
Configuring the DyeInjection Monitor to
Manage Diagnostic Contexts

The Instrumentation component of the WebLogic Diagnostics Framework (WLDF) also
provides a way to uniquely identify requests, such as HTTP or RMI requests, and track them
as they flow through the system.You can configure WLDF to check for certain characteristics
of every request that enters the system, such as the originating user or client address, and
attach a diagnostic context to that request. This feature allows you to take measurements of
specific requests, such as elapsed time, to get an idea of how all requests are being
processed as they flow through the system.
The diagnostic context consists of two pieces: a unique Context ID, and a 64-bit dye vector
that represents the characteristics of the request. The Context ID associated with a given
request is recorded in the Event Archive and can be used to:

• Throttle instrumentation event generation, that is determine how often events are
generated when specified conditions are met

• Associate log records with a request

• Filter searches of log or event records using the WLDF Accessor component (see
Accessing Diagnostic Data With the Data Accessor).

For an example of how to use WLST to create a DyeInjection monitor dynamically, see
Example: Dynamically Creating DyeInjection Monitors.

This chapter includes the following sections:

• Contents, Life Cycle, and Configuration of a Diagnostic Context
A diagnostic context contains a unique Context ID and a 64-bit dye vector. The dye
vector contains flags which are set to identify the characteristics of the diagnostic context
associated with a request.

• Overview of the Process
The DyeInjection monitor examines the request to see if any of the configured dye values
in the dye vector match attributes of the request. You can configure the DyeInjection
monitor to identify the requests and track their flow. The tracking of the requests helps to
see how the requests are processed as they flow through the system.

• Configuring the Dye Vector by Using the DyeInjection Monitor
You configure the Dye Vector by using the DyeInjection monitor to monitor the requests in
a system. Every request is checked against the configuration of the DyeInjection monitor,
and a diagnostic context is created and attached to the request.

• Configuring Delegating Monitors to Use Dye Filtering
You can use the DyeInjection monitor as a mechanism to restrict when a delegating or
custom diagnostic monitor in the diagnostic module is triggered. This process is called
dye filtering.

• How Dye Masks Filter Requests to Pass to Monitors
A dye vector attached to a request can contain multiple dyes, and a dye mask attached to
a delegating monitor can contain multiple dyes.

13-1

• Using Throttling to Control the Volume of Instrumentation Events
You can use throttling to control the number of requests that the monitors process
in a diagnostic module.

• Using weblogic.diagnostics.context
The weblogic.diagnostics.context package provides applications with access to a
diagnostic context.

Contents, Life Cycle, and Configuration of a Diagnostic
Context

A diagnostic context contains a unique Context ID and a 64-bit dye vector. The dye
vector contains flags which are set to identify the characteristics of the diagnostic
context associated with a request.

Currently, 32 bits of the dye vector are used, one for each available dye flag (see
Table 13-1).

• Context Life Cycle and the Context ID

• Dyes, Dye Flags, and Dye Vectors

• Where Diagnostic Context Is Configured

Context Life Cycle and the Context ID
The diagnostic context for a request is created and initialized when the request enters
the system (for example, when a client makes an HTTP request). The diagnostic
context remains attached to the request, even as the request crosses thread
boundaries and Java Virtual Machine (JVM) boundaries. The diagnostic context lives
for the duration of the life cycle of the request.

Every diagnostic context is identified by a Context ID that is unique in the domain.
Because the Context ID travels with the request, it is possible to determine the events
and log entries associated with a given request as it flows through the system.

Dyes, Dye Flags, and Dye Vectors
Contextual information travels with a request as a 64-bit dye vector, where each bit is
a flag to identify the presence of a dye. Each dye represents one attribute of a request;
for example, an originating user, an originating client IP address, access protocol, and
so on.

When a dye flag for a given attribute is set, it indicates that the attribute is present.
When the flag is not set, it indicates the attribute is not present.

For example, consider a configuration where:

• the flag ADDR1 is configured to indicate a request that originated from IP address
127.0.0.1.

• the flag ADDR2 is configured to indicate a request that originated from IP address
127.0.0.2.

• the flag USER1 is configured to indicate a request that originated from user
admin@avitek.com.

Chapter 13
Contents, Life Cycle, and Configuration of a Diagnostic Context

13-2

If a request from IP address 127.0.0.1 enters the system from a user other than
admin@avitek.com, the ADDR1 flag in the dye vector for the request is set. The ADDR2 and
USER1 dye flags remain unset.

If a request from admin@avitek.com enters the system from an IP address other than
127.0.0.1 or 127.0.0.2, the USER1 flag in the dye vector for the request is set. The ADDR1
and ADDR2 dye flags remain unset.

If a request from admin@avitek.com from IP address 127.0.0.2 enters the system, both the
USER1 and ADDR2 flags in the dye vector for this request are set. The ADDR1 flag remains
unset.

Diagnostic and monitoring features that take advantage of the diagnostic context can
examine the dye vector to determine if one or more attributes are present (that is, the
associated flag is set). In the example above, you could configure a diagnostic monitor to
trace every request that is dyed with ADDR1; that is, every request originating from IP
address 127.0.0.1. You could also configure a diagnostic monitor that traces every request
that is dyed with both ADDR1 and USER1; that is, every request originating from user
admin@avitek.com at IP address 127.0.0.1 (requests from other users at 127.0.0.1 would not
be traced).

The dye vector also contains a THROTTLE dye, which is used to set how often incoming
requests are dyed. For more information about this special dye, see THROTTLE Dye Flag.

For a list of the available dyes and the attributes they represent, see Dyes Supported by the
DyeInjection Monitor. The process of configuring dye vectors and using them is discussed
throughout the rest of this chapter.

Where Diagnostic Context Is Configured
Diagnostic context is configured as part of a diagnostic module. You use the DyeInjection
monitor at the server level to configure the diagnostic context. The DyeInjection monitor is a
standard diagnostic monitor, so you cannot modify its behavior. The joinpoints where the
DyeInjection monitor is woven into the code are those locations where a request can enter
the system.

The diagnostic action is to check every request against the DyeInjection monitor's
configuration, then create and attach a diagnostic context to the request, setting the dye flags
as appropriate. If the dye flags that are set for a request match the dye flags that are
configured for a downstream diagnostic monitor, an event with the request's associated
Context ID is added to the Event Archive. So, for example, if a request has only the USER1
and ADDR1 dye flags set, and there is a diagnostic monitor configured to trace requests with
both the USER1 and ADDR1 flags set (but no other flags set), an event is added to the Event
Archive.

For information about diagnostic monitor types, pointcuts (which define the joinpoints), and
diagnostic actions, see Configuring Instrumentation.

Overview of the Process
The DyeInjection monitor examines the request to see if any of the configured dye values in
the dye vector match attributes of the request. You can configure the DyeInjection monitor to
identify the requests and track their flow. The tracking of the requests helps to see how the
requests are processed as they flow through the system.

Chapter 13
Overview of the Process

13-3

This overview describes the configuration and use of context in a server-scoped
diagnostic module.

1. Configure a dye vector via the DyeInjection Module. See Configuring the Dye
Vector via the DyeInjection Monitor.

2. When any request enters the system, WLDF creates and instantiates a diagnostic
context for the request. The context includes a unique Context ID and a dye
vector.

3. The DyeInjection monitor, if enabled at the server level within a WLDF diagnostic
module, examines the request to see if any of the configured dye values in the dye
vector match attributes of the request. For example, it checks to see if the request
originated from the user associated with USER1 or USER2, and it checks to see if
the request came from the IP address associated with ADDR1 or ADDR2.

4. For each dye value that matches a request attribute, the DyeInjection monitor sets
the associated dye bits within the diagnostic context. For example, if the
DyeInjection monitor is configured with USER1=weblogic,
USER2=admin@avitek.com, ADDR1=127.0.0.1, ADDR2=127.0.0.2, and the request
originated from user weblogic at IP address 127.0.0.2, it will set the USER1 and
ADDR2 dye bits within the dye vector.

5. As the request flows through the system, the diagnostic context (which includes
the dye vector) flows with it as well. This 64-bit dye vector contains only flags, not
values. So, in this example, the dye vector contains only two flags that are
explicitly set (USER1 and ADDR2). It does not contain the actual user name and
IP address associated with USER1 and ADDR2.

Note:

All dye vectors also contain one of the implicit PROTOCOL dyes, as
explained in Configuring the Dye Vector via the DyeInjection Monitor.

6. The administrator configures a diagnostic monitor (either application-scoped or
server-scoped) to be active within downstream code, setting the monitor's dye
mask as USER1 and ADDR2. See Configuring Delegating Monitors to Use Dye
Filtering, for more information.

7. The diagnostic monitor will perform its associated action(s) if the dye flags that are
set in the diagnostic context's dye vector match the dye mask of the diagnostic
monitor. See How Dye Masks Filter Requests to Pass to Monitors, for more
details. In this example, the monitor will perform its action(s) if the USER1 and
ADDR2 flags are set in the dye vector. In addition, an event associated with the
request will be written to the Event Archive.

Configuring the Dye Vector by Using the DyeInjection
Monitor

You configure the Dye Vector by using the DyeInjection monitor to monitor the
requests in a system. Every request is checked against the configuration of the
DyeInjection monitor, and a diagnostic context is created and attached to the request.

To create diagnostic contexts for all requests coming into the system:

Chapter 13
Configuring the Dye Vector by Using the DyeInjection Monitor

13-4

1. Create a diagnostic module for the server (or servers) you want to monitor in the
Summary of Diagnostic Modules page. See Creating a Custom Diagnostic System
Module Based on a Built-in.

2. Click the name of the newly created module to open the Settings for <MODLE_NAME>
page.

3. In the Configuration - Instrumentation tab, select the Enabled check box.

4. In the Diagnostic Monitors in this Module tab, add the DyeInjection monior by using
the Add/Remove button.

5. Click the DyeInjection monitor to open the Settings for DyeInjection page.

6. Select the Enable check box. (Only one DyeInjection monitor can be used with a
diagnostic module at a time.)

You configure the DyeInjection monitor by assigning values to dyes. The available dye flags
are described in Table 13-1.

For example, you could set the flags as follows: USER1=weblogic, USER2=admin@avitek.com,
ADDR1=127.0.0.1, ADDR2=127.0.0.2, and so forth. Basically, you want to set the values of
one or more flags to the user(s), IP address(es) whose requests you want to monitor.

For example, to monitor all requests initiated by a user named admin@avitek from a client at
IP address 127.0.0.1, assign the value admin@avitek to USER1 and assign the value 127.0.0.1
to ADDR1.

In the WebLogic Server Administration Console, you assign values to dyes by typing them
into the Properties field of the Settings for DyeInjection page. For instructions, see
Configure diagnostic monitors in a diagnostic system module in the Oracle WebLogic Server
Administration Console Online Help.

These settings appear in the descriptor file for the diagnostic module, as shown in the
following code listing.

Example 13-1 Sample DyeInjection Monitor Configuration, in DIAG_MODULE.xml

<wldf-resource>
 <name>MyDiagnosticModule</name>
 <instrumentation>
 <enabled>true</enabled>
 <wldf-instrumentation-monitor>
 <name>DyeInjection</name>
 <enabled>true</enabled>
 <dye-mask xsi:nil="true"></dye-mask>
 <properties>ADDR1=127.0.0.1
 USER1=admin@avitek</properties>
 </wldf-instrumentation-monitor>
 <!-- Other elements to configure instrumentation -->
 <instrumentation>
<!-- Other elements to configure this diagnostic monitor -->
<wldf-resource>

• Dyes Supported by the DyeInjection Monitor

• PROTOCOL Dye Flags

• THROTTLE Dye Flag

• When Diagnostic Contexts Are Created

Chapter 13
Configuring the Dye Vector by Using the DyeInjection Monitor

13-5

https://docs.oracle.com/en/middleware/fusion-middleware/weblogic-server/12.2.1.4/wldfc/using_builtin_diag_modules.html#GUID-FD238BCF-DBE7-417B-827A-DBCF03B975E1
https://docs.oracle.com/en/middleware/fusion-middleware/weblogic-server/12.2.1.4/wldfc/using_builtin_diag_modules.html#GUID-FD238BCF-DBE7-417B-827A-DBCF03B975E1

Dyes Supported by the DyeInjection Monitor
The dyes available in the dye vector are listed and explained in the following table.

Table 13-1 Request Protocols for Supported Diagnostic Context Dyes

Dye Flags Description

ADDR1

ADDR2

ADDR3

ADDR4

Use the ADDR1, ADDR2, ADDR3 and ADDR4 dyes to specify the IP
addresses of clients that originate requests. These dye flags are set in
the diagnostic context for a request if the request originated from an IP
address specified by the respective property (ADDR1, ADDR2,
ADDR3, ADDR4) of the DyeInjection monitor.

These dyes cannot be used to specify DNS names.

CONNECTOR1

CONNECTOR2

CONNECTOR3

CONNECTOR4

Use the CONNECTOR1, CONNECTOR2, CONNECTOR3 and
CONNECTOR4 dyes to identify characteristics of connector drivers.

These dye flags are set by the connector drivers to identify request
properties specific to their situations. You do not configure these
directly in the WebLogic Server Administration Console or in the
descriptor files. The connector drivers can assign values to these dyes
(using the Connector API), so information about the connections can
be carried in the diagnostic context.

COOKIE1

COOKIE2

COOKIE3

COOKIE4

COOKIE1, COOKIE2, COOKIE3 and COOKIE4 are set in the
diagnostic context for an HTTP/S request, if the request contains the
cookie named weblogic.diagnostics.dye and its value is equal to the
value of the respective property (COOKIE1, COOKIE2, COOKIE3,
COOKIE4) of the DyeInjection monitor.

DYE_0

DYE_1

DYE_2

DYE_3

DYE_4

DYE_5

DYE_6

DYE_7

DYE_0 to DYE_7 are available only for use by application developers.
See Using weblogic.diagnostics.context .

PROTOCOL_HTTP

PROTOCOL_IIOP

PROTOCOL_JRMP

PROTOCOL_RMI

PROTOCOL_SOAP

PROTOCOL_SSL

PROTOCOL_T3

The DyeInjection monitor implicitly identifies the protocol used for a
request and sets the appropriate dye(s) in the dye vector, according to
the protocol(s) used.

PROTOCOL_HTTP is set in the diagnostic context of a request if the
request uses HTTP or HTTPS protocol.

PROTOCOL_IIOP is set in the diagnostic context of a request if it uses
Internet Inter-ORB Protocol (IIOP).

PROTOCOL_JRMP is set in the diagnostic context of a request if it
uses the Java Remote Method Protocol (JRMP).

PROTOCOL_RMI is set in the diagnostic context of a request if it uses
the Java Remote Method Invocation (RMI) protocol.

PROTOCOL_SSL is set in the diagnostic context of a request if it uses
the Secure Sockets Layer (SSL) protocol.

PROTOCOL_T3 is set in the diagnostic context of a request if the
request uses T3 or T3s protocol

Chapter 13
Configuring the Dye Vector by Using the DyeInjection Monitor

13-6

Table 13-1 (Cont.) Request Protocols for Supported Diagnostic Context Dyes

Dye Flags Description

THROTTLE The THROTTLE dye is set in the diagnostic context of a request if it
satisfies requirements specified by THROTTLE_INTERVAL and/or
THROTTLE_RATE properties of the DyeInjection monitor.

USER1

USER2

USER3

USER4

Use the USER1, USER2, USER3 and USER4 dyes to specify the user
names of clients that originate requests. These dye flags are set in the
diagnostic context for a request if the request was originated by a user
specified by the respective property (USER1, USER2, USER3,
USER4) of the DyeInjection monitor.

PROTOCOL Dye Flags
You must explicitly set the values for the dye flags USERn, ADDRn, COOKIEn, and
CONNECTORn. in the DyeInjection monitor. However, the flags PROTOCOL_HTTP,
PROTOCOL_IIOP, ROTOCOL_JRMP, PROTOCOL_RMI, PROTOCOL_SOAP,
PROTOCOL_SSL, and PROTOCOL_T3 are set implicitly by WLDF. When the DyeInjection
monitor is enabled, every request is injected with the appropriate protocol dye. For example,
every request that arrives via HTTP is injected with the PROTOCOL_HTTP dye.

THROTTLE Dye Flag
The THROTTLE dye flag can be used to control the volume of incoming requests that are
dyed. THROTTLE is configured differently from the other flags, and WLDF uses it differently.
See Using Throttling to Control the Volume of Instrumentation Events, for more information.

When Diagnostic Contexts Are Created
When the DyeInjection monitor is enabled in a diagnostic module, a diagnostic context is
created for every incoming request. The DyeInjection monitor is enabled by default when you
enable instrumentation in a diagnostic module. This ensures that a diagnostic Context ID is
available so that events can be correlated. Even if no properties are explicitly set in the
DyeInjection monitor, the diagnostic context for every request will contain a unique Context ID
and a dye vector with one of the implicit PROTOCOL dyes.

If the DyeInjection monitor is disabled, no diagnostic contexts will be created for any incoming
requests.

Chapter 13
Configuring the Dye Vector by Using the DyeInjection Monitor

13-7

Configuring Delegating Monitors to Use Dye Filtering
You can use the DyeInjection monitor as a mechanism to restrict when a delegating or
custom diagnostic monitor in the diagnostic module is triggered. This process is called
dye filtering.

Note:

For information about how to implement a diagnostic monitor for an
application (such as a web application), see Overview of the Steps Required
to Instrument an Application.

Each monitor can have a dye mask, which specifies a selection of the dyes from the
DyeInjection monitor. When dye filtering is enabled for a diagnostic monitor, the
monitor's diagnostic action is triggered and a diagnostic event is generated only for
those requests that meet the criteria set by the mask.

Figure 13-1 shows an example of diagnostic events that were generated when a
configured diagnostic action was triggered. Notice that the Context ID is the same for
all of the events, indicating that they are related to the same request. You can use this
Context ID to query for log records that are associated with the request. Note that the
user ID associated with a request may not always be the same as the USER value you
configured in the DyeInjection monitor; as a request is processed through the system,
the user associated with the request may change to allow the system to perform
certain functions (for example, the User ID may change to kernel).

Figure 13-1 Example of Diagnostic Events Associated with a Request

Example configuration

Chapter 13
Configuring Delegating Monitors to Use Dye Filtering

13-8

Consider a Servlet_Around_Service application-scoped diagnostic monitor that has a
TraceElapsedTimeAction action attached to it. Without dye filtering, any request that is
handled by Servlet_Around_Service will trigger a TraceElapsedTimeAction. However, you
could use dye filtering to trigger TraceElapsedTimeAction only for requests that originated
from user admin@avitek.com at IP address 127.0.0.1.

1. Configure the DyeInjection monitor so that USER1=admin@avitek.com and
ADDR1=127.0.0.1, and enable the DyeInjection monitor. For instructions, see Configure
diagnostic monitors in a diagnostic system module in the Oracle WebLogic Server
Administration Console Online Help.

2. Configure a dye mask and enable dye filtering for the Servlet_Before_Service diagnostic
monitor. In the WebLogic Server Administration Console:

a. Add the Servlet_Around_Service monitor from the WLDF instrumentation library to
your application as described in Configure instrumentation for applications in the
Oracle WebLogic Server Administration Console Online Help.

b. After adding the monitor, click Save on the Settings for <application_name> page.

c. Click the Servlet_Around_Service link to display the Settings for
Servlet_Around_Service page.

d. Select the Enabled check box to enable the monitor.

e. Under Actions, move TraceElapsedTimeAction from the Available list to the
Chosen list.

f. In the Dye Mask section, move USER1 and ADDR1 from the Available list to the
Chosen list.

g. Select the EnableDyeFiltering check box.

h. Click Save.

3. Redeploy the application.

Configurations added via the WebLogic Server Administration Console are not persisted to
the weblogic-diagnostics.xml file in the application's META-INF directory or to the
DIAG_MODULE.xml file; they are saved in the application's deployment plan.

You can also manually update your DIAG_MODULE.xml file to add diagnostic monitors, as
shown in Example 13-2, but this is not recommended. It is better to change the configuration
via the WebLogic Server Administration Console on a running server. Any changes you make
to DIAG_MODULE.xml will not take effect until you redeploy the application.

Example 13-2 Sample Configuration for Using Dye Filtering in a Delegating Monitor,
in DIAG_MODULE.xml

<wldf-resource>
 <name>MyDiagnosticModule</name>
 <instrumentation>
 <enabled>true</enabled>
 <wldf-instrumentation-monitor>
 <name>DyeInjection</name>
 <enabled>true</enabled>
 <properties>ADDR1=127.0.0.1 USER1=admin@avitek.com</properties>
 </wldf-instrumentation-monitor>
 <wldf-instrumentation-monitor>
 <name>Servlet_Around_Service</name>
 <dye-mask>ADDR1 USER1</dye-mask>
 <dye-filtering-enabled>true</dye-filtering-enabled>
 <action>TraceElapsedTimeAction</action>

Chapter 13
Configuring Delegating Monitors to Use Dye Filtering

13-9

 </wldf-instrumentation-monitor>
 <!-- Other elements to configure instrumentation -->
 </instrumentation>
<!-- Other elements to configure this diagnostic monitor -->
<wldf-resource>

With this configuration, the TraceElapsedTimeAction action will be triggered for the
Servlet_Around_Service diagnostic monitor only for those requests that originate from
IP address 127.0.0.1 and user admin@avitek.com.

The flags that are enabled in the diagnostic monitor must exactly match the bits set in
the request's dye vector for an action to be triggered and an event to be written to the
Event Archive. For example, if the diagnostic monitor has both the USER1 and
ADDR1 flags enabled, and only the USER1 flag is set in the request's dye vector, no
action will be triggered and no event will be generated.

Note:

When configuring a diagnostic monitor, do not enable multiple flags of the
same type. For example, don't enable both the USER1 and USER2 flags, as
the dye vector for a given request will never have both the USER1 and
USER2 flags set.

How Dye Masks Filter Requests to Pass to Monitors
A dye vector attached to a request can contain multiple dyes, and a dye mask
attached to a delegating monitor can contain multiple dyes.

For a delegating monitor's dye mask to allow a monitor to take action on a request, all
of the following must be true:

• Dye filtering for the delegating or custom diagnostic monitor is enabled in the
application's weblogic-diagnostics.xml descriptor, or is enabled via the
WebLogic Server Administration Console.

• The request's dye vector contains all of the dyes that are defined in the monitor's
dye mask. (The dye vector can also contain dyes that are not in the dye mask.)

• Dye Filtering Example

Dye Filtering Example
Figure 13-2 illustrates how dye filtering works, using a diagnostic module with three
diagnostic monitors:

• The DyeInjection monitor is configured as follows:

 ADDR1=127.0.0.1
 USER1=weblogic

• The Servlet_Around_Service monitor is configured with a dye mask containing
only ADDR1.

• The EJB_Around_SessionEjbBusinessMethods monitor is configured with a dye
mask containing USER1 only.

Chapter 13
How Dye Masks Filter Requests to Pass to Monitors

13-10

Figure 13-2 Dye Filtering Example

IP = 127.0.0.1
User = guest

Dye_mask: USER1

EJB_Around_SessionEjbBusinessMethods

Entry
ADDR1= 127.0.0.1
USER1 = weblogic

DyeInjection Monitor

Servlet

SessionEJB

Dye_mask: ADDR1

Servlet_Around_Service

1

2

4

Dye_vector:
ADDR1

Dye_vector:
ADDR1

3 Event

5

No
Event

1. A request initiated by user guest from IP address 127.0.0.1 enters the system. The user
guest does not match the value for USER1 in the DyeInjection monitor, so the request is
not dyed with the dye vector USER1. The originating IP address (127.0.0.1) matches the
value for ADDR1 defined in the DyeInjection monitor, so the request is dyed with the dye
vector ADDR1.

2. The request (dyed with ADDR1) enters the Servlet component, where the diagnostic
monitor Servlet_Around_Service is woven into the code. (Servlet_Around_Service
triggers diagnostic actions at the entry of and exit of certain servlet and JSP methods.)
Dye monitoring is enabled for the monitor, and the dye mask is defined with the single
value ADDR1.

3. When the request enters or exits a method instrumented with Servlet_Around_Service,
the diagnostic monitor checks the request for dye vector ADDR1, which it finds.
Therefore, the monitor triggers a diagnostic action, which generates a diagnostic event,
for example, writing data to the Events Archive.

4. The request enters the SessionEJB component, where the diagnostic monitor
EJB_Around_SessionEjbBusinessMethods is woven into the code.
(EJB_Around_SessionEjbBusinessMethods triggers diagnostic actions at the entry and
exit of all SessionBean methods). Dye monitoring is enabled for the monitor, and the dye
mask is defined with the single value USER1.

5. When the request enters or exits a SessionBean method (instrumented with
EJB_Around_SessionEjbBusinessMethods), the diagnostic monitor checks the request
for dye vector USER1, which it does not find. Therefore, the monitor does not trigger a
diagnostic action, and therefore does not generate a diagnostic event.

Using Throttling to Control the Volume of Instrumentation Events
You can use throttling to control the number of requests that the monitors process in a
diagnostic module.

Chapter 13
Using Throttling to Control the Volume of Instrumentation Events

13-11

Throttling is configured using the THROTTLE dye, which is defined in the DyeInjection
monitor.

Note:

The USERn and ADDRn dyes allow inspection of requests from specific
users or IP addresses. However, they do not provide a means to look at
arbitrary user transactions. The THROTTLE dye provides that functionality
by allowing sampling of requests.

• Configuring the THROTTLE Dye

• How Throttling is Handled by Delegating and Custom Monitors

Configuring the THROTTLE Dye
Unlike other dyes in the dye vector, the THROTTLE dye is configured through two
properties.

• THROTTLE_INTERVAL sets an interval (in milliseconds) after which a new
incoming request is dyed with the THROTTLE dye.

If the THROTTLE_INTERVAL is greater than 0, the DyeInjection monitor sets the
THROTTLE dye flag in the dye vector of an incoming request if the last request
dyed with THROTTLE arrived at least THROTTLE_INTERVAL before the new request.
For example, if THROTTLE_INTERVAL=3000, the DyeInjection monitor waits at
least 3000 milliseconds before it will dye an incoming request with THROTTLE.

• THROTTLE_RATE sets the rate (in terms of the number of incoming requests) by
which new incoming requests are dyed with the THROTTLE dye.

If THROTTLE_RATE is greater than 0, the DyeInjection monitor sets the
THROTTLE dye flag in the dye vector of an incoming request when the number of
requests since the last request dyed with THROTTLE equals THROTTLE_RATE. For
example, if THROTTLE_RATE = 6, every sixth request is dyed with THROTTLE.

You can use THROTTLE_INTERVAL and THROTTLE_RATE together. If either
condition is satisfied, the request is dyed with the THROTTLE dye.

If you assign a value to either THROTTLE_INTERVAL or THROTTLE_RATE (or both,
or neither), you are configuring the THROTTLE dye.

Example 13-3 shows the resulting configuration in the descriptor file for the diagnostics
module.

Example 13-3 Sample THROTTLE Configuration in the DyeInjection Monitor, in
DIAG_MODULE.xml

<wldf-resource>
 <name>MyDiagnosticModule</name>
 <instrumentation>
 <wldf-instrumentation-monitor>
 <name>DyeInjection</name>
 <properties>
 THROTTLE_INTERVAL=3000
 THROTTLE_RATE=6
 </properties>

Chapter 13
Using Throttling to Control the Volume of Instrumentation Events

13-12

 </wldf-instrumentation-monitor>
 </instrumentation>
<!-- Other elements to configure this diagnostic monitor -->
</wldf-resource>

Example 13-4 shows the configuration for a JDBC_Before_Start_Internal delegating monitor
where the THROTTLE dye is set in the dye mask for the monitor.

Example 13-4 Sample Configuration for Setting THROTTLE in a Dye Mask of a
Delegating Monitor, in DIAG_MODULE.xml

<wldf-resource>
 <name>MyDiagnosticModule</name>
 <instrumentation>
 <wldf-instrumentation-monitor>
 <name>JDBC_Before_Start_Internal</name>
 <enabled>true</enabled>
 <dye-mask>THROTTLE</dye-mask>
 </wldf-instrumentation-monitor>
 </instrumentation>
<!-- Other elements to configure this diagnostic monitor -->
</wldf-resource>

How Throttling is Handled by Delegating and Custom Monitors
Dye masks and dye filtering provide a mechanism for restricting which requests are passed
to delegating and custom monitors for handling, based on properties of the requests. The
presence of a property in a request is indicated by the presence of a dye, as discussed in
Configuring the Dye Vector via the DyeInjection Monitor. One of those dyes can be the
THROTTLE dye, so that you can filter on THROTTLE, just like any other dye.

The items in the following list explain how throttling is handled:

• If dye filtering for a delegating or custom monitor is enabled and that monitor has a dye
mask, filtering is performed based on the dye mask. That mask may include the
THROTTLE dye, but it does not have to. If THROTTLE is included in a dye mask, then
THROTTLE must also be included in the request's dye vector for the request to be
passed to the monitor. However, if THROTTLE is not included in the dye mask, all
qualifying requests are passed to the monitor, whether their dye vectors include
THROTTLE or not.

• If dye filtering for a delegating or custom monitor is not enabled and neither THROTTLE
property is set in the DyeInjection monitor, dye filtering will not take place and throttling
will not take place.

• If dye filtering for a delegating or custom monitor is not enabled and THROTTLE is
configured in the DyeInjection monitor, delegating monitors ignore dye masks but do
check for the presence of the THROTTLE dye in all requests. Only those requests dyed
with THROTTLE are passed to the delegating monitors for handling. Therefore, by setting
a THROTTLE_RATE and/or THROTTLE_INTERVAL in the DyeInjection monitor, you
reduce the number of requests handled by all delegating monitors. You do not have to
configure dye masks for all your delegating monitors to take advantage of throttling.

• If dye filtering for a delegating or custom monitor is enabled and the only dye set in a dye
mask is THROTTLE, only those requests that are dyed with THROTTLE are passed to
the delegating monitor. This behavior is the same as when dye filtering is not enabled
and THROTTLE is configured in the DyeInjection monitor.

Chapter 13
Using Throttling to Control the Volume of Instrumentation Events

13-13

Using weblogic.diagnostics.context
The weblogic.diagnostics.context package provides applications with access to a
diagnostic context.

An application can use the weblogic.diagnostics.context.DiagnosticContextHelper
APIs to perform the following functions:

• Inspect a diagnostics context's immutable context ID.

• Inspect the settings of the dye flags in a context's dye vector.

• Retrieve an array of valid dye flag names.

• Set, or unset, the DYE_0 through DYE_7 flags in a context's dye vector. (Note that
there is no way to set these flag bits via XML. You can configure DyeInjection
monitor <properties> to set the non-application-specific flag bits via XML, but
setDye() is the only method for setting DYE_0 through DYE_7 in a dye vector.)

• Attach a payload (a String) to a diagnostic context, or read an existing payload.

An application cannot:

• Set any flags in a dye vector other than the eight flags reserved for applications.

• Prevent another application from setting the same application flags in a dye vector.
A well-behaved application can test whether a dye flag is set before setting it.

• Prevent another application from replacing a payload. A well-behaved application
can test for the presence of a payload before adding one.

Note:

The diagnostic context payload can be viewed by other code in the same
execution context; it can flow out of the process along with the Work instance;
and it can be overwritten by other code running in the same execution
context. Therefore, you should ensure the following behavior in your
applications:

• Avoid including any sensitive data in the payload that, for example, could
be returned by the getPayload() method.

• Do not create a dependency on any particular data being available in the
context payload. For example, applications should not rely on a
particular context ID being present. If an application uses the contents of
the payload, the application should first verify that the contents match
what is expected.

A monitor, or another application, that is downstream from the point where an
application has set one or more of the DYE_0 through DYE_7 flags can set a dye
mask to check for those flags, and take an action when the flag(s) are present in a
context's dye vector. If a payload is attached to the diagnostics context, any action
taken by that monitor will result in the payload being archived, and thus available
through the accessor component.

Chapter 13
Using weblogic.diagnostics.context

13-14

Example 13-5 is a short example which (implicitly) creates a diagnostic context, prints the
context ID, checks the value of the DYE_0 flag, and then sets the DYE_0 flag.

Example 13-5 Example: DiagnosticContextExample.java

package weblogic.diagnostics.examples;
import weblogic.diagnostics.context.DiagnosticContextHelper;
public class DiagnosticContextExample {
 public static void main(String args[]) throws Exception {
 System.out.println("\nContextId=" +
 DiagnosticContextHelper.getContextId());
 System.out.println("isDyedWith(DYE_0)=" +
 DiagnosticContextHelper.isDyedWith(DiagnosticContextHelper.DYE_0));
 DiagnosticContextHelper.setDye(DiagnosticContextHelper.DYE_0, true);
 System.out.println("isDyedWith(DYE_0)=" +
 DiagnosticContextHelper.isDyedWith(DiagnosticContextHelper.DYE_0));
 }
}

Chapter 13
Using weblogic.diagnostics.context

13-15

14
Accessing Diagnostic Data With the Data
Accessor

The Data Accessor component of the WebLogic Diagnostics Framework (WLDF) accesses
diagnostic data from various sources, including log records, data events, and harvested
metrics.Using the Data Accessor, you can:

• Perform data lookups by type, component, and attribute

• Perform time-based filtering and, when accessing events, filtering by severity, source,
and content

• Access diagnostic data in tabular form

You can also use the Data Accessor online (when a server is running) and offline (when a
server is not running).

• Data Stores Accessed by the Data Accessor
The Data Accessor retrieves diagnostic information from other WLDF components.
Captured information is segregated into logical data stores, called diagnostic data stores,
which are separated by the types of diagnostic data. For example, server logs, HTTP
logs, and harvested metrics are captured in separate data stores.

• Accessing Diagnostic Data Online
Data Accessor provides access to data stores for individual servers. You can access
diagnostic data from a running server.

• Accessing Diagnostic Data Offline

• Accessing Diagnostic Data Programmatically

• Resetting the System Clock Can Affect How Data Is Archived and Retrieved

Data Stores Accessed by the Data Accessor
The Data Accessor retrieves diagnostic information from other WLDF components. Captured
information is segregated into logical data stores, called diagnostic data stores, which are
separated by the types of diagnostic data. For example, server logs, HTTP logs, and
harvested metrics are captured in separate data stores.

WLDF maintains diagnostic data on a per-server basis. Therefore, the Data Accessor
provides access to data stores for individual servers.

Diagnostic data stores can be modeled as tabular data. Each record in the table represents
one item, and the columns describe characteristics of the item. Different data stores may
have different columns. However, most data stores have some of the same columns, such as
the time when the data was collected.

The Data Accessor can retrieve the following information about data stores used by WLDF
for a server:

• A list of supported data store types, including:

– HarvestedDataArchive

14-1

– EventsDataArchive

– ServerLog

– DomainLog

– HTTPAccessLog

– DataSourceLog

– WebAppLog

– ConnectorLog

– JMSMessageLog

– JMSSAFMessageLog

– CUSTOM

• A list of available data store instances

• The layout of each data store (information that describes the columns in the data
store)

You can use the WLDFAccessRuntimeMBean to discover such data stores, determine
the nature of the data they contain, and access their data selectively using a query.

For complete documentation about WebLogic logs, see Understanding WebLogic
Logging Services in Configuring Log Files and Filtering Log Messages for Oracle
WebLogic Server.

Accessing Diagnostic Data Online
Data Accessor provides access to data stores for individual servers. You can access
diagnostic data from a running server.

You can access the data using one of the following ways:

• WebLogic Server Administration Console

• JMX APIs

• WebLogic Scripting Tool (WLST)

• WLDF query language

• Accessing Data Using the Administration Console

• Accessing Data Programmatically Using Runtime MBeans

• Using WLST to Access Diagnostic Data Online

• Using the WLDF Query Language with the Data Accessor

Accessing Data Using the Administration Console
You do not use the Data Accessor explicitly in the WebLogic Server Administration
Console, but information collected by the Accessor is displayed, for example, in the
Summary of Log Files page. See View and Configure Logs in the Oracle WebLogic
Server Administration Console Online Help.

Chapter 14
Accessing Diagnostic Data Online

14-2

Accessing Data Programmatically Using Runtime MBeans
The Data Accessor provides the following runtime MBeans for discovering data stores and
retrieving data from them:

• Use the WLDFAccessRuntimeMBean to do the following:

– Get the logical names of the available data stores on the server.

– Look up a WLDFDataAccessRuntimeMBean to access the data from a specific data
source, based on its logical name. The different data stores are uniquely identified by
their logical names.

See WLDFAccessRuntimeMBean in the MBean Reference for Oracle WebLogic Server.

• Use the WLDFDataAccessRuntimeMBean to retrieve data stores based on a search
condition, or query. You can optionally specify a time interval with the query, to retrieve
data records within a specified time duration. This MBean provides metadata about the
columns of the data set and the earliest and latest timestamp of the records in the data
store.

Data Accessor runtime MBeans are currently created and registered lazily. So, when a
remote client attempts to access them, they may not be present and an
InstanceNotFoundException may be thrown.

The client can retrieve the WLDFDataAccessRuntime's attribute of the
WLDFAccessRuntime to cause all known data access runtimes to be created, for
example:

 ObjectName objName =
 new ObjectName("com.bea:ServerRuntime=" + serverName +
 ",Name=Accessor," +
 "Type=WLDFAccessRuntime," +
 "WLDFRuntime=WLDFRuntime");
 rmbs.getAttribute(objName, "WLDFDataAccessRuntimes");

See WLDFDataAccessRuntimeMBean in the MBean Reference for Oracle WebLogic
Server.

Using WLST to Access Diagnostic Data Online
Use the WLST exportDiagnosticDataFromServer() command to access diagnostic data
from a running server. For the syntax and examples of this command, see Diagnostics
Commands in the WLST Command Reference for WebLogic Server.

Using the WLDF Query Language with the Data Accessor
To query data from data stores, use the WLDF query language. For Data Accessor query
language syntax, see WLDF Query Language.

Accessing Diagnostic Data Offline
You can use the WLST exportDiagnosticData() command to access historical diagnostic
data from an offline server. For the syntax and examples of this command, see Diagnostics
Commands in the WLST Command Reference for WebLogic Server.

Chapter 14
Accessing Diagnostic Data Offline

14-3

Note:

You can use exportDiagnosticData to access archived data only from the
machine on which the data is persisted.

You cannot discover data store instances using the offline mode of the Data
Accessor. You must already know what they are.

Accessing Diagnostic Data Programmatically
You can use the JMX API to access diagnostic data stored by WLDF.Example 14-1
shows the source Java code for a utility that uses the Accessor to query the different
archive data stores.

Example 14-1 Sample Code to Use the WLDF Accessor

/*
 * WLAccessor.java
 *
 * Demonstration utility that allows query of the different ARCV data stores
 * via the WLDF Accessor.
 *
 */

 import javax.naming.Context;
 import weblogic.jndi.Environment;
 import java.util.Hashtable;
 import java.util.Iterator;
 import java.util.Properties;
 import weblogic.management.ManagementException;
 import weblogic.management.runtime.WLDFAccessRuntimeMBean;
 import weblogic.management.runtime.WLDFDataAccessRuntimeMBean;
 import weblogic.diagnostics.accessor.ColumnInfo;
 import weblogic.diagnostics.accessor.DataRecord;
 import java.io.File;
 import java.io.FileInputStream;
 import java.io.FileNotFoundException;
 import java.io.IOException;

 import javax.management.MBeanServerConnection;
 import javax.management.remote.JMXConnector;
 import javax.management.remote.JMXConnectorFactory;
 import javax.management.remote.JMXServiceURL;
 import javax.management.ObjectName;
 import weblogic.management.mbeanservers.runtime.RuntimeServiceMBean;
 import weblogic.management.runtime.ServerRuntimeMBean;
 import weblogic.management.jmx.MBeanServerInvocationHandler;
 import weblogic.management.configuration.ServerMBean;

 /**
 * Demonstration utility that allows query of the different ARCV data stores
 * via the WLDF Accessor. The class looks up the appropriate accessor and
 * executes the query given the specified query parameters.
 *
 * To see information about it's usage, compile this file and run
 *
 * java WLAccessor usage

Chapter 14
Accessing Diagnostic Data Programmatically

14-4

 */
public class WLAccessor {

 /** Creates a new instance of WLAccessor */
 public WLAccessor(Properties p) {
 initialize(p);
 }

 /**
 * Retrieve the specfied WLDFDataAccessRuntimeMBean instance for querying.
 */
 public WLDFDataAccessRuntimeMBean getAccessor(String accessorType)
 throws Throwable
 {
 // Get the runtime MBeanServerConnection
 MBeanServerConnection runtimeMBS = this.getRuntimeMBeanServerConnection();

 // Lookup the runtime service for the connected server
 ObjectName rtSvcObjName = new ObjectName(RuntimeServiceMBean.OBJECT_NAME);
 RuntimeServiceMBean rtService = null;

 rtService = (RuntimeServiceMBean)
 MBeanServerInvocationHandler.newProxyInstance(
 runtimeMBS, rtSvcObjName
);

 // Walk the Runtime tree to the desired accessor instance.
 ServerRuntimeMBean srt = rtService.getServerRuntime();

 WLDFDataAccessRuntimeMBean ddar =
 srt.getWLDFRuntime().getWLDFAccessRuntime().
 lookupWLDFDataAccessRuntime(accessorType);

 return ddar;
 }

 /**
 * Execute the query using the given parameters, and display the formatted
 * records.
 */
 public void queryEventData() throws Throwable
 {
 String logicalName = "EventsDataArchive";
 WLDFDataAccessRuntimeMBean accessor = getAccessor(accessorType);

 ColumnInfo[] colinfo = accessor.getColumns();
 inform("Query string: " + queryString);

 int recordsFound = 0;
 Iterator actualIt =
 accessor.retrieveDataRecords(beginTime, endTime, queryString);
 while (actualIt.hasNext()) {
 DataRecord rec = (DataRecord)actualIt.next();
 inform("Record[" + recordsFound + "]: {");
 Object[] values = rec.getValues();
 for (int colno=0; colno < values.length; colno++) {
 inform("[" + colno + "] "
 + colinfo[colno].getColumnName() +
 " (" + colinfo[colno].getColumnTypeName() + "): " +
 values[colno]);
 }

Chapter 14
Accessing Diagnostic Data Programmatically

14-5

 inform("}");
 inform("");
 recordsFound++;
 }
 inform("Found " + recordsFound + " results");
 }

 /**
 * Main method that implements the tool.
 * @param args the command line arguments
 */
 public static void main(String[] args) {
 try {
 WLAccessor acsr = new WLAccessor(handleArgs(args));
 acsr.queryEventData();
 } catch (UsageException uex) {
 usage();
 } catch (Throwable t) {
 inform("Caught exception, " + t.getMessage(), t);
 inform("");
 usage();
 }
 }

 public static class UsageException extends Exception {}

 /**
 * Process the command line arguments, which are provided as name/value pairs.
 */
 public static Properties handleArgs(String[] args) throws Exception
 {
 Properties p = checkForDefaults();
 for (int i = 0; i < args.length; i++) {
 if (args[i].equalsIgnoreCase("usage"))
 throw new UsageException();

 String[] nvpair = new String[2];
 int token = args[i].indexOf('=');
 if (token < 0)
 throw new Exception("Invalid argument, " + args[i]);
 nvpair[0] = args[i].substring(0,token);
 nvpair[1] = args[i].substring(token+1);
 p.put(nvpair[0], nvpair[1]);
 }
 return p;
 }

 /**
 * Look for a default properties file
 */
 public static Properties checkForDefaults() throws IOException {
 Properties defaults = new Properties();
 try {
 File defaultprops = new File("accessor-defaults.properties");
 FileInputStream defaultsIS = new FileInputStream(defaultprops);
 //inform("loading options from accessor-defaults.properties");
 defaults.load(defaultsIS);
 } catch (FileNotFoundException fnfex) {
 //inform("No accessor-defaults.properties found");
 }
 return defaults;

Chapter 14
Accessing Diagnostic Data Programmatically

14-6

 }
 public static void inform(String s) {
 System.out.println(s);
 }
 public static void inform(String s, Throwable t) {
 System.out.println(s);
 t.printStackTrace();
 }

 private MBeanServerConnection getRuntimeMBeanServerConnection()
 throws IOException
 {
 // construct jmx service url

 // "service:jmx:[url]/jndi/[mbeanserver-jndi-name]"
 JMXServiceURL serviceURL =
 new JMXServiceURL(
 "service:jmx:" + getServerUrl() +
 "/jndi/" + RuntimeServiceMBean.MBEANSERVER_JNDI_NAME
);

 // specify the user and pwd. Also specify weblogic provide package
 inform("user name [" + username + "]");
 inform("password [" + password + "]");
 Hashtable h = new Hashtable();
 h.put(Context.SECURITY_PRINCIPAL, username);
 h.put(Context.SECURITY_CREDENTIALS, password);
 h.put(JMXConnectorFactory.PROTOCOL_PROVIDER_PACKAGES,
 "weblogic.management.remote");
 // get jmx connector
 JMXConnector connector = JMXConnectorFactory.connect(serviceURL, h);

 inform("Using JMX Connector to connect to " + serviceURL);
 return connector.getMBeanServerConnection();
 }

 private void initialize(Properties p) {
 serverUrl = p.getProperty("url","t3://localhost:7001");
 username = p.getProperty("user","weblogic");
 password = p.getProperty("pass","password");
 queryString = p.getProperty("query","SEVERITY IN
('Error','Warning','Critical','Emergency')");
 accessorType = p.getProperty("type","ServerLog");

 try {
 beginTime = Long.parseLong(p.getProperty("begin","0"));

 String end = p.getProperty("end");
 endTime = (end==null) ? Long.MAX_VALUE : Long.parseLong(end);
 } catch (NumberFormatException nfex) {
 throw new RuntimeException("Error formatting time bounds", nfex);
 }
 }

 private static void usage() {
 inform("");
 inform("");
 inform("Usage: ");
 inform("");
 inform(" java WLAccessor [options]");
 inform("");

Chapter 14
Accessing Diagnostic Data Programmatically

14-7

 inform("where [options] can be any combination of the following: ");
 inform("");
 inform(" usage Prints this text and exits");
 inform(" url=<url> default: 't3://localhost:7001'");
 inform(" user=<username> default: 'weblogic'");
 inform(" pass=<password> default: 'password'");
 inform(" begin=<begin-timestamp> default: 0");
 inform(" end=<end-timestamp> default: Long.MAX_VALUE");
 inform(" query=<query-string> default: \"SEVERITY IN
('Error','Warning','Critical','Emergency')\"");
 inform(" type=<accessor-type> default: 'ServerLog'");
 inform("");
 inform("Example:");
 inform("");
 inform(" java WLAccessor user=system pass=gumby1234 url=http://
myhost:8000 \\");
 inform(" query=\"SEVERITY = 'Error'\" begin=1088011734496
type=ServerLog");
 inform("");
 inform("");
 inform("");
 inform("All properties (except \"usage\") can all be specified in a file ");
 inform("in the current working directory. The file must be named: ");
 inform("");
 inform(" \"accessor-defaults.properties\"");
 inform("");
 inform("Each property specified in the defaults file can still be ");
 inform("overridden on the command-line as shown above");
 inform("");
 }

 /** Getter for property serverUrl.
 * @return Value of property serverUrl.
 *
 */
 public java.lang.String getServerUrl() {
 return serverUrl;
 }

 /** Setter for property serverUrl.
 * @param serverUrl New value of property serverUrl.
 *
 */
 public void setServerUrl(java.lang.String serverUrl) {
 this.serverUrl = serverUrl;
 }

 protected String serverName = null;
 protected String username = null;
 protected String password = null;
 protected String queryString = "";
 private String serverUrl = "t3://localhost:7001";
 private String accessorType = null;

 private long endTime = Long.MAX_VALUE;
 private long beginTime = 0;

 private WLDFAccessRuntimeMBean dar = null;

}

Chapter 14
Accessing Diagnostic Data Programmatically

14-8

Resetting the System Clock Can Affect How Data Is Archived
and Retrieved

Resetting the system clock to an earlier time while diagnostic data is being written to the
WLDF Archive or logs can cause unexpected results when you query that data based on a
timestamp.For example, consider the following sequence of events:

1. At 2:00 p.m., a diagnostic event is archived as RECORD_200, with a timestamp of
2:00:00 PM.

2. At 2:30 p.m., a diagnostic event is archived as RECORD_230, with a timestamp of
2:30:00 PM.

3. At 3:00 p.m., the system clock is reset to 2:00 p.m.

4. At 2:15 p.m. (after the clock was reset), a diagnostic event is archived as RECORD_215,
with a timestamp of 2:15:00 PM.

5. You issue a query to retrieve records generated between 2:00 and 2:20 p.m.

The query will not retrieve RECORD_215, because the 2:30:00 PM timestamp of
RECORD_230 ends the query.

Chapter 14
Resetting the System Clock Can Affect How Data Is Archived and Retrieved

14-9

15
Deploying WLDF Application Modules

The WebLogic Diagnostics Framework (WLDF) supports the ability to configure and manage
instrumentation for an application by configuring and deploying a diagnostics application
module as resource that is scoped to that application.The configuration of the diagnostics
application module is persisted in a descriptor file that you deploy with the application. A
diagnostic application module deployed in this way is available only to the application in
which it is enclosed. Using application-scoped diagnostic application modules ensures that
an application always has access to the required resources and simplifies the process of
deploying the application in new environments.

Note:

Note the following:

• Only the Instrumentation component can be used with applications (see
Configuring Application-Scoped Instrumentation).

• For instrumentation to be available for an application, instrumentation must be
enabled on the server to which the application is deployed. (Server-scoped
instrumentation is enabled and disabled in the <instrumentation> element of
the diagnostics descriptor for the server.)

• You can deploy an application using a deployment plan, which permits dynamic
configuration updates.

The following sections explain how to deploy diagnostic application modules:

• Deploying a Diagnostic Module as an Application-Scoped Resource

• Using Deployment Plans to Dynamically Control Instrumentation Configuration
WebLogic Server supports deployment plans, as specified in the Java EE Deployment
Specification API (JSR-88). With deployment plans, you can modify the configuration of
an application after it is built, without having to modify the application archives.

• Using a Deployment Plan: Overview
You can use a deployment plan to dynamically control the configuration options of an
application-scoped diagnostic module.

• Creating a Deployment Plan Using weblogic.PlanGenerator
The PlanGenerator tool inspects all Java EE deployment descriptors in the selected
application, and creates a deployment plan with null variables for all relevant WebLogic
Server deployment properties that configure external resources for the application.

• Sample Deployment Plan for Diagnostics
You can create a simple deployment plan for diagnostics using PlanGenerator.

• Enabling Java HotSwap
You can enable Java HotSwap to update the configuration of the application with the
modified deployment plan values.

15-1

• Deploying an Application with a Deployment Plan
To take advantage of the dynamic control provided by a deployment plan, you
must deploy the application with the plan.

• Updating an Application with a Modified Plan
You can change configuration settings by modifying the deployment plan and then
updating or redeploying the application, depending on whether HotSwap is
enabled.

Deploying a Diagnostic Module as an Application-Scoped
Resource

To deploy a diagnostic module as an application-scoped resource, you configure the
module in a descriptor file named weblogic-diagnostics.xml. You then package the
descriptor file with the application archive in the ARCHIVE_PATH/META-INF directory for
the deployed application.

For example:

C:\Oracle\Middleware\Oracle_Home\user_projects\applications\medrec\dist\standalon
e\exploded\medrec\META-INF\weblogic-diagnostics.xml

You can deploy the diagnostic module in both exploded and unexploded archives.

Note:

If the EAR archive contains WAR, RAR or EJB modules that have the
weblogic-diagnostics.xml descriptors in their META-INF directory, those
descriptors are ignored.

You can use any of the standard WebLogic Server tools provided for controlling
deployment, including the WebLogic Administrative Console or the WebLogic Scripting
Tool (WLST).

For information about creating modules and deploying applications, see Deploying
Applications to Oracle WebLogic Server.

Because of the different ways that diagnostic application modules and diagnostic
system modules are deployed, there are some differences in how you can reconfigure
them and when those changes take place, as shown in Table 15-1. The details of how
to work with diagnostic application modules is described throughout this section. See
Configuring Instrumentation, for information about working with diagnostic system
modules.

Table 15-1 Comparing System and Application Modules

Monitor
Type

Add/Remove
Objects
Dynamically

Add/Remove
Objects with
Console

Modify with
JMX
Remotely

Modify with
JSR-88 (non-
remote)

Modify with
Console

System
Module

Yes Yes Yes No Yes - via JMX

Chapter 15
Deploying a Diagnostic Module as an Application-Scoped Resource

15-2

Table 15-1 (Cont.) Comparing System and Application Modules

Monitor
Type

Add/Remove
Objects
Dynamically

Add/Remove
Objects with
Console

Modify with
JMX
Remotely

Modify with
JSR-88 (non-
remote)

Modify with
Console

Application
Module

Yes, when
HotSwap1 is
enabled

No, when
HotSwap is
not enabled:
module must
be redeployed

Yes No Yes Yes - via plan

1 See Using Deployment Plans to Dynamically Control Instrumentation Configuration, for information about
HotSwap.

Using Deployment Plans to Dynamically Control Instrumentation
Configuration

WebLogic Server supports deployment plans, as specified in the Java EE Deployment
Specification API (JSR-88). With deployment plans, you can modify the configuration of an
application after it is built, without having to modify the application archives.

For complete documentation on using deployment plans in WebLogic Server, see Configuring
Applications for Production Deployment in Deploying Applications to Oracle WebLogic
Server.

If you want to reconfigure an application that was deployed without a deployment plan, you
must undeploy, unarchive, reconfigure, re-archive, and then redeploy the application. With a
configuration plan, you can dynamically change many configuration options simply by
updating the plan, without modifying the application archive.

If you enable a feature called Java HotSwap (see Enabling Java HotSwap) before deploying
your application with a deployment plan, you can dynamically update all instrumentation
settings without redeploying the application. If you do not enable HotSwap, or if you do not
use a deployment plan, changes to some instrumentation settings require redeployment, as
shown in Table 15-2.

Table 15-2 When Application Instrumentation Configuration Changes Take Effect

Scenario / Settings to Use => Add and remove
monitors

Attach and
detach actions

Enable and
disable monitors

Application deployed with a deployment
plan, HotSwap enabled

Dynamic Dynamic Dynamic

Application deployed with a deployment
plan, HotSwap not enabled

Must redeploy
application1

Dynamic Dynamic

Application deployed without a
deployment plan

Must redeploy
application

Must redeploy
application

Must redeploy
application

1 If HotSwap is not enabled, you can "remove" a monitor, but that just disables it. The instrumentation code is still
woven into the application code. You cannot re-enable it through a modified plan.

Chapter 15
Using Deployment Plans to Dynamically Control Instrumentation Configuration

15-3

You can use a deployment plan to dynamically update configuration elements without
redeploying the application.

• <enabled>

• <dye-filtering-enabled>

• <dye-mask>

• <action>

Using a Deployment Plan: Overview
You can use a deployment plan to dynamically control the configuration options of an
application-scoped diagnostic module.

The general process for creating and using a deployment plan is as follows:

1. Create a well-formed weblogic-diagnostics.xml descriptor file for the
application.

Oracle recommends that you create an empty descriptor. This provides full
flexibility for dynamically modifying the configuration. It is possible to create
monitors in the original descriptor file and then use a deployment plan to override
the settings. However, you will be unable to completely remove monitors without
redeploying. If you add monitors using a deployment plan to an empty descriptor,
all such monitors can be removed. For information about configuring diagnostic
application modules, see Configuring Application-Scoped Instrumentation.

The schema for weblogic-diagnostics.xml is available at http://
xmlns.oracle.com/weblogic/weblogic-diagnostics/2.0/weblogic-
diagnostics.xsd.

2. Place the descriptor file weblogic-diagnostics.xml, in the top-level META-INF
directory of the appropriate archive.

3. Create a deployment plan, for example by using weblogic.PlanGenerator. See
Creating a Deployment Plan Using weblogic.PlanGenerator.

4. Start the server, optionally enabling Java HotSwap. See Enabling Java HotSwap.

5. Deploy the application using the deployment plan. See Deploying an Application
with a Deployment Plan).

6. When needed, edit the plan and update the application with the plan. See
Updating an Application with a Modified Plan.

Creating a Deployment Plan Using weblogic.PlanGenerator
The PlanGenerator tool inspects all Java EE deployment descriptors in the selected
application, and creates a deployment plan with null variables for all relevant
WebLogic Server deployment properties that configure external resources for the
application.

You can use the weblogic.PlanGenerator tool to create an initial deployment plan, and
interactively override specific properties of the weblogic-diagnostics.xml descriptor.

To create the plan, use the following syntax:

Chapter 15
Using a Deployment Plan: Overview

15-4

http://xmlns.oracle.com/weblogic/weblogic-diagnostics/2.0/weblogic-diagnostics.xsd
http://xmlns.oracle.com/weblogic/weblogic-diagnostics/2.0/weblogic-diagnostics.xsd
http://xmlns.oracle.com/weblogic/weblogic-diagnostics/2.0/weblogic-diagnostics.xsd

 java weblogic.PlanGenerator -plan output-plan.xml [options]
 application-path

For example:

 java weblogic.PlanGenerator -plan foo.plan -dynamics /test/apps/mywar

Note:

The -dynamics options specifies that the plan should be generated to include only
those options that can be dynamically updated.

For more information about creating and using deployment plans, see Configuring
Applications for Production Deployment in Deploying Applications to Oracle WebLogic
Server.

For more information about using PlanGenerator, see weblogic.PlanGenerator Command
Line Reference and Exporting an Application for Deployment to New Environments in
Deploying Applications to Oracle WebLogic Server

Sample Deployment Plan for Diagnostics
You can create a simple deployment plan for diagnostics using PlanGenerator.

Example 15-1 shows a simple deployment plan generated using weblogic.PlanGenerator.
(For readability, some information has been removed.) The plan enables the
Servlet_Before_Service monitor and attaches to it the actions DisplayArgumentsAction and
StackDumpAction.

Example 15-1 Sample Deployment Plan

<?xml version='1.0' encoding='UTF-8'?>
<deployment-plan xmlns="http://xmlns.oracle.com/weblogic/weblogic-diagnostics"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
global-variables="false">
 <application-name>jsp_expr_root</application-name>

 <variable-definition>
 <!-- Add two additional actions to Servlet_Before_Service monitor -->
 <variable>
 <name>WLDFInstrumentationMonitor_Servlet_Before_Service_Actions_113050559713922</name>
 <value>"DisplayArgumentsAction","StackDumpAction"</value>
 </variable>
 <-- Enable the Servlet_Before_Service monitor -->
 <variable>
 <name>WLDFInstrumentationMonitor_Servlet_Before_Service_Enabled_113050559713927</name>
 <value>true</value>
 </variable>
 </variable-definition>

 <module-override>
 <module-name>jspExpressionWar</module-name>
 <module-type>war</module-type>
 <module-descriptor external="false">
 <root-element>weblogic-web-app</root-element>
 <uri>WEB-INF/weblogic.xml</uri>

Chapter 15
Sample Deployment Plan for Diagnostics

15-5

 </module-descriptor>
 <module-descriptor external="false">
 <root-element>web-app</root-element>
 <uri>WEB-INF/web.xml</uri>
 </module-descriptor>
 <module-descriptor external="false">
 <root-element>wldf-resource</root-element>
 <uri>META-INF/weblogic-diagnostics.xml</uri>
 <variable-assignment>
 <name>WLDFInstrumentationMonitor_Servlet_Before_Service_Actions_113050559713922</name>
 <xpath>/wldf-resource/instrumentation/wldf-instrumentation-monitor/
[name="Servlet_Before_Service"]/action</xpath>
 </variable-assignment>
 <variable-assignment>
 <name>WLDFInstrumentationMonitor_Servlet_Before_Service_Enabled_113050559713927</name>
 <xpath>/wldf-resource/instrumentation/wldf-instrumentation-monitor/
[name="Servlet_Before_Service"]/enabled</xpath>
 </variable-assignment>
 </module-descriptor>
 </module-override>
 <config-root xsi:nil="true"></config-root>
</deployment-plan>

For a list and documentation of diagnostic monitors and actions that you can specify in
the deployment plan, see WLDF Instrumentation Library.

Enabling Java HotSwap
You can enable Java HotSwap to update the configuration of the application with the
modified deployment plan values.

To enable Java HotSwap, start the server with the following command line switch:

 -javaagent:$WL_HOME/server/lib/diagnostics-agent.jar

Deploying an Application with a Deployment Plan
To take advantage of the dynamic control provided by a deployment plan, you must
deploy the application with the plan.

You can use any of the standard WebLogic Server tools for controlling deployment,
including the WebLogic Server Administration Console or the WebLogic Scripting Tool
(WLST). For example, the following WLST command deploys an application with a
corresponding deployment plan.

 wls:/mydomain/serverConfig> deploy('myApp', './myApp.ear', 'myserver',
 'nostage', './plan.xml')

After deployment, the effective diagnostic monitor configuration is a combination of the
original descriptor, combined with the overridden attribute values from the plan. If the
original descriptor did not include a monitor with the given name and the plan
overrides an attribute of such a monitor, the monitor is added to the set of monitors to
be used with the application. This way, if your application is built with an empty
weblogic-diagnostics.xml descriptor, you can add diagnostic monitors to the
application during or after the deployment process without having to modify the
application archive.

Chapter 15
Enabling Java HotSwap

15-6

Updating an Application with a Modified Plan
You can change configuration settings by modifying the deployment plan and then updating
or redeploying the application, depending on whether HotSwap is enabled.

See Enabling Java HotSwap to see when you can simply update the application and when
you must redeploy it. You can use any of the standard WebLogic Server tools for updating or
redeploying, including the WebLogic Server Administration Console or the WebLogic
Scripting Tool (WLST).

If you enabled HotSwap, you can update the configuration for the application with the
modified plan values by updating the application with the plan. For example, the following
WLST command updates an application with a plan:

 wls:/mydomain/serverConfig> updateApplication('BigApp',
 'c:/myapps/BigApp/newPlan/plan.xml', stageMode='STAGE',
 testMode='false')

If you did not enable HotSwap, you must redeploy the application for certain changes to take
effect. For example, the following WLST command redeploys an application using a plan:

 wls:/mydomain/serverConfig> redeploy('myApp' 'c:/myapps/plan.xml')

Chapter 15
Updating an Application with a Modified Plan

15-7

16
Using the Monitoring Dashboard

Monitoring Dashboard provides views and tools for graphically presenting diagnostic data
about servers and applications running on them.The underlying functionality for generating,
retrieving, and persisting diagnostic data is provided by the WebLogic Diagnostics
Framework (WLDF). The Monitoring Dashboard provides additional tools for presenting that
data in charts and graphs.

• Running the Monitoring Dashboard
You can launch the Monitoring Dashboard from the WebLogic Server Administration
Console, or you can run it separately in a web browser.

• Scope of the Diagnostic Information Displayed

• About the Monitoring Dashboard Interface
The Monitoring Dashboard includes two main panels. Use the explorer panel to select the
view you want to display, and use the view display panel to see charts of the metric
values that have been captured in that view.

• Understanding How Metrics Are Collected and Presented
The Monitoring Dashboard displays metrics from two sources: realtime polled metrics,
and metrics previously harvested and stored in the Archive.

• The Parts of a Chart
A chart contains several key parts, including the chart name, viewport, X- and Y- axes for
plotting data, a legend for each displayed metric, view controls, and more.

Running the Monitoring Dashboard
You can launch the Monitoring Dashboard from the WebLogic Server Administration Console,
or you can run it separately in a web browser.

The Monitoring Dashboard is always displayed in its own tab, or window, depending on the
preferences you have set for your browser. You do not need to be logged in to the WebLogic
Server Administration Console to use the Monitoring Dashboard; but if you are not logged in,
you are prompted for your username and password credentials.

See Launch the Monitoring Dashboard in Oracle WebLogic Server Administration Console
Online Help.

Scope of the Diagnostic Information Displayed
The diagnostic data displayed by the Monitoring Dashboard consists of runtime MBean
attributes with numeric or Boolean values that are useful to measure, either as their current
values or as their changes over time. These values, referred to in the Monitoring Dashboard
as metrics, originate from one or more runtime MBean instances from one or more servers in
the domain.

The Monitoring Dashboard obtains metrics from two sources:

• Directly from active runtime MBean instances — these metrics are sometimes called
polled metrics in this chapter.

16-1

• From the Archive that have been collected by the Harvester — these metrics are
also known as collected metrics to distinguish them from metrics whose values are
obtained directly from active runtime MBean instances and returned to the
Monitoring Dashboard.

About the Monitoring Dashboard Interface
The Monitoring Dashboard includes two main panels. Use the explorer panel to select
the view you want to display, and use the view display panel to see charts of the metric
values that have been captured in that view.

Figure 16-1 Monitoring Dashboard Panels

The explorer panel provides access to the following:

• View List — Set of existing built-in and custom views. It also contains controls for
creating, copying, renaming, and deleting views. See View List.

• Metric Browser — Provides a means to navigate to and select the specific MBean
instance attributes whose metric values you want to display in a chart in a view.
See Metric Browser.

• View List

• Metric Browser

• View Display Panel

Chapter 16
About the Monitoring Dashboard Interface

16-2

View List
To display a view, select it from the View List, shown in Figure 16-1.

Views are presented in two primary categories:

• Built-in views

The built-in views are a set of predefined views of available runtime metrics for all running
WebLogic Server instances in the domain. These views surface some of the more critical
runtime WebLogic Server performance metrics and serve as examples of the Monitoring
Dashboard's view and charting capabilities.

Note the following about built-in views:

– Built-in views are dynamic. For example, if four servers are running, the set of
available built-in views and its charts are related to those four servers. If five servers
are running, then the set of built-in views and its charts expands for each additional
server. In addition, if the number of running server instances changes while you are
using dashboard (for example, a server is started or stopped), and you want to see
the new built-in views for the current set of running server instances, refresh the view
list by selecting Refresh from the View List menu.

– Built-in views are automatically available with every WebLogic Server installation and
can be used by every user logged into WebLogic Server Administration Console or
Monitoring Dashboard.

– You cannot modify a built-in view, but you can copy it. Once copied, the view can be
modified, renamed, saved, and deleted.

• Custom views

A custom view is any view created by a user. Custom views are available only to the user
who created them. Custom views are automatically persisted for the user and are in
effect only for that user account and only in the current domain. (However, note that
polled metric values that are displayed in custom views are not persisted if you close the
Monitoring Dashboard window, just as they are not persisted for built-in views either.)

No custom views are available by default.

See the following topics in Oracle WebLogic Server Administration Console Online Help:

• Work with views in the Monitoring Dashboard

• Start and stop views

• Create custom views

• Copy a view

• Delete a view

Metric Browser
Charts display metrics, which are attributes of MBean instances. Metrics can be either of the
following:

• Metrics whose values are obtained from active MBean instances in a running WebLogic
Server instance.

Chapter 16
About the Monitoring Dashboard Interface

16-3

The running server instances are polled at regular intervals, and the charts that
display the metric values that are returned are continually updated (see Current
Time Range Charts).

• Collected metrics whose values are obtained from the Archive.

Collected metrics have been previously captured by the WLDF Harvester and
placed in the Archive, and they provide a record of past state. Charts that display
only collected metrics are not updated (see Custom Time Range Charts).

You use the Metric Browser to select the metrics that you want to add to a chart. The
Metric Browser, shown in Figure 16-2, displays:

• Currently registered WebLogic MBean types

• Currently registered instances of MBean types

• Attributes of the listed registered instances

As a convenience for selecting metrics that have been collected by the Harvester, the
Metric Browser includes the Collected Metrics Only button. When you select this
button, the Metric Browser displays only collected metrics.

To see metrics for all runtime MBean types regardless of whether instances of them
are currently active, select Include All Types. To determine whether a metric was
collected by the Harvester, select the metric, or leave the mouse positioned over it. A
note window is displayed that provides information about the metric, including whether
or not it is a collected metric (that is, collected by the Harvester).

Figure 16-2 Metric Browser

Chapter 16
About the Monitoring Dashboard Interface

16-4

To use the Metric Browser, select the server instance containing the metric values you want
to display. The Metric Browser can optionally constrain the list of MBean types, registered
instances, and metrics that are displayed to only those for which metric data has been
collected, or display all MBean types for the server even if they have no active instances.

In addition, you do not need to find a metric by first selecting its MBean type and then the
instance in which it exists. You can select a metric in any order; for example, you can start by
first selecting a metric, or by first selecting the MBean instance if you prefer. In addition, you
can apply filters to each list to further constrain the items that are displayed.

You can select and filter in any order. Selecting an item in one list may make a selection in
another and may also constrain other lists. Note the following behavior:

• Initially the Types list box shows all MBean types (as determined by the settings of the
Collected Metrics Only and Include All Types checkboxes), the Instances list box
shows all MBean instances, and the Metrics list box shows all metrics.

• Selecting a specific MBean type causes the MBean instances list to be constrained to
instances of that type and the metrics list to be constrained to metrics of that type.

• Selecting (none) in the Types list specifies that no type is selected, which causes the
entries in the Instances and Metrics lists to be unconstrained.

• Selecting a specific MBean instance, either before or after making any other selection,
causes:

– The corresponding MBean type in the Types list box to become selected.

– The entries in the Metrics list to become constrained to only those metrics for that
MBean instance.

• Selecting a specific entry in the Metrics list box, either before or after making any other
selection, causes:

– The specific MBean type to which the metric corresponds to become selected in the
Types list.

– The Instances list to be constrained to the MBean instances to which the metric
corresponds.

• When you enter a filter string into any of the list boxes, you constrain the list contents to
include only the items that match the filter. The behaviors described in the preceding
items that are used in combination with the filter result in a behavior similar to a "logical
and."

The effect of these behaviors is to reinforce the relationships among MBean types, MBean
instances, and metrics. Each MBean instance is of a specific MBean type, and each metric
corresponds to a particular MBean type. The MBean type determines both all the instances of
that type as well as all the metrics that the type has.

For information about using the Metric Browser, see the following topics in Oracle WebLogic
Server Administration Console Online Help:

• Work with the Metric Browser

• Select the server to monitor

• Display items in the Metric Browser

• Display summary notes about MBean instances and metrics in the Metric Browser

Chapter 16
About the Monitoring Dashboard Interface

16-5

View Display Panel
A view is a collection of one or more charts that display captured metric values, as
shown in Figure 16-3. Only one view is displayed at a time in the Monitoring
Dashboard; however, multiple views can be running simultaneously.

Figure 16-3 View Containing Four Charts

Each chart in the view contains a legend, labels, and controls for identifying and
displaying the data. The following chart styles can be included in a view:

• Time-series charts, such as a line plot or bar graph that show changes in each
metric's value over a period of time

• Gauges, which show the current or most recent value of a metric along with the
following statistics that have been collected for the metric's values:

– Minimum

– Maximum

– Average

– Standard deviation

Charts can show the metrics for a current time range, meaning that the chart is
updated continually as the Monitoring Dashboard obtains new values for the metric at
regular intervals. Or, for charts for which you specify a custom time range that has
already passed, charts can display collected metrics obtained from the Archive that
were captured by the Harvester.

For information about displaying and starting views, and arranging charts in them, see
the following topics in Oracle WebLogic Server Administration Console Online Help:

Chapter 16
About the Monitoring Dashboard Interface

16-6

• Display or create views, charts, and metrics: main steps

• Work with views in the Monitoring Dashboard

• Display views

• Start and stop views

For general details about Monitoring Dashboard charts, see The Parts of a Chart.

Understanding How Metrics Are Collected and Presented
The Monitoring Dashboard displays metrics from two sources: realtime polled metrics, and
metrics previously harvested and stored in the Archive.

Realtime, polled metric values are obtained at regular intervals from running WebLogic
Server instances and returned to the Monitoring Dashboard. To view these metrics in the
Monitoring Dashboard, it is not necessary to configure the Harvester. When a view is started
with charts that contain one or more real-time, polled metrics, the runtime MBean instances
corresponding to those metrics are polled at each configured interval, and the requested
metric values are returned to the Monitoring Dashboard. A polled metric is stored only once in
the Monitoring Dashboard, even if that metric has been added to multiple charts or multiple
views. The runtime MBean instance corresponding to that metric is also polled only once at
each interval, regardless of the number of charts or views in which its metric values are
displayed. So when an updated value for a metric arrives in the Monitoring Dashboard, all
charts containing that metric are updated simultaneously. This enables the Monitoring
Dashboard to minimize the performance overhead on your system and maximize its overall
efficiency.

To be able to view collected metrics, you must first configure the Harvester to collect the data
you want to monitor and have it available in the Archive. In a view with one or more custom
time range charts containing collected metrics, the values for those metrics that correspond
to the specific custom time ranges are fetched once from the Archive and displayed in those
charts. Note that collected metrics data is also available for programmatic access, and it is
written to a standard log, HarvestedDataArchive, which you can view using the standard
WebLogic Server Administration Console as well as the Monitoring Dashboard. For
information about configuring the Harvester to collect metrics, see Configuring the Harvester
for Metric Collection.

• About Metrics and Chart Types

• Sequence in which Metrics Data is Displayed

• Notes about Metric Data Retention

About Metrics and Chart Types
The way in which the Monitoring Dashboard presents metrics depends upon the chart in
which they are displayed. After you add a chart to a view, you can use the Chart Properties
dialog box to specify either of the following time ranges:

• Current

• Custom

The following sections provide key information about how metrics are presented in each chart
type.

• Current Time Range Charts

Chapter 16
Understanding How Metrics Are Collected and Presented

16-7

• Custom Time Range Charts

Current Time Range Charts
This is the default time range for charts in the Monitoring Dashboard. Use this time
range for displaying real-time, polled metrics, which can be displayed only in current
time range charts. These charts are updated at regular intervals, which by default is
every 20 seconds. (The sample interval can be customized in the Dashboard
Preferences dialog box.)

When you add a metric to a current time range chart, the Monitoring Dashboard
fetches a small number of historical values for that metric from the Archive, if they are
available. Note the following about metric values obtained from the Archive for current
time range charts:

• The number of values fetched is derived from the amount of time over which the
stored samples can range, in which the sample interval is multiplied by the
maximum samples for the chart. (The default sampling interval is 20 seconds and
the default sample maximum is 100, which yields a time range of 2000 seconds, or
approximately 33.3 minutes.)

• If the sampling interval used by the Harvester is different from the one configured
for the Monitoring Dashboard, some distortion may be evident in the graphing of
that metric.

Custom Time Range Charts
Charts configured with a custom time range display collected metrics only. When you
specify a custom time range for a chart and add a collected metric, the Monitoring
Dashboard fetches the metric's values from the Archive that match the specified time
range. These charts are static: once the Monitoring Dashboard displays collected
metrics in a custom time range chart, the values of those metrics are never updated.

Note the following:

• Custom time range charts never include real-time, polled metric values.

• As a convenience for creating custom time range charts, the Metric Browser
includes a button labeled Collected Metrics Only. When you select this button,
the Metric Browser displays only collected metrics.

Sequence in which Metrics Data is Displayed
If the Harvester is configured to collected runtime MBean metrics, collection can begin
independently of whether the Monitoring Dashboard is running. This section shows the
sequence of activity that occurs when the Monitoring Dashboard collects and displays
metrics in current time range and custom time range charts.

1. If the Harvester is configured to collect data for a metric, it starts to harvest that
data after the server is started. The data is persisted in the Archive.

2. When the Monitoring Dashboard is launched, the list of available built-in and
custom views is displayed. However, the real-time polling of metric values directly
by JMX does not begin until one or more views are started.

3. When a view containing a current time range chart is started:

Chapter 16
Understanding How Metrics Are Collected and Presented

16-8

• The Monitoring Dashboard begins polling the runtime MBean instances
corresponding to the metrics contained in the chart.

• If the Harvester has collected data for this metric in the Archive, that data added to
the chart immediately. The number of samples that the Monitoring Dashboard obtains
from the Archive corresponds to the time range for the chart.

• If the Harvester was not configured to harvest data for this metric, no historical data is
retrieved from the Archive for the metric and therefore none is displayed.

4. When a view containing a custom time range chart is created, the Monitoring Dashboard
fetches from the Archive the set of values for the metric that match the custom time range
specified for that chart. Once the values are displayed in the chart, the chart is never
updated. The view in which a custom time range chart has been added does not need to
be started in order to have the values of its collected metrics displayed.

5. As polled data values for a metric arrive in the Monitoring Dashboard, the new values are
added to the chart. The oldest values obtained from the Archive, if available, are purged.

The chart always displays the most current data. The maximum samples for a chart
determines how many samples can be saved for metrics, in both current and custom time
range charts. After a chart reaches its maximum samples threshold, the oldest metric
values are removed as newest arrive.

Notes about Metric Data Retention
If you exit from the Monitoring Dashboard, either by closing the Monitoring Dashboard
window or by logging out, the browser prompts you to confirm your choice because all metric
values captured by the Monitoring Dashboard during the session will be lost. Exiting from the
Monitoring Dashboard has no effect on collected metrics persisted in the Archive. However,
note that the Archive may have a data retirement policy in effect that limits how long data is
retained there. See Retiring Data from the Archives.

The Parts of a Chart
A chart contains several key parts, including the chart name, viewport, X- and Y- axes for
plotting data, a legend for each displayed metric, view controls, and more.

A chart consists of the following:

• Chart name

• Chart viewport, which shows the data values of one or more metrics that are displayed
according to the chart type. The type can be a time-series chart that plots individual data
points over a specified time span, or a gauge that shows the current or most recent value
of a metric along with statistics indicating maximum, minimum, average, and standard
deviation values.

• X- and Y-axes for plotting diagnostic data

– For time-series charts, data point plots against a time-based X-axis. You can zoom in
or out to see a larger or smaller time segment in the viewport.

– The Y-axis has a range and, by default, the range is automatically set to include all
the data points in the chart. You can optionally configure minimum and maximum
values for the Y-axis.

• A legend for each metric that includes the name of the metric and the colored marker
symbol that is used for that metric in the chart viewport.

Chapter 16
The Parts of a Chart

16-9

The metric legend includes a button that, when selected, provides access to
operations that can be performed with the metric, such as:

– Changing the name that is displayed for the metric in the chart, as well as the
shape and color used for the metric data points displayed in the chart viewport

– Copying or moving the metric to another chart, moving the legend within the
current chart, or deleting the metric from the chart

• Chart series overview

The chart series overview, which is available for time-series charts, indicates the
portion of metrics data currently visible in the chart in relation to the whole set of
data that has been collected for the corresponding metrics for the represented
period of time. You can "drag-select" in either the viewport or the chart series
overview to zoom in or out of the chart's data.

The display of the chart series overview can optionally be suppressed, which can
be useful for reducing the number of UI artifacts that are displayed simultaneously
in the Monitoring Dashboard and also improving performance on slower systems
or browsers.

For information about customizing the display settings for the chart series
overview, see Set dashboard preferences in Oracle WebLogic Server
Administration Console Online Help.

• Buttons for panning the and zooming the data displayed on the chart's X-axis.
These buttons are part of the chart series overview, so the display properties set
for the chart series overview also apply to these buttons.

• Optional Y-axis units label

• Chart menu, available by selecting the chart menu button

You can use the chart menu to add metrics, change the chart type, pan and zoom
data shown in the viewport, and set various chart properties.

• Edit tool

Select the edit tool to modify the chart name, Y-axis units label, and names used to
identify each metric added to the chart.

Figure 16-4 shows each of these parts as they appear in a line plot chart.

Figure 16-4 Parts of a Chart

Chapter 16
The Parts of a Chart

16-10

A gauge chart, shown in Figure 16-5, contains the following additional information about each
metric that has been added to it:

• Minimum and maximum values

• Average value

• Standard deviation

Figure 16-5 Data Values Shown in Gauge Chart Types

To display the numeric values indicated by each of these artifacts associated with a particular
metric in a gauge chart, position the mouse pointer over that metric's marker symbol,
indicated in Figure 16-5 by the label Current value.

For information about how to create, modify, and work with charts in the Monitoring
Dashboard, see the following topics in Oracle WebLogic Server Administration Console
Online Help:

• Work with metrics in charts

• Add charts to a view

• Choose the chart type

• Display summary information about metrics in charts

• Pan and zoom the metrics data shown in a chart

• Reset gauge statistics

• Copy or move charts

• Set chart time range

• Control the Y-axis range

• Display thresholds in charts

Chapter 16
The Parts of a Chart

16-11

17
Configuring and Using WLDF
Programmatically

As an alternative to using the WebLogic Server Administration Console or Fusion Middleware
Control to enable, configure, and monitor the WebLogic Diagnostics Framework (WLDF), you
can also use the JMX API or the WebLogic Scripting Tool (WLST) to perform these tasks
programmatically.

See the following for additional information about how to develop and deploy JMX
applications and to use WLST:

• Developing Applications for Oracle WebLogic Server

• Developing Manageable Applications Using JMX for Oracle WebLogic Server

• Developing Custom Management Utilities Using JMX for Oracle WebLogic Server

• Deploying Applications to Oracle WebLogic Server

• Understanding the WebLogic Scripting Tool

• How WLDF Generates and Retrieves Data
The process WLDF uses to generate and retrieve diagnostic data largely depends on
how its main components are configured.

• Mapping WLDF Components to Beans and Packages

• Programming Tools
WLDF supports the use of multiple tools, such as WLST, JMX, and REST, for performing
tasks programmatically.

• WLDF Packages
WLDF provides two packages you can use to perform select operations
programmatically.

• Programming WLDF: Examples

How WLDF Generates and Retrieves Data
The process WLDF uses to generate and retrieve diagnostic data largely depends on how its
main components are configured.

In general, diagnostic data is generated and retrieved by WLDF components following this
process:

• The WLDF XML descriptor file settings for the Harvester, Instrumentation, Image
Capture, and Policies and Actions components determine the type and amount of
diagnostic data generated while a server is running.

• The diagnostic context and instrumentation settings filter and monitor this data as it flows
through the system. Data is harvested, actions are executed, events are generated, and
configured notifications are sent.

• The Archive component stores the data.

17-1

• The Accessor component retrieves the data.

Configuration is primarily an administrative task, accomplished either through the
WebLogic Server Administration Console or through WLST scripts. Deployable
descriptor modules, XML configuration files, are the primary method for configuring
diagnostic resources at both the system level (servers and clusters) and at the
application level. (For information about configuring WLDF resources, see
Understanding WLDF Configuration.)

Output retrieval via the Accessor component can be either an administrative or a
programmatic task.

Mapping WLDF Components to Beans and Packages
When you create diagnostic system modules using the WebLogic Server
Administration Console or WLST, WebLogic Server creates MBeans (managed beans)
for each module. You can access these MBeans using JMX or WLST. Because WLST
is a JMX client; any task you can perform using WLST you can also perform
programmatically through JMX.
Table 17-1 lists the beans and packages associated with WLDF and its components.
Figure 17-1 groups the beans by type.

Table 17-1 Mapping WLDF Components to Beans and Packages

Component Beans / Packages

WLDF WLDFServerDiagnosticMBean

WLDFSystemResourceMBean

WLDFBean (abstract)

WLDFResourceBean

WLDFRuntimeMBean

Diagnostic Image WLDFImageNotificationBean

WLDFImageCreationTaskRuntimeMBean

WLDFImageRuntimeMBean

Instrumentation WLDFInstrumentationBean

WLDFInstrumentationMonitorBean

WLDFInstrumentationRuntimeMBean

Diagnostic Context Package: weblogic.diagnostics.context

DiagnosticContextHelper

DiagnosticContextConstants

Harvester WLDFHarvesterBean

WLDFHarvestedTypeBean

WLDFHarvesterRuntimeMBean

Chapter 17
Mapping WLDF Components to Beans and Packages

17-2

Table 17-1 (Cont.) Mapping WLDF Components to Beans and Packages

Component Beans / Packages

Policies and Actions WLDFNotificationBean

WLDFWatchNotificationBean

WLDFJMSNotificationBean

WLDFJMXNotificationBean

WLDFSMTPNotificationBean

WLDFSNMPNotificationBean

WLDFWatchNotificationRuntimeMBean

Package: weblogic.diagnostics.watch

JMXWatchNotification

WatchNotification

Archive WLDFArchiveRuntimeMBean

WLDFDbstoreArchiveRuntimeMBean

WLDFFileArchiveRuntimeMBean

WLDFWlstoreArchiveRuntimeMBean

Accessor WLDFAccessRuntimeMBean

WLDFDataAccessRuntimeMBean

Runtime Control WLDFControlRuntimeMBean

WLDFSystemResourceControlRuntimeMBean

Chapter 17
Mapping WLDF Components to Beans and Packages

17-3

Figure 17-1 WLDF Configuration MBeans, Runtime MBeans, and System
Module Beans

Weblogic Diagnostic Framework

Domain Configuration MBeans

WLDFSystemResourceMBean WLDFServerDiagnosticMBean

System Module MBeans

Runtime MBeans

WLDFBean (abstract) WLDFInstrumentationBean WLDFNotificationBean

WLDFAccessRuntimeMBean WLDFFileArchiveRuntimeMBean WLDFInstrumentationRuntimeMBean

WLDFArchiveRuntimeMBean WLDFHarvesterRuntimeMBean WLDFRuntimeMBean

WLDFImageCreationTaskRuntime
MBean

WLDFControlRuntime
MBean

WLDFDbstoreArchiveRuntime
MBean

WLDFDataAccessRuntime
MBean

WLDFImageRuntime
MBean

WLDFWatchNotificationRuntime
MBean

WLDFWIstoreArchiveRuntime
MBean

WLDFDataRetirementTaskRuntime
MBean

WLDFEditableArchiveRuntime
MBean

WLDFHarvesterManager
RuntimeMBean

WLDFSystemResourceControl
RuntimeMBean

WLDFWatchNotificationSource
RuntimeMBean

WLDFWatchManagerRuntime
MBean

WLDFHarvestedTypeBean WLDFInstrumentationMonitorBean WLDFResourceBean

WLDFHarvestedBean WLDFJMSNotificationBean WLDFSMTPNotificationBean

WLDFImageNotificationBean WLDFJMXNotificationBean WLDFSNMPNotificationBean

WLDFWatchBean WLDFWatchNotificationBean

Programming Tools
WLDF supports the use of multiple tools, such as WLST, JMX, and REST, for
performing tasks programmatically.

For example, you can use these tools to do the following:

• Create and modify diagnostic descriptor files to configure the WLDF Harvester,
Instrumentation, and Policies and Actions components at the server level.

• Use JMX to access WLDF operations and attributes.

• Use JMX to create custom MBeans that contain harvestable data. You can then
configure the Harvester to collect that data and configure policies and actions to
monitor the values.

• Write Java programs that perform the following tasks:

– Capture notifications using JMX listeners.

– Capture notifications using JMS.

Chapter 17
Programming Tools

17-4

– Retrieve archived data through the Accessor. (The Accessor, as are the other
components, is surfaced as JMX; you can use WLST or straight JMX programming to
retrieve diagnostic data.)

• Configuration and Runtime APIs

Configuration and Runtime APIs
The configuration and runtime APIs configure and monitor WLDF. Both the configuration and
runtime APIs are exposed as MBeans.

• The configuration MBeans and system module Beans create and configure WLDF
resources, and determine their runtime behavior.

• The runtime MBeans monitor the runtime state and the operations defined for the
different components.

You can use the APIs to configure, activate, and deactivate data collection; to configure
policies, actions, alarms, and diagnostic image captures; and to access data.

• Configuration APIs

• Runtime APIs

Configuration APIs
The Configuration APIs define interfaces that are used to configure the following WLDF
components:

• Data Collectors: You can use the configuration APIs to configure and control
Instrumentation, Harvesting, and Image Capture.

– For the Instrumentation component, you can enable, disable, create, and destroy
server-level instrumentation and instrumentation monitors.

Note:

The configuration APIs do not support configuration of application-level
instrumentation. However, configuration changes for application-level
instrumentation can be effected using Java Specification Request (JSR) 88
APIs.

– For the Harvester component, you can add and remove types to be harvested,
specify which attributes and instances of those types are to be harvested, and set the
sample period for the Harvester.

– For the Diagnostic Image Capture component, you can set the name and path of the
directory in which the image capture is to be stored and the events image capture
interval, that is, the time interval during which recently archived events are captured
in the diagnostic image.

• Policies and Actions: You can use the configuration APIs to enable, disable, create, and
destroy policies and actions. You can also use the configuration APIs to:

– Set the policy type, policy expressions, and severity for policies

– Set alarm type and alarm reset period for actions

Chapter 17
Programming Tools

17-5

– Configure a policy to execute a diagnostic image capture

– Add and remove actions from policies

• Archive: Set the archive type and the archive directory

Runtime APIs
The runtime APIs define interfaces that are used to monitor the runtime state of the
WLDF components. Instances of these APIs are instantiated on instances of
individually managed servers. These APIs are defined as runtime MBeans, so JMX
clients can easily access them.

The runtime APIs encapsulate all other runtime interfaces for the individual WLDF
components. These APIs are included in the weblogic.management.runtime package.

You can use the runtime APIs to monitor the following WLDF components:

• Data Collectors—You can use the runtime APIs to monitor the Instrumentation,
Harvester, and the Image Capture components.

– For the Instrumentation component, you can monitor joinpoint count statistics,
the number of classes inspected for instrumentation monitors, the number of
classes modified, and the time it takes to inspect a class for instrumentation
monitors.

– For the Harvester component, you can query the set of harvestable types,
harvestable attributes, and harvestable instances (that is, the instances that
are currently harvestable for specific types). And, you can also query which
types, attributes, and instances are currently configured for harvesting. The
sampling interval and various runtime statistics pertaining to the harvesting
process are also available.

– For the Image Capture component, you can specify the destination and
lockout period for diagnostic images and initiate image captures.

• Policies and Actions: You can use the runtime APIs to monitor the Policies and
Actions and Archive components.

– For the Policies and Actions component, you can reset policy alarms and
monitor statistics about policy expression evaluations and policies triggered,
including information about the analysis of alarms, events, log records, and
harvested metrics.

• Archive: You can monitor information about the archive, such as file name and
archive statistics.

• Data Accessor—You can use the runtime APIs to retrieve the diagnostic data
persisted in the different archives. The runtime APIs also support data filtering by
allowing you to specify a query expression to search the data from the underlying
archive. You can monitor information about column type maps (a map relating
column names to the corresponding type names for the diagnostic data), statistics
about data record counts and timestamps, and cursors (cursors are used by
clients to fetch data records).

WLDF Packages
WLDF provides two packages you can use to perform select operations
programmatically.

Chapter 17
WLDF Packages

17-6

• weblogic.diagnostics.context contains:

– DiagnosticContextConstants, which defines the indices of dye flags supported by the
WebLogic diagnostics system.

– DiagnosticContextHelper, which provides applications limited access to the
diagnostic context.

• weblogic.diagnostics.watch contains:

– JMXWatchNotification, an extended JMX notification object which includes additional
information about the notification. This information is contained in the referenced
WatchNotification object returned from method getExtendedInfo.

– WatchNotification, which defines an action for a policy.

Programming WLDF: Examples
WLDF provides a number of beans and packages you can use to access and modify
information about a running server. The following examples show how to use these
components:
In addition, see the WLST and JMX examples in WebLogic Scripting Tool Examples.

• Example: DiagnosticContextExample.java

• Example: HarvesterMonitor.java

• Example: JMXAccessorExample.java

Example: DiagnosticContextExample.java
The following example uses the DiagnosticContextHelper class from the
weblogic.diagnostics.context package to get and set the value of the DYE_0 flag. (For
information about diagnostic contexts, see Configuring the DyeInjection Monitor to Manage
Diagnostic Contexts.)

To compile and run the program:

1. Copy the DiagnosticContextExample.java example (Example 17-1) to a directory and
compile it with:

javac -d . DiagnosticContextExample.java

This will create the ./weblogic/diagnostics/examples directory and populate it with
DiagnosticContextExample.class.

2. Run the program. The command syntax is:

java weblogic.diagnostics.examples.DiagnosticContextExample

Sample output is similar to:

java weblogic.diagnostics.examples.DiagnosticContextExample
ContextId=5b7898f93bf010ce:40305614:1048582efd4:-8000-0000000000000001
isDyedWith(DYE_0)=false
isDyedWith(DYE_0)=true

Example 17-1 Example: DiagnosticContextExample.java

package weblogic.diagnostics.examples;
import weblogic.diagnostics.context.DiagnosticContextHelper;
public class DiagnosticContextExample {

Chapter 17
Programming WLDF: Examples

17-7

 public static void main(String args[]) throws Exception {
 System.out.println("ContextId=" +
 DiagnosticContextHelper.getContextId());
 System.out.println("isDyedWith(DYE_0)=" +
 DiagnosticContextHelper.isDyedWith(DiagnosticContextHelper.DYE_0));
 DiagnosticContextHelper.setDye(DiagnosticContextHelper.DYE_0, true);
 System.out.println("isDyedWith(DYE_0)=" +
 DiagnosticContextHelper.isDyedWith(DiagnosticContextHelper.DYE_0));
 }
}

Example: HarvesterMonitor.java
The HarvesterMonitor program uses the Harvester JMX notification to identify when a
harvest cycle has occurred. It then retrieves the new values using the Accessor. All
access is performed through JMX. A description of notification listeners and the
HarvesterMonitor.java code are provided in the following sections:

• Notification Listeners

• HarvesterMonitor.java

For information about the Harvester component, see Configuring the Harvester for
Metric Collection.

• Notification Listeners

• HarvesterMonitor.java

Notification Listeners
Notification listeners provide an appropriate implementation for a particular transport
medium. For example, SMTP notification listeners provide the mechanism to establish
an SMTP connection with a mail server and send an e-mail with the notification
instance that it receives. JMX, SNMP, JMS and other types of listeners provide their
respective implementations as well.

Note:

You can develop plug-ins that propagate events generated by the WebLogic
Diagnostics Framework using transport mediums other than SMTP, JMX,
SNMP, or JMS. One approach is to use the JMX NotificationListener
interface to implement an object, and then propagate the notification
according to the requirements of the selected transport medium.

Table 17-2 describes each notification listener type that is provided with WebLogic
Server and the relevant configuration settings for each type.

Chapter 17
Programming WLDF: Examples

17-8

Table 17-2 Notification Listener Types

Notification Medium Description Configuration Parameter
Requirements

JMS Propagated via JMS Message
queues or topics.

Required: Destination JNDI name.

Optional: Connection factory JNDI
name (use the default JMS
connection factory if not present).

JMX Propagated via standard JMX
notifications.

None required. Uses predefined
singleton for posting the event.

SMTP Propagated via regular e-mail. Required: MailSession JNDI name
and Destination e-mail.

Optional: Subject and body (if not
specified, use default)

SNMP Propagated via SNMP traps and
the WebLogic Server SNMP
Agent.

None required, but the
SNMPTrapDestination MBean
must be defined in the WebLogic
SNMP agent.

By default, all notifications executed from policies are stored in the server log file in addition
to being executed through the configured medium.

HarvesterMonitor.java
To compile and run the HarvesterMonitor program:

1. Copy the HarvesterMonitor.java example (Example 17-2) to a directory and compile it
with:

javac -d . HarvesterMonitor.java

This creates the ./weblogic/diagnostics/examples directory and populates it with
HarvesterMonitor.class and HarvesterMonitor$HarvestCycleHandler.class.

2. Start the monitor. The command syntax is:

java HarvesterMonitor <server> <port> <uname> <pw> [<types>]

You need access to a WebLogic Server instance, and know the server's name, port
number, administrator's login name, and the administrator's password.

You can provide an optional list of harvested type names. If provided, the program
displays only the values for those types. However, for each selected type, the monitor
displays the complete set of collected values; there is no way to constrain the values that
are displayed for a selected type.

Only values that are explicitly configured for harvesting are displayed. Values collected
solely to support policies (implicit values) are not displayed.

The following command requires that '.' is in the CLASSPATH variable, and that you run the
command from the directory where you compiled the program. The command connects
to the myserver server, at port 7001, as user weblogic (and also the password, shown as
password):

java weblogic.diagnostics.examples.HarvesterMonitor myserver 7001
 weblogic password

Chapter 17
Programming WLDF: Examples

17-9

See Example 17-3 for an example of output from the HarvesterMonitor.

Example 17-2 Example: HarvesterMonitor.java

package weblogic.diagnostics.examples;
import weblogic.management.mbeanservers.runtime.RuntimeServiceMBean;
import javax.management.*;
import javax.management.remote.*;
import javax.naming.Context;
import java.util.*;
public class HarvesterMonitor {

 private static String accessorRuntimeMBeanName;
 private static ObjectName accessorRuntimeMBeanObjectName;
 private static String harvRuntimeMBeanName;
 private static ObjectName harvRuntimeMBeanObjectName;
 private static MBeanServerConnection rmbs;
 private static ObjectName getObjectName(String objectNameStr) {
 try { return new ObjectName(getCanonicalName(objectNameStr)); }
 catch (RuntimeException x) { throw x; }
 catch (Exception x) { x.printStackTrace(); throw new
 RuntimeException(x); }
 }
 private static String getCanonicalName(String objectNameStr) {
 try { return new ObjectName(objectNameStr).getCanonicalName(); }
 catch (RuntimeException x) { throw x; }
 catch (Exception x) { x.printStackTrace(); throw new
 RuntimeException(x); }
 }
 private static String serverName;
 private static int port;
 private static String userName;
 private static String password;
 private static ArrayList typesToMonitor = null;
 public static void main(String[] args) throws Exception {
 if (args.length < 4) {
 System.out.println(
 "Usage: java weblogic.diagnostics.harvester.HarvesterMonitor " +
 "<serverName> <port> <userName> <password> [<types>]" +
 weblogic.utils.PlatformConstants.EOL +
 " where <types> (optional) is a comma-separated list " +
 "of types to monitor.");
 System.exit(1);
 }
 serverName = args[0];
 port = Integer.parseInt(args[1]);
 userName = args[2];
 password = args[3];
 accessorRuntimeMBeanName = getCanonicalName(
 "com.bea:ServerRuntime=" + serverName +
 ",Name=HarvestedDataArchive,Type=WLDFDataAccessRuntime" +
 ",WLDFAccessRuntime=Accessor,WLDFRuntime=WLDFRuntime");
 accessorRuntimeMBeanObjectName =
 getObjectName(accessorRuntimeMBeanName);
 harvRuntimeMBeanName = getCanonicalName(
 "com.bea:ServerRuntime=" + serverName +
 ",Name=WLDFHarvesterRuntime,Type=WLDFHarvesterRuntime" +
 ",WLDFRuntime=WLDFRuntime");
 harvRuntimeMBeanObjectName = getObjectName(harvRuntimeMBeanName);
 if (args.length > 4) {
 String typesStr = args[4];
 typesToMonitor = new ArrayList();

Chapter 17
Programming WLDF: Examples

17-10

 int index;
 while ((index = typesStr.indexOf(",")) > 0) {
 String typeName = typesStr.substring(0,index).trim();
 typesToMonitor.add(typeName);
 typesStr = typesStr.substring(index+1);
 }
 typesToMonitor.add(typesStr.trim());
 }
 rmbs = getRuntimeMBeanServerConnection();
 new HarvesterMonitor().new HarvestCycleHandler();
 while(true) {Thread.sleep(100000);}
 }
 static protected String JNDI = "/jndi/";
 static public MBeanServerConnection getRuntimeMBeanServerConnection()
 throws Exception {
 JMXServiceURL serviceURL;
 serviceURL =
 new JMXServiceURL("t3",
 "localhost",
 port,
 JNDI + RuntimeServiceMBean.MBEANSERVER_JNDI_NAME);
 System.out.println("ServerName=" + serverName);
 System.out.println("URL=" + serviceURL);
 Hashtable h = new Hashtable();
 h.put(Context.SECURITY_PRINCIPAL, userName);
 h.put(Context.SECURITY_CREDENTIALS, password);
 h.put(JMXConnectorFactory.PROTOCOL_PROVIDER_PACKAGES,
 "weblogic.management.remote");
 JMXConnector connector = JMXConnectorFactory.connect(serviceURL,h);
 return connector.getMBeanServerConnection();
 }
 class HarvestCycleHandler implements NotificationListener {
 // used to track harvest cycles
 private int timestampIndex;
 private int domainIndex;
 private int serverIndex;
 private int typeIndex;
 private int instNameIndex;
 private int attrNameIndex;
 private int attrTypeIndex;
 private int attrValueIndex;
 long lastSampleTime = System.currentTimeMillis();
 HarvestCycleHandler() throws Exception{
 System.out.println("Harvester monitor started...");
 try {
 setUpRecordIndices();
 rmbs.addNotificationListener(harvRuntimeMBeanObjectName,
 this, null, null);
 }
 catch (javax.management.InstanceNotFoundException x) {
 System.out.println("Cannot find JMX data. " +
 "Is the server name correct?");
 System.exit(1);
 }
 }
 private void setUpRecordIndices() throws Exception {
 Map columnIndexMap = (Map)rmbs.getAttribute(
 accessorRuntimeMBeanObjectName, "ColumnIndexMap");
 timestampIndex =
((Integer)columnIndexMap.get("TIMESTAMP")).intValue();
 domainIndex =

Chapter 17
Programming WLDF: Examples

17-11

 ((Integer)columnIndexMap.get("DOMAIN")).intValue();
 serverIndex =
 ((Integer)columnIndexMap.get("SERVER")).intValue();
 typeIndex =
 ((Integer)columnIndexMap.get("TYPE")).intValue();
 instNameIndex =
 ((Integer)columnIndexMap.get("NAME")).intValue();
 attrNameIndex =
 ((Integer)columnIndexMap.get("ATTRNAME")).intValue();
 attrTypeIndex =
 ((Integer)columnIndexMap.get("ATTRTYPE")).intValue();
 attrValueIndex =
((Integer)columnIndexMap.get("ATTRVALUE")).intValue();
 }
 public synchronized void handleNotification(Notification notification,
 Object handback) {
 System.out.println("\n--");
 long thisSampleTime = System.currentTimeMillis()+1;
 try {
 String lastTypeName = null;
 String lastInstName = null;
 String cursor = (String)rmbs.invoke(accessorRuntimeMBeanObjectName,
 "openCursor",
 new Object[]{new Long(lastSampleTime),
 new Long(thisSampleTime), null},
 new String[]{ "java.lang.Long",
 "java.lang.Long", "java.lang.String" });
 while (((Boolean)rmbs.invoke(accessorRuntimeMBeanObjectName,
 "hasMoreData",
 new Object[]{cursor},
 new String[]{"java.lang.String"})).booleanValue()) {
 Object[] os = (Object[])rmbs.invoke(accessorRuntimeMBeanObjectName,
 "fetch",
 new Object[]{cursor},
 new String[]{"java.lang.String"});
 for (int i = 0; i < os.length; i++) {
 Object[] values = (Object[])os[i];
 String typeName = (String)values[typeIndex];
 String instName = (String)values[instNameIndex];
 String attrName = (String)values[attrNameIndex];
 if (!typeName.equals(lastTypeName)) {
 if (typesToMonitor != null &&
 !typesToMonitor.contains(typeName)) continue;
 System.out.println("\nType " + typeName);
 lastTypeName = typeName;
 }
 if (!instName.equals(lastInstName)) {
 System.out.println("\n Instance " + instName);
 lastInstName = instName;
 }
 Object attrValue = values[attrValueIndex];
 System.out.println(" - " + attrName + "=" + attrValue);
 }
 }
 lastSampleTime = thisSampleTime;
 }
 catch (Exception e) {e.printStackTrace();}
 }
 }
}

Chapter 17
Programming WLDF: Examples

17-12

Example 17-3 contains sample output from the HarvesterMonitor program:

Example 17-3 Sample Output from HarvesterMonitor

ServerName=myserver
URL=service:jmx:t3://localhost:7001/jndi/weblogic.management.mbeanservers.runtime
Harvester monitor started...
--
Type weblogic.management.runtime.WLDFHarvesterRuntimeMBean
Instance
com.bea:Name=WLDFHarvesterRuntime,ServerRuntime=myserver,Type=WLDFHarvesterRuntime,WLDF
Runtime=WLDFRuntime
 - TotalSamplingTime=202048863
 - CurrentSnapshotElapsedTime=1839619
Type weblogic.management.runtime.ServerRuntimeMBean
 Instance com.bea:Name=myserver,Type=ServerRuntime
 - RestartRequired=false
 - ListenPortEnabled=true
 - ActivationTime=1118319317071
 - ServerStartupTime=40671
 - ServerClasspath= [deleted long classpath listing]
 - CurrentMachine=
 - SocketsOpenedTotalCount=1
 - State=RUNNING
 - RestartsTotalCount=0
 - AdminServer=true
 - AdminServerListenPort=7001
 - ClusterMaster=false
 - StateVal=2
 - CurrentDirectory=C:\testdomain\.
 - AdminServerHost=10.40.8.123
 - OpenSocketsCurrentCount=1
 - ShuttingDown=false
 - SSLListenPortEnabled=false
 - AdministrationPortEnabled=false
 - AdminServerListenPortSecure=false
 - Registered=true

Example: JMXAccessorExample.java
The following example program uses JMX to print log entries to standard out. All access is
performed through JMX. (For information about the Accessor component, see Accessing
Diagnostic Data With the Data Accessor.)

To compile and run the program:

1. Copy the JMXAccessorExample.java example (Example 17-4) to a directory and compile
it with:

javac -d . JMXAccessorExample.java

This creates the ./weblogic/diagnostics/examples directory and populates it with
JMXAccessorExample.class.

2. Start the program. The command syntax is:

java weblogic.diagnostics.example.JMXAccessor <logicalName> <query>

You need access to a WebLogic Server instance, and have the server's name, port
number, administrator's login name, and the administrator's password.

Chapter 17
Programming WLDF: Examples

17-13

The logicalName is the name of the log. Valid names are:
HarvestedDataArchive, EventsDataArchive, ServerLog, DomainLog,
HTTPAccessLog, ServletAccessorHelper.WEBAPP_LOG, RAUtil.CONNECTOR_LOG,
JMSMessageLog, and CUSTOM.

Construct the query using the syntax described in WLDF Query Language. For the
JMXAccessorExample program, an empty query (an empty pair of double quotation
marks, "") returns all entries in the log.

The following command requires that '.' is in the CLASSPATH variable, and that you
run the command from the directory where you compiled the program. The
program uses the IIOP (Internet Inter-ORB Protocol) protocol to connect to port
7001, as user weblogic, with a password shown as password, and prints all
entries in the ServerLog to standard out:

java weblogic.diagnostics.examples.JMXAccessorExample ServerLog ""

You can modify the example to use a username/password combination for your
site.

Example 17-4 JMXAccessorExample.java

package weblogic.diagnostics.examples;
import java.io.IOException;
import java.net.MalformedURLException;
import java.util.Hashtable;
import java.util.Iterator;
import javax.management.MBeanServerConnection;
import javax.management.MalformedObjectNameException;
import javax.management.ObjectName;
import javax.management.remote.JMXConnector;
import javax.management.remote.JMXConnectorFactory;
import javax.management.remote.JMXServiceURL;
import javax.naming.Context;
public class JMXAccessorExample {
 private static final String JNDI = "/jndi/";
 public static void main(String[] args) {
 try {
 if (args.length != 2) {
 System.err.println("Incorrect invocation. Correct usage is:\n" +
 "java weblogic.diagnostics.examples.JMXAccessorExample " +
 "<logicalName> <query>");
 System.exit(1);
 }
 String logicalName = args[0];
 String query = args[1];
 MBeanServerConnection mbeanServerConnection =
 lookupMBeanServerConnection();
 ObjectName service = new

ObjectName(weblogic.management.mbeanservers.runtime.RuntimeServiceMBean.OBJECT_NA
ME);
 ObjectName serverRuntime =
 (ObjectName) mbeanServerConnection.getAttribute(service,
 "ServerRuntime");
 ObjectName wldfRuntime =
 (ObjectName) mbeanServerConnection.getAttribute(serverRuntime,
 "WLDFRuntime");
 ObjectName wldfAccessRuntime =
 (ObjectName) mbeanServerConnection.getAttribute(wldfRuntime,
 "WLDFAccessRuntime");

Chapter 17
Programming WLDF: Examples

17-14

 ObjectName wldfDataAccessRuntime =
 (ObjectName) mbeanServerConnection.invoke(wldfAccessRuntime,
 "lookupWLDFDataAccessRuntime", new Object[] {logicalName},
 new String[] {"java.lang.String"});
 String cursor =
 (String) mbeanServerConnection.invoke(wldfDataAccessRuntime,
 "openCursor", new Object[] {query},
 new String[] {"java.lang.String"});
 int fetchedCount = 0;
 do {
 Object[] rows =
 (Object[]) mbeanServerConnection.invoke(wldfDataAccessRuntime,
 "fetch", new Object[] {cursor},
 new String[] {"java.lang.String"});
 fetchedCount = rows.length;
 for (int i=0; i<rows.length; i++) {
 StringBuffer sb = new StringBuffer();
 Object[] cols = (Object[]) rows[i];
 for (int j=0; j<cols.length; j++) {
 sb.append("Index " + j + "=" + cols[j].toString() + " ");
 }
 System.out.println("Found row = " + sb.toString());
 }
 } while (fetchedCount > 0);
 mbeanServerConnection.invoke(wldfDataAccessRuntime,
 "closeCursor", new Object[] {cursor},
 new String[] {"java.lang.String"});
 } catch(Throwable th) {
 th.printStackTrace();
 System.exit(1);
 }
 }
 private static MBeanServerConnection lookupMBeanServerConnection ()
 throws Exception {
 // construct JMX service URL
 JMXServiceURL serviceURL;
 serviceURL = new JMXServiceURL("iiop", "localhost", 7001,
 JNDI + "weblogic.management.mbeanservers.runtime");
 // Specify the user, password, and WebLogic provider package
 Hashtable h = new Hashtable();
 h.put(Context.SECURITY_PRINCIPAL,"weblogic");
 h.put(Context.SECURITY_CREDENTIALS,"password");
 h.put(JMXConnectorFactory.PROTOCOL_PROVIDER_PACKAGES,
 "weblogic.management.remote");
 // Get jmx connector
 JMXConnector connector = JMXConnectorFactory.connect(serviceURL,h);
 // return MBean server connection class
 return connector.getMBeanServerConnection();
 } // End - lookupMBeanServerConnection
}

Chapter 17
Programming WLDF: Examples

17-15

18
Using Debug Patches

The WebLogic Diagnostics Framework (WLDF) supports the ability for you to apply debug
patches dynamically, allowing you to capture diagnostic information using a patch that you
can activate and deactivate without the need of a server restart.

• Dynamic Application of Debug Patches
Dynamic application of debug patches allows you to avoid the server restarts while
applying instrumented debug patches to gather additional information about an error.

• Specifying the Debug Patch Directory
Debug patch JAR files are picked up from a specific directory called the debug patch
directory.

• Configuring the WLDF Debug Patch Agent
To apply debug patches dynamically, the target WebLogic Server instances must be
started on the command line with the WLDF debug patch agent.

• WLST Commands for Debug Patches
WLDF provides a set of WLST commands you can use to list, activate, and deactivate
dynamic debug patches.

Dynamic Application of Debug Patches
Dynamic application of debug patches allows you to avoid the server restarts while applying
instrumented debug patches to gather additional information about an error.

Debug patches, packaged as JAR files, are generated through My Oracle Support (https://
support.oracle.com/) and used to gather additional information about an error when it
occurs in a production environment. Typically, the debug patch JAR files are added to the
classpath and all server instances must be restarted for the JAR files to take effect. This can
present problems, as it might not be possible to restart the server instances in a production
environment due to scheduling and other constraints. Additionally, after the server instances
are restarted, in-memory states are lost and the problem may disappear or take awhile to
reappear. Also, when these debug patches are no longer needed, they can be deactivated
without server restarts.

When dynamically applying debug patches, WebLogic Server uses Java HotSwap to replace
the loaded classes with the versions provided in the debug patch JAR files. See Enabling
Java HotSwap.

Specifying the Debug Patch Directory
Debug patch JAR files are picked up from a specific directory called the debug patch
directory.

This directory is specified domain-wide using the DebugPatchDirectory attribute of the
DebugPatchesMBean. By default, the debug_patches directory under the DOMAIN_HOME directory
is used as the debug patch directory.

18-1

https://support.oracle.com/
https://support.oracle.com/

This feature is available to users with administrative privileges in the domain. Only
authorized users are able to post debug patch JAR files in the debug patch directory.
This directory must be properly protected with file system permissions.

Configuring the WLDF Debug Patch Agent
To apply debug patches dynamically, the target WebLogic Server instances must be
started on the command line with the WLDF debug patch agent.

The WLDF debug patch agent handles the following:

• Replaces the loaded classes with the instrumented classes from the debug patch
JAR.

• Makes sure that the replacement classes in the debug patch JAR have the same
shape as the original classes. If any of the classes do not meet this requirement,
none of the classes in the debug patch JAR are swapped in and an error message
is logged.

• Logs informational messages to indicate the start and completion of debug patch
activation or deactivation.

• Allows only properly authenticated users with administrative privileges to apply a
debug patch.

To specify the WLDF debug patch agent on the command line, update your startup
script to include the following:

-javaagent:$WL_HOME/server/lib/debugpatch-agent.jar

Note:

New startup scripts will automatically include the debug-agent.jar on the
command line unless the disableDebugPatches option is specified on the
startup script command line.

WLST Commands for Debug Patches
WLDF provides a set of WLST commands you can use to list, activate, and deactivate
dynamic debug patches.

Table 18-1 summarizes the list of WLST commands used with debug patches.

Table 18-1 WLST Commands Used With Debug Patches

Command Summary

activateDebugPatch Activates a debug patch on the specified targets.

deactivateAllDebugPat
ches

Deactivates all debug patches on the specified targets.

deactivateDebugPatche
s

Deactivates a debug patch on the specified targets.

Chapter 18
Configuring the WLDF Debug Patch Agent

18-2

Table 18-1 (Cont.) WLST Commands Used With Debug Patches

Command Summary

listDebugPatches Lists the active and available debug patches on the specified
targets.

listDebugPatchTasks Lists the debug patch (activated or deactivated) tasks from the
specified targets.

purgeDebugPatchTasks Purges the debug patch (activated or deactivated) tasks on the
specified targets.

showDebugPatchInfo Displays details about a debug patch on the specified targets.

• Dynamically Activating a Debug Patch

• Dynamically Deactivating Debug Patches

Dynamically Activating a Debug Patch
Example 18-1, Example 18-2, and Example 18-3 demonstrate how to use the
activateDebugPatch command to activate a debug patch on the desired targets. Note that if
a specified debug patch is not available in the debug patch directory on a target, a warning is
issued and WebLogic Server will attempt to proceed and activate the debug patch on the
remaining targets. If one of the classes in the debug patch fails to replace the original class
on a target, the entire debug patch JAR file is rejected on that target and WebLogic Server
will attempt to activate the debug patch on the remaining targets. Additionally, several debug
patches may be activated over time and each debug patch will overlay the original classes
and previously activated debug patches. If a class is contained in multiple activated debug
patches, the class in the debug patch that was last activated has precedence. The
activateDebugPatch command returns an array of tasks, each element corresponding to the
activation activity on an affected target server instance.

Example 18-1 Activating a Debug Patch on Two Managed Servers

Connected to admin server: Activate debug-patch-01.jar on managed servers
MS1 and MS2
tasks=activateDebugPatch(Patch='debug-patch-01.jar', Target='MS1,MS2')

Example 18-2 Activating a Debug Patch on a Server Instance and a Cluster

Connected to admin server: Activate debug-patch-01.jar on myserver and all
members of cluster Cluster-0
tasks=activateDebugPatch(Patch='debug-patch-01.jar', Target='myserver,Cluster-0')

Example 18-3 Activating a Debug Patch on an Application Targeted to a Cluster

Connected to admin server: Activate debug-patch-03.jar on application 'medrec'
targeted to cluster Cluster-1
tasks=activateDebugPatch(Patch='debug-patch-03.jar', Target='Cluster-1',
 Application='medrec')

Dynamically Deactivating Debug Patches
Example 18-4, Example 18-5, and Example 18-6 demonstrate how to use the
deactivateDebugPatches command to deactivate debug patches. To specify more than one
debug patch, use a comma-separated list. If a specified debug patch is not active on a target,

Chapter 18
WLST Commands for Debug Patches

18-3

a warning is issued and the command continues. If no debug patches are specified, all
active patches are deactivated on the specified targets and the original classes are
activated. After successful deactivation, all targets are left in the same state they were
in prior to running this command. The deactivateDebugPatches command returns an
array of tasks.

Example 18-4 Deactivating Debug Patches on a Managed Server

Connected to MS1: deactivate debug-patch-01.jar
tasks=deactivateDebugPatches(Patches='debug-patch-01.jar')

Example 18-5 Deactivating Debug Patches on All Members of a Cluster

Connected to admin server: de-activate debug-patch-01.jar
and debug-patch-02.jar on all members of cluster Cluster-0
tasks=deactivateDebugPatches(Patches='debug-patch-01.jar,debug-patch-02.jar',
 Target='Cluster-0')

Example 18-6 Deactivating Debug Patches on an Application Targeted to a
Cluster

Connected to admin server: de-activate debug-patch-03.jar on application
'medrec' targeted to cluster Cluster-1
tasks=deactivateDebugPatches(Patches='debug-patch-03.jar', Target='Cluster-1',
 Application='medrec')

Chapter 18
WLST Commands for Debug Patches

18-4

A
Smart Rule Reference

Smart rules are prepackaged functions provided by the WebLogic Diagnostics Framework
(WLDF) that simplify the creation of policy expressions.When used in scheduled policy
expressions, as described in Configuring Smart Rule Based Policies, smart rules can execute
elastic actions on dynamic clusters, as well as be used in conjunction with any WLDF action.
For example, a smart rule that monitors stuck threads in a cluster can be used to execute an
SMTP action that sends an email to the system administrator.
The smart rules are organized into Cluster Scope Smart Rules and Server Scope Smart
Rules.

• About the Parameters You Specify for Smart Rules

• Cluster Scope Smart Rules

• Server Scope Smart Rules

About the Parameters You Specify for Smart Rules
All smart rules involve the collection of metric values, which is the process of gathering data
needed for monitoring system state and performance.Metrics are exposed to WLDF as
attributes on qualified MBeans. Smart rules cause WLDF to gather values from selected
MBean attributes at a specified sampling rate and retain those values for a specified duration
of time. This allows you to track trends in metric changes in a server or cluster over time.
When you configure a smart rule, you always specify the following parameters:

• sampling rate

• retention window

• threshold value

Note:

Sampling rates and retention windows are completely independent of policy
schedules. A policy schedule determines only when a smart rule is evaluated; the
policy schedule does not determine the sampling rate or retention window.

sampling rate

The sampling rate is the frequency with which a metric value is collected. For example, a
sampling rate of 30 seconds means that the value of an MBean attribute is collected every 30
seconds.

Each smart rule has a default sampling rate. When you are configuring a smart rule using
either the WebLogic Server Administration Console or Fusion Middleware Control, you can
accept the default sampling rate that is provided in the configuration assistant. However,
when you configure a smart rule using WLST, REST, or JMX, you need to explicitly specify
the sampling rate.

A-1

The sampling rate is a String value that can be specified using the following syntax:

amount[unit]
In the preceding syntax:

• amount represents an integer.

• unit] represents seconds, minutes, or hours. Each can be abbreviated to the first
letter. For example: seconds can be abbreviated to s.

The default sampling rate time unit is seconds.

• You may include a space character between amount and unit.

For example, any of the following can be used to specify 30 seconds:

• "30"
• "30 seconds"
• "30snds"
• "30s"

retention window

The retention window is the period of time during which collected samples are retained
in an internal buffer for evaluation. For example, a retention window of 5 minutes
causes the samples collected during the previous 5 minutes to be retained. As each
new sample is collected, the oldest sample is removed.

Smart rules function by calculating the average value of a particular metric that has
been collected over the period of time corresponding to the retention window.
Obtaining average values allows you to obtain a more representative view of changes,
and trends in those changes, that are occurring in a server, cluster, or operational
environment of WebLogic Server.

The retention window you specify is a String value that uses the same syntax as the
sampling rate:

amount[unit]
The time unit can be seconds, minutes, or hours, and each can be abbreviated. The
default time unit in smart rule retention windows is minutes, which can be abbreviated
to m. For example, any of the following can be used to specify 10 minutes:

• "10"
• "10 minutes"
• "10mts"
• "10m"

threshold value

The threshold value is an arbitrary value against which the average value of all metrics
collected during a retention window is compared. If the average value meets the smart
rule's comparison criteria for the threshold value, the smart rule can be evaluated to
true, assuming all other conditions set in the smart rule are met.

Appendix A
About the Parameters You Specify for Smart Rules

A-2

For example, if you want a smart rule to be evaluated as true if the average number of idle
threads in a cluster is greater than or equal to a specific number, you can enter that number
as the threshold value in the ClusterHighIdleThreads smart rule, which monitors a cluster for
a high idle thread count. In this context, the threshold value you specify for this smart rule is
referred to as the high threshold value because the cluster is monitored to measure
whether the average number of idle threads is greater than or equal to that threshold.

By contrast, if you want a smart rule to be evaluated as true if the average free heap in a
cluster falls below a certain amount, you enter that amount as the threshold value in the
ClusterLowHeapFreePercent smart rule, which monitors a cluster for a low free heap. In this
context, this threshold value yo specify for this smart rule is referred to as the low threshold
value because the cluster is monitored to measure whether the average free heap amount is
less than that threshold.

Note that smart rules vary with regard to how the average collected metric value must
compare to the threshold value. Some smart rules require that the average collected value
must be greater than or equal to the threshold; some require that the average must be
greater than the threshold; some require the average to be less than or equal to the
threshold; and so on.

Cluster Scope Smart Rules
A cluster scope smart rule is one that is applied to all active nodes in a cluster, and that must
be executed from a policy on the Administration Server.The set of cluster scope smart rules
provided by WLDF are listed and summarized in Table A-2. For each smart rule, Table A-2
identifies the following:

• The specific metric, typically an MBean attribute, that is sampled

• The condition that causes the smart rule to be evaluated to true if, over the course of the
retention window, the number of servers with an average metric value that meets specific
comparison criteria against the threshold value is greater than or equal to a specified
percentage of all servers in the cluster.

Table A-1 Summary or Administration Server Scope Smart Rules

Smart Rule Metric Condition Required for Evaluation to true
ClusterLowThroughp
ut

Throughput metric of the
ThreadPoolRuntimeMBean

The average Throughput value is less than the
low threshold value.

ClusterHighProcessC
puLoadAverage

ProcessCpuLoad value of the
java.lang:type=OperatingSystem
MXBean

The average ProcessCpuLoad value is greater
than or equal to the high threshold value.

ClusterHighThroughp
ut

Throughput metric of the
ThreadPoolRuntimeMBean

The average Throughput value is greater than or
equal to the high threshold value.

ClusterLowPendingU
serRequests

PendingUserRequestCount value of
the ThreadPoolRuntimeMBean

The average PendingUserRequestCount value
is less than the low threshold value.

ClusterHighStuckThr
eads

StuckThreadCount value of the
ThreadPoolRuntimeMBean

The average StuckThreadCount value is greater
than or equal to the high threshold value.

ClusterLowQueueLen
gth

QueueLength value of the
ThreadPoolRuntimeMBean

The average QueueLength value is less than the
low threshold value.

ClusterHighPendingU
serRequests

PendingUserRequestCount value of
the ThreadPoolRuntimeMBean

The average PendingUserRequestCount value
is greater than or equal to the high threshold value.

Appendix A
Cluster Scope Smart Rules

A-3

Table A-1 (Cont.) Summary or Administration Server Scope Smart Rules

Smart Rule Metric Condition Required for Evaluation to true
ClusterLowProcessC
puLoadAverage

ProcessCpuLoad value of the
java.lang:type=OperatingSystem
MXBean

The average ProcessCpuLoad value is less than
the low threshold value.

ClusterHighIdleThrea
ds

ExecuteThreadIdleCount value of
the ThreadPoolRuntimeMBean

The average ExecuteThreadIdleCount value is
greater than or equal to the high threshold value.

ClusterLowSystemLo
adAverage

SystemLoadAverage value of the
java.lang:type=OperatingSystem
MXBean

The average SystemLoadAverage value is less
than the low threshold value.

ClusterHighQueueLe
ngth

QueueLength value of the
ThreadPoolRuntimeMBean

The average QueueLength value is greater than
or equal to the high threshold value.

ClusterLowHeapFree
Percent

HeapFreePercent value of the
JVMRuntimeMBean

The average HeapFreePercent value is less than
the low threshold value.

ClusterHighSystemLo
adAverage

SystemLoadAverage value of the
java.lang:type=OperatingSystem
MXBean

The average SystemLoadAverage value is
greater than or equal to the high threshold value.

ClusterHighHeapFree
Percent

HeapFreePercent value of the
JVMRuntimeMBean

The average HeapFreePercent value is greater
than or equal to the high threshold value.

ClusterLowSystemCp
uLoadAverage

SystemCpuLoad value of the
java.lang:type=OperatingSystem
MXBean

The average SystemCpuLoad value is less than
the low threshold value.

ClusterLowIdleThrea
ds

ExecuteThreadIdleCount value of
the ThreadPoolRuntimeMBean

The average ExecuteThreadIdleCount value is
less than the low threshold value.

ClusterGenericMetric
Rule

Specified MBean attribute value Any metric visible through JMX satisfies the
specified comparison criteria with the threshold
value. (This smart rule is a general form of cluster
scope rule.)

ClusterHighSystemC
puLoadAverage

SystemCpuLoad value of the
java.lang:type=OperatingSystem
MXBean

The average SystemCpuLoad value is greater
than or equal to the high threshold value.

• ClusterLowThroughput

• ClusterHighProcessCpuLoadAverage

• ClusterHighThroughput

• ClusterLowPendingUserRequests

• ClusterHighStuckThreads

• ClusterLowQueueLength

• ClusterHighPendingUserRequests

• ClusterLowProcessCpuLoadAverage

• ClusterHighIdleThreads

• ClusterLowSystemLoadAverage

• ClusterHighQueueLength

Appendix A
Cluster Scope Smart Rules

A-4

• ClusterLowHeapFreePercent

• ClusterHighSystemLoadAverage

• ClusterHighHeapFreePercent

• ClusterLowSystemCpuLoadAverage

• ClusterLowIdleThreads

• ClusterGenericMetricRule
The ClusterGenericMetricRule smart rule is typically used to observe trends in JMX
metrics that are published through the Server Runtime MBean Server and that are not
provided through the other cluster scope smart rules.

• ClusterHighSystemCpuLoadAverage

ClusterLowThroughput
The ClusterLowThrougput smart rule measures whether the average throughput in a cluster
is decreasing, as indicated by the average value of the
ThreadPoolRuntimeMBean.Throughput attribute in each Managed Server.You can use this
rule to determine whether cluster capacity can be safely reduced; for example, by executing a
scale down action.
Target: Administration Server

Description

This smart rule evaluates to true if the number of Managed Servers with an average
ThreadPoolRuntimeMBean.Throughput value that satisfies the low threshold comparison
criteria is greater than or equal to the specified percentage of all servers in the cluster.

To use this smart rule, specify:

• The sampling rate and retention window for the ThreadPoolRuntimeMBean.Throughput
attribute

• Low Throughput threshold value

• Percentage of servers in the cluster with an average Throughput value that must be less
than the low Throughput threshold value in order for the rule to evaluate to true

Syntax

wls:ClusterLowThroughput("clusterName", "period", "duration", throughputLimit,
percentServersLimit)

Parameter Description

clusterName Name of target dynamic cluster, expressed as a String.

period Sampling rate for Throughput values, expressed as a String. For
example, 30s specifies that this metric is sampled every 30 seconds.

• The default time unit is seconds.
• The default value is 30s.

See sampling rate for more information about specifying this parameter.

Appendix A
Cluster Scope Smart Rules

A-5

Parameter Description

duration Retention window during which collected samples are retained,
expressed as a String.

• The default time unit is minutes.
• The default value is 10m.

See retention window for more information about specifying this
parameter.

throughputLimit Value established as the low threshold value of the
ThreadPoolRuntimeMBean.Throughput attribute.

percentServersLimit Percentage of servers in the cluster with an average Throughput value
that must be less than the value of the throughputLimit parameter in
order for the smart rule to be evaluated as true.

This parameter is expressed as a float value between 0.0 and 100.0

Example

The smart rule shown in this example uses the following input parameters:

Parameter Value

clusterName myCluster
period 30
duration 15
throughputLimit 5
percentServersLimit 75

The smart rule that uses the preceding parameters is expressed as follows:

wls:ClusterLowThroughput("myCluster","30 seconds","15 minutes",5,75)

If configured with a scale down action, this example smart rule does the following:

1. Samples the value of the Throughput metric from each Managed Server instance
in myCluster every 30 seconds over a retention window of 15 minutes.

2. At the end of the retention window, fires a scale down action if the following
condition evaluates to true:

The average Throughput value, over the last 15 minutes, is less than 5 on at least
75 per cent of the Managed Servers in the cluster.

ClusterHighProcessCpuLoadAverage
The ClusterHighProcessCpuLoadAverage smart rule measures an increase in system
load across the cluster, as indicated by the average value of the ProcessCpuLoad
attribute in each Managed Server. You can use this rule to determine whether cluster
capacity needs to be increased; for example, by executing a scale up action.
Target: Administration Server

Appendix A
Cluster Scope Smart Rules

A-6

Description

This smart rule evaluates to true if the number of Managed Servers with an average
ProcessCpuLoad value that satisfies the threshold comparison criteria is greater than or equal
to the specified percentage of all servers in the cluster.

To use this smart rule, specify:

• The sampling rate and retention window for the operating system's ProcessCpuLoad value

• High ProcessCpuLoad threshold value

• Percentage of servers in the cluster with an average ProcessCpuLoad value that must be
greater than or equal to the high ProcessCpuLoad threshold value in order for the rule to
evaluate to true

Note:

The value of the ProcessCpuLoad metric is platform-specific and is not available on
all platforms. The MXBean attribute from which this metric originates is described at
https://docs.oracle.com/javase/8/docs/jre/api/management/
extension/com/sun/management/
OperatingSystemMXBean.html#getProcessCpuLoad--.

Syntax

wls:ClusterHighProcessCpuLoadAverage("clusterName", "period", "duration",
procCpuLoadLimit, percentServersLimit)

Parameter Description

clusterName Name of target dynamic cluster, expressed as a String.

period Sampling rate for ProcessCpuLoad values, expressed as a String.
For example, 30s specifies that this metric is sampled every 30
seconds.

• The default time unit is seconds.
• The default value is 30s.

See sampling rate for more information about specifying this parameter.

duration Retention window during which collected samples are retained,
expressed as a String.

• The default time unit is seconds.
• The default value is 10m.

See retention window for more information about specifying this
parameter.

procCpuLoadLimit Value established as the high threshold value of the ProcessCpuLoad
metric.

percentServersLimit Percentage of servers in the cluster with an average ProcessCpuLoad
value that must be greater than or equal to the value of the
procCpuLoadLimit parameter in order for the smart rule to be
evaluated as true.

This parameter is expressed as a float value between 0.0 and 100.0

Appendix A
Cluster Scope Smart Rules

A-7

https://docs.oracle.com/javase/8/docs/jre/api/management/extension/com/sun/management/OperatingSystemMXBean.html#getProcessCpuLoad--
https://docs.oracle.com/javase/8/docs/jre/api/management/extension/com/sun/management/OperatingSystemMXBean.html#getProcessCpuLoad--
https://docs.oracle.com/javase/8/docs/jre/api/management/extension/com/sun/management/OperatingSystemMXBean.html#getProcessCpuLoad--

Example

The smart rule shown in this example uses the following input parameters:

Parameter Value

clusterName myCluster
period 30
duration 10
procCpuLoadLimit 0.8
percentServersLimit 60

The smart rule that uses the preceding parameters is expressed as follows:

wls:ClusterHighProcessCpuLoadAverage("myCluster","30 seconds","10
minutes",0.8,60)

If configured with a scale up action, this smart rule does the following:

1. Samples the value of the ProcessCpuLoad metric from each Managed Server
instance in myCluster every 30 seconds over a retention window of 10 minutes.

2. At the end of the retention window, fires a scale up action if the following condition
evaluates to true:

The average ProcessCpuLoad value, over the last 10 minutes, is greater than or
equal to 0.8 on at least 60 per cent of the Managed Servers in the cluster.

ClusterHighThroughput
The ClusterHighThroughput smart rule measures an increase in system throughput
across the cluster, as indicated by the average value of the
ThreadPoolRuntimeMBean.Throughput attribute in each Managed Server.You can use
this rule to determine whether cluster capacity needs to be increased; for example, by
executing a scale up action.
Target: Administration Server

Description

This smart rule evaluates to true if the number of Managed Servers with an average
ThreadPoolRuntimeMBean.Throughput value that satisfies the threshold comparison
criteria is greater than or equal to the specified percentage of all servers in the cluster.

To use this smart rule, specify:

• The sampling rate and retention window of the
ThreadPoolRuntimeMBean.Throughput metric

• High Throughput threshold value

• Percentage of servers in the cluster whose average Throughput value during the
sampling period must be greater than or equal to the high Throughput threshold
value in order for the rule to evaluate to true

Appendix A
Cluster Scope Smart Rules

A-8

Syntax

wls:ClusterHighThroughput("clusterName", "period", "duration", throughputLimit,
percentServersLimit)

Parameter Description

clusterName Name of target dynamic cluster, expressed as a String.

period Sampling rate for Throughput values, expressed as a String. For
example, 30s specifies that this metric is sampled every 30 seconds.

• The default time unit is seconds.
• The default value is 30s.

See sampling rate for more information about specifying this parameter.

duration Period of time for which collected samples are retained, expressed as a
String.

• The default time unit is seconds.
• The default value is 10m.

See retention window for more information about specifying this
parameter.

throughputLimit Value established as the high threshold value of the Throughput
attribute.

percentServersLimit Percentage of servers in the cluster with an average Throughput value
that must be greater than or equal to the value of the
throughputLimit parameter in order for the smart rule to be
evaluated as true.

This parameter is expressed as a float value between 0.0 and 100.0

Example

The smart rule shown in this example uses the following input parameters:

Parameter Value

clusterName myCluster
period 30
duration 10
throughputLimit 100
percentServersLimit 60

The smart rule that uses the preceding parameters is expressed as follows:

wls:ClusterHighThroughput("myCluster","30 seconds","10 minutes",100,60)

When configured with a scale up action, this smart rule does the following:

1. Samples the value of the Throughput metric from each Managed Server instance in
myCluster every 30 seconds over a retention window of 10 minutes.

2. At the end of the retention window, fires a scale up action if the following condition
evaluates to true:

The average Throughput value, over the last 10 minutes, is greater than or equal to 100
on at least 60 per cent of the Managed Servers in the cluster.

Appendix A
Cluster Scope Smart Rules

A-9

ClusterLowPendingUserRequests
The ClusterLowPendingUserRequests smart rule measures a reduction in pending
requests across the cluster as indicated by the average value of the
ThreadPoolRuntimeMBean.PendingUserRequestCount attribute in each Managed
Server.You can use this rule to determine whether cluster capacity can be reduced; for
example, by executing a scale down action.
Target: Administration Server

Description

This smart rule evaluates to true if the number of Managed Servers with an average
ThreadPoolRuntimeMBean.PendingUserRequestCount value that satisfies the threshold
comparison criteria is greater than or equal to the specified percentage of all servers in
the cluster.

To use this smart rule, specify:

• The sampling rate and retention window for the
ThreadPoolRuntimeMBean.PendingUserRequestCount metric

• Low PendingUserRequestCount threshold value

• Percentage of servers in the cluster with an average PendingUserRequestCount
value that must be less than the low PendingUserRequestCount threshold value in
order for the rule to evaluate to true

Syntax

wls:ClusterLowPendingUserRequests("clusterName", "period", "duration",
pendingRequestsLimit, percentServersLimit)

Parameter Description

clusterName Name of target dynamic cluster, expressed as a String.

period Sampling rate for PendingUserRequestCount values, expressed
as a String. For example, 30s specifies that this metric is
sampled every 30 seconds.

• The default time unit is seconds.
• The default value is 30s.

See sampling rate for more information about specifying this
parameter.

duration Period of time for which collected samples are retained,
expressed as a String.

• The default time unit is seconds.
• The default value is 10m.

See retention window for more information about specifying this
parameter.

pendingRequestsLimit Value established as the low threshold value of the
PendingUserRequestCount attribute.

Appendix A
Cluster Scope Smart Rules

A-10

Parameter Description

percentServersLimit Percentage of servers in the cluster with an average
PendingUserRequestCount value that must be less than the
value of the pendingRequestsLimit parameter in order for the
smart rule to be evaluated as true.

This parameter is expressed as a float value between 0.0 and
100.0

Example

The smart rule shown in this example uses the following input parameters:

Parameter Value

clusterName myCluster
period 30
duration 10
pendingRequestsLimit 5
percentServersLimit 75

The smart rule that uses the preceding parameters is expressed as follows:

wls:ClusterLowPendingUserRequests("myCluster","30 seconds","10 minutes",5,75)

When configured with a scale down action, this smart rule does the following:

1. Samples the value of the PendingUserRequestCount metric from each Managed Server
instance in myCluster every 30 seconds over a retention window of 10 minutes.

2. At the end of the retention window, fires a scale down action if the following condition
evaluates to true:

The average PendingUserRequestCount value, over the last 10 minutes, is less than 5 on
at least 75 per cent of the Managed Servers in the cluster.

ClusterHighStuckThreads
The ClusterHighStuckThreads smart rule measures whether the number of stuck threads is
rising and may soon become deadlocked, as indicated by the average value of the
ThreadPoolRuntimeMBean.StuckThreadCount attribute in each Managed Server.You can use
this rule to determine whether cluster capacity needs to be increased; for example, by
executing a scale up action.
Target: Administration Server

Description

This smart rule evaluates to true if the number of Managed Servers with an average
ThreadPoolRuntimeMBean.StuckThreadCount value that satisfies the threshold comparison
criteria is greater than or equal to the specified percentage of all servers in the cluster.

To use this smart rule, specify:

• The sampling rate and retention window for the
ThreadPoolRuntimeMBean.StuckThreadCount attribute

Appendix A
Cluster Scope Smart Rules

A-11

• High StuckThreadCount threshold value

• Percentage of servers in the cluster with an average
ThreadPoolRuntimeMBean.StuckThreadCount value that must be greater than or
equal to the high StuckThreadCount threshold value in order for the rule to
evaluate to true

Syntax

wls:ClusterHighStuckThreads("clusterName", "period", "duration",
stuckThreadsLimit, percentServersLimit)

Parameter Description

clusterName Name of target dynamic cluster, expressed as a String.

period Sampling rate for StuckThreadCount values, expressed as a
String. For example, 30s specifies that this metric is sampled
every 30 seconds.

• The default time unit is seconds.
• The default value is 30s.

See sampling rate for more information about specifying this
parameter.

duration Period of time for which collected samples are retained,
expressed as a String.

• The default time unit is seconds.
• The default value is 10m.

See retention window for more information about specifying this
parameter.

stuckThreadsLimit Value established as the high threshold value of the
StuckThreadCount attribute.

percentServersLimit Percentage of servers in the cluster with an average
StuckThreadCount value that must be greater than or equal to
the value of the stuckThreadsLimit parameter in order for the
smart rule to be evaluated as true.

This parameter is expressed as a float value between 0.0 and
100.0

Example

The smart rule shown in this example uses the following input parameters:

Parameter Value

clusterName myCluster
period 30
duration 10
stuckThreadsLimit 5
percentServersLimit 60

The smart rule that uses the preceding parameters is expressed as follows:

wls:ClusterHighStuckThreads("myCluster","30 seconds","10 minutes",5,60)

When configured with a scale up action, this smart rule does the following:

Appendix A
Cluster Scope Smart Rules

A-12

1. Samples the value of the StuckThreadCount metric from each Managed Server instance
in myCluster every 30 seconds over a retention window of 10 minutes.

2. At the end of the retention window, fires a scale up action if the following condition
evaluates to true:

The average StuckThreadCount value, over the last 10 minutes, is greater than or equal
to 5 on at least 60 per cent of the Managed Servers in the cluster.

ClusterLowQueueLength
The ClusterLowQueueLength smart rule measures a decrease in system load across the
cluster, as indicated by the average value of the ThreadPoolRuntimeMBean.QueueLength
attribute in each Managed Server.You can use this rule to determine whether cluster capacity
can be safely reduced; for example, by executing a scale down action.
Target: Administration Server

Description

This smart rule evaluates to true if the number of Managed Servers with an average
ThreadPoolRuntimeMBean.QueueLength value that satisfies the threshold comparison criteria
is greater than or equal to the specified percentage of all servers in the cluster.

To use this smart rule, specify:

• The sampling rate and retention window for the ThreadPoolRuntimeMBean.QueueLength
metric

• Low QueueLength threshold value

• Percentage of servers in the cluster with an average QueueLength value that must be less
than the low QueueLength threshold value in order for the rule to evaluate to true

Syntax

wls:ClusterLowQueueLength("clusterName", "period", "duration", queueLengthLimit,
percentServersLimit)

Parameter Description

clusterName Name of target dynamic cluster, expressed as a String.

period Sampling rate for QueueLength values, expressed as a String. For
example, 30s specifies that this metric is sampled every 30 seconds.

• The default time unit is seconds.
• The default value is 30s.

See sampling rate for more information about specifying this parameter.

duration Period of time for which collected samples are retained, expressed as a
String.

• The default time unit is seconds.
• The default value is 10m.

See retention window for more information about specifying this
parameter.

queueLengthLimit Value established as the low threshold value of the QueueLength
attribute.

Appendix A
Cluster Scope Smart Rules

A-13

Parameter Description

percentServersLimit Percentage of servers in the cluster with an average QueueLength
value that must be less than the value of the queueLengthLimit
parameter in order for the smart rule to be evaluated as true.

This parameter is expressed as a float value between 0.0 and 100.0

Example

The smart rule shown in this example uses the following input parameters:

Parameter Value

clusterName myCluster
period 30
duration 15
queueLengthLimit 5
percentServersLimit 75

The smart rule that uses the preceding parameters is expressed as follows:

wls:ClusterLowQueueLength("myCluster","30 seconds","15 minutes",5,75)

When configured with a scale down action, this smart rule does the following:

1. Samples the value of the QueueLength metric from each Managed Server instance
in myCluster every 30 seconds over a retention window of 15 minutes.

2. At the end of the retention window, fires a scale down action if the following
condition evaluates to true:

The average QueueLength value, over the last 15 minutes, is less than 5 on at
least 75 per cent of the Managed Servers in the cluster.

ClusterHighPendingUserRequests
The ClusterHighPendingUserRequests smart rule measures an increase in system
load across the cluster, as indicated by the average value of the
ThreadPoolRuntimeMBean.PendingUserRequestCount attribute in each Managed
Server.You can use this rule to determine whether cluster capacity needs to be
increased; for example, by executing a scale up action.
Target: Administration Server

Description

This smart rule evaluates to true if the number of Managed Servers with an average
ThreadPoolRuntimeMBean.PendingUserRequestCount value that satisfies the threshold
comparison criteria is greater than or equal to the specified percentage of all servers in
the cluster.

To use this smart rule, specify:

• The sampling rate and retention window for the
ThreadPoolRuntimeMBean.PendingUserRequestCount metric

Appendix A
Cluster Scope Smart Rules

A-14

• High PendingUserRequestCount threshold value

• Percentage of servers in the cluster with an average PendingUserRequestCount value
that must be greater than or equal to the high PendingUserRequestCount threshold value
in order for the rule to evaluate to true

Syntax

wls:ClusterHighPendingUserRequests("clusterName", "period", "duration",
pendingRequestsLimit, percentServersLimit)

Parameter Description

clusterName Name of target dynamic cluster, expressed as a String.

period Sampling rate for PendingUserRequestCount values, expressed as a
String. For example, 30s specifies that this metric is sampled every
30 seconds.

• The default time unit is seconds.
• The default value is 30s.

See sampling rate for more information about specifying this parameter.

duration Period of time for which collected samples are retained, expressed as a
String.

• The default time unit is seconds.
• The default value is 10m.

See retention window for more information about specifying this
parameter.

pendingRequestsLimit Value established as the high threshold value of the
PendingUserRequestCount attribute.

percentServersLimit Percentage of servers in the cluster with an average
PendingUserRequestCount value that must be greater than or equal
to the value of the pendingRequestsLimit parameter in order for the
smart rule to be evaluated as true.

This parameter is expressed as a float value between 0.0 and 100.0

Example

The smart rule shown in this example uses the following input parameters:

Parameter Value

clusterName myCluster
period 30
duration 10
pendingRequestsLimit 100
percentServersLimit 60

The smart rule that uses the preceding parameters is expressed as follows:

wls:ClusterHighPendingUserRequests("myCluster","30 seconds","10 minutes",100,60)

When configured with a scale up action, this smart rule does the following:

1. Samples the value of the PendingUserRequestCount metric from each Managed Server
instance in myCluster every 30 seconds over a retention window of 10 minutes.

Appendix A
Cluster Scope Smart Rules

A-15

2. At the end of the retention window, fires a scale up action if the following condition
evaluates to true:

The average PendingUserRequestCount value, over the last 10 minutes, is greater
than or equal to 100 on at least 60 per cent of the Managed Servers in the cluster.

ClusterLowProcessCpuLoadAverage
The ClusterLowProcessCpuLoadAverage smart rule measures a reduction of system
CPU load across a cluster, as indicated by the average value of the ProcessCpuLoad
attribute in each Managed Server.You can use this rule to determine whether cluster
capacity needs to be decreased; for example, by executing a scale down action.
Target: Administration Server

Description

This smart rule evaluates to true if the number of Managed Servers with an average
ProcessCpuLoad value that satisfies the threshold comparison criteria is greater than or
equal to the specified percentage of all servers in the cluster.

Note that the value of ProcessCpuLoad is platform specific and is not available on all
platforms.

To use this smart rule, specify:

• The sampling rate and retention window for the
java.lang:type=OperatingSystem ProcessCpuLoad metric

• Low ProcessCpuLoad threshold value

• Percentage of servers in the cluster with an average ProcessCpuLoad value that
must be less than the low ProcessCpuLoad threshold value in order for the rule to
evaluate to true

Note:

The value of the ProcessCpuLoad metric is platform-specific and is not
available on all platforms. The MXBean attribute from which this metric
originates is described at https://docs.oracle.com/javase/8/
docs/jre/api/management/extension/com/sun/management/
OperatingSystemMXBean.html#getProcessCpuLoad.

Syntax

wls:ClusterLowProcessCpuLoadAverage("clusterName", "period", "duration",
procCpuLoadLimit, percentServersLimit)

Parameter Description

clusterName Name of target dynamic cluster, expressed as a String.

Appendix A
Cluster Scope Smart Rules

A-16

https://docs.oracle.com/javase/8/docs/jre/api/management/extension/com/sun/management/OperatingSystemMXBean.html#getProcessCpuLoad
https://docs.oracle.com/javase/8/docs/jre/api/management/extension/com/sun/management/OperatingSystemMXBean.html#getProcessCpuLoad
https://docs.oracle.com/javase/8/docs/jre/api/management/extension/com/sun/management/OperatingSystemMXBean.html#getProcessCpuLoad

Parameter Description

period Sampling rate for ProcessCpuLoad values, expressed as a
String. For example, 30s specifies that this metric is sampled
every 30 seconds.

• The default time unit is seconds.
• The default value is 30s.

See sampling rate for more information about specifying this
parameter.

duration Period of time for which collected samples are retained,
expressed as a String.

• The default time unit is seconds.
• The default value is 10m.

See retention window for more information about specifying this
parameter.

procCpuLoadLimit Value established as the low threshold value of the
ProcessCpuLoad attribute.

percentServersLimit Percentage of servers in the cluster with an average
ProcessCpuLoad value that must be less than the value of the
procCpuLoadLimit parameter in order for the smart rule to be
evaluated as true.

This parameter is expressed as a float value between 0.0 and
100.0

Example

The smart rule shown in this example uses the following input parameters:

Parameter Value

clusterName myCluster
period 30
duration 15
procCpuLoadLimit 0.2
percentServersLimit 75

The smart rule that uses the preceding parameters is expressed as follows:

wls:ClusterLowProcessCpuLoadAverage("myCluster","30 seconds","10 minutes",0.2,75)

When configured with a scale down action, this smart rule does the following:

1. Samples the value of the ProcessCpuLoad metric from each Managed Server instance in
myCluster every 30 seconds over a retention window of 15 minutes.

2. At the end of the retention window, fires a scale down action if the following condition
evaluates to true:

The average ProcessCpuLoad value, over the last 15 minutes, is less than 0.2 on at least
75 per cent of the Managed Servers in the cluster.

Appendix A
Cluster Scope Smart Rules

A-17

ClusterHighIdleThreads
The ClusterHighIdleThreads smart rule measures an increase in the number of idle
threads in a cluster, as indicated by the average value of the
ThreadPoolRuntimeMBean.ExecuteThreadIdleCount attribute in each Managed
Server.You can use this rule to determine whether cluster capacity can be safely
reduced; for example, by executing a scale down action.
Target: Administration Server

Description

This smart rule evaluates to true if the number of Managed Servers with an average
ThreadPoolRuntimeMBean.ExecuteThreadIdleCount value that satisfies the threshold
comparison criteria is greater than or equal to the specified percentage of servers in
the cluster.

To use this smart rule, specify:

• The sampling rate and retention window for the
ThreadPoolRuntimeMBean.ExecuteThreadIdleCount metric

• High ExecuteThreadIdleCount threshold value

• Percentage of Managed Servers in the cluster with an average
ExecuteThreadIdleCount value that must be greater than or equal to the high
ExecuteThreadIdleCount threshold value in order for the rule to evaluate to true

Syntax

wls:ClusterHighIdleThreads("clusterName", "period", "duration",
idleThreadsLimit, percentServersLimit)

Parameter Description

clusterName Name of target dynamic cluster, expressed as a String.

period Sampling rate for ExecuteThreadIdleCount values, expressed
as a String. For example, 30s specifies that this metric is
sampled every 30 seconds.

• The default time unit is seconds.
• The default value is 30s.

See sampling rate for more information about specifying this
parameter.

duration Period of time for which collected samples are retained,
expressed as a String.

• The default time unit is seconds.
• The default value is 10m.

See retention window for more information about specifying this
parameter.

idleThreadsLimit Value established as the high threshold value of the
ExecuteThreadIdleCount attribute.

Appendix A
Cluster Scope Smart Rules

A-18

Parameter Description

percentServersLimit Percentage of servers in the cluster with an average
ExecuteThreadIdleCount value that must be greater than or
equal to the value of the idleThreadsLimit parameter in order
for the smart rule to be evaluated as true.

This parameter is expressed as a float value between 0.0 and
100.0

Example

The smart rule shown in this example uses the following input parameters:

Parameter Value

clusterName myCluster
period 30
duration 10
idleThreadsLimit 20
percentServersLimit 75

The smart rule that uses the preceding parameters is expressed as follows:

wls:ClusterHighIdleThreads("myCluster","30 seconds","10 minutes",20,75)

When configured with a scale down action, this smart rule does the following:

1. Samples the value of the ExecuteThreadIdleCount metric from each Managed Server
instance in myCluster every 30 seconds over a retention window of 10 minutes.

2. At the end of the retention window, fires a scale down action if the following condition
evaluates to true:

The average ExecuteThreadIdleCount value, over the last 10 minutes, is greater than or
equal to 20 on at least 75 per cent of the Managed Servers in the cluster.

ClusterLowSystemLoadAverage
The ClusterLowSystemLoadAverage smart rule measures a decrease in system load across a
cluster, as indicated by the average value of the SystemLoadAverage attribute in each
Managed Server.You can use this rule to determine whether cluster capacity needs to be
decreased; for example, by executing a scale down action.
Target: Administration Server

Description

This smart rule evaluates to true if the number of Managed Servers with an average
SystemLoadAverage value that satisfies the threshold comparison criteria is equal to or
greater than the specified percentage of all servers in the cluster.

Note that the value of SystemLoadAverage is system dependent.

To use this smart rule, specify:

Appendix A
Cluster Scope Smart Rules

A-19

• The sampling rate and retention window for the
java.lang:type=OperatingSystem SystemLoadAverage metric

• Low SystemLoadAverage threshold value

• Percentage of Managed Servers in the cluster with an average
SystemLoadAverage value that must be less than the low SystemLoadAverage
threshold value in order for the rule to evaluate to true

Note:

The value of the SystemLoadAverage metric is platform-specific and is not
available on all platforms. The MXBean attribute from which this metric
originates is described at http://docs.oracle.com/javase/8/docs/api/
java/lang/management/
OperatingSystemMXBean.html#getSystemLoadAverage--.

Syntax

wls:ClusterLowSystemLoadAverage("clusterName", "period", "duration", loadLimit,
percentServersLimit)

Parameter Description

clusterName Name of target dynamic cluster, expressed as a String.

period Sampling rate for SystemLoadAverage values, expressed as a
String. For example, 30s specifies that this metric is sampled
every 30 seconds.

• The default time unit is seconds.
• The default value is 30s.

See sampling rate for more information about specifying this
parameter.

duration Period of time for which collected samples are retained,
expressed as a String.

• The default time unit is seconds.
• The default value is 10m.

See retention window for more information about specifying this
parameter.

loadLimit Value established as the low threshold value of the
SystemLoadAverage attribute.

percentServersLimit Percentage of servers in the cluster with an average
SystemLoadAverage value that must be less than the value of
the loadLimit parameter in order for the smart rule to be
evaluated as true.

This parameter is expressed as a float value between 0.0 and
100.0

Example

The smart rule shown in this example uses the following input parameters:

Appendix A
Cluster Scope Smart Rules

A-20

http://docs.oracle.com/javase/8/docs/api/java/lang/management/OperatingSystemMXBean.html#getSystemLoadAverage--
http://docs.oracle.com/javase/8/docs/api/java/lang/management/OperatingSystemMXBean.html#getSystemLoadAverage--
http://docs.oracle.com/javase/8/docs/api/java/lang/management/OperatingSystemMXBean.html#getSystemLoadAverage--

Parameter Value

clusterName myCluster
period 30
duration 15
loadLimit 0.2
percentServersLimit 75

The smart rule that uses the preceding parameters is expressed as follows:

wls:ClusterLowSystemLoadAverage("myCluster","30 seconds","15 minutes",0.2,75)

When configured with a scale down action, this smart rule does the following:

1. Samples the value of the SystemLoadAverage metric from each Managed Server instance
in myCluster every 30 seconds over a retention window of 15 minutes.

2. At the end of the retention window, fires a scale down action if the following condition
evaluates to true:

The average SystemLoadAverage value, over the last 15 minutes, is less than 0.2 on at
least 75 per cent of the Managed Servers in the cluster.

ClusterHighQueueLength
The ClusterHighQueueLength smart rule measures an increase in system load across the
cluster, as indicated by the average value of the ThreadPoolRuntimeMBean.QueueLength
attribute in each Managed Server.You can use this rule to determine whether the cluster
capacity needs to be increased; for example, by executing a scale up action.
Target: Administration Server

Description

This smart rule evaluates to true if the number of Managed Servers with an average
ThreadPoolRuntimeMBean.QueueLength value that satisfies the threshold comparison criteria
is greater than or equal to the specified percentage of all servers in the cluster.

To use this smart rule, specify:

• The sampling rate and retention window for the ThreadPoolRuntimeMBean.QueueLength
metric

• High QueueLength threshold value

• Percentage of Managed Servers in the cluster with an average QueueLength value that
must be greater than or equal to the high QueueLength threshold value in order for the
rule to evaluate to true

Syntax

wls:ClusterHighQueueLength("clusterName", "period", "duration", queueLengthLimit,
percentServersLimit)

Parameter Description

clusterName Name of target dynamic cluster, expressed as a String.

Appendix A
Cluster Scope Smart Rules

A-21

Parameter Description

period Sampling rate for QueueLength values, expressed as a String. For
example, 30s specifies that this metric is sampled every 30 seconds.

• The default time unit is seconds.
• The default value is 30s.

See sampling rate for more information about specifying this parameter.

duration Period of time for which collected samples are retained, expressed as a
String.

• The default time unit is seconds.
• The default value is 10m.

See retention window for more information about specifying this
parameter.

queueLengthLimit Value established as the high threshold value of the QueueLength
attribute.

percentServersLimit Percentage of servers in the cluster with an average QueueLength
value that must be greater than or equal to the value of the
queueLengthLimit parameter in order for the smart rule to be
evaluated as true.

This parameter is expressed as a float value between 0.0 and 100.0

Example

The smart rule shown in this example uses the following input parameters:

Parameter Value

clusterName myCluster
period 30
duration 10
queueLengthLimit 100
percentServersLimit 60

The smart rule that uses the preceding parameters is expressed as follows:

wls:ClusterHighQueueLength("myCluster","30 seconds","10 minutes",100,60)

When configured with a scale up action, this smart rule does the following:

1. Samples the value of the QueueLength metric from each Managed Server instance
in myCluster every 30 seconds over a retention window of 10 minutes.

2. At the end of the retention window, fires a scale up action if the following condition
evaluates to true:

The average QueueLength value, over the last 10 minutes, is greater than or equal
to 100 on at least 60 per cent of the Managed Servers in the cluster.

ClusterLowHeapFreePercent
The ClusterLowHeapFreePercent smart rule measures an increase in heap stress
across a cluster, as indicated by the average value of the
JVMRuntimeMBean.HeapFreePercent attribute in each Managed Server.You can use

Appendix A
Cluster Scope Smart Rules

A-22

this rule to determine whether the cluster capacity needs to be increased; for example, by
executing a scale up action.
Target: Administration Server

Description

This smart rule evaluates to true if the number of Managed Servers with an average
JVMRuntimeMBean.HeapFreePercent value that satisfies the threshold comparison criteria is
greater than or equal to a specific percentage of all servers in the cluster.

To use this smart rule, specify:

• The sampling rate and retention window for the JVMRuntimeMBean.HeapFreePercent
metric

• Low HeapFreePercent threshold value

• Percentage of Managed Servers in the cluster with an average HeapFreePercent value
during the sampling period that must be less than the low HeapFreePercent threshold
value in order for the rule to evaluate to true

Syntax

wls:ClusterLowHeapFreePercent("clusterName", "period", "duration", percentFreeLimit,
percentServersLimit)

Parameter Description

clusterName Name of target dynamic cluster, expressed as a String.

period Sampling rate for HeapFreePercent values, expressed as a String.
For example, 30s specifies that this metric is sampled every 30
seconds.

• The default time unit is seconds.
• The default value is 30s.

See sampling rate for more information about specifying this parameter.

duration Period of time for which collected samples are retained, expressed as a
String.

• The default time unit is seconds.
• The default value is 10m.

See retention window for more information about specifying this
parameter.

percentFreeLimit Value established as the low threshold value of the HeapFreePercent
attribute.

percentServersLimit Percentage of servers in the cluster with an average
HeapFreePercent value that must be less than the value of the
percentFreeLimit parameter in order for the smart rule to be
evaluated as true.

This parameter is expressed as a float value between 0.0 and 100.0

Example

The smart rule shown in this example uses the following input parameters:

Appendix A
Cluster Scope Smart Rules

A-23

Parameter Value

clusterName myCluster
period 30
duration 10
percentFreeLimit 20
percentServersLimit 60

The smart rule that uses the preceding parameters is expressed as follows:

wls:ClusterLowHeapFreePercent("myCluster","30 seconds","10 minutes",20,60)

When configured with a scale up action, this smart rule does the following:

1. Samples the value of the HeapFreePercent metric from each Managed Server
instance in myCluster every 30 seconds over a retention window of 10 minutes.

2. At the end of the retention window, fires a scale up action if the following condition
evaluates to true:

The average HeapFreePercent value, over the last 10 minutes, is less than 20 on
at least 60 per cent of the Managed Servers in the cluster.

ClusterHighSystemLoadAverage
The ClusterHighSystemLoadAverage smart rule measures an increase on system load
across a cluster, as indicated by the average value of the SystemLoadAverage attribute
in each Managed Server.You can use this rule to determine if cluster capacity needs to
be increased; for example, by executing a scale up action.
Target: Administration Server

Description

This smart rule evaluates to true if the number of Managed Servers with an average
java.lang:type=OperatingSystem SystemLoadAverage value that satisfies the
threshold comparison criteria is greater than or equal to the specified percentage of all
servers in the cluster.

Note that the value of the SystemLoadAverage is system dependent.

To use this smart rule, specify:

• The sampling rate and retention window for the
java.lang:type=OperatingSystem SystemLoadAverage metric

• High SystemLoadAverage threshold value

• Percentage of Managed Servers in the cluster with an average
SystemLoadAverage value that must be greater than or equal to the high
SystemLoadAverage threshold value in order for the rule to evaluate to true

Appendix A
Cluster Scope Smart Rules

A-24

Note:

The value of the SystemLoadAverage metric is platform-specific and is not available
on all platforms. The MXBean attribute from which this metric originates is
described at http://docs.oracle.com/javase/8/docs/api/java/lang/
management/OperatingSystemMXBean.html#getSystemLoadAverage--.

Syntax

wls:ClusterHighSystemLoadAverage("clusterName", "period", "duration", loadLimit,
percentServersLimit)

Parameter Description

clusterName Name of target dynamic cluster, expressed as a String.

period Sampling rate for SystemLoadAverage values, expressed as a
String. For example, 30s specifies that this metric is sampled every
30 seconds.

• The default time unit is seconds.
• The default value is 30s.

See sampling rate for more information about specifying this parameter.

duration Period of time for which collected samples are retained, expressed as a
String.

• The default time unit is seconds.
• The default value is 10m.

See retention window for more information about specifying this
parameter.

loadLimit Value established as the high threshold value of the
SystemLoadAverage attribute.

percentServersLimit Percentage of servers in the cluster with an average
SystemLoadAverage value that must be greater than or equal to the
value of the loadLimit parameter in order for the smart rule to be
evaluated as true.

This parameter is expressed as a float value between 0.0 and 100.0

Example

The smart rule shown in this example uses the following input parameters:

Parameter Value

clusterName myCluster
period 30
duration 5
loadLimit 0.8
percentServersLimit 60

The smart rule that uses the preceding parameters is expressed as follows:

wls:ClusterHighSystemLoadAverage("myCluster","30 seconds","5 minutes",0.8,60)

Appendix A
Cluster Scope Smart Rules

A-25

http://docs.oracle.com/javase/8/docs/api/java/lang/management/OperatingSystemMXBean.html#getSystemLoadAverage--
http://docs.oracle.com/javase/8/docs/api/java/lang/management/OperatingSystemMXBean.html#getSystemLoadAverage--

When configured with a scale up action, this smart rule does the following:

1. Samples the value of the SystemLoadAverage metric from each Managed Server
instance in myCluster every 30 seconds over a retention window of 5 minutes.

2. At the end of the retention window, fires a scale up action if the following condition
evaluates to true:

The average SystemLoadAverage value, over the last 5 minutes, is greater than or
equal to 0.8 on at least 60 per cent of the Managed Servers in the cluster.

ClusterHighHeapFreePercent
The ClusterHighHeapFreePercent smart rule measures a reduction in heap stress
across a dynamic cluster, as indicated by the average value of the
JVMRuntimeMBean.HeapFreePercent attribute in each Managed Server.You can use
this rule to determine if cluster capacity can be reduced; for example, by executing a
scale down action.
Target: Administration Server

Description

This smart rule evaluates to true if the number of Managed Servers with an average
JVM free heap percentage value that satisfies the threshold comparison criteria is
greater than or equal to a specified percentage of all servers in the cluster.

To use this smart rule, specify:

• The sampling rate and retention window for the JVM free heap percentage metric

• High JVM free heap threshold value

• Percentage of Managed Servers in the cluster with an average JVM free heap
value that must be greater than or equal to the high JVM free heap threshold value
in order for the rule to evaluate to true

Syntax

wls:ClusterHighHeapFreePercent("clusterName", "period", "duration",
percentFreeLimit, percentServersLimit)

Parameter Description

clusterName Name of target dynamic cluster, expressed as a String.

period Sampling rate for JVM free heap percentage values, expressed as
a String. For example, 30s specifies that this metric is sampled
every 30 seconds.

• The default time unit is seconds.
• The default value is 30s.

See sampling rate for more information about specifying this
parameter.

duration Period of time for which collected samples are retained,
expressed as a String.

• The default time unit is seconds.
• The default value is 10m.

See retention window for more information about specifying this
parameter.

Appendix A
Cluster Scope Smart Rules

A-26

Parameter Description

percentFreeLimit Value established as the high threshold value of the JVM free
heap percentage.

percentServersLimit Percentage of servers in the cluster with an average JVM free
heap percentage that must be greater than or equal to the
percentFreeLimit parameter in order for the smart rule to be
evaluated as true.

This parameter is expressed as a float value between 0.0 and
100.0

Example

The smart rule shown in this example uses the following input parameters:

Parameter Value

clusterName myCluster
period 30
duration 5
percentFreeLimit 60
percentServersLimit 75

The smart rule that uses the preceding parameters is expressed as follows:

wls:ClusterHighHeapFreePercent("myCluster","30 seconds","5 minutes",60,75)

When configured with a scale down action, this smart rule does the following:

1. Samples the value of the JVM free heap percentage metric from each Managed Server
instance in myCluster every 30 seconds over a retention window of 5 minutes.

2. At the end of the retention window, fires a scale down action if the following condition
evaluates to true:

The average JVM free heap percentage value, over the last 5 minutes, is greater than or
equal to 60 on at least 75 per cent of the Managed Servers in the cluster.

ClusterLowSystemCpuLoadAverage
The ClusterLowSystemCpuLoadAverage smart rule measures a reduction of the system CPU
load average across a cluster, as indicated by the average value of the SystemCpuLoad
attribute in each Managed Server.You can use this rule to determine whether cluster capacity
needs to be decreased; for example, by executing a scale down action.
Target: Administration Server

Description

This smart rule evaluates to true if the number of Managed Servers with an average
java.lang:type=OperatingSystem SystemCpuLoad value satisfies the threshold comparison
criteria is greater than or equal to a specified percentage of all servers in the cluster.

Note that the value of the SystemCpuLoad metric is platform-specific and is not available on all
platforms.

Appendix A
Cluster Scope Smart Rules

A-27

To use this smart rule, specify:

• The sampling rate and retention window for the
java.lang:type=OperatingSystem SystemCpuLoad metric

• Low SystemCpuLoad threshold value

• Percentage of Managed Servers in the cluster with an average SystemCpuLoad
value that must be below the low SystemCpuLoad threshold value in order for the
rule to evaluate to true

Note:

The value of the SystemCpuLoad metric is platform-specific and is not
available on all platforms. The MXBean attribute from which this metric
originates is described at https://docs.oracle.com/javase/8/
docs/jre/api/management/extension/com/sun/management/
OperatingSystemMXBean.html#getSystemCpuLoad--.

Syntax

wls:ClusterLowSystemCpuLoadAverage("clusterName", "period", "duration",
systemCpuLoadLimit, percentServersLimit)

Parameter Description

clusterName Name of target dynamic cluster, expressed as a String.

period Sampling rate for SystemCpuLoad values, expressed as a
String. For example, 30s specifies that this metric is sampled
every 30 seconds.

• The default time unit is seconds.
• The default value is 30s.

See sampling rate for more information about specifying this
parameter.

duration Period of time for which collected samples are retained,
expressed as a String.

• The default time unit is seconds.
• The default value is 10m.

See retention window for more information about specifying this
parameter.

systemCpuLoadLimit Value established as the low threshold value of the
SystemCpuLoad attribute.

percentServersLimit Percentage of servers in the cluster with an average
SystemCpuLoad value that must be less than the value of the
systemCpuLoadLimit parameter in order for the smart rule to be
evaluated as true.

This parameter is expressed as a float value between 0.0 and
100.0

Example

The smart rule shown in this example uses the following input parameters:

Appendix A
Cluster Scope Smart Rules

A-28

https://docs.oracle.com/javase/8/docs/jre/api/management/extension/com/sun/management/OperatingSystemMXBean.html#getSystemCpuLoad--
https://docs.oracle.com/javase/8/docs/jre/api/management/extension/com/sun/management/OperatingSystemMXBean.html#getSystemCpuLoad--
https://docs.oracle.com/javase/8/docs/jre/api/management/extension/com/sun/management/OperatingSystemMXBean.html#getSystemCpuLoad--

Parameter Value

clusterName myCluster
period 30
duration 15
systemCpuLoadLimit 0.2
percentServersLimit 75

The smart rule that uses the preceding parameters is expressed as follows:

wls:ClusterLowSystemCpuLoadAverage("myCluster","30 seconds","15 minutes",0.2,75)

When configured with a scale down action, this smart rule does the following:

1. Samples the value of the SystemCpuLoad metric from each Managed Server instance in
myCluster every 30 seconds over a retention window of 15 minutes.

2. At the end of the retention window, fires a scale down action if the following condition
evaluates to true:

The average SystemCpuLoad value, over the last 15 minutes, is less than 0.2 on at least
75 per cent of the Managed Servers in the cluster.

ClusterLowIdleThreads
The ClusterLowIdleThreads smart rule measures an increase in load stress across the
cluster, as indicated by the average value of the
ThreadPoolRuntimeMBean.ExecuteThreadIdleCount attribute in each Managed Server.You
can use this rule to determine whether cluster capacity needs to be increased; for example,
by executing a scale up action.
Target: Administration Server

Description

This smart rule evaluates to true if the number of Managed Servers with an average
ThreadPoolRuntimeMBean.ExecuteThreadIdleCount value that satisfies the threshold
comparison criteria is greater than or equal to a specified percentage of all servers in the
cluster.

To use this smart rule, specify:

• The sampling rate and retention window for the
ThreadPoolRuntimeMBean.ExecuteThreadIdleCount metric

• Low ExecuteThreadIdleCount threshold value

• Percentage of Managed Servers in the cluster whose average ExecuteThreadIdleCount
value is less than the low ExecuteThreadIdleCount threshold value in order for the rule
to evaluate to true

Syntax

wls:ClusterLowIdleThreads("clusterName", "period", "duration", idleThreadsLimit",
percentServerLimit")

Appendix A
Cluster Scope Smart Rules

A-29

Parameter Description

clusterName Name of target dynamic cluster, expressed as a String.

period Sampling rate for ExecuteThreadIdleCount values, expressed
as a String. For example, 30s specifies that this metric is
sampled every 30 seconds.

• The default time unit is seconds.
• The default value is 30s.

See sampling rate for more information about specifying this
parameter.

duration Period of time for which collected samples are retained,
expressed as a String.

• The default time unit is minutes.
• The default value is 10m.

See retention window for more information about specifying this
parameter.

idleThreadsLimit Value established as the low ExecuteThreadIdleCount
threshold value.

percentServersLimit Percentage of servers in the cluster with an average
ExecuteThreadIdleCount value that must be less than the
value of the idleThreadsLimit parameter in order for the smart
rule to be evaluated as true.

This parameter is expressed as a float.

Example

The smart rule shown in this example uses the following input parameters:

Parameter Value

clusterName myCluster
period 30
duration 10
idleThreadsLimit 5
percentServersLimit 60

The smart rule that uses the preceding parameters is expressed as follows:

wls:ClusterLowIdleThreads("myCluster","30 seconds","10 minutes",5,60)

When configured with a scale up action, this example smart rule:

1. Samples the value of the ExecuteThreadIdleCount metric from each Managed
Server instance in myCluster every 30 seconds over a retention window of 10
minutes.

2. At the end of the retention window, fires a scale up action if the following condition
evaluates to true:

The average ExecuteThreadIdleCount value, over the last 10 minutes, is less
than 5 on at least 60 per cent of the Managed Servers in the cluster.

Appendix A
Cluster Scope Smart Rules

A-30

ClusterGenericMetricRule
The ClusterGenericMetricRule smart rule is typically used to observe trends in JMX metrics
that are published through the Server Runtime MBean Server and that are not provided
through the other cluster scope smart rules.

Target: Administration Server

Description

This smart rule allows you to view the average value of any metric obtained through JMX
within a specific time interval, and compare that average value to a specified threshold value
by using a specified comparison operator for each Managed Server in the cluster. If the
percentage of servers matching the comparison criteria meets or exceeds the specified limit,
the overall condition of the rule is satisfied and this rule returns true.

To use this smart rule, specify:

• Dynamic cluster name

• A valid JMX ObjectName or ObjectName pattern

• An attribute name, or attribute expression (as an EL expression), where the expression is
an attribute expression relative to each MBean.

For example, if the MBean is the ServerRuntimeMBean, 'OpenSocketsCurrentCount'
obtains the value of the ServerRuntimeMBean.OpenSocketsCurrentCount attribute. In
contrast, 'HealthState.State' accesses the State value of the HealthState child
object.

• A valid boolean comparison operator

• A threshold value against which the selected attribute is compared

• Percentage of Managed Servers in the cluster whose average attribute value during the
sampling period must meet the threshold value in order for the rule to evaluate to true

• The sampling rate and retention window for the metric on each Managed Server instance
in the cluster

• Period of time during which samples are collected

Syntax

wls:ClusterGenericMetricRule("clusterName", "instancePattern", "attribute",
"operation", thresholdValue, percentServersLimit, "period", "duration")

Parameter Description

clusterName Name of target dynamic cluster, expressed as a String.

instancePattern A valid JMX ObjectName or ObjectName pattern

Appendix A
Cluster Scope Smart Rules

A-31

Parameter Description

attribute A Java EL expression that retrieves a value on each MBean instance
that matches instancePattern, where the expression is an attribute
expression relative to each MBean.

For example, if the MBean is the ServerRuntimeMBean, the
expression 'OpenSocketsCurrentCount' obtains the value of the
OpenSocketsCurrentCount attribute of the ServerRuntimeMBean.
By contrast, the expression 'HealthState.State' obtains the State
value of the HealthState child object of that MBean.

operation A boolean comparison operator: <, <=, ==, >=, or >.

thresholdValue Threshold value against which the value of the attribute parameter
is compared.

percentServersLimit Percentage of servers in the cluster with an average attribute value that
must satisfy the comparison criteria with the value of the
thresholdValue parameter in order for the smart rule to be evaluated
as true.

This parameter is expressed as a float value between 0.0 and 100.0

period Sampling rate for metric values, expressed as a String. For example,
30s specifies that this metric is sampled every 30 seconds.

• The default time unit is seconds.
• The default value is 30s.

See sampling rate for more information about specifying this parameter.

duration Period of time for which collected samples are retained, expressed as a
String.

• The default time unit is seconds.
• The default value is 10m.

See retention window for more information about specifying this
parameter.

Example

The smart rule shown in this example uses the following input parameters:

Parameter Value

clusterName myCluster
instancePattern java.lang:type=OperatingSystem
attribute ProcessCpuLoad
operation >=
thresholdValue 0.9
percentServersLimit 75
period 30
duration 10

The smart rule that uses the preceding parameters is expressed as follows:

wls:ClusterGenericMetricRule("myCluster","java.lang:type=OperatingSystem","Proces
sCpuLoad",">=",0.9,75,"30 seconds","10 minutes")

This example smart rule:

Appendix A
Cluster Scope Smart Rules

A-32

1. Samples the value of the ProcessCpuLoad metric from each Managed Server instance in
myCluster every 30 seconds over a retention window of 10 minutes.

2. At the end of the retention window, this smart rule evaluates to true in the following
condition:

The average value of ProcessCpuLoad on the OperatingSystemMXBean, over the last 10
minutes, is greater than or equal to 0.9 on at least 75 per cent of the Managed Servers in
the cluster.

ClusterHighSystemCpuLoadAverage
The ClusterHighSystemCpuLoadAverage smart rule measures an increase on system load
across the cluster, as indicated by the average value of the operating system SystemCpuLoad
attribute in each Managed Server.You use this rule to determine whether cluster capacity
needs to be increased; for example, by executing a scale up action.
Target: Administration Server

Description

This smart rule evaluates to true if the number of Managed Servers with an average
java.lang:type=OperatingSystem SystemCpuLoad value that satisfies the threshold
comparison criteria is greater than or equal to a specified percentage of all servers in the
cluster.

Note that the value of SystemCpuLoad is platform-specific and is not available on all platforms.

To use this smart rule, specify:

• The sampling rate and retention window for the java.lang:type=OperatingSystem
SystemCpuLoad metric

• High SystemCpuLoad threshold value

• Percentage of Managed Servers in the cluster with an average SystemCpuLoad value that
is greater than or equal to the high SystemCpuLoad threshold value in order for the rule to
evaluate to true

Note:

The value of the SystemCpuLoad metric is platform-specific and is not available on
all platforms. The MXBean attribute from which this metric originates is described at
https://docs.oracle.com/javase/8/docs/jre/api/management/
extension/com/sun/management/
OperatingSystemMXBean.html#getSystemCpuLoad--.

Syntax

wls:ClusterHighSystemCpuLoadAverage("clusterName", "period", "duration",
systemCpuLoadLimit, percentServersLimit)

Parameter Description

clusterName Name of target dynamic cluster, expressed as a String.

Appendix A
Cluster Scope Smart Rules

A-33

https://docs.oracle.com/javase/8/docs/jre/api/management/extension/com/sun/management/OperatingSystemMXBean.html#getSystemCpuLoad--
https://docs.oracle.com/javase/8/docs/jre/api/management/extension/com/sun/management/OperatingSystemMXBean.html#getSystemCpuLoad--
https://docs.oracle.com/javase/8/docs/jre/api/management/extension/com/sun/management/OperatingSystemMXBean.html#getSystemCpuLoad--

Parameter Description

period Sampling rate for SystemCpuLoad values, expressed as a String. For
example, 30s specifies that this metric is sampled every 30 seconds.

• The default time unit is seconds.
• The default value is 30s.

See sampling rate for more information about specifying this parameter.

duration Period of time for which collected samples are retained, expressed as a
String.

• The default time unit is seconds.
• The default value is 10m.

See retention window for more information about specifying this
parameter.

systemCpuLoadLimit Value established as the high threshold value of the SystemCpuLoad
attribute.

percentServersLimit Percentage of servers in the cluster with an average SystemCpuLoad
value that must be greater than or equal to the value of the
systemCpuLoadLimit parameter in order for the smart rule to be
evaluated as true.

This parameter is expressed as a float value between 0.0 and 100.0

Example

The smart rule shown in this example uses the following input parameters:

Parameter Value

clusterName myCluster
period 30
duration 5
systemCpuLoadLimit 0.8
percentServersLimit 60

The smart rule that uses the preceding parameters is expressed as follows:

wls:ClusterHighSystemCpuLoadAverage("myCluster","30 seconds","5 minutes",0.8,60)

When configured with a scale up action, this example smart rule:

1. Samples the value of the SystemCpuLoad metric from each Managed Server
instance in myCluster every 30 seconds over a retention window of 5 minutes.

2. At the end of the retention window, fires a scale up action if the following condition
evaluates to true:

The average SystemCpuLoad value, over the last 5 minutes, is greater than or
equal to 0.8 on at least 60 per cent of the Managed Servers in the cluster.

Server Scope Smart Rules
A server scope smart rule is one that is applied only to the local WebLogic Server
instance on which the policies associated with that smart rule are run. You can execute

Appendix A
Server Scope Smart Rules

A-34

policies containing server scope smart rules on the Administration Server or any individual
Managed Server in the domain.The set of server scope smart rules packaged with the
WebLogic Diagnostics Framework (WLDF) are listed and summarized in Table A-2.

Table A-2 Summary of Managed Server Scope Smart Rules

After the retention window, the
following smart rule . . .

. . . returns true if . . .

ServerLowIdleThreads The average
ThreadPoolRuntimeMBean.ExecuteThreadIdleCount
value on the local server is equal to or less than the low
threshold value.

ServerHighThroughput The average ThreadPoolRuntimeMBean.Throughput
value on the local server is greater than or equal to the
high threshold value.

ServerGenericMetricRule The average value of a metric visible through JMX within
the local JVM satisfies the comparison criteria with the
threshold value.

ServerLowPendingUserRequests The average
ThreadPoolRuntimeMBean.PendingUserRequestCoun
t value on the local server is less than the low threshold
value.

ServerLowProcessCpuLoadAverage The average value of the ProcessCpuLoad metric of the
java.lang:type=OperatingSystem MXBean on the
local server is less than the low threshold value.

ServerHighSystemLoadAverage The average value of the SystemLoadAverage metric
from the java.lang:type=OperatingSystem MXBean
on the local server is greater than or equal to the high
threshold value.

ServerLowQueueLength The average ThreadPoolRuntimeMBean.QueueLength
value on the local server is less than the low threshold
value.

ServerLowThroughput The average ThreadPoolRuntimeMBean.Throughput
value on the local server is less than the low threshold
value.

ServerHighQueueLength The average ThreadPoolRuntimeMBean.QueueLength
value on the local server is greater than or equal to the
high threshold value.

ServerHighSystemCpuLoadAverage The average SystemCpuLoad attribute of the
java.lang:type=OperatingSystem MXBean on the
local server is greater than or equal to the high threshold
value.

ServerHighPendingUserRequests The average
ThreadPoolRuntimeMBean.PendingUserRequestCoun
t value on the local server is greater than or equal to the
high threshold value.

ServerLowSystemCpuLoadAverage The average SystemCpuLoad attribute of the
java.lang:type=OperatingSystem MXBean on the
local server is less than the low threshold value.

ServerHighHeapFreePercent The average percentage of free heap on the local server
is greater than or equal to the high threshold value.

Appendix A
Server Scope Smart Rules

A-35

Table A-2 (Cont.) Summary of Managed Server Scope Smart Rules

After the retention window, the
following smart rule . . .

. . . returns true if . . .

ServerHighStuckThreads The average
ThreadPoolRuntimeMBean.StuckThreadCount value
on the local server is greater than or equal to high
threshold value.

ServerHighProcessCpuLoadAverage The average ProcessCpuLoad value of the
java.lang:type=OperatingSystem MXBean on the
local server is greater than or equal to the high threshold
value.

ServerLowSystemLoadAverage The average SystemLoadAverage value of the
java.lang:type=OperatingSystem MXBean on the
local server is less than the low threshold value.

ServerLowHeapFreePercent The average percentage of free heap on the local server
is less than the low threshold value.

ServerHighIdleThreads The average
ThreadPoolRuntimeMBean.ExecuteThreadIdleCount
value on the local server is greater than or equal to the
high threshold value.

• ServerLowIdleThreads
The ServerLowIdleThreads smart rule detects if the average number of idle
threads is below the specified threshold within the local server in which the rule is
running, as indicated by the average value of the
ThreadPoolRuntimeMBean.ExecuteThreadIdleCount attribute.

• ServerHighThroughput
The ServerHighThroughput smart rule determines whether an increase in
throughput exists within the local server in which the rule is running.

• ServerGenericMetricRule

• ServerLowPendingUserRequests
The ServerLowPendingUserRequests smart rule determines whether the average
number of pending user requests within the local server in which the rule is
running, as indicated by the value of the
ThreadPoolRuntimeMBean.PendingUserRequestCount attribute.

• ServerLowProcessCpuLoadAverage
The ServerLowProcessCpuLoadAverage smart rule determines whether a reduction
exists in the average system load within the local server instance in which the rule
is running.

• ServerHighSystemLoadAverage
The ServerHighSystemLoadAverage smart rule determines whether a reduction
exists on the average system load within the local server in which the rule is
running.

• ServerLowQueueLength
The ServerLowQueueLength smart rule determines whether a reduction exists in
the average thread pool queue length within the local server in which the rule is
running, as indicated by the value of the ThreadPoolRuntimeMBean.QueueLength
metric.

Appendix A
Server Scope Smart Rules

A-36

• ServerLowThroughput
The ServerLowThroughput smart rule determines whether a decrease exists in the
average throughput within the local server in which the rule is running.

• ServerHighQueueLength
The ServerHighQueueLength smart rule determines whether an increase exists in the
average thread pool queue length within the local server in which the rule is running, as
indicated by the value of the ThreadPoolRuntimeMBean.QueueLength attribute.

• ServerHighSystemCpuLoadAverage
The ServerHighSystemCpuLoadAverage smart rule determines whether an increase exists
in the average system CPU load within the local server in which the rule is running.

• ServerHighPendingUserRequests
The ServerHighPendingUserRequests smart rule determines whether an increase exists
in the number of pending user requests within the local server in which the rule is
running, as indicated by the value of the
ThreadPoolRuntimeMBean.PendingUserRequestCount attribute.

• ServerLowSystemCpuLoadAverage

• ServerHighHeapFreePercent
The ServerHighHeapFreePercent smart rule determines whether an increase in heap
stress exists within the local server in which the rule is running.

• ServerHighStuckThreads

• ServerHighProcessCpuLoadAverage
The ServerHighProcessCpuLoadAverage smart rule determines whether an decrease
exists in the average system load within the local server in which the rule is running.

• ServerLowSystemLoadAverage
The ServerLowSystemLoadAverage smart rule determines whether a reduction exists in
the average system load within the local server in which the rule is running.

• ServerLowHeapFreePercent
The ServerLowHeapFreePercent smart rule determines whether an increase exists in
heap stress within the local server in which the rule is running.

• ServerHighIdleThreads
The ServerHighIdleThreads smart rule determines whether a reduction in average
system load exists within the local server in which the rule is running, by measuring an
increase in idle threads as indicated by the
ThreadPoolRuntimeMBean.ExecuteThreadIdleCount attribute.

ServerLowIdleThreads
The ServerLowIdleThreads smart rule detects if the average number of idle threads is below
the specified threshold within the local server in which the rule is running, as indicated by the
average value of the ThreadPoolRuntimeMBean.ExecuteThreadIdleCount attribute.

You can target this smart rule on either a Managed Server or an Administration Server.

Group: Server

Description

This smart rule returns true if the average value of the
ThreadPoolRuntimeMBean.ExecuteThreadIdleCount attribute is equal to or less than the
specified threshold value.

Appendix A
Server Scope Smart Rules

A-37

To use this smart rule, specify:

• The sampling rate and retention window for the
ThreadPoolRuntimeMBean.ExecuteThreadIdleCount metric

• Low ExecuteThreadIdleCount threshold value

Syntax

wls:ServerLowIdleThreads("period", "duration", idleThreadsLimit)

Parameter Description

period Sampling rate for ExecuteThreadIdleCount values, expressed
as a String. For example, 30s specifies that this metric is
sampled every 30 seconds.

• The default time unit is seconds.
• The default value is 30s.

See sampling rate for more information about specifying this
parameter.

duration Period of time for which collected samples are retained,
expressed as a String.

• The default time unit is seconds.
• The default value is 10m.

See retention window for more information about specifying this
parameter.

idleThreadsLimit Value established as the low threshold value of the
ExecuteThreadIdleCount attribute.

Example

The smart rule shown in this example uses the following input parameters:

Parameter Value

period 30
duration 5
idleThreadsLimit 0.8

The smart rule that uses the preceding parameters is expressed as follows:

wls:ServerLowIdleThreads("30 seconds","10 minutes",5)

This example smart rule:

1. Samples the value of the ExecuteThreadIdleCount metric from the local server
instance every 30 seconds over a retention window of 5 minutes.

2. At the end of the retention window, fires the associated action if the following
condition evaluates to true:

The average ExecuteThreadIdleCount value, over the last 5 minutes, is less than
or equal to 0.8 on this server instance.

Appendix A
Server Scope Smart Rules

A-38

ServerHighThroughput
The ServerHighThroughput smart rule determines whether an increase in throughput exists
within the local server in which the rule is running.

You can target this smart rule on either a Managed Server or an Administration Server.

Group: Server

Description

This smart rule returns true if the average value of the
ThreadPoolRuntimeMBean.Throughput attribute over the specified retention window is greater
than or equal to the high threshold value.

To use this smart rule, specify:

• The sampling rate and retention window of the ThreadPoolRuntimeMBean.Throughput
attribute.

• High Throughput threshold value

Syntax

wls:ServerHighThroughput("period", "duration", throughputLimit)

Parameter Description

period Sampling rate for Throughput values, expressed as a String. For
example, 30s specifies that this metric is sampled every 30 seconds.

• The default time unit is seconds.
• The default value is 30s.

See sampling rate for more information about specifying this parameter.

duration Period of time for which collected samples are retained, expressed as a
String.

• The default time unit is seconds.
• The default value is 10m.

See retention window for more information about specifying this
parameter.

throughputLimit Value established as the high threshold value of the Throughput
attribute.

Example

The smart rule shown in this example uses the following input parameters:

Parameter Value

period 30
duration 10
throughputLimit 100

The smart rule that uses the preceding parameters is expressed as follows:

wls:ServerHighThroughput("30 seconds","10 minutes",100)

Appendix A
Server Scope Smart Rules

A-39

This example smart rule:

1. Samples the value of the Throughput metric from the local server instance every
30 seconds over a retention window of 10 minutes.

2. At the end of the retention window, fires the associated action if the following
condition evaluates to true:

The average Throughput value, over the last 10 minutes, is greater than or equal
to 100 on this server instance.

ServerGenericMetricRule
The ServerGenericMetricRule smart rule is a general server scope smart rule that
you can use to observe trends of any JMX metric that is published through the Server
Runtime MBean Server and that is not provided by the other server scope smart
rules.This smart rule allows you to collect the average value of the metric across a
recent time interval and compare it to a threshold value using a specified comparison
operator.
You can target this smart rule on either a Managed Server or an Administration Server.

Group: Server

Description

This smart rule returns true if the average value of the metric meets or exceeds the
specified threshold value.

To use this smart rule, specify:

• A valid JMX ObjectName or ObjectName pattern

• A Java EL expression that retrieves a value on each matching MBean instance,
where the expression is an attribute expression relative to each MBean.

• A boolean comparison operator using the specified comparison operator

• A threshold value against which the selected attribute is compared

• The sampling rate and retention window of the metric.

Syntax

wls:ServerGenericMetricRule("instancePattern", "attribute", "operation",
thresholdValue, "period", "duration")

Parameter Description

instancePattern A valid JMX ObjectName or ObjectName pattern

attribute A Java EL expression that retrieves a value on each MBean
instance that matches instancePattern, where the expression
is an attribute expression relative to each MBean.

For example, if the MBean is the ServerRuntimeMBean, the
expression 'OpenSocketsCurrentCount' obtains the value of
the OpenSocketsCurrentCount attribute of the
ServerRuntimeMBean. By contrast, the expression
'HealthState.State' obtains the State value of the
HealthState child object of that MBean.

Appendix A
Server Scope Smart Rules

A-40

Parameter Description

operation A boolean comparison operator: <, <=, ==, >=, or >.

thresholdValue A threshold value with which to compare the selected attribute
using the specified comparison operator.

period Sampling rate for metric values, expressed as a String. For
example, 30s specifies that this metric is sampled every 30
seconds.

• The default time unit is seconds.
• The default value is 30s.

See sampling rate for more information about specifying this
parameter.

duration Period of time for which collected samples are retained,
expressed as a String.

• The default time unit is seconds.
• The default value is 10m.

See retention window for more information about specifying this
parameter.

Example

The smart rule shown in this example uses the following input parameters:

Parameter Value

instancePattern java.lang:type=OperatingSystem
attribute ProcessCpuLoad
operation >=
thresholdValue 0.9
period 30
duration 10

The smart rule that uses the preceding parameters is expressed as follows:

wls:ServerGenericMetricRule("java.lang:type=OperatingSystem","ProcessCpuLoad",">=",0.9,
"30 seconds","10 minutes")

The smart rule:

1. Samples the value of the ProcessCpuLoad metric on the targeted server instance every
30 seconds over a retention window of 10 minutes.

2. At the end of the retention window, this smart rule evaluates to true in the following
condition:

The average value of ProcessCpuLoad on the OperatingSystemMXBean, over the last 10
minutes, is greater than or equal to 0.9 on this server instance.

Appendix A
Server Scope Smart Rules

A-41

ServerLowPendingUserRequests
The ServerLowPendingUserRequests smart rule determines whether the average
number of pending user requests within the local server in which the rule is running, as
indicated by the value of the ThreadPoolRuntimeMBean.PendingUserRequestCount
attribute.

You can target this smart rule on either a Managed Server or an Administration Server.

Group: Server

Description

This smart rule returns true if the average value of the
ThreadPoolRuntimeMBean.PendingUserRequestCount attribute over the specified
retention window is less than the low threshold value.

To use this smart rule, specify:

• The sampling rate and retention window of the
ThreadPoolRuntimeMBean.PendingUserRequestCount attribute.

• Low PendingUserRequestCount threshold value

Syntax

wls:ServerLowPendingUserRequests("period", "duration", pendingRequestsLimit)

Parameter Description

period Sampling rate for PendingUserRequestCount values, expressed
as a String. For example, 30s specifies that this metric is
sampled every 30 seconds.

• The default time unit is seconds.
• The default value is 30s.

See sampling rate for more information about specifying this
parameter.

duration Period of time for which collected samples are retained,
expressed as a String.

• The default time unit is seconds.
• The default value is 10m.

See retention window for more information about specifying this
parameter.

pendingRequestsLimit Value established as the low threshold value of the
PendingUserRequestCount attribute.

Example

The smart rule shown in this example uses the following input parameters:

Parameter Value

period 30
duration 15

Appendix A
Server Scope Smart Rules

A-42

Parameter Value

pendingRequestsLimit 5

The smart rule that uses the preceding parameters is expressed as follows:

wls:ServerLowPendingUserRequests("30 seconds","15 minutes",5)

This example smart rule:

1. Samples the value of the PendingUserRequestCount metric from the local server instance
every 30 seconds over a retention window of 15 minutes.

2. At the end of the retention window, evaluates to true if the following condition exists:

The average PendingUserRequestCount value, over the last 15 minutes, is less than 5 on
this server instance.

ServerLowProcessCpuLoadAverage
The ServerLowProcessCpuLoadAverage smart rule determines whether a reduction exists in
the average system load within the local server instance in which the rule is running.

You can target this smart rule on either a Managed Server or an Administration Server.

Group: Server

Description

This rule returns true if the average value of the ProcessCpuLoad metric of the
java.lang:type=OperatingSystem MXBean over the specified time interval is less than a
specified threshold value.

Note:

The value of the ProcessCpuLoad metric is platform-specific and is not available on
all platforms. The MXBean attribute from which this metric originates is described at
https://docs.oracle.com/javase/8/docs/jre/api/management/
extension/com/sun/management/
OperatingSystemMXBean.html#getProcessCpuLoad--.

To use this smart rule, specify:

• The sampling rate and retention window of the ProcessCpuLoad attribute.

• Low ProcessCpuLoad threshold value

Syntax

wls:ServerLowProcessCpuLoadAverage("period", "duration", processCpuLoadLimit)

Appendix A
Server Scope Smart Rules

A-43

https://docs.oracle.com/javase/8/docs/jre/api/management/extension/com/sun/management/OperatingSystemMXBean.html#getProcessCpuLoad--
https://docs.oracle.com/javase/8/docs/jre/api/management/extension/com/sun/management/OperatingSystemMXBean.html#getProcessCpuLoad--
https://docs.oracle.com/javase/8/docs/jre/api/management/extension/com/sun/management/OperatingSystemMXBean.html#getProcessCpuLoad--

Parameter Description

period Sampling rate for ProcessCpuLoad values, expressed as a
String. For example, 30s specifies that this metric is sampled
every 30 seconds.

• The default time unit is seconds.
• The default value is 30s.

See sampling rate for more information about specifying this
parameter.

duration Period of time for which collected samples are retained,
expressed as a String.

• The default time unit is seconds.
• The default value is 10m.

See retention window for more information about specifying this
parameter.

processCpuLoadLimit Value established as the low threshold value of the
ProcessCpuLoad attribute.

Example

The smart rule shown in this example uses the following input parameters:

Parameter Value

period 30
duration 15
processCpuLoadLimit 0.2

The smart rule that uses the preceding parameters is expressed as follows:

wls:ServerLowProcessCpuLoadAverage("30 seconds","15 minutes",0.2)

This example smart rule:

1. Samples the value of the ProcessCpuLoad metric from the local server instance
every 30 seconds over a retention window of 15 minutes.

2. At the end of the retention window, fires the associated action if the following
condition evaluates to true:

The average ProcessCpuLoad value, over the last 15 minutes, is less than 0.2 on
this server instance.

ServerHighSystemLoadAverage
The ServerHighSystemLoadAverage smart rule determines whether a reduction exists
on the average system load within the local server in which the rule is running.

You can target this smart rule on either a Managed Server or an Administration Server.

Group: Server

Appendix A
Server Scope Smart Rules

A-44

Description

This rule returns true if the average value of the SystemLoadAverage metric from the
java.lang:type=OperatingSystem MXBean on the local server instance over specified
interval is greater than or equal to a specific high threshold value.

To use this smart rule, specify:

• The sampling rate and retention window of the SystemLoadAverage attribute.

• High SystemLoadAverage threshold value

Note:

The value of the SystemLoadAverage metric is platform-specific and is not available
on all platforms. The MXBean attribute from which this metric originates is
described at http://docs.oracle.com/javase/8/docs/api/java/lang/
management/OperatingSystemMXBean.html#getSystemLoadAverage--.

Syntax

wls:ServerHighSystemLoadAverage("period", "duration", loadLimit)

Parameter Description

period Sampling rate for SystemLoadAverage values, expressed as a
String. For example, 30s specifies that this metric is sampled every
30 seconds.

• The default time unit is seconds.
• The default value is 30s.

See sampling rate for more information about specifying this parameter.

duration Period of time for which collected samples are retained, expressed as a
String.

• The default time unit is seconds.
• The default value is 10m.

See retention window for more information about specifying this
parameter.

loadLimit Value established as the high threshold value of the
SystemLoadAverage attribute.

Example

The smart rule shown in this example uses the following input parameters:

Parameter Value

period 30
duration 5
loadLimit 0.8

The smart rule that uses the preceding parameters is expressed as follows:

Appendix A
Server Scope Smart Rules

A-45

http://docs.oracle.com/javase/8/docs/api/java/lang/management/OperatingSystemMXBean.html#getSystemLoadAverage--
http://docs.oracle.com/javase/8/docs/api/java/lang/management/OperatingSystemMXBean.html#getSystemLoadAverage--

wls:ServerHighSystemLoadAverage("30 seconds","5 minutes",0.8)

This example smart rule:

1. Samples the value of the SystemLoadAverage metric on the local server instance
every 30 seconds over a retention window of 5 minutes.

2. At the end of the retention window, fires the associated action if the following
condition evaluates to true:

The average SystemLoadAverage value, over the last 5 minutes, is greater than or
equal to 0.8 collected on this server instance.

ServerLowQueueLength
The ServerLowQueueLength smart rule determines whether a reduction exists in the
average thread pool queue length within the local server in which the rule is running,
as indicated by the value of the ThreadPoolRuntimeMBean.QueueLength metric.

You can target this smart rule on either a Managed Server or an Administration Server.

Group: Server

Description

This rule returns true if the average value of the
ThreadPoolRuntimeMBean.QueueLength attribute on the local server instance over
specified interval is less than a specific low threshold value.

To use this smart rule, specify:

• The sampling rate and retention window of the
ThreadPoolRuntimeMBean.QueueLength attribute.

• Low QueueLength threshold value

Syntax

wls:ServerLowQueueLength("period", "duration", queueLengthLimit)

Parameter Description

period Sampling rate for QueueLength values, expressed as a String.
For example, 30s specifies that this metric is sampled every 30
seconds.

• The default time unit is seconds.
• The default value is 30s.

See sampling rate for more information about specifying this
parameter.

duration Period of time for which collected samples are retained,
expressed as a String.

• The default time unit is seconds.
• The default value is 10m.

See retention window for more information about specifying this
parameter.

queueLengthLimit Value established as the low threshold value of the QueueLength
attribute.

Appendix A
Server Scope Smart Rules

A-46

Example

The smart rule shown in this example uses the following input parameters:

Parameter Value

period 30
duration 15
queueLengthLimit 5

The smart rule that uses the preceding parameters is expressed as follows:

wls:ServerLowQueueLength("30 seconds","15 minutes",5)

This example smart rule:

1. Samples the value of the QueueLength metric from the local server instance every 30
seconds over a retention window of 15 minutes.

2. At the end of the retention window, fires the associated action if the following condition
evaluates to true:

The average QueueLength value, over the last 15 minutes, is less than 5 on this server
instance.

ServerLowThroughput
The ServerLowThroughput smart rule determines whether a decrease exists in the average
throughput within the local server in which the rule is running.

You can target this smart rule on either a Managed Server or an Administration Server.

Group: Server

Description

This rule returns true if the average value of the ThreadPoolRuntimeMBean.Throughput
attribute on the local server over the specified interval is less than the specified low threshold
value.

To use this smart rule, specify:

• The sampling rate and retention window of the ThreadPoolRuntimeMBean.Throughput
attribute.

• Low Throughput threshold value

Syntax

wls:ServerLowThroughput("period", "duration", throughputLimit)

Appendix A
Server Scope Smart Rules

A-47

Parameter Description

period Sampling rate for Throughput values, expressed as a String.
For example, 30s specifies that this metric is sampled every 30
seconds.

• The default time unit is seconds.
• The default value is 30s.

See sampling rate for more information about specifying this
parameter.

duration Period of time for which collected samples are retained,
expressed as a String.

• The default time unit is seconds.
• The default value is 10m.

See retention window for more information about specifying this
parameter.

throughputLimit Value established as the low threshold value of the Throughput
attribute.

Example

The smart rule shown in this example uses the following input parameters:

Parameter Value

period 30
duration 15
idleThreadsLimit 5

The smart rule that uses the preceding parameters is expressed as follows:

wls:ServerLowThroughput("30 seconds","15 minutes",5)

This example smart rule:

1. Samples the value of the Throughput metric from the local server instance every
30 seconds over a retention window of 15 minutes.

2. At the end of the retention window, fires the associated action if the following
condition evaluates to true:

The average Throughput value, over the last 15 minutes, is less than 5 on this
server instance.

ServerHighQueueLength
The ServerHighQueueLength smart rule determines whether an increase exists in the
average thread pool queue length within the local server in which the rule is running,
as indicated by the value of the ThreadPoolRuntimeMBean.QueueLength attribute.

You can target this smart rule on either a Managed Server or an Administration Server.

Group: Server

Appendix A
Server Scope Smart Rules

A-48

Description

This rule returns true if the average value of the ThreadPoolRuntimeMBean.QueueLength
attribute over a specific time interval is greater than or equal to a specific high threshold
value.

To use this smart rule, specify:

• The sampling rate and retention window of the ThreadPoolRuntimeMBean.QueueLength
attribute.

• High QueueLength threshold value

Syntax

wls:ServerHighQueueLength("period", "duration", queueLengthLimit)

Parameter Description

period Sampling rate for QueueLength values, expressed as a String. For
example, 30s specifies that this metric is sampled every 30 seconds.

• The default time unit is seconds.
• The default value is 30s.

See sampling rate for more information about specifying this parameter.

duration Period of time for which collected samples are retained, expressed as a
String.

• The default time unit is seconds.
• The default value is 10m.

See retention window for more information about specifying this
parameter.

queueLengthLimit Value established as the high threshold value of the QueueLength
attribute.

Example

The smart rule shown in this example uses the following input parameters:

Parameter Value

period 30
duration 10
queueLengthLimit 100

The smart rule that uses the preceding parameters is expressed as follows:

wls:ServerHighQueueLength("30 seconds","10 minutes",100)

This example smart rule:

1. Samples the value of the QueueLength metric from the local server instance every 30
seconds over a retention window of 10 minutes.

2. At the end of the retention window, fires the associated action if the following condition
evaluates to true:

Appendix A
Server Scope Smart Rules

A-49

The average QueueLength value, over the last 10 minutes, is greater than or equal
to 100 on this server instance.

ServerHighSystemCpuLoadAverage
The ServerHighSystemCpuLoadAverage smart rule determines whether an increase
exists in the average system CPU load within the local server in which the rule is
running.

You can target this smart rule on either a Managed Server or an Administration Server.

Group: Server

Description

This rule returns true if the average value of the SystemCpuLoad attribute of the
java.lang:type=OperatingSystem MXBean over a specific time interval is greater
than or equal to a specific high threshold.

Note:

The value of the SystemCpuLoad metric is platform-specific and is not
available on all platforms. The MXBean attribute from which this metric
originates is described at https://docs.oracle.com/javase/8/
docs/jre/api/management/extension/com/sun/management/
OperatingSystemMXBean.html#getSystemCpuLoad--.

To use this smart rule, specify:

• The sampling rate and retention window of the SystemCpuLoad attribute.

• High SystemCpuLoad threshold value

Syntax

wls:ServerHighSystemCpuLoadAverage("period", "duration", systemCpuLoadLimit)

Parameter Description

period Sampling rate for SystemCpuLoad values, expressed as a
String. For example, 30s specifies that this metric is sampled
every 30 seconds.

• The default time unit is seconds.
• The default value is 30s.

See sampling rate for more information about specifying this
parameter.

duration Period of time for which collected samples are retained,
expressed as a String.

• The default time unit is seconds.
• The default value is 10m.

See retention window for more information about specifying this
parameter.

Appendix A
Server Scope Smart Rules

A-50

https://docs.oracle.com/javase/8/docs/jre/api/management/extension/com/sun/management/OperatingSystemMXBean.html#getSystemCpuLoad--
https://docs.oracle.com/javase/8/docs/jre/api/management/extension/com/sun/management/OperatingSystemMXBean.html#getSystemCpuLoad--
https://docs.oracle.com/javase/8/docs/jre/api/management/extension/com/sun/management/OperatingSystemMXBean.html#getSystemCpuLoad--

Parameter Description

systemCpuLoadLimit Value established as the high threshold value of the
SystemCpuLoad attribute.

Example

The smart rule shown in this example uses the following input parameters:

Parameter Value

period 30
duration 10
systemCpuLoadLimit 0.8

The smart rule that uses the preceding parameters is expressed as follows:

wls:ServerHighSystemCpuLoadAverage("30 seconds","10 minutes",0.8)

This example smart rule:

1. Samples the value of the SystemCpuLoad metric from the local server instance every 30
seconds over a retention window of 10 minutes.

2. At the end of the retention window, fires the associated action if the following condition
evaluates to true:

The average SystemCpuLoad value, over the last 10 minutes, is greater than or equal to
0.8 on this server instance.

ServerHighPendingUserRequests
The ServerHighPendingUserRequests smart rule determines whether an increase exists in
the number of pending user requests within the local server in which the rule is running, as
indicated by the value of the ThreadPoolRuntimeMBean.PendingUserRequestCount attribute.

You can target this smart rule on either a Managed Server or an Administration Server.

Group: Server

Description

This rule returns true if the average value of the
ThreadPoolRuntimeMBean.PendingUserRequestCount attribute over a specific interval is
greater than or equal to a specific threshold value.

To use this smart rule, specify:

• The sampling rate and retention window of the
ThreadPoolRuntimeMBean.PendingUserRequestCount attribute.

• High PendingUserRequestCount threshold value

Syntax

wls:ServerHighPendingUserRequests("period", "duration", pendingRequestsLimit)

Appendix A
Server Scope Smart Rules

A-51

Parameter Description

period Sampling rate for PendingUserRequestCount values, expressed
as a String. For example, 30s specifies that this metric is
sampled every 30 seconds.

• The default time unit is seconds.
• The default value is 30s.

See sampling rate for more information about specifying this
parameter.

duration Period of time for which collected samples are retained,
expressed as a String.

• The default time unit is seconds.
• The default value is 10m.

See retention window for more information about specifying this
parameter.

pendingRequestsLimit Value established as the high threshold value of the
PendingUserRequestCount attribute.

Example

The smart rule shown in this example uses the following input parameters:

Parameter Value

period 30
duration 10
pendingRequestsLimit 100

The smart rule that uses the preceding parameters is expressed as follows:

wls:ServerHighPendingUserRequests("30 seconds","10 minutes",100)

This example smart rule:

1. Samples the value of the PendingUserRequestCount metric from the local server
instance every 30 seconds over a retention window of 10 minutes.

2. At the end of the retention window, fires the associated action if the following
condition evaluates to true:

The average PendingUserRequestCount value, over the last 10 minutes, is greater
than or equal to 100 on this server instance.

ServerLowSystemCpuLoadAverage
The ServerLowSystemCpuLoadAverage smart rule determines whether a reduction
exists in the average system CPU load within the local server in which the rule is
running.
You can target this smart rule on either a Managed Server or an Administration Server.

Group: Server

Appendix A
Server Scope Smart Rules

A-52

Description

This rule returns true if the average value of the SystemCpuLoad metric of the
java.lang:type=OperatingSystem MXBean over a specific interval is less than the specified
low threshold value.

Note:

The value of the SystemCpuLoad metric is platform-specific and is not available on
all platforms. The MXBean attribute from which this metric originates is described at
https://docs.oracle.com/javase/8/docs/jre/api/management/
extension/com/sun/management/
OperatingSystemMXBean.html#getSystemCpuLoad--.

To use this smart rule, specify:

• The sampling rate and retention window of the SystemCpuLoad attribute.

• Low SystemCpuLoad threshold value

Syntax

wls:ServerLowSystemCpuLoadAverage("period", "duration", systemCpuLoadLimit)

Parameter Description

period Sampling rate for SystemCpuLoad values, expressed as a String. For
example, 30s specifies that this metric is sampled every 30 seconds.

• The default time unit is seconds.
• The default value is 30s.

See sampling rate for more information about specifying this parameter.

duration Period of time for which collected samples are retained, expressed as a
String.

• The default time unit is seconds.
• The default value is 10m.

See retention window for more information about specifying this
parameter.

systemCpuLoadLimit Value established as the low threshold value of the SystemCpuLoad
attribute.

Example

The smart rule shown in this example uses the following input parameters:

Parameter Value

period 30
duration 15
systemCpuLoadLimit 0.8

The smart rule that uses the preceding parameters is expressed as follows:

Appendix A
Server Scope Smart Rules

A-53

https://docs.oracle.com/javase/8/docs/jre/api/management/extension/com/sun/management/OperatingSystemMXBean.html#getSystemCpuLoad--
https://docs.oracle.com/javase/8/docs/jre/api/management/extension/com/sun/management/OperatingSystemMXBean.html#getSystemCpuLoad--
https://docs.oracle.com/javase/8/docs/jre/api/management/extension/com/sun/management/OperatingSystemMXBean.html#getSystemCpuLoad--

wls:ServerLowSystemCpuLoadAverage("30 seconds","15 minutes",0.8)

This example smart rule:

1. Samples the value of the SystemCpuLoad metric from the local server instance
every 30 seconds over a retention window of 15 minutes.

2. At the end of the retention window, fires the associated action if the following
condition evaluates to true:

The average SystemCpuLoad value, over the last 15 minutes, is less than 0.8 on
this server instance.

ServerHighHeapFreePercent
The ServerHighHeapFreePercent smart rule determines whether an increase in heap
stress exists within the local server in which the rule is running.

You can target this smart rule on either a Managed Server or an Administration Server.

Group: Server

Description

This rule returns true if the average JVMRuntimeMBean.HeapFreePercent value over
the specific time interval is greater than or equal to the specified high threshold value.

To use this smart rule, specify:

• The sampling rate and retention window of the
JVMRuntimeMBean.HeapFreePercent attribute.

• High JVM free heap percentage threshold value

Syntax

wls:ServerHighHeapFreePercent("period", "duration", percentFreeLimit)

Parameter Description

period Sampling rate for JVM free heap percentage values, expressed as
a String. For example, 30s specifies that this metric is sampled
every 30 seconds.

• The default time unit is seconds.
• The default value is 30s.

See sampling rate for more information about specifying this
parameter.

duration Period of time for which collected samples are retained,
expressed as a String.

• The default time unit is seconds.
• The default value is 10m.

See retention window for more information about specifying this
parameter.

percentFreeLimit Value established as the high threshold of the JVM free heap
percentage, specified as a float value between 0.0 and 100.0

Appendix A
Server Scope Smart Rules

A-54

Example

The smart rule shown in this example uses the following input parameters:

Parameter Value

period 30
duration 10
percentFreeLimit 60

The smart rule that uses the preceding parameters is expressed as follows:

wls:ServerHighHeapFreePercent("30 seconds","10 minutes",60)

This example smart rule:

1. Samples the value of the JVM free heap percentage from the local server instance every
30 seconds over a retention window of 10 minutes.

2. At the end of the retention window, fires the associated action if the following condition
evaluates to true:

The average JVM free heap value, over the last 10 minutes, is greater than or equal to 60
per cent on this server instance.

ServerHighStuckThreads
The ServerHighStuckThreads smart rule determines whether an increase exists on server
stress based on the average number of stuck threads within the local server in which the rule
is running, as indicated by the value of the ThreadPoolRuntimeMBean.StuckThreadCount
attribute.
You can target this smart rule on either a Managed Server or an Administration Server.

Group: Server

Description

This rule returns true if the average value of the
ThreadPoolRuntimeMBean.StuckThreadCount attribute over a specific time interval is greater
than or equal to the specified threshold value.

To use this smart rule, specify:

• The sampling rate and retention window of the
ThreadPoolRuntimeMBean.StuckThreadCount attribute.

• High StuckThreadCount threshold value

Syntax

wls:ServerHighStuckThreads("period", "duration", stuckThreadsLimit)

Appendix A
Server Scope Smart Rules

A-55

Parameter Description

period Sampling rate for StuckThreadCount values, expressed as a
String. For example, 30s specifies that this metric is sampled
every 30 seconds.

• The default time unit is seconds.
• The default value is 30s.

See sampling rate for more information about specifying this
parameter.

duration Period of time for which collected samples are retained,
expressed as a String.

• The default time unit is seconds.
• The default value is 10m.

See retention window for more information about specifying this
parameter.

stuckThreadsLimit Value established as the high threshold value of the
StuckThreadCount attribute.

Example

The smart rule shown in this example uses the following input parameters:

Parameter Value

period 30
duration 10
stuckThreadsLimit 5

The smart rule that uses the preceding parameters is expressed as follows:

wls:ServerHighStuckThreads("30 seconds","10 minutes",5)

This example smart rule:

1. Samples the value of the StuckThreadCount metric from the local server instance
every 30 seconds over a retention window of 10 minutes.

2. At the end of the retention window, fires the associated action if the following
condition evaluates to true:

The average StuckThreadCount value, over the last 10 minutes, is greater than or
equal to 5 on this server instance.

ServerHighProcessCpuLoadAverage
The ServerHighProcessCpuLoadAverage smart rule determines whether an decrease
exists in the average system load within the local server in which the rule is running.

You can target this smart rule on either a Managed Server or an Administration Server.

Group: Server

Appendix A
Server Scope Smart Rules

A-56

Description

This rule returns true if the average ProcessCpuLoad value of the
java.lang:type=OperatingSystem MXBean over the specified interval is greater than or
equal to the specified threshold.

Note:

The value of the ProcessCpuLoad metric is platform-specific and is not available on
all platforms. The MXBean attribute from which this metric originates is described at
https://docs.oracle.com/javase/8/docs/jre/api/management/
extension/com/sun/management/
OperatingSystemMXBean.html#getProcessCpuLoad--.

To use this smart rule, specify:

• The sampling rate and retention window of the ProcessCpuLoad attribute.

• High ProcessCpuLoad threshold value

Syntax

wls:ServerHighProcessCpuLoadAverage("period", "duration", processCpuLoadLimit)

Parameter Description

period Sampling rate for ProcessCpuLoad values, expressed as a String.
For example, 30s specifies that this metric is sampled every 30
seconds.

• The default time unit is seconds.
• The default value is 30s.

See sampling rate for more information about specifying this parameter.

duration Period of time for which collected samples are retained, expressed as a
String.

• The default time unit is seconds.
• The default value is 10m.

See retention window for more information about specifying this
parameter.

processCpuLoadLimit Value established as the high threshold value of the ProcessCpuLoad
attribute.

Example

The smart rule shown in this example uses the following input parameters:

Parameter Value

period 30
duration 5
processCpuLoadLimit 0.8

Appendix A
Server Scope Smart Rules

A-57

https://docs.oracle.com/javase/8/docs/jre/api/management/extension/com/sun/management/OperatingSystemMXBean.html#getProcessCpuLoad--
https://docs.oracle.com/javase/8/docs/jre/api/management/extension/com/sun/management/OperatingSystemMXBean.html#getProcessCpuLoad--
https://docs.oracle.com/javase/8/docs/jre/api/management/extension/com/sun/management/OperatingSystemMXBean.html#getProcessCpuLoad--

The smart rule that uses the preceding parameters is expressed as follows:

wls:ServerHighProcessCpuLoadAverage("30 seconds","5 minutes",0.8)

This example smart rule:

1. Samples the value of the ProcessCpuLoad metric from the local server instance
every 30 seconds over a retention window of 5 minutes.

2. At the end of the retention window, fires the associated action if the following
condition evaluates to true:

The average ProcessCpuLoad value, over the last 5 minutes, is greater than or
equal to 0.8 on this server instance.

ServerLowSystemLoadAverage
The ServerLowSystemLoadAverage smart rule determines whether a reduction exists in
the average system load within the local server in which the rule is running.

You can target this smart rule on either a Managed Server or an Administration Server.

Group: Server

Description

This rule returns true if the value of the SystemLoadAverage metric of the
java.lang:type=OperatingSystem MXBean over a specified interval is less than the
specified low threshold value.

Note:

The value of the SystemLoadAverage metric is platform-specific and is not
available on all platforms. The MXBean attribute from which this metric
originates is described at http://docs.oracle.com/javase/8/docs/api/
java/lang/management/
OperatingSystemMXBean.html#getSystemLoadAverage--.

To use this smart rule, specify:

• The sampling rate and retention window of the SystemLoadAverage attribute.

• Low SystemLoadAverage threshold value

Syntax

wls:ServerLowSystemLoadAverage("period", "duration", loadLimit)

Appendix A
Server Scope Smart Rules

A-58

http://docs.oracle.com/javase/8/docs/api/java/lang/management/OperatingSystemMXBean.html#getSystemLoadAverage--
http://docs.oracle.com/javase/8/docs/api/java/lang/management/OperatingSystemMXBean.html#getSystemLoadAverage--
http://docs.oracle.com/javase/8/docs/api/java/lang/management/OperatingSystemMXBean.html#getSystemLoadAverage--

Parameter Description

period Sampling rate for SystemLoadAverage values, expressed as a
String. For example, 30s specifies that this metric is sampled every
30 seconds.

• The default time unit is seconds.
• The default value is 30s.

See sampling rate for more information about specifying this parameter.

duration Period of time for which collected samples are retained, expressed as a
String.

• The default time unit is seconds.
• The default value is 10m.

See retention window for more information about specifying this
parameter.

loadLimit Value established as the low threshold value of the
SystemLoadAverage attribute.

Example

The smart rule shown in this example uses the following input parameters:

Parameter Value

period 30
duration 15
loadLimit 0.2

The smart rule that uses the preceding parameters is expressed as follows:

wls:ServerLowSystemLoadAverage("30 seconds","15 minutes",0.2)

This example smart rule:

1. Samples the value of the SystemLoadAverage metric from the local server instance every
30 seconds over a retention window of 15 minutes.

2. At the end of the retention window, fires the associated action if the following condition
evaluates to true:

The average SystemLoadAverage value, over the last 15 minutes, is less than 0.2 on this
server instance.

ServerLowHeapFreePercent
The ServerLowHeapFreePercent smart rule determines whether an increase exists in heap
stress within the local server in which the rule is running.

You can target this smart rule on either a Managed Server or an Administration Server.

Group: Server

Description

This rule returns true if the average JVMRuntimeMBean.HeapFreePercent value over the
specified time interval is less than the specified low threshold value.

Appendix A
Server Scope Smart Rules

A-59

To use this smart rule, specify:

• The sampling rate and retention window of the
JVMRuntimeMBean.HeapFreePercent attribute.

• Low Java free heap percentage threshold value

Syntax

wls:ServerLowHeapFreePercent("period", "duration", percentFreeLimit)

Parameter Description

period Sampling rate for Java free heap percentage values, expressed as
a String. For example, 30s specifies that this metric is sampled
every 30 seconds.

• The default time unit is seconds.
• The default value is 30s.

See sampling rate for more information about specifying this
parameter.

duration Period of time for which collected samples are retained,
expressed as a String.

• The default time unit is seconds.
• The default value is 10m.

See retention window for more information about specifying this
parameter.

percentFreeLimit Value established as the low threshold value of the Java free heap
percentage.

Example

The smart rule shown in this example uses the following input parameters:

Parameter Value

period 30
duration 5
percentFreeLimit 20

The smart rule that uses the preceding parameters is expressed as follows:

wls:ServerLowHeapFreePercent("30 seconds","5 minutes",20)

This example smart rule:

1. Samples the value of the Java free heap percentage from the local server instance
every 30 seconds over a retention window of 5 minutes.

2. At the end of the retention window, fires the associated action if the following
condition evaluates to true:

The average Java free heap percentage value, over the last 5 minutes, is less
than 20 per cent on this server instance.

Appendix A
Server Scope Smart Rules

A-60

ServerHighIdleThreads
The ServerHighIdleThreads smart rule determines whether a reduction in average system
load exists within the local server in which the rule is running, by measuring an increase in
idle threads as indicated by the ThreadPoolRuntimeMBean.ExecuteThreadIdleCount
attribute.

You can target this smart rule on either a Managed Server or an Administration Server.

Group: Server

Description

This rule returns true if the average value of the
ThreadPoolRuntimeMBean.ExecuteThreadIdleCount attribute over the specified retention
window is greater than or equal to the specified threshold value.

To use this smart rule, specify:

• The sampling rate and retention window of the
ThreadPoolRuntimeMBean.ExecuteThreadIdleCount attribute.

• High ExecuteThreadIdleCount threshold value

Syntax

wls:ServerHighIdleThreads("period", "duration", idleThreadsLimit)

Parameter Description

period Sampling rate for ExecuteThreadIdleCount values, expressed as a
String. For example, 30s specifies that this metric is sampled every
30 seconds.

• The default time unit is seconds.
• The default value is 30s.

See sampling rate for more information about specifying this parameter.

duration Period of time for which collected samples are retained, expressed as a
String.

• The default time unit is seconds.
• The default value is 10m.

See retention window for more information about specifying this
parameter.

idleThreadsLimit Value established as the high threshold value of the
ExecuteThreadIdleCount attribute.

Example

The smart rule shown in this example uses the following input parameters:

Parameter Value

period 30
duration 10
idleThreadsLimit 20

Appendix A
Server Scope Smart Rules

A-61

The smart rule that uses the preceding parameters is expressed as follows:

wls:ServerHighIdleThreads("30 seconds","10 minutes",20)

This example smart rule:

1. Samples the value of the ExecuteThreadIdleCount metric from the local server
instance every 30 seconds over a retention window of 10 minutes.

2. At the end of the retention window, fires the associated action if the following
condition evaluates to true:

The average ExecuteThreadIdleCount value, over the last 10 minutes, is greater
than or equal to 20 on this server instance.

Appendix A
Server Scope Smart Rules

A-62

B
WLDF Beans and Functions Reference

The WebLogic Diagnostics Framework (WLDF) provides a set of beans and functions that
can be used in collected metrics policy expressions to obtain access to common WebLogic
Server JMX data sources.

• WLDF Beans Reference
WLDF includes several beans that can be used in collected metrics policy expressions to
access statistics that provide information about active cluster objects, MBeans,
instrument event fields, and more.

• Functions Reference
WLDF includes a set of functions that can be used in policy expressions to simplify the
extraction or querying of data.

WLDF Beans Reference
WLDF includes several beans that can be used in collected metrics policy expressions to
access statistics that provide information about active cluster objects, MBeans, instrument
event fields, and more.

• clusterRuntime
The clusterRuntime bean provides cluster-wide access to statistics for active clusters in
the domain.

• domainRuntime
The domainRuntime bean provides access to MBeans registered in the Domain Runtime
MBean Server.

• instrumentationEvent
The instrumentationEvent bean provides access to instrumentation event fields in
instrumentation policy expressions.

• log
Used in log policy expressions, the log bean provides access to log message fields.

• platform

• resource

• runtime
The runtime bean provides access to MBeans registered in the WebLogic Server
Runtime MBean Server.

B-1

clusterRuntime
The clusterRuntime bean provides cluster-wide access to statistics for active clusters
in the domain.

Attributes

Name Description

clusters Provides a map of beans that represent active cluster objects within
the domain, keyed by cluster name.

Type: interface java.util.Map
name The name of the cluster.

Type: class java.lang.String

Methods

Name Description

query Performs a query for a set of MBean attribute values based on an Object
Name pattern and an attribute expression.

Parameters:
• onPattern

A valid JMX Object Name, or Object Name pattern.
• attributePattern

A EL expression that is used to retrieve a value from each matching
MBean instance, where the expression is an attribute expression
relative to each MBean.

For example, if the MBean is the ServerRuntimeMBean, the
expression 'OpenSocketsCurrentCount' obtains the value of the
OpenSocketsCurrentCount attribute. By contrast,
'HealthState.State' obtains the State value of the HealthState
child object.

Return values:
Returns a set of values matching the specified ObjectName pattern and
attribute expression. These results can be fed to the wls:extract function for
maintaining an in-memory history of values.

getClusters Provides a map of beans that represent active cluster objects within the
domain.

getAttribute Obtains a single attribute value from an MBean source.

Parameters:
• objectNamePattern

A JMX ObjectName or ObjectName pattern that must resolve to a
single MBean instance.

• attribute
The MBean attribute value to obtain.

Returns Values:
Returns the attribute value matching the specified JMX ObjectName.

Appendix B
WLDF Beans Reference

B-2

http://docs.oracle.com/javase/8/docs/api/java/util/Map.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html

domainRuntime
The domainRuntime bean provides access to MBeans registered in the Domain Runtime
MBean Server.

Attributes

Name Description

domain The root DomainRuntimeMBean in the Domain Runtime MBean Server.

name The bean name.

Type: class java.lang.String
serverRuntimes Returns the array of active ServerRuntimeMBean instances in the domain.

Type: class weblogic.management.runtime.ServerRuntimeMBean[]

Methods

Name Description

query Performs a query for a set of MBean attribute values based on an Object Name pattern
and an attribute expression.

Parameters:
• onPattern

A valid JMX Object Name, or Object Name pattern)
• attributePattern

A EL expression that is used to retrieve a value from each matching MBean
instance, where the expression is an attribute expression relative to each MBean.

For example, if the MBean is the ServerRuntimeMBean, the expression
'OpenSocketsCurrentCount' obtains the value of the
OpenSocketsCurrentCount attribute. By contrast, 'HealthState.State'
obtains the State value of the HealthState child object.

Return values:
Returns a set of values matching the specified Object Name pattern and attribute
expression. These results can be fed to the wls:extract function for maintaining an in-
memory history of values.

query Executes a JMX query against a set of targets within the Domain Runtime MBean
Server.

Parameters:
• targets

A list of server or cluster targets specified as a comma-delimited String
• onPattern

A valid JMX Object Name or Object Name pattern
• expression

A EL expression that is used to retrieve a value on each matching MBean instance
Return values:
Returns a set of values matching the specified Object Name pattern and attribute
expression, across the specified target names.

The target names can be a valid WebLogic Server instance or cluster in the domain.

These results can be fed to the wls:extract function for maintaining an in-memory
history of values.

Appendix B
WLDF Beans Reference

B-3

http://docs.oracle.com/javase/8/docs/api/java/lang/String.html

Name Description

lookupServe
rRuntime

Returns the ServerRuntimeMBean for the named server instance, or null if not
specified.

Parameter:
• serverName

The name of the ServerRuntimeMBean to look up

Return values:
Returns a value matching the specified Object Name pattern and attribute expression.

getAttribut
e

Obtains a single attribute value from an MBean source.

Parameters:
• objectNamePattern

A JMX ObjectName or ObjectName pattern that must resolve to a single MBean
instance.

• attribute
The MBean attribute value to obtain.

Returns Values:
Returns the attribute value matching the specified JMX ObjectName.

instrumentationEvent
The instrumentationEvent bean provides access to instrumentation event fields in
instrumentation policy expressions.

Attributes

Name Description

timeStamp The timestamp value associated with the event creation.

Type: class java.lang.Long
contextId The diagnostic context ID associated with the instrumentation event.

Type: class java.lang.String
txId The JTA transaction ID associated with the instrumentation event.

Type: class java.lang.String
userId The user name associated with the request for which the instrumentation

event is generated.

Type: class java.lang.String
eventType The instrumentation event type.

Type: class java.lang.String
domain The name of the current domain.

Type: class java.lang.String
server The name of the server on which the instrumentation event occurred.

Type: class java.lang.String
scope The instrumentation scope for this event.

Type: class java.lang.String
module The name of the module in which the instrumentation event rule is defined.

Type: class java.lang.String

Appendix B
WLDF Beans Reference

B-4

http://docs.oracle.com/javase/8/docs/api/java/lang/Long.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html

Name Description

monitor The instrumentation monitor that generated the instrumentation event.

Type: class java.lang.String
fileName The source file name containing the code that generated the

instrumentation event.

Type: class java.lang.String
lineNumber The line number in the source file where the instrumentation event

originated.

Type: class java.lang.Integer
className The class name where the instrumentation event originated.

Type: class java.lang.String
methodName The method name where the instrumentation event originated.

Type: class java.lang.String
methodDesc The description of the method that generated the instrumentation event.

Type: class java.lang.String
arguments The arguments passed into the method that generated the instrumentation

event.

Type: class java.lang.String
returnValue The return value for the method that generated the instrumentation event.

Type: class java.lang.String
payload The payload associated with the instrumentation event.

Type class java.lang.Object
contextPayloa
d

The context payload associated with the instrumentation event.

Type: class java.lang.String
dyeVector The dye vector associated with the instrumentation event.

Type: class java.lang.Long
threadName The name of the thread that generated the instrumentation event.

Type: class java.lang.String

Example

The following are examples of using the instrumentationEvent bean in an EL policy
expression to access instrumentation event fields:

instrumentationEvent.monitor == 'Servlet_Around_Service'

instrumentationEvent.getMonitor() == 'Servlet_Around_Service'

instrumentationEvent.monitor.contains('Servlet_')

Appendix B
WLDF Beans Reference

B-5

http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/lang/Integer.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
https://docs.oracle.com/javase/8/docs/api/java/lang/Object.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/lang/Long.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html

log
Used in log policy expressions, the log bean provides access to log message fields.

Attributes

Name Description

timestamp The timestamp indicating when the log message was created.

Type: class java.lang.Long
formattedDate The formatted date string.

Type: class java.lang.String
messageId The message ID of the log entry.

Type: class java.lang.String
machineName The machine name on which the log entry was created.

Type: class java.lang.String
serverName The server name on which the log entry was created.

Type: class java.lang.String
threadName The thread name in which the logged event was created.

Type: class java.lang.String
userId The ID of the user who generated the logged event.

Type: class java.lang.String
transactionId The JTA transaction ID associated with the logged event.

Type: class java.lang.String
severity The severity level for the log message.

Type: class java.lang.Integer
severityString The severity string for the log message.

Type: class java.lang.String
subsystem The name of the subsystem that generated the log message.

Type: class java.lang.String
logMessage The message content of the log entry.

Type: class java.lang.String
diagnosticContext
Id

The diagnostic context ID associated with the logged event.

Type: class java.lang.String
supplementalAttri
butes

The name-value pairs of supplemental attributes that are included in
the log entries.

Type: class java.util.Properties

Example

The following are examples of using the log bean in an EL policy expression to access
log message fields:

log.logMessage.contains("Part of a message")

log.getLogMessage().contains("Part of a message")

Appendix B
WLDF Beans Reference

B-6

http://docs.oracle.com/javase/8/docs/api/java/lang/Long.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/lang/Integer.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
https://docs.oracle.com/javase/8/docs/api/java/util/Properties.html

log.messageId == "BEA-000365"

log.messageId.endsWith('000365')

platform
The platform bean obtain values from MBeans that are exposed through the JVM's platform
MBean server. (Note that WebLogic Server uses the JVM's platform MBean server to contain
the WebLogic run-time MBeans by default. As such, the platform MBean server provides
access to platform MXBeans, WebLogic run-time MBeans, and WebLogic configuration
MBeans that are on a single server instance.)

Attributes

Name Description

name The name of the platform bean ("platform")

Methods

Name Description

query Performs a query for a set of MBean attribute values based on an Object Name
pattern and an attribute expression.

Parameters:
• onPattern

A valid JMX Object Name, or Object Name pattern)
• attributePattern

A EL expression that is used to retrieve a value from each matching MBean
instance, where the expression is an attribute expression relative to each
MBean.

For example, if the MBean is the ServerRuntimeMBean, the expression
'OpenSocketsCurrentCount' obtains the value of the
OpenSocketsCurrentCount attribute. By contrast, 'HealthState.State'
obtains the State value of the HealthState child object.

Return values:
A set of values matching the specified Object Name pattern and attribute
expression. These results can be fed to the wls:extract function for maintaining an
in-memory history of values.

getAttribute Obtains a single attribute value from an MBean source.

Parameters:
• objectNamePattern

A JMX ObjectName or ObjectName pattern that must resolve to a single
MBean instance.

• attribute
The MBean attribute value to obtain.

Returns Values:
Returns the attribute value matching the specified JMX ObjectName.

Appendix B
WLDF Beans Reference

B-7

resource
The resource bean provides access to beans and state information within a diagnostic
system module deployment.Access is restricted to policies that are configured within
the same diagnostic system module. That is, this bean cannot obtain access to beans
and state information from policies that are configured in other diagnostic system
modules. This bean is used for policy-chaining.

Attributes

Name Description

watches A map of currently configured policies within the same diagnostic system
module deployment.

Type: interface java.util.Map

runtime
The runtime bean provides access to MBeans registered in the WebLogic Server
Runtime MBean Server.

Attributes

Name Description

domain The root DomainMBean in the local WebLogic Server Runtime MBean
Server.

Type: interface
weblogic.management.configuration.DomainMBean

name The bean name.

Type: class java.lang.String
serverRuntime The root ServerRuntimeMBean in the local WebLogic Server Runtime

MBean Server.

Type: interface
weblogic.management.runtime.ServerRuntimeMBean

Appendix B
WLDF Beans Reference

B-8

http://docs.oracle.com/javase/8/docs/api/java/util/Map.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html

Methods

Name Description

query Performs a query for a set of MBean attribute values based on an Object Name
pattern and an attribute expression.

Parameters:
• onPattern

A valid JMX Object Name, or Object Name pattern)
• attributePattern

A EL expression that is used to retrieve a value from each matching MBean
instance, where the expression is an attribute expression relative to each
MBean.

For example, if the MBean is the ServerRuntimeMBean, the expression
'OpenSocketsCurrentCount' obtains the value of the
OpenSocketsCurrentCount attribute. By contrast, 'HealthState.State'
obtains the State value of the HealthState child object.

Return values:
A set of values matching the specified Object Name pattern and attribute
expression. These results can be fed to the wls:extract function for maintaining an
in-memory history of values.

getAttribute Obtains a single attribute value from an MBean source.

Parameters:
• objectNamePattern

A JMX ObjectName or ObjectName pattern that must resolve to a single
MBean instance.

• attribute
The MBean attribute value to obtain.

Returns Values:
Returns the attribute value matching the specified JMX ObjectName.

Functions Reference
WLDF includes a set of functions that can be used in policy expressions to simplify the
extraction or querying of data.

• wls:tableChanges
The wls:tableChanges function takes a table of input values and generates an output
table of difference vectors, one for each input vector.

• wls:tableAverages

• wls:extract

• wls:average

• wls:changes

• wls:aliveServersCount

Appendix B
Functions Reference

B-9

wls:tableChanges
The wls:tableChanges function takes a table of input values and generates an output
table of difference vectors, one for each input vector.

This function throws an IllegalArgumentException if the input either:

• Is not a two-dimensional table

• Contains non-numeric values

Parameters

Name Description

inputTable The input table of numeric values, where each row is typically a time series
of values from the same metric instance.

wls:tableAverages
The wls:tableAverages function performs a matrix reduction on an input table of
values, computing the average of each row in the table and producing a vector of
averages, one for each row in the table. Typically each row in the table represents a
time series of values from a particular metric instance.
This function throws an IllegalArgumentException if the input either:

• Is not a two-dimensional table

• Contains non-numeric values

Parameters

Name Description

valuesTable The input table of numeric values, where each row is typically a time series
of values from the same metric instance.

wls:extract
The wls:extract function extracts a table of time series from a specified set of input
sources, based on a specified sampling rate schedule and time window. The input
source can be one of the following:

• The output from a query() operation from a JMX bean. For example:

wls.runtime.query('com.bea:Type=ServletRuntime,*', 'ExecutionTimeAverage')
• An EL expression, as a String. For example:

wls.runtime.JVMRuntime.heapFreePercent

Appendix B
Functions Reference

B-10

Parameters

Name Decription

inputExpression The bean metric to be sampled.

schedule The sampling rate of the metric, specified as a string, in hours, minutes, or
seconds (the default).

duration The required sampling window of the metric, specified as a string, in hours,
minutes, or seconds (the default)

The schedule and duration parameters can be specified in seconds, minutes, or hours, and
are specified as strings using the following syntax:

amount[unit]
In the preceding syntax:

• amount represents an integer.

• [unit] represents seconds, minutes, or hours. Each can be abbreviated to the first letter.
For example: seconds can be abbreviated to s.

• You may include a space character between amount and unit.

For example, any of the following can be used to specify five seconds:

• 5seconds
• 5 sec
• 5s
• 5snds

wls:average
The wls:average function computes an average value based on set of numeric input values.
This function returns the scalar average of the input vector, or Double.NaN if the input is
empty. If the input contains any non-numeric values, an IllegalArgumentException is
thrown.

Note:

The wls:average function is different from the EL-provided average() operation.

Parameters

Name Description

inputValues A vector of numeric input values

Appendix B
Functions Reference

B-11

wls:changes
The wls:changes method takes a vector of input values of size n and produces a
vector of (at most) n-1 differences between successive values. For example, if the
input vector is { 3, 2, 5, 3, 7 }, the resulting vector is { 1, -1, 3, -2, 4 }.
Note the following:

• It is possible for a sequence to contain Double.NaN, which are skipped in
subsequent computations.

• If an input value is non-numeric, an IllegalArgumentException is thrown.

Parameters

Name Description

inputValues A input vector of numeric values

wls:aliveServersCount
The wls:aliveServersCount function is a helper function that counts the number of
Managed Server instances that are in the RUNNING state in a given cluster.

Parameters

Name Description

clusterName The name of the cluster containing the running server instances to be
counted.

Appendix B
Functions Reference

B-12

C
WLDF Query Language

The WebLogic Diagnostics Framework (WLDF) includes a query language for constructing
watch rule expressions, Data Accessor query expressions, and log filter expressions.The
syntax is a small and simplified subset of SQL syntax.

• Components of a Query Expression

• Supported Operators

• Operator Precedence
The WLDF query language has six levels of precedence among its operators.

• Numeric Relational Operations Supported on String Column Types

• Supported Numeric Constants and String Literals
The WLDF query language has two sets of rules: one set for numeric constants, and
another for string literals.

• About Variables in Expressions

• Creating Policy Expressions

• Creating Data Accessor Queries

• Creating Log Filter Expressions

• Building Complex Expressions

Components of a Query Expression
A query expression may include operators, literals, and variables.The supported variables
differ for each type of expression.

• Supported Operators

• Supported Numeric Constants and String Literals

• About Variables in Expressions

The query language is case-sensitive.

Supported Operators
The WLDF query language supports a set of operators and, for each operator, corresponding
operator and operand types.These operators, and corresponding types and operands, are
listed and described in Table C-1.

Table C-1 WLDF Query Language Operators

Operator Operator Type Supported Operand
Types

Definition

AND Logical binary Boolean Evaluates to true when both
expressions are true.

C-1

Table C-1 (Cont.) WLDF Query Language Operators

Operator Operator Type Supported Operand
Types

Definition

OR Logical binary Boolean Evaluates to true when either
expression is true.

NOT Logical unary Boolean Evaluates to true when the
expression is not true.

& Bitwise binary Numeric,

Dye flag

Performs the bitwise AND function
on each parallel pair of bits in each
operand. If both operand bits are
1, the & function sets the resulting
bit to 1. Otherwise, the resulting bit
is set to 0.

Examples of both the & and the |
operators are:

1010 & 0010 = 0010

1010 | 0001 = 1011

(1010 & (1100 | 1101)) = 1000

| Bitwise binary Numeric,

Dye flag

Performs the bitwise OR function
on each parallel pair of bits in each
operand. If either operand bit is 1,
the | function sets the resulting bit
to 1. Otherwise, the resulting bit is
set to 0.

For examples, see the entry for the
bitwise & operator, above.

= Relational Numeric, String Equals

!= Relational Numeric Not equals

< Relational Numeric Less than

> Relational Numeric Greater than

<= Relational Numeric Less than or equals

>= Relational Numeric Greater than or equals

LIKE Match String Evaluates to true when a character
string matches a specified pattern
that can include wildcards.

LIKE supports two wildcard
characters:

A percent sign (%) matches any
string of zero or more characters

A period (.) matches any single
character

MATCHES Match String Evaluates to true when a target
string matches the regular
expression pattern in the operand
String.

IN Search String Evaluates to true when the value
of a variable exists in a predefined
set, for example:

SUBSYSTEM IN ('A','B')

Appendix C
Supported Operators

C-2

Operator Precedence
The WLDF query language has six levels of precedence among its operators.

The following list shows the levels of precedence among operators, from the highest
precedence to the lowest. Operators listed on the same line have equivalent precedence:

1. ()

2. NOT

3. &, |

4. =, !=, <, >, <=, >=, LIKE, MATCHES,IN

5. AND

6. OR

Numeric Relational Operations Supported on String Column
Types

Numeric relational operations can be performed on String column types when they hold
numeric values.For example, if STATUS is a String type, while performing relational
operations with a numeric operand, the column value is treated as a numeric value.
For instance, in the following comparisons, the query evaluator attempts to convert the string
value to appropriate numeric value before comparison:

STATUS = 100

STATUS != 100

STATUS < 100

STATUS <= 100

STATUS > 100

STATUS >= 100

When the string value cannot be converted to a numeric value, the query fails.

Supported Numeric Constants and String Literals
The WLDF query language has two sets of rules: one set for numeric constants, and another
for string literals.

The rules for numeric constants are as follows:

• Numeric literals can be integers or floating point numbers.

• Numeric literals are specified the same as in Java. Some examples of numeric literals are
2, 2.0, 12.856f, 2.1934E-4, 123456L and 2.0D.

The rules for string literals are as follows:

• String literals must be enclosed in single quotes.

• A percent character (%) can be used as a wildcard inside string literals.

Appendix C
Operator Precedence

C-3

• An underscore character (_) can be used as a wildcard to stand for any single
character.

• A backslash character (\) can be used to escape special characters, such as a
quote (') or a percent character (%).

• For watch rule expressions, you can use comparison operators to specify
threshold values for String, Integer, Long, Double, Boolean literals.

• The relational operators do a lexical comparison for Strings. See the
documentation for the java.lang.String.compareTo(String str) method.

About Variables in Expressions
Variables represent the dynamic portion of a query expression that is evaluated at run
time.You must use variables that are appropriate for the type of expression you are
constructing, as explained in the following sections:

• Creating Policy Expressions

• Creating Data Accessor Queries

• Creating Log Filter Expressions

Note:

When specifying a wildcard pattern in a variable for a policy expression that
matches custom MBean ObjectName instances, make sure the pattern is
sufficiently explicit. If you exclude an MBean type name and use an
ambiguous instance pattern, the following may result:

• Only WebLogic Server runtime MBean instances are matched to the
pattern.

• The desired custom MBean instances are ignored.

For example, the following ObjectName pattern does not explicitly declare a
type and uses an ambiguous ObjectName pattern that can match a
WebLogic Server runtime MBean instance:

${ServerRuntime//com.b*:Type=Server*,*}

The preceding pattern matches the WebLogic Server runtime MBean
instances, and causes any custom MBeans matching the same pattern to be
ignored.

Creating Policy Expressions
You can create policies based on log events, instrumentation events, and harvested
attributes.
For complete documentation about configuring and using WLDF policies, see:

• Configuring Policies and Actions

• Configuring Policies

Appendix C
About Variables in Expressions

C-4

The variables supported for creating the expressions are different for each type of policy, as
described in the following sections:

• Creating Log Event Policy Expressions

• Creating Instrumentation Event Policy Expressions

• Creating Harvester Policy Expressions

Creating Log Event Policy Expressions
A log event policy expression is based upon the attributes of a log message from the server
log.

Variable names for log message attributes are listed and explained in Table C-2:

Table C-2 Variable Names for Log Event Policy Expressions

Variable Description Data Type

CONTEXTID The request ID propagated with the request. String

DATE Date when the message was created. String

MACHINE Name of machine that generated the log message. String

MESSAGE Message content of the log message. String

MSGID ID of the log message (usually starts with
"BEA=").

String

RECORDID The number of the record in the log. Long

SERVER Name of server that generated the log message. String

SEVERITY Severity of log message. Values are Info,
Notice, Warning, Error, Critical, Alert, and
Emergency.

String

SUBSYTEM Name of subsystem emitting the log message. String

THREAD Name of thread that generated the log message. String

TIMESTAMP Timestamp when the log message was created. Long

TXID JTA transaction ID of thread that generated the log
message.

String

USERID ID of the user that generated the log message. String

An example log event policy expression is:

 (SEVERITY = 'Warning') AND (MSGID = 'BEA-320012')

Creating Instrumentation Event Policy Expressions
An instrumentation event policy expression is based upon attributes of a data record created
by a diagnostic monitor action.

Variable names for instrumentation data record attributes are listed and explained in
Table C-3:

Appendix C
Creating Policy Expressions

C-5

Table C-3 Variable Names for Instrumentation Event Policy Expressions

Variable Description Data Type

ARGUMENTS Arguments passed to the method that was
invoked.

String

CLASSNAME Class name of joinpoint. String

CONTEXTID Diagnostic context ID of instrumentation event. String

CTXPAYLOAD The context payload associated with this
request.

String

DOMAIN Name of domain. String

DYES Dyes associated with this request. Long

FILENAME Source file name. String

LINENUM Line number in source file. Integer

METHODNAME Method name of joinpoint. String

METHODDSC Method arguments of joinpoint. String

MODULE Name of the diagnostic module. String

MONITOR Name of the monitor. String

PAYLOAD Payload of instrumentation event. String

RECORDID The number of the record in the log. Long

RETVAL Return value of joinpoint. String

SCOPE Name of instrumentation scope. String

SERVER Name of server that created the
instrumentation event.

String

TIMESTAMP Timestamp when the instrumentation event
was created.

Long

TXID JTA transaction ID of thread that created the
instrumentation event.

String

TYPE Type of monitor. String

USERID ID of the user that created the instrumentation
event.

String

An example instrumentation event data policy expression is:

(USERID = 'weblogic')

Creating Harvester Policy Expressions
A Harvester policy expression is based upon one or more harvestable MBean
attributes. The expression can specify an MBean type, an instance, an attribute, or an
instance and an attribute.

Instance-based and type-based expressions can contain an optional namespace
component, which is the namespace of the metric being monitored by the policy. It can
be set to either Server Runtime or DomainRuntime. If omitted, it defaults to
ServerRuntime.

Appendix C
Creating Policy Expressions

C-6

If the namespace component is included and set to DomainRuntime, you should limit the
usage to monitoring only DomainRuntime-specific MBeans, such as the
ServerLifeCycleRuntimeMBean. Monitoring remote Managed Server MBeans through the
DomainRuntime MBeanServer is possible, but is discouraged for performance reasons. It is a
best practice to use the resident policy in each Managed Server to monitor metrics related to
that Managed Server instance.

You can also use wildcards in instance names in Harvester policy expressions, as well as
specify complex attributes in Harvester policy expressions. See Using Wildcards in
Expressions.

The syntax for constructing a Harvester policy expression is as follows:

• To specify an attribute of all instances of a type, use the following syntax:

${namespace//[type_name]//attribute_name}

• To specify an attribute of an instance of a WebLogic type, use the following syntax:

${com.bea:namespace//instance_name//attribute_name}

• To specify an attribute of an instance of a custom MBean type, use the following syntax:

${domain_name:instance_name//attribute_name}

Note:

The domain_name is not required for a WebLogic Server domain name.

The expression must include the complete MBean object name, as shown in the following
example:

${com.bea:Name=HarvesterRuntime,Location=myserver,Type=HarvesterRuntime,
 ServerRuntime=myserver//TotalSamplingCycles} > 10

Creating Data Accessor Queries
Use the WLDF query language with the Data Accessor component to retrieve data from data
stores, including server logs, HTTP logs, and harvested metrics.The variables used to build a
Data Accessor query are based on the column names in the data store from which you want
to extract data.
A Data Accessor query contains the following:

• The logical name of a data store, as described in Data Store Logical Names.

• Optionally, the name(s) of one or more columns from which to retrieve data, as described
in Data Store Column Names.

When there is a match, all columns of matching rows are returned.

• Data Store Logical Names

• Data Store Column Names

Appendix C
Creating Data Accessor Queries

C-7

Data Store Logical Names
The logical name for a data store must be unique. It denotes a specific data store
available on the server. The logical name consists of a log type keyword followed by
zero or more identifiers separated by the forward-slash (/) delimiter. For example, the
logical name of the server log data store is simply ServerLog. However, other log types
may require additional identifiers, as shown in Table C-4.

Table C-4 Naming Conventions for Log Types

Log Type Optional
Identifiers

Example

ConnectorLog The JNDI name
of the
connection
factory

ConnectorLog/eis/
900eisaBlackBoxXATxConnectorJNDINAME
In this example, eis/
900eisaBlackBoxXATxConnectorJNDINAME
is the JNDI name of the connection factory
specified in the weblogic-ra.xml deployment
descriptor.

DataSourceLog None DataSourceLog
DomainLog None DomainLog
EventsDataArchive None EventsDataArchive
HarvestedDataArchive None HarvestedDataArchive
HTTPAccessLog Virtual host

name
HTTPAccessLog — For the default web
server's access log.

HTTPAccessLog/MyVirtualHost — For the
Virtual host named MyVirtualHost deployed to
the current server.

Note: In the case of HTTPAccessLog logs with
extended format, the number of columns are
user-defined.

JMSMessageLog The name of the
JMS Server.

JMSMessageLog/MyJMSServer

JMSSAFMessageLog The name of the
SAF agent.

JMSSAFMessageLog/MySAFAgent

ServerLog None ServerLog
WebAppLog Web server

name + Root
servlet context
name

WebAppLog/MyWebServer/
MyRootServletContext

Data Store Column Names
The column names included in a query are resolved for each row of data. A row is
added to the result set only if it satisfies the query conditions for all specified columns.
A query that omits column names returns all the entries in the log.

All column names from all WebLogic Server log types are listed in Table C-5.

Appendix C
Creating Data Accessor Queries

C-8

Table C-5 Column Names for Log Types

Log Type Column Names

ConnectorLog LINE, RECORDID

DataSourceLog RECORDID, DATASOURCE, PROFILETYPE, TIMESTAMP, USER,
PROFILEINFORMATION, SUPP_ATTRS

DomainLog CONTEXTID, DATE, MACHINE, MESSAGE, MSGID, RECORDID,
SERVER, SEVERITY, SUBSYSTEM, THREAD, TIMESTAMP, TXID,
USERID, SUPP_ATTRS, SEVERITY_VALUE

EventsDataArchive ARGUMENTS, CLASSNAME, CONTEXTID, CTXPAYLOAD, DOMAIN,
DYES, FILENAME, LINENUM, METHODNAME, METHODDSC,
MODULE, MONITOR, PAYLOAD, RECORDID, RETVAL, SCOPE,
SERVER, THREADNAME, TIMESTAMP, TXID, TYPE, USERID

HarvestedDataArchive ATTRNAME, ATTRTYPE, ATTRVALUE, DOMAIN, NAME, RECORDID,
SERVER, TIMESTAMP, TYPE, WLDFMODULE

HTTPAccessLog AUTHUSER, BYTECOUNT, HOST, RECORDID, REMOTEUSER,
REQUEST, STATUS, TIMESTAMP

JDBCLog Same as DomainLog

JMSMessageLog CONTEXTID, DATE, DESTINATION, EVENT, JMSCORRELATIONID,
JMSMESSAGEID, MESSAGE, MESSAGECONSUMER,
NANOTIMESTAMP, RECORDID, SELECTOR, TIMESTAMP, TXID,
USERID

JMSSAFMessageLog CONTEXTID, DATE, DESTINATION, EVENT, JMSCORRELATIONID,
JMSMESSAGEID, MESSAGE, MESSAGECONSUMER,
NANOTIMESTAMP, RECORDID, SELECTOR, TIMESTAMP, TXID,
USERID

ServerLog Same as DomainLog

WebAppLog Same as DomainLog

An example of a Data Accessor query is:

(SUBSYSTEM = 'Deployer') AND (MESSAGE LIKE '%Failed%')

In this example, the Accessor retrieves all messages that include the string "Failed" from the
Deployer subsystem.

The following example shows an API method invocation. It includes a query for harvested
attributes of the JDBC connection pool named MyPool, within an interval between a
timeStampFrom (inclusive) and a timeStampTo (exclusive):

 WLDFDataAccessRuntimeMBean.retrieveDataRecords(timeStampFrom,
 timeStampTo, "TYPE='JDBCConnectionPoolRuntime' AND NAME='MyPool'")

For complete documentation about the WLDF Data Accessor, see Accessing Diagnostic Data
With the Data Accessor.

Creating Log Filter Expressions
The query language can be used to filter what is written to the server log.The variables used
to construct a log filter expression represent the columns in the log are:

• CONTEXTID

Appendix C
Creating Log Filter Expressions

C-9

• DATE
• MACHINE
• MESSAGE
• MSGID
• RECORDID
• SEVERITY
• SUBSYSTEM
• SERVER
• THREAD
• TIMESTAMP
• TXID
• USERID

Note:

These are the same variables that you use to build a Data Accessor
query for retrieving historical diagnostic data from existing server logs.

For complete documentation about the WebLogic Server logging services, see
Filtering WebLogic Server Log Messages in Configuring Log Files and Filtering Log
Messages for Oracle WebLogic Server.

Building Complex Expressions
You can build complex query expressions using subexpressions containing variables,
binary comparisons, and other complex subexpressions.There is no limit on levels of
nesting. The following rules apply:

• Nest queries by surrounding subexpressions within parentheses, for example:

 (SEVERITY = 'Warning') AND (MSGID = 'BEA-320012')
• Enclose a variable name within ${} if it includes special characters, as in an

MBean object name. For example:

${mydomain:Name=myserver,
 Type=ServerRuntime//SocketsOpenedTotalCount} >= 1

Notice that the object name and the attribute name are separated by consecutive
forward slashes (//) in the policy variable name.

Appendix C
Building Complex Expressions

C-10

D
WLDF Instrumentation Library

The WebLogic Diagnostics Framework (WLDF) instrumentation library contains diagnostic
monitors and diagnostic actions.

For information about using items from the instrumentation library, see Configuring
Instrumentation.

• Diagnostic Monitor Library

• Diagnostic Action Library

Diagnostic Monitor Library
Diagnostic monitors are broadly classified as server-scoped and application-scoped
monitors.The former can be used to instrument WebLogic Server classes. You use the latter
to instrument application classes. Except for the DyeInjection monitor, all monitors are
delegating monitors; that is, they do not have a built-in diagnostic action. Instead, they
delegate to actions attached to them to perform diagnostic activity.
All monitors are preconfigured with their respective pointcuts. However, the actual locations
affected by them may vary depending on the classes they instrument. For example, the
Servlet_Before_Service monitor adds diagnostic code at the entry of servlet or java server
page (JSP) service methods at different locations in different servlet implementations.

For any delegating monitor, only compatible actions may be attached. The compatibility is
determined by the nature of the monitor.

The following table lists and describes the diagnostic monitors that can be used within server
scope; that is, in WebLogic Server classes. For the diagnostic actions that are compatible
with each monitor, see the Compatible Action Type column in Table D-1.

Table D-1 Diagnostic Monitors for Use Within Server Scope

Monitor Name Monitor
Type

Compatible
Action Type

Pointcuts

Connector_Before_Inbound Before Stateless At entry of methods handling inbound
connections.

Connector_After_Inbound Server Stateless At exit of methods handling inbound
connections.

Connector_Around_Inbound Around Around At entry and exit of methods handling
inbound connections.

Connector_Before_Outbound Before Stateless At entry of methods handling outbound
connections.

Connector_After_Outbound After Stateless At exit of methods handling outbound
connections.

Connector_Around_Outbound Around Around At entry and exit of methods handling
outbound connections.

D-1

Table D-1 (Cont.) Diagnostic Monitors for Use Within Server Scope

Monitor Name Monitor
Type

Compatible
Action Type

Pointcuts

Connector_Before_Tx Before Stateless Entry of transaction register,
unregister, start, rollback and commit
methods.

Connector_After_Tx After Stateless At exit of transaction register,
unregister, start, rollback and commit
methods.

Connector_Around_Tx Around Around At entry and exit of transaction register,
unregister, start, rollback and commit
methods.

Connector_Before_Work Before Stateless At entry of methods related to
scheduling, starting and executing
connector work items.

Connector_After_Work After Stateless At exit of methods related to
scheduling, starting and executing
connector work items.

Connector_Around_Work Around Around At entry and exit of methods related to
scheduling, starting and executing
connector work items.

DyeInjection Before Built-in At points where requests enter the
server.

JDBC_Before_Commit_Internal Before Stateless JDBC subsystem internal code

JDBC_After_Commit_Internal After Stateless JDBC subsystem internal code

JDBC_Before_Connection_

Internal

Before Stateless Before calls to methods:

Driver.connect

DataSource.getConnection

JDBC_After_Connection_ Internal Before Stateless JDBC subsystem internal code

JDBC_Before_Rollback_ Internal Before Stateless JDBC subsystem internal code

JDBC_After_Rollback_Internal After Stateless JDBC subsystem internal code

JDBC_Before_Start_Internal Before Stateless JDBC subsystem internal code

JDBC_After_Start_Internal After Stateless JDBC subsystem internal code

JDBC_Before_Statement_

Internal

Before Stateless JDBC subsystem internal code

JDBC_After_Statement_

Internal

After Stateless JDBC subsystem internal code

JDBC_After_Reserve_Connection_Internal After Stateless After a JDBC connection is reserved
from the connection pool.

JDBC_After_Release_Connection_Internal After Stateless After a JDBC connection is released
back to the connection pool.

Table D-2 lists the diagnostic monitors that can be used within application scopes; that
is, in deployed applications. The Compatible Action Type column identifies the
diagnostic action type that is compatible with each monitor.

Appendix D
Diagnostic Monitor Library

D-2

Table D-2 Diagnostic Monitors for Use Within Application Scopes

Monitor Name Monitor
Type

Compatible
Action Type

Pointcuts

EJB_After_EntityEjbBusiness Methods After Stateless At exits of all EntityBean methods,
which are not standard ejb methods.

EJB_Around_EntityEjbBusinessMethods Around Around At entry and exits of all EntityBean
methods that are not standard ejb
methods.

EJB_After_EntityEjbMethods After Stateless At exits of methods:

EnitityBean.setEntityContext

EnitityBean.unsetEntityContext

EnitityBean.ejbRemove

EnitityBean.ejbActivate

EnitityBean.ejbPassivate

EnitityBean.ejbLoad

EnitityBean.ejbStore

EJB_Around_EntityEjbMethods Around Around At exits of methods:

EnitityBean.setEntityContext

EnitityBean.unsetEntityContext

EnitityBean.ejbRemove

EnitityBean.ejbActivate

EnitityBean.ejbPassivate

EnitityBean.ejbLoad

EnitityBean.ejbStore

EJB_After_EntityEjbSemantic Methods After Stateless At exits of methods:

EnitityBean.set*

EnitityBean.get*

EnitityBean.ejbFind*

EnitityBean.ejbHome*

EnitityBean.ejbSelect*

EnitityBean.ejbCreate*

EnitityBean.ejbPostCreate*

EJB_Around_EntityEjbSemanticMethods Around Around At entry and exits of methods:

EnitityBean.set*

EnitityBean.get*

EnitityBean.ejbFind*

EnitityBean.ejbHome*

EnitityBean.ejbSelect*

EnitityBean.ejbCreate*

EnitityBean.ejbPostCreate*

EJB_After_SessionEjbMethods After Stateless At exits of methods:

SessionBean.setSessionContext

SessionBean.ejbRemove

SessionBean.ejbActivate

SessionBean.ejbPassivate

Appendix D
Diagnostic Monitor Library

D-3

Table D-2 (Cont.) Diagnostic Monitors for Use Within Application Scopes

Monitor Name Monitor
Type

Compatible
Action Type

Pointcuts

EJB_Around_SessionEjbMethods Around Around At entry and exits of methods:

SessionBean.setSessionContext

SessionBean.ejbRemove

SessionBean.ejbActivate

SessionBean.ejbPassivate

EJB_After_SessionEjbBusinessMethods After Stateless At exits of all SessionBean methods,
which are not standard ejb methods.

EJB_Around_SessionEjb

BusinessMethods

Around Around At entry and exits of all SessionBean
methods, which are not standard ejb
methods.

EJB_After_SessionEjbSemanticMethods After Stateless At exits of methods:

SessionBean.ejbCreateSessionBean.e
jbPostCreate

EJB_Around_SessionEjb

SemanticMethods

Around Around At entry and exits of methods:

SessionBean.ejbCreate

SessionBean.ejbPostCreate

EJB_Before_EntityEjbBusinessMethods Before Stateless At entry of all EntityBean methods,
which are not standard ejb methods.

EJB_Before_EntityEjbMethods Before Stateless At entry of methods:

EnitityBean.setEntityContext

EnitityBean.unsetEntityContext

EnitityBean.ejbRemove

EnitityBean.ejbActivate

EnitityBean.ejbPassivate

EnitityBean.ejbLoad

EnitityBean.ejbStore

EJB_Before_EntityEjbSemanticMethods Before Stateless At entry of methods:

EnitityBean.set*

EnitityBean.get*

EnitityBean.ejbFind*

EnitityBean.ejbHome*

EnitityBean.ejbSelect*

EnitityBean.ejbCreate*

EnitityBean.ejbPostCreate*

EJB_Before_SessionEjb

BusinessMethods

Before Stateless At entry of all SessionBean methods,
which are not standard ejb methods.

EJB_Before_SessionEjbMethods Before Stateless At entry of methods:

SessionBean.setSessionContext

SessionBean.ejbRemove

SessionBean.ejbActivate

SessionBean.ejbPassivate

Appendix D
Diagnostic Monitor Library

D-4

Table D-2 (Cont.) Diagnostic Monitors for Use Within Application Scopes

Monitor Name Monitor
Type

Compatible
Action Type

Pointcuts

EJB_Before_SessionEjb

SemanticMethods

Before Stateless At entry of methods:

SessionBean.ejbCreate

SessionBean.ejbPostCreate

HttpSessionDebug Around Built-in getSession - Inspects returned HTTP
session

Before and after calls to methods:

getAttribute

setAttribute

removeAttribute

At inspection points, the approximate
session size is computed and stored
as the payload of a generated event.
The size is computed by flattening the
session to a byte-array. If an error is
encountered while flattening the
session, a negative size is reported.

JDBC_Before_CloseConnection Before Stateless Before calls to methods:

Connection.close

JDBC_After_CloseConnection After Stateless After calls to methods:

Connection.close

JDBC_Around_CloseConnection Around Around Before and after calls to methods:

Connection.close

JDBC_Before_CommitRollback Before Stateless Before calls to methods:

Connection.commit

Connection.rollback

JDBC_After_CommitRollback After Stateless After calls to methods:

Connection.commit

Connection.rollback

JDBC_Around_CommitRollback Around Around Before and after calls to methods:

Connection.commit

Connection.rollback

JDBC_Before_Execute Before Stateless Before calls to methods:

Statement.execute*

PreparedStatement.execute*

JDBC_After_Execute After Stateless After calls to methods:

Statement.execute*

PreparedStatement.execute*

JDBC_Around_Execute Around Around Before and after calls to methods:

Statement.execute*

PreparedStatement.execute*

Appendix D
Diagnostic Monitor Library

D-5

Table D-2 (Cont.) Diagnostic Monitors for Use Within Application Scopes

Monitor Name Monitor
Type

Compatible
Action Type

Pointcuts

JDBC_Before_GetConnection Before Stateless Before calls to methods:

Driver.connect

DataSource.getConnection

JDBC_After_GetConnection After Stateless After calls to methods:

Driver.connect

DataSource.getConnection

JDBC_Around_GetConnection Around Around Before and after calls to methods:

Driver.connect

DataSource.getConnection

JDBC_Before_Statement Before Stateless Before calls to methods:

Connection.prepareStatement

Connection.prepareCall

Statement.addBatch

RowSet.setCommand

JDBC_After_Statement After Stateless After calls to methods:

Connection.prepareStatement

Connection.prepareCall

Statement.addBatch

RowSet.setCommand

JDBC_Around_Statement Around Around Before and after calls to methods:

Connection.prepareStatement

Connection.prepareCall

Statement.addBatch

RowSet.setCommand

JMS_Before_AsyncMessage

Received

Before Stateless At entry of methods:

MessageListener.onMessage

JMS_After_AsyncMessage

Received

After Stateless At exits of methods:

MessageListener.onMessage

JMS_Around_AsyncMessage

Received

Around Around At entry and exits of methods:

MessageListener.onMessage

JMS_Before_MessageSent Before Stateless Before call to methods:

QueSender send

JMS_After_MessageSent After Stateless After call to methods:

QueSender send

JMS_Around_MessageSent Around Around Before and after call to methods:

QueSender send

JMS_Before_SyncMessage

Received

Before Stateless Before calls to methods:

MessageConsumer.receive*

JMS_After_SyncMessage

Received

After Stateless After calls to methods:

MessageConsumer.receive*

Appendix D
Diagnostic Monitor Library

D-6

Table D-2 (Cont.) Diagnostic Monitors for Use Within Application Scopes

Monitor Name Monitor
Type

Compatible
Action Type

Pointcuts

JMS_Around_SyncMessage

Received

Around Around Before and after calls to methods:

MessageConsumer.receive*

JMS_Before_TopicPublished Before Stateless Before call to methods:

TopicPublisher.publish

JMS_After_TopicPublished After Stateless After call to methods:

TopicPublisher.publish

JMS_Around_TopicPublished Around Around Before and after call to methods:

TopicPublisher.publish

JNDI_Before_Lookup Before Stateless Before calls to javax.naming.Context
lookup methods

Context.lookup*

JNDI_After_Lookup After Stateless After calls to javax.naming.Context
lookup methods:

Context.lookup*

JNDI_Around_Lookup Around Around Before and after calls to
javax.naming.Context lookup methods

Context.lookup*

JTA_Before_Commit Before Stateless At entry of methods:

UserTransaction.commit

JTA_After_Commit After Stateless
advice

At exits of methods:

UserTransaction.commit

JTA_Around_Commit Around Around At entry and exits of methods:

UserTransaction.commit

JTA_Before_Rollback Before Stateless At entry of methods:

UserTransaction.rollback

JTA_After_Rollback After Stateless
advice

At exits of methods:

UserTransaction.rollback

JTA_Around_Rollback Around Around At entry and exits of methods:

UserTransaction.rollback

JTA_Before_Start Before Stateless At entry of methods:

UserTransaction.begin

JTA_After_Start After Stateless
advice

At exits of methods:

UserTransaction.begin

JTA_Around_Start Around Around At entry and exits of methods:

UserTransaction.begin

MDB_Before_MessageReceived Before Stateless At entry of methods:

MessageDrivenBean.onMessage

MDB_After_MessageReceived After Stateless At exits of methods:

MessageDrivenBean.onMessage

Appendix D
Diagnostic Monitor Library

D-7

Table D-2 (Cont.) Diagnostic Monitors for Use Within Application Scopes

Monitor Name Monitor
Type

Compatible
Action Type

Pointcuts

MDB_Around_MessageReceived Around Around At entry and exits of methods:

MessageDrivenBean.onMessage

MDB_Before_Remove Before Stateless At entry of methods:

MessageDrivenBean.ejbRemove

MDB_After_Remove After Stateless At exits of methods:

MessageDrivenBean.ejbRemove

MDB_Around_Remove Around Around At entry and exits of methods:

MessageDrivenBean.ejbRemove

MDB_Before_SetMessageDriven

Context

Before Stateless At entry of methods:

MessageDrivenBean.setMessage

DrivenContext

MDB_After_SetMessageDriven

Context

After Stateless At exits of methods:

MessageDrivenBean.setMessageDrive
nContext

MDB_Around_SetMessageDriven

Context

Around Around At entry and exits of methods:

MessageDrivenBean.setMessageDrive
nContext

Servlet_Before_Service Before Stateless At method entries of servlet/jsp
methods:

HttpJspPage._jspService

Servlet.service

HttpServlet.doGet

HttpServlet.doPost

Filter.doFilter

Servlet_After_Service After Stateless At method exits of servlet/jsp methods:

HttpJspPage._jspService

Servlet.service

HttpServlet.doGet

HttpServlet.doPost

Filter.doFilter

Servlet_Around_Service Around Around At method entry and exits of servlet/jsp
methods:

HttpJspPage._jspService

Servlet.service

HttpServlet.doGet

HttpServlet.doPost

Filter.doFilter

Appendix D
Diagnostic Monitor Library

D-8

Table D-2 (Cont.) Diagnostic Monitors for Use Within Application Scopes

Monitor Name Monitor
Type

Compatible
Action Type

Pointcuts

Servlet_Before_Session Before Stateless Before calls to servlet methods:

HttpServletRequest.getSession

HttpSession.setAttribute/

putValue

HttpSession.getAttribute/

getValue

HttpSession.removeAttribute/

removeValue

HttpSession.invalidate

Servlet_Around_Session Around Around Before and after calls to servlet
methods:

HttpServletRequest.getSession

HttpSession.setAttribute/

putValue

HttpSession.getAttribute/

getValue

HttpSession.removeAttribute/

removeValue

HttpSession.invalidate

Servlet_After_Session After Stateless After calls to servlet methods:

HttpServletRequest.getSession

HttpSession.setAttribute/

putValue

HttpSession.getAttribute/

getValue

HttpSession.removeAttribute/

removeValue

HttpSession.invalidate

Servlet_Before_Tags Before Stateless Before calls to jsp methods:

Tag.doStartTag

Tag.doEndTag

Servlet_After_Tags After Stateless After calls to jsp methods:

Tag.doStartTag

Tag.doEndTag

Servlet_Around_Tags Around Around Before and after calls to jsp methods:

Tag.doStartTag

Tag.doEndTag

Diagnostic Action Library
WLDF includes a library of diagnostic actions that you can use with delegating monitors.You
can also use these diagnostic actions with custom monitors that you can define and use

Appendix D
Diagnostic Action Library

D-9

within applications. Each diagnostic action can be used only with monitors with which
they are compatible, as indicated by the Compatible Monitor Type column. Some
actions (for example, TraceElapsedTimeAction) generate an event payload.
The diagnostic action library includes the following actions:

• TraceAction

• DisplayArgumentsAction

• TraceElapsedTimeAction

• TraceMemoryAllocationAction

• StackDumpAction

• ThreadDumpAction

• MethodInvocationStatisticsAction

• MemoryAllocationStatisticsAction

TraceAction
TraceAction is a stateless action that is compatible with Before and After monitor
types.

TraceAction generates a trace event at the affected location in the program execution.
The following information is generated:

• Timestamp

• Context identifier from the diagnostic context which uniquely identifies the request

• Transaction identifier, if available

• User identity

• Action type (that is, TraceAction)

• Domain

• Server name

• Instrumentation scope name (for example, application name)

• Diagnostic monitor name

• Module name

• Location in code from where the action was called. The location information
includes:

– Class name

– Method name

– Method signature

– Line number

– Thread name

• Payload carried by the diagnostic context, if any

Appendix D
Diagnostic Action Library

D-10

DisplayArgumentsAction
DisplayArgumentsAction is a stateless action that is compatible with Before and After monitor
types.

DisplayArgumentsAction generates an instrumentation event at the affected location in the
program execution to capture method arguments or a return value.

When executed, this action causes an instrumentation event that is dispatched to the events
archive. When attached to Before monitors, the instrumentation event captures input
arguments to the joinpoint (for example, method arguments). When attached to After
monitors, the instrumentation event captures the return value from the joinpoint. The event
carries the following information:

• Timestamp

• Context identifier from the diagnostic context that uniquely identifies the request

• Transaction identifier, if available

• User identity

• Action type (that is, DisplayArgumentsAction)

• Domain

• Server name

• Instrumentation scope name (for example, application name)

• Diagnostic monitor name

• Module name

• Location in code from where the action was called. The location information includes:

– Class name

– Method name

– Method signature

– Line number

– Thread name

• Payload carried by the diagnostic context, if any

• Input arguments, if any, when attached to Before monitors

• Return value, if any, when attached to After monitors

TraceElapsedTimeAction
TraceElapsedTimeAction is an Around action that is compatible with Around monitor types.

TraceElapsedTimeAction generates two events: one before and one after the location in the
program execution.

When executed, this action captures the timestamps before and after the execution of an
associated joinpoint. It then computes the elapsed time by computing the difference. It
generates an instrumentation event which is dispatched to the events archive. The elapsed
time is stored as event payload. The event carries the following information:

Appendix D
Diagnostic Action Library

D-11

• Timestamp

• Context identifier from the diagnostic context that uniquely identifies the request

• Transaction identifier, if available

• User identity

• Action type (that is TraceElapsedTimeAction)

• Domain

• Server name

• Instrumentation scope name (for example, application name)

• Diagnostic monitor name

• Module name

• Location in code from where the action was called. This location information
consists of:

– Class name

– Method name

– Method signature

– Line number

– Thread name

• Payload carried by the diagnostic context, if any

• Elapsed time processing the joinpoint, as event payload, in nanoseconds

TraceMemoryAllocationAction
TraceMemoryAllocationAction uses the HotSpot ThreadMXBean API to trace the
number of bytes allocated by a thread during a method call. This action is very similar
to TraceElapsedTimeAction, with the exception that the memory allocated within a
method call is traced.

The TraceMemoryAllocationAction action:

• Creates an instrumentation event that is persisted.

• Can be used from delegating and custom monitors.

StackDumpAction
StackDumpAction is a stateless action that is compatible with Before and After monitor
types.

StackDumpAction generates an instrumentation event at the affected location in the
program execution to capture a stack dump.

When executed, this action generates an instrumentation event that is dispatched to
the events archive. It captures the stack trace as an event payload. The event carries
following information:

• Timestamp

• Context identifier from the diagnostic context that uniquely identifies the request

Appendix D
Diagnostic Action Library

D-12

• Transaction identifier, if available

• User identity

• Action type (that is, StackDumpAction)

• Domain

• Server name

• Instrumentation scope name (for example, application name)

• Diagnostic monitor name

• Module name

• Location in code from where the action was called. This location information consists of:

– Class name

– Method name

– Method signature

– Line number

– Thread name

• Payload carried by the diagnostic context, if any

• Stack trace as an event payload

ThreadDumpAction
ThreadDumpAction is a stateless action that is compatible with Before and After monitor
types.

ThreadDumpAction generates an instrumentation event at the affected location in the
program execution to capture a thread dump, if the underlying VM supports it. JDK 8 and
later (Oracle HotSpot) supports this action.

This action generates an instrumentation event that is dispatched to the events archive. This
action may be used only with HotSpot. It is ignored when used with other JVMs. It captures
the thread dump as event payload. The event carries the following information:

• Timestamp

• Context identifier from the diagnostic context that uniquely identifies the request

• Transaction identifier, if available

• User identity

• Action type (that is, ThreadDumpAction)

• Domain

• Server name

• Instrumentation scope name (for example, application name)

• Diagnostic monitor name

• Module name

• Location in code from where the action was called. This location information consists of:

– Class name

Appendix D
Diagnostic Action Library

D-13

– Method name

– Method signature

– Line number

– Thread name

• Payload carried by the diagnostic context, if any

• Thread dump as an event payload

MethodInvocationStatisticsAction
MethodInvocationStatisticsAction is an Around action that is compatible with Around
monitor types.

MethodInvocationStatisticsAction captures performance metrics around a joinpoint in
memory without persisting an event in the Archive for each invocation. The statistics
are collected and made available through the WLDFInstrumentationRuntimeMBean.
The collected statistics are also consumable by the Harvester and the Policies and
Actions components. This makes it possible to create watch rules that can combine
request information from the instrumentation system and metric information from other
run-time MBeans.

Some of the statistics that can be captured include the following:

• Number of invocations

• Average execution time (in nanoseconds)

• Standard deviation in observed execution time

• Minimum execution time

• Maximum execution time

The WLDFInstrumentationRuntimeMBean instance for a given scope exposes the
data collected from MethodInvocationStatisticsAction instances, which are attached to
configured Diagnostic Around monitors, using the MethodInvocationStatistics attribute.
The MethodInvocationStatistics attribute contains a hierarchy of Map objects, keyed as
shown in Figure D-1.

Figure D-1 Structure of MethodInvocationStatistics Attribute

Appendix D
Diagnostic Action Library

D-14

The following semantics are used in the MethodInvocationStatistics attribute:

 MethodInvocationStatistics::= Map<className, MethodMap>
 MethodMap::= Map<methodName, MethodParamsSignatureMap>
 MethodParamsSignatureMap::= Map<MethodParamsSignature, MethodDataMap>
 MethodDataMap::= <MetricName, Statistic>
 MetricName:= min | max | avg | count | sum | sum_of_squares | std_deviation

Because the MethodInvocationStatisticsAction only captures information in memory, and
does not persist that information in the Archive, this action does not incur the I/O overhead of
other instrumentation actions. This makes this action a lightweight mechanism for capturing
performance statistics and helping identify bottlenecks in your application. You can navigate
through the map structures and identify the low performing parts of your application.

• Instrumenting an Application with MethodInvocationStatisticsAction and Querying the
Results

• Configuring the Harvester to Collect MethodInvocationStatisticsAction Data

• Configuring Policies Based on MethodInvocationStatistics Metrics

• Using JMX to Collect Data

Instrumenting an Application with MethodInvocationStatisticsAction and Querying
the Results

This section shows an example of instrumenting the Avitek Medical Records (MedRec)
sample application with a custom monitor that uses MethodInvocationStatisticsAction. This
example then shows using WLST online to query the performance statistics that have been
collected, which can be done by navigating the WLDFInstrumentationRuntimeMBean
instance associated with the instrumented application.

WLST online provides simplified access to MBeans. While JMX APIs require you to use JMX
object names to interrogate MBeans, WLST enables you to navigate a hierarchy of MBeans
in a similar fashion to navigating a hierarchy of files in a file system. See Navigating and
Interrogating MBeans in Understanding the WebLogic Scripting Tool.

The following subsections are included in this example:

• Configuring the Custom Monitor to Use MethodInvocationStatisticsAction

• Using WLST to Query Method Performance Statistics

Note:

Code examples demonstrating Java EE APIs and other WebLogic Server features
are provided with your WebLogic Server installation. To work with these examples,
select the custom installation option when installing WebLogic Server, and select to
install the Server Examples. See Code Examples and Sample Applications in
Understanding Oracle WebLogic Server.

• Configuring the Custom Monitor to Use MethodInvocationStatisticsAction

• Using WLST to Query Method Performance Statistics

Appendix D
Diagnostic Action Library

D-15

Configuring the Custom Monitor to Use MethodInvocationStatisticsAction
As of WebLogic Server 10.3, it is no longer necessary to create a weblogic-
diagnostics.xml file in the application's META-INF directory to configure a custom
monitor. Instead, you can complete all the required steps from the WebLogic Server
Administration Console, as described in the following steps for instrumenting the
MedRec sample application:

1. In the Domain Structure pane of the WebLogic Server Administration Console,
select Deployments.

2. On the Summary of Deployments page, select Control, and click medrec in the
Deployments table.

The Settings for medrec page is displayed.

3. Select Configuration > Instrumentation.

4. In the Diagnostic Monitors in this Module table, click Add Custom Monitor.

5. In the Add Custom Monitors page, enter MethodStatsMonitor as the monitor
name. Optionally, you can enter a brief description.

6. In the Location Type selection box, select Around.

7. In the Pointcut text box, enter the following pointcut expression:

execution(public * com.bea.medrec.* *(...)) AND NOT
execution(public * com.bea.medrec.* get*(...)) OR
execution(public * com.bea.medrec.* set*(...)) OR
execution(public * com.bea.medrec.* __WL_*(...)));

This pointcut expression specifies joinpoints for all public methods in classes
within packages whose name starts with com.bea.medrec, but excludes the
following methods:

• All accessor methods

• Methods that begin with the string __WL_
This pointcut expression encompasses a wide variety of public methods and
classes in MedRec, but ignores all getter and setter methods, as well as code
generated by WebLogic Server.

8. Below the pointcut expression text box, click OK.

9. On the Save Deployment Plan page, enter a new path for the deployment plan, or
accept the default location, and click OK.

10. Select Configuration > Instrumentation, and click the name of the new custom
monitor, MethodStatsMonitor, which is listed in the Diagnostic Monitors in this
Module table.

The Settings for MethodStatsMonitor page is displayed.

11. In the Actions table, assign MethodInvocationStatisticsAction to the custom
monitor, as shown in Figure D-2:

Appendix D
Diagnostic Action Library

D-16

Figure D-2 Choosing MethodInvocationStatisticsAction for Custom Monitor

12. Click Save, at the bottom of the Settings for MethodStatsMonitor page.

13. Apply the updated deployment plan to the MedRec application:

a. In the Domain Structure pane, select Deployments.

b. On the Summary of Deployments page, select Control, and click the selection box
adjacent to medrec in the Deployments table, as shown in Figure D-3:

Figure D-3 Selecting the MedRec Deployment

c. Click Update.

d. In the Update Application Assistant page, select Redeploy this application using
the following deployment files.

e. Click Next, then click Finish.

The MedRec application is now redeployed, and the custom monitor MethodStatsMonitor is
active.

Appendix D
Diagnostic Action Library

D-17

Note:

If Java HotSwap is not enabled, to add a new pointcut to the application's
configuration, you need to redeploy the application to enable a custom
monitor to be woven into the application code. (However, you can modify
most of an application's monitor configuration without requiring a redeploy.
This includes changes to the custom monitor's Actions, Properties,
EnableDyeFiltering, and Description attributes — that is, anything that does
not require bytecode weaving.

However, with HotSwap enabled, you can change any monitor attribute and
update the application without the need to redeploy it. See Using
Deployment Plans to Dynamically Control Instrumentation Configuration.

Using WLST to Query Method Performance Statistics
Once MedRec is redeployed, the MethodInvocationStatisticsAction begins capturing
method performance statistics as the instrumented code is executed. This section
shows how to generate statistics quickly and simply by navigating the MedRec patient
application with the custom monitor enabled. This section then shows how to examine
those statistics using WLST online.

To capture method performance statistics using the custom monitor configured for
MedRec and query the results using WLST, complete the following steps:

1. Start the MedRec application, as described in Sample Applications and Code
Examples in Understanding Oracle WebLogic Server.

Log in as a patient, administrator, or physician, and perform a small number of
operations.

2. Invoke WLST online and navigate to the WLDFInstrumentationRuntimeMBean
instance, as shown in the following example steps:

a. Connect to the MedRec server:

wls:/offline> connect('weblogic','password','localhost:7011')
Connecting to t3://localhost:7011 with userid weblogic ...
Successfully connected to Admin Server 'MedRecServer' that belongs to domain 'medrec'.

b. Use the cd command to navigate to the WLDFInstrumentationRuntimeMBean
instance associated with the MedRec application:

cd('serverRuntime:/WLDFRuntime/WLDFRuntime/WLDFInstrumentationRuntimes/
medrec')
Location changed to serverRuntime tree. This is a read-only tree with
ServerRuntimeMBean as the root.
For more help, use help(serverRuntime)

3. Access specific values collected by MethodInvocationStatisticsAction by invoking
the following method on the WLDFInstrumentationRuntimeMBean:

public Object getMethodInvocationStatisticsData(String expr) throws
ManagementException;

Using WLST interactively, you can pass a lookup expression to this method. The
lookup expression specifies the particular subset of values that you are interested
in viewing. These values are obtained from the map structure created by
MethodInvocationStatisticsAction. For example, the following WLST command

Appendix D
Diagnostic Action Library

D-18

returns the average execution time (in nanoseconds) of all methods instrumented by
MethodInvocationStatisticsAction:

cmo.getMethodInvocationStatisticsData("(com.bea%)(*)(?)(avg)")
array(java.lang.Object,[3352.0, 3632.0, 145270.0, 4050.5, 8450.916666666666,
1798645.75,
583538.0, 3610515.0, 1.9541031E7, 1.2796319E7, 3.07897E8, 4470.0, 3073.0, 3073.0,
2.4644752E7, 3492.5, 1051530.0, 2794.0, 390552.3333333333, 3632.0, 2095.5,
189409.33333333334,
2607.6666666666665, 2793.6666666666665, 4749.333333333333, 5308.0, 65930.0,
3.3950405E7,
3353.0, 3911.5])

Note that if you display the entire set of data values that have been collected, a large amount
of information could be displayed in the WLST console, as shown in Figure D-4:

Figure D-4 Displaying All Data Values Collected by MethodInvocationStatisticsAction

As an alternative, you can create a WLST script to invoke MethodInvocationStatistics and to
format the collected data so that it is more easily read, as in Example D-1:

Example D-1 Using WLST to Invoke MethodInvocationStatistics and Display Results

import sys

def getPositionalArgument(pos, default):
 value=None
 try:
 value=sys.argv[pos]
 except:
 value=default
 return value

url = getPositionalArgument(1, "t3://localhost:7001")

Appendix D
Diagnostic Action Library

D-19

user = getPositionalArgument(2, "weblogic")
password = getPositionalArgument(3, "password")
appName = getPositionalArgument(4, "myapp")

connect(user,password,url)
serverRuntime()
cd('/WLDFRuntime/WLDFRuntime/WLDFInstrumentationRuntimes/' + appName)

print "# Class Method | Count | Min | Max | Average | Std-dev |"
stats=cmo.getMethodInvocationStatistics()
for className in stats.keySet():
 classMap=stats.get(className)
 for methodName in classMap.keySet():
 methodMap=classMap.get(methodName)
 for sig in methodMap.keySet():
 str= className + " " + methodName + "(" + sig + ")"
 sigMap=methodMap.get(sig)
 count=sigMap.get('count')
 min=sigMap.get('min')
 max=sigMap.get('max')
 avg=sigMap.get('avg')
 std_deviation=sigMap.get('std_deviation')
 print str, "|", count, "|", min, "|", max, "|", avg, "|", std_deviation, "|"

The following shows the output produced by the WLST script shown in Example D-1:

Class Method | Count | Min | Max | Average | Std-dev |
jsp_servlet.__index _isStale() | 1 | 1378000 | 1378000 | 1378000.0 | 0.0 |
jsp_servlet.__index _getBytes(java.lang.String) | 3 | 1000 | 754000 | 252666.66666666666 | 354497.1399351795
|
jsp_servlet.__index _staticIsStale(weblogic.servlet.jsp.StaleChecker) | 1 | 861000 | 861000 | 861000.0 | 0.0
|
jsp_servlet.__index
_jspService(javax.servlet.http.HttpServletRequest,javax.servlet.http.HttpServletResponse) | 2 | 70000 |
2113000 | 1091500.0 | 1021500.0 |
jsp_servlet.__index$MyMap containsKey(java.lang.Object) | 2 | 2000 | 101000 | 51500.0 | 49500.0 |
jsp_servlet.__index$MyMap containsValue(java.lang.Object) | 2 | 1000 | 2000 | 1500.0 | 500.0 |

Configuring the Harvester to Collect MethodInvocationStatisticsAction Data
To configure the Harvester to collect data gathered by
MethodInvocationStatisticsAction instances, you must configure an instance of
WLDFHarvesterBean using the following attribute:

Name=weblogic.management.runtime.WLDFInstrumentationRuntimeMBean

The scope is selected by the instance configuration.

The attribute specification defines the data that is collected by the Harvester. You can
access the successive elements of the map by using the following notation:

MethodInvocationStatistics(className)(methodName)(methodParamSignature)
(metricName)

In the preceding notation:

• className represents the fully qualified Java class name. You can use the asterisk
(*) wildcard character in a class name.

• methodName selects a specific method from the given class. You can use the
asterisk (*) wildcard character in a method name.

Appendix D
Diagnostic Action Library

D-20

• methodParamSignature represents a string that is a comma-separated list of a method's
input argument types. Only the Java type names, without the argument names, are
included in the signature specification. As in the Java language, the order of the
parameters in the signature is significant.

This element also supports the asterisk (*) wildcard character, which can be used to
specify the entire list of input argument types for a given method. The asterisk (*)
wildcard character matches zero or more argument types at the position following its
occurrence in the methodParamSignature expression.

You can also use the question mark (?) wildcard character to match a single argument
type at any given position in the ordered list of parameter types.

Both of these wildcard characters can appear anywhere in the expression. See
MethodInvocationStatisticsAction Examples.

• metricName represents the statistics to be harvested. You can use the asterisk (*)
wildcard character in this key to harvest all of the supported metrics.

MethodInvocationStatistics Examples

Consider a class with the following overloaded methods:

package.com.foo;
public interface Bar {
 public void doIt();
 public void doIt(int a);
 public void doit(int a, String s)
 public void doIt(Stringa, int b);
 public void doIt(String a, String b);
 public void doIt(String[] a);
 public void doNothing();
 public void doNothing(com.foo.Baz);
}

Table D-3 provides examples that show to use MethodInvocationStatisticsAction to harvest
various statistics.

Table D-3 MethodInvocationStatisticsAction Examples

The following MethodInvocationStatisticsAction
instance configuration . . .

. . . causes the following to be harvested

MethodInvocationStatistics(com.foo.Bar)(*)
(*)(*)

All statistics for all methods on com.Foo.Bar.

MethodInvocationStatistics(com.foo.Bar)
(doIt)()(*)

All statistics for the doIt() method that has no input
arguments.

MethodInvocationStatistics(com.foo.Bar)
(doIt)(*)(*)

All statistics for all doIt() methods.

MethodInvocationStatistics(com.foo.Bar)
(doIt)(int, *)(*)

All statistics for the doIt(int) and doIt(int,
String) methods.

MethodInvocationStatistics(com.foo.Bar)
(doIt)(String[])(*)

All statistics for the doIt(String[]) method.

Note that array parameters are specified by the use of a
pair of square brackets ([]) following the type name.
Space characters are insignificant for the Harvester.

Appendix D
Diagnostic Action Library

D-21

Table D-3 (Cont.) MethodInvocationStatisticsAction Examples

The following MethodInvocationStatisticsAction
instance configuration . . .

. . . causes the following to be harvested

MethodInvocationStatistics(com.foo.Bar)
(doIt)(String, ?)(*)

All statistics for doIt() methods that have two input
parameters and String as the first argument type. In
this example class, this instance configuration matches
the following methods:

• doIt(String, int)
• doIt(String, String)

MethodInvocationStatistics(com.foo.Bar)
(doNothing)(com.foo.Baz)(min,max)

The min and max execution time for the doNothing()
method that has the single input parameter of type
com.foo.Baz.

Note:

Using a wildcard character in the className specification can have a
negative impact on performance.

Configuring Policies Based on MethodInvocationStatistics Metrics
You can use the same syntax described in the previous sections to use
MethodInvocationStatistics metrics in a policy expression. You can create meaningful
watch rules that do not use a wildcard character in the MetricName element by
specifying whether you want the min, max, avg, count, sum, sum_of_squares, or
std_deviation variable for a given method.

Using JMX to Collect Data
When using straight JMX to collect data, you can potentially impact server
performance negatively if you invoke the
getAttribute("MethodInvocationStatistics") method on the
WLDFInstrumentationRuntimeMBean. This occurs because, depending on the
instrumented classes, the nested map structure can contain a lot of data that involves
expensive serialization.

When you use JMX to collect data, Oracle recommends using the
getMethodInvocationStatisticsData(String) method.

MemoryAllocationStatisticsAction
The MemoryAllocationStatisticsAction uses the HotSpot ThreadMXBean API API to
track the number of bytes allocated by a thread during a method call. Statistics are
kept in-memory on the memory allocations, and no instrumentation events are created
by this action.

The MemoryAllocationStatisticsAction is very similar to the existing
MethodInvocationStatisticsAction. However, statistics tracked by

Appendix D
Diagnostic Action Library

D-22

MemoryAllocationStatisticsAction are related to the memory allocated within a method call.

The MemoryAllocationStatisticsAction does not create an instrumentation event. When
HotSpot is available, the statistics are available through the
WLDFInstrumentationRuntimeMBean.

The following statistics for each method are kept:

• count
• min
• max
• avg
• sum
• sum_of_squares
• std_deviation

Appendix D
Diagnostic Action Library

D-23

E
Using Wildcards in Expressions

The WebLogic Diagnostics Framework (WLDF) supports the ability to use wildcards in
expressions.WLDF allows for the use of wildcards in instance names within the <harvested-
instance> element, and also provides drill-down and wildcard capabilities in the attribute
specification of the <harvested-attribute> element.
WLDF also allows the same wildcard capabilities for instance names in Harvester policies, as
well as specifying complex attributes in Harvester policies.

This appendix includes the following sections:

• Using Wildcards in Harvester Instance Names

• Specifying Complex and Nested Harvester Attributes

• Using the Accessor with Harvested Complex or Nested Attributes
While a large number of complex or nested attributes can be specified as a single
expression in terms of the Harvester and Policy and Actions configuration, the actual
metrics are persisted in terms of each individually gathered metric.

• Using Wildcards in Policy Instance Names
Within Harvester policy expressions, you can use the asterisk (*) wildcard character to
specify portions of an ObjectName. This gives you the ability to watch for multiple
instances of a type.

• Specifying Complex Attributes in Harvester Policies

Using Wildcards in Harvester Instance Names
When specifying instance names within the <harvested-instance> element, you have some
flexibility with regards to the property list order.Specifically, you can:

• Express the instance name in non-canonical form, allowing you to specify the property list
of the ObjectName out of order.

• Express the ObjectName as a JMX ObjectName query pattern without concern as to the
order of the property list.

• Use zero or more asterisk (*) wildcard characters in any of the values in the property list
of an ObjectName, such as Name=*.

• Use zero or more asterisk (*) wildcard characters to replace any character sequence in a
canonical ObjectName string. In this case, you must ensure that any properties of the
ObjectName not substituted by a wildcard character are in canonical form.

• Examples

Examples
The instance specification in Example E-1 indicates that all instances of the
WorkManagerRuntimeMBean are to be harvested. This is equivalent to not providing any
instance-name qualification in the <harvested-type> declaration.

E-1

Example E-1 Harvesting All Instances of an MBean

<harvested-type>
 <name>weblogic.management.runtime.WorkManagerRuntimeMBean</name>
 <harvested-instance>*<harvested-instance>
 <known-type>true</known-type>
 <harvested-attribute>PendingRequests</harvested-attribute>
</harvested-type>

Example E-2 shows a JMX ObjectName pattern as the <harvested-instance> value:

Example E-2 Using a JMX ObjectName Pattern

<harvested-type>
 <name>com.acme.CustomMBean</name>
 <harvested-instance>adomain:Type=MyType,*</harvested-instance>
 <known-type>false</known-type>
</harvested-type>

In Example E-3, some of the values in the ObjectName property list contain wildcard
characters:

Example E-3 Using Wildcards in the Property List

<harvested-type>
 <name>com.acme.CustomMBean</name>
 <harvested-instance>adomain:Type=My*,Name=*,*</harvested-instance>
 <known-type>false</known-type>
</harvested-type>

In Example E-4, all harvestable attributes of all instances of com.acme.CustomMBean
are to be harvested, but only those in which the instance name contains the string
Name=mybean.

Example E-4 Harvesting All Attributes of Multiple Instances

<harvested-type>
 <name>coma.acme.CustomMBean</name>
 <harvested-instance>*Name=mybean*</harvested-instance>
 <known-type>true</known-type>
</harvested-type>

Specifying Complex and Nested Harvester Attributes
The Harvester provides the ability to access metric values nested within complex
attributes of an MBean.A complex attribute can be a map or list object, a simple
POJO, or different nestings of these types of objects. For example:

• anObject.anAttribute
• arrayAttribute[1]
• mapAttribute(akey)
• aList[1](aKey)
In addition, wildcard characters can be used for list indexes and map keys to specify
multiple elements within a collection of those types. The following wildcard characters
are available:

Appendix E
Specifying Complex and Nested Harvester Attributes

E-2

• You can use the asterisk (*) wildcard character to specify all key values for Map
attributes.

• You can use the percent (%) wildcard character to replace parts of a Map key string and
identify a group of keys that match a particular pattern.

You can also specify a discrete set of key values by using a comma-separated list.

For example:

• aList[1](partial%Key%)
• aList[*](key1,key3,keyN)
• aList*
In the last example, where the asterisk (*) wildcard character is used for the index to a list
and as the key value to a nested map object, nested arrays of values are returned.

Embedding the asterisk (*) wildcard character in a comma-separated list of map keys is
equivalent to specifying all map keys. For example, the following two specifications are
equivalent:

• aList[*](key1,*,keyN)
• aList*

Note:

Leading or trailing spaces will be stripped from a map key unless the map key is
enclosed within quotation marks.

Using a map key pattern can result in a large number of elements being scanned,
returned, or both. The larger the number of elements in a map, the bigger the
impact is on performance.

The more complex the matching pattern is, the more processing time is required.

• Examples

Examples
To use drill-down syntax to harvest the nested State property of the HealthState attribute on
the ServerRuntime MBean, use the diagnostic descriptor shown in Example E-5.

Example E-5 Using Drill-Down Syntax

<harvester>
 <sample-period>10000</sample-period>
 <harvested-type>
 <name>weblogic.management.runtime.ServerRuntimeMBean</name>
 <harvested-attribute>HealthState.State</harvested-attribute>
 </harvested-type>
</harvester>

To harvest the elements of an array or list, the Harvester supports a subscript notation in
which a value is referred to by its index position in the array or list. For example, to refer to
the first element in the array attribute URLPatterns in the ServletRuntimeMBean, specify

Appendix E
Specifying Complex and Nested Harvester Attributes

E-3

URLPatterns[0]. Example E-6 shows referencing all elements of URLPatterns using a
wildcard character.

Example E-6 Using a Wildcard Character to Reference All Elements of an Array

<harvester>
 <sample-period>10000</sample-period>
 <harvested-type>
 <name>weblogic.management.runtime.ServletRuntimeMBean</name>
 <harvested-attribute>URLPatterns[*]</harvested-attribute>
 </harvested-type>
</harvester>

To harvest the elements of a map, each individual value is referenced by the key
enclosed in parentheses. Multiple keys can be specified as a comma-delimited list, in
which case the values corresponding to specified keys in the map are harvested, as
shown in the following examples.

The following example shows the following

<harvested-attribute>MyMap(Foo)</harvested-
attribute>

Harvesting the value from the map with key
Foo.

<harvested-attribute>MyMap(Foo,Bar)</harvested-
attribute>

Harvesting the value from the map with keys
Foo and Bar.

<harvested-attribute>MyMap(Foo%Bar)</harvested-
attribute>

Using the percent (%) wildcard character with
a key specification to harvest all values from
the map if their keys start with Foo and end
with Bar.

<harvested-attribute>MyMap(*)</harvested-attribute> Harvesting all values from a map by using
the asterisk (*) wildcard character.

<harvested-attribute>MyBeanMyMap(Foo)</harvested-
attribute>

The MBean has a JavaBean attribute
MyBean, which has a nested map type
attribute MyMap. This example harvests this
value from the map that has the key Foo.

Using the Accessor with Harvested Complex or Nested
Attributes

While a large number of complex or nested attributes can be specified as a single
expression in terms of the Harvester and Policy and Actions configuration, the actual
metrics are persisted in terms of each individually gathered metric.

For example, the attribute specification mymap(*).(a,b,c) maps to the following actual
nested attributes:

 mymap(key1).a
 mymap(key1).b
 mymap(key1).c
 mymap(key2).a
 mymap(key2).b
 mymap(key2).c

Appendix E
Using the Accessor with Harvested Complex or Nested Attributes

E-4

Each of the preceding six metrics are stored in a separate record in the
HarvestedDataArchive, with the shown attribute names stored in the ATTRNAME column in
each corresponding record. The values in the ATTRNAME column are the values you must
use in Accessor queries when retrieving them from the archive.

The following are examples of query strings:

 NAME="foo:Name=MyMBean" ATTRNAME="mymap(key1).a"
 NAME="foo"Name=MyBean" ATTRNAME LIKE "mymap(%).a"
 NAME="fooName=MyMBean" ATTRNAME MATCHES "mymap\((.*?)\).a"

Using Wildcards in Policy Instance Names
Within Harvester policy expressions, you can use the asterisk (*) wildcard character to
specify portions of an ObjectName. This gives you the ability to watch for multiple instances
of a type.

For example, to specify the OpenSocketsCurrentCount attribute for all instances of the
ServerRuntimeMBean that begin with the name managed:

• The instance-name pattern can be a valid JMX ObjectName pattern, in which case the
property list order is not important. For example:

${com.bea:Name=managed*,Type=ServerRuntime,*//OpenSocketCurrentCount}

This example is a valid JMX ObjectName pattern that can match:

– Any ObjectName that contains a Name key with a value that starts with managed
– A Type key that exactly matches the value ServerRuntime
– Any other property pairs

For more examples of valid JMX ObjectName patterns, see the ObjectName API
documentation at http://docs.oracle.com/javase/8/docs/api/javax/management/
ObjectName.html.

• If the name is a pattern but is not a JMX ObjectName pattern, WebLogic Server does
pattern-matching using the pattern as-is. For example:

${com.bea:*Name=managed*,Type=ServerRuntime,*//OpenSocketCurrentCount}

This example is not a valid JMX ObjectName pattern. This pattern is matched using
straight string substitution, where the pattern is matched as-is against the canonical form
of the ObjectName for any target MBean instance.

Note:

The ObjectName query pattern syntax supported by the Harvester is determined by
whatever is supported by the underlying JMX implementation. The preceding
example demonstrates the syntax supported by JDK 5 and later. For information
about the full syntax that is supported, see the description of the
javax.management.ObjectName class corresponding to the version of the JDK with
which your installation of WebLogic Server is configured.

Appendix E
Using Wildcards in Policy Instance Names

E-5

http://docs.oracle.com/javase/8/docs/api/javax/management/ObjectName.html
http://docs.oracle.com/javase/8/docs/api/javax/management/ObjectName.html

Specifying Complex Attributes in Harvester Policies
You can specify complex attributes (a collection, an array type or an Object with
nested intrinsic attribute types) within Harvester policy expressions.There are several
ways to do this.
The following example shows a drill-down into a nested attribute in a complex type,
which is then checked to see if it is greater than 0:

${somedomain:name=MyMbean//complexAttribute.nestedAttribute} > 0

You can also use wildcard characters to specify multiple Map keys. The following
wildcard characters are available for specifying complex attributes:

• You can use an asterisk character (*) to specify all key values for Map attributes.

• You can use a percent character (%) to replace parts of a Map key string and to
identify a group of keys that match a particular pattern.

In addition, you can use a comma-separated list to specify a discrete set of key values.

For example:

${[com.bea.foo.BarClass]//aList[*].(some%partialKey%).(aValue,bValue)} > 0

The rule in the preceding example examines all elements of the aList attribute on all
instances of com.bea.foo.BarClass, drilling down into a nested map for all keys
starting with the text some and containing the text partialKey afterwards. The returned
values are assumed to be Map instances, from which values for the keys aValue and
bValue are compared to determine if they are greater than 0.

When using the MethodInvocationStatistics attribute on the
WLDFInstrumentationRuntime type, the system needs to determine the type from the
variable. If the system cannot determine the type when validating the attribute
expression, the expression is not valid. For example, the following expression is not
valid:

${ com.bea:Name=myScope, * //MethodInvocationStatistics.(...).(...)

You must explicitly declare the type in this situation, as shown in the following example
that shows drilling down into the nested map structure:

$(com.bea:Name=hello,Type=WLDFInstrumentationRuntime,*//
MethodInvocationStatistics(*)(*)(*)(count)) >= 1

Appendix E
Specifying Complex Attributes in Harvester Policies

E-6

F
WebLogic Scripting Tool Examples

The WebLogic Diagnostics Framework (WLDF) includes examples that show using WLST
and JMX to interact with WLDF components.

Note:

The following examples are also included with the WebLogic Server code
examples:

• Example: Configuring a Policy and a JMX Action

• Example: Writing a JMXWatchNotificationListener Class

• Example: Registering MBeans and Attributes For Harvesting

These examples are bundled under the title "Configuring the Policies and Actions
System and Harvesting Data Using WLST". For information about installing and
configuring the WebLogic Server code examples, see Sample Applications and
Code Examples in Understanding Oracle WebLogic Server.

For information about running WebLogic Scripting Tool (WLST) scripts, see Running WLST
from Ant in Understanding the WebLogic Scripting Tool. For information about developing
JMX applications, see Understanding JMX in Developing Manageable Applications Using
JMX for Oracle WebLogic Server.

This appendix includes the following sections:

• WLST Commands for Diagnostics

• Example: Dynamically Creating DyeInjection Monitors

• Example: Configuring a Policy and a JMX Action

• Example: Writing a JMXWatchNotificationListener Class

• Example: Registering MBeans and Attributes For Harvesting

• Example: Setting the WLDF Diagnostic Volume

• Example: Capturing a Diagnostic Image

• Example: Retrieving a JFR File from a Diagnostic Image Capture

WLST Commands for Diagnostics
WLST includes a set of commands that you can use to retrieve diagnostic data and manage
diagnostic system resources.These commands are summarized in Table F-1.

F-1

Table F-1 WLST Commands Used with WLDF

Command Summary

captureAndSaveDiagnosticImage Captures a diagnostics image and downloads it locally.

createSystemResourceControl Creates a diagnostics system resource control using specified
descriptor file that is not persisted in the domain configuration. See
Using WLST to Activate and Deactivate Diagnostic System
Modules.

destroySystemResourceControl Destroys an external diagnostics system resource control; that is,
one that is created in a server or cluster instance but that is not
persisted in the domain configuration. See Using WLST to Activate
and Deactivate Diagnostic System Modules.

disableSystemResource Deactivates a diagnostic system resource control that is persisted in
the domain configuration. See Using WLST to Activate and
Deactivate Diagnostic System Modules.

dumpDiagnosticData Dumps the diagnostics data from a Harvester to a local file.

enableSystemResource Activates a diagnostic resource control. See Using WLST to
Activate and Deactivate Diagnostic System Modules.

exportDiagnosticData Execute a query against the specified log file.

exportDiagnosticDataFromServer Executes a query on the server side and retrieves the exported
WLDF data.

getAvailableCapturedImages Returns a list of the previously captured diagnostic images.

listSystemResourceControls Lists the diagnostic system modules that are currently configured in
the domain. See Using WLST to Activate and Deactivate Diagnostic
System Modules.

mergeDiagnosticData Merges a set of data files that were previously generated by the
dumpDiagnosticData() command.

saveDiagnosticImageCaptureFile Downloads the specified diagnostic image capture.

saveDiagnosticImageCaptureEntryFil
e

Downloads a specific entry from the diagnostic image capture.

For complete details about each of these commands, including additional examples,
see Diagnostics Commands in WLST Command Reference for WebLogic Server.

Example: Dynamically Creating DyeInjection Monitors
You can create a DyeInjection monitor dynamically using WLST.This demonstration
script shown in Example F-1does the following:

• Connects to a server (boots the server first if necessary).

• Looks up or creates a WLDF System Resource.

• Creates the DyeInjection monitor.

• Sets the dye criteria.

• Enables the monitor.

• Saves and activates the configuration.

• Enables the Diagnostic Context feature via the ServerDiagnosticConfigMBean.

Appendix F
Example: Dynamically Creating DyeInjection Monitors

F-2

The demonstration script in Example F-1 only configures the dye monitor, which injects dye
values into the diagnostic context. To fire events, you must implement downstream diagnostic
monitors that use dye filtering to fire on the specified dye criteria. An example downstream
monitor artifact is shown in Example F-2. This must be placed in a file named weblogic-
diagnostics.xml and placed into the META-INF directory of a application archive. It is also
possible to create a monitor using a JSR-88 deployment plan. See Deploying Applications to
Oracle WebLogic Server.

Example F-1 Example: Using WLST to Dynamically Create DyeInjection Monitors
(demoDyeMonitorCreate.py)

Script name: demoDyeMonitorCreate.py
###
Demo script showing how to create a DyeInjectionMonitor dynamically
via WLST. This script will:
- Connect to a server, booting it first if necessary
- Look up or create a WLDF System Resource
- Create the DyeInjection Monitor (DIM)
- Set the dye criteria
- Enable the monitor
- Save and activate
- Enable the Diagnostic Context functionality via the
ServerDiagnosticConfig MBean
Note: This will only configure the dye monitor, which will inject dye
values into the Diagnostic Context. To fire events requires the
existence of "downstream" monitors set to fire on the specified
dye criteria.
##
myDomainDirectory="domain"
url="t3://localhost:7001"
user="weblogic"
password="password"
myServerName="myserver"
myDomain="mydomain"
props="weblogic.GenerateDefaultConfig=true,weblogic.RootDirectory="\
 +myDomainDirectory
try:
 connect(user,password,url)
except:
 startServer(adminServerName=myServerName,domainName=myDomain,
 username=user,password=password,systemProperties=props,
 domainDir=myDomainDirectory,block="true")
 connect(user,password,url)
Start an edit session
edit()
startEdit()
cd ("/")
Look up or create the WLDF System resource.
wldfResourceName = "mywldf"
myWldfVar = cmo.lookupSystemResource(wldfResourceName)
if myWldfVar==None:
 print "Unable to find named resource,\
 creating WLDF System Resource: " + wldfResourceName
 myWldfVar=cmo.createWLDFSystemResource(wldfResourceName)
Target the System Resource to the demo server.
wldfServer=cmo.lookupServer(serverName)
myWldfVar.addTarget(wldfServer)
create and set properties of the DyeInjection Monitor (DIM).
mywldfResource=myWldfVar.getWLDFResource()
mywldfInst=mywldfResource.getInstrumentation()
mywldfInst.setEnabled(1)

Appendix F
Example: Dynamically Creating DyeInjection Monitors

F-3

monitor=mywldfInst.createWLDFInstrumentationMonitor("DyeInjection")
monitor.setEnabled(1)
Need to include newlines when setting properties
on the DyeInjection monitor.
monitor.setProperties("\nUSER1=larry@celtics.com\
 \nUSER2=brady@patriots.com\n")
monitor.setDyeFilteringEnabled(1)
Enable the diagnostic context functionality via the
ServerDiagnosticConfig.
cd("/Servers/"+serverName+"/ServerDiagnosticConfig/"+serverName)
cmo.setDiagnosticContextEnabled(1)
save and disconnect
save()
activate()
disconnect()
exit()

Example F-2 Example: Downstream Monitor Artifact

<?xml version="1.0" encoding="UTF-8"?>
<wldf-resource xmlns="http://xmlns.oracle.com/weblogic/weblogic-diagnostics"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <instrumentation>
 <enabled>true</enabled>
 <!-- Servlet Session Monitors -->
 <wldf-instrumentation-monitor>
 <name>Servlet_Before_Session</name>
 <enabled>true</enabled>
 <dye-mask>USER1</dye-mask>
 <dye-filtering-enabled>true</dye-filtering-enabled>
 <action>TraceAction</action>
 <action>StackDumpAction</action>
 <action>DisplayArgumentsAction</action>
 <action>ThreadDumpAction</action>
 </wldf-instrumentation-monitor>
 <wldf-instrumentation-monitor>
 <name>Servlet_After_Session</name>
 <enabled>true</enabled>
 <dye-mask>USER2</dye-mask>
 <dye-filtering-enabled>true</dye-filtering-enabled>
 <action>TraceAction</action>
 <action>StackDumpAction</action>
 <action>DisplayArgumentsAction</action>
 <action>ThreadDumpAction</action>
 </wldf-instrumentation-monitor>
 </instrumentation>
</wldf-resource>

Example: Configuring a Policy and a JMX Action
You can use WLST to configure a policy and a JMX action using the WLDF Policies
and Actions component.The demonstration script shown in Example F-3 does the
following:

• Connects to a server and boots the server first if necessary.

• Looks up/creates a diagnostic system module.

• Creates a policy expression on the ServerRuntimeMBean for the
OpenSocketsCurrentCount attribute.

Appendix F
Example: Configuring a Policy and a JMX Action

F-4

• Configures the actuion to use a JMXNotification medium.

Note:

This example is also included with the WebLogic Server code examples. For
information about installing and configuring these examples, see Sample
Applications and Code Examples in Understanding Oracle WebLogic Server.

This script can be used in conjunction with the following files and scripts:

• The JMXWatchNotificationListener.java class (see Example: Writing a
JMXWatchNotificationListener Class).

• The demoHarvester.py script, which registers the OpenSocketsCurrentCount attribute
with the Harvester for collection (see Example: Registering MBeans and Attributes For
Harvesting).

To see these files work together, perform the following steps:

1. To run the policy configuration script (demoWatch.py), type:

java weblogic.WLST demoWatch.py
2. To compile the JMXWatchNotificationListener.java source, type:

javac JMXWatchNotificationListener.java
3. To run the JMXWatchNotificationListener.class file, type:

java JMXWatchNotificationListener

Note:

Be sure the current directory is in your class path, so it will find the class file you
just created.

4. To run the demoHarvester.py script, type:

java weblogic.WLST demoHarvester.py
When the demoHarvester.py script runs, it executes the JMXNotification action for the policy
configured in step 1.

Example F-3 Example: Policy and JMXNotification (demoWatch.py)

Script name: demoWatch.py
##
Demo script showing how to configure a policy and a JMXNotification
using the WLDF Policies and Action framework.
The script will:
- Connect to a server, booting it first if necessary
- Look up or create a WLDF System Resource
- Create a policy expression on the ServerRuntimeMBean for the
"OpenSocketsCurrentCount" attribute
- Configure the policy to use a JMXNotification medium
#
This script can be used in conjunction with

Appendix F
Example: Configuring a Policy and a JMX Action

F-5

- the JMXWatchNotificationListener.java class
- the demoHarvester.py script, which registers the
"OpenSocketsCurrentCount" attribute with the harvester for collection.
To see these work together:
1. Run the policy configuration script
java weblogic.WLST demoWatch.py
2. Compile and run the JMXWatchNotificationListener.java source code
javac JMXWatchNotificationListener.java
java JMXWatchNotificationListener
3. Run the demoHarvester.py script
java weblogic.WLST demoHarvester.py
When the demoHarvester.py script runs, it fires the
JMXNotification for the policy configured in step 1.
###
myDomainDirectory="domain"
url="t3://localhost:7001"
user="weblogic"
myServerName="myserver"
myDomain="mydomain"
props="weblogic.GenerateDefaultConfig=true\
 weblogic.RootDirectory="+myDomainDirectory
try:
 connect(user,user,url)
except:
 startServer(adminServerName=myServerName,domainName=myDomain,
 username=user,password=password,systemProperties=props,
 domainDir=myDomainDirectory,block="true")
 connect(user,user,url)
edit()
startEdit()
Look up or create the WLDF System resource
wldfResourceName = "mywldf"
myWldfVar = cmo.lookupSystemResource(wldfResourceName)
if myWldfVar==None:
 print "Unable to find named resource"
 print "creating WLDF System Resource: " + wldfResourceName
 myWldfVar=cmo.createWLDFSystemResource(wldfResourceName)
Target the System Resource to the demo server
wldfServer=cmo.lookupServer(myServerName)
myWldfVar.addTarget(wldfServer)
cd("/WLDFSystemResources/mywldf/WLDFResource/mywldf/WatchNotification/mywldf")
watch=cmo.createWatch("mywatch")
watch.setEnabled(1)
jmxnot=cmo.createJMXNotification("myjmx")
watch.addNotification(jmxnot)
serverRuntime()
cd("/")
on=cmo.getObjectName().getCanonicalName()
watch.setRuleExpression("${"+on+"} > 1")
watch.getRuleExpression()
watch.setRuleExpression("${"+on+"//OpenSocketsCurrentCount} > 1")
watch.setAlarmResetPeriod(10000)
edit()
save()
activate()
disconnect()
exit()

Appendix F
Example: Configuring a Policy and a JMX Action

F-6

Example: Writing a JMXWatchNotificationListener Class
You can use the JMX API to write a JMXWatchNotificationListener.Example F-4 shows an
example.

Note:

This example is also included with the WebLogic Server code examples. For
information about installing and configuring these examples, see Sample
Applications and Code Examples in Understanding Oracle WebLogic Server.

Example F-4 Example: JMXWatchNotificationListener Class
(JMXWatchNotificationListener.java)

import javax.management.*;
import weblogic.diagnostics.watch.*;
import weblogic.diagnostics.watch.JMXWatchNotification;
import javax.management.Notification;
import javax.management.remote.JMXServiceURL;
import javax.management.remote.JMXConnectorFactory;
import javax.management.remote.JMXConnector;
import javax.naming.Context;
import java.util.Hashtable;
import weblogic.management.mbeanservers.runtime.RuntimeServiceMBean;
public class JMXWatchNotificationListener implements NotificationListener, Runnable {
 private MBeanServerConnection rmbs = null;
 private String notifName = "myjmx";
 private int notifCount = 0;
 private String serverName = "myserver";
 public JMXWatchNotificationListener(String serverName) {
 }
 public void register() throws Exception {
 rmbs = getRuntimeMBeanServerConnection();
 addNotificationHandler();
 }
 public void handleNotification(Notification notif, Object handback) {
 synchronized (this) {
 try {
 if (notif instanceof JMXWatchNotification) {
 WatchNotification wNotif =
 ((JMXWatchNotification)notif).getExtendedInfo();
 notifCount++;
 System.out.println("===");
 System.out.println("Notification name: " +
 notifName + " called. Count= " + notifCount + ".");
 System.out.println("Watch severity: " +
 wNotif.getWatchSeverityLevel());
 System.out.println("Watch time: " +
 wNotif.getWatchTime());
 System.out.println("Watch ServerName: " +
 wNotif.getWatchServerName());
 System.out.println("Watch RuleType: " +
 wNotif.getWatchRuleType());
 System.out.println("Watch Rule: " +
 wNotif.getWatchRule());

Appendix F
Example: Writing a JMXWatchNotificationListener Class

F-7

 System.out.println("Watch Name: " +
 wNotif.getWatchName());
 System.out.println("Watch DomainName: " +
 wNotif.getWatchDomainName());
 System.out.println("Watch AlarmType: " +
 wNotif.getWatchAlarmType());
 System.out.println("Watch AlarmResetPeriod: " +
 wNotif.getWatchAlarmResetPeriod());
 System.out.println("===");
 }
 } catch (Throwable x) {
 System.out.println("Exception occurred processing JMX policy
 action: " + notifName +"\n" + x);
 x.printStackTrace();
 }
 }
 }
 private void addNotificationHandler() throws Exception {
 /*
 * The JMX policy action listener registers with a Runtime MBean
 * that matches the name of the corresponding policy bean.
 * Each policy has its own Runtime MBean instance.
 */
 ObjectName oname =
 new ObjectName(
 "com.bea:ServerRuntime=" + serverName + ",Name=" +
 JMXWatchNotification.GLOBAL_JMX_NOTIFICATION_PRODUCER_NAME +
 ",Type=WLDFWatchJMXNotificationRuntime," +
 "WLDFWatchNotificationRuntime=WatchNotification," +
 "WLDFRuntime=WLDFRuntime"
);
 System.out.println("Adding notification handler for: " +
 oname.getCanonicalName());
 rmbs.addNotificationListener(oname, this, null, null);
 }
 private void removeNotificationHandler(String name,
 NotificationListener list) throws Exception {
 ObjectName oname =
 new ObjectName(
 "com.bea:ServerRuntime=" + serverName + ",Name=" +
 JMXWatchNotification.GLOBAL_JMX_NOTIFICATION_PRODUCER_NAME +
 ",Type=WLDFWatchJMXNotificationRuntime," +
 "WLDFWatchNotificationRuntime=WatchNotification," +
 "WLDFRuntime=WLDFRuntime"
);
 System.out.println("Removing notification handler for: " +
 oname.getCanonicalName());
 rmbs.removeNotificationListener(oname, list);
 }
 public void run() {
 try {
 System.out.println("VM shutdown, unregistering notification
 listener");
 removeNotificationHandler(notifName, this);
 } catch (Throwable t) {
 System.out.println("Caught exception in shutdown hook");
 t.printStackTrace();
 }
 }
 private String user = "weblogic";
 private String password = "password";

Appendix F
Example: Writing a JMXWatchNotificationListener Class

F-8

 public MBeanServerConnection getRuntimeMBeanServerConnection()
 throws Exception {
 String JNDI = "/jndi/";
 JMXServiceURL serviceURL;
 serviceURL =
 new JMXServiceURL("t3", "localhost", 7001,
 JNDI + RuntimeServiceMBean.MBEANSERVER_JNDI_NAME);
 System.out.println("URL=" + serviceURL);
 Hashtable h = new Hashtable();
 h.put(Context.SECURITY_PRINCIPAL,user);
 h.put(Context.SECURITY_CREDENTIALS,password);
 h.put(JMXConnectorFactory.PROTOCOL_PROVIDER_PACKAGES,
 "weblogic.management.remote");
 JMXConnector connector = JMXConnectorFactory.connect(serviceURL,h);
 return connector.getMBeanServerConnection();
 }
 public static void main(String[] args) {
 try {
 String serverName = "myserver";
 if (args.length > 0)
 serverName = args[0];
 JMXWatchNotificationListener listener =
 new JMXWatchNotificationListener(serverName);
 System.out.println("Adding shutdown hook");
 Runtime.getRuntime().addShutdownHook(new Thread(listener));
 listener.register();
 // Sleep waiting for notifications
 Thread.sleep(Long.MAX_VALUE);
 } catch (Throwable e) {
 e.printStackTrace();
 } // end of try-catch
 } // end of main()
}

Example: Registering MBeans and Attributes For Harvesting
You can use WLST to register MBeans and attributes for collection by the WLDF
Harvester.The script shown in Example F-5 does the following:

• Connects to a server and boots the server first if necessary.

• Looks up or creates a WLDF system resource.

• Sets the sampling frequency.

• Adds a type for collection.

• Adds an attribute of a specific instance for collection.

• Saves and activates the configuration.

• Displays a few cycles of the harvested data.

Note:

This example is also included with the WebLogic Server code examples. For
information about installing and configuring these examples, see Sample
Applications and Code Examples in Understanding Oracle WebLogic Server.

Appendix F
Example: Registering MBeans and Attributes For Harvesting

F-9

Example F-5 Example: MBean Registration and Data Collection
(demoHarvester.py)

Script name: demoHarvester.py
##
Demo script showing how register MBeans and attributes for collection
by the WLDF Harvester Service. This script will:
- Connect to a server, booting it first if necessary
- Look up or create a WLDF System Resource
- Set the sampling frequency
- Add a type for collection
- Add an attribute of a specific instance for collection
- Save and activate
###
from java.util import Date
from java.text import SimpleDateFormat
from java.lang import Long
import jarray
###
Helper functions for adding types/attributes to the harvester
configuration
###
def findHarvestedType(harvester, typeName):
 htypes=harvester.getHarvestedTypes()
 for ht in (htypes):
 if ht.getName() == typeName:
 return ht
 return None
def addType(harvester, mbeanInstance):
 typeName = "weblogic.management.runtime."\
 + mbeanInstance.getType() + "MBean"
 ht=findHarvestedType(harvester, typeName)
 if ht == None:
 print "Adding " + typeName + " to harvestables collection for "\
 + harvester.getName()
 ht=harvester.createHarvestedType(typeName)
 return ht;
def addAttributeToHarvestedType(harvestedType, targetAttribute):
 currentAttributes = PyList()
 currentAttributes.extend(harvestedType.getHarvestedAttributes());
 print "Current attributes: " + str(currentAttributes)
 try:
 currentAttributes.index(targetAttribute)
 print "Attribute is already in set"
 return
 except ValueError:
 print targetAttribute + " not in list, adding"
 currentAttributes.append(targetAttribute)
 newSet = jarray.array(currentAttributes, java.lang.String)
 print "New attributes for type "\
 + harvestedType.getName() + ": " + str(newSet)
 harvestedType.setHarvestedAttributes(newSet)
 return
def addTypeForInstance(harvester, mbeanInstance):
 typeName = "weblogic.management.runtime."\
 + mbeanInstance.getType() + "MBean"
 return addTypeByName(harvester, typeName, 1)
def addInstanceToHarvestedType(harvester, mbeanInstance):
 harvestedType = addTypeForInstance(harvester, mbeanInstance)
 currentInstances = PyList()
 currentInstances.extend(harvestedType.getHarvestedAttributes());

Appendix F
Example: Registering MBeans and Attributes For Harvesting

F-10

 on = mbeanInstance.getObjectName().getCanonicalName()
 print "Adding " + str(on) + " to set of harvested instances for type "\
 + harvestedType.getName()
 print "Current instances : " + str(currentInstances)
 for inst in currentInstances:
 if inst == on:
 print "Found " + on + " in existing set"
 return harvestedType
 # only get here if the target attribute is not in the set
 currentInstances.append(on)
 # convert the new list back to a Java String array
 newSet = jarray.array(currentInstances, java.lang.String)
 print "New instance set for type " + harvestedType.getName()\
 + ": " + str(newSet)
 harvestedType.setHarvestedInstances(newSet)
 return harvestedType
def addTypeByName(harvester, _typeName, knownType=0):
 ht=findHarvestedType(harvester, _typeName)
 if ht == None:
 print "Adding " + _typeName + " to harvestables collection for "\
 + harvester.getName()
 ht=harvester.createHarvestedType(_typeName)
 if knownType == 1:
 print "Setting known type attribute to true for " + _typeName
 ht.setKnownType(knownType)
 return ht;
def addAttributeForInstance(harvester, mbeanInstance, attributeName):
 typeName = mbeanInstance.getType() + "MBean"
 ht = addInstanceToHarvestedType(harvester, mbeanInstance)
 return addAttributeToHarvestedType(ht,attributeName)
###
Display the currently registered types for the specified harvester
###
def displayHarvestedTypes(harvester):
 harvestedTypes = harvester.getHarvestedTypes()
 print ""
 print "Harvested types:"
 print ""
 for ht in (harvestedTypes):
 print "Type: " + ht.getName()
 attributes = ht.getHarvestedAttributes()
 if attributes != None:
 print " Attributes: " + str(attributes)
 instances = ht.getHarvestedInstances()
 print " Instances: " + str(instances)
 print ""
 return
##
Main script flow -- create a WLDF System resource and add harvestables
##
myDomainDirectory="domain"
url="t3://localhost:7001"
user="weblogic"
myServerName="myserver"
myDomain="mydomain"
props="weblogic.GenerateDefaultConfig=true,weblogic.RootDirectory="\
 +myDomainDirectory
try:
 connect(user,user,url)
except:
 startServer(adminServerName=myServerName,domainName=myDomain,

Appendix F
Example: Registering MBeans and Attributes For Harvesting

F-11

 username=user,password=password,systemProperties=props,
 domainDir=myDomainDirectory,block="true")
 connect(user,user,url)
start an edit session
edit()
startEdit()
cd("/")
Look up or create the WLDF System resource
wldfResourceName = "mywldf"
systemResource = cmo.lookupSystemResource(wldfResourceName)
if systemResource==None:
 print "Unable to find named resource,\
 creating WLDF System Resource: " + wldfResourceName
 systemResource=cmo.createWLDFSystemResource(wldfResourceName)
Obtain the harvester bean instance for configuration
print "Getting WLDF Resource Bean from " + str(wldfResourceName)
wldfResource = systemResource.getWLDFResource()
print "Getting Harvester Configuration Bean from " + wldfResourceName
harvester = wldfResource.getHarvester()
print "Harvester: " + harvester.getName()
Target the WLDF System Resource to the demo server
wldfServer=cmo.lookupServer(myServerName)
systemResource.addTarget(wldfServer)
The harvester Jython wrapper maintains refs to
the SystemResource objects
harvester.setSamplePeriod(5000)
harvester.setEnabled(1)
add an instance-based RT MBean attribute for collection
serverRuntime()
cd("/")
addAttributeForInstance(harvester, cmo, "OpenSocketsCurrentCount")
have to return to the edit tree to activate
edit()
add a RT MBean type, all instances and attributes,
with KnownType = "true"
addTypeByName(harvester,
 "weblogic.management.runtime.WLDFInstrumentationRuntimeMBean", 1)
addTypeByName(harvester,
 "weblogic.management.runtime.WLDFWatchNotificationRuntimeMBean", 1)
addTypeByName(harvester,
 "weblogic.management.runtime.WLDFHarvesterRuntimeMBean", 1)
try:
 save()
 activate(block="true")
except:
 print "Error while trying to save and/or activate."
 dumpStack()
display the data
displayHarvestedTypes(harvester)
disconnect()
exit()

Example: Setting the WLDF Diagnostic Volume
You can use WLST to configure the volume of Java Flight Recorder data that is
captured in a diagnostic image.By default, WLDF gathers data and record most events
in a WebLogic Server instance, unless specifically configured otherwise. Note that
even when WLDF diagnostic volume is set to Off, WLDF, and potentially the JVM if
flight recording is enabled, generate global events that have information about the

Appendix F
Example: Setting the WLDF Diagnostic Volume

F-12

recording settings; for example, JVM metadata events that list active recordings, and WLDF
GlobalInformationEvents that list the volume level for the domain, server, and machine.
Example F-6 shows changing the WLDF diagnostic volume to Medium:

Example F-6 Setting WLDF Diagnostic Volume

connect()
edit()
startEdit()
cd("Servers/myserver")
cd("ServerDiagnosticConfig")
cd("myserver")
cmo.setWLDFDiagnosticVolume("Medium")
save()
activate()

Example: Capturing a Diagnostic Image
You can use WLST to create a diagnostic image capture for a WebLogic Server instance.
(Note that you can also create a diagnostic image capture using the WebLogic Server
Administration Console or by executing an image action by means of the Policies and Actions
component.)

Note:

If WebLogic Server is running in production mode, the server's SSL port must be
used when executing the commands included in this script.

Example F-7 show a sample WLST script that captures a diagnostic image. This example
does the following:

• Captures an diagnostic image after connecting, and then waits for the image task to
complete.

• Uses the getAvailableCapturedImages() command to obtain a list of available
diagnostic image files in the server's image directory.

• Loops through the list of available images in the diagnostic image capture and saves
each image file locally using the saveDiagnosticImageCaptureFile() command.

Example F-7 Creating a Diagnostic Image Capture

#
WLST script to capture a WLDF Diagnostic Image and
retrieve the image files to a local dir.
#
Usage:
#
java weblogic.WLST captureImage.py [username] [passwd] [url] [output-dir]
#
where

username Username to use to connect
passwd Password for connecting to server
url URL to connect to the server
output-dir Path to place saved entries
#

Appendix F
Example: Capturing a Diagnostic Image

F-13

from java.io import File

Retrieve a positional argument if it exists; if not,
the provided default is returned.
#
Params:
pos The integer location in sys.argv of the parameter
default The default value to return if the parameter does not exist
#
returns the value at sys.argv[pos], or the provided default if necesssary
def getPositionalArgument(pos, default):
 value=None
 try:
 value=sys.argv[pos]
 except:
 value=default
 return value

Credential arguments
uname=getPositionalArgument(1, "weblogic")
passwd=getPositionalArgument(2, "password")
url=getPositionalArgument(3, "t3://localhost:7001")
outputDir=getPositionalArgument(4, ".")

connect(uname, passwd, url)
serverRuntime()
currentDrive=currentTree()

Capture a new diagnostic image
try:
 cd("serverRuntime:/WLDFRuntime/WLDFRuntime/WLDFImageRuntime/Image")
 task=cmo.captureImage()
 Thread.sleep(1000)
 while task.isRunning():
 Thread.sleep(5000)
 cmo.resetImageLockout();
finally:
 currentDrive()

List the available diagnostic image files in the server's image capture dir
images=getAvailableCapturedImages()
if len(images) > 0:
 # For each diagnostic image found, retrieve image file, renaming it as
 # the user sees fit
 for image in images:
 saveName=outputDir+File.separator+serverName+'-'+image
 saveDiagnosticImageCaptureFile(image,saveName)

Example: Retrieving a JFR File from a Diagnostic Image
Capture

You can use WLST to retrieve the Java Flight Recorder (JFR) file from each diagnostic
image capture that is located in the image destination directory on the server and copy
it to a local directory.The script shown in Example F-8 does the following:

• Connects to WebLogic Server, passing the required credentials.

• Creates a diagnostic image capture.

Appendix F
Example: Retrieving a JFR File from a Diagnostic Image Capture

F-14

• Obtains a list of the available diagnostic image files in the server's configured image
directory.

• For each diagnostic image file, attempts to retrieve the JFR file and save it to a local
directory, ensuring that each file is renamed as necessary to avoid any from being
overwritten.

Note:

If WebLogic Server is running in production mode, the server's SSL port must be
used when executing the commands included in this script.

Example F-8 Retrieving a Diagnostic Image Capture File

#
WLST script to capture a WLDF Diagnostic Image and
save the FlightRecording.jfr entry locally
#
Usage:
#
java weblogic.WLST captureImageEntry.py [username] [passwd] [url] [output-dir]
[image-suffix]
#
where

username Username to use to connect
passwd Password for connecting to server
url URL to connect to the server
output-dir Path to place saved entries
image-suffix Suffix to use to rename JFR image entries locally
#
import os.path
from java.io import File

Retrieve a positional argument if it exists; if not,
the provided default is returned.
#
Params:
pos The integer location in sys.argv of the parameter
default The default value to return if the parameter does not exist
#
returns the value at sys.argv[pos], or the provided default if necesssary
def getPositionalArgument(pos, default):
 value=None
 try:
 value=sys.argv[pos]
 except:
 value=default
 return value

Credential arguments
uname=getPositionalArgument(1, "weblogic")
passwd=getPositionalArgument(2, "password")
url=getPositionalArgument(3, "t3://localhost:7001")
outputDir=getPositionalArgument(4, ".")
imageSuffix=getPositionalArgument(5, "_WLS")

connect(uname, passwd, url)

Appendix F
Example: Retrieving a JFR File from a Diagnostic Image Capture

F-15

serverRuntime()
currentDrive=currentTree()

Capture a new diagnostic image capture file
try:
 cd("serverRuntime:/WLDFRuntime/WLDFRuntime/WLDFImageRuntime/Image")
 task=cmo.captureImage()
 Thread.sleep(1000)
 while task.isRunning():
 Thread.sleep(5000)
 cmo.resetImageLockout();
finally:
 currentDrive()

List the available diagnostic image captures in the server's image capture dir
images=getAvailableCapturedImages()
if len(images) > 0:
 # For each image capture found, retrieve the JFR entry and save it to a local
 # file, renaming it to avoid collisions in the event there are multiple
 # diagnostic image capture files with JFR entries.
 i=0
 for image in images:
 saveName=outputDir+File.separator+"FlightRecording_"+imageSuffix+"-"+str(i)
+".jfr"
 while os.path.exists(saveName):
 i+=1
 saveName=outputDir+File.separator+"FlightRecording_"+imageSuffix+"-"+str(i)
+".jfr"
 saveDiagnosticImageCaptureEntryFile(image,'FlightRecording.jfr',saveName)
 i+=1

Appendix F
Example: Retrieving a JFR File from a Diagnostic Image Capture

F-16

G
WLDF Query Language-Based Policies

The WebLogic Diagnostics Framework (WLDF) provides the WLDF query language for
creating policy expressions.

Note:

The WLDF query language is deprecated in WebLogic Server as of version 12.2.1.
Oracle recommends using Java Expression Language (EL) instead. Diagnostic
system modules containing policy expressions that use the WLDF query language
are supported for backward compatibility. For information about using Java EL in
policy expressions, see Configuring Policies.

• Types of Policies
WLDF supports policies that you can configure within the context of using the WLDF
query language.

• Policy Configuration Options
WLDF provides several tool options for configuring policies.

• Configuring Harvester Policies Using the WLDF Query Language
WLDF provides three main types of Harvester policies that can be configured with WLDF
query language-based expressions. Each policy type is based on what the policy can
monitor.

• Configuring Log Policies Using the WLDF Query Language
Use log policies to monitor the occurrence of specific messages or strings in the server or
domain log. Policies of this type are triggered as a result of a log message containing the
specified data being issued.

• Configuring Instrumentation Policies Using the WLDF Query Language
You use instrumentation policies to monitor the events from the WLDF Instrumentation
component. Policies of this type are triggered as a result of the event being posted.

Types of Policies
WLDF supports policies that you can configure within the context of using the WLDF query
language.

WLDF provides three main types of policies, based on what the policy can monitor:

• Harvester policies monitor the set of harvestable MBeans in the local runtime MBean
server.

• Log policies monitor the set of messages generated into the server or domain logs.

• Instrumentation (or Event Data) policies monitor the set of events generated by the
WLDF Instrumentation component.

In the WLDF system resource configuration file for a diagnostic module, each type of policy is
defined in a <rule-type> element, which is a child of <watch>. For example:

G-1

<watch>
 <rule-type>Harvester</rule-type>
 <!-- Other configuration elements -->
</watch>

Policies with different rule types differ in two ways:

• The rule syntax for specifying the conditions being monitored are unique to the
type.

• Log and instrumentation policies are triggered in real time, whereas Harvester
policies are triggered only after the current harvest cycle completes.

Policy Configuration Options
WLDF provides several tool options for configuring policies.

For information about policy configuration options, see How Policies Are Configured.

Configuring Harvester Policies Using the WLDF Query
Language

WLDF provides three main types of Harvester policies that can be configured with
WLDF query language-based expressions. Each policy type is based on what the
policy can monitor.

Note:

If you define a policy to monitor an MBean (or MBean attributes) that the
Harvester is not configured to harvest, the policy will work. The Harvester will
implicitly harvest values to satisfy the requirements set in the defined policy
expressions. However, data harvested in this way (that is, implicitly for a
policy) is not archived. See Configuring the Harvester for Metric Collection.

Harvester policies are triggered in response to a harvest cycle. So, for Harvester
policies, the Harvester sample period defines a time interval between when a situation
is identified and when it can be reported though an action. On average, the delay is
SamplePeriod/2.

Example G-1 shows a configuration example of a Harvester policy that monitors
several runtime MBeans. When the policy expression (defined in the <rule-
expression> element) evaluates to true, six different actions are executed to generate
the following: a JMX notification, an SMTP notification, an SNMP notification, an image
action, and JMS notifications for both a topic and a queue.

The policy is a logical expression composed of four Harvester variables. The
expression has the form:

((A >= 100) AND (B > 0)) OR C OR D.equals("active")

Each variable is of the form:

{entityName}//{attributeName}

Appendix G
Policy Configuration Options

G-2

In the preceding syntax, {entityName} is the JMX ObjectName as registered in the runtime
MBean server or the type name as defined by the Harvester, and {attributeName} is the
name of an attribute defined on that MBean type.

Note:

The comparison operators are qualified in order to be valid in XML.

Example G-1 Sample Harvester Policy Configuration (in DIAG_MODULE.xml)

<wldf-resource xmlns="http://xmlns.oracle.com/weblogic/weblogic-diagnostics"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://xmlns.oracle.com/weblogic/weblogic-diagnostics/2.0/
weblogic-diagnostics.xsd">
 <name>mywldf1</name>
 <harvester>
 <!-- Harvesting does not have to be configured and enabled for harvester
 policies. However, configuring the Harvester can provide advantages;
 for example the data will be archived. -->
 <harvested-type>
 <name>myMBeans.MySimpleStandard</name>
 <harvested-instance>myCustomDomain:Name=myCustomMBean1
 </harvested-instance>
 <harvested-instance>myCustomDomain:Name=myCustomMBean2
 </harvested-instance>
 </harvested-type>
 <!-- Other Harvester configuration elements -->
 </harvester>
 <watch-notification>
 <watch>
 <name>simpleWebLogicMBeanWatchRepeatingAfterWait</name>
 <enabled>true</enabled>
 <rule-type>Harvester</rule-type>
 <rule-expression>
 (${mydomain:Name=WLDFHarvesterRuntime,ServerRuntime=myserver,Type=
 WLDFHarvesterRuntime,WLDFRuntime=WLDFRuntime//TotalSamplingTime}
 >= 100
 AND
 ${mydomain:Name=myserver,Type=
 ServerRuntime//OpenSocketsCurrentCount} > 0)
 OR
 ${mydomain:Name=WLDFWatchNotificationRuntime,ServerRuntime=
 myserver,Type=WLDFWatchNotificationRuntime,
 WLDFRuntime=WLDFRuntime//Enabled} = true
 OR
 ${myCustomDomain:Name=myCustomMBean3//State} =
 'active')
 </rule-expression>
 <severity>Warning</severity>
 <alarm-type>AutomaticReset</alarm-type>
 <alarm-reset-period>10000</alarm-reset-period>
 <notification>myJMXNotif,myImageNotif,
 myJMSTopicNotif,myJMSQueueNotif,mySNMPNotif,
 mySMTPNotif</notification>
 </watch>
 <!-- Other policy-action configuration elements -->
 </watch-notification>
</wldf-resource>

Appendix G
Configuring Harvester Policies Using the WLDF Query Language

G-3

This policy uses an alarm type of AutomaticReset, which means that it may be
triggered repeatedly, provided that the last time it was triggered was longer than the
interval set as the alarm reset period (in this case 10000 milliseconds).

The severity level provided, Warning, has no effect on the triggering of the policy, but
will be passed on through the actions.

Configuring Log Policies Using the WLDF Query Language
Use log policies to monitor the occurrence of specific messages or strings in the server
or domain log. Policies of this type are triggered as a result of a log message
containing the specified data being issued.

The following example shows the configuration, in DIAG_MODULE.xml, for a server log
policy:

<wldf-resource xmlns="http://xmlns.oracle.com/weblogic/weblogic-diagnostics"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://xmlns.oracle.com/weblogic/weblogic-diagnostics/2.0/
weblogic-diagnostics.xsd">
 <name>mywldf1</name>
 <watch-notification>
 <enabled>true</enabled>
 <log-watch-severity>Info</log-watch-severity>
 <watch>
 <name>myLogWatch</name>
 <rule-type>Log</rule-type>
 <rule-expression>MSGID='BEA-000360'</rule-expression>
 <severity>Info</severity>
 <notification>myMailNotif2</notification>
 </watch>
 <smtp-notification>
 <name>myMailNotif2</name>
 <enabled>true</enabled>
 <mail-session-jndi-name>myMailSession</mail-session-jndi-name>
 <subject>This is a log alert</subject>
 <recipient>username@emailservice.com</recipient>
 </smtp-notification>
 </watch-notification>
</wldf-resource>

In the preceding example, note how the <rule-type> of Log causes messages or
strings entered in the server log to be monitored. A <rule-type> of DomainLog monitors
messages or strings in the domain log.

Configuring Instrumentation Policies Using the WLDF Query
Language

You use instrumentation policies to monitor the events from the WLDF Instrumentation
component. Policies of this type are triggered as a result of the event being posted.

The following example shows the configuration, in DIAG_MODULE.xml, for an
instrumentation policy:

<watch-notification>
 <watch>
 <name>myInstWatch</name>

Appendix G
Configuring Log Policies Using the WLDF Query Language

G-4

 <enabled>true</enabled>
 <rule-type>EventData</rule-type>
 <rule-expression>
 (PAYLOAD > 100000000) AND (MONITOR = 'Servlet_Around_Service')
 </rule-expression>
 <alarm-type xsi:nil="true"></alarm-type>
 <notification>mySMTPNotification</notification>
 </watch>
 <smtp-notification>
 <name>mySMTPNotification</name>
 <enabled>true</enabled>
 <mail-session-jndi-name>myMailSession</mail-session-jndi-name>
 <subject xsi:nil="true"></subject>
 <body xsi:nil="true"></body>
 <recipient>username@emailservice.com</recipient>
 </smtp-notification>
</watch-notification>

Appendix G
Configuring Instrumentation Policies Using the WLDF Query Language

G-5

Glossary

action
The operation that occurs as a result of the successful evaluation of a policy expression. The
WebLogic Diagnostics Framework supports these types of diagnostic actions: Java
Management Extensions (JMX), Java Message Service (JMS), Simple Mail Transfer Protocol
(SMTP), Simple Network Management Protocol (SNMP), scaling, REST, script, and
diagnostic image capture. See also diagnostic image.

Note:

As of WebLogic Server 12.2.1, the term notification is replaced with action. The
definition is unchanged.

artifact
Any resulting physical entity, or data, generated and persisted to disk by the WebLogic
Diagnostics Framework that can be used later for diagnostic analysis. For example, the
diagnostic image file that is created when the server fails is an artifact. The diagnostic image
artifact is provided to support personnel for analysis to determine why the server failed. The
WebLogic Diagnostics Framework produces a number of different artifacts.

bean
See WLDF bean.

context creation
If diagnostic monitoring is enabled, a diagnostic context is created, initialized, and populated
by WebLogic Server when a request enters the system. Upon request entry, WebLogic
Server determines whether a diagnostic context is included in the request. If so, the request
is propagated with the provided context. If not, WebLogic Server creates a new context with a
specific name (weblogic.management.DiagnosticContext). The contextual data for the
diagnostic context is stored in the diagnostic context payload. Thus, within the scope of a
request execution, existence of the diagnostic context is guaranteed.

Glossary-1

context payload
The actual contextual data for the diagnostic context is stored in the Context Payload.
See also context creation, diagnostic context, request dyeing.

data stores
Data stores are a collection of data, or records, represented in a tabular format. Each
record in the table represents a datum. Columns in the table describe various
characteristics of the datum. Different data stores may have different columns;
however, most data stores have some shared columns, such as the time when the
data item was collected.

In WebLogic Server, information captured by WebLogic Diagnostics Framework is
segregated into logical data stores, separated by the types of diagnostic data. For
example, Server logs, HTTP logs, and harvested metrics are captured in separate
data stores.

diagnostic action
Business logic or diagnostic code that is executed when a joinpoint defined by a
pointcut is reached. Diagnostic actions, which are associated with specific pointcuts,
specify the code to execute at a joinpoint. Put another way, a pointcut declares the
location and a diagnostic action declares what is to be done at the locations identified
by the pointcut.

Diagnostic actions provide visibility into a running server and applications. Diagnostic
actions specify the diagnostic activity that is to take place at locations, or pointcuts,
defined by the monitor in which it is implemented. Without a defined action, a
diagnostic monitor is useless.

Depending on the functionality of a diagnostic action, it may need a certain
environment to do its job. Such an environment must be provided by the monitor to
which the diagnostic action is attached; therefore, diagnostic actions can be used only
with compatible monitors. Hence, diagnostic actions are classified by type so that their
compatibility with monitors can be determined.

To facilitate the implementation of useful diagnostic monitors, a library of suitable
diagnostic actions is provided with the WebLogic Server product.

diagnostic context
The WebLogic Diagnostics Framework adds contextual information to all requests
when they enter the system. You can use this contextual information, referred to as the
diagnostic context, to reconstruct transactional events, as well correlate events based
on the timing of the occurrence or logical relationships. Using diagnostic context you
can reconstruct or piece together a thread of execution from request to response.

Various diagnostic components, for example, the logging services and diagnostic
monitors, use the diagnostic context to tag generated data events. Using the tags, the

Glossary

Glossary-2

diagnostic data can be collated, filtered and correlated by the WebLogic Diagnostics
Framework and third-party tools.

The diagnostic context also makes it possible to generate diagnostic information only when
contextual information in the diagnostic context satisfies certain criteria. This capability
enables you to keep the volume of generated information to manageable levels and keep the
overhead of generating such information relatively low. See also context creation, context
payload, request dyeing.

diagnostic image
An artifact containing key state from an instance of a server that is meant to serve as a
server-level state dump for the purposes of diagnosing significant failures. This artifact can be
used to diagnose and analyze problems even after the server has cycled.

diagnostic module
A diagnostic module is the definition the configuration settings that are to be applied to the
WebLogic Diagnostics Framework. The configuration settings determine the data that is to be
collected and processed; how the data is to be analyzed and archived; the policies that are to
be evaluated; the actions, notifications, and alarms that are to be executed; and the operating
parameters of the Diagnostic Image Capture component. After a diagnostic module has been
defined, or configured, it can be distributed to a running server where the data is collected.

diagnostic monitor
A diagnostic monitor is a unit of diagnostic code that defines the following:

1. The locations in a program where the diagnostic code is added

2. The diagnostic actions that are executed at those locations

WebLogic Server provides a library of useful diagnostic monitors. You can integrate these
monitors into server and application classes. Once integrated, the monitors take effect at
server startup for server classes, and at application deployment and redeployment for
application classes.

dye filtering
The process of looking at the dye mask and making the decision as to whether or not a
diagnostic monitor should execute an action so as to generate a data event. Dye filtering is
dependent upon dye masks. You must define dye masks in order for dye filtering to take
place. See also dye mask, request dyeing.

Glossary

Glossary-3

dye mask
The entity that contains a predefined set of conditions that are used by dye filtering in
diagnostic monitors to determine whether or not a data event should be generated.
See also dye filtering, request dyeing.

harvestable entities
A harvestable entity is any entity that is available for data consumption via the
Harvester. Once an entity is identified as a harvestable resource, the Harvester can
engage the entity in the data collection process.

Harvestable entities provide access to the following information: harvestable attributes,
values of harvestable attributes, metadata for harvestable attributes, and the name of
the harvestable entity. See also harvestable data, harvested data, Harvester's
configuration data set, MBean type discovery.

harvestable data
Harvestable data (types, instances, attributes) is the set of data that potentially could
be harvested when and if a harvestable entity is configured for harvesting. Therefore,
the set of harvestable data exists independent of what data is configured for
harvesting and of what data samples are taken.

The WLDFHarvesterRuntimeMBean provides the set of harvestable data for users.
For a description of the information about harvestable data provided by this MBean,
see the description of the weblogic.management.runtime.WLDFHarvesterRuntimeMBean
in the MBean Reference for Oracle WebLogic Server.

The WebLogic Diagnostics Framework makes runtime MBeans available as
harvestable only. In order for an MBean to be harvestable, it must be registered in the
local WebLogic Server runtime MBean server. See also harvestable entities, harvested
data, Harvester's configuration data set, MBean type discovery.

harvested data
A type, instance, or attribute is called harvested data if that data is currently being
harvested. To meet these criteria the data must: 1) be configured to be harvested, 2) if
applicable, it must have been discovered, and 3) it must not throw exceptions while
being harvested.

See also harvestable entities, harvestable data, Harvester's configuration data set.

Harvester's configuration data set
The set of data to be harvested as defined by the Harvester's configuration. The
configured data set can contain items that are not harvestable and items that are not
currently being harvested.

Glossary

Glossary-4

See also harvestable entities, harvestable data, Harvester's configuration data set.

joinpoint
A well defined point in the program flow where diagnostic code can be added. The
Instrumentation component allows identification of such diagnostic joinpoints with an
expression in a generic manner.

MBean (Managed Bean)
A Java object that provides a management interface for an underlying resource. An MBean is
part of Java Management Extensions (JMX).

In the WebLogic Diagnostics Framework, MBean classes are used to configure the service
and to monitor its runtime state. MBeans are registered with the MBean server that runs
inside WebLogic Server. MBeans are implemented as standard MBeans which means that
each class implements its own MBean interface.

MBean type discovery
For WebLogic Server entities, the set of harvestable types is known at system startup, but not
the complete set of harvestable instances. However, for user-defined MBeans, the set of
types can grow dynamically as more MBeans appear at run time. The process of detecting a
new type based on the registration of a new MBean is called type discovery. MBean type
discovery is only applicable to user-defined MBeans.

MBean type metadata
The set of harvestable attributes for a type (and its instances) is defined by the metadata for
the type. Since the WebLogic Server model is MBeans, the metadata is provided through
MBeanInfos. Since WebLogic type information is always available, the set of harvestable
attributes for WebLogic Server types (and existing and potential instances) is always
available as well. However, for customer types, knowledge of the set of harvestable attributes
is dependent on the existence of the type. And, the type does not exist until at least one
instance is created. So the list of harvestable attributes on a user defined type is not known
until at least one instance of the type is registered.

It is important to be aware of latencies in the availability of information for custom MBeans.
Due to latencies, the WebLogic Server Administration Console cannot provide complete lists
of all harvestable data in its user selection lists for configuring the Harvester. The set of
harvestable data for WebLogic Server entities is always complete, but the set of harvestable
data for customer entities (and even the set of entities itself) may not be complete.

metadata
Metadata is information that describes the information the WebLogic Diagnostics Framework
collects. Because the service collects diagnostic information from different sources, the
consumers of this information need to know what diagnostic information is collected and

Glossary

Glossary-5

available. To satisfy this need, the Data Accessor provides functionality to
programmatically obtain this metadata. The metadata made available by means of the
Data Accessor includes:

1. A list of supported data store types. For example, SERVER_LOG, HTTP_LOG,
and HARVESTED_DATA.

2. A list of available data stores.

3. The layout of each data store; that is, information about columns in the data store.

metrics
Monitoring system operation and diagnosing problems depends on having data from
running systems. Metrics are measurements of system performance. From these
measurements, support personnel can determine whether the system is in good
working order or a problem is developing.

In general, metrics are exposed to the WebLogic Diagnostics Framework as attributes
on qualified MBeans. In WebLogic Server, metrics include performance measurements
for the operating system, the virtual machine, the system runtime, and applications
running on the server.

pointcut
A well defined set of joinpoints, typically identified by some generic expression.
Pointcuts identify joinpoints, which are well-defined points in the flow of execution,
such as a method call or method execution site. The Instrumentation component
provides a mechanism to allow execution of specific diagnostic code at such pointcuts.
The Instrumentation component adds such diagnostic code to the server and
application code.

request dyeing
Requests can be dyed, or specially marked, to indicate that they are of special
interest. For example, in a running system, it may be desirable to send a specially
marked test request, which can be conditionally traced by the tracing monitors. This
allows creation of highly focused diagnostic information without slowing down other
requests.

Requests are typically marked when they enter the system by setting flags in the
diagnostic context. The diagnostic context provides a number of flags, 64 in all, that
can be independently set or reset.

See also context creation, context payload, diagnostic context.

smart rule
Out-of-the-box policy expression predicate that includes a number of configurable
parameters. Smart rules greatly simplify the creation of scaling policies by providing

Glossary

Glossary-6

templates in which you specify the conditions for executing a scaling action on a dynamic
cluster.

system image capture
Whenever a system fails, there is need to know its state when it failed. Therefore, a means of
capturing system state upon failure is critical to failure diagnosis. A system image capture
does just that. It creates, in essence, a diagnostic snapshot, or dump, from the system for the
express purpose of diagnosing significant failures.

In WebLogic Server, you can configure the WebLogic Diagnostics Framework provides the
First-Failure Notification feature to trigger system image captures automatically when the
server experiences an abnormal shutdown. You can also implement watches to automatically
trigger diagnostic image captures when significant failures occur and you can manually
initiate diagnostic image captures on demand.

policy
A policy encapsulates all of the information for a policy expression. This includes the
expression, the alarm settings for the policy, and the various action handlers that are
executed once a policy expression evaluates to true.

Note:

Note: As of WebLogic Server 12.2.1, the term watch is replaced with policy. The
definition is unchanged.

weaving time
The time it takes to inspect server and application classes and insert the diagnostic byte code
at well-defined locations, if necessary at class load time. The diagnostic byte code enables
the WebLogic Diagnostics Framework to take diagnostic actions. Weaving time affects both
the load time for server-level instrumented classes and application deployment time for
application-level classes.

WLDF bean
An annotated HK2 service that can be discovered at run time and inserted into the Java EL
objects that are used by policy expressions. Each bean provides a set of attributes and
operations that can present a set of domain-specific data that can be used from policies.

Glossary

Glossary-7

	Contents
	Audience
	Documentation Accessibility
	Diversity and Inclusion
	Related Documentation
	Conventions
	Preface
	Documentation Accessibility
	Preface
	Documentation Accessibility

	1 Introduction and Roadmap
	What Is the WebLogic Diagnostics Framework?
	Guide to This Document
	Samples and Tutorials
	Avitek Medical Records Application (MedRec) and Tutorials
	WLDF Samples Available for Download

	What’s New in This Guide

	2 Overview of the WLDF Architecture
	Overview of the WebLogic Diagnostics Framework
	Data Creation, Collection, and Instrumentation
	Archive
	Policies and Actions
	Data Accessor
	Monitoring Dashboard and Request Performance Pages
	Monitoring Dashboard
	Diagnostics Request Performance Page

	Diagnostic Image Capture
	How It All Fits Together

	3 Using the Built-in Diagnostic System Modules
	Overview
	Types of Built-in Diagnostic System Modules
	Data Collected by Built-in Diagnostic System Modules

	Configuring a Built-in Diagnostic Module
	Accessing Data Collected by a Built-in Diagnostic System Module
	Using the Monitoring Dashboard
	Using the Metrics Log Table in the Administration Console

	Creating a Custom Diagnostic System Module Based on a Built-in

	4 Using WLDF with Java Flight Recorder
	About Java Flight Recorder
	Using Java Flight Recorder with Oracle HotSpot
	Key Features of WLDF Integration with Java Flight Recorder
	Java Flight Recorder Use Cases
	Diagnosing a Critical Failure — The "Black Box"
	Profiling During Performance Testing or in Production
	Real-Time Application Diagnostics and Reporting

	Obtaining the Flight Recording File
	Analyzing Java Flight Recorder Data
	Java Flight Recorder Graphical User Interface
	Analyzing Execution Flow — A Sample Walkthrough
	Displaying Event Data for a Product Subcomponent
	Viewing the Event Log to Display Details
	Tracking Execution Flow by Analyzing an Operative Set
	Expanding the Operative Set and Viewing Correlated Diagnostic Data

	Changing the Location of Temporary JFR Files

	5 Understanding WLDF Configuration
	Configuration MBeans and XML
	Tools for Configuring WLDF
	How WLDF Configuration Is Partitioned
	Server-Level Configuration
	Application-Level Configuration

	Configuring Diagnostic Image Capture and Diagnostic Archives
	Configuring Diagnostic Image Capture for Java Flight Recorder
	Configuring Diagnostic System Modules
	About the Resource Descriptor
	WLDF Runtime Control
	Creating a Diagnostic System Module Based on a Configured Resource Descriptor
	Creating a Diagnostic System Module Based on an External Resource Descriptor
	Targeting a Diagnostic System Module to a Server or Cluster
	Dynamically Activating or Deactivating Diagnostic System Modules
	Using WLST to Activate and Deactivate Diagnostic System Modules
	More Information About Configuring Diagnostic System Modules

	Configuring Diagnostic Modules for Applications
	WLDF Configuration MBeans and Their Mappings to XML Elements

	6 Configuring and Capturing Diagnostic Images
	How to Initiate Image Captures
	Configuring Diagnostic Image Captures
	Configuring WLDF Diagnostic Volume
	Low Volume Setting
	Medium Volume Setting
	High Volume Setting

	WLST Commands for Generating an Image Capture

	How Diagnostic Image Capture Is Persisted in the Server's Configuration
	Content of the Captured Image File
	Data Included in the Diagnostics Image Capture File
	WLST Online Commands for Downloading Diagnostics Image Captures

	7 Configuring Diagnostic Archives
	Configuring the Archive
	Configuring a File-Based Store
	Configuring a JDBC-Based Store
	Creating WLDF Tables in the Database
	Apache Derby
	Oracle Database
	MySQL

	Configuring JDBC Resources for WLDF

	Retiring Data from the Archives
	Configuring Data Retirement at the Server Level
	Configuring Age-Based Data Retirement Policies for Diagnostic Archives
	Sample Configuration

	8 Configuring the Harvester for Metric Collection
	Harvesting, Harvestable Data, and Harvested Data
	Harvesting Data from the Different Harvestable Entities
	Configuring the Harvester
	Configuring the Harvester Sampling Period
	Configuring the Types of Data to Harvest
	Specifying Type Names for WebLogic Server MBeans and Custom MBeans
	Harvesting from the Domain Runtime MBean Server
	When Configuration Settings Are Validated
	Sample Configurations for Different Harvestable Types

	Harvester Performance Considerations

	9 Configuring Policies and Actions
	Policies and Actions
	Overview of Policies and Actions Configuration
	Sample Policies and Actions Configuration

	10 Configuring Policies
	How Policies Are Configured
	Rule Type
	Expression Language
	Policy Expression
	Actions
	Policy Schedule
	Alarm Options
	Severity Option
	Enablement Option

	Configuring Scheduled Policies
	Configuring Calendar Based Policies
	Configuring Smart Rule Based Policies
	Types of Diagnostic Data that Smart Rules Evaluate
	Smart Rule Example

	Chaining Policies

	Configuring Log Policies
	Configuring Instrumentation Policies
	Creating Complex Policy Expressions Using WLDF Java EL Extensions
	Writing Collected Metrics Policy Expressions Using Beans
	Accessing MBean Data in Collected Metrics
	Working with Complex MBean Attributes
	Performing Bulk Queries on Collected Metrics from MBeans

	Writing Collected Metrics Policy Expressions Using Functions
	Examining Trends in Metric Values over Time
	Extracting and Examining Collected Metrics in Policy Expressions
	Lifecycle of Data Collection

	11 Configuring Actions
	Actions Overview
	Types of Actions
	Variables for Customizable Actions
	Action Timeout

	Configuring JMX Actions
	Configuring JMS Actions
	Configuring SNMP Actions
	Configuring Log Actions
	Configuring REST Actions
	Configuring SMTP Actions
	Configuring Image Actions
	Configuring Elastic Actions
	Elastic Scaling Operations Cannot Be Cancelled After Starting
	Limiting Server Shutdown Time During Scale Down Operations

	Configuring Script Actions
	Configuring Heap Dump Actions
	Configuring Thread Dump Actions

	12 Configuring Instrumentation
	Concepts and Terminology
	Instrumentation Scope
	Configuration and Deployment
	Joinpoints, Pointcuts, and Diagnostic Locations
	Diagnostic Monitor Types
	Diagnostic Actions

	Instrumentation Configuration Files
	XML Elements Used for Instrumentation
	<Instrumentation> XML Elements
	<wldf-instrumentation-monitor> XML Elements
	Mapping <wldf-instrumentation-monitor> XML Elements to Monitor Types

	Configuring Server-Scoped Instrumentation
	Configuring Application-Scoped Instrumentation
	Comparing System-Scoped to Application-Scoped Instrumentation
	Overview of the Steps Required to Instrument an Application
	Creating a Descriptor File for a Delegating Monitor
	Creating a Descriptor File for a Custom Monitor
	Defining Pointcuts for Custom Monitors
	Annotation-based Pointcuts

	Creating Request Performance Data

	13 Configuring the DyeInjection Monitor to Manage Diagnostic Contexts
	Contents, Life Cycle, and Configuration of a Diagnostic Context
	Context Life Cycle and the Context ID
	Dyes, Dye Flags, and Dye Vectors
	Where Diagnostic Context Is Configured

	Overview of the Process
	Configuring the Dye Vector by Using the DyeInjection Monitor
	Dyes Supported by the DyeInjection Monitor
	PROTOCOL Dye Flags
	THROTTLE Dye Flag
	When Diagnostic Contexts Are Created

	Configuring Delegating Monitors to Use Dye Filtering
	How Dye Masks Filter Requests to Pass to Monitors
	Dye Filtering Example

	Using Throttling to Control the Volume of Instrumentation Events
	Configuring the THROTTLE Dye
	How Throttling is Handled by Delegating and Custom Monitors

	Using weblogic.diagnostics.context

	14 Accessing Diagnostic Data With the Data Accessor
	Data Stores Accessed by the Data Accessor
	Accessing Diagnostic Data Online
	Accessing Data Using the Administration Console
	Accessing Data Programmatically Using Runtime MBeans
	Using WLST to Access Diagnostic Data Online
	Using the WLDF Query Language with the Data Accessor

	Accessing Diagnostic Data Offline
	Accessing Diagnostic Data Programmatically
	Resetting the System Clock Can Affect How Data Is Archived and Retrieved

	15 Deploying WLDF Application Modules
	Deploying a Diagnostic Module as an Application-Scoped Resource
	Using Deployment Plans to Dynamically Control Instrumentation Configuration
	Using a Deployment Plan: Overview
	Creating a Deployment Plan Using weblogic.PlanGenerator
	Sample Deployment Plan for Diagnostics
	Enabling Java HotSwap
	Deploying an Application with a Deployment Plan
	Updating an Application with a Modified Plan

	16 Using the Monitoring Dashboard
	Running the Monitoring Dashboard
	Scope of the Diagnostic Information Displayed
	About the Monitoring Dashboard Interface
	View List
	Metric Browser
	View Display Panel

	Understanding How Metrics Are Collected and Presented
	About Metrics and Chart Types
	Current Time Range Charts
	Custom Time Range Charts

	Sequence in which Metrics Data is Displayed
	Notes about Metric Data Retention

	The Parts of a Chart

	17 Configuring and Using WLDF Programmatically
	How WLDF Generates and Retrieves Data
	Mapping WLDF Components to Beans and Packages
	Programming Tools
	Configuration and Runtime APIs
	Configuration APIs
	Runtime APIs

	WLDF Packages
	Programming WLDF: Examples
	Example: DiagnosticContextExample.java
	Example: HarvesterMonitor.java
	Notification Listeners
	HarvesterMonitor.java

	Example: JMXAccessorExample.java

	18 Using Debug Patches
	Dynamic Application of Debug Patches
	Specifying the Debug Patch Directory
	Configuring the WLDF Debug Patch Agent
	WLST Commands for Debug Patches
	Dynamically Activating a Debug Patch
	Dynamically Deactivating Debug Patches

	A Smart Rule Reference
	About the Parameters You Specify for Smart Rules
	Cluster Scope Smart Rules
	ClusterLowThroughput
	ClusterHighProcessCpuLoadAverage
	ClusterHighThroughput
	ClusterLowPendingUserRequests
	ClusterHighStuckThreads
	ClusterLowQueueLength
	ClusterHighPendingUserRequests
	ClusterLowProcessCpuLoadAverage
	ClusterHighIdleThreads
	ClusterLowSystemLoadAverage
	ClusterHighQueueLength
	ClusterLowHeapFreePercent
	ClusterHighSystemLoadAverage
	ClusterHighHeapFreePercent
	ClusterLowSystemCpuLoadAverage
	ClusterLowIdleThreads
	ClusterGenericMetricRule
	ClusterHighSystemCpuLoadAverage

	Server Scope Smart Rules
	ServerLowIdleThreads
	ServerHighThroughput
	ServerGenericMetricRule
	ServerLowPendingUserRequests
	ServerLowProcessCpuLoadAverage
	ServerHighSystemLoadAverage
	ServerLowQueueLength
	ServerLowThroughput
	ServerHighQueueLength
	ServerHighSystemCpuLoadAverage
	ServerHighPendingUserRequests
	ServerLowSystemCpuLoadAverage
	ServerHighHeapFreePercent
	ServerHighStuckThreads
	ServerHighProcessCpuLoadAverage
	ServerLowSystemLoadAverage
	ServerLowHeapFreePercent
	ServerHighIdleThreads

	B WLDF Beans and Functions Reference
	WLDF Beans Reference
	clusterRuntime
	domainRuntime
	instrumentationEvent
	log
	platform
	resource
	runtime

	Functions Reference
	wls:tableChanges
	wls:tableAverages
	wls:extract
	wls:average
	wls:changes
	wls:aliveServersCount

	C WLDF Query Language
	Components of a Query Expression
	Supported Operators
	Operator Precedence
	Numeric Relational Operations Supported on String Column Types
	Supported Numeric Constants and String Literals
	About Variables in Expressions
	Creating Policy Expressions
	Creating Log Event Policy Expressions
	Creating Instrumentation Event Policy Expressions
	Creating Harvester Policy Expressions

	Creating Data Accessor Queries
	Data Store Logical Names
	Data Store Column Names

	Creating Log Filter Expressions
	Building Complex Expressions

	D WLDF Instrumentation Library
	Diagnostic Monitor Library
	Diagnostic Action Library
	TraceAction
	DisplayArgumentsAction
	TraceElapsedTimeAction
	TraceMemoryAllocationAction
	StackDumpAction
	ThreadDumpAction
	MethodInvocationStatisticsAction
	Instrumenting an Application with MethodInvocationStatisticsAction and Querying the Results
	Configuring the Custom Monitor to Use MethodInvocationStatisticsAction
	Using WLST to Query Method Performance Statistics

	Configuring the Harvester to Collect MethodInvocationStatisticsAction Data
	Configuring Policies Based on MethodInvocationStatistics Metrics
	Using JMX to Collect Data

	MemoryAllocationStatisticsAction

	E Using Wildcards in Expressions
	Using Wildcards in Harvester Instance Names
	Examples

	Specifying Complex and Nested Harvester Attributes
	Examples

	Using the Accessor with Harvested Complex or Nested Attributes
	Using Wildcards in Policy Instance Names
	Specifying Complex Attributes in Harvester Policies

	F WebLogic Scripting Tool Examples
	WLST Commands for Diagnostics
	Example: Dynamically Creating DyeInjection Monitors
	Example: Configuring a Policy and a JMX Action
	Example: Writing a JMXWatchNotificationListener Class
	Example: Registering MBeans and Attributes For Harvesting
	Example: Setting the WLDF Diagnostic Volume
	Example: Capturing a Diagnostic Image
	Example: Retrieving a JFR File from a Diagnostic Image Capture

	G WLDF Query Language-Based Policies
	Types of Policies
	Policy Configuration Options
	Configuring Harvester Policies Using the WLDF Query Language
	Configuring Log Policies Using the WLDF Query Language
	Configuring Instrumentation Policies Using the WLDF Query Language

	Glossary
	action
	artifact
	bean
	context creation
	context payload
	data stores
	diagnostic action
	diagnostic context
	diagnostic image
	diagnostic module
	diagnostic monitor
	dye filtering
	dye mask
	harvestable entities
	harvestable data
	harvested data
	Harvester's configuration data set
	joinpoint
	MBean (Managed Bean)
	MBean type discovery
	MBean type metadata
	metadata
	metrics
	pointcut
	request dyeing
	smart rule
	system image capture
	policy
	weaving time
	WLDF bean

