
Oracle® Fusion Middleware
Developing Standalone Clients for Oracle
WebLogic Server

14c (14.1.1.0.0)
F18312-05
March 2025

Oracle Fusion Middleware Developing Standalone Clients for Oracle WebLogic Server, 14c (14.1.1.0.0)

F18312-05

Copyright © 2007, 2025, Oracle and/or its affiliates.

This software and related documentation are provided under a license agreement containing restrictions on use and
disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or
allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit,
perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation
of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find
any errors, please report them to us in writing.

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or related
documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, then
the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software, any
programs embedded, installed, or activated on delivered hardware, and modifications of such programs) and Oracle
computer documentation or other Oracle data delivered to or accessed by U.S. Government end users are "commercial
computer software," "commercial computer software documentation," or "limited rights data" pursuant to the applicable
Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, reproduction,
duplication, release, display, disclosure, modification, preparation of derivative works, and/or adaptation of i) Oracle
programs (including any operating system, integrated software, any programs embedded, installed, or activated on
delivered hardware, and modifications of such programs), ii) Oracle computer documentation and/or iii) other Oracle
data, is subject to the rights and limitations specified in the license contained in the applicable contract. The terms
governing the U.S. Government's use of Oracle cloud services are defined by the applicable contract for such services.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications that may create a risk of
personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all
appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its
affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle®, Java, MySQL, and NetSuite are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used
under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc, and the AMD logo
are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open
Group.

This software or hardware and documentation may provide access to or information about content, products, and
services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all
warranties of any kind with respect to third-party content, products, and services unless otherwise set forth in an
applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be responsible for any loss,
costs, or damages incurred due to your access to or use of third-party content, products, or services, except as set forth
in an applicable agreement between you and Oracle.

Contents

 Preface

Document Scope and Audience vii

Documentation Accessibility vii

Diversity and Inclusion vii

Related Documentation viii

Conventions ix

1 Overview of Standalone Clients

Distributing Client JAR Files 1-2

WebLogic T3 Clients 1-2

WebLogic Thin T3 Client 1-2

WebLogic Install Client 1-3

Java IIOP 1-3

CORBA Clients 1-3

JMX Clients 1-4

JMS Clients 1-4

Web Services Clients 1-4

WebLogic Tuxedo Connector Clients 1-4

Clients and Features 1-5

2 Developing a WebLogic Thin T3 Client

Understanding the WebLogic Thin T3 Client 2-1

WebLogic Thin T3 Features 2-1

Limitations and Considerations 2-2

Interoperability 2-2

Prior WebLogic Server Releases 2-2

Foreign Application Servers 2-2

Security 2-3

Connection Considerations 2-3

Developing a Basic WebLogic Thin T3 Client 2-3

Foreign Server Applications 2-4

iii

Deployment Considerations 2-5

3 Reliably Sending Messages Using the JMS SAF Client

Overview of Using Store-and-Forward with JMS Clients 3-2

Configuring a JMS Client To Use Client-Side SAF 3-2

Generating a JMS SAF Client Configuration File 3-3

How the JMS SAF Client Configuration File Works 3-3

Steps to Generate a JMS SAF Client Configuration File from a JMS Module 3-3

ClientSAFGenerate Utility Syntax 3-5

Valid SAF Elements for JMS SAF Client Configurations 3-5

Default Store Options for JMS SAF Clients 3-7

Encrypting Passwords for Remote JMS SAF Contexts 3-8

Steps to Generate Encrypted Passwords 3-8

ClientSAFEncrypt Utility Syntax 3-9

Installing the JMS SAF Client JAR Files on Client Machines 3-10

Modify Your JMS Client Applications To Use the JMS SAF Client's Initial JNDI Provider 3-10

Required JNDI Context Factory for JMS SAF Clients 3-10

Optional JNDI Properties for JMS SAF Clients 3-11

JMS SAF Client Management Tools 3-11

The JMS SAF Client Initialization API 3-11

Client-Side Store Administration Utility 3-11

JMS Programming Considerations with JMS SAF Clients 3-11

How the JMSReplyTo Field Is Handled In JMS SAF Client Messages 3-12

No Mixing of JMS SAF Client Contexts and Server Contexts 3-12

Using Transacted Sessions With JMS SAF Clients 3-12

JMS SAF Client Interoperability Guidelines 3-12

Java Runtime 3-12

WebLogic Server Versions 3-13

JMS C API 3-13

Tuning JMS SAF Clients 3-13

Limitations of Using the JMS SAF Client 3-13

Behavior Change in JMS SAF Client Message Storage 3-14

The Upgrade Process, Tools, and System Properties 3-14

JMS SAF Client Discovery Tool 3-15

JMS SAF Client Migration Properties 3-16

4 Developing a CORBA/IDL Client

Guidelines for Developing a CORBA/IDL Client 4-1

Working with CORBA/IDL Clients 4-1

IDL Client (Corba object) relationships 4-2

iv

Java to IDL Mapping 4-2

WebLogic RMI over IIOP object relationships 4-3

Objects-by-Value 4-3

Procedure for Developing a CORBA/IDL Client 4-4

5 Developing Clients for CORBA Objects

Enhancements and Limitations of CORBA Object Types 5-1

Making Outbound CORBA Calls: Main Steps 5-2

Using the WebLogic ORB Hosted in JNDI 5-2

ORB from JNDI 5-2

Direct ORB creation 5-3

Using JNDI 5-3

Supporting Inbound CORBA Calls 5-3

6 Developing a WebLogic C++ Client for a Tuxedo ORB

WebLogic C++ Client Advantages and Limitations 6-1

How the WebLogic C++ Client Works 6-1

Developing WebLogic C++ Clients 6-2

7 Using Java EE Client Application Modules

Extracting a Client Application 7-1

Executing a Client Application 7-2

8 Developing Security-Aware Clients

Developing Clients that use JAAS 8-1

Developing Clients that use JNDI Authentication 8-2

Developing Clients that use SSL 8-2

Thin Client Restrictions for JAAS and SSL 8-3

Install Client Restrictions for SSL 8-4

Security Code Examples 8-4

9 Using EJBs with RMI-IIOP Clients

Accessing EJBs with a Java Client 9-1

Accessing EJBs with a CORBA/IDL Client 9-1

Example IDL Generation 9-2

v

A Client Application Deployment Descriptor Elements

Overview of Client Application Deployment Descriptor Elements A-1

application-client.xml Deployment Descriptor Elements A-1

application-client A-2

weblogic-appclient.xml Descriptor Elements A-3

application-client A-4

B Accessing WebLogic Server MBeans from JConsole Using WebLogic
Install Client JARs

Using JConsole with WebLogic Install Client JARs to Access WebLogic Server MBeans B-1

vi

Preface

This document is a resource for developers who want to create standalone client applications
that interoperate with WebLogic Server.

• Document Scope and Audience

• Documentation Accessibility

• Diversity and Inclusion

• Related Documentation

• Conventions

Document Scope and Audience
This document is a resource for developers who want to create standalone client applications
that interoperate with WebLogic Server.

This document is relevant to the design and development phases of a software project. The
document also includes solutions to application problems that are discovered during test and
pre-production phases of a project.

It is assumed that the reader is familiar with Java Platform, Enterprise Edition (Java EE)
concepts. This document emphasizes the value-added features provided by WebLogic Server
and key information about how to use WebLogic Server features and facilities when developing
standalone clients.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle Accessibility
Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Accessible Access to Oracle Support

Oracle customers who have purchased support have access to electronic support through My
Oracle Support. For information, visit http://www.oracle.com/pls/topic/lookup?
ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you
are hearing impaired.

Diversity and Inclusion
Oracle is fully committed to diversity and inclusion. Oracle respects and values having a
diverse workforce that increases thought leadership and innovation. As part of our initiative to
build a more inclusive culture that positively impacts our employees, customers, and partners,
we are working to remove insensitive terms from our products and documentation. We are also
mindful of the necessity to maintain compatibility with our customers' existing technologies and
the need to ensure continuity of service as Oracle's offerings and industry standards evolve.

vii

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

Because of these technical constraints, our effort to remove insensitive terms is ongoing and
will take time and external cooperation.

Related Documentation
For comprehensive guidelines for developing, deploying, and monitoring WebLogic Server
applications, see:

• Developing RMI Applications for Oracle WebLogic Server is a guide to using Remote
Method Invocation (RMI) and Internet Interop-Orb-Protocol (IIOP) features.

• Developing Applications for Oracle WebLogic Server is a guide to developing WebLogic
Server applications.

• Deploying Applications to Oracle WebLogic Server is the primary source of information
about deploying WebLogic Server applications.

• Tuning Performance of Oracle WebLogic Server contains information on monitoring and
improving the performance of WebLogic Server applications.

• Samples and Tutorials

• New and Changed WebLogic Server Features

Samples and Tutorials
In addition to this document, Oracle provides a variety of code samples and tutorials for
developers. The examples and tutorials illustrate WebLogic Server in action, and provide
practical instructions on how to perform key development tasks.

Oracle recommends that you run some or all examples before developing your own
applications.

• Avitek Medical Records Application (MedRec) and Tutorials

• Examples in the WebLogic Server Distribution

Avitek Medical Records Application (MedRec) and Tutorials
MedRec is an end-to-end sample Java EE application shipped with WebLogic Server that
simulates an independent, centralized medical record management system. The MedRec
application provides a framework for patients, doctors, and administrators to manage patient
data using a variety of different clients.

MedRec demonstrates WebLogic Server and Java EE features, and highlights Oracle-
recommended best practices. MedRec is optionally installed in the WebLogic Server
installation. You can start MedRec from the ORACLE_HOME\user_projects\domains\medrec
directory, where ORACLE_HOME is the directory you specified as the Oracle Home when you
installed Oracle WebLogic Server. See Sample Applications and Code Examples in
Understanding Oracle WebLogic Server.

MedRec includes a service tier consisting primarily of Enterprise Java Beans (EJBs) that work
together to process requests from Web applications, Web services, and workflow applications,
and future client applications. The application includes message-driven, stateless session,
stateful session, and entity EJBs.

Preface

viii

Examples in the WebLogic Server Distribution
WebLogic Server optionally installs API code examples in the
ORACLE_HOME\wlserver\samples\server directory. For more information about the WebLogic
Server code examples, see Sample Applications and Code Examples in Understanding Oracle
WebLogic Server.

New and Changed WebLogic Server Features
For a comprehensive listing of the new WebLogic Server features introduced in this release,
see What's New in Oracle WebLogic Server.

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated with an
action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for which
you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code in
examples, text that appears on the screen, or text that you enter.

Preface

ix

1
Overview of Standalone Clients

A standalone client is a client that has a runtime environment independent of WebLogic Server.
(Managed clients, such as web services, rely on a server-side container to provide the runtime
necessary to access a server.) Standalone clients that access WebLogic Server applications
range from simple command-line utilities that use standard I/O to highly interactive GUI
applications built using the Java Swing/AWT classes. Learn about types of clients, client
features, and how clients are distributed.

Note:

The WebLogic Full client and thin IIOP clients are removed in WebLogic Server
14.1.1.0.0. Oracle recommends using the thin T3 client or the Install client instead.

• Distributing Client JAR Files

• WebLogic T3 Clients

• Java IIOP

• CORBA Clients

• JMX Clients

• JMS Clients

• Web Services Clients

• WebLogic Tuxedo Connector Clients

• Clients and Features

• Distributing Client JAR Files
Learn about license requirements when using client JARs and other resources provided in
Oracle WebLogic Server for creating standalone clients.

• WebLogic T3 Clients
The WebLogic T3 clients are Java RMI clients that use Oracle T3 protocol to communicate
with WebLogic Server. T3 clients outperform other client types and are the most
recommended type of client.

• Java IIOP
IIOP can be a transport protocol for distributed applications with interfaces written in Java
RMI. When there is an option, Oracle recommends using T3 clients instead of IIOP clients.

• CORBA Clients
If you are not working in a Java-only environment, you can use IIOP to connect your Java
programs with Common Object Request Broker Architecture (CORBA) clients and execute
CORBA objects. IIOP can be a transport protocol for distributed applications with
interfaces written in Interface Definition Language (IDL) or Java RMI. However, the two
models are distinctly different approaches to creating an interoperable environment
between heterogeneous systems.

• JMX Clients
You can use a JMX client to access WebLogic Server MBeans.

1-1

• JMS Clients
WebLogic Server provides a number of JMS clients that provide Java EE and WebLogic
JMS functionality.

• Web Services Clients

• WebLogic Tuxedo Connector Clients
WebLogic Tuxedo Connector provides interoperability between WebLogic Server
applications and Tuxedo services.

• Clients and Features
Learn about the types of clients and features supported in a WebLogic Server
environment.

Distributing Client JAR Files
Learn about license requirements when using client JARs and other resources provided in
Oracle WebLogic Server for creating standalone clients.

See Standalone WebLogic Clients.

WebLogic T3 Clients
The WebLogic T3 clients are Java RMI clients that use Oracle T3 protocol to communicate with
WebLogic Server. T3 clients outperform other client types and are the most recommended type
of client.

• WebLogic Thin T3 Client

• WebLogic Install Client

WebLogic Thin T3 Client
The WebLogic Thin T3 Java client provides a light-weight alternative to the WebLogic Install
client. This client provides the same performance as an install client, but uses a much smaller
JAR file. The thin T3 client supports most of the use cases for which the install client can be
used.

Note:

The WebLogic Full client and thin IIOP client are removed in WebLogic Server
14.1.1.0.0. Oracle recommends using the thin T3 client or the Install client instead.

The thin T3 client can be used in standalone applications, and is also designed for applications
running on foreign (non-WebLogic) servers. One common use case is integration with
WebLogic JMS destinations.

• Developing a WebLogic Thin T3 Client

• Using WebLogic RMI with T3 Protocol in Developing RMI Applications for Oracle
WebLogic Server

Chapter 1
Distributing Client JAR Files

1-2

WebLogic Install Client
The WebLogic Install client is available in a full WebLogic Server installation. It uses the
weblogic.jar file located at WL_HOME/server/lib and provides client-side support for all
WebLogic Server-specific value-added features. It is the only client that supports server-side
operations, such as:

• Operations necessary for development purposes, such as the ejbc compiler.

• Administrative operations, such as deployment.

• WLST and client-side JSR 88 applications that invoke server-side operations.

Java IIOP
IIOP can be a transport protocol for distributed applications with interfaces written in Java RMI.
When there is an option, Oracle recommends using T3 clients instead of IIOP clients.

An IIOP protocol Java client works with WebLogic Server 14.1.1.0.0 and later, only if all Java
(remote and local) is at JDK8 or all Java is at JDK11, and also when:

• The Java client is another WebLogic Server at any version for which overall interoperability
is supported.

• The Java client is a WebLogic Install client (weblogic.jar), in a WebLogic Server
installation, at any version for which overall interoperability is supported.

• The Java client is a WebLogic Full client (wlfullclient.jar), as long as the client is an
earlier version of WebLogic Server than WLS 14.1.1.0.0. Note that wlfullclient.jar is
removed in WLS 14.1.1.0.0.

• The Java client with thin IIOP WebLogic client JARs (wlclient.jar), as long as the client
is an earlier version of WebLogic Server than WLS 14.1.1.0.0. Note that wlclient.jar is
removed in WLS 14.1.1.0.0.

For Java IIOP limitations, see Table 1-1.

For more information about interoperability, see Protocol Compatibility in Understanding Oracle
WebLogic Server.

See also Using RMI over IIOP in Developing RMI Applications for Oracle WebLogic Server.

CORBA Clients
If you are not working in a Java-only environment, you can use IIOP to connect your Java
programs with Common Object Request Broker Architecture (CORBA) clients and execute
CORBA objects. IIOP can be a transport protocol for distributed applications with interfaces
written in Interface Definition Language (IDL) or Java RMI. However, the two models are
distinctly different approaches to creating an interoperable environment between
heterogeneous systems.

When you program, you must decide to use either IDL or RMI interfaces; you cannot mix them.
WebLogic Server supports the following CORBA client models:

• Developing a CORBA/IDL Client

• Developing Clients for CORBA Objects

• Developing a WebLogic C++ Client for a Tuxedo ORB

Chapter 1
Java IIOP

1-3

JMX Clients
You can use a JMX client to access WebLogic Server MBeans.

See Accessing WebLogic Server MBeans With JMX in Developing Custom Management
Utilities Using JMX for Oracle WebLogic Server.

JMS Clients
WebLogic Server provides a number of JMS clients that provide Java EE and WebLogic JMS
functionality.

• WebLogic Thin T3 client, see Developing a WebLogic Thin T3 Client.

• WebLogic Install client, see WebLogic Install Client.

• JMS SAF client, see Reliably Sending Messages Using the JMS SAF Client.

• JMS C client, see WebLogic JMS C API in Developing JMS Applications for Oracle
WebLogic Server.

• JMS .NET client, see Developing JMS .NET Client Applications for Oracle WebLogic
Server.

• WebLogic AQ JMS client, see Standalone WebLogic AQ JMS Clients in Administering JMS
Resources for Oracle WebLogic Server. The WebLogic AQ JMS client obtains destination
information using WebLogic Server JNDI and provides direct access to Oracle database
AQ JMS destinations using an embedded driver. It does not provide access to WebLogic
Server JMS destinations.

Tip:

Oracle WebLogic JMS clients require using the T3 protocol in all cases.

Web Services Clients
WebLogic Server provides a standalone Web Services clients that enable a Java SE client to
invoke a Web Service hosted on WebLogic Server or on other application servers. These
clients are listed in Table 1-1. For more information on use of these clients, see Invoking a Web
Service from a Standalone Java SE Client in Developing JAX-RPC Web Services for Oracle
WebLogic Server.

WebLogic Tuxedo Connector Clients
WebLogic Tuxedo Connector provides interoperability between WebLogic Server applications
and Tuxedo services.

See:

• Developing Oracle WebLogic Tuxedo Connector Client EJBs in the Developing Oracle
WebLogic Tuxedo Connector Applications for Oracle WebLogic Server

• How to Develop RMI/IIOP Applications for the Oracle WebLogic Tuxedo Connector in the
Developing Oracle WebLogic Tuxedo Connector Applications for Oracle WebLogic Server

Chapter 1
JMX Clients

1-4

• How to Develop Oracle WebLogic Tuxedo Connector Client Beans using the CORBA Java
API in the Developing Oracle WebLogic Tuxedo Connector Applications for Oracle
WebLogic Server

Clients and Features
Learn about the types of clients and features supported in a WebLogic Server environment.

The following table lists the types of clients supported in a WebLogic Server environment, their
characteristics, features, and limitations.

Note:

Oracle does not support combining clients to create extended feature sets. Select a
client that best fits your environment and use only the client classes specified for that
client type.

Table 1-1 WebLogic Server Client Types and Features

Client Type Language Protocol Client Class
Requirements/
Bundled
Resources

Key Features

WL Thin T3
Client

RMI Java T3 wlthint3client
.jar

• Small Footprint.
• Oracle WebLogic Server T3/T3S protocol for

Remote Method Invocation (RMI).
• Supports WebLogic Server clustering.
• Supports JSSE SSL, except with HTTP

tunneling.
• Faster and more scalable than IIOP clients.
• Most WebLogic client JMS features,

including the WebLogic Store-and-Forward
(SAF) Service using the
wlsaft3client.jar.

• Supports most Java EE features.
• See Developing a WebLogic Thin T3 Client.

Install Client RMI Java IIOP weblogic.jar • Supports JSSE SSL.
• Supports most of the Java EE features, but

does not support WebLogic client JMS.
• Operations necessary for development

purposes, such as the ejbc compiler.
• Supports administrative operations, such as

deployment.
• Supports WLST and client-side JSR 88

applications that invoke server-side
operations.

• See WebLogic Install Client.

Chapter 1
Clients and Features

1-5

Table 1-1 (Cont.) WebLogic Server Client Types and Features

Client Type Language Protocol Client Class
Requirements/
Bundled
Resources

Key Features

Install Client RMI Java T3 weblogic.jar • Supports Oracle WebLogic Server T3/T3S
protocol for Remote Method Invocation
(RMI), including HTTP Tunneling of T3/T3S.

• Supports WebLogic Server clustering.
• Supports JSSE SSL.
• Faster and more scalable than IIOP clients.
• All WebLogic client JMS features, including

the WebLogic JMS client Store-and-Forward
(SAF) Service.

• Supports most of the Java EE features.
• Supports operations necessary for

development purposes, such as the ejbc
compiler.

• Supports administrative operations, such as
deployment.

• Supports WLST and client-side JSR 88
applications that invoke server-side
operations.

• See WebLogic Install Client.

CORBA/IDL CORBA Languages
that OMG
IDL maps
to, such as
C++, C,
Smalltalk,
COBOL

IIOP No WebLogic
classes

• Uses CORBA 2.3 ORB.
• Does not support WebLogic Server-specific

features.
• Does not support Java.
• See Developing a CORBA/IDL Client.

JMS SAF
Client

(Introduced in
WebLogic
Server 9.2)

RMI Java T3 wlsaft3client.
jar and
wlthint3client
.jar

• Locally stores messages on the client and
forwards them to server-side JMS
destinations when the client is connected.

• Supports SSL.
• See Reliably Sending Messages Using the

JMS SAF Client.

JMS C Client

(Introduced in
WebLogic
Server 9.0)

JNI C T3 Any WebLogic
JMS capable Java
client, such as
wlthint3client
.jar

• C client applications that can access
WebLogic JMS applications and resources.

• Supports SSL.
• See WebLogic JMS C API

JMS .NET
Client

(Introduced in
WebLogic
Server 10.3)

T3 .NET T3 WebLogic.Messa
ging.dll
dynamic library

• Microsoft .NET client applications, written in
C#, that can access WebLogic JMS
applications and resources.

• See Developing JMS .NET Client
Applications for Oracle WebLogic Server.

Chapter 1
Clients and Features

1-6

Table 1-1 (Cont.) WebLogic Server Client Types and Features

Client Type Language Protocol Client Class
Requirements/
Bundled
Resources

Key Features

WebLogic AQ
JMS Client

(Introduced in
WebLogic
Server 10.3.1)

JNDI Java IIOP/T3 + aqapi.jar,
o6.jar, and
orai18n.jar are
required, plus
either the
weblogic.jar
(Install client) or
the
wlthint3client
.jar.

See Standalone WebLogic AQ JMS Clients in
Administering JMS Resources for Oracle
WebLogic Server.

Web Services SOAP Java HTTP/S com.oracle.web
services.wls.j
axws-wlswss-
client.jar

See Invoking a Web Service from a Standalone
Java SE Client in Developing JAX-WS Web
Services for Oracle WebLogic Server.

C++ Client CORBA C++ IIOP Tuxedo libraries • Interoperability between WebLogic Server
applications and Tuxedo clients/services.

• Supports SSL.
• Uses CORBA 2.3 ORB.
• See Developing a WebLogic C++ Client for a

Tuxedo ORB.

Tuxedo Server
and Native
CORBA client

CORBA
or RMI

C++ Tuxedo-
General-
Inter-Orb-
Protocol

(TGIOP)

Tuxedo libraries • Interoperability between WebLogic Server
applications and Tuxedo clients/services.

• Supports SSL and transactions.
• Uses CORBA 2.3 ORB.
• See Developing Clients for CORBA Objects.

RESTful
Webservices
Client

JAX-RS Java HTTP/S jersey-
client.jar

Supports JAX-RS client API.

Chapter 1
Clients and Features

1-7

2
Developing a WebLogic Thin T3 Client

Learn how to develop and use WebLogic Thin T3 clients.

• Understanding the WebLogic Thin T3 Client

• Developing a Basic WebLogic Thin T3 Client

• Foreign Server Applications

• Understanding the WebLogic Thin T3 Client
The WebLogic Thin T3 client (wlthint3client.jar) is a light-weight alternative to the full
install client (weblogic.jar). The thin T3 client has a minimal footprint while providing
access to a rich set of APIs that are appropriate for client use. As its name implies, the thin
T3 client requires using the WebLogic T3 protocol.

• Developing a Basic WebLogic Thin T3 Client
Learn how to create a basic WebLogic Thin T3 client using a WebLogic initial context.

• Foreign Server Applications
A foreign server hosted application can use the wlthint3client.jar to act as a remote
client to a WebLogic Server instance. To provide access to remote services such as JMS,
servlets, EJBs, and startup classes, deploy any necessary application code along with the
wlthint3client.jar to your application server.

Understanding the WebLogic Thin T3 Client
The WebLogic Thin T3 client (wlthint3client.jar) is a light-weight alternative to the full
install client (weblogic.jar). The thin T3 client has a minimal footprint while providing access
to a rich set of APIs that are appropriate for client use. As its name implies, the thin T3 client
requires using the WebLogic T3 protocol.

The thin T3 client is the recommended option for most remote client use cases. There are
some limitations in the thin T3 client as outlined below.

You can use the thin T3 client in standalone applications. It is also designed for applications
running on foreign (non-WebLogic) servers. One common use case is integration with
WebLogic JMS destinations.

• WebLogic Thin T3 Features

• Limitations and Considerations

• Interoperability

• Security

• Connection Considerations

WebLogic Thin T3 Features
This release supports:

• Oracle WebLogic Server T3/T3S protocol for Remote Method Invocation (RMI), including
RMI over HTTP (HTTP tunneling) and RMI over HTTPS (HTTP tunneling over SSL). For

2-1

more information on WebLogic T3 communication, see Using WebLogic RMI with T3
Protocol in Developing RMI Applications for Oracle WebLogic Server.

• Access to JMS, JMX, JNDI, and EJB resources available in WebLogic Server.

• The WebLogic Store-and-Forward (SAF) Service when used in combination with the
wlsaft3client.jar. See Reliably Sending Messages Using the JMS SAF Client.

• Transaction initiation and termination (rollback or commit) using JTA.

• WebLogic client JMS features, including Unit-of-Order, Unit-of-Work, message
compression, XML messages, JMS automatic client reconnect, and Destination Availability
Helper APIs.

• Client-side clustering allowing a client application to participate in failover and load
balancing of a WebLogic Server instance. See Clustered RMI Applications in Developing
RMI Applications for Oracle WebLogic Server.

• JAAS authentication and JSSE SSL. See Security.

• Network class loading. By default, the network class loading for the thin T3 client is
disabled. Use the following system property to enable network classloading:

-Dweblogic.rmi.networkclassloadingenabled=true

Limitations and Considerations
This release does not support:

• MBean-based utilities (such as JMS Helper, JMS Module Helper), and JMS multicast. You
can use JMX calls as an alternative to "mbean-based helpers."

• JDBC resources, including WebLogic JDBC extensions.

• Running a WebLogic RMI server in the client.

The thin T3 client uses JDK classes to connect to the host, including when connecting to dual-
stacked machines. If multiple addresses available on the host, the connection may attempt to
go to the wrong address and fail if the host is not properly configured.

Interoperability
This release of the WebLogic Thin T3 client has the following interoperability support:

• Prior WebLogic Server Releases

• Foreign Application Servers

• Prior WebLogic Server Releases

• Foreign Application Servers

Prior WebLogic Server Releases
For information on WebLogic Thin T3 client support for communicating with previous WebLogic
Server releases, see Protocol Compatibility in Understanding Oracle WebLogic Server.

Foreign Application Servers
The WebLogic Thin T3 client JAR is supported on the following application servers:

• GlassFish

Chapter 2
Understanding the WebLogic Thin T3 Client

2-2

• IBM WebSphere Application Server

• Red Hat JBoss Application Server

Security
For general information on client security see:

• The Java Secure Socket Extension (JSSE) in Understanding Security for Oracle WebLogic
Server.

• Java Authentication and Authorization Services (JAAS) in Understanding Security for
Oracle WebLogic Server.

• Using SSL Authentication in Java Clients in Developing Applications with the WebLogic
Security Service.

• Using JAAS Authentication in Java Clients in Developing Applications with the WebLogic
Security Service.

Connection Considerations
The WebLogic Thin T3 client uses JDK classes to connect to the host. If your host has multiple
addresses (Dual-Stack) available, your client may connect to the wrong IP address if the host
is not configured properly.

Developing a Basic WebLogic Thin T3 Client
Learn how to create a basic WebLogic Thin T3 client using a WebLogic initial context.

Use the following steps to create a basic WebLogic Thin T3 client:

1. Obtain a reference to the remote object.

a. Get the initial context of the server that hosts the service using a T3 URL in the form of
t3://ip address:port or t3s://ip address:port.

b. Obtain an instance of the service object by performing a lookup using the initial
context. This instance can then be used just like a local object reference.

2. Call the remote objects methods.

3. Place the wlthint3client.jar in your client classpath. It is located in the
WL_HOME\server\lib directory of your WebLogic Server installation.

Note:

Oracle does not support combining clients to create extended feature sets. Never
add the wlfullclient.jar, wlthint3client.jar, or wlclient.jar to a
WebLogic Server classpath or a classpath that references the weblogic.jar file
in a full WebLogic install. The behavior is undefined. WebLogic Server
applications already have full access to WebLogic client functionality.

Sample code for a basic WebLogic Thin T3 client is provided in Example 2-1.

Chapter 2
Developing a Basic WebLogic Thin T3 Client

2-3

Example 2-1 Creating and Using a WebLogic Initial Context

Hashtable env = new Hashtable();
env.put("java.naming.factory.initial",
 "weblogic.jndi.WLInitialContextFactory");
env.put("java.naming.provider.url","t3://host:7001");
env.put("java.naming.security.principal","user");
env.put("java.naming.security.credentials","password");
Context ctx = new InitialContext(env);
try {
 Object homeObject =
 context.lookup("EmployeeBean");
//use the EmployeeBean
}
catch (NamingException e) {
// a failure occurred
}
finally {
 try {ctx.close();}
 catch (Exception e) {
// a failure occurred
}
}

Foreign Server Applications
A foreign server hosted application can use the wlthint3client.jar to act as a remote client
to a WebLogic Server instance. To provide access to remote services such as JMS, servlets,
EJBs, and startup classes, deploy any necessary application code along with the
wlthint3client.jar to your application server.

The following steps provide a guideline to connect to and access WebLogic Server resources
from a foreign application server using JNDI:

1. Include the wlthint3client.jar on the class path of your client.

2. In your client application, create a WebLogic initial context and use the context to look up
and use a resource. See Example 2-1 for more details.

3. It may be necessary to explicitly set the initial context factory as a system property in the
client code, to the following value:

env.put("java.naming.factory.initial", "weblogic.jndi.WLInitialContextFactory"
);

4. Deploy any necessary application code along with the wlthint3client.jar file to your
application server using standard Java EE methods, such as embedding the
wlthint3client.jar file in a servlet or using a shared library. See Deployment
Considerations.

5. Start or deploy the client.

The following section outlines specific items to consider when interoperating with a foreign
servers.

• Deployment Considerations

Chapter 2
Foreign Server Applications

2-4

Deployment Considerations

Note:

Never deploy the thin T3 client as part of a WebLogic Server application or library. A
WebLogic Server instance already has the necessary T3 client classes.

You can deploy the wlthint3client.jar using standard Java EE methods. However, when
determining what deployment method to use, you must account for client footprint, class
loading, performance, and tolerance of the risk for code incompatibility. For example:

• If you embed the wlthint3client.jar in your application, such as a servlet, the
application footprint is increased by the size of the wlthint3client.jar but the risk of
code incompatibility is limited to the scope of your application.

• If you deploy the wlthint3client.jar to your lib directory, the application footprint is not
affected but the risk of code incompatibility can include the entire foreign server container.

Chapter 2
Foreign Server Applications

2-5

3
Reliably Sending Messages Using the JMS
SAF Client

Learn how to configure and use the JMS SAF client to reliably send JMS messages from
standalone JMS clients to server-side JMS destinations.
This chapter includes the following sections:

• Overview of Using Store-and-Forward with JMS Clients

• Configuring a JMS Client To Use Client-Side SAF

• JMS SAF Client Management Tools

• JMS Programming Considerations with JMS SAF Clients

• JMS SAF Client Interoperability Guidelines

• Tuning JMS SAF Clients

• Limitations of Using the JMS SAF Client

• Behavior Change in JMS SAF Client Message Storage

• Overview of Using Store-and-Forward with JMS Clients
The JMS SAF client extends the JMS store-and-forward service to standalone JMS clients.
JMS clients can reliably send messages to server-side JMS destinations even when the
client cannot reach a destination (for example, due to a temporary network connection
failure). While disconnected from the server, messages sent by a JMS SAF client are
stored locally on the client file system and are forwarded to server-side JMS destinations
when the client reconnects.

• Configuring a JMS Client To Use Client-Side SAF
No configuration is required on the server-side, but running client-side SAF does require
some configuration on each client. Learn how to configure a JMS client to use client-side
SAF.

• JMS SAF Client Management Tools
Learn about the JMS SAF client initialization API and client-side store administration utility
features, which are available for use with the JMS SAF client implementation.

• JMS Programming Considerations with JMS SAF Clients
Learn about the JMS programming considerations while using the JMS SAF client.

• JMS SAF Client Interoperability Guidelines
The interoperability guidelines apply when using the JMS SAF client to forward messages
to server-side WebLogic JMS destinations.

• Tuning JMS SAF Clients
JMS SAF clients can take advantage of the tuning parameters available with the server-
side SAF service.

• Limitations of Using the JMS SAF Client
Learn about the non-supported features and exceptions while using the JMS SAF Client.

• Behavior Change in JMS SAF Client Message Storage
In the Weblogic JMS SAF client, messages are kept in local storage before being
forwarded to the remote destinations. Each remote destination corresponds to a local

3-1

storage unit, which is called a kernel queue. In releases prior to Oracle WebLogic Server
10.3.3.0, a JMS SAF client instance used a different kernel queue each time it closed and
reopened. This behavior allowed multiple kernel queues to correspond to a destination.

Overview of Using Store-and-Forward with JMS Clients
The JMS SAF client extends the JMS store-and-forward service to standalone JMS clients.
JMS clients can reliably send messages to server-side JMS destinations even when the client
cannot reach a destination (for example, due to a temporary network connection failure). While
disconnected from the server, messages sent by a JMS SAF client are stored locally on the
client file system and are forwarded to server-side JMS destinations when the client
reconnects.

The JMS SAF client consists of two main parts:

• The JMS SAF client implementation, which writes messages directly to a client-side
persistent store on the local file system.

• A SAF forwarder, which takes the messages written to the store and sends them to a
WebLogic Server instance.

An optional ClientSAF initialization API is also available that allows JMS SAF clients to turn the
SAF forwarder mechanism on and off whenever necessary, as described in
weblogic.jms.extensions. See The JMS SAF Client Initialization API.

Note:

For information about using server-side WebLogic JMS SAF for reliably sending JMS
messages to potentially unavailable destinations. See Configuring SAF for JMS
Messages in Administering the Store-and-Forward Service for Oracle WebLogic
Server.

Configuring a JMS Client To Use Client-Side SAF
No configuration is required on the server-side, but running client-side SAF does require some
configuration on each client. Learn how to configure a JMS client to use client-side SAF.

These sections describe how to configure a JMS client to use client-side SAF.

• Generating a JMS SAF Client Configuration File

• Encrypting Passwords for Remote JMS SAF Contexts

• Installing the JMS SAF Client JAR Files on Client Machines

• Modify Your JMS Client Applications To Use the JMS SAF Client's Initial JNDI Provider

• Generating a JMS SAF Client Configuration File

• Encrypting Passwords for Remote JMS SAF Contexts

• Installing the JMS SAF Client JAR Files on Client Machines

• Modify Your JMS Client Applications To Use the JMS SAF Client's Initial JNDI Provider

Chapter 3
Overview of Using Store-and-Forward with JMS Clients

3-2

Generating a JMS SAF Client Configuration File
Each client machine requires a JMS SAF client configuration file that specifies information
about the server-side connection factories and destinations needed by the JMS SAF client
environment to operate. You generate the JMS SAF client configuration file from a specified
JMS module's configuration file by using the ClientSAFGenerate utility bundled with your
WebLogic Server installation.

The ClientSAFGenerate utility creates entries for all connection factories, standalone
destinations, and distributed destinations found in the source JMS configuration file, as
described in Steps to Generate a JMS SAF Client Configuration File from a JMS Module. The
generated file defines the connection factories and imported destinations that the JMS SAF
client will interact with directly through the initial JNDI context described in Modify Your JMS
Client Applications To Use the JMS SAF Client's Initial JNDI Provider. However, the generated
file will not contain entries for any foreign JMS destinations or SAF destinations in server-side
JMS modules. Furthermore, only JMS destinations with their SAF Export Policy set to All are
added to the file (the default setting for destinations).

• How the JMS SAF Client Configuration File Works

• Steps to Generate a JMS SAF Client Configuration File from a JMS Module

• ClientSAFGenerate Utility Syntax

• Valid SAF Elements for JMS SAF Client Configurations

• Default Store Options for JMS SAF Clients

How the JMS SAF Client Configuration File Works
The JMS SAF client XML file conforms to the WebLogic Server weblogic-jms.xsd schema for
JMS modules and contains the root element weblogic-client-jms. The weblogic-jms.xsd
schema contains several top-level elements that correspond to server-side WebLogic JMS
SAF features, as described in Valid SAF Elements for JMS SAF Client Configurations.

The top-level elements in the file describe the connection factory and imported destination
elements that the JMS SAF client will interact with directly. The SAF sending agent, remote
SAF context, and SAF error handling elements describe the function of the SAF forwarder. The
persistent store element is used by both the JMS SAF client API and the SAF forwarder.

Steps to Generate a JMS SAF Client Configuration File from a JMS Module
Use the ClientSAFGenerate utility to generate a JMS SAF client configuration file from a JMS
module configuration file in a WebLogic Server domain. You can also generate a configuration
file from an existing JMS SAF client configuration file, as described in ClientSAFGenerate
Utility Syntax.

Note:

Running the ClientSAFGenerate utility on a client machine to generate a
configuration file from an existing JMS SAF client configuration file requires using the
install client (weblogic.jar) in the CLASSPATH instead of the thin T3 JMS client and
JMS SAF clients. See Installing the JMS SAF Client JAR Files on Client Machines.

Chapter 3
Configuring a JMS Client To Use Client-Side SAF

3-3

These steps demonstrate how to use the ClientSAFGenerate utility to generate a JMS SAF
client configuration file from the examples-jms.xml module file bundled in WebLogic Server
installations.

1. Navigate to the directory in the WebLogic Server domain containing the JMS module file
that you want to use as the basis for the JMS SAF client configuration file:

$DOMAIN_HOME/domains/wl_server/config/jms
2. From a Java command line, run the ClientSAFGenerate utility:

> java weblogic.jms.extensions.ClientSAFGenerate -url http://10.61.6.138:7001 -
username myusername -moduleFile examples-jms.xml -outputFile d:\temp\ClientSAF-
jms.xml

Table 3-1 explains the valid ClientSAFGenerate arguments.

3. A configuration file named SAFClient-jms.xml is created in the current directory. Here is a
representative example of its contents:

<weblogic-client-jms xmlns="http://www.bea.com/ns/weblogic/100" xmlns:xsi="http://
www.w3.org/2001/XMLSchema-instance">
 <connection-factory name="exampleTrader">
 <jndi-name>jms.connection.traderFactory</jndi-name>
 <transaction-params>
 <xa-connection-factory-enabled>false
 </xa-connection-factory-enabled>
 </transaction-params>
 </connection-factory>
 <saf-imported-destinations name="examples">
 <saf-queue name="exampleQueue">
 <remote-jndi-name>weblogic.examples.jms.exampleQueue
 </remote-jndi-name>
 <local-jndi-name>weblogic.examples.jms.exampleQueue
 </local-jndi-name>
 </saf-queue>
 <saf-topic name="quotes">
 <remote-jndi-name>quotes</remote-jndi-name>
 <local-jndi-name>quotes</local-jndi-name>
 </saf-topic>
 </saf-imported-destinations>
 <saf-remote-context name="RemoteContext0">
 <saf-login-context>
 <loginURL>t3://localhost:7001</loginURL>
 <username>weblogic</username>
 </saf-login-context>
 </saf-remote-context>
</weblogic-client-jms>

Tip:

To include additional remote SAF connection factories and destinations from
other JMS modules deployed in a cluster or domain, re-run the
ClientSAFGenerate utility against these JMS module files and specify the same
JMS SAF configuration file name in the -outputFile parameter. See
ClientSAFGenerate Utility Syntax.

4. The generated configuration file does not contain any encrypted passwords for the SAF
remote contexts used to connect to remote servers. To create encrypted passwords for the

Chapter 3
Configuring a JMS Client To Use Client-Side SAF

3-4

remote SAF contexts and add them to the configuration file, follow the directions in
Encrypting Passwords for Remote JMS SAF Contexts.

5. Copy the generated configuration file to the client machines where you will run your JMS
SAF client applications. See Installing the JMS SAF Client JAR Files on Client Machines.

Note:

ClientSAF.xml is the default name expected in the current working directory of the
JMS client, but you can explicitly specify a file name by passing an argument in the
JMS client, as described in Modify Your JMS Client Applications To Use the JMS SAF
Client's Initial JNDI Provider.

ClientSAFGenerate Utility Syntax
The weblogic.jms.extensions.ClientSAFGenerate utility generates a JMS SAF client
configuration file, using either a JMS module file or an existing JMS SAF client configuration
file.

java [weblogic.jms.extensions.ClientSAFGenerate]
[-url server-url]
[-username name-of-user]
[-existingClientFile file-path]
[-moduleFile file-path ['@' plan-path]]*
[-outputFile file-path]

Table 3-1 ClientSAFGenerate Arguments

Argument Definition

url The URL of the WebLogic Server instance where the JMS SAF client
instance should connect.

username The name of a valid user that this JMS SAF client instance should use
when forwarding messages.

existingClientFile The name of an existing JMS SAF client configuration file. If this parameter
is specified, then the existing file will be read and new entries will be added.
If any conflicts are detected between items being added and items already
in the JMS SAF client configuration file, a warning will be given and the new
item will not be added. If a JMS SAF client configuration file is specified but
the file cannot be found, then an error is printed and the utility exits.

moduleFile The name of a JMS module configuration file and optional plan file.

outputFile stdout.

ClientSAF.xml is the default name expected in the current working
directory of the JMS client, but you can also explicitly specify a file name by
passing an argument in the JMS client.

Valid SAF Elements for JMS SAF Client Configurations
The weblogic-client-jms root element of the weblogic-jms.xsd schema contains several
top-level elements that correspond to server-side WebLogic JMS SAF features. Table 3-2
identifies the management MBean to which each top-level element in the schema corresponds.

Chapter 3
Configuring a JMS Client To Use Client-Side SAF

3-5

Table 3-2 weblogic-client-saf Elements

weblogic-client-jms Element WebLogic Server Management Bean

connection-factory JMSConnectionFactoryBean
saf-agent SAFAgentMBean
saf-imported-destinations SAFImportedDestinationsBean
saf-remote-context SAFRemoteContextBean
saf-error-handling SAFErrorHandlingBean
persistent-store See Default Store Options for JMS SAF Clients.

Note:

You can only specify one persistent-store and saf-agent element in a JMS SAF
client configuration file.

All of the properties in these management MBeans work the same in the JMS SAF client
implementation as they do in server-side SAF JMS configurations, except for those described
in the following tables.

Table 3-3 describes the differences between the standard SAFAgentMBean fields and the fields
in the JMS SAF client configuration file.

Table 3-3 Modified SAFAgentMBean Fields

Server-side SAF Fields Difference in JMS SAF Client Configuration File

PersistentStore Not available. There is only one persistent store defined.

ServiceType Not available. This can only be a sending agent.

BytesThresholdHigh Threshold properties are not available.

BytesThresholdLow Threshold properties are not available.

MessagesThresholdHigh Threshold properties are not available.

MessagesThresholdLow Threshold properties are not available.

ConversationIdleTimeMaximum Not available. This field is only valid for receiving messages.

AcknowledgeInterval Not available. Only valid for receiving messages.

IncomingPausedAtStartup Not available. No way to unpause; same effect achieved by not
setting the JMS SAF client property.

ForwardingPausedAtStartup Not available. No way to unpause; same effect achieved by not
setting the JMS SAF client property.

ReceivingPausedAtStartup Not available. No way to unpause; same effect achieved by not
setting the JMS SAF client property.

Chapter 3
Configuring a JMS Client To Use Client-Side SAF

3-6

Note:

You can only specify one saf-agent element in a JMS SAF client configuration file.

Table 3-4 describes the differences between the standard JMSConnectionFactoryBean fields
and the fields in the JMS SAF client configuration file.

Table 3-4 Modified JMSConnectionFactoryBean Fields

Server-side SAF Fields Difference in JMS SAF Client Configuration File

SubDeploymentName Ignored. These connection factories are not targeted.

ClientParamsBean:
MulticastOverrunPolicy

Ignored. This client cannot do multicast receives.

TransactionParamsBean:
XAConnectionFactoryEnabled

Ignored. JMS SAF client cannot do XA transactions.

FlowControlParamsBean All fields are ignored. JMS SAF client cannot receive
messages.

LoadBalancingParamsBean All fields are ignored. JMS SAF client cannot load balance
because it is not connected to a server.

Table 3-5 describes the differences between the standard SAFImportedDestinationsBean
fields and the fields in the JMS SAF client configuration file.

Table 3-5 Modified SAFImportedDestinationsBean Fields

Server-side SAF Fields Difference in JMS SAF Client Configuration File

SubDeploymentName Ignored. These are targeted to the single SAF agent defined in
this file.

UnitOfOrderRouting Ignored. Message unit-of-order is not supported.

Default Store Options for JMS SAF Clients
Each JMS SAF client has a default store that requires no configuration, that can be shared by
multiple JMS SAF clients. The default store is a file-based store that maintains its data in a
group of files directly under the JMS SAF client configuration directory.

Using the persistent-store element, you can specify another location for the default store
and also change its default write policy by specifying the following elements in the JMS SAF
client configuration file:

Table 3-6 persistent-store Elements

Element Name What it does

directory-path Specifies the path to the directory on the file system where the file store is
kept.

synchronous-write-
policy

Defines how hard a file store will try to flush records to the disk. Values
are: Direct-Write (default), Cache-Flush, and Disabled.

Chapter 3
Configuring a JMS Client To Use Client-Side SAF

3-7

Note:

You can only specify one persistent-store element in a JMS SAF client
configuration file.

The following is an example of a customized JMS SAF client default store in a JMS SAF client
configuration file:

 <persistent-store>
 <directory-path>config/jms/storesdom</directory-path>
 <synchronous-write-policy>Disabled</synchronous-write-policy>
 </persistent-store>

For more information on using the Synchronous Write Policy for a file store, see Using the
WebLogic Persistent Store in Administering the WebLogic Persistent Store.

Encrypting Passwords for Remote JMS SAF Contexts
The generated SAF configuration file does not contain any encrypted passwords for its
generated SAF remote contexts, regardless of whether any were configured in the source JMS
module file. If security credentials are configured for the remote cluster or server contexts
defined in the JMS SAF client configuration file, then encrypted passwords are required to
connect to the remote servers or cluster.

To create encrypted passwords for your remote SAF contexts, you must use the
ClientSAFEncrypt utility bundled with your WebLogic Server installation, which encrypts clear
text strings for use with the JMS SAF client feature.

Note:

The existing weblogic.security.Encrypt command-line utility cannot be used
because it expects access to the domain security files, which are not available on the
client.

• Steps to Generate Encrypted Passwords

• ClientSAFEncrypt Utility Syntax

Steps to Generate Encrypted Passwords
The following steps demonstrate how to use ClientSAFEncrypt to generate encrypted
passwords:

1. From a Java command line, run the ClientSAFEncrypt utility:

> java -Dweblogic.management.allowPasswordEcho=true
weblogic.jms.extensions.ClientSAFEncrypt [key-password] [remote-password]*

2. If the key-password or the remote-password fields are not specified, then you will be
prompted for the key-password and the remote-password interactively.

3. The following is an example of obtaining an encrypted password:

Chapter 3
Configuring a JMS Client To Use Client-Side SAF

3-8

Password Key ("quit" to end):
Password ("quit" to end):
<password-
encrypted>{Algorithm}PBEWithMD5AndDES{Salt}9IsTPAuZdcQ={Data}d6SSPp3GwPAfEXn8izyZA0IR
CV/izT8H</password-encrypted>
Password ("quit" to end):

4. Continue generating as many remote passwords as necessary for the remote contexts
defined in the JMS SAF client configuration file.

5. Copy the encrypted remote password before the closing </saf-login-context> stanza in
the JMS SAF client configuration file. For example:

<saf-remote-context name="RemoteContext0">
<saf-login-context>
<loginURL>http://10.61.6.138:7001</loginURL>
<username>weblogic</username>
<password-
encrypted>{Algorithm}PBEWithMD5AndDES{Salt}dWENfrgXh8U={Data}u8xZ968dElHckso/
ZYm2LQ6xVNBPpBGQ</password-encrypted>
</saf-login-context>
</saf-remote-context>

Use the ClientSAFEncrypt utility for all passwords (with the same key-password) required
by the remote contexts defined in the JMS SAF client configuration file. When a client
starts using the JMS SAF client, it must supply the same key-password that was provided
to the ClientSAFEncrypt utility.

6. Type quit to exit the ClientSAFEncrypt utility.

ClientSAFEncrypt Utility Syntax
The weblogic.jms.extensions.ClientSAFEncrypt utility encrypts clear text strings for use
with JMS SAF clients in order to access remote SAF contexts.

java [-Dweblogic.management.allowPasswordEcho=true]
weblogic.jms.extensions.ClientSAFEncrypt [key-password]
weblogic.jms.extensions.ClientSAFEncrypt [remote-password]

Table 3-7 ClientSAFEncrypt Arguments

Argument Definition

weblogic.management.allowPass
wordEcho

Optional. Allows echoing characters entered on the command,
weblogic.jms.extensions.ClientSAFEncrypt. Expects
that no-echo is available; if no-echo is not available, set this
property to true.

key-password The key to use when encrypting all remote passwords needed for
the remote contexts defined in the JMS SAF client configuration
file.

If omitted from the command line, you will be prompted to enter a
key-password.

remote-password Clear text string to be encrypted. Multiple passwords for each
remote context can be generated in one session.

If omitted from the command line, you are prompted to enter a
remote-password.

Chapter 3
Configuring a JMS Client To Use Client-Side SAF

3-9

Installing the JMS SAF Client JAR Files on Client Machines
WebLogic Server provides two JMS SAF client options:

• weblogic.jar, see WebLogic Install Client.

• Standalone T3 client (wlthint3client.jar and wlsaft3client.jar). For information on
how to create JMS SAF clients using the WebLogic Thin T3 client, see Developing a
WebLogic Thin T3 Client.

The required JAR files are located in the WL_HOME\server\lib subdirectory of the WebLogic
Server installation directory, where WL_HOME is the top-level installation directory for the entire
WebLogic Server product installation (for example,
c:\Oracle\Middleware\Oracle_Home\wlserver\server\lib).

Modify Your JMS Client Applications To Use the JMS SAF Client's Initial
JNDI Provider

The JMS SAF client requires a special initial JNDI provider to look up the server-side JMS
connection factories and destinations specified in the JMS SAF client configuration file that
was generated during Steps to Generate a JMS SAF Client Configuration File from a JMS
Module.

• Required JNDI Context Factory for JMS SAF Clients

• Optional JNDI Properties for JMS SAF Clients

Required JNDI Context Factory for JMS SAF Clients
Modify your JMS client applications to use the JMS SAF client JNDI context factory in place of
the standard server initial context. The name used for the JMS SAF client JNDI property is
java.naming.factory.initial is
weblogic.jms.safclient.jndi.InitialContextFactoryImpl.

An example JNDI initial context factory could look like this in a JMS SAF client application:

 public final static String
JNDI_FACTORY="weblogic.jms.safclient.jndi.InitialContextFactoryImpl";

With the standard JNDI lookup, the JMS SAF client is started automatically and looks up the
server-side JMS connection factories and destinations specified in the configuration file. For
the configuration file, ClientSAF.xml is the default name expected in the current working
directory of the JMS client, but you can also explicitly specify a configuration file name by
passing an argument in the JMS client.

Items returned from the initial context created with the JMS SAF client do not work in JMS calls
from third-party JMS providers. Also, there can be no mixing of JMS SAF client initial contexts
with server initial contexts, as described in No Mixing of JMS SAF Client Contexts and Server
Contexts.

You can also update your JMS client applications to use the
weblogic.jms.extensions.ClientSAF extension class, which allows the JMS client to control
when the JMS SAF client system is in use. See The JMS SAF Client Initialization API.

Chapter 3
Configuring a JMS Client To Use Client-Side SAF

3-10

Optional JNDI Properties for JMS SAF Clients
There are also two optional JMS SAF client JNDI properties:

• Context.PROVIDER_URL – This must be a URL that points to your JMS SAF client
configuration file. If one is not specified, it defaults to a file named ClientSAF.xml in the
current working directory of the JVM.

• Context.SECURITY_CREDENTIALS – If you are using security, specify a key password used
to encrypt the remote context passwords in the configuration file.

The local JNDI provider only supports the lookup(String) and close() APIs. All other APIs
throw an exception stating that the functionality is not supported.

JMS SAF Client Management Tools
Learn about the JMS SAF client initialization API and client-side store administration utility
features, which are available for use with the JMS SAF client implementation.

The following management features are available for use with the JMS SAF client
implementation:

• The JMS SAF Client Initialization API

• Client-Side Store Administration Utility

• The JMS SAF Client Initialization API

• Client-Side Store Administration Utility

The JMS SAF Client Initialization API
The weblogic.jms.extensions.ClientSAF extension class allows the JMS client to control
when the JMS SAF client system is in use. JMS clients do not need to use this extension
mechanism, but can do so in order to get finer control of the JMS SAF client system. For
example, the close() method can be used to stop a JMS client from forwarding messages.

Client-Side Store Administration Utility
The JMS SAF client provides a utility to administer the default file store used by JMS SAF
clients. Similar to the server-side WebLogic Store utility, it enables you to troubleshoot a JMS
SAF client store or extract its data. Run the utility from a Java command line or from the
WebLogic Scripting Tool (WLST). The store utility operates only on a store that is not currently
opened by a running JMS SAF client.

The most common uses-cases for store administration are for compacting a file store to reduce
its size and for dumping the contents of a file store to an XML file for troubleshooting purposes.
See Administering a Persistent Store in Administering the WebLogic Persistent Store.

JMS Programming Considerations with JMS SAF Clients
Learn about the JMS programming considerations while using the JMS SAF client.

The following JMS programming considerations apply when you use the JMS SAF client:

• How the JMSReplyTo Field Is Handled In JMS SAF Client Messages

Chapter 3
JMS SAF Client Management Tools

3-11

• No Mixing of JMS SAF Client Contexts and Server Contexts

• Using Transacted Sessions With JMS SAF Clients

• How the JMSReplyTo Field Is Handled In JMS SAF Client Messages

• No Mixing of JMS SAF Client Contexts and Server Contexts

• Using Transacted Sessions With JMS SAF Clients

How the JMSReplyTo Field Is Handled In JMS SAF Client Messages
Generally, JMS applications can use the JMSReplyTo header field to advertise its temporary
destination name to other applications. However, as with server-side JMS SAF imported
destinations, the use of temporary destinations with a JMSReplyTo field is not supported for
JMS SAF clients.

For more information on using JMS temporary destinations, see Using Temporary Destinations
in Developing JMS Applications for Oracle WebLogic Server.

No Mixing of JMS SAF Client Contexts and Server Contexts
When items returned from the JMS SAF client naming context are used in conjunction with
items returned from a server initial context, the JMS API fails with a reasonable exception
message. Likewise, when items returned from a server initial context is used in conjunction
with items returned from the JMS SAF client naming context, the JMS API fails with a
reasonable exception message.

Using Transacted Sessions With JMS SAF Clients
Transacted sessions are supported with JMS SAF clients, but client SAF operations do not
participate in any global (XA) transactions. If there is an XA transaction, the message send
operation is done outside the XA transaction and no exception is thrown.

JMS SAF Client Interoperability Guidelines
The interoperability guidelines apply when using the JMS SAF client to forward messages to
server-side WebLogic JMS destinations.

The topic has following sections:

• Java Runtime

• WebLogic Server Versions

• JMS C API

• Java Runtime

• WebLogic Server Versions

• JMS C API

Java Runtime
Each client machine must have Java SE 1.4 runtime or later installed.

Chapter 3
JMS SAF Client Interoperability Guidelines

3-12

WebLogic Server Versions
The WebLogic JMS SAF client system only works with WebLogic Server 9.2 and later.

On the client-side, the WebLogic JMS SAF client code must be running with WebLogic Server
JAR files that are release 9.2 or later. For more information on installing WebLogic Server JAR
files, see Installing the JMS SAF Client JAR Files on Client Machines.

JMS C API
Client-side SAF is usable from C environments using the JMS C API. This implementation of
the JMS C API uses JNI in order to access a Java Virtual Machine (JVM). However, the JMS C
API cannot use the weblogic.jms.extensions.ClientSAF interface because it is a non-
standard JMS API.

To use SAF with the JMS C API, set the SAF context on the jndiFactory. By default, if you
pass NULL as the jndiFactory you would get the normal WebLogic Server context. For
example:

int JmsContextCreate(JmsString *uri, JmsString *jndiFactory, JmsString *username,
JmsString *password, JmsContext **context, JMS64I flags)

See WebLogic C API in Developing JMS Applications for Oracle WebLogic Server.

Tuning JMS SAF Clients
JMS SAF clients can take advantage of the tuning parameters available with the server-side
SAF service.

See Tuning WebLogic JMS Store-and-Forward in the Tuning Performance of Oracle WebLogic
Server.

Limitations of Using the JMS SAF Client
Learn about the non-supported features and exceptions while using the JMS SAF Client.

In addition to the field-level limitations discussed in Valid SAF Elements for JMS SAF Client
Configurations, the following limitations apply to the JMS SAF client:

• The JMS Message Unit-of-Order and Unit-of-Work JMS Message Group features are not
supported.

• A destination consumer of an imported SAF destination is not supported. An exception is
thrown if you attempt to create such a consumer in JMS SAF client environment.

• A destination browser of an imported SAF destination is not supported. An exception is
thrown if you attempt to create such a browser in JMS SAF client environment.

• Transacted sessions are supported, but not user (XA) transactions. Client SAF operations
do not participate in any global transactions. See Using Transacted Sessions With JMS
SAF Clients.

• JMS SAF clients are not supported in Java Applets.

• You can only specify one persistent-store and saf-agent element in a JMS SAF client
configuration file.

Chapter 3
Tuning JMS SAF Clients

3-13

• The WebLogic Server CMP 2.x extension that allows users to return a
java.sql.ResultSet to a client is not supported.

Behavior Change in JMS SAF Client Message Storage
In the Weblogic JMS SAF client, messages are kept in local storage before being forwarded to
the remote destinations. Each remote destination corresponds to a local storage unit, which is
called a kernel queue. In releases prior to Oracle WebLogic Server 10.3.3.0, a JMS SAF client
instance used a different kernel queue each time it closed and reopened. This behavior
allowed multiple kernel queues to correspond to a destination.

Note:

• If the destination was a single remote destination, under some circumstances a
JMS SAF client may not have forwarded messages or may have forwarded them
out of order.

• If the destination was a distributed destination, under some circumstances some
messages could be permanently lost or duplicate messages could be sent.

In this release, the same kernel queue is used for a remote destination regardless of how
many times the JMS SAF client is opened and closed. For application environments in which a
JMS client SAF instance is opened only once, there is no change in behavior.

• The Upgrade Process, Tools, and System Properties

The Upgrade Process, Tools, and System Properties
The following sections provide information on process, tools, and system properties used to
upgrade JMS SAF clients to use one kernel queue for each destination, regardless of how
many times the client opens and closes the kernel queue.

• If your application environment opens a JMS SAF client only once, no action is required.

• New JMS SAF clients require no changes.

• If your application environment opens and close a JMS SAF client more than once,
existing messages can be located in multiple kernel queues in the client. Oracle provides a
user-tunable process to migrate messages from multiple kernel queues to a single kernel
queue when a JMS SAF client starts for the first time after being upgraded. Although the
migration ensures messages are not lost, there is a small possibility that message
duplication can occur. Any message that is migrated retains its normal SAF QoS. You can
opt out of migrating existing messages by either removing the local store or specifying
weblogic.jms.safclient.MigrateExistingMessages=false. See JMS SAF Client
Migration Properties. If the message migration fails for any reason, the JMS SAF client
does not start.

• JMS SAF Client Discovery Tool

• JMS SAF Client Migration Properties

Chapter 3
Behavior Change in JMS SAF Client Message Storage

3-14

JMS SAF Client Discovery Tool
The JMS SAF client discovery tool is a Java program packaged in the WebLogic Server JMS
client library that can be used to survey existing local SAF messages before upgrading. This
tool:

1. Reviews the client configuration, including checking each remote destination and the
corresponding kernel queues.

2. Prints the number of messages in each kernel queue.

3. Prints select header information from the first message in each kernel queue; for example,
message ID, correlation ID, SAF sequence name, SAF sequence number and Unit-of-
Order.

You can use the results of the survey to tune upgraded system properties. See JMS SAF Client
Migration Properties.

Usage: java weblogic.jms.extensions.ClientSAFDiscover options

In the preceding syntax, options represents one or more of the values described in the
following table:

Option Description

-help Print usage information.

-clientSAFRootDir client-
saf-root-directory

Optional. Defaults to current directory.

Specifies the root directory of the target SAF client to discover. Any
relative paths in the SAF client configuration file are relative to this
directory.

-configurationFile config-
file

Optional. Defaults to ClientSAF.xml.

Specifies the location of the configuration file used by the targeted
JMS SAF client. This option is required if the clientSAFRootDir
option is specified. If the clientSAFRootDir option or this option
is specified, the ClientSAF.xml file under the current working
directory is used. If the specified configuration file does not exist,
an exception is thrown.

-cutoffFormat pattern Optional. Defaults to yyyy-MM-dd'T'HH:mm:ss.SSSZ.

Specifies the date and time pattern for the optional cutoff time
used. See http://docs.oracle.com/javase/8/docs/api/java/text/
DateFormat.html .

-cutoffTime cutoff-time Optional. Defaults to null set.

Prints data on messages that are discarded during upgrade if
weblogic.jms.safclient.MigrationCutoffTime is set. No
messages are discarded. The cutoff time format depends on the
value of the -cutoffFormat property. An exception is thrown if the
specified cutoff time does not match the cutoffFormat pattern. If
a cutoff time is not specified, no messages are discarded and no
messages are printed.

-discoveryFile discovery-
file

Optional. Defaults to SAF_DISCOVERY.

Specifies the file that contains the output generated by the JMS
SAF client discovery tool. The output is placed relative to the root
directory unless an absolute path is specified. If the specified file
already exists, it is deleted and a new file is created.

• Example

Chapter 3
Behavior Change in JMS SAF Client Message Storage

3-15

http://docs.oracle.com/javase/8/docs/api/java/text/DateFormat.html
http://docs.oracle.com/javase/8/docs/api/java/text/DateFormat.html

Example
If you created a JMS SAF CLient using:

ClientSAFFactory.getClientSAF(new File("c:\\foo"), new FileInputStream("c:\
\ClientSAF-jms.xml"));
You can survey the existing messages using the ClientSAFDiscover tool before upgrading the
JMS SAF client. For example:

java weblogic.jms.client.ClientSAFDiscover -clientSAFRootDir c:\foo -
configurationFile c:\ClientSAF-jms.xml
The discovery information will be written to the default location at c:\foo\SAF_DISCOVERY.

JMS SAF Client Migration Properties
Because message migration can be a complex issue even when automated, Oracle provides
the following system properties to manage the process:

• weblogic.jms.safclient.MigrateExistingMessages—If set to false, this property
prevents the migration of messages from multiple queues to a single queue. The default is
true.

• weblogic.jms.safclient.MigrationCutoffTime—Use this property to specify a time after
which messages are migrated to a single kernel queue. Any remaining messages are
discarded. If this property is not specified, all existing messages are upgraded. Use this
property in conjunction with the
weblogic.jms.safclient.MigrationCutoffTimeFormatproperty to specify the time format.

For example, if the cutoff time format is the default, a valid cutoff time is
2009-12-16T10:34:17.887-0800. If the specified time does not match the format pattern,
then an exception is thrown and the JMS SAF client stops all message processing.

• weblogic.jms.safclient.MigrationCutoffTimeFormat—Specifies the format of the
weblogic.jms.safclient.MigrationCutoffTime.

The default is yyyy-MM-dd‘T’HH:mm:ss.SSSZ. See the description of the
java.text.SimpleDateFormat class for more information.

Chapter 3
Behavior Change in JMS SAF Client Message Storage

3-16

http://docs.oracle.com/javase/8/docs/api/java/text/SimpleDateFormat.html

4
Developing a CORBA/IDL Client

Learn how to develop clients for heterogeneous distributed applications. RMI over IIOP with
CORBA/IDL clients involves an Object Request Broker (ORB) and a compiler that creates an
interoperating language called IDL. C, C++, and COBOL are examples of languages that
ORBs may compile into IDL. A CORBA programmer can use the interfaces of the CORBA
Interface Definition Language (IDL) to enable CORBA objects to be defined, implemented, and
accessed from the Java programming language.
This chapter includes the following sections:

• Guidelines for Developing a CORBA/IDL Client

• Procedure for Developing a CORBA/IDL Client

• Guidelines for Developing a CORBA/IDL Client
Using RMI-IIOP with a CORBA/IDL client enables interoperability between non-Java
clients and Java objects. If you have existing CORBA applications, you should program
according to the RMI-IIOP with CORBA/IDL client model. Basically, you will be generating
IDL interfaces from Java. Your client code will communicate with WebLogic Server through
these IDL interfaces. This is basic CORBA programming.

• IDL Client (Corba object) relationships
Learn how the IDL takes part in the RMI-IIOP model.

• WebLogic RMI over IIOP object relationships
Learn about the object relationships when using RMI-IIOP to connect a client and server.

• Procedure for Developing a CORBA/IDL Client
Learn how to develop RMI over IIOP application with CORBA/IDL.

Guidelines for Developing a CORBA/IDL Client
Using RMI-IIOP with a CORBA/IDL client enables interoperability between non-Java clients
and Java objects. If you have existing CORBA applications, you should program according to
the RMI-IIOP with CORBA/IDL client model. Basically, you will be generating IDL interfaces
from Java. Your client code will communicate with WebLogic Server through these IDL
interfaces. This is basic CORBA programming.

The following sections provide some guidelines for developing RMI-IIOP applications with
CORBA/IDL clients.

For further reference see the following Object Management Group (OMG) specifications:

• Java Language to IDL Mapping Specification at http://www.omg.org/cgi-bin/doc?
formal/01-06-07

• CORBA/IIOP 2.4.2 Specification at http://www.omg.org/cgi-bin/doc?formal/01-02-33
• Working with CORBA/IDL Clients

Working with CORBA/IDL Clients
In CORBA, interfaces to remote objects are described in a platform-neutral interface definition
language (IDL). To map the IDL to a specific language, you compile the IDL with an IDL

4-1

http://www.omg.org/cgi-bin/doc?formal/01-06-07
http://www.omg.org/cgi-bin/doc?formal/01-06-07
http://www.omg.org/cgi-bin/doc?formal/01-02-33

compiler. The IDL compiler generates a number of classes such as stubs and skeletons that
the client and server use to obtain references to remote objects, forward requests, and
marshall incoming calls. Even with IDL clients it is strongly recommended that you begin
programming with the Java remote interface and implementation class, then generate the IDL
to allow interoperability with WebLogic and CORBA clients, as illustrated in the following
sections. Writing code in IDL that can be then reverse-mapped to create Java code is a difficult
and bug-filled enterprise, and Oracle does not recommend it.

IDL Client (Corba object) relationships
Learn how the IDL takes part in the RMI-IIOP model.

Figure 4-1 IDL Client relationships

Stub

ORB

Tie

ORB

IDL

ServerClient

IDL compiler

IIOP

• Java to IDL Mapping

Java to IDL Mapping
In WebLogic RMI, interfaces to remote objects are described in a Java remote interface that
extends java.rmi.Remote. The Java-to-IDL mapping specification defines how an IDL is
derived from a Java remote interface. In the WebLogic RMI over IIOP implementation, you run
the implementation class through the WebLogic RMI compiler or WebLogic EJB compiler with
the -idl option. This process creates an IDL equivalent of the remote interface. You then
compile the IDL with an IDL compiler to generate the classes required by the CORBA client.

The client obtains a reference to the remote object and forwards method calls through the stub.
WebLogic Server implements a CosNaming service that parses incoming IIOP requests and
dispatches them directly into the RMI run-time environment.

Chapter 4
IDL Client (Corba object) relationships

4-2

WebLogic RMI over IIOP object relationships
Learn about the object relationships when using RMI-IIOP to connect a client and server.

Figure 4-2 WebLogic RMI over IIOP object relationships

WebLogic
Server

Stub

ORB

IDL
IDL

compiler
RMI

compiler
RMI

object

RMI
runtime

Client

IIOP

• Objects-by-Value

Objects-by-Value
The Objects-by-Value specification allows complex data types to be passed between the two
programming languages involved. In order for an IDL client to support Objects-by-Value, you
develop the client in conjunction with an Object Request Broker (ORB) that supports Objects-
by-Value. To date, relatively few ORBs support Objects-by-Value correctly.

When developing an RMI over IIOP application that uses IDL, consider whether your IDL
clients will support Objects-by-Value, and design your RMI interface accordingly. If your client
ORB does not support Objects-by-Value, you must limit your RMI interface to pass only other
interfaces or CORBA primitive data types. The following table lists ORBs that Oracle has
tested with respect to Objects-by-Value support:

Table 4-1 ORBs Tested with Respect to Objects-by-Value Support

Vendor Versions Objects-by-Value

Oracle Tuxedo 8.x C++ Client ORB Supported

Borland VisiBroker 3.3, 3.4 Not supported

Borland VisiBroker 4.x, 5.x Supported

Iona Orbix 2000 Supported (Oracle has
encountered problems with this
implementation)

For more information on Objects-by-Value, see Limitations of Passing Objects by Value in
Developing RMI Applications for Oracle WebLogic Server.

Chapter 4
WebLogic RMI over IIOP object relationships

4-3

Procedure for Developing a CORBA/IDL Client
Learn how to develop RMI over IIOP application with CORBA/IDL.

To develop an RMI over IIOP application with CORBA/IDL:

1. Define your remote object's public methods in an interface that extends java.rmi.Remote.

This remote interface may not require much code. All you need are the method signatures
for methods you want to implement in remote classes. For example:

public interface Pinger extends java.rmi.Remote {
public void ping() throws java.rmi.RemoteException;
public void pingRemote() throws java.rmi.RemoteException;
public void pingCallback(Pinger toPing) throws java.rmi.RemoteException;
}

2. Implement the interface in a class named interfaceNameImpl and bind it into the JNDI tree
to be made available to clients.

This class should implement the remote interface that you wrote, which means that you
implement the method signatures that are contained in the interface. All the code
generation that will take place is dependent on this class file. Typically, you configure your
implementation class as a WebLogic startup class and include a main method that binds
the object into the JNDI tree. For example:

public static void main(String args[]) throws Exception {
 if (args.length > 0)
 remoteDomain = args[0];
 Pinger obj = new PingImpl();
 Context initialNamingContext = new InitialContext();
 initialNamingContext.rebind(NAME,obj);
 System.out.println("PingImpl created and bound to "+ NAME);
}

3. Compile the remote interface and implementation class with a Java compiler. Developing
these classes in an RMI-IIOP application is no different than doing so in normal RMI. For
more information on developing RMI objects, see Developing RMI Applications for Oracle
WebLogic Server.

4. Generate an IDL file by running the WebLogic RMI compiler or WebLogic EJB compiler
with the -idl option.

The required stub classes will be generated when you compile the IDL file. For general
information on the these compilers, refer to Understanding WebLogic RMI and Developing
RMI Applications for Oracle WebLogic Server. Also reference the Java IDL specification at
Java Language Mapping to OMG IDL Specification at http://www.omg.org/technology/
documents/index.htm.

The following compiler options are specific to RMI over IIOP:

Table 4-2 RMI-IIOP Compiler Options

Option Function

-idl Creates an IDL for the remote interface of the implementation
class being compiled

Chapter 4
Procedure for Developing a CORBA/IDL Client

4-4

http://www.omg.org/technology/documents/index.htm
http://www.omg.org/technology/documents/index.htm

Table 4-2 (Cont.) RMI-IIOP Compiler Options

Option Function

-idlDirectory Target directory where the IDL will be generated

-idlFactories Generate factory methods for value types. This is useful if your
client ORB does not support the factory value type.

-idlNoValueTypes Suppresses generation of IDL for value types.

-idlOverwrite Causes the compiler to overwrite an existing idl file of the same
name

-idlStrict Creates an IDL that adheres strictly to the Objects-By-Value
specification. (not available with appc)

-idlVerbose Display verbose information for IDL generation

-idlVisibroker Generate IDL somewhat compatible with Visibroker 4.1 C++

The options are applied as shown in this example of running the RMI compiler:

> java weblogic.rmic -idl -idlDirectory /IDL rmi_iiop.HelloImpl
The compiler generates the IDL file within sub-directories of the idlDirectoy according to
the package of the implementation class. For example, the preceding command generates
a Hello.idl file in the /IDL/rmi_iiop directory. If the idlDirectory option is not used, the
IDL file is generated relative to the location of the generated stub and skeleton classes.

5. Compile the IDL file to create the stub classes required by your IDL client to communicate
with the remote class. Your ORB vendor will provide an IDL compiler.

6. The IDL file generated by the WebLogic compilers contains the directives: #include
orb.idl. This IDL file should be provided by your ORB vendor. An orb.idl file is shipped
in the /lib directory of the WebLogic distribution. This file is only intended for use with the
ORB included in the JDK.

7. Develop the IDL client.

IDL clients are pure CORBA clients and do not require any WebLogic classes. Depending
on your ORB vendor, additional classes may be generated to help resolve, narrow, and
obtain a reference to the remote class. In the following example of a client developed
against a VisiBroker 4.1 ORB, the client initializes a naming context, obtains a reference to
the remote object, and calls a method on the remote object.

Code segment from C++ client of the RMI-IIOP example

// string to object
CORBA::Object_ptr o;
cout << "Getting name service reference" << endl;
if (argc >= 2 && strncmp (argv[1], "IOR", 3) == 0)
 o = orb->string_to_object(argv[1]);
else
 o = orb->resolve_initial_references("NameService");
// obtain a naming context
cout << "Narrowing to a naming context" << endl;
CosNaming::NamingContext_var context =
CosNaming::NamingContext::_narrow(o);
CosNaming::Name name;
name.length(1);
name[0].id = CORBA::string_dup("Pinger_iiop");
name[0].kind = CORBA::string_dup("");
// resolve and narrow to RMI object

Chapter 4
Procedure for Developing a CORBA/IDL Client

4-5

cout << "Resolving the naming context" << endl;
CORBA::Object_var object = context->resolve(name);
cout << "Narrowing to the Ping Server" << endl;
::examples::iiop::rmi::server::wls::Pinger_var ping =
 ::examples::iiop::rmi::server::wls::Pinger::_narrow(object);
// ping it
cout << "Ping (local) ..." << endl;
ping->ping();
}

Notice that before obtaining a naming context, initial references were resolved using the
standard Object URL (see the CORBA/IIOP 2.4.2 Specification, section 13.6.7). Lookups
are resolved on the server by a wrapper around JNDI that implements the COS Naming
Service API.

The Naming Service allows WebLogic Server applications to advertise object references
using logical names. The CORBA Name Service provides:

• An implementation of the Object Management Group (OMG) Interoperable Name
Service (INS) specification.

• Application programming interfaces (APIs) for mapping object references into an
hierarchical naming structure (JNDI in this case).

• Commands for displaying bindings and for binding and unbinding naming context
objects and application objects into the namespace.

8. IDL client applications can locate an object by asking the CORBA Name Service to look up
the name in the JNDI tree of WebLogic Server. In the example above, you run the client by
entering:

Client.exe -ORBInitRef NameService=iioploc://localhost:7001/NameService

Chapter 4
Procedure for Developing a CORBA/IDL Client

4-6

5
Developing Clients for CORBA Objects

Learn how to use the CORBA API to develop clients using CORBA objects.
This chapter includes the following sections:

• Enhancements and Limitations of CORBA Object Types

• Making Outbound CORBA Calls: Main Steps

• Using the WebLogic ORB Hosted in JNDI

• Supporting Inbound CORBA Calls

• Enhancements and Limitations of CORBA Object Types
Learn about the enhancements and limitations of CORBA. The RMI-IIOP run time is
extended to support all CORBA object types (as opposed to RMI valuetypes) and CORBA
stubs.

• Making Outbound CORBA Calls: Main Steps
Learn how to implement a development model for customers using CORBA to make
outbound calls.

• Using the WebLogic ORB Hosted in JNDI
Learn about various mechanisms to access the WebLogic ORB with the help of examples
provided in this section. Each mechanism achieves the same effect and their constituent
components can be mixed to some degree.

• Supporting Inbound CORBA Calls
WebLogic Server also provides basic support for inbound CORBA calls as an alternative to
host an ORB inside the server. To do this, you use ORB.connect() to publish a CORBA
server inside WebLogic Server by writing an RMI-object that implements a CORBA
interface.

Enhancements and Limitations of CORBA Object Types
Learn about the enhancements and limitations of CORBA. The RMI-IIOP run time is extended
to support all CORBA object types (as opposed to RMI valuetypes) and CORBA stubs.

Enhancements include:

• Support for out and in-out parameters

• Support for a call to a CORBA service from WebLogic Server using transactions and
security

• Support for a WebLogic ORB hosted in JNDI rather than an instance of the JDK ORB used
in previous releases

CORBA Object Type support has the following limitations:

• It should not be used to make calls from one WebLogic Server instance to another
WebLogic Server instance.

• Clustering is not supported. If a clustered object reference is detected, WebLogic Server
uses internal RMI-IIOP support to make the call. Out and in-out parameters will not be
supported.

5-1

• CORBA services created by ORB.connect() result in a second object hosted inside the
server. It is important that you use ORB.disconnect()to remove the object when it is no
longer needed.

Making Outbound CORBA Calls: Main Steps
Learn how to implement a development model for customers using CORBA to make outbound
calls.

Follow these steps to implement a typical development model for customers wanting to use the
CORBA API for outbound calls.

1. Generate CORBA stubs from IDL using idlj, the JDKs IDL compiler.

2. Compile the stubs using javac.

3. Build EJB(s) including the generated stubs in the jar.

4. Use the WebLogic ORB hosted in JNDI to reference the external service.

Using the WebLogic ORB Hosted in JNDI
Learn about various mechanisms to access the WebLogic ORB with the help of examples
provided in this section. Each mechanism achieves the same effect and their constituent
components can be mixed to some degree.

The object returned by narrow() will be a CORBA stub representing the external ORB service
and can be invoked as a normal CORBA reference. In the following code examples it is
assumed that the CORBA interface is called MySvc and the service is hosted at "where" in a
foreign ORB's CosNaming service located at exthost:extport:

• ORB from JNDI

• Direct ORB creation

• Using JNDI

ORB from JNDI
The following code listing provides information on how to access the WebLogic ORB from
JNDI.

Example 5-1 Accessing the WebLogic ORB from JNDI

.

.

.
ORB orb = (ORB)new InitialContext().lookup("java:comp/ORB");
NamingContext nc =
NamingContextHelper.narrow(orb.string_to_object("corbaloc:iiop:exthost:extport/
NameService"));
MySvc svc = MySvcHelper.narrow(nc.resolve(new NameComponent[] { new
NameComponent("where", "")}));
.
.
.

Chapter 5
Making Outbound CORBA Calls: Main Steps

5-2

Direct ORB creation
The following code listing provides information on how to create a WebLogic ORB.

Example 5-2 Direct ORB Creation

.

.

.
ORB orb = ORB.init();
MySvc svc =
MySvcHelper.narrow(orb.string_to_object("corbaname:iiop:exthost:extport#where"));
.
.
.

Using JNDI
The following code listing provides information on how to access the WebLogic ORB using
JNDI.

Example 5-3 Accessing the WebLogic ORB Using JNDI

.

.

.
MySvc svc = MySvcHelper.narrow(new
InitialContext().lookup("corbaname:iiop:exthost:extport#where"));
.
.
.

The WebLogic ORB supports most client ORB functions, including DII (Dynamic Invocation
Interface). To use this support, you must not instantiate a foreign ORB inside the server. This
will not yield any of the integration benefits of using the WebLogic ORB.

Supporting Inbound CORBA Calls
WebLogic Server also provides basic support for inbound CORBA calls as an alternative to
host an ORB inside the server. To do this, you use ORB.connect() to publish a CORBA server
inside WebLogic Server by writing an RMI-object that implements a CORBA interface.

Given the MySVC examples above:

Example 5-4 Supporting Inbound CORBA Calls

.

.

.
class MySvcImpl implements MvSvcOperations, Remote
{
public void do_something_remote() {}

public static main() {
MySvc svc = new MySvcTie(this);
InitialContext ic = new InitialContext();
((ORB)ic.lookup("java:comp/ORB")).connect(svc);
ic.bind("where", svc);
}

Chapter 5
Supporting Inbound CORBA Calls

5-3

}
.
.
.

When registered as a startup class, the CORBA service will be available inside the WebLogic
Server CosNaming service at the location "where".

Chapter 5
Supporting Inbound CORBA Calls

5-4

6
Developing a WebLogic C++ Client for a
Tuxedo ORB

Learn how a WebLogic C++ client uses the Tuxedo 8.1 or higher C++ Client ORB to generate
IIOP requests for EJBs running on WebLogic Server. This client supports object-by-value and
the CORBA Interoperable Naming Service (INS).
This chapter includes the following sections:

• WebLogic C++ Client Advantages and Limitations

• How the WebLogic C++ Client Works

• Developing WebLogic C++ Clients

• WebLogic C++ Client Advantages and Limitations
Learn about the advantages and limitations offered by WebLogic C++ client.

• How the WebLogic C++ Client Works
Learn how a WebLogic C++ client processes requests using the CORBA Interoperable
Name Service (INS).

• Developing WebLogic C++ Clients
Learn how to develop a C++ client.

WebLogic C++ Client Advantages and Limitations
Learn about the advantages and limitations offered by WebLogic C++ client.

A WebLogic C++ client offers these advantages:

• Simplifies your development process by avoiding third-party products

• Provides a client-side solution that allows you to develop or modify existing C++ clients

• The Tuxedo C++ Client ORB is packaged with Tuxedo 8.1 and higher.

The WebLogic C++ client has the following limitations:

• Provides security through the WebLogic Server Security service.

• Provides only server-side transaction demarcation.

How the WebLogic C++ Client Works
Learn how a WebLogic C++ client processes requests using the CORBA Interoperable Name
Service (INS).

The WebLogic C++ client processes requests as follows:

• The WebLogic C++ client code requests a WebLogic Server service.

– The Tuxedo ORB generates an IIOP request.

– The ORB object is initially instantiated and supports Object-by-Value data types.

6-1

The client uses the CORBA Interoperable Name Service (INS) to look up the EJB object bound
to the JNDI naming service. For more information on how to use the Interoperable Naming
Service to get object references to initial objects such as NameService, see Interoperable
Naming Service Bootstrapping Mechanism in CORBA Programming Reference for Oracle
Tuxedo 8.0 at http://docs.oracle.com/cd/E13203_01/tuxedo/tux80/interm/
corbaprog.htm#client.

Example 6-1 WebLogic C++ Client to WebLogic Server Interoperability

WebLogic
Server

Java EE Container

JNDI

COS API

JVM

C++
Client Code

ORB

INS API

C++ Runtime

Object Look up

IIOP

Developing WebLogic C++ Clients
Learn how to develop a C++ client.

Use the following steps to develop a C++ client:

1. Use the ejbc compiler with the -idl option to compile the EJB with which your C++ client
will interoperate. This action generates an IDL script for the EJB.

2. Use the C++ IDL compiler to compile the IDL script and generate the CORBA client stubs,
server skeletons, and header files. For information on the use of the C++ IDL Compiler,
see OMG IDL Syntax and the C++ IDL Compiler in CORBA Programming Reference for
Oracle Tuxedo 8.0 at http://docs.oracle.com/cd/E13203_01/tuxedo/tux80/interm/
corbaprog.htm#client

3. Discard the server skeletons; the EJB represents the server side implementation.

4. Create a C++ client that implements an EJB as a CORBA object. For general information
on how to create CORBA client applications, see Creating CORBA Client Applications for
Oracle Tuxedo 8.0 at http://docs.oracle.com/cd/E13203_01/tuxedo/tux80/interm/
corbaprog.htm#client

5. Use the Tuxedo buildobjclient command to build the client.

Chapter 6
Developing WebLogic C++ Clients

6-2

http://docs.oracle.com/cd/E13203_01/tuxedo/tux80/interm/corbaprog.htm#client
http://docs.oracle.com/cd/E13203_01/tuxedo/tux80/interm/corbaprog.htm#client
http://docs.oracle.com/cd/E13203_01/tuxedo/tux80/interm/corbaprog.htm#client
http://docs.oracle.com/cd/E13203_01/tuxedo/tux80/interm/corbaprog.htm#client
http://docs.oracle.com/cd/E13203_01/tuxedo/tux80/interm/corbaprog.htm#client
http://docs.oracle.com/cd/E13203_01/tuxedo/tux80/interm/corbaprog.htm#client

7
Using Java EE Client Application Modules

Learn how Java EE specifies a standard for including client application code (a client module)
in an EAR file. This allows the client side of an application to be packaged along with the other
modules that make up the application.
The client module is declared in the META-INF/application.xml file of the EAR using a <java>
tag. See Enterprise Application Deployment Descriptor Elements in Developing Applications
for Oracle WebLogic Server.

Note:

The <java> tag is often confused to be a declaration of Java code that can be used
by the server-side modules. This is not its purpose, it is used to declare client-side
code that runs outside of the server-side container.

A client module is basically a JAR file containing a special deployment descriptor named
META-INF/application-client.xml. This client JAR file also contains a Main-Class entry in its
META-INF/MANIFEST.MF file to specify the entry point for the program. For more information
on the application-client.xml file, see Client Application Deployment Descriptor Elements.

This chapter includes the following sections:

• Extracting a Client Application

• Executing a Client Application

Note:

When you use the Java Web Start to connect to JMS queues and topics deployed in
WebLogic Server, you may get java.security.AccessControlException. To avoid
security failures, you must set the system property -
Dweblogic.j2ee.client.isWebStart to true in the client side.

• Extracting a Client Application
Learn how to use weblogic.ClientDeployer and weblogic.j2eeclient.Main utilities to
extract a client application.

• Executing a Client Application
Learn how to use the weblogic.j2eeclient.Main utility to execute a client application after
the extraction of the client-side JAR file.

Extracting a Client Application
Learn how to use weblogic.ClientDeployer and weblogic.j2eeclient.Main utilities to
extract a client application.

WebLogic Server includes two utilities that facilitate the use of client modules. They are:

7-1

• weblogic.ClientDeployer—Extracts the client module from the EAR and prepares it for
execution.

• weblogic.j2eeclient.Main—Executes the client code.

You use the weblogic.ClientDeployer utility to extract the client-side JAR file from a Java EE
EAR file, creating a deployable JAR file. Execute the weblogic.ClientDeployer class on the
Java command line using the following syntax:

java weblogic.ClientDeployer ear-file client1 [client2 client3 ...]

The ear-file argument is a Java archive file with an .ear extension or an expanded directory
that contains one or more client application JAR files.

The client arguments specify the clients you want to extract. For each client you name, the
weblogic.ClientDeployer utility searches for a JAR file within the EAR file that has the
specified name containing the .jar extension.

For example, consider the following command:

java weblogic.ClientDeployer app.ear myclient

This command extracts myclient.jar from app.ear. As it extracts, the weblogic.ClientDeployer
utility performs two other operations.

• It ensures that the JAR file includes a META-INF/application-client.xml file. If it does not, an
exception is thrown.

• It reads from a file named myclient.runtime.xml and creates a weblogic-application-
client.xml file in the extracted JAR file. This is used by the weblogic.j2eeclient.Main
utility to initialize the client application's component environment (java:comp/env). For
information on the format of the runtime.xml file, see Client Application Deployment
Descriptor Elements.

Note:

You create the <client>.runtime.xml descriptor for the client program to define
bindings for entries in the module's META-INF/application-client.xml deployment
descriptor.

Executing a Client Application
Learn how to use the weblogic.j2eeclient.Main utility to execute a client application after the
extraction of the client-side JAR file.

Once the client-side JAR file is extracted from the EAR file, use the
weblogic.j2eeclient.Main utility to bootstrap the client-side application and point it to a
WebLogic Server instance using the following command:

java weblogic.j2eeclient.Main clientjar URL [application args]

For example:

java weblogic.j2eeclient.Main myclient.jar t3://localhost:7001

The weblogic.j2eeclient.Main utility creates a component environment that is accessible
from java:comp/env in the client code.

Chapter 7
Executing a Client Application

7-2

If a resource mentioned by the application-client.xml descriptor is one of the following types,
the weblogic.j2eeclient.Main class attempts to bind it from the global JNDI tree on the
server to java:comp/env using the information specified earlier in the myclient.runtime.xml file.

• ejb-ref
• javax.jms.QueueConnectionFactory
• javax.jms.TopicConnectionFactory
• javax.mail.Session
• javax.sql.DataSource
The user transaction is bound into java:comp/UserTransaction.

The <res-auth> tag in the application.xml deployment descriptor is currently ignored and
should be entered as application. Oracle does not currently support form-based
authentication.

The rest of the client environment is bound from the weblogic-application-client.xml file created
by the weblogic.ClientDeployer utility.

The weblogic.j2eeclient.Main class emits error messages for missing or incomplete
bindings.

Once the environment is initialized, the weblogic.j2eeclient.Main utility searches the JAR
manifest of the client JAR for a Main-Class entry. The main method on this class is invoked to
start the client program. Any arguments passed to the weblogic.j2eeclient.Main utility after
the URL argument is passed on to the client application.

The client JVM must be able to locate the Java classes you create for your application and any
Java classes your application depends upon, including WebLogic Server classes. You stage a
client application by copying all of the required files on the client into a directory and bundling
the directory in a JAR file. The top level of the client application directory can have a batch file
or script to start the application. Create a classes/ subdirectory to hold Java classes and JAR
files, and add them to the client Class-Path in the startup script.

You may also want to package a Java Runtime Environment (JRE) with a Java client
application.

Note:

The use of the Class-Path manifest entries in client module JARs is not portable, as it
has not yet been addressed by the Java EE standard.

Chapter 7
Executing a Client Application

7-3

8
Developing Security-Aware Clients

Learn how to develop WebLogic clients that use the Java Authentication and Authorization
Service (JAAS) and Secure Sockets Layer (SSL) to create security-aware clients.
This chapter includes the following sections:

• Developing Clients that use JAAS

• Developing Clients that use JNDI Authentication

• Developing Clients that use SSL

• Thin Client Restrictions for JAAS and SSL

• Install Client Restrictions for SSL

• Security Code Examples

• Developing Clients that use JAAS
JAAS enforces access controls based on user identity and is the preferred method of
authentication for most WebLogic Server clients. A typical use case is providing
authentication to read or write to a file.

• Developing Clients that use JNDI Authentication
Learn how to develop certificate authentication (also referred to as two-way SSL
authentication) using JNDI authentication.

• Developing Clients that use SSL
WebLogic Server provides Secure Sockets Layer (SSL) support for encrypting data
transmitted between WebLogic Server clients and servers, Java clients, Web browsers,
and other servers. All SSL clients need to specify trust. Trust is a set of CA certificates that
specify which trusted certificate authorities are trusted by the client.

• Thin Client Restrictions for JAAS and SSL
WebLogic Thin clients only support two-way SSL by requiring the SSLContext to be
provided by the SECURITY_CREDENTIALS property.

• Install Client Restrictions for SSL
The WebLogic Install client does not support two-way SSL if your server's trusted CA
certificate is stored in a Custom Trust. The client cannot load the Identity keystore using
the weblogic.security.CustomIdentityKeyStoreFileName property at the command line.

• Security Code Examples
Security samples are optionally provided with the WebLogic Server product. A description
of each sample and instructions on how to build, configure, and run a sample, are provided
in the package-summary.html file.

Developing Clients that use JAAS
JAAS enforces access controls based on user identity and is the preferred method of
authentication for most WebLogic Server clients. A typical use case is providing authentication
to read or write to a file.

For more information about how to implement JAAS authentication, see Using JAAS
Authentication in Java Clients in Developing Applications with the WebLogic Security Service.

8-1

Note:

The WLS-IIOP client does not support JAAS. See Developing Clients that use JNDI
Authentication.

Developing Clients that use JNDI Authentication
Learn how to develop certificate authentication (also referred to as two-way SSL
authentication) using JNDI authentication.

See Using JNDI Authentication in Developing Applications with the WebLogic Security Service.

Developing Clients that use SSL
WebLogic Server provides Secure Sockets Layer (SSL) support for encrypting data transmitted
between WebLogic Server clients and servers, Java clients, Web browsers, and other servers.
All SSL clients need to specify trust. Trust is a set of CA certificates that specify which trusted
certificate authorities are trusted by the client.

In order to establish an SSL connection, RMI clients need to trust the certificate authorities that
issued the server's digital certificates. The location of the server's trusted CA certificate is
specified when starting the RMI client.

Note:

WebLogic Server's integration with Java Secure Socket Extension (JSSE) does not
use the default javax.net.ssl.SSLContext instance or any of the following JVM
system properties that define keystore settings:

• javax.net.ssl.keyStore
• javax.net.ssl.keyStorePassword
• javax.net.ssl.keyStoreType
• javax.net.ssl.trustStore
• javax.net.ssl.trustStorePassword
• javax.net.ssl.trustStoreType

By default, all trusted certificate authorities available from the JDK
(...\jre\lib\security\cacerts) are trusted by RMI clients. However, if the server's trusted
CA certificate is stored in one of the following trust keystores, you need to specify certain
command line arguments in order to use the keystore:

• Demo Trust—The trusted CA certificates in the demonstration Trust keystore
(DemoTrust.jks) are located in the WL_HOME\server\lib directory. In addition, the trusted
CAs in the JDK cacerts keystore are trusted. To use the Demo Trust, specify the following
command-line argument:

-Dweblogic.security.TrustKeyStore=DemoTrust

Chapter 8
Developing Clients that use JNDI Authentication

8-2

Optionally, use the following command-line argument to specify a password for the JDK
cacerts trust keystore:

-Dweblogic.security.JavaStandardTrustKeyStorePassPhrase=password

where password is the password for the Java Standard Trust keystore. This password is
defined when the keystore is created.

• Custom Trust—A trust keystore you create. To use Custom Trust, specify the following
command-line arguments.

Specify the fully qualified path to the trust keystore:

-Dweblogic.security.CustomTrustKeyStoreFileName=filename

Specify the type of the keystore:

-Dweblogic.security.CustomTrustKeyStoreType=jks

Optionally, specify the password defined when creating the keystore:

-Dweblogic.security.CustomTrustKeyStorePassPhrase=password
• Oracle's keytool utility can also be used to generate a private key, a self-signed digital

certificate for WebLogic Server, and a Certificate Signing Request (CSR). For more
information about Oracle's keytool utility, see the keytool-Key and Certificate Management
Tool description at http://docs.oracle.com/javase/8/docs/technotes/tools/windows/
keytool.html.

For a tutorial on using keytool to create a client certificate, see section "Creating a Client
Certificate for Mutual Authentication" in The Java EE Tutorial, at https://
javaee.github.io/tutorial/security-advanced002.html#BNBYI.

Note:

When using the keytool utility, the default key pair generation algorithm is DSA.
WebLogic Server does not support the use of the Digital Signature Algorithm (DSA).
Specify another key pair generation and signature algorithm when using WebLogic
Server.

You can find more information about how to implement SSL in Configuring SSL and
Configuring Keystores in Administering Security for Oracle WebLogic Server.

Note:

Although JSSE supports Server Name Indication (SNI) in its SSL implementation,
WebLogic Server does not support SNI.

Thin Client Restrictions for JAAS and SSL
WebLogic Thin clients only support two-way SSL by requiring the SSLContext to be provided
by the SECURITY_CREDENTIALS property.

Chapter 8
Thin Client Restrictions for JAAS and SSL

8-3

http://docs.oracle.com/javase/8/docs/technotes/tools/windows/keytool.html
http://docs.oracle.com/javase/8/docs/technotes/tools/windows/keytool.html
https://javaee.github.io/tutorial/security-advanced002.html#BNBYI
https://javaee.github.io/tutorial/security-advanced002.html#BNBYI

WebLogic Thin client applications only support JAAS authentication through the following
methods:

• weblogic.security.auth.login.UsernamePasswordLoginModule.login
• weblogic.security.Security.runAs
To understand how thin clients support two-way SSL using SSLContext, see the sample client
code below:

Example 8-1 Client Code with sslcontext

.

.

.
System.out.println("Getting initial context");
Hashtable props = new Hashtable();
props.put(Context.INITIAL_CONTEXT_FACTORY,"weblogic.jndi.WLInitialContextFactory");
props.put(Context.PROVIDER_URL,"t3s:/" + host + ":" + port);

props.put(Context.SECURITY_PRINCIPAL,"weblogic");
props.put(Context.SECURITY_CREDENTIALS, "password");

//Set the ssl properties through system property
//set the path to the keystore file (one key inside the store)
System.setProperty("javax.net.ssl.keyStore", YOUR-KEY_STORE_FILE_PATH);
//set the keystore pass phrase
System.setProperty("javax.net.ssl.keyStorePassword",YOUR_KEY_STORE_PASS_PHRASE);

//Set the trust store
//set the path to the trust store file
System.setProperty("javax.net.ssl.trustStore",YOUR-TRUST_STORE_FILE_PATH);
//set the trust store pass phrase
System.setProperty("javax.net.ssl.trustStorePassword",YOUR_TRUST_STORE_PASS_PHRASE);

Context ctx = new InitialContext(props);
.
.
.

Install Client Restrictions for SSL
The WebLogic Install client does not support two-way SSL if your server's trusted CA
certificate is stored in a Custom Trust. The client cannot load the Identity keystore using the
weblogic.security.CustomIdentityKeyStoreFileName property at the command line.

To use two-way SSL with this client, you need to do one of the following: specify a trusted
certificate authority that is available from the JDK, use the demonstration Trust keystore, or use
Oracle's keytool utility to generate a private key, a self-signed digital certificate for WebLogic
Server, and a Certificate Signing Request (CSR).

Security Code Examples
Security samples are optionally provided with the WebLogic Server product. A description of
each sample and instructions on how to build, configure, and run a sample, are provided in the
package-summary.html file.

The samples are located in the
ORACLE_HOME\wlserver\samples\server\examples\src\examples\security directory. You

Chapter 8
Install Client Restrictions for SSL

8-4

can modify these code examples and reuse them. See Sample Applications and Code
Examples in Understanding Oracle WebLogic Server.

Chapter 8
Security Code Examples

8-5

9
Using EJBs with RMI-IIOP Clients

Learn how to implement Enterprise JavaBeans that use RMI-IIOP to provide EJB
interoperability in heterogeneous server environments.
This chapter includes the following sections:

• Accessing EJBs with a Java Client

• Accessing EJBs with a CORBA/IDL Client

• Accessing EJBs with a Java Client
A Java RMI client uses an ORB and IIOP to access Enterprise beans residing on a
WebLogic Server instance.

• Accessing EJBs with a CORBA/IDL Client
A non-Java platform CORBA/IDL client can access any Enterprise bean object on
WebLogic Server. The sources of the mapping information are the EJB classes as defined
in the Java source files. WebLogic Server provides the weblogic.appc utility for generating
required IDL files.

Accessing EJBs with a Java Client
A Java RMI client uses an ORB and IIOP to access Enterprise beans residing on a WebLogic
Server instance.

See Understanding Enterprise JavaBeans in Developing Enterprise JavaBeans, Version 2.1,
for Oracle WebLogic Server.

Accessing EJBs with a CORBA/IDL Client
A non-Java platform CORBA/IDL client can access any Enterprise bean object on WebLogic
Server. The sources of the mapping information are the EJB classes as defined in the Java
source files. WebLogic Server provides the weblogic.appc utility for generating required IDL
files.

These files represent the CORBA view into the state and behavior of the target EJB. Use the
weblogic.appc utility to:

• Place the EJB classes, interfaces, and deployment descriptor files into a JAR file.

• Generate WebLogic Server container classes for the EJBs.

• Run each EJB container class through the RMI compiler to create stubs and skeletons.

• Generate a directory tree of CORBA IDL files describing the CORBA interface to these
classes.

The weblogic.appc utility supports a number of command qualifiers. See Developing a
CORBA/IDL Client.

Resulting files are processed using the compiler, reading source files from the idlSources
directory and generating CORBA C++ stub and skeleton files. These generated files are
sufficient for all CORBA data types with the exception of value types (see Limitations of
WebLogic RMI-IIOP in Developing RMI Applications for Oracle WebLogic Server.) Generated

9-1

IDL files are placed in the idlSources directory. The Java-to-IDL process is full of pitfalls. Refer
to the Java Language Mapping to OMG IDL specification at http://www.omg.org/technology/
documents/index.htm.

See Enterprise JavaBeans Components and CORBA Clients: A Developer Guide, at http://
docs.oracle.com/javase/8/docs/technotes/guides/rmi-iiop/interop.html.

• Example IDL Generation

Example IDL Generation
The following is an example of how to generate the IDL from a bean you have already created:

1. Generate the IDL files

> java weblogic.appc -compiler javac -keepgenerated -idl -idlDirectory idlSources
build\std_ejb_iiop.jar %APPLICATIONS%\ejb_iiop.jar

2. Compile the EJB interfaces and client application (the example here uses a
CLIENT_CLASSES and APPLICATIONS target variable):

> javac -d %CLIENT_CLASSES% Trader.java TraderHome.java TradeResult.java Client.java
3. Run the IDL compiler against the IDL files built in Step 1:

>%IDL2CPP% idlSources\examples\rmi_iiop\ejb\Trader.idl
. . .

>%IDL2CPP% idlSources\javax\ejb\RemoveException.idl
4. Compile your C++ client.

Chapter 9
Accessing EJBs with a CORBA/IDL Client

9-2

http://www.omg.org/technology/documents/index.htm
http://www.omg.org/technology/documents/index.htm
http://docs.oracle.com/javase/8/docs/technotes/guides/rmi-iiop/interop.html
http://docs.oracle.com/javase/8/docs/technotes/guides/rmi-iiop/interop.html

A
Client Application Deployment Descriptor
Elements

Learn how to deploy descriptors for Java EE client applications supported by WebLogic Server.
This appendix includes the following sections:

• Overview of Client Application Deployment Descriptor Elements

• application-client.xml Deployment Descriptor Elements

• weblogic-appclient.xml Descriptor Elements

• Overview of Client Application Deployment Descriptor Elements
Learn how to configure server-side modules by using application.xml deployment
descriptor and client module using application-client.xml deployment descriptor and a
WebLogic-specific run time deployment descriptor.

• application-client.xml Deployment Descriptor Elements
The application-client.xml file is the deployment descriptor for Java EE client
applications.

• weblogic-appclient.xml Descriptor Elements
This XML-formatted deployment descriptor is not stored inside of the client application JAR
file like other deployment descriptors, but must be in the same directory as the client
application JAR file.

Overview of Client Application Deployment Descriptor Elements
Learn how to configure server-side modules by using application.xml deployment descriptor
and client module using application-client.xml deployment descriptor and a WebLogic-
specific run time deployment descriptor.

When it comes to Java EE applications, often users are only concerned with the server-side
modules (Web applications, EJBs, and connectors). You configure these server-side modules
using the application.xml deployment descriptor, discussed in Enterprise Application
Deployment Descriptor Elements in Developing Applications for Oracle WebLogic Server.

However, it is also possible to include a client module (a JAR file) in an EAR file. This JAR file
is only used on the client side; you configure this client module using the application-
client.xml deployment descriptor. This scheme makes it possible to package both client and
server side modules together. The server looks only at the parts it is interested in (based on
the application.xml file) and the client looks only at the parts it is interested in (based on the
application-client.xml file).

For client-side modules, two deployment descriptors are required: a Java EE standard
deployment descriptor, application-client.xml, and a WebLogic-specific run time
deployment descriptor with a name derived from the client application JAR file.

application-client.xml Deployment Descriptor Elements
The application-client.xml file is the deployment descriptor for Java EE client applications.

A-1

The application-client.xml file must begin with the following DOCTYPE declaration:

<!DOCTYPE application-client PUBLIC "-//Sun Microsystems,
Inc.//DTD Java EE Application Client 1.2//EN"
"http://java.sun.com/j2ee/dtds/application-client_1_2.dtd">

The following sections describe each of the elements that can appear in the file.

• application-client

application-client
application-client is the root element of the application client deployment descriptor. The
application client deployment descriptor describes the EJB modules and other resources used
by the client application.

The following table describes the elements you can define within an application-client
element.

Table A-1 application-client Elements

Element Description

<icon> Optional. Locations of small and large images that represent the application
in a GUI tool. This element is not currently used by WebLogic Server.

<display-name> Application display name, a short name that is intended to be displayed by
GUI tools.

<description> Optional. Description of the client application.

<env-entry> Contains the declaration of a client application's environment entries.

Elements you can define within a env-entry element are:

• description—Optional. Contains a description of the particular
environment entry.

• env-entry-name—Contains the name of a client application's
environment entry.

• env-entry-type—Contains the fully qualified Java type of the
environment entry. The possible values are: java.lang.Boolean,
java.lang.String, java.lang.Integer, java.lang.Double,
java.lang.Byte, java.lang.Short, java.lang.Long, and
java.lang.Float.

• env-entry-value—Optional. Contains the value of a client
application's environment entry. The value must be a String that is valid
for the constructor of the specified env-entry-type.

Appendix A
application-client.xml Deployment Descriptor Elements

A-2

Table A-1 (Cont.) application-client Elements

Element Description

<ejb-ref> Used for the declaration of a reference to an EJB referenced in the client
application.

Elements you can define within an ejb-ref element are:

• description—Optional. Provides a description of the referenced EJB.

• ejb-ref-name—Contains the name of the referenced EJB. Typically
the name is prefixed by ejb/, such as ejb/Deposit.

• ejb-ref-type—Contains the expected type of the referenced EJB,
either Session or Entity.

• home—Contains the fully-qualified name of the referenced EJB's home
interface.

• remote—Contains the fully-qualified name of the referenced EJB's
remote interface.

• ejb-link—Specifies that an EJB reference is linked to an Enterprise
Java Bean in the Java EE application package. The value of theejb-
link element must be the name of the ejb-name of an EJB in the
same Java EE application.

<resource-ref> Contains a declaration of the client application's reference to an external
resource.

Elements you can define within a resource-ref element are:

• description—Optional. Contains a description of the referenced
external resource.

• res-ref-name—Specifies the name of the resource factory reference
name. The resource factory reference name is the name of the client
application's environment entry whose value contains the JNDI name of
the data source.

• res-type—Specifies the type of the data source. The type is specified
by the Java interface or class expected to be implemented by the data
source.

• res-auth—Specifies whether the EJB code signs on programmatically
to the resource manager, or whether the container will sign on to the
resource manager on behalf of the EJB. In the latter case, the container
uses information that is supplied by the deployer. The res-auth element
can have one of two values: Application or Container.

weblogic-appclient.xml Descriptor Elements
This XML-formatted deployment descriptor is not stored inside of the client application JAR file
like other deployment descriptors, but must be in the same directory as the client application
JAR file.

The file name for the deployment descriptor is the base name of the JAR file, with the
extension .runtime.xml. For example, if the client application is packaged in a file named c:/
applications/ClientMain.jar, the run-time deployment descriptor is in the file named c:/
applications/ClientMain.runtime.xml.

• application-client

Appendix A
weblogic-appclient.xml Descriptor Elements

A-3

application-client
The application-client element is the root element of a WebLogic-specific run-time client
deployment descriptor. The following table describes the elements you can define within an
application-client element.

Table A-2 application-client Elements

Element Description

<env-entry> Specifies values for environment entries declared in the deployment
descriptor.

Elements you can define within a env-entry element are:

• env-entry-name—Name of an application client's
environment entry. Example: <env-entry-
name>EmployeeAppDB</env-entry-name>

• env-entry-value—Value of an application client's
environment entry. The value must be a valid String for the
constructor of the specified type, which takes a single String
parameter.

<ejb-ref> Specifies the JNDI name for a declared EJB reference in the
deployment descriptor.

Elements you can define within an ejb-ref element are:

• ejb-ref-name—Name of an EJB reference. The EJB
reference is an entry in the application client's environment.
Oracle recommends that name is prefixed withejb/. Example:
<ejb-ref-name>ejb/Payroll</ejb-ref-name>.

• jndi-name—JNDI name for the EJB.

<resource-ref> Declares an application client's reference to an external resource. It
contains the resource factory reference name, an indication of the
resource factory type expected by the application client's code, and
the type of authentication (bean or container).

Example:

<resource-ref>
<res-ref-name>EmployeeAppDB</res-ref-name>
<jndi-name>enterprise/databases/HR1984</jndi-name>
</resource-ref>
Elements you can define within a resource-ref element are:

• res-ref-name—Name of the resource factory reference
name. The resource factory reference name is the name of the
application client's environment entry whose value contains the
JNDI name of the data source.

• jndi-name—JNDI name for the resource.

<resource-description> Maps the JNDI name of a server resource to an EJB resource
reference in WebLogic Server.

Elements you can define within a resource-description element
are:

• res-ref-name—Specifies the name of a resource reference.

• jndi-name—Specifies a JNDI name for the resource.

Appendix A
weblogic-appclient.xml Descriptor Elements

A-4

Table A-2 (Cont.) application-client Elements

Element Description

<resource-env-description> Maps a resource-env-ref, declared in the ejb-jar.xml
deployment descriptor, to the JNDI name of the server resource it
represents.

Elements you can define within a resource-env-description
element are:

• res-env-ref-name—Specifies the name of a resource
environment reference.

• jndi-name—Specifies a JNDI name for the resource
environment reference.

<ejb-reference-
description>

Elements you can define within an ejb-reference-description
element are:

• ejb-ref-name—Specifies the name of an EJB reference used
in your Web application.

• jndi-name—Specifies a JNDI name for the reference.

<service-reference-
description>

Elements you can define within an ejb-reference-description
element are:

• service-ref-name
• wsdl-url
• call-property—The call-property element has the

following sub-elements:

– name
– value

• port-info—The port-info element has the following sub-
elements:

– port-name
– stub-property
– call-property

Appendix A
weblogic-appclient.xml Descriptor Elements

A-5

B
Accessing WebLogic Server MBeans from
JConsole Using WebLogic Install Client JARs

Learn how to access WebLogic Server MBeans from JConsole with the WebLogic Thin T3
client (wlthint3client.jar) or the Install client (weblogic.jar).

This appendix includes the following section:

• Using JConsole with WebLogic Install Client JARs to Access WebLogic Server MBeans

• Using JConsole with WebLogic Install Client JARs to Access WebLogic Server MBeans
Use this procedure to access WebLogic Server MBeans from JConsole with WebLogic
install client JARs, wlthint3client.jar or weblogic.jar.

Using JConsole with WebLogic Install Client JARs to Access
WebLogic Server MBeans

Use this procedure to access WebLogic Server MBeans from JConsole with WebLogic install
client JARs, wlthint3client.jar or weblogic.jar.

1. From a command prompt, make sure that the JDK is on the path.

2. Invoke JConsole with either the thin T3 client (wlthint3client.jar) or the install client
(weblogic.jar) in the class path:

• To invoke wlthint3client.jar:

• For Unix:

$ jconsole -J-Djava.class.path=$JAVA_HOME/lib/
jconsole.jar:$JAVA_HOME/lib/tools.jar:$WL_HOME/server/lib/
wlthint3client.jar

• For Windows:

c:> jconsole -J-Djava.class.path=%JAVA_HOME%
\lib\jconsole.jar;%JAVA_HOME%\lib\tools.jar;%WL_HOME%
\server\lib\wlthint3client.jar

• To invoke weblogic.jar:

• For Unix:

$ jconsole -J-Djava.class.path=$JAVA_HOME/lib/
jconsole.jar:$JAVA_HOME/lib/tools.jar:$WL_HOME/server/lib/
weblogic.jar

B-1

• For Windows:

c:> jconsole -J-Djava.class.path=%JAVA_HOME%
\lib\jconsole.jar;%JAVA_HOME%\lib\tools.jar;%WL_HOME%
\server\lib\weblogic.jar

Note:

You must explicitly set the classpath using -J-Djava.class.path=option. The
current classpath is not taken by JConsole.

3. Set up remote connections with an MBean server:

$ jconsole -J-Djmx.remote.protocol.provider.pkgs=weblogic.management.remote

Note:

If you are running JConsole on the same machine as your WebLogic Server
instance, then start JConsole simply by executing the command jconsole at the
command line.

4. In the JConsole window, select Remote Process.

5. In the Remote Process text box, enter the following URL:

service:jmx:t3://[host address]:[wls server port]/jndi/
weblogic.management.mbeanservers.domainruntime

where host:port represents the host name and port of the WebLogic Server instance that
hosts your MBeans. For example, localhost:7001.

6. Enter the administrator role credentials for Username and Password fields.

7. Click Connect.

8. Click Insecure Connection.

Appendix B
Using JConsole with WebLogic Install Client JARs to Access WebLogic Server MBeans

B-2

	Contents
	Preface
	Document Scope and Audience
	Documentation Accessibility
	Diversity and Inclusion
	Related Documentation
	Samples and Tutorials
	Avitek Medical Records Application (MedRec) and Tutorials
	Examples in the WebLogic Server Distribution

	New and Changed WebLogic Server Features

	Conventions

	1 Overview of Standalone Clients
	Distributing Client JAR Files
	WebLogic T3 Clients
	WebLogic Thin T3 Client
	WebLogic Install Client

	Java IIOP
	CORBA Clients
	JMX Clients
	JMS Clients
	Web Services Clients
	WebLogic Tuxedo Connector Clients
	Clients and Features

	2 Developing a WebLogic Thin T3 Client
	Understanding the WebLogic Thin T3 Client
	WebLogic Thin T3 Features
	Limitations and Considerations
	Interoperability
	Prior WebLogic Server Releases
	Foreign Application Servers

	Security
	Connection Considerations

	Developing a Basic WebLogic Thin T3 Client
	Foreign Server Applications
	Deployment Considerations

	3 Reliably Sending Messages Using the JMS SAF Client
	Overview of Using Store-and-Forward with JMS Clients
	Configuring a JMS Client To Use Client-Side SAF
	Generating a JMS SAF Client Configuration File
	How the JMS SAF Client Configuration File Works
	Steps to Generate a JMS SAF Client Configuration File from a JMS Module
	ClientSAFGenerate Utility Syntax
	Valid SAF Elements for JMS SAF Client Configurations
	Default Store Options for JMS SAF Clients

	Encrypting Passwords for Remote JMS SAF Contexts
	Steps to Generate Encrypted Passwords
	ClientSAFEncrypt Utility Syntax

	Installing the JMS SAF Client JAR Files on Client Machines
	Modify Your JMS Client Applications To Use the JMS SAF Client's Initial JNDI Provider
	Required JNDI Context Factory for JMS SAF Clients
	Optional JNDI Properties for JMS SAF Clients

	JMS SAF Client Management Tools
	The JMS SAF Client Initialization API
	Client-Side Store Administration Utility

	JMS Programming Considerations with JMS SAF Clients
	How the JMSReplyTo Field Is Handled In JMS SAF Client Messages
	No Mixing of JMS SAF Client Contexts and Server Contexts
	Using Transacted Sessions With JMS SAF Clients

	JMS SAF Client Interoperability Guidelines
	Java Runtime
	WebLogic Server Versions
	JMS C API

	Tuning JMS SAF Clients
	Limitations of Using the JMS SAF Client
	Behavior Change in JMS SAF Client Message Storage
	The Upgrade Process, Tools, and System Properties
	JMS SAF Client Discovery Tool
	Example

	JMS SAF Client Migration Properties

	4 Developing a CORBA/IDL Client
	Guidelines for Developing a CORBA/IDL Client
	Working with CORBA/IDL Clients

	IDL Client (Corba object) relationships
	Java to IDL Mapping

	WebLogic RMI over IIOP object relationships
	Objects-by-Value

	Procedure for Developing a CORBA/IDL Client

	5 Developing Clients for CORBA Objects
	Enhancements and Limitations of CORBA Object Types
	Making Outbound CORBA Calls: Main Steps
	Using the WebLogic ORB Hosted in JNDI
	ORB from JNDI
	Direct ORB creation
	Using JNDI

	Supporting Inbound CORBA Calls

	6 Developing a WebLogic C++ Client for a Tuxedo ORB
	WebLogic C++ Client Advantages and Limitations
	How the WebLogic C++ Client Works
	Developing WebLogic C++ Clients

	7 Using Java EE Client Application Modules
	Extracting a Client Application
	Executing a Client Application

	8 Developing Security-Aware Clients
	Developing Clients that use JAAS
	Developing Clients that use JNDI Authentication
	Developing Clients that use SSL
	Thin Client Restrictions for JAAS and SSL
	Install Client Restrictions for SSL
	Security Code Examples

	9 Using EJBs with RMI-IIOP Clients
	Accessing EJBs with a Java Client
	Accessing EJBs with a CORBA/IDL Client
	Example IDL Generation

	A Client Application Deployment Descriptor Elements
	Overview of Client Application Deployment Descriptor Elements
	application-client.xml Deployment Descriptor Elements
	application-client

	weblogic-appclient.xml Descriptor Elements
	application-client

	B Accessing WebLogic Server MBeans from JConsole Using WebLogic Install Client JARs
	Using JConsole with WebLogic Install Client JARs to Access WebLogic Server MBeans

