
Oracle® Fusion Middleware
Administering Server Environments for Oracle
WebLogic Server

14c (14.1.1.0.0)
F18338-05
February 2023

Oracle Fusion Middleware Administering Server Environments for Oracle WebLogic Server, 14c (14.1.1.0.0)

F18338-05

Copyright © 2007, 2023, Oracle and/or its affiliates.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or related
documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S.
Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software,
any programs embedded, installed, or activated on delivered hardware, and modifications of such programs)
and Oracle computer documentation or other Oracle data delivered to or accessed by U.S. Government end
users are "commercial computer software," "commercial computer software documentation," or "limited rights
data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental
regulations. As such, the use, reproduction, duplication, release, display, disclosure, modification, preparation
of derivative works, and/or adaptation of i) Oracle programs (including any operating system, integrated
software, any programs embedded, installed, or activated on delivered hardware, and modifications of such
programs), ii) Oracle computer documentation and/or iii) other Oracle data, is subject to the rights and
limitations specified in the license contained in the applicable contract. The terms governing the U.S.
Government's use of Oracle cloud services are defined by the applicable contract for such services. No other
rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle®, Java, and MySQL are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc,
and the AMD logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered
trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be
responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

 Preface

Audience viii

Documentation Accessibility viii

Diversity and Inclusion viii

Related Documentation ix

Conventions ix

1 Configuring Network Resources

Overview of Network Configuration 1-1

Understanding Network Channels 1-2

What Is a Channel? 1-2

Rules for Configuring Channels 1-2

Custom Channels Can Inherit Default Channel Attributes 1-3

Why Use Network Channels? 1-3

Handling Channel Failures 1-4

Upgrading Quality of Service Levels for RMI 1-4

Standard WebLogic Server Channels 1-4

The Default Network Channel 1-4

Administration Port and Administrative Channel 1-5

Using Internal Channels 1-8

Channel Selection 1-8

Internal Channels Within a Cluster 1-8

Configuring a Channel 1-9

Guidelines for Configuring Channels 1-9

Channels and Server Instances 1-9

Dynamic Channel Configuration 1-9

Channels and Identity 1-9

Channels and Protocols 1-10

Reserved Names 1-10

Channels, Proxy Servers, and Firewalls 1-10

Configuring Network Channels For a Cluster 1-10

Create the Cluster 1-11

iii

Create and Assign the Network Channel 1-11

Configuring a Replication Channel 1-12

Increase Packet Size When Using Many Channels 1-12

Assigning a Custom Channel to an EJB 1-12

Using IPv6 with IPv4 1-13

2 Configuring Web Server Functionality

Overview of Configuring Web Server Components 2-2

Configuring the Server 2-2

Configuring the Listen Port 2-3

Web Applications 2-3

Web Applications and Clustering 2-3

Configuring Virtual Hosting 2-3

Virtual Hosting and the Default Web Application 2-4

Setting Up a Virtual Host 2-4

How WebLogic Server Resolves HTTP Requests 2-5

Setting Up HTTP Access Logs 2-6

Log Rotation 2-7

Common Log Format 2-7

Setting Up HTTP Access Logs by Using Extended Log Format 2-7

Creating the Fields Directive 2-8

Supported Field Identifiers 2-9

Creating Custom Field Identifiers 2-11

Preventing POST Denial-of-Service Attacks 2-14

Setting Up WebLogic Server for HTTP Tunneling 2-15

Configuring the HTTP Tunneling Connection 2-15

Connecting to WebLogic Server from the Client 2-16

Using Native I/O for Serving Static Files (Windows Only) 2-16

3 Using Work Managers to Optimize Scheduled Work

Understanding How WebLogic Server Uses Thread Pools 3-1

Understanding Work Managers 3-2

Request Classes 3-4

Constraints 3-6

Stuck Thread Handling 3-7

Self-Tuning Thread Pool 3-7

Self-Tuning Thread Pool Size 3-8

ThreadLocal Clean Out 3-8

Work Manager Scope 3-9

iv

The Default Work Manager 3-9

Overriding the Default Work Manager 3-9

When to Use Work Managers 3-9

Global Work Managers 3-10

Application-scoped Work Managers 3-10

Using Work Managers, Request Classes, and Constraints 3-10

Dispatch Policy for EJB 3-11

Dispatch Policy for Web Applications 3-11

Deployment Descriptor Examples 3-11

Work Managers and Execute Queues 3-15

Enabling Execute Queues 3-15

Migrating from Execute Queues to Work Managers 3-15

Accessing Work Managers Using MBeans 3-15

Using CommonJ With WebLogic Server 3-16

Accessing CommonJ Work Managers 3-16

Mapping CommonJ to WebLogic Server Work Managers 3-17

4 Avoiding and Managing Overload

Configuring WebLogic Server to Avoid Overload Conditions 4-1

Limiting Requests in the Thread Pool 4-1

Work Managers and Thread Pool Throttling 4-2

Limiting HTTP Sessions 4-2

Exit on Out of Memory Exceptions 4-3

Stuck Thread Handling 4-3

WebLogic Server Self-Monitoring 4-3

Overloaded Health State 4-4

WebLogic Server Exit Codes 4-4

5 Configuring Concurrent Managed Objects

About Java EE Concurrency Utilities 5-1

Concurrency 1.0 Code Examples in WebLogic Server 5-2

How Concurrent Managed Objects Provide Concurrency for WebLogic Server Containers 5-3

How WebLogic Server Handles Asynchronous Tasks in Application Components 5-3

Concurrent Managed Objects (CMOs) 5-3

CMOs versus CommonJ API 5-5

CMO Context Propagation 5-5

Propagated Context Types 5-5

Contextual Invocation Points 5-6

Self Tuning for CMO Tasks 5-7

v

Threads Interruption When CMOs Are Shutting Down 5-8

CMO Constraints for Long-Running Threads 5-8

Setting Limits for Maximum Concurrent Long Running Requests 5-8

Setting Limits for Maximum Concurrent New Threads 5-11

Default Java EE CMOs 5-11

Default Managed Executor Service 5-12

Default Managed Scheduled Executor Service 5-12

Default Context Service 5-13

Default Managed Thread Factory 5-14

Customized CMOs in Configuration Files 5-14

Defining CMOs in WebLogic Configuration Files 5-15

Binding CMOs to JNDI Under an Application Component Environment 5-15

JNDI Binding Using <resource-env-ref> 5-15

JNDI Binding Using @Resource 5-16

Updated Schemas for Custom CMO Modules 5-16

Updated System Module Beans for CMOs 5-17

Custom Managed Executor Service Configuration Elements 5-17

Deployment Descriptor Examples 5-19

Custom Managed Scheduled Executor Service Configuration Elements 5-19

ScheduledFuture.get() Method 5-20

Deployment Descriptor Examples 5-21

Custom Managed Thread Factory Configuration Elements 5-21

Contexts of Threads Created by MTF 5-21

Deployment Descriptor Examples 5-22

Transaction Management for CMOs 5-23

Transaction Management for MES and MSES 5-23

Transaction Management for Context Service 5-23

Transaction Management for MTF 5-24

Global CMO Templates 5-24

Configuring CMO Templates using the Administration Console 5-25

Using MBeans to Configure CMO Templates 5-25

Configuring Concurrent Constraints 5-25

Using the Administration Console to Configure Concurrent Constraints 5-25

Using MBeans to Configure Concurrent Constraints 5-26

Querying CMOs 5-26

Using the Administration Console to Monitor CMO Threads 5-27

Monitor JSR236 CMOs for All Deployed Applications and Modules 5-27

Monitor JSR236 CMOs for a Deployed EAR or Module 5-27

Using MBeans to Monitor CMOs 5-27

Using MBeans to Monitor Concurrent Constraints 5-28

vi

6 Using the Batch Runtime

About Batch Jobs 6-1

Use of Multiple Batch Runtime Instances 6-2

Batch 1.0 Code Examples in WebLogic Server 6-2

Using the Default Batch Runtime Configuration with the Derby Database 6-3

Configuring the Batch Runtime to Use a Dedicated Database 6-3

Prerequisite Steps: Configure the Job Repository Tables, Batch Data Source, and
Managed Executor Service 6-4

Create the Job Repository Tables 6-4

Create a JDBC Data Source for the Job Repository 6-6

Optionally, Create a Managed Executor Service Template 6-6

Configure the Batch Runtime to Use a Dedicated Batch Data Source and Managed
Executor Service 6-6

Configuring the Batch Runtime Using the Administration Console 6-7

Configuring the Batch Runtime Using WLST 6-7

Querying the Batch Runtime 6-8

Using the Administration Console to Query the Batch Runtime 6-8

Get Details of all Batch Jobs 6-9

Get Details about a Job's Execution 6-9

Get Details about a Job's Step Execution 6-9

Using Runtime MBeans to Query the Batch Runtime 6-10

Get Details of all Batch Jobs Using getJobDetails 6-10

Get Details of a Job Execution Using getJobExecutions 6-11

Get Details of a Job Step Execution Using getStepExecutions 6-12

Troubleshooting Tips 6-13

Make Sure the Database Containing the Job Repository Tables is Running 6-13

vii

Preface

This document describes how you design, configure, and manage WebLogic Server
environments.

• Audience

• Documentation Accessibility

• Diversity and Inclusion

• Related Documentation

• Conventions

Audience
This document is a resource for system administrators and operators responsible for
implementing a WebLogic Server installation. It is assumed that the reader is familiar
with Java EE and Web technologies, object-oriented programming techniques, and the
Java programming language.

This document is relevant to all phases of a software project, from development
through test and production phases.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at http://www.oracle.com/pls/topic/lookup?
ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support
through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/
lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?
ctx=acc&id=trs if you are hearing impaired.

Diversity and Inclusion
Oracle is fully committed to diversity and inclusion. Oracle respects and values having
a diverse workforce that increases thought leadership and innovation. As part of our
initiative to build a more inclusive culture that positively impacts our employees,
customers, and partners, we are working to remove insensitive terms from our
products and documentation. We are also mindful of the necessity to maintain
compatibility with our customers' existing technologies and the need to ensure
continuity of service as Oracle's offerings and industry standards evolve. Because of

Preface

viii

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

these technical constraints, our effort to remove insensitive terms is ongoing and will take
time and external cooperation.

Related Documentation
• Understanding Oracle WebLogic Server

• Understanding Domain Configuration for Oracle WebLogic Server

• Administering Server Startup and Shutdown for Oracle WebLogic Server

• Oracle WebLogic Server Administration Console Online Help

New and Changed WebLogic Server Features

This release of WebLogic Server enhances adds support for Java EE 7, including the
following features:

• Concurrency Utilities for Java EE 1.0 (JSR 236). For information, see Configuring
Concurrent Managed Objects.

• Batch Applications for the Java Platform (JSR 352). For information, see Using the Batch
Runtime.

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated with an
action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for which
you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code in
examples, text that appears on the screen, or text that you enter.

Preface

ix

1
Configuring Network Resources

Oracle WebLogic Server configurable network resources such as network channels and
domain-wide administration ports help you effectively use the network features of the
machines that host your applications and manage quality of service.

• Overview of Network Configuration
For many development environments, configuring WebLogic Server network resources is
simply a matter of identifying a Managed Server listen address and listen port. However,
in most production environments, administrators must balance finite network resources
against the demands placed upon the network. The task of keeping applications available
and responsive can be complicated by specific application requirements, security
considerations, and maintenance tasks, both planned and unplanned.

• Understanding Network Channels
Learn about network channels, the standard channels that WebLogic Server pre-
configures, and common applications for channels.

• Configuring a Channel
Use the WebLogic Server Administration Console or NetworkAccessPointMBean to
configure a network channel.

• Assigning a Custom Channel to an EJB
After you configure a custom channel, assign it to an EJB using the network-access-
point element in weblogic-ejb-jar.xml, you can assign a custom channel to an EJB.

• Using IPv6 with IPv4
WebLogic Server supports host machines that are configured to use either Internet
Protocol (IP) versions 4 or 6 (IPv4 and IPv6).

Overview of Network Configuration
For many development environments, configuring WebLogic Server network resources is
simply a matter of identifying a Managed Server listen address and listen port. However, in
most production environments, administrators must balance finite network resources against
the demands placed upon the network. The task of keeping applications available and
responsive can be complicated by specific application requirements, security considerations,
and maintenance tasks, both planned and unplanned.

WebLogic Server lets you control the network traffic associated with your applications in a
variety of ways, and configure your environment to meet the varied requirements of your
applications and end users. You can:

• Designate the Network Interface Cards (NICs) and ports used by Managed Servers for
different types of network traffic.

• Support multiple protocols and security requirements.

• Specify connection and message time-out periods.

• Impose message size limits.

1-1

You specify these and other connection characteristics by defining a network channel
—the primary configurable WebLogic Server resource for managing network
connections. You configure a network channel in the WebLogic Server Administration
Console (Servers > Protocols > Channels) or by using the
NetworkAccessPointMBean.

Understanding Network Channels
Learn about network channels, the standard channels that WebLogic Server pre-
configures, and common applications for channels.

• What Is a Channel?

• Why Use Network Channels?

• Standard WebLogic Server Channels

• Using Internal Channels

What Is a Channel?
A network channel is a configurable resource that defines the attributes of a network
connection to WebLogic Server. For instance, a network channel can define:

• The protocol the connection supports.

• The listen address.

• The listen ports for secure and non-secure communication.

• Connection properties such as the login time-out value and maximum message
sizes.

• Whether or not the connection supports tunneling.

• Whether the connection can be used to communicate with other WebLogic Server
instances in the domain, or used only for communication with clients.

• Rules for Configuring Channels

• Custom Channels Can Inherit Default Channel Attributes

Rules for Configuring Channels
Follow these guidelines when configuring a channel.

• You can assign a particular channel to only one server instance.

• You can assign multiple channels to a server instance.

• Each channel assigned to a particular server instance must have a unique
combination of listen address, listen port, and protocol.

• You can configure a custom identity keystore, and other channel-specific SSL
attributes, that are separate from and that override the default keystore and SSL
configuration settings for the Managed Server instance or the domain.

• If you assign non-SSL and SSL channels to the same server instance, make sure
that they do not use the same port number.

Chapter 1
Understanding Network Channels

1-2

Custom Channels Can Inherit Default Channel Attributes
If you do not assign a channel to a server instance, it uses the WebLogic Server default
channel, which is automatically configured by WebLogic Server, based on the attributes in
ServerMBean or SSLMBean; the operating system determines the network interface. The
default channel is described in The Default Network Channel.

ServerMBean and SSLMBean represent a server instance and its SSL configuration. When you
configure a server instance listen address, listen port, and SSL listen port, using the Server >
Configuration > General page, those values are stored in the ServerMBean and SSLMBean for
the server instance.

If you do not specify a particular connection attribute in a custom channel definition, the
channel inherits the value specified for the attribute in ServerMBean. For example, if you
create a channel, and do not define its listen address, the channel uses the listen address
defined in ServerMBean. Similarly, if a Managed Server cannot bind to the listen address or
listen port configured in a channel, the Managed Server uses the defaults from ServerMBean
or SSLMBean.

Why Use Network Channels?
You use network channels to manage quality of service, meet varying connection
requirements, and improve utilization of your systems and network resources. For example,
network channels allow you to:

• Segregate different types of network traffic—You can configure whether or not a
channel supports outgoing connections. By assigning two channels to a server instance
—one that supports outgoing connections and one that does not—you can independently
configure network traffic for client connections and server connections, and physically
separate client and server network traffic on different listen addresses or listen ports.

You cannot create an outbound only network channel; there always has to be a
corresponding inbound interface, port, and protocol associated with the channel.
However, you can avoid directing your traffic to it or use a firewall to block it. Also
remember that a custom channel is protocol specific, so you will need a network channel
defined per protocol (HTTP, HTTPS, t3, t3s, and such). See, also
NetworkAccessPointMBean.OutboundEnabled.

You can also segregate instance administration and application traffic by configuring a
domain-wide administration port or administration channel. See Administration Port and
Administrative Channel.

• Support varied application or user requirements on the same Managed Server—
You can configure multiple channels on a Managed Server to support different protocols,
or to tailor properties for secure versus non-secure traffic.

By configuring a network channel to use a custom identity keystore, you can assert an
identity on that channel that is different from the identity configured for the Managed
Server or domain.

• Segregate internal application network traffic—You can assign a specific channel to a
an EJB.

If you use a network channel with a server instance on a multihomed machine, you must
enter a valid listen address either in ServerMBean or in the channel. If the channel and
ServerMBean listen address are blank or specify the localhost address (IP address 0.0.0.0 or
127.*.*.*), the server binds the network channel listen port and SSL listen ports to all available

Chapter 1
Understanding Network Channels

1-3

IP addresses on the multihomed machine. See The Default Network Channel for
information on setting the listen address in ServerMBean.

• Handling Channel Failures

• Upgrading Quality of Service Levels for RMI

Handling Channel Failures
When initiating a connection to a remote server, and multiple channels with the same
required destination, protocol and quality of service exist, WebLogic Server will try
each in turn until it successfully establishes a connection or runs out of channels to try.

Upgrading Quality of Service Levels for RMI
For RMI lookups only, WebLogic Server may upgrade the service level of an outgoing
connection. For example, if a T3 connection is required to perform an RMI lookup, but
an existing channel supports only T3S, the lookup is performed using the T3S
channel.

This upgrade behavior does not apply to server requests that use URLs, since URLs
embed the protocol itself. For example, the server cannot send a URL request
beginning with http:// over a channel that supports only https://.

Standard WebLogic Server Channels
WebLogic Server provides pre-configured channels that you do not have to explicitly
define.

• Default channel—Every Managed Server has a default channel.

• Administrative channel—If you configure a domain-wide administration port,
WebLogic Server configures an administrative channel for each Managed Server
in the domain.

• The Default Network Channel

• Administration Port and Administrative Channel

The Default Network Channel
Every WebLogic Server domain has a default channel that is generated automatically
by WebLogic Server. The default channel is based on the listen address and listen port
defined in the ServerMBean and SSLMBean. It provides a single listen address, one port
for HTTP (non-secure) communication (7001 by default), and one port for HTTPS
(secure) communication (7002 by default). You can configure the listen address and
listen port using the Configuration > General page in the WebLogic Server
Administration Console; the values you assign are stored in attributes of the
ServerMBean and SSLMBean.

The default configuration may meet your needs if:

• You are installing in a test environment that has simple network requirements.

• Your server uses a single NIC, and the default port numbers provide enough
flexibility for segmenting network traffic in your domain.

Chapter 1
Understanding Network Channels

1-4

Using the default configuration ensures that third-party administration tools remain
compatible with the new installation, because network configuration attributes remain stored
in ServerMBean and SSLMBean.

Even if you define and use custom network channels for your domain, the default channel
settings remain stored in ServerMBean and SSLMBean, and are used if necessary to provide
connections to a server instance.

Note:

Unless specified, WebLogic Server uses the non-secure default channel for cluster
communication to send session information among cluster members. If you disable
the non-secure channel, there is no other channel available by default for the non-
secure communication of cluster session information. To address this, you can:

• Enable the secureReplicationEnabled attribute of the ClusterMBean so that
the cluster uses a secure channel for communication. See Configuring a
Replication Channel.

• Create a custom channel for non-secure communication. See Custom
Channels Can Inherit Default Channel Attributes.

Administration Port and Administrative Channel
You can separate administration traffic from application traffic in your domain by defining an
optional administration port. When configured, the administration port is used by each
Managed Server in the domain exclusively for communication with the domain Administration
Server. If an administration port is enabled, WebLogic Server automatically generates an
administrative channel for your domain, based on the port settings upon server instance
startup. The administrative channel provides a listen address and listen port to handle
administration traffic.

• Administration Port Capabilities

• Administration Port Restrictions

• Administration Port Requires SSL

• Configure Administration Port

• Booting Managed Servers to Use Administration Port

• Booting Managed Servers to Use Administrative Channels

• Custom Administrative Channels

Administration Port Capabilities
An administration port enables you to:

• Start a server in standby state. This allows you to administer a Managed Server, while its
other network connections are unavailable to accept client connections. See STANDBY
State in Administering Server Startup and Shutdown for Oracle WebLogic Server.

• Separate administration traffic from application traffic in your domain. In production
environments, separating traffic ensures that critical administration operations (starting

Chapter 1
Understanding Network Channels

1-5

and stopping servers, changing a server's configuration, and deploying
applications) do not compete with high-volume application traffic on the same
network connection.

• Administer a deadlocked server instance using WLST. If you do not configure an
administration port, administrative commands such as threadDump and shutdown
will not work on deadlocked server instances.

Administration Port Restrictions
The administration port accepts only secure, SSL traffic, and all connections via the
port require authentication. Enabling the administration port imposes the following
restrictions on your domain:

• The Administration Server and all Managed Servers in your domain must be
configured with support for the SSL protocol. Managed Servers that do not support
SSL cannot connect with the Administration Server during startup—you will have
to disable the administration port in order to configure them.

• Because all server instances in the domain must enable or disable the
administration port at the same time, you configure the administration port at the
domain level. You can change an individual Managed Server administration port
number, but you cannot enable or disable the administration port for an individual
Managed Server. The ability to change the port number is useful if you have
multiple server instances with the same listen address.

• After you enable the administration port, you must establish an SSL connection to
the Administration Server in order to start any Managed Server in the domain. This
applies whether you start Managed Servers manually, at the command line, or
using Node Manager. For instructions to establish the SSL connection, see
Administration Port Requires SSL.

• After enabling the administration port, all WebLogic Server Administration Console
traffic must connect via the administration port.

• If multiple server instances run on the same computer in a domain that uses a
domain-wide administration port, you must either:

– Host the server instances on a multihomed machine and assign each server
instance a unique listen address, or

– Override the domain-wide port on all but one of the servers instances on the
machine. Override the port using the Local Administration Port Override option
in the Advanced Attributes section of the Server > Connections > SSL Ports
page in the WebLogic Server Administration Console.

Administration Port Requires SSL
The administration port requires SSL, which is enabled by default when you install
WebLogic Server. If SSL has been disabled for any server instance in your domain,
including the Administration Server and all Managed Servers, re-enable it using the
Server > Configuration > General page in the WebLogic Server Administration
Console.

Ensure that each server instance in the domain has a configured default listen port or
default SSL listen port. The default ports are those you assign on the Server >
Configuration > General page in the WebLogic Server Administration Console. A
default port is required in the event that the server cannot bind to its configured

Chapter 1
Understanding Network Channels

1-6

administration port. If an additional default port is available, the server will continue to boot
and you can change the administration port to an acceptable value.

By default WebLogic Server is configured to use demonstration certificate files. To configure
production security components, follow the steps in Configuring SSL in Administering
Security for Oracle WebLogic Server.

Configure Administration Port
Enable the administration port as described in Enabling the Domain-Wide Administration Port
in Oracle WebLogic Server Administration Console Online Help.

After configuring the administration port, you must restart the Administration Server and all
Managed Servers to use the new administration port.

Booting Managed Servers to Use Administration Port
If you reboot Managed Servers at the command line or using a start script, specify the
administration port in the port portion of the URL. The URL must specify the https:// prefix,
rather than http://, as shown below.

-Dweblogic.management.server=https://host:admin_port

Note:

If you use Node Manager for restarting the Managed Servers, it is not necessary to
modify startup settings or arguments for the Managed Servers. Node Manager
automatically obtains and uses the correct URL to start a Managed Server.

If the hostname in the URL is not identical to the hostname in the Administration Server's
certificate, disable hostname verification in the command line or start script, as shown below:

-Dweblogic.security.SSL.ignoreHostnameVerification=true

Booting Managed Servers to Use Administrative Channels
To allow a Managed Server to bind to an administrative channel during reboot, use the
following command-line option:

-Dweblogic.admin.ListenAddress=<addr>

This allows the Managed Server to startup using an administrative channel. After the initial
bootstrap connection, a standard administrative channel is used.

Note:

This option is useful to ensure that the appropriate NIC semantics are used before
config.xml is downloaded.

Chapter 1
Understanding Network Channels

1-7

Custom Administrative Channels
If the standard WebLogic Server administrative channel does not satisfy your
requirements, you can configure a custom channel for administrative traffic. For
example, a custom administrative channel allows you to segregate administrative
traffic on a separate NIC.

To configure a custom channel for administrative traffic, configure the channel as
described in Configuring a Channel, and select "admin" as the channel protocol. Note
the configuration and usage guidelines described in:

• Administration Port Requires SSL

• Booting Managed Servers to Use Administration Port

Using Internal Channels
Previous version of WebLogic Server allowed you to configure multiple channels for
external traffic, but required you to use the default channel for internal traffic between
server instances. WebLogic Server now allows you to create network channels to
handle administration traffic or communications between clusters. This can be useful in
the following situations:

• Internal administration traffic needs to occur over a secure connection, separate
from other network traffic.

• Other types of network traffic, for example replication data, need to occur over a
separate network connection.

• Certain types of network traffic need to be monitored.

• Channel Selection

• Internal Channels Within a Cluster

Channel Selection
All internal traffic is handled via a network channel. If you have not created a custom
network channel to handle administrative or clustered traffic, WebLogic Server
automatically selects a default channel based on the protocol required for the
connection. See The Default Network Channel.

Internal Channels Within a Cluster
Within a cluster, internal channels can be created to handle to the following types of
server-to-server connections:

• Multicast traffic

• Replication traffic

• Administration traffic

See Configuring Network Channels For a Cluster.

Chapter 1
Understanding Network Channels

1-8

Configuring a Channel
Use the WebLogic Server Administration Console or NetworkAccessPointMBean to configure
a network channel.

From the console, navigate to Servers > Protocols > Channels page to configure the
channel properties. To configure a channel for clustered Managed Servers see, Configuring
Network Channels For a Cluster.

For a summary of key facts about network channels, and guidelines related to their
configuration, see Guidelines for Configuring Channels .

• Guidelines for Configuring Channels

• Configuring Network Channels For a Cluster

Guidelines for Configuring Channels
Follow these guidelines when configuring a channel.

• Channels and Server Instances

• Dynamic Channel Configuration

• Channels and Identity

• Channels and Protocols

• Reserved Names

• Channels, Proxy Servers, and Firewalls

Channels and Server Instances
• Each channel you configure for a particular server instance must have a unique

combination of listen address, listen port, and protocol.

• A channel can be assigned to a single server instance.

• You can assign multiple channels to a server instance.

• If you assign non-SSL and SSL channels to the same server instance, make sure that
they do not use the same combination of address and port number.

Dynamic Channel Configuration
• In WebLogic Server, you can configure a network channel without restarting the server.

Additionally, you can start and stop dynamically configured channels while the server is
running. However, when you shutdown a channel while the server is running, the server
does not attempt to gracefully terminate any work in progress.

Channels and Identity
• By default, when you configure a network channel, the channel uses the SSL

configuration that is set for the server instance. This means that the channel uses the
same identity and trust that is established for the server. The server might use a custom
identity that is specific to that server, or it might be a single domain-wide identity,
depending on how the server instance and domain are configured.

Chapter 1
Configuring a Channel

1-9

• You can configure a network channel to use a custom identity keystore, and other
SSL attributes, that are specific to that channel. This allows you to use an identity
on that channel that is different from the one configured for the server. Using this
capability, you can configure a server that can switch to a different identity when
communicating with a particular client.

See Configuring an Identity Keystore Specific to a Network Channel in
Administering Security for Oracle WebLogic Server.

Channels and Protocols
• Some protocols do not support particular features of channels. In particular the

COM protocol does not support SSL or tunneling.

• You must define a separate channel for each protocol you wish the server instance
to support, with the exception of HTTP.

HTTP is enabled by default when you create a channel, because RMI protocols
typically require HTTP support for downloading stubs and classes. You can disable
HTTP support on the Advanced Options portion of the Servers > Protocols >
Channels page in the WebLogic Server Administration Console.

Reserved Names
• WebLogic Server uses the internal channel names .WLDefaultChannel

and .WLDefaultAdminChannel and reserves the .WL prefix for channel names. Do
not begin the name of a custom channel with the string .WL.

Channels, Proxy Servers, and Firewalls
If your configuration includes a a firewall between a proxy Web server and a cluster
(as described in Firewall Between Proxy Layer and Cluster in Administering Clusters
for Oracle WebLogic Server), and the clustered servers are configured with two
custom channels for segregating HTTPS and HTTP traffic, those channels must share
the same listen address. Furthermore, if both HTTP and HTTPS traffic needs to be
supported, there must be a custom channel for each—it is not possible to use the
default configuration for one or the other.

If either of those channels has a PublicAddress defined, as is likely given the
existence of the firewall, both channels must define PublicAddress, and they both
must define the same PublicAddress.

Configuring Network Channels For a Cluster
To configure a channel for clustered Managed Servers, note the information in
Guidelines for Configuring Channels , and follow the guidelines described in the
following sections.

• Create the Cluster

• Create and Assign the Network Channel

• Configuring a Replication Channel

• Increase Packet Size When Using Many Channels

Chapter 1
Configuring a Channel

1-10

Create the Cluster
If you have not already configured a cluster you can:

• Use the Configuration Wizard to create a new, clustered domain, following the
instructions in Create a Clustered Domain in Administering Clusters for Oracle WebLogic
Server, or

• Use the WebLogic Server Administration Console to create a cluster in an existing
domain, following the instructions Create and configure clusters in Oracle WebLogic
Server Administration Console Online Help.

For information and guidelines about configuring a WebLogic Server cluster, see Before You
Start in Administering Clusters for Oracle WebLogic Server.

Create and Assign the Network Channel
Use the instructions in Configuring a Network Channel in Oracle WebLogic Server
Administration Console Online Help to create a new network channel for each Managed
Server in the cluster. When creating the new channels:

• For each channel you want to use in the cluster, configure the channel with the same
name and protocol on each Managed Server in the cluster.

Note:

Failure to configure channel names and protocols identically on each server in
a cluster can result in severe performance degradation when accessing RMI
based objects. Examples of RMI based objects include JMS Connection
Factories and EJB Homes.

If an RMI object is obtained via a channel, and it attempts to connect to a server
in a cluster that does not have a channel with the same name as the original
channel, the object may then try to use the server's default channel. This might
in turn result in unacceptable performance.

While rare in practice, if the intent is to create similar but differently named
channels within a cluster, then setting the server side property
weblogic.rmi.t3.replicaList.customChannel.excludeDefaultChannels=tru
e will result in RMI objects only attempting to accessing those channels with the
exact specified name.

Note that failure to name channels identically can result in severe performance
degradation when accessing JMS or EJB remote objects.

• Make sure that the listen port and SSL listen port you define for each Managed Server's
channel are different than the Managed Server's default listen ports. If the custom
channel specifies the same port as a Managed Server's default port, the custom channel
and the Managed Server's default channel will each try to bind to the same port, and you
will be unable to start the Managed Server.

• If a cluster address has been explicitly configured for the cluster, it will be appear in the
Cluster Address field on the Server > Protocols > Channels > Configuration page.

Chapter 1
Configuring a Channel

1-11

If you are using dynamic cluster addressing, the Cluster Address field will be
empty, and you do not need to supply a cluster address. For information about the
cluster address, and how WebLogic Server can dynamically generate the cluster
address, see Cluster Address in Administering Clusters for Oracle WebLogic
Server.

Note:

If you want to use dynamic cluster addressing, do not supply a cluster
address on the Server > Protocols > Channels > Configuration page.
If you supply a cluster address explicitly, that value will take precedence
and WebLogic Server will not generate the cluster address dynamically.

Configuring a Replication Channel
A replication channel is a network channel that is designated to transfer replication
information between clusters. If a replication channel is not explicitly defined,
WebLogic Server uses a default network channel to communicate replication
information.

When WebLogic Server uses a default network channel as the replication channel, it
does not use SSL encryption by default. You must enable SSL encryption using the
secureReplicationEnabled attribute of the ClusterMBean. You can also update this
setting from the WebLogic Server Administration Console.

Enabling SSL encryption can have a direct impact on clustered application throughput
as session replication is blocking by design. in other words, no response is sent to the
client until replication is completed. You should consider this when deciding to enable
SSL on the replication channel.

If a replication channel is explicitly defined, the channel's protocol is used to transmit
replication traffic.

Increase Packet Size When Using Many Channels
Use of more than about twenty channels in a cluster can result in the formation of
multicast header transmissions that exceed the default maximum packet size. The
MTUSize attribute in the Server element of config.xml sets the maximum size for
packets sent using the associated network card to 1500. Sending packets that exceed
the value of MTUSize can result in a java.lang.NegativeArraySizeException. You can
avoid exceptions that result from packet sizes in excess of MTUSize by increasing the
value of MTUSize from its default value of 1500.

Assigning a Custom Channel to an EJB
After you configure a custom channel, assign it to an EJB using the network-access-
point element in weblogic-ejb-jar.xml, you can assign a custom channel to an EJB.

See network-access-point in Developing Enterprise JavaBeans, Version 2.1, for
Oracle WebLogic Server.

Chapter 1
Assigning a Custom Channel to an EJB

1-12

Using IPv6 with IPv4
WebLogic Server supports host machines that are configured to use either Internet Protocol
(IP) versions 4 or 6 (IPv4 and IPv6).

If you have a domain that includes some machines that use IPv4 in network communications
and others that use IPv6, and the Administration Server is hosted on a machine using IPv4,
the status of the Managed Server instances hosted on the machines using IPv6 might be
displayed as "unknown" in the WebLogic Server Administration Console.

To make the status of these Managed Server instances available in the WebLogic Server
Administration Console, you must specify a listen address for them. If your server is running,
you will have to restart it after specifying the listen address. For information on assigning the
listen address for a Managed Server in an existing domain using the WebLogic Server
Administration Console, see Configure listen addresses in the Oracle WebLogic Server
Administration Console Online Help.

You can also specify the listen address for your Managed Server when configuring it with the
Configuration Wizard. On the Managed Servers page, enter the physical IP address of each
Managed Server in the Listen Address field, save changes and continue configuring.

Chapter 1
Using IPv6 with IPv4

1-13

2
Configuring Web Server Functionality

Learn how to configure a Java EE Web application hosted on Oracle WebLogic Server to
function as a standard HTTP Web server hosting static content. Web applications also can
host dynamic content such as JSPs and servlets.

See Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server.

• Overview of Configuring Web Server Components
In addition to hosting dynamic Java-based distributed applications, WebLogic Server
functions as a Web server that handles high-volume Web sites, serving static files such
as HTML files and image files, as well as servlets and JavaServer Pages (JSP).

• Configuring the Server
You can specify the port that each WebLogic Server listens on for HTTP requests.
Although you can specify any valid port number, if you specify port 80, you can omit the
port number from the HTTP request used to access resources over HTTP. For example,
if you define port 80 as the listen port, you can use the form http://hostname/
myfile.html instead of http://hostname:portnumber/myfile.html.

• Web Applications
HTTP and Web applications are deployed according to the Java EE Servlet 3.0 and JSP
2.2 specifications, which describe Web Applications as a standard for grouping the
components of a Web-based application. These components include JSP pages, HTTP
servlets, and static resources such as HTML pages or image files. In addition, a Web
application can access external resources such as EJBs and JSP tag libraries. Each
server can host any number of Web applications. You typically use the name of the Web
application as part of the URI you use to request resources from the Web application.

• Configuring Virtual Hosting
Virtual hosting allows you to define host names that servers or clusters respond to. When
you use virtual hosting, you use DNS to specify one or more host names that map to the
IP address of a WebLogic Server instance or cluster, and you specify which Web
applications are served by the virtual host. When used in a cluster, load balancing allows
the most efficient use of your hardware, even if one of the DNS host names processes
more requests than the others.

• How WebLogic Server Resolves HTTP Requests
When WebLogic Server receives an HTTP request, it resolves the request by parsing the
various parts of the URL and using that information to determine which Web application
and/or server should handle the request.

• Setting Up HTTP Access Logs
WebLogic Server can keep a log of all HTTP transactions in a text file, in either common
log format or extended log format.

• Preventing POST Denial-of-Service Attacks
A Denial-of-Service attack is a malicious attempt to overload a server with phony
requests. One common type of attack is to send huge amounts of data in an HTTP POST
method. You can set three attributes in WebLogic Server that help prevent this type of
attack. These attributes are set in the Console, under Servers or Virtual Hosts. If you
define these attributes for a virtual host, the values set for the virtual host override those
set under Servers.

2-1

• Setting Up WebLogic Server for HTTP Tunneling
HTTP tunneling provides a way to simulate a stateful socket connection between
WebLogic Server and a Java client when your only option is to use the HTTP
protocol.

• Using Native I/O for Serving Static Files (Windows Only)
When running WebLogic Server on Windows NT/2000/XP you can specify that
WebLogic Server use the native operating system call TransmitFile instead of
using Java methods to serve static files such as HTML files, text files, and image
files. Using native I/O can provide performance improvements when serving larger
static files.

Overview of Configuring Web Server Components
In addition to hosting dynamic Java-based distributed applications, WebLogic Server
functions as a Web server that handles high-volume Web sites, serving static files
such as HTML files and image files, as well as servlets and JavaServer Pages (JSP).

WebLogic Server supports the HTTP 1.1 standard.

Configuring the Server
You can specify the port that each WebLogic Server listens on for HTTP requests.
Although you can specify any valid port number, if you specify port 80, you can omit
the port number from the HTTP request used to access resources over HTTP. For
example, if you define port 80 as the listen port, you can use the form http://
hostname/myfile.html instead of http://hostname:portnumber/myfile.html.

On UNIX systems, binding a process to a port lower than 1025 must be done from the
account of a privileged user, usually root. Consequently, if you want WebLogic Server
to listen on port 80, you must start WebLogic Server as a privileged user; yet it is
undesirable from a security standpoint to allow long-running processes like WebLogic
Server to run with more privileges than necessary. WebLogic Server needs root
privileges only until the port is bound.

WebLogic Server provides capabilities to switch its UNIX user ID (UID) and/or UNIX
group ID (GID) after it binds to port 80. You can change the UID (or GID) either
through the WebLogic Server Administration Console (see Configuring the Listen
Port) or by accessing UnixMachineMBean using WLST. Use
UnixMachineMBbean.setPostBindUID() to set the UID and enable the switch by
setting UnixMachineMBean.setPostBindUIDEnabled() to true. Similarly, the GID can
be changed using methods UnixMachineMBean.setPostBindGID() and
UnixMachineMBean.setPostBindGIDEnabled().

You can switch to the UNIX account "nobody," which is the least privileged user on
most UNIX systems. If desired, you may create a UNIX user account expressly for
running WebLogic Server. Make sure that files needed by WebLogic Server, such as
log files and the WebLogic classes, are accessible by the non-privileged user. Once
ownership of the WebLogic process has switched to the non-privileged user, WebLogic
will have the same read, write, and execute permissions as the non-privileged user.

You define a separate listen port for non-SSL and secure (using SSL) requests. For
additional information on configuring listen ports, see Understanding Network
Channels.

Chapter 2
Overview of Configuring Web Server Components

2-2

• Configuring the Listen Port

Configuring the Listen Port
1. Use the WebLogic Server Administration Console to set the listen port to port 80. See

Configure Listen Ports.

2. If the machine hosting WebLogic Server is running Windows, skip to step 8.

3. Use the WebLogic Server Administration Console to create a new Unix Machine. See
Configure Machines.

4. Select the Enable Post-Bind UID field.

5. Enter the user name you want WebLogic Server to run as in the Post-Bind UID field.

6. Select the Enable Post-Bind GID fields.

7. Enter the group name you want WebLogic Server to run as in the Post-Bind GID field.

8. Click Save.

9. To activate these changes, in the Change Center of the WebLogic Server Administration
Console, click Activate Changes.

Web Applications
HTTP and Web applications are deployed according to the Java EE Servlet 3.0 and JSP 2.2
specifications, which describe Web Applications as a standard for grouping the components
of a Web-based application. These components include JSP pages, HTTP servlets, and
static resources such as HTML pages or image files. In addition, a Web application can
access external resources such as EJBs and JSP tag libraries. Each server can host any
number of Web applications. You typically use the name of the Web application as part of the
URI you use to request resources from the Web application.

See Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server.

• Web Applications and Clustering

Web Applications and Clustering
Web applications can be deployed to a WebLogic Server cluster. When a user requests a
resource from a Web application, the request is routed to one of the servers in the cluster that
host the Web application. If an application uses a session object, then sessions must be
replicated across the nodes of the cluster. Several methods of replicating sessions are
provided.

See Administering Clusters for Oracle WebLogic Server.

Configuring Virtual Hosting
Virtual hosting allows you to define host names that servers or clusters respond to. When you
use virtual hosting, you use DNS to specify one or more host names that map to the IP
address of a WebLogic Server instance or cluster, and you specify which Web applications
are served by the virtual host. When used in a cluster, load balancing allows the most efficient
use of your hardware, even if one of the DNS host names processes more requests than the
others.

Chapter 2
Web Applications

2-3

For example, you can specify that a Web application called books responds to
requests for the virtual host name www.books.com, and that these requests are
targeted to WebLogic Servers A,B, and C, while a Web application called cars
responds to the virtual host name www.autos.com and these requests are targeted to
WebLogic Servers D and E. You can configure a variety of combinations of virtual
host, WebLogic Server instances, clusters, and Web applications, depending on your
application and Web server requirements.

For each virtual host that you define you can also separately define HTTP parameters
and HTTP access logs. The HTTP parameters and access logs set for a virtual host
override those set for a server. You may specify any number of virtual hosts.

You activate virtual hosting by targeting the virtual host to a server or cluster of
servers. Virtual hosting targeted to a cluster will be applied to all servers in the cluster.

• Virtual Hosting and the Default Web Application

• Setting Up a Virtual Host

Virtual Hosting and the Default Web Application
You can also designate a default Web Application for each virtual host. The default
Web application for a virtual host responds to all requests that cannot be resolved to
other Web applications deployed on the same server or cluster as the virtual host.

Unlike other Web applications, a default Web application does not use the Web
application name (also called the context path) as part of the URI used to access
resources in the default Web application.

For example, if you defined virtual host name www.mystore.com and targeted it to a
server on which you deployed a Web application called shopping, you would access a
JSP called cart.jsp from the shopping Web application with the following URI:

http://www.mystore.com/shopping/cart.jsp

If, however, you declared shopping as the default Web application for the virtual host
www.mystore.com, you would access cart.jsp with the following URI:

http://www.mystore.com/cart.jsp

See How WebLogic Server Resolves HTTP Requests.

When using multiple Virtual Hosts with different default Web applications, you can not
use single sign-on, as each Web application will overwrite the JSESSIONID cookies
set by the previous Web application. This will occur even if the CookieName,
CookiePath, and CookieDomain are identical in each of the default Web applications.

Setting Up a Virtual Host
1. Use the Administration Console to define a virtual host. See Virtual Host.

2. Add a line naming the virtual host to the etc/hosts file on your server to ensure
that the virtual host name can be resolved.

Chapter 2
Configuring Virtual Hosting

2-4

How WebLogic Server Resolves HTTP Requests
When WebLogic Server receives an HTTP request, it resolves the request by parsing the
various parts of the URL and using that information to determine which Web application
and/or server should handle the request.

Table 2-1 demonstrates various combinations of requests for Web applications, virtual hosts,
servlets, JSPs, and static files and the resulting response.

Note:

If you package your Web application as part of an Enterprise application, you can
provide an alternate name for a Web application that is used to resolve requests to
the Web application. See Developing Web Applications, Servlets, and JSPs for
Oracle WebLogic Server.

Table 2-1 provides some sample URLs and the file that is served by WebLogic Server. The
Index Directories Checked column refers to the Index Directories attribute that controls
whether or not a directory listing is served if no file is specifically requested.

Table 2-1 Examples of How WebLogic Server Resolves URLs

URL Index Directories Checked? This file is served in response

http://host:port/apples No Welcome file* defined in the
apples Web application.

http://host:port/apples Yes Directory listing of the top-level
directory of the apples Web
application.

http://host:port/oranges/
naval

Does not matter Servlet mapped with <url-
pattern> of /naval in the
oranges Web application.

There are additional
considerations for servlet
mappings. See Configuring
Servlets in Developing Web
Applications, Servlets, and JSPs
for Oracle WebLogic Server.

http://host:port/naval Does not matter Servlet mapped with <url-
pattern> of /naval in the
oranges Web application and
oranges is defined as the
default Web application.

See Configuring Servlets in
Developing Web Applications,
Servlets, and JSPs for Oracle
WebLogic Server.

http://host:port/apples/
pie.jsp

Does not matter pie.jsp, from the top-level
directory of the apples Web
application.

Chapter 2
How WebLogic Server Resolves HTTP Requests

2-5

Table 2-1 (Cont.) Examples of How WebLogic Server Resolves URLs

URL Index Directories Checked? This file is served in response

http://host:port Yes Directory listing of the top-level
directory of the default Web
application

http://host:port No Welcome file* from the default
Web application.

http://host:port/apples/
myfile.html

Does not matter myfile.html, from the top-level
directory of the apples Web
application.

http://host:port/
myfile.html

Does not matter myfile.html, from the top-level
directory of the default Web
application.

http://host:port/apples/
images/red.gif

Does not matter red.gif, from the images
subdirectory of the top-level
directory of the apples Web
application.

http://host:port/
myFile.html
Where myfile.html does not
exist in the apples Web
application and a default servlet
has not been defined.

Does not matter Error 404

http://www.fruit.com/ No Welcome file from the default
Web application for a virtual host
with a host name of
www.fruit.com.

http://www.fruit.com/ Yes Directory listing of the top-level
directory of the default Web
application for a virtual host with
a host name of www.fruit.com.

http://www.fruit.com/
oranges/myfile.html

Does not matter myfile.html, from the
oranges Web application that is
targeted to a virtual host with
host name www.fruit.com.

Setting Up HTTP Access Logs
WebLogic Server can keep a log of all HTTP transactions in a text file, in either
common log format or extended log format.

Common log format is the default. Extended log format allows you to customize the
information that is recorded. You can set the attributes that define the behavior of
HTTP access logs for each server instance or for each virtual host that you define. To
set up HTTP logging for a server or a virtual host, refer to the following topics in the
Oracle WebLogic Server Administration Console Online Help:

• Enabling and Configuring HTTP Access Logs

• Specifying HTTP Log File Settings for a Virtual Host

Chapter 2
Setting Up HTTP Access Logs

2-6

• Log Rotation

• Common Log Format

• Setting Up HTTP Access Logs by Using Extended Log Format

Log Rotation
You can rotate the log file based on either the size of the file or after a specified amount of
time has passed. When either criterion is met, the current access log file is closed and a new
access log file is started. If you do not configure log rotation, the HTTP access log file grows
indefinitely. You can configure the name of the access log file to include a time and date
stamp that indicates when the file was rotated. If you do not configure a time stamp, each
rotated file name includes a numeric portion that is incremented upon each rotation. Separate
HTTP access logs are kept for each Virtual Host you have defined.

Common Log Format
The default format for logged HTTP information is the common log format. See http://
www.w3.org/Daemon/User/Config/Logging.html#common-logfile-format.

This standard format follows the pattern:

host RFC931 auth_user [day/month/year:hour:minute:second
 UTC_offset] "request" status bytes

where:

host
Either the DNS name or the IP number of the remote client

RFC931
Any information returned by IDENTD for the remote client; WebLogic Server does not
support user identification

auth_user
If the remote client user sent a userid for authentication, the user name; otherwise "-"

day/month/year:hour:minute:second UTC_offset
Day, calendar month, year and time of day (24-hour format) with the hours difference
between local time and GMT, enclosed in square brackets

"request"
First line of the HTTP request submitted by the remote client enclosed in double quotes

status
HTTP status code returned by the server, if available; otherwise "-"

bytes
Number of bytes listed as the content-length in the HTTP header, not including the HTTP
header, if known; otherwise "-"

Setting Up HTTP Access Logs by Using Extended Log Format
WebLogic Server also supports extended log file format, version 1.0, an emerging standard
defined by the draft specification from the W3C at http://www.w3.org/TR/WD-logfile.html.

Chapter 2
Setting Up HTTP Access Logs

2-7

http://www.w3.org/Daemon/User/Config/Logging.html#common-logfile-format
http://www.w3.org/Daemon/User/Config/Logging.html#common-logfile-format
http://www.w3.org/TR/WD-logfile.html

The current definitive reference is on the W3C Technical Reports and Publications
page at http://www.w3.org/TR/.

The extended log format allows you to specify the type and order of information
recorded about each HTTP communication. To enable this format in the WebLogic
Server Administration Console:

1. Navigate to the server-name > Logging > HTTP page.

2. Make sure that HTTP access log file enabled is checked.

3. Click Advanced.

4. In the field labeled Format, select Extended.

In the field labeled Extended Logging Format Fields, you can select one or more of
the fields described in Supported Field Identifiers. If you want to add custom fields to
an HTTP access log file, see Creating Custom Field Identifiers for details.

You specify the information that should be recorded in the log file with directives,
included in the actual log file itself. A directive begins on a new line and starts with a
pound sign (#). If the log file does not exist, a new log file is created with default
directives. However, if the log file already exists when the server starts, it must contain
valid directives at the head of the file.

• Creating the Fields Directive

• Supported Field Identifiers

• Creating Custom Field Identifiers

Creating the Fields Directive
The first line of your log file must contain a directive stating the version number of the
log file format. You must also include a Fields directive near the beginning of the file:

#Version: 1.0
#Fields: xxxx xxxx xxxx ...

Where each xxxx describes the data fields to be recorded. Field types are specified as
either simple identifiers, or may take a prefix-identifier format, as defined in the W3C
specification. For example:

#Fields: date time cs-method cs-uri

This identifier instructs the server to record the date and time of the transaction, the
request method that the client used, and the URI of the request for each HTTP access.
Each field is separated by white space, and each record is written to a new line,
appended to the log file.

Note:

The #Fields directive must be followed by a new line in the log file, so that
the first log message is not appended to the same line.

Chapter 2
Setting Up HTTP Access Logs

2-8

http://www.w3.org/TR/

Supported Field Identifiers
The following identifiers are supported, and do not require a prefix.

date
Date at which transaction completed, field has type <date>, as defined in the W3C
specification.

time
Time at which transaction completed, field has type <time>, as defined in the W3C
specification.

time-taken
Time taken for transaction to complete in seconds, field has type <fixed>, as defined in the
W3C specification.

bytes
Number of bytes transferred, field has type <integer>.
Note that the cached field defined in the W3C specification is not supported in WebLogic
Server.
The following identifiers require prefixes, and cannot be used alone. The supported prefix
combinations are explained individually.

• IP Address Related Fields

• DNS Related Fields

• Diagnostic Message Correlation Fields

IP Address Related Fields
These fields give the IP address and port of either the requesting client, or the responding
server. These fields have type <address>, as defined in the W3C specification. The
supported fields are:

c-ip
The IP address of the client.

s-ip
The IP address of the server.

DNS Related Fields
These fields give the domain names of the client or the server and have type <name>, as
defined in the W3C specification. The supported fields are:

c-dns
The domain name of the requesting client.

s-dns
The domain name of the requested server.

sc-status
Status code of the response, for example (404) indicating a "File not found" status. This field
has type <integer>, as defined in the W3C specification.

Chapter 2
Setting Up HTTP Access Logs

2-9

sc-comment
The comment returned with status code, for instance "File not found". This field has
type <text>.

cs-method
The request method, for example GET or POST. This field has type <name>, as
defined in the W3C specification.

cs-uri
The full requested URI. This field has type <uri>, as defined in the W3C specification.

Note:

When extended log format is enabled, the logged URI is truncated if its
length exceeds 256 characters, which is the default limit. You can increase
the maximum URI length by specifying it in following argument to the
command that starts WebLogic Server:

-Dweblogic.servlet.maxLoggingURILength=length

cs-uri-stem
Only the stem portion of URI (omitting query). This field has type <uri>, as defined in
the W3C specification.

cs-uri-query
Only the query portion of the URI. This field has type <uri>, as defined in the W3C
specification.

Diagnostic Message Correlation Fields
These fields give message correlation information for diagnostic messages, helping
you to determine relationships between messages across components. These fields
are logged if the diagnostic context is present and populated for the executed request.
The diagnostic context may be present if it is propagated into the server with the
incoming request, or it may be created for the request by WebLogic Server if the
diagnostic context is enabled. The supported fields are:

ctx-ecid
The Execution Context ID (ECID). The ECID is a globally unique identifier associated
with the execution of a particular request.

ctx-rid
The Relationship ID (RID). The RID distinguishes the work done in one thread on one
process, from work done by any other threads on this and other processes on behalf
of the same request.

If the diagnostic context does not exist, or the values of the ECID and RID are not
available in the diagnostic context, a hyphen (-) is logged as their values. For more
information about the ECID and RID, see Correlating Messages Across Log Files and
Components in Administering Oracle Fusion Middleware.

Chapter 2
Setting Up HTTP Access Logs

2-10

Creating Custom Field Identifiers
You can also create user-defined fields for inclusion in an HTTP access log file that uses the
extended log format (ELF). To create a custom field, you identify the field in the ELF log file
using the Fields directive and then you create a matching Java class that generates the
desired output. You can create a separate Java class for each field, or the Java class can
output multiple fields. For a sample of the Java source for such a class, see Example 2-1.

To create a custom field:

1. Include the field name in the Fields directive, using the form:

x-myCustomField.

Where myCustomField is a fully-qualified class name.

See Creating the Fields Directive.

2. Create a Java class with the same fully-qualified class name as the custom field you
defined with the Fields directive (for example myCustomField). This class defines the
information you want logged in your custom field. The Java class must implement the
following interface:

weblogic.servlet.logging.CustomELFLogger

In your Java class, you must implement the logField() method, which takes a
HttpAccountingInfo object and FormatStringBuffer object as its arguments:

• Use the HttpAccountingInfo object to access HTTP request and response data that
you can output in your custom field. Getter methods are provided to access this
information. For a complete listing of these get methods, see Get Methods of the
HttpAccountingInfo Object.

• Use the FormatStringBuffer class to create the contents of your custom field.
Methods are provided to create suitable output.

3. Compile the Java class and add the class to the CLASSPATH statement used to start
WebLogic Server. You will probably need to modify the CLASSPATH statements in the
scripts that you use to start WebLogic Server.

Note:

Do not place this class inside of a Web application or Enterprise application in
exploded or jar format.

4. Configure WebLogic Server to use the extended log format. See Setting Up HTTP
Access Logs by Using Extended Log Format.

Chapter 2
Setting Up HTTP Access Logs

2-11

Note:

When writing the Java class that defines your custom field, do not
execute any code that is likely to slow down the system (For instance,
accessing a DBMS or executing significant I/O or networking calls.)
Remember, an HTTP access log file entry is created for every HTTP
request.

Note:

If you want to output more than one field, delimit the fields with a tab
character. For more information on delimiting fields and other ELF
formatting issues, see "Extended Log Format" at http://
www.w3.org/TR/WD-logfile-960221.html.

• Get Methods of the HttpAccountingInfo Object

Get Methods of the HttpAccountingInfo Object
The following methods return various data regarding the HTTP request. These
methods are similar to various methods of javax.servlet.ServletRequest,
javax.servlet.http.Http.ServletRequest, and
javax.servlet.http.HttpServletResponse.

The Javadoc for these interfaces is available at the following locations:

• https://javaee.github.io/javaee-spec/javadocs/javax/servlet/ServletRequest.html

• https://javaee.github.io/javaee-spec/javadocs/javax/servlet/ServletResponse.html

• https://javaee.github.io/javaee-spec/javadocs/javax/servlet/http/
HttpServletRequest.html

For details about these methods, see the corresponding methods in the Java
interfaces listed in the following table, or refer to the specific information contained in
this table.

Table 2-2 Getter Methods of HttpAccountingInfo

HttpAccountingInfo Methods Method Information

Object getAttribute(String name); javax.servlet.ServletRequest
Enumeration getAttributeNames(); javax.servlet.ServletRequest
String getCharacterEncoding(); javax.servlet.ServletRequest
int getResponseContentLength(); javax.servlet.ServletResponse.setContentLen

gth()
This method gets the content length of the response, as
set with the setContentLength() method.

String getContentType(); javax.servlet.ServletRequest
Locale getLocale(); javax.servlet.ServletRequest
Enumeration getLocales(); javax.servlet.ServletRequest

Chapter 2
Setting Up HTTP Access Logs

2-12

http://www.w3.org/TR/WD-logfile-960221.html
http://www.w3.org/TR/WD-logfile-960221.html
https://javaee.github.io/javaee-spec/javadocs/javax/servlet/ServletRequest.html
https://javaee.github.io/javaee-spec/javadocs/javax/servlet/ServletResponse.html
https://javaee.github.io/javaee-spec/javadocs/javax/servlet/http/HttpServletRequest.html
https://javaee.github.io/javaee-spec/javadocs/javax/servlet/http/HttpServletRequest.html

Table 2-2 (Cont.) Getter Methods of HttpAccountingInfo

HttpAccountingInfo Methods Method Information

String getParameter(String name); javax.servlet.ServletRequest
Enumeration getParameterNames(); javax.servlet.ServletRequest
String[] getParameterValues(String name); javax.servlet.ServletRequest
String getProtocol(); javax.servlet.ServletRequest
String getRemoteAddr(); javax.servlet.ServletRequest
String getRemoteHost(); javax.servlet.ServletRequest
String getScheme(); javax.servlet.ServletRequest
String getServerName(); javax.servlet.ServletRequest
int getServerPort(); javax.servlet.ServletRequest
boolean isSecure(); javax.servlet.ServletRequest
String getAuthType(); javax.servlet.http.HttpServletRequest
String getContextPath(); javax.servlet.http.HttpServletRequest
Cookie[] getCookies(); javax.servlet.http.HttpServletRequest
long getDateHeader(String name); javax.servlet.http.HttpServletRequest
String getHeader(String name); javax.servlet.http.HttpServletRequest
Enumeration getHeaderNames(); javax.servlet.http.HttpServletRequest
Enumeration getHeaders(String name); javax.servlet.http.HttpServletRequest
int getIntHeader(String name); javax.servlet.http.HttpServletRequest
String getMethod(); javax.servlet.http.HttpServletRequest
String getPathInfo(); javax.servlet.http.HttpServletRequest
String getPathTranslated(); javax.servlet.http.HttpServletRequest
String getQueryString(); javax.servlet.http.HttpServletRequest
String getRemoteUser(); javax.servlet.http.HttpServletRequest
String getRequestURI(); javax.servlet.http.HttpServletRequest
String getRequestedSessionId(); javax.servlet.http.HttpServletRequest
String getServletPath(); javax.servlet.http.HttpServletRequest
Principal getUserPrincipal(); javax.servlet.http.HttpServletRequest
boolean isRequestedSessionIdFromCookie(); javax.servlet.http.HttpServletRequest
boolean isRequestedSessionIdFromURL(); javax.servlet.http.HttpServletRequest
boolean isRequestedSessionIdFromUrl(); javax.servlet.http.HttpServletRequest
boolean isRequestedSessionIdValid(); javax.servlet.http.HttpServletRequest
byte[] getURIAsBytes(); Returns the URI of the HTTP request as byte array. For

example, If GET /index.html HTTP/1.0 is the first
line of an HTTP Request, /index.html is returned as
an array of bytes.

long getInvokeTime(); Returns the starting time of currentTimeMillis().

To get the length of time taken by the servlet to send the
response to the client, use the following code:

long milsec = System.currentTimeMillis() -
metrics.getInvokeTime();
Float sec = new Float(milsec / 1000.0);

Chapter 2
Setting Up HTTP Access Logs

2-13

Table 2-2 (Cont.) Getter Methods of HttpAccountingInfo

HttpAccountingInfo Methods Method Information

int getResponseStatusCode(); javax.servlet.http.HttpServletResponse
String getResponseHeader(String name); javax.servlet.http.HttpServletResponse

Example 2-1 Java Class for Creating a Custom ELF Field

import weblogic.servlet.logging.CustomELFLogger;
import weblogic.servlet.logging.FormatStringBuffer;
import weblogic.servlet.logging.HttpAccountingInfo;
/* This example outputs the User-Agent field into a
 custom field called MyCustomField
*/
public class MyCustomField implements CustomELFLogger{
public void logField(HttpAccountingInfo metrics,
 FormatStringBuffer buff) {
 buff.appendValueOrDash(metrics.getHeader("User-Agent"));
 }
}

Preventing POST Denial-of-Service Attacks
A Denial-of-Service attack is a malicious attempt to overload a server with phony
requests. One common type of attack is to send huge amounts of data in an HTTP
POST method. You can set three attributes in WebLogic Server that help prevent this
type of attack. These attributes are set in the Console, under Servers or Virtual Hosts.
If you define these attributes for a virtual host, the values set for the virtual host
override those set under Servers.

PostTimeoutSecs
Amount of time that WebLogic Server waits between receiving chunks of data in an
HTTP POST.
The default value for PostTimeoutSecs is 30.

MaxPostTimeSecs
Maximum time that WebLogic Server spends receiving post data. If this limit is
triggered, a PostTimeoutException is thrown and the following message is sent to the
server log:
Post time exceeded MaxPostTimeSecs.
The default value for MaxPostTimeSecs is 30.

MaxPostSize
Maximum number of bytes of data received from a single request. The configuration
controls both POST and PUT requests. If the requested data exceeds the
MaxPostSize, the system throws MaxPostSizeExceeded exception and sends the
following message to the server log:
POST size exceeded the parameter MaxPostSize.
• If the request contains chunked transfer encoding and the requested data

exceeds the MaxPostSize, MaxPostSizeException is thrown.

Chapter 2
Preventing POST Denial-of-Service Attacks

2-14

• If the request comprises of content-length set and the requested data exceeds the
MaxPostSize, the message POST size exceeded the parameter MaxPostSize.
is written to server log and an HTTP error code 413 (Request Entity Too Large) is sent
back to the client.

The default value for MaxPostSize is -1.

Setting Up WebLogic Server for HTTP Tunneling
HTTP tunneling provides a way to simulate a stateful socket connection between WebLogic
Server and a Java client when your only option is to use the HTTP protocol.

It is generally used to tunnel through an HTTP port in a security firewall. HTTP is a stateless
protocol, but WebLogic Server provides tunneling functionality to make the connection appear
to be a regular T3Connection. However, you can expect some performance loss in
comparison to a normal socket connection.

• Configuring the HTTP Tunneling Connection

• Connecting to WebLogic Server from the Client

Configuring the HTTP Tunneling Connection
Under the HTTP protocol, a client may only make a request, and then accept a reply from a
server. The server may not voluntarily communicate with the client, and the protocol is
stateless, meaning that a continuous two-way connection is not possible.

WebLogic HTTP tunneling simulates a T3Connection via the HTTP protocol, overcoming
these limitations. There are attributes that you can configure in the WebLogic Server
Administration Console to tune a tunneled connection for performance. It is advised that you
leave them at their default settings unless you experience connection problems. These
properties are used by the server to determine whether the client connection is still valid, or
whether the client is still alive.

Enable Tunneling
Enables or disables HTTP tunneling. HTTP tunneling is disabled by default.
Note that the server must also support both the HTTP and T3 protocols in order to use HTTP
tunneling.

Tunneling Client Ping
When an HTTP tunnel connection is set up, the client automatically sends a request to the
server, so that the server may volunteer a response to the client. The client may also include
instructions in a request, but this behavior happens regardless of whether the client
application needs to communicate with the server. If the server does not respond (as part of
the application code) to the client request within the number of seconds set in this attribute, it
does so anyway. The client accepts the response and automatically sends another request
immediately.
Default is 45 seconds; valid range is 20 to 900 seconds.

Tunneling Client Timeout
If the number of seconds set in this attribute have elapsed since the client last sent a request
to the server (in response to a reply), then the server regards the client as dead, and
terminates the HTTP tunnel connection. The server checks the elapsed time at the interval
specified by this attribute, when it would otherwise respond to the client's request.
Default is 40 seconds; valid range is 10 to 900 seconds.

Chapter 2
Setting Up WebLogic Server for HTTP Tunneling

2-15

Connecting to WebLogic Server from the Client
When your client requests a connection with WebLogic Server, all you need to do in
order to use HTTP tunneling is specify the HTTP protocol in the URL. For example:

Hashtable env = new Hashtable();
env.put(Context.PROVIDER_URL, "http://wlhost:80");
Context ctx = new InitialContext(env);

On the client side, a special tag is appended to the http protocol, so that WebLogic
Server knows this is a tunneling connection, instead of a regular HTTP request. Your
application code does not need to do any extra work to make this happen.

The client must specify the port in the URL, even if the port is 80. You can set up your
WebLogic Server instance to listen for HTTP requests on any port, although the most
common choice is port 80 since requests to port 80 are customarily allowed through a
firewall.

You specify the listen port for WebLogic Server in the WebLogic Server Administration
Console under the "Servers" node, under the "Network" tab.

Using Native I/O for Serving Static Files (Windows Only)
When running WebLogic Server on Windows NT/2000/XP you can specify that
WebLogic Server use the native operating system call TransmitFile instead of using
Java methods to serve static files such as HTML files, text files, and image files. Using
native I/O can provide performance improvements when serving larger static files.

To use native I/O, add two parameters to the web.xml deployment descriptor of a Web
application containing the files to be served using native I/O. The first parameter,
weblogic.http.nativeIOEnabled should be set to TRUE to enable native I/O file
serving. The second parameter, weblogic.http.minimumNativeFileSize sets the
minimum file size for using native I/O. If the file being served is larger than this value,
native I/O is used. If you do not specify this parameter, a value of 4K is used by
default.

Generally, native I/O provides greater performance gains when serving larger files.
However, as the load on the machine running WebLogic Server increases, these gains
diminish. You may need to experiment to find the correct value for
weblogic.http.minimumNativeFileSize.

The following example shows the complete entries that should be added to the
web.xml deployment descriptor. These entries must be placed in the web.xml file after
the <distributable> element and before the <servlet> element.

<context-param>
 <param-name>weblogic.http.nativeIOEnabled</param-name>
 <param-value>TRUE</param-value>
</context-param>
<context-param>
 <param-name>weblogic.http.minimumNativeFileSize</param-name>
 <param-value>500</param-value>
</context-param>

weblogic.http.nativeIOEnabled can also be set as a context parameter in the
FileServlet.

Chapter 2
Using Native I/O for Serving Static Files (Windows Only)

2-16

3
Using Work Managers to Optimize Scheduled
Work

WebLogic Server helps you determine how your application prioritizes the execution of its
work using a Work Manager. Based on rules you define and by monitoring actual runtime
performance, WebLogic Server can optimize the performance of your application and
maintain service-level agreements. You define the rules and constraints for your application
by defining a Work Manger and applying it either globally to a WebLogic Server domain or to
a specific application component.

• Understanding How WebLogic Server Uses Thread Pools
WebLogic Server uses a thread pool to execute various types of work and prioritizes the
execution of work based on the rules and the run-time metrics you define in the Work
Manager.

• Understanding Work Managers
WebLogic Server prioritizes work and allocates threads based on an execution model
that takes into account administrator-defined parameters and actual run-time
performance and throughput.

• Work Manager Scope
Essentially, there are three types of Work Managers, each one characterized by its scope
and how it is defined and used.

• Using Work Managers, Request Classes, and Constraints
Work Managers, Request Classes, and Constraints require a definition and a mapping.

• Deployment Descriptor Examples
Examine examples for defining Work Managers in various types of deployment
descriptors.

• Work Managers and Execute Queues
Learn how to enable backward compatibility with Execute Queues and how to migrate
applications from using Execute Queues to Work Managers.

• Accessing Work Managers Using MBeans

• Using CommonJ With WebLogic Server
WebLogic Server Work Managers provide server-level configuration that allows
administrators a way to set dispatch-policies to their servlets and EJBs. WebLogic Server
provides a programmatic way of handling work from within an application by
implementing the commonj.work and commonj.timers packages of the CommonJ
specification.

Understanding How WebLogic Server Uses Thread Pools
WebLogic Server uses a thread pool to execute various types of work and prioritizes the
execution of work based on the rules and the run-time metrics you define in the Work
Manager.

In previous versions of WebLogic Server, processing was performed in multiple execute
queues. Different classes of work were executed in different queues, based on priority and

3-1

ordering requirements, and to avoid deadlocks. In addition to the default execute
queue, weblogic.kernel.default, there were pre-configured queues dedicated to
internal administrative traffic, such as weblogic.admin.HTTP and weblogic.admin.RMI.

You could control thread usage by altering the number of threads in the default queue,
or configure custom execute queues to ensure that particular applications had access
to a fixed number of execute threads, regardless of overall system load.

Now WebLogic Server uses a single thread pool, in which all types of work are
executed. WebLogic Server prioritizes work based on rules you define, and run-time
metrics, including the actual time it takes to execute a request and the rate at which
requests are entering and leaving the pool.

The common thread pool changes its size automatically to maximize throughput. The
queue monitors throughput over time and based on history, determines whether to
adjust the thread count. For example, if historical throughput statistics indicate that a
higher thread count increased throughput, WebLogic increases the thread count.
Similarly, if statistics indicate that fewer threads did not reduce throughput, WebLogic
decreases the thread count. This new strategy makes it easier for administrators to
allocate processing resources and manage performance, avoiding the effort and
complexity involved in configuring, monitoring, and tuning custom executes queues.

Understanding Work Managers
WebLogic Server prioritizes work and allocates threads based on an execution model
that takes into account administrator-defined parameters and actual run-time
performance and throughput.

Administrators can configure a set of scheduling guidelines and associate them with
one or more applications, or with particular application components. For example, you
can associate one set of scheduling guidelines for one application, and another set of
guidelines for other applications. At run time, WebLogic Server uses these guidelines
to assign pending work and enqueued requests to execution threads.

Note:

Work requests from all Work Managers are executed by a single thread pool;
separate thread pools are not created for each Work Manager.

To manage work in your applications, you define one or more of the following Work
Manager components:

• Fair Share Request Class

• Response Time Request Class

• Min Threads Constraint

• Max Threads Constraint

• Capacity Constraint

• Context Request Class

See Request Classes or Constraints.

Chapter 3
Understanding Work Managers

3-2

You can use any of these Work Manager components to control the performance of your
application by referencing the name of the component in the application deployment
descriptor. In addition, you may define a Work Manager that encapsulates all of the above
components (except Context Request Class; see Example 3-3) and reference the name of
the Work Manager in your application's deployment descriptor. You can define multiple Work
Managers—the appropriate number depends on how many distinct demand profiles exist
across the applications you host on WebLogic Server.

You can configure Work Managers at the domain level, application level, and module level in
one of the following configuration files, or by using the WebLogic Server Administration
Console:

• config.xml—Work Managers specified in config.xml can be assigned to any
application, or application component, in the domain.

• weblogic-application.xml—Work Managers specified at the application level can be
assigned to that application, or any component of that application.

• weblogic-ejb-jar.xml or weblogic.xml—Work Managers specified at the component
level can be assigned to that component.

• weblogic.xml—Work Managers specified for a Web application.

Example 3-1 is an example of a Work Manager definition.

• Request Classes

• Constraints

• Stuck Thread Handling

Example 3-1 Work Manager Stanza

<work-manager>
<name>highpriority_workmanager</name>
 <fair-share-request-class>
 <name>high_priority</name>
 <fair-share>100</fair-share>
 </fair-share-request-class>
 <min-threads-constraint>
 <name>MinThreadsCountFive</name>
 <count>5</count>
 </min-threads-constraint>
</work-manager>

To assign the Work Manager in Example 3-1 to control the dispatch policy of the entire Web
application, add the code in Example 3-2 to the Web application's weblogic.xml file:

Example 3-2 Referencing the Work Manager in a Web Application

<wl-dispatch-policy>highpriority-workmanager</wl-dispatch-policy>

To assign the Work Manager to control the dispatch policy of a particular servlet, add the
following code to the Web application's web.xml file:

<servlet>
 ...
 <init-param>
 <param-name>wl-dispatch-policy</param-name>
 <param-value>highpriority_workmanager</param-value>
 </init-param>
 ...
</servlet>

Chapter 3
Understanding Work Managers

3-3

The components you can define and use in a Work Manager are described in following
sections:

• Request Classes

• Constraints

• Stuck Thread Handling

• Self-Tuning Thread Pool

Request Classes
A request class expresses a scheduling guideline that WebLogic Server uses to
allocate threads to requests. Request classes help ensure that high priority work is
scheduled before less important work, even if the high priority work is submitted after
the lower priority work. WebLogic Server takes into account how long it takes for
requests to each module to complete.

Request classes define a best effort. They do not guarantee that the configured ratio
will be maintained consistently. The observed ratio may vary due to several factors
during a period of sufficient demand, such as:

• The mixture of requests from different request classes in the queue at any
particular time. For example, more requests than the configured ratio may be
processed for a lower priority request class if there are not enough requests from a
higher priority request class in the Work Manager queue.

• Because the ratio is specified in terms of thread-usage time, a larger number of
shorter requests could be processed in the same amount of thread-usage time as
a smaller number of time-consuming requests.

There are multiple types of request classes, each of which expresses a scheduling
guideline in different terms. A Work Manager may specify only one request class.

• fair-share-request-class—Specifies the average thread-use time required to
process requests. The default fair share value is 50.

For example, assume that WebLogic Server is running two modules. The Work
Manager for ModuleA specifies a fair-share-request-class of 80 and the Work
Manager for ModuleB specifies a fair-share-request-class of 20.

During a period of sufficient demand, with a steady stream of requests for each
module such that the number requests exceed the number of threads, WebLogic
Server will allocate 80% and 20% of the thread-usage time to ModuleA and
ModuleB, respectively.

Note:

The value of a fair share request class is specified as a relative value,
not a percentage. Therefore, in the above example, if the request
classes were defined as 400 and 100, they would still have the same
relative values.

A work manager will be assigned a fair share request class with a default fair
share value of 50 if no request class is explicitly configured.

Chapter 3
Understanding Work Managers

3-4

• response-time-request-class—Specifies a response time goal in milliseconds.
Response time goals are not applied to individual requests. Instead, WebLogic Server
computes a tolerable waiting time for requests with that class by subtracting the observed
average thread use time from the response time goal, and schedules requests so that the
average wait for requests with the class is proportional to its tolerable waiting time.

There is no default response time value in response time requests classes. A response
time goal must be specified for each response time request class.

For example, given that ModuleA and ModuleB in the previous example, have response
time goals of 2000 ms and 5000 ms, respectively, and the actual thread use time for an
individual request is less than its response time goal. During a period of sufficient
demand, with a steady stream of requests for each module such that the number of
requests exceed the number of threads, and no "think time" delays between response
and request, WebLogic Server will schedule requests for ModuleA and ModuleB to keep
the average response time in the ratio 2:5. The actual average response times for
ModuleA and ModuleB might be higher or lower than the response time goals, but will be a
common fraction or multiple of the stated goal. For example, if the average response time
for ModuleA requests is 1,000 ms., the average response time for ModuleB requests is
2,500 ms.

The previous sections described request classes based on fair share and response time
by relating the scheduling to other work using the same request class. A mix of fair share
and response time request classes is scheduled with a marked bias in favor of response
time scheduling.

The scheduling priorities of fair share and response time request classes are maintained
separately. It it not possible to determine the relative priorities between a fair share
request class and a response time request class. If it is important to maintain relative
scheduling priorities of a set of work managers, they should all be configured with either
response time request classes or fair share request classes.

• context-request-class—Assigns request classes to requests based on context
information, such as the current user or the current user's group.

For example, the context-request-class in Example 3-3 assigns a request class to
requests based on the value of the request's subject and role properties.

The high_fairshare and low_fairshare request classes referenced by the
context_workmanager in Example 3-3 could be defined in the config.xml as follows:

<self-tuning>
 ...
 <fair-share-request-class>
 <name>high_fairshare</name>
 <target>myserver</target>
 <fair-share>75</fair-share>
 </fair-share-request-class>
 <fair-share-request-class>
 <name>low_fairshare</name>
 <target>myserver</target>
 <fair-share>25</fair-share>
 </fair-share-request-class>
 ...
</self-tuning>

Chapter 3
Understanding Work Managers

3-5

Note:

If a Web application's Work Manager references a context request class,
the first user call will go through the default request class; subsequent
calls in same session will go through the user-defined request class.

When using context request classes, set session timeout values to
prevent sessions from expiring while requests wait in the Work Manager
queue.

Example 3-3 Context Request Class

<work-manager>
 <name>context_workmanager</name>
 <context-request-class>
 <name>test_context</name>
 <context-case>
 <user-name>system</user-name>
 <request-class-name>high_fairshare</request-class-name>
 </context-case>
 <context-case>
 <group-name>everyone</group-name>
 <request-class-name>low_fairshare</request-class-name>
 </context-case>
 </context-request-class>
</work-manager>

Constraints
A constraint defines minimum and maximum numbers of threads allocated to execute
requests and the total number of requests that can be queued or executing before
WebLogic Server begins rejecting requests.

You can define the following types of constraints:

• max-threads-constraint—Limits the number of concurrent threads executing
requests from the constrained work set. The default is unlimited. For example,
consider a constraint defined with maximum threads of 10 and shared by 3 entry
points. The scheduling logic ensures that not more than 10 threads are executing
requests from the three entry points combined.

You can define a max-threads-constraint in terms of a the availability of the
resource that requests depend upon, such as a connection pool.

A max-threads-constraint might, but does not necessarily, prevent a request
class from taking its fair share of threads or meeting its response time goal. Once
the constraint is reached the server does not schedule requests of this type until
the number of concurrent executions falls below the limit. The server then
schedules work based on the fair share or response time goal.

• min-threads-constraint—Guarantees the number of threads the server will
allocate to affected requests to avoid deadlocks. The default is zero. A min-
threads-constraint value of one is useful, for example, for a replication update
request, which is called synchronously from a peer.

A min-threads-constraint might not necessarily increase a fair share. This type
of constraint has an effect primarily when the server instance is close to a

Chapter 3
Understanding Work Managers

3-6

deadlock condition. In that case, the constraint will cause WebLogic Server to schedule a
request even if requests in the service class have gotten more than its fair share recently.

• capacity—Causes the server to reject requests only when it has reached its capacity.
The default is -1. Note that the capacity includes all requests, queued or executing, from
the constrained work set. Work is rejected either when an individual capacity threshold is
exceeded or if the global capacity is exceeded. This constraint is independent of the
global queue threshold.

Note that the capacity constraint is not enforced if the request is made by a user
belonging to the WebLogic Server Administrators group.

Stuck Thread Handling
In response to stuck threads, you can define a Stuck Thread Work Manager component that
can shut down the Work Manager, move the application into admin mode, or mark the server
instance as failed.

For example, the Work Manager defined in Example 3-4 shuts down the Work Manager when
two threads are stuck for longer than 30 seconds.

Example 3-4 Stuck-Thread Work Manager

<work-manager>
 <name>stuckthread_workmanager</name>
 <work-manager-shutdown-trigger>
 <max-stuck-thread-time>30</max-stuck-thread-time>
 <stuck-thread-count>2</stuck-thread-count>
 </work-manager-shutdown-trigger>
</work-manager>

Self-Tuning Thread Pool
WebLogic Server maintains three groups of threads for the self-tuning thread pool:

• Running threads: threads that are currently executing work requests submitted to Work
Managers

• Idle threads: threads that are idly waiting for a work request

Idle threads include threads that have completed their previous work requests and are
waiting for new requests, as well as threads that are created by the self-tuning thread
pool based on usage statistics in order to anticipate future workload.

• Standby threads: threads that are not currently processing or waiting for work requests

Standby threads do not count toward the self-tuning thread pool thread count. When the
self-tuning thread pool decides to decrease the thread count based on usage statistics,
threads are moved from the group of idle threads into the group of standby threads.
Conversely, when the self-tuning thread pool decides to increase the thread count, it first
tries to find threads in the standby thread group to move to the idle thread group. The
self-tuning thread pool only creates new threads if there are not enough threads in the
standby group.

Threads are shut down when the number of standby threads reaches an internal
maximum limit of 256. Ideally, a number of standby threads are ready if WebLogic Server
needs to increase the self-tuning thread pool count occurs so that the WebLogic Server
instance can avoid creating new threads at a time when workload is high. Standby
threads can also be created and used to satisfy minimum threads constraints. See
Constraints.

Chapter 3
Understanding Work Managers

3-7

• Self-Tuning Thread Pool Size

• ThreadLocal Clean Out

Self-Tuning Thread Pool Size
By default, the self-tuning thread pool size limit is 400. This limit includes all running
and idle threads, but does not include any standby threads. You can configure the limit
using the SelfTuningThreadPoolSizeMax attribute in the KernelMBean. You may
choose a higher size limit if your system can support additional workload even when
the self-tuning thread pool has reached its upper thread count limit. Contrarily, you
may choose to lower the limit if your system resources, such as CPU, become
overloaded at a lower thread count. However, if lowering the
SelfTuningThreadPoolSizeMax limit, note that if the value is set too low, the self-tuning
thread pool may not be allowed to create enough threads to handle the system
workload. This could result in a backlog of pending work requests on some Work
Managers.

Note:

Minimum threads constraints can affect the number of threads that are
executing work requests for Work Managers, especially if the WebLogic
Server instance is under heavy load.

The self-tuning thread pool does not consider the SelfTuningThreadPoolSizeMax
attribute when creating a new standby thread to process incoming work requests for a
Work Manager to satisfy its allocated minimum threads constraint. This is due to the
importance of allocating threads for processing work requests for Work Managers with
minimum threads constraints, which are designed to be used to avoid server-to-server
deadlocks.

As a result, the maximum possible number of threads maintained by the self-tuning
thread pool is the sum of the configured SelfTuningThreadPoolSizeMax attribute value
and the sum of the values for all minimum threads constraints configured in the
WebLogic Server instance, assuming a worst-case scenario where the configured
number of threads are allocated to all configured minimum threads constraints.

ThreadLocal Clean Out
To clean up stray ThreadLocal use by applications and third-party libraries, configure
the eagerThreadLocalCleanup attribute in the KernelMBean. The
eagerThreadLocalCleanup attribute specifies whether to clean up all ThreadLocal
storage from self-tuning thread pools after they have finished processing each work
request.

By default, the eagerThreadLocalCleanup attribute is set to false, in which the self-
tuning thread pool only cleans up ThreadLocal storage when a thread returns to a
standby pool and after an application is undeployed.

Setting the eagerThreadLocalCleanup attribute to true ensures that all thread pool
threads have no leftover ThreadLocal values from previous requests when running
work for a new request. However, overhead occurs from cleaning up ThreadLocal
storage after each work request and then reestablishing ThreadLocal values for each

Chapter 3
Understanding Work Managers

3-8

new request. Since some applications cache objects that are expensive to create in the
ThreadLocal storage, cleaning up ThreadLocal values after each request may negatively
impact performance on those applications.

Work Manager Scope
Essentially, there are three types of Work Managers, each one characterized by its scope and
how it is defined and used.

• The Default Work Manager

• Global Work Managers

• Application-scoped Work Managers

The Default Work Manager
To handle thread management and perform self-tuning, WebLogic Server implements a
default Work Manager. This Work Manager is used by an application when no other Work
Managers are specified in the application's deployment descriptors.

In many situations, the default Work Manager may be sufficient for most application
requirements. WebLogic Server thread-handling algorithms assign each application its own
fair share by default. Applications are given equal priority for threads and are prevented from
monopolizing them.

• Overriding the Default Work Manager

• When to Use Work Managers

Overriding the Default Work Manager
You can override the behavior of the default Work Manager by creating and configuring a
global Work Manager called default. This allows you to control the default thread-handling
behavior of WebLogic Server.

Note:

When you override the default Work Manager, all instances are overridden.

When to Use Work Managers
Use the following guidelines to determine when you might want to use Work Managers to
customize thread management:

Note:

To use Work Manager, it is mandatory to meet one of the guidelines.

• The default fair share (50) is not sufficient.

Chapter 3
Work Manager Scope

3-9

This usually occurs in situations where one application needs to be given a higher
priority over another.

• A response time goal is required.

• A minimum thread constraint needs to be specified to avoid server deadlock

Global Work Managers
You can create global Work Managers that are available to all applications and
modules deployed on a server, in the WebLogic Server Administration Console and in
config.xml.

An application uses a globally-defined Work Manager as a template. Each application
creates its own instance which handles the work associated with that application and
separates that work from other applications. This separation is used to handle traffic
directed to two applications which are using the same dispatch policy. Handling each
application's work separately, allows an application to be shut down without affecting
the thread management of another application. Although each application implements
its own Work Manager instance, the underlying components are shared.

Application-scoped Work Managers
In addition to globally-scoped Work Managers, you can also create Work Managers
that are available only to a specific application or module. You can define application-
scoped Work Managers in the WebLogic Server Administration Console and in the
following descriptors:

• weblogic-application.xml
• weblogic-ejb-jar.xml
• weblogic.xml
If you do not explicitly assign a Work Manager to an application, it uses the default
Work Manager.

A method is assigned to a Work Manager, using the <dispatch-policy> element in the
deployment descriptor. The <dispatch-policy> can also identify a custom execute
queue, for backward compatibility. For an example, see Example 3-2.

Using Work Managers, Request Classes, and Constraints
Work Managers, Request Classes, and Constraints require a definition and a mapping.

• A definition. You may define Work Managers, Request Classes, or Constraints
globally in the domain's configuration using the WebLogic Server Administration
Console, (see Environments > Work Managers in the WebLogic Server
Administration Console) or you may define them in one of the deployment
descriptors listed previously. In either case, you assign a name to each.

• A mapping. In your deployment descriptors you reference one of the Work
Managers, Request Classes, or Constraints by its name.

• Dispatch Policy for EJB

• Dispatch Policy for Web Applications

Chapter 3
Using Work Managers, Request Classes, and Constraints

3-10

Dispatch Policy for EJB
weblogic-ejb-jar.xml—The value of the existing dispatch-policy tag under weblogic-
enterprise-bean can be a named dispatch-policy. For backwards compatibility, it can also
name an ExecuteQueue. In addition, Oracle allows dispatch-policy, max-threads, and min-
threads, to specify named (or unnamed with a numeric value for constraints) policy and
constraints for a list of methods, analogously to the present isolation-level tag.

Dispatch Policy for Web Applications
weblogic.xml—Also supports mappings analogous to the filter-mapping of the web.xml,
where named dispatch-policy, max-threads, or min-threads are mapped for url-patterns or
servlet names.

Deployment Descriptor Examples
Examine examples for defining Work Managers in various types of deployment descriptors.

For additional and detailed reference, see the schema for these deployment descriptors:

• weblogic-ejb-jar.xml schema: http://xmlns.oracle.com/weblogic/weblogic-ejb-
jar/1.7/weblogic-ejb-jar.xsd

• weblogic-application.xml schema: http://xmlns.oracle.com/weblogic/weblogic-
application/1.8/weblogic-application.xsd

• weblogic.xml schema: See weblogic.xml Deployment Descriptor Elements in Developing
Web Applications, Servlets, and JSPs for Oracle WebLogic Server.

Example 3-5 weblogic-ejb-jar.xml With Work Manager Entries

<weblogic-ejb-jar xmlns="http://xmlns.oracle.com/weblogic/weblogic-ejb-jar"
 xmlns:j2ee="http://java.sun.com/xml/ns/j2ee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://xmlns.oracle.com/weblogic/weblogic-ejb-jar
 http://xmlns.oracle.com/weblogic/weblogic-ejb-jar/1.7/weblogic-ejb-jar.xsd">

<weblogic-enterprise-bean>
 <ejb-name>WorkEJB</ejb-name>
 <jndi-name>core_work_ejb_workbean_WorkEJB</jndi-name>
 <dispatch-policy>weblogic.kernel.System</dispatch-policy>
</weblogic-enterprise-bean>

<weblogic-enterprise-bean>
 <ejb-name>NonSystemWorkEJB</ejb-name>
 <jndi-name>core_work_ejb_workbean_NonSystemWorkEJB</jndi-name>
 <dispatch-policy>workbean_workmanager</dispatch-policy>
</weblogic-enterprise-bean>

<weblogic-enterprise-bean>
 <ejb-name>MinThreadsWorkEJB</ejb-name>
 <jndi-name>core_work_ejb_workbean_MinThreadsWorkEJB</jndi-name>
 <dispatch-policy>MinThreadsCountFive</dispatch-policy>
</weblogic-enterprise-bean>

<work-manager>
 <name>workbean_workmanager</name>

Chapter 3
Deployment Descriptor Examples

3-11

http://xmlns.oracle.com/weblogic/weblogic-ejb-jar/1.7/weblogic-ejb-jar.xsd
http://xmlns.oracle.com/weblogic/weblogic-ejb-jar/1.7/weblogic-ejb-jar.xsd
http://xmlns.oracle.com/weblogic/weblogic-application/1.8/weblogic-application.xsd
http://xmlns.oracle.com/weblogic/weblogic-application/1.8/weblogic-application.xsd

</work-manager>

<work-manager>
 <name>stuckthread_workmanager</name>
 <work-manager-shutdown-trigger>
 <max-stuck-thread-time>30</max-stuck-thread-time>
 <stuck-thread-count>2</stuck-thread-count>
 </work-manager-shutdown-trigger>
</work-manager>

<work-manager>
 <name>minthreads_workmanager</name>
 <min-threads-constraint>
 <name>MinThreadsCountFive</name>
 <count>5</count>
 </min-threads-constraint>
</work-manager>

<work-manager>
 <name>lowpriority_workmanager</name>
 <fair-share-request-class>
 <name>low_priority</name>
 <fair-share>10</fair-share>
 </fair-share-request-class>
</work-manager>

<work-manager>
<name>highpriority_workmanager</name>
 <fair-share-request-class>
 <name>high_priority</name>
 <fair-share>100</fair-share>
 </fair-share-request-class>
</work-manager>

<work-manager>
<name>veryhighpriority_workmanager</name>
 <fair-share-request-class>
 <name>veryhigh_priority</name>
 <fair-share>1000</fair-share>
 </fair-share-request-class>
</work-manager>

The EJBs in Example 3-6 are configured to get as many threads as there are
instances of a resource they depend upon—a connection pool, and an application-
scoped connection pool.

Example 3-6 weblogic-ejb-jar.xml with Connection Pool Based Max Thread
Constraint

<weblogic-ejb-jar xmlns="http://xmlns.oracle.com/weblogic/weblogic-ejb-jar"
 xmlns:j2ee="http://java.sun.com/xml/ns/j2ee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://xmlns.oracle.com/weblogic/weblogic-ejb-jar
 http://xmlns.oracle.com/weblogic/weblogic-ejb-jar/1.7/weblogic-ejb-jar.xsd">

 <weblogic-enterprise-bean>
 <ejb-name>ResourceConstraintEJB</ejb-name>
 <jndi-name>core_work_ejb_resource_ResourceConstraintEJB</jndi-name>
 <dispatch-policy>test_resource</dispatch-policy>
 </weblogic-enterprise-bean>

Chapter 3
Deployment Descriptor Examples

3-12

 <weblogic-enterprise-bean>
 <ejb-name>AppScopedResourceConstraintEJB</ejb-name>
 <jndi-name>core_work_ejb_resource_AppScopedResourceConstraintEJB
 </jndi-name>
 <dispatch-policy>test_appscoped_resource</dispatch-policy>
 </weblogic-enterprise-bean>

<work-manager>
 <name>test_resource</name>
 <max-threads-constraint>
 <name>pool_constraint</name>
 <pool-name>testPool</pool-name>
 </max-threads-constraint>
</work-manager>

<work-manager>
 <name>test_appscoped_resource</name>
 <max-threads-constraint>
 <name>appscoped_pool_constraint</name>
 <pool-name>AppScopedDataSource</pool-name>
 </max-threads-constraint>
</work-manager>
</weblogic-ejb-jar>

Example 3-7 weblogic-ejb-jar.xml with commonJ Work Managers

For information using commonJ, see Using CommonJ With WebLogic Server and the
commonJ Javadocs.

Example 3-8 weblogic-application.xml

<weblogic-application xmlns="http://xmlns.oracle.com/weblogic/weblogic-application"
 xmlns:j2ee="http://java.sun.com/xml/ns/j2ee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://xmlns.oracle.com/weblogic/weblogic-application
 http://xmlns.oracle.com/weblogic/weblogic-web-app/1.9/weblogic-web-app.xsd">

 <max-threads-constraint>
 <name>j2ee_maxthreads</name>
 <count>1</count>
 </max-threads-constraint>

 <min-threads-constraint>
 <name>j2ee_minthreads</name>
 count>1</count>
 </min-threads-constraint>

 <work-manager>
 <name>J2EEScopedWorkManager</name>
 </work-manager>
</weblogic-application>

The Web application in Example 3-9 is deployed as part of the Enterprise application defined
in Example 3-8. This Web application's descriptor defines two Work Managers. Both Work
Managers point to the same max threads constraint, j2ee_maxthreads, which is defined in
the application's weblogic-application.xml file. Each Work Manager specifies a different
response time request class.

Chapter 3
Deployment Descriptor Examples

3-13

Example 3-9 Web Application Descriptor

<weblogic xmlns="http://xmlns.oracle.com/weblogic"
 xmlns:j2ee="http://java.sun.com/xml/ns/j2ee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://xmlns.oracle.com/weblogic
 http://xmlns.oracle.com/weblogic/1.0/weblogic.xsd">

 <work-manager>
 <name>fast_response_time</name>
 <response-time-request-class>
 <name>fast_response_time</name>
 <goal-ms>2000</goal-ms>
 </response-time-request-class>
 <max-threads-constraint-name>j2ee_maxthreads
 </max-threads-constraint-name>
 </work-manager>

 <work-manager>
 <name>slow_response_time</name>
 <max-threads-constraint-name>j2ee_maxthreads
 </max-threads-constraint-name
 <response-time-request-class>
 <name>slow_response_time</name>
 <goal-ms>5000</goal-ms>
 </response-time-request-class>
 </work-manager>

</weblogic>

The descriptor in Example 3-10 defines a Work Manager using the context-request-
class.

Example 3-10 Web Application Descriptor

<?xml version="1.0" encoding="UTF-8"?>
<weblogic-web-app xmlns="http://xmlns.oracle.com/weblogic/weblogic-web-app"
xmlns:j2ee="http://java.sun.com/xml/ns/j2ee"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://xmlns.oracle.com/weblogic/weblogic-web-app
http://xmlns.oracle.com/weblogic/weblogic-web-app/1.9/weblogic-web-app.xsd">
 <work-manager>
 <name>foo-servlet-1</name>
 <request-class-name>test-fairshare2</request-class-name>
 <max-threads-constraint>
 <name>foo-mtc</name>
 <pool-name>oraclePool</pool-name>
 </max-threads-constraint>
 </work-manager>

 <work-manager>
 <name>foo-servlet</name>
 <context-request-class>
 <name>test-context</name>
 <context-case>
 <user-name>anonymous</user-name>
 <request-class-name>test-fairshare1</request-class-name>
 </context-case>

 <context-case>
 <group-name>everyone</group-name>
 </context-request-class>

Chapter 3
Deployment Descriptor Examples

3-14

 </work-manager>
</weblogic-web-app>

Work Managers and Execute Queues
Learn how to enable backward compatibility with Execute Queues and how to migrate
applications from using Execute Queues to Work Managers.

• Enabling Execute Queues

• Migrating from Execute Queues to Work Managers

Enabling Execute Queues
WebLogic Server, Version 8.1, implemented Execute Queues to handle thread management
in which you created thread-pools to determine how workload was handled. WebLogic Server
still provides Execute Queues for backward compatibility, primarily to facilitate application
migration. However, when developing new applications, you should use Work Managers to
perform thread management more efficiently.

You can enable Execute Queues in the following ways:

• Using the command line option -Dweblogic.Use81StyleExecuteQueues=true
• Setting the Use81StyleExecuteQueues property via the Kernel MBean in config.xml.

Enabling Execute Queues disables all Work Manager configuration and thread self tuning.
Execute Queues behave exactly as they did in WebLogic Server 8.1.

When enabled, Work Managers are converted to Execute Queues based on the following
rules:

• If the Work Manager implements a minimum or maximum threads constraint, then an
Execute Queue is created with the same name as the Work Manager. The thread count
of the Execute Queue is based on the value defined in the constraint.

• If the Work Manager does not implement any constraints, the global default Execute
Queue is used.

Migrating from Execute Queues to Work Managers
When an application is migrated from WebLogic Server 8.1, any Execute Queues defined in
the server configuration before migration will still be present. WebLogic Server does not
automatically convert the Execute Queues to Work Managers.

When an 8.1 application implementing Execute Queues is deployed on WebLogic Server 9.x,
the Execute Queues are created to handle thread management for requests. However, only
those requests whose dispatch-policy maps to an Execute Queue will take advantage of this
feature.

Accessing Work Managers Using MBeans
Work Managers can be accessed using the WorkManagerMBean configuration MBean.
WorkManagerMBean is accessed in the runtime tree or configuration tree depending on how
the Work Manager is accessed by an application.

Chapter 3
Work Managers and Execute Queues

3-15

• If the Work Manager is defined at the module level, the WorkManagerRuntime
MBean is available through the corresponding ComponentRuntimeMBean.

• If a Work Manager is defined at the application level, then WorkManagerRuntime
is available through ApplicationRuntime.

• If a Work Manager is defined globally in config.xml, each application creates its
own instance of the Work Manager. Each application has its own corresponding
WorkManagerRuntime available at the application level.

See WorkManagerMBean.

Using CommonJ With WebLogic Server
WebLogic Server Work Managers provide server-level configuration that allows
administrators a way to set dispatch-policies to their servlets and EJBs. WebLogic
Server provides a programmatic way of handling work from within an application by
implementing the commonj.work and commonj.timers packages of the CommonJ
specification.

For specific information on the WebLogic Server implementation of CommonJ, see the
CommonJ Javadocs.

The WebLogic Server implementation of CommonJ enables an application to break a
single request task into multiple work items, and assign those work items to execute
concurrently using multiple Work Managers configured in WebLogic Server.
Applications that do not need to execute concurrent work items can also use
configured Work Managers by referencing or creating Work Managers in their
deployment descriptors or, for Java EE Connectors, using the JCA API.

The following are some differences between the WebLogic Server implementation and
the CommonJ specification:

• The RemoteWorkItem interface is an optional interface provided by the CommonJ
specification and is not supported in WebLogic Server. WebLogic Server
implements its own cluster load balancing and failover policies. Workload
management is based on these policies.

• WebLogic CommonJ timers behave differently than java.util.Timer. When the
execution is greater that twice the period, the WebLogic CommonJ timer will skip
some periods to avoid falling further behind. The java.util.Timer does not do
this.

• In a WebLogic Server environment, the WorkListener.WorkRejected method is
called when a thread becomes stuck.

• Accessing CommonJ Work Managers

• Mapping CommonJ to WebLogic Server Work Managers

Accessing CommonJ Work Managers
Unlike WebLogic Server Work Managers, which can only be accessed from an
application via dispatch policies, you can access CommonJ Work Managers directly
from an application. The following code example demonstrates how to lookup a
CommonJ Work Manager using JNDI:

Chapter 3
Using CommonJ With WebLogic Server

3-16

InitialContext ic = new InitialContext();
commonj.work.WorkManager wm =
(commonj.work.WorkManager)ic.lookup("java:comp/env/wm/myWM");

See CommonJ Javadocs.

Mapping CommonJ to WebLogic Server Work Managers
You can map an externally defined CommonJ Work Manager to a WebLogic Server Work
Manager. For example, if you have a CommonJ Work Manager defined in a descriptor, ejb-
jar.xml, for example, as:

<resource-ref>
 <res-ref-name>minthreads_workmanager</res-ref-name>
 <res-type>commonj.work.WorkManager</res-type>
 <res-auth>Container</res-auth>
 <res-sharing-scope>Shareable</res-sharing-scope>
</resource-ref>

You can link this to a WebLogic Server Work Manager by ensuring that the name element is
identical in the WebLogic Server descriptor such as weblogic-ejb-jar.xml:

<work-manager>
 <name>minthreads_workmanager</name>
 <min-threads-constraint>
 <count>5</count>
 </min-threads-constraint>
</work-manager>

This procedure is similar for a resource-ref defined in web.xml. The WebLogic Server Work
Manager can be defined in either a module descriptor (weblogic-ejb-jar.xml or
weblogic.xml, for example) or in the application descriptor (weblogic-application.xml).

Chapter 3
Using CommonJ With WebLogic Server

3-17

4
Avoiding and Managing Overload

Oracle WebLogic Server has overload protection features that help to detect, avoid, and
recover from overload conditions. These features prevent the negative consequences that
result from continuing to accept requests when the system capacity is reached. These
consequences degrade the application performance and stability.

• Configuring WebLogic Server to Avoid Overload Conditions
When system capacity is reached, if an application server continues to accept requests,
application performance and stability can deteriorate.

• WebLogic Server Self-Monitoring
WebLogic Server self-monitoring features aid in determining and reporting overload
conditions.

• WebLogic Server Exit Codes
When WebLogic Server exits it returns an exit code. The exit codes can be used by shell
scripts or HA agents to decide whether a server restart is necessary.

Configuring WebLogic Server to Avoid Overload Conditions
When system capacity is reached, if an application server continues to accept requests,
application performance and stability can deteriorate.

The following sections demonstrate how you can configure WebLogic Server to minimize the
negative results of system overload.

• Limiting Requests in the Thread Pool

• Limiting HTTP Sessions

• Exit on Out of Memory Exceptions

• Stuck Thread Handling

Limiting Requests in the Thread Pool
In WebLogic Server, all requests, whether related to system administration or application
activity—are processed by a single thread pool. An administrator can throttle the thread pool
by defining a maximum queue length. Beyond the configured value, WebLogic Server will
refuse requests, except for requests on administration channels.

4-1

Note:

Administration channels allow access only to administrators. The limit you
set on the execute length does not effect administration channel requests, to
ensure that reaching the maximum thread pool length does not prevent
administrator access to the system. To limit the number of administration
requests allowed in the thread pool, you can configure an administration
channel, and set the MaxConnectedClients attribute for the channel.

When the maximum number of enqueued requests is reached, WebLogic Server
immediately starts rejecting:

• Web application requests.

• Non-transactional RMI requests with a low fair share, beginning with those with the
lowest fair share.

If the overload condition continues to persist, higher priority requests will start
getting rejected, with the exception of JMS and transaction-related requests, for
which overload management is provided by the JMS and the transaction manager.

Throttle the thread pool by setting the Shared Capacity For Work Managers field in
the WebLogic Server Administration Console (see Environments > Servers >
server_name > Configuration > Overload). The default value of this field is 65536.

• Work Managers and Thread Pool Throttling

Work Managers and Thread Pool Throttling
An administrator can configure Work Managers to manage the thread pool at a more
granular level, for sets of requests that have similar performance, availability, or
reliability requirements. A Work Manager can specify the maximum requests of a
particular request class that can be queued. The maximum requests defined in a Work
Manager works with the global thread pool value. The limit that is reached first is
honored.

See Using Work Managers to Optimize Scheduled Work.

Limiting HTTP Sessions
An administrator can limit the number of active HTTP sessions based on detection of a
low memory condition. This is useful in avoiding out of memory exceptions.

WebLogic Server refuses requests that create new HTTP sessions after the configured
threshold has been reached. In a WebLogic Server cluster, the proxy plug-in redirects
a refused request to another Managed Server in the cluster. A non-clustered server
instance can redirect requests to alternative server instance.

The Servlet container takes one of the following actions when maximum number of
sessions is reached:

• If the server instance is in a cluster, the servlet container throws a
SessionCreationException. Your application code should handle this run-time
exception and send a relevant response.

Chapter 4
Configuring WebLogic Server to Avoid Overload Conditions

4-2

To implement overload protection, you should handle this exception and send a 503
response explicitly. This response can then be handled by the proxy or load balancer.

You set a limit for the number of simultaneous HTTP sessions in the deployment descriptor
for the Web application. For example, the following element sets a limit of 12 sessions:

<session-descriptor>
 <max-in-memory-sessions>12</max-in-memory-sessions>
</session-descriptor>

Exit on Out of Memory Exceptions
Administrators can configure WebLogic Server to exit upon an out of memory exception. This
feature allows you to minimize the impact of the out of memory condition—automatic
shutdown helps avoid application instability, and you can configure Node Manager or another
high availability (HA) tool to automatically restart WebLogic Server, minimizing down-time.

You can configure this using the WebLogic Server Administration Console, or by editing the
following elements in config.xml:

<overload-protection>
 <panic-action>system-exit</panic-action>
</overload-protection>

See the description of the OverloadProtectionMBean in the MBean Reference for Oracle
WebLogic Server.

Stuck Thread Handling
WebLogic Server checks for stuck threads periodically. If all application threads are stuck, a
server instance marks itself failed, if configured to do so, exits. You can configure Node
Manager or a third-party high-availability solution to restart the server instance for automatic
failure recovery.

You can configure these actions to occur when not all threads are stuck, but the number of
stuck threads have exceeded a configured threshold:

• Shut down the Work Manager if it has stuck threads. A Work Manager that is shut down
will refuse new work and reject existing work in the queue by sending a rejection
message. In a cluster, clustered clients will fail over to another cluster member.

• Shut down the application if there are stuck threads in the application. The application is
shutdown by bringing it into admin mode. All Work Managers belonging to the application
are shut down, and behave as described above. Once the stuck thread condition is
cleared, the application automatically returns to running mode.

• Mark the server instance as failed and shut it down it down if there are stuck threads in
the server. In a cluster, clustered clients that are connected or attempting to connect will
fail over to another cluster member.

See the description of the OverloadProtectionMBean in the MBean Reference for Oracle
WebLogic Server.

WebLogic Server Self-Monitoring
WebLogic Server self-monitoring features aid in determining and reporting overload
conditions.

Chapter 4
WebLogic Server Self-Monitoring

4-3

• Overloaded Health State

Overloaded Health State
WebLogic Server has a health state—OVERLOADED—which is returned by the
ServerRuntimeMBean.getHealthState() when a server instance whose life cycle state
is RUNNING becomes overloaded. This condition occurs as a result of low memory.

Upon entering the OVERLOADED state, server instances start rejecting requests from the
Work Manager queue (if a Work Manager is configured), HTTP requests return a 503
Error (Service Unavailable), and RMI requests fail over to another server if clustered,
otherwise, a remote exception is returned to the client.

The server instances health state returns to OK after the overload condition passes. An
administrator can suspend or shut down an OVERLOADED server instance.

WebLogic Server Exit Codes
When WebLogic Server exits it returns an exit code. The exit codes can be used by
shell scripts or HA agents to decide whether a server restart is necessary.

See WebLogic Server Exit Codes and Restarting After Failure in Administering Server
Startup and Shutdown for Oracle WebLogic Server.

Chapter 4
WebLogic Server Exit Codes

4-4

5
Configuring Concurrent Managed Objects

Learn about the Concurrent Managed Objects (CMOs) implemented by Oracle WebLogic
Server to provide support for defining and implementing the Concurrency Utilities for Java EE
(JSR 236).

• About Java EE Concurrency Utilities
The Concurrency Utilities for Java EE (JSR 236) implements a standard API for providing
asynchronous capabilities to Java EE application components such as servlets and
EJBs.

• How Concurrent Managed Objects Provide Concurrency for WebLogic Server Containers
Learn how WebLogic Server provides concurrency capabilities to Java EE applications
by associating the Concurrency Utilities API with the Work Manager to make threads
container-managed.

• Default Java EE CMOs
The Java EE standard specifies that certain default resources be made available to
applications, and defines specific JNDI names for these default resources. WebLogic
Server makes these names available through the use of logical JNDI names, which map
Java EE standard JNDI names to specific WebLogic Server resources.

• Customized CMOs in Configuration Files
You can define the customized CMOs at the application and module level, or referenced
from an application component environment (ENC) that is bound to JNDI.

• Global CMO Templates
In addition to the JSR 236 default CMOs, you can also define global CMOs as templates
in the domain's configuration by using the WebLogic Server Administration Console and
the configuration MBeans.

• Configuring Concurrent Constraints
Constraints can also be defined globally in the domain's configuration using the
WebLogic Server Administration Console and configuration MBeans. Concurrent
constraints specified in the config.xml can be assigned to any application or application
component in the domain.

• Querying CMOs
You can query global CMOs using administrative tools such as Administration Console
and MBeans:

About Java EE Concurrency Utilities
The Concurrency Utilities for Java EE (JSR 236) implements a standard API for providing
asynchronous capabilities to Java EE application components such as servlets and EJBs.

As described in the The Java EE 8 Tutorial, the two main concurrency concepts are
processes and threads:

• Processes are primarily associated with applications running on the operating system
(OS). A process has specific runtime resources to interact with the underlying OS and
allocate other resources, such as its own memory, just as the JVM process does.

5-1

https://javaee.github.io/tutorial/concurrency-utilities.html#GKJIQ8

• Threads share some features with processes, because both consume resources
from the OS or the execution environment. But threads are easier to create and
consume fewer resources than a process.

The primary components of the concurrency utilities are:

• ManagedExecutorService (MES): Used by applications to execute submitted
tasks asynchronously. Tasks are executed on threads that are started and
managed by the container. The context of the container is propagated to the
thread executing the task.

• ManagedScheduledExecutorService (MSES): Used by applications to execute
submitted tasks asynchronously at specific times. Tasks are executed on threads
that are started and managed by the container. The context of the container is
propagated to the thread executing the task.

• ManagedThreadFactory (MTF): Used by applications to create managed
threads. The threads are started and managed by the container. The context of the
container is propagated to the thread executing the task.

• ContextService: Used to create dynamic proxy objects that capture the context of
a container and enable applications to run within that context at a later time or be
submitted to a Managed Executor Service. The context of the container is
propagated to the thread executing the task.

For more detailed information, see Concurrency Utilities for Java EE in the The Java
EE 8 Tutorial. Also, see JSR 236: Concurrency Utilities for Java EE.

• Concurrency 1.0 Code Examples in WebLogic Server

Concurrency 1.0 Code Examples in WebLogic Server
When you install WebLogic Server Complete with Examples , the examples source
code is placed in the EXAMPLES_HOME\examples\src\examples directory. The default
path of EXAMPLES_HOME is ORACLE_HOME\wlserver\samples\server. From this
directory, you can access the source code and instruction files for the Concurrency 1.0
examples.

The ORACLE_HOME\user_projects\domains\wl_server directory contains the
WebLogic Server examples domain. See Sample Applications and Code Examples in
Understanding Oracle WebLogic Server.

• Using Concurrency ContextService: Demonstrates how to use the
ContextService interface to create dynamic proxy objects.

EXAMPLES_HOME/examples/src/examples/javaee7/concurrency/dynamicproxy
• Using Concurrency Executor: Demonstrates how to use

javax.enterprise.concurrent.ManagedExecutorService for submitting tasks.

EXAMPLES_HOME/examples/src/examples/javaee7/concurrency/executor
• Using Concurrency Schedule: Demonstrates how to use

javax.enterprise.concurrent.ManagedScheduledExecutorService for
submitting delayed or periodic tasks.

EXAMPLES_HOME/examples/src/examples/javaee7/concurrency/schedule
• Using Concurrency Threads: Demonstrates how to use

javax.enterprise.concurrent.ManagedThreadFactory to obtain a thread from
the Java EE container.

Chapter 5
About Java EE Concurrency Utilities

5-2

https://javaee.github.io/tutorial/concurrency-utilities.html#GKJIQ8
https://jcp.org/en/jsr/detail?id=236

EXAMPLES_HOME/examples/src/examples/javaee7/concurrency/threads
Oracle recommends that you run these examples before programming your own applications
that use concurrency.

How Concurrent Managed Objects Provide Concurrency for
WebLogic Server Containers

Learn how WebLogic Server provides concurrency capabilities to Java EE applications by
associating the Concurrency Utilities API with the Work Manager to make threads container-
managed.

• How WebLogic Server Handles Asynchronous Tasks in Application Components

• Concurrent Managed Objects (CMOs)

• CMOs versus CommonJ API

• CMO Context Propagation

• Self Tuning for CMO Tasks

• Threads Interruption When CMOs Are Shutting Down

• CMO Constraints for Long-Running Threads

How WebLogic Server Handles Asynchronous Tasks in Application
Components

With JSR 236 Concurrent Utilities, WebLogic Server can recognize the asynchronous tasks in
a server application component, and then manages them by:

• Providing the proper execution context. See CMO Context Propagation.

• Submitting tasks to the single server-wide self-tuning thread pool to make them prioritized
based on defined rules and runtime metrics. See Self Tuning for CMO Tasks.

• Interrupting the thread that the task is executed in, when the component that created the
task is shutting down. See Threads Interruption When CMOs Are Shutting Down.

• Limiting the number of new running threads to be created by managed objects when the
task is not suitable to be dispatched to the self-tuning thread pool. See CMO Constraints
for Long-Running Threads.

Concurrent Managed Objects (CMOs)
In WebLogic Server, asynchronous task management is provided by four types of Concurrent
Managed Objects (or CMOs).

Table 5-1 summarizes the CMOs that provide asynchronous task management.

Chapter 5
How Concurrent Managed Objects Provide Concurrency for WebLogic Server Containers

5-3

Table 5-1 CMOs that Provide Asynchronous Task Management

Managed Object Context
Propagation

Self Tuning Thread Interruption
While Shutting
Down

Limit of Concurrent
Long-Running New
Threads

Managed Executor
Service (MES)

Contexts are
propagated based on
configuration. See
CMO Context
Propagation.

Only short-running
tasks are dispatched
to the single self-
tuning thread pool by
a specified Work
Manager. See Self
Tuning for CMO
Tasks.

When Work Manager
is shutting down, all
the unfinished tasks
will be canceled. See
Threads Interruption
When CMOs Are
Shutting Down.

The maximum
number of long-
running threads
created by MES/
MSES can be
configured to avoid
excessive number of
these threads making
negative effect on
server. See CMO
Constraints for Long-
Running Threads.

Managed Scheduled
Executor Service
(MSES)

Contexts are
propagated based on
configuration. See
CMO Context
Propagation.

Same behavior as
MES. See Self
Tuning for CMO
Tasks.

Same behavior as
MES. See Threads
Interruption When
CMOs Are Shutting
Down.

Same behavior as
MES. See CMO
Constraints for Long-
Running Threads.

Context Service Contexts are
propagated based on
configuration. See
CMO Context
Propagation.

n/a n/a n/a

Managed Thread
Factory (MTF)

Contexts are
propagated based on
configuration. See
CMO Context
Propagation.

Threads returned by
the newThread()
method are not from
the single self-tuning
thread pool and will
not be put into the
thread pool when the
task is finished. See
Self Tuning for CMO
Tasks.

Threads created by
the newThread()
method will be
interrupted when the
MTF is shutting
down. See Threads
Interruption When
CMOs Are Shutting
Down.

The maximum
number of new
threads created by
MTF can be
configured to avoid
excessive number of
these threads making
negative effect on
server. See CMO
Constraints for Long-
Running Threads.

The following are the three types of JSR 236 CMOs in WebLogic Server, each one
characterized by its scope, and how it is defined and used:

• Default Java EE CMOs – Required by the Java EE standard that default resources
be made available to applications, and defines specific JNDI names for these
default resources.

• Customized CMOs in Configuration Files – Can be defined at the application and
module level or referenced from an application component environment (ENC) that
is bound to JNDI.

• Global CMO Templates – Can be defined globally as templates in the domain's
configuration by using the WebLogic Server Administration Console and
configuration MBeans.

Similar to Work Managers, global CMO templates can be defined at the domain or
server level using the WebLogic Server Administration Console or configuration

Chapter 5
How Concurrent Managed Objects Provide Concurrency for WebLogic Server Containers

5-4

MBeans. See Configuring CMO Templates using the Administration Console and Using
MBeans to Configure CMO Templates.

CMOs versus CommonJ API
The CommonJ API (commonj.work) in WebLogic Server provides a set of interfaces that allow
an application to execute multiple work items concurrently within a container. CMOs and
CommonJ APIs operate at the same level: they both dispatch tasks to Work Managers and
programmatically handle work from within an application. However, there are distinct
differences between CMOs and the CommonJ API, such as:

• CommonJ API is WebLogic specific and CMOs have been standardized.

• CommonJ API provides functions similar to the CMO Managed Executor Service and
Managed Scheduled Executor Service, but it does not provide CMO functions like the
Managed Thread Factory and the Context Service.

For information about using the CommonJ API, see Using the Timer and Work Manager API
in Developing CommonJ Applications for Oracle WebLogic Server.

CMO Context Propagation
This section explains the four context types that are propagated for CMOs and the context
invocation points in WebLogic Server for MES and MSES managed objects.

• Propagated Context Types

• Contextual Invocation Points

Propagated Context Types
Table 5-2 summarizes the context types that are propagated for the four types of managed
objects.

Table 5-2 Propagated Context Types

Context Type Description Context Tasks Run with...

JNDI JNDI namespace For MES, MSES, and
ContextService, tasks can
access the application-scoped
JNDI tree (such as java:app,
java:module, java:comp) of
the submitting thread.

For MTF, tasks can access
application-scoped JNDI tree of
the component that created the
ManagedThreadFactory
instance.

Chapter 5
How Concurrent Managed Objects Provide Concurrency for WebLogic Server Containers

5-5

Table 5-2 (Cont.) Propagated Context Types

Context Type Description Context Tasks Run with...

ClassLoader Context Class loader For MES, MSES, and
ContextService, tasks run with
the context classloader of the
submitting thread.

For MTF, tasks run with the
classloader of the component
that created the
ManagedThreadFactory instance

Security Subject identity For MES, MSES, and
ContextService, tasks run with
the subject identity of the
submitting thread.For MTF, tasks
run with the anonymous subject.

WorkArea WorkArea contexts with
PropagationMode WORK

For MES, MSES, and Context
Service there is a new WorkArea
context type, and so all tasks run
with a WorkContextMap, which
contains all the submitting
thread's contexts with WORK
mode.

For MTF, all tasks run with an
empty WorkContextMap.

Note: While the
WorkContextMap is a new
instance, the contained values
are not, so updating the contents
of the values can affect the
contents of the submitting
thread.

Contextual Invocation Points
Table 5-3 summarizes the callback methods of the Contextual Invocation Points in
WebLogic Server and the context that the Contextual Invocation Point runs with, for
the MES and MSES managed objects.

Table 5-3 Contextual Invocation Points

Concurrent Managed
Objects

Contextual Invocation
Points

Context with which the
Contextual Invocation Point
Runs

ManagedExecutorService callback method:
javax.enterprise.concur
rent.ManagedTaskListene
r

The Contextual Invocation
Points run with the context of
the application component
instance that called the
submit(), invokeAll(),
invokeAny() methods.

Chapter 5
How Concurrent Managed Objects Provide Concurrency for WebLogic Server Containers

5-6

Table 5-3 (Cont.) Contextual Invocation Points

Concurrent Managed
Objects

Contextual Invocation
Points

Context with which the
Contextual Invocation Point
Runs

ManagedScheduledExecutorS
ervice

callback methods:
javax.enterprise.concur
rent.ManagedTaskListene
r and
javax.enterprise.concur
rent.Trigger

The application component
instance that called the
submit(), invokeAll(),
invokeAny(), schedule(),
scheduleAtFixedRate(),
scheduleWithFixedDelay(
) methods.

Self Tuning for CMO Tasks
Short-running tasks submitted to the MES or the MSES are dispatched to the single self-
tuning thread pool by associating with the Work Manager specified in deployment descriptors.

The execution of the tasks will be consistent with the rules defined for the specified Work
Manager. For tasks submitted to the execute method in MES and MSES, if the Work
Manager's overload policy rejects the task, the following events will occur:

• The java.util.concurrent.RejectedExecutionException will be thrown in the submit
or execute method.

• The overload reason parameter passed to weblogic.work.Work will be set to the
RejectedExecutionException.

• If the user registered the task with the ManagedTaskListener, the listener will not be
notified because the user can receive the overload message through the
RejectedExecutionException.

Note: A ManagedTaskListener is used to monitor the state of a task's future. For more
information see, Package javax.enterprise.concurrent.

For the invokeAll() and invokeAny() methods in the MES and MSES, and for any of the
submitted tasks that are rejected by the Work Manager overload policy, the following events
will occur:

• The user-registered ManagedTaskListener's taskSubmitted() method will be called.

• The user-registered ManagedTaskListener's taskDone() method will be called and the
throwableParam will be javax.enterprise.concurrent.AbortedException.

• The overload reason parameter passed to weblogic.work.Work will be set to the
AbortedException.

For the schedule(), scheduleAtFixRate(), scheduleAtFixDelay(), and schedule(Trigger)
() methods, if the task is rejected by the Work Manager's overload policy, the following
events will occur:

• The user-registered ManagedTaskListener's taskDone() method will be called, the
throwableParam will be javax.enterprise.concurrent.AbortedException.

• The overload reason parameter passed to weblogic.work.Work will be set to the
AbortedException.

Chapter 5
How Concurrent Managed Objects Provide Concurrency for WebLogic Server Containers

5-7

http://docs.oracle.com/javaee/7/api/javax/enterprise/concurrent/package-summary.html

• If the task is periodic, the next run of task will still be scheduled.

Threads Interruption When CMOs Are Shutting Down
When either the MES or MSES is shut down:

• None of the waiting tasks will be executed.

• All the running threads will be interrupted. The user should check the
Thread.isInterrupted() method and terminate their tasks because WebLogic
Server will not force it to terminate.

• An executor returned Future object will throw the
java.util.concurrent.CancellationException() if the Future.get() method is
called.

• User registered ManagedTaskListener's taskAborted() method will be called and
paramThrowable will be the CancellationException().

When the MTF is shut down:

• All threads that are created using the newThread() method are interrupted. Calls to
the isShutdown() method in the ManageableThread interface on these threads
return true.

• All subsequent calls to the newThread() method throw a
java.lang.IllegalStateException.

For the ContextService, no thread is interrupted. However, all invocations to any of the
proxied interface methods will fail with a java.lang.IllegalStateException.

CMO Constraints for Long-Running Threads
Long-running tasks submitted to MES and MSES, and the calling of newThread()
method of MTF need to create new threads that will not be managed as a part of the
self-tuning thread pool. An excessive number of running threads can have a negative
affect on the server performance and stability. Therefore, configurations are provided
to specify the maximum number of running threads that are created by the
concurrency utilities API.

• Setting Limits for Maximum Concurrent Long Running Requests

• Setting Limits for Maximum Concurrent New Threads

Setting Limits for Maximum Concurrent Long Running Requests
The limit of concurrent long-running requests submitted to MES and MSES can be
specified in managed object and server levels. All levels of configurations are
independent and the maximum of concurrent long-running requests cannot exceed
any of them.

Table 5-4 summarizes the limit of concurrent long-running requests with the <max-
concurrent-long-running-requests> element that can be defined in the deployment
descriptors.

Chapter 5
How Concurrent Managed Objects Provide Concurrency for WebLogic Server Containers

5-8

Table 5-4 Limit of Concurrent Long-running Requests

Scope Deployment Descriptor Description <max-concurrent-long-
running-requests>
Element Details

Server In config.xml:

As the sub-element of
<domain><server> or
<domain><server-
template>

Limit of concurrent long-
running requests specified
for that server.

Optional

Range: [0-65534]. When
out of range, the default
value will be used.

Default value: 100
Managed Object In weblogic-

application.xml,
weblogic-ejb-jar.xml,
or weblogic.xml:

As the sub-element of
<managed-executor-
service> or <managed-
scheduled-executor-
service>
In config.xml:

As the sub-element of
<managed-executor-
service-template> or
<managed-scheduled-
executor-service-
template>

Limit of concurrent long-
running requests specified
for that MES or MSES.

Optional

Range: [0-65534]. When
out of range, the default
value will be used.

Default value: 10

When the specified limit exceeds, MES or MSES takes the following actions for the new long-
running tasks submitted to them:

• The java.util.concurrent.RejectedExecutionException will be thrown when calling
the task submission API.

• If the user registered the task with the ManagedTaskListener, then this listener will not be
notified because the submit method fails.

Note that the above rule is not applied for the invokeAll() and invokeAny() methods. If any
of the tasks submitted by these methods is rejected by the specified limit, the following events
will occur:

• The user-registered ManagedTaskListener's taskSubmitted() method will be called.

• The user-registered ManagedTaskListener's taskDone() method will be called and the
throwableParam will be javax.enterprise.concurrent.AbortedException.

• Other submitted tasks will not be affected.

• The method will not throw the RejectedExecutionException.

Example 5-1 demonstrates how the value specified for the <max-concurrent-long-running-
requests> element in the config.xml can affect the maximum number of long-running
requests.

Chapter 5
How Concurrent Managed Objects Provide Concurrency for WebLogic Server Containers

5-9

Example 5-1 Sample Placements of max-concurrent-long-running-requests in
config.xml

<domain>
 <server>
 <name>myserver</server>
 <max-concurrent-long-running-requests>50</max-concurrent-long-running-
requests> (place 1)
 </server>
 <max-concurrent-long-running-requests>10</max-concurrent-long-running-
requests> (place 2)
 <server-template>
 <name>mytemplate</name>
 <max-concurrent-long-running-requests>50</max-concurrent-long-running-
requests> (place 3)
 </server-template>
</domain>

• place 1 – Affects the MES and MSES defined in the server instance myserver. All
the MES and MSES running in that server instance can only create a maximum of
50 long-running requests in total.

• place 2 – Only affects MES and MSES defined in the domain. All the MES and
MSES running in the domain can create a maximum of 10 long-running requests
in total.

• place 3 – Affects MES & MSES defined in the server instances that apply to the
template mytemplate. All the MES and MSES running in that server instance can
only create a maximum of 50 long-running requests in total.

Example 5-2 demonstrates a sample configuration of max-concurrent-long-running-
requests.

Example 5-2 Sample Configurations of max-concurrent-long-running-requests

server1(100)
 |---application1
 |---managed-scheduled-executor-service1(not specified)
 |---module1
 |---managed-executor-service1(20)
 |---managed-scheduled-executor-service2(not specified)
 |---application2

In the following cases, none of the limits are exceeded and the above actions will not
be taken:

• Assume that 120 long-running tasks are submitted to managed-executor-
service1, out of which 115 are finished and 5 are being executed. If one more
long-running task is submitted to managed-executor-service1, it will be executed
as no limit is exceeded.

In the following cases, one of the limits is exceeded and the above actions will be
taken:

• Assume that 10 long-running tasks are being executed by managed-scheduled-
executor-service1. If one more long-running task is submitted to managed-
scheduled-executor-service1, then the limit of managed-scheduled-executor-
service1 is exceeded.

Chapter 5
How Concurrent Managed Objects Provide Concurrency for WebLogic Server Containers

5-10

• Assume that 10 long-running tasks are being executed by application1 and 90 are
being executed by application2. If one more long-running task is submitted to
application1 or application2, then the limit of server1 is exceeded.

Setting Limits for Maximum Concurrent New Threads
The limit of concurrent new running threads created by calling the newThread() method of the
MTF can be specified in a managed object, domain, and server level. All levels of
configurations are independent and the maximum of the concurrent new running threads
cannot exceed any of them.

A running thread is a thread that is created by the MTF and has not finished its run()
method.

Table 5-5 summarizes the limit of concurrent new running threads with an element <max-
concurrent-new-threads> that can be defined in the deployment descriptors.

Table 5-5 Limit of Concurrent New Running Threads

Scope Deployment Descriptor Description <max-concurrent-new-
threads> Element Details

Server In config.xml:

As the sub-element of
<domain><server> or
<domain><server-
template>

Limit of concurrent new
running threads specified
for that server.

Optional

Range: [0-65534]. When
out of range, the default
value will be used

Default value: 10
Managed Object In weblogic-

application.xml,
weblogic-ejb-jar.xml,
or weblogic.xml:

As the sub-element of
<managed-executor-
service> or <managed-
scheduled-executor-
service>
In config.xml:

As the sub-element of
<managed-executor-
service-template> or
<managed-scheduled-
executor-service-
template>

Limit of concurrent new
running threads specified
for that
ManagedThreadFactory.

Optional

Range: [0-65534]. When
out of range, the default
value will be used

Default value: 10

When the specified limit is exceeded, calls to the newThread() method of the MTF will return
null to be consistent with the ThreadFactory.newThread Javadoc.

For a sample snippet of using max-concurrent-new-threads, see Deployment Descriptor
Examples.

Default Java EE CMOs
The Java EE standard specifies that certain default resources be made available to
applications, and defines specific JNDI names for these default resources. WebLogic Server

Chapter 5
Default Java EE CMOs

5-11

makes these names available through the use of logical JNDI names, which map Java
EE standard JNDI names to specific WebLogic Server resources.

• Default Managed Executor Service

• Default Managed Scheduled Executor Service

• Default Context Service

• Default Managed Thread Factory

Default Managed Executor Service
There is a default MES instance for each application. It is automatically bound to the
default JNDI name of java:comp/DefaultManagedExecutorService of all the sub-
components when deployed.

The default MES:

• Uses the default Work Manager as the dispatch policy.

• Propagates all the context-info.

• The long-running request limit default is 10.

• The long-running thread priority defaults to normal.

You can also use the default MES in applications with the @Resource annotation. For
example:

package com.example;
 public class TestServlet extends HttpServlet {
 @Resource
 private ManagedExecutorService service;

Overriding the Default MES

The behavior of the default MES can be overridden by:

• Defining an executor template named DefaultManagedExecutorService in the
config.xml. All applications will use this template to create a default MES.

• Defining a custom managed-executor-service in the weblogic-application.xml,
using either deployment descriptors or annotations. This will also override the
default MES definition in the config.xml in the application. See Custom Managed
Executor Service Configuration Elements.

You cannot define a default executor named DefaultManagedExecutorService in the
weblogic.xml or weblogic-ejb-jar.xml. Doing so will cause the deployment to fail.

Default Managed Scheduled Executor Service
The default MSES instance is similar to the default MES instance, but is automatically
bound to the default JNDI name of java:comp/
DefaultManagedScheduledExecutorService of all the sub-components when
deployed. It has the same default settings and propagates all the context information.

You can also use the default MSES in applications with the @Resource annotation. For
example:

Chapter 5
Default Java EE CMOs

5-12

 package com.example;
 public class TestServlet extends HttpServlet {
 @Resource
 private ManagedScheduledExecutorService service;

Overriding the Default MSES

The behavior of the default MSES can be overridden by:

• Defining a scheduled executor template named
DefaultManagedScheduledExecutorService in the config.xml. All applications will use
this template to create a default MSES.

• Defining a custom <managed-scheduled-executor-service> in the weblogic-
application.xml, using either deployment descriptors or annotations. This will also
override the default MSES definition in the config.xml in the application. See Custom
Managed Scheduled Executor Service Configuration Elements.

You cannot define a default scheduled executor named DefaultManagedExecutorService in
the weblogic.xml or weblogic-ejb-jar.xml. Doing so will cause the deployment to fail.

Default Context Service
There is a default context service instance for each application. It is automatically bound to
the default JNDI name of java:comp/DefaultContextService of all the sub-components
when deployed, and propagates all types of supported contexts.

The default Context Service can also be bound to java:comp/env/concurrent/cs under an
application component environment (ENC) using the resource-env-ref or @Resource
annotation.

Note that the behavior of the default context service cannot be overridden.

Example 5-3 shows how to use the default context service in a webl.xml file using the
resource-env-ref element.

Example 5-3 Using the Default Context Service with <resource-env-ref> in a Web App

<!-- web.xml -->
<resource-env-ref>
 <resource-env-ref-name>concurrent/cs</resource-env-ref-name>
 <resource-env-ref-type>javax.enterprise.concurrent.ContextService</resource-env-ref-
type>
</resource-env-ref>

Example 5-4 shows how to use the default context service in a servlet with the @Resource
annotation.

Example 5-4 Using the Default Context Service with @Resource in a Servlet

// when using @Resource, the following 2 ways are correct.
@Resource(lookup="java:comp/env/concurrent/cs")
// @Resource(name="concurrent/cs")
private ContextService service;

// when using JNDI Naming Context to lookup:
// initialContext.lookup("java:comp/env/concurrent/cs")

Chapter 5
Default Java EE CMOs

5-13

Default Managed Thread Factory
There is a default MTF instance for each application. It is automatically bound to the
default JNDI name of java:comp/DefaultManagedThreadFactory of all the sub-
components when deployed.

The default MTF:

• Propagates all types of supported contexts for new threads.

• The default priority for long-running threads created by newThread() is normal.

• The default limit for running concurrent new threads is 10.

You can also use the default MTF in applications with the @Resource annotation. For
example:

 package com.example;
 public class TestServlet extends HttpServlet {
 @Resource
 private ManagedThreadFactory service;

Overriding the Default MTF

The behavior of the default MTF can be overridden by:

• Defining a thread factory template named DefaultManagedThreadFactory in the
config.xml. All applications will use this template to create a default MTF.

• Defining a custom managed-thread-factory in the weblogic-application.xml,
using either deployment descriptors or annotations. This will also override the
default MTF definition in the config.xml in the application. See Custom Managed
Thread Factory Configuration Elements.

You cannot define a default thread factory named DefaultManagedThreadFactory in
the weblogic.xml or weblogic-ejb-jar.xml. Doing so will cause the deployment to
fail.

Customized CMOs in Configuration Files
You can define the customized CMOs at the application and module level, or
referenced from an application component environment (ENC) that is bound to JNDI.

Note:

In the current release, a custom Context Service cannot be configured.

• Defining CMOs in WebLogic Configuration Files

• Binding CMOs to JNDI Under an Application Component Environment

• Custom Managed Executor Service Configuration Elements

• Custom Managed Scheduled Executor Service Configuration Elements

• Custom Managed Thread Factory Configuration Elements

Chapter 5
Customized CMOs in Configuration Files

5-14

• Transaction Management for CMOs

Defining CMOs in WebLogic Configuration Files
Customized CMOs can be defined at the application and module level in one of these
configuration files:

• weblogic-application.xml—CMOs specified at the application level can be assigned to
that application, or any component of that application.

• weblogic-ejb-jar.xml or weblogic.xml—CMOs specified at the component level can
be assigned to that component.

Binding CMOs to JNDI Under an Application Component Environment
Executor and thread factory CMOs can also be bound to JNDI under an application
component environment (ENC) using the resource-env-ref element or the @Resource
annotation. The resource-env-ref referencing a CMO can only be defined in the web.xml,
ejb-jar.xml, or application.xml.

The four ENC namespaces (java:comp, java:module, java:application, and java:global)
are supported for resource-env-ref-name and @Resource.

If you bind an executor in an application, AppA, to the java:global JNDI namespace, the
executor can be looked up and used by another application, AppB. Tasks submitted by AppB
are canceled when AppA or AppB is shutdown.

• JNDI Binding Using <resource-env-ref>

• JNDI Binding Using @Resource

• Updated Schemas for Custom CMO Modules

• Updated System Module Beans for CMOs

JNDI Binding Using <resource-env-ref>
Example 5-5 demonstrates how to map an MES named MyExecutor to the java:comp/env
JNDI namespace.

Example 5-5 Binding an Executor to JNDI Using <resource-env-ref>

weblogic.xml
 <resource-env-description>
 <resource-env-ref-name>concurrent/MyExecutor</resource-env-ref-name>
 <resource-link>MyExecutor</resource-link>
 </resource-env-description>

 web.xml
 <resource-env-ref>
 <resource-env-ref-name>concurrent/MyExecutor</resource-env-ref-name>
 <resource-env-ref-type>javax.enterprise.concurrent.ManagedExecutorService</
resource-env-ref-type>
 </resource-env-ref>

In the weblogic.xml, the resource-link element specifies which executor is being mapped,
which in Example 5-5 is named MyExecutor.

Chapter 5
Customized CMOs in Configuration Files

5-15

Executors defined in the weblogic.xml are searched first, followed by the weblogic-
application.xml, and then the managed-executor-service-template in the
config.xml to find a executor name attribute that matches the one specified in
resource-link.

If the resource-env-description is defined in the weblogic-ejb-jar.xml, then the
weblogic-ejb-jar.xml is searched first, then the weblogic-application.xml, and
then the config.xml.

JNDI Binding Using @Resource
The mapping rules for the @Resource annotation are equivalent to those for resource-
env-ref, but uses different naming conventions:

• resource-env-ref-name is the name attribute value in @Resource.

• resource-link is equivalent to the mappedName attribute value defined in
@Resource.

If @Resource is used under a web component, it is equivalent to define a resource-
env-ref under web.xml.

If @Resource is used under an EJB component, it is equivalent to define a resource-
env-ref under ejb-jar.xml.

The annotation can also be used on class or methods as defined in the Java EE
specification.

Example 5-5 using the resource-env-ref definition is equivalent to Example 5-6 using
@Resource.

Example 5-6 Binding an Executor to JNDI Using @Resource

 package com.example;
 public class TestServlet extends HttpServlet {
 @Resource(name="concurrent/MyExecutor" mappedName="MyExecutor")
 private ManagedExecutorService service;

In this example, if the mappedName attribute of @Resource is not specified, then the
default executor is used.

If you define both the resource-env-ref and @Resource, and if resource-env-ref-
name and name attribute of @Resource are the same, then the resource-env-ref
defined executor will be injected into the @Resource field.

You can also use @Resource with a lookup attribute or InitialContext.lookup to find
a executor bound by resource-env-ref.

Updated Schemas for Custom CMO Modules
The following WebLogic Server schemas include elements for configuring the CMO
deployment descriptors:

• weblogic-javee.xsd – Describes common elements shared among all WebLogic-
specific deployment descriptors:

http://xmlns.oracle.com/weblogic/weblogic-javaee/1.8/weblogic-javaee.xsd

Chapter 5
Customized CMOs in Configuration Files

5-16

http://xmlns.oracle.com/weblogic/weblogic-javaee/1.8/weblogic-javaee.xsd

• weblogic-application.xsd – The WebLogic Server-specific deployment descriptor
extension for the application.xml Java EE deployment descriptor, where you configure
features such as shared Java EE libraries referenced in an application and EJB caching.

See weblogic-application.xml Deployment Descriptor Elements in Developing
Applications for Oracle WebLogic Server.

• weblogic-web-app.xsd – The WebLogic Server-specific deployment descriptor for Web
applications.

See weblogic.xml Deployment Descriptor Elements in Developing Web Applications,
Servlets, and JSPs for Oracle WebLogic Server.

• weblogic-ejb-jar.xsd – The WebLogic-specific XML Schema-based (XSD) deployment
descriptor file for EJB deployments.

See weblogic-ejb-jar.xml Deployment Descriptor Reference in Developing Enterprise
JavaBeans, Version 2.1, for Oracle WebLogic Server.

Example 5-7 shows the CMO-related elements in the weblogic-web-app.xsd.

Example 5-7 CMO Elements in weblogic-web-app.xsd

<xs:complexType name="weblogic-web-appType">
 <xs:sequence>
 <xs:choice minOccurs="0" maxOccurs="unbounded">
 ...
 <!-- added for JSR236 -->
 <xs:element name="managed-executor-service" type="wls:managed-executor-
serviceType" minOccurs="0" maxOccurs="unbounded"/>
 <xs:element name="managed-scheduled-executor-service" type="wls:managed-
scheduled-executor-serviceType" minOccurs="0" maxOccurs="unbounded"/>
 <xs:element name="managed-thread-factory" type="wls:managed-thread-factoryType"
minOccurs="0" maxOccurs="unbounded"/>
 <!-- added end -->
 ...

Updated System Module Beans for CMOs
The following WebLogic Server system module beans include attributes for configuring CMOs
in applications and modules:

• ManagedExecutorServiceBean
• ManagedScheduledExecutorServiceBean
• ManagedThreadFactoryBean
• WeblogicApplicationBean
See the WebLogic Server System Module MBeans section in the MBean Reference for
Oracle WebLogic Server.

Custom Managed Executor Service Configuration Elements
This section defines the configuration elements for a Managed Executor Service.

Chapter 5
Customized CMOs in Configuration Files

5-17

http://xmlns.oracle.com/weblogic/weblogic-application/1.8/weblogic-application.xsd
http://xmlns.oracle.com/weblogic/weblogic-web-app/1.9/weblogic-web-app.xsd
http://xmlns.oracle.com/weblogic/weblogic-ejb-jar/1.7/weblogic-ejb-jar.xsd

Table 5-6 Managed Executor Service Configuration Elements

Name Description Required Default
Value

Range

name The name of the MES.

An MES with the same name cannot be
configured in the same scope. For example,
if the same MES name is used in an
application or module scope, the deployment
of the application will fail.

An MES can have the same name as the
other types of managed objects, such as a
ContextService, in any scope, and there
will be no relationship between them.

An MES with the same name can only be
configured in different scopes:

• If there is more than one MES with the
same name configured in the server
template or application scope, the
application scope MES will override the
server template.

• If there is an MES A defined in the
module scope which has the same
name as the executor B defined in the
server template or application scope. A
and B will both exist. The executor which
is used is determined by the location
referencing the executor.

Yes n/a An arbitrary non-empty string.

dispatc
h-
policy

The name of the Work Manager. The rule of
which Work Manager should be used is:

• Search module scope Work Manager
first, if the ManagedExecutorService
is defined in the module scope.

• If not found, search application level.
• If still not found, the default Work

Manger is used. (This behavior is
consistent with the servlet and EJB's
dispatch policy resolving strategy.)

No Default
Work
Manager

n/a

max-
concurr
ent-
long-
running
-
request
s

Maximum number of concurrent long-running
tasks.

See Setting Limits for Maximum Concurrent
Long Running Requests.

No 10 [0-65534].

When out of range, the default
value will be used.

long-
running
-
priorit
y

An integer that specifies the long-running
daemon thread's priority. If specified, all
long-running threads will be affected.

See Setting Limits for Maximum Concurrent
New Threads.

No Thread.
NORM_PR
IORITY

1-10

Range between
Thread.MIN_PRIORITY and
Thread.MAX_PRIORITY. When
out of range, the default value will
be used.

• Deployment Descriptor Examples

Chapter 5
Customized CMOs in Configuration Files

5-18

Deployment Descriptor Examples
Example 5-8 is an example of a custom MES definition in a Web application's weblogic.xml
file.

Example 5-8 Using Deployment Descriptor to Define a Custom MES in an Application

<!-- weblogic.xml -->
 <managed-executor-service>
 <name>MyExecutor</name>
 <dispatch-policy>MyWorkManager</dispatch-policy>
 <long-running-priority>10</long-running-priority>
 <max-concurrent-long-running-requests>10</max-concurrent-long-running-requests>
 </managed-executor-service>

Example 5-9 is an example of a custom MES reference in the weblogic.xml descriptor using
the <resource-env-ref> element.

Example 5-9 Referencing a Custom MES Using <resource-env-ref> in an Application

weblogic.xml
 <resource-env-description>
 <resource-env-ref-name>concurrent/MyExecutor</resource-env-ref-name
 <resource-link>MyExecutor</resource-link>
 </resource-env-description>

Example 5-10 is an example of a custom MES reference in a webl.xml file using the
<resource-env-ref> element.

Example 5-10 Referencing a Custom MES Using <resource-env-ref> in a Web App

web.xml
 <resource-env-ref>
 <resource-env-ref-name>concurrent/MyExecutor</resource-env-ref-name
 <resource-env-ref-type>javax.enterprise.concurrent.ManagedExecutorService</
resource-env-ref-type>
 </resource-env-ref>

Example 5-11 is an example of a custom MES reference in a servlet using the @Resource
annotation.

Example 5-11 Referencing a Custom MES in a Servlet Using @Resource in a Servlet

package com.example;
public class TestServlet extends HttpServlet {
@Resource(name="concurrent/MyExecutor" mappedName="MyExecutor")
private ManagedExecutorService service;

Custom Managed Scheduled Executor Service Configuration Elements
This section defines the configuration elements for a Managed Scheduled Executor Service.

Chapter 5
Customized CMOs in Configuration Files

5-19

Table 5-7 Managed Scheduled Executor Service Configuration Elements

Name Description Required Default
Value

Range

name The name of the MSES.

For naming convention rules, see Table 5-6.

Yes n/a An
arbitrary
non-
empty
string.

dispatch-policy The name of the Work Manager.

For Work Manager usage rules, see
Table 5-6.

No Default
Work
Manager

n/a

max-concurrent-long-
running-requests

Maximum number of concurrent long-running
tasks.

See Setting Limits for Maximum Concurrent
Long Running Requests.

No 10 [0-65534].

When out
of range,
the
default
value is
used.

long-running-priority An integer that specifies the long-running
daemon thread's priority. If specified, all
long-running threads will be affected.

See Setting Limits for Maximum Concurrent
New Threads.

No 5
Thread.
NORM_PR
IORITY

1-1

Range
between
Thread.
MIN_PRI
ORITY
and
Thread.
MAX_PRI
ORITY.
When out
of range,
the
default
value is
used.

• ScheduledFuture.get() Method

• Deployment Descriptor Examples

ScheduledFuture.get() Method
The ScheduledFuture.get() method will block until the latest run of the task finishes.
For example, if the Trigger method requires the task being scheduled to run two times
(that is, Trigger.getNextRunTime returns null on the third call), and the first run of the
task is finished at time A, the second run of the task is finished at time B, then:

• If Future.get() is called before time A, it will wait for the first run to finish and
return the first run result. If it is called after time A and before time B, it will wait to
the second run finish and return the second run's result.

• If Future.get() is called after time B, it will immediately return the second run
result. Also, if the first run fails and throws a exception, then the first Future.get()
call will throw that exception and the second run will still be scheduled (this is

Chapter 5
Customized CMOs in Configuration Files

5-20

different with scheduleAtFixRate). If the Trigger.skipRun returns true on the first run,
then the first Future.get() call will throw a SkipException.

Deployment Descriptor Examples
Example 5-12 is an example of a custom MSES definition in a Web application's
weblogic.xml file.

Example 5-12 Using Deployment Descriptor to Define a Custom MSES in an
Application

<!-- weblogic.xml -->
 <managed-scheduled-executor-service>
 <name>MyScheduledExecutor</name>
 <dispatch-policy>MyExecutor</dispatch-policy>
 </managed-scheduled-executor-service>

Custom Managed Thread Factory Configuration Elements
This section defines the configuration elements for a Managed Thread Factory.

Table 5-8 Managed Thread Factory Configuration Elements

Name Description Required Default
Value

Range

name The name of the MTF.

For naming convention rules, see Table 5-6.

Yes n/a An arbitrary non-empty string.

priorit
y

The priority to assign to the thread. The
higher the number, the higher the priority.

See Setting Limits for Maximum Concurrent
New Threads.

No 5
Thread.
NORM_PR
IORITY

1-10 Range between
Thread.MIN_PRIORITY and
Thread.MAX_PRIORITY. When
out of range, the default value is
used.

max-
concurr
ent-
new-
threads

The maximum number of threads created by
the MTF and are still executing the run()
method of the tasks.

See Setting Limits for Maximum Concurrent
New Threads.

No 10 [0-65534]

When out of range, the default
value is used.

• Contexts of Threads Created by MTF

• Deployment Descriptor Examples

Contexts of Threads Created by MTF
According to JSR 236, the Managed Thread Factory is different from the other managed
objects because when the thread is started using the Thread.start() method, the runnable
that is executed will run with the context of the application component instance that created
the ManagedThreadFactory instance. Therefore, the context of the runnable depends on the
application component that created the MTF instance.

In WebLogic Server, new MTF instances are created when an application or a component
(that is, a web module or an EJB) is started, as follows:

1. A default MTF is created by that component.

Chapter 5
Customized CMOs in Configuration Files

5-21

2. If there is a @Resource annotation to get an MTF, an MTF instance is created by
that component.

3. If there is a <resource-env-ref> defined in the web.xml or ejb-jar.xml, and there
is also a corresponding <resource-env-description> defined in the
weblogic.xml or weblogic-ejb-jar.xml with a <resource-link> for an MTF, then
an MTF instance is created by that component.

4. If there is a <resource-env-ref> defined in the application.xml, and there is
also a corresponding <resource-env-description> defined in the weblogic-
application.xml with a <resource-link> for an MTF, then an MTF instance is
created by that application.

When an MTF is created by a component in the case of items 1, 2, and 3 listed above,
the runnable runs with the context of that component, as follows:

• Classloader: The classloader of that component.

• JNDI: The JNDI tree of that component that contains java:app, java:module, and
java:comp.

• Security: Fixed to be the anonymous subject because there is no component-
specific subject.

• WorkArea: Fixed to be an empty WorkContextMap because there is no
component-specific WorkContextMap.

When an MTF is created by an application in the case of item number 4, listed above,
the runnable runs with the context of that application as follows:

• Classloader: The classloader of that application.

• JNDI: The JNDI tree of that component that contains java:app, but without
java:module and java:comp.

• Security: Fixed to be the anonymous subject because there is no application-
specific subject.

• WorkArea: Fixed to be an empty WorkContextMap because there is no application-
specific WorkContextMap.

Deployment Descriptor Examples
Example 5-13 is an example of a custom MTF definition in a Web application's
weblogic.xml file.

Example 5-13 Using Deployment Descriptors to Define a Custom MTF in an
Application

<!-- weblogic.xml -->
 <managed-thread-factory>
 <name>factory1</name>
 <priority>3</priority>
 <max-concurrent-new-threads>20</max-concurrent-new-threads>
 </managed-executor-service>

Example 5-9 is an example of a custom MTF reference in a Web application's
weblogic.xml file.

Chapter 5
Customized CMOs in Configuration Files

5-22

Example 5-14 Referencing a Custom MTF Using <resource-env-ref> in an Application

weblogic.xml
 <resource-env-description>
 <resource-env-ref-name>ref-factory1</resource-env-ref-name
 <resource-link>factory1</resource-link>
 </resource-env-description>

Example 5-10 is an example of a custom MTF reference in a Web application's weblogic.xml
file.

Example 5-15 Referencing a Custom MTF Using <resource-env-ref> in a Web App

web.xml
 <resource-env-ref>
 <resource-env-ref-name>ref-factory1</resource-env-ref-name
 <resource-env-ref-type>javax.enterprise.concurrent.ManagedThreadFactory</resource-
env-ref-type>
 </resource-env-ref>

Example 5-11 is an example of a custom MTF reference in a servlet using the @Resource
annotation.

Example 5-16 Referencing a Custom MTF Using @Resource in a Servlet

package com.example;
public class TestServlet extends HttpServlet {
@Resource(lookup="java:comp/env/ref-factory1")
private ManagedThreadFactory factory;

Transaction Management for CMOs
This section explains how transactions are managed by the WebLogic Server for CMOs.

• Transaction Management for MES and MSES

• Transaction Management for Context Service

• Transaction Management for MTF

Transaction Management for MES and MSES
When using an MES, transactions are managed as follows:

• There are no transactions running in the Work Manager thread before the task is begun.

• The UserTransaction.getStatus() method is always Status.STATUS_NO_TRANSACTION
unless the Transaction API is used to start a new transaction.

• User should always finish its transaction in user tasks; otherwise, the transaction will be
rolled back.

Therefore ManagedTask.TRANSACTION and related attributes will be ignored.

Transaction Management for Context Service
By default, or by setting the value of the execution property ManagedTask.TRANSACTION to
ManagedTask.SUSPEND:

• Any transaction that is currently active on the thread will be suspended.

Chapter 5
Customized CMOs in Configuration Files

5-23

• A javax.transaction.UserTransaction accessible in the local JNDI namespace
as java:comp/UserTransaction will be available so that the contextual proxy
object may begin, commit, and roll back a transaction.

• If a transaction begun by a contextual proxy object is not completed before the
method ends, a WARNING will be logged in the output, and the transaction will be
rolled back.

• The original transaction, if any, was active on the thread, it will be resumed when
the task or contextual proxy object method returns.

By setting the value of the execution property ManagedTask.TRANSACTION to
ManagedTask.USE_TRANSACTION_OF_EXECUTION_THREAD:

• The transaction will be managed by the execution thread and the task itself, so
that any transaction that is currently active on the thread will not be suspended
when the contextual proxy object method begins, and will not be resumed when
the contextual proxy object method returns.

• If there is a currently active transaction on the thread, any resources used by the
contextual proxy object will be enlisted to that transaction.

• If a transaction begun by the contextual proxy object is not completed before the
method ends, the WebLogic Server will do nothing about it because there is the
possibility that the transaction is completed by another method of the contextual
proxy object.

Transaction Management for MTF
When using MTF, the transactions are managed as follows:

• The task runs without an explicit transaction (they do not enlist in the application
component's transaction), so the UserTransaction.getStatus() method always
returns Status.STATUS_NO_TRANSACTION, unless a new transaction is started in the
task.

• If the transaction is not completed before the task method ends, a WARNING will be
logged in the output, and the transaction will be rolled back.

Global CMO Templates
In addition to the JSR 236 default CMOs, you can also define global CMOs as
templates in the domain's configuration by using the WebLogic Server Administration
Console and the configuration MBeans.

CMOs specified in the config.xml can be assigned to any application or application
component in the domain.

Note:

You should typically use the Administration Console to configure WebLogic
Server's manageable objects and services and allow WebLogic Server to
maintain the config.xml file.

You can define three types of CMO templates in a domain:

Chapter 5
Global CMO Templates

5-24

• Managed Executor Service Template

• Managed Scheduled Executor Service Template

• Managed Thread Factory Template

For example, if you define a managed-executor-service-template, a unique MES instance
is created for each application deployed in the domain.

• Configuring CMO Templates using the Administration Console

• Using MBeans to Configure CMO Templates

Configuring CMO Templates using the Administration Console
You can configure CMO templates globally in the domain's configuration using the WebLogic
Server Administration Console. See Configure concurrent managed object templates in
Oracle WebLogic Server Administration Console Online Help.

Using MBeans to Configure CMO Templates
CMO templates can be configured using the following configuration MBeans under the
DomainMBean.

• ManagedExecutorServiceTemplateMBean

• ManagedScheduledExecutorServiceTemplateMBean

• ManagedThreadFactoryTemplateMBean

For more information, see the Domain Configuration MBeans section in the MBean
Reference for Oracle WebLogic Server.

Configuring Concurrent Constraints
Constraints can also be defined globally in the domain's configuration using the WebLogic
Server Administration Console and configuration MBeans. Concurrent constraints specified in
the config.xml can be assigned to any application or application component in the domain.

• Using the Administration Console to Configure Concurrent Constraints

• Using MBeans to Configure Concurrent Constraints

Using the Administration Console to Configure Concurrent Constraints
Concurrent constraints can be configured in the domain configuration, in specified server
instances and in server templates for dynamic clusters, using the Administration Console.

Domain-level Concurrent Constraints

For information about configuring concurrent constraints for a domain, see Configure
concurrent constraints for a domain in Oracle WebLogic Server Administration Console
Online Help.

Chapter 5
Configuring Concurrent Constraints

5-25

Server-level Concurrent Constraints

For information about configuring concurrent constraints for a specific server instance
in a domain, see Configure concurrent constraints for managed servers in Oracle
WebLogic Server Administration Console Online Help.

Dynamic Cluster-level Concurrent Constraints

To configure concurrent constraints for server templates in a dynamic cluster:

1. In the Domain Structure tree, expand Environment, expand Clusters, and click
Server Templates.

2. In the Summary of Server Templates table, select a server template instance.

3. Select Configuration and then select the Concurrency tab.

4. On the Concurrency page, specify a value for any or all of the available options:

• Max Concurrent Long Requests – The limit of concurrent long-running
requests submitted to the Managed Executor Service or Managed Scheduled
Executor Service. See Setting Limits for Maximum Concurrent Long Running
Requests.

• Max Concurrent New Threads – The maximum number of concurrent new
threads created by the Managed Thread Factory outside of the self-tuning
thread pool. See Setting Limits for Maximum Concurrent New Threads.

5. Click Save.

Using MBeans to Configure Concurrent Constraints
Concurrent constraints can be configured globally in the domain's configuration, in
specified server instances, and in server templates for dynamic clusters using the
following methods under the DomainMBean, ServerMBean, and ServerTemplateMBean:

• maxConcurrentLongRunningRequests() – See Setting Limits for Maximum
Concurrent Long Running Requests.

• maxConcurrentNewThreads() – See Setting Limits for Maximum Concurrent New
Threads.

For more information about using WebLogic Server MBeans, see Accessing WebLogic
Server MBeans with JMX in Developing Custom Management Utilities Using JMX for
Oracle WebLogic Server.

Querying CMOs
You can query global CMOs using administrative tools such as Administration Console
and MBeans:

• Using the Administration Console to Monitor CMO Threads

• Using MBeans to Monitor CMOs

• Using MBeans to Monitor Concurrent Constraints

Chapter 5
Querying CMOs

5-26

Using the Administration Console to Monitor CMO Threads
CMOs can be monitored using the Administration Console.

To monitor the threads created by CMOs in a server instance:

1. In the Domain Structure tree, expand Environment and click Servers.

2. In the Summary of Servers table, select a server template instance.

3. On the Settings page, select Monitoring and then select the Concurrency tab.

The tab displays the statistics for CMO threads created in the global runtime.

• Monitor JSR236 CMOs for All Deployed Applications and Modules

• Monitor JSR236 CMOs for a Deployed EAR or Module

Monitor JSR236 CMOs for All Deployed Applications and Modules
To monitor the statistics for all JSR236 CMOs in a domain:

1. In the Domain Structure tree, click Deployments.

2. In the Summary of Deployments page, select Monitoring and then select the
Concurrency tab.

The tab displays the statistics for all CMOs of all the deployed applications and modules
in the domain by calling the relevant runtime MBeans.

Monitor JSR236 CMOs for a Deployed EAR or Module
To monitor the statistics for all JSR 236 CMOs in a domain:

1. In the Domain Structure tree, click Deployments.

2. In the Summary of Deployments page, select the EAR or module that you want to
monitor.

3. On the Settings page, select Monitoring and then select the Concurrency tab.

Depending on what type of application or module you select, the tab displays the
statistics from the corresponding runtime MBean:

• EAR Application – Displays statistics for all the concurrent objects of that application
by calling ApplicationRuntimeMBean.

• Web app or EJB module within an EAR – Displays statistics for all the concurrent
objects of that module by calling ComponentRuntimeMBean.

• Standalone Web app or EJB module – Displays statistics for all the concurrent
objects of that Web app or module by calling ApplicationRuntimeMBean and
ComponentRuntimeMBean.

Using MBeans to Monitor CMOs
CMOs can be monitored using the following runtime MBeans under the DomainMBean.

• ManagedExecutorServiceRuntimeMBean

Chapter 5
Querying CMOs

5-27

The ManagedExecutorServiceRuntimeMBean can be accessed from the following
MBean attributes:

– ApplicationRuntimeMBean.ManagedExecutorServiceRuntimes – Provides
statistics for all the Managed Executor Services of that application.

– ComponentRuntimeMBean.ManagedExecutorServiceRuntimes – Provides
statistics for all the Managed Executor Services of that module.

See ManagedExecutorServiceTemplateMBean in MBean Reference for Oracle
WebLogic Server.

• ManagedScheduledExecutorServiceRuntimeMBean
The ManagedScheduledExecutorServiceRuntimeMBean can be accessed from the
following MBean attributes:

– ApplicationRuntimeMBean.ManagedScheduledExecutorServiceRuntimes –
Provides statistics for all the Managed Scheduled Executor Services of that
application.

– ComponentRuntimeMBean.ManagedScheduledExecutorServiceRuntimes –
Provides statistics for all the Managed Scheduled Executor Services of that
module.

See ManagedScheduledExecutorServiceRuntimeMBean in MBean Reference for
Oracle WebLogic Server.

• ManagedThreadFactoryRuntimeMBean
The ManagedThreadFactoryRuntimeMBean can be accessed from the following
MBean attributes:

– ApplicationRuntimeMBean.ManagedThreadFactoryRuntimes – Provides
statistics for all the Managed Thread Factories of that application.

– ComponentRuntimeMBean.ManagedThreadFactoryRuntimes – Provides
statistics for all the Managed Thread Factories of that module.

See ManagedThreadFactoryRuntimeMBean in MBean Reference for Oracle
WebLogic Server.

See Accessing WebLogic Server MBeans with JMX in Developing Custom
Management Utilities Using JMX for Oracle WebLogic Server.

Using MBeans to Monitor Concurrent Constraints
A server's concurrent constraints can be monitored using the
ConcurrentManagedObjectsRuntimeMBean, which can be accessed from the following
MBean attribute:

• ServerRuntimeMBean.ConcurrentManagedObjectsRuntime – Provides statistics for
threads created by concurrent managed objects of global runtime.

See ConcurrentManagedObjectsRuntimeMBean in MBean Reference for Oracle
WebLogic Server.

See Accessing WebLogic Server MBeans with JMX in Developing Custom
Management Utilities Using JMX for Oracle WebLogic Server.

Chapter 5
Querying CMOs

5-28

6
Using the Batch Runtime

WebLogic Server implements the batch runtime to provide support for defining, implementing,
and running batch jobs, as defined for Java EE 7 in Batch Applications for the Java Platform
(JSR 352).

• About Batch Jobs
Batch jobs are tasks that can be executed without user interaction and are best suited for
non-interactive, bulk-oriented and long-running tasks that are resource intensive, can
execute sequentially or parallel, and may be initiated ad hoc or through scheduling.

• Using the Default Batch Runtime Configuration with the Derby Database
Batch applications can be deployed and started on WebLogic Server out-of-the-box with
no runtime configuration. This is useful for smaller development environments that do not
process and store large amounts of data.

• Configuring the Batch Runtime to Use a Dedicated Database
The batch runtime in WebLogic Server uses an XA-capable data source to access the
JobRepository tables for batch jobs and a managed executor service to execute
asynchronous batch jobs. The managed executor service processes the jobs and the
JobRepository data source stores the status of current and past jobs.

• Querying the Batch Runtime
You can query the batch runtime's JobRepository for domain scope using administrative
tools such as Administration Console and MBeans.

• Troubleshooting Tips
Learn tips for configuring and using the batch runtime with WebLogic Server.

About Batch Jobs
Batch jobs are tasks that can be executed without user interaction and are best suited for
non-interactive, bulk-oriented and long-running tasks that are resource intensive, can execute
sequentially or parallel, and may be initiated ad hoc or through scheduling.

As described in The Java EE 7 Tutorial, the batch framework consists of:

• A job specification language based on XML.

• A set of batch annotations and interfaces for application classes that implement the
business logic.

• A batch container that manages the execution of batch jobs.

• Supporting classes and interfaces to interact with the batch container.

For detailed information about batch jobs, batch processing, and the batch processing
framework, see Batch Processing in The Java EE 7 Tutorial. Also, see the Java Specification
Request 352: Batch Applications for the Java Platform (http://jcp.org/en/jsr/detail?
id=352). The specification defines the programming model for batch applications and the
runtime for scheduling and executing batch jobs.

• Use of Multiple Batch Runtime Instances

6-1

http://jcp.org/en/jsr/detail?id=352
http://jcp.org/en/jsr/detail?id=352

• Batch 1.0 Code Examples in WebLogic Server

Use of Multiple Batch Runtime Instances

WebLogic Server supports the ability for multiple batch runtime instances to run in a
domain, whereby each instance is hosted on an individual Managed Server instance.
However, there is no state replication across batch jobs running in a domain; that is,
one batch runtime instance cannot be aware of another. Consequently, the processing
for a given batch job occurs only on the batch runtime instance that is hosted on a
single Managed Server. Once a batch job is started on a Managed Server instance,
the job runs on that instance to completion. Any step in the job that is started, including
any concurrent steps, runs only on that Managed Server instance. This behavior has
important implications in both clustered and nonclustered environments, particularly
with regards to load balancing, as follows:

• If your deployed applications allow external users or processes to access those
applications to start batch jobs, the load balancing mechanism for distributing work
across the Managed Servers instances typically ensures that the workload on
each batch runtime instance, over time and on average, is similarly balanced.

• If you have an application that contains a batch job, and the application is
replicated on multiple nonclustered Managed Server instances, you must create a
data source on each Managed Server that points to the same database. You then
configure each batch runtime instance to use that database for the job repository.
In this manner, an incoming request that is routed by the load balancer can land
on any Managed Server instance and start a new batch job.

• Although batch job processing cannot be clustered, batch applications can be
deployed to a cluster. You can do this by creating a data source and targeting it to
the cluster. Then you configure a group of batch runtime instances, each running
in a Managed Server instance in the cluster, to use the same job repository.

For more information about batch processing in a clustered environment, see
Batch Applications in Administering Clusters for Oracle WebLogic Server.

• There is no guarantee that the batch load at any point in time is equivalent across
the Managed Server instances if different requests can generate different types of
batch load. The likelihood of uneven load distribution increases if there is high
degree of variability of the types of batch load that can be generated by different
requests. For example, if one request is sent to one batch runtime instance, and a
second request is sent to the other batch runtime instance, it is possible that the
first request could start 10 batch jobs and the second request start only 2 jobs. In
this scenario, it is possible for the batch job workload to become unevenly
distributed.

Batch 1.0 Code Examples in WebLogic Server
When you install WebLogic Server complete with the examples, the examples source
code is placed in the EXAMPLES_HOME\examples\src\examples directory. The default
path is ORACLE_HOME\wlserver\samples\server. From this directory, you can access
the source code and instruction files for the Batch 1.0 examples without having to set
up the samples domain.

The ORACLE_HOME\user_projects\domains\wl_server directory contains the
WebLogic Server examples domain; it contains your applications and the XML
configuration files that define how your applications and Oracle WebLogic Server will

Chapter 6
About Batch Jobs

6-2

behave, as well as startup and environment scripts. See Sample Applications and Code
Examples in Understanding Oracle WebLogic Server.

• Using the Batch Job Operator – demonstrates how to use the
javax.batch.operations.JobOperator interface to submit batch jobs. The JobOperator
interface provides a set of operations to start, stop, restart, and inspect jobs. This sample
will also demonstrates how to use listeners to notify about specific event occurring during
the batch processing execution.

EXAMPLES_HOME/examples/src/examples/javaee7/batch/joboperator-api
• Using Batch Parallelization Model to Run Partitioned Job Steps – demonstrates how

to use the PartitionMapper interface to enable finer control over parallel processing.

EXAMPLES_HOME/examples/src/examples/javaee7/batch/partition
• Avitek Medical Records (MedRec) – A comprehensive educational sample application

that demonstrates WebLogic Server and Java EE features, as well as best practices. For
Java EE 7, Medrec showcases batch processing's capability by compiling drug statistics
in the background for the administrator. The statistics sum up the cost by record,
physician and drug perspectives with a start date and end date, altogether in one batch,
but with three outputs.

Avitek Medical Records is optionally installed with the WebLogic Server installation. You
can start MedRec from the ORACLE_HOME/user_projects/domains/medrec directory,
where ORACLE_HOME is the directory you specified as the Oracle Home when you installed
Oracle WebLogic Server.

Oracle recommends that you run these examples before programming your own applications
that use batch.

Using the Default Batch Runtime Configuration with the Derby
Database

Batch applications can be deployed and started on WebLogic Server out-of-the-box with no
runtime configuration. This is useful for smaller development environments that do not
process and store large amounts of data.

When no batch runtime configuration exists, WebLogic Server uses:

• The demo Derby database to create a data source needed to update the job repository to
persist batch job details.

• The executor service that is bound to default JNDI name of java:comp/
DefaultManagedExecutorService (as required by the Java EE 7 specification).

In orders to access the default batch runtime configuration, WebLogic Server must be started
using the startWeblogic.sh script.

See Querying the Batch Runtime.

Configuring the Batch Runtime to Use a Dedicated Database
The batch runtime in WebLogic Server uses an XA-capable data source to access the
JobRepository tables for batch jobs and a managed executor service to execute
asynchronous batch jobs. The managed executor service processes the jobs and the
JobRepository data source stores the status of current and past jobs.

Chapter 6
Using the Default Batch Runtime Configuration with the Derby Database

6-3

The default batch runtime in a WebLogic domain can be used without any
configuration, which is useful in development mode environments that only require the
Derby demo database. For data-driven production environments that use a database
schema, you can configure a dedicated job repository data source and managed
executor service for the domain.

• Prerequisite Steps: Configure the Job Repository Tables, Batch Data Source, and
Managed Executor Service

• Configure the Batch Runtime to Use a Dedicated Batch Data Source and
Managed Executor Service

Prerequisite Steps: Configure the Job Repository Tables, Batch Data
Source, and Managed Executor Service

For enterprise-level production environments that process and store large amounts of
data, a dedicated batch runtime can be configured to store the batch job details in a
specific database.

• Create the Job Repository Tables

• Create a JDBC Data Source for the Job Repository

• Optionally, Create a Managed Executor Service Template

Create the Job Repository Tables
The database administrator must create the job repository tables needed to persist
batch job details. The schema name used to created these tables will be denoted by
the getSchemaName() method in the BatchConfigMBean when configuring the batch
runtime for the domain. See Configure the Batch Runtime to Use a Dedicated Batch
Data Source and Managed Executor Service.

The job repository tables can be created using the Repository Create Utility (RCU) or
using SQL scripts for the databases supported for use with WebLogic Server 14c.
Schemas for creating these tables are in the following location:

ORACLE_HOME/oracle_common/common/sql/wlservices/batch/dbname
Iwhere ORACLE_HOME represents the top level installation directory for Oracle WebLogic
Server, and dbname represents the name of the database.

For information about the supported databases for WebLogic Server 14c, see the
Oracle Fusion Middleware Supported System Configurations page on Oracle
Technology Network.

• Creating Job Repository Tables Using RCU

• Creating Job Repository Tables Using an SQL Script

Creating Job Repository Tables Using RCU

It is important to note the following when using RCU to create the job repository tables
and schema owner:

1. On the Select Components page, select WebLogic Services as the component.
Also, note that Schema Owner name will default to the schema prefix string you

Chapter 6
Configuring the Batch Runtime to Use a Dedicated Database

6-4

http://www.oracle.com/pls/topic/lookup?ctx=fmw122100&id=fmwcert

chose plus "WLS", such as JBatch_WLS. Write this name down because you will use it
when you create the batch data source and the batch runtime.

2. On the Schema Passwords page, choose the Select same password for all schemas
option.

3. When you click Finish, RCU will create tables and schemas for all WebLogic related
components, including Batch, EJB Timers, Diagnostics, etc.

Now you can create the batch data source, as described in Create a JDBC Data Source for
the Job Repository. Remember that you must use the schema owner you chose on the
Select Components page as the data source's user name.

Note:

The batch runtime caches the schema name and when it acquires a connection to
update the job repository tables, it sets the schema name on the connection. Due to
this limitation, it is not possible to use the same data source for both application and
job repository (if they use separate schemas).

For more information about the Repository Clean Utility (RCU), see Creating Schemas with
the Repository Creation Utility.

Creating Job Repository Tables Using an SQL Script

If you are not using RCU utility to create the job repository tables for batch, you can use the
SQL command-line utility and the provided batch.sql script to create them. For example,
when you create job repository tables for Oracle Database and Oracle EBR (Edition-Based
Redefinition), which require SQL to create the tables.

The batch.sql SQL script is provided for all supported databases (such as, mysql, db2, etc.)
to create the job repository tables, and are in the following location:

ORACLE_HOME/oracle_common/common/sql/wlservices/batch/dbname
To use the batch.sql SQL script to create the tables, follow these steps:

1. Open an SQL command-line session for your database.

2. Create a new user called jbatch that will be identified by the batch.sql script.

3. Grant Connect privileges to user jbatch.

4. Grant Resource privileges to user jbatch.

5. Run the batch.sql script from the directory containing the Oracle database's SQL
scripts. For example:

ORACLE_HOME/oracle_common/common/sql/wlservices/batch/oracle/batch.sql
Now you can create the batch data source, as described in Create a JDBC Data Source for
the Job Repository. Remember that you must use the jbatch schema owner you created as
the data source's user name.

Chapter 6
Configuring the Batch Runtime to Use a Dedicated Database

6-5

http://www.oracle.com/pls/topic/lookup?ctx=fmw122100&id=RCUUG101
http://www.oracle.com/pls/topic/lookup?ctx=fmw122100&id=RCUUG101

Create a JDBC Data Source for the Job Repository
For a dedicated batch runtime within a domain, the WebLogic administrator must
configure an XA-capable data source for the database that will contain the job
repository tables. When a Java EE component submits a batch job, the batch runtime
updates the job repository tables using this XA data source, which is obtained by
looking up the data source's JNDI name.

When you create the batch data source using Administration Console or WLST, you
must use the schema owner created with RCU (e.g., jbatch_wls) or the SQL script
jbatch, as described in Create the Job Repository Tables.

For instructions on configuring JDBC data source, see Creating a JDBC Data Source
in Administering JDBC Data Sources for Oracle WebLogic Server.

Optionally, Create a Managed Executor Service Template
For optimum performance, the batch runtime can be configured to use application-
scoped Managed Executor Services by configuring Managed Executor Service
Templates (MES Template) that use the same name as the batch runtime
setBatchJobsManagedExecutorServiceName(). If no MES Template is specified when
configuring the batch runtime, it will instead use the default Java EE Managed
Executor Service that is bound to (java:comp/DefaultManagedExecutorService).

When a new instance of a Managed Executor Service is created for each MES
template, it will then run batch jobs that are submitted for applications that are
deployed to the domain. For example, if there are two MES Templates named MES1
and MES2 in a domain, then when BatchApp1 and BatchApp2 are deployed, each
application will get an instance of MES1 and MES2.

However, if you have set the setBatchJobsExecutorServiceName("MES2"), then all
batch jobs submitted from BatchApp1 or BatchApp1 (or from any application deployed
to the domain), will use MES2.

For instructions on configuring a Managed Executor Service Template, see
Configuring Concurrent Managed Objects.

Configure the Batch Runtime to Use a Dedicated Batch Data Source
and Managed Executor Service

The job repository data source and Managed Executor Service you created in
Prerequisite Steps: Configure the Job Repository Tables, Batch Data Source, and
Managed Executor Service can now be used to configure a dedicated batch runtime
using any of these WebLogic administrative tools:

Tip:

The schema name used in Create the Job Repository Tables must be
specified when following the configuration steps in these sections. For
example when using MBeans, the schema name must be denoted by
getSchemaName() in the BatchConfigMBean for the domain.

Chapter 6
Configuring the Batch Runtime to Use a Dedicated Database

6-6

• Configuring the Batch Runtime Using the Administration Console

• Configuring the Batch Runtime Using WLST

Configuring the Batch Runtime Using the Administration Console
A dedicated batch runtime can be configured for a domain scope using the Administration
Console. In the Settings for domain-name page, open the Batch page and complete these
configuration fields:

• Data Source JNDI Name – Select the JNDI name of the batch runtime's job repository
data source, which will be used to store data for batch jobs submitted from applications
deployed to the domain.

• Schema Name – Enter the schema name used when the job repository tables were
created by RCU or the JBatch SQL script, as described in Create the Job Repository
Tables.

Note that if the data source is shared by applications then this schema name must be the
same name that the application expects.

• Executor Service Template – Select the managed executor service (MES) template that
will be used to run batch jobs that are submitted from applications deployed in the
domain. A MES template by the same name must exist and be targeted to the domain
scope when a batch jobs is submitted.

If an MES template is not selected, then the batch runtime will use the default Java EE
ManagedExecutorService that is bound to the default JNDI name of: java:comp/
DefaultManagedExecutorService.

To configure a Managed Executor Service Template in the domain configuration using the
WebLogic Server Administration Console, use the Environment > Concurrent Templates
page. See Configuring Concurrent Managed Objects.

Configuring the Batch Runtime Using WLST
You can use WLST with the BatchRuntimeConfigMBean and DomainMBean to configure the
batch runtime to use a specific database for the job repository:

def update_domain_batch_config(domainName, jndiName, schemaName):
 connect('admin','passwd')
 edit()
 startEdit()
 cmo.setDataSourceJndiName(jndiName)
 cd('/BatchConfig/' + domainName)
 cmo.setSchemaName(schemaName)
 save()
 activate()

In this example, if the administrator has created a data source with the JNDI name jdbc/
batchDS, then, calling update_domain_batch_config('mydomain','jdbc/batchDS','BATCH')
will configure the batch runtime to store all the job repository tables in the schema 'BATCH' in
the database that is pointed by the data source that is bound to the jndiName: 'jdbc/
batchDS'.

You can use WLST to configure the batch runtime to use specific Managed Executor
Services for batch job execution. However, you must first create an Managed Executor
Service and the name of the Managed Executor Service must be provided to the
DomainMBean.

Chapter 6
Configuring the Batch Runtime to Use a Dedicated Database

6-7

 connect('admin','passwd')
 edit()
 startEdit()
 cmo.setBatchJobsExecutorServiceName('mesName')
 save()
 activate()

where mesName is the name of the Managed Executor Service that has already been
created (and targeted) to this domain.

The batch runtime can be configured to use different Managed Executor Services
using the getBatchJobsManagedExecutorServiceName() method in the DomainMBean.
However, a Managed Executor Service Template by the same name must exist and be
targeted to the domain scope when a batch job is submitted.

See the BatchConfigMBean and DomainMBean in the MBean Reference for Oracle
WebLogic Server.

See WebLogic Server WLST Online and Offline Command Reference in the WLST
Command Reference for WebLogic Server.

Querying the Batch Runtime
You can query the batch runtime's JobRepository for domain scope using
administrative tools such as Administration Console and MBeans.

Note:

Make sure that the database that contains the batch job repository is
running. For example, the default Derby database is not automatically started
when you boot WebLogic Server using the java weblogic.Server
command. If your database is not running, an exception will be thrown by the
Batch RI when you submit a batch job or when you access the
BatchJobRepositoryRuntimeMBean, either through WLST or the
Administration Console. See Troubleshooting Tips.

• Using the Administration Console to Query the Batch Runtime

• Using Runtime MBeans to Query the Batch Runtime

Using the Administration Console to Query the Batch Runtime
A job repository can be queried using the Administration Console to obtain details
about batch jobs in a domain.

• Get Details of all Batch Jobs

• Get Details about a Job's Execution

• Get Details about a Job's Step Execution

Chapter 6
Querying the Batch Runtime

6-8

Get Details of all Batch Jobs
In the Settings for domain-name page, open the Monitoring > Batch Jobs page to view
details about all the jobs submitted by applications deployed to the domain.

Table 6-1 describes the elements in the getJobDetails attribute in the
BatchJobRepositoryRuntimeMBean.

Table 6-1 All Batch Jobs

Element Name Description

Job Name The name of the batch job.

Application Name The name of the application that submitted the
batch job.

Instance ID The instance ID.

Execution ID The execution ID.

Batch Status The batch status of this job.

Start Time The start time of the job.

End Time The completion time of the job.

Exit Status The exit status of the job.

Get Details about a Job's Execution
You can view step execution details about a job by selecting it and clicking View.

Table 6-2 describes the elements in the getJobExecutions() attribute of the
BatchJobRepositoryRuntimeMBean.

Table 6-2 Job Executions Details

Element Name Description

Job Name The name of the batch job.

Instance ID The instance ID.

Execution ID The execution ID.

Batch Status The batch status of this job.

Start Time The start time of the job.

End Time The completion time of the job.

Exit Status The exit status of the job.

Get Details about a Job's Step Execution
You can view metrics about each step in a job execution by selecting it and clicking View.

Table 6-3 describes the elements in the getStepExecutions() attribute in the
BatchJobRepositoryRuntimeMBean.

Chapter 6
Querying the Batch Runtime

6-9

Table 6-3 Step Executions Details

Element Name Description

Step Name The name of the batch job step.

Step ID The step ID.

Execution ID The execution ID.

Batch Status The batch status of this job.

Start Time The start time of the job.

End Time The completion time of the job.

Exit Status The exit status of the job.

Using Runtime MBeans to Query the Batch Runtime
The job repository can be queried using WLST using the
BatchJobRepositoryRuntimeMBean to obtain details about batch jobs in a domain.

See BatchJobRepositoryRuntimeMBean in the MBean Reference for Oracle WebLogic
Server.

• Get Details of all Batch Jobs Using getJobDetails

• Get Details of a Job Execution Using getJobExecutions

• Get Details of a Job Step Execution Using getStepExecutions

Get Details of all Batch Jobs Using getJobDetails
The getJobDetails() attribute returns details about all the jobs submitted by
applications deployed to the domain. Each entry in the collection contains an array of
the elements.

Table 6-4 describes the elements in the getJobDetails attribute in the
BatchJobRepositoryRuntimeMBean.

Table 6-4 Elements in getJobDetails() Attribute

Element Name Description

JOB_NAME The name of the batch job.

APP_NAME The name of the application that submitted the
batch job (String).

INSTANCE_ID The instance ID (long).

EXECUTION_ID The execution ID (long).

BATCH_STATUS The batch status of this job (String).

START_TIME The start time of the job (java.util.Date).

END_TIME The completion time of the job
(java.util.Date).

EXIT_STATUS The exit status of the job (String).

Chapter 6
Querying the Batch Runtime

6-10

Here is an example of a WLST script that uses getJobDetails() to print a list of all batch
jobs deployed in a domain.

connect('admin', 'admin123')
domainRuntime()
cd('BatchJobRepositoryRuntime')
cd('myserver')
executions=cmo.getJobDetails(6)
print "JobName AppName InstanceID ExecutionID BatchStatus StartTime EndTime ExitStatus"
 print e[0], " ", e[1], " ", e[2], " ", e[3], " ", e[4], " ", e[5], " ", e[6], ",e[7]

Here is sample output after running getJobDetails():

JobName InstanceID ExecutionID BatchStatus StartTime
EndTime ExitStatus
PayrollJob 6 6 COMPLETED Fri Apr 24 10:11:00 PDT 2015 Fri Apr 24 10:11:01 PDT
2015 COMPLETED
PayrollJob 5 5 COMPLETED Fri Apr 24 10:10:57 PDT 2015 Fri Apr 24 10:10:58 PDT
2015 COMPLETED
PayrollJob 4 4 COMPLETED Fri Apr 24 10:10:56 PDT 2015 Fri Apr 24 10:10:56 PDT
2015 COMPLETED
PayrollJob 3 3 COMPLETED Mon Apr 20 11:32:12 PDT 2015 Mon Apr 20 11:32:12 PDT
2015 COMPLETED
PayrollJob 2 2 COMPLETED Mon Apr 20 11:32:10 PDT 2015 Mon Apr 20 11:32:11 PDT
2015 COMPLETED
PayrollJob 1 1 COMPLETED Mon Apr 20 11:25:26 PDT 2015 Mon Apr 20 11:25:26 PDT
2015 COMPLETED

Get Details of a Job Execution Using getJobExecutions
The getJobExections attribute returns details about a particular job execution. Each entry in
the collection contains an array of the elements.

Table 6-5 describes the elements in the getJobExecutions() attribute of the
BatchJobRepositoryRuntimeMBean.

Table 6-5 Elements in getJobExecutions() Attribute

Element Name Description

JOB_NAME The name of the batch job (String).

INSTANCE_ID The instance ID (long).

EXECUTION_ID The execution ID (long).

BATCH_STATUS The batch status of this job (String).

START_TIME The start time of the job (java.util.Date).

END_TIME The completion time of the job
(java.util.Date).

EXIT_STATUS The exit status of the job (String).

Here is an example of using getJobExectuions() in a WLST script to get details for a given
ExecutionID: getJobExecutions(6). To get a list of all ExecutionIDs, use the
getJobDetails() method.

connect('admin', 'admin123')
domainRuntime()
cd('BatchJobRepositoryRuntime')

Chapter 6
Querying the Batch Runtime

6-11

cd('myserver')
executions=cmo.getJobExecutions(6)
print "JobName InstanceID ExecutionID BatchStatus StartTime EndTime ExitStatus"
for e in executions
 print e[0], " ", e[1], " ", e[2], " ", e[3], " ", e[4], " ", e[5], " ", e[6]

Here is sample output after running getJobExecutions():

JobName InstanceID ExecutionID BatchStatus StartTime
EndTime ExitStatus
PayrollJob 6 6 COMPLETED Fri Apr 24 10:11:00 PDT 2015 Fri Apr 24
10:11:01 PDT 2015 COMPLETED

Get Details of a Job Step Execution Using getStepExecutions
The getStepExecutions attribute returns metrics about each step in a Job execution.
Each entry in the collection contains an array of the elements.

Table 6-6 describes the elements in the getStepExecutions() attribute in the
BatchJobRepositoryRuntimeMBean.

Table 6-6 Elements in getStepExecutions() Attribute

Element Name Description

STEP_NAME The name of the batch job step (String).

STEP_ID The step ID (long).

EXECUTION_ID The execution ID (long).

BATCH_STATUS The batch status of this job (String).

START_TIME The start time of the job (java.util.Date).

END_TIME The completion time of the job
(java.util.Date)

EXIT_STATUS The exit status of the job (String).

Here is an example of using getStepExecutions() in a WLST script to get details for a
given StepExecutionID: getStepExecutions(6). To get a list of all ExecutionIDs, use
the getJobDetails() method.

connect('admin', 'admin123')
domainRuntime()
cd('BatchJobRepositoryRuntime')
cd('myserver')
executions=cmo.getStepExecutions(6)
print "StepName StepExecutionID BatchStatus StartTime EndTime ExitStatus"
 print e[0], " ", e[1], " ", e[2], " ", e[3], " ", e[4], " ", e[5], "]

Here is sample output after running getStepExecutions():

StepName StepExecutionID BatchStatus StartTime
EndTime ExitStatus
PayrollJob 6 6 COMPLETED Fri Apr 24 10:11:00 PDT 2015 Fri Apr 24
10:11:01 PDT 2015 COMPLETED

Chapter 6
Querying the Batch Runtime

6-12

Troubleshooting Tips
Learn tips for configuring and using the batch runtime with WebLogic Server.

• Make Sure the Database Containing the Job Repository Tables is Running

Make Sure the Database Containing the Job Repository Tables is Running
A common mistake made by users of the Batch RI (reference implementation) is to neglect
starting the database that contains the job repository tables. For example, if you boot
WebLogic using the java weblogic.Server command, the Derby database is not
automatically started. If the DB isn't running, then when you submit a batch job or access the
JobRepositoryRuntimeMBean (either through WLST or through the Administration Console),
that job will fail and a cryptic exception will be thrown by the Batch RI:

[1] Exception thrown by Refernce Implementation (from IBM):

Caused by: weblogic.common.resourcepool.ResourceSystemException: Cannot load driver
class org.apache.derby.jdbc.ClientDataSource for datasource '<<<Data Source name>>>>'

Here is another error message that could be thrown by the Batch RI when the job repository's
database isn't running:

Caused By: com.ibm.jbatch.container.exception.PersistenceException:
weblogic.jdbc.extensions.ConnectionDeadSQLException:
weblogic.common.resourcepool.ResourceDeadException:
0:weblogic.common.ResourceException: Could not create pool connection for datasource
'_com_oracle_weblogic_batch_connector@_com_oracle_weblogic_batch_connector_impl_@_com_o
racle_weblogic_batch_connector_impl_WLSDatabaseConfigurationBean@_com_oracle_batch_inte
rnal__derby_batch_DataSource'.
The DBMS driver exception was: java.net.ConnectException : Error connecting to server
localhost on port 1,527 with message Connection refused.
 at
com.ibm.jbatch.container.services.impl.JDBCPersistenceManagerImpl.getConnectionToDefaul
tSchema(JDBCPersistenceManagerImpl.java:354)
 at
com.ibm.jbatch.container.services.impl.JDBCPersistenceManagerImpl.isDerby(JDBCPersisten
ceManagerImpl.java:182)
 at
com.ibm.jbatch.container.services.impl.JDBCPersistenceManagerImpl.init(JDBCPersistenceM
anagerImpl.java:143)
 at
com.ibm.jbatch.container.servicesmanager.ServicesManagerImpl$ServiceLoader.getService(S
ervicesManagerImpl.java:404)
 at
com.ibm.jbatch.container.servicesmanager.ServicesManagerImpl$ServiceLoader.access$300(S
ervicesManagerImpl.java:388)

If you see these errors, make sure that the database that contains the batch runtime job
repository is running.

Chapter 6
Troubleshooting Tips

6-13

	Contents
	Preface
	Audience
	Documentation Accessibility
	Diversity and Inclusion
	Related Documentation
	Conventions

	1 Configuring Network Resources
	Overview of Network Configuration
	Understanding Network Channels
	What Is a Channel?
	Rules for Configuring Channels
	Custom Channels Can Inherit Default Channel Attributes

	Why Use Network Channels?
	Handling Channel Failures
	Upgrading Quality of Service Levels for RMI

	Standard WebLogic Server Channels
	The Default Network Channel
	Administration Port and Administrative Channel
	Administration Port Capabilities
	Administration Port Restrictions
	Administration Port Requires SSL
	Configure Administration Port
	Booting Managed Servers to Use Administration Port
	Booting Managed Servers to Use Administrative Channels
	Custom Administrative Channels

	Using Internal Channels
	Channel Selection
	Internal Channels Within a Cluster

	Configuring a Channel
	Guidelines for Configuring Channels
	Channels and Server Instances
	Dynamic Channel Configuration
	Channels and Identity
	Channels and Protocols
	Reserved Names
	Channels, Proxy Servers, and Firewalls

	Configuring Network Channels For a Cluster
	Create the Cluster
	Create and Assign the Network Channel
	Configuring a Replication Channel
	Increase Packet Size When Using Many Channels

	Assigning a Custom Channel to an EJB
	Using IPv6 with IPv4

	2 Configuring Web Server Functionality
	Overview of Configuring Web Server Components
	Configuring the Server
	Configuring the Listen Port

	Web Applications
	Web Applications and Clustering

	Configuring Virtual Hosting
	Virtual Hosting and the Default Web Application
	Setting Up a Virtual Host

	How WebLogic Server Resolves HTTP Requests
	Setting Up HTTP Access Logs
	Log Rotation
	Common Log Format
	Setting Up HTTP Access Logs by Using Extended Log Format
	Creating the Fields Directive
	Supported Field Identifiers
	IP Address Related Fields
	DNS Related Fields
	Diagnostic Message Correlation Fields

	Creating Custom Field Identifiers
	Get Methods of the HttpAccountingInfo Object

	Preventing POST Denial-of-Service Attacks
	Setting Up WebLogic Server for HTTP Tunneling
	Configuring the HTTP Tunneling Connection
	Connecting to WebLogic Server from the Client

	Using Native I/O for Serving Static Files (Windows Only)

	3 Using Work Managers to Optimize Scheduled Work
	Understanding How WebLogic Server Uses Thread Pools
	Understanding Work Managers
	Request Classes
	Constraints
	Stuck Thread Handling
	Self-Tuning Thread Pool
	Self-Tuning Thread Pool Size
	ThreadLocal Clean Out

	Work Manager Scope
	The Default Work Manager
	Overriding the Default Work Manager
	When to Use Work Managers

	Global Work Managers
	Application-scoped Work Managers

	Using Work Managers, Request Classes, and Constraints
	Dispatch Policy for EJB
	Dispatch Policy for Web Applications

	Deployment Descriptor Examples
	Work Managers and Execute Queues
	Enabling Execute Queues
	Migrating from Execute Queues to Work Managers

	Accessing Work Managers Using MBeans
	Using CommonJ With WebLogic Server
	Accessing CommonJ Work Managers
	Mapping CommonJ to WebLogic Server Work Managers

	4 Avoiding and Managing Overload
	Configuring WebLogic Server to Avoid Overload Conditions
	Limiting Requests in the Thread Pool
	Work Managers and Thread Pool Throttling

	Limiting HTTP Sessions
	Exit on Out of Memory Exceptions
	Stuck Thread Handling

	WebLogic Server Self-Monitoring
	Overloaded Health State

	WebLogic Server Exit Codes

	5 Configuring Concurrent Managed Objects
	About Java EE Concurrency Utilities
	Concurrency 1.0 Code Examples in WebLogic Server

	How Concurrent Managed Objects Provide Concurrency for WebLogic Server Containers
	How WebLogic Server Handles Asynchronous Tasks in Application Components
	Concurrent Managed Objects (CMOs)
	CMOs versus CommonJ API
	CMO Context Propagation
	Propagated Context Types
	Contextual Invocation Points

	Self Tuning for CMO Tasks
	Threads Interruption When CMOs Are Shutting Down
	CMO Constraints for Long-Running Threads
	Setting Limits for Maximum Concurrent Long Running Requests
	Setting Limits for Maximum Concurrent New Threads

	Default Java EE CMOs
	Default Managed Executor Service
	Default Managed Scheduled Executor Service
	Default Context Service
	Default Managed Thread Factory

	Customized CMOs in Configuration Files
	Defining CMOs in WebLogic Configuration Files
	Binding CMOs to JNDI Under an Application Component Environment
	JNDI Binding Using <resource-env-ref>
	JNDI Binding Using @Resource
	Updated Schemas for Custom CMO Modules
	Updated System Module Beans for CMOs

	Custom Managed Executor Service Configuration Elements
	Deployment Descriptor Examples

	Custom Managed Scheduled Executor Service Configuration Elements
	ScheduledFuture.get() Method
	Deployment Descriptor Examples

	Custom Managed Thread Factory Configuration Elements
	Contexts of Threads Created by MTF
	Deployment Descriptor Examples

	Transaction Management for CMOs
	Transaction Management for MES and MSES
	Transaction Management for Context Service
	Transaction Management for MTF

	Global CMO Templates
	Configuring CMO Templates using the Administration Console
	Using MBeans to Configure CMO Templates

	Configuring Concurrent Constraints
	Using the Administration Console to Configure Concurrent Constraints
	Using MBeans to Configure Concurrent Constraints

	Querying CMOs
	Using the Administration Console to Monitor CMO Threads
	Monitor JSR236 CMOs for All Deployed Applications and Modules
	Monitor JSR236 CMOs for a Deployed EAR or Module

	Using MBeans to Monitor CMOs
	Using MBeans to Monitor Concurrent Constraints

	6 Using the Batch Runtime
	About Batch Jobs
	Use of Multiple Batch Runtime Instances
	Batch 1.0 Code Examples in WebLogic Server

	Using the Default Batch Runtime Configuration with the Derby Database
	Configuring the Batch Runtime to Use a Dedicated Database
	Prerequisite Steps: Configure the Job Repository Tables, Batch Data Source, and Managed Executor Service
	Create the Job Repository Tables
	Creating Job Repository Tables Using RCU
	Creating Job Repository Tables Using an SQL Script

	Create a JDBC Data Source for the Job Repository
	Optionally, Create a Managed Executor Service Template

	Configure the Batch Runtime to Use a Dedicated Batch Data Source and Managed Executor Service
	Configuring the Batch Runtime Using the Administration Console
	Configuring the Batch Runtime Using WLST

	Querying the Batch Runtime
	Using the Administration Console to Query the Batch Runtime
	Get Details of all Batch Jobs
	Get Details about a Job's Execution
	Get Details about a Job's Step Execution

	Using Runtime MBeans to Query the Batch Runtime
	Get Details of all Batch Jobs Using getJobDetails
	Get Details of a Job Execution Using getJobExecutions
	Get Details of a Job Step Execution Using getStepExecutions

	Troubleshooting Tips
	Make Sure the Database Containing the Job Repository Tables is Running

