
Oracle® Fusion Middleware
Developing SOA Applications with Oracle
SOA Suite

14c (14.1.2.0.0)
F80753-02
December 2024

Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite, 14c (14.1.2.0.0)

F80753-02

Copyright © 2005, 2024, Oracle and/or its affiliates.

Primary Author: Oracle Corporation

This software and related documentation are provided under a license agreement containing restrictions on use and
disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or
allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit,
perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation
of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find
any errors, please report them to us in writing.

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or related
documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, then
the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software, any
programs embedded, installed, or activated on delivered hardware, and modifications of such programs) and Oracle
computer documentation or other Oracle data delivered to or accessed by U.S. Government end users are "commercial
computer software," "commercial computer software documentation," or "limited rights data" pursuant to the applicable
Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, reproduction,
duplication, release, display, disclosure, modification, preparation of derivative works, and/or adaptation of i) Oracle
programs (including any operating system, integrated software, any programs embedded, installed, or activated on
delivered hardware, and modifications of such programs), ii) Oracle computer documentation and/or iii) other Oracle
data, is subject to the rights and limitations specified in the license contained in the applicable contract. The terms
governing the U.S. Government's use of Oracle cloud services are defined by the applicable contract for such services.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications that may create a risk of
personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all
appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its
affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle®, Java, MySQL, and NetSuite are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used
under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc, and the AMD logo
are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open
Group.

This software or hardware and documentation may provide access to or information about content, products, and
services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all
warranties of any kind with respect to third-party content, products, and services unless otherwise set forth in an
applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be responsible for any loss,
costs, or damages incurred due to your access to or use of third-party content, products, or services, except as set forth
in an applicable agreement between you and Oracle.

Contents

 Preface

Audience lxi

Documentation Accessibility lxi

Diversity and Inclusion lxi

Related Documents lxi

Conventions lxii

Part I Getting Started with Oracle SOA Suite

1 Introduction to Building Applications with Oracle SOA Suite

Introduction to Oracle SOA Suite 1-1

Service-Oriented Architecture 1-1

Services 1-2

Oracle SOA Suite 1-2

Standards Used by Oracle SOA Suite to Enable SOA 1-2

Service Component Architecture within SOA Composite Applications 1-4

Service Components 1-5

Binding Components 1-5

Wires 1-7

Runtime Behavior of a SOA Composite Application 1-7

Service Infrastructure 1-9

Service Engines 1-9

Deployed Service Archives 1-9

Approaches for Designing SOA Composite Applications 1-10

Getting Started with Oracle SOA Suite 1-10

Setting Accessibility Options 1-11

Setting Accessibility Options in Oracle JDeveloper 1-11

Setting Accessibility Options in Oracle SOA Composer and Oracle BPM Worklist 1-11

How to Set Accessibility Features Before Logging In 1-11

How to Set Accessibility Options After Logging In 1-12

iii

2 Getting Started with Developing SOA Composite Applications

Developing SOA Projects in Reference Configuration Mode 2-1

Creating a SOA Application 2-2

Create a SOA Application and Project 2-2

What Happens When You Create a SOA Application and Project 2-5

Adding Service Components 2-8

How to Add a Service Component 2-8

What You May Need to Know About Adding and Deleting a Service Component 2-10

How to Edit a Service Component 2-10

Adding Service Binding Components 2-11

How to Add a Service Binding Component 2-11

How to Define the Interface (WSDL) for a Web Service 2-13

Defining a New WSDL Using a Schema 2-15

Selecting an Existing WSDL 2-15

Automatically Defining a Service Interface WSDL from a Component 2-16

How to View Schemas 2-16

How to Edit a Service Binding Component 2-17

What You May Need to Know About Adding and Deleting Services 2-18

What You May Need to Know About Using the Same Namespace in Different WSDL
Files in the Same Composite 2-18

What You May Need to Know About Multiple Schema Elements in a WSDL Types
Section 2-18

What You May Need to Know About WSDL Browsing in the Resources Window When
the SOA Infrastructure Uses Both Internal and External Oracle HTTP Servers 2-19

Adding Reference Binding Components 2-19

How to Add a Reference Binding Component 2-19

What You May Need to Know About Adding and Deleting References 2-21

What You May Need to Know About WSDL References 2-22

What You May Need to Know About Mixed Message Types in a WSDL File 2-22

What You May Need to Know About Invoking the Default Revision of a Composite 2-23

Adding Wires 2-23

How to Wire a Service and a Service Component 2-24

How to Wire a Service Component and a Reference 2-25

What You May Need to Know About Adding and Deleting Wires 2-27

Adding Descriptions to SOA Composite Applications 2-28

How to Add Descriptions to SOA Composite Applications 2-28

Renaming, Deleting, and Moving Components and Artifacts 2-28

How to Rename and Delete Components in the SOA Composite Editor 2-29

How to Rename, Move, and Delete Artifacts in the Applications Window 2-29

Viewing Component Details in the Property Inspector 2-30

Adding Security Policies 2-31

Deploying a SOA Composite Application 2-31

iv

How to Invoke Deployed SOA Composite Applications 2-31

Managing and Testing a SOA Composite Application 2-32

How to Manage Deployed SOA Composite Applications in Oracle JDeveloper 2-32

How to Test and Debug a Deployed SOA Composite Application 2-35

3 Managing Shared Data with the Design-Time MDS Repository

Introduction to SOA Design-Time MDS Repository Management 3-1

Introduction to the Default SOA Design-Time MDS Repository Connection 3-2

Changing the Default SOA-MDS Location 3-2

How to Change the Default SOA-MDS Location 3-3

Sharing Data with the SOA Design-Time MDS Repository 3-5

How to Share Data with the SOA Design-Time MDS Repository 3-5

Creating and Deleting Subfolders Under the /apps Folder 3-9

How to Create and Delete Subfolders Under the /apps Folder 3-9

Exporting the Selected Contents of the /apps Folder to a JAR File 3-9

How to Export the Selected Contents of the /apps Folder to a JAR File 3-10

Importing the Contents of the JAR File into the /apps Folder 3-11

How to Import the Contents of the JAR File into the /apps Folder 3-11

Transferring the Selected Contents of the /apps Folder to Another MDS Repository 3-13

How to Transfer the Selected Contents of the /apps Folder to Another MDS Repository 3-13

Exporting an Existing Release 11g MDS Repository to a JAR File 3-15

How to Export an Existing Release 11g MDS Repository to a JAR File 3-15

Browsing for Files in the SOA Design-Time MDS Repository 3-16

Part II Using the BPEL Process Service Component

4 Getting Started with Oracle BPEL Process Manager

Introduction to the BPEL Process Service Component 4-1

How to Add a BPEL Process Service Component 4-1

How to Validate a BPEL Process Service Component 4-10

Introduction to Activities 4-11

How to Edit BPEL Activities in the Property Inspector 4-13

How to Copy and Paste Activities in BPEL Projects 4-14

How to Add a Description of Actions to BPEL Process Activities 4-15

Introduction to Partner Links 4-16

Creating a Partner Link 4-18

How to Create a Partner Link 4-18

Partner Links for an Outbound Adapter 4-18

Partner Links for an Inbound Adapter 4-19

Partner Links from an Abstract WSDL to Call a Service 4-19

v

Partner Links from an Abstract WSDL to Implement a Service 4-20

Partner Links and Human Tasks or Business Rules 4-20

Partner Links from an Existing Human Task, Business Rule, or Oracle Mediator 4-21

Introduction to Adapters 4-21

Introduction to BPEL Process Monitors 4-23

5 Introduction to Interaction Patterns in a BPEL Process

Introduction to One-Way Messages 5-1

BPEL Process Service Component as the Client 5-2

BPEL Process Service Component as the Service 5-2

Introduction to Synchronous Interactions 5-2

BPEL Process Service Component as the Client 5-3

BPEL Process Service Component as the Service 5-3

Synchronous BPEL Process Invoking an Asynchronous Process 5-3

Introduction to Asynchronous Interactions 5-3

BPEL Process Service Component as the Client 5-4

BPEL Process Service Component as the Service 5-4

Introduction to Asynchronous Interactions with a Timeout 5-4

BPEL Process Service Component as the Client 5-5

BPEL Process Service Component as the Service 5-5

Introduction to Asynchronous Interactions with a Notification Timer 5-5

BPEL Process Service Component as the Client 5-6

BPEL Process Service Component as the Service 5-6

Introduction to One Request, Multiple Responses 5-6

BPEL Process Service Component as the Client 5-7

BPEL Process Service Component as the Service 5-7

Introduction to One Request, One of Two Possible Responses 5-7

BPEL Process Service Component as the Client 5-8

BPEL Process Service Component as the Service 5-8

Introduction to One Request, a Mandatory Response, and an Optional Response 5-8

BPEL Process Service Component as the Client 5-9

BPEL Process Service Component as the Service 5-9

Introduction to Partial Processing 5-9

BPEL Process Service Component as the Client 5-10

BPEL Process Service Component as the Service 5-10

Introduction to Multiple Application Interactions 5-10

6 Manipulating XML Data in a BPEL Process

Introduction to Manipulating XML Data in BPEL Processes 6-2

XML Data in BPEL Processes 6-2

vi

Data Manipulation and XPath Standards in Assign Activities 6-2

Delegating XML Data Operations to Data Provider Services 6-5

How to Create an Entity Variable 6-6

Understanding How SDO Works in the Inbound Direction 6-7

Understanding How SDO Works in the Outbound Direction 6-7

Creating an Entity Variable and Choosing a Partner Link 6-8

Creating a Binding Key 6-9

Translating Between Native Data and XML 6-11

How to Translate Native Data to XML Data 6-12

How to Translate XML Data to Native Data 6-18

How to Translate Inbound Native Data to XML Stored as an Attachment 6-20

Using Standalone SDO-based Variables 6-23

How to Declare SDO-based Variables 6-23

How to Convert from XML to SDO 6-24

Initializing a Variable with Expression Constants or Literal XML 6-26

How To Assign a Literal XML Element 6-26

Copying Between Variables 6-26

How to Copy Between Variables 6-27

How to Initialize Variables with an Inline from-spec in BPEL 2.0 6-28

Copy Between JSON and XML Variables in a BPEL Process 6-29

Create a JSON Variable 6-29

Render and Map Individual JSON Elements 6-30

Moving and Copying Variables in the Structure Window 6-31

To Move Variables in the Structure Window: 6-31

To Copy Variables in the Structure Window: 6-32

Accessing Fields in Element and Message Type Variables 6-32

How to Access Fields Within Element-Based and Message Type-Based Variables 6-32

Assigning Numeric Values 6-34

How to Assign Numeric Values 6-34

Using Mathematical Calculations with XPath Standards 6-34

How To Use Mathematical Calculations with XPath Standards 6-34

Assigning String Literals 6-35

How to Assign String Literals 6-35

Concatenating Strings 6-35

How to Concatenate Strings 6-35

Assigning Boolean Values 6-36

How to Assign Boolean Values 6-36

Assigning a Date or Time 6-36

How to Assign a Date or Time 6-36

Manipulating Attributes 6-37

How to Manipulate Attributes 6-37

Manipulating XML Data with bpelx Extensions 6-38

vii

How to Use bpelx:append 6-40

bpelx:append in BPEL 1.1 6-40

bpelx:append in BPEL 2.0 6-40

How to Use bpelx:insertBefore 6-41

bpelx:insertBefore in BPEL 1.1 6-41

bpelx:insertBefore in BPEL 2.0 6-42

How to Use bpelx:insertAfter 6-42

bpelx:insertAfter in BPEL 1.1 6-43

bpelx:insertAfter in BPEL 2.0 6-43

How to Use bpelx:remove 6-44

bpelx:remove in BPEL 1.1 6-44

bpelx:remove in BPEL 2.0 6-45

How to Use bpelx:rename and XSD Type Casting 6-46

bpelx:rename in BPEL 1.1 6-46

bpelx:rename in BPEL 2.0 6-47

How to Use bpelx:copyList 6-48

bpelx:copyList in BPEL 1.1 6-48

bpelx:copyList in BPEL 2.0 6-49

How to Use Assign Extension Attributes 6-50

ignoreMissingFromData Attribute 6-50

insertMissingToData Attribute 6-50

keepSrcElementName Attribute 6-51

Validating XML Data 6-51

How to Validate XML Data in BPEL 2.0 6-51

Validate XML in an Assign Activity 6-51

Validate XML in a Standalone, Extended Validate Activity 6-51

How to Validate XML Data in BPEL 1.1 6-52

Validate XML in an Assign Activity 6-52

Validate XML in a Standalone, Extended Validate Activity 6-52

Using Element Variables in Message Exchange Activities in BPEL 2.0 6-53

Mapping WSDL Message Parts in BPEL 2.0 6-53

How to Map WSDL Message Parts 6-54

Importing Process Definitions in BPEL 2.0 6-55

Manipulating XML Data Sequences That Resemble Arrays 6-56

How to Statically Index into an XML Data Sequence That Uses Arrays 6-56

How to Use SOAP-Encoded Arrays 6-57

SOAP-Encoded Arrays in BPEL 2.0 6-58

Declaring a SOAP Array Using a wsdl:arrayType Attribute Inside a Schema 6-58

How to Determine Sequence Size 6-59

How to Dynamically Index by Applying a Trailing XPath to an Expression 6-60

Applying a Trailing XPath to the Result of getVariableData 6-60

Using the bpelx:append Extension to Append New Items to a Sequence 6-60

viii

Merging Data Sequences 6-61

Generating Functionality Equivalent to an Array of an Empty Element 6-61

What You May Need to Know About Using the Array Identifier 6-62

Converting from a String to an XML Element 6-62

How To Convert from a String to an XML Element 6-63

Understanding Document-Style and RPC-Style WSDL Differences 6-63

How To Use RPC-Style Files 6-63

Manipulating SOAP Headers in BPEL 6-64

How to Receive SOAP Headers in BPEL 6-64

How to Send SOAP Headers in BPEL 6-65

Declaring Extension Namespaces in BPEL 2.0 6-66

How to Declare Extension Namespaces 6-66

What Happens When You Create an Extension 6-66

7 Invoking a Synchronous Web Service from a BPEL Process

Introduction to Invoking a Synchronous Web Service 7-1

Invoking a Synchronous Web Service 7-1

How to Invoke a Synchronous Web Service 7-2

How Does the BPEL Process Work 7-2

What Happens When You Invoke a Synchronous Web Service 7-3

Partner Link in the BPEL Code 7-3

Partner Link Type and Port Type in the BPEL Code 7-4

Invoke Activity for Performing a Request 7-4

Synchronous Invocation in BPEL Code 7-5

Specifying Transaction Timeout Values in Durable Synchronous Processes 7-5

How To Specify Transaction Timeout Values 7-5

What You May Need to Know About SyncMaxWaitTime and Durable Synchronous
Requests Not Timing Out 7-6

Calling a One-Way Mediator with a Synchronous BPEL Process 7-7

8 Invoking an Asynchronous Web Service from a BPEL Process

Introduction to Invoking an Asynchronous Web Service 8-1

Invoking an Asynchronous Web Service 8-2

How to Invoke an Asynchronous Web Service 8-2

Adding a Partner Link for an Asynchronous Service 8-2

Adding an Invoke Activity 8-3

Adding a Receive Activity 8-4

Performing Additional Activities 8-5

What Happens When You Invoke an Asynchronous Web Service 8-5

portType Section of the WSDL File 8-5

ix

partnerLinkType Section of the WSDL File 8-5

Partner Links Section in the BPEL File 8-6

Composite Application File 8-6

Invoke and Receive Activities 8-7

createInstance Attribute for Starting a New Instance 8-8

Dehydration Points for Maintaining Long-Running Asynchronous Processes 8-8

Multiple Runtime Endpoint Locations 8-8

What You May Need to Know About Midprocess Receive Activities Consuming
Messages After Timing Out 8-8

What You May Need to Know About Multiple Client Components Invoking a Composite 8-9

What You May Need to Know About Limitations on BPEL 2.0 IMA Support 8-9

What Happens When You Specify a Conversation ID 8-10

bpelx:conversationId in BPEL 1.1 8-10

bpelx:conversationId in BPEL 2.0 8-10

Routing Callback Messages to the Correct Endpoint when Multiple Receive or Pick Activities
Use the Same Partner Link 8-11

How to Route Callback Messages to the Correct Endpoint when Multiple Receive and
Pick Activities Use the Same Partner Link 8-11

Managing Idempotence at the Partner Link Operation Level 8-13

How to Manage Idempotence at the Partner Link Operation Level 8-13

Creating a Dynamic Partner Link at Design Time for Use at Runtime 8-14

How To Create a Dynamic Partner Link at Design Time for Use at Runtime 8-14

Overriding Security Certificates when Invoking Dynamic Partner Links 8-17

Overriding WSDL Files of Dynamic Partner Links 8-20

Using WS-Addressing in an Asynchronous Service 8-22

How to Use WS-Addressing in an Asynchronous Service 8-23

Using TCP Tunneling to View Messages Exchanged Between Programs 8-23

9 Using Correlation Sets and Message Aggregation

Introduction to Correlation Sets in an Asynchronous Service 9-1

Scenarios for Using Correlation Sets 9-1

Understanding Correlation Set Contents and Concepts 9-2

Overview of Correlation Set Creation 9-3

Creating Correlation Sets in Oracle JDeveloper 9-3

How to Create a Correlation Set with the Correlation Wizard 9-4

How to Manually Create Correlation Sets From the Correlations Tab 9-13

Step 1: Creating a Project 9-14

Step 2: Configuring Partner Links and File Adapter Services 9-14

Step 3: Creating Three Receive Activities 9-18

Step 4: Creating Correlation Sets 9-20

Step 5: Associating Correlation Sets with Receive Activities 9-21

Step 6: Creating Property Aliases 9-22

x

Step 7: Reviewing WSDL File Content 9-23

What You May Need to Know About Conversion IDs and Different Composite Revisions 9-24

What You May Need to Know About Setting Correlations for an IMA Using a fromParts
Element With Multiple Parts 9-25

Routing Messages to the Same Instance 9-25

How to Configure BPEL Process Instance Creation 9-26

How to Use the Same Operation in Entry and Midprocess Receive Activities 9-28

How to Route a Message to a New or Existing Instance when Using Correlation Sets 9-29

10

Using Parallel Flow in a BPEL Process

Introduction to Parallel Flows in BPEL Processes 10-1

What You May Need to Know About the Execution of Parallel Flow Branches in a Single
Thread 10-2

Creating a Parallel Flow 10-2

How to Create a Parallel Flow 10-3

What Happens When You Create a Parallel Flow 10-4

Synchronizing the Execution of Activities in a Flow Activity 10-5

How to Create Synchronization Between Activities Within a Flow Activity 10-7

What Happens When You Create Synchronization Between Activities Within a Flow
Activity 10-9

What You May Need to Know About Join Conditions in Target Activities 10-11

Customizing the Number of Parallel Branches 10-12

Processing Multiple Sets of Activities with the forEach Activity in BPEL 2.0 10-12

How to Create a forEach Activity 10-13

What Happens When You Create a forEach Activity 10-16

Customizing the Number of Flow Activities with the flowN Activity in BPEL 1.1 10-18

How to Create a flowN Activity 10-19

What Happens When You Create a FlowN Activity 10-21

11

Using Conditional Branching in a BPEL Process

Introduction to Conditional Branching 11-1

Defining Conditional Branching with the If or Switch Activity 11-2

Defining Conditional Branching with the If Activity in BPEL 2.0 11-2

How to Create an If Activity 11-2

What Happens When You Create an If Activity 11-4

Defining Conditional Branching with the Switch Activity in BPEL 1.1 11-5

How to Create a Switch Activity 11-6

What Happens When You Create a Switch Activity 11-7

Defining Conditional Branching with the While Activity 11-8

How To Create a While Activity 11-8

What Happens When You Create a While Activity 11-9

xi

Defining Conditional Branching with the repeatUntil Activity 11-10

How to Create a repeatUntil Activity 11-10

What Happens When You Create a repeatUntil Activity 11-11

Specifying XPath Expressions to Bypass Activity Execution 11-12

How to Specify XPath Expressions to Bypass Activity Execution 11-12

What Happens When You Specify XPath Expressions to Bypass Activity Execution 11-12

12

Using Fault Handling in a BPEL Process

Introduction to a Fault Handler 12-1

Introduction to BPEL Standard Faults 12-3

BPEL 1.1 Standard Faults 12-3

BPEL 2.0 Standard Faults 12-4

Fault Handling Order of Precedence in BPEL 2.0 12-4

Introduction to the Business and Runtime Fault Categories of BPEL Faults 12-5

Business Faults 12-5

Runtime Faults 12-5

bindingFault 12-6

remoteFault 12-6

replayFault 12-6

How to Add and Propagate Fault Handling in a Synchronous BPEL Process 12-6

Edit the Schema and WSDL Files 12-7

Add a Fault Handler 12-7

Create a Fault Response Variable 12-9

Add an Assign Activity to the Catch Activity Branch 12-10

Add a Reply Activity to the Catch Activity Branch 12-11

Handling Faults with the Fault Management Framework 12-12

Understanding How the Fault Policy Binding Resolution Works 12-14

How to Design a Fault Policy for Automated Fault Recovery with the Fault Policy Wizard 12-14

Step 1: Defining Property Sets 12-15

Step 2: Defining Alerts 12-16

Step 3: Defining Actions 12-18

Step 4: Defining Fault Names and Policies 12-19

Step 5: Defining the Fault Policy Bindings for the Fault Policy 12-21

How to Manually Design a Fault Policy for Automated Fault Recovery 12-23

Manually Creating a Fault Policy File for Automated Fault Recovery 12-23

Associating a Fault Policy with Fault Policy Binding 12-27

Additional Fault Policy and Fault Policy Binding File Samples 12-28

Designing a Fault Policy with Multiple Rejection Handlers 12-31

How to Execute a Fault Policy 12-31

How to Use a Java Action Fault Policy 12-32

How to Design Fault Policies for Oracle BPM Suite 12-36

xii

What You May Need to Know About Designing a Fault Policy in a Synchronous BPEL
Process 12-36

What You May Need to Know About Fault Management Behavior When the Number of
Instance Retries is Exceeded 12-36

What You May Need to Know About Binding Level Retry Execution Within Fault Policy
Retries 12-37

Catching BPEL Runtime Faults 12-38

How to Catch BPEL Runtime Faults 12-38

Getting Fault Details with the getFaultAsString XPath Extension Function 12-39

How to Get Fault Details with the getFaultAsString XPath Extension Function 12-39

Throwing Internal Faults with the Throw Activity 12-39

How to Create a Throw Activity 12-39

What Happens When You Create a Throw Activity 12-40

Rethrowing Faults with the Rethrow Activity 12-40

How to Create a Rethrow Activity 12-41

What Happens When You Rethrow Faults 12-42

Returning External Faults 12-42

How to Return a Fault in a Synchronous Interaction 12-42

How to Return a Fault in an Asynchronous Interaction 12-42

Managing a Group of Activities with a Scope Activity 12-43

How to Create a Scope Activity 12-43

How to Add Descriptive Notes and Images to a Scope Activity 12-44

What Happens After You Create a Scope Activity 12-45

What You May Need to Know About Scopes 12-47

How to Use a Fault Handler Within a Scope 12-47

What You May Need to Know About the idempotent Property and Fault Handling 12-48

How to Create a Catch Activity in a Scope 12-49

What Happens When You Create a Catch Activity in a Scope 12-51

How to Insert No-Op Instructions into a Business Process with an Empty Activity 12-52

What Happens When You Create an Empty Activity 12-52

Re-executing Activities in a Scope Activity with the Replay Activity 12-52

How to Create a Replay Activity 12-53

What Happens When You Create a Replay Activity 12-54

Using Compensation After Undoing a Series of Operations 12-55

Using a Compensate Activity 12-55

How to Create a Compensate Activity 12-56

What Happens When You Create a Compensate Activity 12-56

Using a compensateScope Activity in BPEL 2.0 12-57

How to Create a compensateScope Activity 12-57

What Happens When You Create a compensateScope Activity 12-57

Stopping a Business Process Instance with a Terminate or Exit Activity 12-58

Immediately Ending a Business Process Instance with the Exit Activity in BPEL 2.0 12-58

How to Create an Exit Activity 12-58

xiii

What Happens When You Create an Exit Activity 12-59

Stopping a Business Process Instance with the Terminate Activity in BPEL 1.1 12-60

How to Create a Terminate Activity 12-60

What Happens When You Create a Terminate Activity 12-60

Throwing Faults with Assertion Conditions 12-60

How to Create Assertion Conditions 12-61

To create assertion conditions in invoke activities, receive activities, reply activities,
and OnMessage branches: 12-61

To create an assertion condition in standalone assert activities: 12-63

How to Disable Assertions 12-64

What Happens When You Create Assertion Conditions 12-64

What You May Need to Know About Assertion Conditions 12-65

bpelx:postAssert and bpelx:preAssert Extensions 12-65

Use of faultName and message Attributes 12-66

Multiple Assertions 12-66

Use of Built-in and Custom XPath Functions and $variable References 12-67

Assertion Condition Evaluation Logging of Events to the Instance Audit Trail 12-68

Expressions Not Evaluating to an XML Schema Boolean Type Throw a Fault 12-68

Assertion Conditions in a Standalone Assert Activity 12-68

What You May Need to Know About Postassertion and Preassertion Condition Schemas
and Syntax 12-68

Classifying SOAP Faults as Retriable 12-70

13

Transaction and Fault Propagation Semantics in BPEL Processes

Introduction to Transaction Semantics 13-1

Oracle BPEL Process Manager Transaction Semantics 13-1

BPELCaller Process Calls a BPELCallee Process That Has bpel.config.transaction
Set to requiresNew 13-2

BPELCaller Process Calls a BPELCallee Process That Has bpel.config.transaction
Set to required 13-3

Introduction to Execution of One-Way Invocations 13-4

Executing a Business Process Without a Transaction 13-5

When Should I Use a BPEL Process Without a Transaction? 13-5

Guidelines for Executing Without a Transaction 13-6

How to Create a Synchronous BPEL Process Without a Transaction 13-7

How to Create an Asynchronous BPEL Process Without a Transaction 13-8

Using In-Memory SOA to Improve System Performance 13-9

Persistence Settings for In-Memory Flow Instances 13-10

Steps to Enable In-Memory SOA 13-11

Enabling the In-Memory SOA Flag 13-11

Designing Your Business Process to Run In-Memory 13-13

xiv

14

Incorporating Java and Java EE Code in a BPEL Process

Introduction to Java and Java EE Code in BPEL Processes 14-1

Incorporating Java and Java EE Code in BPEL Processes 14-1

How to Wrap Java Code as a SOAP Service 14-1

What You May Need to Know About Wrapping Java Code as a SOAP Service 14-2

How to Embed Java Code Snippets into a BPEL Process with the bpelx:exec Tag 14-2

How to Embed Java Code Snippets in a BPEL 2.0 Process 14-3

How to Use an XML Facade to Simplify DOM Manipulation 14-4

How to Use bpelx:exec Built-in Methods 14-4

How to Use Java Code Wrapped in a Service Interface 14-5

Adding Custom Classes and JAR Files 14-6

How to Add Custom Classes and JAR Files 14-6

To Add JARs to BpelcClasspath: 14-6

To Add Custom Classes: 14-7

To Add Custom JARs: 14-7

Using Java Embedding in a BPEL Process in Oracle JDeveloper 14-7

How To Use Java Embedding in a BPEL Process in Oracle JDeveloper 14-7

What You May Need to Know About Using thread.sleep() in a Java Embedding Activity 14-8

Embedding Service Data Objects with bpelx:exec 14-8

Sharing a Custom Implementation of a Class with Oracle BPEL Process Manager 14-10

How to Configure the BPEL Connection Manager Class to Take Precedence 14-10

15

Using Events and Timeouts in BPEL Processes

Introduction to Event and Timeout Concepts 15-1

Selecting Between Continuing or Waiting on a Process with a Pick Activity 15-1

How To Create a Pick Activity 15-3

What Happens When You Create a Pick Activity 15-5

What You May Need to Know About Simultaneous onMessage Branches in BPEL 2.0 15-6

Setting Timeouts for Request-Reply and In-Only Operations in Receive Activities 15-7

How to Set Timeouts in Receive Activities 15-8

What Happens When You Set Timeouts in Receive Activities 15-9

What You May Need to Know About Setting Timeouts for Request-Reply and In-Only
Operations 15-9

Timeout Settings Relative from When the Activity is Invoked 15-9

Timeout Settings as an Absolute Date Time 15-10

Timeout Settings Computed Dynamically with an XPath Expression 15-11

bpelx:timeout Fault Thrown During an Activity Timeout 15-11

Event Added to the BPEL Instance Audit Trail During an Activity Timeout 15-12

Recoverable Timeout Activities During a Server Restart (Refresh Expiration Alarm
Table) 15-12

Setting an Expiration Time with a Wait Activity 15-12

xv

How To Specify the Minimum Wait Time 15-13

How to Create a Wait Activity 15-13

What Happens When You Create a Wait Activity 15-14

Specifying Events to Wait for Message Arrival with an OnEvent Branch in BPEL 2.0 15-14

How to Create an onEvent Branch in a Scope Activity 15-14

What Happens When You Create an OnEvent Branch 15-16

Setting Timeouts for Durable Synchronous Processes 15-16

Invoking an Oracle Enterprise Scheduler Job in a BPEL Process 15-16

How to Create Oracle Database and SOA-MDS Connections 15-17

How to Create a Schedule Job Activity 15-18

How to Attach Security Policies to the Service and Reference Binding Components 15-23

16

Coordinating Master and Detail Processes

Introduction to Master and Detail Process Coordinations 16-1

BPEL File Definition for the Master Process 16-3

Correlating a Master Process with Multiple Detail Processes 16-5

BPEL File Definition for Detail Processes 16-6

Defining Master and Detail Process Coordination in Oracle JDeveloper 16-6

How to Create a Master Process 16-7

How to Create a Detail Process 16-9

How to Create an Invoke Activity 16-11

17

Using the Notification Service

Introduction to the Notification Service 17-1

Introduction to Notification Channel Setup 17-2

Selecting Notification Channels During BPEL Process Design 17-3

How To Configure the Email Notification Channel 17-4

Setting Email Attachments 17-6

Formatting the Body of an Email Message as HTML 17-8

Using Dynamic HTML for Message Content Requires a CDATA Function 17-8

How to Configure the IM Notification Channel 17-9

How to Configure the SMS Notification Channel 17-10

How to Select Email Addresses and Telephone Numbers Dynamically 17-11

How to Select Notification Recipients by Browsing the User Directory 17-12

Allowing the End User to Select Notification Channels 17-12

How to Allow the End User to Select Notification Channels 17-13

How to Create and Send Headers for Notifications 17-14

xvi

18

Using Oracle BPEL Process Manager Sensors and Analytics

Introduction to Oracle BPEL Process Manager Sensors 18-1

Composite Sensors 18-3

Configuring Sensors and Sensor Actions in Oracle JDeveloper 18-3

How to Access Sensors and Sensor Actions 18-3

How to Configure Activity, Variable, and Fault Sensors 18-4

To Configure an Activity Sensor: 18-4

To Configure a Variable Sensor: 18-6

To Configure a Fault Sensor: 18-7

How to Configure Sensor Actions 18-8

How to Publish to Remote Topics and Queues 18-12

How to Create a Custom Data Publisher 18-12

How to Register the Sensors and Sensor Actions in the composite.xml File 18-14

Viewing Sensors and Sensor Action Definitions in Oracle Enterprise Manager Fusion
Middleware Control 18-15

Configuring BPEL Process Analytics 18-15

Introduction to Business Indicators 18-16

Introduction to Standard Sampling Points 18-16

Introduction to User-Defined Sampling Points 18-16

How to Access Analytics View 18-17

How to Define Business Indicators 18-18

How to Define Measurements 18-21

How to Configure Composite-Level Analytic Sampling Points 18-29

How to Configure Process-Level Analytic Sampling Points 18-30

How to Edit Business Indicators in the Business Indicator Overview Editor 18-31

Deploying BPEL Analytics 18-32

Viewing BPEL Analytics at Runtime 18-33

Part III Using the Oracle Mediator Service Component

19

Getting Started with Oracle Mediator

Introduction to Oracle Mediator 19-1

Mediator Functionality 19-1

Content-Based and Header-Based Routing 19-2

Synchronous and Asynchronous Interactions 19-2

Sequential and Parallel Routing of Messages 19-2

Message Resequencing 19-2

Data Transformation 19-2

Payload Validation 19-3

Java Callouts 19-3

xvii

Event Handling 19-3

Dynamic Routing 19-3

Error Handling 19-3

Sending Messages Back to the Caller (Echo) 19-3

Multiple Part Messages 19-4

Creating a Mediator 19-4

How to Create a Mediator 19-4

To create a composite application with a Mediator: 19-4

To create a Mediator in an existing composite application: 19-5

To create a new project with a Mediator: 19-6

To create a Mediator in an existing project: 19-7

Introduction to the Mediator Editor Environment 19-8

Configuring the Mediator Interface Definition 19-10

How to Configure the Mediator Interface Definition 19-11

What Happens When You Create a Mediator 19-15

Without an Interface Definition 19-16

With a WSDL-Based Interface 19-16

With a One-Way Interface Definition 19-16

With a Synchronous Interface Definition 19-17

With an Asynchronous Interface Definition 19-17

With an Event Subscription 19-18

Defining an Interface for a Mediator 19-19

How to Define an Interface for a Mediator 19-19

To Subscribe to Events: 19-19

To Define Services for a Mediator Using a Wire: 19-20

To Define Services for a Mediator in the Mediator Editor: 19-20

Generating a WSDL File 19-21

How to Generate a WSDL File 19-22

To generate a WSDL file for a one-way interface from an XSD file: 19-22

To generate a WSDL file for a synchronous interface from an XSD file: 19-24

To generate a WSDL file for an asynchronous interface from an XSD file: 19-25

Specifying Validation and Priority Properties 19-27

Modifying a Mediator Service Component 19-27

How To Modify Mediator Operations 19-27

How To Modify Mediator Event Subscriptions 19-28

20

Creating Oracle Mediator Routing Rules

Introduction to Routing Rules 20-1

Static Routing Rules 20-1

Types of Static Rules 20-2

Static Routing Rule Components 20-3

xviii

Dynamic Routing Rules 20-3

Sequential and Parallel Execution 20-3

Basic Principles of Sequential Routing Rules 20-4

Basic Principles of Parallel Routing Rules 20-4

Finer Control Over Thread Allocation in Parallel Routing 20-5

Resequencing Rules 20-5

Defining Routing Rules 20-5

How To Access the Routing Rules Section 20-5

From the SOA Composite Editor: 20-6

From the Applications window: 20-7

How to Create Static Routing Rules 20-7

How to Specify Mediator Services or Events 20-7

What You May Need to Know About Echoing a Service 20-11

How to Specify Sequential or Parallel Execution 20-12

How to Configure Response Messages 20-12

How to Handle Premature Callbacks 20-13

How to Handle Multiple Callbacks 20-14

How to Handle Faults 20-14

How to Specify an Expression for Filtering Messages 20-16

How to Translate Between Native XSD Formats and XML Formats 20-21

How to Use Inbound Translation 20-22

How to Use Outbound Translation 20-25

How to Create XSLT Transformations 20-27

How to Create XQuery Transformations 20-29

How to Assign Values 20-32

What You May Need to Know About the Assign Activity 20-36

How to Access Headers for Filters and Assignments 20-39

How to Use Semantic Validation 20-41

How to Work with Attachments 20-43

How to Use Java Callouts 20-43

How to Create Dynamic Routing Rules 20-52

How to Dynamically Override a Static Routing Rule Using a DVM 20-52

How to Dynamically Override a Static Routing Rule Using a Decision Component 20-57

How to Remove an Existing Dynamic Routing Rule 20-60

What You May Need to Know About Using Dynamic Routing Rules 20-60

How to Define Default Routing Rules 20-61

Default Rule Scenarios 20-61

Default Rule Target 20-62

Default Rule: Validation, Transformation, and Assign Functionality 20-62

Default Rule: Java Callouts 20-62

Default Rule: Mediator .mplan File 20-63

xix

21

Working with Multiple Part Messages in Oracle Mediator

Introduction to Mediator Multipart Message Support 21-1

Working with Multipart Request Messages 21-2

How to Specify Filter Expressions for Multipart Request Messages 21-2

How to Add Validations for Multipart Request Messages 21-2

How to Create Transformations for Multipart Request Messages 21-3

How to Assign Values for Multipart Request Messages 21-3

How to Work with Multipart Reply, Fault, and Callback Source Messages 21-3

How to Work with Multipart Target Messages 21-4

22

Using Oracle Mediator Error Handling

Introduction to Mediator Error Handling 22-1

Fault Policies 22-1

Conditions 22-2

Actions 22-4

Fault Bindings 22-8

Error Groups in Mediator 22-9

Using Error Handling with Mediator 22-10

How to Use Error Handling for a Mediator Service Component 22-10

What Happens at Runtime 22-10

Fault Recovery Using Oracle Enterprise Manager Fusion Middleware Control 22-11

Error Handling XML Schema Definition Files 22-11

Schema Definition File for fault-policies.xml 22-11

Schema Definition File for fault-bindings.xml 22-15

23

Resequencing in Oracle Mediator

Introduction to the Resequencer 23-1

Groups and Sequence IDs 23-1

Identification of Groups and Sequence IDs 23-2

Resequencing Order 23-2

Standard Resequencer 23-2

Overview of the Standard Resequencer 23-3

Information Required for Standard Resequencing 23-3

Example of the Standard Resequencer 23-3

FIFO Resequencer 23-4

Overview of the FIFO Resequencer 23-4

Information Required for FIFO Resequencing 23-4

Example of the FIFO Resequencer 23-4

Best Effort Resequencer 23-5

xx

Overview of the Best Effort Resequencer 23-5

Best Effort Resequencer Message Selection Strategies 23-5

Best Effort Resequencer Message Delivery 23-6

Information Required for Best Effort Resequencing 23-6

Example of Best Effort Resequencing Based on Maximum Rows 23-6

Example of Best Effort Resequencing Based on a Time Window 23-7

Configuring the Resequencer 23-8

How to Specify the Resequencing Level 23-8

How to Configure the Resequencing Strategy 23-9

To configure a standard resequencer: 23-9

To configure a FIFO resequencer: 23-10

To configure a best effort resequencer: 23-10

24

Understanding Message Exchange Patterns of an Oracle Mediator

One-way Message Exchange Patterns 24-1

The one.way.returns.fault Property 24-2

To add the one.way.returns.fault property: 24-3

Request-Reply Message Exchange Patterns 24-4

Request-Reply-Fault Message Exchange Patterns 24-5

Request-Callback Message Exchange Patterns 24-6

Request-Reply-Callback Message Exchange Patterns 24-7

Request-Reply-Fault-Callback Message Exchange Patterns 24-8

Part IV Using the Business Rules Service Component

25

Getting Started with Oracle Business Rules

Introduction to the Business Rule Service Component 25-1

Integrating BPEL Processes, Business Rules, and Human Tasks 25-1

Overview of Rules Designer Editor Environment 25-2

Applications Window 25-3

Rules Designer Window 25-3

Structure Window 25-4

Business Rule Validation Log Window 25-5

Introduction to Creating and Editing Business Rules 25-5

How to Create Business Rules Components 25-5

Working with Business Rules in Rules Designer 25-6

Adding Business Rules to a BPEL Process 25-7

How to Add Inputs for Business Rule 25-10

How to Add Outputs for Business Rule 25-12

How to Set Options and Create Decision Service and Business Rule Dictionary 25-13

xxi

What Happens When You Add Business Rules to a BPEL Process 25-13

What Happens When You Create a Business Rules Dictionary 25-14

What You May Need to Know About Invoking Business Rules in a BPEL Process 25-15

What You May Need to Know About Decision Component Stateful Operation 25-15

Adding Business Rules to a SOA Composite Application 25-15

How to Add Business Rules to a SOA Composite Application 25-16

How to Add Inputs to a Business Rule 25-17

How to Add Output to a Business Rule 25-18

How to Set Options and Create Decision Service and Business Rules Dictionary 25-19

How to Select and Modify a Decision Function in a Business Rule Component 25-21

Running Business Rules in a Composite Application 25-22

What You May Need to Know About Testing a Standalone Decision Service Component 25-23

Using Business Rules with Oracle ADF Business Components Fact Types 25-24

26

Using Declarative Components and Task Flows

Introduction to Declarative Components and Task Flows 26-1

Introduction to the Oracle Business Rules Editor Declarative Component 26-1

Using the Oracle Business Rules Editor Component 26-2

How to Create and Run a Sample Application by Using the Rules Editor Component 26-4

How to Create the RuleSetModel Object 26-7

How to Create the .jspx File 26-11

How to Refer to the Oracle Rules Shared Libraries 26-12

How to Run the Sample Application 26-14

How to Deploy a Rules Editor Application to a Standalone WLS 26-15

What You May Need to Know About the Custom Permissions for the Rules Editor
Component 26-16

What You May Need to Know About the Supported Tags of the Rules Editor Component 26-17

Introduction to the Oracle Business Rules Dictionary Editor Declarative Component 26-23

Using the Oracle Business Rules Dictionary Component 26-23

How to Create and Run a Sample Application by Using the Rules Dictionary Editor
Component 26-29

How to Create the RuleDictionaryModel Object 26-32

How to Create .jspx File for the Rules Dictionary Editor Component 26-36

How to Refer the oracle.rules and the oracle.soa.rules_dict_dc.webapp Shared
Libraries 26-38

How to Run the Sample Rules Dictionary Editor Application 26-40

How to Deploy a Rules Dictionary Application to a Standalone Oracle WebLogic Server 26-41

What You May Need to Know About the Supported Attributes of the Rules Dictionary
Editor Component 26-42

Introduction to the Oracle Business Rules Dictionary Editor Task Flow 26-46

Using the Oracle Business Rules Dictionary Task Flow 26-47

xxii

How to Create and Run a Sample Application By Using the Rules Dictionary Editor Task
Flow 26-47

How to Add a Rule Dictionary Editor Task Flow 26-55

How to Edit the pagedef.xml File 26-58

How to Refer to oracle.rules and oracle.soa.rules_dict_dc.webapp Shared Libraries 26-59

How to Run the Sample Task Flow Application 26-59

How to Deploy a Rules Dictionary Editor Task Flow Application to a Standalone Oracle
WebLogic Server 26-60

Localizing the ADF-Based Web Application 26-60

Working with Translations 26-61

Enabling Translations for Consumer of Reusable Rules UI ADF Task Flow Component 26-61

Sample Code to Pass an Implementation of IRelatedMetadataDetails 26-62

Enabling Translations for Consumer of Rules Web UI Application 26-64

Sample Code for Creating an Instance of resourceManager 26-64

Part V Using the Human Workflow Service Component

27

Getting Started with Human Workflow

Introduction to Human Workflow 27-1

Introduction to Human Workflow Concepts 27-3

Introduction to Design and Runtime Concepts 27-3

Task Assignment and Routing 27-3

Static, Dynamic, and Rule-Based Task Assignment 27-6

Task Stakeholders 27-7

Task Deadlines 27-8

Notifications 27-9

Task Forms 27-9

Advanced Concepts 27-10

Reports and Audit Trails 27-10

Introduction to the Stages of Human Workflow Design 27-11

Introduction to Human Workflow Use Cases 27-11

Task Assignment to a User or Role 27-11

Use of the Various Participant Types 27-12

Escalation, Expiration, and Delegation 27-12

Automatic Assignment and Delegation 27-13

Dynamic Assignment of Users Based on Task Content 27-13

Introduction to Human Workflow Architecture 27-13

Human Workflow Services 27-14

Use of Human Task 27-16

Service Engines 27-17

xxiii

Human Workflow and Business Rule Differences Between Oracle SOA Suite and Oracle
BPM Suite 27-17

28

Creating Human Tasks

Introduction to Human Tasks 28-1

Introduction to Creating a Human Task Definition 28-2

Introduction to Associating the Human Task Definition with a BPEL Process 28-2

Introduction to Generating the Task Form 28-3

Creating Human Tasks 28-3

How to Create a Human Task Using the SOA Composite Editor 28-3

How to Create a Human Task Using Oracle BPEL Designer 28-4

What Happens When You Create a Human Task 28-5

Configuring Human Tasks 28-6

Exiting the Human Task Editor and Saving Your Changes 28-6

Associating Human Tasks with BPEL Processes 28-7

How to Associate a Human Task with a BPEL Process 28-7

What You May Need to Know About Deleting a Wire Between a Human Task and a
BPEL Process 28-8

How to Define the Human Task Activity Title, Initiator, Priority, and Parameter Variables 28-9

Specifying the Task Title 28-9

Specifying the Task Initiator and Task Priority 28-10

Specifying Task Parameters 28-10

How to Define the Human Task Activity Advanced Features 28-12

Specifying a Scope Name and a Global Task Variable Name 28-13

Specifying a Task Owner 28-13

Specifying an Identification Key 28-13

Specifying an Identity Context 28-14

Specifying an Application Context 28-14

Including the Task History of Other Human Tasks 28-14

How to View the Generated Human Task Activity 28-15

Invoking BPEL Callbacks 28-16

What You May Need to Know About Changing the Generated Human Task Activity 28-17

What You May Need to Know About Deleting a Partner Link Generated by a Human
Task 28-18

How to Define Outcome-Based Modeling 28-18

Specifying Payload Updates 28-18

Using Case Statements for Other Task Conclusions 28-18

What You May Need to Know About Encoding an Attachment 28-19

xxiv

29

Configuring Human Tasks

Accessing the Sections of the Human Task Editor 29-1

Specifying the Title, Description, Outcome, Priority, Category, Owner, and Application
Context 29-3

How to Specify a Task Title 29-4

How to Specify a Task Description 29-4

How to Specify a Task Outcome 29-5

How to Specify a Task Priority 29-7

How to Specify a Task Category 29-7

How to Specify a Task Owner 29-7

Specifying a Task Owner Statically Through the User Directory or a List of
Application Roles 29-8

Specifying a Task Owner Dynamically Through an XPath Expression 29-12

How To Specify an Application Context 29-13

Specifying the Task Payload Data Structure 29-14

How to Specify the Task Payload Data Structure 29-14

Assigning Task Participants 29-16

How to Specify a Stage Name and Add Parallel and Sequential Blocks 29-17

How to Assign Task Participants 29-19

How to Configure the Single Participant Type 29-19

Creating a Single Task Participant List 29-22

Specifying a Time Limit for Acting on a Task 29-32

Inviting Additional Participants to a Task 29-32

Bypassing a Task Participant 29-33

How to Configure the Parallel Participant Type 29-33

Specifying the Voting Outcome 29-35

Creating a Parallel Task Participant List 29-36

Specifying a Time Limit for Acting on a Task 29-36

Inviting Additional Participants to a Task 29-36

Bypassing a Task Participant 29-37

How to Configure the Serial Participant Type 29-37

Creating a Serial Task Participant List 29-40

Specifying a Time Limit for Acting on a Task 29-40

Inviting Additional Participants to a Task 29-41

Bypassing a Task Participant 29-41

How to Configure the FYI Participant Type 29-41

Creating an FYI Task Participant List 29-42

Selecting a Routing Policy 29-42

How to Customize Tasks Routing 29-44

Exclude Task Creator from Approval List 29-44

Allow All Participants to Invite Other Participants or Edit New Participants 29-45

Allow Initiator to Add Participants 29-45

xxv

Stopping Routing of a Task to Further Participants 29-45

How to Specify Advanced Task Routing Using Business Rules 29-47

Introduction to Advanced Task Routing Using Business Rules 29-48

Facts 29-48

Action Types 29-49

Sample Ruleset 29-50

Linked Dictionary Support 29-51

Creating Advanced Routing Rules 29-52

How to Use External Routing 29-52

How to Configure the Error Assignee and Reviewers 29-54

How to Change Server Settings 29-56

Specifying Multilingual Settings and Style Sheets 29-56

How to Specify WordML and Other Style Sheets for Attachments 29-56

How to Specify Multilingual Settings 29-57

Specifying What to Show in Task Details in the Worklist 29-58

Escalating, Renewing, or Ending the Task 29-58

Introduction to Escalation and Expiration Policy 29-59

How to Specify a Policy to Never Expire 29-60

How to Specify a Policy to Expire 29-60

How to Extend an Expiration Policy Period 29-61

How to Escalate a Task Policy 29-61

How to Specify Escalation Rules 29-62

How to Specify a Due Date 29-62

Specifying Participant Notification Preferences 29-63

How to Notify Recipients of Changes to Task Status 29-65

How to Edit the Notification Message 29-67

How to Set Up Reminders 29-68

How to Change the Character Set Encoding 29-68

How to Secure Notifications to Exclude Details 29-68

How to Display the Oracle BPM Worklist URL in Notifications 29-68

How to Make Email Messages Actionable 29-69

How to Send Task Attachments with Email Notifications 29-69

How to Send Email Notifications to Groups and Application Roles 29-69

How to Customize Notification Headers 29-70

Specifying Access Policies and Task Actions on Task Content 29-70

Introduction to Access Rules 29-71

Specifying User Privileges for Acting on Task Content 29-72

Specifying Actions for Acting Upon Tasks 29-73

How to Specify a Workflow Digital Signature Policy 29-74

Specifying a Certificate Authority 29-75

Specifying Restrictions on Task Assignments 29-76

How to Specify Restrictions on Task Assignments 29-76

xxvi

Specifying Java or Business Event Callbacks 29-76

Specifying Java Callbacks 29-78

Specifying Business Event Callbacks 29-78

How to Specify Task and Routing Customizations in BPEL Callbacks 29-80

How to Disable BPEL Callbacks 29-81

30

Designing Task Forms for Human Tasks

Introduction to the Task Form 30-1

What You May Need to Know About Task Forms: Time Zone Conversion 30-2

Associating the Task Flow with the Task Service 30-2

Creating an ADF Task Flow Based on a Human Task 30-3

How To Create an ADF Task Flow from the Human Task Editor 30-3

How To Create an ADF Task Flow Based on a Human Task 30-6

What Happens When You Create an ADF Task Flow Based on a Human Task 30-6

What You May Need to Know About Having Multiple ADF Task Flows That Contain the
Same Element with Different Meta-attributes 30-7

Creating a Task Form 30-8

How To Create an Autogenerated Task Form 30-8

How to Register the Library JAR File for Custom Page Templates 30-10

How To Create a Task Form Using the Custom Task Form Wizard 30-11

How To Create a Task Form Using the Complete Task with Payload Drop Handler 30-18

Complete Task with Payload 30-22

Complete Task without Payload 30-22

Task Details for Email 30-22

Task Header 30-23

Task Actions 30-24

Task History 30-25

Task Comments and Attachments 30-25

How To Create Task Form Regions Using Individual Drop Handlers 30-26

How To Add the Payload to the Task Form 30-27

What Happens When You Create a Task Form 30-29

Refreshing Data Controls When the Task XSD Changes 30-29

Securing the Task Flow Application 30-30

Creating an Email Notification 30-31

How To Create an Email Notification 30-31

Creating a Task Flow with a Router 30-31

Creating an Email Notification Page 30-34

What Happens When You Create an Email Notification Page 30-37

Deploying a Composite Application with a Task Flow 30-37

How To Deploy a Composite Application with a Task Flow 30-37

How To Redeploy the Task Form 30-38

xxvii

How To Deploy a Task Flow as a Separate Application 30-38

How To Deploy a Task Form to a non-SOA Oracle WebLogic Server 30-38

Before Deploying the Task Form: Port Changes 30-38

Configuring Unique Cookie Context Paths for the Session Tracking Cookies 30-39

Deploying oracle.soa.workflow.jar to a non-SOA Oracle WebLogic Server 30-39

Defining the Foreign JNDI Provider on a non-SOA Oracle WebLogic Server 30-41

Defining the Foreign JNDI Provider Links on a non-SOA Oracle WebLogic Server 30-43

Including a Grant for bpm-services.jar 30-45

Deploying the Application 30-45

What Happens When You Deploy the Task Form 30-46

What You May Need to Know About Undeploying a Task Flow 30-46

Displaying a Task Form in the Worklist 30-46

Displaying a Task in an Email Notification 30-47

Changing the Text for the Worklist Application in Task Notifications 30-48

Changing the URL of the Worklist Application in Task Notifications 30-49

Reusing the Task Flow Application with Multiple Human Tasks 30-49

How To Reuse the Task Flow Application with Multiple Human Tasks 30-49

How to Reuse the Task Flow Application with Different Actions 30-50

31

Human Workflow Tutorial

Introduction to the Human Workflow Tutorial 31-1

Prerequisites 31-2

Creating an Application and a Project with a BPEL Process 31-2

Creating the Human Task Service Component 31-5

Designing the Human Task 31-6

Associating the Human Task and BPEL Process Service Components 31-9

Creating a Task Form Project 31-13

Deploying the Task Form 31-13

Creating an Application Server Connection 31-14

Deploying the SOA Composite Application 31-15

Initiating the Process Instance 31-15

Acting on the Task in Oracle BPM Worklist 31-15

32

Using Oracle BPM Worklist

Introduction to Oracle BPM Worklist 32-1

Logging In to Oracle BPM Worklist 32-3

How to Log In to the Worklist 32-3

Enabling the weblogic User for Logging in to the Worklist 32-4

What Happens When You Log In to the Worklist 32-4

xxviii

What Happens When You Change a User's Privileges While They are Logged in to
Oracle BPM Worklist 32-8

Customizing the Task List Page 32-8

How To Filter Tasks 32-9

To Filter Tasks Based on Assignee or State 32-9

To Filter Tasks Based on Keyword Search 32-10

To Filter Tasks Based on an Advanced Search 32-10

How To Create, Delete, and Customize Worklist Views 32-16

To Customize a Worklist View 32-19

How To Customize the Task Status Chart 32-20

How To Create a ToDo Task 32-21

How to Create Subtasks in the Worklist Application 32-22

What You May Need to Know About Creating Subtasks 32-22

Exporting Tasks to Microsoft Excel 32-23

How to Export Tasks to Excel 32-23

Acting on Tasks: The Task Details Page 32-24

System Actions 32-27

Task History 32-28

How To Act on Tasks 32-30

To Request Information 32-32

To Route a Task 32-34

To Add Comments or Attachments 32-35

How To Act on Tasks That Require a Digital Signature 32-37

Approving Tasks 32-40

Setting a Vacation Period 32-41

Setting Rules 32-42

How To Create User Rules 32-43

How To Create Group Rules 32-45

Assignment Rules for Tasks with Multiple Assignees 32-46

How to Avoid Circular Logic in Reassigned Vacation Rules 32-47

Using the Worklist Administration Functions 32-48

How To Manage Other Users' or Groups' Rules (as an Administrator) 32-48

How to Specify the Login Page Realm Label 32-49

How to Specify the Resource Bundle 32-50

How to Specify the Language Locale Information 32-51

How to Specify User Name Format 32-51

How to Specify a Branding Logo 32-52

How to Specify the Branding Title 32-53

How to Choose a Skin 32-54

To Choose A Skin 32-54

To Create a JAR File Containing Customized Skins 32-54

How to Enable Customized Applications and Links 32-55

xxix

How to Specify an Image for a Task Action 32-57

Specifying Additional Process Workspace Settings 32-57

Specifying Notification Settings 32-57

Configuring Alias for Notification Email ID 32-58

Messaging Filter Rules 32-59

Data Types 32-59

Attributes 32-59

Rule Actions 32-60

Managing Messaging Channels 32-61

Viewing Your Messaging Channels 32-61

Creating, Editing, and Deleting a Messaging Channel 32-62

Managing Messaging Filters 32-62

Viewing Messaging Filters 32-62

Creating Messaging Filters 32-63

Editing a Messaging Filter 32-64

Deleting a Messaging Filter 32-64

Using Mapped Attributes (Flex Fields) 32-64

How To Map Attributes 32-65

To Create Labels 32-66

To Browse All Mappings 32-67

To Edit Mappings by Task Type 32-68

Custom Mapped Attributes 32-71

Creating Worklist Reports 32-71

How To Create Reports 32-72

What Happens When You Create Reports 32-73

Unattended Tasks Report 32-74

Tasks Priority Report 32-75

Tasks Cycle Time Report 32-75

Tasks Productivity Report 32-76

Accessing Oracle BPM Worklist in Local Languages and Time Zones 32-77

Strings in Oracle BPM Worklist 32-77

How to Change the Preferred Language, Display Names of Users, and Time Zone
Settings if the Identity Store is LDAP-Based 32-78

How to Change the Language in Which Tasks Are Displayed 32-79

How To Change the Language Preferences from a JAZN XML File 32-80

What You May Need to Know Setting Display Languages in Worklist 32-81

How To Change the Time Zone Used in the Worklist 32-81

Creating Reusable Worklist Regions 32-81

How to Create an Application With an Embedded Reusable Worklist Region 32-81

How to Set Up the Deployment Profile 32-84

How to Prepare Federated Mode Task Flows For Deployment 32-84

What You May Need to Know About Task List Task Flow 32-85

xxx

What You May Need to Know About Certificates Task Flow 32-88

What You May Need to Know About the Reports Task Flow 32-89

What You May Need to Know About Application Preferences Task Flow 32-91

What You May Need to Know About Mapped Attributes Task Flow 32-92

What You May Need to Know About Rules Task Flow 32-93

What You May Need to Know About Approval Groups Task Flow 32-95

What You May Need to Know About Task Configuration Task Flow 32-95

Java Code for Enabling Customized Applications in Oracle BPM Worklist 32-95

33

Building a Custom Worklist Client

Introduction to Building Clients for Workflow Services 33-1

Packages and Classes for Building Clients 33-2

Workflow Service Clients 33-3

The IWorkflowServiceClient Interface 33-5

Class Paths for Clients Using SOAP 33-5

Class Paths for Clients Using Remote EJBs 33-7

Initiating a Task 33-7

Creating a Task 33-8

Creating a Payload Element in a Task 33-8

Initiating a Task Programmatically 33-8

Changing Workflow Standard View Definitions 33-9

Writing a Worklist Application Using the HelpDeskUI Sample 33-10

34

Understanding Human Workflow Services

Introduction to Human Workflow Services 34-1

SOAP, Enterprise JavaBeans, and Java Support for the Human Workflow Services 34-2

Support for Foreign JNDI Names 34-3

Security Model for Services 34-4

Limitation on Propagating Identity to Workflow Services when Using SOAP Web
Services 34-5

Creating Human Workflow Context on Behalf of a User 34-5

Obtaining the Workflow Context for a User Previously Authenticated by a JAAS
Application 34-6

Task Service 34-6

Task Query Service 34-9

Identity Service 34-23

Identity Service Providers 34-24

Task Metadata Service 34-25

User Metadata Service 34-26

Task Report Service 34-27

Runtime Config Service 34-28

xxxi

Internationalization of Attribute Labels 34-30

Evidence Store Service and Digital Signatures 34-30

Prerequisites 34-32

Interfaces and Methods 34-33

Task Instance Attributes 34-35

Notifications from Human Workflow 34-39

Contents of Notification 34-40

Error Message Support 34-41

Reliability Support 34-41

Management of Oracle Human Workflow Notification Service 34-42

How to Configure the Notification Channel Preferences 34-42

How to Configure Notification Messages in Different Languages 34-43

How to Send Actionable Messages 34-44

How to Send Actionable Emails for Human Tasks 34-44

How to Send Inbound and Outbound Attachments 34-45

How to Send Inbound Comments 34-46

How to Send Secure Notifications 34-46

How to Set Channels Used for Notifications 34-46

How to Send Reminders 34-46

How to Set Automatic Replies to Unprocessed Messages 34-47

How to Create Custom Notification Headers 34-47

Assignment Service Configuration 34-48

Dynamic Assignment and Task Escalation Patterns 34-48

How to Implement a Dynamic Assignment Pattern 34-49

How to Configure Dynamic Assignment Patterns 34-50

How to Configure Display Names for Dynamic Assignment Patterns 34-51

How to Implement a Task Escalation Pattern 34-52

Dynamically Assigning Task Participants with the Assignment Service 34-52

How to Implement an Assignment Service 34-53

Example of Assignment Service Implementation 34-53

How to Deploy a Custom Assignment Service 34-55

Custom Escalation Function 34-55

Class Loading for Callbacks and Resource Bundles 34-56

Resource Bundles in Workflow Services 34-56

Task Resource Bundles 34-56

Global Resource Bundle – WorkflowLabels.properties 34-57

Worklist Client Resource Bundles 34-58

Task Detail ADF Task Flow Resource Bundles 34-59

Specifying Stage and Participant Names in Resource Bundles 34-59

Case Sensitivity in Group and Application Role Names 34-59

Introduction to Human Workflow Client Integration with Oracle WebLogic Server Services 34-60

Human Workflow Services Clients 34-60

xxxii

Task Query Service Client Code 34-61

Configuration Option 34-63

Client Logging 34-67

Configuration Migration Utility 34-67

Identity Propagation 34-67

Enterprise JavaBeans Identity Propagation 34-67

SAML Token Identity Propagation for SOAP Client 34-68

Public Key Alias 34-69

Client JAR Files 34-70

Task States in a Human Task 34-70

Database Views for Oracle Workflow 34-71

Unattended Tasks Report View 34-71

Task Cycle Time Report View 34-72

Task Productivity Report View 34-73

Task Priority Report View 34-73

35

Design Time at Runtime in Oracle Business Process Management

Workflow 35-1

Using Design Time at Runtime in Task Editor 35-2

Expiration and Escalation Policy 35-2

Notification Settings 35-3

Task Access 35-3

Rules Tab 35-3

Reset, Save, and Commit Changes 35-4

Part VI Using Binding Components

36

Getting Started with Binding Components

Introduction to Binding Components 36-1

SOAP Web Services 36-2

WS-AtomicTransaction Support 36-2

HTTP Binding Service 36-5

Supported Interactions 36-5

How to Configure the HTTP Binding Service 36-6

How to Enable Basic Authentication for HTTP Binding 36-8

JCA Adapters 36-9

Database Adapter 36-9

File Adapter 36-9

FTP Adapter 36-10

AQ Adapter 36-10

xxxiii

JMS Adapter 36-10

MQ Adapter 36-10

Socket Adapter 36-10

Third-Party Adapter 36-11

Oracle User Messaging Service Adapter 36-11

LDAP Adapter 36-11

Coherence Adapter 36-11

JCA Adapter Properties 36-11

Oracle E-Business Suite Adapter 36-12

Oracle BAM 11g Adapter 36-12

Oracle B2B 36-12

Oracle Healthcare Adapter 36-12

Oracle MFT 36-13

ADF-BC Services 36-13

EJB Adapter 36-13

Direct Binding Adapter 36-14

REST Binding 36-14

Cloud Adapters 36-14

Introduction to Integrating a Binding Component in a SOA Composite Application 36-15

How to Integrate a Binding Component in a SOA Composite Application 36-15

How to Use ADF Binding to Invoke a Composite Application from a JSP/Java Class 36-16

Creating Tokens for Use in the Binding URLs of External References 36-16

How to Create Tokens for Use in the Binding URLs of External References 36-17

37

Integrating REST Operations in SOA Composite Applications

Introduction to REST Support 37-1

Creating REST Support in Service and Reference Binding Components 37-2

How to Configure the REST Binding Component in a SOA Composite Application 37-3

REST Operation Binding Dialog 37-6

REST Method Definition Dialog 37-8

Example: REST Enable an Existing Service Component 37-9

Example: Adding Resources and Operations from a WADL Service to a REST
Reference 37-12

How to Consume REST-Based Integrations Created in Oracle Integration from SOA
Composite Applications 37-17

Create an Oracle Integration Connection 37-17

Create a REST Binding 37-17

Configure OWSM Policies on the REST Reference 37-20

Configure and Deploy the Application 37-20

How to Invoke OAuth-Protected Oracle Integration REST Endpoints from SOA
Composite Applications 37-20

Get Oracle Integration Cloud Instance Details 37-20

xxxiv

Create a Keystore 37-21

Design a SOA Composite and Invoke a REST-Triggered Oracle Integration 37-22

Import SSL Certificates of Oracle Identity Cloud Service and Oracle Integration 37-24

How to Configure the REST Adapter Through Shortcuts 37-26

To generate a REST service based on a web service deployed on an application
server: 37-26

To generate a REST reference based on a REST service deployed on an application
server: 37-28

To generate a REST service based on a SOA component's WSDL service: 37-28

How to Generate Schemas Manually 37-29

How to Generate Schemas from Samples 37-29

How to Use Global Token Variables 37-30

How to Set REST Header Properties 37-31

Inbound and Outbound Headers 37-31

Custom Header Support 37-32

What You May Need to Know About REST Fault Binding 37-32

What You May Need to Know About Converting a JSON Interchange Format to a REST
Schema 37-33

What You May Need to Know About REST References Calling REST Services in the
Same Node 37-35

Using JavaScript and JSON in BPEL Components 37-36

Testing the REST Adapter with the HTTP Analyzer 37-42

Testing and Configuring REST Reference Binding Components in Oracle Enterprise
Manager Fusion Middleware Control 37-44

Configure Proxy Host and Proxy Port for an External REST Endpoint 37-44

Multipart Form Data Support for REST Binding 37-44

38

Integrating Enterprise JavaBeans with Composite Applications

Introduction to Enterprise JavaBeans Binding Integration with SOA Composite Applications 38-1

Integration Through Java Interfaces 38-1

Integration Through SDO-Based EJBs 38-2

Designing an SDO-Based Enterprise JavaBeans Application 38-3

How to Create SDO Objects Using the SDO Compiler 38-3

How to Create a Session Bean and Import the SDO Objects 38-4

How to Create a Profile and an EAR File 38-4

How to Define the SDO Types with an Enterprise JavaBeans Bean 38-4

How to Use Web Service Annotations 38-6

How to Deploy the Enterprise JavaBeans EAR File 38-8

Creating an Enterprise JavaBeans Service in Oracle JDeveloper 38-8

How to Integrate Java Interface-based Enterprise JavaBeans with SOA Composite
Applications 38-8

How to Integrate SDO-based Enterprise JavaBeans with SOA Composite Applications 38-10

Designing an Enterprise JavaBeans Client to Invoke Oracle SOA Suite 38-13

xxxv

How to Create a Java Interface-Based Client to Invoke Oracle SOA Suite 38-13

How to Invoke an SDO-Enterprise JavaBeans Service 38-13

Specifying Enterprise JavaBeans Roles 38-14

Configuring Enterprise JavaBeans Binding Support in the Credential Store Framework 38-15

How to Configure Enterprise JavaBeans Binding Support in the Credential Store
Framework 38-15

To configure Enterprise JavaBeans binding support in the credential store
framework: 38-15

To specify the oracle.jps.credstore.map and oracle.jps.credstore.key properties 38-15

To grant SOA infrastructure runtime access to the CSF map store 38-16

39

Using Direct Binding to Invoke Composite Services

Introduction to Direct Binding 39-1

Direct Service Binding Component 39-2

Direct Reference Binding Component 39-2

Introduction to the Direct Binding Invocation API 39-4

Synchronous Direct Binding Invocation 39-4

Asynchronous Direct Binding Invocation 39-4

Required JAR Files for Compiling and Running the Direct Binding Java Client Code 39-5

SOA Direct Address Syntax 39-6

SOA Transaction Propagation 39-6

Exception Handling with SOA Direct Transport 39-6

Invoking a SOA Composite Application in Oracle JDeveloper with the Invocation API 39-7

How to Create an Inbound Direct Binding Service 39-8

How to Create an Outbound Direct Binding Reference 39-10

How to Set an Identity for J2SE Clients Invoking Direct Binding 39-12

What You May Need to Know About Invoking SOA Composites on Hosts with the Same
Server and Domain Names 39-13

Samples Using the Direct Binding Invocation API 39-13

Part VII Sharing Functionality Across Service Components

40

Oracle SOA Suite Templates and Reusable Subprocesses

Introduction to Oracle SOA Suite Templates 40-1

Introduction to Standalone and Inline BPEL Subprocess Invocations 40-2

Introduction to a Standalone Subprocess 40-3

Introduction to an Inline Subprocess 40-5

Differences Between Oracle SOA Suite Templates and Reusable Subprocesses 40-6

Creating Oracle SOA Suite Templates 40-6

Creating and Using a SOA Project Template 40-7

xxxvi

How To Create a SOA Project Template 40-7

How to Use a Composite Template in Another SOA Composite 40-8

Creating and Using a Service Component Template 40-10

How to Create a Service Component Template 40-10

How to Use a Service Component Template in Another SOA Composite 40-11

Creating and Using a BPEL Scope Activity Template 40-14

How to Create a BPEL Scope Activity Template 40-14

How to Use a BPEL Scope Activity Template in Another BPEL Process 40-16

Managing Templates 40-19

Creating Standalone and Inline BPEL Subprocesses in a BPEL Process 40-20

How to Create a Standalone BPEL Subprocess 40-21

How to Create an Inline Subprocess 40-24

How to Create a Standalone Subprocess that Takes a Partner Link as a Parameter 40-28

What You May Need to Know About Renaming a Subprocess 40-34

41

Creating Transformations with the XSLT Map Editor

Introduction to the XSLT Map Editor 41-1

Using the Map View 41-3

Using the XSLT View 41-3

Using the Components Window 41-3

Using the Properties Window 41-4

Creating an XSLT Map 41-5

How to Create an XSLT Map 41-5

How to Create an XSL Map File in Oracle BPEL Process Manager 41-6

How to Create an XSL Map File from Imported Source and Target Schema Files in
Oracle BPEL Process Manager 41-8

How to Create an XSL Map File in Oracle Mediator 41-10

What You May Need to Know About Creating an XSL Map File 41-13

What Happens at Runtime If You Pass a Payload Through Oracle Mediator Without
Creating an XSL Map File 41-14

What Happens If You Receive an Empty Namespace Tag in an Output Message 41-14

Editing an XSLT Map in Map View 41-14

How to Perform a Value Copy by Linking Nodes 41-14

How to Create an Empty Node in the Output Document 41-15

How to Set a Literal Text Value for a Target Node 41-15

How to Add an XSLT Statement 41-15

To Add an XSLT Statement: 41-15

To Add an xsl:text or xsl:variable Statement: 41-16

To Drag and Drop an XSLT statement to a Target Node: 41-16

How to Add Conditional Processing Using xsl:if 41-16

How to Add Conditional Processing Using xsl:choose 41-18

How to Add Loops Using xsl:for-each 41-21

xxxvii

How to Add xsl:sort for an xsl:for-each Statement 41-25

How to Duplicate XSLT Instructions 41-26

How to Duplicate an Element 41-29

How to Delete an Element or Attribute 41-31

How to Remove Mappings from an Element or Attribute 41-32

Editing an XSLT Map in XSLT View 41-32

How to Add a Target Element or Attribute Before Mapping 41-32

How to Add Elements and Attributes from the Target Schema 41-33

How to Add Literal Elements and Attributes When No Target Schema Is Present 41-35

How to Create an Empty Node in the Output Document 41-36

How to Perform a Value Copy by Linking Nodes 41-36

How to Insert an xsl:valueof Statement 41-37

How to Set a Literal Text Value for an XSLT Node 41-38

How to Set a Literal Text Value Using an xsl:text Instruction 41-38

How to Add XSLT Statements 41-38

To add an XSLT element using the context menu: 41-38

To add XSLT elements from the Components window: 41-39

How to Set the Value of an XSLT Expression Attribute 41-41

How to Duplicate an Element 41-41

How to Delete an Element or Attribute 41-41

How to Move an Element 41-42

How to Remove Mappings from an Element or Attribute 41-43

Using XPath Expressions 41-43

How to Modify an Existing Source to Target Mapping 41-44

To edit an XPath expression using the Edit XPath dialog 41-44

To edit an existing XPath expression using the Properties window 41-44

How to Add an XPath Function to an Existing XPath Expression 41-45

How to Modify an Existing Function XPath Expression in the Canvas Pane 41-46

To set a function parameter using drag and drop: 41-47

To delete a function parameter: 41-47

How to Edit a Function as a Full XPath Expression 41-47

How to Edit Individual Function Parameters 41-49

How to Create a New Function in the Canvas Pane 41-50

To create an XPath Function using the canvas context menu 41-50

To create an XPath function using the Components window 41-51

To create an XPath function using the target tree context menu 41-52

To create an XPath function by dragging it to the target tree 41-52

How to Chain Functions Together 41-53

How to Remove an XPath Expression 41-53

How to Import User-Defined Functions 41-53

Using Auto Map to Map Complex Nodes 41-55

How to Set Auto Map Preferences 41-56

xxxviii

How to Execute an Auto Map 41-57

Checking the Completion Status of the Map 41-57

Testing the Map 41-58

How to Test the Transformation Mapping Logic 41-59

How to Test XSLT Maps that Use DVM Lookup Functions 41-61

How to Test XSLT Maps that Use XREF Functions 41-62

How to Generate Reports 41-65

How to Customize Sample XML Generation 41-65

Importing an External XSLT Map 41-66

Using Variables and Parameters 41-66

How to Add Global Variables 41-66

How to Add Local Variables in Map View 41-67

How to Add Local Variables in XSLT View 41-68

How to Add Global Parameters 41-68

Substituting Elements and Types 41-70

Using Named Templates 41-76

How to Create a Named Template 41-76

How to Edit a Named Template 41-77

How to Add Parameters to an Existing Named Template 41-77

How to Invoke a Named Template 41-78

Using Template Rules 41-78

How to Create a Template Rule 41-78

Example: Creating a Template Rule 41-81

How to Refactor an Existing Map to Create a Template Rule 41-85

Using the Execution View 41-88

How to Use Execution View to Prevent or Troubleshoot Runtime Errors 41-89

Searching for Nodes 41-90

Setting Display Options 41-90

Debugging the XSLT Map 41-90

Setting Breakpoints in the XSLT Map Editor 41-91

Running the Debugger on the XSLT Map 41-91

Viewing Breakpoints 41-93

Setting Conditions for XSLT Breakpoints 41-94

Troubleshooting Memory Issues 41-95

Setting XSL Map Preferences 41-95

How to Set XSLT Map Preferences 41-96

How to Set the XSL Editor Preferences 41-96

How to Import a Customization File to Specify Display Preferences in the XSLT Map
Editor 41-97

xxxix

42

Creating Transformations with the XQuery Mapper

Introduction to the XQuery Mapper 42-1

About the Source and Target Trees 42-2

Using the XQuery Mapper Toolbar 42-3

Using the Properties Window 42-4

Using the Components Window 42-5

Source Editor 42-6

Creating an XQuery Map File 42-7

How to Create an XQuery Main/Library Module 42-7

Using the XQuery Mapper 42-10

How to Use Value Mapping to Copy a Leaf Element Value to a Target Leaf Element 42-11

How to Use Overwrite Mapping to Copy an Element Subtree to the Target Tree 42-11

How to Use Append Mapping to Copy an Element Subtree to the Target Tree 42-11

How to Perform Multiple Value Mappings with One Drag and Drop Action 42-12

Using XQuery Functions 42-12

How to Add an XQuery Function in the XQuery Mapper 42-12

To add an XQuery function: 42-12

To edit a function's parameters: 42-13

Using Library Modules 42-14

How to Import a Library Module 42-14

Working with Zones and FLWOR Constructs 42-14

How to Edit a FLWOR Construct 42-15

Using Type Annotations to Improve XQuery Performance 42-15

Testing Your XQuery Map 42-16

How to Test an XQuery Map 42-16

43

Using Business Events and the Event Delivery Network

Introduction to Business Events 43-1

EDN Integration with Oracle SOA Suite 43-3

Business Event API Support for Remote Clients 43-4

Guidelines for Manually Setting Event Delivery Network Properties When Invoking
the BusinessEvent.setProperty API 43-5

Local and Remote Event Connections 43-6

Creating Business Events in Oracle JDeveloper 43-6

How to Create a Business Event 43-6

Subscribing to or Publishing a Business Event from an Oracle Mediator Service Component 43-8

How to Subscribe to a Business Event 43-8

How to Publish a Business Event 43-10

What Happens When You Create and Subscribe to a Business Event 43-11

What Happens When You Publish a Business Event 43-11

What You May Need to Know About Subscribing to a Business Event 43-12

xl

What You May Need to Know About Publishing Events Across Domains Using SAF 43-12

Workaround for Local Subscribers 43-12

How to Configure a Foreign JNDI Provider to Enable Administration Server Applications
to Publish Events to the SOA Server 43-13

How to Configure the Connection Factory When the Oracle WebLogic Server JMS Runs
in the Same Local JVM as the JMS Adapter 43-14

Subscribing to or Publishing a Business Event from a BPEL Process Service Component 43-15

How to Subscribe to a Business Event 43-15

How to Publish a Business Event 43-18

What Happens When You Subscribe to and Publish a Business Event 43-18

How to Integrate Oracle ADF Business Component Business Events with Oracle Mediator 43-20

44

Working with Cross References

Introduction to Cross References 44-1

Introduction to Cross Reference Tables 44-2

Oracle Data Integrator Support for Cross Referencing 44-4

Creating and Modifying Cross Reference Tables 44-4

How to Create Cross Reference Metadata 44-5

What Happens When You Create a Cross Reference 44-6

How to Create Custom Database Tables 44-7

How to Add an End System to a Cross Reference Table 44-9

Populating Cross Reference Tables 44-10

About the xref:populateXRefRow Function 44-11

About the xref:populateLookupXRefRow Function 44-14

About the xref:populateXRefRow1M Function 44-15

How to Populate a Column of a Cross Reference Table 44-17

Looking Up Cross Reference Tables 44-18

About the xref:lookupXRef Function 44-19

About the xref:lookupXRef1M Function 44-19

About the xref:lookupPopulatedColumns Function 44-20

How to Look Up a Cross Reference Table for a Value 44-21

Deleting a Cross Reference Table Value 44-22

How to Delete a Cross Reference Table Value 44-23

Creating and Running the Cross Reference Use Case 44-24

How to Create the Use Case 44-25

Task 1: How to Configure the Oracle Database and Database Adapter 44-25

Task 2: How to Create an Oracle JDeveloper Application and a Project 44-26

Task 3: How to Create a Cross Reference 44-27

Task 4: How to Create a Database Adapter Service 44-28

Task 5: How to Create EBS and SBL External References 44-30

Task 6: How to Create the Logger File Adapter External Reference 44-32

Task 7: How to Create an Oracle Mediator Service Component 44-34

xli

Task 8: How to Specify Routing Rules for an Oracle Mediator Service Component 44-35

Task 9: How to Specify Routing Rules for the Common Oracle Mediator 44-44

Task 10: How to Configure an Application Server Connection 44-55

Task 11: How to Deploy the Composite Application 44-55

How to Run and Monitor the XrefCustApp Application 44-55

Creating and Running Cross Reference for 1M Functions 44-56

How to Create the Use Case 44-56

Task 1: How to Configure the Oracle Database and Database Adapter 44-56

Task 2: How to Create an Oracle JDeveloper Application and a Project 44-57

Task 3: How to Create a Cross Reference 44-58

Task 4: How to Create a Database Adapter Service 44-59

Task 5: How to Create an EBS External Reference 44-60

Task 6: How to Create a Logger File Adapter External Reference 44-62

Task 7: How to Create an Oracle Mediator Service Component 44-64

Task 8: How to Specify Routing Rules for an Oracle Mediator Component 44-64

Task 9: How to Specify Routing Rules for the Common Oracle Mediator 44-69

Task 10: How to Configure an Application Server Connection 44-73

Task 11: How to Deploy the Composite Application 44-73

45

Working with Domain Value Maps

Introduction to Domain Value Maps 45-1

Domain Value Map Features 45-2

Qualifier Domains 45-2

Qualifier Hierarchies 45-3

One-to-Many Mappings 45-4

Creating Domain Value Maps 45-4

How to Create Domain Value Maps 45-4

What Happens When You Create a Domain Value Map 45-5

Editing a Domain Value Map 45-7

How to Add Domains to a Domain Value Map 45-7

How to Edit a Domain 45-8

How to Add Domain Values to a Domain Value Map 45-9

How to Edit Domain Values 45-9

Using Domain Value Map Functions 45-10

Understanding Domain Value Map Functions 45-10

dvm:lookupValue 45-10

dvm:lookupValue1M 45-11

How to Use Domain Value Map Functions in Transformations 45-11

How to Use Domain Value Map Functions in XPath Expressions 45-14

What Happens at Runtime 45-14

Creating a Domain Value Map Use Case for a Hierarchical Lookup 45-15

xlii

How to Create the HierarchicalValue Use Case 45-15

Task 1: How to Create an Oracle JDeveloper Application and a Project 45-15

Task 2: How to Create a Domain Value Map 45-15

Task 3: How to Create a File Adapter Service 45-17

Task 4: How to Create ProcessOrders Mediator Component 45-18

Task 5: How to Create a File Adapter Reference 45-19

Task 6: How to Specify Routing Rules 45-20

Task 7: How to Configure an Application Server Connection 45-23

Task 8: How to Deploy the Composite Application 45-24

How to Run and Monitor the HierarchicalValue Application 45-24

Creating a Domain Value Map Use Case For Multiple Values 45-24

How to Create the Multivalue Use Case 45-24

Task 1: How to Create an Oracle JDeveloper Application and Project 45-25

Task 2: How to Create a Domain Value Map 45-25

Task 3: How to Create a File Adapter Service 45-26

Task 4: How to Create the LookupMultiplevaluesMediator Mediator 45-28

Task 5: How to Create a File Adapter Reference 45-29

Task 6: How to Specify Routing Rules 45-30

Task 7: How to Configure an Application Server Connection 45-32

Task 8: How to Deploy the Composite Application 45-33

How to Run and Monitor the Multivalue Application 45-33

Preloading DVM Cache for Faster First-Use 45-33

How to Preload DVM Cache at Server Startup 45-33

46

Using Oracle SOA Composer with Domain Value Maps

Introduction to Oracle SOA Composer 46-1

How to Sign In to Oracle SOA Composer 46-2

Viewing Domain Value Maps at Runtime 46-3

How To View Domain Value Maps at Runtime 46-3

Editing Domain Value Maps at Runtime 46-4

How to Edit Domain Value Maps at Runtime 46-4

Changing to Edit Mode 46-5

Adding Rows 46-5

Editing Rows 46-5

Deleting Rows 46-5

Exporting and Importing Customizations to Domain Value Maps at Runtime 46-5

How to Export Customizations to a Domain Value Map at Runtime 46-6

How to Import Customizations to a Domain Value Map at Runtime 46-6

Publishing Changes at Runtime 46-7

How to Publish Changes at Runtime 46-7

How to Discard Changes at Runtime 46-7

xliii

Detecting Conflicts 46-8

Part VIII Completing Your Application

47

Enabling Security with Policies and Message Encryption

Introduction to Policies 47-1

Attaching Policies to Binding Components and Service Components 47-2

How to Attach Policies to Binding Components and Service Components 47-2

To attach a policy to a service component: 47-6

How to Override Policy Configuration Property Values 47-6

Overriding Client Configuration Property Values 47-6

Overriding Server Configuration Property Values 47-8

Encrypting and Decrypting Specific Fields of Messages 47-9

How to Encrypt and Decrypt Specific Fields of Messages 47-10

48

Deploying SOA Composite Applications

Introduction to Deployment 48-1

Deployment Prerequisites 48-2

Creating the Oracle SOA Suite Schema 48-2

Creating a SOA Domain 48-2

Configuring a SOA Cluster 48-2

Understanding the Packaging Impact 48-2

Anatomy of a Composite 48-3

Preparing the Target Environment 48-3

How to Create Data Sources and Queues 48-4

Script for Creation of JMS Resource and Redeployment of JMS Adapter 48-4

Script for Creation of the Database Resource and Redeployment of the Database
Adapter 48-5

How to Create Connection Factories and Connection Pooling 48-6

How to Enable Security 48-6

How to Set the Business Flow Instance Name or Composite Instance Name at Design
Time 48-7

Setting the Business Flow Instance Name in Oracle Mediator 48-7

Setting the Business Flow Instance Name in a BPEL Process 48-7

Setting the Composite Instance Name in a BPEL Process 48-8

How to Deploy Trading Partner Agreements and Task Flows 48-8

How to Create an Application Server Connection 48-8

How to Create a SOA-MDS Connection 48-8

What You May Need to Know About Opening the composite.xml File Through a
SOA-MDS Connection 48-8

xliv

Customizing Your Application for the Target Environment Before Deployment 48-9

How to Use Configuration Plans to Customize SOA Composite Applications for the
Target Environment 48-9

Introduction to Configuration Plans 48-9

Introduction to a Configuration Plan File 48-10

Introduction to Use Cases for a Configuration Plan 48-12

How to Create a Configuration Plan in Oracle JDeveloper 48-13

How to Create a Configuration Plan with the WLST Utility 48-16

How to Attach a Configuration Plan with ant Scripts 48-16

How to Create Global Token Variables 48-16

Deploying SOA Composite Applications or Projects in Oracle JDeveloper 48-16

How to Deploy a Single SOA Composite in Oracle JDeveloper 48-17

Creating an Application Server Connection 48-17

Optionally Creating a Project Deployment Profile 48-19

Deploying the Profile 48-21

What You May Need to Know About Deploying Human Task Composites with Task
Flows to Partitions 48-30

How to Deploy Multiple SOA Composite Applications in Oracle JDeveloper 48-30

How to Deploy and Use Shared Data Across Multiple SOA Composite Applications in
Oracle JDeveloper 48-32

Create a JAR Profile and Include the Artifacts to Share 48-33

Create a SOA Bundle that Includes the JAR Profile 48-38

Deploy the SOA Bundle with Oracle JDeveloper 48-40

Use Shared Data 48-40

How to Deploy an Existing SOA Archive in Oracle JDeveloper 48-43

Deploying and Managing SOA Composite Applications with the WLST Utility 48-45

Deploying and Managing SOA Composite Applications with ant Scripts 48-45

How to Use ant to Automate the Testing of a SOA Composite Application 48-47

How to Use ant to Compile a SOA Composite Application 48-48

How to Use ant to Package a SOA Composite Application into a Composite SAR File 48-49

How to Use ant to Deploy a SOA Composite Application 48-50

How to Use ant to Undeploy a SOA Composite Application 48-51

How to Use ant to Export a Composite into a SAR File 48-52

How to Use ant to Export Postdeployment Changes of a Composite into a JAR File 48-54

How to Use ant to Import Postdeployment Changes of a Composite 48-55

How to Use ant to Export Shared Data of a Given Pattern into a JAR File 48-55

How to Use ant to Remove a Top-level Shared Data Folder 48-56

How to Use ant to Start a SOA Composite Application 48-57

How to Use ant to Stop a SOA Composite Application 48-58

How to Use ant to Activate a SOA Composite Application 48-58

How to Use ant to Retire a SOA Composite Application 48-59

How to Use ant to Assign the Default Version to a SOA Composite Application 48-60

How to Use ant to List the Deployed SOA Composite Applications 48-60

xlv

How to Use ant to List All Available Partitions in the SOA Infrastructure 48-61

How to Use ant to List All Composites in a Partition 48-61

How to Use ant to Create a Partition in the SOA Infrastructure 48-62

How to Use ant to Delete a Partition in the SOA Infrastructure 48-63

How to Use ant to Start All Composites in the Partition 48-63

How to Use ant to Stop All Composites in the Partition 48-64

How to Use ant to Activate All Composites in the Partition 48-64

How to Use ant to Retire All Composites in the Partition 48-65

How to Use ant to Manage SOA Composite Applications 48-66

Deploying SOA Composite Applications from Oracle Enterprise Manager Fusion Middleware
Control 48-66

Deploying SOA Composite Applications with No Servers Running 48-67

Offline Deployment Configuration Files 48-68

Offline Deployment Configuration List File 48-68

Offline Deployment Configuration File 48-68

Relative Configuration File Paths 48-70

Order of Deployment 48-70

How to Deploy SOA Composite Applications and Shared Data with No Server Running 48-71

What You May Need to Know About Offline Composite Deployment in a Cluster
Environment 48-71

What You May Need to Know About Deploying SOA Composite Applications that
Reference Shared Data That is Not in the MDS Repository 48-71

Importing XSLT Customizations into a Deployed SOA Composite Application 48-72

Postdeployment Configuration 48-73

Security 48-73

Updating Connections 48-73

Updating Data Sources and Queues 48-73

Attaching Policies 48-73

Testing and Troubleshooting 48-73

Verifying Deployment 48-73

Initiating an Instance of a Deployed Composite 48-73

Automating the Testing of Deployed Composites 48-73

Recompiling a Project After Receiving a Deployment Error 48-74

Reducing Java Code Size to Resolve Java Compilation Errors 48-74

Troubleshooting Common Deployment Errors 48-75

Common Oracle JDeveloper Deployment Issues 48-75

Common Configuration Plan Issues 48-77

Deploying to a Managed Oracle WebLogic Server 48-77

Deploying to a Two-Way, SSL-Enabled Oracle WebLogic Server 48-77

Deploying with an Unreachable Proxy Server 48-77

Releasing Locks to Resolve ADF Task Form EAR File Deployment Errors 48-78

Increasing Memory to Recover from Compilation Errors 48-79

xlvi

Oracle JDeveloper Compilation Error When Property Alias Definition is Missing for a
Receive Activity with a Correlation Set 48-79

ADF Binding Service Names Must Be Unique Across All Deployed SOA Composite
Applications 48-79

Patching Running Instances of a SOA Composite 48-80

Using the SOA Patch Developer Mode in JDeveloper 48-80

Generating the Patch XML File 48-83

Creating a Sparse Deployment Profile 48-84

Verifying and Deploying the Patch Using WLST 48-85

Deleting the Patch File 48-87

49

Using the Oracle SOA Suite Development Maven Plug-In

Introduction to the Oracle SOA Suite Maven Plug-in 49-1

POM Files and Archetypes 49-1

Maven Plug-in Goals 49-4

compile 49-4

package 49-4

deploy 49-5

test 49-5

undeploy 49-5

Using Maven Online Help 49-5

Installing the Oracle SOA Suite Maven Plug-in 49-6

How to Configure the Oracle SOA Suite Maven Plug-In 49-6

Using the Oracle SOA Suite Maven Archetype 49-7

50

Debugging and Auditing SOA Composite Applications

Introduction to the SOA Debugger 50-1

Debugging a SOA Composite Application 50-2

How to Start the SOA Debugger 50-2

How to Set Breakpoints and Initiate Debugging 50-5

How to Step Through a Debugging Session 50-9

How to End or Detach from a Debugging Session 50-14

How to Remove Breakpoints 50-14

How to View Adapter Properties 50-15

How to View Threads 50-16

Testing SOA Composite Applications with the HTTP Analyzer 50-17

Auditing SOA Composite Applications at the BPEL Activity Level 50-19

How to Audit SOA Composite Applications at the BPEL Activity Level 50-21

xlvii

51

Automating Testing of SOA Composite Applications

Introduction to the Composite Test Framework 51-1

Test Cases Overview 51-1

Overview of Test Suites 51-1

Overview of Emulations 51-2

Overview of Assertions 51-2

Introduction to the Components of a Test Suite 51-2

Process Initiation 51-3

Emulations 51-3

Assertions 51-4

Message Files 51-5

Creating Test Suites and Test Cases with the Create Composite Test Wizard 51-5

Editing the Contents of Test Cases in Test Mode in the SOA Composite Editor 51-12

How to Initiate Inbound Messages 51-12

How to Emulate Outbound Messages 51-15

How to Emulate Callback Messages 51-18

How to Emulate Fault Messages 51-20

How to Create Assertions 51-21

Creating Assertions on a Part Section, Nonleaf Element, or Entire XML Document 51-22

Creating Assertions on a Leaf Element 51-25

What You May Need to Know About Assertions 51-27

Testing BPEL Process Service Components 51-27

Overview of Assertions on BPEL Process Activities 51-28

Overview of a Fast Forward Action on a Wait Activity 51-29

Overview of Assert Activity Execution 51-29

How to Create BPEL Process Service Component Tests 51-30

How to Create Assertions 51-31

How to Bypass a Wait Activity 51-33

How to Specify the Number of Times to Execute an Activity 51-34

Deploying and Running a Test Suite 51-35

How to Deploy and Run a Test Suite from Oracle JDeveloper 51-35

How to Deploy and Run a Test Suite from Oracle Enterprise Manager Fusion
Middleware Control 51-41

How to Deploy and Run a Test Suite with a WLST Command 51-41

How to Deploy and Run a Test Suite with an ant Script 51-42

Part IX Advanced Topics

xlviii

52

Managing Large Documents and Large Numbers of Instances

Best Practices for Handling Large Documents 52-1

Use Cases for Handling Large Documents 52-1

Passing Binary Objects as Base64-Encoded Text in XML Payloads 52-1

End-to-End Streaming with Attachments 52-3

Sending and Receiving MTOM-Optimized Messages to SOA Composite Applications 52-11

Processing Large XML with Repeating Constructs 52-13

Processing Large XML Documents with Complex Structures 52-14

Limitations on Concurrent Processing of Large Documents 52-15

Opaque Schema for Processing Large Payloads 52-15

JVM Memory Sizing Recommendations for SOA Composite Applications 52-15

General Tuning Recommendations 52-15

General Recommendations 52-15

Setting Audit Levels from Oracle Enterprise Manager for Large Payload Processing 52-17

Using the Assign Activity in Oracle BPEL Process Manager and Oracle Mediator 52-17

Using XSLT Transformations on Large Payloads (For Oracle BPEL Process
Manager) 52-17

Using XSLT Transformations on Large Payloads (For Oracle Mediator) 52-18

Using XSLT Transformations for Repeating Structures 52-19

Processing Large Documents in Oracle B2B 52-19

Setting a Size Restriction on Inbound Web Service Message Size 52-21

Using XPath Functions to Write Large XSLT/XQuery Output to a File System 52-22

Best Practices for Handling Large Metadata 52-22

Boundary on the Processing of Large Numbers of Activities in a BPEL Process 52-23

Using Large Numbers of Activities in BPEL Processes (Without FlowN) 52-23

Using Large Numbers of Activities in BPEL Processes (With FlowN) 52-23

Using a Flow With Multiple Sequences 52-23

Using a Flow with One Sequence 52-24

Using a Flow with No Sequence 52-24

Large Numbers of Oracle Mediators in a Composite 52-24

Importing Large Data Sets in Oracle B2B 52-24

Best Practices for Handling Large Numbers of Instances 52-24

Instance and Rejected Message Deletion with the Purge Script or Oracle Enterprise
Manager Fusion Middleware Control 52-25

53

Customizing SOA Composite Applications

Introduction to Customizing SOA Composite Applications 53-1

Creating the Customizable Composite 53-1

How to Create Customization Classes 53-2

How to Create the Customizable Composite 53-3

How to Add an XSD or WSDL File 53-4

xlix

How to Search for Customized Activities in a BPEL Process 53-5

What You May Need to Know About Resolving Validation Errors in Oracle JDeveloper 53-5

What You May Need to Know About Resolving a Sequence Conflict 53-6

To resolve the conflict: 53-6

What You May Need to Know About Compiling and Deploying a Customized Application 53-6

Customizing the Vertical Application 53-7

How to Customize the Vertical Application 53-7

Customizing the Customer Version 53-9

How to Customize the Customer Version 53-10

Upgrading the Composite 53-11

How to Upgrade the Core Application Team Composite 53-11

How to Upgrade the Vertical Applications Team Composite 53-11

How to Upgrade the Customer Composite 53-12

54

Defining Composite Sensors

Introduction to Composite Sensors 54-1

Restrictions on Use of Composite Sensors 54-2

Adding Composite Sensors 54-2

How to Add Composite Sensors 54-3

How to Add a Variable 54-8

How to Add an Expression 54-9

How to Add a Property 54-9

What You May Need to Know About Duplicate Composite Sensor Names 54-10

Monitoring Composite Sensor Data During Runtime 54-12

Creating and Managing Composite Sensors During Runtime from Oracle SOA Composer 54-12

What You May Need to Know About Viewing Composite Sensor Changes in Oracle SOA
Composer 54-16

55

Creating Dynamic Business Processes

Introduction to Two-Layer Business Process Management 55-1

Creating a Phase Activity 55-2

How to Create a Phase Activity 55-3

What Happens When You Create a Phase Activity 55-3

What Happens at Runtime When You Create a Phase Activity 55-4

What You May Need to Know About Creating a Phase Activity 55-4

Creating the Dynamic Routing Decision Table 55-5

How to Create the Dynamic Routing Decision Table 55-5

What Happens When You Create the Dynamic Routing Decision Table 55-6

l

56

Integrating the Spring Framework in SOA Composite Applications

Introduction to the Spring Service Component 56-1

Integration of Java and WSDL-Based Components in the Same SOA Composite Application 56-2

Java and WSDL-Based Integration Example 56-2

Using Callbacks with the Spring Framework 56-4

Creating a Spring Service Component in Oracle JDeveloper 56-4

How to Create a Spring Service Component in Oracle JDeveloper 56-5

What You May Need to Know About Java Class Errors During Java-to-WSDL
Conversions 56-16

Defining Custom Spring Beans Through a Global Spring Context 56-16

How to Define Custom Spring Beans Through a Global Spring Context 56-16

Using the Predefined Spring Beans 56-16

IHeaderHelperBean.java Interface for headerHelperBean 56-17

IInstanceHelperBean.java Interface for instancerHelperBean 56-17

ILoggerBean.java Interface for loggerBean 56-18

How to Reference Predefined Spring Beans in the Spring Context File 56-19

JAXB and OXM Support 56-20

Extended Mapping Files 56-20

Configuring Groovy and Aspectj Classes with the Spring Service Component 56-22

Troubleshooting Spring Errors 56-22

Spring Bean Interface to Invoke Cannot Be Found 56-22

Unable to Add a Spring Service Component in the SOA Composite Editor 56-23

Part X Appendices

A BPEL Process Activities and Services

Introduction to Activities and Components A-1

Introduction to BPEL 1.1 and 2.0 Activities A-2

Tabs Common to Many Activities A-4

Annotations Tab A-4

Assertions Tab A-4

Correlations Tab A-5

Documentation Tab A-5

Headers Tab A-5

Properties Tab A-5

Skip Condition Tab A-6

Sources and Targets Tabs A-6

Timeout Tab A-6

Using the Native Format Builder Wizard Outside of Adapter Configuration A-6

To create a native format schema from the Applications Window: A-6

li

To edit an existing native format schema from the Applications Window: A-7

Assign Activity A-7

Assert Activity A-10

Bind Entity Activity A-11

Call Activity A-12

Compensate Activity A-13

CompensateScope Activity A-13

Create Entity Activity A-14

Dehydrate Activity A-15

Dynamic Partner Link Activity A-16

Email Activity A-17

Empty Activity A-17

Exit Activity A-18

Flow Activity A-19

FlowN Activity A-20

forEach Activity A-21

If Activity A-22

IM Activity A-23

Invoke Activity A-23

Java Embedding Activity A-25

Partner Link Activity A-25

Phase Activity A-26

Pick Activity A-27

To put the correlation syntax before the assign activity: A-29

Receive Activity A-30

Receive Signal Activity A-31

Remove Entity Activity A-31

RepeatUntil Activity A-32

Replay Activity A-33

Reply Activity A-34

Rethrow Activity A-34

Schedule Job A-35

Scope Activity A-36

Sequence Activity A-38

Signal Activity A-39

SMS Activity A-39

Switch Activity A-40

Terminate Activity A-41

Throw Activity A-42

Translate Activity A-42

User Notification Activity A-43

Validate Activity A-44

lii

Wait Activity A-45

While Activity A-46

XQuery Transform Activity A-47

XSLT Transform Activity A-48

Introduction to BPEL Services A-49

B XPath Extension Functions

Advanced Functions B-1

batchProcessActive B-1

batchProcessCompleted B-2

copyList B-2

create-nodeset-from-delimited-string B-3

createDelimitedString B-3

createEssParameter B-3

doStreamingTranslate B-4

doTranslateFromNative B-4

doTranslateToNative B-5

format B-6

genEmptyElem B-6

generate-guid B-7

get-content-from-file-function B-7

getApplicationName B-7

getAttachmentContent B-8

getAttachmentProperty B-8

getChildElement B-8

getComponentInstanceID B-9

getComponentName B-9

getCompositeInstanceID B-9

getCompositeName B-10

getCompositeURL B-10

getECID B-10

getFaultAsString B-11

getFaultAsXML B-11

getFaultName B-11

getMilestoneName B-12

getOwnerDocument B-12

getParentComponentInstanceID B-12

getRevision B-12

getTaskReminderDuration B-13

instanceOf B-13

lookup-xml B-13

liii

parseEscapedXML B-14

parseXML B-14

processScalableDocumentToNative B-15

processXSLTAttachmentFromNativeToNative B-15

processXSLTAttachmentFromNativeToStream B-15

processXSLTAttachmentToNativeStream B-16

processXSLTAttachmentToStream B-16

processXSLTForScalableDocument B-16

setCompositeInstanceTitle B-16

BPEL Extension Functions B-16

BPEL Extension Functions in BPEL 1.1 and BPEL 2.0 B-16

getLinkStatus B-17

getVariableData B-17

getVariableProperty (For BPEL 1.1) B-18

getVariableProperty (For BPEL 2.0) B-18

doXslTransform (For BPEL 2.0) B-19

BPEL XPath Extension Functions B-19

addQuotes B-19

authenticate B-19

countNodes B-21

doXSLTransform B-21

doXSLTransformForDoc B-22

doc B-22

formatDate B-23

generateGUID B-23

getConfigProperty B-23

getContentAsString B-24

getConversationId B-24

getCreator B-24

getCurrentDate B-24

getCurrentDateTime B-25

getCurrentTime B-25

getElement B-25

getInstanceId B-26

getNodeValue B-26

getNodes B-26

getPreference B-27

getProcessId B-27

getProcessOwnerId B-27

getProcessURL B-28

getProcessVersion B-28

integer B-28

liv

listUsers B-29

lookupUser B-29

parseEscapedXML B-30

processXQuery B-30

processXQuery10 B-31

processXQuery2004 B-31

processXSLT B-31

readBinaryFromFile B-34

readBinaryFromFileWithMimeHeaders B-34

readFile B-35

search B-35

toCDATA B-36

tryToCastToBoolean B-37

writeBinaryToFile B-37

getGroupIdsFromGroupAlias B-37

getUserIdsFromGroupAlias B-37

Conversion Functions B-38

boolean B-38

number B-38

string B-39

DVM Functions B-39

lookupValue B-39

lookupValue1M B-40

Database Functions B-40

lookup-table B-40

query-database B-41

sequence-next-val B-41

Date Functions B-42

add-dayTimeDuration-to-dateTime B-42

current-date B-42

current-dateTime B-43

To display the datetime value in seconds: B-43

current-time B-44

day-from-dateTime B-44

format-dateTime B-44

hours-from-dateTime B-45

minutes-from-dateTime B-45

month-from-dateTime B-45

seconds-from-dateTime B-45

subtract-dayTimeDuration-from-dateTime B-46

timezone-from-dateTime B-46

year-from-dateTime B-47

lv

Identity Service Functions B-47

getDefaultRealmName B-47

getGroupProperty B-47

getManager B-48

getManagerFromManagementChain B-48

getReportees B-48

getSupportedRealmNames B-49

getUserProperty B-49

getUserRoles B-49

getUsersInAppRole B-50

getUsersInGroup B-50

isUserInAppRole B-50

isUserInRole B-51

lookupGroup B-51

lookupUser B-51

Logical Functions B-52

and B-52

equals B-52

false B-52

greater B-52

greater equals B-53

less B-53

less equals B-53

not B-53

not equals B-54

or B-54

true B-54

Mathematical Functions B-54

abs B-54

add B-55

ceiling B-55

count B-55

divide B-55

floor B-55

max-value-among-nodeset B-56

min-value-among-nodeset B-56

mod B-56

multiply B-56

round B-57

square-root B-57

subtract B-57

sum B-57

lvi

unary B-58

Node Set Functions B-58

last B-58

local-name B-58

name B-58

namespace-uri B-58

position B-59

union B-59

String Functions B-59

compare B-59

compare-ignore-case B-59

concat B-60

contains B-60

create-delimited-string B-60

ends-with B-61

format-string B-61

get-content-as-string B-62

get-localized-string B-62

index-within-string B-63

last-index-within-string B-63

left-trim B-64

lower-case B-64

matches B-64

normalize-space B-65

right-trim B-65

starts-with B-65

string-length B-66

substring B-66

substring-after B-66

substring-before B-67

translate B-67

upper-case B-67

Workflow Service Functions B-68

clearTaskAssignees B-68

createWordMLDocument B-68

dynamicTaskAssign B-68

getNotificationProperty B-69

getNumberOfTaskApprovals B-70

getPreviousTaskApprover B-70

getTaskAttachmentByIndex B-70

getTaskAttachmentByName B-71

getTaskAttachmentContents B-71

lvii

getTaskAttachmentsCount B-71

getTaskResourceBundleString B-72

XREF Functions B-72

lookupPopulatedColumns B-72

lookupXRef B-72

lookupXRef1M B-73

markForDelete B-73

populateLookupXRefRow B-74

populateXRefRow B-74

populateXRefRow1M B-75

Building XPath Expressions in the Expression Builder in Oracle JDeveloper B-75

How to Use the Expression Builder B-75

Introduction to the XPath Building Assistant B-77

How to Use the XPath Building Assistant B-77

Using the XPath Building Assistant in the XSLT Mapper B-79

Function Parameter Tool Tips B-80

Syntactic and Semantic Validation B-81

Creating Expressions with Free Form Text and XPath Expressions B-81

Using Double Slashes for Directory Paths in XPath Functions on Windows Can Cause
Errors B-82

Creating User-Defined XPath Extension Functions B-83

How to Implement User-Defined XPath Extension Functions B-85

How to Implement Functions for the XSLT Mapper B-85

How to Implement Functions for All Other Components B-86

How to Configure User-Defined XPath Extension Functions B-86

How to Deploy User-Defined Functions to Runtime B-89

C Deployment Descriptor Properties

Introduction to Deployment Descriptor Properties C-1

How to Define Deployment Descriptor Properties in the Property Inspector C-4

How to Get the Value of a Preference within a BPEL Process C-5

D Understanding Sensor Public Views and the Sensor Actions XSD

Introduction to Sensor Public Views and the Sensor Actions XSD File D-1

Sensor Public Views D-1

Schema D-1

BPEL_PROCESS_INSTANCES D-1

BPEL_ACTIVITY_SENSOR_VALUES D-2

BPEL_FAULT_SENSOR_VALUES D-3

BPEL_VARIABLE_SENSOR_VALUES D-4

lviii

Sensor Actions XSD File D-5

E Propagating Normalized Message Properties Through Message Headers

Introduction to Normalized Messages E-1

Oracle Web Services Addressing Properties E-1

How to Set Normalized Message Properties in Message Headers E-3

Manipulating Normalized Message Properties with bpelx Extensions E-4

BPEL 2.0 bpelx Extensions Syntax E-4

BPEL 1.1 bpelx Extensions Syntax E-5

F Interfaces Implemented By Rules Dictionary Editor Task Flow

The MetadataDetails Interface F-1

The getDocument Method F-1

The getRelatedDocument Method F-2

The setDocument Method F-3

The NLSPreferences Interface F-3

G Oracle SOA Suite Configuration Properties Road Map

Oracle BPEL Process Manager Deployment Descriptor Properties G-1

Normalized Message Header Properties G-1

Oracle JCA Adapter Message Header Properties G-2

Oracle BPEL Process Manager and Oracle Web Services Addressing Message Header
Properties G-2

Oracle B2B Message Header Properties G-2

SOA Composite Application Properties G-2

Fault Policy and Adapter Rejected Message Properties G-3

Oracle B2B System Properties G-4

Oracle Healthcare Properties G-4

Oracle Business Activity Monitoring Properties G-4

Oracle Enterprise Manager Fusion Middleware Control Property Pages G-4

SOA Infrastructure Properties G-5

Oracle BPEL Process Manager Properties G-5

Human Workflow Notification and Task Service Properties G-6

Oracle Mediator Properties G-6

Cross Reference Properties G-6

Oracle B2B Properties G-6

Service and Reference Binding Component Properties G-7

Global Token Variables and Automatic Database Purging Properties G-7

System MBean Browser Advanced Properties G-7

SOA Infrastructure Advanced Properties G-8

lix

Oracle BPEL Process Manager Advanced Properties G-8

Oracle Mediator Advanced Properties G-8

Human Workflow Notification and Task Service Advanced Properties G-9

Oracle B2B Advanced Properties G-9

H Working with Large Schemas in the XSLT Editor

Sparse Mappings H-1

Quick Start for XSLT View H-6

Non-Sparse Mappings H-8

Reducing Textual Clutter H-11

Searching Trees H-13

Copying and Modifying a Large Input Document H-13

Generating Test Files with Element and Type Substitutions H-16

Index

lx

Preface

Developing SOA Applications with Oracle SOA Suite describes how to design, secure, test,
and deploy Oracle Service-Oriented Architecture (SOA) composite applications consisting of
service and reference binding components and Oracle BPEL process, human task, business
rule, {Varref: mediator}Oracle Mediator, and spring service components. Also included is
information on designing transformations and business events and acting upon human tasks
during runtime in Oracle BPM Worklist.

Audience
This document is intended for administrators and developers who work with Oracle SOA Suite.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle Accessibility
Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support through My
Oracle Support. For information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing impaired.

Diversity and Inclusion
Oracle is fully committed to diversity and inclusion. Oracle respects and values having a
diverse workforce that increases thought leadership and innovation. As part of our initiative to
build a more inclusive culture that positively impacts our employees, customers, and partners,
we are working to remove insensitive terms from our products and documentation. We are also
mindful of the necessity to maintain compatibility with our customers' existing technologies and
the need to ensure continuity of service as Oracle's offerings and industry standards evolve.
Because of these technical constraints, our effort to remove insensitive terms is ongoing and
will take time and external cooperation.

Related Documents
Refer to the Oracle Fusion Middleware library on the Oracle Help Center for additional
information.

• For Oracle SOA Suite information, see Oracle SOA Suite.

• For adapters information, see On-Premises and Cloud SOA Adapters.

• For Oracle BAM information, see Oracle Business Activity Monitoring.

• For Oracle B2B information, see Oracle B2B.

lxi

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
https://docs.oracle.com/en/middleware/fusion-middleware/index.html

• For Oracle Business Process Management information, see Oracle Business Process
Management.

• For Oracle Enterprise Scheduler information, see Oracle Enterprise Scheduler.

• For Oracle Managed File Transfer information, see Oracle Managed File Transfer.

• For Oracle Service Bus information, see Oracle Service Bus.

• For Oracle SOA Suite for healthcare integration information, see Oracle SOA Suite for
Healthcare Integration.

• For versions of platforms and related software for which Oracle products are certified and
supported, review the Certification Matrix on OTN.

• For cloud adapters information, see :

– Using Ariba Adapter

– Using Oracle Eloqua Cloud Adapter

– Using Oracle ERP Cloud Adapter

– Using the NetSuite Adapter

– Using Oracle RightNow Cloud Adapter

– Using Salesforce Adapter

– Using Oracle Sales Cloud Adapter

– Using ServiceNow Adapter

– Oracle Cloud Adapters Postinstallation Configuration Guide

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated with an
action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for which
you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code in
examples, text that appears on the screen, or text that you enter.

Preface

lxii

http://www.oracle.com/technetwork/middleware/ias/downloads/fusion-certification-100350.html

Part I
Getting Started with Oracle SOA Suite

This part provides an introduction to Oracle SOA Suite and developing SOA composite
applications.

This part contains the following chapters:

• Introduction to Building Applications with Oracle SOA Suite

• Getting Started with Developing SOA Composite Applications

• Managing Shared Data with the Design-Time

1
Introduction to Building Applications with
Oracle SOA Suite

This chapter describes service-oriented architecture (SOA) and Oracle SOA Suite, standards
used by Oracle SOA Suite to enable SOA, SOA composite application architecture and
runtime behavior, approaches to designing SOA composite applications, and where to go to
learn more about Oracle SOA Suite.
This chapter includes the following sections:

• Introduction to Oracle SOA Suite

• Getting Started with Oracle SOA Suite

• Setting Accessibility Options

Introduction to Oracle SOA Suite
This section provides an overview of service-oriented architecture and standards, Oracle SOA
Suite capabilities, service component architecture, runtime behavior, and design-time
approaches.

• Service-Oriented Architecture

• Services

• Oracle SOA Suite

• Standards Used by Oracle SOA Suite to Enable SOA

• Service Component Architecture within SOA Composite Applications

• Runtime Behavior of a SOA Composite Application

• Approaches for Designing SOA Composite Applications

For introductory information about Oracle SOA Suite, see Understanding Oracle SOA Suite.
For information about Oracle SOA Suite infrastructure and administration, see Administering
Oracle SOA Suite and Oracle Business Process Management Suite.

Service-Oriented Architecture
Changing markets, increasing competitive pressures, and evolving customer needs are placing
greater pressure on IT to deliver greater flexibility and speed. Today, every organization is
faced with predicting change in a global business environment, to rapidly respond to
competitors, and to best exploit organizational assets for growth. In response to these
challenges, leading companies are adopting service-oriented architecture (SOA) to deliver on
these requirements by overcoming the complexity of their application and IT environments.

SOA provides an enterprise architecture that supports building connected enterprise
applications to provide solutions to business problems. SOA facilitates the development of
enterprise applications as modular business web services that can be easily integrated and
reused, creating a truly flexible, adaptable IT infrastructure.

1-1

Services
SOA separates business functions into distinct units, or services. A SOA application reuses
services to automate a business process.

A standard interface and message structure define services. The most widely used mechanism
are web services standards. These standards include the Web Service Description Language
(WSDL) file for service interface definition and XML Schema Documents (XSD) for message
structure definition. These XML standards are easily exchanged using standard protocols.
Because standards for web services use a standard document structure, they enable existing
systems to interoperate regardless of the choice of operating system and computer language
used for service implementation.

When designing a SOA approach, you create a service portfolio plan to identify common
functionality to use as a service within the business process. By creating and maintaining a
plan, you ensure that existing services and applications are reused or repurposed whenever
possible. This plan also reduces the time spent in creating needed functionality for the
application.

Oracle SOA Suite
Oracle SOA Suite provides a complete set of service infrastructure components for designing,
deploying, and managing composite applications. Oracle SOA Suite enables services to be
created, managed, and orchestrated into composite applications and business processes.
Composites enable you to easily assemble multiple technology components into one SOA
composite application. Oracle SOA Suite plugs into heterogeneous IT infrastructures and
enables enterprises to incrementally adopt SOA.

The components of Oracle SOA Suite benefit from common capabilities, including a single
deployment, management, and tooling model, end-to-end security, and unified metadata
management. Oracle SOA Suite is unique in that it provides the following set of integrated
capabilities:

• Messaging

• Service discovery

• Orchestration

• Web services management and security with Oracle Web Services Manager (OWSM)

• Business rules

• Human interaction

• Events framework

• Business activity monitoring

Standards Used by Oracle SOA Suite to Enable SOA
Oracle SOA Suite puts a strong emphasis on standards and interoperability. Among the
standards it leverages are:

• Service Component Architecture (SCA) assembly model

Provides the service details and their interdependencies to form composite applications.
SCA enables you to represent business logic as reusable service components that can be
easily integrated into any SCA-compliant application. The resulting application is known as

Chapter 1
Introduction to Oracle SOA Suite

1-2

a SOA composite application. The specification for the SCA standard is maintained by the
Organization for the Advancement of Structured Information Standards (OASIS) through
the Open Composite Services Architecture (CSA) Member Section:

http://www.oasis-opencsa.org
• Service Data Objects (SDO)

Specifies a standard data method and can modify business data regardless of how it is
physically accessed. Knowledge is not required about how to access a particular back-end
data source to use SDO in a SOA composite application. Consequently, you can use static
or dynamic programming styles and obtain connected and disconnected access.

• Business Process Execution Language (BPEL)

Provides enterprises with an industry standard for business-process orchestration and
execution. Using BPEL, you design a business process that integrates a series of discrete
services into an end-to-end process flow. This integration reduces process cost and
complexity. BPEL versions 1.1 and 2.0 are supported.

• XSL Transformations (XSLT)

Processes XML documents and transforms document data from one XML schema to
another.

• XQuery Transformations (XQuery)

Queries and transforms collections of structured and unstructured data, typically in the
form of XML.

• Java Connector Architecture (JCA)

Provides a Java technology solution to the problem of connectivity between the many
application servers in Enterprise Information Systems (EIS).

• Java Messaging Service (JMS)

Provides a messaging standard that allows application components based on the Java 2
Platform, Enterprise Edition (Java EE) to access business logic distributed among
heterogeneous systems.

• Web Service Definition Language (WSDL) file

Provides the entry points into a SOA composite application. The WSDL file provides a
standard contract language and is central for understanding the capabilities of a service.

• Simple Object Access Protocol (SOAP)

Provides the default network protocol for message delivery.

• Representational State Transfer (REST)

Provides an architecture for designing network applications. RESTful applications use
HTTP requests to post data (create and update), get data (for example, make queries),
and delete data. REST provides an alternative to using web services.

• JavaScript Object Notation (JSON)

Provides a language for representing simple data structures and associative arrays called
objects. JSON is a standard designed for human-readable data interchange. JSON is
derived from the JavaScript scripting language.

• Web Application Description Language (WADL)

Provides a readable XML description of HTTP-based web applications (typically REST
web services). WADL simplifies the reuse of web services based on the existing HTTP
architecture of the web.

Chapter 1
Introduction to Oracle SOA Suite

1-3

http://www.oasis-opencsa.org

Service Component Architecture within SOA Composite Applications
Oracle SOA Suite uses the SCA standard as a way to assemble service components into a
SOA composite application. SCA provides a programming model for the following:

• Creating service components written with a wide range of technologies, including
programming languages such as Java, C++, and declarative languages such as XSLT. The
use of specific programming languages and technologies (including web services) is not
required with SCA.

• Assembling the service components into a SOA composite application. In the SCA
environment, service components are the building blocks of applications.

SCA provides a model for assembling distributed groups of service components into an
application, enabling you to describe the details of a service and how services and service
components interact. Composites are used to group service components and wires are used to
connect service components. SCA helps to remove middleware concerns from the
programming code by applying infrastructure declaratively to composites, including security
and transactions.

The key benefits of SCA include the following:

• Loose coupling

Service components integrate with other service components without needing to know how
other service components are implemented.

• Flexibility

Service components can easily be replaced by other service components.

• Services invocation

Services can be invoked either synchronously or asynchronously.

• Productivity

Service components are easily integrated to create a SOA composite application.

• Easy maintenance and debugging

Service components can be easily maintained and debugged when an issue is
encountered.

A SOA composite is an assembly of services, service components, and references designed
and deployed in a single application. Wiring between the services, service components, and
references enables message communication. The details for a composite are stored in the
composite.xml file.

Figure 1-1 provides an example of a composite that includes an inbound service binding
component, a BPEL process service component (named Account), a business rules service
component (named AccountRule), and two outbound reference binding components.

Chapter 1
Introduction to Oracle SOA Suite

1-4

Figure 1-1 Simple SOA Composite Architecture

Service Components
Service components are the building blocks that you use to construct a SOA composite
application.

The following service components are available. There is a corresponding service engine of
the same name for each service component. All service engines can interact in a single
composite.

• BPEL processes provide process orchestration and storage of a synchronous or an
asynchronous process. You design a business process that integrates a series of business
activities and services into an end-to-end process flow.

• Business rules enable you to design a business decision based on rules.

• Human tasks provide workflow modeling that describes the tasks for users or groups to
perform as part of an end-to-end business process flow.

• Mediators route events (messages) between different components.

• Spring enables you to integrate Java interfaces into SOA composite applications.

For more information about service components, see Adding Service Components.

Binding Components
Binding components establish a connection between a SOA composite and the external world.
There are two types of binding components:

• Services

Services provide the outside world with an entry point to the SOA composite application.
The WSDL file of the service advertises its capabilities to external applications. These

Chapter 1
Introduction to Oracle SOA Suite

1-5

capabilities are used for contacting the SOA composite application components. The
binding connectivity of the service describes the protocols that can communicate with the
service, for example, SOAP/HTTP or a JCA adapter.

• References

References enable messages to be sent from the SOA composite application to external
services in the outside world.

Table 1-1 lists and describes the binding components provided by Oracle SOA Suite.

Table 1-1 Binding Components Provided by Oracle SOA Suite

Binding Components Description

Web service (SOAP over HTTP) Use for connecting to standards-based services using SOAP over
HTTP.

JCA adapters Use for integrating services and references with technologies (for
example, databases, file systems, FTP servers, messaging, JMS,
IBM WebSphere MQ, Oracle User Messaging Service, LDAP
servers, Oracle Coherence cache, and so on) and applications
(Oracle E-Business Suite, PeopleSoft, and so on).

This includes the AQ adapter, database adapter, file adapter, FTP
adapter, JMS adapter, MQ adapter, socket adapter, Oracle User
Messaging Service adapter, LDAP adapter, Oracle Coherence
adapter, and third-party adapter.

Oracle B2B Use for browsing B2B metadata in the Oracle Metadata Services
Repository (MDS Repository) and selecting document definitions.

Oracle Healthcare Use for sending and receiving messages to and from a healthcare
system.

ADF-BC service Use for connecting Oracle Application Development Framework
(ADF) applications using SDO with the SOA platform.

Oracle E-Business Suite Use for integrating the Oracle E-Business Suite adapter with Oracle
applications.

BAM 11g adapter Use for integrating Java EE applications with Oracle BAM 11g
server to send data, and also use as a reference binding component
in a SOA composite application.

Note: This adapter can only connect to an Oracle BAM 11g server.

EJB service Use for integrating SDO parameters or Java interfaces with
Enterprise JavaBeans.

Direct binding service Use to invoke a SOA composite application and exchange
messages over a remote method invocation (RMI) in the inbound
direction and to invoke an Oracle Service Bus (OSB) flow or another
SOA composite application in the outbound direction.

HTTP binding Use to integrate SOA composite applications with HTTP binding.

REST service Use to integrate REST services with SOA composite applications
and REST-enable SOA composite applications.

Oracle Managed File Transfer
(MFT)

Use to transfer files to and from many endpoint types, such as
remote and embedded FTP or sFTP servers; directories; and SOAP
web service, Oracle SOA Suite, Oracle Service Bus, Oracle B2B,
Oracle Healthcare, and Oracle Data Integrator endpoints.

Chapter 1
Introduction to Oracle SOA Suite

1-6

Table 1-1 (Cont.) Binding Components Provided by Oracle SOA Suite

Binding Components Description

Cloud adapters The cloud adapters enable you to send and receive messages from
a cloud server.

Oracle SOA Suite 12c supports the following cloud adapters:

• Ariba Adapter
• Oracle Eloqua Cloud Adapter
• Oracle ERP Cloud Adapter
• Oracle NetSuite Adapter
• Oracle RightNow Cloud Adapter
• Oracle Sales Cloud Adapter
• Salesforce Adapter
• ServiceNow Adapter
• SuccessFactors Adapter

For more information about binding components, see Adding Service Binding Components and
Adding Reference Binding Components.

Wires
Wires enable you to graphically connect the following components in a single SOA composite
application for message communication:

• Services to service components

• Service components to other service components

• Service components to references

For more information about wires, see Adding Wires.

Runtime Behavior of a SOA Composite Application
Figure 1-2 shows the operability of a SOA composite application using SCA technology. In this
example, an external application (a .NET payment calculator) initiates contact with the SOA
composite application.

For more information about descriptions of the tasks that services, references, service
components, and wires perform in an application, see Service Component Architecture within
SOA Composite Applications.

Chapter 1
Introduction to Oracle SOA Suite

1-7

Figure 1-2 Runtime Behavior of SOA Composite Application

The .NET payment calculator is an external application that sends a SOAP message to the
SOA application to initiate contact. The Service Infrastructure picks up the SOAP message
from the binding component and determines the intended component target. The BPEL
process service engine receives the message from the Service Infrastructure for processing by
the BPEL Loan Process application and posts the message back to the Service Infrastructure
after completing the processing.

Table 1-2 describes the operability of the SOA composite application shown in Figure 1-2.

Table 1-2 Introduction to a SOA Composite Application Using SCA Technologies

Part Description Example of Use in Figure 1-2 See Section

Binding
components

Establishes the connectivity
between a SOA composite and
the external world. There are
two types:

• Service binding
components provide an
entry point to the SOA
composite application.

• Reference binding
components enable
messages to be sent from
the SOA composite
application to external
services.

The SOAP binding component service:

• Advertises its capabilities in the WSDL file.
• Receives the SOAP message from the .NET

application.
• Sends the message through the policy

infrastructure for security checking.
• Translates the message to a normalized

message (an internal representation of the
service's WSDL contract in XML format).

• Posts the message to the Service
Infrastructure.

An example of a reference binding component in
Figure 1-2 is the Loan Process application.

Service
Components

Chapter 1
Introduction to Oracle SOA Suite

1-8

Table 1-2 (Cont.) Introduction to a SOA Composite Application Using SCA Technologies

Part Description Example of Use in Figure 1-2 See Section

Service
Infrastructure

Provides internal message
transport

The Service Infrastructure:

• Receives the message from the SOAP
service binding component.

• Posts the message for processing to the
BPEL process service engine first and the
human task service engine second.

Service
Infrastructure

Service engines
(containers
hosting service
components)

Host the business logic or
processing rules of the service
components. Each service
component has its own service
engine.

The BPEL process service engine:

• Receives the message from the Service
Infrastructure for processing by the BPEL
Loan Process application.

• Posts the message to the Service
Infrastructure after completing the
processing.

Service Engines

Universal
Description,
Discovery, and
Integration
(UDDI) and MDS

The MDS Repository stores
descriptions of available
services. The UDDI advertises
these services, and enables
discovery and dynamic binding
at runtime.

The SOAP service used in this composite
application is stored in the MDS repository and
can also be published to UDDI.

Managing Shared
Data with the
Design-Time

SOA archive
composite

(deployment unit)

The deployment unit that
describes the composite
application.

The SOA archive (SAR) of the composite
application is deployed to the Service
Infrastructure.

Deployed Service
Archives

Service Infrastructure
The Service Infrastructure provides the following internal message routing infrastructure
capabilities for connecting components and enabling data flow:

• Receives messages from the service providers or external partners through SOAP
services or adapters

• Sends the message to the appropriate service engine

• Receives the message back from the service engine and sends it to any additional service
engines in the composite or to a reference binding component based on the wiring

Service Engines
Service engines are containers that host the business logic or processing rules of the service
components. Service engines process the message information received from the Service
Infrastructure.

There is a corresponding service engine of the same name for each service component. All
service engines can interact in a single composite.

For more information, see Administering Oracle SOA Suite and Oracle Business Process
Management Suite.

Deployed Service Archives
The SOA archive (SAR) is a SOA archive deployment unit. A SAR file is a special JAR file that
requires a prefix of sca_ (for example, sca_OrderBookingComposite_rev1.0.jar). The SAR

Chapter 1
Introduction to Oracle SOA Suite

1-9

file is deployed to the Service Infrastructure. The SAR packages service components (such as
BPEL processes, business rules, human tasks, and Oracle Mediator routing services) into a
single application. The SAR file is analogous to the BPEL suitcase archive of previous
releases, but at the higher composite level and with any additional service components that
your application includes (for example, human tasks, business rules, and Oracle Mediator
routing services).

For more information, see Deploying SOA Composite Applications .

Approaches for Designing SOA Composite Applications
When creating a SOA composite application, you have a choice of approaches for building it:

• Top-Down: You analyze your business processes and identify activities in support of your
process. When creating a composite, you define all the SOA components through the SOA
Composite Editor. You create all the services first, and then build the BPEL process,
referencing the created services.

• Bottom-Up: You analyze existing applications and assets to identify those that can be used
as services. As you create a BPEL process, you build the services on an as-needed basis.
This approach works well when IT must react to a change.

Getting Started with Oracle SOA Suite
This guide assists you with developing a SOA composite application.

Table 1-3 Getting Started with Oracle SOA Suite

To Get Started with... See...

The basic steps of composite, service
and reference binding component, and
service component creation in Oracle
JDeveloper

Getting Started with Developing SOA Composite Applications

Using shared data with the SOA Design-
Time Oracle Metadata Services
Repository (MDS Repository)

Managing Shared Data with the Design-Time MDS
Repository

Designing BPEL process service
components in a composite

Using the BPEL Process Service Component

Designing Oracle Mediator service
components in a composite

Using the Oracle Mediator Service Component

Designing business rule service
components in a composite

Using the Business Rules Service Component

Designing human workflow service
components in a composite

Using the Human Workflow Service Component

Designing service and reference binding
components in a composite

Using Binding Components

Functionality that can be shared across
components, such as templates, XSLT
and XQuery transformations, business
events, cross references, and domain
value maps

Sharing Functionality Across Service Components

Chapter 1
Getting Started with Oracle SOA Suite

1-10

Table 1-3 (Cont.) Getting Started with Oracle SOA Suite

To Get Started with... See...

Composite completion tasks such as
security policy attachments, deployment,
debugging, and automating composite
testing

Completing Your Application

Advanced topics such as management
of large documents and large numbers
of instances, composite customizations,
composite sensors, and the spring
framework

Advanced Topics

Other resources:

• Understanding Oracle SOA Suite describes the business challenges faced by a company
and how the components of Oracle SOA Suite address these challenges from design time
through runtime.

Setting Accessibility Options
Oracle SOA Suite uses both Oracle JDeveloper and Oracle SOA Composer for application
development. This section describes accessibility options for both environments.

Setting Accessibility Options in Oracle JDeveloper
Oracle JDeveloper provides accessibility options, such as support for screen readers, screen
magnifiers, and standard shortcut keys for keyboard navigation. You can also customize
Oracle JDeveloper for better readability, including the size and color of fonts and the color and
shape of objects. For information and instructions on configuring accessibility in Oracle
JDeveloper, see Oracle JDeveloper Accessibility Information in Developing Applications with
Oracle JDeveloper.

Setting Accessibility Options in Oracle SOA Composer and Oracle BPM
Worklist

Accessibility settings help you read all components of the application. You can set accessibility
options in either Oracle SOA Composer or Oracle BPM Worklist for the current instance or for
all instances.

How to Set Accessibility Features Before Logging In
Oracle SOA Composer or Oracle BPM Worklist presents the Accessibility menu on the login
page, so you can configure accessibility before you log in. These settings can be persisted for
only the current session or for all sessions.

To set accessibility options before logging in:

1. Launch Oracle SOA Composer or Oracle BPM Worklist.

2. On the login page, click Accessibility in the top right corner.

The Edit Accessibility Settings page appears, as shown in Figure 1-3.

Chapter 1
Setting Accessibility Options

1-11

Figure 1-3 Edit Accessibility Settings Page

3. Select any of the following options:

• Use screen reader.

• Use high contrast colors.

• Use large fonts.

4. To save the new settings only for this session, click Use for this session. To save the
settings for all sessions, click Save as preference and use.

How to Set Accessibility Options After Logging In
Once you log in to Oracle SOA Composer or Oracle BPM Worklist, you can configure
accessibility options from any page. This changes the user preferences, which are retained
through all sessions until you change them again.

To set accessibility options after logging in:

1. Launch Oracle SOA Composer or Oracle BPM Worklist and log in.

2. From any page, select Preferences in the top right corner.

The Preferences dialog appears.

3. In the Preferences column, click Accessibility.

The Accessibility Preferences appear, as shown in Figure 1-4.

Figure 1-4 Preferences Dialog

Chapter 1
Setting Accessibility Options

1-12

4. In the Mode Settings field, select Enable screen reader mode if you use a screen
reader. Select Disable screen reader mode if you do not use a screen reader.

5. In the Contrast Settings field, select Use high contrast to increase the contrast between
objects on the console; otherwise, select Use normal contrast.

6. In the Font Settings field, select Use large fonts to increase the font size; otherwise,
select Use normal fonts.

7. Click OK.

Chapter 1
Setting Accessibility Options

1-13

2
Getting Started with Developing SOA
Composite Applications

This chapter describes how to use Oracle JDeveloper to create a SOA composite application.
It guides you through the basic steps of composite, service and reference binding component,
and service component creation, security, deployment, and testing, along with describing key
issues to be aware of when designing a SOA composite application.
This chapter includes the following sections:

• Developing SOA Projects in Reference Configuration Mode

• Creating a SOA Application

• Adding Service Components

• Adding Service Binding Components

• Adding Reference Binding Components

• Adding Wires

• Adding Descriptions to SOA Composite Applications

• Renaming, Deleting, and Moving Components and Artifacts

• Viewing Component Details in the Property Inspector

• Adding Security Policies

• Deploying a SOA Composite Application

• Managing and Testing a SOA Composite Application

Developing SOA Projects in Reference Configuration Mode
Beginning with Release 12c (12.2.1.4), you can create either a Reference Configuration
domain or a Classic domain on the Templates screen in the Configuration Wizard during
installation. A Reference Configuration domain guards servers from running into out-of-
memory, stuck threads, endpoint connectivity, and database issues. A Reference Configuration
domain supports SOA, OSB, and B2B topologies. The templates in these products include
Reference Configuration in their names, and are the default templates listed in the
Configuration Wizard for these products.

Notes:

• A Reference Configuration domain does not support BPM or BAM components.

• There is no specific Reference Configuration template for ESS. However, ESS
can be added to both a Reference Configuration domain and to a Classic
domain.

• The Reference Configuration feature does not apply to MFT domains.

2-1

Developing a SOA project in Reference Configuration mode means that you enable Reference
Configuration settings in JDeveloper so that new adapters that you create in the project will
have special JCA endpoint properties defined in their source files. You can modify these
properties directly in the Adapter Configuration Wizard for projects newly created in Release
12c (12.2.1.4). See JCA Endpoint Properties in the Adapter Configuration Wizard in
Understanding Technology Adapters.

To create a Reference Configuration domain, see Selecting the Configuration Template for
Oracle SOA Suite in Installing and Configuring Oracle SOA Suite and Business Process
Management. To configure the domain, see Configuring a Reference Configuration Domain in
Administering Oracle SOA Suite and Oracle Business Process Management Suite.

Note:

If you develop SOA projects in Reference Configuration mode, Oracle recommends
that you deploy them to a server that is in a Reference Configuration domain. If a
SOA project is developed in Classic mode and the server to which it is deployed is in
a Reference Configuration domain, or vice versa, JDeveloper displays a Mismatch
notification in the Deploy Composite Wizard. For more information, see Deploying
SOA Composite Applications or Projects in Oracle JDeveloper.

How to Enable Reference Configuration Settings

By default, JDeveloper is in Classic mode. To develop SOA projects in Reference
Configuration mode, you must manually enable this feature in JDeveloper:

1. From the Tools menu, select Preferences.

2. Select Reference Configuration Settings.

3. Select Enable Reference Configuration settings in adapters.

Creating a SOA Application
The first steps in building a new application are to assign it a name and to specify the directory
in which to save source files. When you install the Oracle SOA Suite Quick Start, the Oracle
SOA Suite extensions are automatically installed in Oracle JDeveloper. This differs from
previous releases in which you manually imported the Oracle SOA Suite extensions into
Oracle JDeveloper. For information about the Oracle SOA Suite Quick Start installation, see
Installing SOA Suite and Business Process Management Suite Quick Start for Developers.

Create a SOA Application and Project
1. Start Oracle JDeveloper Studio Edition.

2. If Oracle JDeveloper is running for the first time, specify the location for the Java JDK and
the user role in which to run Oracle JDeveloper. The JDK version must be later than or
equal to 1.7.0_15.

3. Create a SOA application in any of the following ways:

• From the File main menu:

a. Select New > Application.

The New Gallery opens, where you can select different application components to
create.

Chapter 2
Creating a SOA Application

2-2

b. In the Categories tree, select General > Applications.

c. In the Items pane, select SOA Application, and click OK.

• From the Application main menu:

a. Select New.

The New Gallery opens, where you can select different application components to
create.

b. In the Categories tree, select General > Applications.

c. In the Items pane, select SOA Application, and click OK.

• From the Application menu in the Applications window:

a. In the Applications window in the upper left, select New Application from the
Applications dropdown list.

4. In the Name your application page, you can optionally change the name and location for
your application. If this is your first application, from Application Template, select SOA
Application. Accept the defaults for the package prefix, and click Next.

Note:

Note the following application naming conventions:

• Do not create an application name with spaces.

• Do not create applications and projects in directory paths that have spaces
(for example, c:\Program Files).

• On a UNIX operating system, it is highly recommended that you enable
Unicode support by setting the LANG and LC_All environment variables to a
locale with the UTF-8 character set. This action enables the operating
system to process any character in Unicode. SOA technologies are based on
Unicode. If the operating system is configured to use non-UTF-8 encoding,
SOA components may function in an unexpected way. For example, a non-
ASCII file name can make the file inaccessible and cause an error. Oracle
does not support problems caused by operating system constraints.

In a design-time environment, if you are using Oracle JDeveloper, select
Tools > Preferences > Environment > Encoding > UTF-8 to enable
Unicode support. This setting is also applicable for runtime environments.

5. In the Name your project page, you can optionally change the name and location for your
SOA project. By default, Oracle JDeveloper adds the SOA project technology, the
composite.xml file that describes the SOA composite application, and the necessary
libraries to your model project.

6. Click Next.

Note:

Composite and component names cannot exceed 500 characters.

A project deployed to the same infrastructure must have a unique name across SOA
composite applications. The uniqueness of a composite is determined by its project name.

Chapter 2
Creating a SOA Application

2-3

For example, do not perform the actions described in Table 2-1. During deployment, the
second deployed project (composite) overwrites the first deployed project (composite).

Table 2-1 Restrictions on Naming a SOA Project

Create an Application Named... With a SOA Project Named...

Application1 Project1
Application2 Project1

The Project SOA Settings page of the Create SOA Application wizard appears.

7. In the Configure SOA Settings page, click Empty Composite for this example, and click
Finish. Table 2-2 describes all of the options on this page.

Table 2-2 Configure SOA Settings Page

Element Description

Empty Composite Creates an empty SOA composite application. This type is selected
by default.

Composite With BPEL
Process

Automatically opens the Create BPEL Process dialog to guide you
through creation of an initial BPEL process. A BPEL process
enables you to design a business process that integrates a series of
business activities and services into an end-to-end process flow.

Composite With Mediator Automatically opens the Create Mediator dialog to guide you
through creation of an initial Oracle Mediator service component.
Oracle Mediator enables you to route events (messages) between
different components.

Composite With Human Task Automatically opens the Create Human Task dialog to guide you
through creation of an initial human task service component. A
human task component enables you to model a workflow that
describes the tasks for users or groups to perform as part of an
end-to-end business process flow. The tasks are accessed through
Oracle BPM Worklist during process runtime.

Composite With Subprocess Automatically creates a SOA composite application with a
subprocess. A subprocess is a fragment of BPEL code that can be
reused within a particular processor by separate processes.

Composite With Business
Rule

Automatically opens the Create Business Rules dialog to guide you
through creation of an initial business rule service component. A
business rule enables you to design a business decision based on
rules.

Composite With Spring Automatically opens the Create Spring dialog to guide you through
creation of a spring context service component. A spring context
service component enables you to integrate components that use
Java interfaces instead of WSDL files into SOA composite
applications. You can also integrate components that use Java
interfaces with components that use WSDL files in the same SOA
composite application.

8. From the File main menu, select Save All.

Chapter 2
Creating a SOA Application

2-4

What Happens When You Create a SOA Application and Project
When you create a SOA application, Oracle JDeveloper creates a project that contains all the
source files related to your application. You can then use Oracle JDeveloper to create
additional projects needed for your application.

Figure 2-1 shows the SOA Composite Editor for a project named OrderBookingComposite.

Figure 2-1 New Workspace for a SOA Composite Application

Table 2-3 describes the SOA Composite Editor.

Chapter 2
Creating a SOA Application

2-5

Table 2-3 SOA Composite Editor

Element Description

Applications Window (Upper
left)

Displays the key directories and files for the specific service components
included in the SOA project. You can change the structure as necessary
for your environment. The only limitation is that all files must be located
under the SOA directory.

• Service_component_directory
Displays a directory for the artifacts of each service component you
add:

A BPEL directory is created for BPEL processes.

A Mediators directory is created for Oracle Mediators.

A HumanTasks directory is created for human tasks.

An oracle/rules directory is created for business rules.
• Events

Displays the business event files (.edn).
• Schemas

Displays the BPEL process schema files (.xsd).
• testsuites

Displays the test suite files.
• Transformations

Displays the transformation XSLT (.xsl) and XQuery (.xqy) mapper
files.

• WSDLs
Displays all WSDL files (.wsdl).

• composite_name
A composite_name file is automatically created when you create a
SOA project. This file describes the entire composite assembly of
services, service components, references, and wires.

Structure Window (Lower
left)

The Structure window provides a structural view of the data in the
document currently selected in the active window.

Designer (middle) You drag service components, services, and references from the
Components window into the composite in the designer. When you drag
and drop a service component into the designer, a corresponding
property editor is invoked for performing configuration tasks related to that
service component. For example, when you drag and drop the Oracle
Mediator service component into the designer, the Mediator Editor is
displayed for configuring the Oracle Mediator service component.

For all subsequent editing sessions, you double-click these service
components to re-open their editors.

Project Name (Above the
designer)

Displays the project name of the SOA composite application.

Left Swimlane (Exposed
Services)

The left swimlane is for services (such as web services, REST adapters,
or JCA adapters) that provide an entry point to the SOA composite
application.

Right Swimlane (External
References)

The right swimlane is for references that send messages to external
services in the outside world, such as web services or JCA adapters.

Chapter 2
Creating a SOA Application

2-6

Table 2-3 (Cont.) SOA Composite Editor

Element Description

Components Window (Upper
right - Components tab)

The Components window provides the various resources that you can
use in a SOA composite. It contains the following service components
and adapters:

• Components

Displays the BPEL process, business rule, human task, Oracle
Mediator, and spring components that can be dragged and dropped
into the designer.

• Technology

Displays the JCA adapters (such as AQ, file, FTP, database, JMS,
MQ, Oracle User Messaging Service, socket, LDAP server, and
Coherence cache), third-party adapter, cloud adapter, Oracle BAM
11g binding component, Oracle Healthcare binding component,
Oracle B2B binding component, EJB binding component, ADF-BC
binding component, application adapters (Oracle E-Business Suite,
JDE World, and SAP), direct binding component, HTTP binding
component, Oracle Managed File Transfer (MFT) adapter,
Representational State Transfer (REST) adapter, and web service
binding component that can be dragged into the left or right
swimlane.

Resources window (Upper
right - Resources tab)

The Resources window provides a single dialog from which you can
browse both local and remote resources. For example, you can access
the following resources:

• Shared data such as schemas and WSDLs from the MDS
Repository.

• WSIL browser functionality that uses remote resources that can be
accessed through an HTTP connection, file URL, or application
server connection.

• Remote resources that are registered in a Universal Description,
Discover, and Integration (UDDI) registry.

You select these resources for the SOA composite application through the
WSDL Chooser dialog. This dialog is accessible through a variety of
methods. For example, when you select the WSDL file to use with a
service binding component or an Oracle Mediator service component or
select the schema file to use in a BPEL process, the SOA Resource
Browser dialog appears. Click Resources at the top of this dialog to
access available resources.

Log Window (Lower middle) The Log window displays messages about application compilation,
validation, and deployment.

Property Inspector (Lower
right)

The Property Inspector displays properties for the selected service
component, service, or reference.

You can also edit BPEL activity properties and define deployment
descriptor properties for a BPEL process service component.

For more information, see How to Edit BPEL Activities in the Property
Inspector. and How to Define Deployment Descriptor Properties in the
Property Inspector.

Application View The Application View shows the artifacts for the SOA composite
application.

The composite_name file (also known as the composite.xml file) displays as a tab in the
designer and as a file in the Applications window. This file is automatically created when you
create a new SOA project. This file describes the entire composite assembly of services,
service components, and references. There is one composite.xml file for each SOA project.

Chapter 2
Creating a SOA Application

2-7

When you work with the composite.xml file, you mostly use the designer, the Structure
window, and the Property Inspector, as shown in Figure 2-1. The designer enables you to view
many of your files in a WYSIWYG environment, or you can view a file in an overview editor
where you can declaratively make changes, or you can view the source code for the file. The
Structure window shows the structure of the currently selected file. You can select objects in
this window, and then edit the properties for the selection in the Property Inspector.

Adding Service Components
Once you create your application, the next step is typically to add service components that
implement the business logic or processing rules of your application. You can use the
Components window in the SOA Composite Editor to drag and drop service components into
the composite.

How to Add a Service Component
To add a service component:

1. At the top of the Components window, click Components.

2. From the SOA section, drag a component into the designer.

Figure 2-2 shows a BPEL process being added to the designer.

Figure 2-2 Adding a BPEL Process to the SOA Composite Application

A specific dialog for the selected service component is displayed. Table 2-4 describes the
available editors.

Table 2-4 Starting Service Component Editors

Dragging This Service
Component...

Invokes The...

BPEL Process Create BPEL Process dialog to create a BPEL process that
integrates a series of business activities and services into an end-to-
end process flow.

Business Rule Create Business Rules dialog to create a business decision based on
rules.

Chapter 2
Adding Service Components

2-8

Table 2-4 (Cont.) Starting Service Component Editors

Dragging This Service
Component...

Invokes The...

Human Task Create Human Task dialog to create a workflow that describes the
tasks for users or groups to perform as part of an end-to-end
business process flow.

Mediator Create Mediator dialog to define services that perform message and
event routing, filtering, and transformations.

Spring Component Create Spring dialog to create a spring context file for integrating
Java interfaces into SOA composite applications.

3. Configure the settings for the service component, and click OK. For help with a service
component dialog, click Help or press F1.

Figure 2-3 shows the BPEL Process dialog with data entered to create the
OrderProcessor BPEL process. The process is selected to be asynchronous. The
Expose as a SOAP Service check box directs Oracle JDeveloper to automatically create
this service component connected to an inbound SOAP web service.

Figure 2-3 Create BPEL Process Dialog

4. Click OK.

Figure 2-4 shows the OrderProcessor BPEL process service component in the designer.
A SOAP service binding component called orderprocessor_client_ep in the left swimlane
provides the outside world with an entry point into the SOA composite application. If the
Expose as a SOAP Service option was not selected in the Create BPEL Process dialog,
the orderprocessor_client_ep service does not appear. You can add a service later by
following the steps in How to Add a Service Binding Component.

Chapter 2
Adding Service Components

2-9

Figure 2-4 BPEL Process in Composite

You can more fully define the content of the service component now or at a later time. For
this top-down example, the content is defined now.

5. From the File main menu, select Save All.

What You May Need to Know About Adding and Deleting a Service
Component

Note the following details about adding service components:

• Create a service component from either the SOA Composite Editor or the designer of
another component. For example, you can create a human task component from the SOA
Composite Editor or the Oracle BPEL Designer.

• Use the Resources window to browse for service components defined in the SOA
Composite Editor, and those deployed.

Note the following details about deleting service components:

• You can delete a service component by right-clicking it and selecting Delete from the
context menu.

• When a service component is deleted, all references pointing to it are invalidated and all
wires are removed. The service component is also removed from the Applications window.

• A service component created from within another service component can be deleted. For
example, a human task created within the BPEL process service component of Oracle
JDeveloper can be deleted from the SOA Composite Editor. In addition, the partner link to
the task can be deleted. Deleting the partner link removes the reference interface and
removes the wire to the task.

How to Edit a Service Component
You edit a service component to define specific details about the service component.

To edit a service component:

1. Double-click the service component in the designer to display the appropriate editor or
designer, as described in Table 2-5.

Chapter 2
Adding Service Components

2-10

Table 2-5 Starting SOA Service Component Wizards and Dialogs

Double-Clicking This
Service Component...

Displays The...

BPEL Process Oracle BPEL Designer for further designing.

Business Rule Business Rules Designer for further designing.

Human Task Human Task Editor for further designing.

Mediator Oracle Mediator Editor for further designing.

Spring Component Spring Editor for further designing.

2. Modify the settings for the selected service component. For help with a service component
editor or designer, click Help or press F1. These editors are described in later chapters.

3. From the File main menu, select Save All.

4. In the Applications window, double-click composite_name or single-click
composite_name above the designer.

This action returns you to the SOA Composite Editor.

Adding Service Binding Components
You add a service binding component to act as the entry point to the SOA composite
application from the outside world.

How to Add a Service Binding Component

Note:

This section describes how to manually create a service binding component. You can
also automatically create a service binding component by selecting Expose as a
SOAP Service when you create a service component. This selection creates an
inbound web service binding component that is automatically connected to your
BPEL process, human task service, or Oracle Mediator service component.

You can use the Components window in the SOA Composite Editor to drag and drop service
binding components to the composite.

To add a service binding component:

1. In the Components window, drag a SOAP web service to the left Exposed Services
swimlane to define the service interface.

Figure 2-5 shows a SOAP web service being added to the designer.

Chapter 2
Adding Service Binding Components

2-11

Figure 2-5 Adding a SOAP Web Service to a Composite

A specific dialog for the selected service is displayed. Table 2-6 describes the available
editors.

Table 2-6 Service Editors

Dragging This Service... Invokes The...

SOAP Create Web Service dialog to create a web invocation service.

Adapters Adapter Configuration Wizard to guide you through integration of the
service with database tables, database queues, file systems, FTP
servers, Java Message Services (JMS), IBM WebSphere MQ, Oracle
User Messaging Service, Oracle BAM 11g servers, LDAP server,
Coherence cache, sockets, cloud adapters, or Oracle E-Business
Suite, JDE World, or SAP applications.

ADF-BC Create ADF-BC Service dialog to create a service data object (SDO)
invocation service.

B2B B2B Configuration Wizard to guide you through selection of a
document definition.

Healthcare Healthcare Configuration Wizard to guide you through integration with
a healthcare system.

EJB Create EJB Service to create an Enterprise JavaBeans service for
using SDO parameters or Java interfaces with Enterprise JavaBeans.

HTTP Create HTTP Binding Wizard to create HTTP binding. This wizard
enables you to invoke SOA composite applications through HTTP
POST and GET operations.

Direct Create Direct Binding Service dialog to invoke a SOA composite
application and exchange messages over a remote method invocation
(RMI) in the inbound direction.

REST Create REST Binding dialog to integrate REST operations as service
or reference binding components.

MFT MFT Configuration Wizard to create an MFT source or target.

2. Configure the settings for the service. For help with a service editor, click Help or press F1.
When you add a web service, you must select the WSDL file to use. For information, see
How to Define the Interface (WSDL) for a Web Service.

Chapter 2
Adding Service Binding Components

2-12

3. Click Finish.

Figure 2-6 shows the Web Service dialog with data entered to create the
orderprocessor_client_ep service for the OrderProcessor BPEL process.

Figure 2-6 Create Web Service Dialog

4. Click OK.

The service binding component displays in the left swimlane. Figure 2-7 shows the
orderprocessor_client_ep service binding component added to the composite_name
file (for this example, named OrderBookingComposite).

Figure 2-7 Web Service in Composite

5. Select Save All from the File main menu.

How to Define the Interface (WSDL) for a Web Service
As described in How to Add a Service Binding Component, a web service is a type of binding
component that you can add to a SOA composite application. You must define the interface
(WSDL) file for the web service.

Chapter 2
Adding Service Binding Components

2-13

To define the interface (WSDL) for a web service:

1. From the Technology section, drag a SOAP web service to the left Exposed Services
swimlane.

This invokes the Create Web Service dialog shown in Figure 2-6.

2. Enter the details shown in Table 2-7:

Table 2-7 Create Web Service Dialog Fields and Values

Field Value

Name Enter a name for the service.

Type Select the type (message direction) for the web service. Since you
dragged the web service to the left swimlane, the Service type is
the correct selection, and displays by default:

• Service (default)

Creates a web service to provide an entry point to the SOA
composite application

• Reference
Creates a web service to provide access to an external service
in the outside world

Since this example describes how to create an entry point to the
SOA composite application, Service is selected.

3. Select the WSDL file for the service. There are three methods for selection:

• Defining a New WSDL Using a Schema

• Selecting an Existing WSDL

• Automatically Defining a Service Interface WSDL from a Component

4. Click the Add icon above the Input table to display the Add Message Part dialog to add a
new WSDL message part. If the WSDL file contains multiple messages, you can add a
message part for each one. You can select XML schema simple types, project schema
files, and project WSDL files for a message part.

For more information, click Help.

5. Click OK to return to the Create Web Service dialog.

6. Note the additional fields described in Table 2-8:

Table 2-8 Create Web Service Dialog Fields and Values

Field Value

Port Type Displays the port type.

Callback Port Type Disabled, since this WSDL file is for a synchronous service. This
field is enabled for asynchronous services.

7. Click OK.

8. From the File main menu, select Save All.

Chapter 2
Adding Service Binding Components

2-14

Note:

• Do not manually update the WSDL location in the WSDL file in Source View.
This action is not supported. Only updates made in Design View are
supported.

• WSDL namespaces must be unique. Do not just copy and rename a WSDL.
Ensure that you also change the namespaces.

Defining a New WSDL Using a Schema
Define a new WSDL using an existing schema or define a new schema.

1. To the right of the WSDL URL field, click the Find existing WSDLs (first) icon.

2. At the top, click File System.

3. Select an existing WSDL file from the local file system (for this example,
OrderProcessor.wsdl is selected). Figure 2-8 provides details.

Figure 2-8 WSDL File Selection

Selecting an Existing WSDL
Select a WSDL created when defining a component interface. The WSDL can be selected from
the project/application browser.

1. To the right of the WSDL URL field, click the Find existing WSDLs (first) icon.

Chapter 2
Adding Service Binding Components

2-15

2. At the top, click SOA-MDS. This action enables you to use existing WSDL files from other
applications.

Automatically Defining a Service Interface WSDL from a Component
Automatically define a service interface WSDL from a component.

• To the right of the WSDL URL field, click the Generate WSDL from schemas (second)
icon to automatically generate a WSDL file from a schema.

Figure 2-9 shows the Create WSDL dialog. Default values for the WSDL file name,
directory location, namespace, port type, operation name, and interface type are displayed.
If the specified directory is not the subdirectory of the current project, a warning message
is displayed. If the specified directory does not exist, it is automatically created.

You can modify the default values.

Figure 2-9 Automatic Generation of WSDL File

How to View Schemas
You can view all schemas used by the interface's WSDL file and, if you want, choose a new
message schema for a selected message part in the Update Interface dialog.

To view schemas:

1. Double-click the small arrow handle that appears on the specific binding component or
service component. Figure 2-10 provides details.

Chapter 2
Adding Service Binding Components

2-16

Figure 2-10 Selection of Inbound Interface Handle

The Update Interface dialog shown in Figure 2-11 displays all schemas currently used by
the WSDL file.

Figure 2-11 Update Interface Dialog

2. If you want to select a new message schema, click Help or press F1 for instructions.

How to Edit a Service Binding Component
After initially creating a service, you can edit its contents at a later time. Double-click the
component icon to display its appropriate editor or wizard. Table 2-9 provides an overview.

Table 2-9 Starting Service Wizards and Dialogs

Double-Click This Service... To...

SOAP Display the Update Service dialog.

Adapters Re-enter the Adapter Configuration Wizard.

ADF-BC Display the Update Service dialog.

B2B Re-enter the B2B Configuration Wizard.

Healthcare Re-enter the Healthcare Configuration Wizard.

EJB Service Display the Update Service dialog.

HTTP Re-enter the HTTP Binding Wizard.

Direct Re-enter the Update Service dialog.

REST Re-enter the REST Binding dialog.

Chapter 2
Adding Service Binding Components

2-17

Table 2-9 (Cont.) Starting Service Wizards and Dialogs

Double-Click This Service... To...

MFT Re-enter the MFT Configuration Wizard.

What You May Need to Know About Adding and Deleting Services
Note the following detail about adding services:

• When a new service is added for a service component, the service component is notified
so that it can make appropriate metadata changes. For example, when a new service is
added to a BPEL service component, the BPEL service component is notified to create a
partner link that can be connected to a receive or an on-message activity.

Note the following detail about deleting services:

• When a service provided by a service component is deleted, all references to that service
component are invalidated and the wires are removed.

What You May Need to Know About Using the Same Namespace in
Different WSDL Files in the Same Composite

Having two different WSDL files with the same fully-qualified namespace in the same SOA
composite application is ambiguous and not supported. This causes the application to fail
during compilation with duplicate definition errors. Ensure that you use unique namespaces for
every WSDL file.

What You May Need to Know About Multiple Schema Elements in a WSDL
Types Section

If there are multiple <schema> elements in a wsdl <types> section, getElement() method
takes only the first <schema> element in the following scenarios:

• If there are no targetNamespace elements.

• If <schema> elements under <wsdl:types> have the same targetNamespace.

To avoid this, ensure that each schema element contains:

• A targetNamespace element.

• Each targetNamespace element is different from the other in each schema.

The following is the example of <wsdl:types> section with different targetNamespace
elements.

<wsdl:types>
 <schema xmlns="http://www.example.com/2001/XMLSchema"
 targetNamespace="http://namespace1.name/">
 <import namespace="http://xmlns.example.com/singleString"
 schemaLocation="../Schemas/singleString.xsd" />
 </schema>

 <schema xmlns="http://www.example.com/2001/XMLSchema"
 targetNamespace="http://namespace2.name/">
 <import namespace="http://xmlns.example.com/pcbpel/samples/expense"

Chapter 2
Adding Service Binding Components

2-18

 schemaLocation="../Schemas/mqresponse.xsd" />
 </schema>
</wsdl:types>

What You May Need to Know About WSDL Browsing in the Resources
Window When the SOA Infrastructure Uses Both Internal and External
Oracle HTTP Servers

When the SOA Infrastructure is configured in the Server URL field of the SOA Infrastructure
Common Properties page in Oracle Enterprise Manager Fusion Middleware Control to use
both internal and external Oracle HTTP servers, you cannot browse for WSDL URLs using the
Resources window. However, you can paste the correct WSDL URL in the WSDL URL field of
the Update Service dialog for the web service binding component. Figure 2-12 provides details.

Figure 2-12 WSDL URL Field

Adding Reference Binding Components
You add reference binding components that enable the SOA composite application to send
messages to external services in the outside world.

How to Add a Reference Binding Component
You can use the Components window from the SOA Composite Editor to drag and drop
reference binding components into the composite.

To add a reference binding component:

1. From the Components window, select SOA.

2. From the Technology list, drag a service to the right External References swimlane.

Figure 2-13 shows a web service being added to the designer.

Chapter 2
Adding Reference Binding Components

2-19

Figure 2-13 Adding a SOAP Web Service to the Composite

A specific dialog or wizard for the selected reference displays. Table 2-10 describes the
available editors.

Table 2-10 Reference Editors

Dragging This Service... Invokes The...

SOAP Create Web Service dialog to create a web invocation service.

Adapters Adapter Configuration Wizard to guide you through integration of the
service with database tables, database queues, file systems, FTP
servers, Java Message Services (JMS), IBM WebSphere MQ,
Oracle User Messaging Service, Oracle BAM 11g servers, LDAP
server, Coherence cache, sockets, cloud adapters, or Oracle E-
Business Suite, JDE World, or SAP applications.

ADF-BC Create ADF-BC Service dialog to create a service data object
(SDO) invocation service.

B2B B2B Wizard to guide you through selection of a document definition.

Healthcare Healthcare Configuration Wizard to guide you through integration
with a healthcare system.

EJB Create EJB Service dialog to create an Enterprise JavaBeans
service for using SDO parameters with Enterprise JavaBeans.

HTTP Create HTTP Binding Wizard to create HTTP binding. This wizard
enables you to invoke SOA composite applications through HTTP
POST and GET operations, and invoke HTTP endpoints through
HTTP POST and GET operations.

Direct Create Direct Binding Service Dialog to invoke an Oracle Service
Bus flow or another SOA composite application.

REST Create REST Binding dialog to integrate REST operations as
service or reference binding components.

MFT MFT Configuration Wizard to create an MFT source or target.

3. Configure the settings for the reference binding component. For help with a reference
editor, click Help or press F1.

4. Click Finish.

Figure 2-14 shows the Create Web Service dialog with data entered to create a reference.

Chapter 2
Adding Reference Binding Components

2-20

Figure 2-14 Create Web Service Dialog

5. Click OK.

Figure 2-15 shows the StoreFrontService reference binding component added in the right
swimlane of the SOA composite application.

Figure 2-15 SOAP Web Service in the Composite

6. From the File main menu, select Save All.

What You May Need to Know About Adding and Deleting References
Note the following detail about adding references:

• The only way to add a new reference in the SOA Composite Editor is by wiring the service
component to the necessary target service component. When a new reference is added,
the service component is notified and makes appropriate changes. For example, when a

Chapter 2
Adding Reference Binding Components

2-21

reference is added to a BPEL service component, the BPEL service component is notified
to add a partner link that can then be used in an invoke activity.

Note the following details about deleting references:

• When a reference for a service component is deleted, the associated wire is also deleted
and the service component is notified so that it can update its metadata. For example,
when a reference is deleted from a BPEL service component, the service component is
notified to delete the partner link in its BPEL metadata.

• Deleting a reference connected to a wire clears the reference and the wire.

What You May Need to Know About WSDL References
A WSDL file is added to the SOA composite application whenever you create a new
component that has a WSDL (for example, a service binding component, service component
(for example, Oracle Mediator, BPEL process, and so on), or reference binding component).
When you delete a component, any WSDL imports used by that component are removed only
if not used by another component. The WSDL import is always removed when the last
component that uses it is deleted.

When a service or reference binding component is updated to use a new WSDL, it is handled
as if the interface was deleted and a new one was added. Therefore, the old WSDL import is
only removed if it is not used by another component.

If a service or reference binding component is updated to use the same WSDL (porttype
qname), but from a new location, the WSDL import and any other WSDL reference (for
example, the BPEL process WSDL that imports an external reference WSDL) are
automatically updated to reference the new location.

Simply changing the WSDL location in the source view of the composite_name
(composite.xml) file's import is not sufficient. Other WSDL references in the metadata are
required by the user interface (see the ui:wsdlLocation attribute in the composite services
and references). There can also be other WSDL references required by runtime (for example,
a WSDL that imports another WSDL, such as the BPEL process WSDL). Ensure that you
change the following places in this file where a WSDL URL is referenced:

• User interface location - used only in Oracle JDeveloper.

• Import: Used during deployment.

• WSDL location in the reference definition: Used at runtime.

Always modify the WSDL location though the dialogs of the SOA Composite Editor in which a
WSDL location is specified (for example, a web service, BPEL partner link, and so on).
Changing the URL's host address is the exact case in which the SOA Composite Editor
automatically updates all WSDL references.

What You May Need to Know About Mixed Message Types in a WSDL File
If a BPEL process has multiple WSDL messages declared in its WSDL file and one or more
messages have their parts defined to be of some type, whereas other messages have their
parts defined to be of some element, runtime behavior can become unpredictable. This is
because these WSDLs are considered to have mixed type messages. For example, assume
there are multiple copy actions within an assign activity. These copy actions attempt to
populate an output variable that has multiple parts:

• Part 1 is declared as an xsd:string type.

• Part 2 is declared as an xsd:int type.

Chapter 2
Adding Reference Binding Components

2-22

• Part 3 is declared as an element of a custom-designed complex type.

This behavior is not supported.

What You May Need to Know About Invoking the Default Revision of a
Composite

A WSDL URL that does not contain a revision number is processed by the default composite
application. This action enables you to always call the default revision of the called service
without having to make other changes in the calling composite.

Select the default WSDL to use in the WSDL Chooser dialog in Oracle JDeveloper.

To invoke the default revision of a composite:

1. In the Create Web Service dialog, click the icon to the right of the WSDL URL field to
invoke the WSDL Chooser dialog.

2. At the top, select Application Server or WSIL.

3. Expand the nodes to list all deployed composites and revisions. The default revision is
identified by the word Default in the title (for example, FaultFlow [Default 1.0]).

Figure 2-16 WSDL Chooser Dialog

4. Select the appropriate default endpoint and click OK.

Adding Wires
You wire (connect) services, service components, and references. For this example, you wire
the web service and service component. Note the following:

• Since a web service is an inbound service, a reference handle displays on the right side.
Web services that are outbound references do not have a reference handle on the right
side.

• You can drag a defined interface to an undefined interface in either direction (reference to
service or service to reference). The undefined interface then inherits the defined interface.
There are several exceptions to this rule:

Chapter 2
Adding Wires

2-23

– A component has the right to reject a new interface. For example, an Oracle Mediator
can only have one inbound service. Therefore, it rejects attempts to create a second
service.

– You cannot drag an outbound service (external reference) to a business rule, because
business rules do not support references. When dragging a wire, the user interface
highlights the interfaces that are valid targets.

• The port type and the namespace are used to uniquely identify an interface.

• You cannot wire services and composites that have different interfaces. For example, you
cannot connect a web service configured with a synchronous WSDL file to an
asynchronous BPEL process. Figure 2-17 provides details.

Figure 2-17 Limitations on Wiring Services and Composites with Different
Interfaces

The service and reference must match, meaning the interface and the callback must be the
same. If you have two services that have different interfaces, you can place an Oracle
Mediator between the two services and perform a transformation between the interfaces.

How to Wire a Service and a Service Component
You can wire a service binding component to a service component from the SOA Composite
Editor.

To wire a service and a service component:

1. From a service reference handle, drag a wire to the service component interface, as shown
in Figure 2-18.

Figure 2-18 Wire Connection

2. If the service component is a BPEL process, double-click the BPEL process to open
Oracle BPEL Designer. Note that the service displays as a partner link in the left swimlane,
as shown in Figure 2-19.

Chapter 2
Adding Wires

2-24

Figure 2-19 Display of the Service as a Partner Link in the BPEL Process

3. Select Save All from the File main menu.

How to Wire a Service Component and a Reference
You can wire a service component to a reference binding component from the SOA Composite
Editor.

To wire a service component and a reference:

1. In the Applications window, double-click composite_name or single-click
composite_name above the designer.

2. From the service component, drag a wire to the reference, as shown in Figure 2-20.

Figure 2-20 Wiring of a Service Component and Reference

3. If the service component is a BPEL process, double-click the BPEL process to open
Oracle BPEL Designer. Note that the reference displays as a partner link in the right
swimlane, as shown in Figure 2-21.

Chapter 2
Adding Wires

2-25

Figure 2-21 Display of the Reference as a Partner Link in the BPEL Process

4. Select Save All from the File main menu.

5. In the Applications window, select the composite_name file.

6. Click the Source tab to review what you have created.

The orderprocessor_client_ep service binding component provides the entry point to the
composite.

<service name="orderprocessor_client_ep"
 ui:wsdlLocation="oramds:/apps/FusionOrderDemoShared
/services/orderbooking/OrderBookingProcessor.wsdl">
 <interface.wsdl interface= "http://www.globalcompany.example.com/ns
/OrderBookingService#wsdl.interface(OrderProcessor)"
 <binding.adf serviceName="OrderProcessorService" registryName=""/>
 <callback>
 <binding.ws port="http://www.globalcompany.example.com/ns
/OrderBookingService#wsdl.endpoint(orderprocessor_clientep/OrderProcessorCallback_
pt)"/>
 </callback>
 </service>

The OrderProcessor BPEL process service component appears.

<component name="OrderProcessor">
 <implementation.bpel src="OrderProcessor.bpel"/>
</component>

A reference binding component named StoreFrontService appears. The reference
provides access to the external service in the outside world.

<reference name="StoreFrontService"
 ui:wsdlLocation="oramds:/apps/FusionOrderDemoShared
/services/oracle/fodemo/storefront/store/service/common/serviceinterface/StoreFron
tService.wsdl">
 <interface.wsdl
 interface="www.globalcompany.example.com#wsdl.interface(StoreFrontService)"/>
 <binding.ws
port="www.globalcompany.example.com#wsdl.endpoint(StoreFrontService/StoreFrontServ
iceSoapHttpPort)"
location="oramds:/apps/FusionOrderDemoShared/services/oracle/fodemo/storefront/sto

Chapter 2
Adding Wires

2-26

re/service/common/serviceinterface/StoreFrontService.wsdl"/>
</reference>

The communication (or wiring) between service components is as follows:

• The source orderprocessor_client_ep service binding component is wired to the
target OrderProcessor BPEL process service component. Wiring enables web service
message communication with this specific BPEL process.

• The source OrderProcessor BPEL process is wired to the target StoreFrontService
reference binding component. This is the reference to the external service in the
outside world.

 <wire>
 <source.uri>orderprocessor_client_ep</source.uri>
 <target.uri>OrderProcessor/orderprocessor_client_ep</target.uri>
 </wire>

 <wire>
 <source.uri>OrderProcessor/StoreFrontService</source.uri>
 <target.uri>StoreFrontService</target.uri>
 </wire>

What You May Need to Know About Adding and Deleting Wires
Note the following details about adding wires:

• A service component can be wired to another service component if its reference matches
the service of the target service component. Note that the match implies the same
interface and callback interface.

• Adding the following wiring between two Oracle Mediator service components causes an
infinite loop:

– Create a business event.

– Create an Oracle Mediator service component and subscribe to the event.

– Create a second Oracle Mediator service component to publish the same event.

– Wire the first Oracle Mediator to the second Oracle Mediator component service.

If you remove the wire between the two Oracle Mediators, then for every message, the
second Oracle Mediator can publish the event and the first Oracle Mediator can subscribe
to it.

Note the following details about deleting wires:

• When a wire is deleted, the component's outbound reference is automatically deleted and
the component is notified so that it can clean up (delete the partner link, clear routing rules,
and so on). However, the component's service interface is never deleted. All Oracle SOA
Suite services are defined by their WSDL interface. When a component's interface is
defined, there is no automatic deletion of the service interface in the SOA Composite
Editor.

If you want to change the service WSDL interface, there are several workarounds:

– In most cases, you just want to change the schema instead of the inbound service
definition. In the SOA Composite Editor, click any interface icon that uses the WSDL.
For example, you can click the web service interface icon or the Oracle Mediator
service icon. This invokes the Update Interface dialog, which enables you to change
the schema for any WSDL message.

Chapter 2
Adding Wires

2-27

– If you are using an Oracle Mediator service component, the Refresh operations from
WSDL icon of the Oracle Mediator Editor enables you to refresh (after adding new
operations) or replace the Oracle Mediator WSDL. However, you are warned if the
current operations are to be deleted. If you change the WSDL to the new inbound
service WSDL using this icon, the wire typically breaks because the interface has
changed. You can then wire Oracle Mediator to the new service.

– In many cases, a new service requires a completely new Oracle Mediator. Delete the
old Oracle Mediator, create a new one, and wire it to the new service.

– If you are using a BPEL process service component, select a new WSDL through the
Edit Partner Link dialog.

See How to View Schemas for details about the Update Interface dialog.

Adding Descriptions to SOA Composite Applications
You can add a description of the SOA composite application that is displayed when you place
your cursor over the TODO Tasks icon above the composite. The description can describe the
actions of the services, references, and service components in the SOA composite application.

How to Add Descriptions to SOA Composite Applications
To add descriptions to SOA composite applications:

1. Above the SOA Composite Editor, click the TODO Tasks icon. Figure 2-22 provides
details.

Figure 2-22 To Do Tasks Icon

2. Double-click in the table row, and add the description.

3. When complete, click outside the table row, then click Close.

4. Place the cursor over the TODO Tasks icon above the SOA composite application to
display the description. Figure 2-23 provides details.

Figure 2-23 Description of SOA Composite Application

Renaming, Deleting, and Moving Components and Artifacts
You can rename, delete, and move some components (also known as refactoring) and artifacts
in the following sections of Oracle JDeveloper.

• SOA Composite Editor

Chapter 2
Adding Descriptions to SOA Composite Applications

2-28

Enables you to rename and delete components. These actions impact Oracle SOA Suite
metadata (and not necessarily specific artifacts).

• Applications window

Enables you to rename, delete, and move artifacts such as WSDLs, schemas, and so on.
These actions impact Oracle JDeveloper artifacts.

Note:

Do not perform refactoring tasks with Oracle BPEL Designer, Human Task Editor, and
other editors open. If you do, ensure that you then close and reopen the editors after
refactoring. For example, assume you have a BPEL process open, then rename the
BPEL process WSDL file in the Applications window. This changes the underlying
BPEL file, but Oracle BPEL Designer does not reflect this change and becomes
unsynchronized unless you completely exit it. Close and then reopen Oracle BPEL
Designer. The changes are then synchronized.

How to Rename and Delete Components in the SOA Composite Editor
Table 2-11 describes the refactoring tasks that you can perform in the SOA Composite Editor,
along with known limitations. Carefully review these restrictions before using this feature.

Table 2-11 Refactoring Components

Action SOA Composite Editor Steps

Rename a service
component or
binding component

1. Right-click a component and select Rename. Once renamed, all references to the component in
the composite are updated.

Note the following restrictions:

• You cannot rename human workflow, subprocess, or business rule components.

Delete a service
component, binding
component, or BPEL
subprocess

1. Right-click a component or subprocess and select Delete.

Move a service
component or
binding component
to another folder

You cannot perform this task from the SOA Composite Editor.

How to Rename, Move, and Delete Artifacts in the Applications Window
Table 2-12 describes the refactoring tasks that you can perform in the Applications window,
along with known limitations. Carefully review these restrictions before using this feature.

Chapter 2
Renaming, Deleting, and Moving Components and Artifacts

2-29

Table 2-12 Refactoring Component Artifacts

Action Applications Window Steps

Rename a service
component or
binding component
artifact

1. Right-click a component file, and select Refactor > Rename.

Note the following restrictions:

• Component implementation files (.bpel, .mplan, and so on) are not renamed when the
component is renamed in the SOA Composite Editor. This does not cause issues. If you want to
rename the implementation files to the same name, use the Applications window.

• You cannot rename human workflow, subprocess, or business rule components.
• Renaming or moving of business rule and human task artifacts is not supported. For example,

you can rename a human task schema file (for example, HumanTaskPayload.xsd), but
references to this XSD in the .task file are not updated.

• You cannot rename port types, operations, and elements in the WSDL and XSD editors.
• Do not rename a directory or artifact with blank spaces. Spaces in names lead to invalid

references.
• You cannot rename SOA projects and composites.

Delete a service
component, binding
component, or BPEL
subprocess artifact

1. Right-click a component file, and select Refactor > Delete.

Note the following restrictions:

• When you delete an artifact in the Applications window, you are prompted with a message that
includes a Show Usages option. When Show Usages is selected, any usages or references to
the artifact from within files are displayed. When the Delete option is executed, only the
subprocess file is deleted and no references are removed. Ensure that you first select Show
Usages and manually remove references to the file to delete.

Move a service
component or
binding component
to another folder

1. Right-click a component file, and select Refactor > Move.

Note the following restrictions:

• Moving a database adapter artifact causes problems because the database adapter has many
artifacts that are implicitly referenced by name and must be in the same directory.

• You cannot move component implementation files (.mplan, .bpel, .sbpel, .task, .rules, .spring,
and so on) in the Applications window. However, these files can be renamed.

• Do not move a directory or artifact name with blank spaces. Spaces in names lead to invalid
references.

• If you move an XSLT file, you lose capabilities such as the current expansion/scrolled state and
which item was last selected in the XSLT Map Editor. This is because a NonDeployedFiles
directory is created in the same folder as the XSLT file. This folder is the default place for test
files, dictionary files, report files, DVM/XREF test support files, and so on. This directory is not
moved if an XSLT file is moved because the folder contains files used for multiple XSLT files and
there is no direct connection between the XSLT file and the file names that may be in the folder.

Viewing Component Details in the Property Inspector
The Property Inspector displays details about the selected service component or binding
component in the SOA Composite Editor.

To view properties in the Property Inspector:

• Select a service, service component, or reference. For this example, a BPEL process
service component is selected.

The Property Inspector is refreshed to display general component details, a section for
adding deployment descriptor properties, and attached security policies. Figure 2-24
provides details.

Chapter 2
Viewing Component Details in the Property Inspector

2-30

Figure 2-24 Property Inspector

You can also use the Property Inspector to edit BPEL activities in Oracle BPEL Designer.
For more information, see How to Edit BPEL Activities in the Property Inspector. and How
to Define Deployment Descriptor Properties in the Property Inspector.

Adding Security Policies
As you create your SOA composite application, you can secure web services by attaching
policies to service binding components, service components, and reference binding
components. For more information about implementing policies, see Enabling Security with
Policies and Message Encryption .

Deploying a SOA Composite Application
Deploying a SOA composite application involves creating a connection to an Oracle WebLogic
Server and deploying an archive of the SOA composite application to an Oracle WebLogic
Server managed server. For more information about deploying SOA composite applications,
see Deploying SOA Composite Applications .

How to Invoke Deployed SOA Composite Applications
You can invoke deployed SOA composite applications from your SOA composite application.

To invoke deployed SOA composite applications:

1. Create a web service or partner link through one of the following methods.

a. In the SOA Composite Editor, drag a SOAP icon from the Components window to the
External References swimlane.

b. In Oracle BPEL Designer, drag a Partner Link from the BPEL Constructs section of
the Components window to the right swimlane.

2. Access the SOA Resource Browser dialog based on the type of service you created.

a. From the Create Web Service dialog, click the Find existing WSDLs icon. The
Application Server section of the WSDL Chooser dialog is displayed.

Chapter 2
Adding Security Policies

2-31

b. From the Edit Partner Link dialog, click the SOA Resource Browser icon. The
Application Server section of the WSDL Chooser dialog is displayed.

3. Select Application Server if it is not selected.

4. Expand the tree to display the application server connection to the server on which the
SOA composite application is deployed.

5. Expand the application server connection.

6. Expand the SOA folder and partition. Figure 2-25 provides details.

Figure 2-25 Browse for a SOA Composite Application

7. Select the composite service.

8. Click OK.

For information about creating an application server connection, see Creating an Application
Server Connection.

Managing and Testing a SOA Composite Application
As you build and deploy a SOA composite application, you manage and test it using a
combination of Oracle JDeveloper and Oracle Enterprise Manager Fusion Middleware Control.

How to Manage Deployed SOA Composite Applications in Oracle
JDeveloper

You can manage deployed SOA composite applications from the Application Server Navigator
in Oracle JDeveloper. Management tasks consist of undeploying, activating, retiring, turning
on, and turning off SOA composite application revisions.

Chapter 2
Managing and Testing a SOA Composite Application

2-32

Note:

These instructions assume you have created an application server connection to an
Oracle WebLogic Administration Server on which the SOA Infrastructure is deployed.
Creating a connection to an Oracle WebLogic Administration Server enables you to
browse for managed Oracle WebLogic Servers or clustered Oracle WebLogic
Servers in the same domain. From the File main menu, select New > Application >
Connections > Application Server Connection to create a connection.

1. From the Window main menu, select Application Servers.

2. Expand your connection name (for this example, named MyConnection).

The SOA folder appears, as shown in Figure 2-26. The SOA folder displays all deployed
SOA composite application revisions and services. You can browse all applications
deployed on all Oracle WebLogic Administration Servers, managed Oracle WebLogic
Servers, and clustered Oracle WebLogic Servers in the same domain. Figure 2-26
provides details.

Figure 2-26 Application Server Navigator

3. Expand the SOA folder.

4. Expand the partition in which the composite application is deployed.

Deployed SOA composite applications and services appear, as shown in Figure 2-27.

Figure 2-27 Deployed SOA Composite Applications

Chapter 2
Managing and Testing a SOA Composite Application

2-33

5. Right-click a deployed SOA composite application.

6. Select an option to perform. The options that display for selection are based upon the
current state of the application. Table 2-13 provides details.

Table 2-13 SOA Composite Application Options

Option Description

Stop Shuts down a running SOA composite application revision. Any request (initiating or a
callback) to the composite is rejected if the composite is shut down.

Note: The behavior differs based on which binding component is used. For example,
if it is a web service request, it is rejected back to the caller. A JCA adapter binding
component may do something else in this case (for example, put the request in a
rejected table).

This option displays when the composite application has been started.

Start Restarts a composite application revision that was shut down. This action enables
new requests to be processed (and not be rejected). No recovery of messages
occurs.

This option displays when the composite application has been stopped.

Retire Retires the selected composite revision. If the process life cycle is retired, you cannot
create a new instance. Existing instances are allowed to complete normally.

An initiating request to the composite application is rejected back to the client. The
behavior of different binding components during rejection is the same as with the shut
down option.

A callback to an initiated composite application instance is delivered properly.

This option displays when the composite application is active.

Activate Activates the retired composite application revision. Note the following behavior with
this option:

• All composite applications are automatically active when deployed.
• Other revisions of a newly deployed composite application remain active (that is,

they are not automatically retired). If you want, you must explicitly retire them.
This option displays when the application is retired.

Undeploy Undeploys the selected composite application revision. The consequences of this
action are as follows:

• You can no longer configure and monitor this revision of the composite
application.

• You can no longer process instances of this revision of the composite application.
• You cannot view previously completed processes.
• The state of currently running instances is changed to aborted and no new

messages sent to this composite are processed.
• If you undeploy the default revision of the composite application (for example,

2.0), the next available revision of the composite application becomes the default
(for example, 1.0).

Set Default
Revision

Sets the selected composite application revision to be the default.

7. If you want to deploy a prebuilt SOA composite application archive that includes a
deployment profile, right-click the SOA folder and select Deploy SOA Archive. The
archive consists of a JAR file of a single application or a SOA bundle ZIP file containing
multiple applications.

You are prompted to select the following:

• The target SOA servers to which you want to deploy the SOA composite application
archive.

Chapter 2
Managing and Testing a SOA Composite Application

2-34

• The archive to deploy.

• The configuration plan to attach to the application. As you move projects from one
environment to another (for example, from testing to production), you typically must
modify several environment-specific values, such as JDBC connection strings,
hostnames of various servers, and so on. Configuration plans enable you to modify
these values using a single text (XML) file called a configuration plan. The
configuration plan is created in either Oracle JDeveloper or from the command line.
During process deployment, the configuration plan is used to search the SOA project
for values that must be replaced to adapt the project to the next target environment.
This is an optional selection.

• Whether you want to overwrite an existing composite of the same revision ID. This
action enables you to redeploy an application revision.

Figure 2-28 provides details.

Figure 2-28 Deploy SOA Archive Dialog

For more information, see the following documentation:

• Deploying SOA Composite Applications for details about creating a deployment profile and
a configuration plan and deploying an existing SOA archive

• Administering Oracle SOA Suite and Oracle Business Process Management Suite for
details about managing deployed SOA composite applications from Oracle Enterprise
Manager Fusion Middleware Control.

How to Test and Debug a Deployed SOA Composite Application
After you deploy a SOA composite application, you can initiate a test instance of it from the
Test Web Service page in Oracle Enterprise Manager Fusion Middleware Control to verify the
XML payload data. For more information about initiating a test instance, see the Administering
Oracle SOA Suite and Oracle Business Process Management Suite.

In addition to creating a test instance, you can also perform the following testing and
debugging tasks in Oracle JDeveloper:

• Simulate the interaction between a SOA composite application and its web service
partners before deployment in a production environment. This helps to ensure that a
process interacts with web service partners as expected by the time it is ready for

Chapter 2
Managing and Testing a SOA Composite Application

2-35

deployment to a production environment. For more information about creating a unit test,
see Automating Testing of SOA Composite Applications.

• Test and debug SOA composite applications with the SOA debugger in Oracle JDeveloper.
The SOA debugger reduces the development cycle for a SOA composite application by
providing a troubleshooting environment within Oracle JDeveloper. This eliminates the
lengthy process of building a SOA composite application in Oracle JDeveloper, deploying it
to the SOA Infrastructure, starting Oracle Enterprise Manager Fusion Middleware Control
to test or view audit trails and flow traces, and then returning to Oracle JDeveloper to
repeat the exercise. For more information, see Debugging and Auditing SOA Composite
Applications .

Chapter 2
Managing and Testing a SOA Composite Application

2-36

3
Managing Shared Data with the Design-Time
MDS Repository

This chapter describes how to manage shared data with the SOA Design-Time Oracle
Metadata Services Repository (MDS Repository), including how to create and delete folders,
export and import the contents of the /apps folder to and from a JAR file, transfer the /apps
folder contents to another SOA Design-Time MDS Repository, export a Release 11g MDS
Repository to a JAR file, and use the SOA-MDS Transfer wizard to share data with the SOA
Design-Time MDS Repository.
This chapter includes the following sections:

• Introduction to SOA Design-Time MDS Repository Management

• Changing the Default SOA-MDS Location

• Sharing Data with the SOA Design-Time MDS Repository

• Creating and Deleting Subfolders Under the /apps Folder

• Exporting the Selected Contents of the /apps Folder to a JAR File

• Importing the Contents of the JAR File into the /apps Folder

• Transferring the Selected Contents of the /apps Folder to Another MDS Repository

• Exporting an Existing Release 11g MDS Repository to a JAR File

• Browsing for Files in the SOA Design-Time MDS Repository

Introduction to SOA Design-Time MDS Repository Management
A file-based, SOA Design-Time MDS Repository is automatically created when you create a
SOA composite application. You cannot modify the MDS Repository name, but you can modify
it to point to an existing, file-based repository. You typically point it to the version control system
(MDS) location. Sharing operations are done against the design-time repository. You cannot
perform these operations against a database-backed MDS Repository.

You can perform the following operations against the SOA Design-Time MDS Repository in
Oracle JDeveloper:

• Browse the following folder recognized by Oracle SOA Suite in the SOA Design-Time MDS
Repository:

– /apps: Contains shared data, including Oracle Service Bus artifacts.

• Create folders directly under the /apps folder or a subfolder of /apps.

• Delete files and subfolders under the /apps folder. The /apps folder itself cannot be
deleted.

• Export selected contents of the /apps folder to a JAR file. The /apps folder itself is not
included in the JAR file.

• Import the contents of a JAR file under the /apps folder. If the JAR file includes /apps as
the root folder, it is created below the /apps folder of the design-time MDS Repository,
which gives you a top-level directory structure of /apps/apps.

3-1

• Transfer the contents of the /apps folder of one MDS Repository to another MDS
Repository.

• Export an existing MDS Repository (for example, a Release 11g database-based MDS
Repository) to a JAR file. This JAR file can then be imported into the Release 12c design-
time MDS Repository.

Introduction to the Default SOA Design-Time MDS Repository Connection
A file-based, SOA Design-Time MDS Repository connection named
SOA_DesignTimeRepository is automatically included when you create a SOA composite
application. The default directory location is $JDEV_USER_DIR/soamds.

This connection provides the following capabilities:

• A file-based MDS Repository for use during design time. A database-based design-time
MDS Repository is not supported.

• Any MDS Repository can be browsed.

• The default repository location can be modified to point to another folder or version control
location.

• All SOA-MDS operations use this SOA Design-Time MDS Repository.

• A wizard enables you to share design-time artifacts from your SOA project with this MDS
Repository, such as WSDL and schema files.

Note:

• If you add shared data into the SOA Design-Time MDS Repository, and the
repository is backed by a version control system, Oracle SOA Suite does not
provide any operations to add this data to the version control system. You must
add this shared data to the version control system.

• If you have a Release 11g SOA composite application with a preconfigured SOA-
MDS repository (/apps namespace) in the adf-config.xml file, all sharing and
consumption operations are performed against the existing repository defined in
adf-config.xml.

Changing the Default SOA-MDS Location
When you create a SOA composite application, the default SOA-MDS connection named
SOA_DesignTimeRepository is automatically included. The /apps folder in the SOA design-
time MDS Repository is automatically created.

Note:

When files from an Oracle JDeveloper project are shared using the
SOA_DesignTimeRepository, the original files are moved from the SOA project to the
default SOA-MDS repository.

Chapter 3
Changing the Default SOA-MDS Location

3-2

How to Change the Default SOA-MDS Location
To change the default SOA-MDS location:

1. Create a SOA composite application.

2. From the Window main menu, select Resources.

3. In the Components window, click Resources.

4. Expand SOA-MDS. The artifacts shown in Figure 3-1 are displayed.

• The SOA-MDS connection named SOA_DesignTimeRepository that was
automatically created during SOA composite application.

• The /apps folder in the MDS Repository. This folder is initially empty.

Figure 3-1 Resources Window in Oracle JDeveloper

5. Right-click the SOA_DesignTimeRepository connection and select Properties to point it
to your version control location.

The Edit MDS-SOA Connection dialog is displayed.

6. In the MDS Root Folder field, click Browse.

7. Select the version control location for the /apps folder, and click Select. The SOA-MDS
browser only displays the /apps and /soa folders. Therefore, if /apps is not present in the
selected version control location, then it is not rendered by the browser.

The specified location is displayed in the Edit MDS-SOA Connection dialog, as shown in
Figure 3-2.

Chapter 3
Changing the Default SOA-MDS Location

3-3

Figure 3-2 Edit SOA-MDS Connection Dialog

8. Click OK, and expand the SOA_DesignTimeRepository connection.

The /apps folder is populated with the location specified in Step 7, as shown in Figure 3-3.

Figure 3-3 Populated /apps folder

Chapter 3
Changing the Default SOA-MDS Location

3-4

Sharing Data with the SOA Design-Time MDS Repository
The SOA-MDS Transfer wizard enables you to share WSDL, XSD, WADL, and XQuery files
with the SOA design-time MDS Repository. These files can then be shared with other SOA
composite applications.

The wizard first attempts to share files with any existing design-time MDS Repository defined
in the current application's adf-config.xml file. If no MDS Repository is defined in the adf-
config.xml file, then artifacts are shared using SOA_DesignTimeRepository.

Note:

• You can only share XSD, WSDL, WADL, and XQuery files. In addition, only these
file types can be transferred from a design-time MDS Repository to a runtime
MDS Repository.

• If you right-click an XSD file in the Applications window that was created with the
Native Format Builder wizard, the Share using SOA Design-Time MDS
Repository option is not available.

How to Share Data with the SOA Design-Time MDS Repository
To share data with the SOA design-time MDS Repository:

1. In the Applications window, right-click the file to share (for this example, an XSD file) and
select Share using SOA Design-Time MDS Repository. Figure 3-4 provides details.

Figure 3-4 Data Sharing with the SOA Design-Time MDS Repository

The SOA-MDS Transfer wizard - Welcome page is displayed and indicates that the file you
selected is to be transferred to the SOA design-time MDS Repository.

Chapter 3
Sharing Data with the SOA Design-Time MDS Repository

3-5

2. Click Next.

The Choose Target dialog is displayed.

3. Browse the design-time MDS Repository and select the target folder in which to share the
selected artifact, and click Next. You can also create a subfolder in which to share the file
or search for an existing folder. Figure 3-5 provides details.

Figure 3-5 SOA-MDS Transfer Wizard - Choose Target Page

The Dependencies dialog is displayed.

4. Review the files to transfer to the target oramds URL location in the design-time MDS
Repository, as shown in Figure 3-6.

Additional dependent files can also be displayed. For example, assume you select a
WSDL file. Because the WSDL file can have dependencies on schema files (potentially
more than one file), those XSD files are also displayed.

Chapter 3
Sharing Data with the SOA Design-Time MDS Repository

3-6

Figure 3-6 SOA-MDS Transfer Wizard - Dependencies Page

The green checkmark indicates that the file path is correct and resolvable.

Note:

• If the URL is not accessible, an error icon is displayed. For example, assume
you are transferring a WSDL file that has dependencies on schemas that
traverse several parent levels (for example, ../../../). If such references are
present in the WSDL and you do not select the correct target folder, the URL
may go beyond the /apps folder, which is not accessible to the SOA
Infrastructure. The error icon indicates the target URL is not accessible, and
you cannot proceed with the transfer. You must cancel or click Back to select
a different target folder. In summary, the destination for all URLs must begin
with the /apps folder.

• File transfers are in relation to the /apps folder in the target SOA design-time
MDS Repository. Dependent files are typically at the same parallel level. For
example, the WSDL file selected for transfer is located in the WSDLs folder
and the dependent XSD file is located in the Schemas folder. Both folders
are at the same parallel level under the SOA folder of the SOA composite
application in the Applications window. However, if the dependent files are at
different levels (higher levels than the file that is being shared), you must
determine the relative hierarchy of the files. For example, If foo.wsdl refers
to an XSD file in the location ../../../.xsd, you must manually create three
subfolders under apps in the target design-time MDS Repository and share
foo.wsdl to the lowest folder level so that the XSD can be shared at the
apps level.

Chapter 3
Sharing Data with the SOA Design-Time MDS Repository

3-7

5. If you want to overwrite files, select Overwrite if document exists in the target MDS
repository, then click Next. If you do not select this check box, and the files already exist
in the target location, no files are transferred and an error message is displayed. You
cannot selectively transfer specific files.

The References dialog is displayed.

6. View the files to be modified after the transfer with the appropriate oramds URL, and click
Finish, as shown in Figure 3-7. This list includes files that are dependent on the files being
moved. All dependent files are modified to reflect the oramds URL of the file being moved.

Figure 3-7 SOA-MDS Transfer Wizard - References Page

7. Click OK when prompted with a message that the transfer completed successfully.

When complete, the following updates are made:

• The selected artifacts are displayed beneath the SOA-MDS connection in the
Resources window.

• The adf-config.xml file in the Applications window is modified with the /apps
namespace:

<namespace path="/apps" metadata-store-usage="mstore-usage_2"/>

The variable that internally points to the SOA design-time MDS Repository home is
set:

value="${soamds.apps.home}
• A reference in the artifact (for example, a WSDL file) is updated to point to the oramds

URL location.

Chapter 3
Sharing Data with the SOA Design-Time MDS Repository

3-8

Creating and Deleting Subfolders Under the /apps Folder
You can create and delete subfolders under the /apps folder in the SOA Design-Time MDS
Repository. You cannot delete the /apps folder.

How to Create and Delete Subfolders Under the /apps Folder
To create and delete subfolders under the /apps folder:

1. Right-click the /apps folder or a subfolder of /apps, and select Create Folder to point it to
your version control location.

The Create Folder dialog is displayed.

2. Enter a name (for this example, Foo is entered) for the folder, and click OK.

The folder is created under the /apps folder, as shown in Figure 3-8.

Figure 3-8 New Subfolder Under /apps Folder

3. Right-click the folder to delete (for this example, Foo), and select Delete.

The folder is deleted, as shown in Figure 3-9.

Figure 3-9 Subfolder Deleted Under /apps Folder

Exporting the Selected Contents of the /apps Folder to a JAR
File

You can export the selected contents of the /apps folder in the SOA design-time MDS
Repository to a JAR file. The /apps folder itself is not exported to the JAR.

Chapter 3
Creating and Deleting Subfolders Under the /apps Folder

3-9

How to Export the Selected Contents of the /apps Folder to a JAR File
To export the selected contents of the /apps folder to a JAR file:

1. Right-click the SOA-MDS connection that includes the contents to export (for example, the
default SOA_DesignTimeRepository connection or another connection), and select
Export to Jar, as shown in Figure 3-10.

Figure 3-10 Export to Jar Command

The Export to jar dialog is displayed.

2. Provide values appropriate to your environment, and click OK, as described in Table 3-1.

Table 3-1 Export to jar Dialog

Field Description

Select documents to export Enter a file or folder name and click Search or manually expand
the /apps folder to identify and select folders and files to export
to a JAR file.

Preview Documents Selected Select to preview the contents to export.

JAR Name Click Browse to select the JAR file to which to export the
selected folders and files.

The Export to jar dialog looks as shown in Figure 3-11.

Chapter 3
Exporting the Selected Contents of the /apps Folder to a JAR File

3-10

Figure 3-11 Export to jar Dialog

3. Click OK when prompted with a message indicating that the export was successful.

Importing the Contents of the JAR File into the /apps Folder
You can import the contents of a JAR file to the /apps folder of a SOA design-time or
database-backed MDS Repository. If you import a JAR file that includes /apps as the root
folder, it is created below the /apps folder of the design-time MDS Repository, which gives you
a top-level directory structure of /apps/apps.

How to Import the Contents of the JAR File into the /apps Folder
To import the contents of the JAR file into the /apps folder:

1. Right-click the SOA-MDS connection in which to import the JAR file (for example, the
default SOA_DesignTimeRepository connection or another connection), and select
Import From JAR.

2. Click Browse to select the JAR to import.

The Import from jar dialog is displayed, as shown in Figure 3-12.

Chapter 3
Importing the Contents of the JAR File into the /apps Folder

3-11

Figure 3-12 Import from jar Dialog

A green checkmark indicates that the contents do not exist in the target repository. If the
content exists in the target repository, a warning icon is displayed. You can select to
overwrite the content by clicking Import or cancel the entire import operation by clicking
Cancel. You cannot selectively import specific files.

3. Click Import. Any artifacts with a warning icon are overwritten.

The contents of the imported JAR file are displayed under the /apps folder, as shown in
Figure 3-13.

Figure 3-13 Contents of Imported JAR File in Resources Window

Chapter 3
Importing the Contents of the JAR File into the /apps Folder

3-12

Transferring the Selected Contents of the /apps Folder to
Another MDS Repository

You can transfer the selected contents of the /apps folder of one MDS Repository to the /apps
folder of another MDS Repository. There are no limitations on the type of MDS Repository to
which to transfer. For example, you can transfer the selected contents of a file-based
repository to a database-based MDS Repository, and vice versa.

Note:

Do not transfer the contents of the /apps folder to another MDS Repository with the
Oracle BPEL Designer, Human Task Editor, or other editors open. If you do, ensure
that you then close and reopen the editors after the transfer completes. An open
editor does not reflect the transfer changes and becomes unsynchronized unless you
completely exit it.

How to Transfer the Selected Contents of the /apps Folder to Another MDS
Repository

To transfer the selected contents of the /apps folder to another MDS Repository:

1. Right-click the SOA-MDS connection that includes the contents to transfer (for example,
the default SOA_DesignTimeRepository connection or another connection), and select
Transfer. Figure 3-14 provides details.

Figure 3-14 Transfer Menu Option

Chapter 3
Transferring the Selected Contents of the /apps Folder to Another MDS Repository

3-13

The Transfer to SOA-MDS dialog is displayed.

2. Provide values appropriate to your environment, and click OK, as described in Table 3-2.

Table 3-2 Transfer to SOA-MDS Dialog

Field Description

Select Documents to
Transfer

Select the contents to transfer.

Preview Documents
Selected

Select to preview the contents to transfer.

Target Connection Select the SOA-MDS connection of the MDS Repository to which to
transfer contents.

The Transfer to SOA-MDS dialog looks as shown in Figure 3-15.

Figure 3-15 Transfer to SOA-MDS Dialog

3. Click OK when prompted with a message indicating that the transfer was successful.

The contents are displayed under the /apps folder of the SOA-MDS target connection you
selected in the Target Connection field in Step 2. Figure 3-16 provides details.

Chapter 3
Transferring the Selected Contents of the /apps Folder to Another MDS Repository

3-14

Figure 3-16 Contents Display Under /apps Folder of Selected SOA-MDS
Connection

Exporting an Existing Release 11g MDS Repository to a JAR File
You can export a Release 11g MDS Repository to a JAR file that can then be imported into a
Release 12c design-time. The adf-config.xml file is updated with /apps and store
information. Release 12c repositories can also be exported if you have an adf-config.xml file
with /apps defined (meaning you have an existing shared repository).

How to Export an Existing Release 11g MDS Repository to a JAR File
To export an existing Release 11g MDS Repository to a JAR file:

1. In the Applications window, right-click adf-config.xml of the project to export, and select
Export SOA-MDS Contents. Figure 3-17 provides details.

Figure 3-17 Export of an 11g MDS Repository from the Applications Window

The Export to jar dialog is displayed.

Chapter 3
Exporting an Existing Release 11g MDS Repository to a JAR File

3-15

2. Select the Release 11g MDS Repository to export to a JAR file.

3. To import the JAR file into a Release 12c design-time MDS Repository, see section
Importing the Contents of the JAR File into the /apps Folder.

Browsing for Files in the SOA Design-Time MDS Repository
You can browse for and select files in the SOA Design-Time MDS Repository. For example, the
WSDL Chooser dialog that you access from the Create Web Service dialog includes a
selection for the SOA Design-Time MDS Repository, as shown in Figure 3-18.

Figure 3-18 SOA-MDS Selection in the WSDL Chooser Dialog

The Type Chooser dialog includes a Recent Files folder in which information is kept for the
duration of the Oracle JDeveloper session. For example, if you create a new BPEL process
and want to define the input variable from a schema in the SOA Design-Time MDS Repository,
you go there once. When you want to define the output variable from the same schema, the
schema remains visible in the Recent Files folder. Figure 3-19 shows the Recent Files folder.

Chapter 3
Browsing for Files in the SOA Design-Time MDS Repository

3-16

Figure 3-19 Type Chooser

Chapter 3
Browsing for Files in the SOA Design-Time MDS Repository

3-17

Part II
Using the BPEL Process Service Component

This part describes the BPEL process service component.

This part contains the following chapters:

• Getting Started with Oracle BPEL Process Manager

• Introduction to Interaction Patterns in a BPEL Process

• Manipulating XML Data in a BPEL Process

• Invoking a Synchronous Web Service from a BPEL Process

• Invoking an Asynchronous Web Service from a BPEL Process

• Using Correlation Sets and Message Aggregation

• Using Parallel Flow in a BPEL Process

• Using Conditional Branching in a BPEL Process

• Using Fault Handling in a BPEL Process

• Transaction and Fault Propagation Semantics in BPEL Processes

• Incorporating Java and Java EE Code in a BPEL Process

• Using Events and Timeouts in BPEL Processes

• Coordinating Master and Detail Processes

• Using the Notification Service

• Using Sensors and Analytics

4
Getting Started with Oracle BPEL Process
Manager

This chapter describes how to get started with Oracle BPEL Process Manager. BPEL process
creation and validation are described, along with key BPEL design features such as activities,
partner links, adapters, and monitors.
This chapter includes the following sections:

• Introduction to the BPEL Process Service Component

• Introduction to Activities

• Introduction to Partner Links

• Creating a Partner Link

• Introduction to Adapters

• Introduction to BPEL Process Monitors

Introduction to the BPEL Process Service Component
This section provides an introduction to the BPEL process service component in the design
environment.

How to Add a BPEL Process Service Component
You add BPEL process service components to SOA composite applications in the SOA
Composite Editor.

To add a BPEL process service component:

1. Follow the instructions in Table 4-1 to start Oracle JDeveloper.

Table 4-1 Starting Oracle JDeveloper

To Start... On Windows... On UNIX...

Oracle JDeveloper a. Click
JDev_Oracle_Home\jdeveloper\JD
ev\bin\jdev.exe or create a
shortcut.

a. Go to $ORACLE_HOME/jdeveloper/jdev/bin/.

b. Execute the following command:

./jdev

2. Add a BPEL process service component through one of the following methods:

As a service component in an existing SOA composite application:

From the Components section of the Components window, drag a BPEL Process service
component into the SOA Composite Editor. This invokes the Create BPEL Process dialog
shown in Figure 4-1.

In a new application:

4-1

a. From the Applications window, select File > New > Application.

b. Under General in the Categories list, select Applications.

c. In the Items list, select SOA Application, and click OK.

This starts the Create SOA Application wizard.

d. In the Application Name dialog, enter an application name in the Application Name
field.

e. In the Directory field, accept the default location or enter a new directory path in which
to create the SOA composite application.

f. Click Next.

g. In the Project Name dialog, enter a name in the Project Name field.

h. In the Directory field, accept the default location or enter a new directory path in which
to create the project.

i. Click Next.

j. In the Start from section, ensure that Standard Composite is selected. The other
selection, SOA Template, enables you to create a reusable part of a SOA project to
bootstrap new projects. For more information, see Oracle SOA Suite Templates and
Reusable Subprocesses .

k. In the Project SOA Settings dialog, select Composite With BPEL Process.

l. Click Finish.

This invokes the Create BPEL Process dialog shown in Figure 4-1.

Figure 4-1 Create BPEL Process Dialog

3. Provide the required details, as described in Table 4-2.

Chapter 4
Introduction to the BPEL Process Service Component

4-2

Note:

You cannot use BPEL 1.1 and BPEL 2.0 syntax in the same .bpel file. However,
you can include BPEL 1.1 and BPEL 2.0 projects in the same SOA composite
application.

Table 4-2 Create BPEL Process Dialog

Field Description

BPEL Specification Select the type of BPEL process to create.

• BPEL 2.0 Specification
Creates a BPEL project that supports the BPEL 2.0 specification. This is
the default selection.

• BPEL 1.1 Specification
Creates a BPEL project that supports the BPEL 1.1 specification.

Name Enter a name for the BPEL process or accept the default name. The name
you enter becomes the file name for the BPEL process and Web Services
Description Language (WSDL) files in the Applications window.

Always use completely unique names when creating BPEL processes. Do
not create the following:

• A process name that begins with a number (for example, 1SayHello)

• A process name that includes a dash (for example, Say-Hello)

• Two processes with the same name, but with different capitalization (for
example, SayHello and sayhello).

This is particularly important for business intelligence (BI) data object
names, which are generated on the Oracle BAM server in all upper case
format. For example, if you create a BPEL process named
BPELProcess1, a BI name of BI_DEFAULT_PROJECT1_BPELPROCESS1
is generated for the Oracle BAM BI data object after deployment. If you
create two BPEL processes, BPELProcess1 and BPELPRocess1, the
same BI data object name is generated.

• A process name that exceeds 500 characters.
• A non-ASCII process name. The BPEL process name is used in

directory and file names of the SOA project, which can cause problems.

Namespace Use the default namespace path or enter a custom path.

Directory Specify a directory in which to place BPEL process service component
artifacts or accept the default directory of project_root_directory/SOA/
BPEL.

You can change the directory path, but ensure that the directory is beneath
the SOA folder (that is, project_root_directory/SOA). If you specify a
directory outside of SOA, an error message is displayed and the BPEL
process is not created.

Chapter 4
Introduction to the BPEL Process Service Component

4-3

Table 4-2 (Cont.) Create BPEL Process Dialog

Field Description

Template Select a template based on the type of BPEL process service component
you want to design. A template provides a basic set of default files in the
Applications window (process_name.wsdl and process_name.bpel) with
which to begin designing your BPEL process service component.

• Asynchronous BPEL Process: Creates an asynchronous process with
a default receive activity to initiate the BPEL process service component
flow and an invoke activity to asynchronously call back the client. This
type is selected by default. For more information, see Invoking an
Asynchronous Web Service from a BPEL Process.

• Synchronous BPEL Process: Creates a synchronous process with a
default receive activity to initiate the BPEL process service component
flow and a reply activity to return the results. For more information, see
Invoking a Synchronous Web Service from a BPEL Process.

• One Way BPEL Process: Creates a process with a one-way call
interface definition.

• Define Service Later: Select to create an empty BPEL process service
component with no activities.

• Base on a WSDL: Creates a BPEL process with an interface defined by
an existing WSDL file. You must specify the WSDL Uniform Resource
Locator (URL), port type, and callback port type to use.

• Subscribe to Events: Creates a BPEL process in which you can
subscribe to a business event. After selecting this option, the dialog
refreshes to display an event table. Click the Add icon to select an event
to which to subscribe. Your selection is then displayed in the event table.
You can then select the consistency level and whether to publish this
event. You can also click the Filter icon to create a filter expression for
the selected event. This selection launches the Expression Builder
dialog. For more information, see Using Business Events and the Event
Delivery Network.

Service Name Accept the default value or enter the name of the service this process is
exposing. When you open an invoke, receive, OnMessage, or reply activity,
the service name appears by default in the Partner Link field. This name is
the same name as the partner link.

Expose as a SOAP
Service

Select this check box to create a BPEL process service component that is
automatically connected (wired) to an inbound simple object access protocol
(SOAP) web service binding component. If you do not select this check box,
the BPEL process service component is created as a standalone component
in the SOA Composite Editor. You can explicitly associate the BPEL process
service component with a service at a later time. This check box is selected
by default.

Chapter 4
Introduction to the BPEL Process Service Component

4-4

Table 4-2 (Cont.) Create BPEL Process Dialog

Field Description

Delivery
Note: This field is
displayed if you
selected one of these
templates in the
Template list:

• Asynchronous
BPEL Process

• One Way BPEL
Process

• Subscribe to
Events

Set the persistence policy of the process in the delivery layer. This list
enables you to specify a value for the oneWayDeliveryPolicy deployment
descriptor property. The possible values are:

• async.persist: Messages are persisted in the database. With this
setting, reliability is obtained with some performance impact on the
database. In some cases, overall system performance can be impacted.
This is the default value.

• async.cache: Incoming delivery messages are kept only in the in-
memory cache. If performance is preferred over reliability, consider this
setting. When set to async.cache, if the rate at which one-way
messages arrive is much higher than the rate at which they are
delivered, or if the server fails, messages can be lost. In addition, the
system can become overloaded (messages become backlogged in the
scheduled queue) and you can receive out-of-memory errors. Consult
your own use case scenarios to determine if this setting is appropriate.

When you set oneWayDeliveryPolicy to async.cache in high
availability environments, invoke and callback messages in the middle of
execution at the time of a server crash may be lost or duplicated. Server
failover is not supported for async.cache.

• sync: Direct invocation occurs on the same thread. The scheduling of
messages in the invoke queue is bypassed, and the BPEL instance is
invoked synchronously. In some cases this setting can improve
database performance.

For information about transaction and fault propagation semantics for this
property, see Transaction and Fault Propagation Semantics in BPEL
Processes.

For information about changing the value of this property in the Property
Inspector, see How to Define Deployment Descriptor Properties in the
Property Inspector.

Chapter 4
Introduction to the BPEL Process Service Component

4-5

Table 4-2 (Cont.) Create BPEL Process Dialog

Field Description

Transaction
Note: This field is
displayed if you
selected
Synchronous BPEL
Process in the
Template list.

Set the transaction behavior of the BPEL instance for initiating calls. This list
enables you to specify a value for the transaction deployment descriptor
property. The possible values are:

• required: In request/response (initiating) environments, this setting joins
a caller's transaction (if there is one) or creates a new transaction (if
there is no transaction). In one-way, initiating environments in which the
Delivery list value (oneWayDeliveryPolicy property) is set to sync,
the invoke message is processed using the same thread in the same
transaction. This is the default value.

• requiresNew: A new transaction is created for the execution, and the
existing transaction (if there is one) is suspended. This behavior is true
for both request/response (initiating) environments and one-way,
initiating environments in which the Delivery list value
(oneWayDeliveryPolicy property) is set to sync.

• notSupported: Enables activities of business processes to be executed
without a transaction.

Note: This property does not apply for midprocess receive activities. In those
cases, another thread in another transaction is used to process the
message. This is because a correlation is needed and it is always done
asynchronously.

For information about transaction and fault propagation semantics for this
property, see Transaction and Fault Propagation Semantics in BPEL
Processes.

For information about changing the value of this property in the Property
Inspector, see How to Define Deployment Descriptor Properties in the
Property Inspector.

Input Accept the default input XSD schema or click the Search icon to select a
different XSD. If you click the Search icon, the Type Chooser dialog appears.
Browse the imported schemas and select the input element (for example, a
purchase order). You can also import an existing schema or WSDL in the
Type Chooser dialog.

The Type Chooser dialog displays information based on the context of its
use. For example, if selecting a simple, message, or element type for a
variable, the dialog displays XML schema simple types, WSDL file message
types, or XML schema elements, respectively. If selecting a message part
type, the dialog displays project schema files, XML schema simple types,
and project WSDL files.

Output Accept the default output XSD schema or click the Search icon to select a
different XSD. If you click the Search icon, the Type Chooser dialog appears.
Browse the imported schemas and select the output element (for example, a
purchase order).

4. Click OK.

Oracle BPEL Designer displays the sections shown in Figure 4-2.

Chapter 4
Introduction to the BPEL Process Service Component

4-6

Figure 4-2 Oracle BPEL Designer Sections

Each section of this view enables you to perform specific design and deployment tasks.
Table 4-3 identifies the sections listed in Figure 4-2.

Chapter 4
Introduction to the BPEL Process Service Component

4-7

Table 4-3 Oracle JDeveloper Sections

Element Description

Applications window (Upper
left)

Displays the directories and files of a SOA project. Key directories and
files beneath the SOA folder include the following:

• BPEL
Displays the BPEL process service component file (.bpel).

• Events
Displays the business event files (.edn).

• Schemas
Displays the BPEL process schema files.

• testsuites
Displays the test suite files. For more information, see Automating
Testing of SOA Composite Applications.

• Transformations
Displays the transformation XSLT (.xsl) and XQuery (.xqy)
mapper files.

• WSDLs
Displays the BPEL process WSDL files.

• composite_name
Describes the entire SOA composite application (sometimes
referred to as the composite.xml file). For more information
about this file, see What Happens When You Create a SOA
Application and Project.

Oracle BPEL Designer
(Design tab)

Provides a graphical view of the BPEL process service component
that you design. This view displays when you perform one of the
following actions:

• Double-click the .bpel file name in the Applications window.
• Click the Design tab at the bottom of the designer with the .bpel

file selected.
• Double-click the BPEL process component in the SOA Composite

Editor.
As you design the BPEL process service component by dragging
activities, creating partner links, and so on, the Design window
changes.

Components window
(Upper right)

Displays the available activities to add to the BPEL process service
component. Activities are the building blocks. The BPEL Constructs,
Subprocesses (initially empty), and Oracle Extensions selections of
the Components window display a set of activities and subprocesses
that you drag into the designer of the BPEL process service
component. The Components window displays only those pages
relevant to the state of the designer. BPEL Constructs,
Subprocesses, and Oracle Extensions are nearly always visible.
However, if you are designing a transformation in a transform activity,
the Components window only displays selections relevant to that
activity, such as String Functions, Mathematical Functions, and
Node-set Functions.

Chapter 4
Introduction to the BPEL Process Service Component

4-8

Table 4-3 (Cont.) Oracle JDeveloper Sections

Element Description

Structure window (Lower
left)

Provides a structural view of the data in the BPEL process service
component currently selected in the designer. You can perform a
variety of tasks from this section, including:

• Importing schemas.
• Defining message types.
• Managing (creating, editing, and deleting) elements such as

variables, aliases, correlation sets, and partner links.
• Editing activities in the BPEL process flow sequence that displays

in the designer.

Log window (Lower middle) Displays messages about the status of validation and compilation. To
ensure that a BPEL process service component validates correctly,
you must ensure that the following information is correct:

• The BPEL process service component must have an input
variable.

• A partner link must be selected.
• A partner role must be selected.
• The operation must not be empty.
• The input variable type must match the partner link operation

type.
If deployment is unsuccessful, messages appear that describe the
type and location of the error.

Source tab View the syntax inside the BPEL process service component files. As
you drag activities and partner links, and perform other tasks, the
syntax in these source files is immediately updated to reflect these
changes.

History tab Displays the revision history of a file and read-only and editable
versions of a file side-by-side.

Property Inspector Displays details about an activity. Single-click an activity in the Design
window to open it for editing. For more information, see How to Edit
BPEL Activities in the Property Inspector.

Note:

To learn more about these sections, you can also place the cursor in the
appropriate section and press F1 to display online Help.

5. Select Information from the Property Structure list above the Oracle BPEL Designer to
view the BPEL project version (either 1.1 or 2.0). Figure 4-3 provides details.

Figure 4-3 BPEL Project Version

Chapter 4
Introduction to the BPEL Process Service Component

4-9

The Information dialog is displayed.

How to Validate a BPEL Process Service Component
You can syntactically and semantically (for example, the partner links or variables are not
defined in an invoke activity) validate a BPEL process. If validation fails, information is
displayed in the Log window.

To validate a BPEL process service component:

1. In Oracle BPEL Designer, click the green checkmark icon above the BPEL process.
Figure 4-4 provides details.

Figure 4-4 Validation Icon in Oracle BPEL Designer

2. View the validation results in the Log window, as shown in Figure 4-5.

Chapter 4
Introduction to the BPEL Process Service Component

4-10

Figure 4-5 BPEL Process Validation Results in Log Window

If validation errors occur, messages are displayed in the Log window, as shown in
Figure 4-6.

Figure 4-6 Log Window Validation Results

Introduction to Activities
Activities are the building blocks of a BPEL process service component. Oracle BPEL Designer
includes a set of activities that you drag into a BPEL process service component. You then
double-click an activity to define its attributes (property values). Activities enable you to
perform specific tasks within a BPEL process service component. For example, here are
several key activities:

• An assign activity enables you to manipulate data, such as copying the contents of one
variable to another. Figure 4-7 shows an assign activity.

Figure 4-7 Assign Activity

• An invoke activity enables you to invoke a service (identified by its partner link) and specify
an operation for this service to perform. Figure 4-8 shows an invoke activity.

Chapter 4
Introduction to Activities

4-11

Figure 4-8 Invoke Activity

• A receive activity waits for an asynchronous callback response message from a service.
Figure 4-9 shows a receive activity. A receive activity is also used when a process is
started asynchronously through a partner link.

Figure 4-9 Receive Activity

Figure 4-10 shows an example of a property window (for this example, an invoke activity).

Figure 4-10 Invoke Activity Example

The invoke activity enables you to specify an operation you want to invoke for the service
(identified by its partner link). The operation can be one-way or request-response on a port
provided by the service. You can also automatically create variables in an invoke activity. An
invoke activity invokes a synchronous service or initiates an asynchronous web service.

Chapter 4
Introduction to Activities

4-12

The invoke activity opens a port in the process to send and receive data. It uses this port to
submit required data and receive a response. For synchronous callbacks, only one port is
needed for both the send and the receive functions.

For more information about activities, see BPEL Process Activities and Services.

For information about copying and pasting activities in the same project or between projects,
see How to Copy and Paste Activities in BPEL Projects .

For information about editing activities in the Property Inspector, see How to Edit BPEL
Activities in the Property Inspector.

How to Edit BPEL Activities in the Property Inspector
You can edit the property fields of activities in BPEL 1.1 and 2.0 processes in the Property
Inspector of Oracle BPEL Designer in Oracle JDeveloper. This action is the same as double-
clicking an activity or right-clicking an activity and selecting Edit, making changes, and clicking
Apply or OK.

To edit BPEL activities in the Property Inspector:

1. In Oracle BPEL Designer, single-click an activity. For this example, an XSLT transform
activity is selected in Figure 4-11.

2. The property fields of the activity are displayed for editing in the Property Inspector below
Oracle BPEL Designer.

Figure 4-11 Activity is Displayed for Editing in the Property Inspector

Chapter 4
Introduction to Activities

4-13

3. Make changes and press the Apply key, or navigate away from the activity by clicking
another activity.

4. Return to the activity you edited and note that the changes have been applied.

You can also edit the actions within a scope activity, such as catch activities, variable, and
so on.

5. Expand a scope activity.

6. In the Property Inspector, click Variables.

The Property Inspector is refreshed to display the property fields for a variable, including
the Add, Edit, and Delete icons. Figure 4-12 provides details.

Figure 4-12 Variable Section of a Scope Activity is Displayed for Editing in the Property Inspector

How to Copy and Paste Activities in BPEL Projects
You can copy and paste activities in the same BPEL project or between BPEL projects. This
prevents you from having to create similar activities from start to finish multiple times. You can
design an activity once and use it in multiple places, editing it as necessary.

Note:

You can copy an individual OnAlarm activity from one scope activity and paste it into
another scope activity. You can also copy an individual OnAlarm activity from one
pick activity and paste it into another pick activity.

Note the following restrictions:

• You cannot copy activities from a BPEL 1.1 project to a BPEL 2.0 project or from a BPEL
2.0 project to a BPEL 1.1 project.

Chapter 4
Introduction to Activities

4-14

• In BPEL 2.0 projects, you cannot copy an individual OnAlarm activity from a pick activity
into a scope activity, or vice versa. However, this type of copying and pasting is supported
in BPEL 1.1 projects.

• When you copy and paste a scope activity, the variables referenced in the first scope
activity are not copied.

To copy and paste activities:

1. Right-click the activity to copy.

2. Select Copy.

3. Go to the project in which to paste the activity.

4. Perform one of the following tasks:

a. Right-click the activity closest to where you want to paste the activity.

b. Choose to either paste the activity before or after the selected activity.

or

a. Highlight the BPEL process, as shown in Figure 4-13.

Figure 4-13 Selected BPEL Process

b. Right-click and select Paste > Paste Into.

The activity is pasted at the top of the BPEL process.

How to Add a Description of Actions to BPEL Process Activities
You can add a description of actions to a BPEL process activity. This creates a TODO Tasks
icon on the activity. When you place your cursor over this icon, it displays the description of
actions. The description can describe the actions performed by the activity in the BPEL
process service component.

How to add a description of actions to BPEL process activities:

1. Right-click an activity, and select Add TODO Task.

The Add TODO Task dialog is displayed.

Chapter 4
Introduction to Activities

4-15

2. Add a description of the actions performed by the activity, then click OK.

3. Place the cursor over the TODO Tasks icon to the right of the BPEL activity to display the
description. Figure 4-14 provides details.

Figure 4-14 Description of BPEL Activity

Introduction to Partner Links
A partner link enables you to define the external services with which the BPEL process service
component is to interact. You can define partner links as services or references (for example,
through a JCA adapter) in the SOA Composite Editor (the recommended method) or within a
BPEL process service component in Oracle BPEL Designer. Figure 4-15 shows the partner link
icon (for this example, named PartnerSupplierMediator).

Figure 4-15 Partner Link Icon

A partner link type characterizes the conversational relationship between two services by
defining the roles played by each service in the conversation and specifying the port type
provided by each service to receive messages within the conversation.

Figure 4-16 shows an example of the attributes of a partner link for a service.

Figure 4-16 Partner Link Dialog

Chapter 4
Introduction to Partner Links

4-16

Table 4-4 describes the fields of this dialog.

Table 4-4 Create Partner Link Dialog Fields

Field Description

Name A unique and recognizable name you provide for the partner link.

Process Displays the BPEL process service component name.

WSDL URL The name and location of the WSDL file or Java interface that you select for
the partner link. Click the SOA Service Explorer icon (second icon from the
left above the WSDL URL field) to access a window for selecting the WSDL
file or Java interface to use.

Java interfaces display for selection under the References folder with a name
of javaEJB. If the component with which you are wiring this partner link uses
WSDL files and you select a Java interface and click OK, a message displays
indicating that this component requires a WSDL interface. If you click Yes, a
compatible WSDL file is created based on the Java interface.

For more information about integrating components that use Java interfaces
into SOA composite applications, see Integrating the Spring Framework in
SOA Composite Applications.

Partner Link Type The partner link defined in the WSDL file.

Partner Role The role performed by the partner link.

My Role The role performed by the BPEL process service component. If this is a
synchronous process case, the BPEL process service component does not
have a role.

Note:

The Partner Link Type, Partner Role, and My Role fields in the Create Partner Link
dialog are defined and required by the BPEL standard.

Best Practice:

As a best practice, always create and wire Oracle Mediator and BPEL process
service components in the SOA Composite Editor, instead of in Oracle BPEL
Designer.

If you add an Oracle Mediator or BPEL process partner link to your BPEL process in
Oracle BPEL Designer and connect either partner link to your BPEL process through
an invoke activity, the wiring is not automatically reflected above in the SOA
Composite Editor. You must explicitly wire the Oracle Mediator or BPEL process
service component to your BPEL process again in the SOA Composite Editor.

This is not an issue with human task or business rule partner links in Oracle BPEL
Designer; both are also automatically wired in the SOA Composite Editor.

For information about editing partner links in the Property Inspector, see How to Edit BPEL
Activities in the Property Inspector.

Chapter 4
Introduction to Partner Links

4-17

Creating a Partner Link
The method by which you create partner links within the BPEL process in Oracle BPEL
Designer impacts how the partner link displays in the SOA Composite Editor. This section
describes this impact. The WSDL file can be on the local operating system or hosted remotely
(in which case you need a URL for the WSDL).

Likewise, creating and wiring a service or reference binding component to a BPEL process
service component in the SOA Composite Editor causes a partner link to display in Oracle
BPEL Designer.

How to Create a Partner Link
To create a partner link:

1. In the SOA Composite Editor, double-click the BPEL process service component.

Oracle BPEL Designer is displayed.

2. In the Components window, expand BPEL Constructs.

3. Drag a Partner Link into the appropriate Partner Links swimlane, as shown in
Figure 4-17.

Figure 4-17 Partner Link Creation in Oracle BPEL Designer

The Create Partner Link dialog appears.

4. Complete the fields for this dialog, as described in Table 4-4.

The following sections describe the impact of partner link creation on the SOA Composite
Editor.

Partner Links for an Outbound Adapter
Table 4-5 describes the impact on the SOA Composite Editor.

Chapter 4
Creating a Partner Link

4-18

Table 4-5 Impact of Partner Link Creation on the SOA Composite Editor

Creating the Following for a BPEL Process
in Oracle BPEL Designer...

Displays the Following in the SOA Composite
Editor...

A partner link for an outbound adapter • A reference handle for the BPEL process service
component

• A reference representing the outbound adapter in
the composite

• A wire connecting the BPEL process service
component to the adapter reference

Figure 4-18 shows how this method of creation appears in the SOA Composite Editor.

Figure 4-18 SOA Composite Editor Impact

Partner Links for an Inbound Adapter
Table 4-6 describes the impact on the SOA Composite Editor.

Table 4-6 Impact of Partner Link Creation on the SOA Composite Editor

Creating the Following for a BPEL Process
in Oracle BPEL Designer...

Displays the Following in the SOA Composite
Editor...

A partner link for an inbound adapter • A service for the BPEL process service
component

• A service representing the inbound adapter in the
composite

• A wire connecting the inbound adapter service to
the BPEL process service component

Figure 4-19 shows how this method of creation appears in the SOA Composite Editor.

Figure 4-19 SOA Composite Editor Impact

Partner Links from an Abstract WSDL to Call a Service
Table 4-7 describes the impact on the SOA Composite Editor.

Chapter 4
Creating a Partner Link

4-19

Table 4-7 Impact of Partner Link Creation on the SOA Composite Editor

Creating the Following for a BPEL Process
in Oracle BPEL Designer...

Displays the Following in the SOA Composite
Editor...

A partner link from an abstract WSDL to call a
service

A reference handle with an interface and callback
interface defined for the BPEL process service
component

Partner Links from an Abstract WSDL to Implement a Service
Table 4-8 describes the impact on the SOA Composite Editor.

Table 4-8 Impact of Partner Link Creation on the SOA Composite Editor

Creating the Following for a BPEL Process
in Oracle BPEL Designer...

Displays the Following in the SOA Composite
Editor...

A partner link is created from an abstract WSDL
to implement a service

A service with an interface and callback interface for
the BPEL process service component is created.

Note: If an external SOAP reference with the specified
interface and callback interface exists in the SOA
Composite Editor, you can either create a new
external SOAP reference and wire to it or wire to the
existing external SOAP reference.

Figure 4-20 shows how this method of creation appears in the SOA Composite Editor.

Figure 4-20 SOA Composite Editor Impact

Partner Links and Human Tasks or Business Rules
Table 4-9 describes the impact on the SOA Composite Editor.

Table 4-9 Impact of Partner Link Creation on the SOA Composite Editor

Creating the Following for a BPEL Process
in Oracle BPEL Designer...

Displays the Following in the SOA Composite
Editor...

A human task or business rule is created • A human task or business rule in the composite
• A reference for the BPEL process service

component
• A wire connecting the BPEL process service

component to the new human task or business
rule

Figure 4-21 shows how this method of creation appears in the SOA Composite Editor.

Chapter 4
Creating a Partner Link

4-20

Figure 4-21 SOA Composite Editor Impact

Partner Links from an Existing Human Task, Business Rule, or Oracle Mediator
Table 4-10 describes the impact on the SOA Composite Editor.

Table 4-10 Impact of Partner Link Creation on the SOA Composite Editor

Creating the Following for a BPEL Process
in Oracle BPEL Designer...

Displays the Following in the SOA Composite
Editor...

A partner link by dragging an existing human
task, business rule, or mediator service
component into the BPEL process

• A reference for the BPEL process service
component

• A wire connecting the BPEL process service
component to the existing human task, business
rule, or mediator

Figure 4-22 shows how this method of creation appears in the SOA Composite Editor.

Figure 4-22 SOA Composite Editor Impact

Introduction to Adapters
The Partner Link dialog shown in Figure 4-16 also enables you to take advantage of another
key feature that Oracle BPEL Process Manager and Oracle Mediator and Oracle JDeveloper
provide. Click the Service Wizard icon shown in Figure 4-23 to access the Adapter
Configuration wizard.

Figure 4-23 Defining an Adapter

Adapters enable you to integrate the BPEL process service component (and, therefore, the
SOA composite application as a whole) with access to file systems, FTP servers, database
tables, database queues, sockets, Java Message Services (JMS), Oracle User Messaging

Chapter 4
Introduction to Adapters

4-21

Service, and more. You can also integrate with services such as HTTP binding, direct binding,
EJB, and others. This wizard enables you to configure the types of services and adapters
shown in Figure 4-24 for use with the BPEL process service component:

Figure 4-24 Service and Adapter Types

For information about the service and adapter types, see Getting Started with Binding
Components.

When you select an adapter type (for this example, File was selected in Figure 4-24), the
dialog shown in Figure 4-25 prompts you to enter a name. When the wizard completes, a
WSDL file by this name appears in the Applications window under the WSDLs folder. The
service name must be unique within the project. This file includes the adapter configuration
settings you specify with this wizard. Other configuration files (such as header files and files
specific to the adapter) are also created and display in the Applications window.

Figure 4-25 Adapter Service Name

Chapter 4
Introduction to Adapters

4-22

The Adapter Configuration wizard dialogs that appear after the this dialog are based on the
adapter type you selected.

You can also add adapters to your SOA composite application as services or references in the
SOA Composite Editor.

For more information about technology adapters, see Understanding Technology Adapters.

Introduction to BPEL Process Monitors
You can configure BPEL process monitors in Oracle BPEL Designer by selecting Change to
Monitor view at the top of Oracle BPEL Designer. Figure 4-26 provides details. BPEL process
monitors can send data to Oracle BAM for analysis and graphical display through the Oracle
BAM adapter.

Figure 4-26 BPEL Process Monitors

For information about business indicators, intervals, and counters, see the Oracle SOA Suite
11g documentation:

http://docs.oracle.com/cd/E28280_01/dev.1111/e10224/bam_adapter.htm#BABIJBCC

Chapter 4
Introduction to BPEL Process Monitors

4-23

http://docs.oracle.com/cd/E28280_01/dev.1111/e10224/bam_adapter.htm#BABIJBCC

5
Introduction to Interaction Patterns in a BPEL
Process

This chapter describes common interaction patterns between a BPEL process service
component and an external service, including one-way messages, synchronous and
asynchronous interactions, one request - multiple and single responses, one request -
mandatory and optional responses, partial processing, and multiple application interactions. It
also describes the best use practices for each.
This chapter includes the following sections:

• Introduction to One-Way Messages

• Introduction to Synchronous Interactions

• Introduction to Asynchronous Interactions

• Introduction to Asynchronous Interactions with a Timeout

• Introduction to Asynchronous Interactions with a Notification Timer

• Introduction to One Request, Multiple Responses

• Introduction to One Request, One of Two Possible Responses

• Introduction to One Request, a Mandatory Response, and an Optional Response

• Introduction to Partial Processing

• Introduction to Multiple Application Interactions

Introduction to One-Way Messages
In a one-way message, or fire and forget, the client sends a message to the service (d1 in
Figure 5-1), and the service is not required to reply. The client sending the message does not
wait for a response, but continues executing immediately. The following example shows the
portType and operation part of the BPEL process WSDL file for this environment.

. . .
<wsdl:portType name="BPELProcess1">
 <wsdl:operation name="process">
 <wsdl:input message="client:BPELProcess1RequestMessage" />
 </wsdl:operation>
</wsdl:portType>
. . .

Figure 5-1 provides an overview.

5-1

Figure 5-1 One-Way Message

BPEL Process Service Component as the Client
As the client, the BPEL process service component needs a valid partner link and an invoke
activity with the target service and the message. As with all partner activities, the Web Services
Description Language (WSDL) file defines the interaction.

BPEL Process Service Component as the Service
To accept a message from the client, the BPEL process service component needs a receive
activity.

Introduction to Synchronous Interactions
In a synchronous interaction, a client sends a request to a service (d1 in Figure 5-2), and
receives an immediate reply (d2 in Figure 5-2). A BPEL process service component can be at
either end of this interaction, and must be coded based on its role as either the client or the
service. For example, a user requests a subscription to an online newspaper and immediately
receives email confirmation that their request has been accepted. The following example
shows the portType and operation part of the BPEL process WSDL file for this environment.

. . .
<wsdl:portType name="BPELProcess1">
 <wsdl:operation name="process">
 <wsdl:input message="client:BPELProcess1RequestMessage" />
 <wsdl:output message="client:BPELProcess1ResponseMessage"/>
 </wsdl:operation>
</wsdl:portType>

Figure 5-2 provides an overview.

Figure 5-2 Synchronous Interaction

Chapter 5
Introduction to Synchronous Interactions

5-2

BPEL Process Service Component as the Client
When the BPEL process service component is on the client side of a synchronous transaction,
it needs an invoke activity. The port on the client side both sends the request and receives the
reply. As with all partner activities, the WSDL file defines the interaction.

BPEL Process Service Component as the Service
When the BPEL process service component is on the service side of a synchronous
transaction, it needs a receive activity to accept the incoming request, and a reply activity to
return either the requested information or an error message (a fault; f1 in Figure 5-2) defined in
the WSDL.

For more information about synchronous interactions, see Invoking a Synchronous Web
Service from a BPEL Process.

Synchronous BPEL Process Invoking an Asynchronous Process
If a synchronous BPEL process invokes an asynchronous process, the callback response
message is not acknowledged by the BPEL process and the process times out waiting for a
response. This type of interaction pattern is not supported.

Introduction to Asynchronous Interactions
In an asynchronous interaction, a client sends a request to a service and waits until the service
replies. The following example shows the portType and operation part of the BPEL process
WSDL file for this environment.

. . .
<wsdl:portType name="BPELProcess1">
 <wsdl:operation name="process">
 <wsdl:input message="client:BPELProcess1RequestMessage"/>
 </wsdl:operation>
</wsdl:portType>

. . .
<wsdl:portType name="BPELProcess1Callback">
 <wsdl:operation name="processResponse">
 <wsdl:input message="client:BPELProcess1ResponseMessage"/>
 </wsdl:operation>
</wsdl:portType>

Figure 5-3 provides an overview.

Chapter 5
Introduction to Asynchronous Interactions

5-3

Figure 5-3 Asynchronous Interaction

BPEL Process Service Component as the Client
When the BPEL process service component is on the client side of an asynchronous
transaction, it needs an invoke activity to send the request and a receive activity to receive the
reply. As with all partner activities, the WSDL file defines the interaction.

BPEL Process Service Component as the Service
As with a synchronous transaction, when the BPEL process service component is on the
service side of an asynchronous transaction, it needs a receive activity to accept the incoming
request and an invoke activity to return either the requested information or a fault. Note the
difference between this and responding from a synchronous BPEL process: a synchronous
BPEL process uses a reply activity to respond to the client and an asynchronous service uses
an invoke activity.

For more information about asynchronous interactions, see Invoking an Asynchronous Web
Service from a BPEL Process.

Introduction to Asynchronous Interactions with a Timeout
In an asynchronous interaction with a timeout (which you perform in BPEL with a pick activity),
a client sends a request to a service and waits until it receives a reply, or until a certain time
limit is reached, whichever comes first. For example, a client requests a loan offer. If the client
does not receive a loan offer reply within a specified amount of time, the request is canceled.
Figure 5-4 provides an overview.

Chapter 5
Introduction to Asynchronous Interactions with a Timeout

5-4

Figure 5-4 Asynchronous Interaction with Timeout

BPEL Process Service Component as the Client
When the BPEL process service component is on the client side of an asynchronous
transaction with a timeout, it needs an invoke activity to send the request and a pick activity
with two branches: an onMessage branch and an onAlarm branch. If the reply comes after the
time limit has expired, the message goes to the dead letter queue. As with all partner activities,
the WSDL file defines the interaction.

For more information about asynchronous interactions with a timeout, see Selecting Between
Continuing or Waiting on a Process with a Pick Activity.

BPEL Process Service Component as the Service
The behavior of the BPEL process service component as a service matches the behavior with
the asynchronous interaction with the BPEL process service component as the service.

Introduction to Asynchronous Interactions with a Notification
Timer

In an asynchronous interaction with a notification time, a client sends a request to a service
and waits for a reply, although a notification is sent after a timer expires. The client continues to
wait for the reply from the service even after the timer has expired. Figure 5-5 provides an
overview.

Chapter 5
Introduction to Asynchronous Interactions with a Notification Timer

5-5

Figure 5-5 Asynchronous Interaction with a Notification Time

BPEL Process Service Component as the Client
When the BPEL process service component is on the client side of this transaction, it needs a
scope activity containing an invoke activity to send the request, and a receive activity to accept
the reply. The onAlarm handler of the scope activity has a time limit and instructions on what to
do when the timer expires. For example, wait 30 minutes, then send a warning indicating that
the process is taking longer than expected. As with all partner activities, the WSDL file defines
the interaction.

BPEL Process Service Component as the Service
The behavior for the BPEL process service component as the service matches the behavior
with the asynchronous interaction with the BPEL process service component as the service.

Introduction to One Request, Multiple Responses
In this interaction type, the client sends a single request to a service and receives multiple
responses in return. For example, the request can be to order a product online, and the first
response can be the estimated delivery time, the second response a payment confirmation,
and the third response a notification that the product has shipped. In this example, the number
and types of responses are expected. Figure 5-6 provides an overview.

Chapter 5
Introduction to One Request, Multiple Responses

5-6

Figure 5-6 One Request, Multiple Responses

BPEL Process Service Component as the Client
When the BPEL process service component is on the client side of this transaction, it needs an
invoke activity to send the request, and a sequence activity with three receive activities, one for
each reply. As with all partner activities, the WSDL file defines the interaction.

BPEL Process Service Component as the Service
The BPEL service needs a receive activity to accept the message from the client, and a
sequence attribute with three invoke activities, one for each reply.

Introduction to One Request, One of Two Possible Responses
In an interaction using one request and one of two possible responses, the client sends a
single request to a service and receives one of two possible responses. For example, the
request can be to order a product online, and the first response can be either an in-stock
message or an out-of-stock message. Figure 5-7 provides an overview.

Chapter 5
Introduction to One Request, One of Two Possible Responses

5-7

Figure 5-7 One Request, One of Two Possible Responses

BPEL Process Service Component as the Client
When the BPEL process service component is on the client side of this transaction, it needs
the following:

• An invoke activity to send the request

• A pick activity with two branches: one onMessage for the in-stock response and
instructions on what to do if an in-stock message is received

• A second onMessage for the out-of-stock response and instructions on what to do if an
out-of-stock message is received

As with all partner activities, the WSDL file defines the interaction.

For more information about interactions using one request and one of two possible responses,
see Selecting Between Continuing or Waiting on a Process with a Pick Activity.

BPEL Process Service Component as the Service
The BPEL service needs a receive activity to accept the message from the client, and a switch
activity (in BPEL 1.1) or an if activity (in BPEL 2.0) with two branches, one with an invoke
activity sending the in-stock message if the item is available, and a second branch with an
invoke activity sending the out-of-stock message if the item is not available.

Introduction to One Request, a Mandatory Response, and an
Optional Response

In this type of interaction, the client sends a single request to a service and receives one or two
responses. Here, the request is to order a product online. If the product is delayed, the service

Chapter 5
Introduction to One Request, a Mandatory Response, and an Optional Response

5-8

sends a message letting the customer know. In any case, the service always sends a
notification when the item ships. Figure 5-8 provides an overview.

Figure 5-8 One Request, a Mandatory Response, and an Optional Response

BPEL Process Service Component as the Client
When the BPEL process service component is on the client side of this transaction, it needs a
scope activity containing the invoke activity to send the request, and a receive activity to
accept the mandatory reply. The onMessage handler of the scope activity is set to accept the
optional message and instructions on what to do if the optional message is received (for
example, notify you that the product has been delayed). The client BPEL process service
component waits to receive the mandatory reply. If the mandatory reply is received first, the
BPEL process service component continues without waiting for the optional reply. As with all
partner activities, the WSDL file defines the interaction.

BPEL Process Service Component as the Service
The BPEL service needs a scope activity containing the receive activity and an invoke activity
to send the mandatory shipping message, and the scope's onAlarm handler to send the
optional delayed message if a timer expires (for example, send the delayed message if the
item is not shipped in 24 hours).

Introduction to Partial Processing
In partial processing, the client sends a request to a service and receives an immediate
response, but processing continues on the service side. For example, the client sends a
request to purchase a vacation package, and the service sends an immediate reply confirming
the purchase, then continues on to book the hotel, the flight, the rental car, and so on. This
pattern can also include multiple shot callbacks, followed by longer-term processing. Figure 5-9
provides an overview.

Chapter 5
Introduction to Partial Processing

5-9

Figure 5-9 Partial Processing

BPEL Process Service Component as the Client
In this case, the BPEL client is simple; it needs an invoke activity for each request and a
receive activity for each reply for asynchronous transactions, or just an invoke activity for each
synchronous transaction. Once those transactions are complete, the remaining work is
handled by the service. As with all partner activities, the WSDL file defines the interaction.

BPEL Process Service Component as the Service
The BPEL service needs a receive activity for each request from the client, and an invoke
activity for each response. Once the responses are finished, the BPEL process service
component as the service can continue with its processing, using the information gathered in
the interaction to perform the necessary tasks without any further input from the client.

Introduction to Multiple Application Interactions
In some cases, there are more than two applications involved in a transaction, for example, a
buyer, seller, and shipper. In this case, the buyer sends a request to the seller, the seller sends
a request to the shipper, and the shipper sends a notification to the buyer. This A-to-B-to-C-to-
A transaction pattern can handle many transactions at the same time. Therefore, a mechanism
is required for keeping track of which message goes where. Figure 5-10 provides an overview.

As with all partner activities, the WSDL file defines the interaction.

Chapter 5
Introduction to Multiple Application Interactions

5-10

Figure 5-10 Multiple Party Interactions

This kind of coordination can be managed using WS-Addressing or correlation sets. For more
information about both, see Invoking an Asynchronous Web Service from a BPEL Process.

Chapter 5
Introduction to Multiple Application Interactions

5-11

6
Manipulating XML Data in a BPEL Process

This chapter describes how to manipulate XML data in a BPEL process service component.
This chapter provides a variety of examples. Topics include how to work with variables,
sequences, and arrays; use XPath expressions; and perform tasks such as mathematical
calculations. Supported specifications are also referenced.
This chapter includes the following sections:

• Introduction to Manipulating XML Data in BPEL Processes

• Delegating XML Data Operations to Data Provider Services

• Translating Between Native Data and XML

• Using Standalone SDO-based Variables

• Initializing a Variable with Expression Constants or Literal XML

• Copying Between Variables

• Moving and Copying Variables in the Structure Window

• Accessing Fields in Element and Message Type Variables

• Assigning Numeric Values

• Using Mathematical Calculations with XPath Standards

• Assigning String Literals

• Concatenating Strings

• Assigning Boolean Values

• Assigning a Date or Time

• Manipulating Attributes

• Manipulating XML Data with bpelx Extensions

• Validating XML Data

• Using Element Variables in Message Exchange Activities in BPEL 2.0

• Mapping WSDL Message Parts in BPEL 2.0

• Importing Process Definitions in BPEL 2.0

• Manipulating XML Data Sequences That Resemble Arrays

• Converting from a String to an XML Element

• Understanding Document-Style and RPC-Style WSDL Differences

• Manipulating SOAP Headers in BPEL

• Declaring Extension Namespaces in BPEL 2.0

6-1

Note:

Most of the examples in this chapter assume that the WSDL file defining the
associated message types is document-literal style rather than the remote procedure
call (RPC) style. There is a difference in how XPath query strings are formed for
RPC-style WSDL definitions. If you are working with a type defined in an RPC WSDL
file, see Understanding Document-Style and RPC-Style WSDL Differences.

Introduction to Manipulating XML Data in BPEL Processes
This section provides an introduction to using XML data in BPEL processes.

XML Data in BPEL Processes
In a BPEL process service component, most pieces of data are in XML format. This includes
the messages passed to and from the BPEL process service component, the messages
exchanged with external services, and the local variables used by the process. You define the
types for these messages and variables with the XML schema, usually in one of the following:

• Web Services Description Language (WSDL) file for the flow

• WSDL files for the services it invokes

• XSD file referenced by those WSDL files

Therefore, most variables in BPEL are XML data, and any BPEL process service component
uses much of its code to manipulate these XML variables. This typically includes performing
data transformation between representations required for different services, and local
manipulation of data (for example, to combine the results from several service invocations).

BPEL also supports service data object (SDO) variables, which are not in an XML format, but
rather in a memory structure format.

Data Manipulation and XPath Standards in Assign Activities
The starting point for data manipulation in BPEL is the assign activity, which builds on the
XPath standard. XPath queries, expressions, and functions play a large part in this type of
manipulation.

In addition, more advanced methods are available that involve using XQuery, XSLT, or Java,
usually to do more complex data transformation or manipulation.

This section provides a general overview of how to manipulate XML data in BPEL. It
summarizes the key building blocks used in various combinations and provides examples. The
remaining sections in this chapter discuss and illustrate how to apply these building blocks to
perform specific tasks.

You use the assign activity to copy data from one XML variable to another, or to calculate the
value of an expression and store it in a variable. A copy element within the activity specifies the
source and target of the assignment (what to copy from and to), which must be of compatible
types.

The following example shows the formal syntax for BPEL version 1.1, as described in the
Business Process Execution Language for Web Services Specification:

Chapter 6
Introduction to Manipulating XML Data in BPEL Processes

6-2

<assign standard-attributes>
 standard-elements
 <copy>
 from-spec
 to-spec
 </copy>
</assign>

The next example shows the formal syntax for BPEL version 2.0, as described in the Web
Services Business Process Execution Language Specification Version 2.0. The
keepSrcElementName attribute specifies whether the element name of the destination (as
selected by the to-spec) is replaced by the element name of the source (as selected by the
from-spec) during the copy operation. When keepSrcElementName is set to no (the default
value), the name (that is, the namespace name and local name properties) of the original
destination element is used as the name of the resulting element. When keepSrcElementName
is set to yes, the source element name is used as the name of the resulting destination
element.

<assign validate="yes|no"? standard-attributes>
 standard-elements
 (
 <copy keepSrcElementName="yes|no"? ignoreMissingFromData="yes|no"?>
 from-spec
 to-spec
 </copy>
 . . .
 . . .
</assign>

This syntax is described in detail in both specifications. The from-spec and to-spec typically
specify a variable or variable part, as shown in the following example:

<assign>
 <copy>
 <from variable="c1" part="address"/>
 <to variable="c3"/>
 </copy>
</assign>

When you use Oracle JDeveloper, you supply assign activity details in a Copy Rules dialog
that includes a From section and a To section. This reflects the preceding BPEL source code
syntax.

XPath standards play a key role in the assign activity. Brief examples are shown here as an
introduction. Examples with more context and explanation are provided in the sections that
follow.

• XPath queries

An XPath query selects a field within a source or target variable part. The from or to
clause can include a query attribute whose value is an XPath query string. The following
code provides an example:

<from variable="input" part="payload"
 query="/p:CreditFlowRequest/p:ssn"/>

The value of the query attribute must be a location path that selects exactly one node. You
can find further details about the query attribute and XPath standards syntax in the
Business Process Execution Language for Web Services Specification (section 14.3) or
Web Services Business Process Execution Language Specification Version 2.0 (section
8.4), and the XML Path Language (XPath) Specification, respectively.

Chapter 6
Introduction to Manipulating XML Data in BPEL Processes

6-3

• XPath expressions

You use an XPath expression (specified in an expression attribute in the from clause) to
indicate a value to be stored in a variable. For example:

<from expression="100"/>

The expression can be any general expression (that is, an XPath expression that
evaluates to any XPath value type). Similarly, the value of an expression attribute must
return exactly one node or one object only when it is used in the from clause within a copy
operation. For more information about XPath expressions, see section 9.1.4 of the XML
Path Language (XPath) Specification.

Within XPath expressions, you can call the following types of functions:

• Core XPath functions

XPath supports a large number of built-in functions, including functions for string
manipulation (such as concat), numeric functions (such as sum), and others.

<from expression="concat('string one', 'string two')"/>

For a complete list of the functions built into XPath standards, see section 4 of the XML
Path Language (XPath) Specification.

• BPEL XPath extension functions

BPEL adds several extension functions to the core XPath core functions, enabling XPath
expressions to access information from a process.

– For BPEL 1.1, the extensions are defined in the standard BPEL namespace http://
schemas.xmlsoap.org/ws/2003/03/business-process/ and indicated by the prefix
bpws:

<from expression= "bpws:getVariableData('input', 'payload', '/p:value') + 1"/>

For more information, see sections 9.1 and 14.1 of the Business Process Execution
Language for Web Services Specification. For more information about
getVariableData, see getVariableData.

– For BPEL 2.0, the extensions are also defined in the standard BPEL namespace
http://schemas.xmlsoap.org/ws/2003/03/business-process/. However, the prefix
is bpel:

<from>bpel:getVariableProperty('input', 'propertyName')</from>

For more information, see section 8.3 of the Web Services Business Process
Execution Language Specification Version 2.0. For more information about
getVariableProperty, see getVariableProperty (For BPEL 2.0).

• Oracle BPEL XPath extension functions

Oracle provides some additional XPath functions that use the capabilities built into BPEL
and XPath standards for adding new functions.

These functions are defined in the namespace http://schemas.oracle.com/xpath/
extension and indicated by the prefix ora:.

• Custom functions

Oracle BPEL Process Manager functions are defined in the bpel-xpath-functions-
config.xml file and placed inside the orabpel.jar file. For more information, see Creating
User-Defined XPath Extension Functions.

Chapter 6
Introduction to Manipulating XML Data in BPEL Processes

6-4

http://schemas.xmlsoap.org/ws/2003/03/business-process/
http://schemas.xmlsoap.org/ws/2003/03/business-process/
http://schemas.xmlsoap.org/ws/2003/03/business-process/

Sophisticated data manipulation can be difficult to perform with the BPEL assign activity and
the core XPath functions. However, you can perform complex data manipulation and
transformation by using XSLT, Java, or a bpelx operation under an assign activity (See
Manipulating XML Data with bpelx Extensions) or as a web service. For XSLT, Oracle BPEL
Process Manager and Oracle Mediator includes XPath functions that execute these
transformations.

For more information about XPath and XQuery transformation code examples, see Creating
Transformations with the XSLT Map Editor and Creating Transformations with the XQuery
Mapper.

For more information about the assign activity, see Assign Activity.

Note:

Passing large schemas through an assign activity can cause Oracle JDeveloper to
freeze up and run low on memory if you right-click the target or source payload node
in the Edit Assign dialog and select Expand All Child Nodes. As a workaround,
manually expand the payload elements.

Delegating XML Data Operations to Data Provider Services
You can specify BPEL data operations to be performed by an underlying data provider service
through use of the entity variable. The data provider service performs the data operations in a
data store behind the scenes and without use of other data store-related features provided by
Oracle SOA Suite (for example, the database adapter). This action enhances Oracle SOA
Suite runtime performance and incorporates native features of the underlying data provider
service during compilation and runtime.

The entity variable can be used with an Oracle Application Development Framework (ADF)
Business Component data provider service using SDO-based data.

Before Release 11g, variables and messages exchanged within a BPEL business process
were a disconnected payload (a snapshot of data returned by a web service) placed into an
XML structure. In some cases, the user required this type of fit. In other cases, this fit
presented challenges.

The entity variable addresses the following challenges of pre-11g releases:

• Extensive data conversion

If the underlying data was not in XML form, data conversion (for example, translating
delimited text to XML) was required. If the underlying size of the data was large, the
processing potentially impacted performance.

• Stale snapshot data

Variables (including WSDL messages) in BPEL processes were disconnected payload. In
some cases, this was required. In other cases, you wanted a variable to represent the
most recent data being modified by other applications outside Oracle BPEL Process
Manager. This meant the disconnected data model provided a stale data set that did not fit
all needs. The snapshot also duplicated data, which impacted performance when the data
size was large.

• Loss of native data behavior

Chapter 6
Delegating XML Data Operations to Data Provider Services

6-5

Some data conversion implementation required data structure enforcement or business
data logic beyond the XML schema. For example, the start date needed to be smaller than
the end date. When the variable was a disconnected payload, validation occurred only
during related web service invocation. Optionally performing the extra business data logic
after certain operations, but before web service invocation, was sometimes preferred.

To address these challenges starting with Release 11g and continuing with Release 12c, you
create an entity variable during variable declaration. An entity variable acts as a data handle to
access and plug in different data provider service technologies behind the scenes. During
compilation and runtime, Oracle BPEL Process Manager delegates data operations to the
underlying data provider service.

Table 6-1 provides an example of how data conversion was performed in previous releases
(using the database adapter as an example) and in releases 11g and 12c with the entity
variable.

Table 6-1 Data Manipulation Capabilities in Previous and Current Releases

10.1.x Releases 11g and 12c Releases When Using the Entity
Variable

Data operations such as explicitly loading and
saving data were performed by the database
adapter in Oracle BPEL Process Manager. All data
(for example, of a purchase order) was saved in the
database dehydration store.

Data operations such as loading and saving data
are performed automatically by the data provider
service (the Oracle ADF Business Component
application), without asking you to code any service
invocation.

Oracle BPEL Process Manager stores a key (for
example, a purchase order ID (POID)) that points
to this data. Oracle BPEL Process Manager fetches
the key when access to data is requested (the bind
entity activity does this). You must explicitly request
the data to be bound using the key. Any data
changes are persisted by the data provider service
in a database that can be different from the
dehydration store database. This prevents data
duplication.

Data in variables was in document object model
(DOM) form

Data in variables is in SDO form, which provides for
a simpler conversion process than DOM, especially
when the data provider service understands SDO
forms.

Note:

Only BPEL process service components currently allow the use of SDO-formed
variables. If your composite application has an Oracle Mediator service component
wired with an SDO-based Java binding component reference, the data form of the
variable defaults to DOM. In addition, the features described for 10.1.x releases in
Table 6-1 are still supported in Releases 11g and 12c.

How to Create an Entity Variable
This section describes how to create an entity variable and a binding key in Oracle JDeveloper.

In Release 10.1.x of Oracle BPEL Process Manager, all variable data was in DOM format.
Starting with Release 11g and continuing with Release 12c, variable data in SDO format is also

Chapter 6
Delegating XML Data Operations to Data Provider Services

6-6

supported. DOM and SDO variables in BPEL process service components are implicitly
converted to the required forms. For example, an Oracle BPEL process service component
using DOM-based variables can automatically convert these variables as required to SDO-
based variables in an assign activity, and vice versa. Both form types are defined in the XSD
schema file. No user intervention is required.

Entity variables also support SDO-formed data. However, unlike the DOM and SDO variables,
the entity variable with SDO-based data enables you to bind a unique key value to data (for
example, a purchase order). Only the key is stored in the dehydration store; the data requiring
conversion is stored with the service of the Oracle ADF Business Component application. The
key points to the data stored in the service. When the data is required, it is fetched from the
data provider service and placed into memory. The process occurs in two places: the bind
entity activity and the dehydration store. For example, when Oracle BPEL Process Manager
rehydrates, it stores only the key for the entity variable; when it wakes up, it does an implicit
bind to get the current data.

Understanding How SDO Works in the Inbound Direction
The SDO binding component service provides the outside world with an entry point to the
composite application, as shown in Figure 6-1.

Figure 6-1 Inbound Direction

You use the SOA Composite Editor and Oracle BPEL Designer to perform the following tasks:

• Define an SDO binding component service and a BPEL process service component in the
composite application.

• Connect (wire) the SDO service and BPEL process service component.

• Define the details of the BPEL process service component.

For more information about using the SOA Composite Editor, see Getting Started with
Developing SOA Composite Applications.

Understanding How SDO Works in the Outbound Direction
The SDO binding component reference enables messages to be sent from the composite
application to Oracle ADF Business Component application external partners in the outside
world, as shown in Figure 6-2.

Chapter 6
Delegating XML Data Operations to Data Provider Services

6-7

Figure 6-2 Outbound Direction

When the Oracle ADF Business Component application is the external partner link to the
outside world, there is no SDO binding component reference in the SOA Composite Editor that
you drag into the composite application to create outbound communication. Instead,
communication between the composite application and the Oracle ADF Business Component
application occurs as follows:

• The Oracle ADF Business Component application is deployed and automatically registered
as an SDO service in the Service Infrastructure

• Oracle JDeveloper is used to browse for and discover this application as an ADF-BC
service and create a partner link connection.

• The composite.xml file is automatically updated with reference details (the binding.adf
property) when the Oracle ADF Business Component application service is discovered.

Creating an Entity Variable and Choosing a Partner Link
You now create an entity variable and select a partner link for the Oracle ADF Business
Component application. The following example describes how the OrderProcessor BPEL
process service component receives an ID for an order by using a bind entity activity to point to
order data in an Oracle ADF Business Component data provider service.

Note:

Entity variables are supported on BPEL projects that use version 1.1 or 2.0 of the
BPEL specification.

To create an entity variable and choose a partner link:

1. Go to the Structure window of the BPEL process service component in Oracle JDeveloper.

2. Right-click the Variables folder and select Expand All Child Nodes.

3. In the second Variables folder, right-click and select Create Variable.

The Create Variable dialog appears.

4. In the Name field, enter a name.

Chapter 6
Delegating XML Data Operations to Data Provider Services

6-8

5. Click the Entity Variable check box and select the Search icon to the right of the Partner
Link field.

The Partner Link Chooser dialog appears with a list of available services, including the
SDO service called ADF-BC.

6. Browse for and select the service for the Oracle ADF Business Component application.

7. Click OK to close the Partner Link Chooser and Create Variable dialogs.

The dialog looks as shown in Figure 6-3.

Figure 6-3 Create Variable Dialog

Creating a Binding Key
You now create a key to point to the order data in the Oracle ADF Business Component data
provider service.

To create a binding key:

1. In the Components window, expand Oracle Extensions.

2. Scroll down to the SDO section.

3. Drag a Bind Entity activity into your BPEL process service component. Figure 6-4
provides details.

Figure 6-4 Bind Entity Activity in the Components Window

Chapter 6
Delegating XML Data Operations to Data Provider Services

6-9

The Bind Entity dialog appears.

4. In the Name field, enter a name.

5. To the right of the Entity Variable field, click the Search icon.

The Variable Chooser dialog appears.

6. Select the entity variable created in Creating an Entity Variable and Choosing a Partner
Link and click OK.

7. In the Unique Keys section, click the Add icon.

The Specify Key dialog appears. You use this dialog to create a key for retrieving the order
ID from the Oracle ADF Business Component data provider service.

8. Enter the details described in Table 6-2 to define the binding key:

Table 6-2 Specify Key Dialog Fields and Values

Field Value

Key Local Part Enter the local part of the key.

Key Namespace URI Enter the namespace URI for the key.

Key Value Enter the key value expression. This expression must match the
type of a key. The following examples show expression value keys
for a POID key:

• $inputMsg.payload/tns:poid
• bpws:getVariableData('inputmsg','payload','tns:po

id')
The POID key for an entity variable typically comes from another
message. If the type of POID key is an integer and the expression
result is a string of ABC, the string-to-integer fails and the bind entity
activity also fails at runtime.

Figure 6-5 shows the Specify Key dialog after completion.

Figure 6-5 Specify Key Dialog

9. Click OK to close the Specify Key dialog.

A name-pair value appears in the Unique Keys table, as shown in Figure 6-6. Design is
now complete.

Chapter 6
Delegating XML Data Operations to Data Provider Services

6-10

Figure 6-6 Bind Entity Dialog

10. Click OK to close the Bind Entity dialog.

After the Bind Entity activity is executed at runtime, the entity variable is ready to be used.

For more information about using SDOs, see Publishing Service-Enabled Application Modules
in Developing Fusion Web Applications with Oracle Application Development Framework. This
guide describes how to expose application modules as web services and publish rows of view
data objects as SDOs. The application module is the ADF framework component that
encapsulates business logic as a set of related business functions.

Translating Between Native Data and XML
The BPEL process translate activity enables you to translate messages between native XSD
format and XML format. The following types of translation are supported:

• Inbound translation:

– Native format to XML

– Opaque to XML

– Native to an attachment in a directory

• Outbound translation:

– XML to native format

– XML to an attachment in a directory

• Supported in both BPEL 1.1. and 2.0 projects.

Inbound message translation automatically uses the doTranslateFromNative function.
Outbound message translation automatically uses the doTranslateToNative function). You do
not need to create an assign activity and invoke the Expression Builder dialog to configure
these functions. The translate activity automatically generates the assign activity.

Chapter 6
Translating Between Native Data and XML

6-11

How to Translate Native Data to XML Data
This section describes how to configure the translate activity in a BPEL process to receive an
inbound message in native XSD format (for this example, string data) and translate it to XML
format. The Native Format Builder wizard is used to create a new schema file.

To translate native data to XML data:

1. Right-click a BPEL process in the SOA Composite Editor, and select Edit.

Oracle BPEL Designer is displayed.

2. Expand the Oracle Extensions section of the Components window and drag a Translate
activity into the BPEL process. Figure 6-7 provides details.

Figure 6-7 Translate Activity in a BPEL Process

3. Right-click the translate activity and select Edit.

The Translate dialog is displayed for editing.

4. Select Native to XML to receive inbound native data (for this example, in a single string).

5. To the right of the Input field, click the Browse icon.

The Variable XPath Builder dialog is displayed.

6. Select the native string that is part of the inbound payload to translate into XML format, and
click OK. Figure 6-8 provides details.

Chapter 6
Translating Between Native Data and XML

6-12

Figure 6-8 Variable XPath Builder

7. To the right of the NXSD Schema field, select the schema to use:

• If the schema already exists, select the Search (first) icon to invoke the Type Chooser
dialog.

• If the schema does not exist, select the second icon to invoke the Native Format
Builder wizard to create the schema.

The following example describes how to use the Native Format Builder wizard to create a
new schema from a text file that uses a comma-separated delimiter.

a. In the File Name field of the File Name and Directory dialog, enter a name, and click
Next.

b. In the Choose Type dialog, select Delimited (Contains records whose fields are
delimited by a special character), and click Next.

c. In the File Description dialog, click Browse to select the text file that uses the comma-
separated delimiter.

The Select sample file dialog is displayed.

d. Select the file to use, and click OK.

The file contents are displayed at the bottom of the File Description dialog. Figure 6-9
provides details.

Chapter 6
Translating Between Native Data and XML

6-13

Figure 6-9 Sample File Contents

e. Click Next.

f. In the Record Organization dialog, click Next.

g. In the Specify Elements dialog, enter a name for the element to represent the record
(for this example, addr is entered), and click Next.

h. In the Specify Delimiters dialog, accept the default value of a comma as the special
character that delimits the fields in the text file, and click Next.

i. In the Name column of the Field Properties dialog, enter the appropriate values in
place of C1, C2, C3, C4, C5, and C6, and click Next. Figure 6-10 provides details.

Figure 6-10 Name Column Default Values Replaced with Specific Values

The new schema is displayed in the Generated Native Format Schema dialog.

Chapter 6
Translating Between Native Data and XML

6-14

j. Click Test to test the schema.

k. In the Result XML section, click the green arrow.

The native schema and resulting XML are displayed. Figure 6-11 provides details.

Figure 6-11 Output From Testing the Native Schema

l. Click OK to return to the Generated Native Format Schema dialog.

m. Click Next, then Finish.

The addr_schema1.xsd file is created and displayed in the NXSD Schema field of the
Translate dialog.

8. From the Output Type list, select DOM. Both DOM and SDOM supported if you select
DOM.

9. To the right of the Output field, select the variable for the schema.

a. If you have an output variable that adheres to the schema specified in Step 7, click the
Search (first) icon to select the existing variable.

b. If you do not have an existing variable, click the Add (second) icon to invoke the
Create Variable dialog. Accept the default values or rename the variable to create an
output variable, and click OK. The variable automatically points to the schema created
in Step 7.

When complete, the Translate dialog looks as shown in Figure 6-12.

Chapter 6
Translating Between Native Data and XML

6-15

10. Figure 6-12 Translate Dialog Configured for Native to XML Translation

The output for the synchronous request must now be changed to point to the new schema.

11. In the Applications window, select the BPEL process WSDL file (for this example, named
BPELProcess1.wsdl).

12. At the bottom of Oracle BPEL Designer, click Source.

13. Scroll to the <wsdl:message> section of the WSDL file.

14. Click the response element (for this example, named processResponse) for the message
BPELProcess1ResponseMessage to invoke the Property Inspector in the lower right
corner. Figure 6-13 provides details.

Figure 6-13 Root Element Selection in the WSDL File

15. In the Property Inspector, select the new root element (for this example, ns1:addr).
Figure 6-14 provides details.

Chapter 6
Translating Between Native Data and XML

6-16

Figure 6-14 Root Element Selected in Property Inspector

The ns1:addr root element is added to the WSDL file. Figure 6-15 provides details.

Figure 6-15 New Root Element Appears in WSDL File

16. Drag an Assign activity into the BPEL process beneath the translate activity.

You now assign the translation output variable to the BPEL output variable.

17. In the Copy Rules tab of the assign activity, map the variables, and click OK. Figure 6-16
provides details.

Figure 6-16 Edit Assign Dialog

Chapter 6
Translating Between Native Data and XML

6-17

Design is now complete.

How to Translate XML Data to Native Data
This section describes how to translate an incoming XML message to native data format (such
as a comma delimited string). This example uses the schema file created in How to Translate
Native Data to XML Data as the outbound XML format to translate to native XSD format.

To translate XML format to native data:

1. Create a synchronous BPEL process.

2. In the Input field of the Create BPEL Process dialog, accept the default input XSD schema
or click the Search icon to select a different XSD. For this example, the schema created
with the Native Format Builder in How to Translate Native Data to XML Data is selected.
Figure 6-17 provides details.

Figure 6-17 Input Schema Selection

3. Right-click the BPEL process in the SOA Composite Editor, and select Edit.

Oracle BPEL Designer is displayed.

4. Expand the Oracle Extensions section of the Components window and drag a Translate
activity into the BPEL process.

5. Right-click the translate activity, and select Edit.

The Translate dialog is displayed for editing.

6. Select XML to Native to translate outbound XML data into native XSD format.

7. To the right of the Input field, click the Browse (first) icon.

8. Select the input variable. Figure 6-18 provides details.

Chapter 6
Translating Between Native Data and XML

6-18

Figure 6-18 Input Variable Selection

9. To the right of the NXSD Schema field, select the Search (first) icon to invoke the Type
Chooser dialog.

10. Select the schema file, and click OK. This example uses the same schema file as How to
Translate Native Data to XML Data. Figure 6-19 provides details.

Figure 6-19 Schema File Selection

11. From the Output Type list, select STRING.

If you instead select ATTACHMENT, the dialog is refreshed to display the Location field
for specifying the directory location for the attachment. Selecting ATTACHMENT is useful
for scenarios in which XML data is very large.

12. To the right of the Output field, click the Search (first) icon or click the Create Variable
icon to automatically create a new output variable of type string.

13. Select the output variable, and click OK. Figure 6-20 provides details.

Chapter 6
Translating Between Native Data and XML

6-19

Figure 6-20 Output Variable Selection

The Translate dialog looks as shown in Figure 6-21.

Figure 6-21 Translate Dialog Configured for Outbound Translations

Design is now complete.

How to Translate Inbound Native Data to XML Stored as an Attachment
This section describes how to translate an inbound message in native data format to an
attachment. Attachments are useful for scenarios in which incoming data is very large.

Chapter 6
Translating Between Native Data and XML

6-20

To translate inbound native XSD format to an attachment:

1. Create a BPEL process (for this example, a one-way BPEL process is created).

2. Right-click the BPEL process in the SOA Composite Editor, and select Edit.

Oracle BPEL Designer is displayed.

3. Expand the Oracle Extensions section of the Components window and drag a Translate
activity into the BPEL process.

4. Right-click the translate activity, and select Edit.

The Translate dialog is displayed for editing.

5. Select Native to XML to translate inbound native data into an attachment.

6. To the right of the Input field, click the Browse (first) icon.

7. Select the input variable (for this example, a very large string). Figure 6-22 provides
details.

Figure 6-22 Input Variable Selection

8. To the right of the NXSD Schema field, select the Search (first) icon to invoke the Type
Chooser dialog.

9. Select the schema file, and click OK. This example uses the same schema file as How to
Translate Native Data to XML Data. Figure 6-23 provides details.

Chapter 6
Translating Between Native Data and XML

6-21

Figure 6-23 Schema File Selection

10. From the Output Type list, select ATTACHMENT.

The dialog is refreshed to display the Location field.

11. In the Location field, enter the directory path to the attachment. If this field is left blank, the
attachment is stored in the database.

12. To the right of the Output field, click the Add (second) icon to invoke the Create Variable
dialog.

13. Click OK to create the output variable. The output variable is of type attachment.

The Translate dialog looks as shown in Figure 6-24.

Figure 6-24 Translate Dialog for an Attachment

14. Click OK.

Chapter 6
Translating Between Native Data and XML

6-22

15. In the Applications window, select the BPEL process file.

16. Click Source.

17. Note that the location you specified for the attachment is copied to an href attribute. The
href attribute is part of the variable of type attachment that was created in Step 12.

. . .
<copy>
 <from> '/scratch/sbandyop/tmp/out/dhqa_addr_att.xml'</from>
 <to> $Translate1_OutputVar_1/@href</to>
</copy>
. . .

18. In the Applications window, select the BPEL process WSDL file.

19. Click Source.

20. Note the attachment code added to the WSDL definitions section of the file and the href
attribute that is pointed to by the variable created in Step 12.

. . .
xmlns:attach="http://xmlns.oracle.com/DHQATranslateApp/DHQATranslateToAttach/
BPELProcess1/attachment"
. . .
. . .
. . .
 <element name="attachmentElement">
 <complexType>
 <attribute name="href" type="string"/>
 </complexType>
 </element>
. . .
. . .

Design is now complete.

Using Standalone SDO-based Variables
Standalone SDO-based variables are similar to ordinary BPEL XML-DOM-based variables.
The major difference is that the underlying data form is SDO-based, instead of DOM-based.
Therefore, SDO-based variables can use some SDO features such as Java API access, an
easier-to-use update API, and the change summary. However, SDO usage is also subject to
some restrictions that do not exist with XML-DOM-based variables. The most noticeable
restriction is that SDO only supports a small subset of XPath expressions.

How to Declare SDO-based Variables
The syntax for declaring an SDO-based variable is similar to that for declaring BPEL variables.
The following example provides details.

<variable name="deptVar_s" element="hrtypes:dept" />
<variable name="deptVar_v" element="hrtypes:dept" bpelx:sdoCapable="false" />

If you want to override the automatic detection, use the bpelx:sdoCapable="true|false"
switch. For example, variable deptVar_v described in the preceding sample is a regular DOM-
based variable. The following example shows an XSD sample:

<xsd:element name="dept" type="Dept"/>
 <xsd:complexType name="Dept"
 sdoJava:instanceClass="sdo.sample.service.types.Dept">

Chapter 6
Using Standalone SDO-based Variables

6-23

 <xsd:annotation>
 <xsd:appinfo source="Key"
 xmlns="http://xmlns.oracle.com/bc4j/service/metadata/">
 <key>
 <attribute>Deptno</attribute>
 </key>
 <fetchMode>minimal</fetchMode>
 </xsd:appinfo>
 </xsd:annotation>
 <xsd:sequence>
 <xsd:element name="Deptno" type="xsd:integer" minOccurs="0"/>
 <xsd:element name="Dname" type="xsd:string" minOccurs="0"
 nillable="true"/>
 <xsd:element name="Loc" type="xsd:string" minOccurs="0" nillable="true"/>
 <xsd:element name="Emp" type="Emp" minOccurs="0" maxOccurs="unbounded"
 nillable="true"/>
 </xsd:sequence>
 </xsd:complexType>

How to Convert from XML to SDO
Oracle BPEL Process Manager supports dual data forms: DOM and SDO. You can
interchange the usage of DOM-based and SDO-based variables within the same business
process, even within the same expression. The Oracle BPEL Process Manager data
framework automatically converts back and forth between DOM and SDO forms.

By using the entity variable XPath rewrite capabilities, Oracle BPEL Process Manager enables
some XPath features (for example, variable reference and function calls) that the basic SDO
specification does not support. However, there are other limitations on the XPath used with
SDO-based variables (for example, there is no support for and, or, and not).

The following example shows XML-to-SDO conversion:

<assign>
 <copy>
 <from>
 <ns0:dept xmlns:ns0="http://sdo.sample.service/types/"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <ns0:Deptno>10</ns0:Deptno>
 <ns0:Dname>ACCOUNTING</ns0:Dname>
 <ns0:Loc>NEW YORK</ns0:Loc>
 <ns0:Emp>
 <ns0:Empno>7782</ns0:Empno>
 <ns0:Ename>CLARK</ns0:Ename>
 <ns0:Job>MANAGER</ns0:Job>
 <ns0:Mgr>7839</ns0:Mgr>
 <ns0:Hiredate>1981-06-09</ns0:Hiredate>
 <ns0:Sal>2450</ns0:Sal>
 <ns0:Deptno>10</ns0:Deptno>
 </ns0:Emp>
 <ns0:Emp>
 <ns0:Empno>7839</ns0:Empno>
 <ns0:Ename>KING</ns0:Ename>
 <ns0:Job>PRESIDENT</ns0:Job>
 <ns0:Hiredate>1981-11-17</ns0:Hiredate>
 <ns0:Sal>5000</ns0:Sal>
 <ns0:Deptno>10</ns0:Deptno>
 </ns0:Emp>
 <ns0:Emp>
 <ns0:Empno>7934</ns0:Empno>
 <ns0:Ename>MILLER</ns0:Ename>

Chapter 6
Using Standalone SDO-based Variables

6-24

 <ns0:Job>CLERK</ns0:Job>
 <ns0:Mgr>7782</ns0:Mgr>
 <ns0:Hiredate>1982-01-23</ns0:Hiredate>
 <ns0:Sal>1300</ns0:Sal>
 <ns0:Deptno>10</ns0:Deptno>
 </ns0:Emp>
 </ns0:dept>
 </from>
 <to variable="deptVar_s" />
 </copy>
</assign>

The following example illustrates copying from an XPath expression of an SDO variable to a
DOM variable:

<assign>
 <!-- copy from an XPath expression of an SDO variable to DOM variable -->
 <copy>
 <from expression="$deptVar_s/hrtypes:Emp[2]" />
 <to variable="empVar_v" />
 </copy>
 <!-- copy from an XPath expression of an DOM variable to SDO variable -->
 <copy>
 <from expression="$deptVar_v/hrtypes:Emp[2]" />
 <to variable="empVar_s" />
 </copy>
 <!-- insert a DOM based data into an SDO variable -->
 <bpelx:insertAfter>
 <bpelx:from variable="empVar_v" />
 <bpelx:to variable="deptVar_s" query="hrtypes:Emp" />
 </bpelx:insertAfter>
 <!-- insert a SDO based data into an SDO variable at particular location,
 no XML conversion is needed -->
 <bpelx:insertBefore>
 <bpelx:from expression="$deptVar_s/hrtypes:Emp[hrtypes:Sal = 1300]" />
 <bpelx:to variable="deptVar_s" query="hrtypes:Emp[6]" />
 </bpelx:insertBefore>
</assign>

The following example shows SDO Data Removal:

<assign>
 <bpelx:remove>
 <bpelx:target variable="deptVar_s" query="hrtypes:Emp[2]" />
 </bpelx:remove>
</assign>

Note:

The bpelx:append operation is not supported for SDO-based variables for the
following reasons:

• The <copy> operation on an SDO-based variable has smart update capabilities
(for example, you do not have to perform a <bpelx:append> operation before the
<copy> operation).

• The SDO data object is metadata driven and does not generally support adding a
new property arbitrarily.

Chapter 6
Using Standalone SDO-based Variables

6-25

Initializing a Variable with Expression Constants or Literal XML
It is often useful to assign literal XML to a variable in BPEL (for example, to initialize a variable
before copying dynamic data into a specific field within the XML data content for the variable).
This is also useful for testing purposes when you want to hard code XML data values into the
process. You assign literal XML by dragging a literal icon to a target node on the Copy Rules
tab of the assign activity.

For more information about assigning literal XML in an assign activity, see Assign Activity.

How To Assign a Literal XML Element
The following example assigns a literal result element to the payload part of the output
variable:

<assign>
 <!-- copy from literal xml to the variable -->
 <copy>
 <from>
 <result xmlns="http://samples.otn.com">
 <name/>
 <symbol/>
 <price>12.3</price>
 <quantity>0</quantity>
 <approved/>
 <message/>
 </result>
 </from>
 <to variable="output" part="payload"/>
 </copy>
</assign>

Copying Between Variables
When you copy between variables, you copy directly from one variable (or part) to another
variable of a compatible type, without needing to specify a particular field within either variable.
In other words, you do not need to specify an XPath query.

You perform variable copying in the Copy Rules tab of the Edit Assign dialog, as shown in
Figure 6-25.

Chapter 6
Initializing a Variable with Expression Constants or Literal XML

6-26

Figure 6-25 Copy Rules Tab for Variable Assignment

For more information about the Copy Rules tab, see Manipulating XML Data with bpelx
Extensions and Assign Activity.

How to Copy Between Variables
The following example shows two assignments being performed, first copying between two
variables of the same type and then copying a variable part to another variable with the same
type as that part.

<assign>
 <copy>
 <from variable="c1"/>
 <to variable="c2"/>
 </copy>
 <copy>
 <from variable="c1" part = "address"/>
 <to variable="c3"/>
 </copy>
</assign>

The BPEL file defines the variables, as shown in the following example:

<variable name="c1" messageType="x:person"/>
<variable name="c2" messageType="x:person"/>
<variable name="c3" element="y:address"/>

The WSDL file defines the person message type, as shown in the following example:

<message name="person" xmlns:x="http://tempuri.org/bpws/example">
 <part name="full-name" type="xsd:string"/>

Chapter 6
Copying Between Variables

6-27

 <part name="address" element="x:address"/>
</message>

For more information about this code example, see Section 9.3.2 of the Business Process
Execution Language for Web Services Specification. For BPEL 2.0, see Section 8.4.4 of Web
Services Business Process Execution Language Specification Version 2.0 for a similar
example.

For more information, see Assign Activity.

How to Initialize Variables with an Inline from-spec in BPEL 2.0
A variable can optionally be initialized by using an inline from-spec. Click the Initialize tab in
the Create Variable dialog in a BPEL 2.0 project to create this type of variable. Figure 6-26
provides details.

Figure 6-26 Initialize Tab of Create Variable Dialog

Inline variable initializations are conceptually designed as a virtual sequence activity that
includes a series of virtual assign activities, one for each variable being initialized, in the order
in which they appear in the variable declarations. Each virtual assign activity contains a single
virtual copy operation whose from-spec is as given in the variable initialization. The to-spec
points to the variable being created. The following example provides details.

<variables>
 <variable name="tmp" element="tns:output">
 <from>
 <literal>
 <output xmlns="http://samples.otn.com/bpel2.0/ch8.1">
 <value>1000</value>
 </output>
 </literal>
 </from>
 </variable>
</variables>

For more information, see section 8.1 of Web Services Business Process Execution Language
Specification Version 2.0.

Chapter 6
Copying Between Variables

6-28

Copy Between JSON and XML Variables in a BPEL Process
The Oracle JDeveloper BPEL designer includes a series of activities that can be added to a
BPEL process through drag-and-drop. One such activity is the BPEL assign activity, which
provides a method for data manipulation, and enables you to transfer information between
variables (XML or JSON), expressions, endpoints, and other elements.

In Oracle JDeveloper design time, while configuring a REST binding in a BPEL composite, you
must configure the input payload before you invoke the endpoint. You can manipulate the
payload variables through the BPEL Assign Activity. See Assign Activity.

From Oracle JDeveloper 14.1.2.0.0 and later versions, you can render a JSON variable as a
tree in design time and visually map the child elements before invoking an endpoint.

Create a JSON Variable
1. Go to the Structure window of the BPEL process service component in Oracle JDeveloper.

2. Right-click the Variables folder and select Expand All Child Nodes.

3. In the second Variables folder, right-click and choose Create Variable.

The Create Variable dialog appears.

4. In the Name field, enter the name of the variable.

5. Select JSON as the type of the variable and click the search icon.

The Type Chooser dialog appears.

Chapter 6
Copy Between JSON and XML Variables in a BPEL Process

6-29

6. Select Project JSON Schemas, and then click Import JSON Schema.

7. Select and upload the JSON schema file from your local drive.

8. The sample variable is uploaded to the project locally in the JSONs folder.

9. In the Create Variable dialog, click Apply and then click OK.

Render and Map Individual JSON Elements
The assign activity provides a method for data manipulation, such as copying the contents of
one variable to another. See Assign Activity.

When you create a copy rule between a JSON variable and a XML variable, the JSON
variables are rendered as a tree, enabling you to map each individual element of the JSON
variable.

Chapter 6
Copy Between JSON and XML Variables in a BPEL Process

6-30

Moving and Copying Variables in the Structure Window
You can move and copy variables to and from scope activities in the Structure Window of
Oracle JDeveloper.

To Move Variables in the Structure Window:
1. In the Structure window, select the variable to move to a scope activity. Figure 6-27

provides details.

Figure 6-27 Variable to Move in the Structure Window

2. Drag the variable to the Variables folder of the scope activity.

The variable is displayed in the Variables folder of the scope activity, as shown in
Figure 6-28.

Figure 6-28 Variable Moved to the Scope Activity in the Structure Window

Chapter 6
Moving and Copying Variables in the Structure Window

6-31

3. In the BPEL process, click the Variables icon of the scope activity.

The variable you moved is displayed, as shown in Figure 6-29.

Figure 6-29 Moved Variable in Variables Dialog of the Scope Activity

To Copy Variables in the Structure Window:
1. In the Structure window, select the variable to move to the scope activity.

2. Hold down the Ctrl key.

3. Drag the variable to the Variables folder of the scope activity.

The variable is displayed in both Variables folders, as shown in Figure 6-30.

Figure 6-30 Variable Copied to the Scope Activity in the Structure Window

Accessing Fields in Element and Message Type Variables
Given the types of definitions present in most WSDL and XSD files, you must go down to the
level of copying from or to a field within part of a variable based on the element and message
type. This in turn uses XML schema complex types. To perform this action, you specify an
XPath query in the from or to clause of the Copy Rules tab of the assign activity.

For more information about the Copy Rules tab, see Manipulating XML Data with bpelx
Extensions and Assign Activity.

How to Access Fields Within Element-Based and Message Type-Based
Variables

In the following example, the ssn field is copied from the CreditFlow process's input message
into the ssn field of the credit rating service's input message.

Chapter 6
Accessing Fields in Element and Message Type Variables

6-32

<assign>
 <copy>
 <from variable="input" part="payload"
 query="/tns:CreditFlowRequest/tns:ssn"/>
 <to variable="crInput" part="payload" query="/tns:ssn"/>
 </copy>
</assign>

The following example shows how the BPEL file defines message type-based variables
involved in this assignment:

<variable name="input" messageType="tns:CreditFlowRequestMessage"/>
<variable name="crInput"
 messageType="services:CreditRatingServiceRequestMessage"/>

The crInput variable is used as an input message to a credit rating service. Its message type,
CreditFlowRequestMessage, is defined in the CreditFlowService.wsdl file, as shown in the
following example:

<message name="CreditFlowRequestMessage">
<part name="payload" element="tns:CreditFlowRequest"/>
</message>

CreditFlowRequest is defined with a field named ssn. The message type
CreditRatingServiceRequestMessage is defined in the CreditRatingService.wsdl file, as
shown in the following example:

<message name="CreditRatingServiceRequestMessage">
 <part name="payload" element="tns:ssn"/>
</message>

The following example shows the BPEL 2.0 syntax for how the BPEL file defines message
type-based variables involved in the assignment in the first assignment example. Note that /
tns:CreditFlowRequest is not required.

<copy>
 <from>$input.payload/tns:ssn</from>
 <to>$crInput.payload</to>
</copy>

A BPEL process can also use element-based variables. The following example shows how to
use element-based variables in BPEL 1.1. The autoloan field is copied from the loan
application process's input message into the customer field of a web service's input message.

 <assign>
 <copy>
 <from variable="input" part="payload"
 query="/tns:invalidLoanApplication/autoloan:
 application/autoloan:customer"/>
 <to variable="customer"/>
 </copy>
</assign>

The following example shows how to use element-based variables in BPEL 2.0.

<assign>
 <copy>
 <from>$input.payload/autoloan:application/autoloan:customer</from>
 <to>$customer</to>
 </copy>
</assign>

Chapter 6
Accessing Fields in Element and Message Type Variables

6-33

The following example shows how the BPEL file defines element-based variables involved in
an assignment:

 <variable name="customer" element="tns:customerProfile"/>

Assigning Numeric Values
You can assign numeric values in XPath expressions.

How to Assign Numeric Values
The following example shows how to assign an XPath expression with the integer value of 100.

<assign>
 <!-- copy from integer expression to the variable -->
 <copy>
 <from expression="100"/>
 <to variable="output" part="payload" query="/p:result/p:quantity"/>
 </copy>
</assign>

Using Mathematical Calculations with XPath Standards
You can use simple mathematical expressions, such as the one in the following section, which
increment a numeric value.

How To Use Mathematical Calculations with XPath Standards
In the following example, the BPEL XPath function getVariableData retrieves the value being
incremented. The arguments to getVariableData are equivalent to the variable, part, and
query attributes of the from clause (including the last two arguments, which are optional).

<assign>
 <copy>
 <from expression="bpws:getVariableData('input', 'payload',
 '/p:value') + 1"/>
 <to variable="output" part="payload" query="/p:result"/>
 </copy>
</assign>

You can also use $variable syntax in BPEL 1.1, as shown in the following example:

<assign>
 <copy>
 <from expression="$input.payload + 1"/>
 <to variable="output" part="payload" query="/p:result"/>
 </copy>
</assign>

The following example shows how to use $variable syntax in BPEL 2.0.

<assign>
 <copy>
 <from>$input.payload + 1</from>
 <to>$output.payload</to>
 </copy>
</assign>

Chapter 6
Assigning Numeric Values

6-34

Assigning String Literals
You can assign string literals to a variable in the Copy Rules tab of the assign activity.

For more information about the assign activity, see Manipulating XML Data with bpelx
Extensions and Assign Activity.

How to Assign String Literals
The code in the following example copies a BPEL 1.1 expression evaluating from the string
literal 'GE' to the symbol field within the indicated variable part. (Note the use of the double
and single quotes.)

<assign>
 <!-- copy from string expression to the variable -->
 <copy>
 <from expression="'GE'"/>
 <to variable="output" part="payload" query="/p:result/p:symbol"/>
 </copy>
</assign>

The following example shows how to perform this expression in BPEL 2.0.

<assign>
 <copy>
 <from>'GE'</from>
 <to>$output.payload/p:symbol</from>
 </copy>
</assign>

For more information, see Assign Activity.

Concatenating Strings
Rather than copying the value of one string variable (or variable part or field) to another, you
can first perform string manipulation, such as concatenating several strings.

How to Concatenate Strings
The concatenation is accomplished with the core XPath function named concat. In addition,
the variable value involved in the concatenation is retrieved with the BPEL XPath function
getVariableData. In the following example, getVariableData fetches the value of the name
field from the input variable's payload part. The string literal 'Hello ' is then concatenated to
the beginning of this value.

<assign>
 <!-- copy from XPath expression to the variable -->
 <copy>
 <from expression="concat('Hello ',
 bpws:getVariableData('input', 'payload', '/p:name'))"/>
 <to variable="output" part="payload" query="/p:result/p:message"/>
 </copy>
</assign>

Other string manipulation functions available in XPath are listed in section 4.2 of the XML Path
Language (XPath) Specification.

Chapter 6
Assigning String Literals

6-35

Assigning Boolean Values
You can assign boolean values with the XPath boolean function.

How to Assign Boolean Values
The following example provides an example of assigning boolean values in BPEL 1.1. The
XPath expression in the from clause is a call to XPath's boolean function true, and the
specified approved field is set to true. The function false is also available.

<assign>
 <!-- copy from boolean expression function to the variable -->
 <copy>
 <from expression="true()"/>
 <to variable="output" part="payload" query="/result/approved"/>
 </copy>
</assign>

The following example provides an example of assigning boolean values in BPEL 2.0.

<assign>
 <copy>
 <from>true()</from>
 <to>$output.payload/approved</to>
 </copy>
</assign>

The XPath specification recommends that you use the "true()" and "false()" functions as a
method for returning boolean constant values.

If you instead use "boolean(true)" or "boolean(false)", the true or false inside the
boolean function is interpreted as a relative element step, and not as any true or false
constant. It attempts to select a child node named true under the current XPath context node.
In most cases, the true node does not exist. Therefore, an empty result node set is returned
and the boolean() function in XPath 1.0 converts an empty node set into a false result. This
result can be potentially confusing.

Assigning a Date or Time
You can assign the current value of a date or time field by using the Oracle BPEL XPath
function getCurrentDate, getCurrentTime, or getCurrentDateTime, respectively. In addition, if
you have a date-time value in the standard XSD format, you can convert it to characters more
suitable for output by calling the Oracle BPEL XPath function formatDate.

For related information, see section 9.1.2 of the Business Process Execution Language for
Web Services Specification and section 8.3.2 of the Web Services Business Process
Execution Language Specification Version 2.0.

For information about XPath functions and the Expression Builder, see XPath Extension
Functions.

How to Assign a Date or Time
The following example shows an example that uses the function getCurrentDate in BPEL 1.1.

Chapter 6
Assigning Boolean Values

6-36

<!-- execute the XPath extension function getCurrentDate() -->
<assign>
 <copy>
 <from expression="xpath20:getCurrentDate()"/>
 <to variable="output" part="payload"
 query="ns1:invoice/invoiceDate"/>
 </copy>
</assign>

The following example shows an example that uses the function getCurrentDate in BPEL 2.0.

<assign>
 <copy>
 <from>xpath20:getCurrentDate()</from>
 <to>$output.payload/invoiceDate</to>
 </copy>
</assign>

In the following example, the formatDate function converts the date-time value provided in
XSD format to the string 'Jun 10, 2005' (and assigns it to the string field formattedDate).

<!-- execute the XPath extension function formatDate() -->
<assign>
 <copy>
 <from expression="ora:formatDate('2005-06-10T15:56:00',
 'MMM dd, yyyy')"/>
 <to variable="output" part="payload"
 query="ns1:invoice/formattedDate"/>
 </copy>
</assign>

The following example shows how the formatDate function works in BPEL 2.0.

<assign>
 <copy>
 <from>ora:formatDate('2005-06-10T15:56:00','MMM dd, yyyy')</from>
 <to>$output.payload/formattedDate</to>
 </copy>
</assign>

Manipulating Attributes
You can copy to or from something defined as an XML attribute. An at sign (@) in XPath query
syntax refers to an attribute instead of a child element.

How to Manipulate Attributes
The code in the following example fetches and copies the custId attribute from this XML data:

 <invalidLoanApplication xmlns="http://samples.otn.com">
 <application xmlns = "http://samples.otn.com/XPath/autoloan">
 <customer custId = "111" >
 <name>
 Mike Olive
 </name>
 ...
 </customer>
 ...
 </application>
 </invalidLoanApplication>

Chapter 6
Manipulating Attributes

6-37

The BPEL 1.1 code in the following example selects the custId attribute of the customer field
and assigns it to the variable custId:

<assign>
 <!-- get the custId attribute and assign to variable custId -->
 <copy>
 <from variable="input" part="payload"
 query="/tns:invalidLoanApplication/autoloan:application
 /autoloan:customer/@custId"/>
 <to variable="custId"/>
 </copy>
</assign>

The following example shows the equivalent syntax in BPEL 2.0 for selecting the custId
attribute of the customer field and assigning it to the variable custId:

<assign>
<copy>
<from>$input.payload/autoloan:application/autoloan:customer/@custId</from>
<to>$custId</to>
</copy>
</assign>

The namespace prefixes in this example are not integral to the example.The WSDL file defines
a customer to have a type in which custId is defined as an attribute, as shown in the following
example:

<complexType name="CustomerProfileType">
 <sequence>
 <element name="name" type="string"/>
 ...
 </sequence>
 <attribute name="custId" type="string"/>
</complexType>

Manipulating XML Data with bpelx Extensions
You can perform various operations on XML data in assign activities. The bpelx extension
types described in this section provide this functionality. In Oracle BPEL Designer, you can add
bpelx extension types at the bottom of the Copy Rules tab of an assign dialog. After creating
a copy rule, you select it and then choose a bpelx extension type from the dropdown list in
BPEL 1.1 or the context menu in BPEL 2.0. This changes the copy rule to the selected
extension type.

In BPEL 1.1, you select an extension type from the dropdown list, as shown in Figure 6-31.

Chapter 6
Manipulating XML Data with bpelx Extensions

6-38

Figure 6-31 Copy Rule Converted to bpelx Extension in BPEL 1.1

In BPEL 2.0, you select an extension type by right-clicking the copy rule, selecting Change
rule type, and then selecting the extension type, as shown in Figure 6-32.

Figure 6-32 Copy Rule Converted to bpelx Extension in BPEL 2.0

For more information, see the online Help for this dialog and Assign Activity.

Chapter 6
Manipulating XML Data with bpelx Extensions

6-39

How to Use bpelx:append
The bpelx:append extension in an assign activity enables a BPEL process service component
to append the contents of one variable, expression, or XML fragment to another variable's
contents. To use this extension, perform one of the following steps at the bottom of the Copy
Rules tab:

• For BPEL 1.1, select a copy rule, then select Append from the dropdown list, as shown in
Figure 6-31.

• For BPEL 2.0, right-click a copy rule, select Change rule type, and then select Append,
as shown in Figure 6-32.

Note:

The bpelx:append extension is not supported with SDO variables and causes an
error.

bpelx:append in BPEL 1.1
The following provides an example of bpelx:append in a BPEL project that supports BPEL
version 1.1.

<bpel:assign>
 <bpelx:append>
 <bpelx:from ... />
 <bpelx:to ... />
 </bpelx:append>
</bpel:assign>

The from-spec query within bpelx:append yields zero or more nodes. The node list is
appended as child nodes to the target node specified by the to-spec query.

The to-spec query must yield one single L-Value element node. Otherwise, a
bpel:selectionFailure fault is generated. The to-spec query cannot refer to a partner link.

The following example consolidates multiple bills of material into one single bill of material
(BOM) by appending multiple b:parts for one BOM to b:parts of the consolidated BOM.

<bpel:assign>
 <bpelx:append>
 <bpelx:from variable="billOfMaterialVar"
 query="/b:bom/b:parts/b:part" />
 <bpelx:to variable="consolidatedBillOfMaterialVar"
 query="/b:bom/b:parts" />
 </bpelx:append>
</bpel:assign>

bpelx:append in BPEL 2.0
The following provides an example of bpelx:append syntax in a BPEL project that supports
BPEL version 2.0. In BPEL 2.0, the functionality is the same as described in bpelx:append in
BPEL 1.1, but the syntax is slightly different.

Chapter 6
Manipulating XML Data with bpelx Extensions

6-40

<bpel:assign>
 <bpelx:append>
 <bpelx:from>$billOfMaterialVar/b:parts/b:part</bpelx:from>
 <bpelx:to>$consolidatedBillOfMaterialVar/b:parts</bpelx:from>
 </bpelx:append>
</bpel:assign>

How to Use bpelx:insertBefore

Note:

The bpelx:insertBefore extension works with SDO variables, but the target must
be the variable attribute into which the copied data must go.

The bpelx:insertBefore extension in an assign activity enables a BPEL process service
component to insert the contents of one variable, expression, or XML fragment before another
variable's contents. To use this extension, perform one of the following steps at the bottom of
the Copy Rules tab:

• For BPEL 1.1, select a copy rule, then select InsertBefore from the dropdown list, as
shown in Figure 6-31.

• For BPEL 2.0, right-click a copy rule, select Change rule type, and then select
InsertBefore, as shown in Figure 6-32.

bpelx:insertBefore in BPEL 1.1
The following provides an example of bpelx:insertBefore in a BPEL project that supports
BPEL version 1.1.

<bpel:assign>
 <bpelx:insertBefore>
 <bpelx:from ... />
 <bpelx:to ... />
 </bpelx:insertBefore>
</bpel:assign>

The from-spec query within bpelx:insertBefore yields zero or more nodes. The node list is
appended as child nodes to the target node specified by the to-spec query.

The to-spec query of the insertBefore operation points to one or more single L-Value nodes.
If multiple nodes are returned, the first node is used as the reference node. The reference
node must be an element node. The parent of the reference node must also be an element
node. Otherwise, a bpel:selectionFailure fault is generated. The node list generated by the
from-spec query selection is inserted before the reference node. The to-spec query cannot
refer to a partner link.

The following example shows the syntax before the execution of <insertBefore>. The value of
addrVar is:

<a:usAddress>
 <a:state>CA</a:state>
 <a:zipcode>94065</a:zipcode>
</a:usAddress>

The following example shows the syntax after the execution:

Chapter 6
Manipulating XML Data with bpelx Extensions

6-41

<bpel:assign>
 <bpelx:insertBefore>
 <bpelx:from>
 <a:city>Redwood Shore></a:city>
 </bpelx:from>
 <bpelx:to "addrVar" query="/a:usAddress/a:state" />
 </bpelx:insertBefore>
</bpel:assign>

The following example shows the value of addrVar:

<a:usAddress>
 <a:city>Redwood Shore</a:city>
 <a:state>CA</a:state>
 <a:zipcode>94065</a:zipcode>
</a:usAddress>

bpelx:insertBefore in BPEL 2.0
The following provides an example of bpelx:insertBefore syntax in a BPEL project that
supports BPEL version 2.0. In BPEL 2.0, the functionality is the same as described in
bpelx:insertBefore in BPEL 1.1, but the syntax is slightly different. An
extensionAssignOperation element wraps the bpelx:insertBefore extension.

<assign>
 <extensionAssignOperation>
 <bpelx:insertBefore>
 <bpelx:from>
 <bpelx:literal>
 <a:city>Redwood Shore></a:city>
 </bpelx:literal>
 </bpelx:from>
 <bpelx:to>$addrVar/a:state</bpelx:to>
 </bpelx:insertBefore>
 </extensionAssignOperation>
</assign>

How to Use bpelx:insertAfter

Note:

The bpelx:insertAfter extension works with SDO variables, but the target must be
the variable attribute into which the copied data must go.

The bpelx:insertAfter extension in an assign activity enables a BPEL process service
component to insert the contents of one variable, expression, or XML fragment after another
variable's contents. To use this extension, perform one of the following steps at the bottom of
the Copy Rules tab:

• For BPEL 1.1, select a copy rule, then select InsertAfter from the dropdown list, as shown
in Figure 6-31.

• For BPEL 2.0, right-click a copy rule, select Change rule type, and then select
InsertAfter, as shown in Figure 6-32.

Chapter 6
Manipulating XML Data with bpelx Extensions

6-42

bpelx:insertAfter in BPEL 1.1
The following provides an example of bpelx:insertAfter in a BPEL project that supports
BPEL version 1.1.

<bpel:assign>
 <bpelx:insertAfter>
 <bpelx:from ... />
 <bpelx:to ... />
 </bpelx:insertAfter>
</bpel:assign>

This operation is similar to the functionality described for How to Use bpelx:insertBefore,
except for the following:

• If multiple L-Value nodes are returned by the to-spec query, the last node is used as the
reference node.

• Instead of inserting nodes before the reference node, the source nodes are inserted after
the reference node.

This operation can also be considered a macro of conditional-switch + (append or
insertBefore).

The following example shows the syntax before the execution of <insertAfter>. The value of
addrVar is:

<a:usAddress>
 <a:addressLine>500 Oracle Parkway</a:addressLine>
 <a:state>CA</a:state>
 <a:zipcode>94065</a:zipcode>
</a:usAddress>

The following example shows the syntax after the execution:

<bpel:assign>
 <bpelx:insertAfter>
 <bpelx:from>
 <a:addressLine>Mailstop 1op6</a:addressLine>
 </bpelx:from>
 <bpelx:to "addrVar" query="/a:usAddress/a:addressLine[1]" />
 </bpelx:insertAfter>
</bpel:assign>

The following example shows the value of addrVar:

<a:usAddress>
 <a:addressLine>500 Oracle Parkway</a:addressLine>
 <a:addressLine>Mailstop 1op6</a:addressLine>
 <a:state>CA</a:state>
 <a:zipcode>94065</a:zipcode>
</a:usAddress>

The from-spec query within bpelx:insertAfter yields zero or more nodes. The node list is
appended as child nodes to the target node specified by the to-spec query.

bpelx:insertAfter in BPEL 2.0
The following provides an example of bpelx:insertAfter syntax in a BPEL project that
supports BPEL version 2.0. In BPEL 2.0, the functionality is the same as described in

Chapter 6
Manipulating XML Data with bpelx Extensions

6-43

bpelx:insertAfter in BPEL 1.1, but the syntax is slightly different. An
extensionAssignOperation element wraps the bpelx:insertAfter extension.

<assign>
 <extensionAssignOperation>
 <bpelx:insertAfter>
 <bpelx:from>
 <bpelx:literal>
 <a:addressLine>Mailstop 1op6</a:addressLine>
 </bpelx:literal>
 </bpelx:from>
<bpelx:to>$addrVar/a:addressLine[1]</bpelx:to>
 </bpelx:insertAfter>
 </extensionAssignOperation>
</assign>

How to Use bpelx:remove
The bpelx:remove extension in an assign activity enables a BPEL process service component
to remove a variable. In Oracle BPEL Designer, you add the bpelx:remove extension by
dragging the remove icon in the upper right corner of the Copy Rules tab to the target variable
you want to remove, and releasing the cursor. You can also drag this icon to the center canvas
to invoke a dialog, specify the rule, save and close the dialog, and then drag the icon to the
target node. Figure 6-33 provides details.

Figure 6-33 Remove Icon in Copy Rules Tab of an Assign Activity

After releasing the cursor, the bpelx:remove extension is applied to the target variable.
Figure 6-34 provides details.

Figure 6-34 bpelx:remove Extension Applied to a Target Variable

bpelx:remove in BPEL 1.1
The following provides an example of bpelx:remove in a BPEL project that supports BPEL
version 1.1.

<bpel:assign>
 <bpelx:remove>

Chapter 6
Manipulating XML Data with bpelx Extensions

6-44

 <bpelx:target variable="ncname" part="ncname"? query="xpath_str" />
 </bpelx:remove>
</bpel:assign>

Node removal specified by the XPath expression is supported. Nodes specified by the XPath
expression can be multiple, but must be L-Values. Nodes being removed from this parent can
be text nodes, attribute nodes, and element nodes.

The XPath expression can return one or more nodes. If the XPath expression returns zero
nodes, then a bpel:selectionFailure fault is generated.

The syntax of bpelx:target is similar to and a subset of to-spec for the copy operation.

The following example shows addrVar with the following value:

<a:usAddress>
 <a:addressLine>500 Oracle Parkway</a:addressLine>
 <a:addressLine>Mailstop 1op6</a:addressLine>
 <a:state>CA</a:state>
 <a:zipcode>94065</a:zipcode>
</a:usAddress>

After executing the syntax shown in the BPEL process service component file, the second
address line of Mailstop is removed:

<bpel:assign>
 <bpelx:remove>
 <target variable="addrVar"
 query="/a:usAddress/a:addressLine[2]" />
 </bpelx:remove>
</bpel:assign>

After executing the syntax shown in the BPEL process service component file, both address
lines are removed:

<bpel:assign>
 <bpelx:remove>
 <target variable="addrVar"
 query="/a:usAddress/a:addressLine" />
 </bpelx:remove>
</bpel:assign>

bpelx:remove in BPEL 2.0
The following provides an example of bpelx:remove syntax in a BPEL project that supports
BPEL version 2.0. In BPEL 2.0, the functionality is the same as described in bpelx:remove in
BPEL 1.1, but the syntax is slightly different. An extensionAssignOperation element wraps
the bpelx:remove.

<assign>
 <extensionAssignOperation>
 <bpelx:remove>
 <bpelx:target>$ncname.ncname/xpath_str</bpelx:target>
 </bpelx:remove>
 </extensionAssignOperation>
</assign>

Chapter 6
Manipulating XML Data with bpelx Extensions

6-45

How to Use bpelx:rename and XSD Type Casting
The bpelx:rename extension in an assign activity enables a BPEL process service component
to rename an element through use of XSD type casting. In Oracle BPEL Designer, you add the
bpelx:rename extension by dragging the rename icon in the upper right corner of the Copy
Rules tab to the target variable you want to rename, and releasing the cursor. The rename
icon displays to the right of the remove icon shown in Figure 6-33. After releasing the cursor,
the Rename dialog is displayed for renaming the target variable. You can also drag this icon to
the center canvas to invoke this dialog, specify the name, save and close the dialog, and then
drag the icon to the target node.

bpelx:rename in BPEL 1.1
The following provides an example of bpelx:rename in a BPEL project that supports BPEL
version 1.1.

<bpel:assign>
 <bpelx:rename elementTo="QName1"? typeCastTo="QName2"?>
 <bpelx:target variable="ncname" part="ncname"? query="xpath_str" />
 </bpelx:rename>
</bpel:assign>

The syntax of bpelx:target is similar to and a subset of to-spec for the copy operation. The
target must return a list of element nodes. Otherwise, a bpel:selectionFailure fault is
generated. The element nodes specified in the from-spec are renamed to the QName specified
by the elementTo attribute. The xsi:type attribute is added to those element nodes to cast
those elements to the QName type specified by the typeCastTo attribute.

Assume you have the employee list shown in the following example:

<e:empList>
 <e:emp>
 <e:firstName>John</e:firstName><e:lastName>Dole</e:lastName>
 <e:emp>
 <e:emp xsi:type="e:ManagerType">
 <e:firstName>Jane</e:firstName><e:lastName>Dole</e:lastName>
 <e:approvalLimit>3000</e:approvalLimit>
 <e:managing />
 <e:emp>
 <e:emp>
 <e:firstName>Peter</e:firstName><e:lastName>Smith</e:lastName>
 <e:emp>
 <e:emp>
 <e:firstName>Mary</e:firstName><e:lastName>Smith</e:lastName>
 <e:emp>
</e:empList>

Promotion changes are now applied to Peter Smith in the employee list, as in the following
example:

<bpel:assign>
 <bpelx:rename typeCastTo="e:ManagerType">
 <bpelx:target variable="empListVar"
 query="/e:empList/e:emp[./e:firstName='Peter' and
 ./e:lastName='Smith'" />
 </bpelx:rename>
</bpel:assign>

Chapter 6
Manipulating XML Data with bpelx Extensions

6-46

After executing the above casting (renaming), the data looks as shown in the following
example with xsi:type info added to Peter Smith:

<e:empList>
 <e:emp>
 <e:firstName>John</e:firstName><e:lastName>Dole</e:lastName>
 <e:emp>
 <e:emp xsi:type="e:ManagerType">
 <e:firstName>Jane</e:firstName><e:lastName>Dole</e:lastName>
 <e:approvalLimit>3000</e:approvalLimit>
 <e:managing />
 <e:emp>
 <e:emp xsi:type="e:ManagerType">
 <e:firstName>Peter</e:firstName><e:lastName>Smith</e:lastName>
 <e:emp>
 <e:emp>
 <e:firstName>Mary</e:firstName><e:lastName>Smith</e:lastName>
 <e:emp>
</e:empList>

The employee data of Peter Smith is now invalid, because <approvalLimit> and <managing>
are missing. Therefore, <append> is used to add that information. The following provides an
example.

<bpel:assign>
 <bpelx:rename typeCastTo="e:ManagerType">
 <bpelx:target variable="empListVar"
 query="/e:empList/e:emp[./e:firstName='Peter' and
 ./e:lastName='Smith'" />
 </bpelx:rename>
 <bpelx:append>
 <bpelx:from>
 <e:approvalLimit>2500</e:approvalLimit>
 <e:managing />
 </bpelx:from>
 <bpelx:to variable="empListVar"
 query="/e:empList/e:emp[./e:firstName='Peter' and
 ./e:lastName='Smith'" />
 </bpelx:append>
</bpel:assign>

With the execution of both rename and append, the corresponding data looks as shown in the
following example:

<e:emp xsi:type="e:ManagerType">
 <e:firstName>Peter</e:firstName><e:lastName>Smith</e:lastName>
 <e:approvalLimit>2500</e:approvalLimit>
 <e:managing />
<e:emp>

bpelx:rename in BPEL 2.0
The following provides an example of bpelx:rename syntax in a BPEL project that supports
BPEL version 2.0. In BPEL 2.0, the functionality is the same as described in bpelx:rename in
BPEL 1.1, but the syntax is slightly different. An extensionAssignOperation element wraps
the bpelx:rename operation.

 <bpel:assign>
 <extensionAssignOperation>
 <bpelx:rename elementTo="QName1"? typeCastTo="QName2"?>
 <bpelx:target>$ncname[.ncname][/xpath_str]</bpelx:target>

Chapter 6
Manipulating XML Data with bpelx Extensions

6-47

 </bpelx:rename>
 </extensionAssignOperation>
</bpel:assign>

How to Use bpelx:copyList
The bpelx:copyList extension in an assign activity enables a BPEL process service
component to perform a copyList operation of the contents of one variable, expression, or
XML fragment to another variable. To use this extension, perform one of the following steps at
the bottom of the Copy Rules tab:

• For BPEL 1.1, select a copy rule, then select CopyList from the dropdown list, as shown in
Figure 6-31.

• For BPEL 2.0, right-click a copy rule, select Change rule type, and then select CopyList,
as shown in Figure 6-32.

bpelx:copyList in BPEL 1.1
The following provides an example of bpelx:copyList in a BPEL project that supports BPEL
version 1.1.

<bpel:assign>
 <bpelx:copyList>
 <bpelx:from ... />
 <bpelx:to ... />
 </bpelx:copyList>
</bpel:assign>

The from-spec query can yield a list of either all attribute nodes or all element nodes. The to-
spec query can yield a list of L-value nodes: either all attribute nodes or all element nodes.

All the element nodes returned by the to-spec query must have the same parent element. If
the to-spec query returns a list of element nodes, all element nodes must be contiguous.

If the from-spec query returns attribute nodes, then the to-spec query must return attribute
nodes. Likewise, if the from-spec query returns element nodes, then the to-spec query must
return element nodes. Otherwise, a bpws:mismatchedAssignmentFailure fault is thrown.

The from-spec query can return zero nodes, while the to-spec query must return at least one
node. If the from-spec query returns zero nodes, the effect of the copyList operation is similar
to the remove operation.

The copyList operation provides the following features:

• Removes all the nodes pointed to by the to-spec query.

• If the to-spec query returns a list of element nodes and there are leftover child nodes after
removal of those nodes, the nodes returned by the from-spec query are inserted before
the next sibling of the last element specified by the to-spec query. If there are no leftover
child nodes, an append operation is performed.

• If the to-spec query returns a list of attribute nodes, those attributes are removed from the
parent element. The attributes returned by the from-spec query are then appended to the
parent element.

For example, assume a schema is defined as shown below:

<schema attributeFormDefault="unqualified"
 elementFormDefault="qualified"

Chapter 6
Manipulating XML Data with bpelx Extensions

6-48

 targetNamespace="http://xmlns.oracle.com/Event_jws/Event/EventTest"
 xmlns="http://www.w3.org/2001/XMLSchema">
 <element name="process">
 <complexType>
 <sequence>
 <element name="payload" type="string"
 maxOccurs="unbounded"/>
 </sequence>
 </complexType>
 </element>
 <element name="processResponse">
 <complexType>
 <sequence>
 <element name="payload" type="string"
 maxOccurs="unbounded"/>
 </sequence>
 </complexType>
 </element>
</schema>

The from variable contains the content shown in the following example:

<ns1:process xmlns:ns1="http://xmlns.oracle.com/Event_jws/Event/EventTest">
 <ns1: payload >a</ns1: payload >
 <ns1: payload >b</ns1: payload >
</ns1:process>

The to variable contains the content shown in the following example:

<ns1:processResponse xmlns:ns1="http://xmlns.oracle.com/Event_
 jws/Event/EventTest">
 <ns1: payload >c</ns1: payload >
</ns1:process>

The bpelx:copyList operation looks as shown in the following example:

<assign>
 <bpelx:copyList>
 <bpelx:from variable="inputVariable" part="payload"
 query="/client:process/client:payload"/>
 <bpelx:to variable="outputVariable" part="payload"
 query="/client:processResponse/client:payload"/>
 </bpelx:copyList>
</assign>

This defines the to variable as shown in the following example:

<ns1:processResponse xmlns:ns1="http://xmlns.oracle.com/Event_
 jws/Event/EventTest">
 <ns1: payload >a</ns1: payload >
 <ns1: payload >b</ns1: payload >
</ns1:process>

bpelx:copyList in BPEL 2.0
The following provides an example of bpelx:copyList syntax in a BPEL project that supports
BPEL version 2.0. In BPEL 2.0, the functionality is the same as described in bpelx:copyList in
BPEL 1.1, but the syntax is slightly different. An extensionAssignOperation element wraps
the bpelx:copyList extension.

<assign>
 <extensionAssignOperation>

Chapter 6
Manipulating XML Data with bpelx Extensions

6-49

 <bpelx:copyList>
 <bpelx:from>$inputVariable.payload/client:payload</bpelx:from>
 <bpelx:to>$outputVariable.payload/client:payload</bpelx:to>
 </bpelx:copyList>
 </extensionAssignOperation>
</assign>

How to Use Assign Extension Attributes
You can assign the following attributes to copy rules in an assign activity.

• ignoreMissingFromData
• insertMissingToData
• keepSrcElementName
At the bottom of the Copy Rules tab of an assign activity, you right-click a selected copy rule to
display a menu for choosing the appropriate attribute. Figure 6-35 provides details.

Figure 6-35 Assign Extension Attributes

ignoreMissingFromData Attribute
The ignoreMissingFromData attribute suppresses any bpel:selectionFailure standard
faults. Table 6-3 describes the syntax differences between BPEL versions 1.1 and 2.0.

Table 6-3 ignoreMissingFromData Attribute Syntax

BPEL 1.1 BPEL 2.0

<copy bpelx:ignoreMissingFromData="yes|no"/> <copy ignoreMissingFromData="yes|no"/>

insertMissingToData Attribute
The insertMissingToData attribute instructs runtime to complete the (XPath) L-value specified
by the to-spec, if no items were selected. Table 6-4 describes the syntax differences between
BPEL versions 1.1 and 2.0.

Chapter 6
Manipulating XML Data with bpelx Extensions

6-50

Table 6-4 insertMissingToData Attribute Syntax

BPEL 1.1 BPEL 2.0

<copy bpelx:insertMissingToData="yes|
no"/>

<copy bpelx:insertMissingToData="yes|no"/>

keepSrcElementName Attribute
The keepSrcElementName attribute enables you to replace the element name of the destination
(as selected by the to-spec) with the element name of the source. This attribute was not
implemented in BPEL 1.1. Table 6-5 describes the syntax supported in BPEL version 2.0.

Table 6-5 keepSrcElementName Attribute Syntax

BPEL 1.1 BPEL 2.0

Not implemented <copy keepSrcElementName="yes|no"/>

Validating XML Data
You can verify code and identify invalid XML data in a BPEL project.

How to Validate XML Data in BPEL 2.0
This section discusses validating XML data in BPEL 2.0.

Validate XML in an Assign Activity
In an assign activity in Oracle BPEL Designer:

1. From the BPEL Constructs section of the Components window, drag an Assign activity
into the designer.

2. Double-click the Assign activity.

3. In the General tab, enter a name for the activity and select the Validate check box.

4. Click Apply, then OK.

5. Click the Source tab to view the syntax. The syntax for validating XML data with the assign
activity is slightly different between BPEL versions 1.1 and 2.0.

<assign name="Assign1" validate="yes">
 . . .
</assign>

Validate XML in a Standalone, Extended Validate Activity
In a standalone, extended validate activity in Oracle BPEL Designer that can be used without
an assign activity:

1. From the BPEL Constructs section of the Components window, drag a Validate activity
into the designer.

Chapter 6
Validating XML Data

6-51

2. Double-click the Validate icon.

3. Enter a name for the activity.

4. Click the Add icon to select the variable to validate.

5. Select the variable, then click OK.

6. Click Apply, then OK.

7. Click the Source tab to view the syntax. The syntax for validating XML data with the
validate activity is slightly different between BPEL versions 1.1 and 2.0.

<validate name="Validate1" variables="inputVariable"/>

How to Validate XML Data in BPEL 1.1
This section describes validating xml data in BPEL 1.1.

Validate XML in an Assign Activity
In an assign activity in Oracle BPEL Designer:

1. From the BPEL Constructs section of the Components window, drag an Assign activity
into the designer.

2. Double-click the Assign activity.

3. In the General tab, enter a name for the activity and select the Validate check box.

4. Click Apply, then OK.

5. Click the Source tab to view the syntax.

<assign name=Assign1" bpelx:validate="yes"
 . . .
</assign>

Validate XML in a Standalone, Extended Validate Activity
In a standalone, extended validate activity in Oracle BPEL Designer that can be used without
an assign activity:

1. From the Oracle Extensions section of the Components window, drag a Validate activity
into the designer.

2. Double-click the Validate icon.

3. Enter a name for the activity.

4. Click the Add icon to select the variable to validate.

5. Select the variable, then click OK.

6. Click Apply, then OK.

7. Click the Source tab to view the syntax.

<bpelx:validate name=Validate1" variables="inputVariable"/>

Chapter 6
Validating XML Data

6-52

Using Element Variables in Message Exchange Activities in
BPEL 2.0

You can specify variables in the following message exchange activities:

• The Input field (for an inputVariable attribute) and Output field (for an outputVariable
attribute) of an invoke dialog

• The Input field (for a variable attribute) of a receive activity

• The Output field (for a variable attribute) of a reply activity

The variables referenced by these fields typically must be message type variables in which the
QName matches the QName of the input and output message types used in the operation,
respectively.

The one exception is if the WSDL operation in the activity uses a message containing exactly
one part that is defined using an element. In this case, a variable of the same element type
used to define the part can be referenced by the inputVariable and outputVariable
attributes, respectively, in the invoke activity or the variable attribute of the receive or reply
activity.

Using a variable in this situation must be the same as declaring an anonymous, temporary
WSDL message variable based on the associated WSDL message type.

Copying element data between the anonymous, temporary WSDL message variable and the
element variable acts as a single virtual assign activity with one copy operation whose
keepSrcElementName attribute is set to yes. The virtual assign must follow the same rules and
use the same faults as a real assign activity. Table 6-6 provides details.

Table 6-6 Mapping WSDL Message Parts

For The... The...

inputVariable attribute Value of the variable referenced by the attribute sets the value of the
part in the anonymous temporary WSDL message variable.

outputVariable attribute Value of the received part in the temporary WSDL message variable
sets the value of the variable referenced by the attribute.

Receive activity Incoming part's value sets the value of the variable referenced by the
variable attribute.

Reply activity Value of the variable referenced by the variable attribute sets the value
of the part in the anonymous, temporary WSDL message variable that
is sent out. For a reply activity sending a fault, the same scenario
applies.

For more information about the keepSrcElementName attribute, see keepSrcElementName
Attribute.

Mapping WSDL Message Parts in BPEL 2.0
The Arguments Mapping section in invoke and reply activities provides an alternative to
explicitly creating multipart WSDL messages from the contents of BPEL variables.

When you use the Arguments Mapping section, an anonymous, temporary WSDL variable is
defined based on the type specified by the input message of the appropriate WSDL operation.

Chapter 6
Using Element Variables in Message Exchange Activities in BPEL 2.0

6-53

For more information about mapping WSDL message parts, see the BPEL 2.0 Specification
located at the following URL:

http://www.oasis-open.org

How to Map WSDL Message Parts
The Arguments Mapping table contains the parts for the selected operation. You can set the
value of each message part by editing the Value column of the table. Select the variable in
which to retrieve the value and store the message part.

To map WSDL message parts in BPEL 2.0:

1. Note that the receive activity in Figure 6-36 includes a standard inputVariable variable
from the client.

Figure 6-36 Receive Activity

2. Note the Arguments Mapping button at the bottom of the reply activity in Figure 6-37. You
can set the value for each message part by clicking an entry in the table.

Figure 6-37 Arguments Mapping Section Defined at Bottom of a Reply Activity

Chapter 6
Mapping WSDL Message Parts in BPEL 2.0

6-54

http://www.oasis-open.org

Importing Process Definitions in BPEL 2.0
You can use the import element to specify the definitions on which your BPEL process is
dependent. When you create a version 2.0 BPEL process, an import element is added to
the .bpel file, as shown in the following example:

<process name="Loan Flow"
 . . .
 . . .
 <import namespace="http://xmlns.oracle.com/SOAApplication/SOAProject/LoanFlow"
 location="LoanFlow.wsdl" importType="http://schemas.xmlsoap.org/wsdl/"/>

You can also use the import element to import a schema without a namespace, as shown in
the following example:

<process name="Loan Flow"
 . . .
 . . .
<import location="xsd/NoNamespaceSchema.xsd"
 importType="http://www.w3.org/2001/XMLSchema"/>

You can also use the import element to import a schema with a namespace, as shown in the
following example:

<process name="Loan Flow"
 . . .
 . . .
<import namespace="http://www.example.org" location="xsd/TestSchema.xsd"
 importType="http://www.w3.org/2001/XMLSchema"/>

The import element is provided to declare a dependency on external XML schema or WSDL
definitions. Any number of import elements can appear as children of the process element.
Each import element can contain the following attributes.

• namespace: Identifies an absolute URI that specifies the imported definitions. This is an
optional attribute. If a namespace is specified, then the imported definitions must be in that
namespace. If a namespace is not specified, this indicates that external definitions are in
use that are not namespace-qualified. The imported definitions must not contain a
targetNamespace specification.

• location: Identifies a URI that specifies the location of a document containing important
definitions. This is an optional attribute. This can be a relative URI. If no location attribute
is specified, the process uses external definitions. However, there is no statement provided
indicating where to locate these definitions.

• importType: Identifies the document type to import. This must be an absolute URI that
specifies the encoding language used in the document. This is a required attribute.

– If importing XML schema 1.0 documents, this attribute's value must be set to "http://
www.w3.org/2001/XMLSchema".

– If importing WSDL 1.1 documents, the value must be set to "http://
schemas.xmlsoap.org/wsdl/". You can also specify other values for this attribute.

For more information, see section 5.4 of the Web Services Business Process Execution
Language Specification Version 2.0.

Chapter 6
Importing Process Definitions in BPEL 2.0

6-55

Manipulating XML Data Sequences That Resemble Arrays
Data sequences are one of the most basic data models used in XML. However, manipulating
them can be nontrivial. One of the most common data sequence patterns used in BPEL
process service components are arrays. Based on the XML schema, the way you can identify
a data sequence definition is by its attribute maxOccurs being set to a value greater than one or
marked as unbounded. See the XML Schema Specification at http://www.w3.org/TR for more
information.

The examples in this section illustrate several basic ways of manipulating data sequences in
BPEL. However, there are other associated requirements, such as performing looping or
dynamic referencing of endpoints. The following sections describe a particular requirement for
data sequence manipulation.

How to Statically Index into an XML Data Sequence That Uses Arrays
The following two examples illustrate how to use XPath functionality to select a data sequence
element when the index of the element you want is known at design time. In these cases, it is
the first element.

In the following example, addresses[1] selects the first element of the addresses data
sequence:

<assign>
 <!-- get the first address and assign to variable address -->
 <copy>
 <from variable="input" part="payload"
 query="/tns:invalidLoanApplication/autoloan:application
 /autoloan:customer/autoloan:addresses[1]"/>
 <to variable="address"/>
 </copy>
</assign>

In this query, addresses[1] is equivalent to addresses[position()=1], where position is one
of the core XPath functions (see sections 2.4 and 4.1 of the XML Path Language (XPath)
Specification). The query in the following example calls the position function explicitly to
select the first element of the address's data sequence. It then selects that address's street
element (which the activity assigns to the variable street1).

<assign>
 <!-- get the first address's street and assign to street1 -->
 <copy>
 <from variable="input" part="payload"
 query="/tns:invalidLoanApplication/autoloan:application
 /autoloan:customer/autoloan:addresses[position()=1]
 /autoloan:street"/>
 <to variable="street1"/>
 </copy>
</assign>

If you review the definition of the input variable and its payload part in the WSDL file, you go
several levels down before coming to the definition of the addresses field. There you see the
maxOccurs="unbounded" attribute. The two XPath indexing methods are functionally identical;
you can use whichever method you prefer.

Chapter 6
Manipulating XML Data Sequences That Resemble Arrays

6-56

How to Use SOAP-Encoded Arrays
Oracle SOA Suite provides support for SOAP RPC-encoded arrays. This support enables
Oracle BPEL Process Manager to operate as a client calling a SOAP web service (RPC-
encoded) that uses a SOAP 1.1 array.

The following example provides an example of a SOAP array payload named
myFavoriteNumbers.

<myFavoriteNumbers SOAP-ENC:arrayType="xsd:int2">
<number>3</number>
<number>4</number>
</myFavoriteNumbers>

In addition, ensure that the schema element attributes attributeFormDefault and
elementFormDefault are set to "unqualified" in your schema. The following example
provides details:

attributeFormDefault="unqualified" elementFormDefault="unqualified"
targetNamespace="java:services" xmlns:s0="http://schemas.xmlsoap.org/wsdl/"
xmlns:xs="http://www.w3.org/2001/XMLSchema">

The following features are not supported:

• A service published by BPEL that uses a SOAP array

• Partially-transmitted arrays

• Sparse arrays

• Multidimensional arrays

To use a SOAP-encoded array:

The following example shows how to prepare SOAP arrays with the bpelx:append tag in a
BPEL project.

1. Create a BPEL process in Oracle JDeveloper.

2. Prepare the payload for the invocation. Note that bpelx:append is used to add items into
the SOAP array.

<bpws:assign>
 <bpws:copy>
 <bpws:from variable="input" part="payload" query="/tns:value"/>
 <bpws:to variable="request" part="strArray"
 query="/strArray/JavaLangstring"/>
 </bpws:copy>
</bpws:assign>
<bpws:assign>
 <bpelx:append>
 <bpelx:from variable="request" part="strArray"
 query="/strArray/JavaLangstring1"/>
 <bpelx:to variable="request" part="strArray" query="/strArray"/>
 </bpelx:append>
</bpws:assign>

3. Import the following namespace in your WSDL file. Oracle JDeveloper does not
understand the SOAP-ENC tag if the import statement is missing in the WSDL schema
element.

<xs:import namespace="http://schemas.xmlsoap.org/soap/encoding/" />

Chapter 6
Manipulating XML Data Sequences That Resemble Arrays

6-57

SOAP-Encoded Arrays in BPEL 2.0
SOAP-encoded arrays are supported in BPEL projects that use version 2.0 of the BPEL
specification. The following example shows a sample assign activity with a SOAP-encoded
array in a BPEL 2.0 project.

<assign name="Assign_1">
 <copy>
 <from>$inputVariable.payload</from>
 <to>$Invoke_1_echoArray_InputVariable.strArray/JavaLangstring[1]</to>
 </copy>
 <extensionAssignOperation>
 <bpelx:append>
 <bpelx:from variable="Invoke_1_echoArray_InputVariable"
 part="strArray">
 <bpelx:query>
 JavaLangstring[1]
 </bpelx:query>
 </bpelx:from>
 <bpelx:to variable="Invoke_1_echoArray_InputVariable"
 part="strArray">
 </bpelx:to>
 </bpelx:append>
 </extensionAssignOperation>
 </assign>

The following example shows a sample invoke activity with a SOAP-encoded array in a BPEL
2.0 project.

<invoke name="Invoke1" partnerLink="FileOut"
 portType="ns3:Write_ptt" operation="Write"
 bpelx:invokeAsDetail="no">
 <toParts>
 <toPart part="body" fromVariable="ArrayVariable"/>
 </toParts>
</invoke>

Declaring a SOAP Array Using a wsdl:arrayType Attribute Inside a Schema
A SOAP-encoded array WSDL can declare a SOAP array using a wsdl:arrayType attribute
inside a schema. The following example provides details.

<xsd:complexType name="UserObject">
 <xsd:sequence>
 <xsd:element name="userInformation" nillable="true"
 type="n5:ArrayOfKeyValuePair"/>
 <xsd:element name="username" nillable="true" type="xsd:string"/>
 </xsd:sequence>
</xsd:complexType>

<xsd:complexType name="ArrayOfKeyValuePair">
 <xsd:complexContent>
 <xsd:restriction base="soapenc:Array">
 <xsd:attribute ref="soapenc:arrayType"
 wsdl:arrayType="n5:KeyValuePair[]"/>
 </xsd:restriction>
 </xsd:complexContent>
</xsd:complexType>

<xsd:complexType name="KeyValuePair">

Chapter 6
Manipulating XML Data Sequences That Resemble Arrays

6-58

 <xsd:sequence>
 <xsd:element name="key" nillable="true" type="xsd:string"/>
 <xsd:element name="value" nillable="true" type="xsd:string"/>
 </xsd:sequence>
</xsd:complexType>

The following example shows how to create and access a SOAP-encoded array in BPEL 1.1.

<bpws:copy>
 <bpws:from>
 <ns1:userInformation soapenc:arrayType="com1:KeyValuePair[1]"
 xmlns:ns1="http://www.schematargetnamespace.com/wsdl/Impl/"
 xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/"/>
 <ns1:KeyValuePair
 xmlns:ns1="http://www.schematargetnamespace.com/wsdl/Impl/">
 <key>testkey</key>
 <value>testval1</value>
 </ns1:KeyValuePair>
 </ns1:userInformation>
 </bpws:from>
 <bpws:to variable="Inputvar" part="userObject"
 query="/userObject/userInformation"/>

</bpws:copy>
<!--Update elements with SOAPENC Array-->
<bpws:copy>
 <bpws:from variable="KeyValueVar" part="KeyValuePair"
 query="/KeyValuePair/ns2:key"/>
 <bpws:to variable="Inputvar" part="userObject'
 query="//*[local-name()='KeyValuePair'][1]/*[local-name()='key']"/>
</bpws:copy>

<bpws:copy>
 <bpws:from variable="KeyValueVar" part="KeyValuePair"
 query="/KeyValuePair/client:value"/>
 <bpws:to variable="Inputvar" part="userObject"
 query="//*[local-name()='KeyValuePair'][1]/*[local-name()='value']"/>

</bpws:copy>
<!-- Append elements within SOAPENC Array -->
<bpelx:append>
 <bpelx:from variable="Inputvar" part="userObject"
 query="//*[local-name()='KeyValuePair'][1]"/>
 <bpelx:to variable="Inputvar" part="userObject"
 query="/userObject/userInformation"/>
</bpelx:append>

How to Determine Sequence Size
If you must know the runtime size of a data sequence (that is, the number of nodes or data
items in the sequence), you can get it by using the combination of the XPath built-in count()
function and the BPEL built-in getVariableData() function.

The code in the following example calculates the number of elements in the item sequence
and assigns it to the integer variable lineItemSize.

<assign>
 <copy>
 <from expression="count(bpws:getVariableData('outpoint', 'payload',
 '/p:invoice/p:lineItems/p:item')"/>
 <to variable="lineItemSize"/>

Chapter 6
Manipulating XML Data Sequences That Resemble Arrays

6-59

 </copy>
</assign>

How to Dynamically Index by Applying a Trailing XPath to an Expression
Often a dynamic value is needed to index into a data sequence; that is, you must get the nth
node out of a sequence, where the value of n is defined at runtime. This section covers the
methods for dynamically indexing by applying a trailing XPath into expressions.

Applying a Trailing XPath to the Result of getVariableData
The dynamic indexing method shown in the following example applies a trailing XPath to the
result of bwps:getVariableData(), instead of using an XPath as the last argument of
bpws:getVariableData(). The trailing XPath makes reference to an integer-based index
variable within the position predicate (that is, [...]).

<variable name="idx" type="xsd:integer"/>
...
<assign>
 <copy>
 <from expression="bpws:getVariableData('input','payload'
)/p:line-item[bpws:getVariableData('idx')]/p:line-total" />
 <to variable="lineTotalVar" />
 </copy>
</assign>

Assume at runtime that the idx integer variable holds 2 as its value. The expression in the
preceding example within the from is equivalent to that shown in the following example.

<from expression="bpws:getVariableData('input','payload'
)/p:line-item[2]/p:line-total" />

There are some subtle XPath usage differences, when an XPath used trailing behind the
bwps:getVariableData() function is compared with the one used inside the function.Using the
same example (where payload is the message part of element "p:invoice"), if the XPath is
used within the getVariableData() function, the root element name ("/p:invoice") must be
specified at the beginning of the XPath.

The following example provides details.

bpws:getVariableData('input', 'payload','/p:invoice/p:line-item[2]/p:line-total')

If the XPath is used trailing behind the bwps:getVariableData()function, the root element
name does not need to be specified in the XPath.

For example:

bpws:getVariableData('input', 'payload')/p:line-item[2]/p:line-total

This is because the node returned by the getVariableData() function is the root element.
Specifying the root element name again in the XPath is redundant and is incorrect according to
standard XPath semantics.

Using the bpelx:append Extension to Append New Items to a Sequence
The bpelx:append extension in an assign activity enables BPEL process service components
to append new elements to an existing parent element. The following provides an example.

Chapter 6
Manipulating XML Data Sequences That Resemble Arrays

6-60

 <assign name="assign-3">
 <copy>
 <from expression="bpws:getVariableData('idx')+1" />
 <to variable="idx"/>
 </copy>
 <bpelx:append>
 <bpelx:from variable="partInfoResultVar" part="payload" />
 <bpelx:to variable="output" part="payload" />
 </bpelx:append>
 ...
 </assign>

The bpelx:append logic in this example appends the payload element of the
partInfoResultVar variable as a child to the payload element of the output variable. In other
words, the payload element of the output variable is used as the parent element.

Merging Data Sequences
You can merge two sequences into a single data sequence. This pattern is common when the
data sequences are in an array (that is, the sequence of data items of compatible types).The
two append operations shown below under assign demonstrate how to merge data sequences:

<assign>
 <!-- initialize "mergedLineItems" variable
 to an empty element -->
 <copy>
 <from> <p:lineItems /> </from>
 <to variable="mergedLineItems" />
 </copy>
 <bpelx:append>
 <bpelx:from variable="input" part="payload"
 query="/p:invoice/p:lineItems/p:lineitem" />
 <bpelx:to variable="mergedLineItems" />
 </bpelx:append>
 <bpelx:append>
 <bpelx:from variable="literalLineItems"
 query="/p:lineItems/p:lineitem" />
 <bpelx:to variable="mergedLineItems" />
 </bpelx:append>
</assign>

Generating Functionality Equivalent to an Array of an Empty Element
The genEmptyElem function generates functionality equivalent to an array of an empty element
to an XML structure. This function takes the following arguments:

genEmptyElem('ElemQName',int?, 'TypeQName'?, boolean?)

Note the following issues:

• The first argument specifies the QName of the empty elements.

• The optional second integer argument specifies the number of empty elements. If missing,
the default size is 1.

• The third optional argument specifies the QName, which is the xsi:type of the generated
empty name. This xsi:type pattern matches the SOAPENC:Array. If it is missing or is an
empty string, the xsi:type attribute is not generated.

Chapter 6
Manipulating XML Data Sequences That Resemble Arrays

6-61

• The fourth optional boolean argument specifies whether the generated empty elements are
XSI - nil, provided the element is XSD-nillable. The default value is false. If missing or
false, xsi:nil is not generated.

The following example shows an append statement initializing a purchase order (PO) document
with 10 empty <lineItem> elements under po:

<bpelx:assign>
 <bpelx:append>
 <bpelx:from expression="ora:genEmptyElem('p:lineItem',10)" />
 <bpelx:to variable="poVar" query="/p:po" />
 </bpelx:append>
</bpelx:assign>

The genEmptyElem function in the previous example can be replaced with an embedded
XQuery expression, as shown in the following example:

ora:genEmptyElem('p:lineItem',10)
== for $i in (1 to 10) return <p:lineItem />

The empty elements generated by this function are typically invalid XML data. You perform
further data initialization after the empty elements are created. Using the same example above,
you can perform the following:

• Add attribute and child elements to those empty lineItem elements.

• Perform copy operations to replace the empty elements. For example, copy from a web
service result to an individual entry in this equivalent array under a flowN activity.

What You May Need to Know About Using the Array Identifier
For processing in Native Format Builder array identifier environments, information is required
about the parent node of a node. Because the reportSAXEvents API is used, this information is
typically not available for outbound message scenarios. Setting nxsd:useArrayIdentifiers to
true in the native schema enables DOM-parsing to be used for outbound message scenarios.
Use this setting cautiously, as it can lead to slower performance for very large payloads. The
following example provides details.

<?xml version="1.0" ?>

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:nxsd="http://xmlns.oracle.com/pcbpel/nxsd"
 targetNamespace="http://xmlns.oracle.com/pcbpel/demoSchema/csv"
 xmlns:tns="http://xmlns.oracle.com/pcbpel/demoSchema/csv"
 elementFormDefault="qualified"
 attributeFormDefault="unqualified" nxsd:encoding="US-ASCII"
nxsd:stream="chars" nxsd:version="NXSD" nxsd:useArrayIdentifiers="true">
 <xsd:element name="Root-Element">

 </xsd:element>
</xsd:schema>

Converting from a String to an XML Element
Sometimes a service is defined to return a string, but the content of the string is actually XML
data. The problem is that, although BPEL provides support for manipulating XML data (using
XPath queries, expressions, and so on), this functionality is not available if the variable or field
is a string type. With Java, you use DOM functions to convert the string to a structured XML
object type. You can use the BPEL XPath function parseEscapedXML to do the same thing.

Chapter 6
Converting from a String to an XML Element

6-62

For information about parseEscapedXML, see parseEscapedXML.

How To Convert from a String to an XML Element
The parseEscapedXML function takes XML data, parses it through DOM, and returns structured
XML data that can be assigned to a typed BPEL variable. The following provides an example:

<!-- execute the XPath extension function
parseEscapedXML('<item>') and assign to a variable
-->
<assign>
 <copy>
 <from expression="oratext:parseEscapedXML(
 '<item xmlns="http://samples.otn.com"
 sku="006">
 <description>sun ultra sparc VI server
 </description>
 <price>1000
 </price>
 <quantity>2
 </quantity>
 <lineTotal>2000
 </lineTotal>
 </item>')"/>
 <to variable="escapedLineItem"/>
 </copy>
</assign>

Understanding Document-Style and RPC-Style WSDL
Differences

The examples provided in previous sections of this chapter have been for document-style
WSDL files in which a message is defined with an XML schema element, as shown in he
following example:

<message name="LoanFlowRequestMessage">
<part name="payload" element="s1:loanApplication"/>
</message>

This is in contrast to RPC-style WSDL files, in which the message is defined with an XML
schema type, as shown in the following example:

<message name="LoanFlowRequestMessage">
<part name="payload" type="s1:LoanApplicationType"/>
</message>

How To Use RPC-Style Files
This differs from the previous information in this chapter because there is a difference in how
XPath queries are constructed for the two WSDL message styles. For an RPC-style message,
the top-level element (and therefore the first node in an XPath query string) is the part name
(payload in the previous example). In document-style messages, the top-level node is the
element name (for example, loanApplication).

The following examples (WSDL file and BPEL file) show what an XPath query string looks like
if an application named LoanServices were in RPC style.

Chapter 6
Understanding Document-Style and RPC-Style WSDL Differences

6-63

<message name="LoanServiceResultMessage">
 <part name="payload" type="s1:LoanOfferType"/>
</message>

<complexType name="LoanOfferType">
 <sequence>
 <element name="providerName" type="string"/>
 <element name="selected" type="boolean"/>
 <element name="approved" type="boolean"/>
 <element name="APR" type="double"/>
 </sequence>
</complexType>

<variable name="output"
 messageType="tns:LoanServiceResultMessage"/>
...
<assign>
 <copy>
 <from expression="9.9"/>
 <to variable="output" part="payload" query="/payload/APR"/>
 </copy>
</assign>

Manipulating SOAP Headers in BPEL
BPEL's communication activities (invoke, receive, reply, and onMessage) receive and send
messages through specified message variables. These default activities permit one variable to
operate in each direction. For example, the invoke activity has inputVariable and
outputVariable attributes. You can specify one variable for each of the two attributes. This is
enough if the particular operation involved uses only one payload message in each direction.

However, WSDL supports multiple messages in an operation. In the case of SOAP, multiple
messages can be sent along the main payload message as SOAP headers. However, BPEL's
default communication activities cannot accommodate the additional header messages.

Oracle BPEL Process Manager solves this problem by extending the default BPEL
communication activities with the bpelx:headerVariable extension. The extension syntax is as
shown in the following example:

<invoke bpelx:inputHeaderVariable="inHeader1 inHeader2 ..."
 bpelx:outputHeaderVariable="outHeader1 outHeader2 ..."
 .../>

<receive bpelx:headerVariable="inHeader1 inHeader2 ..." .../>
<onMessage bpelx:headerVariable="inHeader1 inHeader2 ..." .../>
<reply bpelx:headerVariable="inHeader1 inHeader2 ..." .../>

How to Receive SOAP Headers in BPEL
This section provides an example of how to create BPEL and WSDL files to receive SOAP
headers.

To receive SOAP headers in BPEL:

1. Create a WSDL file that declares header messages and the SOAP binding that binds them
to the SOAP request. The following provides an example:

 <!-- custom header -->
 <message name="CustomHeaderMessage">
 <part name="header1" element="tns:header1"/>

Chapter 6
Manipulating SOAP Headers in BPEL

6-64

 <part name="header2" element="tns:header2"/>
 </message>

 <binding name="HeaderServiceBinding" type="tns:HeaderService">
 <soap:binding style="document"
 transport="http://schemas.xmlsoap.org/soap/http"/>
 <operation name="initiate">
 <soap:operation style="document" soapAction="initiate"/>
 <input>
 <soap:header message="tns:CustomHeaderMessage"
 part="header1" use="literal"/>
 <soap:header message="tns:CustomHeaderMessage"
 part="header2" use="literal"/>
 <soap:body use="literal"/>
 </input>
 </operation>
 </binding>

2. Create a BPEL source file that declares the header message variables and uses
bpelx:headerVariable to receive the headers, as shown in the following example:

<variables> <variable name="input"
 messageType="tns:HeaderServiceRequestMessage"/>
 <variable name="event"
 messageType="tns:HeaderServiceEventMessage"/>
 <variable name="output"
 messageType="tns:HeaderServiceResultMessage"/>
 <variable name="customHeader"
 messageType="tns:CustomHeaderMessage"/>
</variables>

<sequence>
 <!-- receive input from requester -->
 <receive name="receiveInput" partnerLink="client"
 portType="tns:HeaderService" operation="initiate"
 variable="input"
 bpelx:headerVariable="customHeader"
 createInstance="yes"/>

How to Send SOAP Headers in BPEL
This section provides an example of how to send SOAP headers.

To send SOAP headers in BPEL:

1. Define a reference in the composite.xml file to refer to the HeaderService.

2. Define the custom header variable, manipulate it, and send it using
bpelx:inputHeaderVariable, as shown in the following example:

<variables>
 <variable name="input" messageType="tns:HeaderTestRequestMessage"/>
 <variable name="output" messageType="tns:HeaderTestResultMessage"/>
 <variable name="request" messageType="services:HeaderServiceRequestMessage"/>
 <variable name="response" messageType="services:HeaderServiceResultMessage"/>
 <variable name="customHeader"messageType="services:CustomHeaderMessage"/>
 </variables>
...
<!-- initiate the remote process -->
 <invoke name="invokeAsyncService"
 partnerLink="HeaderService"
 portType="services:HeaderService"

Chapter 6
Manipulating SOAP Headers in BPEL

6-65

 bpelx:inputHeaderVariable="customHeader"
 operation="initiate"
 inputVariable="request"/>

Declaring Extension Namespaces in BPEL 2.0
You can extend a BPEL version 2.0 process to add custom extension namespace declarations.
With the mustUnderstand attribute, you can indicate whether the custom namespaces carry
semantics that must be understood by the BPEL process.

If a BPEL process does not support one or more of the extensions with mustUnderstand set to
yes, the process definition is rejected.

Extensions are defined in the extensions element. The following example provides details.

<process ...>
 ...
 <extensions>?
 <extension namespace="myURI" mustUnderstand="yes|no" />+
 </extensions>
...
</process>

The contents of an extension element must be a single element qualified with a namespace
different from the standard BPEL namespace.

For more information about extension declarations, see the BPEL 2.0 Specification located at
the following URL:

http://www.oasis-open.org

How to Declare Extension Namespaces
To declare extension namespaces:

1. In a BPEL 2.0 process, click the Extensions icon above Oracle BPEL Designer.

The Extensions dialog is displayed.

2. Select the Extensions folder, then click the Add icon.

The Extension dialog is displayed.

3. In the Namespace field, enter the extension namespace to declare. This namespace must
be different from the standard BPEL namespace.

4. If you want the extensions to be recognized by the BPEL process, select the Must
Understand check box.

5. Click OK.

6. Click Close.

What Happens When You Create an Extension
After you complete your design, the .bpel process looks as shown in the following example:

<extensions>
 <extension namespace="http://xmlns.mycompany.com/myNamespace"
 mustUnderstand="yes"/>
</extensions>

Chapter 6
Declaring Extension Namespaces in BPEL 2.0

6-66

http://www.oasis-open.org

7
Invoking a Synchronous Web Service from a
BPEL Process

This chapter describes how to invoke a synchronous web service from a BPEL process. It
demonstrates how to set up the components necessary to perform a synchronous invocation
and how these components are coded. It also describes how to specify a timeout value and
call a one-way Oracle Mediator with a synchronous BPEL process.
This chapter includes the following sections:

• Introduction to Invoking a Synchronous Web Service

• Invoking a Synchronous Web Service

• Specifying Transaction Timeout Values in Durable Synchronous Processes

• Calling a One-Way Mediator with a Synchronous BPEL Process

Introduction to Invoking a Synchronous Web Service
Synchronous web services provide an immediate response to an invocation. BPEL can
connect to synchronous web services through a partner link, send data, and receive the reply
in the same synchronous invocation.

A synchronous invocation requires the following components:

• Partner link

Defines the location and the role of the web services with which the BPEL process service
component connects to perform tasks, and the variables used to carry information between
the web service and the BPEL process service component. A partner link is required for
each web service that the BPEL process service component calls. You can create partner
links in several ways, including the following:

– In the SOA Composite Editor, when you drag a SOAP service from the Technology
section of the Components window into the Exposed Services or External
References swimlane. For more information, see Adding Service Binding Components
or Adding Reference Binding Components.

– In Oracle BPEL Designer, when you drag a Partner Link icon from the BPEL
Constructs section of the Components window into the Partner Links swimlane. This
second method is described in this chapter.

• Invoke activity

Opens a port in the BPEL process service component to send and receive data. For
example, this port is used to retrieve information verifying that a customer has acceptable
credit using a credit card authorization service. For synchronous callbacks, only one port is
needed for both the send and receive functions.

Invoking a Synchronous Web Service
This section examines a synchronous invocation operation using a file named
OrderProcessor.bpel.

7-1

How to Invoke a Synchronous Web Service
To invoke a synchronous web service:

1. In the Components window in Oracle BPEL Designer, expand BPEL Constructs.

2. Drag the necessary partner link, invoke activity, scope activity, and assign activity into the
designer.

3. Edit their dialogs.

Figure 7-1 shows the diagram for a scope activity named Scope_AuthorizeCreditCard of
a BPEL process named OrderProcessor, which defines a simple set of actions.

Figure 7-1 Diagram of OrderProcessor.bpel

How Does the BPEL Process Work
The following actions take place:

1. The Assign_CreditCardCheckInput assign activity packages the data from the client.
The assign activity provides a method for copying the contents of one variable to another.
In this case, it takes the credit card type, credit card number, and purchase amount and
assigns them to the input variable for the CreditCardAuthorizationService service.

2. The InvokeCheckCreditCard invoke activity calls the CreditCardAuthorizationService
service. Figure 7-2 shows the CreditCardAuthorizationService web service, which is
defined as a partner link.

Figure 7-2 CreditCardAuthorizationService Partner Link

Chapter 7
Invoking a Synchronous Web Service

7-2

Figure 7-3 shows the InvokeCheckCreditCard invoke activity.

Figure 7-3 InvokeCheckCreditCard Invoke Activity

3. An if activity (for BPEL 2.0) or a switch activity (for BPEL 1.1) checks the results of the
credit card validation. For information about if and switch activities, see Defining
Conditional Branching with the If or Switch Activity.

Note:

The BPEL 2.0 if activity replaces the BPEL 1.1 switch activity.

What Happens When You Invoke a Synchronous Web Service
When you create a partner link and invoke activity, the necessary BPEL code for invoking a
synchronous web service is added to the appropriate BPEL and Web Services Description
Language (WSDL) files.

Partner Link in the BPEL Code
In the OrderProcessor.bpel code, the partner link defines the link name and type, and the role
of the BPEL process service component in interacting with the partner service.

From the BPEL source code, the CreditCardAuthorizationService partner link definition is
shown below:

<partnerLink name="CreditCardAuthorizationService"
 partnerRole="CreditAuthorizationPort"
 partnerLinkType="ns2:CreditCardAuthorizationService"/>

Variable definitions that are accessible locally in the Scope_AuthorizeCreditCard scope are
shown in the following example. The types for these variables are defined in the WSDL for the
process itself.

Chapter 7
Invoking a Synchronous Web Service

7-3

<variable name="lCreditCardInput"
 messageType="ns2:CreditAuthorizationRequestMessage"/>
<variable name="lCreditCardOutput"
 messageType="ns2:CreditAuthorizationResponseMessage"/>

The WSDL file defines the interface to your BPEL process service component:

• The messages that it accepts and returns

• The operations that are supported

• Other parameters

Partner Link Type and Port Type in the BPEL Code
The web service's CreditCardAuthorizationService.wsdl file contains two sections that
enable the web service to work with BPEL process service components:

• partnerLinkType:

Defines the following characteristics of the conversion between a BPEL process service
component and the credit card authorization web service:

– The role (operation) played by each

– The portType provided by each for receiving messages within the conversation

• portType:

A collection of related operations implemented by a participant in a conversation. A port
type defines which information is passed back and forth, the form of that information, and
so on. A synchronous invocation requires only one port type that both initiates the
synchronous process and calls back the client with the response. An asynchronous
callback (one in which the reply is not immediate) requires two port types:

– One to send the request

– Another to receive the reply when it arrives

In this example, the portType CreditAuthorizationPort receives the credit card type,
credit card number, and purchase amount, and returns the status results.

The following provides an example of partnerLinkType and portType.

<plnk:partnerLinkType name="CreditCardAuthorizationService">
 <plnk:role name="CreditAuthorizationPort">
 <plnk:portType name="tns:CreditAuthorizationPort"/>
 </plnk:role>
</plnk:partnerLinkType>

Invoke Activity for Performing a Request
The invoke activity includes the lCreditCardInput local input variable. The credit card
authorization web service uses the lCreditCardInput input variable. This variable contains the
customer's credit card type, credit card number, and purchase amount. The
lCreditCardOutput variable returns status results from the CreditCardAuthorizationService
service. The following example provides details.

<invoke name="InvokeCheckCreditCard"
 inputVariable="lCreditCardInput"
 outputVariable="lCreditCardOutput"
 partnerLink="CreditCardAuthorizationService"
 portType="ns2:CreditAuthorizationPort"
 operation="AuthorizeCredit"/>

Chapter 7
Invoking a Synchronous Web Service

7-4

Synchronous Invocation in BPEL Code
The BPEL code shown in the following example performs the synchronous invocation.

<assign name="Assign_CreditCheckInput">
 <copy>
 <from variable="gOrderInfoVariable"
 query="/ns4:orderInfoVOSDO/ns4:OrderTotal"/>
 <to variable="lCreditCardInput" part="Authorization"
 query="/ns8:AuthInformation/ns8:PurchaseAmount"/>
 </copy>
 <copy>
 <from variable="gOrderInfoVariable"
 query="/ns4:orderInfoVOSDO/ns4:CardTypeCode"/>
 <to variable="lCreditCardInput" part="Authorization"
 query="/ns8:AuthInformation/ns8:CCType"/>
 </copy>
 <copy>
 <from variable="gOrderInfoVariable"
 query="/ns4:orderInfoVOSDO/ns4:AccountNumber"/>
 <to variable="lCreditCardInput" part="Authorization"
 query="/ns8:AuthInformation/ns8:CCNumber"/>
 </copy>
</assign>
<invoke name="InvokeCheckCreditCard"
 inputVariable="lCreditCardInput"
 outputVariable="lCreditCardOutput"
 partnerLink="CreditCardAuthorizationService"
 portType="ns2:CreditAuthorizationPort"
 operation="AuthorizeCredit"/>

Specifying Transaction Timeout Values in Durable Synchronous
Processes

You can specify transaction timeout values with the property SyncMaxWaitTime in the System
MBean Browser of Oracle Enterprise Manager Fusion Middleware Control. The
SyncMaxWaitTime property applies to durable synchronous processes that are called in an
asynchronous manner. If the BPEL process service component does not receive a reply within
the specified time, then the activity fails. For more information, see What You May Need to
Know About SyncMaxWaitTime and Durable Synchronous Requests Not Timing Out.

How To Specify Transaction Timeout Values
To specify transaction timeout values:

1. Log in to Oracle Enterprise Manager Fusion Middleware Control.

2. From the SOA Infrastructure menu, select SOA Administration > BPEL Properties.

3. At the bottom of the BPEL Service Engine Properties page, click More BPEL
Configuration Properties.

4. Click SyncMaxWaitTime.

5. In the Value field, specify a value in seconds.

6. Click Apply.

Chapter 7
Specifying Transaction Timeout Values in Durable Synchronous Processes

7-5

7. Click Return.

What You May Need to Know About SyncMaxWaitTime and Durable
Synchronous Requests Not Timing Out

The SyncMaxWaitTime property applies to durable synchronous processes that are called in
an asynchronous manner.

Assume you have a BPEL process with the definition shown in the following example. The
process is not durable because there are no breakpoint activities.

<receive name="receiveInput" partnerLink="client" variable="input"
createInstance="yes" />
<assign>
...
</assign>
<reply name="replyOutput" partnerLink="client" variable="output" />

If a Java client or another BPEL process calls this process, the assign activity is performed and
the reply activity sets the output message into a HashMap for the client (actually the delivery
service) to retrieve. Since the reply is the last activity, the thread returns to the client side and
tries to pick up the reply message. Since the reply message was previously inserted, the client
does not wait and returns with the reply.

Assume you have a BPEL process with a breakpoint activity, as shown in the following
example:

<receive name="receiveInput" partnerLink="client" variable="input"
createInstance="yes" />
<assign>
...
</assign>
<wait name="Wait1">
 <for>'PT10S'</for>
</wait>
<reply name="replyOutput" partnerLink="client" variable="output" />

While it is not recommended to have asynchronous activities inside a synchronous process,
BPEL does not prevent this type of design.

When the client (or another BPEL process) calls the process, the wait (breakpoint) activity is
executed. However, since the wait is processed after some time by an asynchronous thread in
the background, the executing thread returns to the client side. The client (actually the delivery
service) tries to pick up the reply message, but it is not there since the reply activity in the
process has not yet executed. Therefore, the client thread waits for the SyncMaxWaitTime
seconds value. If this time is exceeded, then the client thread returns to the caller with a
timeout exception.If the wait is less than the SyncMaxWaitTime value, the asynchronous
background thread then resumes at the wait and executes the reply. The reply is placed in the
HashMap and the waiter (the client thread) is notified. The client thread picks up the reply
message and returns.

Therefore, SyncMaxWaitTime only applies to synchronous process invocations when the
process has a breakpoint in the middle. If there is no breakpoint, the entire process is executed
by the client thread and returns the reply message.

Chapter 7
Specifying Transaction Timeout Values in Durable Synchronous Processes

7-6

Calling a One-Way Mediator with a Synchronous BPEL Process
You can expose a synchronous interface in the front end while using an asynchronous callback
in the back end to simulate a synchronous reply. This is the default behavior in BPEL
processes with the automatic setting of the bpel.config.transaction property to requiresNew
in the composite.xml file. The following example provides details.

<component name="BPELProcess1">
 <implementation.bpel src="BPELProcess1.bpel"/>
 <property name="bpel.config.transaction" type="xs:string"
 many="false">requiresNew</property>
 </component>

The requiresNew value is recommended. If you want to participate in the client's transaction,
you must set the bpel.config.transaction property to required.

Chapter 7
Calling a One-Way Mediator with a Synchronous BPEL Process

7-7

8
Invoking an Asynchronous Web Service from a
BPEL Process

This chapter describes how to configure and invoke an asynchronous web service from a
BPEL process. It also describes how to route callback messages to the correct endpoint when
multiple receive or pick activities use the same partner link, manage idempotence at the
partner link operation level, create a dynamic partner link at runtime, override security
certificates and WSDL files in dynamic partner link environments, and use WS-Addressing.
This chapter includes the following sections:

• Introduction to Invoking an Asynchronous Web Service

• Invoking an Asynchronous Web Service

• Routing Callback Messages to the Correct Endpoint when Multiple Receive or Pick
Activities Use the Same Partner Link

• Managing Idempotence at the Partner Link Operation Level

• Creating a Dynamic Partner Link at Design Time for Use at Runtime

• Overriding Security Certificates when Invoking Dynamic Partner Links

• Overriding WSDL Files of Dynamic Partner Links

• Using WS-Addressing in an Asynchronous Service

Introduction to Invoking an Asynchronous Web Service
Asynchronous messaging styles are useful for environments in which a service, such as a loan
processor, can take a long time to process a client request. Asynchronous services also
provide a more reliable fault-tolerant and scalable architecture than synchronous services.

This section introduces asynchronous web service invocation with a company called United
Loan. United Loan publishes an asynchronous web service that processes a client's loan
application request and then returns a loan offer. This use case discusses how to integrate a
BPEL process service component with this asynchronous loan application approver web
service.

This use case illustrates the key design concepts for requesting information from an
asynchronous service, and then receiving the response. The asynchronous United Loan
service in this example is another BPEL process service component. However, the same BPEL
call can interact with any properly designed web service. The target web service WSDL file
contains the information necessary to request and receive the necessary information.

For the asynchronous web service, the following actions take place (in order of priority):

1. An assign activity prepares the loan application.

2. An invoke activity initiates the loan request. The contents of this request are put into a
request variable. This request variable is sent to the asynchronous loan processor web
service.

When the loan request is initiated, a correlation ID unique to the client and partner link
initiating the request is also sent to the loan processor web service. The correlation ID

8-1

ensures that the correct loan offer response is returned to the corresponding loan
application requester.

3. The loan processor web service then sends the correct response to the receive activity,
which has been tracked by the correlation ID.

4. An assign activity reads the loan application offer.

Subsequent sections in this chapter provide specific details about the asynchronous
functionality.

Invoking an Asynchronous Web Service
This section provides an overview of the tasks for adding asynchronous functionality to a BPEL
process service component.

How to Invoke an Asynchronous Web Service
You perform the following steps to asynchronously invoke a web service:

• Add a partner link

• Add an invoke activity

• Add a receive activity

• Create assign activities

Adding a Partner Link for an Asynchronous Service
These instructions describe how to create a partner link in a BPEL process (for this example,
named LoanService) for the loan application approver web service.

To add a partner link for an asynchronous service:

1. In the SOA Composite Editor, drag a BPEL process from the Components section of the
Components window into the designer.

The Create BPEL Process dialog appears.

2. Follow the instructions in the dialog to create an asynchronous BPEL process service
component.

3. Click OK when complete.

4. In the SOA composite application in the SOA Composite Editor, double-click the BPEL
process service component (for this example, the component is named LoanBroker).

Oracle BPEL Designer appears.

5. In the Components window, expand BPEL Constructs.

6. Drag a Partner Link icon into the right Partner Links swimlane.

The Create Partner Link dialog appears.

7. Enter the following details to create a partner link and select the loan application approver
web service:

• Name

Enter a name for the partner link (for this example, LoanService is entered).

• Process

Chapter 8
Invoking an Asynchronous Web Service

8-2

Displays the BPEL process service component name (for this example, LoanBroker
appears).

• WSDL URL

Enter the name of the Web Services Description Language (WSDL) file to use. Click
the SOA Resource Browser icon above this field to locate the correct WSDL.

• Partner Link Type

Refers to the external service with which the BPEL process service component is to
interface. Select from the list (for this example, LoanService is selected).

• Partner Role

Refers to the role of the external source, for example, provider. Select from the list (for
this example, LoanServiceProvider is selected).

• My Role

Refers to the role of the BPEL process service component in this interaction. Select
from the list (for this example, LoanServiceRequester is selected).

8. Click OK.

A new partner link for the loan application approver web service (United Loan) appears in
the swimlane of the designer.

Adding an Invoke Activity
Follow these instructions to create an invoke activity and a global input variable named
request. This activity initiates the asynchronous BPEL process service component activity with
the loan application approver web service (United Loan). The loan application approver web
service uses the request input variable to receive the loan request from the client.

To add an invoke activity:

1. In the Components window, expand BPEL Constructs.

2. Drag an Invoke activity to beneath the Receive activity.

3. Go to the Structure window. While this example describes variable creation from the
Structure window, you can also create variables by clicking the Add icons to the right of
the Input and Output fields of the Invoke dialog.

4. Right-click Variables and select Expand All Child Nodes.

5. In the second Variables folder in the tree, right-click and select Create Variable.

The Create Variable dialog appears.

6. Enter the variable name and select Message Type from the options provided:

• Type

This option lets you select an XML schema simple type (for example, string, boolean,
and so on).

• Message Type

This option enables you to select a WSDL message file definition of a partner link or of
the project WSDL file of the current BPEL process service component (for example, a
response message or a request message). You can specify variables associated with
message types as input or output variables for invoke, receive, or reply activities.

To display the message type, select the Message Type option, and then select its
Browse icon to display the Type Chooser dialog. From here, expand the Message

Chapter 8
Invoking an Asynchronous Web Service

8-3

Types tree to make your selection. For this example, LoanServiceRequestMessage
is selected.

• Element

This option lets you select an XML schema element of the project schema file or
project WSDL file of the current BPEL process service component, or of a partner link.

7. Click OK.

8. Click the invoke activity to display its property fields in the Property Inspector or double-
click the invoke activity to display the Invoke dialog.

For information about editing activities in the Property Inspector, see How to Edit BPEL
Activities in the Property Inspector.

9. In the Invoke dialog, select the partner link from the Partner Link list (for this example,
LoanService is selected) and initiate from the Operation list.

10. To the right of the Input field, click the second icon and select the input variable you
created in Step 6.

The Variable Chooser dialog appears, where you can select the variable.

There is no output variable specified because the output variable is returned in the receive
operation. The invoke activity is created.

For more information about the invoke activity, see Invoke and Receive Activities.

11. Click OK.

Adding a Receive Activity
Follow these steps to create a receive activity and a global output variable named response.
This activity waits for the loan application approver web service's callback operation. The loan
application approver web service uses this output variable to send the loan offer result to the
client.

To add a receive activity:

1. From the Components window, drag a Receive activity to the location right after the
Invoke activity you created in Adding an Invoke Activity.

2. Create a variable to hold the receive information by invoking the Create Variable dialog, as
you did in Step 3 through Step 7 of Adding an Invoke Activity.

Note:

In BPEL projects that support version 2.0 of the BPEL specification, the Create
Variable dialog includes an Initialize tab that enables you to initialize the variable
type inline (for example, as a variable, expression, literal, partner link, or
property). BPEL 2.0 is the default version when you create a BPEL process. For
more information, see How to Initialize Variables with an Inline from-spec in
BPEL 2.0.

3. Double-click the Receive activity and change its name to receive_invoke.

4. From the Partner Link list, select the partner link (for this example, LoanService is
selected).

5. From the Operation list, select onResult. Do not select the Create Instance check box.

Chapter 8
Invoking an Asynchronous Web Service

8-4

6. Select the variable you created in Step 3 through Step 7 of Adding an Invoke Activity.

7. Click OK.

The receive activity and the output variable are created. Because the initial receive activity
in the BPEL file (for this example, LoanBroker.bpel) created the initial BPEL process
service component instance, a second instance does not need to be created.

Performing Additional Activities
In addition to the asynchronous-specific tasks, you must perform the following tasks.

• Create an initial assign activity for data manipulation in front of the invoke activity that
copies the client's input variable loan application request document payload into the loan
application approver web service's request variable payload.

• Create a second assign activity for data manipulation after the receive activity that copies
the loan application approver web service's response variable loan application results
payload into the output variable for the client to receive.

What Happens When You Invoke an Asynchronous Web Service
This section describes what happens when you invoke an asynchronous web service.

portType Section of the WSDL File
The portType section of the WSDL file (in this example, for LoanService) defines the ports to
be used for the asynchronous service.

Asynchronous services have two port types. Each port type performs a one-way operation. In
this example:

• One port type responds to the asynchronous process

• The other calls back the client with the asynchronous response

In the example shown below, the portType LoanServiceCallback receives the client's loan
application request and the portType LoanService asynchronously calls back the client with
the loan offer response.

<!-- portType implemented by the LoanService BPEL process -->
 <portType name="LoanService">
 <operation name="initiate">
 <input message="tns:LoanServiceRequestMessage"/>
 </operation>
 </portType>
<!-- portType implemented by the requester of LoanService BPEL process
for asynchronous callback purposes
-->
 <portType name="LoanServiceCallback">
 <operation name="onResult">
 <input message="tns:LoanServiceResultMessage"/>
 </operation>
 </portType>

partnerLinkType Section of the WSDL File
The partnerLinkType section of the WSDL file (in this example, for LoanService) defines the
following characteristics of the BPEL process service component:

Chapter 8
Invoking an Asynchronous Web Service

8-5

• The role (operation) played

• The portType provided for receiving messages within the conversation

Partner link types in asynchronous services have two roles: one for the web service provider
and one for the client requester.

In the conversation shown in the following example, the LoanServiceProvider role and
LoanService portType are used for client request messages and the LoanServiceRequester
role and LoanServiceCallback portType are used for asynchronously returning (calling back)
response messages to the client.

<plnk:partnerLinkType name="LoanService">
 <plnk:role name="LoanServiceProvider">
 <plnk:portType name="client:LoanService"/>
 </plnk:role>
 <plnk:role name="LoanServiceRequester">
 <plnk:portType name="client:LoanServiceCallback"/>
 </plnk:role>
 </plnk:partnerLinkType>

Two port types are combined into this single asynchronous BPEL process service component:
portType="services:LoanService" of the invoke activity and
portType="services:LoanServiceCallback" of the receive activity. Port types are essentially
a collection of operations to be performed. For this BPEL process service component, there
are two operations to perform: initiate in the invoke activity and onResult in the receive
activity.

Partner Links Section in the BPEL File
To call the service from BPEL, you use the BPEL file to define how the process interfaces with
the web service. View the partnerLinks section. The services with which a process interacts
are designed as partner links. Each partner link is characterized by a partnerLinkType.

Each partner link is named. This name is used for all service interactions through that partner
link. This is critical in correlating responses to different partner links for simultaneous requests
of the same type.

Asynchronous processes use a second partner link for the callback to the client. In this
example, the second partner link, LoanService, is used by the loan application approver web
service. The following provides an example.

 <!-- This process invokes the asynchronous LoanService. -->

 <partnerLink name="LoanService"
 partnerLinkType="services:LoanService"
 myRole="LoanServiceRequester"
 partnerRole="LoanServiceProvider"/>
 </partnerLinks>

The attribute myRole indicates the role of the client. The attribute partnerRole role indicates
the role of the partner in this conversation. Each partnerLinkType has myRole and
partnerRole attributes in asynchronous processes.

Composite Application File
In the composite.xml file, the loan application approver web service appears, as shown below.

Chapter 8
Invoking an Asynchronous Web Service

8-6

<component name="LoanBroker">
 <implementation.bpel process="LoanBroker.bpel"/>
</component>

For more information, see Adding a Partner Link for an Asynchronous Service for instructions
on creating a partner link.

Invoke and Receive Activities
View the variables and sequence sections. Two areas of particular interest concern the
invoke and receive activities:

• An invoke activity invokes a synchronous web service (as discussed in Invoking a
Synchronous Web Service from a BPEL Process) or initiates an asynchronous service.

The invoke activity includes the request global input variable defined in the variables
section. The request global input variable is used by the loan application approver web
service. This variable contains the contents of the initial loan application request document.

• A receive activity that waits for the asynchronous callback from the loan application
approver web service. The receive activity includes the response global output variable
defined in the variables section. This variable contains the loan offer response. The
receive activity asynchronously waits for a callback message from a service. While the
BPEL process service component is waiting, it is dehydrated, or compressed and stored,
until the callback message arrives.

The following provides an example.

 <variables>
 <variable name="request"
 messageType="services:LoanServiceRequestMessage"/>
 <variable name="response"
 messageType="services:LoanServiceResultMessage"/>
 </variables>
<sequence>
 <!-- initialize the input of LoanService -->
 <assign>
 . . .
 . . .
 </assign>
 <!-- initiate the remote process -->
 <invoke name="invoke" partnerLink="LoanService"
 portType="services:LoanService"
 operation="initiate" inputVariable="request"/>
 <!-- receive the result of the remote process -->
 <receive name="receive_invoke" partnerLink="LoanService"
 portType="services:LoanServiceCallback"
 operation="onResult" variable="response"/>

When an asynchronous service is initiated with the invoke activity, a correlation ID unique to
the client request is also sent, using Web Services Addressing (WS-Addressing) (described in
Using WS-Addressing in an Asynchronous Service). Because multiple processes may be
waiting for service callbacks, the server must know which BPEL process service component
instance is waiting for a callback message from the loan application approver web service. The
correlation ID enables the server to correlate the response with the appropriate requesting
instance.

Chapter 8
Invoking an Asynchronous Web Service

8-7

createInstance Attribute for Starting a New Instance
You may notice a createInstance attribute in the initial receive activity. In this initial receive
activity, the createInstance element is set to yes. This starts a new instance of the BPEL
process service component. At least one instance startup is required for a conversation. For
this reason, you set the createInstance variable to no in the second receive activity.

The following example shows the source code for the createInstance attribute:

 <!-- receive input from requester -->
 <receive name="receiveInput" partnerLink="client"
 portType="tns:LoanBroker"
 operation="initiate" variable="input"
 createInstance="yes"/>

Dehydration Points for Maintaining Long-Running Asynchronous Processes
To automatically maintain long-running asynchronous processes and their current state
information in a database while they wait for asynchronous callbacks, you use a database as a
dehydration store. Storing the process in a database preserves the process and prevents any
loss of state or reliability if a system shuts down or a network problem occurs. This feature
increases both BPEL process service component reliability and scalability. You can also use it
to support clustering and failover.

You insert this point between the invoke activity and receive activity. You can also explicitly
specify a dehydration point with a dehydrate activity. For more information, see Dehydrate
Activity.

Multiple Runtime Endpoint Locations
Oracle SOA Suite provides support for specifying multiple partner link endpoint locations. This
capability is useful for failover purposes if the first endpoint is down. To provide an alternate
partner link endpoint location, add the location attribute to the composite.xml file. The
following provides an example.

<reference name="HeaderService ...>
<binding.ws port="http://services.otn.com/HelloWorldApp#wsdl.endpoint(client/
 HelloWorldService_pt)"
location="http://server:port/soa-infra/services/default/
 HelloWorldService!1.0/client?WSDL">
<property name="endpointURI">http://jsmith.us.example.com:80/a.jsp
@http://myhost.us.example.com:8888/soa-infra/services/HelloWorldApp/HelloWorld!
1.0*2007-10-22_14-33-04_195/client
 </property>
</binding.ws>
</reference>

What You May Need to Know About Midprocess Receive Activities
Consuming Messages After Timing Out

A BPEL process can consume midprocess receive activity messages even after the expiration
of a configured timeout on the receive activity, if the exception resulting from the timeout goes
unhandled. In these scenarios, the callback message is consumed when it is delivered. This is
the expected behavior.

For example, assume you perform the following tasks:

Chapter 8
Invoking an Asynchronous Web Service

8-8

• Create a SOA composite application with a client BPEL process and service BPEL process
to exchange a message using asynchronous invoke and receive activities.

• Configure a timeout of 30 seconds in the Timeout tab of the receive activity of the client
BPEL process.

• Configure a wait activity to wait for five minutes in the service BPEL process.

You may expect that after the timeout occurs, the client BPEL process is marked as completed
in the faulted state instead of remaining in the running state, and the callback message from
the service BPEL process is ignored. However, when the timeout fault is thrown on the client
BPEL process, it remains in the running state. When the service BPEL process responds five
minutes after the completion of the wait activity, the response is sent back to the client BPEL
process and the response is consumed by the client BPEL process and reconciled with the
running process instance.

What You May Need to Know About Multiple Client Components Invoking a
Composite

If multiple client components invoke a SOA composite application by using its remote WSDL
file, the callback response can only be retrieved by the original client calling the remote
composite if it has a receive activity. When the original client does not have a receive activity
and any of the subsequent clients calling the composite has a receive activity, the response
message is lost. It goes into the recovery state of the original client process.

This is the expected behavior. This is because the composite being invoked cannot tell which
client has a receive activity or if the client is indeed a BPEL process service component.

What You May Need to Know About Limitations on BPEL 2.0 IMA Support
Receive activities are a type of inbound message activity (IMA). Other examples of IMAs are
as follows:

• onMessage branches of a scope activity (in BPEL 1.1) or a pick activity

• onEvent branches of a scope activity in BPEL 2.0

The BPEL 2.0 specification allows multiple IMAs to work with each other or with other IMAs
derived from extension activities. To provide for consistent runtime behavior, the BPEL 2.0
specification allows for correlation sets with the initiate attribute set to join.However, Oracle
BPEL Process Manager's implementation of the BPEL 2.0 specification does not support this
behavior. The only way to support multiple IMAs is by coding them as onMessage branches for
a pick activity (that is, setting createInstance to yes).Oracle BPEL Process Manager also
does not support other forms of multiple IMAs, such as a flow activity with two branches, each
with a receive activity and with createInstance set to yes and correlation sets with initiate
set to join.

As a workaround, you must design two different BPEL processes with the two receive activities
in alternating order, as follows:

• Process1 with receive1 followed by receive2, and only receive1 having createInstance
set to yes.

• Process2 with receive2 followed by receive1, and only receive2 having createInstance
set to yes.

The same also applies for any other combination of IMAs, such as a receive activity and pick
activity, or two pick activities.

Chapter 8
Invoking an Asynchronous Web Service

8-9

What Happens When You Specify a Conversation ID
You can also enter an optional conversation ID value in the Conversation ID field of an invoke
activity (and other activities such as a receive activity and the onMessage branch of a pick or
scope activity).

The conversation ID identifies a process instance during an asynchronous conversation. By
default, the BPEL process service engine generates a unique ID for each conversation (which
can span multiple invoke and receive activities), as specified by WSA addressing. If you want,
you can specify your own value for the service engine to use. Conversation IDs are
implemented with the bpelx:conversationId extension.

Note:

You cannot explicitly set the Conversation ID (internal/hidden state) of a composite
while using AQ Adapter. The Database sets the Conversation ID in this case.

bpelx:conversationId in BPEL 1.1
The following provides an example of the bpelx:conversationId extension in a BPEL project
that supports BPEL version 1.1. The bpelx:conversationId extension takes an XPath
expression.

<invoke ... bpelx:conversationId="$convId2">
</invoke>

<receive ... bpelx:conversationId="$convId2">
</receive>

<onMessage... bpelx:conversationId="$convId2">
</onMessage>

bpelx:conversationId in BPEL 2.0
The following provides an example of the bpelx:conversationId extension in a BPEL project
that supports BPEL version 2.0. The bpelx:conversationId extension takes a BPEL 2.0
XPath expression.

<invoke ...>
 <bpelx:conversationId>$convId1</bpelx:conversationId>
</invoke>

<receive ...>
 <bpelx:conversationId>$convId1</bpelx:conversationId>
</receive>

<onMessage ...>
 <bpelx:conversationId>$convId2</bpelx:conversationId>
</onMessage>

Chapter 8
Invoking an Asynchronous Web Service

8-10

Routing Callback Messages to the Correct Endpoint when
Multiple Receive or Pick Activities Use the Same Partner Link

The replyToAddress normalized message property is required for resolving the routing of
callback messages to the correct endpoint address when multiple receive or pick activities are
associated with the same partner link.

This is because the BPEL process service engine only stores the replyToAddress property
once when receiving a request from a partner link at the initiating receive or pick activity. The
replyToAddress property routes the callback message and is not reset if a midprocess receive
or pick activity is used. The replyToAddress property uses the bpelx:inputProperty
extension.

How to Route Callback Messages to the Correct Endpoint when Multiple
Receive and Pick Activities Use the Same Partner Link

Set this property to the client's replyToAddress on the invoke activity (for the callback)
following the midprocess receive activity. This means that even if the client sends WS-
Addressing replyTo information for a midprocess receive activity, it is not set on the partner
link unless you use an assign activity to set it dynamically.

For example, assume your BPEL process is as shown below:

Caller Callee

<receive> <receive> Initiate CS1
<invoke>initiate CS1 --------> <receive> Use CS1
 <wait>
<receive>use CS1 <-------- <invoke>
<invoke>

To route callback messages to the correct endpoint when multiple receive and pick
activities use the same partner link:

1. Obtain the client's replyToAddress value from the midprocess receive activity.

<receive name="receiveMsgFromAccessor" partnerLink="midprocess_client"
 portType="client:mySingletonBPEL" operation="process"
 variable="ReceiveMidProcess" createInstance="no">
<bpelx:fromProperties>
 <bpelx:fromProperty name="replyToAddress" variable="var_replyToAddress"/>
</bpelx:fromProperties>
 <correlations>
 <correlation set="<YourCorrset>" initiate="no"/>
 </correlations>
</receive>

2. On the invoke activity (for the callback), click the Properties tab.

3. Click the Add icon to select the property and its content (either a variable or an XPath
expression).

Chapter 8
Routing Callback Messages to the Correct Endpoint when Multiple Receive or Pick Activities Use the Same Partner Link

8-11

Note:

In BPEL 1.1 processes, the properties are automatically displayed in the
Properties column. Select the property in the Name column and double-click the
Value and Type columns to enter appropriate values.

4. In the Name column, scroll down and select the replyToAddress property. Do not select
wsa.replyToAddress or bpel.replyToAddress.

5. In the Value column, specify the variable name as the value (for this example,
var_replyToAddress from Step 1 is entered), and click OK.

The Edit Invoke dialog appears as shown in Figure 8-1.

Figure 8-1 Properties Tab of Invoke Activity

6. Click Apply, then OK.

7. In Oracle BPEL Designer, click Source.

The invoke activity in the BPEL process file looks as follows:

<invoke name="callbackAccessor" partnerLink="midprocess_client"
 portType="client:mySingletonBPELCallback"
 operation="processResponse"
inputVariable="CallbackAccessorVar"
 bpelx:invokeAsDetail="no">
 <bpelx:inputProperty name="replyToAddress"
variable="var_replyToAddtess"/>

Chapter 8
Routing Callback Messages to the Correct Endpoint when Multiple Receive or Pick Activities Use the Same Partner Link

8-12

Managing Idempotence at the Partner Link Operation Level
An idempotent activity is an activity that can be safely retried. Idempotent activities are
applicable to both durable and transient processes. You can manage idempotence at the
operation level of a partner link. For example, some partner links can expose multiple
operations (for example, getEmployee, depositPayCheck, and so on). You can define some
operations as idempotent (for example, getEmployee). This enables these operations to be
called multiple times. Other operations may not need to be idempotent (for example,
depositPayCheck), and do not require this setting. Dehydration does occur after a
nonidempotent operation.

By default, all partner link operations are idempotent. If you want, you can set an operation to
be nonidempotent. This setting provides the same functionality as the idempotent deployment
descriptor property, but at the more granular, operational level.

For more information about the idempotent deployment descriptor property, see What You
May Need to Know About the idempotent Property and Fault Handling and Introduction to
Deployment Descriptor Properties.

How to Manage Idempotence at the Partner Link Operation Level
To manage idempotence at the partner link operation level:

1. In Oracle BPEL Designer, double-click the partner link that includes the operations for
which to manage idempotence.

2. Click the Idempotence tab of the partner link.

By default, all operations are selected to be idempotent in the Idempotent column.

3. If you want to define an operation to be nonidempotent, deselect the Idempotent check
box for that operation. Figure 8-2 provides details.

Figure 8-2 Idempotence Tab of Partner Link Activity

4. Click Apply.

Chapter 8
Managing Idempotence at the Partner Link Operation Level

8-13

5. Click OK.

For more information about idempotence and the idempotent property, see Introduction to
Deployment Descriptor Properties.

Creating a Dynamic Partner Link at Design Time for Use at
Runtime

When you design a SOA composite application, you can face the following challenges:

• Service endpoints (addresses) may not be known at design time.

• Endpoint references may need to change while the application is running.

The dynamic partner link feature enables you to dynamically assign an endpoint reference to a
partner link for use at runtime in BPEL versions 1.1 and 2.0. The dynamic partner link provides
conditions, similar to a switch activity, that are evaluated at runtime.

How To Create a Dynamic Partner Link at Design Time for Use at Runtime
To create a dynamic partner link at design time for use at runtime:

1. Create a WSDL file that contains multiple services that use the same portType.

<service name="AmericanLoan">
 <port name="LoanServicePort" binding="tns:LoanServiceBinding">
 <soap:address location="host:port/soa-infra/services/domain_
name/AmericanLoan/client"/>
 </port>
</service>

<service name="AlliedLoan">
 <port name="LoanServicePort" binding="tns:LoanServiceBinding">
 <soap:address location="host:port/soa-infra/services/domain_
name/AlliedLoan/client"/>
 </port>
</service>

<service name="AcmeLoan">
 <port name="LoanServicePort" binding="tns:LoanServiceBinding">
 <soap:address location="host:port/soa-infra/services/domain_
name/AcmeLoan/client"/>
 </port>
</service>

2. Drag a SOAP binding component into the External References swim lane of the SOA
Composite Editor.

The Create Web Service dialog appears.

3. Define the web service, and click OK.

When complete, the reference binding component entry in the composite.xml file that uses
the WSDL looks as follows:

<reference name="loanService">
 <interface.wsdl interface="http://services.otn.com#wsdl.interface(LoanService)"
callbackInterface="http://services.otn.com#wsdl.interface(LoanServiceCallback)"
/>
 <binding.ws port=

Chapter 8
Creating a Dynamic Partner Link at Design Time for Use at Runtime

8-14

 "http://services.otn.com#wsdl.endpoint(AmericanLoan/LoanService_pt)"/>
 </reference>

Note:

• Adding the binding.ws port setting is optional. This is because the port is
overridden at runtime by properties passed from Oracle BPEL Process
Manager.

• If there is no port setting, and there is no composite import of the concrete
WSDL associated with this reference, you must specify the location of the
concrete WSDL with a location attribute.

4. Double-click the BPEL process to enter Oracle BPEL Designer.

5. Drag an Assign activity into the designer.

6. Above the target partner link, select the XML Fragment icon, as shown in Figure 8-3. If
you are using BPEL 2.0, drag the Literal icon.

Figure 8-3 XML Fragment Icon

7. Drag the icon to the target partner link.

The XML Fragment dialog for BPEL 1.1 appears. If you are using BPEL 2.0, the Literal
dialog appears.

8. Assign an XML fragment containing the endpoint reference to the partner link, and click
OK. Figure 8-4 provides details.

Chapter 8
Creating a Dynamic Partner Link at Design Time for Use at Runtime

8-15

Figure 8-4 XML Fragment Dialog in BPEL 1.1

When complete, the BPEL file contains one of the services defined in the WSDL.

The following provides a BPEL 1.1 sample:

<EndpointReference xmlns="http://schemas.xmlsoap.org/ws/2003/03/addressing">
 <Address>http://host:port/soa-infra/services/domain_name
 /AlliedLoan/client</Address>
<ServiceName xmlns:ns1="http://services.otn.com"
 PortName="LoanServicePort">ns1:AlliedLoan</ServiceName>
</EndpointReference>

The following provides a BPEL 2.0 sample:

<assign>
 <copy>
 <from>
 <literal>
 <sref:service-ref>
 <services:EndpointReference>
 <services:Address>http://host:port/soa-infra/services/domain_
 name/AlliedLoan/client</services:Address>
 <services:ServiceName
 xmlns:ns1="http://services.otn.com">ns1:AlliedLoan</services:
 ServiceName>
 </services:EndpointReference>
 </sref:service-ref>
 </literal>
 </from>
 <to partnerLink="LoanService"/>
 </copy>
</assign>

Chapter 8
Creating a Dynamic Partner Link at Design Time for Use at Runtime

8-16

Overriding Security Certificates when Invoking Dynamic Partner
Links

You can interact with multiple web services using dynamic partner links. This interaction may
involve using message protection policies that require different security certificates for
encrypting the message. These certificates may be different for each web service. You can
specify a keystore recipient alias value to override the security certificate in the WSDL file of
the web service.

To override security certificates when invoking partner links:

1. Define a variable of type string (for example, KEYSTORE_RECIPIENT_ALIAS).
Figure 8-5 provides details.

Figure 8-5 Variable Definition of KEYSTORE_RECIPIENT_ALIAS

2. In the Copy Rules tab of an assign activity, assign orakey to the variable
KEYSTORE_RECIPIENT_ALIAS. Figure 8-6 provides details.

Chapter 8
Overriding Security Certificates when Invoking Dynamic Partner Links

8-17

Figure 8-6 Assignment of orakey to KEYSTORE_RECIPIENT_ALIAS

3. In the invoke activity that invokes the partner link for the web service, click the Properties
tab.

4. Click the keystore.recipient.alias property.

Note:

In BPEL 2.0 processes, the properties are not automatically displayed in the
Properties column. You must click the Add icon to select the property and its
content (either a variable or an XPath expression).

5. Double-click the Value column to display the Browse (...) icon.

6. Click the Browse (...) icon to display the Adapter Property Value dialog.

7. Click the Browse icon to display the Variable XPath Builder dialog.

8. Select keystore_recipient_alias as the value, and click OK. Figure 8-7 provides details.
This property overrides the security certificates set in the WSDL file while invoking a web
service in a BPEL process.

Note:

In BPEL 2.0, there are only Name and Value columns in the Properties table.
The Type column is not included.

Chapter 8
Overriding Security Certificates when Invoking Dynamic Partner Links

8-18

Figure 8-7 keystore.recipient.alias Normalized Message Property of Invoke Activity

9. Click Apply, then OK.

When complete, the BPEL file is defined as follows:

. . .

. . .
<variables>
 <variable name="WsaAddress" element="ns6:EndpointReference"/>
 <variable name="KEYSTORE_RECIPIENT_ALIAS" type="xsd:string"/>
</variables>

<assign name="AssignAddress">
 <copy>
 <from
expression="'http://localhost:8001/soa-infra/services/default/ServiceWithNewCer
tificate!1.0*soa_c94537fb-97a4-4b0f-900f-fefffc34f7fe/service_ep'"/>
 <to variable="WsaAddress"
 query="/ns6:EndpointReference/ns6:Address"/>
 </copy>
 <copy>
 <from variable="WsaAddress"/>
 <to partnerLink="Service"/>
 </copy>
</assign>

<assign name="AssignAlias">
 <copy>
 <from expression='"orakey"'/>
 <to variable="KEYSTORE_RECIPIENT_ALIAS"/>
 </copy>
</assign>

<invoke name="Invoke"
 inputVariable="Invoke_InputVariable"
 partnerLink="Service"
 portType="ns1:ServiceBPELProcess"

Chapter 8
Overriding Security Certificates when Invoking Dynamic Partner Links

8-19

 operation="process"
 bpelx:invokeAsDetail="no">

 <bpelx:inputProperty name="endpointURI"
 variable="inputVariable"
 part="payload"
 query="/client:process/client:input"/>

 <bpelx:inputProperty name="keystore.recipient.alias"
 variable="KEYSTORE_RECIPIENT_ALIAS"/>
</invoke>

For more information about normalized message properties, see Propagating Normalized
Message Properties Through Message Headers.

Overriding WSDL Files of Dynamic Partner Links
You may need to override the default WSDL file used by dynamic partner links for the following
reasons:

• You must integrate with services that use message protection security policies.

• The WSDL may contain important information such as the certificate used for message
encryption.

The normalized message property endpointWSDL enables you to specify the WSDL file of the
dynamic partner link. You must specify the entire WSDL dynamically instead of just the
endpoint. This enables it to be passed to Oracle Web Services Manager (OWSM), which can
then retrieve the correct service certificate from the specified WSDL.

The certificate in the WSDL file is ignored in the following cases:

• The recipient.key.alias property name described in Overriding Security Certificates when
Invoking Dynamic Partner Links is present.

• The endpointWSDL property is not present.

Otherwise, the certificate is retrieved from the WSDL file.

To override WSDL files of dynamic partner links:

1. Define a variable of type string (for this example, the_wsdl_var is defined).

2. In the Copy Rules tab of an assign activity, assign the WSDL to the_wsdl_var.

3. In the invoke activity that invokes the partner link, click the Properties tab.

4. Click the endpointWSDL property.

Note:

In BPEL 2.0 processes, the properties are not automatically displayed in the
Properties column. You must click the Add icon to select the property and its
content (either a variable or an XPath expression).

5. Double-click the Value column to display the Browse (...) icon.

6. Click the Browse (...) icon to display the Adapter Property Value dialog.

7. Click the Browse icon to display the Variable XPath Builder dialog.

Chapter 8
Overriding WSDL Files of Dynamic Partner Links

8-20

8. Select the_wsdl_var as the variable, and click OK. This value specifies the WSDL of the
dynamic partner link.

Note:

In BPEL 2.0, there are only Name and Value columns in the Properties table.
The Type column is not included.

Figure 8-8 endpointWSDL Normalized Message Property of Invoke Activity

When complete, the BPEL file is defined as follows:

<variables>
 <variable name="the_wsdl_var" type="xsd:string"/>
</variables>

<assign name="myAssignWsdl">
 <copy>
 <from
expression='"http://localhost:8001/soa-infra/services/default/ServiceWithNewCer
tificate!1.0/service_ep?WSDL"'/>
 <to variable="the_wsdl_var"/>
 </copy>
</assign>

<invoke name="Invoke"
 inputVariable="Invoke_InputVariable"
 partnerLink="Service"
 portType="ns1:ServiceBPELProcess"
 operation="process"
 bpelx:invokeAsDetail="no">

Chapter 8
Overriding WSDL Files of Dynamic Partner Links

8-21

 <bpelx:inputProperty name="endpointWSDL"
 variable="the_wsdl_var"/>

</invoke>

For more information about normalized message properties, see Propagating Normalized
Message Properties Through Message Headers.

Using WS-Addressing in an Asynchronous Service
Because there can be many active instances at any time, the server must be able to direct web
service responses to the correct BPEL process service component instance. You can use WS-
Addressing to identify asynchronous messages to ensure that asynchronous callbacks locate
the appropriate client.

Figure 8-9 provides an overview of WS-Addressing. WS-Addressing uses Simple Object
Access Protocol (SOAP) headers for asynchronous message correlation. Messages are
independent of the transport or application used.

Figure 8-9 Callback with WS-Addressing Headers

Figure 8-9 shows how messages are passed along with WS headers so that the response can
be sent to the correct destination.

The example in this chapter uses WS-Addressing for correlation. To view the messages, you
can use TCP tunneling, which is described in Using TCP Tunneling to View Messages
Exchanged Between Programs.

Chapter 8
Using WS-Addressing in an Asynchronous Service

8-22

WS-Addressing defines the following information typically provided by transport protocols and
messaging systems. This information is processed independently of the transport or
application:

• Endpoint location (reply-to address)

The reply-to address specifies the location at which a BPEL client is listening for a callback
message.

• Conversation ID

Use TCP tunneling to view SOAP messages exchanged between the BPEL process
service component flow and the web service (including those containing the correlation ID).
You can see the exact SOAP messages that are sent to, or received from, services with
which a BPEL process service component flow communicates.

You insert a software listener between your BPEL process service component flow and the
web service. Your BPEL process service component flow communicates with the listener
(called a TCP tunnel). The listener forwards your messages to the web service, and also
displays them. Responses from the web service are returned to the tunnel, which displays
and forwards them back to the BPEL process service component.

How to Use WS-Addressing in an Asynchronous Service
WS-Addressing is a public specification and is the default correlation method supported by
Oracle BPEL Process Manager and Oracle Mediator. You do not need to edit the .bpel
and .wsdl files to use WS-Addressing.

Using TCP Tunneling to View Messages Exchanged Between Programs
The messages that are exchanged between programs and services can be seen through TCP
tunneling. This is particularly useful when you want to see the exact SOAP messages
exchanged between the BPEL process service component flow and web services.

To monitor the SOAP messages, insert a software listener between your flow and the service.
Your flow communicates with the listener (called a TCP tunnel) and the listener forwards your
messages to the service, and displays them. Likewise, responses from the service are
returned to the tunnel, which displays them and then forwards them back to the flow.

To view all the messages exchanged between the server and a web service, you need only a
single TCP tunnel for synchronous services because all the pertinent messages are
communicated in a single request and reply interaction with the service. For asynchronous
services, you must set up two tunnels, one for the invocation of the service and another for the
callback port of the flow.

Setting Up a TCP Listener for Synchronous Services
Follow these steps to set up a TCP listener for synchronous services initiated by an Oracle
BPEL Process Manager and Oracle Mediator process:

1. Visit the following URL for instructions on how to download and install Axis TCP Monitor
(tcpmon)

http://ws.apache.org/commons/tcpmon/
2. Visit the following URL for instructions on how to use tcpmon:

http://ws.apache.org/axis/java/user-guide.html
3. Place axis.jar in your class path.

Chapter 8
Using WS-Addressing in an Asynchronous Service

8-23

http://ws.apache.org/commons/tcpmon/
http://ws.apache.org/axis/java/user-guide.html

4. Start tcpmon:

C:\...\> java org.apache.axis.utils.tcpmon localport remoteHost
port_on_which_remote_server_is_running

5. In the composite.xml file, add the endpointURI property under binding.ws for your flow to
override the endpoint of the service.

6. From the operating system command prompt, compile and deploy the process with ant.

The same technique can see SOAP messages passed to invoke a BPEL process service
component as a web service from another tool kit such as Axis or .NET.

Setting Up a TCP Listener for Asynchronous Services
Follow these steps to set up a TCP listener to display the SOAP messages for callbacks from
asynchronous services:

1. Start a TCP listener to listen on a port and send the Oracle BPEL Process Manager port.

a. Open Oracle Enterprise Manager Fusion Middleware Control.

b. From the SOA Infrastructure menu, select SOA Administration > Common
Properties.

c. Specify the value for Callback Server URL. This URL is sent by the server as part of
the asynchronous callback address to the invoker.

2. From the SOA Infrastructure menu, select Administration > System MBean Browser.

3. Expand Application Defined MBeans > oracle.soa.config > Server : soa_server >
SCAComposite.

where soa_server is the specific server instance name (for example, AdminServer).

All the SOA composite applications deployed on the server appear.

4. Follow these steps to set this property on a composite application. This action enables it to
apply to all bindings in the composite application.

a. Click your composite.

b. Ensure the Attributes tab is selected.

c. In the Name column, click Properties.

d. Click the Add icon.

e. Expand the newly added Element_number (appears at the end of the list).

where number is the next sequential number beyond the last property. For example, if
the property list contains twelve elements, adding a new property causes Element_13
to be displayed.

f. In the name field, enter oracle.webservices.local.optimization.

g. In the value field, enter false.

h. In the many field, enter false.

i. Click Apply, and then click Return.

j. In the Name column on the Operations tab, click save.

k. Click Invoke to execute the operation.

l. Click Return or click a node in the System MBean Browser pane.

Chapter 8
Using WS-Addressing in an Asynchronous Service

8-24

Note:

After adding, deleting, or updating a property, you can click the Refresh
cached tree data icon in the upper right corner of the System MBean
Browser page to see the new data.

5. Follow these steps to set this property on a specific binding.

a. Expand your composite application. and navigate to the specific
SCAComposite.SCAReference.SCABinding folder.

b. Click WSBinding.

c. Perform steps 44.b through 44.l.

6. Initiate any flow that invokes asynchronous web services. You can combine this with the
synchronous TCP tunneling configuration to send a service initiation request through your
first TCP tunnel.

The callbacks from the asynchronous services are shown in the TCP listener.

If you are an Oracle JDeveloper user, you can also use the built-in Packet Monitor to see
SOAP messages for both synchronous and asynchronous services.

For information about using correlation sets for message correlation, see Using Correlation
Sets and Message Aggregation .

Chapter 8
Using WS-Addressing in an Asynchronous Service

8-25

9
Using Correlation Sets and Message
Aggregation

This chapter describes how to use correlation sets to ensure that asynchronous callbacks
locate the appropriate client. It also describes how to use aggregation patterns to route
messages to the same instance.
This chapter includes the following sections:

• Introduction to Correlation Sets in an Asynchronous Service

• Creating Correlation Sets in Oracle JDeveloper

• Routing Messages to the Same Instance

Introduction to Correlation Sets in an Asynchronous Service
Correlation sets provide a method for directing web service responses to the correct BPEL
process service component instance. You can use correlation sets to identify asynchronous
messages to ensure that asynchronous callbacks locate the appropriate client. You define
correlation sets when interactions are not simple invoke-receive activities.

Correlation sets are a BPEL mechanism that provides for the correlation of asynchronous
messages based on message body contents. To use this method, define the correlation sets in
your BPEL process. This method is designed for services that do not support WS-Addressing
or for certain sophisticated conversation patterns, for example, when the conversation is in the
form A > B > C > A instead of A > B > A.

Scenarios for Using Correlation Sets
Correlations enable you to associate asynchronous messages based on message body
contents. Note that not all business scenarios require correlations:

• Synchronous calls do not require correlations because the conversation context is
maintained in the stack or across a TCP connection.

• Consenting BPEL processes typically correlate messages using WS-Addressing headers
to pass tokens that act like session cookies in a web application. For more information, see
Using WS-Addressing in an Asynchronous Service.

Correlation is required in the following scenarios. In these cases, a BPEL process must be
configured to view some content of the message to select the correct process instance to
receive the message.

• When using an asynchronous service that does not support WS-Addressing.

• When receiving unsolicited messages from another system.

• When the message travels through several services and the response is solicited by the
initial service from the last service directly.

• When communicating through files.

9-1

Understanding Correlation Set Contents and Concepts
This section provides an overview of key correlation set concepts.

The correct BPEL instance using correlation sets is obtained as follows:

• A BPEL process provides a construct called a correlation set to allow for custom
correlation.

• A correlation set is a collection of properties used by the BPEL process service engine to
identify the correct process to receive a message.

• Each property in the correlation set can be mapped to an element in one or more message
types through property aliases. Figure 9-1 provides an overview.

Figure 9-1 Correlation Sets

Note the following key correlation guidelines:

• Only the process receiving the message is concerned about correlation. As long as the
sending service includes sufficient information in the message to correlate it with previous
activities, the sender does not need to be aware that correlation is occurring.

• Correlation properties must be unique for the duration of the life of the BPEL process that
sets them.

• Ensure that no two processes are working with the same correlation tokens. For example,
using social security numbers to correlate an expense claims process is not recommended
if you start two separate instances of the process.

• Properties can be made up values or actual business identifiers such as purchase orders
or numbers. They do not need to be strings; they can be any reasonable XML type.

Key correlation concept attributes are as follows. You set these attributes in Oracle JDeveloper
when designing a correlation set with the Correlation wizard:

• An initiate attribute is set as follows:

– yes: The correlation set is initiated with the values of the properties available in the
message being transferred.

– no: The correlation set validates the value of the property available in the message.

• A pattern attribute is set as follows:

– in (for BPEL 1.1) or response (for BPEL 2.0): The correlation property is set and
validated on the incoming message.

– out (for BPEL 1.1) or request (for BPEL 2.0): The correlation property is set and
validated on the outgoing BPEL message.

Chapter 9
Introduction to Correlation Sets in an Asynchronous Service

9-2

– out-in (for BPEL 1.1) or request-response (for BPEL 2.0): The correlation property is
set and validated on both incoming and outgoing messages.

• Property aliases map a global property to a field in a specific message part. This action
enables the property name to become an alias for the message part and location. The
alias can be used in XPath expressions.

Overview of Correlation Set Creation
Table 9-1 provides an overview of the steps for creating a correlation set. References to the
pages of the Correlation wizard on which you perform these steps and examples of values to
set are provided.

Table 9-1 Correlation Set Creation Overview

Step Correlation Wizard Page Example

Create a correlation set with
property names and types to
correlate the exchange.

Set this information on the Correlation
wizard - Define Correlation Set page.
See Figure 9-2.

Create a phonenumber correlation set with
property names and types:

• username of type string
• userordernumber of type int
• IsGift of type boolean

Add the correlation to the invoke
or receive activity that begins
the conversation and set Initiate
to yes.

Select the activity and set the Initiate
attribute on the Correlation wizard -
Initiate Settings page. See Figure 9-3.

Select the internalReceive receive activity and
set Initiate to yes.

Create property alias mappings
to appropriate elements in each
message. They must have the
same value in both messages of
the conversation. The elements
can be different names and in
different structures in the two
messages, but they must
contain the same value for
correlation to work.

Set this information on the Correlation
wizard - Property Aliases page. See
Figure 9-7. Two editors available on this
page enable you to create the property
alias mappings:

• Alias Editor (Figure 9-4)
• Alias Drag and Drop Editor

(Figure 9-5)

Define the property aliases to populate the
correlation set property values at runtime:

• Map alias username to the name
message element

• Map alias userordernumber to the
poNumber message element

• Map alias IsGift to the gift message
element.

Add the same correlation set
with its property to additional
activities. Do not set them to
initiate. The BPEL process
uses this to select the correct
process instance. Set the
pattern accordingly.

Set on the Activity Correlation Editor -
Initiate Tab. See Figure 9-10.

Select the internalCallback invoke activity:

• Set Initiate to no
• Set Pattern to request

Creating Correlation Sets in Oracle JDeveloper
You can create correlation sets on the following activities and branches.

• Receive activity

• Reply activity

• Invoke activity

• onMessage branch

• onEvent branch

There are two methods for creating correlations sets in Oracle JDeveloper:

Chapter 9
Creating Correlation Sets in Oracle JDeveloper

9-3

• Automatically through the Correlation wizard in an activity

• Manually through the Correlations tab in an activity

How to Create a Correlation Set with the Correlation Wizard
To create a correlation set with the Correlation wizard:

1. Right-click an applicable activity (such as a receive activity), and select Setup Correlation.

The Correlation wizard - Define Correlation Set page is displayed.

2. Provide responses appropriate to your environment, then click Next. Table 9-2 provides
details.

Table 9-2 Correlation Wizard - Define Correlation Set Page

Field Description

Create Correlation Set Select to create a new correlation set.

Choose Existing
Correlation Set

Select an existing correlation set in which to include the selected
activity.

Name Enter the name of the correlation set you want to create.

Scope Displays the scope or process in which to create the new correlation
set.

Properties a. Click Add to create a new property in the Name column of the
Properties table or click Browse to select an existing property.

b. Click the Type column, then click the ellipses to invoke the Type
Chooser dialog for selecting the property type (for example,
integer, boolean, or some other type).

When complete, the Correlation wizard - Define Correlation Set page looks as shown in
Figure 9-2.

Chapter 9
Creating Correlation Sets in Oracle JDeveloper

9-4

Figure 9-2 Correlation Wizard - Define Correlation Set Page

The Correlation wizard - Initiate Settings page is displayed.

3. Provide responses appropriate to your environment, then click Next. Table 9-3 provides
details.

Table 9-3 Correlation Wizard - Initiate Settings Page

Field Description

Activity Displays the activity on which the correlation is set.

initiate Select whether this activity is the initiator in the correlation set.

When set to yes, the correlation set is initiated with the values of the
properties occurring in the message being sent or received.

When complete, the Correlation wizard - Initiate Settings page looks as shown in
Figure 9-3.

Chapter 9
Creating Correlation Sets in Oracle JDeveloper

9-5

Figure 9-3 Correlation Wizard - Initiate Settings Page

The Correlation wizard - Property Aliases page is displayed for mapping properties to
values. The properties defined previously in the Define Correlation Set page of the wizard
are displayed in the Property Aliases table.

Property aliases enable you to map a property to a field in a specific message part of a
variable. This action enables the property to become an alias for the message part and
location.

4. Click a property in the table and select a method for mapping the message part of the
variable to the property. Table 9-4 provides details.

Table 9-4 Methods for Mapping the Variable Message Part to a Property

To Use The... Go to Step...

Alias Editor 5

Alias Drag and Drop Editor 6

5. Click the Edit (first) icon to invoke the Alias Editor dialog.

a. Expand the variable.

b. Select the message part to represent the property, and click OK. Figure 9-4 provides
details.

Chapter 9
Creating Correlation Sets in Oracle JDeveloper

9-6

Figure 9-4 Alias Editor

6. Click the Alias Drag and Drop Editor (second) icon to invoke the Alias Drag and Drop
Editor dialog.

a. Expand the variable.

b. Select the message part to represent the property.

c. Drag and drop the message part onto the property row in the Correlation wizard -
Property Aliases page. Figure 9-5 provides details.

Figure 9-5 Alias Drag and Drop Editor

Existing property aliases are listed in the lower part of the Correlation wizard - Property
Aliases page, as shown in Figure 9-6. For this example, there are no existing property
aliases.

Chapter 9
Creating Correlation Sets in Oracle JDeveloper

9-7

Figure 9-6 Correlation Wizard - Property Aliases Page - Lower Part

d. When complete, click Next.

7. Select additional properties to map to specific message parts of variables.

When complete, the Correlation wizard - Property Aliases page looks as shown in
Figure 9-7. The properties created in Figure 9-2 are displayed in the Property column. The
message elements to which the properties were mapped with either the Alias Editor
(Figure 9-4) or Alias Drag and Drop Editor (Figure 9-5) are displayed in the Query column.

Figure 9-7 Correlation Wizard - Property Aliases Page

8. Click Next.

The Correlation wizard - Correlated Activities page is displayed. Figure 9-8 provides
details.

Chapter 9
Creating Correlation Sets in Oracle JDeveloper

9-8

Figure 9-8 Correlation Wizard - Property Aliases Page (Without Activity)

9. Click the Add icon to add more activities to this correlation set (multiple activities can
correlate on the correlation set).

The Activity Browser dialog is displayed.

10. Select the activity to add, and click OK. Figure 9-9 provides details.

Figure 9-9 Activity Browser for Selecting an Activity

The activity is added to the Correlation Activities field of the Correlation wizard -
Correlated Activities page.

Chapter 9
Creating Correlation Sets in Oracle JDeveloper

9-9

11. In the Correlation Activities field, select the activity and click Edit to invoke the Initiate
tab of the Activity Correlation Editor dialog. Figure 9-10 provides details.

Figure 9-10 Activity Correlation Editor - Initiate Tab

12. Select appropriate values in the Initiate and Pattern lists. For this example:

• Select no from the Initiate list (because the correlation set validates the value of the
property available in the message).

• Select request from the Pattern list (because the correlation property is set and
validated on the outgoing BPEL message).

For BPEL 2.0, you can select response if the correlation applies to an inbound message,
request if the correlation applies to an outbound message, or request-response if the
correlation applies to both outbound and inbound messages.

For BPEL 1.1, you can select in if the correlation applies to an inbound message
(response), out if the correlation applies to an outbound message (request), or out-in if the
correlation applies to both inbound and outbound messages. (response and request).

13. Click the Aliases tab.

14. Repeat Step 4 through Step 7 to select a property and map the message part of the
variable to the property.

When complete, the Alias dialog looks similar to that shown in Figure 9-11.

Chapter 9
Creating Correlation Sets in Oracle JDeveloper

9-10

Figure 9-11 Activity Correlation Editor - Alias Tab

15. Click OK to return to the Correlation wizard - Correlated Activities page, which looks as
shown in Figure 9-12.

Figure 9-12 Correlation Wizard - Correlated Activities Page (With Selected Activity)

16. Click Next to review the correlation set details in the Activities, Correlation Set, and
Alias tabs.

• Activities: Displays the activities involved in the correlation and their roles (for
example, the receive activity is the initiator and the invoke activity is the responder).

• Correlation Set: Displays the name of the correlation set.

Chapter 9
Creating Correlation Sets in Oracle JDeveloper

9-11

• Aliases: Displays the property aliases defined for the activities in the correlation set.

Figure 9-13 provides details.

Figure 9-13 Correlation Wizard - Summary Page

17. Click Finish.

The correlation set is created.

18. In the Structure window, view the correlation set, properties, and property aliases you
defined in the Correlation wizard.

19. In Oracle BPEL Designer, click the Correlations tab of one of the participating activities to
view the details you defined (for example, the receive activity). Figure 9-14 provides
details.

Chapter 9
Creating Correlation Sets in Oracle JDeveloper

9-12

Figure 9-14 Correlation Tab of Receive Activity

20. If you want to find out which activities are used in a correlation set, perform the following
steps.

a. Click the Search icon above Oracle BPEL Designer, and select Correlation Search.

The Correlation Set Chooser dialog is displayed.

b. Select the correlation set, and click OK.

c. In the Correlation Search dialog, click OK.

The activities using the correlation sets are displayed in the Log window.

21. If you want to add additional activities to an existing correlation set, right-click the activity,
and select Setup Correlation.

The Correlation wizard - Define Correlation Set page is displayed.

22. Select Choose Existing Correlation Set.

23. From the Correlation Sets list, select the correlation set, and click OK.

24. Define the activity by following the pages in the Correlation wizard.

How to Manually Create Correlation Sets From the Correlations Tab
This section describes the steps to manually create correlation sets in an asynchronous
service. This example illustrates how to use correlation sets for a process having three receive
activities with no associated invoke activities.

Chapter 9
Creating Correlation Sets in Oracle JDeveloper

9-13

Step 1: Creating a Project

To create a project:

1. Start Oracle JDeveloper.

2. From the File main menu, select New > Applications.

3. Select SOA Application, and click OK.

The Create SOA Application Wizard appears.

4. In the Application Name field, enter a name (for this example, MyCorrelationSetApp is
entered).

5. Accept the default values for all remaining settings, and click Next.

6. In the Project Name field, enter a name (for this example, MyCorrelationSetComposite is
entered).

7. Accept the default values for all remaining settings, and click Next.

8. In the Composite Template section, select Composite With BPEL Process, and click
Finish.

The Create BPEL Process dialog appears.

9. Enter the values shown in Table 9-5.

Table 9-5 Create BPEL Process Dialog Fields and Values

Field Value

Name Enter a name (for this example, MyCorrelationSet is entered).

Template Select Asynchronous BPEL Process.

Expose as a SOAP Service Select the check box. After process creation, note the SOAP service
that appears in the Exposed Services swimlane. This service
provides the entry point to the composite application from the
outside world.

10. Accept the default values for all remaining settings, and click OK.

Step 2: Configuring Partner Links and File Adapter Services
You now create three partner links that use the SOAP service.

This section contains these topics:

• You create an initial partner link with an adapter service for reading a loan application.

• You create a second partner link with an adapter service for reading an application
response.

• You create a third partner link with an adapter service for reading a customer response.

Creating an Initial Partner Link and File Adapter Service

To create an initial partner link and file adapter service:

1. Double-click the MyCorrelationSet BPEL process.

Chapter 9
Creating Correlation Sets in Oracle JDeveloper

9-14

2. In the Components window, expand BPEL Constructs.

3. Drag an initial Partner Link activity into the right swimlane of the designer.

4. Click the third icon at the top (the Service Wizard icon). This starts the Adapter
Configuration Wizard, as shown in Figure 9-15.

Figure 9-15 Adapter Configuration Wizard Startup

5. In the Configure Service or Adapter dialog, select File and click OK.

6. In the Name field of the File Adapter Reference dialog, enter a name (for this example,
FirstReceive is entered) and click Next.

7. In the Adapter Interface dialog, accept the default settings and click Next.

8. In the Operation dialog, select Read File as the Operation Type and click Next. The
Operation Name field is automatically filled in with Read.

9. Above the Directory for Incoming Files (physical path) field, click Browse.

10. Select a directory from which to read files (for this example,
C:\files\receiveprocess\FirstInputDir is selected).

11. Click Select.

12. Click Next.

13. In the File Filtering dialog, enter appropriate file filtering parameters.

14. Click Next.

15. In the File Polling dialog, enter appropriate file polling parameters.

16. Click Next.

17. In the Messages dialog, click Browse next to the URL field to display the Type Chooser
dialog.

18. Select an appropriate XSD schema file. For this example, Book1_4.xsd is the schema and
LoanAppl is the schema element selected.

19. Click OK.

The URL field (Book1_4.xsd for this example) and the Schema Element field (LoanAppl
for this example) are filled in.

20. Click Next.

21. Click Finish.

You are returned to the Partner Link dialog. All other fields are automatically completed.
The dialog looks as shown in Table 9-6:

Table 9-6 Partner Link Dialog Fields and Values

Field Value

Name FirstReceive

WSDL URL directory_path/FirstReceive.wsdl

Chapter 9
Creating Correlation Sets in Oracle JDeveloper

9-15

Table 9-6 (Cont.) Partner Link Dialog Fields and Values

Field Value

Partner Link Type Read_plt

Partner Role Leave unspecified.

My Role Read_role

22. Click OK.

Creating a Second Partner Link and File Adapter Service

To create a second partner link and file adapter service:

1. Drag a second Partner Link activity beneath the FirstReceive partner link activity.

2. At the top, click the third icon (the Service Wizard icon).

3. In the Configure Service or Adapter dialog, select File and click OK.

4. In the Name field of the File Adapter Reference dialog, enter a name (for this example,
SecondFileRead is entered) and click Next. This name must be unique from the one you
entered in Step 6 of Creating an Initial Partner Link and File Adapter Service.

5. In the Adapter Interface dialog, accept the default settings and click Next.

6. In the Operation dialog, select Read File as the Operation Type.

7. In the Operation Name field, change the name (for this example, Read1 is entered).

8. Click Next.

9. Select Directory Names are Specified as Physical Path.

10. Above the Directory for Incoming Files (physical path) field, click Browse.

11. Select a directory from which to read files (for this example,
C:\files\receiveprocess\SecondInputDir is entered).

12. Click Select.

13. Click Next.

14. Enter appropriate file filtering parameters in the File Filtering dialog.

15. Click Next.

16. Enter appropriate file polling parameters in the File Polling dialog.

17. Click Next.

18. Next to the URL field in the Messages dialog, click Browse to display the Type Chooser
dialog.

19. Select an appropriate XSD schema file. For this example, Book1_5.xsd is the schema and
LoanAppResponse is the schema element selected.

20. Click OK.

The URL field (Book1_5.xsd for this example) and the Schema Element field
(LoanAppResponse for this example) are filled in.

21. Click Next.

22. Click Finish.

Chapter 9
Creating Correlation Sets in Oracle JDeveloper

9-16

You are returned to the Partner Link dialog. All other fields are automatically completed.
The dialog looks as shown in Table 9-7:

Table 9-7 Partner Link Dialog Fields and Values

Field Value

Name SecondReceive

WSDL URL directory_path/SecondFileRead.wsdl

Partner Link Type Read1_plt

Partner Role Leave unspecified.

My Role Read1_role

23. Click OK.

Creating a Third Partner Link and File Adapter Service

To create a third partner link and file adapter service:

1. Drag a third Partner Link activity beneath the SecondReceive partner link activity.

2. At the top, click the third icon (the Service Wizard icon).

3. In the Configure Service or Adapter dialog, select File and click OK.

4. In the Name field of the File Adapter Reference dialog, enter a name (for this example,
ThirdFileRead is entered) and click Next. This name must be unique from the one you
entered in Step 6 of Creating an Initial Partner Link and File Adapter Service and Step 4 of
Creating a Second Partner Link and File Adapter Service.

5. In the Adapter Interface dialog, accept the default settings and click Next.

6. In the Operation dialog, select Read File as the Operation Type.

7. In the Operation Name field, change the name (for this example, Read2 is entered). This
name must be unique.

8. Click Next.

9. Select Directory Names are Specified as Physical Path.

10. Above the Directory for Incoming Files (physical path) field, click Browse.

11. Select a directory from which to read files (for this example,
C:\files\receiveprocess\ThirdInputDir is entered).

12. Click Select.

13. Click Next.

14. Enter appropriate file filtering parameters in the File Filtering dialog.

15. Click Next.

16. Enter appropriate file polling parameters in the File Polling dialog.

17. Click Next.

18. Next to the URL field in the Messages dialog, click Browse to display the Type Chooser
dialog.

19. Select an appropriate XSD schema file. For this example, Book1_6.xsd is the schema and
CustResponse is the schema element selected.

Chapter 9
Creating Correlation Sets in Oracle JDeveloper

9-17

20. Click OK.

The URL field (Book1_6.xsd for this example) and the Schema Element field
(CustResponse for this example) are filled in.

21. Click Next.

22. Click Finish.

You are returned to the Partner Link dialog. All other fields are automatically completed.
The dialog looks as shown in Table 9-8:

Table 9-8 Partner Link Dialog Fields and Values

Field Value

Name ThirdReceive

WSDL URL directory_path/ThirdFileRead.wsdl

Partner Link Type Read2_plt

Partner Role Leave unspecified.

My Role Read2_role

23. Click OK.

Step 3: Creating Three Receive Activities
You now create three receive activities; one for each partner link. The receive activities specify
the partner link from which to receive information.

Creating an Initial Receive Activity

To create an initial receive activity:

1. In the Components window, expand BPEL Constructs.

2. Drag a Receive activity beneath the receiveInput receive activity in the designer.

3. Click the receive activity to display its property fields in the Property Inspector or double-
click the receive icon to display the Receive dialog.

For information about editing activities in the Property Inspector, see How to Edit BPEL
Activities in the Property Inspector.

4. Enter the details described in Table 9-9 to associate the first partner link (FirstReceive)
with the first receive activity:

Table 9-9 Receive Dialog Fields and Values

Field Value

Name receiveFirst
Partner Link FirstReceive

Create Instance Select this check box.

The Operation (Read) field is automatically filled in.

5. To the right of the Variable field, click the first icon. This is the automatic variable creation
icon.

Chapter 9
Creating Correlation Sets in Oracle JDeveloper

9-18

6. In the Create Variable dialog, click OK.

A variable named receiveFirst_Read_InputVariable is automatically created in the
Variable field.

7. Ensure that you selected the Create Instance check box, as described in Step 4.

8. Click OK.

Creating a Second Receive Activity

To create a second receive activity:

1. From the Components window, drag a second Receive activity beneath the receiveFirst
receive activity.

2. Double-click the receive icon to display the Receive dialog.

3. Enter the details described in Table 9-10 to associate the second partner link
(SecondReceive) with the second receive activity:

Table 9-10 Receive Dialog Fields and Values

Field Value

Name receiveSecond
Partner Link SecondFileRead

Create Instance Do not select this check box.

The Operation (Read1) field is automatically filled in.

4. To the right of the Variable field, click the first icon.

5. In the Create Variable dialog, click OK.

A variable named receiveSecond_Read1_InputVariable is automatically created in the
Variable field.

6. Click OK.

Creating a Third Receive Activity

To create a third receive activity:

1. From the Components window, drag a third Receive activity beneath the receiveSecond
receive activity.

2. Double-click the receive icon to display the Receive dialog.

3. Enter the details described in Table 9-11 to associate the third partner link (ThirdReceive)
with the third receive activity:

Table 9-11 Receive Dialog Fields and Values

Field Value

Name receiveThird
Partner Link ThirdFileRead

Create Instance Do not select this check box.

Chapter 9
Creating Correlation Sets in Oracle JDeveloper

9-19

The Operation (Read2) field is automatically filled in.

4. To the right of the Variable field, click the first icon.

5. In the Create Variable dialog, click OK.

A variable named receiveThird_Read2_InputVariable is automatically created in the
Variable field.

6. Click OK.

Each receive activity is now associated with a specific partner link.

Step 4: Creating Correlation Sets
You now create correlation sets. A set of correlation tokens is a set of properties shared by all
messages in the correlated group.

Creating an Initial Correlation Set

To create an initial correlation set:

1. In the Structure window of Oracle JDeveloper, right-click Correlation Sets and select
Expand All Child Nodes.

2. In the second Correlation Sets folder, right-click and select Create Correlation Set.

3. In the Name field of the Create Correlation Set dialog, enter CorrelationSet1.

4. In the Properties section, click the Add icon to display the Property Chooser dialog.

5. Select Properties, then click the Add icon (first icon at the top) to display the Create
Property dialog.

6. In the Name field, enter NameCorr.

7. To the right of the Type field, click the Browse icon.

8. In the Type Chooser dialog, select string and click OK.

9. Click OK in each dialog to close the Create Property dialog, the Property Chooser dialog,
and the Create Correlation Set dialog.

Creating a Second Correlation Set

To create a second correlation set:

1. Return to the Correlation Sets section in the Structure window of Oracle JDeveloper.

2. Right-click the Correlation Sets folder and select Create Correlation Set.

3. In the Name field of the Create Correlation Set dialog, enter CorrelationSet2.

4. In the Properties section, click the Add icon to display the Property Chooser dialog.

5. Select Properties, then click the Add icon to display the Create Property dialog.

6. In the Name field, enter IDCorr.

7. To the right of the Type field, click the Browse icon.

8. In the Type Chooser dialog, select double and click OK.

9. Click OK in each dialog to close the Create Property dialog, the Property Chooser dialog,
and the Create Correlation Set dialog.

Chapter 9
Creating Correlation Sets in Oracle JDeveloper

9-20

Step 5: Associating Correlation Sets with Receive Activities
You now associate the correlation sets with the receive activities. You perform the following
correlation set tasks:

• For the first correlated group, the first and second receive activities are correlated with the
CorrelationSet1 correlation set.

• For the second correlated group, the second and third receive activities are correlated with
the CorrelationSet2 correlation set.

Associating the First Correlation Set with a Receive Activity

To associate the first correlation set with a receive activity:

1. Double-click the receiveFirst receive activity to display the Receive dialog.

2. Click the Correlations tab.

3. Click the Add icon to display the correlation set dropdown list.

4. Select CorrelationSet1.

5. Click the Initiate column to display a dropdown list, and select yes. When set to yes, the
set is initiated with the values of the properties occurring in the message being exchanged.

6. Click OK.

Associating the Second Correlation Set with a Receive Activity

To associate the second correlation set with a receive activity:

1. Double-click the receiveSecond receive activity to display the Receive dialog.

2. Click the Correlations tab.

3. Click the Add icon to display the correlation set dropdown list.

4. Select CorrelationSet2, then click OK.

5. Click the Initiate column to display a dropdown list, and select yes.

6. Click Add again and select CorrelationSet1.

7. Click OK.

8. Click the Initiate column to display a dropdown list, and select no for CorrelationSet1.

9. Click OK.

This groups the first and second receive activities into a correlated group.

Associating the Third Correlation Set with a Receive Activity

To associate the third correlation set with a receive activity:

1. Double-click the receiveThird receive activity to display the Receive dialog.

2. Click the Correlations tab.

3. Click the Add icon.

Chapter 9
Creating Correlation Sets in Oracle JDeveloper

9-21

4. Select CorrelationSet2.

5. Set the Initiate column to no for CorrelationSet2.

6. Click OK.

This groups the second and third receive activities into a second correlated group.

Step 6: Creating Property Aliases
Property aliases enable you to map a global property to a field in a specific message part. This
action enables the property name to become an alias for the message part and location. The
alias can be used in XPath expressions.

Creating Property Aliases for NameCorr

You create the following two property aliases for the NameCorr correlation set:

• Map NameCorr to the LoanAppl message type part of the receiveFirst receive activity.
This receive activity is associated with the FirstReceive partner link (defined by the
FirstReceive.wsdl file).

• Map NameCorr to the incoming LoanAppResponse message type part of the
receiveSecond receive activity. This receive activity is associated with the
SecondReceive partner link (defined by the SecondFileRead.wsdl file).

To create property aliases for NameCorr:

1. In the Structure window of Oracle JDeveloper, right-click Property Aliases.

2. Select Create Property Alias.

3. From the Property list, select NameCorr.

4. Expand and select Message Types > Partner Link > FirstReceive > FirstReceive.wsdl
> Message Types > LoanAppl_msg > Part - LoanAppl.

5. In the Query field, press Ctrl+Space to define the following XPath expression:

/ns2:LoanAppl/ns2:Name
6. Click OK.

7. Repeat Step 1 through Step 3 to create a second property alias for NameCorr.

8. Expand and select Message Types > Project WSDL Files > SecondFileRead.wsdl >
Message Types > LoanAppResponse_msg > Part - LoanAppResponse.

9. In the Query field, press Ctrl+Space to define the following XPath expression:

/ns4:LoanAppResponse/ns4:APR
10. Click OK.

Creating Property Aliases for IDCorr

You create the following two property aliases for the IDCorr correlation set:

• Map IDCorr to the LoanAppResponse message type part of the receiveSecond receive
activity. This receive activity is associated with the SecondReceive partner link (defined by
the SecondFileRead.wsdl file).

Chapter 9
Creating Correlation Sets in Oracle JDeveloper

9-22

• Map IDCorr to the CustResponse message type part of the receiveThird receive activity.
This receive activity is associated with the ThirdReceive partner link (defined by the
ThirdFileRead.wsdl file).

To create property aliases for IDCorr:

1. In the Structure window, right-click Property Aliases.

2. Select Create Property Alias.

3. In the Property list, select IDCorr.

4. Expand and select Message Types > Project WSDL Files > SecondFileRead.wsdl >
Message Types > LoanAppResponse_msg > Part - LoanAppResponse.

5. In the Query field, press Ctrl+Space to define the following XPath expression:

/ns4:LoanAppResponse/ns4:APR
6. Click OK.

7. Repeat Step 1 through Step 3 to create a second property alias for IDCorr.

8. Expand and select Message Types > Project WSDL Files > ThirdFileRead.wsdl >
Message Types > CustResponse_msg > Part - CustResponse.

9. In the Query field, press Ctrl+Space to define the following XPath expression:

/ns6:CustResponse/ns6:APR

Design is now complete.

10. Click OK.

Step 7: Reviewing WSDL File Content

To review WSDL file content:

• Refresh the Applications window.

The NameCorr and IDCorr correlation set properties are defined in the
MyCorrelationSet_Properties.wsdl file in the Applications window.

<definitions
 name="properties"
 targetNamespace="http://xmlns.oracle.com/MyCorrelationSet/correlationset"
 xmlns="http://schemas.xmlsoap.org/wsdl/"
 xmlns:bpws="http://schemas.xmlsoap.org/ws/2003/03/business-process/"
 xmlns:plnk="http://schemas.xmlsoap.org/ws/2003/05/partner-link/"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema">
 <bpws:property name="NameCorr" type="xsd:string"/>
 <bpws:property name="IDCorr" type="xsd:double"/>
</definitions>

The property aliases are defined in the MyCorrelationSet.wsdl file.

<bpws:propertyAlias propertyName="ns1:NameCorr"
 messageType="ns3:LoanAppl_msg"
 part="LoanAppl" query="/ns2:LoanAppl/ns2:Name"/>

<bpws:propertyAlias propertyName="ns1:NameCorr"
 messageType="ns5:LoanAppResponse_msg"
 part="LoanAppResponse" query="/ns4:LoanAppResponse/ns4:APR"/>

<bpws:propertyAlias propertyName="ns1:IDCorr"

Chapter 9
Creating Correlation Sets in Oracle JDeveloper

9-23

 messageType="ns5:LoanAppResponse_msg"
 part="LoanAppResponse" query="/ns4:LoanAppResponse/ns4:APR"/>

<bpws:propertyAlias propertyName="ns1:IDCorr"
 messageType="ns7:CustResponse_msg"
 part="CustResponse" query="/ns6:CustResponse/ns6:APR"/>

Because the BPEL process service component is not created as a web services provider
in this example, the MyCorrelationSet.wsdl file is not referenced in the BPEL process
service component. Therefore, you must import the MyCorrelationSet.wsdl file inside the
FirstReceive.wsdl file to reference the correlation sets defined in the former WSDL.

<import namespace="http://xmlns.oracle.com/MyCorrelationSet"
 location="MyCorrelationSet.wsdl"/>

What You May Need to Know About Conversion IDs and Different
Composite Revisions

Do not use the same conversion ID for different revisions of a SOA composite application.
When correlation sets are used in a BPEL process, you have explicit control over the
conversation ID value. Oracle SOA Suite does not interfere or add restrictions on conversation
ID value generation. This situation means that even though it appears that Oracle SOA Suite is
generating the same conversation ID for different revisions, you actually control this behavior.
Oracle SOA Suite does not restrict you from using the same conversation ID for different
instances of different revisions.

If you do not use correlation sets, the conversation ID generated is unique and this is not a
problem because Oracle SOA Suite decides which conversation ID to generate, and not you.

Oracle SOA Suite does not execute a revision check for callback routing. Routing of callback
messages is only based on the following:

• Conversation ID: This is calculated based on the input value and correlation set. If you use
the same correlation set for two revisions of processes and enter the same input when
creating an instance, both revisions subscribe using the same conversation ID. This
causes confusion when a callback for one revision is delivered to another revision.

• Operation name (is the same for both revisions).

• BPEL service component name (is also the same for both revisions).

The concept of a revision number is applicable to Oracle SOA composite applications, and is
not part of the BPEL specification. This is why it is not used as part of the routing decision.

There is another complication in which adding a revision as part of callback routing causes
problems. When sending a callback, you also specify the endpoint URL. If the endpoint URL
does not contain the composite revision (which is extremely likely), the message is assumed to
be routed to the default revision. If Oracle SOA Suite runtime adds a revision check as part of
callback routing, the callback for the nondefault revision instance is never possible.

For example, assume you have the following BPEL process:

• An entry receive activity named receive_1 (on which a correlation set is used)

• An invoke activity, which invokes a web service

• A receive activity named receive_2

Assume you perform the following steps:

1. Deploy revision 1.0 of composite_A, which includes a BPEL component.

Chapter 9
Creating Correlation Sets in Oracle JDeveloper

9-24

2. Create an instance of revision 1.0, which is using a correlation set, and input a value of
123, which generates conv_id = "123".

This process now invokes a web service through a one-way invoke activity and then waits
on the receive_2 activity for a callback to arrive.

3. Deploy revision 2.0 of composite_A, which now becomes the default revision.

A web service sends a callback for the instance for revision 1.0. However, as a part of its
URL, it does not specify the revision number. You typically create a callback so that the
URL does not use the revision number. This is because web services are external and you
cannot change web service settings to continue using a revision tag because it is internal
to Oracle SOA Suite and is a concept that the external world does not understand.

Since a revision number is not specified, the SOA server assumes that the revision
number must be 2.0 and, if the routing of the callback takes the revision number into
account, it cannot forward this callback intended for 1.0 to the correct revision 1.0. Instead,
it attempts to route it to the default revision of 2.0, which does not have any instance
waiting for the callback.

You cannot route callback messages based on revisions. You only receive the option to
route callback messages based on the conversion ID (if the correlation set is not used,
then even this is not under your control), operation name, and component name.

For these reasons, different instances must use different conversation IDs (which means
different input is used for creating a conversion ID) to avoid confusion, and routing should
be solely based on a conversation ID.

What You May Need to Know About Setting Correlations for an IMA Using a
fromParts Element With Multiple Parts

Assume you have the following scenario:

• A BPEL 2.0 process with a WSDL message type that has multiple parts that are identical in
type.

• A property alias has been defined based on the element type of the above part.

For a process that has an inbound message activity (IMA) (for example, a receive activity,
onMessage branch of a scope or pick activity, or onEvent branch of a scope activity in BPEL
2.0) that uses the fromParts element with fromParts defined for each part, correlations cannot
be defined because the runtime environment cannot determine the part to which to apply the
property alias.

For more information about mapping WSDL message parts with the toParts and fromParts
elements, see Mapping WSDL Message Parts in BPEL 2.0.

Routing Messages to the Same Instance
Oracle BPEL Process Manager supports a message aggregation feature. When multiple
messages are routed to the same process/partner link/operation name, the first message is
routed to create a new instance and subsequent messages can be routed to continue the
created instance using a midprocess receive activity.

Message aggregation enables you to use the same operation (or event name) in an entry
receive activity and a midprocess receive activity.

Chapter 9
Routing Messages to the Same Instance

9-25

Note:

• This feature only performs aggregation, and not resequencing. This feature does
not resequence messages arriving out of order into an ordered format. Therefore,
the first message only means the first message processed. This may be different
from the first message in a time sequence order.

• You must use correlation sets to take advantage of the message aggregation
feature.

• Synchronous operations as ambiguous calls (at both beginning and midprocess
receive activities) are supported. However, this is not a recommended use of this
feature and should be avoided.

How to Configure BPEL Process Instance Creation
You can control the number of instances to create and use to route messages with the
reenableAggregationOnComplete property.

To configure BPEL process instance creation:

1. In the SOA Composite Editor, select the BPEL process service component, as shown in
Figure 9-16.

Figure 9-16 Selected BPEL Process Service Component

2. Go to the Property Inspector in the lower right corner of Oracle JDeveloper. If the Property
Inspector is not displayed, select Property Inspector from the View main menu.

3. In the Properties section, click the Add icon, as shown in Figure 9-17.

Figure 9-17 Property Inspector

The Create Property dialog is displayed.

Chapter 9
Routing Messages to the Same Instance

9-26

4. In the Name field, enter the bpel.config.reenableAggregationOnComplete deployment
descriptor property. The prefix of bpel.config is required for this type of deployment
descriptor.

5. In the Value field, enter true, as described in Table 9-12.

Table 9-12 reenableAggregationOnComplete Property Settings

Value Description Example

true Creates a new instance to handle
messages. However, there is a window
between messages coming in and
instance completion. This can result in
messages remaining in the DLV_MESSAGE
table. This setting can result in the
occurrence of race conditions. For more
information, see Table 9-13.

You invoke messages 1 through 4 for a client
using the initiate operation. This results in
the following actions:

• Two instances of the BPEL process are
created and completed.

• Messages 1 and 2 are routed to the first
instance and messages 3 and 4 are
routed to the second instance.

false This is the default behavior. This setting
causes the aggregation feature to be
disabled. Only one instance is created.
Messages that are not handled by the
instance remain in the DLV_MESSAGE
table. This setting is recommended for
most environments.

You invoke messages 1 through 4 for a client
using the initiate operation. One instance
of the BPEL process is created and
completed.

Do not attempt to route multiple messages
using the same correlation set to one BPEL
instance.

Figure 9-18 shows the completed Create Property dialog.

Figure 9-18 Create Property Dialog

6. Click OK.

The reenableAggregationOnComplete property with the bpel.config prefix looks as
follows in the composite.xml file.

<composite name="Aggregation" revision="1.0" label="2011-07-10_13-52-24_174"
 mode="active" state="on">
. . .
. . .
<component name="Aggregation" version="1.1">
 <implementation.bpel src="Aggregation.bpel"/>
 <property name="bpel.config.reenableAggregationOnComplete" type="xs:string"
 many="false" override="may">true</property>
 </component>

Chapter 9
Routing Messages to the Same Instance

9-27

. . .

. . .
</composite>

How to Use the Same Operation in Entry and Midprocess Receive Activities
Assume you create a correlation set as shown in the example that follows. All messages to
Oracle BPEL Process Manager are routed to the same operation name. The messages have
the same correlation ID. The interface WSDL does not differentiate between the entry activity
(receiveInput) and the midprocess receive activity (Continue_Receive). All messages are
processed using the initiate operation. A single instance is created to which to route all
messages.

This differs from releases before 11g Release 1 11.1.1.6, in which you needed to define
different operation names on the same partner link. The process had to expose two operations
and the caller had to choose the correct operation name.

<receive name="receiveInput" partnerLink="client" portType="client:BPELProcess1"
 operation="initiate" variable="inputVariable" createInstance="yes">
 <correlations>
 <correlation initiate="yes" set="CorrelationSet_1"/>
 </correlations>
</receive>

<!-- Asynchronous callback to the requester. (Note: the callback location and
 correlation id is transparently handled using WS-addressing.) -->
<assign name="Assign_1">
 <copy>
 <from variable="inputVariable" part="payload"
 query="/client:BPELProcess1ProcessRequest/client:input"/>
 <to variable="Invoke_1_initiate_InputVariable" part="payload"
 query="/ns1:BPELProcess2ProcessRequest/ns1:input"/>
 </copy>
</assign>

<receive name="Continue_Receive" partnerLink="client"
 portType="client:BPELProcess1" operation="initiate" variable="inputVariable"
 createInstance="no">
 <correlations>
 <correlation initiate="no" set="CorrelationSet_1"/>
 </correlations>
</receive>

For event delivery network (EDN) business events, you substitute the operation attribute with
bpelx:eventName in both the entry and midprocess receive activities.

bpelx:eventName="ns3:initiateEvent"/>

Information is maintained in the DLV_AGGREGATION table:

• Conversation ID

• Domain name

• Component name and type

• Composite name, label, and revision

• State

• Received date

• CI key

Chapter 9
Routing Messages to the Same Instance

9-28

• Primary key

This information can be deleted from this table with the purge scripts or from the Auto Purge
page in Oracle Enterprise Manager Fusion Middleware Control. For more information about
both of these options, see the Administering Oracle SOA Suite and Oracle Business Process
Management Suite.

How to Route a Message to a New or Existing Instance when Using
Correlation Sets

For a BPEL process using correlation sets, the correct routing is performed. The message can
be either of the following:

• An invoke message creating a new instance

• A callback message continuing an existing instance

Figure 9-19 shows entry and midprocess receive activities using the same operation (process).

Figure 9-19 Routing a New Message to a New or Existing Instance

The following provides an example of the entry and midprocess receive activities using the
same operation (process).

<receive name="receiveInput" partnerLink="client" portType="client:BPELProcess1"
 operation="process" variable="inputVariable" createInstance="yes">
 <correlations>
 <correlation initiate="yes" set="CorrelationSet_1"/>
 </correlations>
</receive>

<!-- some business logic -->

<while name="While_1" condition=*loop for 3 iterations*>
 <sequence name="Sequence_1">
 <receive name="Continue_Receive" partnerLink="client"
 portType="client:BPELProcess1" operation="process" variable="inputVariable"
 createInstance="no">
 <correlations>
 <correlation initiate="no" set="CorrelationSet_1"/>
 </correlations>
 </receive>

Chapter 9
Routing Messages to the Same Instance

9-29

<!-- some business logic -->

 </sequence>
</while>

In the initial scenario in the preceding example, the following actions occur in BPEL process
P1:

• A partner provides four messages (message 1, message 2, message 3, and message 4)
for the same partner (correlation ID 101).

• Message 1 creates a new instance of BPEL process P1. This message is marked as an
invoke message.

• Messages 2, 3, and 4 are received using the Continue_Receive activity. These messages
are marked as callback messages.

• The instance closes because three iterations of the while loop are expected.

Assume now that additional messages are routed, which can potentially cause race conditions
to occur. Table 9-13 provides details.

Table 9-13 Message Delivery Scenarios

Scenario Description Marked as
Invoke Message

Marked as Callback
Message

1 Assume the partner now provides message 5 for the same
correlation ID (101). Message 5 creates a new instance of BPEL
process P1 and waits on the Continue_Receive activity inside the
while loop for three more messages (6, 7, and 8).

• Message 1
• Message 5

• Message 2
• Message 3
• Message 4
• Message 6
• Message 7
• Message 8

2 If messages 4 and 5 are received within a small time window, it is
possible that message 4 is closing the instance BPEL process P1
and message 5 is routed as a callback to that instance. This
scenario can cause a race condition. For example:

• When message 6 arrives, it is routed to the entry receive activity
of the new instance.

• Messages 7 and 8 are routed to the Continue_Receive
activity.

• Message 5 is routed to the Continue_Receive activity only by
the recovery part of the BPEL process service engine. This is
because it initially was routed to a closed instance and could
not be handled.

• Message 1
• Message 6

• Message 2
• Message 3
• Message 4
• Message 5
• Message 7
• Message 8

Chapter 9
Routing Messages to the Same Instance

9-30

Table 9-13 (Cont.) Message Delivery Scenarios

Scenario Description Marked as
Invoke Message

Marked as Callback
Message

3 This is similar to scenario 2. However, in this case, messages 7, 8,
and 9 are not received. For example:

• Message 5 becomes an unhandled callback message waiting
for a subscriber.

• BPEL process service engine recovery tries to process
message 5 and fails because there is no subscriber available.

There are several options for message recovery.

• Limit recovery of callback messages with the System MBean
Browser property maxRecoverAttempt in Oracle Enterprise
Manager Fusion Middleware Control. This count specifies the
number of attempts made by automatic recovery to recover an
invoke/callback message. Once the number of recover attempts
exceeds this count, the state of the message is changed to
exhausted. For more information, see Section "Configuring
Automatic Recovery Attempts for Invoke and Callback
Messages" in Administering Oracle SOA Suite and Oracle
Business Process Management Suite.

• Write a custom SQL script to check that the
criteriaCallback has state set to 0. The correlation value
for this callback exists in CORRELATION_GROUP in a closed state
(state = 0). This indicates that the callback message is
marked for a closed aggregation instance. You can cancel/
purge these instances based on business logic.

Note: BPEL is designed as a conversation-based system. At
any point in which unsolicited messages are not being handled,
the application is always aware of the messages coming as part
of correlation aggregation and chooses to subscribe and
process or ignore the message as required by business needs.

• Message 1
• Message 6

• Message 2
• Message 3
• Message 4
• Message 5

Chapter 9
Routing Messages to the Same Instance

9-31

10
Using Parallel Flow in a BPEL Process

This chapter describes how to use parallel flow in a BPEL process service component. Parallel
flows enable a BPEL process service component to perform multiple tasks at the same time.
Parallel flows are especially useful when you must perform several time-consuming and
independent tasks. This chapter also describes how to customize the number of parallel
branches.
This chapter includes the following sections:

• Introduction to Parallel Flows in BPEL Processes

• Creating a Parallel Flow

• Customizing the Number of Parallel Branches

Introduction to Parallel Flows in BPEL Processes
A BPEL process service component must sometimes gather information from multiple
asynchronous sources. Because each callback can take an undefined amount of time (hours
or days), it may take too long to call each service one at a time. By breaking the calls into a
parallel flow, a BPEL process service component can invoke multiple web services at the same
time, and receive the responses as they come in. This method is much more time efficient.

Figure 10-1 shows a flow activity named Retrieve_QuotesFromSuppliers. The
Retrieve_QuotesFromSuppliers flow activity sends order information to two suppliers in
parallel:

• An internal warehouse (InternalWarehouseService)

• An external partner warehouse (PartnerSupplierMediator)

The two warehouses return their bids for the order to the flow activity. Here, two asynchronous
callbacks execute in parallel. One callback does not have to wait for the other to complete first.
Each response is stored in a different global variable.

10-1

Figure 10-1 Parallel Flow Invocation

What You May Need to Know About the Execution of Parallel Flow
Branches in a Single Thread

Branches in flow, flowN, and forEach activities are executed serially in a single thread (that is,
the Nth branch is executed only after N-1 execution has completed). Execution is not
completely parallel. This is because the branches do not execute in concurrent threads in this
mode. Instead, one thread starts executing a flow branch until it reaches a blocking activity (for
example, an synchronous invoke). At this point, a new thread is created that starts executing
the other branch, and the process continues. This creates the impression that the flow
branches are executing in parallel. In this mode, however, if the flow branches do not define a
blocking activity, the branches still execute serially.

This design is intended for several reasons:

• To prevent you from accidentally spawning too many threads and overloading the system,
single threading is the default method. However, you can tune threads in other places,
such as adapter polling threads, BPEL process service engine threads, and Oracle
WebLogic Server work managers.

• The BPEL process specification does not provide a mechanism to ensure the thread safety
of BPEL variables (that is, a lack of a synchronized qualifier such as in Java), which is
necessary for true multithreaded programming.

• The implication of transaction rollbacks in one of the branches is undefined.

To achieve pseudo-parallelism, you can configure invoke activities to be nonblocking with the
nonBlockingInvoke deployment descriptor property. When this property is set to true, the
process manager creates a new thread to perform each branch's invoke activity in parallel.

For more information about the nonBlockingInvoke property, see How to Define Deployment
Descriptor Properties in the Property Inspector.

Creating a Parallel Flow
You can create a parallel flow in a BPEL process service component with the flow activity. The
flow activity enables you to specify one or more activities to be performed concurrently. The

Chapter 10
Creating a Parallel Flow

10-2

flow activity also provides synchronization. The flow activity completes when all activities in the
flow have finished processing. Completion of this activity includes the possibility that it can be
skipped if its enabling condition is false.

Note:

Branches in a flow activity are executed serially in a single thread. For more
information, see What You May Need to Know About the Execution of Parallel Flow
Branches in a Single Thread.

How to Create a Parallel Flow
To create a parallel flow:

1. In the Components window, expand BPEL Constructs > Structured Activities.

2. Drag a Flow activity into the designer.

3. Click the + sign to expand the flow activity, as shown in Figure 10-2.

Figure 10-2 Flow Activity

The flow activity initially includes two branches, each with a box for functional elements.
Populate these boxes as you do a scope activity, either by building a function or dragging
activities into the boxes. You can add additional branches by highlighting the flow activity
and clicking the Add Sequence icon. Figure 10-3 provides details.

Figure 10-3 Add Sequence Icon

4. Drag and define additional activities on each side of the flow to invoke multiple services at
the same time. Figure 10-4 provides details.

Chapter 10
Creating a Parallel Flow

10-3

Figure 10-4 Expanded Flow Activity

When complete, flow activity design can look as shown in Figure 10-5. This example
shows the Retrieve_QuotesFromSuppliers flow activity. Two branches are defined for
receiving bids: one for InternalWarehouseService and the other for
PartnerSupplierMediator.

Figure 10-5 Flow Activity After Design Completion

What Happens When You Create a Parallel Flow
A flow activity typically contains many sequence activities. Each sequence is performed in
parallel. The following example shows the syntax for two sequences of the
Retrieve_QuotesFromSuppliers flow activity in the OrderProcessor.bpel file after design
completion. However, a flow activity can have many sequences. A flow activity can also
contain other activities. In the following example, each sequence in the flow contains assign,
invoke, and receive activities.

<flow name="Retrieve_QuotesFromSuppliers">
 <sequence name="Sequence_4">
 <assign name="Assign_InternalWarehouseRequest">
 <copy>
 <from>$inputVariable.gOrderInfoVariable/ns3:CardNum</from>
 <to>lInternalWarehouseInputVariable/ns4:ccnb</to>

Chapter 10
Creating a Parallel Flow

10-4

 </copy>
 </assign>
 <invoke name="Invoke_InternalWarehouse"
 inputVariable="lInternalWarehouseInputVariable"
 partnerLink="InternalWarehouseService"
 portType="ns1:InternalWarehouseService"
 operation="process"/>
 <receive name="Receive_InternalWarehouse"
 createInstance="no"
 variable="lInternalWarehouseResponseVariable"
 partnerLink="InternalWarehouseService"
 portType="ns1:InternalWarehouseServiceCallback"
 operation="processResponse"/>
 <assign name="Assign_InterWHResponse">
 <bpelx:append>
 <bpelx:from variable="lInternalWarehouseResponseVariable"
 part="payload"
 query="/ns1:WarehouseResponse"/>
 <bpelx:to variable="gWarehouseQuotes"
 query="/ns1:WarehouseList"/>
 </bpelx:append>
 </assign>
 </sequence>
 <sequence name="Sequence_4">
 <assign name="Assign_PartnerRequest">
 <copy>
 <from variable="gOrderInfoVariable"
 query="/ns4:orderInfoVOSDO"/>
 <to variable="lPartnerSupplierInputVariable"
 part="request" query="/ns4:orderInfoVOSDO"/>
 </copy>
 </assign>
 <invoke name="Invoke_PartnerSupplier"
 partnerLink="PartnerSupplierMediator"
 portType="ns15:execute_ptt" operation="execute"
 inputVariable="lPartnerSupplierInputVariable"/>
 <receive name="Receive_PartnerResponse"
 createInstance="no"
 variable="lPartnerResponseVariable"
 partnerLink="PartnerSupplierMediator"
 portType="ns15:callback_ptt" operation="callback"/>
 <assign name="Assign_PartnerWHResponse">
 <bpelx:append>
 <bpelx:from variable="lPartnerResponseVariable"
 part="callback"
 query="/ns1:WarehouseResponse"/>
 <bpelx:to variable="gWarehouseQuotes"
 query="/ns1:WarehouseList"/>
 </bpelx:append>
 </assign>
 </sequence>
</flow>

Synchronizing the Execution of Activities in a Flow Activity
You can synchronize the execution of activities within a flow activity to ensure that certain
activities only execute after other activities have completed. For example, assume you have an
invoke activity, verifyFlight, that is executed in parallel with other invoke activities
(verifyHotel, verifyCarRental, and scheduleFlight) when the flow activity begins. However,
scheduling a flight is necessary only after verifying that a flight is available. Therefore, you can
add a link between the verifyFlight and scheduleFlight invoke activities. Links provide a

Chapter 10
Creating a Parallel Flow

10-5

level of dependency indicating that the activity that is the target of the link (scheduleFlight) is
only executed if the activity that is the source of the link (verifyFlight) has completed.

The following example provides details. The link name verifyFlight-To-scheduleFlight is
assigned to the source verifyFlight and target scheduleFlight invoke activities. If the
source verifyFlight completes execution, the target scheduleFlight is then executed.

<flow ...>
 <links>
 <link name="verifyFlight-To-scheduleFlight" />
 </links>
 <documentation>
 Verify the availability of a flight, hotel, and rental car in parallel
 </documentation>
 <invoke name="verifyFlight" ...>
 <sources>
 <source linkName="verifyFlight-To-scheduleFlight" />
 </sources>
 </invoke>
 <invoke name="verifyHotel" ... />
 <invoke name="verifyCarRental" ... />
 <invoke name="scheduleFlight" ...>
 <targets>
 <target linkName="verifyFlight-To-scheduleFlight" />
 </targets>
 </invoke>
</flow>

The preceding code provides an example of link syntax in BPEL version 2.0. The link syntax
between BPEL version 1.1 and BPEL version 2.0 is slightly different.

• BPEL version 1.1 uses <target> and <source>.

• BPEL version 2.0 uses <targets> and <sources>.

Table 10-1 provides details.

Chapter 10
Creating a Parallel Flow

10-6

Table 10-1 Links Syntax in BPEL Version 1.1 and BPEL Version 2.0

BPEL Version 1.1 Example BPEL Version 2.0 Example

<flow>
 <links>
 <link name="XtoY"/>
 <link name="CtoD"/>
 </links>
 <sequence name="X">
 <source linkName="XtoY"/>
 <invoke name="A" .../>
 <invoke name="B" .../>
 </sequence>
 <sequence name"Y">
 <target linkName="XtoY"/>
 <receive name="C" ...>
 <source linkName="CtoD"/>
 </receive>
 <invoke name="E" .../>
 </sequence>
 <invoke partnerLink="D" ...>
 <target linkName="CtoD"/>
 </invoke>
 </flow>

<flow>
 <links>
 <link name="AtoB"/>
 </links>
 <assign name="B">
 <targets>
 <target linkName="AtoB"/>
 </targets>
 <copy>
 <from>concat($output.payload,
 'B')</from>
 <to>$output.payload</to>
 </copy>
 </assign>
 <assign name="A">
 <sources>
 <source linkName="AtoB"/>
 </sources>
 <copy>
 <from>concat($output.payload,
 'A')</from>
 <to>$output.payload</to>
 </copy>
 </assign>
 </flow>

How to Create Synchronization Between Activities Within a Flow Activity
To create synchronization between activities within a flow activity:

Note:

The Sources and Targets tabs are only available in BPEL 2.0 projects. For BPEL
1.1 projects, you must directly edit the BPEL file to use this functionality.

1. Create a flow activity. For information, see How to Create a Parallel Flow.

2. In the General tab of the Flow activity, click the Add icon.

3. Enter a name for the link, as shown in Figure 10-6.

Chapter 10
Creating a Parallel Flow

10-7

Figure 10-6 Link Name Creation

4. Click Apply, then OK.

5. Drag appropriate activities into the flow activity to define as the source with the same link
name as defined in Step 3. The value of the link name of the source and target must be the
same as the link name declared in the flow activity. For this example, an assign activity
named A is defined as the source in Figure 10-7.

Figure 10-7 Source Activity

Each source activity can specify an optional Transition Condition as a safe guard for
following the specified link. Click the row in this column to invoke the Browser icon for
accessing the Expression Builder dialog for creating a condition. If the Transition
Condition column is left blank, it is assumed to evaluate to true.

6. Define appropriate copy rules for the assign activity.

7. Click Apply, then OK.

8. Drag an additional activity into the flow activity to define as the target with the same link
name as defined in Step 3. For this example, another assign activity named B is defined as
the target in Figure 10-8.

Chapter 10
Creating a Parallel Flow

10-8

Figure 10-8 Target Activity

9. Define appropriate copy rules for the assign activity.

10. Click Apply, then OK.

11. Continue design of your BPEL process.

When complete, design can appear similar to that shown in Figure 10-9.

Figure 10-9 Three Flow Activities Synchronized with Links

What Happens When You Create Synchronization Between Activities Within
a Flow Activity

The following example shows the .bpel file after design is complete for three flow activities
with links for synchronizing activity execution.

• Flow_1 shows a link between simple activities.

Flow_1 includes a link named AtoB. The activity that is the target of the link, assign activity
B, is only executed if the activity that is the source of the link, assign activity A, has
completed.

• Flow_2 shows a link between simple activity and composite activity.

Flow_2 also includes the link named AtoB. The activity that is the target of the link, assign
activity B, is only executed if the activity that is the source of the link, scope activity scope1,
has completed.

Chapter 10
Creating a Parallel Flow

10-9

• Flow_3 shows a link between composite activities.

Flow_3 also includes the link named AtoB. The activity that is the target of the link,
sequence activity Sequence_1, is only executed if the activity that is the source of the link,
scope activity scope2, has completed.

<!-- link between simple activities -->
<flow name=Flow_1>
 <links>
 <link name="AtoB"/>
 </links>
 <assign name="A">
 <sources>
 <source linkName="AtoB"/>
 </sources>
 <copy>
 <from>concat($output.payload, 'A')</from>
 <to>$output.payload</to>
 </copy>
 </assign>
 <assign name="B">
 <targets>
 <target linkName="AtoB"/>
 </targets>
 <copy>
 <from>concat($output.payload, 'B')</from>
 <to>$output.payload</to>
 </copy>
 </assign>
 </flow>

 <!-- link between simple activity and composite activity -->
 <flow name=Flow_2>
 <links>
 <link name="AtoB"/>
 </links>
 <scope name="scope1">
 <sources>
 <source linkName="AtoB"/>
 </sources>
 <assign name="A">
 <copy>
 <from>concat($output.payload, 'A')</from>
 <to>$output.payload</to>
 </copy>
 </assign>
 </scope>
 <assign name="B">
 <targets>
 <target linkName="AtoB"/>
 </targets>
 <copy>
 <from>concat($output.payload, 'B')</from>
 <to>$output.payload</to>
 </copy>
 </assign>
 </flow>

 <!-- link between composite activities -->
 <flow name=Flow_3>
 <links>
 <link name="AtoB"/>

Chapter 10
Creating a Parallel Flow

10-10

 </links>
 <scope name="scope2">
 <sources>
 <source linkName="AtoB"/>
 </sources>
 <assign name="A">
 <copy>
 <from>concat($output.payload, 'A')</from>
 <to>$output.payload</to>
 </copy>
 </assign>
 </scope>
 <sequence name="Sequence_1>
 <targets>
 <target linkName="AtoB"/>
 </targets>
 <assign name="B">
 <copy>
 <from>concat($output.payload, 'B')</from>
 <to>$output.payload</to>
 </copy>
 </assign>
 </sequence>
 </flow>
 </sequence>

What You May Need to Know About Join Conditions in Target Activities
You can specify an optional join condition in target activities. The value of the join condition is a
boolean expression. If a join condition is not specified, the join condition is the disjunction (that
is, a logical OR operation) of the link status of all incoming links of this activity.

Oracle BPEL Designer does not provide design support for adding join conditions. To add a
join condition, you must manually add the condition to the .bpel file in Source view in Oracle
BPEL Designer.

The following provides an example of a join condition.

<flow>
 <links>
 <link name="linkStatus2"/>
 </links>
 <empty name="E2">
 <sources>
 <source linkName="linkStatus2">
 <transitionCondition>false()</transitionCondition>
 </source>
 </sources>
 </empty>
 <empty name="E2">
 <targets>
 <joinCondition>bpws:getLinkStatus('linkStatus2')=true()</joinCondition>
 <target linkName="linkStatus2"/>
 </targets>
 </empty>
</flow>

Chapter 10
Creating a Parallel Flow

10-11

Customizing the Number of Parallel Branches
This section describes how to customize the number of parallel branches with the following
activities:

• A forEach activity in a BPEL version 2.0 project

• A flowN activity in a BPEL version 1.1 project

Note:

Branches in flowN and forEach activities are executed serially in a single thread. For
more information, see What You May Need to Know About the Execution of Parallel
Flow Branches in a Single Thread.

Processing Multiple Sets of Activities with the forEach Activity in BPEL 2.0
You can use a forEach activity to process multiple sets of activities sequentially or in parallel.
The forEach activity executes a contained (child) scope activity exactly N+1 times, where N
equals a final counter value minus a starting counter value that you specify in the Counter
Values tab of the For Each dialog. While other structured activities such as a flow activity can
have any type of activity as its contained activity, the forEach activity can only include a scope
activity.

When the forEach activity is started, the expressions you specify for the starting counter and
final counter values are evaluated. Once the two values are returned, they remain constant for
the lifecycle of the activity. Both expressions must return a value containing at least one
character. If these expressions do not return valid values, a fault is thrown. If the starting
counter value is greater than the final counter value, the contained scope activity is not
performed and the forEach activity is considered complete.

During each iteration, the variable specified in the Counter Name field on the General tab is
implicitly declared in the forEach activity's contained scope. During the first iteration of the
scope, the counter variable is initialized with the starting counter value. The next iteration
causes the counter variable to be initialized with the starting counter value, plus one. Each
subsequent iteration increments the previously initialized counter variable value by one until
the final iteration, where the counter is set to the final counter value. The counter variable is
local to the enclosed scope activity. Although its value can be changed during an iteration, that
value is lost after each iteration. Therefore, the counter variable value does not impact the
value of the next iteration's counter.

The forEach activity supports the following looping iterations:

• Sequential (default)

The forEach activity performs looping iterations sequentially N times over a given set of
activities defined within a scope activity. As an example, the forEach activity iterates over
an incoming purchase order message where the purchase order message consists of N
order items. The enclosed scope activity must be executed N+1 times, with each instance
starting only after the previous iteration has completed.

• Parallel

All looping iterations are started at the same time and processed in parallel. Parallel
iterations are useful in environments in which sets of independent data are processed or

Chapter 10
Customizing the Number of Parallel Branches

10-12

independent interaction with different partners is performed in parallel. To enable parallel
looping, you select the Parallel Execution check box on the General tab. In these
scenarios, execution of the N+1 instances of the contained scope activity occurs in
parallel. Each copy of the scope activity has the same counter variable that you specify in
the Counter Name field of the General tab declared in the same way as specified for a
sequential forEach activity. Each instance's counter variable must be uniquely initialized in
parallel with one of the integer values beginning with the starting counter value and
proceeding up to and including the final counter value.

Unlike a flow activity, the number of parallel branches is not known at design time with the
forEach activity. The specified counter variable iterates through the number of parallel
branches, controlled by the starting counter value and final counter value.

You can also specify a completion condition on the Completion tab. This condition enables the
forEach activity to execute the condition and complete without executing or finishing all the
branches specified. As an example, you send out parallel requests and a sufficient subset of
the recipients have responded. A completion condition is optionally specified to prevent the
following:

• Some children from executing (in the sequential case)

• To force early termination of some of the children (in the parallel case)

If you do not specify a completion condition, the forEach activity completes when the contained
scope has completed.

If a premature termination occurs (due to a fault or the completion condition evaluating to
true), then the N+1 requirement does not apply.

The following example shows the forEach activity syntax.

<forEach counterName="MyVariableName" parallel="yes|no"
 standard-attributes>
 standard-elements
 <startCounterValue expressionLanguage="anyURI"?>
 unsigned-integer-expression
 </startCounterValue>
 <finalCounterValue expressionLanguage="anyURI"?>
 unsigned-integer-expression
 </finalCounterValue>
 <completionCondition>?
 <branches expressionLanguage="anyURI"?
 successfulBranchesOnly="yes|no"?>?
 unsigned-integer-expression
 </branches>
 </completionCondition>
 <scope ..>...</scope>
</forEach>

Note:

The successfulBranchesOnly attribute is not supported for this release.

How to Create a forEach Activity

To create a forEach activity:

1. In the Components window, expand BPEL Constructs > Structured Activities.

Chapter 10
Customizing the Number of Parallel Branches

10-13

2. Drag a For Each activity into the designer, as shown in Figure 10-10.

Note the contained scope activity in the forEach activity.

Figure 10-10 Contained Scope Activity in a forEach Activity

3. Double-click the ForEach activity.

4. In the Counter Name field of the General tab, enter a counter value name, as shown in
Figure 10-11.

If the Parallel Execution check box is selected, all looping iterations are started at the
same time and processed in parallel. The next branch starts even if the previous branch
has not completed. If not selected, the next branch does not start until the previous branch
has completed.

Figure 10-11 General Tab of the forEach Activity

5. Click the Counter Values tab.

6. Click the Expression Builder icon to enter the starting counter value and final counter
value, as shown in Figure 10-12.

Chapter 10
Customizing the Number of Parallel Branches

10-14

Figure 10-12 Counter Values Tab of the forEach Activity

7. Click the Completion tab.

8. If you want to specify a completion condition that enables the forEach activity to execute
the condition and complete without executing or finishing all the branches specified, click
the XPath Expression Builder icon above the Expression field to enter a condition.
Figure 10-13 provides details.

Figure 10-13 Completion Tab of the forEach Activity

9. Click Apply, then OK.

10. Expand the contained Scope activity of the ForEach activity.

11. Design the enclosed Scope activity.

Chapter 10
Customizing the Number of Parallel Branches

10-15

When complete, the forEach and contained scope activity can appear similar in structure to
that shown in Figure 10-14.

Figure 10-14 forEach Activity with Contained and Expanded Scope Activity

What Happens When You Create a forEach Activity
The following example shows the .bpel file after design is complete for a sequential forEach
activity.

<faultHandlers>
 <catch faultName="bpel:invalidBranchCondition">
<sequence>
 <assign>
 <copy>
 <from>'invalidBranchCondition happened'</from>
 <to>$output.payload</to>
 </copy>
 </assign>

 <reply name="replyOutput" partnerLink="client"
 portType="tns:Test" operation="process" variable="output"/>
</sequence>
 </catch>
 </faultHandlers>
 <sequence>
 <!-- pick input from requester -->
 <receive name="receive" createInstance="yes"
 partnerLink="client" portType="tns:Test"
 operation="process" variable="input"/>
 <assign>
 <copy>
 <from>3</from>
 <to>$request.payload</to>
 </copy>

Chapter 10
Customizing the Number of Parallel Branches

10-16

 <copy>
 <from>''</from>
 <to>$output.payload</to>
 </copy>
 </assign>

 <forEach counterName="i" parallel="no">
 <startCounterValue>$input.payload/tns:startCounter+1</startCounterValue>
 <finalCounterValue>$input.payload/tns:finalCounter+1</finalCounterValue>
 <completionCondition>
 <branches>$input.payload/tns:branches+1</branches>
 </completionCondition>
 <scope name="scope1">
 <partnerLinks>
 <partnerLink name="DummyService" partnerLinkType="tns:DummyService"
 myRole="DummyServiceClient" partnerRole="DummyServiceProvider"/>
 </partnerLinks>
 <sequence>
 <assign>
 <copy>
 <from>concat($output.payload, $i, 'A')</from>
 <to>$output.payload</to>
 </copy>
 </assign>
 <invoke name="invokeDummyService" partnerLink="DummyService"
 portType="tns:DummyPortType"
 operation="initiate" inputVariable="request"/>
 <receive name="receiveFromDummyService" partnerLink="DummyService"
 portType="tns:DummyCallbackPortType"
 operation="onResult" variable="response"/> <assign>
 <copy>
 <from>concat($output.payload, $i, 'B')</from>
 <to>$output.payload</to>
 </copy>
 </assign>
 </sequence>
 </scope>
 </forEach>

 <!-- respond output to requester -->
 <reply name="replyOutput" partnerLink="client"
 portType="tns:Test" operation="process" variable="output"/>
 </sequence>

The following example shows the .bpel file after design is complete for a parallel forEach
activity.

<sequence>
 <!-- pick input from requester -->
 <receive name="receive" createInstance="yes"
 partnerLink="client" portType="tns:Test"
 operation="process" variable="input"/>
 <assign>
 <copy>
 <from>$input.payload/tns:value1</from>
 <to>$request.payload</to>
 </copy>
 <copy>
 <from>''</from>
 <to>$output.payload</to>
 </copy>
 </assign>

Chapter 10
Customizing the Number of Parallel Branches

10-17

 <forEach counterName="i" parallel="yes">
 <startCounterValue>($input.payload/tns:value1 + 1)</startCounterValue>
 <finalCounterValue>($input.payload/tns:value2 + 2)</finalCounterValue>
 <scope name="scope1">
 <partnerLinks>
 <partnerLink name="DummyService" partnerLinkType="tns:DummyService"
 myRole="DummyServiceClient" partnerRole="DummyServiceProvider"/>
 </partnerLinks>
 <sequence>
 <assign>
 <copy>
 <from>concat($output.payload, 'A')</from>
 <to>$output.payload</to>
 </copy>
 </assign>
 <invoke name="invokeDummyService" partnerLink="DummyService"
 portType="tns:DummyPortType"
 operation="initiate" inputVariable="request"/>
 <receive name="receiveFromDummyService" partnerLink="DummyService"
 portType="tns:DummyCallbackPortType"
 operation="onResult" variable="response"/>
 <assign>
 <copy>
 <from>concat($output.payload, 'B')</from>
 <to>$output.payload</to>
 </copy>
 </assign>
 </sequence>
 </scope>
 </forEach>
 <!-- respond output to requester -->
 <reply name="replyOutput" partnerLink="client"
 portType="tns:Test" operation="process" variable="output"/>
 </sequence>

Customizing the Number of Flow Activities with the flowN Activity in BPEL
1.1

In the flow activity, the BPEL code determines the number of parallel branches. However, often
the number of branches required is different depending on the available information. The flowN
activity creates multiple flows equal to the value of N, which is defined at runtime based on the
data available and logic within the process. An index variable increments each time a new
branch is created, until the index variable reaches the value of N.

The flowN activity performs activities on an arbitrary number of data elements. As the number
of elements changes, the BPEL process service component adjusts accordingly.

The branches created by flowN perform the same activities, but use different data. Each
branch uses the index variable to look up input variables. The index variable can be used in
the XPath expression to acquire the data specific for that branch.

For example, suppose there is an array of data. The BPEL process service component uses a
count function to determine the number of elements in the array. The process then sets N to be
the number of elements. The index variable starts at a preset value (zero is the default), and
flowN creates branches to retrieve each element of the array and perform activities using data
contained in that element. These branches are generated and performed in parallel, using all
the values between the initial index value and N. The flowN activity terminates when the index
variable reaches the value of N. For example, if the array contains 3 elements, N is set to 3.

Chapter 10
Customizing the Number of Parallel Branches

10-18

Assuming the index variable begins at 1, the flowN activity creates three parallel branches with
indexes 1, 2, and 3.

The flowN activity can use data from other sources as well, including data obtained from web
services.

Figure 10-15 shows the runtime flow of a flowN activity in Oracle Enterprise Manager Fusion
Middleware Control that looks up three hotels. This is different from the view, because instead
of showing the BPEL process service component, it shows how the process has actually
executed. In this case, there are three hotels, but the number of branches changes to match
the number of hotels available.

Figure 10-15 Oracle Enterprise Manager Fusion Middleware Control View of the
Execution of a flowN activity

How to Create a flowN Activity

To create a flowN activity:

1. In the Components window, expand Oracle Extensions.

2. Drag a FlowN activity into the designer.

3. Click the + sign to expand the FlowN activity.

4. Click the FlowN activity to display its property fields in the Property Inspector or double-
click the FlowN activity.

Chapter 10
Customizing the Number of Parallel Branches

10-19

For information about editing activities in the Property Inspector, see How to Edit BPEL
Activities in the Property Inspector.

Figure 10-16 shows the FlowN dialog.

Figure 10-16 FlowN Dialog

The flowN dialog enables you to:

• Name the activity

• Enter a value or an expression for calculating the value of N (the number of branches
to create)

• Define the index variable (the time to wait in each branch)

5. Drag and define additional activities in the flowN activity.

Figure 10-17 shows how a FlowN activity appears with additional activities.

Figure 10-17 FlowN Activity with Additional Activities

Chapter 10
Customizing the Number of Parallel Branches

10-20

What Happens When You Create a FlowN Activity
The following code shows the .bpel file that uses the flowN activity to look up information on
an arbitrary number of hotels.

The following example shows the sequence name.

 <sequence name="main">
 <!-- Received input from requester.
 Note: This maps to operation defined in NflowHotels.wsdl
 The requester sends a set of hotels names wrapped into the "inputVariable"
 -->

The following actions take place. A receive activity calls the client partner link to get the
information that the flowN activity must define N times and look up the hotel information. The
following provides an example:

 <receive name="receiveInput" partnerLink="client"
 portType="client:NflowHotels" operation="initiate" variable="inputVariable"
 createInstance="yes"/>
 <!--
 The 'count()' Xpath function is used to get the number of hotelName
 noded passed in.
 An intermediate variable called "NbParallelFlow" is
 used to store the number of N flows being executed
 -->
 <assign name="getHotelsN">
 <copy>
 <from
expression="count($InputVariable.payload/client:HotelName);"/>
 <to variable="NbParallelFlow"/>
 </copy>
 </assign>
 <!-- Initiating the FlowN activity
 The N value is initialized with the value stored in the
 "NbParallelFlow" variable
 The variable call "Index" is defined as the index variable
 NOTE: Both "NbParallelFlow" and "Index" variables have to be declared
 -->

The flowN activity begins next. After defining a name for the activity of flowN, N is defined as a
value from the inputVariable, which is the number of hotel entries. The activity also assigns
index as the index variable. The following provides an example:

<bpelx:flowN name="FlowN" N="bpws:getVariableData('NbParallelFlow')
indexVariable="Index'>
 <sequence name="Sequence_1">
 <!-- Fetching each hotelName by indexing the "inputVariable" with the
 "Index" variable.
 Note the usage of the "concat()" Xpath function to create the
 expression accessing the array element.
 -->

The copy rule shown in the following example then uses the index variable to concatenate the
hotel entries into a list:

<assign name="setHotelId">
 <copy>
 <from expression=
"bpws:getVariableData('inputVariable','payload',concat('/client:Nflo

Chapter 10
Customizing the Number of Parallel Branches

10-21

wHotelsProcessRequest/client:ListOfHotels/client:HotelName[',
bpws:getVariableData('Index'),']'))"/>
 <to variable="InvokeHotelDetailInputVariable" part="payload"
 query="/ns2:hotelInfoRequest/ns2:id"/>
 </copy>
 </assign>

Using the hotel information, an invoke activity looks up detailed information for each hotel
through a web service. The following provides an example:

 <!-- For each hotel, invoke the web service giving detailed information
 on the hotel -->
 <invoke name="InvokeHotelDetail" partnerLink="getHotelDetail"
 portType="ns2:getHotelDetail" operation="process"
 inputVariable="InvokeHotelDetailInputVariable"
 outputVariable="InvokeHotelDetailOutputVariable"/>
 </sequence>
 </bpelx:flowN>

Finally, the BPEL process sends detailed information on each hotel to the client partner link.
The following provides an example:

 <invoke name="callbackClient" partnerLink="client"
 portType="client:NflowHotelsCallback" operation="onResult"
 inputVariable="outputVariable"/>
 </sequence>
 </sequence>

Chapter 10
Customizing the Number of Parallel Branches

10-22

11
Using Conditional Branching in a BPEL
Process

This chapter describes how to use conditional branching in a BPEL process service
component. Conditional branching introduces decision points to control the flow of execution of
a BPEL process service component. This chapter also describes how to use the switch, if,
while, and repeatUntil activities to define conditional branching and specify XPath expressions
that enable you to bypass execution of activities.
This chapter includes the following sections:

• Introduction to Conditional Branching

• Defining Conditional Branching with the If or Switch Activity

• Defining Conditional Branching with the While Activity

• Defining Conditional Branching with the repeatUntil Activity

• Specifying XPath Expressions to Bypass Activity Execution

Introduction to Conditional Branching
BPEL applies logic to make choices through conditional branching. You can use the following
activities to design your code to select different actions based on conditional branching:

• If activity (in a BPEL version 2.0 project)

Enables you to use an if activity when conditional behavior is required for specific activities
to decide between two or more branches. The if activity replaces the switch activity that
appeared in BPEL 1.1 processes. For information about how to create if activities, see
Defining Conditional Branching with the If Activity in BPEL 2.0.

• Switch activity (in a BPEL version 1.1 project)

Enables you to set up two or more branches, with each branch in the form of an XPath
expression. If the expression is true, then the branch is executed. If the expression is false,
then the BPEL process service component moves to the next branch condition, until it
either finds a valid branch condition, encounters an otherwise branch, or runs out of
branches. If multiple branch conditions are true, then BPEL executes the first true branch.
For information about how to create switch activities, see Defining Conditional Branching
with the Switch Activity in BPEL 1.1 .

• While activity

Enables you to create a while loop to select between two actions. Defining Conditional
Branching with the While Activity describes while activities.

Many branches are set up, and each branch has a condition in the form of an XPath
expression.

You can program a conditional branch to have a timeout. That is, if a response cannot be
generated in a specified period, the BPEL flow can stop waiting and resume its activities. Using
Events and Timeouts in BPEL Processes explains this feature in detail.

11-1

Note:

You can also define conditional branching logic with business rules. See Designing
Business Rules with Oracle Business Process Management.

Defining Conditional Branching with the If or Switch Activity
This section describes how to define conditional branching with the following activities:

• If activity in a BPEL version 2.0 project

• Switch activity in a BPEL version 1.1 project

Defining Conditional Branching with the If Activity in BPEL 2.0
You can use an if activity when conditional behavior is required for specific activities to decide
between two or more branches. Only one activity is selected for execution from a set of
branches. The if activity consists of a list of one or more conditional branches that are
considered for execution in the following order:

• The if branch

• Optional elseif branches

• An optional else branch

The first branch whose condition evaluates to true is taken, and its contained activity is
performed. If no branch with a condition is taken, then the else branch is taken (if present). The
if activity is complete when the contained activity of the selected branch completes, or
immediately when no condition evaluates to true and no else branch is specified.

The if activity is a BPEL version 2.0 feature that replaces the switch activity that was included
in BPEL version 1.1.

The following example shows the if activity syntax:

<if standard-attributes>
 standard-elements
 <condition>some conditon expression</condition>
 activity
 <elseif>*
 <condition>some condition expression</condition>
 some activity
 </elseif>
 <else>?
 some activity
 </else>
</if>

How to Create an If Activity

To create an If activity:

1. In the Components window, expand BPEL Constructs.

2. Drag an If activity into the designer.

The if and else conditions are displayed, as shown in Figure 11-1.

Chapter 11
Defining Conditional Branching with the If or Switch Activity

11-2

Figure 11-1 If Activity

3. Click the if branch.

4. In the Condition field, enter a condition, as shown in Figure 11-2. You can also click the
XPath Expression Builder icon to invoke the Expression Builder dialog.

Figure 11-2 if Branch of the If Activity

5. Click OK.

6. Drag and define additional activities into the if condition, as needed. These activities are
executed if the if condition evaluates to true.

7. Click the elseif branch (if you added this branch).

8. In the Condition field, enter a condition, as shown in Figure 11-3.

Figure 11-3 elseif Branch of the If Activity

9. Click OK.

10. If you want to add elseif conditions, highlight the If activity, and select the Add icon to
invoke a menu.

Chapter 11
Defining Conditional Branching with the If or Switch Activity

11-3

11. Drag and define additional activities into the elseif condition, as needed. These activities
are executed if the if branch did not evaluate to true, and this elseif branch evaluates to
true.

12. Click the else label.

13. Enter a condition or drag and define additional activities into the else condition, as needed.
These activities are executed if the if and any elseif branches did not evaluate to true, and
this else branch evaluates to true.

Figure 11-4 shows a completed if activity in which each branch includes contained
activities.

Figure 11-4 Completed If Activity

What Happens When You Create an If Activity
The following code provides an example of the .bpel file after design completion. The if activity
has if, elseif, and else branches defined. The first branch to evaluate to true is executed.

<sequence>
 <!-- receive input from requester -->
 <receive name="receiveInput" partnerLink="client" portType="tns:Test"
 operation="process" variable="input" createInstance="yes"/>
 <!-- assign default value -->
 <assign>
 <copy>
 <from>'Value is greater than zero'</from>
 <to>$output.payload</to>
 </copy>
 <assign>
 <copy>
 <from>'Value is greater than zero'</from>
 <to>$output.payload</to>
 </copy>
 </assign>
 <!-- switch depends on the input value field -->
 <if>
 <condition>$input.payload > 0</condition>
 <extensionActivity>
 <bpelx:exec name="Java_Embedding" version="1.5" language="java">
 System.out.println("if condition is true.\n");
 </bpelx:exec>
 </extensionActivity>
 <elseif>
 <condition>bpws:getVariableData('input', 'payload') < 0</condition>
 <assign>

Chapter 11
Defining Conditional Branching with the If or Switch Activity

11-4

 <copy>
 <from>'Value is less than zero'</from>
 <to>$output.payload</to>
 </copy>
 </assign>
 </elseif>
 <else>
 <assign>
 <copy>
 <from>'Value is equal to zero'</from>
 <to>$output.payload</to>
 </copy>
 </assign>
 </else>
 </if>

 <!-- respond output to requester -->
 <reply name="replyOutput" partnerLink="client"
 portType="tns:Test" operation="process" variable="output"/>
 </sequence>

Defining Conditional Branching with the Switch Activity in BPEL 1.1
Assume you designed a flow activity in the BPEL process service component that gathered
loan offers from two companies at the same time, but did not compare either of the offers.
Each offer was stored in its own global variable. To compare the two bids and make decisions
based on that comparison, you can use a switch activity.

Figure 11-5 provides an overview of a BPEL conditional branching process that has been
defined in a switch activity.

Figure 11-5 Conditional Branching

Chapter 11
Defining Conditional Branching with the If or Switch Activity

11-5

How to Create a Switch Activity

To create a switch activity:

1. In the Components window, expand BPEL Constructs.

2. Drag a Switch activity into the designer, as shown in Figure 11-6.

The Switch activity has two switch case branches by default, each with a box for functional
elements. If you want to add more branches, select the entire switch activity, right-click,
and select Add Switch Case from the menu.

Figure 11-6 Switch Activity

3. In the first branch, double-click the condition box.

A dialog for entering a condition is displayed, as shown in Figure 11-7.

Figure 11-7 Condition Dialog

4. In the Label field, enter a name for the condition branch. When complete, this name is
displayed in Oracle BPEL Designer.

5. In the Condition field, click the Expression Builder icon to access the Expression Builder
dialog.

6. Create your expression.

bpws:getVariableDate('loanOffer1','payload','/loanOffer/APR') >
bpws:getVariableData('loanOffer2','payload','/loanOffer/APR')

In this example, two loan offers from completing loan companies are stored in the global
variables loanOffer1 and loanOffer2. Each loan offer variable contains the loan offer's

Chapter 11
Defining Conditional Branching with the If or Switch Activity

11-6

APR. The BPEL flow must choose the loan with the lower APR. One of the following switch
activities takes place:

• If loanOffer1 has the higher APR, then the first branch selects loanOffer2 by
assigning the loanOffer2 payload to the selectedLoanOffer payload.

• If loanOffer1 does not have the lower APR than loanOffer2, the otherwise case
assigns the loanOffer1 payload to the selectedLoanOffer payload.

7. Click OK.

The expression is displayed. The value you entered in the Label field of the dialog
becomes the name of the condition branch.

8. Click OK.

9. Add and configure additional activities as needed. Figure 11-8 provides details.

Figure 11-8 Switch Activity Design

What Happens When You Create a Switch Activity
A switch activity, such as a flow activity, has multiple branches. In the example that follows,
there are only two branches shown in the .bpel file after design completion. The first branch,
which selects a loan offer from a company named United Loan, is executed if a case condition
containing an XPath boolean expression is met. Otherwise, the second branch, which selects
the offer from a company named Star Loan, is executed. By default, the switch activity provides
two switch cases, but you can add more, as needed.

<switch name="switch-1">
 <case condition="bpws:getVariableData('loanOffer1','payload',
 '/autoloan:loanOffer/autoloan:APR') >
 bpws:getVariableData('loanOffer2','payload','/autoloan:loanOffer/autoloan:APR
 ')">
" name="Choose_the_Loan_with_the_Lower_APR">
 <bpelx:annotation>
 <bpelx:general>
 <bpelx:property name="userLabel">Choose the Loan with
 the Lower APR</bpelx:property>
 </bpelx:general>
 </bpelx:annotation>
 <assign name="selectUnitedLoan">
 <copy>
 <from variable="loanOffer1" part="payload">
 </from>
 <to variable="selectedLoanOffer" part="payload"/>
 </copy>
 </assign>
 </case>

Chapter 11
Defining Conditional Branching with the If or Switch Activity

11-7

 <otherwise>
 <assign name="selectStarLoan">
 <copy>
 <from variable="loanOffer2" part="payload">
 </from>
 <to variable="selectedLoanOffer" part="payload"/>
 </copy>
 </assign>
 </otherwise>
</switch>

Defining Conditional Branching with the While Activity
Another way to design your BPEL code to select between multiple actions is to use a while
activity to create a while loop. The while loop repeats an activity until a specified success
criteria is met. For example, if a critical web service is returning a service busy message in
response to requests, you can use the while activity to keep polling the service until it becomes
available. The condition for the while activity is that the latest message received from the
service is busy, and the operation within the while activity is to check the service again. Once
the web service returns a message other than service busy, the while activity terminates and
the BPEL process service component continues, ideally with a valid response from the web
service.

How To Create a While Activity
To create a while activity:

1. In the Components window, expand BPEL Constructs.

2. Drag a While activity into the designer.

3. Click the + sign to expand the while activity.

The while activity has icons to allow you to build condition expressions and to validate the
while definition. It also provides an area for you to drag an activity to define the while loop.

4. Drag and define additional activities for using the while condition into the Drop Activity
Here area of the While activity (for example, a Scope activity).

The activities can be existing or new activities.

5. Click the XPath Expression Builder icon to open the Expression Builder dialog.

6. Enter an expression to perform repeatedly, as shown in Figure 11-9. This action is
performed until the given boolean while condition is no longer true. In this example, this
activity is set to loop while less than 5.

Chapter 11
Defining Conditional Branching with the While Activity

11-8

Figure 11-9 While Activity with an Expression

7. Click OK when complete.

What Happens When You Create a While Activity
The code that follows provides an example of the .bpel file after design completion. The while
activity includes a scope activity. The scope activity includes sequence and fault handlers at
the top level. The sequence includes invoke and assign activities and fault handlers that define
a catchAll containing assign and wait activities wrapped in a sequence.

The following code calls an external service. If the external service throws a fault, the fault
handler catches the fault and increments the dbStatus variable value.

Therefore, the exit condition of the while loop is either of the following:

• There is no exception, upon which the dbStatus value is set to a value of 10, which results
in the while condition evaluating to false.

• After throwing a fault five times, the dbStatus value is 5, and the while condition returns
false.

<while name="While_1" condition="bpws:getVariableData('dbStatus') > 5">
 <scope name="Scope_1">
<faultHandlers>
 <catchAll>
 <sequence name="Sequence_2">
 <assign name="assign_DB_retry">
 <copy>
 <from expression="bpws:getVariableData('dbStatus') + 1"/>
 <to variable="dbStatus"/>
 </copy>
 </assign>
 <wait name="Wait_30_sec" for="'PT31S'"/>
 </sequence>
 </catchAll>
 </faultHandlers>
 <sequence name="Sequence_1">
 <invoke name="Write_DBWrite" partnerLink="WriteDBRecord"
 portType="ns2:WriteDBRecord_ptt" operation="insert"
 inputVariable="Invoke_DBWrite_merge_InputVariable"/>

Chapter 11
Defining Conditional Branching with the While Activity

11-9

 <assign name="Assign_dbComplete">
 <copy>
 <from expression="'10'"/>
 <to variable="dbStatus"/>
 </copy>
 </assign>
 </sequence>
 </scope>
 </while>

Note:

The while activity code fragment in the preceding example uses a BPEL 1.1 construct
of bpws:getVariableData('dbStatus'). For BPEL 2.0, variables are referenced
directly using $ sign and dot (.) notation. For example:

<while name="While1">
 <condition>$inputVariable.payload/client:counter > 0
 </condition>

Defining Conditional Branching with the repeatUntil Activity
If the body of an activity must be performed at least once, use a repeatUntil activity instead of a
while activity. The XPath expression condition in the repeatUntil activity is evaluated after the
body of the activity completes. The condition is evaluated repeatedly (and the body of the
activity processed) until the provided boolean condition is true.

Note:

This activity is supported in BPEL version 2.0 projects.

How to Create a repeatUntil Activity
To create a repeatUntil activity:

1. In the Components window, expand BPEL Constructs.

2. Drag a Repeat Until activity into the designer.

3. Click the Repeat Until activity to display its property fields in the Property Inspector or
double-click the Repeat Until activity.

For information about editing activities in the Property Inspector, see How to Edit BPEL
Activities in the Property Inspector.

4. Enter a name or accept the default value.

5. In the Condition field, click the XPath Expression Builder icon to enter an XPath
expression condition.

The Expression Builder dialog is displayed.

6. Enter a boolean XPath expression condition, and click OK.

Chapter 11
Defining Conditional Branching with the repeatUntil Activity

11-10

The condition you entered is displayed in the Repeat Until dialog, as shown in
Figure 11-10.

Figure 11-10 Completed Repeat Until Dialog

7. Click Apply, then OK.

8. Expand the Repeat Until activity, as shown in Figure 11-11.

Figure 11-11 repeatUntil Activity Being Expanded

9. Design the body of the activity by dragging in activities from the Components window and
defining their property values. These activities are evaluated until the XPath expression
condition is evaluated to true.

What Happens When You Create a repeatUntil Activity
The following provides an example of the .bpel file after design completion. In this scenario,
purchase order validation must be performed at least once, then repeatedly, based on
evaluating the completion status until the status is updated to 5.

<repeatUntil>
 <sequence>
 <invoke name="PurchaseOrderValidation" ... />
 <receive name="receiveValidation"
 partnerLink="PurchaseOrderValidation"
 operation="returnPurchaseOrderValidation"
 variable="PurchaseOrderStatusResponse" />
 </sequence>

Chapter 11
Defining Conditional Branching with the repeatUntil Activity

11-11

 <condition>
 bpel:getVariableProperty(
 "PurchaseOrderStatusResponse","tst:completionStatus") < 5
 </condition>
</repeatUntil>

Specifying XPath Expressions to Bypass Activity Execution
Oracle provides an extension that enables you to specify an XPath expression in an activity in
BPEL versions 1.1 and 2.0 that, when evaluated to true, causes that activity to be skipped.
This functionality provides an alternative to using a switch activity for conditionally executing
activities. The skip condition for activities is specified as follows:

<activity bpelx:skipCondition="boolean-expr"/>

The bpelx:skipCondition attribute causes an XPath expression to be evaluated immediately
upon creation of the activity instance. If the skip expression returns a false boolean value, the
activity is executed. If the skip expression returns a true boolean value, the activity is
completed immediately and execution moves to the activity immediately following that one.

How to Specify XPath Expressions to Bypass Activity Execution
To specify XPath expressions to bypass activity execution:

1. In the Components window, expand BPEL Constructs.

2. Drag the activity into the designer in which to create the skip condition.

3. Click the Skip Condition tab.

4. Specify an XPath expression that, when evaluated to true, causes an activity to be
skipped. Figure 11-12 provides details.

Figure 11-12 Skip Condition XPath Expression

5. Click Apply, then OK.

What Happens When You Specify XPath Expressions to Bypass Activity
Execution

The code segment in the .bpel file defines the specific operation after design completion.

For example, the XPath expression shown in the following code, when evaluated to true (for
example, input is 20), causes the assign activity to be skipped.

<sequence name="main">
. . .
. . .
<assign name="Assign_1"

bpelx:skipCondition="number(bpws:getVariableData('inputVariable','payload','/client:
 process/client:input')) > 10">
 <copy>
 <from expression="'Assign Block is not Skipped'"/>

Chapter 11
Specifying XPath Expressions to Bypass Activity Execution

11-12

 <to variable="inputVariable" part="payload"
 query="/client:process/client:input"/>
 </copy>
</assign>
. . .
. . .
</sequence>

The bpelx:skipCondition attribute is equivalent to a switch/case structured activity with a
single case element with a condition that is the opposite of the skip condition.

The following example shows the bpelx:skipCondition attribute in BPEL 1.1. If myvalue is 0,
the expression evaluates to true, and the assign activity is skipped. If myvalue is 10, the
expression evaluates to false, and the copy operation of the assign activity is executed.

<assign bpelx:skipCondition="bpws:getVariableData('input',
 'payload','/tns:inputMsg/tns:myvalue') <= 0">
 <copy>
 <from expression="'Value is greater than zero'"/>
 <to variable="output" part="payload"
 query="/tns:resultMsg/tns:valueResult"/>
 </copy>
</assign>

The equivalent functionality used with a switch activity is shown in the following example.

<switch>
 <case condition="bpws:getVariableData('input',
 'payload','/tns:inputMsg/tns:value') > 0">
 <assign>
 <copy>
 <from expression="'Value is greater than zero'"/>
 <to variable="output" part="payload"
 query="/tns:resultMsg/tns:valueResult"/>
 </copy>
 </assign>
 </case>
</switch>

In BPEL 2.0, the bpelx:skipCondition syntax appears as a child element of an activity. The
following code provides an example of an assign activity with this convention.

<assign name="Assign4">
<bpelx:skipCondition>ora:getNodeValue($inputVariable.payload/client:input) > 5
</bpelx:skipCondition><copy>
 <from>"dummy result"</from>
 <to>$outputVariable.payload/client:result</to>
 </copy></assign>

You can also use built-in and custom XPath functions within the skip condition expression. The
following code provides several examples.

<assign bpelx:skipCondition="bpws:getVariableData('crOutput', 'payload',
 '/tns:rating') > 0">

<assign bpelx:skipCondition="custom:validateRating()" ... />

<assign xmlns:fn='http://www.w3.org/2005/xpath-functions'
 bpelx:skipCondition="fn:false()" ... />

If an error is thrown by the XPath expression evaluation, the error is wrapped with a BPEL fault
and thrown from the activity.

Chapter 11
Specifying XPath Expressions to Bypass Activity Execution

11-13

An event is added to the BPEL instance audit trail for activities that are bypassed due to the
skip condition expression evaluating to true. Even if the skip condition evaluates to false
(meaning the activity is performed), the fact that a skip condition expression was evaluated is
still logged to the audit trail for debugging purposes.

If the XPath engine fails to evaluate the boolean value, bpws:subLanguageFault is thrown. This
is the same fault thrown when a switch/case condition does not evaluate to a boolean value.
This is also logged to the audit trail for debugging purposes.

Chapter 11
Specifying XPath Expressions to Bypass Activity Execution

11-14

12
Using Fault Handling in a BPEL Process

This chapter describes how to use fault handling in a BPEL process. Fault handling allows a
BPEL process service component to handle error messages or other exceptions returned by
outside web services, and to generate error messages in response to business or runtime
faults. This chapter also describes how to use the fault management framework to catch faults
and perform user-specified actions defined in a fault policy file.
This chapter includes the following sections:

• Introduction to a Fault Handler

• Introduction to BPEL Standard Faults

• Introduction to the Business and Runtime Fault Categories of BPEL Faults

• Handling Faults with the Fault Management Framework

• Catching BPEL Runtime Faults

• Getting Fault Details with the getFaultAsString XPath Extension Function

• Throwing Internal Faults with the Throw Activity

• Rethrowing Faults with the Rethrow Activity

• Returning External Faults

• Managing a Group of Activities with a Scope Activity

• Re-executing Activities in a Scope Activity with the Replay Activity

• Using Compensation After Undoing a Series of Operations

• Stopping a Business Process Instance with a Terminate or Exit Activity

• Throwing Faults with Assertion Conditions

• Classifying SOAP Faults as Retriable

Introduction to a Fault Handler
Fault handlers define how the BPEL process service component responds when target
services return data other than what is normally expected (for example, returning an error
message instead of a number). An example of a fault handler is where the web service
normally returns a credit rating number, but instead returns a negative credit message.

Figure 12-1 provides an example of how a fault handler sets a credit rating variable to -1000.

12-1

Figure 12-1 Fault Handling

The code segment in the following example defines the fault handler for this operation in the
BPEL file:

<faultHandlers>
 <catch faultName="services:NegativeCredit" faultVariable="crError">
 <assign name="crin">
 <copy>
 <from expression="-1000">
 </from>
 <to variable="input" part="payload"
 query="/autoloan:loanApplication/autoloan:creditRating"/>
 </copy>
 </assign>
 </catch>
</faultHandlers>

The faultHandlers tag contains the fault handling code. Within the fault handler is a catch
activity, which defines the fault name and variable, and the copy instruction that sets the
creditRating variable to -1000.

When you select web services for the BPEL process service component, determine the
possible faults that may be returned and set up a fault handler for each one.

Chapter 12
Introduction to a Fault Handler

12-2

Introduction to BPEL Standard Faults
This section identifies the standard faults for BPEL 1.1 and BPEL 2.0.

BPEL 1.1 Standard Faults
This section identifies the standard faults for BPEL 1.1. Unless otherwise noted below, the
Business Process Execution Language for Web Services Specification defines the following
standard faults in the namespace of http://schemas.xmlsoap.org/ws/2003/03/business-
process/:

• bindingFault (BPEL extension fault defined in http://schemas.oracle.com/bpel/
extension)

• conflictingReceive
• conflictingRequest
• correlationViolation
• forcedTermination
• invalidReply
• joinFailure
• mismatchedAssignmentFailure
• remoteFault (BPEL extension fault defined in http://schemas.oracle.com/bpel/

extension)

• repeatedCompensation
• selectionFailure
• uninitializedVariable
• assertFailure
• coordinationFault
• entityInternalNestedError
• maxLoopCountExceeded
• owsmPolicyFault
• rollback
• timeout
Standard faults are defined as follows:

• Typeless, meaning they do not have associated messageTypes
• Not associated with any Web Services Description Language (WSDL) message

• Caught without a fault variable:

<catch faultName="bpws:selectionFailure">

Chapter 12
Introduction to BPEL Standard Faults

12-3

BPEL 2.0 Standard Faults
The following list specifies the standard faults defined within the WS-BPEL specification. All
standard fault names are qualified with the standard WS-BPEL namespace.

• ambiguousReceive
• completionConditionFailure
• conflictingReceive
• conflictingRequest
• correlationViolation
• invalidBranchCondition
• invalidExpressionValue
• invalidVariables
• joinFailure
• mismatchedAssignmentFailure
• missingReply
• missingRequest
• scopeInitializationFailure
• selectionFailure
• subLanguageExecutionFault
• uninitializedPartnerRole
• uninitializedVariable
• unsupportedReference
• xsltInvalidSource
• xsltStylesheetNotFound

Fault Handling Order of Precedence in BPEL 2.0
In BPEL 2.0, the order of precedence for catching faults thrown without associated data is as
follows:

• If there is a catch activity with a matching faultName value that does not specify a
faultVariable attribute, the fault is sent to the identified catch activity.

• Otherwise, if there is a catchAll activity, the fault is sent to the catchAll fault handler.

• Otherwise, the fault is processed by the default fault handler.

In BPEL 2.0, the order of precedence for catching faults thrown with associated data is as
follows:

• If there is a catch activity with a matching faultName value that does not specify a
faultVariable attribute, the fault is sent to the identified catch activity.

• If the fault data is a WSDL message type in which the following exists:

– The message contains a single part defined by an element.

Chapter 12
Introduction to BPEL Standard Faults

12-4

– A catch activity with a matching faultName value that has a faultVariable whose
associated faultElement QName matches the QName of the runtime element data of
the single WSDL message part.

Then, the fault is sent to the identified catch activity with the faultVariable initialized to
the value in the single part's element.

• Otherwise, if there is a catch activity with a matching faultName value that does not specify
a faultVariable attribute, the fault is sent to the identified catch activity. In this case, the
fault value is not available from within the fault handler, but is available to the rethrow
activity.

• Otherwise, if there is a catch construct without a faultName attribute that has a
faultVariable whose type matches the type of the runtime fault data, then the fault is sent
to the identified catch activity.

• Otherwise, if the fault data is a WSDL message type in which the message contains a
single part defined by an element and there exists a catch activity without a faultName
attribute that has a faultVariable whose associated faultElement QName matches the
QName of the runtime element data of the single WSDL message part, the fault is sent to
the identified catch activity with the faultVariable initialized to the value in the single
part's element.

• Otherwise, if there is a catchAll activity, the fault is sent to the catchAll fault handler.

• Otherwise, the fault is handled by the default fault handler.

Introduction to the Business and Runtime Fault Categories of
BPEL Faults

A BPEL fault has a fault name called a Qname (name qualified with a namespace) and a
possible messageType. There are two categories of BPEL faults:

• Business faults

• Runtime faults

Business Faults
Business faults are application-specific faults that are generated when there is a problem with
the information being processed (for example, when a social security number is not found in
the database). A business fault occurs when an application executes a throw activity or when
an invoke activity receives a fault as a response. The fault name of a business fault is specified
by the BPEL process service component. The messageType, if applicable, is defined in the
WSDL file. A business fault can be caught with a faultHandler using the faultName and a
faultVariable.

<catch faultName="ns1:faultName" faultVariable="varName">

Runtime Faults
Runtime faults are the result of problems within the running of the BPEL process service
component or web service (for example, data cannot be copied properly because the variable
name is incorrect). These faults are not user-defined, and are thrown by the system. They are
generated for a variety of reasons, including the following:

• The process tries to use a value incorrectly.

Chapter 12
Introduction to the Business and Runtime Fault Categories of BPEL Faults

12-5

• A logic error occurs (such as an endless loop).

• A Simple Object Access Protocol (SOAP) fault occurs in a SOAP call.

• An exception is thrown by the server.

Several runtime faults are automatically provided. These faults are included in the http://
schemas.oracle.com/bpel/extension namespace. These faults are associated with the
messageType RuntimeFaultMessage. The WSDL file shown in the following example defines the
messageType:

<?xml version="1.0" encoding="UTF-8" ?>
<definitions name="RuntimeFault"
 targetNamespace="http://schemas.oracle.com/bpel/extension"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns="http://schemas.xmlsoap.org/wsdl/">

 <message name="RuntimeFaultMessage">
 <part name="code" type="xsd:string" />
 <part name="summary" type="xsd:string" />
 <part name="detail" type="xsd:string" />
 </message>
</definitions>

If a faultVariable (of messageType RuntimeFaultMessage) is used when catching the fault,
the fault code can be queried from the faultVariable, along with the fault summary and detail.

bindingFault
A bindingFault is thrown inside an activity if the preparation of the invocation fails. For
example, the WSDL of the process fails to load. A bindingFault is not retriable. This type of
fault usually must be fixed by human intervention.

remoteFault
A remoteFault is also thrown inside an activity. It is thrown because the invocation fails. For
example, a SOAP fault is returned by the remote service.

replayFault
A replayFault replays the activity inside a scope. At any point inside a scope, this fault is
migrated up to the scope. These faults are not populated into a common fault, but are an
indication to BPEL to re-execute the scope. The server then re-executes the scope from the
beginning.

How to Add and Propagate Fault Handling in a Synchronous BPEL Process
This section describes how to add and propagate fault handling in a synchronous BPEL
process. During the design, you perform the following tasks:

• Modify the existing schema and WSDL files to include fault element, fault message, and
fault operation details.

• Add fault handling to the BPEL process (specifically, a catch activity).

• Create a fault variable with the fault message type you specified in the WSDL file.

• Add assign and reply activities with additional fault handling details.

Chapter 12
Introduction to the Business and Runtime Fault Categories of BPEL Faults

12-6

Edit the Schema and WSDL Files

To edit the schema and WSDL files:

1. Create a synchronous BPEL process (for this example, named TestProcess) using the
default settings in the Create BPEL Process dialog.

2. In the Schemas folder of the Applications window, double-click the TestProcess.xsd file.

3. Click Source view, and add a new element called processFault:

<element name="processFault">
 <complexType>
 <sequence>
 <element name="result" type="string"/>
 </sequence>
 </complexType>
</element>

4. In the Applications window, expand the WSDLs folder.

5. Double-click the TestProcess.wsdl file.

6. Click Source view, and add a new message type called TestProcessFaultMessage.

<wsdl:message name="TestProcessFaultMessage">
 <wsdl:part name="payload" element="client:processFault"/>
</wsdl:message>

7. Edit the operation element in the WSDL file to add a fault.

<wsdl:operation name="process">
 <wsdl:input message="client:TestProcessRequestMessage" />
 <wsdl:output message="client:TestProcessResponseMessage"/>
 <wsdl:fault name="FaultResponse" message="
 client:TestProcessFaultMessage"/>
</wsdl:operation>

8. From the File menu, select Save.

Add a Fault Handler

To add a fault handler:

1. In the Applications window, expand SOA > BPEL.

2. Double-click TestProcess.bpel.

3. Click the Add Catch icon in the BPEL process to add a catch activity as the fault handler
for the BPEL process. You can also use a CatchAll activity. Figure 12-2 provides details.

Chapter 12
Introduction to the Business and Runtime Fault Categories of BPEL Faults

12-7

Figure 12-2 Add Catch Icon

4. Double-click the catch activity to specify the system fault. Figure 12-3 provides details.

Figure 12-3 Catch Activity

There is no assert activity to trigger this system fault. You can add one to assert an input
field.

5. In the Namespace URI field, click the Browse icon.

The Fault Chooser dialog is displayed.

6. Select a system fault (for this example, assertFailure), and click OK. There are many
other system faults that can be selected. Figure 12-4 provides details.

Chapter 12
Introduction to the Business and Runtime Fault Categories of BPEL Faults

12-8

Figure 12-4 Fault Chooser Dialog

You are returned to the Edit Catch dialog.

7. In the Fault Variable field, click the Create Variable icon.

The Create Variable dialog is displayed.

A name of FaultVar and a variable of type RuntimeFaultMessage are created.
Figure 12-5 provides details.

Figure 12-5 Create Variable Dialog

8. Copy the RuntimeFault.wsdl file into the SOA > WSDLs folder. This is the same location
as the BPEL process WSDL file.

9. Click OK, and then click OK in the Edit Catch dialog.

Create a Fault Response Variable

To create a fault response variable:

1. In the Structure window, right-click the Variables folder and select Create Variable.

2. In the Name field, enter Faultresponse.

3. Select Message Type.

4. For the Message Type field, click the Browse icon.

5. Expand Message Types > Project WSDL Files > TestProcess.wsdl > Message Types >
TestProcessFaultMessage, and click OK. Figure 12-6 provides details.

Chapter 12
Introduction to the Business and Runtime Fault Categories of BPEL Faults

12-9

Figure 12-6 Type Chooser Dialog

6. In the Create Variable dialog, click OK.

Add an Assign Activity to the Catch Activity Branch

To add an assign activity to the catch activity branch:

1. Drag an assign activity into the catch activity block.

2. Double-click the assign activity.

3. Concatenate the code, summary, and detail fields of the FaultVar variable to the
FaultResponse variable, and click OK. Figure 12-7 provides details.

Chapter 12
Introduction to the Business and Runtime Fault Categories of BPEL Faults

12-10

Figure 12-7 Edit Assign Dialog

4. In the Name field of the General tab, enter a name (for this example,
FaultDataForClient).

Add a Reply Activity to the Catch Activity Branch

To add a reply activity to the catch activity branch:

1. Drag a Reply activity below the Assign activity in the catch activity block.

2. Double-click the Reply activity.

3. In the Namespace URI field, click the Browse icon.

The Fault Chooser dialog is displayed.

4. Expand Project WSDL Files > TestProcess.wsdl, and select the fault named
FaultResponse. Figure 12-8 provides details.

Figure 12-8 Fault Chooser Dialog

5. In the Name field, enter a name (for this example, ReplyWithFault).

6. In the Partner Link field, click the Browse icon.

The Partner Link Chooser dialog is displayed.

7. Select the same partner link to which the replyOutput reply activity is connected, and click
OK.

Chapter 12
Introduction to the Business and Runtime Fault Categories of BPEL Faults

12-11

8. For the Variable field, click the Browse icon.

The Variable Chooser dialog is displayed.

9. Select the FaultResponse variable, and click OK.

Figure 12-9 Variable Chooser Dialog

10. In the Edit Reply dialog, click OK.

The BPEL process looks as shown in Figure 12-10. Both reply activities are connected to
the same partner link.

Figure 12-10 BPEL Process Design

Handling Faults with the Fault Management Framework
Oracle SOA Suite provides a generic fault management framework for handling faults in BPEL
processes. If a fault occurs during runtime in an invoke activity in a process, the framework
catches the fault and performs a user-specified action defined in a fault policy file associated
with the composite or component. Fault policies are applicable to the faults that result from the
invoke activity. Faults can occur because of preassertion, postassertion, invocation, or actual
business failures in the target service.

If a fault results in a condition in which human intervention is the prescribed action, you
perform recovery actions from Oracle Enterprise Manager Fusion Middleware Control. The
fault management framework provides an alternative to designing a BPEL process with catch
activities in scope activities.

This section provides an overview of the components that comprise the fault management
framework.

Chapter 12
Handling Faults with the Fault Management Framework

12-12

• The fault management framework catches all faults (business and runtime) for an invoke
activity.

• A fault policy file defines fault conditions and their corresponding fault recovery actions.
Each fault condition specifies a particular fault or group of faults, which it attempts to
handle, and the corresponding action for it. A set of actions is identified by an ID in the fault
policy file.

• A set of conditions invokes an action (known as a fault policy).

• Email or JMS notify users of errors associated with a condition.

• A fault policy bindings file associates the policies defined in the fault policy file with the
following:

– SOA composite applications

– BPEL process and Oracle Mediator service components

– Reference binding components for BPEL processes and Oracle Mediator service
components

The framework looks for fault policy bindings in the same directory as the composite.xml
file of the SOA composite application or in a remote location identified by two properties
that you set. The remote location is in the MDS Repository.

Note:

A fault policy configured with the fault management framework overrides any
fault handling defined in catch activities of scope activities in the BPEL process.
The fault management framework can be configured to rethrow the fault handling
back to the catch activities.

• The fault policy file (fault-policies.xml) and fault policy bindings file (fault-
bindings.xml) are placed in either of the following locations:

– In the same directory as the composite.xml file of the SOA composite application.

– In a different location that is specified with two properties that you add to the
composite.xml file. This option is useful if a fault policy must be used by multiple SOA
composite applications. This option overrides any fault policy files that are included in
the same directory as the composite.xml file. The following example provides details
about these two properties. In this example, the fault policy files are placed into the
SOA part of the Oracle Metadata Services (MDS) Repository shared area.

<property
 name="oracle.composite.faultPolicyFile">oramds:/apps/faultpolicyfiles/
 fault-policies.xml
</property>
<property
 name="oracle.composite.faultBindingFile">oramds:/apps/faultpolicyfiles/
 fault-bindings.xml
</property>

For details about Oracle Mediator fault handling capabilities, see Using Error Handling .

For details about creating a fault policy with Oracle Business Process Management (BPM)
Suite, see Chapter "Using Fault Handling in BPM" of Developing Business Processes with
Oracle Business Process Management Studio.

Chapter 12
Handling Faults with the Fault Management Framework

12-13

Understanding How the Fault Policy Binding Resolution Works
A fault policy bindings file associates the policies defined in a fault policy file with the SOA
composite application or the component (service component or reference binding component).
The framework attempts to identify a fault policy binding in the following order:

• Reference binding component defined in the composite.xml file.

• BPEL process or Oracle Mediator service component defined in the composite.xml file.

• SOA composite application defined in the composite.xml file.

During the resolution process, if no action is found that matches the condition, the framework
assumes that resolution failed and moves to the next resolution level.

For example, assume an invoke activity faults with faultname="abc". There is a policy binding
specified in the fault-bindings.xml file:

• SOA composite application binds to policy-id-1
• BPEL process or Oracle Mediator service component or reference binding component

binds to policy-id-2
In the fault-bindings.xml file, the following bindings are also specified:

• SOA composite application binds to policy-id-3
• Reference binding component or service component binds to policy-id-4
The fault management framework behaves as follows:

• First match the resolve binding (in this case, policy-id-4).

• If the fault resolution fails, go to the next possible match (policy-id-2).

• If the fault resolution fails, go to the next possible match (policy-id-3).

• If the fault resolution fails, go to the next possible match (in this case, policy-id-1).

• If the fault resolution still fails, the fault is sent to the BPEL fault catch activity.

How to Design a Fault Policy for Automated Fault Recovery with the Fault
Policy Wizard

You can design a fault policy with the Fault Policy wizard and associate the fault policy with the
fault policy binding file.

To design a fault policy for automated fault recovery with the Fault Policy wizard:

1. From the Oracle JDeveloper main menu, select File > New > From Gallery.

2. In the Categories list, select SOA Tier > Faults.

3. In the Items list, select Fault Policy Document.

The Fault Policy Editor is displayed, as shown in Figure 12-11. A single fault policy with a
name of policy1 is initially displayed for configuration.

Chapter 12
Handling Faults with the Fault Management Framework

12-14

Figure 12-11 Fault Policy Editor When Initially Displayed

The Fault Policy Editor consists of several sections and tabs. It is recommended that you
configure the Fault Policy Editor in the following order:

• Properties tab

• Alerts tab

• Actions tab

• Fault policy name and fault handlers

• Association with the fault policy binding file

Step 1: Defining Property Sets
You first define property sets to associate with JMS alerts, which are defined in Step 2:
Defining Alerts. You can associate property sets configuration details such as JMS destinations
and connection factories with multiple JMS alerts. For example, for a JMS alert, the destination
and queue information and connection factory can be referenced by additional JMS alerts
configured in the fault policy.

Note:

You cannot create property sets for email alerts in this release.

1. Click the Properties tab. Table 12-1 provides details about available fields.

Table 12-1 Property Set Selections

For... Then...

Email alerts Email alerts do not support property sets for this release.

Chapter 12
Handling Faults with the Fault Management Framework

12-15

Table 12-1 (Cont.) Property Set Selections

For... Then...

JMS queue alerts a. Click Add to specify the properties and values for JMS alerts.
The following properties and associated values are required:

• jmsDestination: The JNDI name of the configured queue or
topic in which the alerts is queued/published.

• connectionFactory: JNDI name for the configured connection
factory to use.

Figure 12-12 shows a property set configured with JMS destination and connection factory
values.

Figure 12-12 JMS Property Set Configuration

For an example of a fully-defined fault policy file, including a defined JMS propertySet
section, see Step 4 of How to Manually Design a Fault Policy for Automated Fault
Recovery.

Step 2: Defining Alerts
1. Click the Alerts tab. Two types of notification alerts are supported:

• Email: Enables you to configure email recipients to receive alerts when a fault occurs.
You must also configure the same email recipients on the Mailer tab of the Workflow
Notification Properties page in Oracle Enterprise Manager Fusion Middleware Control.
For information, see Configuring Human Workflow Notification Properties in
Administering Oracle SOA Suite and Oracle Business Process Management Suite.

• JMS: Enables you to enqueue the fault to a JMS queue or publish it to a JMS topic.
JMS header values can also be specified. The JMS notification can be integrated with
a third-party resolution system to handle faults. The third-party resolution system
dequeue and subscribes to the targeted queue and topic. Further fine-graining is
achieved by consuming messages based on the header property values. The payload
type of the JMS message is a text message in XML format. You must also configure
JMS queues and topics and connection factories in Oracle WebLogic Remote
Console. For information, see Configuring Basic JMS System Resources in
Administering JMS Resources for Oracle WebLogic Server.

2. Click the Add icon. Table 12-2 provides details.

Chapter 12
Handling Faults with the Fault Management Framework

12-16

Table 12-2 Alert Selections

If You Select... Then...

email You can specify recipients to receive an email alert when a fault occurs.

a. In the ID field, specify an ID or accept the default value.

b. In the To and CC fields, specify the email recipients.

Note: Do not select any property sets from the Property Set list. The email
alert does not support property sets for this release.

c. When complete, click OK.

JMS You can specify queues to receive a JMS alert when a fault occurs.

Two properties are required for configuring a JMS alert.

• jmsDestination: The JNDI name of the configured queue or topic on which
the alert is queued and published.

• connectionFactory: The JNDI Name for the configured connection factory
to use.

a. In the ID field, specify an ID or accept the default value.

b. In the Property Set list, select an existing property set created in Step 1:
Defining Property Sets or click Create Required Properties to create a new
property set with values defined for jmsDestination and
connectionFactory.

c. In the Headers table, optionally specify JMS header values to achieve finer-
grained fault consumption for a JMS alert. Both standard and custom
external systems can filter their subscriptions based on the configured
header properties.

d. When complete, click OK.

Figure 12-13 shows email alert configuration in the Email Properties dialog.

Figure 12-13 Email Alert Configuration

Figure 12-14 shows JMS alert configuration in the JMS Properties dialog. For this
example, both property sets (defined by clicking Create Required Properties to invoke
the Property Set dialog) and headers are defined.

Chapter 12
Handling Faults with the Fault Management Framework

12-17

Figure 12-14 JMS Alert Configuration

For an example of a fully-defined fault policy file, including a defined Alerts section, see
Step 4 of How to Manually Design a Fault Policy for Automated Fault Recovery.

Step 3: Defining Actions

• Click the Actions tab. By default, all types of actions are automatically selected.
Figure 12-15 provides details.

Figure 12-15 Actions Section of Fault Policy Editor

Table 12-3 describes the available action types.

Table 12-3 Supported Action Types

Action Description

Abort Terminates the entire business flow.

Chapter 12
Handling Faults with the Fault Management Framework

12-18

Table 12-3 (Cont.) Supported Action Types

Action Description

Human intervention Causes the current activity to stop processing. Human intervention
from Oracle Enterprise Manager Fusion Middleware Control is
required to handle the fault. For information, see "Recovering from
Faults in a Business Flow Instance" of Administering Oracle SOA
Suite and Oracle Business Process Management Suite.

Java action: Enables you to execute an external Java class. For more
information, see How to Use a Java Action Fault Policy.

Replay scope Raises a replay fault.

Rethrow fault Sends the fault to the BPEL fault handlers (catch activities in scope
activities). If none are available, the fault is sent up.

Enqueue Enqueues a rejected message to a JMS queue as a JMS message
with the appropriate context and payload. For additional
configuration information, see Section "JMS Queue" in
Understanding Technology Adapters.

Invoke WS: Handles a rejected message by calling a web service. For additional
configuration information, see Section "Web Service Handler" in
Understanding Technology Adapters.

File action Creates an error handler for messages by storing a rejected
message in a file. For additional configuration information, see
Section "File" in Understanding Technology Adapters.

Retry Provides the following options for retrying the activity:

• Retry a specified number of times.
• Provide a delay between retries (in seconds).
• Increase the interval with an exponential back off.
• Chain to a retry failure action if retry N times fails.
For more information about retries, see Table 12-6.

For an example of a fault policy file with a defined Actions section, see Step 4 of How to
Manually Design a Fault Policy for Automated Fault Recovery.

Step 4: Defining Fault Names and Policies
1. Define the fault name, description, and default action of the fault policy in the upper section

of the Fault Policy Editor. Table 12-4 provides details.

Table 12-4 Fault Policy Editor - Upper Section

Element Description

Add Fault Policy
icon (upper left
corner)

You can also add additional fault policies for configuration to a single policy
document.

Click the Add icon in the upper left corner to add an additional fault policy. All
polices are then displayed in the column on the far left of the Fault Policy Editor.
You can click the policy that you want to define.

Delete Fault
Policy

Delete a selected fault policy.

Fault Policy Enter a name for the fault policy or accept the default name of policynumber.

Add Fault icon
(upper right
corner)

Click to add a fault.

Chapter 12
Handling Faults with the Fault Management Framework

12-19

Table 12-4 (Cont.) Fault Policy Editor - Upper Section

Element Description

Delete Fault Click to delete a fault.

Fault Name Select a standard type of fault to catch. This list shows the system faults
(binding, Oracle Mediator, or remote) or service (business) fault that you can
select.

Description Enter an optional description. The description is persisted into the audit trail
during runtime.

Default Action Perform the following tasks in this section:

a. From the list, select the default action to perform when this fault occurs (for
example, abort, rethrow, retry, and so on). The actions available for
selection are based on the actions you retained or deleted in Step 3:
Defining Actions.

or

a. Click the Add icon to add an if-then condition to the fault policy. This
selection displays the If, Then, and Default fields.

For example, if you specify a condition in the If field (the default is true), you
can select an action (for example, human intervention) to be invoked in the
Then field. If the condition is not true, you can select the default action to
occur (for example, abort) in the Default field.

b. In the If field, enter a condition or click the Expression Builder icon to build
an XPath expression condition.

c. In the Then field, specify the condition to invoke if the condition in the If field
evaluates to true.

d. In the Default field, specify the condition to invoke if the condition in the If
field evaluates to false.

e. Click the Alert icon to the left of the Add icon to select the type of alert to
send when this condition occurs. The alert types available for selection are
displayed in the Alerts tab in this dialog. You can specify multiple alerts on
a condition.

When complete, the Fault Policy Editor looks as shown in Figure 12-16.

Chapter 12
Handling Faults with the Fault Management Framework

12-20

Figure 12-16 Fault Policy Editor With Fault Name, Description, and Default Actions
Defined

2. Above the SOA Composite Editor, close the fault policy file, and click Yes when prompted
to save your changes. Figure 12-17 provides details.

Figure 12-17 Save Fault Policy Changes

Policy configuration is now complete. You are now ready to associate the fault policy with
the fault policy bindings.

Step 5: Defining the Fault Policy Bindings for the Fault Policy
After creating a fault policy with the Fault Policy wizard, you associate the fault policy with a
fault policy bindings file. The fault policy bindings file associates the policies defined in the fault
policy file with service components, service binding components, or reference binding
components in the SOA composite application.

1. Open the SOA Composite Editor.

2. Click the icon above the SOA Composite Editor to define the fault policy bindings for this
fault policy. Figure 12-18 provides details.

Figure 12-18 Fault Policy Binding Icon

The Composite Fault Policies dialog is displayed.

Chapter 12
Handling Faults with the Fault Management Framework

12-21

3. If you want to specify a different fault policy file (for example, one created in the file
directory or MDS Repository), click the Browse icon to the right of the Fault Policy File
field.

4. In the Policy column for the SOA composite application, service binding component, or
reference binding component, select the fault policy to attach. Figure 12-19 provides
details.

Figure 12-19 Composite Fault Policies Dialog

5. In the SOA folder in the Applications window, select the fault-bindings.xml file to view
its contents. Figure 12-20 provides details.

Figure 12-20 Selection of fault-bindings.xml File

The file looks as shown in Figure 12-21.

Chapter 12
Handling Faults with the Fault Management Framework

12-22

Figure 12-21 fault-bindings.xml file

How to Manually Design a Fault Policy for Automated Fault Recovery
This section describes how to manually design a fault policy. The recommended approach is to
design a fault policy with the Fault Policy wizard, as described in How to Design a Fault Policy
for Automated Fault Recovery with the Fault Policy Wizard.

Manually Creating a Fault Policy File for Automated Fault Recovery

To manually create a fault policy file for automated fault recovery:

1. Create a fault policy file (for example, named fault-policies.xml). This file includes
condition and action sections for performing specific tasks.

2. Place the file in the same directory as the composite.xml file or place it in a different
location and define the oracle.composite.faultPolicyFile property.

<property
 name="oracle.composite.faultPolicyFile">oramds:/apps/faultpolicyfiles/
 fault-policies.xml
</property>
<property
 name="oracle.composite.faultBindingFile">oramds:/apps/faultpolicyfiles/
 fault-bindings.xml
</property>

If the fault policy file is located in a file system, use the following format.

<property
name="oracle.composite.faultPolicyFile">file:/project/apps/fault-policies.xml
</property>

3. Define the condition section of the fault policy file.

• Note the following details about the condition section:

– This section provides a condition based on faultName.

– Multiple conditions may be configured for a faultName.

– Each condition has one test section (an XPath expression) and one action
section.

– The test section (XPath expression) is evaluated for the fault variable available in
the fault.

Chapter 12
Handling Faults with the Fault Management Framework

12-23

– The action section has a reference to the action defined in the same file.

– You can only query the fault variable available in the fault.

– The order of condition evaluation is determined by the sequential order in the
document.

– You can associate a single or multiple alerts with a condition to be delivered (by
email, JMS queue, or log file) when a specific error condition occurs.

Table 12-5 provides examples of the condition section in the fault policy file. All
actions defined in the condition section must be associated with an action in the
action section.

Table 12-5 Use of the condition Section in the Fault Policy File

Condition Example Fault Policy File Syntax

This condition is checking a fault
variable for code = "WSDLFailure"
An action of ora-terminate is
specified.

<condition>
 <test>$fault.code="WSDLReading Error"
 </test>
 <action ref="ora-terminate"/>
</condition>

No test condition is provided. This is
a catchAll condition for a given
faultName.

<condition>
 <action ref="ora-rethrow"/>
</condition>

Two user notification alerts are
defined for the condition. Select the
type of user notification alert to create
when a fault occurs (for example, an
email alert, a JMS queue alert, or a
log file alert).

<condition>
 <alert ref = "ora-jms"/>
 <alert ref = "ora-email"/>
 <action ref="ora-rethrow"/>
</condition>

If the faultName name attribute is
missing, this indicates a catchAll
activity for faults that have any QName.

<faultName > . . . </faultName>

4. Define the action section of the fault policy file. Validation of fault policy files is done
during deployment. If you change the fault policy, you must redeploy the SOA composite
application that includes the fault policy.

Table 12-6 provides several examples of the action section in the fault policy file. You can
provide automated recovery actions for some faults. In all recovery actions except retry
and human intervention, the framework performs the actions synchronously.

Chapter 12
Handling Faults with the Fault Management Framework

12-24

Table 12-6 Use of action Section in the Fault Policy File

Recovery Actions Fault Policy File Syntax

Retry: Provides the following actions for
retrying the activity.

• Retry a specified number of times.
• Provide a delay between retries (in

seconds).
• Increase the interval with an

exponential back off.
• Chain to a retry failure action if retry

N times fails.
• Chain to a retry success action if a

retry is successful.
Note: Exponential back off indicates that
the next retry attempt is scheduled at 2 x
the delay, where delay is the current
retry interval. For example, if the current
retry interval is 2 seconds, the next retry
attempt is scheduled at 4, the next at 8,
and the next at 16 seconds until the
retryCount value is reached.

<Action id="ora-retry">
 <Retry>
 <retryCount>3</retryCount>
 <retryInterval>2</retryInterval>
 <exponentialBackoff/>
 <retryFailureAction ref="ora-java"/>
 <retrySuccessAction ref="ora-java"/>
 </Retry>
</Action>

Note the following details:

• The framework chains to the retry success action if the retry attempt is
successful.

• If all retry attempts fail, the framework chains to the retry failure action.

Human Intervention: Causes the current
activity to stop processing. You can now
go to Oracle Enterprise Manager Fusion
Middleware Control and perform manual
recovery actions on this instance.

<Action id="ora-human-intervention">
 <humanIntervention/></Action>

Terminate Process: Terminates the
process

<Action id="ora-terminate"><abort/></Action>

Java Code: Enables you to execute an
external Java class.

returnValue: The implemented Java
class must implement a method that
returns a string. The policy can chain to
a new action based on the returned
string.

For additional information, see How to
Use a Java Action Fault Policy.

<Action id="ora-java">
<!-- this is user provided custom java
 class-->
<javaAction className="mypackage.myClass"
 defaultAction="ora-terminate">
 <returnValue value="REPLAY"
 ref="ora-terminate"/>
 <returnValue value="RETRHOW"
 ref="ora-rethrow-fault"/>
 <returnValue value="ABORT"
 ref="ora-terminate"/>
 <returnValue value="RETRY" ref="ora-retry"/>
 <returnValue value="MANUAL"
 ref="ora-human-intervention"/>
</javaAction>
</Action>

Rethrow Fault: The framework sends the
fault to the BPEL fault handlers (catch
activities in scope activities). If none are
available, the fault is sent up.

<Action id="ora-rethrow-fault"><rethrowFault/></Action>

Replay Scope: Raises a replay fault. <Action id="ora-replay-scope"><replayScope/></Action>

Chapter 12
Handling Faults with the Fault Management Framework

12-25

Note:

The preseeded recovery action tag names (ora-retry, ora-human-intervention,
ora-terminate, and so on) are only samples. You can substitute these names with
ones appropriate to your environment.

A fault policy file with fully-defined condition, action, and alert sections looks as follows:

Note:

• Fault policy file names are not restricted to one specific name. However, they
must conform to the fault-policy.xsd schema file.

• This fault policy file provides an example of catching faults based on fault names.
You can also catch faults based on message types, or on both:

<faultName name="myfault" type="fault:faultType">

<?xml version="1.0" encoding="UTF-8"?>
<faultPolicies xmlns="http://schemas.oracle.com/bpel/faultpolicy"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <faultPolicy version="2.0.1" id="ModifyAndRecover"
 xmlns:env="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns="http://schemas.oracle.com/bpel/faultpolicy"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <Conditions>
 <!-- Handle remoteFault system exceptions -->
 <faultName xmlns:bpelx="http://schemas.oracle.com/bpel/extension"
 name="bpelx:remoteFault">
 <condition>
 <!--<test>$fault.code="1"</test>-->
 <alert ref = "ora-jms"/>
 <alert ref = "ora-email"/>
 <action ref="default-human-intervention"/>
 </condition>
 </faultName>
 <faultName xmlns:bpelx="http://schemas.oracle.com/bpel/extension"
 name="bpelx:bindingFault">
 <condition>
 <action ref="default-human-intervention"/>
 </condition>
 </faultName> </Conditions>
 <Alerts>
 <Alert id="ora-email">
 <email>
 <To>joe.smith@example.com</To>
 <CC>joe.smith@example.com</CC>
 </email>
 </Alert>
 <Alert id="ora-jms">
 <JMS propertySet="jms-props">
 <Headers>
 <property name="correlationId">myvalue</property>
 <property name="correlationId1">myvalue1</property>

Chapter 12
Handling Faults with the Fault Management Framework

12-26

 </Headers>
 </JMS>
 </Alert>
 </Alerts>
 <Actions>
 <!-- Generics -->
 <Action id="default-terminate">
 <abort/>
 </Action>
 <Action id="default-replay-scope">
 <replayScope/>
 </Action>
 <Action id="default-rethrow-fault">
 <rethrowFault/>
 </Action>
 <Action id="default-human-intervention">
 <humanIntervention/>
 </Action>
 <Action id="ora-retry-with-human-intervention">
 <retry>
 <retryCount>1</retryCount>
 <retryInterval>2</retryInterval>
 <exponentialBackoff/>
 <retryFailureAction ref="default-terminate"/>
 </retry>
 </Action>
 </Actions>
 <Properties>
 <propertySet name="jms-props">
 <property name="jmsDestination">MyQueue</property>
 <property
 name="connectionFactory">jms/fabric/ehconnectionfactory</property>
 </propertySet>
 </Properties>
 </faultPolicy>
</faultPolicies>

Associating a Fault Policy with Fault Policy Binding

Note:

The fault policy binding file must be named fault-bindings.xml. This conforms to
the fault-bindings.xsd schema file.

To associate a fault policy with fault policy binding:

1. Create a fault policy binding file (fault-bindings.xml) that associates the policies defined
in the fault policy file with the level of fault policy binding you are using (either a SOA
composite application or a component (reference binding component or BPEL process or
Oracle Mediator service component).

2. Place the file in the same directory as the composite.xml file or place it in a remote
location and define the oracle.composite.faultBindingFile property as shown in Step 2
of Manually Creating a Fault Policy File for Automated Fault Recovery.

This fault policy bindings file associates the fault policies defined in the fault-
policies.xml file.

Chapter 12
Handling Faults with the Fault Management Framework

12-27

<?xml version="1.0" encoding="UTF-8" ?>
<faultPolicyBindings version="0.0.1"
 xmlns="http://schemas.oracle.com/bpel/faultpolicy"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <composite faultPolicy="FusionMidFaults"/>
 <!--<composite faultPolicy="ServiceExceptionFaults"/>-->
 <!--<composite faultPolicy="GenericSystemFaults"/>-->
</faultPolicyBindings>

Additional Fault Policy and Fault Policy Binding File Samples
This section provides additional samples of fault policy and fault policy binding files. The
following example shows the fault-policies.xml file contents.

<?xml version="1.0" encoding="UTF-8"?>
<faultPolicies xmlns="http://schemas.oracle.com/bpel/faultpolicy">
<faultPolicy version="2.0.1"
 id="CRM_ServiceFaults"
 xmlns:env="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns="http://schemas.oracle.com/bpel/faultpolicy"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <Conditions>
 <!-- Fault if wsdlRuntimeLocation is not reachable -->
 <faultName xmlns:bpelx="http://schemas.oracle.com/bpel/extension"
 name="bpelx:remoteFault">
 <condition>
 <test>$fault.code="WSDLReadingError"</test>
 <action ref="ora-terminate"/>
 </condition>
 <condition>
 <action ref="ora-java"/>
 </condition>
 </faultName>
 <!-- Fault if location port is not reachable-->
 <faultName xmlns:bpelx="http://schemas.oracle.com/bpel/extension"
 name="bpelx:bindingFault">
 <!--ORA-00001: unique constraint violated on insert-->
 <condition>
 <test>$fault.code="1"</test>
 <action ref="ora-java"/>
 </condition>
 <!--ORA-01400: cannot insert NULL -->
 <condition>
 <test xmlns:test="http://test">$fault.code="1400"</test>
 <action ref="ora-terminate"/>
 </condition>
 <!--ORA-03220: required parameter is NULL or missing -->
 <condition>
 <test>$fault.code="3220"</test>
 <action ref="ora-terminate"/>
 </condition>
 <condition>
 <action ref="ora-retry-crm-endpoint"/>
 </condition>
 </faultName>
 <!-- Business faults -->
 <!-- Fault comes with a payload of error, make sure the name space is
 provided here or at root level -->
 <faultName xmlns:credit="http://services.otn.com"
 name="credit:NegativeCredit">
 <!-- you get this fault when SSN starts with 0-->

Chapter 12
Handling Faults with the Fault Management Framework

12-28

 <condition>
 <test>$fault.payload="Bankruptcy Report"</test>
 <alert ref = "ora-email"/>
 <action ref="ora-human-intervention"/>
 <!--action ref="ora-retry"/-->
 </condition>
 <!-- you get this fault when SSN starts with 1-->
 <condition>
 <test>$fault.payload="Bankruptcy Report-abort"</test>
 <action ref="ora-terminate"/>
 </condition>
 <!-- you get this fault when SSN starts with 2-->
 <condition>
 <test>$fault.payload="Bankruptcy Report-rethrow"</test>
 <action ref="ora-rethrow-fault"/>
 </condition>
 <!-- you get this fault when SSN starts with 3-->
 <condition>
 <test>$fault.payload="Bankruptcy Report-replay"</test>
 <action ref="ora-replay-scope"/>
 </condition>
 <!-- you get this fault when SSN starts with 4-->
 <condition>
 <test
 xmlns:myError="http://services.otn.com">$fault.payload="Bankruptcy
 Report-human"</test>
 <action ref="ora-human-intervention"/>
 </condition>
 <!-- you get this fault when SSN starts with 5-->
 <condition>
 <test>$fault.payload="Bankruptcy Report-java"</test>
 <action ref="ora-java"/>
 </condition>
 </faultName>
 </Conditions>
 <Actions>
 <Action id="ora-retry">
 <retry>
 <retryCount>3</retryCount>
 <retryInterval>2</retryInterval>
 <exponentialBackoff/>
 <retryFailureAction ref="ora-java"/>
 <retrySuccessAction ref="ora-java"/>
 </retry>
 </Action>
 <Action id="ora-retry-crm-endpoint">
 <retry>
 <retryCount>5</retryCount>
 <retryFailureAction ref="ora-java"/>
 <retryInterval>5</retryInterval>
 <retrySuccessAction ref="ora-java"/>
 </retry>
 </Action>
 <Action id="ora-replay-scope">
 <replayScope/>
 </Action>
 <Action id="ora-rethrow-fault">
 <rethrowFault/>
 </Action>
 <Action id="ora-human-intervention">
 <humanIntervention/>
 </Action>

Chapter 12
Handling Faults with the Fault Management Framework

12-29

 <Action id="ora-terminate">
 <abort/>
 </Action>
 <Action id="ora-java">
 <!-- this is user provided class-->
 <javaAction
 className="com.oracle.bpel.client.config.faultpolicy.TestJavaAction"
 defaultAction="ora-terminate" propertySet="prop-for-billing">
 <returnValue value="REPLAY" ref="ora-terminate"/>
 <returnValue value="RETRHOW" ref="ora-rethrow-fault"/>
 <returnValue value="ABORT" ref="ora-terminate"/>
 <returnValue value="RETRY" ref="ora-retry"/>
 <returnValue value="MANUAL" ref="ora-human-intervention"/>
 </javaAction>
 </Action>
 </Actions>
 <Properties>
 <propertySet name="prop-for-billing">
 <property name="user_email_recipient">bpeladmin</property>
 <property name="email_recipient">joe@abc.com</property>
 <property name="email_recipient">mike@xyz.com</property>
 <property name="email_threshold">10</property>
 <property name="sms_recipient">+429876547</property>
 <property name="sms_recipient">+4212345</property>
 <property name="sms_threshold">20</property>
 <property name="user_email_recipient">john</property>
 </propertySet>
 <propertySet name="prop-for-order">
 <property name="email_recipient">john@abc.com</property>
 <property name="email_recipient">jill@xyz.com</property>
 <property name="email_threshold">10</property>
 <property name="sms_recipient">+42222</property>
 <property name="sms_recipient">+423335</property>
 <property name="sms_threshold">20</property>
 </propertySet>
 </Properties>
</faultPolicy>
<faultPolicy version="2.0.1"
 id="Billing_ServiceFaults"
 xmlns:env="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:xs="http://www.w3.org/2001/XMLSchema"

 xmlns="http://schemas.oracle.com/bpel/faultpolicy"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
<Conditions>
 <faultName>
 <condition>
 <action ref="ora-manual"/>
 </condition>
 </faultName>
</Conditions>
<Actions>
 <Action id="ora-manual">
 <humanIntervention/>
 </Action>
</Actions>
</faultPolicy>
</faultPolicies>

The following example shows the fault-bindings.xml file that associates the fault policies
defined in fault-policies.xml.

Chapter 12
Handling Faults with the Fault Management Framework

12-30

<?xml version="1.0" encoding="UTF-8"?>
<faultPolicyBindings version="2.0.1"
 xmlns="http://schemas.oracle.com/bpel/faultpolicy"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <composite faultPolicy="ConnectionFaults"/>
 <component faultPolicy="ServiceFaults">
 <name>Component1</name>
 <name>Component2</name>
 </component>
 <!-- Below listed component names use polic CRM_SeriveFaults -->
 <component faultPolicy="CRM_ServiceFaults">
 <name>HelloWorld</name>
 <name>ShippingComponent</name>
 <name>AnotherComponent"</name>
 </component>
 <!-- Below listed reference names and port types use polic CRM_ServiceFaults
 -->
 <reference faultPolicy="CRM_ServiceFaults">
 <name>creditRatingService</name>
 <name>anotherReference</name>
 <portType
 xmlns:credit="http://services.otn.com">credit:CreditRatingService</portType>
 <portType
 xmlns:db="http://xmlns.oracle.com/pcbpel/adapter/db/insert/">db:insert_
plt</portType>
 </reference>
 <reference faultPolicy="test1">
 <name>CreditRating3</name>
 </reference>
</faultPolicyBindings>

Designing a Fault Policy with Multiple Rejection Handlers
If you design a fault policy that uses the action handler for rejected messages, note that only
one write action can be performed. Multiple write actions cannot be performed, even if you
define multiple rejection handlers, as shown in the following example. In this case, only the first
rejection handler defined (for this example, ora-queue) is executed.

<faultName xmlns:rjm="http://schemas.oracle.com/sca/rejectedmessages"
name="rjm:FileIn">
 <condition>
 <action ref="ora-queue"/>
 </condition>
 </faultName>
 <faultName xmlns:rjm="http://schemas.oracle.com/sca/rejectedmessages"
name="rjm:FileIn">
 <condition>
 <action ref="ora-file"/>
 </condition>
 </faultName>

How to Execute a Fault Policy
You deploy a fault policy as part of a SOA composite application. After deployment, you can
perform the fault recovery actions from Oracle Enterprise Manager Fusion Middleware Control.
Actions such as terminate, retry, rethrow, and Java are retried as part of composite execution.
No explicit user execution is required. The human intervention action can be manually
executed in Oracle Enterprise Manager Fusion Middleware Control.

• Retry the activity

Chapter 12
Handling Faults with the Fault Management Framework

12-31

• Modify a variable (available to the faulted activity)

• Continue the instance (mark the activity as a success)

• Rethrow the exception

• Abort the instance

• Throw a replay scope exception

For additional information, see Administering Oracle SOA Suite and Oracle Business Process
Management Suite.

How to Use a Java Action Fault Policy
Note the following details when using the Java action fault policy:

• The Java class provided follows a specific interface. This interface returns a string. Multiple
values can be provided for output and the fault policy to take after execution.

• Additional fault policy can be executed by providing a mapping from the output value
(return value) of implemented methods to a fault policy.

• If no ReturnValue is specified, the default fault policy is executed, as shown in the
following example.

<Action id="ora-java">
 <javaAction className="mypackage.myclass"
 defaultAction="ora-human-intervention" propertySet="prop-for-billing">
 <!--defaultAction is a required attribute, but propertySet is optional-->
 <!-- attribute-->
 <ReturnValue value="RETRY" ref="ora-retry"/>
 <!--value is not nilable attribute & cannot be empty-->
 <ReturnValue value="RETRHOW" ref="ora-rethrow-fault"/>
 </javaAction>
</Action>

Table 12-7 provides an example of ReturnValue use.

Table 12-7 System Interpretation of Java Action Fault Policy

Code Description

<ReturnValue value="RETRY"
 ref="ora-retry"/>

Execute the ora-retry action if the method returns a
string of RETRY.

<ReturnValue value=""
 ref="ora-rethrow"/>

Fails in validation.

<javaAction
 className="mypackage.myclass"
 defaultAction="ora-human-intervention">

Execute ora-human-intervention after Java code
execution. This attribute is used if the return value from
the method does not match any provided
ReturnValue.

<ReturnValue value="RETRY"
 ref="ora-retry"/>
<ReturnValue value="" ref=""/>

Fails in validation.

Chapter 12
Handling Faults with the Fault Management Framework

12-32

Table 12-7 (Cont.) System Interpretation of Java Action Fault Policy

Code Description

<javaAction
 className="mypackage.myclass"
 defaultAction=" ora-human-
intervention">
<ReturnValue></ReturnValue>

Fails in validation.

To invoke a Java class, you can provide a class that implements the
IFaultRecoveryJavaClass interface. IFaultRecoveryJavaClass is included in the fabric-
runtime.jar file. The package name is oracle.integration.platform.faultpolicy.

The IFaultRecoveryJavaClass interface has two methods, as shown in the following example:

public interface IFaultRecoveryJavaClass
{
public void handleRetrySuccess(IFaultRecoveryContext ctx);
public String handleFault(IFaultRecoveryContext ctx);
}

Note the following details:

• handleRetrySuccess is invoked upon a successful retry attempt. The retry policy chains to
a Java action on retrySuccessAction.

• handleFault is invoked to execute a policy of type javaAction.

• The fault policy class is packaged and deployed in either of two ways:

– Package the Java class with the SOA composite application.

– If the Java class must be shared by multiple SOA composite applications, place it in
the shared location (for example, $MW_HOME/soa/soa/ modules/
oracle.soa.ext_11.1.1). The shared location includes a readme file that describes
how to place the Java class to make it available in the class path.

The following example shows the data available with IFaultRecoveryContext:

public interface IFaultRecoveryContext {

/**
 * Gets implementation type of the fault.
 * @return
 */
public String getType();

/**
 * @return Get property set of the fault policy action being executed.
 */
public Map getProperties();

/**
 * @return Get fault policy id of the fault policy being executed.
 */
public String getPolicyId();

/**
 * @return Name of the faulted partner link.

Chapter 12
Handling Faults with the Fault Management Framework

12-33

 */
public String getReferenceName();

/**
 * @return Port type of the faulted reference .
 */
public QName getPortType();
}

The service engine implementation of this interface provides more information (for example,
Oracle BPEL Process Manager). The following example provides details:

public class BPELFaultRecoveryContextImpl extends BPELXExecLetUtil implements
IBPELFaultRecoveryContext, IFaultRecoveryContext{
...
}

Oracle BPEL Process Manager-specific data is available with IBPELFaultRecoveryContext, as
shown in the following example:

public interface IBPELFaultRecoveryContext {
public void addAuditTrailEntry(String message);

public void addAuditTrailEntry(String message, Object detail);

public void addAuditTrailEntry(Throwable t);
/**
 * @return Get action id of the fault policy action being executed.
 */
public String getActionId();

/**
 * @return Type of the faulted activity.
 */
public String getActivityId();

/**
 * @return Name of the faulted activity.
 */
public String getActivityName();

/**
 * @return Type of the faulted activity.
 */
public String getActivityType();

/**
 * @return Correleation id of the faulted activity.
 */
public String getCorrelationId();

/**
 * @return BPEL fault that caused the invoke to fault.
 */
public BPELFault getFault();

/**
 * @return Get index value of the instance
 */
public String getIndex(int i);

/**

Chapter 12
Handling Faults with the Fault Management Framework

12-34

 * @return get Instance Id of the current process instance of the faulted
 * activity.
 */
public long getInstanceId();

/**
 * @return Get priority of the current process instance of the faulted
 * activity.
 */
public int getPriority();

/**
 * @return Process DN.
 */
public ComponentDN getProcessDN();

/**
 * @return Get status of the current process instance of the faulted
 * activity.
 */
public String getStatus();

/**
 * @return Get title of the current process instance of the faulted
 * activity.
 */
public String getTitle();

public Object getVariableData(String name) throws BPELFault;

public Object getVariableData(String name, String partOrQuery)
throws BPELFault;

public Object getVariableData(String name, String part, String query)
throws BPELFault;

/**
 * @param priority
 * Set priority of the current process instance of the faulted
 * activity.
 * @return
 */
public void setPriority(int priority);

/**
 * @param status
 * Set status of the current process instance of the faulted
 * activity.
 */
public void setStatus(String status);

/**
 * @param title
 * Set title of the current process instance of the faulted
 * activity.
 * @return
 */
public String setTitle(String title);

public void setVariableData(String name, Object value) throws BPELFault;

public void setVariableData(String name, String partOrQuery, Object value)

Chapter 12
Handling Faults with the Fault Management Framework

12-35

throws BPELFault;

public void setVariableData(String name, String part, String query,
Object value) throws BPELFault;
}

The following example provides an example of javaAction implementation.

public class TestJavaAction implements IFaultRecoveryJavaClass {
public void handleRetrySuccess(IFaultRecoveryContext ctx) {
System.out.println("This is for retry success");
handleFault(ctx);
}
public String handleFault(IFaultRecoveryContext ctx) {
System.out.println("-----Inside handleFault-----\n" + ctx.toString());

 dumpProperties(ctx.getProperties());
/* Get BPEL specific context here */
BPELFaultRecoveryContextImpl bpelCtx = (BPELFaultRecoveryContextImpl) ctx;
bpelCtx.addAuditTrailEntry("hi there");
System.out.println("Policy Id" + ctx.getPolicyId());
 ...
 }

How to Design Fault Policies for Oracle BPM Suite
You can design and execute fault policies for Oracle BPM Suite. For more information, see
Chapter "Using Fault Handling in BPM" of Developing Business Processes with Oracle
Business Process Management Studio.

What You May Need to Know About Designing a Fault Policy in a
Synchronous BPEL Process

When designing a fault policy in a synchronous process, do not specify the following actions.
These actions cause dehydration in a synchronous process and leads to timeouts.

• Retry

• Human intervention

• Terminate

What You May Need to Know About Fault Management Behavior When the
Number of Instance Retries is Exceeded

When you configure a fault policy to recover instances with the ora-retry action and the
number of specified instance retries is exceeded, the instance is marked as open.faulted (in-
flight state). The instance remains active.

Marking instances as open.faulted ensures that no instances are lost. You can then configure
another fault handling action following the ora-retry action in the fault policy file, such as the
following:

• Configure an ora-human-intervention action to manually perform instance recovery from
Oracle Enterprise Manager Fusion Middleware Control.

• Configure an ora-terminate action to close the instance (mark it as closed.faulted) and
never retry again.

Chapter 12
Handling Faults with the Fault Management Framework

12-36

However, if you do not set an action to be performed after an ora-retry action in the fault
policy file and the number of instance retries is exceeded, the instance remains marked as
open.faulted, and recovery attempts to handle the instance.

For example, if no action is defined in the fault policy file shown in the following code after ora-
retry:

<Action id="ora-retry">
 <retry>
 <retryCount>2</retryCount>
 <retryInterval>2</retryInterval>
 <exponentialBackoff/>
 </retry>
 </Action>

The following actions are performed:

• The invoke activity is attempted (using the above-mentioned fault policy code to handle the
fault).

• Two retries are attempted at increasing intervals (after two seconds, then after four
seconds).

• If all retry attempts fail, the following actions are performed:

– A detailed fault error message is logged in the audit trail.

– The instance is marked as open.faulted (in-flight state).

– The instance is picked up and the invoke activity is re-attempted.

• Recovery may also fail. In that case, the invoke activity is re-executed. Additional audit
messages are logged.

What You May Need to Know About Binding Level Retry Execution Within
Fault Policy Retries

If you are testing retry actions on adapters with both JCA-level retries for the outbound
direction and a retry action in the fault policy file for outbound failures, the JCA-level (or binding
level) retries are executed within the fault policy retries. For example, assume you have
designed the application shown in Figure 12-22:

Figure 12-22 SOA Composite Application

You specify the retry parameters, as shown below, in the composite.xml file:

<property name="jca.retry.count" type="xs:int" many="false"
 override="may">2</property>
<property name="jca.retry.interval" type="xs:int" many="false"
 override="may">2</property>

Chapter 12
Handling Faults with the Fault Management Framework

12-37

<property name="jca.retry.backoff" type="xs:int" many="false"
 override="may">2</property>

In the fault policy file for the EQ reference binding component for the outbound direction, you
specify the actions shown in the following code:

<retryCount>3</retryCount>
<retryInterval>3</retryInterval>

If an outbound failure occurs, the expected behavior is for the JCA retries to occur within the
fault policy retries. When the first retry of the fault policy is executed, the JCA retry is called. In
this example, a JCA retry of 2 with an interval of 2 seconds and exponential back off of 2 is
executed for every retry of the fault policy:

• Fault policy retry 1:

– JCA retry 1 (with 2 seconds interval)

– JCA retry 2 (with 4 seconds interval)

• Fault policy retry 2:

– JCA retry 1 (with 2 seconds interval)

– JCA retry 2 (with 4 seconds interval)

• Fault policy retry 3:

– JCA retry 1 (with 2 seconds interval)

– JCA retry 2 (with 4 seconds interval)

Catching BPEL Runtime Faults
BPEL runtime faults can be caught as a named BPEL fault. The bindingFault and
remoteFault can be associated with a message. This action enables the faultHandler to get
details about the faults.

How to Catch BPEL Runtime Faults
The following procedure shows how to use the provided examples to generate a fault and
define a fault handler to catch it. In this case, you modify a WSDL file to generate a fault, and
create a catch attribute to catch it.

To catch BPEL runtime faults:

1. Import RuntimeFault.wsdl into your process WSDL. RuntimeFault.wsdl is seeded into
the MDS Repository from soa.mar inside soa-infra-wls.ear during its deployment.

You may see a copy of soa.mar in the deployed SOA Infrastructure in the Oracle WebLogic
Server domain, which is a JAR/ZIP file containing RuntimeFault.wsdl.

2. Declare a variable with messageType bpelx:RuntimeFaultMessage.

3. Catch it using the following syntax:

 <catch faultName="bpelx:remoteFault" | "bpelx:bindingFault" faultName="varName">

Chapter 12
Catching BPEL Runtime Faults

12-38

Getting Fault Details with the getFaultAsString XPath Extension
Function

The catchAll activity is provided to catch possible faults. However, BPEL does not provide a
method for obtaining additional information about the captured fault. Use the
getFaultAsString() XPath extension function to obtain additional information.

How to Get Fault Details with the getFaultAsString XPath Extension
Function

The following example shows how to use this function.

<catchAll>
 <sequence>
 <assign>
 <from expression="bpelx:getFaultAsString()"/>
 <to variable="faultVar" part="message"/>
 </assign>
 <reply faultName="ns1:myFault" variable="faultVar" .../>
 </sequence>
</catchAll>

For more information, see getFaultAsString.

Throwing Internal Faults with the Throw Activity
A BPEL application can generate and receive fault messages. The throw activity has three
elements: its name, the name of the fault, and the fault variable. The fault thrown by a throw
activity is internal to BPEL. You cannot use a throw activity on an asynchronous process to
communicate with a client. Throw activity syntax includes the throw name, fault name, and fault
variable:

<throw name="delay" faultName="nsPrefix:fault-1" faultVariable="fVar"/>

How to Create a Throw Activity
To create a throw activity:

1. In the Components window, expand BPEL Constructs.

2. Drag a Throw activity into the designer.

3. Double-click and define the Throw activity.

4. Optionally enter a name or accept the default value.

5. To the right of the Namespace URI field, click the Search icon to select the fault to
monitor.

6. Select the fault in the Fault Chooser dialog, and click OK.

The namespace URI for the selected fault displays in the Namespace URI field. Your fault
selection also automatically displays in the Local Part field.

Figure 12-23 provides an example of a completed Throw dialog.

Chapter 12
Getting Fault Details with the getFaultAsString XPath Extension Function

12-39

Figure 12-23 Throw Dialog

7. Click Apply, then OK.

What Happens When You Create a Throw Activity
The following code shows the throw activity in the .bpel file after design completion. The
OrderProcessor process terminates after executing this throw activity.

<throw name="Throw_Fault_CC_Denied"
 faultName="client:OrderProcessorFault"/>

Rethrowing Faults with the Rethrow Activity
The rethrow activity rethrows faults originally captured by the immediately enclosing fault
handler. Only use the rethrow activity within a fault handler (for example, within catch and
catchAll activities). The rethrow activity is used in fault handlers to rethrow the captured fault
(that is, the fault name and the fault data (if present) of the original fault). The rethrow activity
must ignore modifications to fault data. For example:

• If the fault handler modifies fault data and then calls a rethrow activity, the original fault
data is rethrown, and not the modified fault data.

• If a fault is captured using the functionality that enables message type faults with one part
defined using an element to be caught by fault handlers looking for the same element type,
then the rethrow activity rethrows the original message type data.

Note:

This activity is supported in BPEL version 2.0 projects.

Chapter 12
Rethrowing Faults with the Rethrow Activity

12-40

How to Create a Rethrow Activity
To create a rethrow activity:

1. In the Components window, expand BPEL Constructs.

2. Drag a Rethrow activity into the designer.

3. Double-click and define the Rethrow activity.

4. Optionally enter a name or accept the default value, as shown in Figure 12-24.

Figure 12-24 Rethrow Dialog

5. Click Apply, then OK.

When complete, design can look as shown in Figure 12-25.

Figure 12-25 Throw Activity in BPEL Process

Chapter 12
Rethrowing Faults with the Rethrow Activity

12-41

What Happens When You Rethrow Faults
The following example shows the .bpel file after design is complete for a rethrow activity. The
rethrow activity is inside a fault handler (catch activity).

<scope name="scope1">
 <faultHandlers>
 <catch faultName="tns:error" faultVariable="tmpVar"
 faultElement="tns:fault">
 <sequence>
 <assign>
 <copy>
 <from>concat('caught fault: ', $tmpVar)</from>
 <to>$output.payload</to>
 </copy>
 </assign>
 <rethrow name="Rethrow_1"/>
 </sequence>
 </catch>
 </faultHandlers>
 <throw faultName="tns:error" faultVariable="fault"/>
</scope>

Returning External Faults
A BPEL process service component can send a fault to another application to indicate a
problem, as opposed to throwing an internal fault. In a synchronous operation, the reply activity
can return the fault. In an asynchronous operation, the invoke activity performs this function.

How to Return a Fault in a Synchronous Interaction
The syntax of a reply activity that returns a fault in a synchronous interaction is shown in the
following example:

<reply partnerlinke="partner-link-name"
 portType="port-type-name"
 operation="operation-name"
 variable="variable-name" (optional)
 faultName="fault-name">
</reply>

Always returning a fault in response to a synchronous request is not very useful. It is better to
make the activity part of a conditional branch, in which the first branch is executed if the data
requested is available. If the requested data is not available, then the BPEL process service
component returns a fault with this information.

For more information, see the following chapters:

• Invoking a Synchronous Web Service from a BPEL Process for synchronous interactions

• Using Conditional Branching in a BPEL Process for setting up the conditional structure

How to Return a Fault in an Asynchronous Interaction
In an asynchronous interaction, the client does not wait for a reply. The reply activity is not
used to return a fault. Instead, the BPEL process service component returns a fault using a

Chapter 12
Returning External Faults

12-42

callback operation on the same port type that normally receives the requested information, with
an invoke activity.

For more information about asynchronous interactions, see Invoking an Asynchronous Web
Service from a BPEL Process.

Managing a Group of Activities with a Scope Activity
A scope activity provides a container and a context for other activities. A scope provides
handlers for faults, events, compensation, data variables, and correlation sets. Using a scope
activity simplifies a BPEL flow by grouping functional structures. This grouping enables you to
collapse them into what appears to be a single element in Oracle BPEL Designer.

The following example shows a scope named Scope_FulfillOrder. This scope invokes the
FulfillOrder Oracle Mediator component, which determines the shipping method for the
order.

<scope name="Scope_FulfillOrder">
 <variables>
 <variable name="lFulfillOrder_InputVariable"
 messageType="ns17:requestMessage"/>
 </variables>
 <sequence>
 <assign name="Assign_OrderData">
 <copy>
 <from variable="gOrderInfoVariable"
 query="/ns4:orderInfoVOSDO"/>
 <to variable="lFulfillOrder_InputVariable"
 part="request" query="/ns4:orderInfoVOSDO"/>
 </copy>
 </assign>
 <invoke name="Invoke_FulfillOrder"
 inputVariable="lFulfillOrder_InputVariable"
 partnerLink="FulfillOrder.FulfillOrder"
 portType="ns17:execute_ptt" operation="execute"/>
 </sequence>
</scope>

How to Create a Scope Activity
To create a scope activity:

1. In the Components window, expand BPEL Constructs.

2. Drag a Scope activity into the designer.

3. Open the Scope activity by double-clicking it or by single-clicking the Expand icon.

4. From the Components window, drag and define activities to build the functionality within
the scope. Figure 12-26 provides details.

Chapter 12
Managing a Group of Activities with a Scope Activity

12-43

Figure 12-26 Expanded Scope Activity

5. Click OK.

When complete, scope activity design can look as shown in Figure 12-27. This example
shows a Scope_AuthorizeCreditCard scope activity.

Figure 12-27 Scope Activity After Design Completion

How to Add Descriptive Notes and Images to a Scope Activity
You can add descriptive notes to scope activities that provide simple descriptions of the
functionality of the scope. You can also change the graphical image of scopes. The notes and
images display in Oracle BPEL Designer. This helps to make a scope easier to understand.

To add descriptive notes and images to a scope activity:

1. Perform one of the following steps:

• Right-click the scope and select User Documentation.

• Double-click the scope and select the User Documentation tab.

The Documentation dialog appears.

Chapter 12
Managing a Group of Activities with a Scope Activity

12-44

2. In the Comment field, enter a brief description of the functionality of the scope.

3. In the Image field, click the Search icon to optionally change the graphical image for the
scope.

4. Click OK.

Your changes display in Oracle BPEL Designer, as shown in Figure 12-28.

Figure 12-28 Scope with Descriptive Note and Modified Image

5. To edit the note, double-click it.

What Happens After You Create a Scope Activity
The following example shows the scope activity in the .bpel file after design completion. The
Scope_AuthorizeCreditCard scope activity consists of activities that perform the following
actions:

• A catch activity for catching faulted orders in which the credit card number is not provided
or the credit type is not valid.

• A throw activity that throws a fault for orders that are not approved.

• An assign activity that takes the credit card type, credit card number, and purchase
amount, and assigns this information to the input variable for the
CreditCardAuthorizationService service.

• An invoke activity that calls a CreditCardAuthorizationService service to retrieve
customer information.

• A switch activity that checks the results of the credit card validation.

<scope name="Scope_AuthorizeCreditCard">
 <variables>
 <variable name="lCreditCardInput"
 messageType="ns2:CreditAuthorizationRequestMessage"/>
 <variable name="lCreditCardOutput"
 messageType="ns2:CreditAuthorizationResponseMessage"/>

Chapter 12
Managing a Group of Activities with a Scope Activity

12-45

 </variables>
 <faultHandlers>
 <catch faultName="bpws:selectionFailure">
 <sequence>
 <assign name="Assign_noCCNumber">
 <copy>
 <from expression="string('CreditCardCheck - NO
 CreditCard')"/>
 <to variable="gOrderProcessorFaultVariable"
 part="code"/>
 </copy>
 </assign>
 <throw name ="Throw_NoCreditCard"
 faultVariable="gOrderProcessorFaultVariable"
 faultName="ns9:OrderProcessingFault"/>
 </sequence>
 </catch>
 <catch faultName="ns2:InvalidCredit">
 <sequence>
 <assign name="Assign_InvalidCreditFault">
 <copy>
 <from expression="concat(bpws:getVariableData
 ('gOrderInfoVariable','/ns4:orderInfoVOSDO/
 ns4:CardTypeCode'), ' is not a valid
 creditcard type')"/>
 <to variable="gOrderProcessorFaultVariable"
 part="summary"/>
 </copy>
 <copy>
 <from expression="string('CreditCardCheck - NOT VALID')"/>
 <to variable="gOrderProcessorFaultVariable"
 part="code"/>
 </copy>
 </assign>
 <throw name="Throw_OrderProcessingFault"
 faultName="ns9:OrderProcessingFault"
 faultVariable="gOrderProcessorFaultVariable"/>
 </sequence>
 </catch>
 </faultHandlers>
 <sequence>
 <assign name="Assign_CreditCheckInput">
 <copy>
 <from variable="gOrderInfoVariable"
 query="/ns4:orderInfoVOSDO/ns4:OrderTotal"/>
 <to variable="lCreditCardInput" part="Authorization"
 query="/ns8:AuthInformation/ns8:PurchaseAmount"/>
 </copy>
 <copy>
 <from variable="gOrderInfoVariable"
 query="/ns4:orderInfoVOSDO/ns4:CardTypeCode"/>
 <to variable="lCreditCardInput" part="Authorization"
 query="/ns8:AuthInformation/ns8:CCType"/>
 </copy>
 <copy>
 <from variable="gOrderInfoVariable"
 query="/ns4:orderInfoVOSDO/ns4:AccountNumber"/>
 <to variable="lCreditCardInput" part="Authorization"
 query="/ns8:AuthInformation/ns8:CCNumber"/>
 </copy>
 </assign>
 <invoke name="InvokeCheckCreditCard"

Chapter 12
Managing a Group of Activities with a Scope Activity

12-46

 inputVariable="lCreditCardInput"
 outputVariable="lCreditCardOutput"
 partnerLink="CreditCardAuthorizationService"
 portType="ns2:CreditAuthorizationPort"
 operation="AuthorizeCredit"/>
 <switch name="Switch_EvaluateCCResult">
 <case condition="bpws:getVariableData('lCreditCardOutput','status','
 /ns8:status') != 'APPROVED'">
 <bpelx:annotation>
 <bpelx:pattern>status <> approved</bpelx:pattern>
 </bpelx:annotation>
 <throw name="Throw_Fault_CC_Denied"
 faultName="client:OrderProcessorFault"/>
 </case>
 /switch>
 </sequence>
</scope>

What You May Need to Know About Scopes
Scopes can use a significant amount of CPU and memory and should not be overused.
Sequence activities use less CPU and memory and can make large BPEL flows more
readable.

How to Use a Fault Handler Within a Scope
If a fault is not handled, it creates a faulted state that migrates up through the application and
can throw the entire process into a faulted state. To prevent this from occurring, place the parts
of the process that have the potential to receive faults within a scope. The scope activity
includes the following fault handling capabilities:

• The catch activity works within a scope to catch faults and exceptions before they can
throw the entire process into a faulted state. You can use specific fault names in the catch
activity to respond in a specific way to an individual fault.

• The catchAll activity catches any faults that are not handled by name-specific catch
activities.

The following example shows the syntax for catch and catchAll activities. Assume that a fault
named x:foo is thrown. The first catch is selected if the fault carries no fault data. If there is
fault data associated with the fault, the third catch is selected if the type of the fault's data
matches the type of variable bar. Otherwise, the default catchAll handler is selected. Finally, a
fault with a fault variable whose type matches the type of bar and whose name is not x:foo is
processed by the second catch. All other faults are processed by the default catchAll handler.

<faulthandlers>
 <catch faultName="x:foo">
 <empty/>
 </catch>
 <catch faultVariable="bar">
 <empty/>
 </catch>
 <catch faultName="x:foo" faultVariable="bar">
 <empty/>
 </catch>
 <catchAll>
 <empty/>
 </catchAll>
</faulthandlers>

Chapter 12
Managing a Group of Activities with a Scope Activity

12-47

What You May Need to Know About the idempotent Property and Fault
Handling

If the idempotent deployment descriptor property is set to false in the composite.xml file and
the invocation of a partner link fails, recovery does not start from the invoke activity. Relying on
the idempotent property for retrying the invoke activity is not recommended. Instead, recovery
is attempted by fault handling you have designed into the BPEL process (such as with a
catchAll activity). As a best practice, Oracle recommends that you instead use a fault policy to
retry the invoke activity.

Table 12-8 describes the behavior when the idempotent property is set to false and partner
link invocation either succeeds or fails.

Table 12-8 Recovery Behavior When the idempotent Property Is Set to False

If Partner Link Invocation Is... Then...

Successful The invoke activity is dehydrated immediately after execution
and recorded in the dehydration store.

Unsuccessful, and your BPEL process
includes fault handling, such as a
catchAll activity

Recovery is started from the catchAll activity and not from the
invoke activity.

Unsuccessful, and your BPEL process
includes a fault policy

The fault policy is used to attempt recovery of the invoke
activity. This is the recommended approach.

For example, assume your BPEL process includes the following design:

• An invoke activity invokes a partner link (for this example, named myPartnerLink).

• The idempotent deployment descriptor property is set to false in the composite.xml file.

<property name="bpel.partnerLink.myPartnerLink.idempotent">false</property>

This setting causes the BPEL process to dehydrate immediately after execution of this
activity and be recorded in the dehydration store.

You can also set this property to false in the Edit Partner Link dialog. Figure 12-29
provides details.

Chapter 12
Managing a Group of Activities with a Scope Activity

12-48

Figure 12-29 Idempotence Tab of Edit Partner Link Dialog

For more information, see Managing Idempotence at the Partner Link Operation Level.

• A catchAll activity error handler in a scope activity catches faults and throws a rollback
fault.

If the invocation by the invoke activity to the partner link fails, recovery starts from the catchAll
activity error handler, and not from the invoke activity. The recovery from the catchAll activity
can be observed in the flow activity for the BPEL process in Oracle Enterprise Manager Fusion
Middleware Control.

This is by design. The idempotent property setting is checked after execution of the invoke
activity. If the execution failed and an exception is raised, the idempotent property setting is
never reached. The BPEL process service engine saves the instance right after opening the
catchAll activity. The instance must be saved because the idempotent property is set to false.
This is why recovery resumes in the catchAll activity.

Oracle recommends that you instead recover the failed invoke activity with a fault policy. For
more information about creating fault polices, see Handling Faults with the Fault Management
Framework.

For more information about the idempotent property, see Introduction to Deployment
Descriptor Properties.

How to Create a Catch Activity in a Scope
To create a catch activity in a scope:

1. In the expanded Scope activity, click Add Catch. Figure 12-30 provides details.

Chapter 12
Managing a Group of Activities with a Scope Activity

12-49

Figure 12-30 Add Catch

This creates a catch activity on the right side of the scope activity.

2. Double-click the Catch activity.

3. Optionally enter a name.

4. To the right of the Namespace URI field, click the Search icon to select the fault.

5. Select the fault in the Fault Chooser dialog, and click OK.

The namespace URI for the selected fault displays in the Namespace URI field. Your fault
selection also automatically displays in the Local Part field.

Figure 12-31 provides an example of a Catch dialog. This example shows the
selectionFailure catch activity of a Scope_AuthorizeCreditCard scope activity. This
catch activity catches orders in which the credit card number is not provided.

Figure 12-31 Catch Dialog

6. Design additional fault handling functionality.

7. Click OK.

Figure 12-32 provides an example of two catch activities for the
Scope_AuthorizeCreditCard scope activity. The second catch activity catches credit
types that are not valid.

Chapter 12
Managing a Group of Activities with a Scope Activity

12-50

Figure 12-32 Catch Activities in the Designer

What Happens When You Create a Catch Activity in a Scope
The following example shows the catch activity in the .bpel file after design completion. The
selectionFailure catch activity catches orders in which the credit card number is not provided
and the InvalidCredit catch activity catches credit types that are not valid.

<faultHandlers>
 <catch faultName="bpws:selectionFailure">
 <sequence>
 <assign name="Assign_noCCNumber">
 <copy>
 <from expression="string('CreditCardCheck - NO CreditCard')"/>
 <to variable="gOrderProcessorFaultVariable"
 part="code"/>
 </copy>
 </assign>
 <throw name ="Throw_NoCreditCard"
 faultVariable="gOrderProcessorFaultVariable"
 faultName="ns9:OrderProcessingFault"/>
 </sequence>
 </catch>
 <catch faultName="ns2:InvalidCredit">
 <sequence>
 <assign name="Assign_InvalidCreditFault">
 <copy>
 <from expression="concat(bpws:getVariableData
 ('gOrderInfoVariable','/ns4:orderInfoVOSDO/ns4:CardTypeCode'), '
 is not a valid creditcard type')"/>
 <to variable="gOrderProcessorFaultVariable"
 part="summary"/>
 </copy>
 <copy>
 <from expression="string('CreditCardCheck - NOT VALID')"/>
 <to variable="gOrderProcessorFaultVariable"
 part="code"/>
 </copy>
 </assign>
 <throw name="Throw_OrderProcessingFault"
 faultName="ns9:OrderProcessingFault"
 faultVariable="gOrderProcessorFaultVariable"/>
 </sequence>
 </catch>
</faultHandlers>

If no catch or catchAll activity is selected, the fault is not caught by the current scope and is
rethrown to the immediately enclosing scope. If the fault occurs in (or is rethrown to) the global
process scope, and there is no matching fault handler for the fault at the global level, the
process terminates abnormally. This is as though a terminate activity (described in Stopping a
Business Process Instance with the Terminate Activity in BPEL 1.1) had been performed.

Chapter 12
Managing a Group of Activities with a Scope Activity

12-51

How to Insert No-Op Instructions into a Business Process with an Empty
Activity

There is often a need to use an activity that does nothing. An example is when a fault must be
caught and suppressed. In this case, you can use the empty activity to insert a no-op
instruction into a business process.

To create an empty activity:

1. In the Components window, expand BPEL Constructs.

2. Drag an Empty activity into the designer.

3. Double-click the Empty activity.

The Empty dialog appears, as shown in Figure 12-33.

Figure 12-33 Empty Activity

4. Optionally enter a name.

5. Click OK.

What Happens When You Create an Empty Activity
The syntax for an empty activity is shown in the following example:

 <empty standard-attributes>
 standard-elements
 </empty>

Re-executing Activities in a Scope Activity with the Replay
Activity

You can create a replay activity inside a scope activity to re-execute all of the activities inside
the scope.

Chapter 12
Re-executing Activities in a Scope Activity with the Replay Activity

12-52

How to Create a Replay Activity
To create a replay activity:

1. In the Components window, expand Oracle Extensions.

2. Drag a Replay activity into the designer.

3. Double-click the Replay activity.

4. Enter an optional name.

5. Select the scope to re-execute, as shown in Figure 12-34.

Figure 12-34 Replay Dialog

6. Click Apply, then click OK.

7. Continue with the design of your scope activity.

When complete, design of the scope activity can look as shown in Figure 12-35.

Chapter 12
Re-executing Activities in a Scope Activity with the Replay Activity

12-53

Figure 12-35 Replay Activity in a Scope Activity

What Happens When You Create a Replay Activity
The following example shows the .bpel file after design is complete for a replay activity in a
BPEL project that supports BPEL version 2.0. In BPEL 2.0, the replay activity is wrapped in an
extensionActivity element.

<scope name="scope2">
 <sequence>
 <assign>
 <copy>
 <from>$counter2 + 1</from>
 <to>$counter2</to>
 </copy>
 </assign>
 <scope name="scope3">
 <sequence>
 <assign>
 <copy>
 <from>$counter + 1</from>
 <to>$counter</to>
 </copy>
 </assign>
 <if>
 <condition>$counter = 3</condition>
 <empty/>
 <else>
 <extensionActivity>
 <bpelx:replay name="ReplayScope" scope="Scope_RetrieveOrder"/>
 </extensionActivity>
 </else>
 </if>
 </sequence>
 </scope>
 </sequence>
 </scope>

In BPEL 1.1, the replay activity is coded as a bpelx extension.

<bpelx:replay name="ReplayScope" scope="Scope2"/>

Chapter 12
Re-executing Activities in a Scope Activity with the Replay Activity

12-54

Using Compensation After Undoing a Series of Operations
Compensation occurs when the BPEL process service component cannot complete a series of
operations after some have completed, and the BPEL process service component must
backtrack and undo the previously completed transactions. For example, if a BPEL process
service component is designed to book a rental car, a hotel, and a flight, it may book the car
and the hotel and then be unable to book a flight for the right day. In this case, the BPEL flow
performs compensation by going back and unbooking the car and the hotel.

In a scope activity, the compensation handler can reverse previously completed process steps.
The compensation handler can be invoked after successful completion of its associated scope
with either of the following activities.

• Compensate activity (in BPEL version 1.1 and 2.0 projects)

This activity causes the compensation handler of all successfully completed and not yet
compensated child scopes to be executed in default order.

• compensateScope activity (in a BPEL version 2.0 project)

This activity causes the compensation handler of one specific successfully completed
scope to be executed.

Using a Compensate Activity
You can invoke a compensation handler by using the compensate activity, which names the
scope for which the compensation is to be performed (that is, the scope whose compensation
handler is to be invoked). A compensation handler for a scope is available for invocation only
when the scope completes normally. Invoking a compensation handler that has not been
installed is equivalent to using the empty activity (it is a no-op). This ensures that fault handlers
do not have to rely on state to determine which nested scopes have completed successfully.
The semantics of a process in which an installed compensation handler is invoked multiple
times are undefined.

The ability to explicitly invoke the compensate activity is the underpinning of the application-
controlled error-handling framework of the Business Process Execution Language for Web
Services Specification. You can use this activity only in the following parts of a business
process:

• In a fault handler of the scope that immediately encloses the scope for which to perform
compensation.

• In the compensation handler of the scope that immediately encloses the scope for which to
perform compensation.

For example:

<compensate scope="RecordPayment"/>

If a scope being compensated by name was nested in a loop, the BPEL process service
component invokes the instances of the compensation handlers in the successive iterations in
reverse order.

If the compensation handler for a scope is absent, the default compensation handler invokes
the compensation handlers for the immediately enclosed scopes in the reverse order of the
completion of those scopes.

The compensate form, in which the scope name is omitted in a compensate activity, explicitly
invokes this default behavior. This is useful when an enclosing fault or compensation handler

Chapter 12
Using Compensation After Undoing a Series of Operations

12-55

must perform additional work, such as updating variables or sending external notifications, in
addition to performing default compensation for inner scopes. The compensate activity in a
fault or compensation handler attached to the outer scope invokes the default order of
compensation handlers for completed scopes directly nested within the outer scope. You can
mix this activity with any other user-specified behavior except for the explicit invocation of the
nested scope within the outer scope. Explicitly invoking compensation for such a scope nested
within the outer scope disables the availability of default-order compensation.

How to Create a Compensate Activity
To create a compensate activity:

1. In the Components window, expand BPEL Constructs.

2. Drag a Compensate activity into the designer.

3. Double-click the Compensate activity.

4. Select a scope activity in which to invoke the compensation handler, as shown in
Figure 12-36.

Figure 12-36 Compensate Activity

5. Click Apply, then OK.

What Happens When You Create a Compensate Activity
If a scope activity has a compensation handler defined inline, then the name of the activity is
the name of the scope to be used in the compensate activity. The syntax is shown in the
following example:

<compensate scope="ncname"? standard-attributes>
 standard-elements
 </compensate>

Chapter 12
Using Compensation After Undoing a Series of Operations

12-56

Using a compensateScope Activity in BPEL 2.0
The compensateScope activity is used to start compensation on a specified inner scope that
has already completed successfully. Use this activity only from within a fault handler, another
compensation handler, or a termination handler.

When you create a compensateScope activity, you select a target that must refer to the
immediately-enclosed scope. The scope must include a fault handler or compensation handler.

How to Create a compensateScope Activity

Note:

This activity is supported in BPEL 2.0 projects.

To create a compensateScope activity:

1. In the Components window, expand BPEL Constructs.

2. Drag a CompensateScope activity into the designer.

3. Double-click the CompensateScope activity.

4. In the Target list, select a specific scope activity in which to invoke the compensation
handler. Figure 12-37 provides details.

Figure 12-37 CompensateScope Activity

5. Click Apply, then OK.

What Happens When You Create a compensateScope Activity
The following example shows the .bpel file after design is complete for a compensateScope
activity. The compensateScope activity is defined in a catchall fault handler. The scope in
which to invoke the compensation handler is defined.

Chapter 12
Using Compensation After Undoing a Series of Operations

12-57

<scope name="ScopeAssignCreditRating">
 <faultHandlers>
 <catchAll>
 <compensateScope target="ScopeAssignScreditRating2" />
 </catchAll>
 </faultHandlers>
 <sequence>
 <scope name="ScopeAssignScreditRating2">
 <compensationHandler>
 <!-- undo work -->
 </compensationHandler>
 <!-- do some work -->
 </scope>
 <!-- do more work -->
 <!-- a fault is thrown here; results of ScopeAssignScreditRating2 must be undone --
>
 </sequence>
</scope>

Stopping a Business Process Instance with a Terminate or Exit
Activity

You can stop a business process instance with either of the following activities:

• Exit activity (in a BPEL version 2.0 project)

• Terminate activity (in a BPEL version 1.1 project)

Immediately Ending a Business Process Instance with the Exit Activity in
BPEL 2.0

You can use the exit activity to immediately end all currently running activities on all parallel
branches without involving any termination handling, fault handling, or compensation handling
mechanisms. This activity is useful for environments in which there may not be a reasonable
way for dealing with unexpected, severe failures.

Note:

Any open conversations are also impacted by the exit activity. For example, other
partners interacting with the process may wait for a response that never arrives.

How to Create an Exit Activity

To create an exit activity:

1. In the Components window, expand BPEL Constructs.

2. Drag an Exit activity into the section of your BPEL process in which you want to execute
the exit activity.

3. Double-click the Exit activity, as shown in Figure 12-38.

Chapter 12
Stopping a Business Process Instance with a Terminate or Exit Activity

12-58

Figure 12-38 Exit Activity

4. Optionally enter a name.

5. Click Apply, then OK.

When complete, the exit activity in a BPEL process appears similar to that shown in
Figure 12-39.

Figure 12-39 Exit Activity in a BPEL Process

What Happens When You Create an Exit Activity
The following example shows the .bpel file after design is complete for an exit activity.

<sequence>
 <!-- receive input from requester -->
 <receive name="receiveInput" partnerLink="client" portType="tns:Test"
 operation="process" variable="input" createInstance="yes"/>
 <assign>
 <copy>
 <from>$input.payload</from>
 <to>$output.payload</to>
 </copy>

Chapter 12
Stopping a Business Process Instance with a Terminate or Exit Activity

12-59

 </assign>
 <!-- respond output to requester -->
 <reply name="replyOutput" partnerLink="client"
 portType="tns:Test" operation="process" variable="output"/>
 <exit/>
 </sequence>

Stopping a Business Process Instance with the Terminate Activity in BPEL
1.1

The terminate activity immediately terminates the behavior of a business process instance
within which the terminate activity is performed. All currently running activities must be
terminated as soon as possible without any fault handling or compensation behavior. The
terminate activity does not send any notifications of the status of a BPEL process service
component. If you are going to use the terminate activity, first program notifications to the
interested parties.

How to Create a Terminate Activity

To create a terminate activity:

1. In the Components window in Oracle JDeveloper, expand BPEL Constructs.

2. Drag a Terminate activity into the designer. Figure 12-40 provides an example.

Figure 12-40 Terminate Activity

3. Double-click the terminate activity.

4. Optionally enter a name.

5. Click OK.

What Happens When You Create a Terminate Activity
The syntax for the terminate activity is shown in the following example. This stops the
business process instance.

<terminate standard-attributes>
 standard-elements
</terminate>

Throwing Faults with Assertion Conditions
You can specify an assertion condition in BPEL versions 1.1 and 2.0 that is executed upon
receipt of a callback message in request-response invoke activities, receive activities, reply
activities, and onMessage branches of pick and scope activities. The assertion specifies an
XPath expression that, when evaluated to false, causes a BPEL fault to be thrown from the

Chapter 12
Throwing Faults with Assertion Conditions

12-60

activity. This condition provides an alternative to creating a potentially large number of switch,
assign, and throw activities after a partner callback.

You can select when to execute a condition:

• Preassert: This condition is executed before the invoke or reply activity send out the
outbound message.

• Postassert: This condition is executed after an invoke activity, receive activity, or
onMessage branch receives the inbound message.

How to Create Assertion Conditions
You can create assertion conditions in the following activities:

• In message exchange activities such as invoke activities, receive activities, reply activities,
and OnMessage branches

• In standalone assert activities for specifying XPath expressions

To create assertion conditions in invoke activities, receive activities, reply activities,
and OnMessage branches:

1. In the SOA Composite Editor, double-click the BPEL process service component.

2. In the Components window, expand BPEL Constructs.

3. Drag a Receive activity, Invoke activity, Pick activity, or Scope activity into the designer.

4. Expand the Receive, Invoke, or onMessage branch of the Pick or Scope activity.

5. Click the Assertions tab.

6. If you are creating an assertion for a BPEL 2.0 project, perform the following tasks.
Otherwise, go to Step 6.

a. Select when to execute the condition. Table 12-9 provides details.

Table 12-9 Assertion Condition Tabs

To Create A... Select The...

Preassertion condition Pre Asserts tab

Postassertion condition Post Asserts tab

b. Click the Add icon, as shown in Figure 12-41.

Figure 12-41 Add Icon of Assertions Tab in BPEL 2.0

The Assert dialog is displayed.

Chapter 12
Throwing Faults with Assertion Conditions

12-61

7. If you are creating an assertion for a BPEL 1.1 project, perform the following tasks.

a. Click the Add icon, as shown in Figure 12-42.

Figure 12-42 Add Icon of Assertions Tab in BPEL 1.1

b. Select when to execute the condition. Table 12-10 provides details.

Table 12-10 Condition Execution Options

Element Description

Pre Assert If selected, the condition is executed before the invoke or reply activity send out
the outbound message.

Note: A fault policy does not handle faults thrown from a preassert condition.
Only faults thrown from a postassert condition are supported. For more
information about fault policies, see Handling Faults with the Fault Management
Framework.

Post Assert If selected, the condition is executed after an invoke activity, receive activity, or
onMessage branch receives the inbound message.

Based on your selection, the Pre Assert or Post Assert dialog is displayed.

8. Specify values for the assertion condition, as shown in Figure 12-43. For this example,
Post Assert was selected for an assertion condition on a receive activity in a BPEL 2.0
project.

a. Select the Fault QName to be thrown by clicking the Search icon and selecting an
existing fault from the Fault Chooser dialog. You can also provide your own values for
the Namespace URI and Local Part fields of the fault. If you do not specify anything
for the Fault QName, then a bpelx:assertFailure fault is thrown.

Figure 12-43 Assertion Condition Values

Chapter 12
Throwing Faults with Assertion Conditions

12-62

9. When complete, click OK to return to the Assertions tab of the activity. The completed
assertion condition is displayed, as shown in Figure 12-44.

Figure 12-44 Assertions Tab with Data

10. Click Apply, then OK.

To create an assertion condition in standalone assert activities:
1. In the SOA Composite Editor, double-click the BPEL process service component.

2. In the Components window, expand Oracle Extensions.

3. Drag an Assert activity into the designer, as shown in Figure 12-45.

Figure 12-45 Assert Activity in Components Window

4. Expand the Assert activity.

5. To the right of the Expression field, click the XPath Expression Builder icon.

Chapter 12
Throwing Faults with Assertion Conditions

12-63

6. Create an expression.

7. When complete, click OK.

The Assert dialog looks as shown in Figure 12-46.

Figure 12-46 Assert Dialog

8. Click Apply, then OK.

How to Disable Assertions
You can disable assertions in either of two ways:

• By setting the System MBean Browser property DisableAsserts to true in Oracle
Enterprise Manager Fusion Middleware Control.

• By setting bpel.config.disableAsserts to true in the composite.xml file of the SOA
composite application, as shown in the following example:

 <component name="AsyncBPELClient">
 <implementation.bpel src="AsyncBPELClient.bpel"/>
 <property name="bpel.config.disableAsserts">true</property>
 </component>

For more information about setting System MBean Browser properties, see Administering
Oracle SOA Suite and Oracle Business Process Management Suite.

What Happens When You Create Assertion Conditions
The code segment in the .bpel file defines the specific operation after design completion.

For the following BPEL1.1 example, the bpelx:assert condition in the invoke activity, when
evaluated to false (for example, a credit rating of 0 is submitted), returns a Negative Credit
message. If the condition evaluates to true, no fault is thrown from the invoke activity and the
remaining activities in the BPEL process flow are executed normally.

<invoke name="callbackClient" partnerLink="internalwarehouseservice_client"
 portType="client:InternalWarehouseServiceCallback" operation="processResponse"
 inputVariable="outputVariable">
 <bpelx:assert name="negativeCredit"

Chapter 12
Throwing Faults with Assertion Conditions

12-64

 expression="$crOutput.payload/tns:rating > 0"
 message="Negative Credit"/>
</invoke>

In the BPEL 1.1 example that follows, the bpelx:assert condition in the standalone assert
activity, when evaluated to false, returns the following message:

got assertion failure on true expression

If the condition evaluates to true, no fault is thrown from the assert activity and the remaining
activities in the BPEL process flow are executed normally.

<bpelx:assert expression="true()bpws:getLinkStatus()" message="'got assertion
failure on true expression'"

What You May Need to Know About Assertion Conditions
This section describes key assertion condition concepts.

bpelx:postAssert and bpelx:preAssert Extensions
Depending upon the activity, you can specify when to execute a condition by clicking the Add
icon in the Assertions tab of invoke, receive, reply, and onMessage branches of pick and
scope activities, and selecting either Pre Assert or Post Assert. Based on your selection, the
following bpelx extensions are used:

• bpelx:preAssert: If you select Pre Assert, the condition is executed before the invoke or
reply activity send out the outbound message.

• bpelx:postAssert: If you select Post Assert, the condition is executed after an invoke
activity, receive activity, or onMessage branch receives the inbound message.

The following example shows multiple bpelx:postAssert extensions in a receive activity in
BPEL 1.1:

 <receive name="Receive_1" createInstance="no"
 variable="Receive_1_processResponse_InputVariable"
 partnerLink="AsyncBPELService"
 portType="ns1:AsyncBPELServiceCallback"
 bpelx:for="'PT10S'"
 operation="processResponse">
 <bpelx:postAssert name="assert1" expression="true()" message="'assert
 true failed'" faultName="client:fault1"/>
 <bpelx:postAssert name="assert2" expression="false()" message="'assert
 false failed'" faultName="client:fault2"/>
 </receive>

The following example shows multiple bpelx:preAssert extensions in an invoke activity in
BPEL 1.1:

<invoke name="Invoke_1" inputVariable="Invoke_1_process_InputVariable"
 outputVariable="Receive_1_processResponse_InputVariable"
 partnerLink="SyncBPELService" portType="ns1:SyncBPELService"
 operation="process">
 <bpelx:preAssert name="assert1" expression="true()" message="'assert true
 failed'"/>
 <bpelx:preAssert name="assert2"
 expression="bpws:getVariableData('counter') = 3" message="concat('The value of
 counter is ', $counter)"/>

For information on using the Assertions tab, see How to Create Assertion Conditions.

Chapter 12
Throwing Faults with Assertion Conditions

12-65

Use of faultName and message Attributes
You can specify the faultName and message attributes of the bpelx:postAssert element, as
shown in the schema definition in the following example for BPEL 1.1.

<invoke | receive | onMessage>
 standard-elements
 <bpelx:postAssert name="ncname"? expression="boolean-expr" faultName="QName"+
 message="generic-expr"+/> *
</invoke | receive | onMessage>

The following example shows the syntax for the faultname and message attributes.

<bpelx:postAssert name="Assert_2"
 message='multiple post assert Greater value fired'
 faultName="ns2:GreaterValue"
 expression="bpws:getVariableData('invar','payload','/ns1:process/ns1:input') <
 500"/>

If you do not specify the faultName attribute, the fault defaults to bpelx:postAssertFailure. If
the message attribute is not specified, the message value defaults to the name of the activity.

<bpelx:postAssert expression="boolean-expr" />

The specified fault is thrown whenever the assertion condition evaluates to false. Analysis is
performed on the faultName QName to ensure that it properly resolves to a fault that is defined
in the partner WSDL portType. The message expression is a general expression that can
evaluate to any XPath value type (string, number, or boolean). If a nonstring value is returned,
the string equivalent of the value is used.

Multiple Assertions
You can nest multiple assertions in receive activities, invoke activities, and the onMessage
branch of pick and scope activities, with evaluation of the assertions continuing in the order in
which they were declared until an expression evaluates to false. The following example
provides details:

<invoke name="invokeCR" partnerLink="creditRatingService"
 portType="services:CreditRatingService" operation="process"
 inputVariable="crInput" outputVariable="crOutput">
 <bpelx:postAssert name="negativeCredit" expression="$crOutput.payload/tns:rating >
 0"
 faultName="services:NegativeCredit" message="'Negative Credit'"
 />
 <bpelx:postAssert name="insufficientCredit"
 expression="$crOutput.payload/tns:rating > 600"
 faultName="services:InsufficientCredit" message="'Insufficient
 Credit'" />
</invoke>

In the preceding example, the assertion with the expression that checks that the response
credit rating is greater than zero is evaluated first. Table 12-11 describes the assertion
behavior.

Chapter 12
Throwing Faults with Assertion Conditions

12-66

Table 12-11 Assertion Behavior

If The Credit Rating For The
Returned Response Is...

Then...

Less than zero The services:NegativeCredit fault is thrown.

Greater than or equal to zero The assertion is correct and the second assertion is evaluated.

Less than 600 The services:InsufficientCredit fault is thrown.

Greater than or equal to 600 The assertion is correct and no fault is thrown from the invoke activity.

Any number of assertions can be nested. For no fault to be thrown from the activity, all
assertions specified must evaluate to true.

This construct enables you to apply multiple levels of validation on an incoming payload,
similar to if...else if...else statements in Java.

To enable a fault to always be thrown regardless of validation logic, the assertion expression
can be specified as false(). This is similar to the else construct in Java.

Use of Built-in and Custom XPath Functions and $variable References
You can also use built-in and custom XPath functions and $variable references within the
assertion condition. The following code provides several examples.

<bpelx:postAssert expression="bpws:getVariableData('crOutput', 'payload',
 '/tns:rating') > 0" ... />

<bpelx:postAssert expression="custom:validateRating()" ... />

<bpelx:postAssert xmlns:fn='http://www.w3.org/2005/xpath-functions'
 expression="fn:false()" ... />

If an error is thrown by the XPath expression evaluation, the error is wrapped with a BPEL fault
and thrown from the activity.

Faults that are thrown from a request-response invoke activity, receive activity, or onMessage
branch of a pick or scope activity because of a failed assertion evaluation can be caught and
handled by BPEL's fault management framework. For information, see Handling Faults with the
Fault Management Framework.

Faults that are not caught and handled within a BPEL process flow are thrown from a BPEL
component if the component WSDL declares the fault on the operation. If the fault is not
declared on the operation, the fault is converted into a FabricInvocationException, which is a
runtime fault. This fault can be caught by any caller components (including BPEL components),
but the fault type is no longer the one originally thrown (however, the fault message string still
retains traces of the original fault message).

For more information about runtime faults, see Introduction to the Business and Runtime Fault
Categories of BPEL Faults.

For more information about fault policies, see Handling Faults with the Fault Management
Framework.

Chapter 12
Throwing Faults with Assertion Conditions

12-67

Assertion Condition Evaluation Logging of Events to the Instance Audit Trail
Each assertion condition that is evaluated causes an event to be logged to the instance audit
trail. The event indicates whether the assertion passed or failed (for failure, the fault name and
message are printed). The event also includes the name attribute specified in the assertion
element. If no name attribute is provided, the line number of the assertion element in the BPEL
process flow is used. The assertion condition printed in the audit event helps identify the
assertion and better enables debugging of the flow.

Expressions Not Evaluating to an XML Schema Boolean Type Throw a Fault
If the assertion condition XPath expression does not evaluate to an XML schema boolean type,
a bpelx:postAssertFailure fault is thrown from the activity. An event in the instance audit trail
is also logged indicating the error. The following example provides details:

<bpelx:postAssert expression="bpws:getVariableData('crOutput', 'payload',
 '/tns:rating') > 0" ... />

<bpelx:postAssert expression="custom:validateRating()" ... />

<bpelx:postAssert xmlns:fn='http://www.w3.org/2005/xpath-functions'
 expression="fn:false()" ... />

Analysis of the assertion expression is performed by the BPEL compiler and errors are
reported if an expression does not evaluate to an XML schema boolean type. For custom
XPath functions, this type of analysis is not performed.

Assertion Conditions in a Standalone Assert Activity
You can also create assertion conditions in a standalone assert activity in a BPEL process
service component. The assertion specifies an XPath expression that, when evaluated to false,
causes a BPEL fault to be thrown from the activity.

The bpelx:assert extension implements assertions in the standalone assert activity:

<bpelx:assert name="Assert1" expression="string" message="string"/>

For information about using the standalone assert activity, see How to Create Assertion
Conditions.

What You May Need to Know About Postassertion and Preassertion
Condition Schemas and Syntax

The assertion condition is specified as a nested extension element. The following example
shows the postassertion condition schema definition in BPEL 2.0.

<invoke | receive | onMessage>
 standard-elements
 <bpelx:postAsserts>
 <bpelx:postAssert faultName="QName">
 <bpelx:expression expressionLanguage="anyURI"?>expression
 </bpelx:expression>
 <bpelx:message expressionLanguage="anyURI"?>expression</bpelx:message>
 </bpelx:postAssert>
 </bpelx:postAsserts>
</invoke | receive | onMessage>

Chapter 12
Throwing Faults with Assertion Conditions

12-68

The following example shows the postassertion condition syntax in BPEL 2.0.

<bpelx:postAsserts>
 <bpelx:postAssert faultName="ns2:InvalidInput">
 <bpelx:expression>number(concat($inputVariable.payload/client:input,'2')) <
 500</bpelx:expression>
 <bpelx:message>"AssertXpathPostInvoke_20 assert fired"</bpelx:message>
 </bpelx:postAssert>
</bpelx:postAsserts>

The following example shows the postassertion condition schema definition in BPEL 1.1. Note
the differences between BPEL 1.1 and BPEL 2.0.

<invoke | receive | onMessage>
 standard-elements
 <bpelx:postAssert name="ncname" expression="boolean-expr" faultName="QName"+
 message="generic-expr"+/>
</invoke | receive | onMessage>

The following example shows the postassertion condition syntax in BPEL 1.1.

<bpelx:postAssert name="Assert_1"
 message='Post Invoke Multiple assert value fired'
 faultName="ns2:NegativeValue"
 expression="bpws:getVariableData('invar','payload','/ns1:process/ns1:input') >
0"/>

The following example shows the preassertion condition schema definition in BPEL 2.0.

<invoke | reply>
 standard-elements
 <bpelx:preAsserts>
 <bpelx:preAssert faultName="QName">
 <bpelx:expression expressionLanguage="anyURI"?>expression</bpelx:expression>
 <bpelx:message expressionLanguage="anyURI"?>expression</bpelx:message>
 </bpelx:preAssert>
 </bpelx:preAsserts>
</invoke | reply>

The following example shows the preassertion condition syntax in BPEL 2.0.

<bpelx:preAsserts>
 <bpelx:preAssert faultName="ns1:InvalidInput">
 <bpelx:expression>concat($inputVariable.payload/client:input,'2') >
 $inputVariable.payload/client:input</bpelx:expression>
 <bpelx:message>"AssertXpathPreInvoke_20 Assert test"</bpelx:message>
 </bpelx:preAssert>
</bpelx:preAsserts>

The following example shows the preassertion condition schema definition in BPEL 1.1. Note
the differences between BPEL 1.1 and BPEL 2.0.

<invoke | reply>
 standard-elements
 <bpelx:preAssert name="NCName" expression="string" message="string"
 faultName="QName"/>
</invoke | reply>

The following example shows the preassertion condition syntax in BPEL 1.1.

<bpelx:preAssert name="Assert_1"
 expression="bpws:getVariableData('invar','payload','/ns1:process/ns1:input') >
 0"

Chapter 12
Throwing Faults with Assertion Conditions

12-69

 message='pre invoke assert NegativeInput fired'
 faultName="ns4:NegativeInput"/>

The bpelx:postAssert extension specifies the XPath expression to evaluate upon receipt of a
callback message from a partner. If the assertion expression returns a false boolean value, the
specified fault is thrown from the activity. If the assertion expression returns a true boolean
value, no fault is thrown and the activities following the invoke activity, receive activity, or the
onMessage branch of pick and scope activities are executed as in a normal BPEL process
flow.

The bpelx:preAssert or bpelx:postAssert extension is similar to the Java assert statement.
In Java, if the assert expression does not evaluate to true, an error is reported by the JVM.
Similarly, the expression in the bpelx:preAssert or bpelx:postAssert extension must
evaluate to true; otherwise, the specified fault is thrown.

For example, with the BPEL 1.1 invoke activity shown in the following example, if the XPath
expression specified in the assertion condition returns false, the NegativeCredit fault is
thrown.

<scope>
 <faultHandlers>
 <catch faultName="services:NegativeCredit" faultVariable="crError">
 <empty/>
 </catch>
 </faultHandlers>
 <sequence>
 <invoke name="invokeCR" partnerLink="creditRatingService"
 portType="services:CreditRatingService" operation="process"
 inputVariable="crInput" outputVariable="crOutput">
 <bpelx:postAssert name="negativeCredit"
 expression="$crOutput.payload/tns:rating > 0"
 faultName="services:NegativeCredit" message="'Negative
 Credit'" />
 </invoke>
 </sequence>
</scope>

The optional name attribute for bpelx:preAssert or bpelx:postAssert is used while creating
the audit trail event message. The name in this instance enables you to identify the assertion
element in case multiple assertions are specified. If no name attribute is specified, the line
number of the assertion element in the BPEL file may be used.

Classifying SOAP Faults as Retriable
Starting with 12c, all web service SOAP faults are not automatically retried based on the fault
code returned from the external service. SOAP faults are now retried only when the fault code
is classified as server-related (also known as receiver-related). Fault codes classified as client-
related do not result in retries. This differs from 11g Release 1 (11.1.1.x), in which Oracle SOA
Suite retried all SOAP faults regardless of their fault code (all faults returned were converted to
a bpelx:remoteFault in BPEL, which was retriable).

In 12c when a fault occurs in a reference binding component, the fault code is returned to a
BPEL process. The fault is retried based on the setting in the fault code. This is beneficial
because you may want to retry the fault only under specific circumstances (such as a system
downtime issue). For all other fault occurrences (such as incorrect input), you may not want a
retry to occur. In fact, retries on all SOAP faults can delay the processing of legitimate
messages.

Chapter 12
Classifying SOAP Faults as Retriable

12-70

As described in the Simple Object Access Protocol (SOAP) 1.1 specification at http://
www.w3.org/TR/2000/NOTE-SOAP-20000508/#_Toc478383510, a fault can have a code of server
(also known as receiver) or client. The classification of faults determines whether the faults are
retriable.

• Server

Server errors indicate that the message cannot be processed for reasons not directly
related to the message contents, but rather to the processing of the message. For
example, processing can include communicating with a server that did not respond. The
message may succeed at a later time. This is defined as a retriable fault.

• Client

Client errors indicate that the message was incorrectly formed or did not contain the
appropriate information to succeed. For example, the message may lack the proper
authentication or payment information. This typically indicates that the message must first
be changed before being resent. This is defined as a nonretriable fault.

This fault classification information is propagated into a FabricInvocationException error. For
fault codes classified as client-related, the retryType flag within this exception is set to
NO_RETRY.

If necessary, you can still invoke a retry on every fault. Set the binding.ws property
oracle.soa.always.retry.on.fault to true in the composite.xml file. This enables Oracle
SOA Suite to always retry on any SOAP faults regardless of the fault code.

<reference name="myreference"
. . .
<binding.ws port=". . . ."
location=". . ."
<property name="oracle.soa.always.retry.on.fault">true</property>
</binding.ws>

Use the following code snippet in composite.xml to enable custom headers defined at SOA to
reach the OSB webservice.

<reference name="RecHttpOSB" ...>
 ...
 <binding.ws ... soapVersion="1.1">
 <property name="oracle.webservices.http.headers">OSBCustomHttp</property>
 </binding.ws>
</reference>

Chapter 12
Classifying SOAP Faults as Retriable

12-71

http://www.w3.org/TR/2000/NOTE-SOAP-20000508/#_Toc478383510
http://www.w3.org/TR/2000/NOTE-SOAP-20000508/#_Toc478383510

13
Transaction and Fault Propagation Semantics
in BPEL Processes

This chapter describes transaction and fault propagation semantics in Oracle BPEL Process
Manager. It describes how to configure the transaction behavior for BPEL instances with
initiating calls and the execution of one-way invocations. It also describes how to execute a
business process without a transaction.
This chapter includes the following sections:

• Introduction to Transaction Semantics

• Introduction to Execution of One-way Invocations

• Executing a Business Process Without a Transaction

• Using In-Memory SOA to Improve System Performance

Introduction to Transaction Semantics
Transaction semantics in Release 12c enable you to use the underlying Java Transaction API
(JTA) infrastructure used in the execution of components. This section describes transaction
semantics for Oracle BPEL Process Manager.

Oracle BPEL Process Manager Transaction Semantics
As with previous releases, Oracle BPEL Process Manager by default creates a new
transaction on a request basis. That is, if a transaction exists, it is suspended, and a new
transaction is created. Upon completion of the child (new) transaction, the master (suspended)
transaction resumes.

However, if the request is asynchronous (that is, one-way), the transaction is either:

• Inherited for insertion into the dehydration store (table dlv_message).

• Enlisted transparently into the transaction (if one exists).

There is no message loss. Either the invocation message is inserted into the dehydration store
for processing or the consumer is notified through a fault.

In Release 10.1.3.x, there were several properties to set on the consuming process (that is, on
the partner link) and the providing process. This enabled you to chain an execution into a
single global transaction. On the consuming side, you set transaction=participate on the
partner link binding in the bpel.xml file. On the providing side, you set
transaction=participate in the <configurations> section of bpel.xml.

In Releases 11g and 12c, you only must set a new transaction property on the BPEL
component being called (known as the callee process). You add bpel.config.transaction as
follows:

• In the Create BPEL Process dialog for a new BPEL process.

• In the BPEL process service component section in the composite.xml file of an existing
BPEL process (note the required prefix of bpel.config.).

13-1

This property configures the transaction behavior for BPEL instances with initiating calls. If you
must change this setting later, you can use the Property Inspector.

The following example provides details:

<component name="InternalWareHouseService" version="2.0">
 <implementation.bpel src="BPEL/InternalWareHouseService.bpel"/>
 <property name="bpel.config.transaction" type="xs:string"
many="false">required | requiresNew | notSupported " </property>
 </component>

Table 13-1 describes the required (the default value) and requiresNew values and
summarizes the behavior of the BPEL instance based on the settings.

Table 13-1 bpel.config.transaction Property Behavior

For... With bpel.config.transaction Set
to required...

With bpel.config.transaction Set
to requiresNew...

Request/response (initiating)
invocations

The caller's transaction is joined (if
there is one) or a new transaction
is created (if there is not one).

A new transaction is always
created and an existing transaction
(if there is one) is suspended.

One-way initiating invocations
in which
bpel.config.oneWayDelive
ryPolicy is set to sync.

Invoked messages are processed
using the same thread in the same
transaction.

A new transaction is always
created and an existing transaction
(if there is one) is suspended.

Note:

The bpel.config.transaction property does not apply for midprocess receive
activities. In those cases, another thread in another transaction is used to process the
message. This is because correlation is needed and it is always done
asynchronously.

For additional information about setting the bpel.config.transaction property, see How to
Add a BPEL Process Service Component and How to Define Deployment Descriptor
Properties in the Property Inspector.

The following sections describe the transaction and fault behavior of setting
bpel.config.transaction to either required or requiresNew.

BPELCaller Process Calls a BPELCallee Process That Has bpel.config.transaction
Set to requiresNew

In Table 13-2, the BPELCaller process calls the BPELCallee process. The BPELCallee
process has the property bpel.config.transaction set to requiresNew. Table 13-2 describes
fault propagation and transaction behavior when bpel.config.transaction is set to this value.

Chapter 13
Introduction to Transaction Semantics

13-2

Table 13-2 BPELCaller Calls BPELCallee That Has bpel.config.transaction Set to
requiresNew

If The BPELCallee... Then The BPELCallee
Transaction...

And The BPELCaller...

Replies with a fault (that is, it uses
<reply>).

Is saved. Gets the fault and can catch it.

Throws a fault that is not handled (that is,
it uses <throw>).

Is rolled back. Gets the fault and can catch it.

Replies back with a fault (FaultOne), and
then throws a fault (FaultTwo).

Is rolled back. Gets FaultTwo.

Throws a bpelx:rollback fault (that is,
it uses <throw>).

Is rolled back. Gets a remote fault.

BPELCaller Process Calls a BPELCallee Process That Has bpel.config.transaction
Set to required

In Table 13-3, the BPELCaller process calls the BPELCallee process. The BPELCallee
process has the property bpel.config.transaction set to required. Table 13-3 describes
fault propagation and transaction behavior when bpel.config.transaction is set to this value.

Table 13-3 BPELCaller Calls BPELCallee That Has bpel.config.transaction Set to
required

If The BPELCallee... Then The BPELCaller...

Replies with a fault (that is, it uses
<reply>).

Gets the fault and can catch it. The BPELCaller owns the
transaction. Therefore, if it catches it, the transaction is
committed. If the BPELCaller does not handle it, a global
rollback occurs.

Throws a fault (that is, it uses <throw>). Gets the fault and can catch it.

Replies back with a fault (FaultOne), and
then throws a fault (FaultTwo).

Gets FaultTwo.

Throws (that is, it uses <throw>) a
bpelx:rollback fault.

Gets its transaction rolled back; there is no way to catch it.
This fault cannot be handled.

As an example, assume you create two synchronous processes (BPELMaster and BPELChild)
that each use the same database adapter reference to insert the same record (and therefore,
causes a permission key (PK) violation). The xADatasourceName is set for both.

Without bpel.config.transaction set, after the fault occurs, and it is not handled, BPELChild
is rolled back. If BPELMaster has a catch block, its transaction is committed. Therefore, you
end up with the record from BPELMaster in the database.

If you do not catch the fault in BPELMaster as well, you get a second rollback (however, in two
different transactions).

If bpel.config.transaction is set to required for the same test case and no fault handlers
are in place, the entire transaction is rolled back based on BPELMaster's unhandled fault.

If you add a fault handler in BPELMaster to catch the fault from BPELChild and throw a
rollback fault, the transaction is globally rolled back.

Chapter 13
Introduction to Transaction Semantics

13-3

This feature enables you to control transaction boundaries and model end-to-end transactional
flows (if your sources and targets are also transactional).

Introduction to Execution of One-Way Invocations
A one-way invocation (with a possible callback) is typically exposed in a WSDL file as shown in
the following example:

<wsdl:operation name="process">
 <wsdl:input message="client:OrderProcessorRequestMessage"/>
 </wsdl:operation>

This causes the BPEL process service engine to split the execution into two parts:

• For the first part, and always inside the caller transaction, the insertion into the
dlv_message table of the dehydration store occurs (in release 10.1.3.x, it was inserted into
the inv_message table).

• For the second part, the transaction and the new thread execute the work items, and a
new instance is created.

This has several advantages in terms of scalability, because the service engine's thread pool
(invoker threads) executes when a thread is available. However, the disadvantage is that there
is no guarantee that it executes immediately.

If you require a synchronous-type call based on a one-way operation, then you can use the
onewayDeliveryPolicy property, which is similar to the deliveryPersistPolicy property of
release 10.1.3.x.

Specify bpel.config.oneWayDeliveryPolicy as follows:

• In the Create BPEL Process dialog for a new BPEL process.

• In the BPEL process service component section of the composite.xml file for an existing
BPEL process.

If this value is not set in composite.xml, the value for oneWayDeliveryPolicy in the System
MBean Browser in Oracle Enterprise Manager Fusion Middleware Control is used. The
following values are possible.

• async.persist: Messages are persisted in the database. With this setting, reliability is
obtained with some performance impact on the database. In some cases, overall system
performance can be impacted.

• async.cache: Incoming delivery messages are kept only in the in-memory cache. If
performance is preferred over reliability, consider this setting. When set to async.cache, if
the rate at which one-way messages arrive is much higher than the rate at which they are
delivered, or if the server fails, messages can be lost. In addition, the system can become
overloaded (messages become backlogged in the scheduled queue) and you can receive
out-of-memory errors. Consult your own use case scenarios to determine if this setting is
appropriate.

When you set oneWayDeliveryPolicy to async.cache in high availability environments,
invoke and callback messages in the middle of execution at the time of a server crash may
be lost or duplicated. Server failover is not supported for async.cache.

• sync: Direct invocation occurs on the same thread. The scheduling of messages in the
invoke queue is bypassed, and the BPEL instance is invoked synchronously. In some
cases this setting can improve database performance.

Chapter 13
Introduction to Execution of One-Way Invocations

13-4

For more information about setting the bpel.config.oneWayDeliveryPolicy property, see
How to Add a BPEL Process Service Component and How to Define Deployment Descriptor
Properties in the Property Inspector.

Table 13-4 describes the behavior when the main process calls the subprocess
asynchronously. Table 13-4 is based on the use cases described in BPELCaller Process Calls
a BPELCallee Process That Has bpel.config.transaction Set to requiresNew and BPELCaller
Process Calls a BPELCallee Process That Has bpel.config.transaction Set to required.

Table 13-4 Main Process Calls the Subprocess Asynchronously

If... If The Subprocess Throws
Any Fault...

If The Subprocess Throws a
bpelx:rollback...

onewayDeliveryPolicy=async.per
sist
(The BPELCallee process runs in a
separate thread/transaction.)

The BPELCaller does not get a
response because the
message is saved in the
delivery service. The
BPELCallee transaction is
rolled back if the fault is not
handled.

The BPELCaller does not get a
response because the
message is saved in the
delivery service. The
BPELCallee instance is rolled
back on the unhandled fault.

onewayDeliveryPolicy=sync
and

transaction=requiresNew
(The BPELCallee runs in the same
thread, but a different transaction.)

The BPELCaller receives a
FabricInvocationExceptio
n. The BPELCallee transaction
rolls back if the fault is not
handled.

The BPELCaller receives a
FabricInvocationExceptio
n. The BPELCallee transaction
is rolled back.

onewayDeliveryPolicy=sync
and

transaction=required
(The BPELCallee runs in the same
thread and the same transaction.)

The BPELCallee faulted. The
BPELCaller receives a
FabricInvocationExceptio
n. The BPELCaller has a
chance to handle the fault.

The whole transaction is rolled
back.

onewayDeliveryPolicy=async.cac
he
and

transaction=requiresNew
or

transaction=required

The BPELCaller does not get a
response because the caller
thread returns before the
request is handled. The
BPELCallee transaction is
rolled back if the fault is not
handled. The message is lost
because it is not saved in the
database.

The BPELCaller does not get a
response because the caller
thread returns before the
request is handled. The
BPELCallee transaction is
rolled back if the fault is not
handled. The message is lost
because it is not saved in the
database.

Executing a Business Process Without a Transaction
You can execute a business process without the need for a transaction. A transaction is only
used at the following points in the process execution:

• At the dehydration point when the internal processing state must be stored in the back end
data store.

• When storing the audit trail or instance tracking-related data during process execution.

When Should I Use a BPEL Process Without a Transaction?
Executing a business process without a transaction is beneficial in scenarios similar to the
following:

Chapter 13
Executing a Business Process Without a Transaction

13-5

• Assume you have a BPEL process in which a flowN activity spawns 2000 branches. Each
branch invokes a remote synchronous web service that takes 500 ms to respond. Because
the BPEL process service engine executes flowN branches individually in a single thread,
processing all 2000 branches with each one invoking a synchronous web service takes
close to 1000 seconds and the instance does not have access to the dehydration point
during this processing. The transaction can extend for 1000 seconds and can time out (the
default transaction timeout setting is 300 seconds). Everything can be performed directly in
memory without the need for a transaction.

• The duration of a transaction gets tied up with the life cycle of business process execution.
For example, assume an asynchronous BPEL process includes a receive activity followed
by an assign activity in which a complex XSL transformation performed on a large
document takes 30 seconds. This is followed by a callback to the client. If executed in a
transaction, the BPEL process service engine starts the transaction at the receive activity
and holds a lock inside the database on the instance while the instance is executing.

As an alternative, all activities can be performed in memory and discarded if an error
occurs. A transaction is not required because a database update does not occur during
instance execution. A transaction is only required once instance execution reaches the
dehydration point, where the BPEL process service engine updates the instance state, and
so on.

• Assume a BPEL process invokes another service or partner link that is synchronous and
participates in a BPEL process service engine's JTA transaction (for example, if a BPEL
process invokes the TaskServiceBean, which has TransactionAttribute=REQUIRED, and
there is a TaskServiceBean time out and the transaction is roll backed). Even the BPEL
process service engine's JTA transaction gets rolled back and the BPEL process is unable
to handle the error from the TaskServiceBean.

• If a business process invokes a synchronous service and that service is performing
complex work that takes a considerable amount of time, the BPEL process service engine
transaction can time out. Even though the synchronous service is performing correctly, the
BPEL process service engine rolls back once the business process gets a response from a
remote service.

Guidelines for Executing Without a Transaction
To execute a business process without a transaction, select notSupported from the
Transaction list when creating a BPEL process in the Create BPEL Process dialog.

When set, the following behavior occurs:

• All XA distributed transaction benefits are disabled.

When a business process is configured to run in non-transactional mode, the instance
execution is not wrapped in an XA transaction, resulting in potential duplicate instances,
but no loss of message(s). As there is no overhead of a transaction, the non-transactional
mode provides better performance. You can use the non-transactional option where
duplicate instances are acceptable.

• The business process cannot invoke any partner that expects to participate in a transaction
(that is, the partner has the TransactionAttribute set to MANDATORY).

• The invoke from the business process is fire and forget (that is, once the invoke is finished,
it is delivered to the partner. Even if the invoker's transaction rolls back afterwards, the
invoke message is not rolled back).

Even with bpel.config.transaction set to notSupported, the dehydration point starts a
transaction to save the internal BPEL process engine state into the back end. This means the
dehydration concept still applies for the business process. This feature only guarantees that

Chapter 13
Executing a Business Process Without a Transaction

13-6

business process activities such as an assign, an invoke, and others are executed without a
transaction.

This property configures the transaction behavior of a BPEL instance in the case of initiating
calls. Table 13-5 describes the behavior of the BPEL instance based on the
bpel.config.transaction property setting.

Table 13-5 BPEL Process Instance Behavior Based on transaction Property Settings

Transaction Type transaction = requiresNew transaction = required transaction = notSupported

Request/response
(initiating)

A new transaction is created
for the execution. The existing
transaction (if there is one) is
suspended.

The process joins a caller's
transaction (if there is one)
or creates a new
transaction (if there is not a
transaction).

Business process activities are
executed without a transaction. The
transaction is only used to save
internal service engine/instance
state and audit details. Any
bpelx:rollback fault is not
propagated back to the client
because the current instance does
not participate in the client's
transaction.

One-way (initiating,
bpel.config.oneWay
DeliveryPolicy=syn
c)

A new transaction is created
for the execution and the
existing transaction (if there is
one) is suspended.

The invoke message is
processed using the same
thread in the same
transaction.

Business process activities are
executed without a transaction. A
transaction is only used to save
internal service engine/instance
state and audit details. Any
bpelx:rollback fault is not
propagated back to the client.

One-way asynchronous Not applicable. Not applicable. Business process activities are
executed without a transaction. The
transaction is only used to save
internal service engine/instance
state and audit details.

How to Create a Synchronous BPEL Process Without a Transaction
You can create a synchronous BPEL process without a transaction in the Create BPEL
Process dialog.

To create a synchronous BPEL process without a transaction:

1. Create a BPEL process service component in the SOA composite application, as
described in How to Add a BPEL Process Service Component.

2. From the Template list, select Synchronous BPEL Process.

3. From the Transaction list, select notSupported. Figure 13-1 provides details.

Chapter 13
Executing a Business Process Without a Transaction

13-7

Figure 13-1 Create BPEL Process Dialog

4. Click OK.

How to Create an Asynchronous BPEL Process Without a Transaction
You can create an asynchronous BPEL process without a transaction in the Create BPEL
Process dialog.

To create an asynchronous BPEL process without a transaction:

1. Create a BPEL process service component in the SOA composite application, as
described in How to Add a BPEL Process Service Component.

2. From the Template list, select Asynchronous BPEL Process.

3. From the Delivery list, select sync.

The dialog is refreshed to display the Transaction list.

4. From the Transaction list, select notSupported. Figure 13-2 provides details.

Chapter 13
Executing a Business Process Without a Transaction

13-8

Figure 13-2 Create BPEL Process Dialog

5. Click OK.

Using In-Memory SOA to Improve System Performance
You can leverage the Coherence cache associated with WebLogic Server to run your non-
transactional business processes in memory. This improves performance and scalability for
these business processes, as read and write operations are performed out of the cache.
Database performance and management also improves, as the costs associated with
continuous disk reads and writes are significantly reduced.

Note:

This SOA Suite feature is part of Oracle Integration Continuous Availability. See the
Oracle Fusion Middleware Licensing Information for more details on Oracle SOA
Suite for Middleware Options.

In-memory SOA enables short-running processes to live in memory. The process state gets
written to the database only when faulted, or at regular, deferred intervals using a write-behind
thread. The BPEL state information is dehydrated and rehydrated to/from the Coherence
cache.

Enable In-Memory SOA

Enable In-Memory SOA through: SOA Administration > common properties >
inMemoryEnvironment.

Chapter 13
Using In-Memory SOA to Improve System Performance

13-9

The WLST Script is /net/slc07yxw/scratch/share/wlst/enableInMemory.py (it
assumes server is running at default port 7001. userid: weblogic password:weblogic1. Make a
copy and update it for your environment).

connect('weblogic', 'weblogic1') custom() cd('oracle.as.soainfra.config/
oracle.as.soainfra.config:name=soa-infra,type=SoaInfraConfig,Application=soa-
infra')
set('InMemoryEnvironment', true)
exit()

Persistence Settings for In-Memory Flow Instances
The persistence settings for the components comprising a business flow determine when the
flow, state, and audit data is persisted to the cache, or the database. This also impacts the flow
instance data that appears in Enterprise Manager Fusion Middleware Control.

Table 13-6 lists the various persistence settings and their impact on flow, state, audit, and
sensor data.

Table 13-6 Persistence Settings for In-Memory Flow Instances

Completion
Persist
Policy

Description Businesss Flow
Instances in Enterprise
Manager

Immediate The flow trace, BPEL audit trace, and flow instance state
data is always persisted to the database.

The behavior is the same
as if in-memory SOA is not
enabled.

Deferred All flow, audit, and state data is initially persisted to the
Coherence cache. A separate write-behind thread
performs a deferred write of the cache to the database.
The write-behind thread wakes up at periodic intervals, the
default being 5 minutes.
The number of database round-trips is reduced, and only
coalesced data is written to the database every time the
write-behind thread wakes up.

You should see all flow
instances in Enterprise
Manager Fusion
Middleware Control.
However, as the write-
behind thread writes to the
database at deferred
intervals, the flow data
updates happen at
intervals determined by the
write-behind thread.
Enterprise Manager reads
its data from the database.

Faulted The flow trace, BPEL audit trace, and flow instance state
data is not persisted for successful executions. If the flow
encounters a fault, then all data is persisted to the
database. Once the flow has been recovered, all flow data
is purged.
If a component reaches dehydration point, then the state
data is persisted to the Coherence cache.

For long running flows that span write delay intervals, the
write-behind thread does temporarily persist the state of
running instances to the database. These are purged after
the instances complete execution.

For flows that use the
faulted completion
persist policy, you should
not see flow instances in
Enterprise Manager Fusion
Middleware Control, except
for faulted flow instances.
Note that long-running flow
instances might transiently
show up in Enterprise
Manager, as and when
they are persisted to the
database by the write-
behind thread. However,
this data is purged after the
flow instance completes.

Chapter 13
Using In-Memory SOA to Improve System Performance

13-10

The string values immediate, deferred, and faulted are case-insensitive.

As business flows can span composites and components, persistence for a flow comprising
components with different persistence settings is determined by the components that persist.
So, even if one component is configured to persist to the database, then all components in the
flow will persist to the database.

For example, if you have a BPEL component with persistence set to deferred and another
BPEL component in the same flow has persistence set to immediate, then the immediate
setting overrides the deferred setting, and all flow instance state and flow audit trace data is
persisted immediately to the database. Similarly, if you have all components set to faulted,
but even one component is set to deferred, then the persistence setting defaults to deferred
and flow state and audit data is persisted.

Note:

• The component state and component audit trace is persisted based on the
persistence policy applied to the component. The flow instance state and flow
audit trace is determined by the override rule. So, immediate overrides deferred
overrides faulted.

• Sensor data is persisted per the flow data. If flow is persisted to the database,
then sensor data is also persisted to the database.

Write Delay for In-Memory Flows

The default interval used by the write-delay thread is 5 minutes. This means that the data is
copied from the cache to the database every 5 minutes.

If you have a strong case to modify this, say, if most of your BPEL processes complete in 6
minutes, as opposed to 5 minutes, and you wish to tweak the write-delay in order to reduce
your database writes, you can set the following server start argument for your SOA server:

-Dsoa.cache.writebehindDelay=6m

The Oracle WebLogic Remote Console can be used to set server start arguments.

Steps to Enable In-Memory SOA
To enable In-Memory SOA, you need to set the in-memory SOA flag in Enterprise Manager. In
addition, you need to design your business processes to be non-transactional, and to use the
correct completion persist policy (faulted or deferred).

The following steps are required.

1. Enabling the In-Memory SOA Flag

2. Designing Your Business Process to Run In-Memory

Enabling the In-Memory SOA Flag
If you have one or more business flows designed to run in-memory, you need to set the
InMemoryEnvironment flag in Enterprise Manager Fusion Middleware Control. After you set

Chapter 13
Using In-Memory SOA to Improve System Performance

13-11

the InMemoryEnvironment flag to true (default is false), SOA execution is performed in-
memory for components, composites, and flows that have been designed to use this feature.

Use the following steps to set the SOA in-memory environment in Enterprise Manager Fusion
Middleware Control.

1. From the SOA Infrastructure menu, select SOA Administration > Common Properties.

Alternatively, you can also select SOA Infrastructure Common Properties from the SOA
Composite menu on a composite page.

The SOA Infrastructure Common Properties page appears.

2. Click the More SOA Infra Advanced Configuration Properties... link near the bottom of
the page.

The System MBean Browser page appears. The attributes for the soa-infra MBean,
under Application Defined MBeans, are displayed in alphabetical order.

3. Scroll down to the InMemoryEnvironment attribute. Set the Value field to true.

Chapter 13
Using In-Memory SOA to Improve System Performance

13-12

4. Click Apply near the top right of the page.

The SOA in-memory environment is now enabled.

Designing Your Business Process to Run In-Memory
To configure a business flow to run in-memory, you must design all the constituent BPEL
components to be non-transactional. In-memory SOA can only be used for non-transactional
business process as coherence cache does not support transnational behavior at this point.
Also, you must set the completion persist policy for all of your BPEL processes to deferred or
faulted.
Use the following settings, when adding a new BPEL process, in order to enable your BPEL
process to run in-memory.

1. On the General tab of the Create BPEL Process dialog, select notSupported for
Transaction.

Chapter 13
Using In-Memory SOA to Improve System Performance

13-13

2. Select the In Memory SOA tab to specify the completion persist policy.

Chapter 13
Using In-Memory SOA to Improve System Performance

13-14

Setting an Existing Business Process to Be Non-Transactional
To ensure that your business process can use in-memory SOA, you must set up the process to
be non-transactional.

Use the following steps in JDeveloper to set your BPEL process to be non-transactional.

Ensure that the SOA composite, containing the BPEL process, is open in JDeveloper.

1. Select the BPEL component in the composite view.

The Properties for the selected BPEL component appear in the Properties window. If the
Properties window is not visible, select Properties from the JDeveloper Window menu.

2. If the bpel.config.transaction property appears in the Properties window, select the
property and click Edit. Else, click the Add button to add the property.

The Edit Property or Create Property dialog appears.

3. If you are adding the property, typebpel.config.transaction for the Name.

4. Type notSupported under Value.

Chapter 13
Using In-Memory SOA to Improve System Performance

13-15

5. Click OK.

The bpel.config.transaction property appears in the Properties window. Verify that the
Value column reads notSupported.

Setting the Completion Persist Policy for an Existing BPEL Process
To ensure that your business process can use in-memory SOA, you must set the completion
persist policy to deferred or faulted. When the BPEL process comes across dehydration
points, the state information is cached in memory, and not the database.

Use the following steps in JDeveloper to set the completion persist policy for your BPEL
process.

Ensure that the SOA composite, containing the BPEL process, is open in JDeveloper.

1. Select the BPEL component in the composite view.

The Properties for the selected BPEL component appear in the Properties window. If the
Properties window is not visible, select Properties from the JDeveloper Window menu.

2. Click the Add button to add the bpel.config.completionPersistPolicy property.

The Create Property dialog appears.

3. Typebpel.config.completionPersistPolicy for the Name.

4. Type deferred or faulted under Value.

5. Click OK.

The bpel.config.completionPersistPolicy property appears in the Properties window.
Verify that the Value column reads deferred or faulted.

Chapter 13
Using In-Memory SOA to Improve System Performance

13-16

14
Incorporating Java and Java EE Code in a
BPEL Process

This chapter describes how to incorporate sections of Java code into BPEL process service
components of SOA composite applications. It describes how to add custom classes and JAR
files, use the Java embedding activity, embed service data objects (SDOs) with bpelx:exec,
and implement a custom Connection Manager class with a BPEL process.
This chapter includes the following sections:

• Introduction to Java and Java EE Code in BPEL Processes

• Incorporating Java and Java EE Code in BPEL Processes

• Adding Custom Classes and JAR Files

• Using Java Embedding in a BPEL Process in Oracle JDeveloper

• Embedding Service Data Objects with bpelx:exec

• Sharing a Custom Implementation of a Class with Oracle BPEL Process Manager

You can also invoke a spring component. For more information, see Integrating the Spring
Framework in SOA Composite Applications.

Introduction to Java and Java EE Code in BPEL Processes
This chapter explains how to incorporate sections of Java code into a BPEL process. This is
particularly useful when there is Enterprise JavaBeans code that can perform the necessary
function, and you want to use the existing code rather than start over with BPEL.

Incorporating Java and Java EE Code in BPEL Processes
There are several methods for incorporating Java and Java EE code in BPEL processes:

• Wrap as a Simple Object Access Protocol (SOAP) service

• Embed Java code snippets into a BPEL process with the bpelx:exec tag

• Use an XML facade to simplify DOM manipulation

• Use bpelx:exec built-in methods

• Use Java code wrapped in a service interface

How to Wrap Java Code as a SOAP Service
You can wrap the Java code as a SOAP service. This method requires that the Java
application have a BPEL-compatible interface. A Java application wrapped as a SOAP service
appears as any other web service, which can be used by many different kinds of applications.
There are also tools available for writing SOAP wrappers.

14-1

What You May Need to Know About Wrapping Java Code as a SOAP
Service

A Java application wrapped as a SOAP service has the following drawbacks:

• There may be reduced performance due to the nature of converting between Java and
SOAP, and back and forth.

• Since SOAP inherently has no support for transactions, this method loses atomic
transactionality, that is, the ability to perform several operations in an all-or-none mode
(such as debiting one bank account while crediting another, where either both transactions
must be completed, or neither of them are completed).

How to Embed Java Code Snippets into a BPEL Process with the
bpelx:exec Tag

You can embed Java code snippets directly into the BPEL process using the Java BPEL exec
extension bpelx:exec. The benefits of this approach are speed and transactionality. It is
recommended that you incorporate only small segments of code. BPEL is about separation of
business logic from implementation. If you remove a lot of Java code in your process, you lose
that separation. Java embedding is recommended for short utility-like operations, rather than
business code. Place the business logic elsewhere and call it from BPEL.

The server executes any snippet of Java code contained within a bpelx:exec activity, within its
Java Transaction API (JTA) transaction context.The BPEL tag bpelx:exec converts Java
exceptions into BPEL faults and then adds them into the BPEL process.The Java snippet can
propagate its JTA transaction to session and entity beans that it calls.

For example, a SessionBeanSample.bpel file uses the bpelx:exec tag shown in the following
code to embed the invokeSessionBean Java bean:

 <bpelx:exec name="invokeSessionBean" language="java" version="1.5">
 <![CDATA[
 try {
 Object homeObj = lookup("ejb/session/CreditRating");
 Class cls = Class.forName(
 "com.otn.samples.sessionbean.CreditRatingServiceHome");
 CreditRatingServiceHome ratingHome = (CreditRatingServiceHome)
 PortableRemoteObject.narrow(homeObj,cls);
 if (ratingHome == null) {
 addAuditTrailEntry("Failed to lookup 'ejb.session.CreditRating'"
 + ". Ensure that the bean has been"
 + " successfully deployed");
 return;
 }
 CreditRatingService ratingService = ratingHome.create();

 // Retrieve ssn from scope
 Element ssn =
 (Element)getVariableData("input","payload","/ssn");

 int rating = ratingService.getRating(ssn.getNodeValue());
 addAuditTrailEntry("Rating is: " + rating);

 setVariableData("output", "payload",
 "/tns:rating", new Integer(rating));
 } catch (NamingException ne) {

Chapter 14
Incorporating Java and Java EE Code in BPEL Processes

14-2

 addAuditTrailEntry(ne);
 } catch (ClassNotFoundException cnfe) {
 addAuditTrailEntry(cnfe);
 } catch (CreateException ce) {
 addAuditTrailEntry(ce);
 } catch (RemoteException re) {
 addAuditTrailEntry(re);
 }
]]>
 </bpelx:exec>

How to Embed Java Code Snippets in a BPEL 2.0 Process
The examples in this chapter focus primarily on how to embed Java code snippets with the
bpelx:exec extension. For BPEL projects that support version 2.0 of the BPEL specification,
the syntax is slightly different. The bpelx:exec extension and Java code are wrapped in an
<extensionActivity> element. The following example provides details.

<extensionActivity>
 <bpelx:exec language="java">
 <![CDATA[
 java code
]]>
 </bpelx:exec>
</extensionActivity>

When you drag a Java Embedding activity into a BPEL process in Oracle BPEL Designer, the
<extensionActivity> element and bpelx:exec tag are automatically added.

The following example shows the import syntax for BPEL 2.0:

<import location="class/package name"
 importType="http://schemas.oracle.com/bpel/extension/java"/>

Note:

The BPEL 2.0 import syntax differs from BPEL 1.1, which uses the following syntax:

<bpelx:exec import="class/package name"/>

The following example shows a BPEL file with two Java embedding activities for a project that
supports BPEL version 2.0.

<process name="Test" targetNamespace="http://samples.otn.com/bpel2.0/ch10.9"
 . . .
 . . .
 <import location="oracle.xml.parser.v2.XMLElement"
 importType="http://schemas.oracle.com/bpel/extension/java"/>
. . .
 <sequence>
 . . .
<extensionActivity>
 <bpelx:exec language="java">
 XMLElement elem = (XMLElement) getVariableData("output", "payload");
 elem.setTextContent("set by java exec");
 </bpelx:exec>
 </extensionActivity>

Chapter 14
Incorporating Java and Java EE Code in BPEL Processes

14-3

 <extensionActivity>
 <bpelx:exec language="java">
 <![CDATA[XMLElement elem = (XMLElement) getVariableData("output",
 "payload");
 String t = elem.getTextContent();
 elem.setTextContent(t + ", set by java exec 2");]]>
 </bpelx:exec>
 </extensionActivity>
 . . .
 </sequence>
</process>

For information about using this activity, see Using Java Embedding in a BPEL Process in .

How to Use an XML Facade to Simplify DOM Manipulation
You can use an XML facade to simplify DOM manipulation. Oracle BPEL Process Manager
and Oracle Mediator provides a lightweight Java Architecture for XML Binding (JAXB)-like Java
object model on top of XML (called a facade). An XML facade provides a Java bean-like front
end for an XML document or element that has a schema. Facade classes can provide easy
manipulation of the XML document and element in Java programs.

You add the XML facade by using a createFacade method within the bpelx:exec statement in
the .bpel file. The following provides an example:

 <bpelx:exec name= ...
 <![CDATA
 ...
 Element element = ...
 (Element)getVariableData("input","payload","/loanApplication/"):
 //Create an XMLFacade for the Loan Application Document
 LoanApplication xmlLoanApp=
 LoanApplicationFactory.createFacade(element);
 ...

How to Use bpelx:exec Built-in Methods
Table 14-1 lists a set of bpelx:exec built-in methods that you can use to read and update
scope variables, instance metadata, and audit trails.

Table 14-1 Built in Methods for bpelx:exec

Method Name Description

Object lookup(String name) JNDI access

long getInstanceId() Unique ID associated with each instance

String setTitle(String title) / String
getTitle()

Title of this instance

String setStatus(String status) /
String getStatus()

Status of this instance

void setCompositeInstanceTitle(String
title)

Sets the composite instance title

void setIndex(int i, String value) /
String getIndex(int i)

Six indexes can be used for a search

Chapter 14
Incorporating Java and Java EE Code in BPEL Processes

14-4

Table 14-1 (Cont.) Built in Methods for bpelx:exec

Method Name Description

void setCreator(String creator) /
String getCreator()

Who initiated this instance

void setCustomKey(String customKey) /
String getCustomKey()

Second primary key

void setMetadata(String metadata) /
String getMetadata ()

Metadata for generating lists

String getPreference(String key) Access preference

void addAuditTrailEntry(String message,
Object detail)

Add an entry to the audit trail

void addAuditTrailEntry(Throwable t) Access a file stored in the archive

Object getVariableData(String name)
throws BPELFault

Access and update variables stored in the scope

Object getVariableData(String name,
String partOrQuery) throws BPELFault

Access and update variables

Object getVariableData(String name,
String part, String query)

Access and update variables

void setVariableData(String name, Object
value)

Set variable data

void setVariableData(String name, String
part, Object value)

Set variable data

void setVariableData(String name, String
part, String query, Object value)

Set variable data

How to Use Java Code Wrapped in a Service Interface
Not all applications expose a service interface. You may have a scenario in which a business
process must use custom Java code. For this scenario, you can:

• Write custom Java code.

• Create a service interface in which to embed the code.

• Invoke the Java code as a web service over SOAP.

For example, assume you create a BPEL process service component in a SOA composite
application that invokes a service interface through a SOAP reference binding component. For
this example, the service interface used is an Oracle Application Development Framework
(ADF) Business Component.

The high-level instructions for this scenario are as follows.

To use Java code wrapped in a service interface:

1. Create an Oracle ADF Business Component service in Oracle JDeveloper.

This action generates a WSDL file and XSD file for the service.

2. Create a SOA composite application that includes a BPEL process service component.
Ensure that the BPEL process service component is exposed as a composite service. This
automatically connects the BPEL process to an inbound SOAP service binding component.

Chapter 14
Incorporating Java and Java EE Code in BPEL Processes

14-5

3. Import the Oracle ADF Business Component service WSDL into the SOA composite
application.

4. Create a web service binding to the Oracle ADF Business Component service interface.

5. Design a BPEL process in which you perform the following tasks:

a. Create a partner link for the Oracle ADF Business Component service portType.

b. Create an assign activity. For this example, this step copies data (for example, a static
XML fragment) into a variable that is passed to the Oracle ADF Business Component
service.

c. Create an invoke activity and connect to the partner link you created in Step 55.a.

6. Connect (wire) the partner link reference to the composite reference binding component.
This reference uses a web service binding to enable the Oracle ADF Business Component
service to be remotely deployed.

7. Deploy the SOA composite application.

8. Invoke the SOA application from the Test Web Service page in Oracle Enterprise Manager
Fusion Middleware Control. For more information, see Initiating a Test Instance of a
Business Flow in Administering Oracle SOA Suite and Oracle Business Process
Management Suite.

For more information on creating Oracle ADF Business Components, see Developing Fusion
Web Applications with Oracle Application Development Framework.

Adding Custom Classes and JAR Files
You can add custom classes and JAR files to a SOA composite application. A SOA extension
library for adding extension classes and JARs to a SOA composite application is available in
the $ORACLE_HOME/soa/modules/oracle.soa.ext_11.1.1 directory. For Oracle JDeveloper,
custom classes and JARs are added to the application_name/project/sca-inf/lib
directory.

How to Add Custom Classes and JAR Files
If the classes are used in bpelx:exec, you must also add the JARs with the BpelcClasspath
property in the System MBean Browser of Oracle Enterprise Manager Fusion Middleware
Control.

To Add JARs to BpelcClasspath:
1. From the SOA Infrastructure menu, select SOA Administration > BPEL Properties.

2. At the bottom of the BPEL Service Engine Properties page, click More BPEL
Configuration Properties.

3. Click BpelcClasspath.

4. In the Value field, specify the class path.

5. Click Apply.

6. Click Return.

In addition, ensure that the JARs are loaded by the SOA composite application.

Chapter 14
Adding Custom Classes and JAR Files

14-6

To Add Custom Classes:
1. Copy the classes to the classes directory.

2. Restart Oracle WebLogic Server.

To Add Custom JARs:
1. Copy the JAR files to this directory or its subdirectory.

2. Run ant.

3. Restart Oracle WebLogic Server.

Using Java Embedding in a BPEL Process in Oracle JDeveloper
In Oracle JDeveloper, you can add the bpelx:exec activity and copy the code snippet into a
dialog.

Note:

For custom classes, you must include any JAR files required for embedded Java
code in the BpelcClasspath property in the System MBean Browser of Oracle
Enterprise Manager Fusion Middleware Control. See How to Add Custom Classes
and JAR Files for instructions. The JAR files are then added to the class path of the
BPEL loader. If multiple JAR files are included, they must be separated by a colon (:)
on UNIX or a semicolon (;) on Windows.

How To Use Java Embedding in a BPEL Process in Oracle JDeveloper
To use Java embedding in a BPEL process in Oracle JDeveloper:

1. From the Components window, expand Oracle Extensions.

2. Drag the Java Embedding activity into the designer.

3. Click the Java Embedding activity to display its property fields in the Property Inspector or
double-click the Java Embedding activity to display the Java Embedding dialog.

For information about editing activities in the Property Inspector, see How to Edit BPEL
Activities in the Property Inspector.

4. In the Name field, enter a name.

5. In the Code Snippet field, enter (or cut and paste) the Java code. Figure 14-1 provides
details.

Chapter 14
Using Java Embedding in a BPEL Process in Oracle JDeveloper

14-7

Figure 14-1 bpel:exec Code Example

Note:

As an alternative to writing Java code in the Java Embedding activity, you can place
your Java code in a JAR file, put it in the class path, and call your methods from
within the Java Embedding activity.

What You May Need to Know About Using thread.sleep() in a Java
Embedding Activity

If you create and deploy a BPEL process that uses thread.sleep() in a Java Embedding
activity, the executing thread is blocked and the transaction associated with that thread is
prevented from committing. This causes BPEL instances to appear only after the wait is over,
which is the expected behavior.

Instead, use a wait activity, which releases the resource upon entering the activity and enables
the ongoing transaction to commit and the BPEL instance data to hydrate into the data store.

Embedding Service Data Objects with bpelx:exec
You can embed SDO code in the .bpel file with the bpelx:exec tag. In the syntax provided in
the following example, mytest.apps.SDOHelper is a Java class that modifies SDOs.

</bpelx:exec>
<bpelx:exec name="ModifyInternalSDO" version="1.5" language="java">

Chapter 14
Embedding Service Data Objects with bpelx:exec

14-8

 <![CDATA[try{
 Object o = getVariableData("VarSDO");
 Object out = getVariableData("ExtSDO");
 System.out.println("BPEL:Modify VarSDO... " + o + " ExtSDO: " + out);
 mytest.apps.SDOHelper.print(o);
 mytest.apps.SDOHelper.print(out);
 mytest.apps.SDOHelper.modifySDO(o);
 System.out.println("BPEL:After Modify VarSDO... " + o + " ExtSDO: " + out);
 mytest.apps.SDOHelper.print(o);
 mytest.apps.SDOHelper.print(out);
 }catch(Exception e)
 {
 e.printStackTrace();
}]]>
 </bpelx:exec>

The following provides an example of the Java classes modifySDO(o) and print(o) that are
embedded in the BPEL file:

public static void modifySDO(Object o){
 if(o instanceof commonj.sdo.DataObject)
 {
 ((DataObject)o).getChangeSummary().beginLogging();
 SDOType type = (SDOType)((DataObject)o).getType();
 HelperContext hCtx = type.getHelperContext();
 List<DataObject> lines =
 (List<DataObject>)((DataObject)o).get("line");
 for (DataObject line: lines) {
 line.set("eligibilityStatus", "Y");
 }
 } else {
 System.out.println("SDOHelper.modifySDO(): " + o + " is not a
 DataObject!");
 }
 }
. . .
. . .
 public static void print(Object o) {
 try{
 if(o instanceof commonj.sdo.DataObject)
 {
 DataObject sdo = (commonj.sdo.DataObject)o;
 SDOType type = (SDOType) sdo.getType();
 HelperContext hCtx = type.getHelperContext();
 System.out.println(hCtx.getXMLHelper().save(sdo, type.getURI(),
 type.getName()));
 } else {
 System.out.println("SDOHelper.print(): Not a sdo " + o);
 }
 }catch(Exception e)
 {
 e.printStackTrace();
 } }

Chapter 14
Embedding Service Data Objects with bpelx:exec

14-9

Sharing a Custom Implementation of a Class with Oracle BPEL
Process Manager

When you implement a custom Connection Manager class with the same name as a class
used by Oracle BPEL Process Manager, you must ensure that the custom class does not
override the class used by Oracle BPEL Process Manager.

For example, assume the following is occurring:

• You are using embedded Java in a BPEL project.

• The Connection Manager custom class is overriding the BPEL Connection Manager class.

• A java.lang.NoClassDefFoundError is occurring at runtime.

How to Configure the BPEL Connection Manager Class to Take Precedence
To configure the BPEL Connection Manager class to take precedence:

1. Start Oracle JDeveloper.

2. Highlight the BPEL project.

3. From the Edit main menu, select Properties.

4. Select Libraries and Classpath.

5. Click Add JAR/Directory.

6. Navigate to the location of the custom JAR file, and click Select.

This adds the custom Connection Manager JAR file to the classpath.

7. Click OK.

8. Redeploy the BPEL project and retest.

Chapter 14
Sharing a Custom Implementation of a Class with Oracle BPEL Process Manager

14-10

15
Using Events and Timeouts in BPEL
Processes

This chapter describes how to use events and timeouts. It describes how to create a pick
activity to select to continue a process or wait, set timeouts for request-response operations on
receive activities, create wait activities to set an expiration time, create OnEvent branches in
BPEL 2.0 to wait for message arrival, set timeouts on synchronous processes, and invoke an
Oracle Enterprise Scheduler job in a BPEL process.
This chapter includes the following sections:

• Introduction to Event and Timeout Concepts

• Selecting Between Continuing or Waiting on a Process with a Pick Activity

• Setting Timeouts for Request-Reply and In-Only Operations in Receive Activities

• Setting an Expiration Time with a Wait Activity

• Specifying Events to Wait for Message Arrival with an OnEvent Branch in BPEL 2.0

• Setting Timeouts for Durable Synchronous Processes

• Invoking an Oracle Enterprise Scheduler Job in a BPEL Process

Introduction to Event and Timeout Concepts
Because web services can take a long time to return a response, a BPEL process service
component must be able to time out and continue with the rest of the flow after a period.

This chapter provides an example of how to program a BPEL process service component to
wait one minute for a response from a web service named Star Loan that provides loan offers.
If Star Loan does not respond in one minute, then the BPEL process service component
automatically selects an offer from another web service named United Loan. In the real world,
the time limit is more like 48 hours. However, for this example, you do not want to wait that
long to see if your BPEL process service component is working properly.

Because asynchronous web services can take a long time to return a response, a BPEL
process service component must be able to time out, or give up waiting, and continue with the
rest of the flow after a certain amount of time.

You can use a pick activity to configure a BPEL flow to either wait a specified amount of time or
to continue performing its duties. To set an expiration period for the time, you can use the wait
activity.

Selecting Between Continuing or Waiting on a Process with a
Pick Activity

The pick activity provides two branches, each one with a condition. The branch that has its
condition satisfied first is executed. In the following example, one branch's condition is to
receive a loan offer, and the other branch's condition is to wait a specified amount of time.

Figure 15-1 provides an overview. The following activities take place (in order of priority):

15-1

1. An invoke activity initiates a service, in this case, a request for a loan offer from Star Loan.

2. The pick activity begins next. It has the following conditions:

• onMessage

This condition has code for receiving a reply in the form of a loan offer from the Star
Loan web service. The onMessage code matches the code for receiving a response
from the Star Loan web service before a timeout was added.

• onAlarm

This condition has code for a timeout of one minute. This time is defined as PT1M,
which means to wait one minute before timing out. In this timeout setting:

– S is for seconds

– M for one minute

– H is for hour

– D is for day

– Y is for year

In the unlikely event that you want a time limit of 1 year, 3 days, and 15 seconds, you
enter it as PT1Y3D15S. The remainder of the code sets the loan variables selected and
approved to false, sets the annual percentage rate (APR) at 0.0, and copies this
information into the loanOffer variable.

The time duration format is specified by the BPEL standard. For more detailed
information on the time duration format, see the duration section of the most current
XML Schema Part 2: Datatypes document at:

http://www.w3.org/TR/xmlschema-2/#duration
3. The pick activity condition that completes first is the one that the BPEL process service

component executes. The other branch is not executed.

Figure 15-1 Overview of the Pick Activity

Chapter 15
Selecting Between Continuing or Waiting on a Process with a Pick Activity

15-2

http://www.w3.org/TR/xmlschema-2/#duration

An onMessage branch is similar to a receive activity in that it receives messages. However,
you can define a pick activity with multiple onMessage branches that can wait for similar
partner links and port types, but have different operations. Therefore, separate threads and
parallel processes can be invoked for each operation. This differs from the receive activity in
which there is only one operation. Another difference is that you can create a new instance of a
business process with a receive activity (by selecting the Create Instance check box), but you
cannot do this with a pick activity.

Note:

You can also create onMessage branches in BPEL 1.1 scope activities and onAlarm
branches in BPEL 1.1 and 2.0 scope activities. Expand the Scope activity in Oracle
JDeveloper, and browse the icons on the left side to find the branch you want to add.

How To Create a Pick Activity
To create a pick activity:

1. In the SOA Composite Editor, double-click the BPEL process service component.

2. In the Components window, expand BPEL Constructs > Structured Activities.

3. Drag a Pick activity into the designer.

The Pick activity includes an OnMessage branch. Figure 15-2 provides an example.

Figure 15-2 Pick Activity

4. Click the OnMessage branch to display its property fields in the Property Inspector or
double-click the OnMessage branch.

For information about editing activities in the Property Inspector, see How to Edit BPEL
Activities in the Property Inspector.

5. Edit its attributes to receive the response from the loan service. Figure 15-3 provides an
example.

Chapter 15
Selecting Between Continuing or Waiting on a Process with a Pick Activity

15-3

Figure 15-3 OnMessage Branch

6. Select the Pick activity.

Icons for adding additional OnMessage branches and an OnAlarm branch are displayed.

7. Click Add OnAlarm, as shown in Figure 15-4.

Figure 15-4 onAlarm Branch Creation

An OnAlarm branch is displayed.

8. Double-click the OnAlarm branch of the pick activity and set its time limit to 1 minute.
Figure 15-5 provides an example.

Chapter 15
Selecting Between Continuing or Waiting on a Process with a Pick Activity

15-4

Figure 15-5 OnAlarm Branch

9. Click OK.

What Happens When You Create a Pick Activity
The code segment in the following example defines the pick activity for this operation after
design completion:

 <pick>
 <!-- receive the result of the remote process -->
 <onMessage partnerLink="LoanService"
 portType="services:LoanServiceCallback"
 operation="onResult" variable="loanOffer">

 <assign>
 <copy>
 <from variable="loanOffer" part="payload"/>
 <to variable="output" part="payload"/>
 </copy>
 </assign>

 </onMessage>
 <!-- wait for one minute, then timesout -->
 <onAlarm for="PT1M">
 <assign>
 <copy>
 <from>
 <loanOffer xmlns="http://www.autoloan.com/ns/autoloan">
 <providerName>Expired</providerName>
 <selected type="boolean">false</selected>
 <approved type="boolean">false</approved>
 <APR type="double">0.0</APR>
 </loanOffer>
 </from>
 <to variable="loanOffer" part="payload"/>
 </copy>

Chapter 15
Selecting Between Continuing or Waiting on a Process with a Pick Activity

15-5

 </assign>
 </onAlarm>
</pick>

What You May Need to Know About Simultaneous onMessage Branches in
BPEL 2.0

Oracle BPEL Process Manager's implementation of BPEL 2.0 does not support simultaneous
onMessage branches of a pick activity.

When a process has a pick activity with two onMessage branches as its starting activity (both
with initiate set to join in their correlation definitions) and an invoking process that posts the
invocations one after the other, it is assumed that both invocations reach the same instance of
the invoked process. However, in Oracle BPEL Process Manager's implementation of BPEL
2.0, two instances of the invoked process are created for each invocation.

This is the expected behavior, but it differs from what is described in the BPEL 2.0
specification.

For example, assume you have synchronous BPEL process A, which has a flow activity with
two parallel branches:

• Branch one invokes operation processMessage1 on asynchronous BPEL process B.

• Branch two invokes operation processMessage2 on asynchronous BPEL process B. The
invocation occurs after a five second wait. BPEL process A then waits on a callback from
BPEL process B and returns the output back to the client.

The idea is to create one instance of the invoked process and ensure that the second
invocation happens after the first instance is already active and running.

BPEL process B has a pick activity with createInstance set to yes. The pick activity has two
onMessage branches within it:

• One branch is for the processMessage1 operation. For this operation, it goes to sleep for
about 10 seconds.

• The other branch is for the processMessage2 operation. For this operation, it waits for five
seconds.

Both operations have the same input message type and correlation is defined with initiate
set to join.The expectation is that the processMessage1 invocation is invoked immediately
and the BPEL process B instance is created, which should sleep for ten seconds. After five
seconds, the invoking process should then post the processMessage2 invocation to BPEL
process B and this invocation should go to the already existing instance instead of creating a
new one (since the correlation ID is the same and initiate is set to join).

However, for each invocation, a new instance of BPEL process B is created and the result
cannot be predicted.

• If the processMessage2 operation branch finishes first, then the subsequent assign
operation fails because the input variable from processMessage1 is assumed to be null
(for that instance).

• If the processMessage1 operation branch finishes first, then the process returns callback
data with only partial information (does not include the input from processMessage2).

In Oracle BPEL Process Manager's implementation, either one of the two operations
(processMessage1 or processMessage2) creates a new instance. This is implemented so that
database queries do not need to be made to see if there are already instances created.

Chapter 15
Selecting Between Continuing or Waiting on a Process with a Pick Activity

15-6

The workaround is to create two processes that are initiated by the two different operations.

Setting Timeouts for Request-Reply and In-Only Operations in
Receive Activities

You can provide a timeout setting for the following types of operations in BPEL versions 1.1
and 2.0:

• Request-reply (synchronous) operations.

• In-only receive (asynchronous) operations. In this scenario, the receive activity must be a
midprocess activity and not the activity that creates a new instance (that is, the Create
Instance check box in the Receive dialog is selected).

This provides an alternative to using the onMessage and onAlarm branches of a pick activity to
specify a timeout duration for partner callbacks.

Figure 15-6 shows the Timeout tab of a midprocess receive activity in which you set a timeout.

Figure 15-6 Timeout Tab of a Receive Activity

For information about key concepts to understand before setting timeouts for request-reply and
in-only operations in receive activities, see What You May Need to Know About Setting
Timeouts for Request-Reply and In-Only Operations.

For information about how to set a timeout in a receive activity in Oracle JDeveloper, see How
to Set Timeouts in Receive Activities.

Chapter 15
Setting Timeouts for Request-Reply and In-Only Operations in Receive Activities

15-7

How to Set Timeouts in Receive Activities
Set timeouts in the following scenarios:

• The Create Instance check box is deselected.

• The receive activity is in the middle of the BPEL process (in most cases)

To set timeouts in receive activities:

1. In the SOA Composite Editor, double-click the BPEL process service component.

2. In the Components window, expand BPEL Constructs.

3. Drag a Receive activity into the designer.

4. Expand the activity.

5. Click the Timeout tab.

This tab enables you to set a timeout for request-response operations, as shown in
Figure 15-7.

Figure 15-7 Timeout Tab

6. Specify appropriate values, and click Apply. For example:

• To specify a timeout setting relative from when the activity is invoked, click the For
button and enter a value or click the Expression button and specify an XPath
expression.

• To specify a timeout setting as an absolute deadline for a request-response operation,
click the Until button and enter a value or click the Expression button and specify an
XPath expression.

Chapter 15
Setting Timeouts for Request-Reply and In-Only Operations in Receive Activities

15-8

7. Click Apply, then OK.

What Happens When You Set Timeouts in Receive Activities
The code segment in the .bpel file defines the specific operation after design completion.

For example, if you specified that the activity expects an inbound message to arrive no later
than five minutes after the activity has started execution, the syntax displays as shown in the
following example:

<bpelx:for="'PT5M'"/>

For example, if you specified that the activity expects an inbound message to arrive no later
than January 24, 2010 11:00 AM UTC+1 after the activity has started execution, the syntax
displays as shown in the following code:

<bpelx:until="'2010-01-24T11:00:00-08:00'"/>

For example, if you specified an XPath expression to obtain a value for a timeout relative from
when the activity is invoked, syntax similar to that shown in the following code can display:

<bpelx:for="bpws:getVariableData('inputVariable','payload','/tns:waitValue/tns:for
')"/>

What You May Need to Know About Setting Timeouts for Request-Reply
and In-Only Operations

The following sections describe request-reply and in-only timeout operations functionality:

• Timeout settings relative from activity invocation

• Timeout settings as an absolute date time

• Timeout settings computed dynamically with an XPath expression

• bpelx:timeout fault thrown during an activity timeout

• Events added to the BPEL instance audit trail during an activity timeout

• Recoverable timeout activities during a server restart

Timeout Settings Relative from When the Activity is Invoked
You can specify a timeout setting relative from when the activity is invoked. This setting is
specified as a relative duration using the syntax shown in the following example for BPEL 1.1.

<receive | bpelx:for="duration-expr">
 standard-elements
</receive>

For BPEL 2.0, the syntax is as shown in the following example:

<receive | <bpelx:for>'duration-expr'</bpelx:for>
 standard-elements
</receive>

This type uses the bpelx:for attribute to specify a static value or an XPath expression that
must evaluate to an XML schema type duration. Only one of the bpelx:for or bpelx:until
attributes is permitted for an activity.

Chapter 15
Setting Timeouts for Request-Reply and In-Only Operations in Receive Activities

15-9

If the XPath expression evaluates to a negative duration, the timeout is ignored and an event is
logged to the instance audit trail indicating that the duration value is invalid.

Once a valid duration value is retrieved, the expiration date for the activity is set to the current
node time (or cluster time after this is available), plus the duration value. For example, the
duration value bpelx:for="'PT5M'" specifies that the activity expects an inbound message to
arrive no later than five minutes after the activity has started execution.

Note:

The timeout setting attribute does not apply to the onMessage branch of a pick
activity because the same functionality currently exists with the onMessage and
onAlarm branches of that activity.

Timeout durations can only be specified on the following:

• Midprocess receive activities

• Receive activities that do not specify createInstance="true"
A receive activity can only time out after it has been instantiated, which is not the case with
entry receive activities.

Timeout Settings as an Absolute Date Time
You can specify a timeout setting as an absolute deadline for request-response receive
activities. For BPEL 2.0, the syntax is as shown in the following example:

<receive <bpelx:until>"deadline-expr"</bpelx:until>
</receive>

For BPEL 1.1, the syntax is as shown in the following example:

<receive bpelx:until="deadline-expr">
 standard-elements
</receive>

The expected expiration time for the bpelx:until attribute must be at least two seconds ahead
of the current time. Otherwise, the timer scheduling is ignored and skipped, just as if the timer
was never specified.

The bpelx:until attribute specifies a static value or an XPath expression that must evaluate
to an XML schema type datetime or date. Only one of the bpelx:for or bpelx:until
attributes is permitted for an activity.

XPath version 1.0 is not XML schema-aware. Therefore, none of the built-in functions of XPath
version 1.0 can create or manipulate dateTime or date values. However, it is possible to
perform one of the following:

• Write a constant (literal) that conforms to XML schema definitions and use that as a
deadline value.

• Extract a field from a variable (part) of one of these types and use that as a deadline value.

XPath version 1.0 treats that literal as a string literal, but the result can be interpreted as a
lexical representation of a dateTime or date value.

Chapter 15
Setting Timeouts for Request-Reply and In-Only Operations in Receive Activities

15-10

Once a valid datetime or date value has been retrieved, the expiration date for the activity is
set to the specified date. For example, the datetime value
bpelx:until="'2009-12-24T18:00+01:00'" specifies that the activity expects an inbound
message to arrive no later than Dec 24, 2009 6:00 pm UTC+1 after the activity has started
execution.

Note:

The timeout setting attribute does not apply to the onMessage branch of a pick
activity because the same functionality currently exists with the onMessage and
onAlarm branches of the pick activity.

Timeout dates can only be specified on the following activities:

• Midprocess receives

• Receive activities that do not specify createInstance="true"
A receive activity can only time out after it has been instantiated, which is not the case with
entry receive activities.

Timeout Settings Computed Dynamically with an XPath Expression
The timeout setting for request-response receives, in-only receives (callback), and onMessage
branches of pick activities can be set using an XPath expression instead of entering a static
duration or datetime value. In this case, the value of the expression must return either:

• A string that can be interpreted as a static XML duration or datetime value

• An XML schema duration or datetime type

The following example shows the syntax for using XPath expressions in BPEL 1.1.

<bpelx:for="bpws:getVariableData('input', 'payload',
 '/tns:waitValue/tns:for')"/>

<bpelx:until="bpws:getVariableData('input', 'payload',
 '/tns:waitValue/tns:until')"/>

If the returned expression value cannot be interpreted as an XML schema duration or datetime
type, an event is logged in the instance audit trail indicating that an invalid duration and
datetime value was specified, and no activity expiration time can be set.

bpelx:timeout Fault Thrown During an Activity Timeout
If a valid XML schema duration or datetime value is returned from the bpelx:for or
bpelx:until attribute, a bpelx:timeout fault is thrown from the timed-out activity. This fault
can be caught by any catch or catchAll block and handled like a regular BPEL fault. The
message of the fault is the name of the activity. In addition, an event is logged to the instance
audit trail indicating that the activity has timed out because the expected callback message
failed to be received before the timeout duration.

If the activity receives a callback from the partner before the timeout period, no fault is thrown.
If a callback is received while the activity is being timed out, the callback message is not
delivered to the activity and is marked as canceled in the delivery message table. If a timeout
action is attempted at the same time that a callback message is handled, the timeout action is

Chapter 15
Setting Timeouts for Request-Reply and In-Only Operations in Receive Activities

15-11

ignored. As of 11g Release 1, instances are locked optimistically (as opposed to pessimistic
locking in Release 10g). Therefore, the second action in line is still performed.

The bpelx:timeout fault can be thrown from a BPEL component if the component WSDL
declares the fault on the operation. If the fault is not declared on the operation, the fault is
converted into a FabricInvocationException runtime fault. This fault can be caught by any
caller components (including BPEL components), but the fault type is no longer
bpelx:timeout. (However, the fault message string still indicates that the fault was originally a
timeout fault.)

Event Added to the BPEL Instance Audit Trail During an Activity Timeout
Once a bpelx:timeout fault is thrown from a timed-out activity, an event is logged to the
instance audit trail indicating that the activity has timed out, as opposed to having received the
expected callback message from its partner.

Recoverable Timeout Activities During a Server Restart (Refresh Expiration Alarm
Table)

Activities that specify a valid timeout duration or datetime are likely implemented in a similar
manner to wait and onAlarm activities with an expiration date for the underlying work item
object. If the node that scheduled these activities with the scheduler goes down (either through
graceful shutdown or abrupt termination), all these activities must be rescheduled with the
scheduler upon server restart.

It is not possible to have a single node (the master node) in the cluster be responsible for
rescheduling these activities upon node shutdown.

Setting an Expiration Time with a Wait Activity
The wait activity allows a process to wait for a given time period or until a time limit has been
reached. Exactly one of the expiration criteria must be specified. A typical use of this activity is
to invoke an operation at a certain time. You typically enter an expression that is dependent on
the state of a process.

When specifying a time period for waiting, note the following:

• Wait times cannot be guaranteed if they are scheduled with other events that require
processing. Due to this additional processing, the actual wait time can be greater than the
wait time specified in the BPEL process.

• Wait times of less than two seconds are ignored by the server. Wait times above two
seconds, but less than one minute, may not get executed in the exact, specified time.
However, wait times in minutes do execute in the specified time.

• The default value of 2 seconds for wait times is specified with the MinBPELWait property
in the System MBean Browser of Oracle Enterprise Manager Fusion Middleware Control.
You can set this property to any value and the wait delay is bypassed for any waits less
than MinBPELWait.

Note:

Quartz version 1.6 is supported for scheduling expiration events on wait activities.

Chapter 15
Setting an Expiration Time with a Wait Activity

15-12

How To Specify the Minimum Wait Time
You can specify the minimum time duration for a BPEL process to perform a wait that involves
a dehydration. If the wait duration is less than or equal to the value, BPEL continues executing
activities in the same thread and transaction.

To specify the minimum wait time:

1. From the SOA Infrastructure menu, select SOA Administration > BPEL Properties.

2. At the bottom of the BPEL Service Engine Properties page, click More BPEL
Configuration Properties.

3. Click MinBPELWait.

4. In the Value field, specify a value in seconds.

5. Click Apply.

6. Click Return.

How to Create a Wait Activity
To create a wait activity:

1. In the Components window, expand BPEL Constructs.

2. Drag a Wait activity into the designer.

3. Double-click the Wait activity to display the Wait dialog.

4. In the For section, enter the amount of time for which to wait.

5. In the Until section, select the deadline for which to wait, as shown in Figure 15-8.

Figure 15-8 Wait Dialog

Chapter 15
Setting an Expiration Time with a Wait Activity

15-13

What Happens When You Create a Wait Activity
Exactly one of the expiration criteria must be specified, as shown in the following example for
BPEL 2.0.

<wait <for>'duration-expr'</for> | <until>'duration-expr'</until>
 standard-elements
 </wait>

The following example shows the BPEL 1.1 syntax.

<wait (for="duration-expr" | until="deadline-expr") standard-attributes>
 standard-elements
 </wait>

Specifying Events to Wait for Message Arrival with an OnEvent
Branch in BPEL 2.0

You can create an onEvent branch in a scope activity that causes a specified event to wait for
a message to arrive. For example, assume you have a credit request process that is initiated
by a customer's credit request message. The request may be completely processed without
the need for further interaction, and the results submitted to the customer. In some cases,
however, the customer may want to inquire about the status of the credit request, modify the
request content, or cancel the request entirely while it is being processed. You cannot expect
these interactions to occur only at specific points in the business processing. An event handler
such as an onEvent branch enables the business process to accept requests (such as status
request, modification request, or cancellation request) to arrive in parallel to the primary
business logic flow.

The onEvent event handlers are associated with an enclosed scope. The onEvent event
handlers are enabled when their scope is initialized and disabled when their scope ends. When
enabled, any number of events can occur. They are processed in parallel to the scope's
primary activity and in parallel to each other. Message events also represent service
operations exposed by a process and modeled as onEvent elements. Event handlers cannot
create new process instances. Therefore, message events are always received by a process
instance that is already active.

How to Create an onEvent Branch in a Scope Activity
To create an onEvent branch in a scope activity:

1. In the expanded Scope activity, click Add OnEvent, as shown in Figure 15-9.

Chapter 15
Specifying Events to Wait for Message Arrival with an OnEvent Branch in BPEL 2.0

15-14

Figure 15-9 Add OnEvent Icon

This creates an OnEvent branch and an enclosed scope activity.

2. Double-click the OnEvent branch.

The OnEvent dialog is displayed, as shown in Figure 15-10.

Figure 15-10 OnEvent Dialog

3. In the Partner Link field, click the Search icon to select the partner link that contains the
endpoint reference on which the message is expected to arrive.

The Port Type and Operation fields define the port type and operation invoked by the
partner to cause the event.

4. Specify a method for receiving the message from the partner through use of a variable or
From Parts element.

Chapter 15
Specifying Events to Wait for Message Arrival with an OnEvent Branch in BPEL 2.0

15-15

5. Click Apply, then click OK.

6. Continue the design of your BPEL process.

What Happens When You Create an OnEvent Branch
The following example provides an overview of onEvent branches in the .bpel file after design
completion. The onEvent branches inquire about the status of the credit request, modify the
request content, or cancel the request entirely while it is being processed.

<process name="creditRequestProcess" . . .>
 . . .
 <eventHandlers>
 <onEvent partnerLink="requestCreditScore"
 operation="queryCreditRequestStatus" ...>
 <scope name="scopeStatus">...</scope>
 </onEvent>
 <onEvent partnerLink="requestCreditScore"
 operation="modifyCreditRequest" ...>
 <scope name="scopeRequest">...</scope>
 </onEvent>
 <onEvent partnerLink="requestCreditScore"
 operation="cancelCreditRequest" ...>
 <scope name="scopeCancel">...</scope>
 </onEvent>
 </eventHandlers>
 . . .
</process>

Setting Timeouts for Durable Synchronous Processes
For durable synchronous processes that connect to a remote database, you must increase the
SyncMaxWaitTime timeout property in the System MBean Browser of Oracle Enterprise
Manager Fusion Middleware Control.

For information on setting this property, see Specifying Transaction Timeout Values in Durable
Synchronous Processes.

Invoking an Oracle Enterprise Scheduler Job in a BPEL Process
You can invoke an Oracle Enterprise Scheduler job in a BPEL process. An Oracle Enterprise
Scheduler job is a unit of work in the form of either Java, a database stored procedure, or any
executable. A job definition is associated with Oracle Enterprise Scheduler, which describes
how to execute the job. An Oracle Enterprise Scheduler web service submits the job from
within a BPEL process and associates a schedule with that job request.

The scheduled Oracle Enterprise Scheduler job resides in a runtime environment and is
accessible with an Oracle Metadata Services Repository (MDS Repository) connection, using
database-based access.

Chapter 15
Setting Timeouts for Durable Synchronous Processes

15-16

Note:

This section describes how to submit a job from a BPEL process, and not how to wait
for the job to complete. If you want the BPEL process to wait for the job to complete,
you must invoke the web service to request a callback when the job completes and
then perform a receive to get the callback. For more information, see Chapter "Using
the Oracle Enterprise Scheduler Web Service" of Developing Applications for Oracle
Enterprise Scheduler.

How to Create Oracle Database and SOA-MDS Connections
To create Oracle database and SOA-MDS connections:

1. Create a SOA composite application. For information, see Creating a SOA Application.

2. Create a BPEL process in the SOA Composite Editor (for this example, a synchronous
BPEL process is created). For information, see How to Add a BPEL Process Service
Component.

3. Double-click the BPEL process in the SOA Composite Editor.

Oracle BPEL Designer is displayed.

4. Create an Oracle database connection. This is required for querying Oracle Enterprise
Scheduler jobs.

a. From the File main menu, select New > Application.

b. From the Categories list, select Connection.

c. Select Database Connection.

The Create Database Connection wizard is displayed.

d. Complete the dialogs of the Create Database Connection wizard to create the
connection to the Scheduler Oracle Metadata Services Repository database for the
runtime server where Oracle Enterprise Scheduler is deployed, and click Finish.

5. Create a SOA-MDS connection. A database-based MDS Repository is used for retrieving
the jobs to select.

a. From the File main menu, select New > Application.

b. From the Categories list, select Connection.

c. Select SOA-MDS Connection.

The Create SOA-MDS Connection dialog is displayed.

d. From the Connection Type list, select DB Based MDS.

e. From the Connection list, ensure that the database connection created in Step 4 is
displayed.

f. From the Select MDS partition list, select the partition that includes Oracle Enterprise
Scheduler jobs. For jobs defined in the Oracle Enterprise Scheduler predeployed
native hosting application, the MDS partition name is essUserMetadata.

g. Complete the remaining fields of the dialog to create the SOA-MDS connection, and
click OK.

Chapter 15
Invoking an Oracle Enterprise Scheduler Job in a BPEL Process

15-17

How to Create a Schedule Job Activity
To create a schedule job activity:

1. From the Components window, expand Oracle Extensions.

2. Drag a Schedule Job activity into the BPEL process, as shown in Figure 15-11.

Figure 15-11 Schedule Job Icon

3. Double-click the activity to invoke the Edit Schedule Job dialog. Figure 15-12 provides
details. This dialog enables you to specify the application, the description, the Oracle
Enterprise Scheduler job, the job schedule, and the job start time.

Figure 15-12 Edit Schedule Job Dialog - General Tab

Chapter 15
Invoking an Oracle Enterprise Scheduler Job in a BPEL Process

15-18

4. Provide values appropriate to your environment, as described in Table 15-1, and click OK,

Table 15-1 Edit Schedule Job Dialog - General Tab

Field Description

Application Displays the value of the selected job's SYS_effectiveApplication property.
This property must be set, or an error message is displayed and you cannot
proceed.

The editable state of this field depends on the selected job definition:

• If the selected job definition provides SYS_effectiveApplication, then the
value for this property is displayed and this field is not editable.

• If the job definition does not provide SYS_effectiveApplication, then this
field is editable and you must specify the application name in the User
Defined Properties section of the System Properties tab.

Name Specify the name of the job.

Description Specify a description for the request.

Job Click the Search icon to invoke the Enterprise Scheduler Browser dialog to
select the job from the SOA-MDS connection. When you select a job, any
system or application properties defined for that job are displayed in the
Application Properties and System Properties tabs.

Schedule Click the Search icon to invoke the Enterprise Scheduler Browser dialog to
select the job schedule. If not specified, the job is executed immediately.

You define schedules in Oracle Enterprise Manager Fusion Middleware
Control. Those schedules are then displayed for selection in the Enterprise
Scheduler Browser dialog. For more information, see "Creating or Editing
Predefined Job Schedules" of Administering Oracle Enterprise Scheduler.

Start Time Click the XPath Expression Builder icon to specify the start time as an XPath
expression. The start is separate from the schedule, and indicates when the
job takes effect. If a start time is not specified, the start time is immediate.

End Time Click the XPath Expression Builder icon to specify the end time as an XPath
expression. The end is separate from the schedule, and indicates when the
job ends. If a schedule is not specified, this field is not displayed.

5. Click the Application Properties tab. Application properties are unique to a specific job.
When you select an Oracle Enterprise Scheduler job in the Edit Schedule Job dialog -
General tab, the application properties defined in the job are displayed in this dialog. You
can also specify your own application properties in the User Defined Properties section.
Figure 15-13 provides details.

Chapter 15
Invoking an Oracle Enterprise Scheduler Job in a BPEL Process

15-19

Figure 15-13 Edit Schedule Job Dialog - Application Properties Tab

6. Provide values appropriate to your environment, as described in Table 15-2, and click OK.

Table 15-2 Edit Schedule Job Dialog - Application Properties Tab

Field Description

Job Properties Displays the application properties defined by the job. Only the
values can be modified. The properties in this table cannot be
removed. Double-click a property to edit its value or click the
Browse icon to the right of the Value field to specify an XPath
expression.

User-Defined Properties Displays the application properties that you have added for this
request. You can add, modify, and remove properties in this table.

7. Click the System Properties tab. System properties are parameters with names reserved
by Oracle Enterprise Scheduler. Oracle Enterprise Scheduler represents parameter names
that are known and used by the system in the SystemProperty class. When you select an
Oracle Enterprise Scheduler job in the Edit Schedule Job dialog - General tab, the system
properties defined in the job are displayed in this dialog. You can also specify your own
system properties in the User Defined Properties section. Figure 15-14 provides details.

Chapter 15
Invoking an Oracle Enterprise Scheduler Job in a BPEL Process

15-20

Figure 15-14 Edit Schedule Job Dialog - System Properties Tab

For more information about system properties, see Chapter "Using Parameters and
System Properties" of Developing Applications for Oracle Enterprise Scheduler.

8. Provide values appropriate to your environment, as described in Table 15-3, and click OK
to complete configuration.

Table 15-3 Edit Schedule Job Dialog - System Properties Tab

Field Description

Job Properties Displays the system properties defined by the job. Only the values
can be modified. Double-click a property to edit its value or click the
Browse icon to specify an XPath expression in the Expression
Builder dialog.

User-Defined Properties Displays the system properties that you have added for this request.
You can add, modify, and remove properties in this table. Select
from a fixed list of system property names in this table.

The message shown in Figure 15-15 is displayed because the Oracle Enterprise
Scheduler web service includes an abstract WSDL.

Chapter 15
Invoking an Oracle Enterprise Scheduler Job in a BPEL Process

15-21

Figure 15-15 WSDL Message

A BPEL process requires the following:

• A concrete WSDL

• A WSDL with partner links

9. Click Yes.

A concrete wrapper WSDL is created for the abstract WSDL. The wrapper WSDL includes
an Oracle Enterprise Scheduler partner link that is added to the BPEL process.

10. Expand the schedule job activity in the BPEL process to display its contents. Figure 15-16
provides details.

Figure 15-16 Expanded Job Schedule Activity in a BPEL Process.

The expanded schedule job activity consists of the following automatically configured
activities:

• EssAssign activity: Contains copy rules operations for the system and application
properties and other job information.

• EssInvoke activity: Invokes the Oracle Enterprise Scheduler partner link.

• EssService activity: Contains the Oracle Enterprise Scheduler web service partner
link.

11. Go to the SOA composite application in the SOA Composite Editor.

12. In the External References swim lane, double-click the EssService partner link.

The Update Reference dialog is displayed.

Chapter 15
Invoking an Oracle Enterprise Scheduler Job in a BPEL Process

15-22

13. In the WSDL URL field, specify a concrete WSDL for the reference binding component,
and click OK.

How to Attach Security Policies to the Service and Reference Binding
Components

To attach security policies to the service and reference binding components

1. Right-click the EssService reference binding component, and select Configure SOA WS
Policies > For Request.

The Configure SOA WS Policies dialog is displayed.

2. In the Security section, click the Add icon.

3. Select oracle/wss_username_token_client_policy, and click OK.

4. In the Configure SOA WS Policies dialog, click OK.

5. Right-click the service binding component, and select Configure SOA WS Policies.

The Configure SOA WS Policies dialog is displayed.

6. In the Security section, click the Add icon.

7. Select oracle/wss_username_token_service_policy, and click OK.

Design is now complete.

Note:

The Oracle Enterprise Scheduler web service is by default not secure. You must
first secure it with an Oracle Web Services Manager policy using a WLST
command or Oracle Enterprise Manager Fusion Middleware Control before using
that web service to submit a job from a BPEL process.

Chapter 15
Invoking an Oracle Enterprise Scheduler Job in a BPEL Process

15-23

16
Coordinating Master and Detail Processes

This chapter describes how to coordinate master and detail processes in a BPEL process. This
coordination enables you to specify the tasks performed by a master BPEL process and its
related detail BPEL processes. This is sometimes referred to as a parent and child
relationship.
This chapter includes the following sections:

• Introduction to Master and Detail Process Coordinations

• Defining Master and Detail Process Coordination in Oracle JDeveloper

Introduction to Master and Detail Process Coordinations
Master and detail coordinations consist of a one-to-many relationship between a single master
process and multiple detail processes.

For example, assume a business process imports sales orders into an application. Each sales
order consists of a header (customer information, ship-to address, and so on) and multiple
lines (item name, item number, item quantity, price, and so on).

The following tasks are performed to execute the order:

• Validate the header. If the header is invalid, processing stops.

• Validate each line. If any lines are invalid, they are marked as invalid and processing stops.

• Perform inventory checks for each item. If an item is not available, a work order is created
to assemble it.

• Stage items at the shipping dock after items for each line are available.

• Ship the order to the customer.

To perform these tasks, create a master process to check and validate each header and
multiple BPEL processes to check and validate each line item.

Potential coordination points are as follows:

• The master process must signal the detail processes that header validation is successful
and to continue processing.

• Each detail process must signal the master process after line item validation is complete.

• Each detail process must signal the master process after the line item is available in
inventory.

• After all line items are available, the master must signal each detail process to move its
line item to the shipping dock (the dock may become too crowded if items are simply
moved as soon as they are available).

• After all lines have been moved, the master process must execute logic to ship the fulfilled
order to the customer.

Figure 16-1 provides an overview of the header and line item validation coordination points
between one master process and two detail processes.

16-1

Figure 16-1 Master and Detail Coordination Overview (One BPEL Process to Two Detail Processes)

The following BPEL process activities coordinate actions between the master and detail
processes:

• Signal: notifies the other processes (master or detail) to continue processing

• Receive signal: waits until it receives the proper notification signal from the other process
(master or detail) before continuing its processing

Both activities are coordinated with label attributes defined in the BPEL process files. Labels
are declared per master process definition.

Figure 16-2 provides an overview of the BPEL process flow coordination.

Figure 16-2 Master and Detail Syntax Overview (One BPEL Process to One Detail
Process)

Chapter 16
Introduction to Master and Detail Process Coordinations

16-2

As shown in Figure 16-2, each master and detail process includes a signal and receive signal
activity. Table 16-1 describes activity responsibilities based on the type of process in which
they are defined.

Table 16-1 Master and Detail Process Coordination Responsibilities

If A... Contains A... Then...

Master process Signal activity The master process signals all of its associated detail
processes at runtime.

Detail process Receive signal activity The detail process waits until it receives the signal
executed by its master process.

Detail process Signal activity The detail process signals its associated master
process at runtime that processing is complete.

Master process Receive signal activity The master process waits until it receives the signal
executed by all of its detail processes.

If the signal activity executes before the receive signal activity, the state set by the signal
activity is persisted and still effective for a later receive signal activity to read.

BPEL File Definition for the Master Process
The BPEL file for the master process defines coordination with the detail processes. The BPEL
file shows that the master process interacts with the partner links of several detail processes.
The following provides an example:

<process name="MasterProcess"
. . .
. . .
 <partnerLinks>
 <partnerLink name="client"
 partnerLinkType="tns:MasterProcess"
 myRole="MasterProcessProvider"
 partnerRole="MasterProcessRequester"/>
 <partnerLink name="DetailProcess"
 partnerLinkType="dp:DetailProcess"
 myRole="DetailProcessRequester"
 partnerRole="DetailProcessProvider"/>
 <partnerLink name="DetailProcess1"
 partnerLinkType="dp1:DetailProcess1"
 myRole="DetailProcess1Requester"
 partnerRole="DetailProcess1Provider"/>
 <partnerLink name="DetailProcess2"
 partnerLinkType="dp2:DetailProcess2"
 myRole="DetailProcess2Requester"
 partnerRole="DetailProcess2Provider"/>
 </partnerLinks>

A signal activity shows the label value and the detail process coordinated with this master
process. The label value (startDetailProcess) matches with the label value in the receive
signal activity of all detail processes. This ensures that the signal is delivered to the correct
process. There is one signal process per receive signal process. The master process signals
all detail processes at runtime. This syntax in the following example shows a signal activity in a
BPEL process that supports BPEL version 2.0.

<extensionActivity>
 <bpelx:signal name="notifyDetailProcess"

Chapter 16
Introduction to Master and Detail Process Coordinations

16-3

 label="startDetailProcess" to="details"/>
</extensionActivity>

Note:

In BPEL 1.1, the signal activity syntax is slightly different.

<bpelx:signal name="notifyDetailProcess" label="startDetailProcess"
to="details"/>

Assign, invoke, and receive activities describe the interaction between the master and detail
processes. This example shows interaction between the master process and one of the detail
processes (DetailProcess). Similar interaction is defined in this BPEL file for all detail
processes.

In the invoke activity, ensure that the Invoke as Detail check box is selected. Figure 16-3
provides details.

Figure 16-3 Invoke As Detail Check Box

This selection creates the partner process instance (DetailProcess) as a detail instance. You
must select this check box in the invoke activity of the master process for each detail process
with which to interact. The following provides an example of the BPEL file contents after you
select the Invoke as Detail check box:

<assign>
 <copy>
 <from variable="input" part="payload" query="/tns:processInfo/tns:value"/>
 <to variable="detail_input" part="payload" query="/dp:input/dp:number"/>
 </copy>
</assign

<invoke name="receiveInput" partnerLink="DetailProcess"
 portType="dp:DetailProcess"
 operation="initiate"
 inputVariable="detail_input"
 bpelx:invokeAsDetail="true"/>

<!-- receive the result of the remote process -->
<receive name="receive_DetailProcess" partnerLink="DetailProcess"
 portType="dp:DetailProcessCallback"
 operation="onResult" variable="detail_output"/>

The master BPEL process includes a receive signal activity. This activity indicates that the
master process waits until it receives a signal from all of its detail processes. The label value
(detailProcessComplete) matches with the label value in the signal activity of each detail
process. This ensures that the signal is delivered to the correct process. The following code
provides an example. This syntax shows a receive signal activity in a BPEL process that
supports BPEL version 2.0.

Chapter 16
Introduction to Master and Detail Process Coordinations

16-4

<extensionActivity>
 <bpelx:receiveSignal name="waitForNotifyFromDetailProcess"
 label="detailProcessComplete" from="details"/>
</extensionActivity>

Note:

In BPEL 1.1, the receive signal activity syntax is slightly different.

<bpelx:receiveSignal name="waitForNotifyFromDetailProcess"
 label="detailProcessComplete"
 from="details"/>

Correlating a Master Process with Multiple Detail Processes
For environments in which you have one master and multiple detail processes, use the
bpelx:detailLabel attribute for signal correlation. The following example shows how to use
this attribute.

The first invoke activity invokes the DetailProcess detail process and associates it with a label
of detailProcessComplete0.

<invoke name="invokeDetailProcess" partnerLink="DetailProcess"
 portType="dp:DetailProcess"
 operation="initiate"
 inputVariable="detail_input"
 bpelx:detailLabel="detailProcessComplete0"
 bpelx:invokeAsDetail="true"/>

The second invoke activity invokes the DetailProcess1 detail process and associates it with a
label of detailProcessComplete1. The following provides an example.

<invoke name="invokeDetailProcess1" partnerLink="DetailProcess1"
 portType="dp1:DetailProcess1"
 operation="initiate"
 inputVariable="detail_input1"
 bpelx:detailLabel="detailProcessComplete1-2"
 bpelx:invokeAsDetail="true"/>

The third invoke activity invokes the DetailProcess2 detail process again through a different
port and with a different input variable. It associates the DetailProcess2 detail process with a
label of detailProcessComplete1-2, as shown in the following example:

<invoke name="invokeDetailProcess2" partnerLink="DetailProcess2"
 portType="dp2:DetailProcess2"
 operation="initiate"
 inputVariable="detail_input2"
 bpelx:detailLabel="detailProcessComplete1-2"
 bpelx:invokeAsDetail="true"/>

The receive signal activity of the master process shown in the following example waits for a
return signal from detail process DetailProcess0.

<!-- This is a receiveSignal waiting for 1 child to signal back -->
<bpelx:receiveSignal name="waitForNotifyFromDetailProcess0"
label="detailProcessComplete0" from="details"/>

Chapter 16
Introduction to Master and Detail Process Coordinations

16-5

The second receive signal activity of the master process shown in the following example also
waits for a return signal from DetailProcess1 and DetailProcess2.

<!-- This is a receiveSignal waiting for 2 child (detail) processes to signal back -->
<bpelx:receiveSignal name="waitForNotifyFromDetailProcess1-2"
 label="detailProcessComplete1-2" from="details"/>

Note:

If there is only one receive signal activity in the BPEL process, do not specify the
bpelx:detailLabel attribute in the invoke activity. In these situations, a default
bpelx:detailLabel attribute is assumed and does not need to be specified.

BPEL File Definition for Detail Processes
The BPEL process file of each detail process defines coordination with the master process.

A receive signal activity indicates that the detail process shown in the following example waits
until it receives a signal executed by its master process. The label value (startDetailProcess)
matches with the label value in the signal activity of the master process.

<bpelx:receiveSignal name="waitForNotifyFromMasterProcess"
 label="startDetailProcess" from="master"/>

A signal activity indicates that the detail process shown in the following example signals its
associated master process at runtime that processing is complete. The label value
(detailProcessComplete) matches with the label value in the receive signal activity of each
master process.

<bpelx:signal name="notifyMAsterProcess" label="detailProcessComplete"
 to="master"/>

Defining Master and Detail Process Coordination in Oracle
JDeveloper

This section provides an overview of how to define master and detail process coordination in
Oracle BPEL Designer. In this example, one master process and one detail process are
defined.

Note:

This section only describes the tasks specific to master and detail process
coordination. It does not describe the standard activities that you define in a BPEL
process, such as creating variables, creating assign activities, and so on.

Chapter 16
Defining Master and Detail Process Coordination in Oracle JDeveloper

16-6

How to Create a Master Process
To create a master process:

1. In the SOA Composite Editor, create a BPEL process service component. For this
example, the process is named MasterProcess.

2. Double-click the MasterProcess BPEL process.

3. In the Components window, expand Oracle Extensions > Signal.

4. Drag a Signal activity into the designer.

5. Click the Signal activity to display its property fields in the Property Inspector or double-
click the Signal activity.

For information about editing activities in the Property Inspector, see How to Edit BPEL
Activities in the Property Inspector.

This activity signals the detail process to perform processing at runtime.

6. Enter the details described in Table 16-2:

Table 16-2 Signal Dialog Fields and Values

Field Value

Name Enter a name (for this example, contactDetailProcess).

Label Enter a label name (for this example, beginDetailProcess). This
label must match the receive signal activity label you set in the detail
process in Step 6.

To Select details as the type of process to receive this signal.

Figure 16-4 shows the Signal dialog.

Figure 16-4 Signal Dialog

Chapter 16
Defining Master and Detail Process Coordination in Oracle JDeveloper

16-7

7. Click OK.

8. Drag a Receive Signal activity into the designer.

9. Double-click the Receive Signal activity.

This activity enables the master process to wait until it receives the signal executed by all
of its detail processes.

10. Enter the details shown in Table 16-3:

Table 16-3 Receive Signal Dialog Fields and Values

Field Value

Name Enter a name (for this example, waitForDetailProcess).

Label Enter a label name (for this example, completeDetailProcess).
This label must match the signal activity label you set in the detail
process in Step 10.

To Select details as the type of process from which to receive the
signal.

Figure 16-5 shows the Receive Signal dialog.

Figure 16-5 Receive Signal Dialog

11. Click OK.

The master process has now been designed to:

• Signal the detail process to perform processing at runtime.

• Wait until it receives the signal executed by the detail process.

Chapter 16
Defining Master and Detail Process Coordination in Oracle JDeveloper

16-8

How to Create a Detail Process
To create a detail process:

1. In the SOA Composite Editor, create a second BPEL process service component. For this
example, the process is named DetailProcess.

2. Double-click the DetailProcess BPEL process.

3. In the Components window, expand Oracle Extensions.

4. Drag a Receive Signal activity into your BPEL process service component.

5. Double-click the Receive Signal activity.

This activity enables the detail process to wait until it receives the signal executed by its
master process.

6. Enter the details shown in Table 16-4:

Table 16-4 Receive Signal Dialog Fields and Values

Field Value

Name Enter a name (for this example,
WaitForContactFromMasterProcess).

Label Enter a label name (for this example, beginDetailProcess). This
label must match the signal activity label you set in the master
process in Step 6.

To Select master as the type of process from which to receive the
signal.

Figure 16-6 shows the Receive Signal dialog.

Figure 16-6 Receive Signal Dialog

Chapter 16
Defining Master and Detail Process Coordination in Oracle JDeveloper

16-9

7. Click OK.

8. Drag a Signal activity into the designer.

9. Double-click the Signal activity.

This activity enables the detail process to signal its associated master process at runtime
that processing is complete.

10. Enter the details described in Table 16-5:

Table 16-5 Signal Dialog Fields and Values

Field Value

Name Enter a name (for this example, contactDetailProcess).

Label Enter a label name (for this example, completeDetailProcess).
This label must match the receive signal activity label you set in the
master process in Step 10.

To Select master as the destination.

Figure 16-7 shows the Signal dialog.

Figure 16-7 Signal Dialog

11. Click OK.

The detail process has now been designed to:

• Wait until it receives the signal executed by its master process.

• Signal the master process at runtime that processing is complete.

Chapter 16
Defining Master and Detail Process Coordination in Oracle JDeveloper

16-10

How to Create an Invoke Activity
To create an invoke activity:

1. Return to the MasterProcess master process.

2. In the Components window, expand BPEL Constructs.

3. Drag an Invoke activity into your BPEL process service component.

4. Double-click the Invoke activity.

5. Select the DetailProcess BPEL process you created in Step 1 as the partner link.

6. Select the Invoke as Detail check box.

7. Complete all remaining fields in the Invoke dialog, and click OK.

8. In the designer, click Source. The BPEL file appears as follows:

<invoke name="MyInvoke" partnerLink="DetailProcess"
 portType="dp:DetailProcess"
 operation="initiate"
 inputVariable="detail_input"
 bpelx:invokeAsDetail name="true"/>

This attribute creates the partner process (DetailProcess) as a detail instance.

9. If this is an environment in which one master process is interacting with multiple detail
processes, perform the following tasks:

a. Specify the bpelx:detailLabel attribute for correlating with the receive signal activity:

<invoke name="MyInvoke" partnerLink="DetailProcess"
 portType="dp:DetailProcess"
 operation="initiate"
 inputVariable="detail_input"/>
 bpelx:detailLabel="detailProcessComplete0"
 <bpelx:invokeAsdetail name="true"/>

b. Specify the same label value of detailProcessComplete0 in the receive signal activity
of the master process:

<bpelx:receiveSignal name="waitForNotifyFromDetailProcess0-1"
label="detailProcessComplete0" from="details"/>

c. Repeat these steps as necessary for additional detail processes, ensuring that you
specify a different label value.

10. From the File main menu, select Save All.

Master and detail coordination design is now complete.

Chapter 16
Defining Master and Detail Process Coordination in Oracle JDeveloper

16-11

17
Using the Notification Service

This chapter describes how to send notifications from a BPEL process using a variety of
channels. A BPEL process can be designed to send email, instant messaging (IM), or short
message service (SMS) notifications. A BPEL process can also be designed to consider an
end user's channel preference at runtime for selecting the notification channel.
This chapter includes the following sections:

• Introduction to the Notification Service

• Introduction to Notification Channel Setup

• Selecting Notification Channels During BPEL Process Design

• Allowing the End User to Select Notification Channels

Introduction to the Notification Service
Various scenarios may require sending email messages or other types of notifications to users
as part of the process flow. For example, certain types of exceptions that cannot be handled
automatically may require manual intervention. In this case, a BPEL process can use the
notification service to alert users by email, IM, or SMS message.

The contact information (email address, phone number, and so on) of the recipient is either
static (such as admin@yourcompany.com) or obtained dynamically during runtime. To obtain the
contact information dynamically, XPath expressions can retrieve it from the identity store
(LDAP) or extract it from the BPEL payload.

This chapter uses the following terms:

• Notification

An asynchronous message sent to a user by a specific channel. The message can be sent
as an email, IM, or SMS message.

• Actionable notification

A notification to which the user can respond. For example, workflow sends an email to a
manager to approve or reject a purchase order. The manager approves or rejects the
request by replying to the email with appropriate content.

• Human task email notification layer

Sends email notifications directly from a BPEL process or implicitly from the human task
part of a BPEL process. Implicit notifications are modeled from the Human Task Editor.

For sending email notifications directly from a BPEL process, you must explicitly specify
the user information in the BPEL process. You can be inside or outside of a human task
scope.

For sending email notifications implicitly from the human task part of a BPEL process, you
only specify the recipient based on the relationship of the user with regards to the task
(that is, the creator, assignee, and so on).

17-1

Note:

Implicit notifications are processed through more layers of code than explicit
notifications. If explicit notifications are functioning correctly, it does not mean that
implicit notifications also function correctly.

• Oracle User Messaging Service

The BPEL notification service uses the underlying infrastructure provided by Oracle User
Messaging Service to send notifications.

Oracle User Messaging Service also provides the user preference infrastructure for getting
the end user's preferred channel during runtime.

For more information on the Oracle User Messaging Service, see Developing Applications
with Oracle User Messaging Service.

Figure 17-1 shows the Oracle User Messaging Service interfaces and supported service
types.

Figure 17-1 Service Interfaces and Supported Service Types

For more information about notifications, see the following sections:

• Notifications from Human Workflow

• Specifying Participant Notification Preferences for instructions on specifying email
notifications in the Human Task Editor

• Developing Applications with Oracle User Messaging Service

Introduction to Notification Channel Setup
Notification setup is a multiple-step process that involves several user interface tools.
Table 17-1 provides an overview of this process, including the task to perform, the tool to use,
and the documentation to which to refer for more specific details.

Chapter 17
Introduction to Notification Channel Setup

17-2

Table 17-1 Notification Tasks

Task Description User Interface Described In...

Select a channel for
sending notifications in a
SOA composite
application.

Select a method for sending
notifications:

• Explicitly select and configure an
email, IM, or SMS channel.

or
• Do not explicitly select a notification

channel, but simply select that a
notification must be sent. Channel
selection occurs later in the User
Messaging Preferences user
interface.

Selected and configured
by the BPEL process
designer in Oracle BPEL
Designer

Selecting Notification
Channels During BPEL
Process Design

or

Allowing the End User to
Select Notification
Channels

Configure the driver for
the notification channel.

You configure drivers on the same
Oracle WebLogic Server on which you
deploy the SOA composite application.
This action enables participants to
receive and forward notifications. Driver
support is provided for email, IM, and
SMS channels.

Configured by the
administrator in Oracle
Enterprise Manager
Fusion Middleware
Control

Administering Oracle SOA
Suite and Oracle Business
Process Management Suite

Configure the notification
mode and actionable
accounts for human
workflows.

If you are using notifications with human
workflow, you configure the notification
mode and actionable account for email.

Configured by the
administrator in Oracle
Enterprise Manager
Fusion Middleware
Control

Administering Oracle SOA
Suite and Oracle Business
Process Management Suite

Register the devices used
to access messages by
specifying user
preferences.

This action enables workflow
participants to receive notification
messages. For example, the end user
registers email clients and specifies the
message content to receive and the
channel to use for receiving messages.

If no channel is specified, email is used
by default. The preferences set in this
application are applicable only to that
specific end user, and not to other
users.

Registered by the end
user in the User
Messaging Preferences
user interface. You can
access this interface by
selecting Preferences >
Notification in Oracle
BPM Worklist.

Administering Oracle User
Messaging Service

Selecting Notification Channels During BPEL Process Design
Oracle JDeveloper includes the email, IM, and SMS channel notification channels in the
Components window. You can set the exact notification channels to use during design time.
For example, a BPEL process can be designed to use the following notification channels:

• If an expense report amount is less than $1000, an email notification channel is used.

• If an expense report amount is between $1000 and $2000, an IM notification channel is
used.

• If an expense report amount is more than $2000, an SMS notification channel is used.

To select the notification channel during BPEL process design:

1. In the Components window, expand Oracle Extensions.

2. Go to the Notification section.

Chapter 17
Selecting Notification Channels During BPEL Process Design

17-3

3. Drag a notification channel into the designer:

• Email

• IM

• SMS

4. See the section in Table 17-2 based on the notification channel you selected.

Table 17-2 Notification Channels

If You
Selected...

See...

Email How To Configure the Email Notification Channel to configure email notification

IM How to Configure the IM Notification Channel to configure IM notification

SMS How to Configure the SMS Notification Channel to configure SMS notification

Note:

If you delete an email, SMS, or IM activity, any partner link with which it is
integrated is not automatically deleted.

How To Configure the Email Notification Channel
When you drag the Email icon from the Components window, the Email dialog appears.
Figure 17-2 shows the required email notification parameters.

Figure 17-2 Email Dialog

To configure the email notification channel:

1. Enter information for each field as described in Table 17-3.

Chapter 17
Selecting Notification Channels During BPEL Process Design

17-4

Note:

For the To, CC, and Bcc fields, separate multiple addresses with a semicolon
(;).

Table 17-3 Email Notification Parameters

Name Description

Name Enter a name or accept the default name of EmailNumber.

From Account The name of the account used to send this message. The default
account is named Default and is editable from the Mailer tab of the
Workflow Notification Properties page in Oracle Enterprise Manager
Fusion Middleware Control. To add additional accounts, you must
use the System MBean Browser in Oracle Enterprise Manager
Fusion Middleware Control.

For information on editing this property in Oracle Enterprise
Manager Fusion Middleware Control, see Administering Oracle SOA
Suite and Oracle Business Process Management Suite.

To The email address to which to deliver the message. This can be one
of the following:

• A static email address entered at the time the message is
created

• An email address retrieved using the identity service
• A dynamic address from the payload
The XPath Expression Builder can get the dynamic email address
from the input. See How to Select Email Addresses and Telephone
Numbers Dynamically.

CC and Bcc The email addresses to which the message is copied and blind
copied. This can also be a static or dynamic address, as described
for the To address.

Reply To The email address to use for replies. This can also be a static or
dynamic address, as described for the To address.

Subject The subject of the email message. This can be plain text or dynamic
text. The XPath Expression Builder can set dynamic text based on
data from process variables that you specify.

Body The message body of the email message. This can also be plain
text, HTML, or dynamic text, as described for the Subject
parameter.

2. Click OK.

The BPEL fragment that invokes the notification service to send the email message is
created.

3. See Table 17-1 of Introduction to Notification Channel Setup for additional configuration
procedures to perform outside of Oracle JDeveloper.

The following example uses an email activity in a scope named
Scope_NotifyCustomerofCompletion. The Oracle User Messaging Service sends the
email to a customer when an order is fulfilled. The following details are specified in the
Email dialog:

• An XPath expression specifies the customer's email address.

Chapter 17
Selecting Notification Channels During BPEL Process Design

17-5

bpws:getVariableData('gCustomerInfoVariable','parameters','/ns3:findCustome
rInfoVO1CustomerInfoVOCriteriaResponse/ns3:result/ns2:ConfirmedEmail')

• A combination of manually-entered text and an XPath expression specifies the ID of
the order:

Order with id
<%bpws:getVariableData('gOrderInfoVariable','/ns2:orderInfoVOSDO/ns2:OrderI
d')%> shipped!

• A combination of manually-entered text and an XPath expression specifies the body of
the email message:

Dear<%bpws:getVariableData('gCustomerInfoVariable','parameters','/ns6:findCusto
merInfoVO1CustomerInfoVOCriteriaResponse/ns6:result/ns4:FirstName')%>,
your order has been shipped.

Figure 17-3 provides details.

Figure 17-3 Email Dialog

Setting Email Attachments
You can send attachments with an email activity. Each attachment has three elements: name,
MIME type, and value. All three elements must be set for each attachment.

To add an attachment to an email message:

1. From the Components window, select Email as the notification channel.

2. Specify values for To, Subject, and Body.

3. Click the Attachments tab. Figure 17-4 provides details.

Chapter 17
Selecting Notification Channels During BPEL Process Design

17-6

Figure 17-4 Attachments Tab

4. Click the Add icon to add as many attachments as you require. The number of
attachments does not need to include the body part.

5. In the Name field, change the name or accept the default value of Attachmentnumber.

6. In the Mime Type field, click the Browse icon to invoke the Expression Builder dialog for
adding MIME type contents.

7. When complete, click OK to return to the Attachments tab.

8. In the Value field, click the Browse icon to invoke the Expression Builder dialog for adding
the contents of the attachment.

9. When complete, click OK to return to the Attachments tab.

The BPEL fragment with an assign activity with multiple copy rules is generated. One of
the copy rules copies the attachment.

10. Click OK.

11. Expand the Email activity in Oracle BPEL Designer.

An assign activity named EmailParamsAssign appears.

12. Double-click EmailParamsAssign.

Note the settings in EmailParamsAssign, as shown in Figure 17-5.

Chapter 17
Selecting Notification Channels During BPEL Process Design

17-7

Figure 17-5 EmailParamsAssign Assign Activity

For more information about sending attachments using email, see the following documentation:

• Developing Applications with Oracle User Messaging Service

• Administering Oracle User Messaging Service

Formatting the Body of an Email Message as HTML
You can format the body of an email message as HTML instead of straight text. To perform this
action, apply an XSLT transform to generate the email body. Add in the XSLT tag you want to
use. Tools such as XMLSpy can provide assistance in writing and testing the XSLT. The MIME
type should be string('text/html;charset=UTF-8').

The email notification assignment looks as shown in the following example:

<copy>
 <from
expression="ora:processXSLT('TransformPositionSummary7.xslt',bpws:
getVariableData('ClientPositionSummary'))"/>
 <to variable="varNotificationReq" part="EmailPayload"
query="/EmailPayload/ns9:Content/ns9:ContentBody"/>
</copy>

Using Dynamic HTML for Message Content Requires a CDATA Function
If the HTML for the message content of an email activity is generated dynamically, (as with
XSLT, file read, and so on), it must be wrapped in a CDATA function. This prevents conflicts
between the XML/HTML content of the message body and BPEL's internal XML data
structures.

For example, assume you use the append operation shown in the following example for the
message content inside the email activity:

<bpelx:append>
 <bpelx:from
 expression="ora:processXSLT('xsl/email.xslt',bpws:getVariableData('Variable_1'
))"/>

Chapter 17
Selecting Notification Channels During BPEL Process Design

17-8

 <bpelx:to variable="varNotificationReq" part="EmailPayload"
 query="/EmailPayload/ns1:Content/ns1:ContentBody/ns1:MultiPart/ns1:BodyPart[1]
 /ns1:ContentBody"/>
</bpelx:append>

For this to work correctly, you must pass the output of the processXSLT() function to the
CDATA() function, as shown in the following example:

<%ora:toCDATA(xdk:processXSLT('xsl/email.xslt',
 bpws:getVariableData('inputVariable','payload','/client:process/client:input')
))%>

How to Configure the IM Notification Channel
When you drag the IM icon from the Components window, the IM dialog appears. Figure 17-6
shows the required IM notification parameters.

Figure 17-6 IM Dialog

To configure the IM notification channel:

1. Enter information for each field as described in Table 17-4.

Table 17-4 IM Notification Parameters

Name Description

Name Enter a name or accept the default name of IMNumber.

To The IM address to which to deliver the message. Enter the address
manually or click the XPath Expression Builder icon to display the
Expression Builder dialog to dynamically enter an account.

Body The IM message body. This can be plain text or dynamic text. The
XPath Expression Builder can set dynamic text based on data from
process variables that you specify.

Chapter 17
Selecting Notification Channels During BPEL Process Design

17-9

2. Click OK.

The BPEL fragment that invokes the notification service for IM notification is created.

3. See Table 17-1 of Introduction to Notification Channel Setup for additional configuration
procedures to perform outside of Oracle JDeveloper.

How to Configure the SMS Notification Channel
When you drag the SMS icon from the Components window, the SMS dialog appears.
Figure 17-7 shows the required SMS notification parameters.

Figure 17-7 SMS Dialog

To configure the SMS notification channel:

1. Enter information for each field as described in Table 17-5.

Table 17-5 SMS Notification Parameters

Name Description

Name Enter a name or accept the default name of SMSNumber.

From # The telephone number from which to send the SMS notification.
This can be a static telephone number entered at the time the
message is created or a dynamic telephone number from the
payload. The XPath Expression Builder can get the dynamic
telephone number from the input. See How to Select Email
Addresses and Telephone Numbers Dynamically.

Chapter 17
Selecting Notification Channels During BPEL Process Design

17-10

Table 17-5 (Cont.) SMS Notification Parameters

Name Description

Telephone # Select a method for specifying the telephone number to which to
deliver the message:

• A static telephone number entered at the time the message is
created.

• A telephone number retrieved using the identity service.
• A dynamic telephone number from the payload. The XPath

Expression Builder can get the dynamic telephone number from
the input.

Subject The subject of the SMS message. This can be plain text or dynamic
text. The XPath Expression Builder can set dynamic text based on
data from process variables that you specify.

Body The SMS message body. This must be plain text. This can be plain
text or dynamic text as described for the Subject parameter.

2. Click OK.

The BPEL fragment that invokes the notification service for SMS notification is created.

3. See Table 17-1 of Introduction to Notification Channel Setup for additional configuration
procedures to perform outside of Oracle JDeveloper.

How to Select Email Addresses and Telephone Numbers Dynamically
You can set email addresses or telephone numbers dynamically based on certain process
variables. You can also look up contact information for a specific user using the built-in XPath
functions for the identity service:

• To get the email address or telephone number directly from the payload, use the following
XPath expression:

bpws:getVariableData('<variable name>', '<part>','input_xpath_to_get_an_address')

For example, to get the email address from variable inputVariable and part payload
based on XPath /client/BPELProcessRequest/client/mail:

<%bpws:getVariableData('inputVariable','payload','/client:BPELProcessRequest/
client:email')%>

You can use the XPath Expression Builder to select the function and enter the XPath
expression to get an address from the input variable.

• To get the email address or telephone number dynamically from the underlying identity
store (LDAP) use the following XPath expression:

ids:getUserProperty(userName, attributeName[, realmName])

The first argument evaluates to the user ID. The second argument is the property name.
The third argument is the realm name. Table 17-6 lists the property names that can be
used with this XPath function.

Table 17-6 Properties for the Dynamic User XPath Function

Property Name Description

mail Look up a user's email address.

Chapter 17
Selecting Notification Channels During BPEL Process Design

17-11

Table 17-6 (Cont.) Properties for the Dynamic User XPath Function

Property Name Description

telephoneNumber Look up a user's telephone number.

mobile Look up a user's mobile telephone number.

homephone Look up a user's home telephone number.

The following example gets the email address of the user identified by the variable
inputVariable, part payload, and queries /client:BPELProcessRequest/client:userID:

ids:getUserProperty(bpws:getVariableData(‘inputVariable',
‘payload',‘/client:BPELProcessRequest/client:userid'), ‘mail')

If realmName is not specified, then the default realm name is used. For example, if the
default realm name is jazn.com, the following XPath expression searches for the user in
the jazn.com realm:

ids:getUserProperty('jcooper', 'mail');

The following XPath expression provides the same functionality as the one above. In this
case, however, the realm name of jazn.com is explicitly specified:

ids:getUserProperty('jcooper', 'mail', 'jazn.com');

How to Select Notification Recipients by Browsing the User Directory
You can select users or groups in Oracle JDeveloper to whom you want to send notifications
by browsing the user directory (for example, Oracle Internet Directory) that is configured for
use with Oracle BPEL Process Manager. Click the Search icon to the right of the following
fields to open the Identity Lookup dialog:

• To field on the Email and IM dialogs

• Telephone # field on the SMS dialog

For more information about using the Identity Lookup dialog, see Introduction to Human
Workflow Services.

Allowing the End User to Select Notification Channels
You can design a BPEL process in which you do not explicitly select a notification channel
during design time, but simply indicate that a notification must be sent. The channel to use for
sending notifications is resolved at runtime based on preferences defined by the end user in
the User Messaging Preferences user interface of the Oracle User Messaging Service. This
moves the responsibility of notification channel selection from the BPEL process in Oracle
BPEL Designer to the end user. If the end user does not select a preferred channel or rule,
email is used by default for sending notifications to that user. Regardless of who selects the
channel to use, channel use is still based on the driver installation and configuration performed
in the Oracle User Messaging Service section of Oracle Enterprise Manager Fusion
Middleware Control by the administrator.

For example, an end user may set their preferences as follows:

• If an expense report amount is less than $153, they receive an email notification.

• If an expense report amount is between $153 and $3678, they receive an IM notification.

• If an expense report amount is more than $3678, they receive an SMS notification.

Chapter 17
Allowing the End User to Select Notification Channels

17-12

Note:

You can also set user preferences for sending notifications in human workflows in the
Human Task Editor. Set these preferences in the Notification Filters part of the
Notification Settings section. These preferences are used to evaluate rules in the
task. For more information, see How to Send Task Attachments with Email
Notifications.

For more information about the Oracle User Messaging Service, see Administering User
Communication Preferences.

For information about configuring the Oracle User Messaging Service in Oracle Enterprise
Manager Fusion Middleware Control, see Administering Oracle User Messaging Service.

How to Allow the End User to Select Notification Channels
To allow the end user to select notification channels:

1. From the Components window list, expand Oracle Extensions.

2. From the Notification section, drag the User Notification activity into the designer.
Figure 17-8 shows the required user notification parameters.

Figure 17-8 User Notification Dialog

3. Enter information for each field as described in Table 17-7.

Table 17-7 User Notification Parameters

Name Description

Name Enter a name or accept the default name of
UserNotificationNumber.

Chapter 17
Allowing the End User to Select Notification Channels

17-13

Table 17-7 (Cont.) User Notification Parameters

Name Description

To Enter a valid user for the recipient of this notification message
through one of the following methods:

• Enter the user manually.
• Click the Search icon to display a dialog for selecting a user

configured through the identity service. The identity service
enables the lookup of user properties, roles, and group
memberships.

• Click the XPath Expression Builder icon to display the
Expression Builder dialog to dynamically enter a user.

Note: You must specify a user name (for example, jcooper)
instead of an address.

Subject Enter a message name or click the XPath Expression Builder icon
to display the Expression Builder dialog to dynamically enter a
subject. If notification is sent through email, this field is used during
runtime. This field is ignored if notifications are sent through the
SMS or IM channels.

Notification Message Enter the notification message or click the XPath Expression
Builder icon to display the Expression Builder dialog to dynamically
enter a message to send.

4. Click Apply.

How to Create and Send Headers for Notifications
The Advanced tab of the User Notification dialog enables you to create and send header and
name information that may be useful to an end user in creating their own preference rules for
receiving notifications. For example:

• Oracle BPEL Designer specifies the users named jcooper and jstein in the General tab.

• Oracle BPEL Designer creates the following header and name information in the
Advanced tab:

– Amount = payload->salary
– Application = HR-Application

• The administrator deploys the process and configures various channel drivers in Oracle
Enterprise Manager Fusion Middleware Control.

• The end user jcooper creates the following preference rules in the User Messaging
Preferences user interface:

'Email if Amount < 30000" and "IM if Amount is between 30000 and 100000' and
"SMS if Amount > 100000"

• The end user jstein creates the following preference rule in the User Messaging
Preferences user interface:

If "Application == HR-Application" and Amount > 2000000" send SMS
1. If you want to create and send header and name information to an end user for creating

their own preference rules, click Advanced.

Figure 17-9 shows the Advanced tab of the User Notification dialog.

Chapter 17
Allowing the End User to Select Notification Channels

17-14

Figure 17-9 User Notification Advanced Parameters

2. Click the Add icon to add a row to the Header and Name columns.

3. In the Header column, click the field to display a list for selecting a value. Otherwise,
manually enter a value.

4. In the Name column, enter a value.

5. Click OK.

Chapter 17
Allowing the End User to Select Notification Channels

17-15

18
Using Oracle BPEL Process Manager Sensors
and Analytics

This chapter describes how to use sensors to select BPEL activities, variables, and faults to
monitor during runtime in a BPEL process. It also describes how to create sensor actions to
publish the values of sensors to an endpoint.
This chapter includes the following sections:

• Introduction to Oracle BPEL Process Manager Sensors

• Configuring Sensors and Sensor Actions in Oracle JDeveloper

• Viewing Sensors and Sensor Action Definitions in Oracle Enterprise Manager Fusion
Middleware Control

• Configuring BPEL Process Analytics

For more information about Oracle BPEL Process Manager sensors, see Understanding
Sensor Public Views and the Sensor Actions XSD .

Introduction to Oracle BPEL Process Manager Sensors
Sensors are used to declare interest in specific events throughout the life cycle of a BPEL
process instance. In a business process, that can be the activation and completion of a specific
activity or the modification of a variable value in the business process.

When a sensor is triggered, a specific sensor value is created. For example, if a sensor
declares interest in the completion of a BPEL scope, the sensor value consists of the name of
the BPEL scope and a time stamp value of when the activity was completed. If a sensor value
declares interest in a BPEL process variable, then the sensor value consists of the following:

• The value of the variable at the moment it was modified

• A time stamp when the variable was modified

• The activity name and type that modified the BPEL variable

The data format for sensor values is normalized and well-defined using XML schema.

A sensor action is an instruction on how to process sensor values. When a sensor is triggered
by Oracle BPEL Process Manager, a new sensor value for that sensor is created. After that, all
the sensor actions associated with that sensor are performed. A sensor action typically persists
the sensor value in a database or sends the normalized sensor value data to a JMS queue or
topic. For integration with Oracle BAM, the sensor value can be sent to the Oracle BAM
adapter.

You can define the following types of sensors, either through Oracle JDeveloper or manually by
providing sensor configuration files.

• Activity sensors

Activity sensors monitor the execution of activities within a BPEL process. For example,
they can monitor the execution time of an invoke activity or how long it takes to complete a
scope. Along with the activity sensor, you can also monitor variables of the activity.

18-1

• Variable sensors

Variable sensors are used to monitor variables (or parts of a variable) of a BPEL process.
For example, variable sensors can monitor the input and output data of a BPEL process.

• Fault sensors

Fault sensors are used to monitor BPEL faults.

You typically add or edit sensors as part of the BPEL modeling of activities, faults, and
variables.

These sensors are exposed through the following public SQL views:

• BPEL_ACTIVITY_SENSOR_VALUES
• BPEL_FAULT_SENSOR_VALUES
• BPEL_VARIABLE_SENSOR_VALUES
These views can be joined with the BPEL_PROCESS_INSTANCES view to associate the sensor
value with the BPEL process instance that created the sensor values. For more information,
see Understanding Sensor Public Views and the Sensor Actions XSD .

When you model sensors in Oracle JDeveloper, two new files are created as part of the BPEL
process archive:

• bpel_process_name_sensor.xml
Contains the sensor definitions of a BPEL process

• bpel_process_name_sensorAction.xml
Contains the sensor action definitions of a BPEL process

For information about how these files are created, see How to Configure Activity, Variable, and
Fault Sensors and How to Configure Sensor Actions.

After you define sensors for a BPEL process, you must configure sensor actions to publish the
sensor data to a specified destination. If no sensor action is defined for a sensor, then nothing
happens at runtime.

The following information is required for a sensor action:

• Name

• Publish type

The publish type specifies the destination in which the sensor data must be presented. You
can publish sensor data to the following destination types.

– Database

Publishes the sensor data to the reports schema in the database. The sensor data can
then be queried using SQL.

– JMS queue

Publishes the sensor data to a JMS queue. The XML data is posted in accordance
with the Sensor.xsd file. This file is included with Oracle JDeveloper in the following
directory:

/soa/integration/seed/soa/shared/bpel/Sensor.xsd

The Sensor.xsd file is also included in the following directory:

/soa/integration/jdeveloper/seed/soa/shared/bpel/Sensor.xsd

Chapter 18
Introduction to Oracle BPEL Process Manager Sensors

18-2

– JMS topic

Publishes the sensor data to a JMS topic. The XML data is posted in accordance with
the same Sensor.xsd file used with JMS queues.

– Custom

Publishes the data to a custom Java class.

– JMS Adapter

Uses the JMS adapter to publish to remote queues or topics and a variety of different
JMS providers. The JMS queue and JMS topic publish types only publish to local JMS
destinations.

• List of sensors

The sensors for a sensor action.

Composite Sensors
While BPEL sensors are used to declare interest in specific events throughout the life cycle of
a BPEL process instance, composite sensors provide a method for implementing trackable
fields on messages. Composite sensors enable you to perform the following tasks:

• Monitor incoming and outgoing messages.

• Publish JMS data computed from incoming and outgoing messages.

• Track composite instances initiated through business event subscriptions.

For information about composite sensors, see Defining Composite Sensors .

Configuring Sensors and Sensor Actions in Oracle JDeveloper
In Oracle JDeveloper, sensor actions and sensors are displayed as part of Monitor view.

How to Access Sensors and Sensor Actions
To access sensors and sensor actions:

1. Select Change to Monitor view at the top of Oracle BPEL Designer, as shown in
Figure 18-1.

Figure 18-1 Monitor View

Figure 18-2 shows the sensor actions and sensors in the Structure window.

Chapter 18
Configuring Sensors and Sensor Actions in Oracle JDeveloper

18-3

Figure 18-2 Sensors and Sensor Actions Displayed in Oracle JDeveloper

You typically add or edit sensors as part of the BPEL modeling of activities, faults, and
variables.

2. Add sensor actions by right-clicking the Sensor Actions folder and selecting Create >
Sensor Action.

3. Add activity sensors, variable sensors, or fault sensors as follows:

a. Expand the Sensors folder.

b. Right-click the appropriate Activity, Variable, or Fault subfolder.

c. Click Create.

4. Add sensors to individual activities by right-clicking an activity and selecting Create >
Sensor. Figure 18-3 provides details.

Figure 18-3 Creating an Activity Sensor

The following sections describe how to configure sensors and sensor actions.

How to Configure Activity, Variable, and Fault Sensors
This section describes how to configure activity, variable, and fault sensors.

To Configure an Activity Sensor:
Assume you are monitoring a loan flow application, and want to know the following:

• When a scope named GetCreditRating is initiated

Chapter 18
Configuring Sensors and Sensor Actions in Oracle JDeveloper

18-4

• When it is completed

• At completion, what is the credit rating for the customer

The solution is to create an activity sensor for the GetCreditRating scope in Oracle BPEL
Designer, as shown in Figure 18-4.

1. Select Change to Monitor view at the top of Oracle BPEL Designer.

2. In the Structure window, expand the Sensors folder.

3. Right-click Activity, and select Create.

4. To the right of the Activity Name field, click the Browse icon to select the activity for which
to create the sensor. This is a required field.

Figure 18-4 Creating an Activity Sensor

Activities that have sensors associated with them are identified with a magnifying glass in
Oracle BPEL Designer.

The Evaluation Time list shown in Figure 18-4 controls the point at which the sensor is
fired.

5. Select from the following:

• All:

The sensor monitors during the activation, completion, fault, compensation, and retry
phases.

• Activation

The sensor is fired just before the activity is executed.

• Completion

The sensor is fired just after the activity is executed.

Chapter 18
Configuring Sensors and Sensor Actions in Oracle JDeveloper

18-5

• Fault

The sensor is fired if a fault occurs during the execution of the activity. Select this value
only for sensors that monitor simple activities.

• Compensation

The sensor is fired when the associated scope activity is compensated. Select this
value only for sensors that monitor scopes.

• Retry

The sensor is fired when the associated invoke activity is retried.

A new entry is created in the bpel_process_name_sensor.xml file:

<sensor sensorName="CreditRatingSensor"

classname="oracle.tip.pc.services.reports.dca.agents.BpelActivitySensorAgent"
 kind="activity"
 target="GetCreditRating">

 <activityConfig evalTime="all">
 <variable outputNamespace="http://www.w3.org/2001/XMLSchema"
 outputDataType="int"
 target="$crOutput/payload//services:rating"/>
 </activityConfig>
</sensor>

6. If you want to create a variable sensor on the activity, then in the Activity Variable
Sensors section, click the Add icon. This is an optional field.

7. If you want to add a sensor action on the activity, then in the Sensor Actions section, click
the Add icon. For more information, see How to Configure Sensor Actions.

8. Click OK.

Note:

If you did not specify any values in the Activity Variable Sensors and Sensor
Actions sections, you do not receive any validation errors or warning messages
in the Log window in Oracle JDeveloper or in any log files. This is the expected
behavior.

To Configure a Variable Sensor:
If you want to record all incoming loan requests, you can create a variable sensor.

1. Select Change to Monitor view at the top of Oracle BPEL Designer.

2. In the Structure window, expand the Sensors folder.

3. Right-click Variable, and select Create.

4. Click the Edit icon to the right of the Target field to create a variable sensor for a variable
(for this example, named input), as shown in Figure 18-5.

Chapter 18
Configuring Sensors and Sensor Actions in Oracle JDeveloper

18-6

Figure 18-5 Creating a Variable Sensor

Based on your selection for the Target field, the Output Namespace and Output
Datatype fields are automatically filled in.

A new entry is created in the bpel_process_name_sensor.xml file:

<sensor sensorName="LoanApplicationSensor"
 classname="oracle.tip.pc.services.reports.dca.agents.BpelVariableSensorAgent"
 kind="variable"
 target="$input/payload">
 <variableConfig outputNamespace="http://www.autoloan.com/ns/autoloan"
 outputDataType="loanApplication"/>
</sensor>

To Configure a Fault Sensor:
If you want to monitor faults (for this example, from the identity service), you can create a fault
sensor.

1. Select Change to Monitor view at the top of Oracle BPEL Designer.

2. In the Structure window, expand the Sensors folder.

3. Right-click Fault, and select Create.

4. Click the Browse icon above the Namespace field to select to create a fault sensor, as
shown in Figure 18-6.

Chapter 18
Configuring Sensors and Sensor Actions in Oracle JDeveloper

18-7

Figure 18-6 Creating a Fault Sensor

Based on your selection, the Namespace and Local Parts fields are automatically filled in.

5. If you want to add a sensor action on the fault, then in the Sensor Actions section, click
the Add icon. For more information, see How to Configure Sensor Actions.

6. Click OK.

A new entry is created in the bpel_process_name_sensor.xml file:

<sensor sensorName="IdentityServiceFault"
 classname="oracle.tip.pc.services.reports.dca.agents.BpelFaultSensorAgent"
 kind="fault"
 target="is:identityServiceFault">
 <faultConfig/>
</sensor>

How to Configure Sensor Actions
When you create sensors, you identify the activities, variables, and faults you want to monitor
during runtime. If you want to publish the values of the sensors to an endpoint (for example,
you want to publish the data of the LoanApplicationSensor variable sensor created in
Figure 18-5 to a JMS queue), then create a sensor action, as shown in Figure 18-7, and
associate it with the LoanApplicationSensor variable.

To configure a sensor action:

1. Select Change to Monitor view at the top of Oracle BPEL Designer.

2. In the Structure window, right-click the Sensor Actions folder.

3. Select Create > Sensor Action.

4. Enter the details described in Table 18-1.

Table 18-1 Sensor Actions Dialog

Field Description

Name Enter a name or accept the default name.

Chapter 18
Configuring Sensors and Sensor Actions in Oracle JDeveloper

18-8

Table 18-1 (Cont.) Sensor Actions Dialog

Field Description

Publish Type Select the destination to which to publish sensor data. For more
information, see section Introduction to Sensors.

JMS Connection Factory If your publish type is JMS Queue, JMS Topic, or JMS Adapter,
specify the connection factory.

Publish Target If your publish type is JMS Queue, JMS Topic, Custom, or JMS
Adapter, specify the publish target. The publish target represents
different things depending on the publish type specified:

• If the publish type is a database, this field is left blank.
• If the publish type is JMS Queue, JMS Topic, or JMS Adapter,

this represents the JMS destination's JNDI name.
• If the publish type is Custom, this represents the fully-qualified

Java class name.

Filter Enter filter logic as a boolean expression. A filter enables you to
monitor sensor data within a specific range. For an example of a
configured filter, see Figure 18-9.

Enable Deselect this check box to disable a sensor action. By default,
sensor actions are enabled. If you disable a sensor action by
deselecting this check box, the action does not publish data.

Figure 18-7 Creating a Sensor Action

A new entry is created in the bpel_process_name_sensorAction.xml file:

<action name="BAMFeed"
 enabled="true"
 publishType="JMSQueue"
 publishTarget="jms/bamTopic">
 <sensorName>LoanApplicationSensor</sensorName>
 <property name=“JMSConnectionFactory“>
 weblogic.jms.ConnectionFactory
 </property>
</action>

Chapter 18
Configuring Sensors and Sensor Actions in Oracle JDeveloper

18-9

Note:

You cannot specify a < (less than) sign in the Filter field of the Sensor Action
dialog. If you do, Oracle JDeveloper translates the < sign to < in the
bpel_process_name_sensorAction.xml file. In addition, you cannot specify a <
sign by directly editing the filename_sensorAction.xml file. This action causes
an error.

5. If you want to publish the values of LoanApplicationSensor and CreditRatingSensor to
the reports schema in the database, create an additional sensor action, as shown in
Figure 18-8, and associate it with both CreditRatingSensor and
LoanApplicationSensor.

Figure 18-8 Creating an Additional Sensor Action

A new entry is created in the bpel_process_name_sensorAction.xml file:

<action name="PersistingAction"
 enabled="true"
 publishType="BPELReportsSchema">
 <sensorName>LoanApplicationSensor</sensorName>
 <sensorName>CreditRatingSensor</sensorName>
</action

The data of one sensor can be published to multiple endpoints. In the two preceding code
samples, the data of LoanApplicationSensor was published to a JMS queue and to the
reports schema in the database.

6. If you want to monitor loan requests for which the loan amount is greater than $100,000,
create a sensor action with a filter, as shown in Figure 18-9. There is no design-time
validation of the filter query. You must ensure the query is correct.

Chapter 18
Configuring Sensors and Sensor Actions in Oracle JDeveloper

18-10

Figure 18-9 Creating a Sensor Action with a Filter

A new entry is created in the bpel_process_name_sensorAction.xml file:

<action name="BigMoneyBAMAction"
 enabled='true'
 filter="boolean(/s:actionData/s:payload
 /s:variableData/s:data
 /autoloan:loanAmount > 100000)"
 publishType="JMSQueue"
 publishTarget="jms/bigMoneyQueue">
 <sensorName>LoanApplicationSensor</sensorName>
 <property name=“JMSConnectionFactory“>
 weblogic.jms.ConnectionFactory
 </property>
</action>

Note:

• You must specify all the namespaces that are required to configure an action
filter in the bpel_process_name_sensorAction.xml configuration file. For
example, assume you have a customer XML-schema element with
namespace "http://myCustomer" and you want to create a filter on the
customer age element. Therefore, you must manually declare the
namespace for "http:/myCustomer" in the file before you can use it in your
filter. Otherwise, it is not possible to create a valid query. Add
xmlns:ns1="http://myCustomer" in the attribute declaration part of the file.
You can then use/ns1:customer/ns1:age/... in your query.

• You must specify the filter as a boolean XPath expression.

7. If you have special requirements for a sensor action that cannot be accomplished by using
the built-in publish types (database, JMS queue, JMS topic, and JMS adapter), then you
can create a sensor action with the custom publish type, as shown in Figure 18-10. The
name in the Publish Target field denotes a fully qualified Java class name that must be
implemented. For more information, see How to Create a Custom Data Publisher.

Chapter 18
Configuring Sensors and Sensor Actions in Oracle JDeveloper

18-11

Figure 18-10 Using the Custom Publish Type

How to Publish to Remote Topics and Queues
The JMS queue and JMS topic publish types only publish to local JMS destinations. If you
want to publish sensor data to remote topics and queues, use the JMS adapter publish type,
as shown in Figure 18-11.

Figure 18-11 Using the JMS Adapter Publish Type

In addition to enabling you to publish sensor data to remote topics and queues, the JMS
adapter supports a variety of different JMS providers, including:

• Third-party JMS providers such as Tibco JMS, IBM WebSphere MQ JMS, and SonicMQ

• Oracle Enterprise Messaging Service (OEMS) providers such as memory/file and
database

If you select the JMS adapter publish type, you must create an entry in the weblogic-ra.xml
file, which is updated through editing in the Oracle WebLogic Remote Console. Each JMS
connection factory (pool) entry created in this console corresponds to one JNDI entry in
weblogic-ra.xml. Update the Sensor Actions dialog with the chosen JNDI name selected
during the creation of the JMS connection factory (pool).

For more information about the JMS adapter, see Understanding Technology Adapters.

How to Create a Custom Data Publisher
To create a custom data publisher, perform the following steps:

Chapter 18
Configuring Sensors and Sensor Actions in Oracle JDeveloper

18-12

To create a custom data publisher:

1. In the Applications window, double-click the BPEL project.

The Project Properties dialog appears.

2. Click Libraries and Classpath.

3. Browse and select the following:

SOA_ORACLE_HOME/lib/java/shared/oracle.soainfra.common/11.1.1/orabpel.jar

Figure 18-12 provides details.

Figure 18-12 Project Properties Dialog

4. Create a new Java class.

The package and class name must match the publish target name of the sensor action.

5. Implement the com.oracle.bpel.sensor.DataPublisher interface.

This updates the source file and fills in the methods and import statements of the
DataPublisher interface.

6. Using Oracle JDeveloper, implement the publish method of the DataPublisher interface,
as shown in the sample custom data publisher class in Figure 18-13.

Chapter 18
Configuring Sensors and Sensor Actions in Oracle JDeveloper

18-13

Figure 18-13 Custom Data Publisher Class

7. Ensure that the class compiles successfully.

The next time that you deploy the BPEL process, the Java class is added to the SOA
archive (SAR) and deployed.

Note:

Ensure that additional Java libraries needed to implement the data publisher are in
the class path.

Oracle BPEL Process Manager can execute multiple process instances
simultaneously, so ensure that the code in your data publisher is thread safe, or add
appropriate synchronization blocks. To guarantee high throughput, do not use shared
data objects that require synchronization.

How to Register the Sensors and Sensor Actions in the composite.xml File
Oracle JDeveloper automatically updates the composite.xml file to include appropriate
properties for sensors and sensor actions, as shown in the following exxample:

<composite name="JMSQFComposite" applicationName="JMSQueueFilterApp"
 revision="1.0" label="2007-04-02_14-41-31_553" mode="active" state="on">
 <import namespace="http://xmlns.oracle.com/JMSQueueFilter"
 location="JMSQueueFilter.wsdl" importType="wsdl"/>
 <service name="client">
 <interface.wsdl interface="http://xmlns.oracle.com/
 JMSQueueFilter#wsdl.interface(JMSQueueFilter)"/>

Chapter 18
Configuring Sensors and Sensor Actions in Oracle JDeveloper

18-14

 <binding.ws
 port="http://xmlns.oracle.com/JMSQueueFilter#wsdl.endpoint(client/
 JMSQueueFilter_pt)"/>
 </service>
 <component name="JMSQueueFilter">
 <implementation.bpel src="JMSQueueFilter.bpel"/>
 <property name="configuration.sensorLocation" type="xs:string"
 many="false">JMSQueueFilter_sensor.xml</property>
 <property name="configuration.sensorActionLocation" type="xs:string"
 many="false">JMSQueueFilter_sensorAction.xml</property>
</component>
<wire>
 <source.uri>client</source.uri>
 <target.uri>JMSQueueFilter/client</target.uri>
</wire>
</composite>

You can specify additional properties with <property name= ...>, as shown in the preceding
example.

Viewing Sensors and Sensor Action Definitions in Oracle
Enterprise Manager Fusion Middleware Control

Oracle Enterprise Manager Fusion Middleware Control provides support for viewing the
metadata of sensors, sensor actions, and the sensor data created as part of the process
execution.

For more information, see Administering Oracle SOA Suite and Oracle Business Process
Management Suite.

Note:

Only sensors with an associated database sensor action are displayed in Oracle
Enterprise Manager Fusion Middleware Control. Sensors associated with a JMS
queue, JMS topic, remote JMS, or custom sensor action are not displayed.

Configuring BPEL Process Analytics
BPEL process analytics provide the following features:

• A uniform measurement mechanism across Oracle SOA Suite components such as Oracle
BPMN, human workflow, and BPEL processes for collecting disparate data.

• A runtime infrastructure for evaluating, publishing, and synthesizing measurement events.

For information about BPEL process analytics integration with Oracle Business Activity
Monitoring (BAM), see Chapter "Integrating with Oracle SOA Suite" of Monitoring Business
Activity with Oracle BAM and Chapter "Gaining Business Insights with Oracle Business Activity
Monitoring" of Understanding Oracle SOA Suite.

Chapter 18
Viewing Sensors and Sensor Action Definitions in Oracle Enterprise Manager Fusion Middleware Control

18-15

Introduction to Business Indicators
Business indicators are defined in a SOA composite application to identify objects that
contribute to the analytical and metric calculations of components. Business indicators consist
of the following types:

• Measures

Store the values of a variable such as a sales amount, an employee salary, and so on.
Measures only enable data types that are continuous, and are typically numeric values.

• Dimensions

Label group or filter measures.

• Counters

Track the number of times a process instance completes a marked element.

Metadata specified dimensions and measures are captured as part of the measurement.

Business indicators are designed to be sharable and bindable to multiple BPEL processes
within the composite. This enables you to monitor their value changes from one process to
another when the composite is executed during analytics runtime.

Introduction to Standard Sampling Points
Standard sampling points are points in a component path at which the component inherently
attempts to create a measurement event. Measurement metadata can configure
measurements at these standard sampling points. If appropriate measurement metadata exists
that enables some or all of the standard sampling point measurement events, then these
measurement events are generated, published, and processed. For example, a standard
sampling point in a process can be the following:

• Start and stop a process

• Start and stop an activity

• Faults

Introduction to User-Defined Sampling Points
These are the sampling points that you can specify on a component:

• Measurement mark:

A single point of measurement for the specified measure.

• Measurement interval:

A measurement consisting of a starting point and ending point (therefore, constituting an
interval identified by a measurement interval name) typically along the path taken by a
component.

• Measurement counter:

A measurement that identifies the occurrence of a specific point in the path taken by a
component.

Measurements are a combination of a sampling point and a selected business indicator
executed at runtime. For more information about measurements, see How to Define
Measurements.

Chapter 18
Configuring BPEL Process Analytics

18-16

How to Access Analytics View
You edit business indicators and measurements in analytics view of a BPEL process in Oracle
BPEL Designer.

To access analytics view:

1. In the SOA Composite Editor, double-click a BPEL process.

2. Above the BPEL process in Oracle BPEL Designer, click Change to Analytics view.
Figure 18-14 provides details.

Figure 18-14 Analytics View Icon in Oracle BPEL Designer

This displays the BPEL process in analytics view, as shown in Figure 18-15.

• The Components window displays a palette of measurement marks and intervals that
can be dragged onto BPEL process activities.

• The Structure window displays business indicators for creating counters, dimensions,
and measures.

Figure 18-15 Analytics View of a BPEL Process

Chapter 18
Configuring BPEL Process Analytics

18-17

When business indicator and measurement design is complete, analytics view looks
similar to that shown in Figure 18-16.

• Business indicators (counters, dimensions, and measures) and measurements
(intervals and marks) defined for the BPEL process are displayed in the Structure
window. You can create, edit, and delete business indicators from the Structure
window. You can edit and delete, but not create, measurements from the Structure
window. Measurements are created by dragging the appropriate icon from the
Components window.

• Measurement intervals and marks are defined as floaters on top of the read-only
activities in the BPEL process. The measurement floaters can be moved around by
mouse on top of activities in the BPEL process to achieve the necessary topology.

• The Property Inspector at the bottom of Oracle BPEL Designer enables you to edit the
selected business indicator or measurement. Changes are automatically committed.

Figure 18-16 Analytics View with Business Indicator and Measurement Design Complete

How to Define Business Indicators
You can bind business indicators to BPEL XPath expression functions during creation.
Business indicators are designed to be sharable and bindable to multiple BPEL processes
within the composite. This enables you to monitor their value changes from one process to
another when the composite is executed during analytics runtime.

Chapter 18
Configuring BPEL Process Analytics

18-18

You can define the following business indicators in a BPEL process:

• Define a counter binding for the BPEL process. An available counter is selected and bound
to the BPEL process without the need to specify any XPath expression. A counter is meant
to count how many times a certain BPEL activity gets executed at runtime. This means
there is no need to specify any XPath expression for the binding.

• Define a dimension binding for the BPEL process. An available dimension is selected and
bound to a BPEL XPath expression.

• Define a measure binding for the BPEL process. An available measure is selected and
bound to a BPEL XPath expression.

For more information about business indicators, see Introduction to Business Indicators.

After definition, you can edit and delete business indicators in the Business Indicator Overview
Editor described in How to Edit Business Indicators in the Business Indicator Overview Editor.

Defining Counters
You can define business indicator counters.

To define counters:

1. Access analytics view in a BPEL process as described in How to Access Analytics View.

2. In the Structure window, right-click Counters and select Create.

The Bind Counter dialog is displayed.

3. Select a name, and click OK. If there is no counter to which to bind, click the Add icon to
create a new counter. You can also create counters in the Business Indicator Overview
Editor that are then displayed for selection in this dialog. For more information, see How to
Edit Business Indicators in the Business Indicator Overview Editor.

When complete, the Bind Counter dialog looks as shown in Figure 18-17.

Figure 18-17 Bind Counter Dialog

Defining Dimensions

You can define business indicator dimensions.

To define dimensions:

1. Access analytics view in a BPEL process as described in How to Access Analytics View.

2. In the Structure window, right-click Dimensions and select Create.

The Bind Dimension dialog is displayed.

3. Enter values appropriate to your environment, and click OK. Table 18-2 provides details.

Chapter 18
Configuring BPEL Process Analytics

18-19

Table 18-2 Bind Dimension Dialog

Element Description

Name Select a name. If there is no dimension to which to bind, click the Add
icon to invoke the Create Dimension dialog to enter a name and select a
data type (boolean, decimal, integer, string or time) for the dimension.

You can also create dimensions in the Business Indicator Overview
Editor that are then displayed for selection in this dialog. For more
information, see How to Edit Business Indicators in the Business
Indicator Overview Editor.

Note: Optional ranges can be specified for some data types such as
integers and decimals. This enables the dimensions to show their ranges
at analytics runtime for better reporting.

XPath Expression Click the Edit icon to invoke the Expression Builder dialog in which to
build an XPath expression for binding to the dimension.

When complete, the Bind Dimension dialog looks as shown in Figure 18-18.

Figure 18-18 Bind Dimension Dialog

Defining Measures

You can define business indicator measures.

To define measures:

1. Access analytics view in a BPEL process as described in How to Access Analytics View.

2. In the Structure window, right-click Measures and select Create.

The Bind Measure dialog is displayed.

3. Enter values appropriate to your environment, and click OK. Table 18-3 provides details.

Table 18-3 Bind Measure Dialog

Element Description

Name Select a name. If there is no measure to which to bind, click the Add icon
to invoke the Create Measure dialog to enter a name and select a
measure (decimal or integer).

You can also create measures in the Business Indicator Overview Editor
that are then displayed for selection in this dialog. For more information,
see How to Edit Business Indicators in the Business Indicator Overview
Editor.

Chapter 18
Configuring BPEL Process Analytics

18-20

Table 18-3 (Cont.) Bind Measure Dialog

Element Description

XPath Expression Click the Edit icon to invoke the Expression Builder dialog in which to
build the XPath expression for binding to the measure.

When complete, the Bind Measure dialog looks as shown in Figure 18-19.

Figure 18-19 Bind Measure Dialog

How to Define Measurements
The Components window consists of the measurement types shown in Figure 18-20:

Figure 18-20 Measurement Types in the Components Window

You drag a measurement type on to a BPEL process activity in the designer for initial creation.
Measurements are defined as floaters on top of read-only activities in the BPEL process. You
can edit the measurement later in the Property Inspector or by double-clicking the
measurement. The measurement floaters can be moved around by mouse on top of the BPEL
process to achieve the necessary topology.

Each measurement type includes two tabs:

• General tab: For defining the impacted activity, the evaluation event that triggers the
measurement being taken, the measurement description, and whether the measurement is
enabled.

• Business Indicator tab: For selecting the business indicators for the measurement.

How to Define a Counter Mark
You can define a counter mark measurement.

Chapter 18
Configuring BPEL Process Analytics

18-21

To define a counter mark:

1. Access analytics view in a BPEL process as described in How to Access Analytics View.

2. From the Components window, drag a Counter Mark icon on to an activity or right-click an
activity and select Counter Mark.

3. Double-click the icon that is added.

The Counter Mark dialog is displayed.

4. Enter values appropriate to your environment, and click OK. Table 18-4 provides details.

Table 18-4 Counter Mark Dialog - General Tab

Element Description

Name Enter the name of the counter mark.

Activity Displays the BPEL activity on which the counter mark is taken.

Evaluation Event Select the specific activity event that triggers the counter mark. It
can be one of the five activity events: Activate, Compensate,
Complete, Fault, and Retry.

Description Enter an optional description of the counter mark.

Enabled Select whether to enable the counter mark. By default, this
measurement is enabled.

When complete, the General tab of the Counter Mark dialog looks as shown in
Figure 18-21.

Figure 18-21 General Tab of Counter Mark Dialog

5. Click the Business Indicators tab.

6. Move selected business indicators to the Selected section. You can also click the Add
icon to create new business indicators. Created business indicators are automatically
added to the Selected section.

Chapter 18
Configuring BPEL Process Analytics

18-22

Note:

You can only create and select counters for counter marks. Dimensions are
implicitly added to counter marks, and you cannot create and select measures for
counter marks. Measures can only be created and selected for interval starts,
interval stops, and single marks.

When complete, the Business Indicators tab looks as shown in Figure 18-22.

Figure 18-22 Business Indicators Tab

How to Define an Interval Start
You can define an interval start measurement.

To define an interval start:

1. Access analytics view in a BPEL process as described in How to Access Analytics View.

2. From the Components window, drag an Interval Start icon on to an activity or right-click an
activity and select Interval Start.

3. Double-click the icon that is added.

The Interval Start dialog is displayed.

4. Enter values appropriate to your environment, and click OK. Table 18-5 provides details.

Table 18-5 Interval Start Dialog - General Tab

Element Description

Name Enter the name of the interval start.

Activity Displays the BPEL activity from which the interval starts.

Evaluation Event Select the specific activity event that triggers the start of the interval.
It can be one of the five activity events: Activate, Compensate,
Complete, Fault, and Retry.

Chapter 18
Configuring BPEL Process Analytics

18-23

Table 18-5 (Cont.) Interval Start Dialog - General Tab

Element Description

Description Enter an optional description of the interval start.

Enabled Select whether to enable the interval start. By default, this
measurement is enabled.

Note:

Any name change is propagated to the corresponding interval stop measurement
because the interval name is shared by both the interval start and the interval
stop measurements.

In addition, any activity change updates the activity anchor of the interval start
floater in the designer.

When complete, the General tab of the Interval Start dialog looks as shown in
Figure 18-23.

Figure 18-23 General Tab of Interval Start Dialog

5. Click the Business Indicators tab.

6. Move selected business indicators to the Selected section. You can also click the Add
icon to create new business indicators. Created business indicators are automatically
added to the Selected section.

Chapter 18
Configuring BPEL Process Analytics

18-24

Note:

You can only create and select measures for interval starts. Dimensions are
implicitly added to interval starts, and you cannot create and select counters for
interval starts. Counters can only be created and selected for counter marks.

Any change on the business indicators for an interval start is propagated to its
corresponding interval stop because both the interval start and stop share the
same business indicators.

When complete, the Business Indicators tab looks as shown in Figure 18-24

Figure 18-24 Business Indicators Tab

How to Define an Interval Stop
You can define an interval stop measurement.

To define an interval stop:

1. Access analytics view in a BPEL process as described in How to Access Analytics View.

2. From the Components window, drag an Interval Stop icon on to an activity or right-click an
activity and select Interval Stop.

3. Double-click the icon that is added.

The Interval End dialog is displayed.

4. Enter values appropriate to your environment, and click OK. Table 18-6 provides details.

Table 18-6 Interval End Dialog - General Tab

Element Description

Name Enter the name of the interval stop.

Activity Displays the BPEL activity on which the interval stops.

Chapter 18
Configuring BPEL Process Analytics

18-25

Table 18-6 (Cont.) Interval End Dialog - General Tab

Element Description

Evaluation Event Select the specific activity event that triggers the stop of the interval.
It can be one of the five activity events: Activate, Compensate,
Complete, Fault, and Retry.

Description Enter an optional description of the interval stop.

Enabled Select whether to enable the interval stop. By default, this
measurement is enabled.

Note:

A name change is propagated to its corresponding interval start, because the
interval name is shared by both the interval start and the interval stop
measurements.

An activity change updates the activity anchor of the interval stop floater in the
designer.

When complete, the General tab of the Interval End dialog looks as shown in
Figure 18-25.

Figure 18-25 General Tab of Interval End Dialog

5. Click the Business Indicators tab.

6. Move selected business indicators to the Selected section. You can also click the Add
icon to create new business indicators. Created business indicators are automatically
added to the Selected section.

Chapter 18
Configuring BPEL Process Analytics

18-26

Note:

You can only create and select measures for interval stops. Dimensions are
implicitly added to interval stops, and you cannot create and select counters for
interval stops. Counters can only be created and selected for counter marks.

Any change on the business indicators for an interval stop is propagated to its
corresponding interval start, because both the interval start and stop share the
same business indicators.

When complete, the Business Indicators tab looks as shown in Figure 18-26.

Figure 18-26 Business Indicators Tab

How to Define a Single Mark
You can define a single mark measurement.

To define a single mark:

1. Access analytics view in a BPEL process as described in How to Access Analytics View.

2. From the Components window, drag a Single Mark icon on to an activity or right-click an
activity and select Single Mark.

3. Double-click the icon that is added.

The Management Mark dialog is displayed.

4. Enter values appropriate to your environment, and click OK. Table 18-7 provides details.

Table 18-7 Management Mark Dialog - General Tab

Element Description

Name Enter the name of the single mark.

Activity Displays the BPEL activity on which the single mark is taken.

Chapter 18
Configuring BPEL Process Analytics

18-27

Table 18-7 (Cont.) Management Mark Dialog - General Tab

Element Description

Evaluation Event Select the specific activity event that triggers the single mark. It can
be one of the five activity events: Activate, Compensate,
Complete, Fault, and Retry.

Description Enter an optional description of the single mark.

Enabled Select whether to enable the single mark. By default, this
measurement is enabled.

Note:

The activity change updates the activity anchor of the single mark floater in the
designer.

When complete, the General tab of the Management Mark dialog looks as shown in
Figure 18-27.

Figure 18-27 General Tab of Management Mark Dialog

5. Click the Business Indicators tab.

6. Move selected business indicators to the Selected section. You can also click the Add
icon to create new business indicators. Created business indicators are automatically
added to the Selected section.

Note:

The activity change updates the activity anchor of the single mark floater in the
designer.

When complete, the Business Indicators tab looks as shown in Figure 18-28.

Chapter 18
Configuring BPEL Process Analytics

18-28

Figure 18-28 Business Indicators Tab

Note:

You can only create and select measures for single marks. Dimensions are
implicitly added to single marks, and you cannot create and select counters for
single marks. Counters can only be created and selected for counter marks.

How to Configure Composite-Level Analytic Sampling Points
You can configure analytic sampling points (process start/stop, activity start/stop) at the SOA
composite application level. Composite level configuration applies to all BPEL processes in the
composite. For information about configuring analytics at the specific BPEL process level, see
How to Configure Process-Level Analytic Sampling Points.

To configure composite-level analytic sampling points:

1. Above the SOA Composite Editor, click the Configure Analytics icon, as shown in
Figure 18-29.

Figure 18-29 Configure Analytics Icon Above SOA Composite Editor

The SOA Analytics Metrics dialog is displayed, as shown in Figure 18-30.

Chapter 18
Configuring BPEL Process Analytics

18-29

Figure 18-30 SOA Analytics Metrics Dialog

2. Select appropriate options, then click OK. Table 18-8 provides details.

Table 18-8 Composite Analytics Setting Dialog

Element Description

Generate For All Activities Generates standard analytic events for all process and activity
events.

Human Workflow Activities
Only

Generates standard analytic events only for human task events.

Start and Stop of the BPEL
Process Only

Generates standard analytic events for starting and stopping of the
BPEL process.

Do not Generate Does not generate any standard analytic events.

How to Configure Process-Level Analytic Sampling Points
You can configure analytic sampling points (process start/stop, activity start/stop) at the
individual BPEL process level. Process level configuration only applies to the generation of
standard analytics events for the specific BPEL process. It does not impact the generation of
user-defined measurement events for the process. User-defined measurements always
generate their measurement events, if enabled.

For information about configuring analytics at the SOA composite application level, see How to
Configure Composite-Level Analytic Sampling Points.

To configure process-level analytic sampling points:

1. Access the BPEL process in analytics view as described in How to Access Analytics View.

2. Above the BPEL process, click the Configure Analytics icon, as shown in Figure 18-31.

Figure 18-31 Configure Analytics Icon

The Composite Analytics Sampling Points for BPEL dialog is displayed, as shown in
Figure 18-32.

Chapter 18
Configuring BPEL Process Analytics

18-30

Figure 18-32 Composite Analytics Sampling Points for BPEL Dialog

3. Select appropriate options, then click OK. Table 18-9 provides details.

Table 18-9 Process Analytics Setting Dialog

Element Description

Inherit From Composite
Default

Inherits the analytics setting from the composite level analytics
configuration described in How to Configure Composite-Level
Analytic Sampling Points.

Human Workflow Activities
Only

Generates standard analytic events for human task activity events.

Generate For Interactive(s)
Only

Generates standard analytic events only for interactive process and
activity events such as human task events.

Start and Stop of the BPEL
Process Only

Generates standard analytics events for the starting and stopping of
the BPEL process.

Do not Generate Does not generate any standard analytic events.

Is Primary Process Select to inform analytics runtime if the process is one of the
primary processes for the SOA composite application.

How to Edit Business Indicators in the Business Indicator Overview Editor
You can create, edit, and delete business indicators for the SOA composite application in the
Business Indicator Overview Editor, regardless of whether or how these business indicators
are bound to specific BPEL processes. This editor does not change the bindings for those
business indicators as long as they are not deleted. When a business indicator is deleted, all
its bindings with the specific BPEL processes are also deleted.

The Business Indicator Overview Editor is the only way to edit and delete business indicators.
From the various dialogs for counters, dimensions, and measures that you access from the
Structure window or Property Inspector, you cannot edit or delete the business indicators. You
can only edit their bindings to the BPEL process. The view of business indicators from the
Structure window or Property Inspector is actually a binding view of the business indicators,
and not a view of all the business indicators. Any unbound business indicators do not show up
from the Structure window or Property Inspector.

Any relevant change in the Business Indicator Overview Editor is reflected in the Structure
window or Property Inspector. Any relevant change from the Structure window or Property
Inspector is reflected in the Business Indicator Overview Editor.

Chapter 18
Configuring BPEL Process Analytics

18-31

To edit business indicators in the Business Indicator Overview Editor:

1. In the Applications window, double-click Business Indicators. Figure 18-33 provides
details.

Figure 18-33 Business Indicators Overview Editor

2. Create, edit, and delete business indicators for counters, measures, and dimensions, as
required.

Note:

You can also create a special type of business indicator called an attribute.
However, Oracle SOA Suite analytics design time does not currently support
attribute binding to BPEL processes. Therefore, you cannot create or bind
attributes to the BPEL process in the Structure window or Property Inspector.

Deploying BPEL Analytics
Analytic configurations are included with SOA composite application deployment. If there are
no analytics defined in the composite, no deployment of analytics occurs.

The SOA analytics deployment performs the following procedures:

• Populates the analytics definition (composite, process, activity, role) data objects.

• Creates the composite-specific physical and logical data objects (process and activity).

Analytics deployment is divided into two steps based on whether the data population is at the
composite level or the component (BPEL process) level:

Chapter 18
Configuring BPEL Process Analytics

18-32

• Composite-level analytics deployment

The composite definition data object is populated and the composite-specific physical and
logical data objects are created (process and activity). Composite-level analytics
deployment is invoked at composite deployment time. This deployment step is performed
once for a composite.

• Component-level analytics deployment

The process, activity, and role definition data objects are populated. Component-level
analytics deployment is invoked at component deployment time. This deployment step is
performed for each component of the composite.

Viewing BPEL Analytics at Runtime
The measurement events based on the deployed analytics metadata are triggered. BPEL
process and activity events such as start and stop trigger the measurement events. A
measurement event captures the values of all business indicators defined for the measurement
from the BPEL process service engine, and can be synthesized and published to Oracle BAM.

BPEL process and activity events themselves can also be published to Oracle BAM based on
analytics sampling control. BPEL process and activity events also capture applicable business
intelligence values.

BPEL measurement events are published to SOA analytics data objects (process and activity)
in BAM.

For information about BPEL process analytics integration with Oracle Business Activity
Monitoring (BAM), see Integrating with Oracle SOA Suite in Monitoring Business Activity with
Oracle BAM and Gaining Business Insights with Oracle Business Activity Monitoring in
Understanding Oracle SOA Suite.

Chapter 18
Configuring BPEL Process Analytics

18-33

Part III
Using the Oracle Mediator Service Component

This part describes the components that comprise the Oracle Mediator service component.

This part contains the following chapters:

• Getting Started with Oracle Mediator

• Creating Routing Rules

• Working with Multiple Part Messages in Oracle Mediator

• Using Error Handling

• Resequencing in Oracle Mediator

• Understanding Message Exchange Patterns of an Oracle Mediator

19
Getting Started with Oracle Mediator

This chapter describes Oracle Mediator, which provides transformation, validation, and routing
logic to Oracle SOA Suite applications. This chapter also describes how to create a Mediator
component and the associated WSDL documents in Oracle JDeveloper.
This chapter includes the following sections:

• Introduction to Oracle Mediator

• Mediator Functionality

• Creating a Mediator

• Introduction to the Mediator Editor Environment

• Configuring the Mediator Interface Definition

• Defining an Interface for a Mediator

• Generating a WSDL File

• Specifying Validation and Priority Properties

• Modifying a Mediator Service Component

Introduction to Oracle Mediator
Oracle Mediator is a service component of the Oracle SOA Suite that provides mediation
capabilities such as selective routing, transformation, and validation capabilities, along with
various message exchange patterns, such as synchronous, asynchronous, and event
publishing or subscriptions.

Mediator provides a lightweight framework to mediate between various components within a
composite application, such as business processes, human workflows, and so on, using a Web
Services Description Language (WSDL) document as the interface. Mediator converts data to
facilitate communication between different interfaces exposed by different components that are
wired to build a SOA composite application. For example, Mediator can accept data contained
in a text file from an application or service, transform it into a format appropriate for updating a
database that serves as a customer repository, and then route and deliver the data to that
database.

Mediator facilitates integration between events and services, where service invocations and
events can be mixed and matched. You can use a Mediator service component to consume a
business event or receive a service invocation. A Mediator service component can evaluate
routing rules, perform transformations, validate, and either invoke another service or raise
another business event. You can use a Mediator service component to handle returned
responses, callbacks, faults, and timeouts.

Mediator Functionality
The following sections describe the primary functions that Oracle Mediator supplies to an
Oracle SOA Suite application.

19-1

Content-Based and Header-Based Routing
Mediator enables you to define rules based on the message payload or message headers. You
can select elements or attributes from the message payload or the message header and,
based on the values in those elements or attributes, you can specify an action. For example,
Mediator receives a file from an application or service containing data about new customers.
Based on the country mentioned in the customer's address, you can route and deliver data to
the database storing data for that particular country. Similarly, you can route a message based
on the message header.

For more information about header-based routing, see How to Access Headers for Filters and
Assignments.

Synchronous and Asynchronous Interactions
Mediator supports both synchronous and asynchronous request and response interactions. In
a synchronous interaction, the client requests a service and then waits for a response to the
request. In an asynchronous interaction, the client invokes the service, but does not wait for
the response. You can specify a timeout period for an asynchronous interaction and you can
specify an action to perform after the timeout period, such as to raise an event or start a
process.

Mediator also supports event-based interactions. Events are one-way (fire-and-forget)
asynchronous interactions.

For more information about synchronous and asynchronous interactions, see How to Configure
Response Messages and Understanding Message Exchange Patterns of an Oracle Mediator.

Sequential and Parallel Routing of Messages
Mediator lets you specify that a routing rule be executed either in parallel or in sequence. You
can configure the execution type from the Routing Rules section of the Mediator Editor.

For more information about sequential and parallel routing of messages, see How to Specify
Sequential or Parallel Execution.

Message Resequencing
When you use the Mediator resequencer, it rearranges streams of related but out-of-sequence
messages into their sequential order based on the type of resequencer used and the rules you
define. When incoming messages arrive in a random order, the resequencer orders the
messages based on sequential or chronological information, and then sends the messages to
the target services in the correct order based on the resequencing configuration.

For more information about resequencing messages, see Resequencing in Oracle Mediator.

Data Transformation
Mediator lets you define data transformation from one XML schema to another. This feature
enables data interchange among applications using different schemas. For example, you can
transform a comma-delimited file to an XML schema that is compatible with a database.

For more information about transformations, see How to Create XSLT Transformations.

Chapter 19
Mediator Functionality

19-2

Payload Validation
You can configure Mediators to validate the incoming message payload using a Schematron or
an XSD file. You can specify Schematron files for each inbound message part and Mediator
executes Schematron file validations for those parts.

For more information about validations, see Specifying Validation and Priority Properties, How
to Use Semantic Validation, and http://www.schematron.com/.

Java Callouts
Mediator lets you add Java callouts to the routing rules. Java callouts enable you to use
external Java classes to manipulate messages flowing through the Mediator.

For more information about Java callouts, see How to Use Java Callouts.

Event Handling
An event is a message sent because an activity occurred in a business environment. Mediator
can both subscribe to and raise business events. You can subscribe to a business event that is
generated when a situation of interest occurs. For example, you can subscribe to an event that
is generated when a new customer is created and then use this event to start a business
process, such as sending a confirmation email. Similarly, you can generate business events
when a situation of interest occurs. For example, after a new customer profile is created, you
can generate a customer-created event.

For more information about event handling, see Using Business Events and the Event Delivery
Network.

Dynamic Routing
Dynamic routing separates the control logic of a process from the execution of the process.
The control logic determines the path taken by the process. You can create dynamic routing
rules using the Mediator Editor.

For more information about dynamic routing, see How to Create Dynamic Routing Rules.

Error Handling
Mediator supports both manual error handling and error handling based on fault policies. A
fault policy consists of conditions and actions, where the conditions specify the action to be
carried out for a particular error condition.

For more information about error handling, see Using Oracle Mediator Error Handling.

Sending Messages Back to the Caller (Echo)
Mediator can echo source messages back to the initial caller without routing the message to
another target. Mediator can perform transformations, validations, assignments, or sequencing
operations before echoing the message back to the caller.

For more information about Mediator echo support, see "To echo a service:" of How to Specify
Mediator Services or Events.

Chapter 19
Mediator Functionality

19-3

http://www.schematron.com/

Multiple Part Messages
Mediator can process messages that consist of multiple parts. Some Remote Procedure Call
(RPC) web services contain multiple parts in the SOAP message.

For more information about multiple part message support, see Working with Multiple Part
Messages in Oracle Mediator.

Creating a Mediator
You can create a Mediator in multiple ways, depending on where you are in your application
development process. Follow the appropriate instructions in the following sections to create the
component.

How to Create a Mediator
You can create a Mediator in a SOA composite application in Oracle JDeveloper at any of the
following points in the development cycle:

• When you create a composite application

• When you modify an existing composite application

• When you create a project

• When you modify an existing project

When you create a Mediator, the Create Mediator dialog appears so you can name the
Mediator and select a template for the interface.

To create a composite application with a Mediator:
1. Create and Name the SOA application and project using the Create SOA Application

wizard.

2. When you reach the Configure SOA Settings page, select Composite with Mediator in
the Composite Template list, as shown in Figure 19-1.

Chapter 19
Creating a Mediator

19-4

Figure 19-1 Composite with Mediator Selection in Create SOA Project Wizard

3. Click Finish.

The Create Mediator dialog appears.

4. Configure the Mediator interface, as described in Configuring the Mediator Interface
Definition.

5. Define routing rules for the Mediator, as described in Creating Oracle Mediator Routing
Rules.

To create a Mediator in an existing composite application:
1. Open the composite application to which you are adding a Mediator in the SOA Composite

Editor.

2. Drag and drop a Mediator from the Components window (shown in Figure 19-2) to the
Components section of the editor.

Alternatively, right-click a blank area in the Components section of the editor. Select Insert
> Mediator from the context menu that appears.

Tip:

The Components window is to the right of the SOA Composite Editor.

Chapter 19
Creating a Mediator

19-5

Figure 19-2 Components Window with a Mediator Service Component

The Create Mediator dialog appears.

3. Configure the Mediator interface, as described in Configuring the Mediator Interface
Definition.

4. Define routing rules for the Mediator, as described in Creating Oracle Mediator Routing
Rules.

To create a new project with a Mediator:
1. Right-click in the Applications window, and then select New.

The New Gallery wizard appears.

2. Create and name a new SOA project in the SOA Tier category.

3. On the Configure SOA Settings page of the New Gallery dialog, select Composite With
Mediator from the Composite Template list, shown in Figure 19-3.

Chapter 19
Creating a Mediator

19-6

Figure 19-3 Create SOA Project Wizard with Composite With Mediator Template
Shown

4. Click Finish.

The Create Mediator dialog appears.

5. Configure the Mediator interface, as described in Configuring the Mediator Interface
Definition.

To create a Mediator in an existing project:
1. In the Applications window, select the project to which you want to add a Mediator.

2. Right-click in the navigator pane and select New.

3. Under Categories, select Service Components, and then select Mediator from the Items
list, as shown in Figure 19-4.

Chapter 19
Creating a Mediator

19-7

Figure 19-4 New Gallery Dialog with Mediator Service Component

4. Click OK.

The Create Mediator dialog appears.

5. Configure the Mediator interface, as described in Configuring the Mediator Interface
Definition.

6. Define routing rules for the Mediator, as described in Creating Oracle Mediator Routing
Rules.

Introduction to the Mediator Editor Environment
You can create a Mediator service component in a SOA composite application of Oracle
JDeveloper and then configure it using the Mediator Editor. To display the Mediator Editor,
double-click the Mediator service component in the SOA Composite Editor. For information
about the SOA Composite Editor, see Getting Started with Developing SOA Composite
Applications.

Figure 19-5 shows the Mediator Editor along with the Applications window, Structure, and
Messages windows.

Note:

Oracle recommends using a Unicode database with AL32UTF8 as the database
character set for full globalization support in Mediator.

Chapter 19
Introduction to the Mediator Editor Environment

19-8

Figure 19-5 Mediator Editor Window

Each section of the view shown in Figure 19-5 lets you perform specific design and
deployment tasks. The sections in this view include the following:

• Applications window

The Applications window, shown in the upper left section of Figure 19-5, displays the
Mediator mplan file. This file appears under the SOA Content folder of the project where
you created a Mediator. For more information about the Applications window and the
composite files, see Table 2-3.

• Mediator Editor

The Mediator Editor, shown in the middle of Figure 19-5, provides a visual view of the
Mediator. This view appears when you perform one of the following actions:

– Double-click an Oracle Mediator icon in the SOA Composite Editor.

– Double-click the.mplan file for the Mediator in the Applications window.

• Source View

The Source view displays the source code of a Mediator. Click Source at the bottom of the
Mediator Editor to view the source code. The code in Source view is immediately updated
to reflect any changes to an a Mediator.

The following example shows sample Mediator source code:

<?xml version = '1.0' encoding = 'UTF-8'?>
<!--Generated by Oracle SCA Modeler version 1.0 at [4/16/07 10:05 PM].-->
<Mediator name="CustomerDataRouter" xmlns:xsi="http://www.w3.org/2001/XMLSchema-
instance"
xmlns="http://xmlns.oracle.com/sca/1.0/mediator"/>

• History Window

Chapter 19
Introduction to the Mediator Editor Environment

19-9

The History window displays history information about the Mediator file, including a
revision history and side-by-side comparisons of read-only and editable versions of a file.
Click History at the bottom of the Design window shown in Figure 19-5 to open the History
window. Figure 19-6 shows the History view for a Mediator file.

Figure 19-6 History Window

Configuring the Mediator Interface Definition
When you create a new Mediator, you can specify an interface template that generates a basic
set of default files in the Mediator project. These files provide a framework from which you can
design and configure the Mediator. You can create a Mediator with the following interface
options:

• Mediator with no interface definition

This creates an empty Mediator and does not create a WSDL file. This method provides
you with the flexibility to create the SOA components in the order you want.

After you create a Mediator without an interface definition, you must create a service or an
event that starts the component. You can also define the interface implicitly by dragging
and dropping a service, or the output interface from another component, to the Mediator
input.

• Mediator with the interface defined by a WSDL file

This bases the interface definition on a WSDL file, which describes the interfaces of a
Mediator, such as port type, operations, services, and schemas. The WSDL file can
already exist or you can generate one from a schema file.

• Mediator with a one-way interface

This defines an interface with a one-way interaction, where the client sends a message to
a service and the service does not need to reply.

• Mediator with a synchronous interface

This creates an interface with synchronous request-response interactions. In a
synchronous interaction, a client sends a request to a service and receives an immediate
response. The client does not proceed further until the response arrives.

• Mediator with an asynchronous interface

Chapter 19
Configuring the Mediator Interface Definition

19-10

This creates an interface with asynchronous request-response interactions. In an
asynchronous interaction, a client sends a request to a service, but does not block and
wait for a reply.

• Mediator that subscribes to events

This creates a Mediator that subscribes to a business event generated when a situation of
interest occurs. A business event consists of message data sent as the result of an
occurrence in a business environment. For information about business events, see Using
Business Events and the Event Delivery Network.

To subscribe to events, the events must be defined in an Event Definition (EDL) file.

How to Configure the Mediator Interface Definition
You configure the interface definition for a Mediator on the Create Mediator dialog.

To configure the Mediator interface definition:

1. Create a Mediator using one of the methods described in Creating a Mediator.

The Create Mediator dialog appears.

2. In the Name field, enter a name for the Mediator service component.

3. Select one of the following from the Template list. Refer to the descriptions at the
beginning of this section for more information on each.

• Define Interface Later

• Interface Definition from WSDL

• One-Way Interface

• Synchronous Interface

• Asynchronous Interface

• Subscribe to Events

Figure 19-7 and Figure 19-8 illustrate how the properties change on the Create Mediator
dialog for different interface types.

Chapter 19
Configuring the Mediator Interface Definition

19-11

Figure 19-7 Synchronous Interface Template Selection on the Create Mediator
Dialog

Figure 19-8 Interface Definition from WSDL Template Selection on the Create
Mediator Dialog

4. For any interface type except Subscribe to Events, configure the appropriate properties.
For information about the displayed properties for each type, see Table 19-1 following
these instructions.

5. If you selected Subscribe to Events, do the following:

a. Click Add on the Create Mediator dialog.

Chapter 19
Configuring the Mediator Interface Definition

19-12

Figure 19-9 Subscribe to Events Template Selection in Create Mediator Dialog

The Event Chooser dialog appears.

b. To the right of the Event Definition field, click Search.

The SOA Resource Browser dialog appears.

c. Select an event definition file (.edl) and click OK.

The Event field is populated with the events described in the.edl file that you
selected. For more information about creating.edl files, see Using Business Events
and the Event Delivery Network.

d. Select one or more events in the Event field, as shown in Figure 19-10, and click OK.

Figure 19-10 Event Chooser Dialog

e. Select a level of delivery consistency for the event.

one and only one: A global (JTA) transaction is used for event delivery. If the event
call fails, the transaction is rolled back and the call is retried a configurable number of
times.

Chapter 19
Configuring the Mediator Interface Definition

19-13

guaranteed: A local transaction is used to guarantee delivery. There are no retries
upon failure.

immediate: Events are delivered on the same thread and on the same transaction as
the caller.

f. In the Run as publisher field, select whether to run the event subscription under the
security of the event publisher.

By default, event subscriptions run under the security of the event publisher.

g. To filter the event, double-click the Filter column of the selected event, or select the
event and then click the filter icon (first icon).

The Expression Builder dialog appears.

h. In the Expression field, enter an XPath expression and click OK.

Figure 19-11 shows a sample Expression Builder dialog.

Figure 19-11 Business Event Filter

The expression you created appears in the Filter column of the Create Mediator
dialog.

i. Click OK.

6. Click OK on the Create Mediator dialog.

7. If you chose to create a Mediator without an interface, you must create the interface at a
later time as described in How to Define an Interface for a Mediator .

Chapter 19
Configuring the Mediator Interface Definition

19-14

The following table lists and describes the properties you can configure to define an interface.
The available properties change depending on the interface type you select, so not all of the
listed properties apply to all interface types.

Table 19-1 Mediator Interface Properties

Property Description

Create Composite Service with
SOAP Bindings

Select this option to create an exposed service with SOAP bindings
that is automatically connected to your Mediator when the interface is
generated.

WSDL URL Enter the location of the WSDL file to use when creating the interface
from a WSDL file. Do one of the following:

• To use an existing WSDL file, enter the name of the file or click
Find existing WSDL files to browse for the file.

• To create a new WSDL file, click Generate WSDL from
schema(s).

For more information about these options, see Generating a WSDL
File.

Port Type Select the port type name from the list. The available port types are
parsed from the WSDL file that you specify in the WSDL URL field.

Callback Port Type Select the port type name to which the response message is sent in an
asynchronous communication. The available port types are parsed
from the WSDL file that you specify in the WSDL URL field.

Input Enter the schema element for the input message. Click Search to the
right of the field to select the element. By default, the singleString
schema element is selected for the input message.

For a sample schema, see the schema that follows after this table.

Output Enter the schema element for the output message. Click Search to the
right of the field to select the element. By default, the singleString
schema element is selected for the input message.

You can use any XSD schema to specify the format of the input document that Mediator
processes. Here is a sample schema:

<xsd:schema attributeFormDefault="qualified"
 elementFormDefault="qualified"
 targetNamespace="http://samples.otn.com/helloworld"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns="http://samples.otn.com/helloworld">
 <include namespace="http://samples.otn.com/helloworld"
 schemaLocation="helloworld.xsd" />
 <xsd:element name="name1" type="xsd:string" />
 <xsd:element name="result1" type="xsd:string"/>
</xsd:schema>

What Happens When You Create a Mediator
The Mediator files are generated under the specified application and project in the Applications
window, and the new Mediator appears in the Mediator Editor in Design view. If you created
the Mediator with an interface definition and the WSDL file did not already exist, the new
WSDL file is also generated with the same name as the Mediator. If the WSDL file you
specified is located in a different directory than the project files, the file and its associated
schema files are copied to the Mediator project.

Chapter 19
Configuring the Mediator Interface Definition

19-15

Without an Interface Definition
This Mediator has no associated WSDL file, port types, or operations. You must define these
separately as described in Defining an Interface for a Mediator. Figure 19-12 shows how a
Mediator created with no interface definition appears in the Mediator Editor.

Figure 19-12 Mediator with no Interface Definition in the Mediator Editor

With a WSDL-Based Interface
The appearance and source code of this Mediator varies depending on the name of the WSDL
file and the port types and operations defined by the WSDL file. Figure 19-13 shows a sample
Mediator created from a WSDL file.

Figure 19-13 Mediator from WSDL in the Mediator Editor

With a One-Way Interface Definition
Figure 19-14 shows how a Mediator created with a one-way interface appears in the Mediator
Editor. The arrow to the left of the execute operation represents a one-way operation.

Chapter 19
Configuring the Mediator Interface Definition

19-16

Figure 19-14 One-Way Interface Oracle Mediator in the Mediator Editor

With a Synchronous Interface Definition
In a synchronous interaction, only one port is defined because the response is sent to the
same port as the request. Figure 19-15 shows how a Mediator created with a synchronous
interface appears in the Mediator Editor. The arrows to the left of the execute operation in
Figure 19-15 represent a synchronous operation.

Figure 19-15 Synchronous Mediator in the Mediator Editor

With an Asynchronous Interface Definition
Figure 19-16 shows how a Mediator created with an asynchronous interface appears in the
Mediator Editor. The Port Type field displays the port on which the request message is sent.
The Callback Port Type field displays the port to which the response is sent. The arrows to
the left of the execute operation in Figure 19-16 represent an asynchronous operation.

Chapter 19
Configuring the Mediator Interface Definition

19-17

Figure 19-16 Asynchronous Mediator in the Mediator Editor

With an Event Subscription
When you view the Mediator in the SOA Composite Editor, the icon on the left side of the
Mediator indicates that this Mediator is configured for an event subscription, as shown in
Figure 19-17.

Figure 19-17 Mediator Created with the Subscribe to Events Template

When you double-click the Mediator, the Mediator Editor appears, as shown in Figure 19-18.

Chapter 19
Configuring the Mediator Interface Definition

19-18

Figure 19-18 Event Subscription Mediator in the Mediator Editor

Defining an Interface for a Mediator
After you create a Mediator without an interface definition, you must define the interface by
subscribing to events or by defining services. You can define services in the following two
ways:

• Connect the Mediator to a service through a wire in the SOA Composite Editor.

• Use the Define Service or Add Event Subscription option in the Mediator Editor.

How to Define an Interface for a Mediator
The following procedures describe how to define an interface for an existing Mediator by
subscribing to events, by defining services creating a wire in the composite, and by defining
services using the Mediator Editor.

To Subscribe to Events:
To subscribe to events, the events must be defined in an Event Definition (EDL) file.

1. Open the Mediator you want to edit in the Mediator Editor.

2. In the Routing Rules section, click Add Event Subscription.

The Subscribed Events dialog appears.

3. Click Add.

The Event Chooser dialog appears.

4. To use an existing EDL file, follow the instructions under Configuring the Mediator Interface
Definition beginning with Step 55.b.

Note:

You can alternatively create a new EDL file. Click Create EDL file to create a
new EDL file. Enter the event details in the Create Event Definition dialog that
appears.

5. Click OK.

Chapter 19
Defining an Interface for a Mediator

19-19

To Define Services for a Mediator Using a Wire:
• In the SOA Composite Editor, drag a wire from a Mediator to a service.

For more information about wires and how to wire a service component to a service, see
How to Wire a Service and a Service Component.

Note:

You can also wire a Mediator with a defined service interface to another interface.
However, to connect a Mediator to a service, the interface of the Mediator and of
the service must match.

When you define a service using a wire, the service for the Mediator is automatically
defined using the WSDL file from the wire source. For example, if you connect the
ReadFile service shown in Figure 19-19 to the CustomerDataRouter Mediator, the
CustomerDataRouter Mediator automatically inherits the service definition of the ReadFile
service.

Figure 19-19 Connecting Mediator to a Service

For information about how wiring two Mediator service components can cause an infinite
loop, see What You May Need to Know About Adding and Deleting Wires.

To Define Services for a Mediator in the Mediator Editor:
1. Display the Mediator you want to edit in the Mediator Editor.

Chapter 19
Defining an Interface for a Mediator

19-20

2. To the right of the WSDL URL field, click Define Service.

The Define Service dialog appears, as shown in Figure 19-20.

Figure 19-20 Define Service Dialog

3. Do one of the following:

• To use an existing WSDL file, click Find existing WSDLs to the right of the WSDL
URL field.

• To create a WSDL file, click Generate WSDL from schema(s) to the right of the
WSDL URL field.

For information about how to generate a WSDL file, see Generating a WSDL File.

4. From the Port Type list, select a port.

5. From the Callback Port Type list, select a port for the response message in an
asynchronous interaction.

6. Click OK.

Generating a WSDL File
You can generate the WSDL file for a message using an XML schema definition (XSD) file.
When working with Mediator, you can generate a WSDL file at either of the following times:

• When you are creating a Mediator and you select the Interface Definition from WSDL
template in the Create Mediator dialog, selecting Generate WSDL from Schema(s) next
to the WSDL URL field opens the Create WSDL dialog.

• When you have a Mediator with no interface defined and you click Define Service next to
the WSDL URL field in the Mediator Editor, selecting Generate WSDL from Schema(s)
next to the WSDL URL field opens the Create WSDL dialog.

The Create WSDL dialog populates standard fields, such as the file name, directory, and
namespace; and the dialog changes depending on the interface type you select. You can
specify the same or different schema files for the message inputs.

Chapter 19
Generating a WSDL File

19-21

How to Generate a WSDL File
The way you configure a WSDL file depends on the type of interface being defined by the
WSDL file. You can define a one-way interface, a synchronous interface, or an asynchronous
interface.

To generate a WSDL file for a one-way interface from an XSD file:
Perform these steps after the Create WSDL dialog appears when you are creating a Mediator
or when you are defining a service for a Mediator.

1. On the Create WSDL dialog, accept the default values or enter the following information for
the WSDL file:

Table 19-2 WSDL Properties

Property Description

File Name A unique name for the WSDL file.

Directory The directory where you want to store the WSDL file. By default, it is
stored in the SOA/WSDLs folder under the project folder.

Namespace A namespace address for the WSDL file; for example, http://
oracle.com/esb/namespaces/Mediator. The default
namespace is based on the JDeveloper application name, project
name, and the mediator name.

The namespace that you specify is defined as the tns namespace
in the WSDL file.

Port Type The name of the port type in the WSDL file that contains the
operation to use.

Operation The name of the action to perform; for example, executeQuery.

Note:

Spaces and special characters are not allowed in an operation name or port type.
Only alphabetic and numeric characters are supported, and the first character
cannot be a number.

2. In the Interface Type field, select One-Way Interface.

The Input field appears, as shown in Figure 19-21.

Chapter 19
Generating a WSDL File

19-22

Figure 19-21 Create WSDL Dialog for a One-Way Interface

3. To the upper right of the Input field, click Add a new message part.

The Add Message Part dialog appears, as shown in Figure 19-22.

Figure 19-22 Add Message Part Dialog

4. In the Part Name field, enter a name for the message part.

5. To the right of the URL field, click the browse for schema file icon to browse for the URL.

The Type Chooser dialog appears and contains a list of the schema files (XSD files), as
shown in Figure 19-23.

Chapter 19
Generating a WSDL File

19-23

Figure 19-23 Type Chooser Dialog

6. Expand the Type Explorer tree to locate and select the schema element to use.

If the schema you want to use is not located in the project in which you are working, you
can import a schema XSD file or WSDL file into the project using the Import Schema File
or Import WSDL icon in the upper right corner of the dialog.

After you specify a file, Oracle JDeveloper parses it to determine the defined schema
elements and displays them in a list from which you select.

7. Select the root element of the XSD file and click OK.

The Add Message Part dialog reappears with the URL and Schema Element fields
populated from the Type Chooser dialog. If you selected an XSD simple type, these fields
are replaced by a Simple Type field.

8. Click OK on the Add Message Part dialog.

The input information appears in the Input field of the Create WSDL dialog.

9. If needed, repeat the above steps to define additional message parts.

10. Click OK.

Note:

Partner link types are generally used in BPEL, so you do not need to select
Generate partnerlinkType extension for Mediator.

To generate a WSDL file for a synchronous interface from an XSD file:
Perform these steps after the Create WSDL dialog appears when you are creating a Mediator
or when you are defining a service for a Mediator.

1. On the Create WSDL dialog, enter the information for the properties listed in Table 19-2.

2. In the Interface Type field, select Synchronous Interface.

The Input, Output, and Fault fields appear, as shown in Figure 19-24.

Chapter 19
Generating a WSDL File

19-24

Figure 19-24 Create WSDL Dialog for a Synchronous Interface

3. Repeat steps 3 to 8, as in the previous procedure.

4. Repeat the same steps to define message parts for the Output and Fault fields.

The output represents the response message and is required in synchronous transactions.
Faults are optional.

5. Click OK.

Note:

Partner link types are generally used in BPEL, so you do not need to select
Generate partnerlinkType extension for Mediator.

To generate a WSDL file for an asynchronous interface from an XSD file:
Perform these steps after the Create WSDL dialog appears when you are creating a Mediator
or when you are defining a service for a Mediator.

1. On the Create WSDL dialog, enter the information for the properties listed in Table 19-2.

2. In the Interface Type field, select Asynchronous Interface.

The Input field and Callback section appear, as shown in Figure 19-25.

Chapter 19
Generating a WSDL File

19-25

Figure 19-25 Create WSDL Dialog for an Asynchronous Interface

3. Repeat steps 3 to 8, as in the earlier procedure.

4. Repeat the same steps to define the input message parts for the Callback section.

Note:

The callback input represents the response message and is required in
asynchronous transactions.

5. In the Callback section, specify the following information for the response message:

• Port Type: The name of the port type in the WSDL file that contains the operation to
use.

• Operation: The name of the action to perform; for example, executeResponse.

Note:

Spaces and special characters are not allowed in an operation name or port
type. Only alphabetic and numeric characters are supported, and the first
character cannot be a number. Both of these fields are required.

6. Click OK.

Chapter 19
Generating a WSDL File

19-26

Note:

Partner link types are generally used in BPEL, so you do not need to select
Generate partnerlinkType extension for Mediator.

Specifying Validation and Priority Properties
After creating a Mediator, you can configure properties for the operation or event subscription
specified for the component. On the Mediator Editor, you can specify whether to validate the
schemas of inbound messages and you can specify a priority for the operation or event
subscription.

To validate inbound message schemas, select the Validate Syntax (XSD) check box for an
operation or event subscription in the Routing Rules section of the Mediator Editor. The
Mediator Engine validates the XML inbound payload syntactic structure against the associated
XML schema. Any syntax error, such as an incorrect element name or location, causes a fault
and the routing rule is not processed.

To specify a priority for an Oracle Mediator component, select a value from zero to nine in the
Priority field in the Mediator Editor's Routing Rules section. This determines the order in which
messages are retrieved for all Oracle Mediator service components. This property is only valid
for parallel routing rules and not sequential. For more information about priorities, see "Basic
Principles of Parallel Routing Rules".

Modifying a Mediator Service Component
You can modify the operations or event subscriptions of a Mediator using the Mediator Editor.

How To Modify Mediator Operations
You can modify an Oracle Mediator WSDL file by adding or deleting operations. After modifying
the WSDL file, use the Refresh WSDL dialog to synchronize the changes.

To modify operations:

1. In the Mediator Editor, click the Refresh operations From WSDL icon to the right of the
WSDL URL field.

The Refresh WSDL dialog appears. If you have made any modifications to the WSDL file,
the Refresh WSDL dialog lists all the operations to delete or add. The Refresh will delete
Mediator operation field lists all the operations that have been removed from the WSDL
file. The Refresh will add Mediator operation field lists all the new operations that have
been added in the WSDL file. Figure 19-26 shows the Refresh WSDL dialog.

Chapter 19
Specifying Validation and Priority Properties

19-27

Figure 19-26 Refresh WSDL Dialog

2. To specify a different WSDL file, click Find existing WSDLs to the right of the WSDL URL
field to use an existing WSDL file or Generate WSDL From schema(s) to create a WSDL
file.

The Refresh WSDL dialog is updated based on the operations defined in the specified
WSDL file.

3. Click OK.

4. From the File menu, select Save All.

How To Modify Mediator Event Subscriptions
You can subscribe to new events, modify existing event subscriptions, and unsubscribe from
subscribed events using the Manage Event Subscriptions option in the Mediator Editor.

To modify event subscriptions:

1. In the Mediator Editor, click the Manage Event Subscriptions icon to the right of Event
Subscriptions.

The Subscribed Events dialog appears, as shown in Figure 19-27.

Figure 19-27 The Subscribed Events Dialog

Chapter 19
Modifying a Mediator Service Component

19-28

2. You can perform any of the following functions:

• Subscribe to a new event.

• Unsubscribe from an event.

• Modify or specify the filter criteria for an event.

• Modify the Consistency or Run as Roles properties of an event subscription.

For more information about the Consistency, Run as Roles, and Filter fields of an
event, see How to Configure the Mediator Interface Definition.

3. Click OK.

4. From the File menu, select Save All.

Chapter 19
Modifying a Mediator Service Component

19-29

20
Creating Oracle Mediator Routing Rules

This chapter describes Oracle Mediator routing rules and how to specify routing rules for a
Mediator service component. Routing rules include transformation, filtering, validation,
mapping, and routing logic.
This chapter includes the following sections:

• Introduction to Routing Rules

• Resequencing Rules

• Defining Routing Rules

For additional information about defining routing rules for specific scenarios, see:

• Working with Multiple Part Messages in Oracle Mediator

• Using Error Handling

• Resequencing in Oracle Mediator

Introduction to Routing Rules
Routing rules are mediation logic or execution logic that you define to achieve the requisite
mediation. Mediator lets you route data between service consumers and service providers. As
the data flows from service to service, it must be transformed. These two tasks, routing and
transformation, are the core responsibilities of Mediator. You can use routing rules to specify
how a message processed by a Mediator reaches its next destination. Routing rules specify
where a Mediator sends the message, how it sends the message, and what changes should
be made to the message structure before sending it to the target service.

A routing rule can be triggered either by a service operation or an event subscription. The
service operation can be synchronous, asynchronous, or one-way. Routing rules can be of the
following two types:

• Static Routing Rules

Static rules do not change depending on the invocation context and are applied
consistently.

• Dynamic Routing Rules

Dynamic rules let you externalize the routing logic to an Oracle Rules Dictionary, which in
turn enables dynamic modification of the routing logic.

For more information about creating routing rules, see How to Create Static Routing Rules and
How to Create Dynamic Routing Rules. For information about standard message exchange
patterns and how they are handled by Mediator, see Understanding Message Exchange
Patterns of an Oracle Mediator.

Static Routing Rules
A static routing rule is not expected to change depending on the invocation context. In this
case, the routing can be an echo, a routing to another service, or a publishing of an event.

20-1

When you define static rules, you can specify the following types of information:

• Target Service

Mediator sends messages to the target service you specify. This service can either be
defined as a WSDL interface or a Java interface. For information about invoking a target
service, see How to Specify Mediator Services or Events.

• Execution Type

Mediator executes routing rules either sequentially (that is, running in the same thread) or
in parallel (running on different threads). For information about specifying an execution
type, see How to Specify Sequential or Parallel Execution.

Note:

For synchronous service invocations, the routing rule should always be
sequential.

• Reply, Callback, and Fault Handlers

You can define how Mediator handles synchronous reply, callback, and fault messages.
For information about handlers, see How to Configure Response Messages, How to
Handle Faults, and Static Routing Rule Components.

Types of Static Rules
You can define the following types of static rules for a Mediator:

• Filter Expression

You can define a filter expression that is applied to the message content (payload or
headers). When you define a filter, the contents are analyzed before any service is
invoked. For example, you might apply a filter expression that specifies that a service be
invoked only if the message includes a customer ID, or if the value for that customer ID
matches a certain pattern. For information about specifying filter expressions, see How to
Specify an Expression for Filtering Messages.

• Transformations

Mediator can transform message data before forwarding the message to a service. You
can define transformations to set a value on the target payload by mapping data or by
assigning values.

The XSLT Mapper lets you define transformations that apply to the whole message body to
convert messages from one XML schema to another. The Assign Values function works on
individual fields. Using this dialog, you can assign values from the message (for example,
payload and headers), from a constant, or from various system properties, such as the
properties of an adapter present in the data path. For information about defining
transformations, see How to Create XSLT Transformations and How to Assign Values.

• Accessing Header Variables from Expressions

Mediator can detect any SOAP headers that are used in building the expression for the
current routing rule operation. For information about accessing headers, see How to
Access Headers for Filters and Assignments and Manual Expression Building for
Accessing Properties for Filters and Assignments.

• Schematron-Based Validations

Chapter 20
Introduction to Routing Rules

20-2

You can specify the Schematron files that Mediator should use to validate different parts of
an inbound message. For information about performing Schematron-based validations,
see How to Use Semantic Validation.

• Java Callouts

Mediator lets you add Java callouts to the routing rules. Java callouts enable you to use
external Java classes to manipulate messages flowing through the Mediator. For
information about using Java callouts, see How to Use Java Callouts.

• User-defined Extension Functions

These are your own set of functions that can be used by the XSLT Mapper. For information
about using user-defined extension functions, see "To add user-defined extension
functions:".

Static Routing Rule Components
Static routing rules define the following components:

• Request Handler: Defines how Mediator handles incoming requests.

• Reply Handler: Defines how the synchronous response from the called service is handled
by Mediator.

• Fault Handler: Defines how the named or declared faults from the called service are
handled by Mediator.

• Callback Handler: Defines how the asynchronous response and callback from the called
service are handled by Mediator.

• Timeout Handler in Callback: Defines how long Mediator waits for the asynchronous
response and callback before performing timeout handling for the particular asynchronous
request.

• Event Publishing and Service Invocation: Calls other services or publishes an event
depending on the configuration of the handlers.

Dynamic Routing Rules
A dynamic routing rule lets you externalize the routing logic to an Oracle Rules Dictionary or
Domain Value Map (DVM), which in turn enables dynamic modification of the routing logic in a
routing rule. Dynamic routing enables you to dynamically route messages at runtime from a
mediator to multiple target services, based on the message content.

Dynamic routing rules are described in more detail in How to Create Dynamic Routing Rules.

Sequential and Parallel Execution
Routing rules can be executed sequentially or in parallel. This section describes the basic
principles of both types of execution. If an operation or event has both sequential and parallel
routing rules, first sequential routing rules are evaluated and actions are performed, and then
parallel routings are queued for parallel execution.

Chapter 20
Introduction to Routing Rules

20-3

Note:

If a Mediator service component with a request-response interface has only parallel
routing rules, the Mediator service component does not send a response back to the
caller. Though you can create this type of Mediator service component, the caller of
the Mediator service component does not receive a response at runtime.

Basic Principles of Sequential Routing Rules
Mediator processes sequential routing rules based on the following principles:

• Mediator evaluates routings and performs the resulting actions sequentially. Sequential
routings are evaluated in the same thread and transaction as the caller.

• Mediator always enlists itself into the global transaction propagated through the thread that
is processing the incoming message. For example, if an inbound JCA adapter invokes a
Mediator, the Mediator enlists itself with the transaction that the JCA adapter has initiated.

• Mediator propagates the transaction through the same thread as the target components
while executing the sequential routing rules.

• Mediator never commits or rolls back transactions propagated by external entities.

• Mediator manages the transaction only if the thread-invoking Mediator does not already
have an active transaction. For example, if Mediator is invoked from inbound SOAP
services, Mediator starts a transaction and commits or rolls back the transaction depending
on success and failure.

Basic Principles of Parallel Routing Rules
Mediator processes routing rules in parallel based on the following principles:

• Mediator queues and evaluates routings in parallel in different threads.

The messages of each Mediator service component are retrieved in a weighted, round-
robin fashion to ensure that all Mediator service components receive parallel processing
cycles. This is true even if one or more Mediator service components produce a higher
number of messages compared to other components. The weight used is the message
priority set when designing a Mediator service component. Higher numbers of parallel
processing cycles are allocated to the components that have higher message priority.

You can set the Priority field in the Mediator Editor to indicate the priority of a Mediator
service component. Priorities can range from zero to nine, with nine being the highest
priority. The default priority is four.

Note:

The Priority property is applicable only to parallel routing rules.

• Mediator initiates a new transaction for processing each parallel rule. The initiated
transaction ends with an enqueue to the Mediator parallel message dehydration store.

For example, if a Mediator service component has one parallel routing rule, one message
is enqueued on the Mediator parallel message dehydration store. The parallel message
dispatcher to the store then initiates a transaction, reads the message from the database

Chapter 20
Introduction to Routing Rules

20-4

store, and invokes the target component or service of this routing rule. The transaction
initiated by the listener thread is a completely new transaction and is propagated to the
target components.

Note:

Dehydrating of messages means storing the incoming messages in a database
for parallel routing rules so they can be processed later by worker threads.

• Mediator commits or rolls back transactions because it is the initiator of these transactions.

Finer Control Over Thread Allocation in Parallel Routing
You can specify dedicated work managers to handle parallel routing and error handling
messages for a mediator component. You can use the Oracle WebLogic Remote Console to
configure work managers. See Viewing and Configuring Work Manager Properties in
Administering Oracle SOA Suite and Oracle Business Process Management Suite for more
details on configuring work managers.

Use the NameWorkManagerMappings Mediator service engine property to specify the mediator
component and its associated work managers in Oracle Enterprise Manager Fusion
Middleware Control. See Configuring Oracle Mediator Service Engine Propertiesin
Administering Oracle SOA Suite and Oracle Business Process Management Suite for more
details on configuring Mediator runtime properties.

The NameWorkManagerMappings property has the following keys:

• parallelRoutingWorkManagerName: The name of the work manager configured for parallel
routing. If this is not specified, the default SOA work manager is used.

• fullyQualifiedComponentDistinguishedName: The fully qualified distinguished name of
the mediator component. The format to be used is PartitionName/CompositeName!
Revision/ComponentName. For example, soaInfra/MyProject!1.0/Mediator1.

Resequencing Rules
Mediator includes a resequencer, which rearranges streams of related but out-of-sequence
messages into their sequential order based on the type of resequencer used and the rules you
define. When incoming messages arrive in a random order, the resequencer orders the
messages based on sequential or chronological information, and then sends the messages to
the target services in the correct order based on the resequencing configuration.

For more information about resequencing messages, see Resequencing in Oracle Mediator.

Defining Routing Rules
Routing rules can only be defined for a Mediator with a defined interface. For more information
on how to define an interface, see How to Define an Interface for a Mediator .

How To Access the Routing Rules Section
You define the routing rules in the Routing Rules section of the Mediator Editor.

Figure 20-1 shows the Routing Rules section of the Mediator Editor.

Chapter 20
Resequencing Rules

20-5

Figure 20-1 Mediator Editor- Routing Rules Section

Figure 20-2 lists and describes the icons in the Routing Rules section.

Figure 20-2 Routing Rule Section Icons

You can access the Routing Rules section of the Mediator Editor using one of the following
methods:

From the SOA Composite Editor:
1. Double-click the icon that represents the Mediator for which you want to specify the routing

rules.

Chapter 20
Defining Routing Rules

20-6

2. If the Routing Rules section is not visible, click the Plus (+) icon next to Routing Rules.

From the Applications window:
1. In the Applications window, expand the SOA project and then expand the SOA Content

folder.

2. In the SOA Content folder, double-click the name of the Mediator file in which you want to
specify the routing rules.

The Mediator file has an MPLAN extension.

3. If the Routing Rules section is not visible, click the Plus (+) icon next to Routing Rules.

How to Create Static Routing Rules
The following topics provide information and instructions for defining static routing rules for
Mediator, including specifying the services and events, defining handlers, transformations,
expressions, filters, and so on.

How to Specify Mediator Services or Events
After creating a Mediator component, you associate it with inbound service operations or event
subscriptions and with outbound targets. Targets are outbound service operations or event
publishing. A target specifies the next service or event to which a Mediator sends messages
and also specifies which service operation to invoke. You can specify a service or an event as
a target type.

You can also echo source messages back to the initial caller after any transformation,
validations, assignments, or sequencing operations are performed. An echo can only be
specified if the Mediator component has a synchronous or asynchronous interface. Whether
the echo is synchronous or asynchronous depends on the WSDL file of the caller. The echo
option is only available for inbound service operations and is not available for event
subscriptions.

The purpose of the echo option is to expose all the Mediator functionality as a callable service
without having to route it to any other service. For example, you can call a Mediator to perform
a transformation, a validation, or an assignment, and then echo the Mediator back to your
application without routing it anywhere else.

You can specify multiple routings for an inbound operation or event. Each routing is mapped to
one target service invocation or event. Therefore, to specify multiple service invocations or
raise multiple events, you must specify one routing rule for each target. For example, you can
invoke an operation based on a message payload from the following operations defined in a
service:

• insert

• update

• updateid

• delete

To do this action, you must create four routing rules, one for each operation. Later, when you
specify a filter expression for each rule, you can specify which target and operation is applied
to each message instance based on the message payload, as shown in Figure 20-3.

Chapter 20
Defining Routing Rules

20-7

Figure 20-3 Multiple Routings for an Inbound Operation

To invoke a service:

To perform this step, the target service must be defined in a WSDL document or a Java
interface.

1. In the Routing Rules section, click Add next to the operation for which you are defining
routing rules, and then select static routing rule.

The Target Type dialog appears, as shown in Figure 20-4.

Figure 20-4 Target Type Dialog

Chapter 20
Defining Routing Rules

20-8

2. Click Service.

The Target Services dialog appears, as shown in Figure 20-5.

Figure 20-5 Target Services Dialog

3. In the Target Services dialog, navigate to and then select an operation provided by a
service.

Note:

You can select a service defined by a WSDL file or a Java interface. A service
can consist of multiple operations, as shown in Figure 20-5.

4. Click OK.

5. If you selected a target service defined by a Java interface, the Interface Required dialog
appears. Click Yes to create the required WSDL file, and then click OK on the confirmation
dialog.

A new Static Routing section appears where you can define the routing rule.

6. Configure the routing rule as described the remaining sections of this chapter.

To trigger an event:

1. In the Routing Rules section, click Add next to the operation for which you are defining
routing rules, and then select static routing rule.

The Target Type dialog appears, as shown in Figure 20-4.

Chapter 20
Defining Routing Rules

20-9

2. Click Event.

The Event Chooser dialog appears.

3. To the right of the Event Definition field, click Search.

The SOA Resource Browser dialog appears.

4. Select an event (.edl) file and click OK.

The Event field is populated with the events defined in the selected file, as shown in
Figure 20-6.

Figure 20-6 Event Chooser Dialog

Note:

Instead of browsing for an existing event definition file, you can create a new file
by clicking Create new event definition (edl) file and completing the fields in
the Create Event Definition File dialog.

5. Select an event.

6. Click OK.

A new Static Routing section appears where you can define the routing rule.

7. Configure the routing rule as described the remaining sections of this chapter.

To echo a service:

1. In the Routing Rules section, click Add next to the operation for which you are defining
routing rules, and then select static routing rule.

The Target Type dialog is displayed, as shown in Figure 20-7.

Chapter 20
Defining Routing Rules

20-10

Figure 20-7 Target Type Dialog

2. Click Echo.

Note:

The Echo button only appears on the Target Type dialog if the interface is
synchronous or asynchronous.

Figure 20-8 shows a routing rule with a synchronous echo. An asynchronous echo has an
icon with a dotted line on the return.

Figure 20-8 Sample Mediator Supporting Echo Operation

What You May Need to Know About Echoing a Service
The echo option has the following limitations:

• Echoing a service is supported only with Mediator interfaces having the following types of
WSDL files:

– Request/reply

– Request/reply/fault

– Request/callback

Note:

The echo option is not available for Mediator interfaces having request/reply/
fault/callback WSDL files or for one-way WSDL files.

• The echo option is available for synchronous operations such as request/reply and
request/reply/fault.

Chapter 20
Defining Routing Rules

20-11

Note:

The echo option is only available for synchronous operations when the routing
rule is sequential because parallel routing rules are not supported for Mediators
with synchronous operations.

• For synchronous operations with a conditional filter, the echo option does not return a
response to the caller when the filter condition is set to false. Instead, it returns a null
response.

• The echo option is available for asynchronous operations only if the Mediator interface has
a callback operation. In this case, the echo is run on a separate thread.

Note:

The asynchronous echo option is available only when the routing rule is parallel.
If you use the echo option, then sequential routing rules are not supported for
Mediators with asynchronous operations.

How to Specify Sequential or Parallel Execution
A routing rule can be executed either in parallel or sequentially. To specify an execution type
for a routing rule, select the Sequential or Parallel execution type in the Routing Rules
section.

How to Configure Response Messages
In the Mediator routing rules, you can specify how to handle the response messages in
synchronous and asynchronous interactions. For synchronous interactions, you can specify the
transformations and assignments for the response and the fault message. You can forward the
response and the fault message to another service or event, or you can send them back to the
initial caller, if the initial caller is expecting responses and faults.

For asynchronous interactions, you can specify transformations and assignments, and a
timeout period for receiving the response. The timeout period can be specified in seconds,
hours, days, months, or years. By default, the timeout period is infinite. If a callback response
does not come within the specified timeout period, a timeout response can be forwarded to
another service, to another event, or back to the initial caller.

You cannot route a Mediator response to a two-way service. If you want to route a response to
a two-way service, you should use a one-way Mediator between the first Mediator and the two-
way service. The response should first be forwarded to the one-way Mediator, which in turn
should call the two-way service.

Chapter 20
Defining Routing Rules

20-12

Note:

• Zero is an unsupported value to be specified as a timeout period.

• If the callback is received and processing of the callback fails, by default the
timeout handler is invoked for processing the action specified in the timeout
handler.

• Typically, the caller receives the callback after waiting for 100 milliseconds.
However, if you have a bridge Mediator with a sequential routing rule and a
connection to a synchronous interface service, then due to the complex flow of
the program with all sequential routing rules, the caller may take longer to get
ready to receive the callback. You can work around this issue by changing the
routing rule of the bridge Mediator to parallel.

To specify a timeout period for asynchronous processing:

The following steps are performed in the Routing Rules section of the Mediator Editor.

1. Next to the <<Target Operation>> field by the Timeout in field in the Callback section,
click the Browse for target service operation icon.

The Target Type dialog appears.

2. Select Service, Event, or Initial Caller.

If you selected Service or Event, the Target Service or the Event Chooser appears
depending on your selection.

3. Select an event or service.

4. Click OK

5. In the Timeout in field, enter the number of units for the timeout period, and then select
the unit of time from the dropdown list.

The timeout response is forwarded to the specified service or event.

Note:

If the number of routing rules is larger and the time taken to execute the routing rules
exceeds the transaction timeout, you must set the transaction timeout to a value that
is greater than the time taken to execute all the routing rules.

How to Handle Premature Callbacks
Callback messages might arrive before the initiating transaction is completed. In this case,
correlation in Mediator fails. If you have an issue with premature callbacks, you can use the
oracle.tip.mediator.callback.correlationWaitDuratino_in_seconds property to set a
time period in seconds for which the callback thread waits before retrying the callback.

You define the property in the composite.xml file in the component element that defines the
Mediator component. In the example shown below, the wait time before retrying is 15 seconds.

Chapter 20
Defining Routing Rules

20-13

<component name="Mediator1">
 <implementation.mediator src="Mediator1.mplan"/>
 <property name="oracle.tip.mediator.callback.correlationWaitDuration_in_
 seconds">15</property>
</component>

How to Handle Multiple Callbacks
A single Mediator cannot handle multiple callbacks. If you have a composite application with a
Mediator that receives multiple callbacks, the behavior of the composite application is
undetermined. For example, in the scenario shown in Figure 20-9, AsyncMediator forwards
the callback response from AsyncEchoMediator1 and AsyncEchoMediator2 to
FileInMediator. In such a flow, the AsyncMediator might return the callback from both
AsyncEchoMediator1 and AsyncEchoMediator2, or from either one of them. The exact
behavior is random and unpredictable.

Figure 20-9 Sample Mediator Handling Multiple Callback

How to Handle Faults
If you create a new routing rule in which the target service operation has one or more faults,
you still see a single fault routing section in the Mediator Editor. If the source Mediator service
component supports one or more faults, then the fault is routed back to the caller by default.
You can choose the source and target fault names to be routed. You can also use the service
browser to route the fault to another target.

To define an additional fault routing:

The following steps are performed in the Routing Rules section of the Mediator Editor.

1. In the Faults section, click the Add another fault routing button shown in Figure 20-10.

Chapter 20
Defining Routing Rules

20-14

Figure 20-10 Adding a Second Fault

Another fault section appears in the routing rule box.

2. Configure the target service, transformations, and assign values for the new fault.

Figure 20-11 shows a second fault being routed to a file adapter service.

Figure 20-11 Second Fault Added to Routing Rules

Chapter 20
Defining Routing Rules

20-15

Note:

You can route the same fault to multiple targets using different transformations.

To remove a fault routing section:

The following steps are performed in the Routing Rules section of the Mediator Editor.

• Highlight the fault routing you want to remove by clicking in the target service field, and
then click Delete the selected fault routing, as shown in Figure 20-12.

Figure 20-12 Deleting a Fault Routing

How to Specify an Expression for Filtering Messages
The filter expression routing rule lets you filter messages based on their payload. If the filter
expression for a given message instance evaluates to true, the message is delivered to the
target service or event specified within the routing rule.

For example, you route your data to customers in two different countries, such as US and
Canada, but you only want notices regarding the MOBILE product line to be sent to US

Chapter 20
Defining Routing Rules

20-16

customers and the LANDLINE product line to customers in Canada. To implement this routing,
you must define a routing rule for each component and operation pair that sends messages to
the target customers. In addition, you specify filter expressions for the routing rules that send
messages to the customers in the US or Canada.

You can also define filter expression message properties or message headers.

Filter Expression Message Properties

Two examples of filter expression message properties are shown below:

$in.property.custom.Priority = '1'

$in.property.tracking.ecid = '2'

Filter Expression Message Headers

Two examples of filter expression message headers are shown below:

$in.header.wsse_Security/wsse:Security/Priority = '234'

$in.header.wsse_Security/wsse:Security/Priority = '234'

For the preceding filter expression message headers to work, you must add the attribute
shown in the following example to the root element of the .mplan file.

wsse = "http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-
 secext-1.0.xsd"

To specify an expression for filtering messages:

You can use the Expression Builder to graphically create a filter expression. The Expression
Builder dialog contains the components and controls that assist you in designing a filter
expression.

1. To the right of the Filter Expression field in the Routing Rules section, click the Invoke
Expression Builder icon.

The Expression Builder dialog appears, as shown in Figure 20-13.

Chapter 20
Defining Routing Rules

20-17

Figure 20-13 Expression Builder Dialog

2. Double-click a value in the Variables field or the Functions palette to add the value to the
Expression field. Using a combination of variable elements, functions, and manually
entered text, you can build an expression by which you want message payloads to be
filtered for a given routing rule.

The following table describes each of the fields in the Expression Builder dialog:

Table 20-1 Expression Builder Fields

Field Description

Expression This field contains the actual expression used to filter messages.
You can enter the filter expression either manually or by using the
Variable field and the Functions palette.

Using the icons on the upper right side of this field, you can undo
the last edit made, redo the last edit made, or clear the entire
Expression field.

Variables This field contains the message defined for a Mediator component.
Oracle JDeveloper parses the Mediator WSDL file and presents the
message definition in the Variables field. The input message is
stored in the $in variable, and you can use the $in.properties to
access the properties of an input message.

If the input message consists of multiple parts, use $in.partname
to access a part of an input message.

Functions Palette This list provides a list of functions that you can include in an
expression. When you select a function, a preview of how that
function appears when added to the Expression field appears in
the Content Preview field, and a description of the function
appears in the Description field.

Chapter 20
Defining Routing Rules

20-18

Table 20-1 (Cont.) Expression Builder Fields

Field Description

Content Preview This field indicates how a value selected from the Variables field or
Functions palette appears when it is inserted into the Expression
field.

Description This field describes the value selected from the Variables field or
Functions Palette.

To specify a filter expression on a message payload:

1. To the right of the Filter Expression field in the Routing Rules section, click the Invoke
Expression Builder icon.

The Expression Builder dialog is displayed.

2. In the Variables field, expand the message definition and select the message element on
which you want to base the expression.

For example, the CustomerId element is shown selected in Figure 20-14.

Figure 20-14 Expression Builder Dialog – Variables Element Selected

3. Click Insert Into Expression.

The expression is added in the Expression field, as shown in Figure 20-15.

Chapter 20
Defining Routing Rules

20-19

Figure 20-15 Expression Builder Dialog – Variables Element Inserted

4. From the Functions list, select the function to apply to the message payload. For example,
equals.

Functions are grouped in categories that are listed when you click the down arrow in the
Functions list. For example, if you click the down arrow and select Logical Functions,
the list appears as shown in Figure 20-15.

5. Click Insert Into Expression.

The XPath expression for the selected function is inserted into the Expression field.

6. Complete the expression.

In this example, the Customer ID must equal1001 to evaluate to true, as shown in
Figure 20-16.

Chapter 20
Defining Routing Rules

20-20

Figure 20-16 Sample Expression Builder Dialog – Value Entered

7. If there are any errors, you can edit the expression manually, or use the expression editing
icons, which are summarized in Figure 20-17.

Figure 20-17 Expression Editing Icons

8. Click OK.

The expression is added to the Routing Rules section.

To modify or delete a filter expression, double-click the Add Filter Expression icon, and then
modify or delete the expression in the Expression field of the Expression Builder.

How to Translate Between Native XSD Formats and XML Formats
Mediator enables you to translate native format data into XML data, for inbound data, and XML
data into native format data for outbound translations. So, for example, you can use inbound
translation to convert an incoming comma-delimited native data file into an XML data file. You
can use outbound translation to convert XML data into native data format for a target service.

Mediator provides the following translation features:

• Inbound Translation: Converts inbound data from native data format to XML. Inbound
translation is configured at the operation level. The translated data is available for
transform and assign operations.

Chapter 20
Defining Routing Rules

20-21

• Outbound Translation: Converts outbound data from XML to native data format. Outbound
translation can be configured for each routing rule. The native data is then routed to the
target service.

• Translate and Route Only: Translates inbound data from native data format to XML, and
routes it to the target service. An outbound WSDL file is created for the target service. This
feature is only supported for mediators that have a one-way (no response) operation.

How to Use Inbound Translation
This section demonstrates using inbound translation. Figure 20-18 shows a mediator
(Mediator1) connected to an inbound web service. The mediator receives a native string from
the inbound web service, and uses inbound translation to convert the native string into XML.

Figure 20-18 Mediator Receiving Inbound Data

To translate inbound data from native XSD to XML format:

1. Right-click the mediator (Mediator1), and select Edit.

2. Under the Operations section, click the icon to the right of the Translate From Native field.
Figure 20-19 shows the Operations section for Mediator1.

Chapter 20
Defining Routing Rules

20-22

Figure 20-19 Translate From Native Option

3. In the Add Translation dialog box that appears, click the icon to the right of the Input field.
The Expression Builder dialog appears.

4. Double-click the input string in the Variables tree. Wrap (cast) the input string that appears
in the Expression field with the string() function. Figure 20-20 shows the Expression
Builder dialog with the completed input string. Click OK.

Chapter 20
Defining Routing Rules

20-23

Figure 20-20 Completed Input String in Expression Builder

5. To the right of the NXSD Schema field, select the Search icon to invoke the Type Chooser
dialog for selecting the schema. If the schema does not exist, you can click the second
icon to create the schema.

6. Select the schema, and click OK. The Element field is populated from the selected
schema. The Output field is populated with an intermediate output variable created by
Mediator. This variable must be in the format translateFromNative.out.some_name.
Figure 20-21 shows the completed Add Translation dialog.

Figure 20-21 Add Translation Dialog

Chapter 20
Defining Routing Rules

20-24

7. Click OK. The Translate From Native field is populated.

How to Use Outbound Translation
This section demonstrates using outbound translation. Figure 20-22 shows a mediator
(Mediator1) connected to a BPEL process. The mediator uses outbound translation to convert
XML data into native string, and routes this string to the BPEL process.

Figure 20-22 Mediator Sending Outbound Data

To translate outbound data from XML to native XSD format:

1. Right-click the mediator (Mediator1), and select Edit.

2. Under the routing rule that routes data from the mediator to the BPEL process (target
service), click the icon to the right of the Translate To Native field. Figure 20-23 shows the
routing rule section for Mediator1.

Figure 20-23 Translate To Native Option

3. In the Add Translation dialog box that appears, optionally edit the default input variable in
the Input field. The Input field is populated with an intermediate input variable created by
Mediator. This variable must be in the format translateToNative.in.some_name.

Note:

You can later assign a value to the intermediate input variable using the Assign
or Transform action of the associated routing rule.

Chapter 20
Defining Routing Rules

20-25

Figure 20-24 shows the Add Translation dialog box.

Figure 20-24 Add Translation Dialog

4. To the right of the NXSD Schema field, select the Search icon to invoke the Type Chooser
dialog for selecting the schema. If the schema does not exist, you can click the second
icon to create the schema.

5. Select the schema, and click OK. The Element field is populated from the selected
schema.

6. Click the icon to the right of the Output field. The Expression Builder dialog appears.

7. Double-click the output string in the Variables tree. Click OK.

Figure 20-25 Completed Output String in Expression Builder

Chapter 20
Defining Routing Rules

20-26

8. Click OK in the Add Translation dialog box.

How to Create XSLT Transformations
Oracle JDeveloper provides an XSLT Mapper that lets you specify a mapper file (XSL file) to
transform data from one XML schema (expressed as an XSD file) to another. The XSLT
Mapper enables data interchange among applications using different schemas. For example,
you can map an incoming purchase order schema to an outgoing invoice schema. After you
define an XSL file, you can reuse it in multiple routing rule specifications.

To create a transformation:

1. In the Routing Rules section, click the Select an existing mapper file or create a new
one icon to the right of the Transform Using field. The Request Transformation Map
dialog appears.

2. Do one of the following:

• If the XSLT map file (.xsl) exists, click Browse to find and select the XSLT file to use.
Click OK.

• If you are creating a new XSLT map file, click the Create Mapping icon. The Create
Transformation Map dialog appears.

3. In the Create Transformation Map dialog, select XSLT under Type.

4. Edit the XSLT File Name, as appropriate.

5. Edit the XSLT Directory, as appropriate. The default directory is the SOA_Project/SOA/
Transformations directory. Click Browse to browse and select the directory.

6. Repeat the above steps for any synchronous reply, callback, response, or fault messages.

In case of synchronous reply or fault message, the Reply Transformation Map dialog or the
Fault Transformation Map dialog contains an Include Request in the Reply Payload
option, as shown in Figure 20-26.

Figure 20-26 Reply Transformation Map Dialog

7. To create an $initial variable that contains the original message of a synchronous
interaction, select the Include Request in the Reply Payload option.

The variable is created, as shown in Figure 20-27.

Chapter 20
Defining Routing Rules

20-27

Figure 20-27 Initial Variable in XSL File

Note:

An initial message can also consist of multiple parts. Use $initial.partname to
access a part of the initial message. If the parts of the inbound and outbound
messages are identical, then no transformation is required for data interchange.

For information about the XSLT Mapper, see Creating Transformations with the XSLT Map
Editor .

To add user-defined extension functions:

You can use the Expression Builder to include user-defined extension functions.

1. Create an XPath function.

2. Register the Jaxen XPath function with a Mediator service component in the xpath-
function.xml file on the server.

3. Start Oracle JDeveloper.

4. Use the Expression Builder to customize the expression.

5. Deploy the Oracle JDeveloper project to Oracle WebLogic Server.

6. Copy the JAR file containing the user-defined extension functions to the $BEAHOME/
user_projects/domains/soainfra/autodeploy/soa-infra/APP-INF/lib directory.

7. Modify the .mplan file of the project as follows:

• Add the function namespace you defined for the extension functions under the
Mediator element.

• Add the function names under the Expression element.

This is shown in Figure 20-28.

Chapter 20
Defining Routing Rules

20-28

Figure 20-28 Project .mplan file – Modified to Use User-Defined Extension Functions

8. Invoke the test page with a suitable payload.

How to Create XQuery Transformations
Oracle Mediator supports XQuery transformations from one XML schema to another. The
XQuery 1.0 specification is supported.

To create an XQuery transformation:
1. In the Routing Rules section, click the Select an existing mapper file or create a new

one icon to the right of the Transform Using field. The Request Transformation Map
dialog appears.

2. Do one of the following:

• If the XQuery map file (.xqy) exists, click Browse to find and select the XQuery file to
use. Click OK.

• If you are creating a new XQuery map file, click the Create Mapping icon. The Create
Transformation Map dialog appears.

3. In the Create Transformation Map dialog, select XQuery under Type.

Figure 20-29 shows the Create Transformation Map dialog.

Chapter 20
Defining Routing Rules

20-29

Figure 20-29 Create Transformation Map Dialog

4. Edit the XQuery File Name, as appropriate.

5. Edit the XQuery Directory, as appropriate. The default directory is the SOA_Project/SOA/
Transformations directory. Click Browse to browse and select the directory.

6. Under the External Variables section, you can define the external variables for the XQuery.
Click Add Variable to add a new external variable. The Add External Variable dialog
appears.

Note:

External variables are automatically created for implicit mediator variables that
are available as transformation input. For example, the mediator input request
in.request automatically has an external variable for it.

Figure 20-30 shows the Add External Variable dialog.

Chapter 20
Defining Routing Rules

20-30

Figure 20-30 Add External Variable Dialog

7. Specify a Name, Schema, and schema Element for the external variable.

8. Under From, choose how to map the value for the external variable. Select from one of the
following:

• Property: Lists the properties that you can select from.

• Expression: Enables you to build an expression using mediator implicit variables,
properties, and a list of functions that you can use in the expression. You can click the
Invoke Expression Builder icon to launch the expression builder.

See How to Specify an Expression for Filtering Messages and Building XPath
Expressions in the Expression Builder in for more information about working with the
expression builder.

• Constant: Enables you to specify a literal value for the external variable.

• XML Fragment: Enables you to specify XML data for the external variable.

9. Click OK in the Add External Variable dialog to add the external variable. The Create
Transformation Map dialog is populated with the external variable.

Note:

To edit an external variable, select it from the list and click Update Variable.

To delete an external variable, select it from the list and click Delete Variable.

10. Click OK in the Create Transformation Map dialog. The Request Transformation Map
dialog appears, and it is populated with the Mapper File name and the external variables
defined.

Figure 20-31 shows the Request Transformation Map dialog.

Chapter 20
Defining Routing Rules

20-31

Figure 20-31 Request Transformation Map Dialog

11. Click OK in the Request Transformation Map dialog. The transformation action details are
added to the mediator mplan file.

To edit an XQuery transformation:
1. In the Routing Rules section, click the Select an existing mapper file or create a new

one icon to the right of the Transform Using field. The Request Transformation Map
dialog appears.

Note:

You cannot add or delete external variables from an existing XQuery (.xqy) map.
However, you can select a variable and click Update Variable to modify the
expression or value associated with the external variable.

2. Click the Edit Mapping icon to the right of the Mapper File field. The XQuery map opens in
the XQuery Mapper.

3. See Creating Transformations with the XQuery Mapper for more information on using the
XQuery Mapper.

How to Assign Values
You can use the Assign Values field to propagate the headers, payload, and properties of a
message from source to target. Figure 20-32 shows the Assign Values dialog that is displayed
when you click the Assign Values icon in the Routing Rules section.

Chapter 20
Defining Routing Rules

20-32

Figure 20-32 Assign Values Dialog

The left hand pane of the Assign Values dialog contains the source variables and the right
hand pane shows the target variables. You can copy values from source variables to target
variables. You can also create complex expressions and assign them to target variables. You
can also assign literals (constants or XML fragments) to target variables.

The bottom pane of the Assign Values dialog shows the assignments you have created. You
can select and edit any assignment.

To copy a source node to a target node:
1. Expand the source tree in the left pane by clicking the plus sign (+) next to a source node.

Similarly expand the target tree in the right pane.

2. Use one of the following methods to copy a source variable to a target variable:

• Drag the desired source node to the target node. A line appears connecting the source
and target nodes. The assignment also appears in the bottom pane. Figure 20-33
shows the Assign Values dialog after copying a source node to a target node.

• Select the source node in the left pane and the target node in the right pane. Click the
Create rule from selected nodes icon (green plus icon) above the bottom pane to
create an assignment.

Chapter 20
Defining Routing Rules

20-33

Figure 20-33 Copying Source Variables to Target Variables

3. Click OK to create the assignment.

To assign complex expressions:
1. Drag the Assign Source Expression icon from the top right hand corner to the target

node or the canvas (center pane). The Expression Builder appears.

2. Create an expression using the available source variables and functions.

Optionally click Help for more information about the Expression Builder dialog.

3. Click OK to close the Expression Builder.

4. If you had dragged the expression to the canvas or center pane in Step 1, drag the
expression icon in the canvas to the desired target node. This maps the expression to the
target variable.

Note:

To edit the assignment, right-click the assignment in the bottom pane. Select Edit
Source Expression or Edit Target Expression to edit the source and target
respectively.

5. Click OK to create the assignment.

To assign constant values and XML fragments:
1. Drag the Assign Source Literal icon from the top right hand corner to the target node or

the canvas (center pane). The Assign Source Literal dialog appears.

Chapter 20
Defining Routing Rules

20-34

2. Enter the constant value or XML Fragment to be assigned.

3. Select Literal is XML Fragment if your constant value is valid XML.

4. Click OK.

5. If you had dragged the source literal to the canvas or center pane in Step 1, drag the
source literal icon in the canvas to the desired target node. This maps the source literal to
the target variable.

Note:

• When you assign values to a particular Mediator property during event
publishing, the assigned value does not get propagated to the subscribing event.

You can work around this issue by using transformations to include the property
as part of the event body.

• You cannot assign values to the jca.db.userName and jca.db.password
properties on Oracle WebLogic Server because their data sources do not support
setting the user name or password dynamically to the getConnection method.

Table 20-2 through Table 20-4 list the various possibilities of assignment on constants and
properties, payloads, and headers of a message from source to target.

Table 20-2 Possibilities on Constants and Properties

Source Target Example

Property Property <copy expression="$in.property.jca.file.FileName"
target="$out.property.jca.file.FileName"/>

Constant Property <copy value="ConstantNameAssigned.xml"
target="$out.property.jca.file.FileName"/>

Table 20-3 Possibilities on Payload

Source Target Example

XPath Expression Property <copy
expression="concat('ExprPropMed','-',oraext:gener
ate-guid())"
target="$out.property.jca.file.FileName"
xmlns:oraext="http://www.oracle.com/XSL/
Transform/java/
oracle.tip.pc.services.functions.ExtFunc"/>

XPath Expression
(below part level)

Property <copy expression="$in.body/imp1:request/
ProductReq/Make"
target="$out.property.jca.file.FileName"
xmlns:imp1="http://xmlns.oracle.com/psft"/>

Property XPath Expression
(below part level)

<copy value="$in.property.jca.file.FileName"
target="$out.request/inp1:request/ProductReq/
Model" xmlns:inp1="http://xmlns.oracle.com/
psft"/>

Chapter 20
Defining Routing Rules

20-35

Table 20-3 (Cont.) Possibilities on Payload

Source Target Example

Constant XPath Expression
(below part level)

<copy value="ConstantModel" target="$out.request/
inp1:request/ProductReq/Model"
xmlns:inp1="http://xmlns.oracle.com/psft"/>

XPath Expression XPath Expression <copy expression="$in.body"
target="$out.request"/>

XPath Expression
(below part level)

XPath Expression
(below part level)

<copy expression="$in.body/imp1:request/
ProductReq/Make" target="$out.request/
imp1:request/ProductReq/Model"
xmlns:imp1="http://xmlns.oracle.com/psft"/>

Table 20-4 Possibilities on Header

Source Target Example

XPath Expression
(below part level)

Property <copy expression="$in.header.inp1_header/
inp1:header/Name"
target="$out.property.jca.file.FileName"
xmlns:inp1="http://xmlns.oracle.com/psft"/>

Property XPath Expression
(below part level)

<copy value="$in.property.jca.file.FileName"
target="$out.header.inp1_header/inp1:header/Name"
xmlns:inp1="http://xmlns.oracle.com/psft"/>

Constant XPath Expression
(below part level)

<copy value="NewID.xml"
target="$out.header.inp1_header/inp1:header/Id"
xmlns:inp1="http://xmlns.oracle.com/psft"/>

Constant XPath Expression
(below part level)

<copy value="sampleusername" xmlns:wsse1="http://
docs.oasis-open.org/wss/2004/01/oasis-200401-wss-
wssecurity-secext-1.0.xsd"
target="$out.header.wsse1_Security/
wsse1:Security/wsse1:UsernameToken/
wsse1:Username"/>

XPath Expression XPath Expression <copy target="$out.header.inp1_header"
expression="$in.header.inp1_header"
xmlns:inp1="http://xmlns.oracle.com/psft"/>

XPath Expression
(below part level)

XPath Expression
(below part level)

<copy target="$out.header.inp1_header/
inp1:header/Name"
expression="$in.header.inp1_header/
inp1:header/Id" xmlns:inp1="http://
xmlns.oracle.com/psft"/>

What You May Need to Know About the Assign Activity
Note the following issues about the assign activity.

• The assign activity is executed in the order of the <copy> elements that appear in the
Mediator mplan.

• You can reorder the assignments by selecting an assignment in the bottom pane of the
Assign Values dialog and clicking the Up or Down arrow to move the assignment in the
assignments list.

Chapter 20
Defining Routing Rules

20-36

• When creating a new assignment, you can choose to insert it at the desired place in the list
of assignments. Select an existing assignment in the bottom pane of the Assign Values
dialog and select Insert New Rule After or Insert New Rule Before from the list at the top
left of the dialog.

• The output variable from the Translate From Native activity and the input variable to a
Translate To Native activity are also available for assignments in the Assign Values dialog.

• All assignments that appear in the bottom pane of the Assign Values dialog are applied to
the Mediator mplan only after you click OK.

• A source XPath expression should always refer to a leaf node while the source is assigned
to a target property. Otherwise, all the values of the child nodes in the source get
concatenated and are assigned to the target property. The following example provides
details:

<copy target="$out.property.jca.file.FileName"
 expression="$in.body/imp1:request/ProductReq/Make"
 xmlns:imp1="http://xmlns.oracle.com/psft"/>

Note:

A leaf node is a node with no child nodes.

• While assigning a constant or a property to a target XPath expression, the target XPath
expression should always point to a leaf node. Otherwise, nonleaf nodes contain only a
string value that may generate nonvalid XML according to the .xsd file. The following
example provides details.

<copy target="$out.request/inp1:request/ProductReq/Make" value="NewMakeValue"
 xmlns:inp1="http://xmlns.oracle.com/psft"/>

In this example, $out.request/inp1:request/ProductReq/Make refers to the leaf node.

• If a transformation is available, then while assigning a source part to a target part, the
target is overwritten because the assign activity occurs on top of the transformation. If the
transformation is not available, then the assign activity creates the target. The following
example provides details.

<copy target="$out.request" expression="$in.body"/>

<copy target="$out.header.inp1_header" expression="$in.header.inp1_header"
 xmlns:inp1="http://xmlns.oracle.com/psft"/>

• If one of the child nodes in the target payload has to be modified, then there are the
following two use cases:

– If a transformation is available, then directly assign a source expression to a target
XPath expression that is pointing to that child node in the target. The following
example provides details:

<copy value="ConstantModel"
target="$out.request/inp1:request/ProductReq/Model"
 xmlns:inp1="http://xmlns.oracle.com/psft"/>

– If a transformation is not available, then there are two steps involved. First, assign the
source part to the target part, and then assign the source expression to a target XPath
expression that is pointing to the child node in the target. The following example
provides details:

Chapter 20
Defining Routing Rules

20-37

<copy target="$out.request" expression="$in.body"/> and <copy
 value="ConstantModel" target="$out.request/inp1:request/ProductReq/Model"
 xmlns:inp1="http://xmlns.oracle.com/psft"/>

• When only one of the child nodes of the source has to be propagated into a target, then
first ensure that there is no transformation invoked. Then, assign the source XPath
expression to point to the required child node. The following example provides details:

<copy target="$out.request/imp1:ProductReq"
 expression="$in.body/imp1:request/ProductReq"
 xmlns:imp1="http://xmlns.oracle.com/psft"/>

In this case, the source element evaluated from $in.body/imp1:request/ProductReq does
not contain a complete tree structure that starts from the root element, but contains only a
child node. The following example provides details:

<ProductReq>
 <Make>MAKE</Make>
 <Model>MODEL</Model>
</ProductReq>

• If there are multiple assign activities in a Mediator and each source XPath expression
points to a different child node, then there are the following two use cases:

– If a transformation is available, then the corresponding child node in the target is
updated.

– If a transformation is not available, then the target should be a multiple part target with
each part referring to the source child node.

• With headers, if the passThroughHeader property is set, then

– Any header manipulation in a transformation is updated in the target headers.

– The part level assign activity overwrites the target header part.

– The below part level node assign activity updates the corresponding node in the target.

• If multiple source nodes (below part level) are assigned to the same target node (below
part level), then the target node contains the value of the last copy element in the assign
activity. The following example provides details.

<copy target="$out.request/imp1:request/ProductReq/Make"
 expression="$in.body/imp1:request/ProductReq/Model"
xmlns:imp1="http://xmlns.oracle.com/psft"/>

<copy target="$out.request/imp1:request/ProductReq/Make"
 expression="$in.body/imp1:request/Description"
xmlns:imp1="http://xmlns.oracle.com/psft"/>

In the preceding example, the first copy element does not have any effect because the
second copy element overwrites it.

• If the XPath expression results in a list (multiple occurrences), then there are the following
two use cases:

– If the list contains a single element, then the XPath expression is propagated.

– If the list contains multiple elements, then the XPath expression is not supported.

• The following activities happen while assigning a source child node to a target child node:

1. The source child node name and namespace are overwritten by the target node name
and namespace, respectively.

Chapter 20
Defining Routing Rules

20-38

2. The target child node is replaced by the source child node in the parent node of the
target node.

How to Access Headers for Filters and Assignments
When the Expression Builder is invoked from a Mediator, either for defining a filter or for
defining an assignment source or target, the WSDL file is parsed. This automatically detects
any SOAP headers for the current routing rule operation and makes them visible as variables
under the in or out folder as header./ns_elementName/, as shown in Figure 20-34. Here, ns is
the namespace prefix and elementName is the root element name for the header schema.

The following scenarios provide details.

Scenario 1: Namespace Prefixes wsse and ns1 Are Already Defined

Assume the namespace prefixes wsse and ns1 are already defined in the WSDL file or
the .mplan file. You can then write an XPath expression as follows:

$in.header.wsse_Security/wsse:Security/ns1:Foo/Priority

Scenario 2: Schema Without a Namespace Predefined in the WSDL File

Assume you want to use a schema that does not have a namespace predefined in the WSDL
file. The Expression Builder is then enhanced to allow you to enter {full_namespace} instead
of a prefix. The Expression Builder then generates a unique prefix and the prefix definition is
added to the .mplan file.

For example, enter the expression in the Expression Builder shown in the following example:

$in.header.{http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-sec
ext-1.0.xsd}_Security/
{"http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-secext-1.0.xs
d"}:
Security/{"http://www.globalcompany.com/ns/OrderBooking"}:Foo/Priority

The .mplan file contains the content shown in the following example:

xmlns:ns1="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-
secext-1.0.xsd"
xmlns:ns2="http://www.globalcompany.com/ns/OrderBooking"
...
expression="$in.header.ns1_Security/ns1:Security/ns2:Foo/Priority"

Chapter 20
Defining Routing Rules

20-39

Figure 20-34 Expression Builder Dialog - Automatic Header Detection

By default, SOAP headers are not passed through by Mediator. You must add the
passThroughHeader endpoint property to the corresponding Mediator routing service:

<property name="passThroughHeader">true</property>

For example, to add this property, you can modify the composite.xml file, as shown in the
following example:

<component name="Mediator1">
 <implementation.mediator src="Mediator1.mplan"/>
 <property name="passThroughHeader">true</property>
</component>

For the headers to pass through, the source and the target must have the same QName (name
and namespace). If the source and the target have different QNames, then either a
transformation or part-level assignment must be performed.

It is important to note that, with a passthrough Mediator (without a transformation or assign), if
the source and target part QNames are not identical, then Mediator passes through the
message payloads to the target service without any error. However, this can result in an error
in the target service because the message payloads are not reconstructed according to the
message structure of the target service.

Note:

• The user interface supports both SOAP 1.1 and SOAP 1.2.

• For automatic header detection, a concrete WSDL file must be used when
creating the Mediator service component.

• Assignments execute after filters. Therefore, if you are assigning a value in a
custom header, then the particular assignment is not visible to the filter.

Chapter 20
Defining Routing Rules

20-40

Manual Expression Building for Accessing Headers for Filters and Assignments
There are use cases in which the header schemas cannot be determined from the WSDL files.
For example, security headers that are appended to a message, or the headers for a Mediator
that are created using an abstract WSDL file. To access these headers, you must manually
enter the XPath expression into the Expression Builder.

The syntax for header expressions is shown in the following example:

$in.header.<header root element namespace prefix>_<header root element name>/<xpath>

Therefore, for the header shown in the following example:

<wsse:Security xmlns:wsse="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-
wssecurity-sec
ext-1.0.xsd">
<Priority>234</Priority>
</wsse:Security>

The filter expression is as follows:

$in.header.wsse_Security/wsse:Security/Priority = '234'

The assignment expression is as shown in the following example:

<copy target="$out.property.jca.jms.priority"
 expression="$in.header.wsse_Security/wsse:Security/Priority"/>

For the preceding expressions to work, you must add the attribute shown in the following
example to the root element of the .mplan file.

wsse = "http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-
secext-1.0.xsd"

Manual Expression Building for Accessing Properties for Filters and Assignments
An example of a filter expression is as follows.

$in.property.tracking.ecid = '2'

An example of an assignment expression is as follows.

<copy target="$out.property.tracking.ecid" value="$in.property.tracking.ecid"/>

How to Use Semantic Validation
You can specify Schematron files for validating an inbound message and its various parts.
Schematron version 1.5 is the supported version.

Perform the following steps for specifying a Schematron schema to validate an inbound
message and its various parts.

To use semantic validation:

1. To the right of the Validate Semantic field, click the Select Validation File icon.

The Validations dialog is displayed.

2. Click Add.

The Add Validation dialog is displayed.

Chapter 20
Defining Routing Rules

20-41

3. From the Part list, select a message part.

4. To the right of the File field, click Search.

The SOA Resource Browser dialog is displayed.

5. Select a Schematron file and click OK.

Note:

• Schematron files usually have a .sch extension.

• No error message or warning is displayed if the selected Schematron file is
empty.

The Add Validation dialog is updated, as shown in Figure 20-35.

Figure 20-35 Add Validation Dialog

6. Click OK.

The Validation dialog is updated, as shown in Figure 20-36.

Figure 20-36 Validation Dialog

7. Click Add to specify a Schematron file for another message part or click OK.

For more information about building a Schematron schema, see the resources available at

http://www.schematron.com

Chapter 20
Defining Routing Rules

20-42

http://www.schematron.com

Note:

In semantic validation, if you check for the length of each element name, then the
element name may change for a different set of inputs. This happens when there
are white spaces between nodes because the parser treats the white spaces as
test nodes.

How to Work with Attachments
You can configure how Mediator handles attachments by adding properties to the project's
composite.xml file. For information on working with attachments, see "Sending Attachment
Streams" and "Overriding Pass Through Settings for Attachments in ".

How to Use Java Callouts
Java callouts enable you to use external Java classes to manipulate messages flowing through
the Mediator. Only one Java callout is supported per operation or event subscription. The
callout class must implement the oracle.tip.mediator.common.api.IjavaCallout interface.
Callouts are available for both static and dynamic routings. Figure 20-37 shows a sample
Mediator with two operations, in which both the operations have one routing rule each and the
first operation has a callout class.

Figure 20-37 Sample Mediator Supporting Java Callout

Chapter 20
Defining Routing Rules

20-43

To make Java callout classes available:
You must ensure that the Java callout class is available on the server. You can use any of the
following methods for this:

• Copy the Java class to the SCA-INF/classes folder.

• Copy the JAR file containing the Java class to the SCA-INF/lib folder.

• If you want to share custom classes across multiple mediator projects:

– Copy the custom JARs to <SOA_HOME>/soa/modules/oracle.soa.ext_11.1.1
directory.

– Run ANT.

– Restart SOA Server.

Alternatively, you can also do the following:

– Add the path of the JAR to manifest of <SOA_HOME>/soa/modules/
oracle.soa.ext_11.1.1/oracle.soa.ext.jar.

– Restart SOA Server.

For steps you need to update oracle.soa.ext.jar, see the soa/modules/
oracle.soa.ext_11.1.1/readme.txt file.

For instructions about adding custom classes and JAR files, see Adding Custom Classes and
JAR Files.

To enter the Java class for the callout:

You can either manually enter the Java class or select a class from the Class Browser.

• To manually enter the name of the Java callout class, start typing the class name in the
Callout To field, as shown in Figure 20-38. The auto-completion feature of Oracle
JDeveloper completes the address and the classes in the current project.

Figure 20-38 Callout To Field

• To select from a list of available classes, click the Select Java Callout Class icon.

The standard Oracle JDeveloper class browser appears, as shown in Figure 20-39.

Chapter 20
Defining Routing Rules

20-44

http://docs.oracle.com/cd/E15586_01/integration.1111/e10224/bp_java.htm#autoId9
http://docs.oracle.com/cd/E15586_01/integration.1111/e10224/bp_java.htm#autoId9

Figure 20-39 Class Browser Dialog

The class browser is filtered so it only displays classes that implement the
oracle.tip.mediator.common.api.IjavaCallout interface.

To set the payload root element (when using a filter expression):

If you have a Java callout in Mediator and use a filter expression in the same Mediator, you
must set the root element for the payload, as shown in the following example:

changexmldoc = XmlUtils.getXmlDocument(ChangedDoc);
String mykey = "request";
message.addPayload(mykey,changexmldoc.getDocumentElement());

To enable domain value map and cross reference functions:

To use domain value map functions or cross reference functions in a Java callout, you must
add the soa-xpath-exts.jar file to the project and import the necessary Java classes into
your code.

1. In the Oracle JDeveloper Projects Explorer, right-click the name of the project containing
the Java callout.

2. Select Project Properties.

The Project Properties dialog appears.

3. In the left panel, select Libraries and Classpath, as shown in Figure 20-40.

Chapter 20
Defining Routing Rules

20-45

Figure 20-40 Libraries and Classes on the Project Properties Dialog

4. Click Add JAR/Directory.

The Add Archive or Directory dialog appears, as shown in Figure 20-41.

Figure 20-41 Add Archive or Directory Dialog

5. In the explorer tree, expand the directories to select <JDEV_HOME>/jdeveloper/soa/
modules/oracle.soa.fabric_11.1.1/soa-xpath-exts.jar, and then click Select.

The JAR file appears in the Classpath Entries list.

6. Click OK.

Chapter 20
Defining Routing Rules

20-46

Note:

When using domain value map functions, import the following into your Java class:

• oracle.tip.dvm.LookupValue
• oracle.tip.dvm.exception.DVMException
When using cross reference (xref) functions, import the following into your Java
class:

• oracle.tip.xref.xpath.XRefXPathFunctions
• oracle.tip.xref.exception.XRefException

Mediator Java Callout API

The Java callout API defines two interfaces: oracle.tip.mediator.common.api.IjavaCallout
and oracle.tip.mediator.common.api.CalloutMediatorMessage.

Table 20-5 lists and describes the methods in the
oracle.tip.mediator.common.api.IjavaCallout interface.

Table 20-5 Description of Methods in the IjavaCallout Interface

Method Description

initialize This method is invoked when the callout implementation class is
instantiated for the first time.

preRouting This method is called before Mediator starts executing the cases. You
can customize this method to include validations and enhancements.

preRoutingRule This method is called before Mediator starts executing any particular
case. You can customize this method to include case-specific
validations and enhancements.

preCallbackRouting This method is called before Mediator finishes executing callback
handling. You can customize this method to perform callback auditing
and custom fault tracking.

postRouting This method is called after Mediator finishes executing the cases. You
can customize this method to perform response auditing and custom
fault tracking.

Post-processing methods are called after all sequential routing rules
are executed and do not wait for parallel routing rules to complete.

postRoutingRule This method is called after Mediator starts executing the cases. You
can customize this method to perform response auditing and custom
fault tracking.

postCallbackRouting This method is called after Mediator finishes executing callback
handling. You can customize this method to perform callback auditing
and custom fault tracking.

Chapter 20
Defining Routing Rules

20-47

Note:

If you change the message properties of a Mediator by using a Java callout in the
preRoutingRule method or the preRouting method, then you must explicitly copy the
changed property to the outbound message by using Mediator assignment
functionality. For example, if you are changing the jca.file.FileName property in a
Java callout, then you must update the Mediator assignment statement as follows:

<assign>
<copy target="$out.property.jca.file.FileName"
expression="$in.property.jca.file.FileName"/>
</assign>

Table 20-6 discusses the methods in the CalloutMediatorMessage interface.

Table 20-6 Description of Methods in the CalloutMediatorMessage Interface

Method Description

addPayload This method sets a payload of the Mediator messages.

addProperty This method adds a property to the Mediator messages.

addHeader This method adds a header to the Mediator messages.

getProperty This method retrieves Mediator message properties by providing the
property name.

getProperties This method retrieves Mediator message properties.

getId This method retrieves the instance ID of the Mediator messages. This
instance ID is the Mediator instance ID created for that particular
message.

getPayload This method retrieves a payload of the Mediator messages.

getHeaders This method retrieves a header of the Mediator messages.

getComponentDN This method retrieves a componentDN for the Mediator service
component.

Note:

• The oracle.tip.mediator.common.api.AbstractJavaCalloutImpl class is a
dummy implementation of the IJavaCallout interface. This class defines all the
methods present in the IJavaCallout interface. Therefore, you can extend this
class to override only a few specific methods of the IJavaCallout interface.

Dummy implementation of an interface means that the implementation class
provides definitions for all the methods declared in the particular interface, but
one or more defined methods may have an empty method body. Extending a
dummy implementation class is much easier because you can choose to override
only a subset of the methods, unlike implementing an interface and defining all
the methods.

• Details of the processing occurring within the Java callout are not displayed in
the Mediator audit trail screen.

Chapter 20
Defining Routing Rules

20-48

Sample Java Callout Class

The following example shows a sample Java callout class:

package qa.as11tests.javacallout;

import com.collaxa.cube.persistence.dto.XmlDocument;

import com.oracle.bpel.client.NormalizedMessage;

import java.util.logging.Logger;
import java.util.Map;
import java.util.Iterator;

import oracle.tip.mediator.common.api.CalloutMediatorMessage;
import oracle.tip.mediator.common.api.ExternalMediatorMessage;
import oracle.tip.mediator.common.api.IJavaCallout;
import oracle.tip.mediator.common.api.MediatorCalloutException;
import oracle.tip.mediator.metadata.CaseType;
import oracle.tip.mediator.utils.XmlUtils;

import oracle.tip.pc.services.functions.ExtFunc;

import oracle.xml.parser.v2.XMLDocument;

import org.w3c.dom.Document;
import org.w3c.dom.Element;
import org.w3c.dom.Node;

public class JavaCalloutSanity implements IJavaCallout {
 Logger logger = Logger.getLogger("Callout");
 public JavaCalloutSanity() { }

 public void initialize(Logger logger) throws MediatorCalloutException {
 this.logger = logger;
 this.logger.info("Initializing...");
 }
 public boolean preRouting(CalloutMediatorMessage calloutMediatorMessage) {
 System.out.println("Pre routing...");
 String sPayload = "null";
 String sPayload_org = "null";
 for (Iterator msgIt = calloutMediatorMessage.getPayload().entrySet().iterator();
 msgIt.hasNext();) {
 Map.Entry msgEntry = (Map.Entry)msgIt.next();
 Object msgKey = msgEntry.getKey();
 Object msgValue = msgEntry.getValue();
 if (msgKey.equals("request"))
 sPayload = XmlUtils.convertDomNodeToString((Node)msgValue);
 }
 sPayload_org = sPayload;
 String tobeReplaced = "CHANGE_THIS";
 String replaceWith = "JAVA_CALLOUT_||_PRE_ROUTING";
 int start = sPayload.indexOf(tobeReplaced);
 StringBuffer sb = new StringBuffer();
 sb.append(sPayload.substring(0, start));
 sb.append(replaceWith);
 sb.append(sPayload.substring(start + tobeReplaced.length()));
 String changedPayload = sb.toString();
 String uid;
 try {

Chapter 20
Defining Routing Rules

20-49

 uid = ExtFunc.generateGuid();
 } catch (Exception e) {
 }
 XMLDocument changedoc;
 try {
 changedoc = XmlUtils.getXmlDocument(changedPayload);
 String mykey = "request";
 calloutMediatorMessage.addPayload(mykey,
 changedoc.getDocumentElement());
 //calloutMediatorMessage.getPayload().put(mykey, changedoc);
 } catch (Exception e) {
 }
 System.out.println("Changed from : \n"+sPayload_org+"\nTo\n"+changedPayload);
 System.out.println("End Pre routing...\n\n");
 return false;
 }
 public boolean postRouting(CalloutMediatorMessage calloutMediatorMessage,
 CalloutMediatorMessage calloutMediatorMessage1,
 Throwable throwable) throws MediatorCalloutException {
 System.out.println("Start Post routing...");
 String sPayload = "null";
 String sPayload_org = "null";
 for (Iterator msgIt = calloutMediatorMessage1.getPayload().entrySet().iterator();
 msgIt.hasNext();) {
 Map.Entry msgEntry = (Map.Entry)msgIt.next();
 Object msgKey = msgEntry.getKey();
 Object msgValue = msgEntry.getValue();
 if(msgKey.equals("reply"))
 sPayload = XmlUtils.convertDomNodeToString((Node)msgValue);
 }

 sPayload_org = sPayload;
 String tobeReplaced = "POST_ROUTING_RULE_REQUEST_REPLY";
 String replaceWith = "POST_ROUTING_RULE_REQUEST_REPLY_||_POSTROUTING_||
_JAVA_CALLOUT_WORKING";
 int start = sPayload.indexOf(tobeReplaced);
 StringBuffer sb = new StringBuffer();
 sb.append(sPayload.substring(0, start));
 sb.append(replaceWith);
 sb.append(sPayload.substring(start + tobeReplaced.length()));
 String changedPayload = sb.toString();
 XMLDocument changedoc;
 try {
 changedoc = XmlUtils.getXmlDocument(changedPayload);
 String mykey = "reply";
 calloutMediatorMessage1.addPayload(mykey,changedoc.getDocumentElement());
 // calloutMediatorMessage1.getPayload().put(mykey,
changedoc.getDocumentElement());
 } catch (Exception f) {
 }
 System.out.println("Changed from : \n"+sPayload_org+"\nTo\n"+
 changedPayload);
 System.out.println("End Post routing...\n\n");
 return false;
 }
 public boolean preRoutingRule(CaseType caseType,
 CalloutMediatorMessage calloutMediatorMessage) {
 System.out.println("\nStart PreRoutingRule.\n");
 String sPayload = "null";
 String sPayload_org = "null";
 for (Iterator msgIt =
 calloutMediatorMessage.getPayload().entrySet().iterator();

Chapter 20
Defining Routing Rules

20-50

 msgIt.hasNext();) {

 Map.Entry msgEntry = (Map.Entry)msgIt.next();
 Object msgKey = msgEntry.getKey();
 Object msgValue = msgEntry.getValue();
 if(msgKey.equals("request"))
 sPayload = XmlUtils.convertDomNodeToString((Node)msgValue);
 }
 sPayload_org = sPayload;
 String tobeReplaced = "PRE_ROUTING";
 String replaceWith = "PRE_ROUTING_||_PRE_ROUTING_RULE";
 int start = sPayload.indexOf(tobeReplaced);
 StringBuffer sb = new StringBuffer();
 sb.append(sPayload.substring(0, start));
 sb.append(replaceWith);
 sb.append(sPayload.substring(start + tobeReplaced.length()));
 String changedPayload = sb.toString();
 XMLDocument changedoc;
 try {
 changedoc = XmlUtils.getXmlDocument(changedPayload);
 String mykey = "request";
 calloutMediatorMessage.addPayload(mykey,
 changedoc.getDocumentElement());
 // calloutMediatorMessage.getPayload().put(mykey, changedoc);
 } catch (Exception e) {
 }
 System.out.println("Changed from : \n"+sPayload_org+"\nTo\n"+changedPayload);
 System.out.println("End PreRoutingRule.\n\n");
 return true;
 }
 public boolean postRoutingRule(CaseType caseType,
 CalloutMediatorMessage calloutMediatorMessage,
 CalloutMediatorMessage calloutMediatorMessage1,
 Throwable throwable) {
 System.out.println("Start PostRoutingRule.");
 String req_sPayload = "null";
 String req_sPayload_org = "null";
 String rep_sPayload = "null";
 String rep_sPayload_org = "null";
 for (Iterator msgIt =
 calloutMediatorMessage.getPayload().entrySet().iterator();
 msgIt.hasNext();) {
 Map.Entry msgEntry = (Map.Entry)msgIt.next();
 Object msgKey = msgEntry.getKey();
 Object msgValue = msgEntry.getValue();
 if(msgKey.equals("request"))
 req_sPayload =
XmlUtils.convertDomNodeToString((Node)msgValue);
 }
 req_sPayload_org = req_sPayload;
 String tobeReplaced = "PRE_ROUTING_RULE";
 String replaceWith = "PRE_ROUTING_RULE_||_POST_ROUTING_RULE_REQUEST";
 int start = req_sPayload.indexOf(tobeReplaced);
 StringBuffer sb = new StringBuffer();
 sb.append(req_sPayload.substring(0, start));
 sb.append(replaceWith);
 sb.append(req_sPayload.substring(start + tobeReplaced.length()));
 String changedPayload = sb.toString();
 XMLDocument changedoc;
 try {
 changedoc = XmlUtils.getXmlDocument(changedPayload);
 String mykey = "request";

Chapter 20
Defining Routing Rules

20-51

 calloutMediatorMessage.addPayload(mykey,
 changedoc.getDocumentElement());
 // calloutMediatorMessage.getPayload().put(mykey, changedoc);
 } catch (Exception e) {
 }
 for (Iterator msgIt =
 calloutMediatorMessage1.getPayload().entrySet().iterator();
 msgIt.hasNext();) {
 Map.Entry msgEntry = (Map.Entry)msgIt.next();
 Object msgKey = msgEntry.getKey();
 Object msgValue = msgEntry.getValue();
 if(msgKey.equals("reply"))
 rep_sPayload =
XmlUtils.convertDomNodeToString((Node)msgValue);
 }
 rep_sPayload_org = rep_sPayload;
 tobeReplaced = "PRE_ROUTING_RULE";
 replaceWith = "PRE_ROUTING_RULE_||_POST_ROUTING_RULE_REQUEST_REPLY";
 start = rep_sPayload.indexOf(tobeReplaced);
 sb = new StringBuffer();
 sb.append(rep_sPayload.substring(0, start));
 sb.append(replaceWith);
 sb.append(rep_sPayload.substring(start + tobeReplaced.length()));
 changedPayload = sb.toString();
 try {
 changedoc = XmlUtils.getXmlDocument(changedPayload);
 String mykey = "reply";
 calloutMediatorMessage1.addPayload(mykey,changedoc.getDocumentElement());
 // calloutMediatorMessage1.getPayload().put(mykey,
changedoc.getDocumentElement());
 } catch (Exception e) {
 }
 System.out.println("Changed from : \n"+req_sPayload_org+"\nTo\n"+changedPayload);
 System.out.println("End postRoutingRule\n\n");
 return true;
 }
}

How to Create Dynamic Routing Rules
The basic idea behind dynamic routing is to separate the control logic, which determines the
path taken by the process, from the execution of the process. Dynamic routing enables you to
dynamically route messages at runtime from a mediator to multiple target services, based on
the message content. You can use Domain Value Maps (DVMs) or Decision Components
(Business Rules) to override static routes at runtime.

How to Dynamically Override a Static Routing Rule Using a DVM
You can use a Domain Value Map (DVM) to dynamically override an existing static routing rule.
You can create a new DVM, or use an existing DVM to override mediator routing options.

To override a static route using DVM:
1. Double-click the mediator component to open the Mediator Editor.

2. Under the Routing Rules section, scroll down to the routing rule that you want to modify.

3. To the right of the Override Using field, click the button, identified by the green arrow.
Figure 20-42 shows the Override Using field.

Chapter 20
Defining Routing Rules

20-52

Figure 20-42 Override Using Field Under Routing Rules

The Override Routing dialog appears.

4. Select Use Domain Value Map to create or use a domain value map. Figure 20-43 shows
the Override Routing dialog.

Figure 20-43 Override Routing Dialog

5. To the right of the Location field, click Create new DVM file, identified by the green plus
(+) icon, to create a new DVM file. The Create Domain Map Value dialog appears.

Chapter 20
Defining Routing Rules

20-53

Note:

You can also choose an existing DVM file by clicking Find existing DVM file,
identified by the Search icon.

6. In the Create Domain Map Value dialog, specify a DVM Name and select a Directory to
store the DVM file. Click OK. The DVM File Created dialog appears.

7. Click OK to confirm. The Override Routing dialog is now populated with the details of the
new DVM. shows the Override Routing dialog after creating a new DVM.

Figure 20-44 New Domain Value Map Details

A new domain is created for each feature of the mediator that can be overridden. For
example, as shown in Figure 20-44, the Filter domain is created for the mediator Filter
Expression.

8. Select a Key Domain corresponding to the lookup column for the DVM.

9. To the right of the Value Expression field, click the Invoke Expression Builder icon to
specify a value expression corresponding to the key domain. The Expression Builder
dialog appears.

Chapter 20
Defining Routing Rules

20-54

Figure 20-45 Expression Builder

10. Build the expression corresponding to the value expression for the domain key, and click
OK. You can use the Help button for more information on the Expression Builder.

11. Click OK in the Override Routing dialog.

To add a new domain to the DVM:
1. In the Override Routing dialog (Figure 20-44), click the Open DVM file editor icon to the

right of the Location field. The Edit Mediator Override DVM dialog appears. Figure 20-46
shows the Edit Mediator Override DVM dialog.

Chapter 20
Defining Routing Rules

20-55

Figure 20-46 Edit Mediator Override DVM Dialog

2. If required, edit the Name and Description of the DVM.

3. Under Map Table, click the Add Domain/Values icon identified by the green plus (+) icon.
A pop-up menu appears.

4. To add a new domain or column, select Add Domain. The Create Domain dialog appears.

5. Specify a Name for the new domain. Use the Help button for more details on the Create
Domain process.

Click OK

To add a new row to the DVM:
1. In the Override Routing dialog (Figure 20-44), click the Open DVM file editor icon to the

right of the Location field. The Edit Mediator Override DVM dialog appears (Figure 20-46).

2. Under Map Table, click the Add Domain/Values icon identified by the green plus (+) icon.
Select Add Domain Values from the pop-up menu that appears.

3. You can click each row item to edit it. Alternatively select the row and click the Edit
Domain/Values icon to edit the row. The Edit Mediator Override Row dialog appears.
Figure 20-47 shows the Edit Mediator Override Row dialog.

Chapter 20
Defining Routing Rules

20-56

Figure 20-47 Edit Mediator Override Row Dialog

4. Edit the fields, as desired. The usual mediator tools are available to assist you with the
editing. For example, clicking the Transform button next to the Transform domain enables
you to create a transformation map. After the edits are complete, click OK.

To delete a domain from the DVM:
1. In the Override Routing dialog (Figure 20-44), click the Open DVM file editor icon to the

right of the Location field. The Edit Mediator Override DVM dialog appears (Figure 20-46).

2. To delete a DVM row, select the row and click the Remove Domain/Values icon.

To delete a row from the DVM:
1. In the Override Routing dialog (Figure 20-44), click the Open DVM file editor icon to the

right of the Location field. The Edit Mediator Override DVM dialog appears (Figure 20-46).

2. To delete a DVM column, select the column and click the Remove Domain/Values icon.

How to Dynamically Override a Static Routing Rule Using a Decision Component
You can use a decision component, or business rule, to dynamically override an existing static
routing rule. You can create a new decision component, or use an existing decision component
to override mediator routing options.

To override a static route using a Decision Component:
1. Double-click the mediator component to open the Mediator Editor.

2. Under the Routing Rules section, scroll down to the routing rule that you want to modify.

3. To the right of the Override Using field, click the button, identified by the green arrow.
Figure 20-48 shows the Override Using field.

Chapter 20
Defining Routing Rules

20-57

Figure 20-48 Override Using Field Under Routing Rules

The Override Routing dialog appears.

4. Select Use Decision Component to create or use a decision component.

5. To the right of the Decision Component field, click Create Decision Service, identified by
the green plus (+) icon, to create a new decision service component. The Create Decision
Service dialog appears.

Note:

You can also choose an existing decision service component file by clicking Find
existing decision service component, identified by the Search icon.

6. Specify a Component Name for the decision component and a Service Name for the
service. Click OK. The new decision service component is created, and you are returned to
the Override Routing dialog. The dialog now contains the details for the decision service
component.

This creates a new business rule service component that is wired to the Mediator service
component within the SOA composite of the Mediator service component.

If you look at the design view of the composite, you can see a business rule component
wired to the mediator in addition to the static reference wiring. Figure 20-49 shows the
design view for a sample composite.

Figure 20-49 Mediator Connected to a Business Rule Component

Chapter 20
Defining Routing Rules

20-58

The business rule service component includes a rule dictionary. The rule dictionary is a
metadata container for the rule engine artifacts, such as fact types, rulesets, rules, decision
tables and so on. As part of creating the business rule service component, the rule
dictionary is preinitialized with the following data.

• Fact Type Model

The fact type model is the data model that can be used for modeling rules. The rule
dictionary is populated with a fact type model that corresponds to the input of a phase
activity in a BPEL process, and some fixed data model that is required as part of the
contract between the Mediator service component and the business rule service
component.

• Ruleset

A ruleset is a container of rules used as a kind of grouping mechanism for rules. A
ruleset can be exposed as a service. As part of creating the business rule service
component, one ruleset is created within the rule dictionary.

• Decision Table (or matrix)

From a rule engine perspective, a decision table is a collection of rules with the same
fact type model elements in the condition and action part of the rules. The decision
table enables you to visualize rules in a tabular format. As part of creating the business
rule service component, a new decision table is created within the ruleset.

• Decision Service

As part of creating the business rule service component, a decision service is created
to expose the ruleset as a service of the business rule service component. The service
interface is used by the Mediator service component to evaluate the decision table.

To edit a decision component:
1. In the Override Routing dialog (Figure 20-44), click the Open Decision Component

Editor icon to the right of the Decision Component field. The Decision Component Editor
appears, as shown in Figure 20-50.

Chapter 20
Defining Routing Rules

20-59

Figure 20-50 Decision Component Editor

2. Under Decision Tables, select the decision table and click Edit to edit the decision table.

See Getting Started with Oracle Business Rules for more information on working with
decision tables and business rules.

How to Remove an Existing Dynamic Routing Rule
You can remove a DVM or Decision Component based routing rule override.

To remove a dynamic routing rule override:

1. Double-click the mediator component to open the Mediator Editor.

2. Under the Routing Rules section, scroll down to the routing rule that you want to modify.

3. To the right of the Override Using field, click the button, identified by the green arrow.
Figure 20-48 shows the Override Using field.

The Override Routing dialog appears.

4. Select Remove Override to remove any static routing rule overrides.

5. Click OK.

What You May Need to Know About Using Dynamic Routing Rules
Note the following limitations on using dynamic routing rules with Mediator:

• All possible message patterns are supported (Synchronous, Asynchronous, Synchronous-
Asynchronous, and One-Way).

• Event publishers and echo cannot have dynamic routing rules associated with them.

• Static rule overrides are applicable only for requests, and not for responses. If you must
override a response, you must route it to another mediator and override it as a request.

• When overriding a target port, the overriding port must be of the same port type.

Chapter 20
Defining Routing Rules

20-60

How to Define Default Routing Rules
Mediator processes messages depending on the conditions specified in the routing rules. In
some cases, a Mediator may not process an incoming message because the message does
not satisfy any of the conditions specified in the routing rules. You can define a default routing
rule for such messages. The default routing rule is executed when none of the conditions of
other routing rules are satisfied.

A default routing rule is the same as the routing rules discussed in How to Create Static
Routing Rules. The only difference between a default routing rule and other routing rules is that
a default routing rule does not have any condition associated with it. Otherwise, a default
routing rule is the same as other routing rules in every other aspect, such as target service,
response handling, fault handling, and so on.

Note:

• Default rules are available only for static routing rules.

• You cannot specify a default routing rule for a Mediator service component with
dynamic routing rules because you cannot define both static and dynamic routing
rules in the same Mediator service component.

Default Rule Scenarios
A default routing rule can be either a sequential rule or a parallel rule. A default routing rule,
whether sequential or parallel, is guaranteed to be executed when no other routing rule
condition is satisfied. When the default rule is executed, the Mediator audit trail shows that the
filter conditions of all the routing rules failed, and the filter condition of the default routing rule
passed and was executed. The following example provides details:

ActivityJan 7, 2010 4:35:15 PM
Message onCase "fileout2.Write"
Jan 7, 2010 4:35:15 PM
Message Evaluation of xpath condition " No Filter (DEFAULT CASE) " resulted
true

You can define all routing rules, including default routing rules, as either sequential or parallel
routing rules, so the expected behavior of routing rules varies. The following sections discuss
each combination and the expected behavior:

Sequential Default Routing Rule

You can have the following possible scenarios with a sequential default routing rule:

• All the other routing rules of the Mediator are sequential: This is the simplest case in
which all the routing rules, including the default routing rule, are of a sequential type.
Runtime evaluates the filter conditions of all routing rules and, if none of the filter
conditions are matched, then the default sequential routing rule is executed. Default
sequential routing rule execution happens in the same transaction as the incoming
message. After the default rule is executed, a post Java callout occurs.

• At Least One of the Routing Rules of the Mediator are parallel: This is a complex case
in which the default routing rule is sequential and at least one of the other routing rules is
parallel. The default behavior at runtime is to execute all sequential routing rules first and

Chapter 20
Defining Routing Rules

20-61

then execute parallel routing rules. Therefore, this is a tricky situation because a default
rule should be executed only after all other routing rules are evaluated to be false.

In this case, the server first evaluates the filter condition of parallel rules before evaluating
the default routing rule filter condition. If none of the other filter conditions are matched,
then the default sequential routing rule is executed.

Parallel Default Routing Rule

You can have the following possible scenarios with a parallel default routing rule:

• All the other routing rules of the Mediator are parallel: This is a straightforward case.
The default routing rule is not executed if any of the filter conditions specified in the other
routing rules are matched. If none of the filter conditions are matched, then the default
routing rule is executed asynchronously.

• Other Routing Rules of the Mediator are sequential or parallel: This is a complex but
common use case in which there are other sequential or parallel routing rules available,
and the default routing rule is parallel. The default routing rule is not executed if any of the
other sequential or parallel routing rule criteria is matched. If none of the conditions are
matched, then the default routing rule is executed asynchronously.

Note:

The fact that the default routing rule is executed automatically implies that the default
routing rule is the only case that was executed for the given Mediator service
component. Similarly, if a Mediator service component has one routing rule without
any filter condition and also has a default routing rule, then the default routing rule is
never executed.

Default Rule Target
The target of the default routing rule is the same as the supported targets of any other existing
routing rule. This indicates that the target can be a service, an event, or an echo. Similarly, the
response from the default routing rule target service can be forwarded or returned to the
original caller. If the target service returns a fault, then the fault is handled in the same way as
it is handled in any other routing rule.

Note:

If exceptions occur while evaluating or executing other routing rules, then the default
routing rule is not executed.

Default Rule: Validation, Transformation, and Assign Functionality
Schematron validation, transformation, and assign functionality for the default routing rule
works in the same way as other routing rules.

Default Rule: Java Callouts
The current behavior of a pre-Java callout or post-Java callout works in the same way as for
other routing rules. For Java callouts, the default routing rule is considered another routing

Chapter 20
Defining Routing Rules

20-62

rule. Therefore, for the scenarios in which the default routing rule is executed, the
postRouting() callback method occurs only after the default routing rule is executed.

Note:

The post-Java callouts occur after the execution of sequential rules and do not wait
for the parallel rules to complete execution. Therefore, if the default routing rule is
sequential, then the postRouting() callback method occurs after executing the
default routing rule. If the default routing rule is parallel, then the postRouting()
callback occurs after all sequential rules are executed and does not wait for the
execution of the parallel default routing rule.

Default Rule: Mediator .mplan File
To set a routing rule as the default one, click the Set as Default Routing Rule icon shown on
Figure 20-2. The .mplan file changes, as shown in Figure 20-51.

Figure 20-51 .mplan File of a Mediator with a Default Routing Rule

Chapter 20
Defining Routing Rules

20-63

21
Working with Multiple Part Messages in Oracle
Mediator

This chapter describes how to define routing rules for multiple part (multipart) messages for an
Oracle Mediator service component, including defining filters, transformations, and validations.
This chapter includes the following sections:

• Introduction to Mediator Multipart Message Support

• Working with Multipart Request Messages

For more information on routing rules, see Creating Oracle Mediator Routing Rules.

Introduction to Mediator Multipart Message Support
Mediator includes support for working with multipart source and target messages, which
include multipart filter expression building, multipart schema validation, and transformations
between multipart source and target messages for requests, replies, faults, and callbacks.

The Mediator Editor with a multipart source looks similar to Figure 21-1.

Figure 21-1 Mediator Editor for a Multipart Source

21-1

Working with Multipart Request Messages
This section describes how to work with different types of multipart messages.

How to Specify Filter Expressions for Multipart Request Messages
If you specify a filter expression for a multipart message, then the Expression Builder displays
all message parts under the in variable, as shown in Figure 21-2:

Figure 21-2 Expression Builder for a Multipart Request Source

How to Add Validations for Multipart Request Messages
If you add a validation for a multiple part message, then the Add Validation dialog displays a
list of parts from which you can choose one part, as shown in Figure 21-3. You specify a
Schematron file for each request message part. Oracle Mediator then processes the
Schematron files for the parts.

Chapter 21
Working with Multipart Request Messages

21-2

Figure 21-3 Add Validation Dialog for a Multipart Request Source

How to Create Transformations for Multipart Request Messages
If you create a new mapper file for a multipart message, then the generated mapper file shows
multiple source parts in the XSLT Mapper, as shown in Figure 21-4:

Figure 21-4 XSLT Mapper for a Multipart Request Source

How to Assign Values for Multipart Request Messages
If you assign values using a source expression and invoke the Expression Builder from the
Assign Value dialog, the Expression Builder displays all message parts under the in variable,
as shown in Figure 21-2. This is the same as specifying filter expressions.

How to Work with Multipart Reply, Fault, and Callback Source Messages
The method to create transformations and assign values to multipart reply, fault, and callback
source messages is the same as working with request source messages.

Note:

You cannot specify filter expressions or add validations for reply, fault, and callback
messages.

Chapter 21
Working with Multipart Request Messages

21-3

How to Work with Multipart Target Messages
If a routing target (that is, a request, reply, fault, or callback) has a multipart message, then the
transformation is handled in a slightly different way. This is because the XSLT Mapper does not
support multipart targets. In such a case, the Mediator creates and coordinates a separate
mapper file for each target part, as shown in Figure 21-5:

Figure 21-5 Request Transformation Map for a Multipart Routing Target

Chapter 21
Working with Multipart Request Messages

21-4

22
Using Oracle Mediator Error Handling

This chapter describes the error handling capabilities of Oracle Mediator and provides
instructions for defining error handling for both business faults and system faults.
This chapter includes the following sections:

• Introduction to Mediator Error Handling

• Using Error Handling with Mediator

• Fault Recovery Using Oracle Enterprise Manager Fusion Middleware Control

• Error Handling XML Schema Definition Files

Introduction to Mediator Error Handling
Mediator provides sophisticated error handling capabilities that enable you to configure a
Mediator service component for error occurrences and corresponding corrective actions. Error
handling enables a Mediator to handle errors that occur during the processing of messages
and also the exceptions returned by outside web services. You can handle both business faults
and system faults with Mediator.

Business faults are application-specific and are explicitly defined in the service WSDL file. You
can handle business faults by defining the fault handlers in Oracle JDeveloper at design time.
System faults occur because of some problem in the underlying system such as a network not
being available. Mediator provides fault policy-based error handling for system faults.

Fault policies enable you to handle errors automatically or through human intervention.
Mediator fault policy-based error handling consists of the following three components:

• Fault policies

• Fault bindings

• Error groups

Fault Policies
A fault policy defines error conditions and corresponding actions. Fault policies are defined in
the fault-policies.xml file, which should be created based on the XML schema shown in
Schema Definition File for fault-policies.xml .

Fault policies for sequential routing rules are handled differently than for parallel routing rules,
as described below:

• Due to the single threading of sequential routing rules, only three actions (Abort, Rethrow,
and Java) are supported for handling errors, and the specified actions are executed
immediately in the caller's thread.

• Mediator messages are not persisted in sequential routing.

• Asynchronous and one-way Mediator components cannot handle system faults thrown
from other SOA Suite components, such as a BPEL business process.

For more information about available error handling actions, see Actions.

22-1

Note:

Fault policies are not supported for the following:

• Callback execution failures

• Fault Handler action failures

• Resequencer failures

A sample fault policy file is shown below:

<?xml version="1.0" encoding="UTF-8"?>
<faultPolicies>
 <faultPolicy version="2.0.1" id="CRM_ServiceFaults">
 <Conditions>
 <faultName xmlns:medns="http://schemas.oracle.com/mediator/faults"
 name="medns:mediatorFault">
 <condition>
 <test>contains($fault.mediatorErrorCode, "TYPE_FATAL_MESH")</test>
 <action ref="ora-retry"/>
 </condition>
 </faultName>
 </Conditions>
 <Actions>
 <Action id="ora-retry">
 <retry>
 <retryCount>3</retryCount>
 <retryInterval>2</retryInterval>
 <exponentialBackoff/>
 <retryFailureAction ref="ora-java"/>
 <retrySuccessAction ref="ora-terminate"/>
 </retry>
 </Action>
 </Actions>
 </faultPolicy>
</faultPolicies>

The two components of the fault policy (conditions and actions) are described in the following
sections.

Conditions
Conditions allow you to identify error or fault conditions and then specify the actions to be
taken when a particular error or fault condition occurs. For example, for a particular error
occurring because of a service not being available, you can perform an action such as a retry.
Similarly, for another error occurring because of the failure of Schematron validation, you can
perform the action of human intervention. This fault can be recovered manually by editing the
payload and then resubmitting it through Oracle Enterprise Manager Fusion Middleware
Control.

Conditions are defined in the fault-policies.xml file, as shown in the following example:

<Conditions>
 <faultName xmlns:medns="http://schemas.oracle.com/mediator/faults"
 name="medns:mediatorFault">
 <condition>
 <test>contains($fault.mediatorErrorCode,"TYPE_DATA_TRANSFORMATION")</test>
 <action ref="ora-java"/>

Chapter 22
Introduction to Mediator Error Handling

22-2

 </condition>
 </faultName>
 <faultName xmlns:medns="http://schemas.oracle.com/mediator/faults"
name="medns:mediatorFault">
 <condition>
 <test>contains($fault.mediatorErrorCode, "TYPE_FATAL_MESH")</test>
 <action ref="ora-retry"/>
 </condition>
 </faultName>
 <faultName xmlns:medns="http://schemas.oracle.com/mediator/faults"
name="medns:mediatorFault">
 <condition>
 <test>contains($fault.mediatorErrorCode,"TYPE_DATA_ASSIGN")</test>
 <action ref="ora-retry-crm-endpoint"/>
 </condition>
 </faultName>
</Conditions>

Identifying Fault Types Using Conditions

You can categorize the faults that can be captured using conditions into the following types:

• Mediator-specific faults

For all Mediator-specific faults, the Mediator service engine throws only one fault, namely
{http://schemas.oracle.com/mediator/faults}mediatorFault. Every Mediator fault is
wrapped into this fault. The errors or faults generated by a Mediator can be captured by
using the format shown in the following example:

<faultName xmlns:medns="http://schemas.oracle.com/mediator/faults"
name="medns:mediatorFault">
<!-- mediatorFault is a bucket for all the mediator faults -->
 <condition>
 <test>
 contains($fault.mediatorErrorCode, "TYPE_FATAL_MESH")
 </test>
<!-- Captures TYPE_FATAL_MESH errors -->
 <action ref="ora-retry"/>
 </condition>
 </faultName>

• Business faults and SOAP faults

These errors or faults can be captured by defining an XPath condition, which is based on
the fault payload. The following example provides details:

<faultName xmlns:ns1="http://xmlns.oracle.com/Customer"
 name="ns1:InvalidCustomer"> <!-- Qname of Business/SOAP fault -->
 <condition>
 <test>
contains($fault.<PART_NAME>/custid, 1011)
 </test>
<!-- xpath condition based on fault payload -->
 <action ref="ora-retry"/>
 </condition>
 </faultName>

When a reference service returns a business fault, the fault can be handled in the Mediator
service component. The returned fault can be forwarded to another component, redirected
to an adapter service such as a file adapter, or an event can be raised. However, if both a
fault policy and fault handler are defined for a business fault, then the fault policy takes

Chapter 22
Introduction to Mediator Error Handling

22-3

precedence over the fault handler. In such a case, the fault handlers in the Mediator
service component are ignored, if the fault policy is successfully executed.

• Adapter-specific fault

The errors or faults generated by an adapter can be captured by using the format shown in
the following example:

<faultName xmlns:medns="http://schemas.oracle.com/mediator/faults"
name="medns:mediatorFault">
 <condition>
 <test>$fault.faultCode = "1"</test> <!-- unique constraint violation in DB
adapter-->
 <action ref="ora-retry"/>
 </condition>
 </faultName>

Actions
Actions specify the tasks to perform when an error occurs. Mediator supports retry, human
intervention, abort, and Java code actions for parallel routing rules. For sequential routing
rules, fault policies can contain these actions: abort, rethrow, and Java code.

If retry or human intervention action is chosen with sequential routing rules, the fault goes back
to the caller directly, and the policy is not applied. The fact that an incompatible action was
chosen is recorded in the log. This is consistent with BPEL fault policy behavior. It is the
responsibility of the caller to handle the fault. If the caller is an adapter, you can define rejection
handlers on the inbound adapter to take care of the messages that error out (that is, the
rejected messages). For more information about rejection handlers, see Understanding
Technology Adapters.

Fault policy actions are described in the following sections.

Retry Action

Retry actions such as enqueueing a message to a JMS queue that is stopped, inserting a
record with a unique key constraint error, and so on, enable you to retry a task that caused the
error. A new thread is started with every retry action. Therefore, with every retry action, a new
transaction starts. Table 22-1 describes the options available with the retry action. Retry
actions are applicable to parallel routing rules only.

Table 22-1 Retry Action Options

Option Description

Retry Count Retry N times.

Retry Interval Delay in seconds for a retry.

Exponential Backoff Retry interval increase with an exponential backoff.

Retry Failure Action Chain to this action if a retry N times fails.

Retry Success Action Chain to this action if a retry succeeds.

Chapter 22
Introduction to Mediator Error Handling

22-4

Note:

Exponential backoff indicates that the next retry attempt is scheduled at 2 x the delay,
where delay is the current retry interval. For example, if the current retry interval is 2
seconds, the next retry attempt is scheduled at 4, the next at 8, and the next at 16
seconds until the retryCount value is reached.

The following example shows how to specify the retry action:

 <Action id="ora-retry">
 <retry>
 <retryCount>3</retryCount>
 <retryInterval>2</retryInterval>
 <exponentialBackoff/>
 <retryFailureAction ref="ora-java"/>
 <retrySuccessAction ref="ora-java"/>
 </retry>
 </Action>

If you set the retry interval in the fault policy to a duration of less than 30 seconds, then the
retry may not happen within the specified intervals. This is because the default value of the
org.quartz.scheduler.idleWaitTime property is 30 seconds, and the scheduler waits for 30
seconds before retrying for available triggers, when the scheduler is otherwise idle. If the retry
interval is set to a value of less than 30 seconds, then latency is expected.

If you want the system to use a retry interval that is less than 30 seconds, add the following
property under the section <property name="quartzProperties"> in the fabric-config-
core.xml file:

org.quartz.scheduler.idleWaitTime=<value>

Rethrow Action

Rethrow executes the fault policy in the caller's thread and returns the original exception to the
user.

An example of a rethrow action is shown below:

<Action id="ora-rethrow-fault"><rethrowFault/></Action>

Human Intervention Action

The human intervention action allows you to manually recover the fault by correcting the error
(for example, altering the payload) and then manually retrying the message. This action is
applicable to parallel routing rules only.

An example of a human intervention action is shown below:

<Action id="ora-human-intervention"><humanIntervention/></Action>

Abort Action

The abort action enables you to terminate the message flow. This action is applicable to both
parallel and sequential routing rules.

Chapter 22
Introduction to Mediator Error Handling

22-5

When the abort action is executed for a sequential routing rule, the exception
FabricInvocationException is thrown back to the caller, and the mediator component state
changes to terminated. The fault policy is executed in the caller's thread.

An example of an abort action is shown below:

<Action id="ora-terminate"><abort/></Action>

Java Code Action

The Java code action lets you call a customized Java class that implements the
oracle.integration.platform.faultpolicy.IFaultRecoveryJavaClass interface. This action
is applicable to both parallel and sequential routing rules. The following example shows how
Java code actions can be implemented.

Note:

The implemented Java class must implement a method that returns a string. The
policy can be chained to a new action based on the returned string.

The Java code action first looks for the implemented class in the domain class library.
If the class is not found there, the action looks in the Composite Application's class
library.

 <Action id="ora-java">
 <javaAction className="mypackage.myClass" defaultAction="ora-terminate">
 <returnValue value="ABORT" ref="ora-terminate"/>
 <returnValue value="RETRY" ref="ora-retry"/>
 <returnValue value="MANUAL" ref="ora-human-intervention"/>
 </javaAction>
 </Action>

For a sequential routing rule fault policy, the returnValue action must be one of Abort,
Rethrow, or Java action. If the returnValue is other than these valid values, then the
defaultAction is checked. If the defaultAction is also not a valid action (Abort, Rethrow, or
Java action), then no action is performed by default, and the original fault is thrown back to the
caller.

oracle.integration.platform.faultpolicy.IFaultRecoveryJavaClass {

 public void handleRetrySuccess(IFaultRecoveryContext ctx);
 public String handleFault(IFaultRecoveryContext ctx);
}

public interface IFaultRecoveryContext {

 /**
 * Gets implementation type of the fault.
 * @return
 */
 public String getType();

 /**
 * @return Get property set of the fault policy action being executed.
 */
 public Map getProperties();

Chapter 22
Introduction to Mediator Error Handling

22-6

 /**
 * @return Get fault policy id of the fault policy being executed.
 */
 public String getPolicyId();

 /**
 * @return Name of the faulted reference.
 */
 public String getReferenceName();

 /**
 * @return Port type of the faulted reference link.
 */
 public QName getPortType();
}

Mediator Service Engine Implementation

The following example shows the Oracle Mediator service engine implementation of the
IFaultRecoveryContext interface.

package oracle.tip.mediator.common.error.recovery;
public class MediatorRecoveryContext implements IFaultRecoveryContext{
 ...
}

You can use the methods shown in the following example to retrieve additional Mediator-
specific data available with the MediatorRecoveryContext class:

public CommonFault getACommonFault()
public CalloutMediatorMessage getMediatorMessage()

The following example shows how to retrieve data using the CalloutMediatorMessage
interface:

 /**
 * Accessing Mediator Message properties by providing the property name
 * @param propertyName
 * @return
 * @throws MediatorException
 */
 public Object getProperty(String propertyName);

 /**
 * Accessing Mediator Message properties
 * @return
 * @throws MediatorException
 */
 public Map getProperties();

 /**
 * Accessing instance id of the mediator message
 * This will be the mediator instance id created for that particular message
 * object
 * @return
 * @throws MediatorException
 */
 public String getId() throws MediatorException;

 /**
 * Accessing payload of the mediator message
 * object

Chapter 22
Introduction to Mediator Error Handling

22-7

 * @return
 * @throws MediatorException
 */
 public Map getPayload();

 /**
 * Accessing header of the mediator message
 * object
 * @return
 * @throws MediatorException
 */
 public List<Element> getHeaders();

 /**
 * Accessing componentDN for mediator component
 * @return
 * @throws MediatorException
 */
 public String getComponentDN(
 /**
 * Setting payload to the mediator message
 * @return
 * @throws MediatorCalloutException
 */
 public void addPayload(String partName,Object payload) throws
MediatorCalloutException;

 /**
 * Adding property to the mediator message
 * @return
 * @throws MediatorCalloutException
 */
 public void addProperty(String name,Object value) throws MediatorCalloutException;

 /**
 * Adding header to the mediator message
 * @return
 * @throws MediatorCalloutException
 */
 public void addHeader(Object header) throws MediatorCalloutException;

Fault Bindings
Fault bindings associate fault policies with composites or components, and are defined in the
fault-bindings.xml file. Create the fault-bindings.xml file based on the XML schema
defined in Schema Definition File for fault-bindings.xml .

Fault policies can be created at the following levels:

• Composite: You can define one fault policy for all Mediator components in a composite.
You can specify this level in the following way:

<composite faultPolicy="ConnectionFaults"/>
• Component: You can define a fault policy exclusively for a Mediator service component. A

component-level fault policy overrides the composite-level fault policy. You can specify this
level as shown in the following example:

<component faultPolicy="ConnectionFaults">
 <name>Component1</name>
 <name>Component2</name>
</component>

Chapter 22
Introduction to Mediator Error Handling

22-8

• Reference: You can define a fault policy for the references of a Mediator component. You
can specify this level as shown in the following example:

<reference faultPolicy="policy1">
 <name>DBAdapter3</name>
 </reference>

Note:

The level of precedence for fault policies is Reference -> Component -> Composite.

Note:

Human intervention is the default action for errors that do not have a fault policy
defined.

A sample fault binding file is shown in the following example:

<?xml version="1.0" encoding="UTF-8"?>
<faultPolicyBindings version="2.0.1"
 xmlns="http://schemas.oracle.com/bpel/faultpolicy"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <composite faultPolicy="ConnectionFaults"/>
</faultPolicyBindings>

Error Groups in Mediator
You can specify an action for an error type or error group while defining the conditions in a fault
policy. In the previous examples, medns:mediatorFault indicates that the error is a Mediator
error, whereas medns:TYPE_FATAL_MESH refers to an error group. An error group consists of one
or more child error types. TYPE_ALL is an error group that contains all Mediator errors.

The following list describes various error groups contained in the TYPE_ALL error group:

• TYPE_DATA: Contains errors related to data handling.

– TYPE_DATA_ASSIGN: Contains errors related to data assignment.

– TYPE_DATA_FILTERING: Contains errors related to data filtering.

– TYPE_DATA_TRANSFORMATION: Contains errors that occur during a transformation.

– TYPE_DATA_VALIDATION: Contains errors that occur during payload validation.

• TYPE_METADATA: Contains errors related to Mediator metadata.

– TYPE_METADATA_FILTERING: Contains errors that occur while processing the filtering
conditions.

– TYPE_METADATA_TRANSFORMATION: Contains errors that occur while getting the
metadata for a transformation.

– TYPE_METADATA_VALIDATION: Contains errors that occur during validation of metadata
for Mediator (.mplan file).

Chapter 22
Introduction to Mediator Error Handling

22-9

– TYPE_METADATA_COMMON: Contains other errors that occur during the handling of
metadata.

• TYPE_FATAL: Contains fatal errors that are not easily recoverable.

– TYPE_FATAL_DB: Contains database-related fatal errors, such as a Datasource not
found error.

– TYPE_FATAL_CACHE: Contains Mediator cache-related fatal errors.

– TYPE_FATAL_ERRORHANDLING: Contains fatal errors that occur during error handling
such as Resubmission queues not available.

– TYPE_FATAL_MESH: Contains fatal errors from the Service Infrastructure such as Invoke
service not available.

– TYPE_FATAL_MESSAGING: Contains fatal messaging errors arising from the Service
Infrastructure.

– TYPE_FATAL_TRANSACTION: Contains fatal errors related to transactions such as Commit
can't be called on a transaction which is marked for rollback.

– TYPE_FATAL_TRANSFORMATION: Contains fatal transformation errors such as an error
occurring because of the XPath functions used in a transformation.

• TYPE_TRANSIENT: Contains transient errors that can be recovered on a retry.

– TYPE_TRANSIENT_MESH: Contains errors related to the Service Infrastructure.

– TYPE_TRANSIENT_MESSAGING: Contains errors related to JMS such as enqueuing and
dequeuing.

• TYPE_INTERNAL: Contains internal errors.

Using Error Handling with Mediator
You can enable error handling for an Oracle Mediator by using the fault-policies.xml and
fault-bindings.xml files.

How to Use Error Handling for a Mediator Service Component
To use error handling for a Mediator service component:

1. Create a fault-policies.xml file based on the schema defined in Schema Definition File
for fault-policies.xml .

2. Create a fault-bindings.xml file based on the schema defined in Schema Definition File
for fault-bindings.xml .

3. Copy the fault-policies.xml and the fault-bindings.xml file to your SOA composite
application project directory.

4. Deploy the SOA composite application project.

What Happens at Runtime
All the fault policies for a composite are loaded when the first error occurs. When an error
occurs, the Mediator Service Engine checks for the existence of the fault policy files (fault-
policies.xml and fault-bindings.xml). The fault policy bindings are checked to determine
the fault policy associated with the component or composite. If a fault policy is associated with

Chapter 22
Using Error Handling with Mediator

22-10

the component or composite, then Mediator performs the action defined in the fault policy
corresponding to the fault condition. If no fault policy bindings are found for the component or
composite, then no action is performed and the behavior is the same as if the fault policies did
not exist.

If there is no fault policy defined and the routing rule is executed in parallel, the default action
of human intervention is performed. If there is no fault policy defined and the routing rule is
executed sequentially, the error is thrown back to the caller.

Note:

All sequential routing transactions that encounter an error are rolled back, even if a
fault policy has been used to handle the errors.

For more information about how fault policies are processed, see Actions.

Fault Recovery Using Oracle Enterprise Manager Fusion
Middleware Control

Apart from policy-based recovery using the fault policy file, you can also perform fault recovery
actions on Oracle Mediator faults identified as recoverable in Oracle Enterprise Manager
Fusion Middleware Control. Use any of the following ways to recover faults:

• Manual recovery by modifying the payload using Oracle Enterprise Manager Fusion
Middleware Control

• Bulk recovery without modifying the payload using Oracle Enterprise Manager Fusion
Middleware Control

• Aborting a faulted instance using Oracle Enterprise Manager Fusion Middleware Control, if
you do not want to do any more processing on the instance.

For more information about fault recovery using Oracle Enterprise Manager Fusion
Middleware Control, see Administering Oracle SOA Suite and Oracle Business Process
Management Suite.

Error Handling XML Schema Definition Files
This section describes the schema files for the fault-policies.xml and fault-bindings.xml
files.

Schema Definition File for fault-policies.xml
The fault-policies.xml file should be based on the XSD file as shown in the following
example:

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema targetNamespace="http://schemas.oracle.com/bpel/faultpolicy"
xmlns:tns="http://schemas.oracle.com/bpel/faultpolicy"
xmlns:xs="http://www.w3.org/2001/XMLSchema" elementFormDefault="qualified">
 <!-- Conditions contain a list of fault names -->
 <xs:element name="Conditions">
 <xs:complexType>
 <xs:sequence>

Chapter 22
Fault Recovery Using Oracle Enterprise Manager Fusion Middleware Control

22-11

 <xs:element name="faultName" type="tns:faultNameType"
 maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <!-- action Ref must exist in the same file -->
 <xs:complexType name="actionRefType">
 <xs:attribute name="ref" type="xs:string" use="required"/>
 </xs:complexType>
 <!-- one condition has a test and action, if test is missing, this is the
 catch all condition -->
 <xs:complexType name="conditionType">
 <xs:all>
 <xs:element name="test" type="tns:idType" minOccurs="0"/>
 <xs:element name="action" type="tns:actionRefType"/>
 </xs:all>
 </xs:complexType>
 <!-- One fault name match contains several conditions -->
 <xs:complexType name="faultNameType">
 <xs:sequence>
 <xs:element name="condition" type="tns:conditionType"
 maxOccurs="unbounded"/>
 </xs:sequence>
 <xs:attribute name="name" type="xs:QName"/>
 </xs:complexType>
 <xs:complexType name="ActionType">
 <xs:choice>
 <xs:element name="retry" type="tns:RetryType"/>
 <xs:element ref="tns:rethrowFault"/>
 <xs:element ref="tns:humanIntervention"/>
 <xs:element ref="tns:abort"/>
 <xs:element ref="tns:replayScope"/>
 <xs:element name="javaAction" type="tns:JavaActionType">
 <xs:key name="UniqueReturnValue">
 <xs:selector xpath="tns:returnValue"/>
 <xs:field xpath="@value"/>
 </xs:key>
 </xs:element>
 </xs:choice>
 <xs:attribute name="id" type="tns:idType" use="required"/>
 </xs:complexType>
 <xs:element name="Actions">
 <xs:annotation>
 <xs:documentation>Fault Recovery Actions</xs:documentation>
 </xs:annotation>
 <xs:complexType>
 <xs:sequence>
 <xs:element name="Action" type="tns:ActionType"
 maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:complexType name="JavaActionType">
 <xs:annotation>
 <xs:documentation>This action invokes java code
 provided</xs:documentation>
 </xs:annotation>
 <xs:sequence>
 <xs:element name="returnValue" type="tns:ReturnValueType"
 minOccurs="0" maxOccurs="unbounded"/>
 </xs:sequence>
 <xs:attribute name="className" type="tns:idType" use="required"/>

Chapter 22
Error Handling XML Schema Definition Files

22-12

 <xs:attribute name="defaultAction" type="tns:idType" use="required"/>
 <xs:attribute name="propertySet" type="tns:idType"/>
 </xs:complexType>
 <xs:complexType name="RetryType">
 <xs:annotation>
 <xs:documentation>This action attempts retry of activity
 execution</xs:documentation>
 </xs:annotation>
 <xs:all>
 <xs:element ref="tns:retryCount"/>
 <xs:element ref="tns:retryInterval"/>
 <xs:element ref="tns:exponentialBackoff" minOccurs="0"/>
 <xs:element name="retryFailureAction"
 type="tns:retryFailureActionType" minOccurs="0"/>
 <xs:element name="retrySuccessAction"
 type="tns:retrySuccessActionType" minOccurs="0"/>
 </xs:all>
 </xs:complexType>
 <xs:simpleType name="idType">
 <xs:restriction base="xs:string">
 <xs:minLength value="1"/>
 </xs:restriction>
 </xs:simpleType>
 <xs:complexType name="ReturnValueType">
 <xs:annotation>
 <xs:documentation>Return value from java code can chain another action
 using
 return values</xs:documentation>
 </xs:annotation>
 <xs:attribute name="value" type="tns:idType" use="required"/>
 <xs:attribute name="ref" type="xs:string" use="required"/>
 </xs:complexType>
 <xs:element name="exponentialBackoff">
 <xs:annotation>
 <xs:documentation>Setting this will cause retry attempts to use
 exponentialBackoff algorithm</xs:documentation>
 </xs:annotation>
 <xs:complexType/>
 </xs:element>
 <xs:element name="humanIntervention">
 <xs:annotation>
 <xs:documentation>This action causes the activity to
 freeze</xs:documentation>
 </xs:annotation>
 <xs:complexType/>
 </xs:element>
 <xs:element name="replayScope">
 <xs:annotation>
 <xs:documentation>This action replays the immediate enclosing
 scope</xs:documentation>
 </xs:annotation>
 <xs:complexType/>
 </xs:element>
 <xs:element name="rethrowFault">
 <xs:annotation>
 <xs:documentation>This action will rethrow the
 fault</xs:documentation>
 </xs:annotation>
 <xs:complexType/>
 </xs:element>
 <xs:element name="retryCount" type="xs:positiveInteger">
 <xs:annotation>

Chapter 22
Error Handling XML Schema Definition Files

22-13

 <xs:documentation>This value is used to identify number of
 retries</xs:documentation>
 </xs:annotation>
 </xs:element>
 <xs:complexType name="retryFailureActionType">
 <xs:annotation>
 <xs:documentation>This is the action to be chained if retry attempts
 fail</xs:documentation>
 </xs:annotation>
 <xs:attribute name="ref" type="xs:string" use="required"/>
 </xs:complexType>
 <xs:complexType name="retrySuccessActionType">
 <xs:annotation>
 <xs:documentation>This is the action to be chained if retry attempts
 is successful</xs:documentation>
 </xs:annotation>
 <xs:attribute name="ref" type="xs:string" use="required"/>
 </xs:complexType>
 <xs:element name="retryInterval" type="xs:unsignedLong">
 <xs:annotation>
 <xs:documentation>This is the delay in milliseconds of retry
 attempts</xs:documentation>
 </xs:annotation>
 </xs:element>
 <xs:element name="abort">
 <xs:annotation>
 <xs:documentation>This action terminates the
 process</xs:documentation>
 </xs:annotation>
 <xs:complexType/>
 </xs:element>
 <xs:element name="Properties">
 <xs:annotation>
 <xs:documentation>Properties that can be passes to a custom java
 class</xs:documentation>
 </xs:annotation>
 <xs:complexType>
 <xs:sequence>
 <xs:element name="propertySet" type="tns:PropertySetType"
 maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:complexType name="PropertySetType">
 <xs:sequence>
 <xs:element name="property" type="tns:PropertyValueType"
 maxOccurs="unbounded"/>
 </xs:sequence>
 <xs:attribute name="name" type="tns:idType" use="required"/>
 </xs:complexType>
 <xs:complexType name="PropertyValueType">
 <xs:simpleContent>
 <xs:extension base="tns:idType">
 <xs:attribute name="name" type="tns:idType" use="required"/>
 </xs:extension>
 </xs:simpleContent>
 </xs:complexType>
 <xs:element name="faultPolicy">
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="tns:Conditions"/>
 <xs:element ref="tns:Actions"/>

Chapter 22
Error Handling XML Schema Definition Files

22-14

 <xs:element ref="tns:Properties" minOccurs="0"/>
 <!--Every policy has on Conditions and and one Actions, however,
 Properties is optional -->
 </xs:sequence>
 <xs:attribute name="id" type="tns:idType" use="required"/>
 <xs:attribute name="version" type="xs:string" default="2.0.1"/>
 </xs:complexType>
 <xs:key name="UniqueActionId">
 <xs:selector xpath="tns:Actions/tns:Action"/>
 <xs:field xpath="@id"/>
 </xs:key>
 <xs:key name="UniquePropertySetId">
 <xs:selector xpath="tns:Properties/tns:property_set"/>
 <xs:field xpath="@id"/>
 </xs:key>
 <xs:keyref name="RetryActionRef" refer="tns:UniqueActionId">
 <xs:selector xpath="tns:Actions/tns:Action/tns:retry/
tns:retryFailureAction"/>
 <xs:field xpath="@ref"/>
 </xs:keyref>
 <xs:keyref name="RetrySuccessActionRef" refer="tns:UniqueActionId">
 <xs:selector
 xpath="tns:Actions/tns:Action/tns:retry/tns:retrySuccessAction"/>
 <xs:field xpath="@ref"/>
 </xs:keyref>
 <xs:keyref name="JavaActionRef" refer="tns:UniqueActionId">
 <xs:selector
 xpath="tns:Actions/tns:Action/tns:javaAction/tns:returnValue"/>
 <xs:field xpath="@ref"/>
 </xs:keyref>
 <xs:keyref name="ConditionActionRef" refer="tns:UniqueActionId">
 <xs:selector
 xpath="tns:Conditions/tns:faultName/tns:condition/tns:action"/>
 <xs:field xpath="@ref"/>
 </xs:keyref>
 <xs:keyref name="JavaDefaultActionRef" refer="tns:UniqueActionId">
 <xs:selector xpath="tns:Actions/tns:Action/tns:javaAction"/>
 <xs:field xpath="@defaultAction"/>
 </xs:keyref>
 <xs:keyref name="JavaPropertySetRef" refer="tns:UniquePropertySetId">
 <xs:selector xpath="tns:Actions/tns:Action/tns:javaAction"/>
 <xs:field xpath="@property_set"/>
 </xs:keyref>
 </xs:element>
 <xs:element name="faultPolicies">
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="tns:faultPolicy" maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
</xs:schema>

Schema Definition File for fault-bindings.xml
The fault-bindings.xml file should be based on the XSD file as shown in the following
example:

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema targetNamespace="http://schemas.oracle.com/bpel/faultpolicy"
 xmlns:tns="http://schemas.oracle.com/bpel/faultpolicy"

Chapter 22
Error Handling XML Schema Definition Files

22-15

 xmlns:xs="http://www.w3.org/2001/XMLSchema" elementFormDefault="qualified">
 <xs:element name="faultPolicyBindings">
 <xs:annotation>
 <xs:documentation>Bindings to a specific fault policy
 </xs:documentation>
 </xs:annotation>
 <xs:complexType>
 <xs:sequence>
 <xs:element name="composite" type="tns:compositeType"
 minOccurs="0" maxOccurs="1"/>
 <xs:element name="component" type="tns:componentType"
 minOccurs="0" maxOccurs="unbounded"/>
 <xs:element name="reference" type="tns:referenceType"
 minOccurs="0" maxOccurs="unbounded"/>
 </xs:sequence>
 <xs:attribute name="version" type="xs:string" default="2.0.1"/>
 </xs:complexType>
 <xs:key name="UniquePartnerLinkName">
 <xs:selector xpath="tns:reference/tns:name"/>
 <xs:field xpath="."/>
 </xs:key>
 <xs:key name="UniquePortType">
 <xs:selector xpath="tns:reference/tns:portType"/>
 <xs:field xpath="."/>
 </xs:key>
 <xs:key name="UniquePolicyName">
 <xs:selector xpath="tns:reference"/>
 <xs:field xpath="@faultPolicy"/>
 </xs:key>
 </xs:element>
 <xs:simpleType name="nameType">
 <xs:restriction base="xs:string">
 <xs:minLength value="1"/>
 </xs:restriction>
 </xs:simpleType>
 <xs:complexType name="propertyType">
 <xs:simpleContent>
 <xs:extension base="tns:nameType">
 <xs:attribute name="name" type="xs:string" use="required"
 fixed="faultPolicy"/>
 </xs:extension>
 </xs:simpleContent>
 </xs:complexType>

 <xs:complexType name="referenceType">
 <xs:annotation>
 <xs:documentation>Bindings for a partner link. Overrides composite
 level binding.</xs:documentation>
 </xs:annotation>
 <xs:sequence>
 <xs:annotation>
 <xs:documentation>Specification at partner link name overrides
 specification for a port type</xs:documentation>
 </xs:annotation>
 <xs:element name="name" type="tns:nameType" minOccurs="0"
 maxOccurs="unbounded"/>
 <xs:element name="portType" type="xs:QName" minOccurs="0"
 maxOccurs="unbounded"/>
 </xs:sequence>
 <xs:attribute name="faultPolicy" type="tns:nameType" use="required"/>
 </xs:complexType>

Chapter 22
Error Handling XML Schema Definition Files

22-16

 <xs:complexType name="componentType">
 <xs:annotation>
 <xs:documentation>Binding for a component </xs:documentation>
 </xs:annotation>
 <xs:sequence>
 <xs:element name="name" type="tns:nameType" minOccurs="0"
 maxOccurs="unbounded"/>
 </xs:sequence>
 <xs:attribute name="faultPolicy" type="tns:nameType" use="required"/>
 </xs:complexType>
 <xs:complexType name="compositeType">
 <xs:annotation>
 <xs:documentation>Binding for the entire composite</xs:documentation>
 </xs:annotation>
 <xs:attribute name="faultPolicy" type="tns:nameType" use="required"/>
 </xs:complexType>
</xs:schema>

Chapter 22
Error Handling XML Schema Definition Files

22-17

23
Resequencing in Oracle Mediator

This chapter describes message resequencing concepts in Oracle Mediator, and provides
instructions for configuring standard resequencing, first-in/first-out resequencing, and best
effort resequencing.
This chapter includes the following sections:

• Introduction to the Resequencer

• Resequencing Order

• Configuring the Resequencer

Introduction to the Resequencer
The resequencer in Mediator rearranges a stream of related but out-of-sequence messages
into a sequential order. When incoming messages arrive, they may be in a random order. The
resequencer orders the messages based on sequential or chronological information, and then
sends the messages to the target services in an orderly manner. The sequencing is performed
based on the sequencing strategy selected.

Groups and Sequence IDs
The resequencer works with two central concepts: groups and sequence IDs. The sequence ID
is an identifying part of the message, and messages are rearranged based on this identifier.
The messages arriving for resequencing are split into groups and the messages within a group
are sequenced according to the sequence ID. Sequencing within a group is independent of the
sequencing of messages in any other group. Groups in themselves are not dependent on each
other and can be processed independently of each other.

As an example, messages attached to certain groups arrive to a Mediator service component
in the following order:

msg9(a), msg8(b), msg7(a), msg6(c), msg5(a), msg4(b), msg3(c), msg2(b), msg1(a)

Table 23-1 shows how the Mediator sorts the messages into groups. The order of the
messages in each group depends on the type of resequencer used.

Table 23-1 Messages Sorted into Groups

Group c Group b Group a

msg6(c), msg3(c) msg8(b), msg4(b), msg2(b) msg9(a), msg7(a), msg5(a),
msg1(a)

All the groups are processed independently of each other and any error occurring in ones
group does not affect the processing of other groups.

23-1

Identification of Groups and Sequence IDs
Groups and sequence IDs are identified through XPath expressions in the message payload
and header. You specify XPath expressions that point to the elements in the message payload
on which grouping is done and on which sequencing is done.

In the message payload shown in Figure 23-1, CustomerId is the field on which to base
instance sequencing and Type is the field on which to base grouping.

Figure 23-1 Message Payload

Note:

Resequencing is not supported for synchronous operations.

Resequencing Order
Mediator can resequence the incoming messages in a user-specified order. This
implementation enables you to specify three types of resequencing orders:

• Standard Resequencer

• FIFO Resequencer

• Best Effort Resequencer

Standard Resequencer
The standard resequencer supports a standard resequencer pattern. The following sections
describe the standard resequencer and how it processes messages.

Chapter 23
Resequencing Order

23-2

Overview of the Standard Resequencer
The standard resequencer is useful for applications that use identifiers from a simple numeric
identifier sequence in their messages. The standard resequencer receives a stream of
messages that might not arrive in order; it then stores the out-of-sequence messages until a
complete sequence based on the sequence IDs is received. The in-sequence messages are
then processed asynchronously based on their sequence ID.

It is important to note that the messages to outbound services of the standard resequencer
Mediator service component are guaranteed to arrive in sequence.

Information Required for Standard Resequencing
When using the standard resequencer in Mediator, you must always specify a group XPath
expression and a sequence ID XPath expression. These specify where the Mediator
resequencer can find the group and the sequence ID in the messages. You must also supply
the sequence numbering in terms of the start sequence ID and the sequence ID incremental
delta. This numbering is used to form each group. In addition to the group, sequence ID, and
increment properties, you can also specify a timeout period, in seconds, to wait for the
expected messages.

The Mediator standard resequencer holds back messages in the Mediator resequencer
database until it can produce the right sequence for different groups. This situation means that
if for a given group, the message with a particular sequence ID does not arrive within the
timeout period, the subsequent messages for that group are held back forever. In such a case,
you must manually unlock the group through Oracle Enterprise Manager Fusion Middleware
Control and go to the next available message, skipping the pending message.

Example of the Standard Resequencer
Table 23-2 shows how groups are formed differently for two different values of the incremental
delta.

Table 23-2 Groups Formed Differently for Two Different Values

Start SequenceID Incremental
Delta

Group1 Group2 ... Groupn

1 1 1,2,3,4,5,... 1,2,3,4,5,... ... 1,2,3,4,5,...n

1 5 1,5,10,15,... 1,5,10,15,... ... 1,5,10,15,...

Note:

If the sequence numbering is different for various groups (for example, if the groups
do not have the same incremental delta or start sequence ID) and the messages do
not arrive in order, then you can use the best effort resequencer to rearrange the
messages.

Chapter 23
Resequencing Order

23-3

FIFO Resequencer
The FIFO resequencer supports a standard first in, first out (FIFO) pattern. The following
sections describe the FIFO resequencer and how it processes messages.

Overview of the FIFO Resequencer
The FIFO resequencer is useful for applications that need sequencing based on the time the
messages arrive to the Mediator. The FIFO resequencer receives a stream of messages that
are in order and processes them in sequence for each group based on the arrival time of the
messages.

It is important to note that the messages to outbound services of the Mediator acting as a FIFO
resequencer are guaranteed to arrive in order based on arrival time. Therefore, the messages
are delivered in the order they were stored in the resequencer data store.

Information Required for FIFO Resequencing
When using the FIFO resequencer, you must always specify a group XPath expression.
However, you do not need to specify a sequence ID because the messages are processed
according to the time of arrival to the Mediator service component that is configured for FIFO
resequencing. The group XPath expression specifies where the FIFO resequencer should find
the group information in the message to group the messages. No further configuration is
needed for a FIFO pattern.

Example of the FIFO Resequencer
Table 23-3 illustrates the behavior of the FIFO resequencer where msgX(Y,Z) indicates that the
message arrives as message number X to the Mediator service component and the message
contains sequenceID Y and group Z.

Table 23-3 FIFO Resequencer Behavior

Incoming Messages Sequenced Messages

msg12(4,c)

msg05(9,a)

msg02(7,a)

msg10(3,c)

msg10(3,a)

msg07(5,a)

msg06(1,c)

msg03(2,c)

msg12(4,c),msg10(3,c),msg06(1,c),msg03(2,c)

msg05(9,a), msg02(7,a), msg10(3,a), msg07(5,a)

As shown in Table 23-3, the messages are sequenced based on their time of arrival and the
sequenceID is not used for sequencing.

Chapter 23
Resequencing Order

23-4

Note:

When using the FIFO resequencer, use a single-threaded inbound adapter to avoid
unpredictable results. For example, when you use the file/FTP adapter, the database
adapter, or the AQ adapter in front of a Mediator service component that is
configured as a FIFO resequencer, configure the adapter for single-threaded
processing. Otherwise, unpredictable results occur because the arrival time of each
message is calculated when the message arrives to the Mediator service component
instead when it arrives to the adapter service.

Best Effort Resequencer
The Mediator resequencer supports a best effort pattern. The following sections describe the
best effort resequencer and how it processes messages.

Overview of the Best Effort Resequencer
The best effort pattern is useful for applications that produce a large number of messages in a
short period and cannot provide information to the resequencer about the identifier to use for
sequencing. Typically, the identifier used for sequencing in such scenarios is of a dateTime
type or numeric type. Using the dateTime field as the sequence ID XPath enables you to
control the sequencing. The messages are expected to be sent in sequence by the
applications, thus the date and time the messages are sent can be used for sequencing. The
Mediator makes the best effort to ensure that the messages are delivered in sequence.

The best effort resequencer can reorder messages based on no knowledge about the
increment of the sequence ID. This situation means that unlike the standard resequencer, you
do not need to define the increment of the sequence ID for the best effort resequencer in
advance. When the messages are processed, they are processed in sequence based on the
specified sequence ID and the messages that have arrived, whether a true sequence is
received. The sequence IDs are either numeric or dateTime. Therefore, sequencing occurs on
the numeric order or the dateTime order of the sequence IDs.

Best Effort Resequencer Message Selection Strategies
The best effort resequencer processes messages asynchronously based on one of two
message selection strategies: Maximum rows selected or time window. The messages
selected and processed at any one time are based either on the maximum number of rows you
specify or on a window of time in which they arrive.

Maximum Rows Selected

When the best effort resequencer is configured to use a maximum number of rows, it performs
the following steps whenever new messages are available in the resequencer database:

1. The resequencer orders the messages according to the specified sequence ID (typically a
date and time stamp).

2. The resequencer locks and selects the number of messages equal to the value of the
maxRowsRetrieved parameter from the ordered messages above.

3. The resequencer processes the selected messages one after another in its own
transaction in sequence.

Chapter 23
Resequencing Order

23-5

Time Window

When the best effort resequencer is configured to use a time window instead of a maximum
number rows, the messages to select and process at one time are based on a period you
specify plus an optional buffer time. Each message belongs to a specific time window, and
messages that are part of one time window are processed separately from messages
belonging to a different time window.

In addition to the time window, you can specify a buffer time, which is an overlap between two
sequential time windows that allows messages that arrive a little late to be associated with the
first time window. By default, the buffer time is 10% of the time window you specify.

When the best effort resequencer is configured to use a time window, groups are processed in
an iterative manner and messages are processed in the following steps:

1. The first message arrives and the time window begins.

2. The buffer is added to the time window, and processing begins after the buffer time.

3. The resequencer retrieves the messages that arrived within the time window, and identifies
the maximum sequence ID (typically a date and time stamp) from all the messages.

4. The resequencer retrieves any messages that arrive within the buffer time and that have a
sequence ID that is less than the maximum sequence ID identified above.

5. The resequencer sorts all messages retrieved in the above steps in ascending order of the
sequence IDs and processes the messages.

Best Effort Resequencer Message Delivery
It is important to note that the messages to outbound services of the Mediator service
component configured for best effort resequencing are not guaranteed to arrive in order of a
sequence ID. At any given time, a snapshot of the available messages is taken and
sequencing is performed only on those messages. Therefore, unlike a standard resequencer, it
is not guaranteed that a message with a lesser sequence ID value is sent before a message
that ha a greater sequence ID value but that arrived earlier. Messages with a lesser sequence
ID value that arrive later might be processed in the following cycle when a snapshot of
available messages is taken again and the messages are reordered.

Information Required for Best Effort Resequencing
When using the best effort resequencer, you must specify a group XPath expression, a
sequence ID XPath expression, and the data type of the sequence ID (numeric or dateTime).
These specify where the resequencer should find the group and the sequence ID in the
messages and how to handle the sequence ID. In addition, you must specify either a maximum
number of rows to select for each resequencing batch or a time window during which the
messages included in one batch arrive.

Unlike the standard resequencer, the best effort resequencer has no knowledge about how the
sequence is built. No further information is used by the best effort resequencer to perform its
responsibilities.

Example of Best Effort Resequencing Based on Maximum Rows
Table 23-4 illustrates the behavior of the best effort resequencer when it is configured to use
the maximum number of rows to determine which messages to process. In this example,

Chapter 23
Resequencing Order

23-6

msgX(Y,Z) indicates that the message arrives as message number X to the Mediator service
component and the message contains sequenceID Y and group Z.

Table 23-4 Best Effort Resequencer Behavior Based on Maximum Rows

Group C Sequenced Messages

msg03(1,c)

msg06(2,c)

msg10(3,c)

msg12(4,c)

msg12(4,c),msg10(3,c),msg06(2,c),msg03(1,c)

Note:

For the best effort resequencer to work correctly, the messages must arrive in
sequence or nearly in sequence. Otherwise, they are not resequenced correctly. If
the messages do not arrive close together, set the value of the maxRowsRetrieved
parameter to 1 so the next message in the sequence has enough time to arrive and
be picked up by the next processing loop (and therefore be delivered in sequence).

Example of Best Effort Resequencing Based on a Time Window
Table 23-5 illustrates the behavior of the best effort resequencer when it is configured to
process messages based on the time period in which they arrive. In this example, the time
window is 10 minutes, the buffer is 10% (one minute), and msgX(Y) indicates that the message
arrives as message number X to the Mediator service component and the message contains
the sequence ID Y. The first message arrives at 2:00:00, which starts the time window. The
time window lasts until 2:10:00, but with the addition of the buffer time, messages that arrived
until 2:11:00 are processed.

Table 23-5 Best Effort Resequencer Behavior Based on a Time Window

Group C
Message/Time

Sequenced Messages

msg01(04)/2:00:00

msg02(05)/2:00:20

msg03(01)/2:00:30

msg04(03)/2:00:50

msg05(07)/2:04:20

msg06(02)/2:04:45

msg07(13)/2:05:10

msg08(08)/2:05:40

msg09(06)/2:08:40

msg10(12)/2:09:20

msg11(10)/2:10:30

msg12(09)/2:10:40

msg13(14)/2:10:50

msg14(11)/2:13:00

msg03(01), msg06(02), msg04(03), msg01(04), msg02(05),
msg09(06), msg05(07), msg08(08), msg12(09), msg11(10),
msg10(12), msg07(13)

Chapter 23
Resequencing Order

23-7

Note:

In the above example, the resequencer identified the maximum sequence ID for the
time window as 13 (from message 7). Message 13 arrived within the buffer time, but
has a sequence ID of 14. It is not processed with the original group, but instead
begins a new time window at its arrival time of 2:10:50. Message 14 arrived too late
and is included in the second time window.

Configuring the Resequencer
You can configure the resequencer using Oracle JDeveloper. This section describes how to
configure the resequencer in Oracle JDeveloper.

How to Specify the Resequencing Level
You can define resequencing at either the service component level or the operation level. For
Mediator service components with only one operation, configuring resequencing at the
operation or service component level results in the same behavior. For Mediator service
components having multiple operations, specifying the resequencing at the service component
level applies the same resequencing rules to all the operations, and messages arriving at any
operation are resequenced. By default, the resequencing level is operations.

To specify the resequencing level:

• On the Mediator Editor, select the resequencing level from the Resequence Level
dropdown list, as shown in Figure 23-2.

Figure 23-2 Mediator Editor with Resequence Level Field

If you choose component, the Resequence field under each operation no longer appears
and the Resequence Mode field appears under the Resequence Level field so you can
set the resequencing mode for the service component. By default, the resequencing mode
is set to off.

When you select a resequencing mode, the Resequence Options box appears under the
service component or operation, as shown in Figure 23-3. If the Resequence Mode field
for an operation is set to off, the Resequence Options box disappears.

Chapter 23
Configuring the Resequencer

23-8

Figure 23-3 Mediator Editor with Resequence Options Section

The options in the Resequence Options section change depending on the resequencing
mode you select.

How to Configure the Resequencing Strategy
This section provides instructions on how to configure the three different types of resequencing
strategies.

To configure a standard resequencer:
1. Set the resequence level as described in How to Specify the Resequencing Level.

2. On the Mediator Editor under either the Mediator component or the operation you want to
configure, select Standard from the Resequence Mode dropdown list.

The Resequence Options box appears and includes the options for the standard
resequencer, as shown in Figure 23-4.

Figure 23-4 Oracle Mediator with Resequence Mode set to Standard

3. Fill in the fields listed inTable 23-6.

Note:

To specify values for the Group and ID fields, click the Invoke Expression
Builder button to the right of each field. This launches the Expression Builder,
which provides graphical assistance in creating field expressions and adding
functions.

Chapter 23
Configuring the Resequencer

23-9

Table 23-6 Standard Resequencing Options

Field Name Description Default Value Mandatory

Group The XPath that points to the field in the
incoming message on which grouping is done.

component_na
me-operation

N

ID The XPath that points to the field in the
incoming message on which resequencing is
done.

N/A Y

Timeout The time period in seconds to wait for an
expected message. The resequencer locks the
group as timed-out if a time out occurs.

01 N

Start The starting number of the ID sequence. 1 N

Increment The increment of the ID sequence. 1 N

1 This default value means that the timeout never happens for a group by default.

To configure a FIFO resequencer:
1. Set the resequence level as described in How to Specify the Resequencing Level.

2. On the Mediator Editor under either the Oracle Mediator component or the operation you
want to configure, select FIFO from the Resequence Mode dropdown list.

The Resequence Options box appears and includes the option for the standard
resequencer, as shown in Figure 23-5.

Figure 23-5 Oracle Mediator with Resequence Mode set to FIFO

3. In the Group field, enter the XPath expression pointing to the field in the incoming
message on which grouping is performed.

To configure a best effort resequencer:
1. Set the resequence level as described in How to Specify the Resequencing Level.

2. On the Mediator Editor under either the Mediator component or the operation you want to
configure, select Best Effort from the Resequence Mode dropdown list.

The Resequence Options box appears and includes the option for the standard
resequencer, as shown in Figure 23-6.

Figure 23-6 Oracle Mediator with Resequence Mode set to Best Effort

3. Fill in the fields listed in Table 23-7 to configure the best effort resequencer.

Chapter 23
Configuring the Resequencer

23-10

Note:

You can specify either a maximum number of rows to process at one time or a
time window for the messages. You cannot specify both. You must set one
control to zero for the other control to be enabled.

4. If needed, you can change the percent of the time window that is added as a buffer. You
configure the buffer using the Oracle Enterprise Manager Fusion Middleware Control.

For instructions, see “Configuring Resequenced Messages" in the Administering Oracle
SOA Suite and Oracle Business Process Management Suite.

Table 23-7 Best Effort Resequencing Options

Field Name Description Default Value Mandatory

Group The XPath that points to the field in the
incoming message on which grouping is
performed.

component_na
me-operation

N

ID The XPath that points to the field in the
incoming message that contains the ID on
which resequencing is performed.

N/A Y

Datatype The data type of the sequence ID. The ordering
process is based on the data type. Supported
values are datetime and numeric.

Numeric Y

Max Rows Number of in-sequence messages that the
resequencer should pick from the data store at
a time.

You must specify a time window or the
maximum rows, but not both. You must set one
control to zero for the other control to be
enabled.

5 N

Time Window The length of time in minutes to wait after a
message arrives to select messages from the
data store for resequencing.

You must specify a time window or the
maximum rows, but not both. You must set one
control to zero for the other control to be
enabled.

0 N

Chapter 23
Configuring the Resequencer

23-11

24
Understanding Message Exchange Patterns of
an Oracle Mediator

This chapter describes common message exchange patterns between an Oracle Mediator
service component and other applications.
This chapter includes the following sections:

• One-way Message Exchange Patterns

• Request-Reply Message Exchange Patterns

• Request-Reply-Fault Message Exchange Patterns

• Request-Callback Message Exchange Patterns

• Request-Reply-Callback Message Exchange Patterns

• Request-Reply-Fault-Callback Message Exchange Patterns

Note:

The following exchange patterns show the default handling of responses, faults, and
callbacks by Oracle JDeveloper when a routing rule is created. Keep in mind the
following points for all cases:

• When a response, fault, or callback is sent back to the caller, it is also possible to
route the same message to a different target service or event by clicking the
button next to the target and selecting a different target.

• When the caller of the Mediator expects a response, one or more routing rules
may route the request to a target that does not return a response, but there
should be at least one sequential routing rule that returns a response.

• When there are multiple routing rules in a request-response pattern with multiple
rules sending a response back to the initial caller, the first response that is
received is the one delivered to the caller. The other responses are ignored.
Thus, the routing rules that send the response should precede other routing rules
that forward the response (if any).

One-way Message Exchange Patterns
In a one-way interaction, the Mediator is invoked, but it does not send a response back to the
caller. Depending on the type of routing rule target, the responses, faults, and callbacks are
handled as shown in Table 24-1:

Note:

Event subscriptions follow the same exchange pattern as one-way interactions.

24-1

Table 24-1 Response When Mediator's WSDL Is a One-way Interaction

Routing Rule Target Type Response

Request No response.

Request Response Response is forwarded to another target or event.

Request Response Fault Response and fault are forwarded to another target or event.

Request Callback Callback is forwarded to another target or event.

Request Response Callback Response and callback are forwarded to another target or event.

Request Response Fault
Callback

Response, fault, and callback are forwarded to another target or event.

Figure 24-1 illustrates the one-way message exchange pattern.

Figure 24-1 One-way Message Exchange Pattern

The one.way.returns.fault Property
The one.way.returns.fault property controls how faults and one-way messages are handled
for one-way interface SOAP calls. You can add this property to the service binding component
of the web service section for one-way web services in the composite.xml file. This property is
not applicable to references. It is applicable only to services and only to the binding.ws
binding type. Table 24-2 provides more details on this property.

Chapter 24
One-way Message Exchange Patterns

24-2

Table 24-2 one.way.returns.fault Property

If one.way.returns.fault Is... Then...

Set to true:

. . .
<service name="Mediator1_2"
 ui:wsdlLocation="ReadFile.wsdl">
 <interface.wsdl
 interface="http://xmlns.oracle.com/pcbpel/adapter/file
 /LocalSandbox/Project1/ReadFile%2F#wsdl.interface(Read_
ptt)"/>
 <binding.ws
 port="http://xmlns.oracle.com/pcbpel/adapter/file
/LocalSandbox/Project1/ReadFile%2F#wsdl.endpoint
(Mediator1/Read_pt)">
 <property name="one.way.returns.fault" type="xs:string"
many="false"
 override="may">true</property>
 </binding.ws>
</service>
. . .

Any fault that occurs during
downstream processing
returns a SOAP fault to the
client and an HTTP
response code of 500. (The
same behavior as 11g
Release 1.)

Set to false:

. . .
<service name="Mediator1_2"
 ui:wsdlLocation="ReadFile.wsdl">
 <interface.wsdl
 interface="http://xmlns.oracle.com/pcbpel/adapter/file/
Local Sandbox/Project1/ReadFile%2F#wsdl.interface(Read_
ptt)"/>
 <binding.ws
port="http://xmlns.oracle.com/pcbpel/adapter/file/LocalSan
dbox/Project1/ReadFile%2F#wsdl.endpoint(Mediator1/Read_
pt)">
 <property name="one.way.returns.fault"
 type="xs:string" many="false"
 override="may">false</property>
 </binding.ws>
 </service>
. . .

Any fault that occurs during
downstream processing
returns only an HTTP
response code of 500. No
SOAP fault is returned to
the client.

Not set (the default case) Any fault that occurs during
downstream processing
returns a SOAP fault to the
client and an HTTP
response code of 500. (The
same behavior as 11g
Release 1.)

To add the one.way.returns.fault property:
1. In the SOA Composite Editor, select the service binding component to which you want to

add the one.way.returns.fault property.

2. Go to the Property Inspector section in the lower right part of the editor.

3. In the Binding Properties section, click the Add icon.

Chapter 24
One-way Message Exchange Patterns

24-3

The Create Property dialog is displayed.

4. In the Name field, enter one.way.returns.fault.

5. In the Value field, enter true or false.

6. Click OK.

Request-Reply Message Exchange Patterns
In a request-reply interaction, the Mediator is invoked and sends a reply to the caller.
Depending on the type of routing rule target, the responses, faults, and callbacks are handled
as shown in Table 24-3:

Table 24-3 Response When Mediator's WSDL Is a Request Reply

Routing Rule Target Type Response

Request There is no response from the target, but there should be at least one
sequential routing rule with a request-response service.

Request Response The response is sent back to the caller. The response can be
forwarded to another target or event, but there should be at least one
sequential routing rule that returns a response back to the caller.

Request Response Fault The response is sent back to the caller. The fault is forwarded to
another target or event.

Request Callback There is no response from the target, but there should be at least one
sequential routing rule with a request-response service. The callback is
forwarded to another target or event.

Request Response Callback The response is sent back to the caller. The callback is forwarded to
another target or event.

Request Response Fault
Callback

The response is sent back to the caller. The callback and fault are
forwarded to another target or event.

Figure 24-2 illustrates the request-reply message exchange pattern.

Chapter 24
Request-Reply Message Exchange Patterns

24-4

Figure 24-2 Request-Reply Message Exchange Pattern

Request-Reply-Fault Message Exchange Patterns
In a request-reply-fault interaction, the Mediator is invoked and sends a reply and one or more
faults back to the caller. Depending on the type of routing rule target, the responses, faults, and
callbacks are handled as shown in Table 24-4:

Table 24-4 Response When Mediator's WSDL Is a Request Reply Fault

Routing Rule Target Type Response

Request There should be at least one sequential routing rule with a request-
response-fault service. Mediator returns null when there is no
response to be sent.

Request Response The response is sent back to the caller. Any exception in Mediator
message processing may result in a fault.

Request Response Fault The response and fault are sent back to the caller. Any exception in
Mediator message processing may result in a fault.

Request Callback There is no response from the target, but there should be at least one
sequential routing rule with a request-response service. Mediator
returns null when there is no response to be sent. The callback is
forwarded to another target or event.

Request Response Callback The response is sent back to the caller. Any exception in Mediator
message processing may result in a fault.

Request Response Fault
Callback

The response and fault are sent back to the caller. Any exception in
Mediator message processing may result in a fault.

Figure 24-3 illustrates the request-reply-fault message exchange pattern.

Chapter 24
Request-Reply-Fault Message Exchange Patterns

24-5

Figure 24-3 Request-Reply-Fault Message Exchange Pattern

Request-Callback Message Exchange Patterns
In a request-callback interaction, the Mediator is invoked and may send an asynchronous reply
to the caller. Depending on the type of routing rule target, the responses, faults, and callbacks
are handled as shown in Table 24-5:

Table 24-5 Response When Mediator's WSDL Is a Request Callback

WSDL of the Routing Rule
Target

Response

Request There should be at least one sequential routing rule with a request-
callback service. No callback is sent to the caller if there is no routing
rule with a defined callback.

Request Response The response is sent back to the caller, as a callback, in a separate
thread. You can create additional routing rules to forward the response
to another target or event.

Request Response Fault The response is sent back to the caller, as a callback, in a separate
thread. The fault is forwarded to another target or event. As above, you
can create additional routing rules to forward the response to another
target or event.

Request Callback The callback is sent back to the caller.

Request Response Callback The callback is sent back to the caller, and the response is forwarded
to another target or event.

Request Response Fault
Callback

The callback is sent back to the caller. The response and fault are
forwarded to another target or event.

Figure 24-4 illustrates the request-callback message exchange pattern.

Chapter 24
Request-Callback Message Exchange Patterns

24-6

Figure 24-4 Request-Callback Message Exchange Pattern

Request-Reply-Callback Message Exchange Patterns
In a request-reply-callback interaction, the Mediator is invoked and sends a response and an
asynchronous reply to the initial caller. Depending on the type of routing rule target, the
responses, faults, and callbacks are handled as shown in Table 24-6:

Table 24-6 Response When Mediator's WSDL Is a Request Response Callback

Routing Rule Target Type Response

Request There should be at least one sequential routing rule that returns a
response. No callback is sent to the caller if there is no routing rule with
a defined callback.

Request Response There should be at least one sequential routing rule that returns a
response. No callback is sent if there is no routing rule with a defined
callback.

Request Response Fault There should be at least one sequential routing rule that returns a
response. No callback is sent to the caller if there is no routing rule with
a defined callback. The fault is forwarded to another target or event.

Request Callback There should be at least one sequential routing rule that returns a
response. Mediator returns null when there is no response to be sent.

Request Response Callback The response and callback are sent back to the caller.

Request Response Fault
Callback

The response and callback are sent back to the caller. The fault is
forwarded to another target or event.

Figure 24-5 illustrates the request-reply-callback message exchange pattern.

Chapter 24
Request-Reply-Callback Message Exchange Patterns

24-7

Figure 24-5 Request-Reply-Callback Message Exchange Pattern

Request-Reply-Fault-Callback Message Exchange Patterns
In a request-reply-fault-callback interaction, the Mediator is invoked and sends a response, an
asynchronous reply, and one or more fault types to the initial caller. Depending on the type of
routing rule target, the responses, faults, and callbacks are handled as shown in Table 24-7:

Table 24-7 Response to a Request Response Fault Callback Mediator

WSDL of the Routing Rule
Target

Response

Request There should be at least one sequential routing rule with a request-
callback service and at least one sequential routing rule that returns a
response. No callback or response is sent unless the required routing
rules are defined.

Request Response There should be at least one sequential routing rule with a request-
callback service and at least one sequential routing rule that returns a
response. No callback or response is sent unless the required routing
rules are defined.

Request Response Fault There should be at least one sequential routing rule with a request-
callback service and at least one sequential routing rule that returns a
response. No callback or response is sent unless the required routing
rules are defined.

Request Callback There should be at least one sequential routing rule that returns a
response. Mediator returns null when there is no response to be sent.

Request Response Callback The response and callback are sent back to the caller. Any exception in
Mediator message processing may result in a fault.

Request Response Fault
Callback

The response, fault, and callback are sent back to the caller.

Chapter 24
Request-Reply-Fault-Callback Message Exchange Patterns

24-8

Figure 24-6 illustrates the request-reply-fault-callback message exchange pattern.

Figure 24-6 Request-Reply-Fault-Callback Message Exchange Pattern

Chapter 24
Request-Reply-Fault-Callback Message Exchange Patterns

24-9

Part IV
Using the Business Rules Service Component

Learn how to use the business rules service component.

• Getting Started with Oracle Business Rules

• Using Declarative Components and Task Flows

25
Getting Started with Oracle Business Rules

Learn how to use a business rule service component to integrate a SOA composite application
with Oracle Business Rules. A business rule service component is also called a decision
component. You can add business rules as part of a SOA composite application or as part of a
BPEL process.

• Introduction to the Business Rule Service Component

• Overview of Rules Designer Editor Environment

• Introduction to Creating and Editing Business Rules

• Adding Business Rules to a BPEL Process

• Adding Business Rules to a SOA Composite Application

• Running Business Rules in a Composite Application

• Using Business Rules with Oracle ADF Business Components Fact Types

For more examples of using Oracle Business Rules, see Designing Business Rules with
Oracle Business Process Management.

Note that some screen shots may reflect a previous version, however, the content is
applicable.

Introduction to the Business Rule Service Component
A decision component, also called a business rule service component, supports use of Oracle
Business Rules in a SOA composite application.

Decision components support the following SOA composite usage:

• A decision component can be used within a SOA composite and wired to a BPEL
component.

• A decision component can be used within a SOA composite and used directly to run
business rules.

• A decision component can be used with the dynamic routing capability of Mediator.

For more information, see Creating Routing Rules .

• A decision component can be used with the Advanced Routing Rules in Human Workflow.

For more information, see Associating Human Tasks with BPEL Processes.

Integrating BPEL Processes, Business Rules, and Human Tasks
You can create a SOA composite application that includes BPEL process, business rule, and
human task service components. These components are complementary technologies. BPEL
processes focus on the orchestration of systems, services, and people. Business rules focus
on decision making and policies. Human tasks enable you to model a workflow that describes
the tasks for users or groups to perform as part of an end-to-end business process flow.

Some examples of where business rules can be used include:

25-1

• Dynamic processing

Rules can perform intelligent routing within the business process based on service level
agreements or other guidelines. For example, if the customer requires a response within
one day, send a loan application to the QuickLoan loan agency only. If the customer can
wait longer, then route the request to three different loan agencies.

• Externalizing business rules in the process

There are typically many conditions that must be evaluated as part of a business process.
However, the parameters to these conditions can be changed independently of the
process. For example, you provide loans only to customers with a credit score of at least
650. This value may be changed dynamically based on new guidelines set by business
analysts.

• Data validation and constraint checks

Rules can validate input data or apply additional constraints on requests. For example, a
new customer request must always be accompanied with an employment verification letter
and bank account details.

• Human task routing

Rules are frequently used for human tasks in the business process:

– Policy-based task assignments dispatch tasks to specific roles or users. For example,
a process that handles incoming requests from a portal can route loan requests and
insurance quotes to a different set of roles.

– Load balancing of tasks among users. When a task is assigned to a set of users or a
role, each user in that role acquires a set of tasks and acts on them in a specified time.
For new incoming tasks, policies may be applied to set priorities on the task and put
them in specific user queues. For example, a specific loan agent is assigned a
maximum of 10 loans at any time.

For more information about creating business rules in the Human Task editor of a human task
component, see How to Specify Advanced Task Routing Using Business Rules.

Overview of Rules Designer Editor Environment
You can create a business rules service component in the SOA composite application of
Oracle JDeveloper and then design it by using the Business Rules Designer, which is
displayed when you double-click a business rule in the SOA Composite Editor.

The Business Rules Designer consists of the following main sections shown in Figure 25-1.
These sections allow you to work with business rules in Oracle JDeveloper.

Chapter 25
Overview of Rules Designer Editor Environment

25-2

Figure 25-1 Rules Designer in Oracle JDeveloper

Note that a SOA installation does not have Verbal Rules or Business Phrases. This is BPM
functionality.

Applications Window
The Applications window displays the files in the project. Each project can only contain one
composite. But each composite can have multiple components of either the same type or
different types (Business Rules, BPEL process, Oracle Mediator, and human workflow).

As you design business rules, additional files, folders, and elements can appear in the
Applications window.

Rules Designer Window
The Rules Designer window provides a visual view of the selected dictionary component. You
use the Rules Designer navigation tabs to select different parts of the dictionary with which to
work. The rules designer window displays when you perform one of the following actions:

• In a composite, double-click a Business Rule component.

• Double-click the Business Rule component in the SOA Composite Editor.

• In a BPEL process, double-click a business rule.

Chapter 25
Overview of Rules Designer Editor Environment

25-3

• In the Applications window, double-click a business rules dictionary file (a file with
the .rules extension).

• Click the Design tab with a .rules file selected.

Table 25-1 describes where you can find information about working with a dictionary with Rules
Designer.

Table 25-1 Rules Designer Navigation Areas Descriptions

Rules Designer
Navigation Tab

Description

Facts olink:ASRUG243Facts are the objects that rules reason on.

Functions olink:ASRUG296A function, in Oracle Business Rules, refers to the
standard mathematical functions.

Globals olink:ASRUG277A global, in Oracle Business Rules, is similar to a public
static variable in Java.

Value Sets olink:ASRUG243A Value Set puts constraints on values or ranges of
values for selection in a decision table.

Links olink:ASRUG271Links are used to link to a dictionary in the same
application or in another application.

Decision Functions olink:ASRUG99955A decision Function is a function that is configured
declaratively. It can be invoked by other components (BPEL, Task) to
reason on inputs based on configured rulesets to arrive at outputs.

Translations This helps you localize the rules and their artifacts.

Rulesets with Rules and
Decision Tables

A ruleset provides a unit of execution for rules and for decision tables. A
decision table is a set of rules written in tabular form. Decision Tables
provides additional functionality for rules that are grouped in the table
(conflicts, completeness, and so on.).

For more information and descriptions for the Rules Designer navigation areas, see Designing
Business Rules with Oracle Business Process Management.

Structure Window
The Structure window offers a structural view of the data in the Business Rule dictionary
currently selected in the Rules Designer window. You can perform a variety of tasks from this
section, by selecting an element and right-clicking the element, including:

• Managing (creating, editing, refreshing, and deleting) elements such as facts, functions,
globals, value sets, dictionary links, and decision functions

• Accessing rule sets, rules, and Decision Tables

Figure 25-2 shows the Structure window.

Chapter 25
Overview of Rules Designer Editor Environment

25-4

Figure 25-2 Structure Window with Rules Designer Dictionary

Business Rule Validation Log Window
Rules Designer displays the status of dictionary validation in the business rule validation log,
as shown in Figure 25-3.

When a dictionary is invalid, Rules Designer produces a list of warning messages and lists the
associated dictionary objects that you can use to locate the dictionary object and to correct the
problem. You can safely ignore the validation warnings that you see when you create rules
using Rules Designer. The validation warnings are removed as you create the rules, but are
shown during the intermediate steps. To test or deploy rules, the associated dictionary must
not display warnings.

For more information on business rules validation, see Designing Business Rules with Oracle
Business Process Management.

Figure 25-3 Rules Designer Business Rule Validation Log

Introduction to Creating and Editing Business Rules
Learn how to get started with business rules and provides a brief introduction to the main
sections of Oracle JDeveloper that you use to design business rules.

How to Create Business Rules Components
You can add Business Rule components using the SOA Composite Editor.

Chapter 25
Introduction to Creating and Editing Business Rules

25-5

To create a Business Rule component:

1. Follow the instructions in Table 25-2 to start Oracle JDeveloper.

Table 25-2 Starting Oracle JDeveloper

To Start... On Windows... On UNIX...

Oracle JDeveloper Click
JDev_Oracle_Home\JDev\bin\jdev.e
xe or create a shortcut

$ORACLE_HOME/jdev/bin/jdev

2. Create a Business Rule service component through one of the following methods:

As a service component in an existing SOA composite application, drag a Business Rule
service component from the Components window into the SOA Composite Editor

In a new application:

a. From the Applications window, select File > New > Applications > SOA Application.

This starts the Create SOA Application wizard.

b. In the Name your application page, enter an application name in the Name field.

c. In the Directory field, enter a directory path in which to create the SOA composite
application and project.

d. Click Next.

e. In the Name your project page, enter a unique project name in the Project Name field.
The project name must be unique across SOA composite applications. This is because
the uniqueness of a composite is determined by its project name. For example, do not
perform the actions described in Table 25-3.

Table 25-3 Restrictions on Naming a SOA Project

Create an Application Named... With a SOA Project Named...

Application1 Project1
Application2 Project1

During deployment, the second deployed project (composite) overwrites the first
deployed project (composite).

f. Click Next.

g. In the Configure SOA settings page, select Composite with Business Rule.

h. Click Finish.

Each method causes the Create Business Rules dialog to appear.

3. Provide the required details. For more information on providing Inputs and Outputs and on
using the Import Dictionary option with this dialog, see Designing Business Rules with
Oracle Business Process Management.

4. Click OK.

Working with Business Rules in Rules Designer
When you are working with business rules Oracle JDeveloper displays Rules Designer.

Chapter 25
Introduction to Creating and Editing Business Rules

25-6

Adding Business Rules to a BPEL Process
You can use a decision component, also called a business rule service component, to execute
business rules in a BPEL process.

You add business rules to a BPEL process using a Business Rule component. When you add
a business rule component to a BPEL process, you must include input and output variables to
provide input to the rules and obtain results back from the business rules.

A business rule component enables you to execute business rules and make business
decisions based on the rules. To create a business rule component, also called a decision
component, you drag-and-drop a Business Rule from the Components window into the BPEL
process.

To add a business rule to a BPEL process:

1. Create a BPEL process service component. For more information, see Introduction to the
BPEL Process Service Component.

2. Expand the BPEL process by double-clicking the process item. For example, expand the
BPEL process to view receiveInput and callbackClient as shown in Figure 25-4.

Figure 25-4 Adding A Business Rule to a BPEL Process

3. Select Business Rule from the SOA Components section of the Components window and
drag-and-drop a Business Rule into the position where the business rules are needed.
For example, drag-and-drop a Business Rule between receiveInput and
callbackClient, as shown in Figure 25-5.

Chapter 25
Adding Business Rules to a BPEL Process

25-7

Figure 25-5 Drag-and-drop a Business Rule into a BPEL Process

4. Oracle JDeveloper displays the business rule in the diagram. Double-click the business
rule component to display the Rule dialog box.

The Rule dialog box provides tabs, such as General, Dictionary, Correlation Sets, and so
on, where you can select an existing Oracle Business Rules dictionary or enter the name
of a new dictionary to create. Under the General tab, in the Name field enter a name for
the business rule. For example, enter GetCreditRating, as shown in Figure 25-6. If you
previously created a dictionary, under the Dictionary tab, in the Dictionary field, select an
existing dictionary.

Chapter 25
Adding Business Rules to a BPEL Process

25-8

Figure 25-6 Business Rule Added to Auto Loan BPEL Process

5. In the Business Rule area for the Business Rule Dictionary, click the Create Dictionary
icon to display the Create Business Rules dialog.

6. In the Create Business Rules dialog you do the following:

• Specify a name for the Oracle Business Rules dictionary and a package name.

• Specify the input and output data elements for the business rule. For example, for a
sample decision component named GetCreditRating, the input is a rating request
document. The output is generated when you run the business rules, and for this
example is a rating document. For example, in BPEL you can create two new
variables, RatingRequest and Rating that carry the input and output data for the
GetCreditRating rules.

Enter a name for the Oracle Business Rules dictionary. For example, enter
GetCreditRating, as shown in Figure 25-7.

Chapter 25
Adding Business Rules to a BPEL Process

25-9

Figure 25-7 Adding GetCreditRating Business Rule Dictionary

How to Add Inputs for Business Rule
To add inputs for business rule:

1. In the Create Business Rules dialog, from the menu next to the Add icon select Add Input
Variable... to create the input variable.

This displays the Add Input Variable dialog box.

2. In the Add Input Variable dialog box, expand the Process folder and select the Variables
folder immediately inside the Process.

3. Right-click the Variables folder, and from the list select Create Variable... as shown in
Figure 25-8.

Chapter 25
Adding Business Rules to a BPEL Process

25-10

Figure 25-8 Add Input Variable

This displays the Create Variable dialog box.

4. In the Create Variable dialog box, in the Name field enter a value. For example, enter
RatingRequest as shown in Figure 25-9.

Figure 25-9 Create Variable Dialog

5. In the Create Variable Type area click the Browse Elements icon. Use the navigator to
locate the schema element type for the input variable. For example, select the
ratingrequest type. Add any needed types using the Type Chooser.

6. Click the Import Schema File icon to import the schema. For example, import
CreditRatingTypes.xsd. Also import any other required schema for your application.

7. In the Type Chooser dialog, select ratingrequest and click OK.

Chapter 25
Adding Business Rules to a BPEL Process

25-11

8. In the Create Variable dialog, click OK.

9. In the Add Input Variable dialog, click OK.

How to Add Outputs for Business Rule
To add outputs for business rule:

1. In the Create Business Rules dialog, from the dropdown menu next to the Add icon, select
Add Output Variable.... This displays the Add Output Variable dialog. Use this dialog to
create an output variable. For example, create an output variable for GetCreditRating in
the same way you created the input variable.

2. In the Add Output Variable dialog select the scope by selecting the Variables folder under
Process.

3. Right-click and from the dropdown list select Create Variable.... This displays the Create
Variable dialog.

4. In the Create Variable dialog, in the Name field enter the output variable name. For
example enter Rating.

5. In the Create Variable dialog, in the Type area select the Browse elements icon and use
the Type Chooser dialog to enter the type for the output variable. For example, expand the
CreditRatingTypes.xsd and select the element type rating.

6. In the Type Chooser dialog, click OK.

7. In the Create Variable dialog, click OK.

8. In the Add Output Variable dialog, click OK.

This displays the Create Business Rules dialog, as shown in Figure 25-10.

Figure 25-10 Create Business Rules Dialog with Input and Output Variables

Chapter 25
Adding Business Rules to a BPEL Process

25-12

How to Set Options and Create Decision Service and Business Rule
Dictionary

To create decision service and business rules dictionary:

1. If you do not want to use the default service name, then select the Advanced tab and in
the Service Name field enter the service name. For example enter the service name
CreditRatingService.

2. Determine if the decision component is stateful or stateless with Reset Session. For more
information, see What You May Need to Know About Decision Component Stateful
Operation.

3. In the Create Business Rules dialog, click OK. Oracle JDeveloper creates the decision
component and the dictionary and displays Rules Designer, as shown in Figure 25-11.

Figure 25-11 Rules Designer Canvas Where You Work with Business Rules

For information on Rules Designer, see Designing Business Rules with Oracle Business
Process Management.

What Happens When You Add Business Rules to a BPEL Process
When you add business rules to a BPEL process, Oracle JDeveloper creates a decision
component to control and run the business rules using the Business Rule Service Engine.

Chapter 25
Adding Business Rules to a BPEL Process

25-13

A decision component consists of the following:

• Rules or Decision Tables that are evaluated using the Rules Engine. These are defined
using Rules Designer and stored in a business rules dictionary.

• A description of the facts required for specific rules to be evaluated and the decision
function to call. Each ruleset that contains rules or Decision Tables is exposed as a service
with facts that are input and output, and the name of an Oracle Business Rules decision
function. The facts are exposed through XSD definitions when you define the inputs and
outputs for the business rule. A decision function is stored in an Oracle Business Rules
dictionary. For more information, see Designing Business Rules with Oracle Business
Process Management.

• A web service wraps the input, output, and the call to the underlying Business Rule service
engine.

This web service lets business processes assert and retract facts as part of the process. In
some cases, all facts can be asserted from the business process as one unit. In other
cases, the business process can incrementally assert facts and eventually consult the rule
engine for inferences. Therefore, the service supports both stateless and stateful
interactions.

You can create a variety of such decision components.

For more information, see Designing Business Rules with Oracle Business Process
Management.

What Happens When You Create a Business Rules Dictionary
After you create an application, a project, and a rules dictionary, the rules dictionary appears in
the structure pane in Oracle JDeveloper and Rules Designer opens in the main canvas.

As part of the create Business Rule dialog you either select an existing dictionary or a new rule
dictionary is created with the following pre-loaded data:

• XML fact type model based on the input and output information of the Business Rule.

• A Ruleset that must be completed by adding rules or Decision Tables. With an existing
dictionary, you use the import option to specify a dictionary that may already contain the
rules or Decision Tables.

• A service component with the input and output contract of the decision component.

• A decision component for the rule dictionary and wires to the BPEL process.

Note:

When you create inputs and outputs for a business rule, the XML fact type that is
created in the associated dictionary is named based on the schema types for the
inputs and outputs that you supply in the Create Business Rules dialog. When you
specify schema type for the input and the output, Rules Designer defines fact types
and aliases associated with your type selections for input and output. If you only use
a single type for both the input and the output, then the decision component creates
a single fact that is shown in the Rules Designer Facts tab. This fact represents the
fact type you specified and uses an alias name that is a concatenation of both the
input variable name and the output variable name. In Rules Designer you can
rename this alias if you do not like the default naming scheme for the fact type.

Chapter 25
Adding Business Rules to a BPEL Process

25-14

What You May Need to Know About Invoking Business Rules in a BPEL
Process

When you add business rules to a BPEL process Oracle JDeveloper creates a decision
Service that supports calling Oracle Business Rules with the inputs you supply, and returning
the outputs with results. The decision service provides access to Oracle Business Rules
Engine at runtime as a web service. For more information, see Designing Business Rules with
Oracle Business Process Management.

What You May Need to Know About Decision Component Stateful
Operation

A decision component running in a business rules service engine supports either stateful or
stateless operation. The Reset Session check box in the Create Business Rules dialog
provides support for these two modes of operation.

By default the Reset Session check box is selected which indicates stateless operation.
Stateless operation means that, at runtime, the rule session is released after the decision
component invocation.

When Reset Session is unselected, the underlying Oracle Business Rules object is kept in the
memory of the business rules service engine at a separate location (so that it is not given back
to the Rule Session Pool when the operation is finished). A subsequent use of the decision
component re-uses the cached RuleSession object, with all its state information from the
callFunctionStateful invocation, and then releases it back to the Rule Session pool after the
callFunctionStateless operation is finished. Thus, when Reset Session is unselected the
rule session is saved for a subsequent request and a sequence of decision service invocations
from the same BPEL process should always end with a stateless invocation.

Adding Business Rules to a SOA Composite Application
To work with Oracle Business Rules in a SOA composite application, you create an application
and add business rules.

The business rule service component enables you to integrate your SOA composite application
with business rules. This creates a business rule dictionary and enables you to execute
business rules and make business decisions based on the rules.

After creating a project in Oracle JDeveloper, you must create a Business Rule Service
component within the project. When you add a business rule you can create input and output
variables to provide input to the service component and to obtain results from the service
component.

To use business rules with Oracle JDeveloper, you do the following:

• Add a business rules service component

• Create input and output variables for the service component

• Create an Oracle Business Rules dictionary

Chapter 25
Adding Business Rules to a SOA Composite Application

25-15

How to Add Business Rules to a SOA Composite Application
To work with Oracle Business Rules in a SOA composite application you use Oracle
JDeveloper to create an application, a project, and then add a business rule component.

To create a SOA application with business rules:

1. Create a SOA application and project. For more information, see How to Create a SOA
Application and Project. For a SOA composite using business rules, pick the required
technologies for your application. For example, you may need the following for a SOA
application with business rules: ADF Business Components, Java, and XML. You move
these items to the Selected area on the Project Technologies tab.

2. In the Applications window, if the SOA composite editor is not showing, then in your project
expand SOA Content folder and double-click composite.xml to launch the SOA
composite editor.

3. From the Components window, drag-and-drop a Business Rule from the Service
Components area of the SOA menu to the Components lane of the SOA composite editor,
as shown in Figure 25-12.

Figure 25-12 Adding Business Rules to a SOA Composite Application

4. When you drag-and-drop a Business Rule, Oracle JDeveloper displays the Create
Business Rules dialog as shown in Figure 25-13.

Chapter 25
Adding Business Rules to a SOA Composite Application

25-16

Figure 25-13 Adding Business Rules to a SOA Composite and Creating a
Dictionary

How to Add Inputs to a Business Rule

To add inputs to a business rule:

1. In the Create Business Rules dialog box, from the menu next to the Add icon select
Input... to add input for the business rule. This displays the Type Chooser dialog.

2. In the Type Chooser dialog, add inputs. If the schema is available in the Project Schema
Files, skip to step 9 to select the appropriate schema.

3. Click the Import Schema File... icon. This brings up the Import Schema File dialog.

4. In the Import Schema File dialog click Browse Resources to choose the XML schema
elements for the input. This displays the SOA Resource Browser dialog.

5. In the SOA Resource Browser dialog, navigate to find the schema for your business rules
input. For example, select the order.xsd schema file, and click OK.

6. In the Import Schema File dialog select Copy to Project, as shown in Figure 25-14.

Chapter 25
Adding Business Rules to a SOA Composite Application

25-17

Figure 25-14 Importing Schema for Input to Business Rules

7. In the Import Schema File dialog, click OK.

8. In the Localize Files dialog, click OK.

9. Use the Type Chooser dialog navigator to locate and select the input from the schema and
click OK. For example, select the CustomerOrder element as the input.

How to Add Output to a Business Rule

To add outputs to a business rule:

1. In the Create Business Rules dialog, from the dropdown menu next to the Add icon select
Output....

2. In the Type Chooser dialog, in a manner similar to adding an input add the output. For
example, add OrderApproval from the order.xsd and click OK.

3. This displays the Create Business Rules dialog, as shown in Figure 25-15.

Chapter 25
Adding Business Rules to a SOA Composite Application

25-18

Figure 25-15 Create Business Rules Dialog with Input and Output

How to Set Options and Create Decision Service and Business Rules Dictionary

To create decision service and business rules dictionary:

1. In the Create Business Rules dialog, select Expose as Composite Service.

2. If you do not want to use the default service name, then select the Advanced tab and in
the Service Name field enter the service name.

3. In the Create Business Rules dialog, click OK. This creates the Business Rule component,
also called a decision component, and Oracle JDeveloper shows the Business Rule
component in the canvas workspace as shown in Figure 25-16.

Chapter 25
Adding Business Rules to a SOA Composite Application

25-19

Figure 25-16 Business Rule Component in SOA Composite

4. Double-click the decision component to open Rules Designer, as shown in Figure 25-17.
The validation log shows validation warnings for the input and output facts. By working with
Rules Designer to define rules or decision tables, you remove these warning messages.

Figure 25-17 Rules Designer Showing New Dictionary for SOA Composite Application

For information on Rules Designer, see Designing Business Rules with Oracle Business
Process Management.

Note that a SOA installation does not have Verbal Rules or Business Phrases. This is BPM
functionality.

Chapter 25
Adding Business Rules to a SOA Composite Application

25-20

How to Select and Modify a Decision Function in a Business Rule
Component

You can specify one or more decision functions as inputs for calling Oracle Business Rules as
a component in a composite application. For example, you can specify a particular decision
function as the input when multiple decision functions are available in an Oracle Business
Rules dictionary.

To specify a decision function in a composite application:

1. Add a decision function to the Oracle Business Rules dictionary. For more information, see
Designing Business Rules with Oracle Business Process Management.

2. Add a Business Rule component to the composite application. For more information, see
How to Add Business Rules to a SOA Composite Application.

3. Select a business rule component, as shown in Figure 25-18.

Figure 25-18 Selecting a Business Rule Component in a Composite Application

4. Select the decision function port of interest. For example, select the port for DF_2 as
shown in Figure 25-19.

Chapter 25
Adding Business Rules to a SOA Composite Application

25-21

Figure 25-19 Selecting a Decision Function Port in a Business Rule Component

5. When you select the port, Oracle JDeveloper shows the port information in the Property
Inspector.

6. When you double-click the port, Oracle JDeveloper displays the Update Interface dialog for
the port as shown in Figure 25-20.

Figure 25-20 Update Interface Dialog for a Decision Function in a Business Rule Decision Port

Running Business Rules in a Composite Application
You run business rules as part of a decision component within a SOA composite application.
The business rules are executed by the Business Rule Service Engine.

Chapter 25
Running Business Rules in a Composite Application

25-22

You can use Oracle Enterprise Manager Fusion Middleware Control to monitor the Business
Rule Service Engine and to test a SOA composite application that includes a decision
component. For more information, see Administering Oracle SOA Suite and Oracle Business
Process Management Suite.

What You May Need to Know About Testing a Standalone Decision Service
Component

To test a standalone decision service component by using Oracle Enterprise Manager Fusion
Middleware Control, you must provide the name of the decision service as the value of the
payload name field in the Test Web Service page as shown in Figure 25-21.

Figure 25-21 Invoking a Standalone Test Decision Service

'name' in payload should be the decision service name as can be seen in the sample .decs file
in Figure 25-22.

Chapter 25
Running Business Rules in a Composite Application

25-23

Figure 25-22 Sample .decs File

Without the decision service name, it is not possible to invoke the standalone decision service
with just the payload and endpoint details.

Using Business Rules with Oracle ADF Business Components
Fact Types

You can use Oracle ADF Business Components Fact Types and ActionTypes from the
Business Rules Service Engine. Typically, a decision component can be used within a SOA
composite and wired to a BPEL component and the Oracle Business Rules rules act on XML
types. The Business Rules Service Engine is called as a web service with a payload containing
instances of the XML schema types, and the service engine returns a response similarly.

You can also use Oracle ADF Business Components Fact Types from a decision component.
Instead of loading the Oracle ADF Business Components Fact Type instances and passing
them to the Business Rules Service Engine, you call the Business Rules Service Engine with
configuration information describing how the Oracle ADF Business Components view object
rows can be loaded. Special Oracle Business Rules decision functions in the
DecisionPointDictionary and classes in the Oracle Business Rules SDK Decision Point API
then load the rows and assert Oracle ADF Business Components fact type instances. When
working with Oracle ADF Business Components Fact Types, you write rules that use user-
defined Java classes which inherit from ActionType to affect action, such as modifying the
Oracle ADF Business Components fact type instances such that they update their underlying
database rows.

A decision component requires an XML document as input. The Oracle Business Rules
Decision Point dictionary provides an XML Fact Type called SimpleDecisionPointInput that
serves as this input. The primary key(s) of Oracle ADF Business Components are passed to
the business rule service component. The business rule service component invokes a user-
defined decision function which it invokes to load the Oracle ADF Business Components view
object instances, asserts them in the rules engine, and then marshals the results in the
following order:

Chapter 25
Using Business Rules with Oracle ADF Business Components Fact Types

25-24

1. DecisionPointDictionary.DecisionPoint_Preprocessing_Webservice Ruleset: The
preprocessing ruleset reads the business component from the database and asserts them
as facts.

2. User-defined rulesets: The user ruleset matches these facts and should assert facts that
extend ActionType to update the business component.

3. DecisionPointDictionary.DecisionPoint_Postprocessing_Webservice Ruleset: The actual
updating is performed by the postprocessing ruleset. Use of ActionTypes is optional.

For specific instructions on how to use Oracle ADF Business Components Fact Types and
ActionTypes from the Business Rules Service Engine, see the source code for Rules
Designer-specific samples available with the Oracle SOA Suite samples.

Chapter 25
Using Business Rules with Oracle ADF Business Components Fact Types

25-25

26
Using Declarative Components and Task
Flows

Learn how to use different Oracle Business Rules declarative components and task flows to
develop high-performance, interactive, and multitiered applications that are also easy to
maintain. It describes how to use the Oracle Business Rules Editor declarative component and
the Oracle Business Rules Dictionary Editor declarative component and task flow. It also
describes how to localize the ADF-based web application.

• Introduction to Declarative Components and Task Flows

• Introduction to the Oracle Business Rules Editor Declarative Component

• Introduction to the Oracle Business Rules Dictionary Editor Declarative Component

• Introduction to the Oracle Business Rules Dictionary Editor Task Flow

• Localizing the ADF-Based Web Application

• Working with Translations

Introduction to Declarative Components and Task Flows
Declarative components are reusable, composite user interface (UI) components that comprise
other existing Application Development Framework (ADF) Faces components.

Consider an application that contains multiple JSF pages. On a particular page, a set of
specific components is used in multiple parts of that page. In this scenario, if you make any
changes to any of the components in the set, you typically must replicate the changes in
multiple parts of the page. This approach makes it difficult to maintain the consistency of the
structure and layout of the page. However, by defining a declarative component that comprises
the given set of components, you can reuse that composite declarative component in multiple
places or pages. Declarative components, thereby, save time and ensure integrity across
pages because when you make any changes to the components, the JSF pages using them
automatically get updated.

ADF task flows are reusable components that provide a modular and transactional method in
specifying the control flow in an application. You can use a set of reusable task flows as an
alternative to representing an application as a single large JSF page flow, thereby providing
modularity. Each task flow contains a part of the entire navigational plan of the application. The
nodes in a task flow are called activities. Apart from navigation, task flow activities can also call
methods on managed beans or call another task flow without invoking any particular page.
This facilitates reuse because business logic can be invoked independently of the page being
displayed.

Introduction to the Oracle Business Rules Editor Declarative
Component

Get an overview of the Oracle Business Rules Editor declarative component.

26-1

Learn how to create and run an application using the Rules Editor component, and then deploy
the application. Also get an overview of the supported tags and the localization process for the
application.

Using the Oracle Business Rules Editor Component
The Oracle Business Rules Editor is a declarative component that can be embedded in any
ADF-based web application. The component renders the user interface for rules editing and
handles all events associated with rules editing. The Rules Editor uses the Rules SDK2 API to
create and edit rules.

Note:

You should not confuse the Rules Editor with the Rules Dictionary Editor. The Rules
Editor is used to edit rules inside a specified ruleset. In fact, the Rules Editor is
embedded within the Rules Dictionary Editor. For more information about the Rules
Dictionary Editor, see Introduction to the Oracle Business Rules Dictionary Editor
Declarative Component.

Using the Rules Editor, you can create, delete and edit the general rules, verbal rules, and
decision tables that are part of a single ruleset. You are required to specify a RuleSetModel
object, which is a wrapper around the Rules SDK ruleset object, as a parameter to the Rules
Editor component. If multiple rulesets are required to be modified, multiple Rules Editor
components must be instantiated, one for each ruleset.

The Rules Editor component performs the following functions:

• Creates, updates, and deletes:

– Rules in a ruleset, as shown in Figure 26-1.

– Simple tests or conditions in a rule, as shown in the IF area.

– Actions in a rule, as shown in the THEN area.

Figure 26-1 General Rules in a Ruleset

– Verbal rules, as shown in Figure 26-2.

Chapter 26
Introduction to the Oracle Business Rules Editor Declarative Component

26-2

Figure 26-2 Verbal Rules in a Ruleset

– Decision tables, as shown in Figure 26-3.

Figure 26-3 Decision Table

• Sets effective dates and priorities for rulesets and rules.

• Provides support for user-defined operators.

• Provides a Condition Browser pop-up to display the left or right value options, as shown in
Figure 26-4.

Figure 26-4 Condition Browser

• Provides a Date Browser for selecting date types.

• Provides a Right Operand browser to handle multiple right-hand side expressions.

• Provides support for nested rules.

Chapter 26
Introduction to the Oracle Business Rules Editor Declarative Component

26-3

• Provides the Properties browser for editing properties of a rule action, as shown in
Figure 26-5.

Figure 26-5 Properties Browser

• Provides an Expression Builder window to build custom expressions.

• Provides a Validation panel to manage error messages, as shown in Figure 26-6.

Figure 26-6 Validation Panel to Manage Error Messages

Note:

After all the edits are done, the component user is responsible for saving the ruleset.

How to Create and Run a Sample Application by Using the Rules Editor
Component

This section lists the steps for creating and running a sample application by using the Rules
Editor component.

The prerequisite for using the Rules Editor component to create ADF-based web applications
is having a running installation of Oracle SOA Suite and Oracle JDeveloper on your computer.

To create a sample application by using the Rules Editor:

1. Open Oracle JDeveloper.

2. From the File menu, select New.

3. Select ADF Fusion Web Application to create a new application as shown in Figure 26-7.

Chapter 26
Introduction to the Oracle Business Rules Editor Declarative Component

26-4

Figure 26-7 Creating Fusion Web Application

4. Enter a name for the application in the Application Name field, for example,
useRulesDCApp, and click Next as shown in Figure 26-8.

Figure 26-8 Creating a Generic Application

5. Use the default for everything else.

6. Click Finish.

7. Right click ViewController project and select Project Properties.

8. Select Libraries and Classpath from the menu on the left.

Chapter 26
Introduction to the Oracle Business Rules Editor Declarative Component

26-5

9. a. Click the Add Library button.

b. Select Oracle Rules and Oracle Rules Dictionary Component from the Extension
List and click OK. This adds the Rules SDK and the Rules ADF component tag
libraries to the project as shown in Figure 26-9.

c. Click OK once more to come out of Project Properties.

Figure 26-9 Adding Library

Note:

If the 'Oracle Rules' and 'Oracle Rules Dictionary Component' do not show up in
the 'Extension' List, open a SOA/BPM project within jDeveloper to load the
required libraries.

10. Click Save All to save the project.

11. Check to make sure all the required tag libraries are added.

12. a. Right click ViewController project and select Project Properties.

b. Select JSP Tag Libraries from the menu on the left and check if all the tag libraries
are added Figure 26-10.

Chapter 26
Introduction to the Oracle Business Rules Editor Declarative Component

26-6

Figure 26-10 Checking the Required Tag Libraries

How to Create the RuleSetModel Object
The Rules Editor component requires a oracle.bpel.rulesdc.model.impl.RuleSetModel
object.

To create the RuleSetModel object:

1. Create a Java Class e.g. 'SomeBean.java' in your project.

2. Open Oracle JDeveloper.

3. From the File menu, select New and create a Java Class.

4. In SomeBean.java provide a method that returns the RuleSetModel object. You must
specify the location/path of the rules file.The following is a sample of the SomeBean.java
file:

package view;import java.io.BufferedReader;
import java.io.FileOutputStream;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.OutputStreamWriter;
import java.io.Serializable;

import java.net.MalformedURLException;
import java.net.URL;

import oracle.bpel.rulesdc.model.decisiontable.impl.DecisionTablePrefsImpl;
import oracle.bpel.rulesdc.model.decisiontable.interfaces.DecisionTablePrefs;
import oracle.bpel.rulesdc.model.impl.IfThenPreferencesImpl;
import oracle.bpel.rulesdc.model.impl.RuleSetModel;
import oracle.bpel.rulesdc.model.interfaces.IfThenPreferences;
import oracle.bpel.rulessharedutils.impl.RulesSharedUtils;

Chapter 26
Introduction to the Oracle Business Rules Editor Declarative Component

26-7

import oracle.rules.sdk2.decisionpoint.DecisionPointDictionaryFinder;
import oracle.rules.sdk2.dictionary.DictionaryFinder;
import oracle.rules.sdk2.dictionary.RuleDictionary;
import oracle.rules.sdk2.exception.SDKException;
import oracle.rules.sdk2.ruleset.RuleSet;
import oracle.rules.sdk2.ruleset.RuleSetTable;

public class SomeBean {
 //on windows
 private static final String RULES_FILE1 =
 "file:///D:/scratch/asuraj/system_MAIN/rules_files/ApprovalRules.rules";
 /*
 * on linux
 private static final String RULES_FILE1 =
 "file:////scratch/asuraj/backup/rules_files/ApprovalRules.rules";
 */
 private RuleSetModel ruleSetModel = null;

 private boolean viewOnly = true;
 private DecisionTablePrefs dtPrefs;

 private IfThenPreferences ifThenPrefs;

 public SomeBean() {
 super();
 }

 public RuleSetModel getRuleSetModel() {
 if (ruleSetModel != null)
 return ruleSetModel;
 ruleSetModel = new RuleSetModel(getRuleSet());
 System.out.println("ruleSetModel = " + ruleSetModel);
 return ruleSetModel;
 }

 public RuleSet getRuleSet() {

 RuleDictionary dict =
 openRulesDict(RULES_FILE1, new DecisionPointDictionaryFinder());
 if (dict == null)
 return null;

 RuleSetTable ruleSetTable = dict.getRuleSetTable();
 if (ruleSetTable == null || ruleSetTable.isEmpty())
 return null;

 return ruleSetTable.get(0);
 }

 public void saveDictionary() {

 RuleDictionary dict = null;
 String rulesFile = null;

 if (this.ruleSetModel == null)
 return;
 dict = this.ruleSetModel.getRuleSet().getDictionary();

 if (dict == null)
 return;

Chapter 26
Introduction to the Oracle Business Rules Editor Declarative Component

26-8

 if (dict.isModified())
 RulesSharedUtils.updateDictionary(dict);
 if (!dict.isTransactionInProgress())
 saveDictionary(dict, RULES_FILE1);
 }

 public void validate() {
 if (this.ruleSetModel == null)
 return;

 this.ruleSetModel.validate();
 }

 //utility methods

 public static RuleDictionary openRulesDict(String fileName,
 DictionaryFinder finder) {
 URL url = null;
 try {
 url = new URL(fileName);
 } catch (MalformedURLException e) {
 System.err.println(e);
 return null;
 }
 RuleDictionary dict = null;

 try {
 dict = readFromDisk(url, finder);
 } catch (Exception e) {
 System.err.println(e);
 return null;
 }
 return dict;
 }

 public static RuleDictionary readFromDisk(URL dictURL, DictionaryFinder
 finder) {
 BufferedReader buf = null;
 try {
 buf = new BufferedReader(new
 InputStreamReader(dictURL.openStream(), "UTF-8"));
 return RuleDictionary.readDictionary(buf, finder);
 } catch (SDKException e) {
 System.err.println(e);
 } catch (IOException e) {
 System.err.println(e);
 } finally {
 if (buf != null)
 try {
 buf.close();
 } catch (IOException e) {
 System.err.println(e);
 }
 }

 return null;
 }

 public static boolean saveDictionary(RuleDictionary dict, String
 ruleFileName) {
 if (dict == null || ruleFileName == null)
 return false;

Chapter 26
Introduction to the Oracle Business Rules Editor Declarative Component

26-9

 if (dict.isTransactionInProgress())
 System.out.println("Transaction in progress, cannot save
 dictionary");

 try {
 writeToDisk(dict, new URL(ruleFileName));
 } catch (MalformedURLException e) {
 System.err.println(e);
 return false;
 } catch (Exception e) {
 System.err.println(e);
 return false;
 }
 return true;
 }

 public static void writeToDisk(RuleDictionary dic, URL dictURL) {
 OutputStreamWriter writer = null;
 try {
 writer = new OutputStreamWriter(new
 FileOutputStream(dictURL.getPath()), "UTF-8");
 dic.writeDictionary(writer);
 } catch (IOException e) {
 System.err.println(e);
 } catch (SDKException e) {
 System.err.println(e);
 } finally {
 if (writer != null)
 try {
 writer.close();
 } catch (IOException e) {
 System.err.println(e);
 }
 }
 }

 public void toggleMode() {
 viewOnly = !viewOnly;
 }

 public boolean isViewOnly() {
 return viewOnly;
 }

 public DecisionTablePrefs getDtPreferences() {
 if (dtPrefs == null)
 dtPrefs = new DTPreferences();
 return dtPrefs;
 }

 public IfThenPreferences getIfThenPreferences() {
 if (ifThenPrefs == null)
 ifThenPrefs = new MyIfThenPrefs();
 return ifThenPrefs;
 }
 public class MyIfThenPrefs extends IfThenPreferencesImpl implements
 Serializable {

 @Override
 public boolean isGenericAction() {
 return true;

Chapter 26
Introduction to the Oracle Business Rules Editor Declarative Component

26-10

 }

 @Override
 public boolean isGenericCondition() {
 return true;
 }
 }

 public class DTPreferences extends DecisionTablePrefsImpl implements
 Serializable {

 @Override
 public boolean isShowDTButtons() {
 return true;
 }
 }
}

5. Point to SomeBean.java in adfc-config.xml with Bean Name "someBean" and a "session"
scope. Example adfc-config.xml:

<?xml version="1.0" encoding="UTF-8" ?>
<adfc-config xmlns="http://xmlns.oracle.com/adf/controller" version="1.2">
 <managed-bean id="__1">
 <managed-bean-name>someBean</managed-bean-name>
 <managed-bean-class>view.SomeBean</managed-bean-class>
 <managed-bean-scope>session</managed-bean-scope>
 </managed-bean>
</adfc-config>

6. The ADF/JSF framework makes calls to SomeBean.java multiple times to render the UI.
For instance, someBean.ruleSetModel is called many times. So it is more efficient to
create the ruleSetModel once and cache it and return it each time instead of recreating it.

How to Create the .jspx File
The next task is to create the .jspx file to include the Rules Editor component tag.

To create the .jspx file to include the Rules Editor Component tag:

1. Open Oracle JDeveloper.

2. From the File menu, select New and then select JSF.

3. Select JSF Page and click OK.

4. Select Document Type as JSP XML.

5. Enter rulesEditor.jspx as file name. Click OK.

6. The RulesEditor is visible in the component window in jDeveloper.

7. Select RulesEditor, after that the Rulesdc tag can be seen.

8. Drag and drop the rulesdc tag into the JSPX file. You can also add the rulesDC tag
manually in your jspx file like this:

<?xml version='1.0' encoding='UTF-8'?>
<jsp:root xmlns:jsp="http://java.sun.com/JSP/Page" version="2.1" xmlns:f="http://
java.sun.com/jsf/core"
 xmlns:af="http://xmlns.oracle.com/adf/faces/rich" xmlns:rdc="http://
xmlns.oracle.com/bpel/rules/editor">
 <jsp:directive.page contentType="text/html;charset=UTF-8"/>
 <f:view>
 <af:document title="rulesEditor" id="d1">

Chapter 26
Introduction to the Oracle Business Rules Editor Declarative Component

26-11

 <af:form id="f1">
 <af:panelGridLayout id="pgl1" inlineStyle="margin:15px;"
styleClass="AFStretchWidth"
 partialTriggers="cb1 cb3 cb4">
 <af:gridRow id="gr2">
 <af:gridCell marginStart="5px" marginEnd="5px" width="100%"
halign="stretch" id="gc1">
 <af:panelGroupLayout id="pgl2" layout="horizontal">
 <af:commandButton text="Save Dict"
action="#{someBean.saveDictionary}" id="cb1"/>
 <af:spacer width="10" height="10" id="s2"/>
 <af:commandButton text="Validate" id="cb3"
action="#{someBean.validate}"
 partialSubmit="true"/>
 <af:spacer width="10" height="10" id="s8"/>
 <af:commandButton text="Toggle Mode" id="cb4"
action="#{someBean.toggleMode}"
 partialSubmit="true"/>
 </af:panelGroupLayout>
 </af:gridCell>
 </af:gridRow>
 <af:gridRow height="100%" id="gr1">
 <af:gridCell marginStart="5px" marginEnd="5px" width="100%"
halign="stretch" valign="stretch"
 id="gc2">
 <rdc:rulesdc rulesetModel="#{someBean.ruleSetModel}"
id="r1"

ifThenPreferences="#{someBean.ifThenPreferences}"
 dtPreferences="#{someBean.dtPreferences}"
viewOnly="#{someBean.viewOnly}"
 disableVerbalRules="false"></rdc:rulesdc>
 </af:gridCell>
 </af:gridRow>
 </af:panelGridLayout>
 </af:form>
 </af:document>
 </f:view>
</jsp:root>

How to Refer to the Oracle Rules Shared Libraries
After creating the .jspx file, you must refer to the oracle.rules and
oracle.soa.rules_dict_dc.webapp shared libraries from the weblogic-application.xml file.

To refer to the oracle.rules and the oracle.soa.rules_dict_dc.webapp shared libraries:

1. In Oracle JDeveloper, from the Application Resources, open Descriptors, and then
META-INF. Edit the weblogic-application.xml file and add the following lines (this refers to
the oracle.rules shared library.)

<library-ref>
 <library-name>oracle.rules</library-name>
</library-ref>

2. In Oracle JDeveloper,

a. Select File menu, then select New and then Deployment Descriptors.

b. Select Weblogic Deployment Descriptor and select weblogic.xml from the list.

c. Select version 12.1.2 and click Finish.

Chapter 26
Introduction to the Oracle Business Rules Editor Declarative Component

26-12

d. In weblogic.xml overview mode, select Libraries from the left and add
oracle.soa.rules_dict_dc.webapp as the library name. Example weblogicogic.xml
file:

<?xml version = '1.0' encoding = 'UTF-8'?>
<weblogic-web-app xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://xmlns.oracle.com/weblogic/weblogic-web-app
http://xmlns.oracle.com/weblogic/weblogic-web-app/1.5/weblogic-web-app.xsd"
xmlns="http://xmlns.oracle.com/weblogic/weblogic-web-app">
 <library-ref>
 <library-name>oracle.soa.rules_dict_dc.webapp</library-name>
 </library-ref>
</weblogic-web-app>

e. Click Save All.

Note:

Note that oracle.rules and oracle.soa.rules_dict_dc.webapp shared libraries
must be deployed to the embedded WLS server.

3. All the shared libraries must be deployed using the weblogic console of your embedded
WLS:

a. Launch WLS console (http://host:port/console/login/LoginForm.jsp) and log in.

b. Click Deployments.

Check if oracle.rules and oracle.soa.rules_dict_dc.webapp shared libraries are
deployed as shown in Figure 26-11.

Figure 26-11 Deployments

4. Deploy the shared libraries manually if they are not deployed.

To start the WLS embedded server:

a. Open JDeveloper.

b. Select Run and then select Start Server Instance as shown in Figure 26-12

Chapter 26
Introduction to the Oracle Business Rules Editor Declarative Component

26-13

Figure 26-12 Start Embedded WLS

Skip this step if the shared libraries are already deployed.

Note:

WLS embedded server on JDeveloper must be running so that the shared
libraries can be deployed.

5. To deploy the oracle.rules shared library to WLS:

a. Launch WLS console (http://host:port/console/login/LoginForm.jsp) and log in.

b. Select Deployments and click Install.

c. Select <SOA_INSTALL>/soa/soa/modules/oracle.rules_11.1.1/rules.jar.

d. Click Next and then click Finish.

6. To deploy the oracle.soa.rules_dict_dc.webapp shared library to WLS:

a. In WLS console, select Deployments, click Install.

b. Select <SOA_INSTALL>/soa/soa/modules/
oracle.soa.rules_dict_dc.webapp_11.1.1/oracle.soa.rules_dict_dc.webapp.war.

c. Click Next and then click Finish.

d. Select Install this deployment as a library.

e. Click Finish.

f. The oracle.soa.rules_dict_dc.webapp gets added to the list of deployments as
shown in Figure 26-11

How to Run the Sample Application
The last task is running the sample application.

Chapter 26
Introduction to the Oracle Business Rules Editor Declarative Component

26-14

To run the Sample Application:

1. To run the sample application, from JDeveloper, right click rulesEditor.jspx file.

2. Select Run.

This should start the sample application on a browser., as shown in Figure 26-13.

Figure 26-13 Rules Editor Running

How to Deploy a Rules Editor Application to a Standalone WLS
When you are ready to deploy your application EAR file to the standalone Oracle WebLogic
Server, perform the following:

1. Check if the shared libraries are deployed using the WebLogic console of your standalone
WLS.

a. Launch WLS console. (http://host:port/console/login/LoginForm.jsp) and log in.

b. Click Deployments. Check if oracle.rules and oracle.soa.rules_dict_dc.webapp
shared libraries are deployed as showed in Figure 26-11.

2. If the shared libraries are not deployed, then refer to the previous steps to deploy the
shared libraries manually.

3. In a project that uses the Rules Editor Component:

a. Include Oracle Rules Dictionary Component in your Libraries and Classpath.

This does not deploy these libraries by default, so the jars are not included in your project
war file.

4. In a project that is deploying (i.e where you create the ear file):

a. Add this to your weblogic-application.xml:

<library-ref>
 <library-name>oracle.rules</library-name>
</library-ref>

b. Add this to weblogic.xml in your project's war file:

<library-ref>
 <library-name>oracle.soa.rules_dict_dc.webapp</library-name>
</library-ref>

Chapter 26
Introduction to the Oracle Business Rules Editor Declarative Component

26-15

5. Deploy your ear file in WLS.

For more information about creating an EAR file, see "How to Create an EAR File for
Deployment" in Developing Fusion Web Applications with Oracle Application Development
Framework.

What You May Need to Know About the Custom Permissions for the Rules
Editor Component

For role-based authorization, Rules DC implements custom JAAS permissions (extending the
oracle.adf.share.security.authorization.ADFPermission class to ensure that the
permission can be used by ADF security).

If a Rules Editor application supports ADF security, which means there is support for role-
based authentication and authorization, then security is enforced by implementing custom
JAAS permissions (by extending the
oracle.adf.share.security.authorization.ADFPermission class to ensure that the
permission can be used by ADF security). You have to create ADF security policies by granting
the following permissions to the user roles based on your application requirement:

• oracle.rules.adf.permission.AddRulePermission: Displays the Add Rule button; if
permission is not granted, the Add Rule button is not visible to the user.

• oracle.rules.adf.permission.DeleteRulePermission: Displays the Delete Rule button;
if permission is not granted, the Delete Rule button is not visible to the user.

• oracle.rules.adf.permission.EditRulePermission: Displays the Edit Rule button for
rules inside a ruleset; if permission is not granted, then the rules are view-only.

• oracle.rules.adf.permission.AddDTPermission: Displays the Add Decision Table
button; if permission is not granted, the Add Decision Table button is not visible to the
user.

• oracle.rules.adf.permission.DeleteDTPermission: Displays the Delete Decision
Table button; if permission is not granted, the Delete Decision Table button is not visible
to the user.

• oracle.rules.adf.permission.EditDTPermission: Displays the Edit Decision Table
button for decision tables within a ruleset; if permission is not granted, the decision tables
are view-only.

• oracle.rules.adf.permission.RulesEditorPermission: A global permission that sets all
the preceding permissions to true.

For example, to grant the delete rule permission to a role, specify the following code in the
jazn-data.xml file of the application:

<policy-store>
 <applications>
 <application>
 <name>UseRuleDictDCWtPerm</name>
 <app-roles>
 <app-role>
 <name>Admin</name>
 <class>oracle.security.jps.service.policystore.ApplicationRole</class>
 <display-name>Admin</display-name>
 <members>
 <member>
 <name>admin</name>
 <class>oracle.security.jps.internal.core.principals.JpsXmlUserImpl</
class>

Chapter 26
Introduction to the Oracle Business Rules Editor Declarative Component

26-16

 </member>
 </members>
 </app-role>
 <app-role>
 <name>BusinessUser</name>
 <class>oracle.security.jps.service.policystore.ApplicationRole</class>
 <display-name>BusinessUser</display-name>
 <members>
 <member>
 <name>buser</name>
 <class>oracle.security.jps.internal.core.principals.JpsXmlUserImpl</
class>
 </member>
 </members>
 </app-role>
 </app-roles>
 <jazn-policy>
 <grant>
 <grantee>
 <principals>
 <principal>
 <class>oracle.security.jps.service.policystore.ApplicationRole</class>
 <name>Admin</name>
 </principal>
 </principals>
 </grantee>
 <permissions>
 <permission>
 <class>oracle.rules.adf.permission.RulesEditorPermission</class>
 <name>RulesEditorPermission</name>
 <actions>access</actions>
 </permission>
 </permissions>
 </grant>
 </jazn-policy>
 </application>
 </applications>
 </policy-store>

If you do not want to use the individual permissions, such as AddRulePermission or
DeleteRulePermission, you can set the RulesEditorPermission in the jazn-data.xml file to
set global permissions.

What You May Need to Know About the Supported Tags of the Rules Editor
Component

This section lists the tags and attributes that are supported by the Rules Editor component.

Table 26-1 lists the supported attributes.

Chapter 26
Introduction to the Oracle Business Rules Editor Declarative Component

26-17

Table 26-1 Supported Attributes of the Rules Editor Component

Name Type Required Default Value Supports
EL?

Description

rulesetModel oracle.bpel.rulesdc
.model.interfaces.R
uleSetInterface

yes Only EL Wrapper around the
Rules SDK ruleset
object. The user can
use the RuleSetModel
object supplied as part
of the Rules Editor
Component.

ruleModel java.lang.String no oracle.bpel.
rulesdc.mode
l.impl.RuleM
odel

yes Used to customize the
default RuleModel.
User can extend the
RuleModel class to
override certain
methods. Deprecated.
Use
'ifThenPreferences'
attribute and override
getRuleModel().

simpleTestModel java.lang.String no oracle.bpel
.rulesdc.mo
del.impl.Si
mpleTestMod
el

yes Used to customize the
default
SimpleTestModel. User
can extend the
SimpleTestModel class
to override certain
methods. Deprecated.
Use
'ifThenPreferences'
attribute and override
getSimpleTestModel().

viewOnly java.lang.Boolean no true yes In the "viewOnly" mode
user can view the
existing rules in the
ruleset. If "false", in the
"edit" mode, the user is
allowed to add new
rules and edit existing
rules.

genericPattern java.lang. Boolean no true yes Deprecated and not
used.

genericAction java.lang.Boolean no true yes Deprecated and not
used.

locale java.util.Locale no Locale.getDe
fault()

yes Used for Localization.

timezone java.util.TimeZone no TimeZone.get
Default()

yes Used for Localization

displayRuleSetEffDate java.lang.Boolean no true yes Deprecated and not
used.

discloseRules java.lang.Boolean no false yes Deprecated and not
used.

Chapter 26
Introduction to the Oracle Business Rules Editor Declarative Component

26-18

Table 26-1 (Cont.) Supported Attributes of the Rules Editor Component

Name Type Required Default Value Supports
EL?

Description

displayRuleSetName java.lang.Boolean no false yes Deprecated and not
used.

disableRuleSetName java.lang.Boolean no false yes Deprecated and not
used.

dtColumnPageSize java.lang. Integer no 5 yes Deprecated and not
used.

dtHeight java.lang. Integer no 16 yes Deprecated and not
used.

dateStyle java.lang.String no gets it from the
locale

yes If specified, the date
style is used in all
inputDate components.
Example: "yyyy.MM.dd"

timeStyle java.lang.String no gets it from the
locale

yes If specified, the time
style is used in all
inutDate
components.Example:
"HH:mm:ss".

showValidationPanel java.lang.Boolean no true yes Displays the validation
panel by default. User
can choose to hide this
by setting this to false.

showDTButtons java.lang.Boolean no true yes Deprecated and not
used.

rulesPageSize java.lang.Integer no 5 yes Deprecated and not
used.

decimalSeparator java.lang.
Character

no Based on
Locale

yes Used to specify the
decimal separators.
This is used in Number
Formatting. If specified,
overrides the decimal
separator based on
locale.

groupingSeparator java.lang.Characte
r

no Based on
Locale

yes Used to specify the
grouping separators.
This is used in Number
Formatting. If specified,
overrides the grouping
separator based on
locale.

disableVerbalRules java.lang.Boolean no true yes Disables verbalization
UI if 'true'.

vldnPanelCollapsed java.lang.Boolean no false yes Used to specify if
validation panel should
be collapsed by default.

vldnTabTitle java.lang. String no - yes Used to specify the
validation panel title.

Chapter 26
Introduction to the Oracle Business Rules Editor Declarative Component

26-19

Table 26-1 (Cont.) Supported Attributes of the Rules Editor Component

Name Type Required Default Value Supports
EL?

Description

genericDTAddActionMenu java.lang.Boolean yes true yes If 'true', the generic add
action menu is
displayed in the
decision table tool bar.
If 'false' consumer must
specify the add action
menu using
'dtAddActionMenuDDC'
attribute. Deprecated.
Use 'dtPreferences'
attribute and override
isGenericDTAddAction
Menu().

genericDTEditAction java.lang.Boolean no true yes If 'true', generic action
UI is displayed in the
action editor browser
that shows up when an
action row is edited in
the decision table. If
'false' consumer must
specify the edit action
UI using the
'dtEditActionDDC'
attribute. Deprecated.
Use 'dtPreferences'
attribute and override
isGenericDTEditAction(
).

genericDTActionParam java.lang.Boolean no true yes If 'true', generic UI is
displayed in the action
parameter cell of the
decision table. If 'false',
consumer must specify
the action parameter
cell UI using the
'dtActionParamCellDD
C' attribute.
Deprecated. Use
'dtPreferences' attribute
and override
isGenericDTActionPara
m().

Chapter 26
Introduction to the Oracle Business Rules Editor Declarative Component

26-20

Table 26-1 (Cont.) Supported Attributes of the Rules Editor Component

Name Type Required Default Value Supports
EL?

Description

dtAddActionMenuDDC jjava.lang.String no - yes Used only when
'genericDTAddActionM
enu' is true. Consumer
must pass the DDC (i.e
the dynamic declarative
component) including
the context path that
specifies the add menu
items in the decision
table toolbar. Example
"/userulesdc/
decisiontable/
dtAddActionMenu.jsff".
Deprecated. Use
'dtPreferences' attribute
and override
getDtAddActionMenuD
DC()..

dtEditActionDDC java.lang. String no - yes Used only when
'genericDTEditAction'
is true. Consumer must
pass the DDC (i.e the
dynamic declarative
component) including
the context path that
specifies the action UI
to be displayed in the
action editor browser
that shows up when an
action row is edited in
the decision table.
Example "/userulesdc/
decisiontable/
actionEditor.jsff".
Deprecated. Use
'dtPreferences' attribute
and override
getDtEditActionDDC().

Chapter 26
Introduction to the Oracle Business Rules Editor Declarative Component

26-21

Table 26-1 (Cont.) Supported Attributes of the Rules Editor Component

Name Type Required Default Value Supports
EL?

Description

dtActionParamCellDDC java.lang. String no - yes Used only when
'genericDTActionParam
' is true. Consumer
must pass the DDC (i.e
the dynamic declarative
component) including
the context path that
specifies the UI to be
displayed in the action
parameter cell of the
decision table.
Example "/userulesdc/
decisiontable/
actionParamCell.jsff".
Deprecated. Use
'dtPreferences' attribute
and override
getDtActionParamCell
DDC().

dtActionNameCustomizer oracle.bpel.rulesdc
.model.interfaces.A
ctionNameCustomizer

no - yes Used to specify the
action name and action
parameter name in the
decision table header.
Deprecated. Use
'dtPreferences' attribute
and override
getDtActionNameCusto
mizer().

dtPreferences oracle.bpel.rulesdc
.model.decisiontabl
e.interfaces.Decisi
onTablePrefs

no oracle.bpel.
rulesdc.mode
l.decisionta
ble.impl.Dec
isionTablePr
efsImpl

yes Used to specify
decision table
preferences.
Consumers can extend
the default
implementation i.e
(oracle.bpel.rulesdc.mo
del.decisiontable.impl.
DecisionTablePrefsImpl
) and override only the
required preferences.
s.

ifThenPreferences oracle.bpel.rulesdc
.model.interfaces.I
fThenPreferences

no oracle.bpel.
rulesdc.mode
l.impl.IfThe
nPreferences
Impl

yes Used to specify if
validation panel should
be collapsed by default.

resourceManager joracle.bpel.ruless
hareddc.model.inter
faces.ResourceManag
erInterface

no - yes Used to specify the
resource manager for
translations UI. Refer to
the section on
'translations'.

Chapter 26
Introduction to the Oracle Business Rules Editor Declarative Component

26-22

Table 26-1 (Cont.) Supported Attributes of the Rules Editor Component

Name Type Required Default Value Supports
EL?

Description

verbalRuleGotoDSLListen
er oracle.bpel.rulessh

areddc.model.interf
aces.VerbalRuleGoto
LinkListener

no - yes Listener object
triggered when 'Goto
phrase' link is clicked
from the verbal rule.

Introduction to the Oracle Business Rules Dictionary Editor
Declarative Component

Get an overview of the Oracle Business Rules Dictionary Editor declarative component.

Learn how to create and run an application using the Rules Dictionary Editor component, and
then deploy the application. Also get an overview of supported tags and the localization
process for the application.

Using the Oracle Business Rules Dictionary Component
Rules Dictionary Editor Component is an ADF Declarative Component that allows editing of
Business Rules meta-data artifacts such as Rulesets, Value Sets, Globals, Decision Functions
and so on using the Rules SDK2 API.

Rules Dictionary Editor Component must not be confused with the Rules Editor Component
which is mainly used to edit Rules inside a specified Ruleset. The Rules Dictionary Component
is a composite component that allows editing of Globals, Value sets, Rulesets and so on. The
Rules Dictionary Editor Task Flow uses the Rules Dictionary Editor Component.

The Rules Dictionary Editor Component provides the following features:

• CRUD (create/read/update/delete) operations on rulesets and general rules, verbal rules
and decision tables within a ruleset.

• CRUD (create/read/update/delete) operations on Business Phrases (used in verbalization).

• CRUD (create/read/update/delete) operations on Value sets.

• CRUD (create/read/update/delete) operations on Globals/Variables.

• CRUD (create/read/update/delete) operations on Decision Functions.

• CRUD (create/read/update/delete) operations on RL and XML Facts and viewing for all
other Fact types.

• View linked dictionaries.

• Support for user-defined translations.

• Cut/copy/paste of all dictionary components.

• Compare and merge different versions of the dictionary (diff/merge support).

• Export decision tables to Excel.

The Rules Dictionary Editor task flow uses the Rules Dictionary Editor Component to create
applications. Typically, you should either use the Rules Dictionary Editor component or the

Chapter 26
Introduction to the Oracle Business Rules Dictionary Editor Declarative Component

26-23

Rules Dictionary Editor task flow, but not both. For more information on the Rules Dictionary
Editor task flow, see Introduction to the Oracle Business Rules Dictionary Editor Task Flow.

The Rules Dictionary Editor component enables you to:

• Edit globals or variables that have the final attribute set to true by using the Globals
Editor, as shown in Figure 26-14.

Figure 26-14 Globals Editor

The Globals Editor enables you to create, delete, edit the name, description, value, change
value set, change type and make global final. It supports validation of globals.

• Edits value sets by using the Value Sets Editor as shown in Figure 26-15.

Figure 26-15 Value Sets Editor

The Value Sets Editor enables you to perform CRUD (create, read, update, and delete)
operations on value sets and ranges inside a value set. It also supports validation of value
sets.

• Edit Rulesets, as shown in Figure 26-16.

Chapter 26
Introduction to the Oracle Business Rules Dictionary Editor Declarative Component

26-24

Figure 26-16 Edit Rulesets

The Rules Dictionary Editor enables you to edit only rules inside a selected ruleset. It does
not allow creation or deletion of rulesets.

• Edit General Rules, as shown in Figure 26-17.

Figure 26-17 General Rule

• Edit Verbal Rules, as shown in Figure 26-18.

Chapter 26
Introduction to the Oracle Business Rules Dictionary Editor Declarative Component

26-25

Figure 26-18 Verbal Rule

• Edit Decision Tables, as shown in Figure 26-19.

Figure 26-19 Decision Table

• Edit Business Phrases, as shown in Figure 26-20.

Chapter 26
Introduction to the Oracle Business Rules Dictionary Editor Declarative Component

26-26

Figure 26-20 Business Phrases Tab

• View Explorer, as shown Figure 26-21.

Figure 26-21 Explorer Tab

• Edit Facts, as shown in Figure 26-22.

Chapter 26
Introduction to the Oracle Business Rules Dictionary Editor Declarative Component

26-27

Figure 26-22 Facts Tab

• Edit Decision Functions, as shown in Figure 26-23.

Figure 26-23 Decision Functions Tab

• Edit Translations, as shown in Figure 26-24.

Chapter 26
Introduction to the Oracle Business Rules Dictionary Editor Declarative Component

26-28

Figure 26-24 Translations Tab

• Create and run tests to validate rules, as shown in Figure 26-25.

Figure 26-25 Tests Tab

For more information about these features and tabs, see Designing Business Rules with
Oracle Business Process Management.

How to Create and Run a Sample Application by Using the Rules Dictionary
Editor Component

This section lists the steps for creating and running a sample application by using the Rules
Dictionary Editor Component.

Chapter 26
Introduction to the Oracle Business Rules Dictionary Editor Declarative Component

26-29

The prerequisite for using the Rules Dictionary Editor Component to create ADF-based web
applications is having JDeveloper with SOA installation.The first task is to create a sample
application.

To create a sample application by using the Rules Dictionary Editor Component:

1. Open JDeveloper, from the File Menu, select New and then select ADF Fusion Web
Application to create a new application as shown in Figure 26-26.

Figure 26-26 Create Fusion Web Application.

2. Enter a name for the application in the Application Name field, for example,
UseRuleDictDCApp and click Next as shown in Figure 26-27.

Figure 26-27 Creating a Generic Application

3. Use the default for everything else.

Chapter 26
Introduction to the Oracle Business Rules Dictionary Editor Declarative Component

26-30

4. Click Finish.

5. Right click ViewController project and select Project Properties. Select Libraries and
Classpath from the menu on the left.

a. Click Add Library.

b. Select Oracle Rules and Oracle Rules Dictionary Component from the Extension
List and click OK. This adds the Rules SDK and the Rules ADF component tag
libraries to the project as shown in Figure 26-28.

Figure 26-28 Adding a Library

Note:

If the 'Oracle Rules' and 'Oracle Rules Dictionary Component' do not show
up in the 'Extension' List, open a SOA/BPM project within jDeveloper to load
the required libraries.

c. Click OK once more to come out of Project Properties.

6. Click Save All to save the project.

7. Check to make sure all the required tag libraries are added.

a. Right click ViewController project and select Project Properties.

b. Select JSP Tag Libraries from the menu on the left and check if all the tag libraries
are added as shown in Figure 26-29.

Chapter 26
Introduction to the Oracle Business Rules Dictionary Editor Declarative Component

26-31

Figure 26-29 JSP Tag Libraries

How to Create the RuleDictionaryModel Object
The Rules Dictionary Editor component requires a
oracle.bpel.ruledictionarydc.model.impl.RuleDictionaryModel object to create the
RuleDictionaryModel object.

To create the RuleDictionaryModel object:

1. To create a Java Class e.g. SomeBean.java in your project, from the File menu, select
New and then select Java Class.

2. In SomeBean.java provide a method that returns the RuleDictionaryModel object. You
must specify the location/path of the rules file. The following is an example of
SomeBean.java:

package view;

import java.io.BufferedReader;
import java.io.FileOutputStream;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.OutputStreamWriter;
import java.io.Serializable;

import java.net.MalformedURLException;
import java.net.URL;

import oracle.bpel.ruledictionarydc.model.impl.RuleDictionaryModel;
import oracle.bpel.ruledictionarydc.model.impl.RulesEditorPreferencesImpl;
import oracle.bpel.ruledictionarydc.model.interfaces.RulesEditorPreferences;
import oracle.bpel.rulesdc.model.decisiontable.impl.DecisionTablePrefsImpl;
import oracle.bpel.rulesdc.model.decisiontable.interfaces.DecisionTablePrefs;
import oracle.bpel.rulesdc.model.impl.IfThenPreferencesImpl;
import oracle.bpel.rulesdc.model.interfaces.IfThenPreferences;

Chapter 26
Introduction to the Oracle Business Rules Dictionary Editor Declarative Component

26-32

import oracle.bpel.rulessharedutils.impl.RulesSharedUtils;

import oracle.rules.sdk2.decisionpoint.DecisionPointDictionaryFinder;
import oracle.rules.sdk2.dictionary.DictionaryFinder;
import oracle.rules.sdk2.dictionary.RuleDictionary;
import oracle.rules.sdk2.exception.SDKException;

public class SomeBean {
 private RuleDictionaryModel ruleDictModel;
 private RulesEditorPreferences rulesEditorPrefs;
 private boolean viewOnly = true;

 //on windows
 //private static final String RULES_FILE1 =
 "file:///D:/scratch/asuraj/system_MAIN/rules_
 files/insurancequoteproject/CarInsuranceRules.rules";

 // on linux
 private static final String RULES_FILE1 =
 "file:////scratch/asuraj/backup/rules_files/ApprovalRules.rules";

 public SomeBean() {
 super();
 }

 public RuleDictionaryModel getRuleDictModel() {
 if (ruleDictModel != null)
 return ruleDictModel;

 ruleDictModel = new RuleDictionaryModel(openRulesDict(RULES_FILE1, new
 DecisionPointDictionaryFinder()));
 return ruleDictModel;
 }

 public void saveDictionary() {
 RuleDictionary dict = null;

 if (this.ruleDictModel == null)
 return;
 dict = this.ruleDictModel.getRuleDictionary().getDictionary();

 if (dict == null)
 return;

 if (dict.isModified())
 RulesSharedUtils.updateDictionary(dict);
 if (!dict.isTransactionInProgress())
 saveDictionary(dict, RULES_FILE1);
 }

 public void validate() {
 if (this.ruleDictModel == null)
 return;

 this.ruleDictModel.validate();
 }

 public void toggleMode() {
 viewOnly = !viewOnly;
 }

Chapter 26
Introduction to the Oracle Business Rules Dictionary Editor Declarative Component

26-33

 public boolean isViewOnly() {
 return viewOnly;
 }

 public RulesEditorPreferences getRulesEditorPrefs() {
 if (rulesEditorPrefs == null)
 rulesEditorPrefs = new MyRulesEditorPrefs();
 return rulesEditorPrefs;
 }

 //utility methods

 public static RuleDictionary openRulesDict(String fileName, DictionaryFinder
finder) {
 URL url = null;
 try {
 url = new URL(fileName);
 } catch (MalformedURLException e) {
 System.err.println(e);
 return null;
 }
 RuleDictionary dict = null;

 try {
 dict = readFromDisk(url, finder);
 } catch (Exception e) {
 System.err.println(e);
 return null;
 }
 return dict;
 }

 public static RuleDictionary readFromDisk(URL dictURL, DictionaryFinder
 finder) {
 BufferedReader buf = null;
 try {
 buf = new BufferedReader(new
 InputStreamReader(dictURL.openStream(), "UTF-8"));
 return RuleDictionary.readDictionary(buf, finder);
 } catch (SDKException e) {
 System.err.println(e);
 } catch (IOException e) {
 System.err.println(e);
 } finally {
 if (buf != null)
 try {
 buf.close();
 } catch (IOException e) {
 System.err.println(e);
 }
 }
 return null; } public static boolean saveDictionary(RuleDictionary
dict, String
 ruleFileName) {
 if (dict == null || ruleFileName == null)
 return false;

 if (dict.isTransactionInProgress())
 System.out.println("Transaction in progress, cannot save
 dictionary");

Chapter 26
Introduction to the Oracle Business Rules Dictionary Editor Declarative Component

26-34

 try {
 writeToDisk(dict, new URL(ruleFileName));
 } catch (MalformedURLException e) {
 System.err.println(e);
 return false;
 } catch (Exception e) {
 System.err.println(e);
 return false;
 }
 return true;
 }

 public static void writeToDisk(RuleDictionary dic, URL dictURL) {
 OutputStreamWriter writer = null;
 try {
 writer = new OutputStreamWriter(new
 FileOutputStream(dictURL.getPath()), "UTF-8");
 dic.writeDictionary(writer);
 } catch (IOException e) {
 System.err.println(e);
 } catch (SDKException e) {
 System.err.println(e);
 } finally {
 if (writer != null)
 try {
 writer.close();
 } catch (IOException e) {
 System.err.println(e);
 }
 }
 }

 public class MyRulesEditorPrefs extends RulesEditorPreferencesImpl
 implements Serializable {

 private DecisionTablePrefs dtPrefs;
 private IfThenPreferences ifThenPrefs;

 @Override
 public DecisionTablePrefs getDecisionTablePreferences() {
 if (dtPrefs == null)
 dtPrefs = new DTPreferences();
 return dtPrefs;
 }

 @Override
 public IfThenPreferences getIfThenPreferences() {
 if (ifThenPrefs == null)
 ifThenPrefs = new MyIfThenPrefs();
 return ifThenPrefs;
 }

 @Override
 public boolean isShowRSButtons() {
 return true;
 }
 }

 public class MyIfThenPrefs extends IfThenPreferencesImpl implements
 Serializable {

 @Override

Chapter 26
Introduction to the Oracle Business Rules Dictionary Editor Declarative Component

26-35

 public boolean isGenericAction() {
 return true;
 }

 @Override
 public boolean isGenericCondition() {
 return true;
 }
 } public class DTPreferences extends DecisionTablePrefsImpl implements
 Serializable {

 @Override
 public boolean isShowDTButtons() {
 return true;
 }
 }
}

3. Point to SomeBean.java in adfc-config.xml with Bean Name someBean and a session
scope. Example adfc-config.xml.

4. Ensure that Java Class under Items is selected and click OK to display the Create Java
Class dialog box.

<?xml version="1.0" encoding="UTF-8" ?>
<adfc-config xmlns="http://xmlns.oracle.com/adf/controller" version="1.2">
 <managed-bean id="__1">
 <managed-bean-name>someBean</managed-bean-name>
 <managed-bean-class>view.SomeBean</managed-bean-class>
 <managed-bean-scope>session</managed-bean-scope>
 </managed-bean>
</adfc-config>

5. The ADF/JSF framework makes calls to SomeBean.java multiple times to render the UI.
For instance, someBean.ruleDictModel is called many times. So it is more efficient to
create the ruleDictModel once and cache it and return it each time instead of recreating it.

How to Create .jspx File for the Rules Dictionary Editor Component
The next task is to create the .jspx file to include the Rules Dictionary Editor Component tag.

To create the .jspx file for the Rules Dictionary Editor Component tag:

1. Open Oracle JDeveloper.

2. From the File Menu, select New and then select JSF/Facelets.

3. Select JSF Page and click OK.

4. Select Document Type as JSP XML.

5. Enter file name as ruleDictEditor.jspx. Click OK.

6. The RuleDictionaryDC is visible in the Components window in jDeveloper as shown in
Figure 26-30.

Chapter 26
Introduction to the Oracle Business Rules Dictionary Editor Declarative Component

26-36

Figure 26-30 Components Window

7. Select RuleDictionaryDC, now you should see the RuleDictionaryDC tag. Drag and drop
the RuleDictionaryDC tag into the JSPX fileFigure 26-31.

Figure 26-31 Rule Dictionary DC Tag

You can also add the 'RuleDictionaryDC' tag manually in your jspx file like this:

<?xml version='1.0' encoding='UTF-8'?>
<jsp:root xmlns:jsp="http://java.sun.com/JSP/Page" version="2.1" xmlns:f="http://
java.sun.com/jsf/core"

Chapter 26
Introduction to the Oracle Business Rules Dictionary Editor Declarative Component

26-37

 xmlns:af="http://xmlns.oracle.com/adf/faces/rich"
 xmlns:rddc="http://xmlns.oracle.com/bpel/rules/dictionaryEditor">
 <jsp:directive.page contentType="text/html;charset=UTF-8"/>
 <f:view>
 <af:document title="ruleDictEditor" id="d1">
 <af:form id="f1">
 <af:panelGridLayout id="pgl1" inlineStyle="margin:15px;"
styleClass="AFStretchWidth"
 partialTriggers="cb2 cb3 cb6">
 <af:gridRow id="dc_gr1" marginTop="5px" marginBottom="5px">
 <af:gridCell marginStart="5px" marginEnd="5px" width="100%"
halign="stretch" id="gc1">
 <af:panelGroupLayout id="pgl3" layout="horizontal">
 <af:button text="Save Dictionary" id="cb2"
action="#{someBean.saveDictionary}"/>
 <af:spacer width="10" height="10" id="s1"/>
 <af:button text="Validate" id="cb3"
action="#{someBean.validate}"/>
 <af:spacer width="10" height="10" id="s3"/>
 <af:button text="Toggle Mode" id="cb6"
action="#{someBean.toggleMode}"/>
 </af:panelGroupLayout>
 </af:gridCell>
 </af:gridRow>
 <af:gridRow height="100%" id="gr2">
 <af:gridCell width="100%" halign="stretch" valign="stretch"
id="gc2">
 <!-- Content -->
 <rddc:ruleDictionaryDC
ruleDictModel="#{someBean.ruleDictModel}" id="rddc1"

rulesEditorPrefs="#{someBean.rulesEditorPrefs}"
 viewOnly="#{someBean.viewOnly}"
disableVerbalRules="false"/>
 </af:gridCell>
 </af:gridRow>
 </af:panelGridLayout>
 </af:form>
 </af:document>
 </f:view>
</jsp:root>

How to Refer the oracle.rules and the oracle.soa.rules_dict_dc.webapp Shared
Libraries

After creating the .jspx file, you must refer to the oracle.rules and
oracle.soa.rules_dict_dc.webapp shared libraries from the weblogic-application.xml file.

To refer to the oracle.rules and the oracle.soa.rules_dict_dc.webapp shared libraries:

1. In JDeveloper from Application Resources select Descriptors and then META-INF. Edit
the weblogic-application.xml file and add the following lines (this refers to the
oracle.rules shared library):

<library-ref>
 <library-name>oracle.rules</library-name>
</library-ref>

2. In JDeveloper select File, then New and then Deployment Descriptors.

a. Select Weblogic Deployment Descriptor and then select weblogic.xml from the list.

Chapter 26
Introduction to the Oracle Business Rules Dictionary Editor Declarative Component

26-38

b. Select version 12.1.2 and click Finish.

c. In weblogic.xml overview mode, select Libraries from the left and add library name as
oracle.soa.rules_dict_dc.webapp. Example weblogic.xml file:

<?xml version = '1.0' encoding = 'UTF-8'?>
<weblogic-web-app xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://xmlns.oracle.com/weblogic/weblogic-web-app
http://xmlns.oracle.com/weblogic/weblogic-web-app/1.5/weblogic-web-app.xsd"
xmlns="http://xmlns.oracle.com/weblogic/weblogic-web-app">
 <library-ref>
 <library-name>oracle.soa.rules_dict_dc.webapp</library-name>
 </library-ref>
</weblogic-web-app>

d. Click Save All.

Note:

Note that 'oracle.rules' and 'oracle.soa.rules_dict_dc.webapp' shared libraries
must be deployed to the embedded WLS server.

3. Check to make sure the shared libraries are deployed using the weblogic console of your
embedded WLS.

a. Launch WLS console (http://host:port/console/login/LoginForm.jsp) and log in.

b. Click Deployments and see if oracle.rules and oracle.soa.rules_dict_dc.webapp
shared libraries are deployed as shown in Figure 26-32.

Figure 26-32 Deployments

4. If the shared libraries are not deployed, then follow this process to deploy them manually:

a. To start the WLS embedded server, in JDeveloper select Run and then select Start
Server Instance as shown in Figure 26-33.

Chapter 26
Introduction to the Oracle Business Rules Dictionary Editor Declarative Component

26-39

Figure 26-33 Start Server Instance

Skip this if the shared libraries are already deployed.

Note:

WLS embedded server on JDeveloper must be running so that the shared
libraries can be deployed.

5. To deploy the oracle.rules shared library to WLS:

a. Launch WLS console (http://host:port/console/login/LoginForm.jsp) and log in.

b. Select Deployments and click Install.

c. Select <SOA_INSTALL>/soa/soa/modules/oracle.rules_11.1.1/rules.jar and then
click Next and Finish.

6. To deploy the oracle.soa.rules_dict_dc.webapp shared library to WLS:

a. In WLS console, select Deployments, click Install.

b. Select <SOA_INSTALL>/soa/soa/modules/
oracle.soa.rules_dict_dc.webapp_11.1.1/oracle.soa.rules_dict_dc.webapp.war.

c. Click Next and then click Finish.

d. Select Install this deployment as a library.

e. Click Finish

f. Now you should see oracle.soa.rules_dict_dc.webapp added to the list of
deployments. as shown in Figure 26-32.

How to Run the Sample Rules Dictionary Editor Application
The last task is running the sample application.

Chapter 26
Introduction to the Oracle Business Rules Dictionary Editor Declarative Component

26-40

To run the sample Rules Dictionary Editor application:

1. To run the sample application, from JDeveloper, right click ruleDictEditor.jspx file.

2. Select Run.

This should start the sample application on a browser as shown in Figure 26-34.

Figure 26-34 Rules Dictionary Editor Application

How to Deploy a Rules Dictionary Application to a Standalone Oracle
WebLogic Server

When you're ready to deploy your application ear file to the stand-alone WLS, follow these
steps to make sure everything runs smoothly.

1. Check to make sure the shared libraries are deployed using the weblogic console of your
stand-alone WLS.

a. Launch WLS console http://host:port/console/login/LoginForm.jsp and log in.

b. Click 'Deployments' and see if 'oracle.rules' and 'oracle.soa.rules_dict_dc.webapp'
shared libraries are deployed as shown in Figure 26-11.

2. If the shared libraries are not deployed, then follow the previous process to deploy the
shared libraries manually.

3. In your project that uses the Rule Dictionary Editor Component, include the "Oracle Rules
Dictionary Component" in your 'Libraries and Classpath'. This does not deploy these
libraries by default, so the jars are not included in your project war file.

4. In the project that is finally deploying (i.e where you create the ear file):

a. Add this to your weblogic-application.xml:

<library-ref>
 <library-name>oracle.rules</library-name>
</library-ref>

b. Add this to weblogic.xml in your project's war file:

Chapter 26
Introduction to the Oracle Business Rules Dictionary Editor Declarative Component

26-41

<library-ref>
 <library-name>oracle.soa.rules_dict_dc.webapp</library-name>
</library-ref>

5. Now you can deploy your ear file in WLS and things should work.

What You May Need to Know About the Supported Attributes of the Rules
Dictionary Editor Component

This section lists the attributes that are supported by the Rules Dictionary Editor component.

Table 26-2 lists the supported attributes.

Table 26-2 Supported Rules Dictionary Editor Attributes

Name Type Required Default Value Supports
EL?

Description

ruleDictModel oracle.bpel.ruledict
ionarydc.model.inter
faces.RuleDictionary
Interface

yes - Only EL Wrapper around the
Rules SDK Dictionary
object.The user can use
the RuleDictionaryModel
object supplied as part of
the Rules Dictionary
Editor Component jar file
(adflibRuleDictionaryDC.j
ar).

viewOnly java.lang.Boolean no true yes In the "viewOnly" mode
user can view the existing
dictionary data but cannot
edit. If "false", i.e. the
"edit" mode, the user is
allowed to edit the
dictionary.

locale java.util.Locale no Locale.getD
efault()

yes Used for Localization.

timezone java.util.TimeZone no TimeZone.ge
tDefault()

yes Used for Localization

ruleModel java.lang.String no oracle.bpel
.rulesdc.mo
del.impl.Ru
leModel

yes Used to customize the
default RuleModel. User
can extend the RuleModel
class to override certain
methods. Deprecated.
Use 'rulesEditorPrefs' and
override
getIfThenPreferences().ge
tRuleModel().

Chapter 26
Introduction to the Oracle Business Rules Dictionary Editor Declarative Component

26-42

Table 26-2 (Cont.) Supported Rules Dictionary Editor Attributes

Name Type Required Default Value Supports
EL?

Description

simpleTestModel java.lang.String no oracle.bpel
.rulesdc.mo
del.impl.Si
mpleTestMod
el

yes Used to customize the
default SimpleTestModel.
User can extend the
SimpleTestModel class to
override certain methods.
Use 'rulesEditorPrefs' and
override
getIfThenPreferences().ge
tSimpleTestModel().

selectedTab java.lang.String no - yes Switches to the specified
tab name (either
GLOBALS, FACTS,
VALUESETS, LINKS,
DESC_FUNCS,
DSL_DEFNS, TESTS,
TRANSLATIONS or the
ruleset name).

selectedRulesetIdx java.lang.String no - yes Used to specify the
ruleset index to be
selected by default. If
'selectedRulesetIdx' is
specified, it overrides the
'selectedTab' attribute.

dtColumnPageSize java.lang.Integer no 5 yes Deprecated and not used.

dtHeight java.lang.Integer no 16 yes Deprecated and not used.

dateStyle java.lang.String no gets it from the
locale

yes If specified, the date style
is used in all inputDate
components. Example:
"yyyy.MM.dd".

timeStyle java.lang.String no gets it from the
locale

yes If specified, the time style
is used in all inutDate
components.Example:
"HH:mm:ss".

showValidationPanel java.lang.Boolean no true yes Displays the validation
panel by default. User can
choose to hide this by
setting this to false.

discloseRules java.lang.Boolean no false yes Deprecated and not used.

displayRuleSetName java.lang.Boolean no true yes Deprecated and not used.

disableRuleSetName java.lang.Boolean no false yes Deprecated and not used.

showDTButtons java.lang.Boolean no true yes Deprecated and not used

disableDFName java.lang.Boolean no false yes Disables the Decision
Function Name in the
Decision Function editor
pop-up if true.
Deprecated. Use
'dfEditorPrefs' and
override
isDisableDFName().

Chapter 26
Introduction to the Oracle Business Rules Dictionary Editor Declarative Component

26-43

Table 26-2 (Cont.) Supported Rules Dictionary Editor Attributes

Name Type Required Default Value Supports
EL?

Description

displayWSName java.lang.Boolean no true yes Displays the decision
service name if 'true' in
the Decision Function
editor pop-up. Note that
the service name makes
sense only when 'Invoke
as rule service' is
checked. Deprecated.
Use 'dfEditorPrefs' and
override
isDisplayWSName()..

displayWSCheck java.lang.Boolean no true yes Displays the 'Invoke as
rule service' check box in
the Decision Function
editor pop-up if true.
Deprecated. Use
'dfEditorPrefs' and
override
isDisplayWSCheck().

disableInputOps java.lang.Boolean no false yes Disables add, edit and
delete operations for the
Inputs table in the
Decision Function editor
pop-up. Deprecated. Use
'dfEditorPrefs' and
override
isDisableInputOps().

disableOutputOps java.lang.Boolean no false yes Disables add, edit and
delete operations for the
Outputs table in the
Decision Function editor
pop-up. Deprecated. Use
'dfEditorPrefs' and
override
isDisableOutputOps().

displayAddDF java.lang.Boolean no true yes Displays the add decision
function button.
Deprecated. Use
'dfEditorPrefs' and
override
isDisableAddDF().

displayDeleteDF java.lang.Boolean no true yes Displays the delete
decision function button.
Deprecated. Use
'dfEditorPrefs' and
override
isDisableDeleteDF().

rulesPageSize java.lang.Integer no 5 yes Deprecated and not used.

Chapter 26
Introduction to the Oracle Business Rules Dictionary Editor Declarative Component

26-44

Table 26-2 (Cont.) Supported Rules Dictionary Editor Attributes

Name Type Required Default Value Supports
EL?

Description

decimalSeparator java.lang.Character no Based on
Locale

yes Used to specify the
decimal separators. This
is used in Number
Formatting. If specified,
overrides the decimal
separator based on
locale.

groupingSeparator java.lang.Character no Based on
Locale

yes Used to specify the
grouping separators. This
is used in Number
Formatting. If specified,
overrides the grouping
separator based on
locale.

vldnPanelCollapsed java.lang.Boolean no false yes Used to specify if
validation panel should be
collapsed by default.

vldnTabTitle java.lang.String no Localized text
"Business
Rule Validation
- Log"

yes Used to specify the
validation panel title.

resourceManager oracle.bpel.rulessha
reddc.model.interfac
es.ResourceManagerIn
terface

no - yes Used to specify the
resource manager for
translations UI. Refer to
the section on
'translations'.

rulesEditorPrefs oracle.bpel.ruledict
ionarydc.model.inter
faces.RulesEditorPre
ferences

no oracle.bpel
.ruledictio
narydc.mode
l.impl.Rule
sEditorPref
erencesImpl

yes Used to specify the rules
editor preferences.
Consumers can extend
the default
implementation i.e
(oracle.bpel.ruledictionary
dc.model.impl.RulesEditor
PreferencesImpl) and
override only the required
preferences.

dfEditorPrefs oracle.bpel.ruledict
ionarydc.model.inter
faces.DFEditorPrefer
ences

no oracle.bpel
.ruledictio
narydc.mode
l.impl.DFEd
itorPrefere
ncesImpl

yes Used to specify the
decision function editor
preferences. Consumers
can extend the default
implementation i.e
(oracle.bpel.ruledictionary
dc.model.impl.DFEditorPr
eferencesImpl) and
override only the required
preferences.

showRSButtons java.lang.Boolean no true yes Deprecated and not used.

Chapter 26
Introduction to the Oracle Business Rules Dictionary Editor Declarative Component

26-45

Table 26-2 (Cont.) Supported Rules Dictionary Editor Attributes

Name Type Required Default Value Supports
EL?

Description

dfListener oracle.bpel.decision
funceditordc.listene
r.DecisionFuncListen
er

no - yes Used for notification of
decision function editor
updates. Deprecated. Use
'dfEditorPrefs' and
override getDfListener().

dfActionListener oracle.bpel.ruledict
ionarydc.listener.De
cisionFuncActionList
ener

no - yes Used for notification when
a decision function is
added or deleted.
Deprecated. Use
'dfEditorPrefs' and
override
getDfActionListener()

dfServiceNameCustomiz
e oracle.bpel.decision

funceditordc.listene
r.DecisionFuncServic
eNameCustomizer

no - yes Used to customize the
decision function service
name. Deprecated. Use
'dfEditorPrefs' and
override
getDfServiceNameCusto
mizer().

dictVersionInfo oracle.bpel.ruledict
ionarydc.model.inter
faces.DictVersionInf
o

no - yes Used in diff/merge to
retrieve the list of
dictionary versions for
comparison. Deprecated.
Use 'dfEditorPrefs' and
override
getDfServiceNameCusto
mizer().

testExecutor oracle.bpel.testedit
ordc.interfaces.Test
Executor

no - yes Used for executing test
suites, test templates and
test cases.

disableRulesTesting java.lang.Boolean no false yes If true, the rule testing
capability is disabled.

disableVerbalRules java.lang.Boolean no true yes If true, the verbalization
capability is disabled that
is the Business Phrases
tab is not displayed and
CRUD operations on
verbal rules are disabled.

boUpdateListener oracle.bpel.ruledict
ionarydc.listener.BO
UpdateListener

no - yes Used for synchronizing
business objects.

Introduction to the Oracle Business Rules Dictionary Editor Task
Flow

Get an overview of the Oracle Business Rules Dictionary Editor task flow.

Chapter 26
Introduction to the Oracle Business Rules Dictionary Editor Task Flow

26-46

Learn how to create and run an application using the Rules Dictionary Editor task flow, and
then deploy the application.

Using the Oracle Business Rules Dictionary Task Flow
The Oracle Rules Dictionary Editor Task Flow is basically a wrapper around the Rules
Dictionary Editor declarative component. The task flow is used in ADF-based web applications
that require a task flow instead of a declarative component. For more information on the Rules
Dictionary Editor component, see Introduction to the Oracle Business Rules Dictionary Editor
Declarative Component.

How to Create and Run a Sample Application By Using the Rules Dictionary
Editor Task Flow

This section lists the steps for creating and running a sample application by using the Oracle
Rules Dictionary Editor task flow.

The prerequisites for using the Oracle Rules Dictionary Editor task flow to create ADF-based
web applications is having a running installation of Oracle SOA Suite and Oracle JDeveloper
on your computer.

The first task is to create a sample application.

To create a sample application by using the Oracle Rules Dictionary Editor task flow:

1. Open Oracle JDeveloper.

2. From the File menu, select New and then Custom Application to create an application.

3. Enter a name for the application in the Application Name field, for example,
useRuleDictTaskFlowApp, and click Next as shown in Figure 26-35.

Figure 26-35 Creating a Generic Task Flow Application

Chapter 26
Introduction to the Oracle Business Rules Dictionary Editor Task Flow

26-47

4. Enter useRuleDictTaskFlow in the Project Name field and ensure that ADF Faces is
selected in the Project Technologies tab, as shown in Figure 26-36.

Figure 26-36 Creating a Task Flow Project

5. Click Finish to create the project.

6. Right-click the useRuleDictTaskFlow project in the Applications window of Oracle
JDeveloper, and select Project Properties to display the Project Properties dialog box.

In the Project Properties dialog box:

a. Select JSP Tag Libraries from the left panel.

b. Click Add and select ADF Faces Components from the Extension list in the Choose
Tag Libraries dialog box, and click OK as shown in Figure 26-37.

Chapter 26
Introduction to the Oracle Business Rules Dictionary Editor Task Flow

26-48

Figure 26-37 Choosing Tab Libraries for the Task Flow Application

c. Select Libraries and Classpath from the left panel and click Add Library to display
the Add Library dialog box.

d. Select Oracle Rules and then Oracle Rules Dictionary Task Flow in the Libraries list
and click OK as shown in Figure 26-38. This adds the Rules SDK and the Rules
Dictionary Task Flow JARs to the project.

Figure 26-38 Adding the Rules SDK and Rules Dictionary Task Flow

e. Click OK to close the Project Properties dialog box.

Chapter 26
Introduction to the Oracle Business Rules Dictionary Editor Task Flow

26-49

7. Click Save All from the Oracle JDeveloper File menu to save the project.

8. Create a Java class that implements the
oracle.integration.console.metadata.model.share.MetadataDetails interface, which
is defined in soaComposerTemplates.jar. For more information on the MetadataDetails
interface, see The MetadataDetails Interface.

The steps are:

a. Open Oracle JDeveloper.

b. From the File menu, select New to display the New Gallery dialog box.

c. In the New Gallery dialog box, select Java under General from the Categories panel.
Ensure that Java Class under Items is selected and click OK to display the Create
Java Class dialog box.

d. Enter the name of the Java class, for example MyMetaDataDetails.

e. Add the MetadataDetails interface in the Implements box under Optional
Attributes, and click OK to create the Java class in your project, as shown in
Figure 26-39.

Figure 26-39 Creating a Java Class that Implements the MetadataDetails
Interface

The following is a sample of the content of the MyMetaDataDetails.java file:

package useruledicttaskflow;

import java.io.BufferedReader;
import java.io.FileNotFoundException;
import java.io.FileOutputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.InputStreamReader;
import java.io.OutputStreamWriter;
import java.io.UnsupportedEncodingException;
import java.io.Writer;

import java.net.MalformedURLException;

Chapter 26
Introduction to the Oracle Business Rules Dictionary Editor Task Flow

26-50

import java.net.URL;

import oracle.integration.console.metadata.model.share.MetadataDetails;
import oracle.integration.console.metadata.model.share.RelatedMetadataPath;

public class MyMetaDataDetails implements MetadataDetails {
 public MyMetaDataDetails() {
 super();
 }

 private static final String RULES_FILE1 =
 "file:///<path of Rules file>";

 public String getDocument() {
 URL url = null;
 try {
 url = new URL(RULES_FILE1);
 return readFile(url);
 } catch (IOException e) {
 System.err.println(e);
 }
 return "";
 }

 public void setDocument(String string) {
 URL url = null;

 try {
 url = new URL(RULES_FILE1);
 } catch (MalformedURLException e) {
 System.err.println(e);
 return;
 }
 Writer writer = null;
 try {
 //os = new FileWriter(url.getPath());
 writer =
 new OutputStreamWriter(new FileOutputStream(url.getPath()),
 "UTF-8");
 } catch (FileNotFoundException e) {
 System.err.println(e);
 return;
 } catch (IOException e) {
 System.err.println(e);
 return;
 }
 try {
 writer.write(string);
 } catch (IOException e) {
 System.err.println(e);
 } finally {
 if (writer != null) {
 try {
 writer.close();
 } catch (IOException ioe) {
 System.err.println(ioe);
 }
 }
 }
 }

 private String readFile(URL dictURL) {

Chapter 26
Introduction to the Oracle Business Rules Dictionary Editor Task Flow

26-51

 InputStream is;
 try {
 is = dictURL.openStream();
 } catch (IOException e) {
 System.err.println(e);
 return "";
 }
 BufferedReader reader;
 try {
 reader = new BufferedReader(new InputStreamReader(is, "UTF-8"));
 } catch (UnsupportedEncodingException e) {
 System.err.println(e);
 return "";
 }
 String line = null;
 StringBuilder stringBuilder = new StringBuilder();
 String ls = System.getProperty("line.separator");
 try {
 while ((line = reader.readLine()) != null) {
 stringBuilder.append(line);
 stringBuilder.append(ls);
 }
 } catch (IOException e) {
 System.err.println(e);
 return "";
 } finally {
 try {
 reader.close();
 } catch (IOException e) {
 System.err.println(e);
 }
 }
 return stringBuilder.toString();
 }

public String getRelatedDocument(RelatedMetadataPath relatedMetadataPath) {
 String currPath =
 RULES_FILE1.substring(0, RULES_FILE1.indexOf("oracle/rules"));
 String relatedDoc =
 currPath + "oracle/rules/" + relatedMetadataPath.getValue();

 URL url = null;
 try {
 url = new URL(relatedDoc);
 return readFile(url);
 } catch (IOException e) {
 System.err.println(e);
 }
 return "";
 }
}

9. Create a Java class called MyNLSPreferences that implements the
oracle.integration.console.metadata.model.share.NLSPreferences interface, which is
defined in soaComposerTemplates.jar.

For more information about the NLS Preferences interface, see The NLSPreferences
Interface.

The following sample of MyNLSPreferences.java implements the NLSPreferences
interface:

Chapter 26
Introduction to the Oracle Business Rules Dictionary Editor Task Flow

26-52

package useruledicttaskflow;

import java.util.Locale;
import java.util.TimeZone;

import oracle.integration.console.metadata.model.share.NLSPreferences;

public class MyNLSPreferences implements NLSPreferences {
 private static final String DATE_STYLE = "yyyy-MM-dd";
 private static final String TIME_STYLE = "HH-mm-ss";

 public MyNLSPreferences() {
 super();
 }

 public Locale getLocale() {
 return Locale.getDefault();
 }

 public TimeZone getTimeZone() {
 return TimeZone.getTimeZone("America/Los_Angeles");
 }

 public String getDateFormat() {
 return DATE_STYLE;
 }

 public String getTimeFormat() {
 return TIME_STYLE;
 }
}

10. Create a managed bean called MyBean.java to return the implementation of
MetadataDetails and NLSPreferences. It also returns the
oracle.integration.console.metadata.model.share.MetadataDetailsMode object and
provides event handlers such as toggleMode(), saveDictionary(),
saveNoValidateDictionary(), and validate().

The following is a sample of the MyBean.java file:

package useruledicttaskflow;

import javax.el.ELContext;
import javax.el.ExpressionFactory;
import javax.el.MethodExpression;

import javax.faces.context.FacesContext;
import javax.faces.event.PhaseId;

import oracle.adf.view.rich.component.rich.fragment.RichRegion;

import oracle.integration.console.metadata.model.share.MetadataDetails;
import oracle.integration.console.metadata.model.share.MetadataDetailsMode;
import oracle.integration.console.metadata.model.share.NLSPreferences;

public class MyBean {
 private MyMetaDataDetails details = null;
 private MetadataDetailsMode mode = MetadataDetailsMode.VIEW;
 private RichRegion regionComp;
 private NLSPreferences nlsPrefs;

 public MyBean() {

Chapter 26
Introduction to the Oracle Business Rules Dictionary Editor Task Flow

26-53

 super();
 }

 public MetadataDetails getMetaDataDetails() {
 if (details != null)
 return details;

 details = new MyMetaDataDetails();
 return details;
 }

 public MetadataDetailsMode getDetailsMode() {
 return mode;
 }

 public void toggleMode() {
 if (mode.equals(MetadataDetailsMode.EDIT))
 mode = MetadataDetailsMode.VIEW;
 else
 mode = MetadataDetailsMode.EDIT;
 }

 public void saveDictionary() {
 if (regionComp == null)
 return;
 FacesContext fc = FacesContext.getCurrentInstance();
 ExpressionFactory ef = fc.getApplication().getExpressionFactory();
 ELContext elc = fc.getELContext();
 MethodExpression me =
 ef.createMethodExpression(elc, "doMetadataUpdate", String.class,
 new Class[] { });
 regionComp.queueActionEventInRegion(me, null, null, false, -1, -1,
 PhaseId.ANY_PHASE);
 }

 public void saveNoValidateDictionary() {
 if (regionComp == null)
 return;
 FacesContext fc = FacesContext.getCurrentInstance();
 ExpressionFactory ef = fc.getApplication().getExpressionFactory();
 ELContext elc = fc.getELContext();
 MethodExpression me =
 ef.createMethodExpression(elc, "doNoValidateMetadataUpdate",
 String.class, new Class[] { });
 regionComp.queueActionEventInRegion(me, null, null, false, -1, -1,
 PhaseId.ANY_PHASE);
 }

 public void validate() {
 if (regionComp == null)
 return;
 FacesContext fc = FacesContext.getCurrentInstance();
 ExpressionFactory ef = fc.getApplication().getExpressionFactory();
 ELContext elc = fc.getELContext();
 MethodExpression me =
 ef.createMethodExpression(elc, "doValidate", String.class,
 new Class[] { });
 regionComp.queueActionEventInRegion(me, null, null, false, -1, -1,
 PhaseId.ANY_PHASE);
 }

 public void setRegionComp(RichRegion regionComp) {

Chapter 26
Introduction to the Oracle Business Rules Dictionary Editor Task Flow

26-54

 this.regionComp = regionComp;
 }
 public RichRegion getRegionComp() {
 return regionComp;
 }

 public NLSPreferences getNlsPrefs() {
 if (nlsPrefs != null)
 return nlsPrefs;

 nlsPrefs = new MyNLSPreferences();
 return nlsPrefs;
 }
}

11. Open the faces-config.xml file in Overview mode and click the + button under Managed
Beans to display the Create Managed Bean dialog box.

12. Point to MyBean.java by entering MyBean in the Bean Name field and selecting session
from the Scope list, as shown in Figure 26-40.

Figure 26-40 Specifying the Bean Name and Scope in the Task Flow Application

How to Add a Rule Dictionary Editor Task Flow
The next task is to create the .jspx file to include the Rules Dictionary Editor component tag.

To add a Rules Dictionary Editor task flow in a .jspx file:

1. Open Oracle JDeveloper.

2. From the File menu, select New to display the New Gallery dialog box.

3. In the New Gallery dialog box, select JSF under Web Tier from the Categories panel.

4. Select JSF Page under Items and click OK to display the Create JSF Page dialog box, as
shown in Figure 26-41.

Chapter 26
Introduction to the Oracle Business Rules Dictionary Editor Task Flow

26-55

Figure 26-41 Creating the JSF Page File to Include the Rules Dictionary Editor Task
Flow

5. In the Create JSF Page dialog box, enter useRuleDictTaskFlow.jspx as the file name, as
shown in Figure 26-42.

Figure 26-42 Specifying the Name of the JSF Page for the Task Flow

adflibRuleDictionaryTaskFlow.jar is displayed in the Components window of Oracle
JDeveloper, as shown in Figure 26-43.

Chapter 26
Introduction to the Oracle Business Rules Dictionary Editor Task Flow

26-56

Figure 26-43 Rules Dictionary Task Flow JAR in the Components Window

This is because you have added the Oracle Rules Dictionary Task Flow shared library
when creating the sample application.

6. Select adflibRuleDictionaryTaskFlow.jar to make rule-dict-flow-definition available
under Regions in the Components window. You can drag and drop the rule-dict-flow-
definition region into the .jspx file as shown in Figure 26-44, and specify all the required
parameters.

Figure 26-44 Dragging and Dropping the Region

The following is a sample of the useRuleDictTaskFlow.jspx file with the task flow added:

<f:view>
 <af:document id="d1">
 <af:form id="f1">

Chapter 26
Introduction to the Oracle Business Rules Dictionary Editor Task Flow

26-57

 <af:panelStretchLayout id="psl1" inlineStyle="margin:8px;">
 <f:facet name="top">
 <af:menuBar id="mb1">
 <af:commandMenuItem text="Toggle Mode" id="cmi1"
 action="#{MyBean.toggleMode}"
 partialSubmit="true"/>
 <af:commandMenuItem text="Save Dict" id="cmi2"
 action="#{MyBean.saveDictionary}"
 partialSubmit="true"/>
 <af:commandMenuItem text="Save Dict No Validate" id="cmi3"
 action="#{MyBean.saveNoValidateDictionary}"
 partialSubmit="true"/>
 <af:commandMenuItem text="Validate" id="cmi4"
 action="#{MyBean.validate}"
 partialSubmit="true"/>
 </af:menuBar>
 </f:facet>
 <f:facet name="center">
 <af:region value="#{bindings.rulesdictflowdefinition1.regionModel}"
 id="r2" binding="#{MyBean.regionComp}"
 partialTriggers="::cmi1 ::cmi2 ::cmi3 ::cmi4"/>
 </f:facet>
 </af:panelStretchLayout>
 </af:form>
 </af:document>
 </f:view>

In the preceding sample, you can find code snippets for rendering the following buttons to
the page:

• Toggle Mode: Enables switching between read-only and editable modes of Oracle
SOA Composer.

• Save Dict: Enables saving the dictionary (with or without validation).

How to Edit the pagedef.xml File
After you add the task flow to the .jspx file, you must edit the
useRuleDictTaskFlowPageDef.xml file. The pagedef.xml file is created when you drop the
Rules Dictionary task flow into the .jspx page.

The following is a sample of the pagedef.xml file along with all the parameters that must be
passed to the rules dictionary task flow:

<?xml version="1.0" encoding="UTF-8" ?>
<pageDefinition xmlns="http://xmlns.oracle.com/adfm/uimodel"
 version="11.1.1.55.99" id="useRuleDictTaskFlowPageDef"
 Package="useruledicttaskflow.pageDefs">
 <parameters/>
 <executables>
 <variableIterator id="variables"/>
 <taskFlow id="rulesdictflowdefinition1"
 taskFlowId= "/WEB-INF/rule-dict-flow-definition.xml#rules-dict-flow-definition"
 activation="deferred"
 xmlns="http://xmlns.oracle.com/adf/controller/binding">
 <parameters>
 <parameter id="details" value="#{MyBean.metaDataDetails}"
 xmlns="http://xmlns.oracle.com/adfm/uimodel"/>
 <parameter id="mode" value="#{MyBean.detailsMode}"
 xmlns="http://xmlns.oracle.com/adfm/uimodel"/>
 <parameter id="dtHeight" value="10"
 xmlns="http://xmlns.oracle.com/adfm/uimodel"/>

Chapter 26
Introduction to the Oracle Business Rules Dictionary Editor Task Flow

26-58

 <parameter id="selectedTab" value="Ruleset_1"
 xmlns="http://xmlns.oracle.com/adfm/uimodel"/>
 <parameter id="dtColumnPageSize" value="6"
 xmlns="http://xmlns.oracle.com/adfm/uimodel"/>
 <parameter id="nlsPrefs" value="#{MyBean.nlsPrefs}"
 xmlns="http://xmlns.oracle.com/adfm/uimodel"/>
 <parameter id="discloseRules" value="true"
 xmlns="http://xmlns.oracle.com/adfm/uimodel"/>
 </parameters>
 </taskFlow>
 </executables>
 <bindings/>
</pageDefinition

How to Refer to oracle.rules and oracle.soa.rules_dict_dc.webapp Shared Libraries
The next task is to refer to the oracle.rules and oracle.soa.rules_dict_dc.webapp shared
libraries from the weblogic-application.xml file.

For more information on referring to the shared libraries, see How to Create and Run a Sample
Application by Using the Rules Dictionary Editor Component.

How to Run the Sample Task Flow Application
The last task is running the sample application in the embedded Oracle WebLogic Server.

To run the sample task flow application:

1. To run the sample application, from Oracle JDeveloper, right-click the
useRulesDictTaskFlow.jspx file.

2. Select Run.

This starts the sample application in a web browser, as shown in Figure 26-45.

Figure 26-45 Running the Sample Rules Dictionary Editor Task Flow Application

Chapter 26
Introduction to the Oracle Business Rules Dictionary Editor Task Flow

26-59

How to Deploy a Rules Dictionary Editor Task Flow Application to a
Standalone Oracle WebLogic Server

When you are ready to deploy your application EAR file to the standalone Oracle WebLogic
Server, perform the following:

1. Launch the Oracle WebLogic Server Administration Console (http://host:port/console/
login/LoginForm.jsp).

2. Ensure that oracle.rules is displayed in the deployments list.

3. Ensure that oracle.soa.rules_dict_dc.webapp is displayed in the deployments list.

4. If this is not displayed, click Install and select the JDEV_INSTALL/jdeveloper/soa/
modules/oracle.soa.rules_dict_dc.webapp_11.1.1/
oracle.soa.rules_dict_dc.webapp.war file.

5. In the project that has to be deployed (where you create the EAR file):

a. Add the following lines to the weblogic-application.xml:

<library-ref>
 <library-name>oracle.rules</library-name>
</library-ref>

b. Add the following lines to weblogic.xml in the project WAR file:

<library-ref>
 <library-name>oracle.soa.rules_dict_dc.webapp</library-name>
</library-ref>

c. Deploy the EAR file in Oracle WebLogic Server.

Localizing the ADF-Based Web Application
You can localize an application that is created using the Rules Editor component, Rules
Dictionary Editor component, or Rules Dictionary Editor task flow.

To localize your application:

1. Change the faces-config.xml in the application using the Rule Dict Editor component.
The faces-config.xml file should have the following code within the <application> tag in
order to support the available resource bundles:

<locale-config>
 <default-locale>en</default-locale>
 <supported-locale>en</supported-locale>
 <supported-locale>ar</supported-locale>
 <supported-locale>cs</supported-locale>
 <supported-locale>da</supported-locale>
 <supported-locale>de</supported-locale>
 <supported-locale>el</supported-locale>
 <supported-locale>es</supported-locale>
 <supported-locale>fi</supported-locale>
 <supported-locale>fr</supported-locale>
 <supported-locale>hu</supported-locale>
 <supported-locale>it</supported-locale>
 <supported-locale>iw</supported-locale>
 <supported-locale>ja</supported-locale>
 <supported-locale>ko</supported-locale>

Chapter 26
Localizing the ADF-Based Web Application

26-60

 <supported-locale>nl</supported-locale>
 <supported-locale>no</supported-locale>
 <supported-locale>pl</supported-locale>
 <supported-locale>pt-BR</supported-locale>
 <supported-locale>pt</supported-locale>
 <supported-locale>ro</supported-locale>
 <supported-locale>ru</supported-locale>
 <supported-locale>sk</supported-locale>
 <supported-locale>sv</supported-locale>
 <supported-locale>th</supported-locale>
 <supported-locale>tr</supported-locale>
 <supported-locale>zh-CN</supported-locale>
 <supported-locale>zh-TW</supported-locale>
 </locale-config>

2. Change the browser language to the locale you are interested in.

3. If you want to override the locale provided by the browser and display the UI in some
particular locale then pass that locale as an attribute to the component and modify the
f:view tag to the following in the application using the component.:

<f:view locale="#{someBean.locale}">

Note:

The locale passed here should be same as the one passed to the component
using 'locale' attribute.

Working with Translations
Translations feature supports translation of aliases in Business Rules Web UI.

You can have the aliases according to the locale. You can also edit the translations of aliases
for different locales through translation tab or resource editor pop-up in Business Rules Web
UI.

Enabling Translations for Consumer of Reusable Rules UI ADF Task Flow
Component

To support translation of aliases, the consumers of reusable Rules UI ADF Task Flow
component must provide locale specific resource artifacts as additional parameters while
calling Rules UI ADF Task Flow. However, these additional parameters are optional and
required only if the consumers want to use the enhanced translation support.

The additional parameters are:

property-name: relatedDetails
property-class: oracle.integration.console.metadata.model.share.IRelatedMetadataDetails

<taskFlow id="rulesdictflowdefinition1"
 taskFlowId="/WEB-INF/rule-dict-flow-definition.xml#rules-dict-flow-
definition"
 activation="deferred" Refresh="default"
 RefreshCondition="${MyBean.refreshReqd}"
 xmlns="http://xmlns.oracle.com/adf/controller/binding">
 <parameter id="relatedDetails"

Chapter 26
Working with Translations

26-61

 value="#{MyBean.relatedMetadataDetails}"/>
</taskflow>

Sample Code to Pass an Implementation of IRelatedMetadataDetails
The consumer has to pass an implementation of
oracle.integration.console.metadata.model.share.IRelatedMetadataDetails

The implementation of IRelatedMetadataDetails contains the code for loading the resource
bundles from the repository and also for saving the bundles files when user commits any
change to rules application.

The consumer should use dictionaryName + "Translations_" + locale.toString() +
".xml" convention to build the name of the resource bundle file.

public class MyRelatedMetadataDetails implements IRelatedMetadataDetails {

 private static final Locale[] LOCALES = { Locale.US, Locale.FRENCH };

 private static final String RESOURCE_PATH =
 "file:///C:/scratch/sumit/system/rules/";
 private static final String RESOURCE_BASE = "SimpleRule";

 public MyRelatedMetadataDetails() {
 super();
 }

 public String getDocument(IRelatedMetadataPath relatedPath) {
 String resourceSuffix = relatedPath.getValue();
 try {
 return loadResource(resourceSuffix);
 } catch (IOException e) {
 return "";
 }
 }

 private static String loadResource(String resourceSuffix) throws IOException {

 FileInputStream fis = null;
 FileChannel fc = null;
 try {
 URL url = new URL(RESOURCE_PATH + RESOURCE_BASE + resourceSuffix);
 fis = new FileInputStream(url.getFile());
 fc = fis.getChannel();
 ByteBuffer bb = ByteBuffer.allocate((int)fc.size());
 fc.read(bb);
 bb.rewind();
 return Charset.defaultCharset().decode(bb).toString();
 } finally {
 if (fis != null) {
 fis.close();
 }
 if (fc != null) {
 fc.close();
 }
 }
 }

 public void createDocument(IRelatedMetadataPath relatedPath,
 String document) {
 try {

Chapter 26
Working with Translations

26-62

 storeResource(relatedPath.getValue(), document);
 } catch (IOException e) {
 e.printStackTrace();
 }
 }

 public void saveDocument(IRelatedMetadataPath path, String document) {
 try {
 storeResource(path.getValue(), document);
 } catch (IOException e) {
 e.printStackTrace();
 }
 }

 private static void storeResource(String resourceSuffix,
 String document) throws IOException {
 FileOutputStream fos = null;
 FileChannel fc = null;
 try {
 URL url = new URL(RESOURCE_PATH + RESOURCE_BASE + resourceSuffix);
 fos = new FileOutputStream(url.getFile());
 fc = fos.getChannel();
 ByteBuffer bb = ByteBuffer.allocateDirect(1024);
 bb.clear();
 bb.put(Charset.defaultCharset().encode(document));
 bb.flip();
 while (bb.hasRemaining()) {
 fc.write(bb);
 }
 } finally {
 if (fos != null) {
 fos.close();
 }
 if (fc != null) {
 fc.close();
 }
 }
 }

 public IRelatedMetadataPathFinderFactory getFinderFactory() {
 return new RelatedMetadataPathFinderFactory();
 }

 public List<IRelatedMetadataPath> getExisting(IRelatedMetadataPathFinder finder) {

 List<IRelatedMetadataPath> paths = new ArrayList<IRelatedMetadataPath>();
 for (Locale locale : LOCALES) {
 paths.add(RelatedResourceMetadataPath.buildFromLocale(locale));
 }
 return paths;
 }

 public class RelatedMetadataPathFinderFactory implements
IRelated`MetadataPathFinderFactory {

 public IRelatedMetadataPathFinder getResourceFinder() {
 return new RelatedMetadataPathFinder();
 }
 }

 public class RelatedMetadataPathFinder implements IRelatedMetadataPathFinder {

Chapter 26
Working with Translations

26-63

 public String getType() {
 return null;
 }

 public IRelatedMetadataPath
matches(oracle.integration.console.metadata.model.share.MetadataPath srcPath,

oracle.integration.console.metadata.model.share.MetadataPath matchPath) {
 return null;
 }
 }

}

Enabling Translations for Consumer of Rules Web UI Application
To support translation of aliases, the consumer of Rules Web UI application must pass an
attribute to the Rules Dictionary DC or Rules DC. The attribute is resourceManager which
accepts an instance of type
oracle.bpel.rulesshareddc.model.interface.ResourceManagerInterface.java. However, this
additional parameters are optional and required only if the consumers want to use the
enhanced translation support.

<rddc:ruleDictionaryDC ruleDictModel="#{SomeBean.ruleDictModel1}"
 id="rddc1"
 resourceManager="#{SomeBean.resourceManager}">
 </rddc:ruleDictionaryDC>

Sample Code for Creating an Instance of resourceManager
Implementation of ResourceManagerInterface is provided as
oracle.bpel.rulesshareddc.model.impl.ResourceManager. Consumers may create an
instance of ResourceManager and pass it to corresponding UI component.

Note:

The consumer has to load all the saved resource bundles from the repository and
should construct a java.util.Map (resourceMap) where java.util.Locale of the resource
bundle is kept as key and the content of the resource bundle file as value which is of
type java.lang.String.

The consumer should use dictionaryName + "Translations_" + locale.toString() +
".xml" convention to build the name of the resource bundle file.

The consumer has to save these resource bundles to the repository whenever the user
commits any change in the application.

public ResourceManagerInterface getResourceManager() {
 if (resourceManager == null) {
 resourceManager =
 new ResourceManager(loadResources(), ruleDictionary);
 }
 return resourceManager;
 }

 private Map<Locale, String> loadResources() {

Chapter 26
Working with Translations

26-64

 Map<Locale, String> resourceMap = new HashMap<Locale, String>();

 for (Locale locale : LOCALES) {
 try {
 URL url =
 new URL(RULES_FILE_PATH + "Translations_" + locale.toString() +
 ".xml");
 String content =
 new Scanner(new File(url.getFile()), "UTF-8").useDelimiter("\\A").next();
 resourceMap.put(locale, content);
 } catch (IOException e) {
 resourceMap.put(locale, "");
 LOG.severe("Failed to load resource:" + e.getMessage());
 }
 }
 if (!resourceMap.keySet().contains(getLocale())) {
 resourceMap.put(getLocale(), "");
 }
 return resourceMap;
 }

 private void storeResources(Map<Locale, String> resourceMap) {
 for (Locale locale : resourceMap.keySet()) {
 try {
 URL url =
 new URL(RULES_FILE_PATH + "Translations_" + locale.toString() +
 ".xml");
 BufferedWriter out = new BufferedWriter(new FileWriter(url.getFile()));
 out.write(resourceMap.get(locale));
 out.close();
 } catch (IOException e) {
 LOG.severe("Failed to store resource:" + e.getMessage());
 }
 }
 }

Chapter 26
Working with Translations

26-65

Part V
Using the Human Workflow Service
Component

Learn how to use the human workflow service component.

• Getting Started with Human Workflow

• Creating Human Tasks

• Configuring Human Tasks

• Designing Task Forms for Human Tasks

• Human Workflow Tutorial

• Using Oracle BPM Worklist

• Building a Custom Worklist Client

• Introduction to Human Workflow Services

27
Getting Started with Human Workflow

Get an overview of the human workflow concepts, features, and architecture. Also check use
cases for human workflow. Learn how to design your workflow from start to finish.

• Introduction to Human Workflow

• Introduction to Human Workflow Concepts

• Introduction to Human Workflow Use Cases

• Introduction to Human Workflow Architecture

• Human Workflow and Business Rule Differences Between Oracle SOA Suite and Oracle
BPM Suite

WARNING:

You must not modify SOA Human Task database tables directly. Oracle does not
guarantee backward compatibility for the column names and data in these tables.

Introduction to Human Workflow
Many end-to-end business processes require human interactions with the process. For
example, humans may be needed for approvals, exception management, or performing
activities required to advance the business process.

The human workflow component provides the following features:

• Human interactions with processes, including assignment and routing of tasks to the
correct users or groups

• Deadlines, escalations, notifications, and other features required for ensuring the timely
performance of a task (human activity)

• Presentation of tasks to end users through a variety of mechanisms, including a worklist
application (Oracle BPM Worklist)

• Organization, filtering, prioritization, and other features required for end users to
productively perform their tasks

• Reports, reassignments, load balancing, and other features required by supervisors and
business owners to manage the performance of tasks

Figure 27-1 provides an overview of human workflow.

27-1

Figure 27-1 Human Workflow

In Figure 27-1, the following actions occur:

• A BPEL process invokes a special activity of the human task type when it needs a human
to perform a task.

• This creates a task in the human task service component. The process waits for the task to
complete. It is also possible for the process to watch for other callbacks from the task and
react to them.

• There is metadata associated with the task that is used by the human task service
component to manage the lifecycle of the task. This includes specification of the following:

– Who performs the task. If multiple people are required to perform the task, what is the
order?

– Who are the other stakeholders?

– When must the task be completed?

– How do users perform the task, what information is presented to them, what are they
expected to provide, and what actions can they take?

• The human task service component uses an identity directory to determine people's roles
and privileges.

You can configure the identity store to use the embedded WebLogic LDAP, Oracle Virtual
Directory, third-party LDAPs and Active Directory RDBMS. For more information, see
Securing Applications with Oracle Platform Security Services.

• The human task service component presents tasks to users through a variety of channels,
including the following:

– Oracle BPM Worklist, a role-based application that supports the concept of supervisors
and process owners, and provides functionality for finding, organizing, managing, and
performing tasks.

Chapter 27
Introduction to Human Workflow

27-2

– Worklist functionality is also available as portlets that can be exposed in an enterprise
portal.

– Notifications can be sent by email, phone, SMS, and other channels. Email
notifications can be actionable, enabling users to perform actions on the task from
within the email client without connecting to Oracle BPM Worklist or Oracle WebLogic
Server.

Introduction to Human Workflow Concepts
Get an overview of key human workflow design time and runtime concepts the three main
stages of human workflow design.

Introduction to Design and Runtime Concepts
Before designing a human task, it is important to understand the design and runtime concepts.
A typical task consists of a subject, priority, task participants, task parameters or data,
deadlines, notifications or reminders, and task forms. This section provides an overview of key
concepts.

Note:

Human workflow design-time tasks are performed in a graphical editor known as the
Human Task Editor. The tutorial in Human Workflow Tutorial describes how to use
this editor.

Task Assignment and Routing
Human workflow supports declarative assignment and routing of tasks. In the simplest case, a
task is assigned to a single participant (user or group). However, there are many situations in
which more detailed task assignment and routing is necessary (for example, when a task must
be approved by a management chain or worked and voted on by a set of people in parallel, as
shown in Figure 27-2). Human workflow provides declarative, pattern-based support for such
scenarios.

Chapter 27
Introduction to Human Workflow Concepts

27-3

Figure 27-2 Participants in a Task

Participant
A participant is a user or set of users in the assignment and routing policy definition. In
Figure 27-2, each block with an icon representing people is a participant.

Participant Type
In simple cases, a participant maps to a user, group, or role. However, as discussed in Task
Assignment and Routing, workflow supports declarative patterns for common routing scenarios
such as management chain and group vote.The following participant types are available:

• Single approver

This is the simple case where a participant maps to a user, group, or role.

For example, a vacation request is assigned to a manager. The manager must act on the
request task three days before the vacation starts. If the manager formally approves or
rejects the request, the employee is notified with the decision. If the manager does not act
on the task, the request is treated as rejected. Notification actions similar to the formal
rejection are taken.

• Parallel

This participant indicates that a set of people must work in parallel. This pattern is
commonly used for voting.

For example, multiple users in a hiring situation must vote to hire or reject an applicant.
You specify the voting percentage that is needed for the outcome to take effect, such as a
majority vote or a unanimous vote.

• Serial

This participant indicates that a set of users must work in sequence. While working in
sequence can be specified in the routing policy by using multiple participants in sequence,
this pattern is useful when the set of people is dynamic. The most common scenario for
this is management chain escalation, which is done by specifying that the list is based on a
management chain within the specification of this pattern.

• FYI (For Your Information)

Chapter 27
Introduction to Human Workflow Concepts

27-4

This participant also maps to a single user, group, or role, just as in single approver.
However, this pattern indicates that the participant just receives a notification task and the
business process does not wait for the participant's response. FYI participants cannot
directly impact the outcome of a task, but in some cases can provide comments or add
attachments.

For example, a regional sales office is notified that a candidate for employment has been
approved for hire by the regional manager and their candidacy is being passed onto the
state wide manager for approval or rejection. FYIs cannot directly impact the outcome of a
task, but in some cases can provide comments or add attachments.

For more information, see Assigning Task Participants.

Participant Assignment
A task is work that must be done by a user. When you create a task, you assign humans to
participate in and act upon the task. Participants can perform actions upon tasks during
runtime from Oracle BPM Worklist, such as approving a vacation request, rejecting a purchase
order, providing feedback on a help desk request, or some other action. There are three types
of participants:

• Users

You can assign individual users to act upon tasks. For example, you may assign users
jlondon or jstein to a particular task. Users are defined in an identity store configured
with the SOA Infrastructure. These users can be in the embedded LDAP of Oracle
WebLogic Server, Oracle Internet Directory, or a third-party LDAP directory.

• Groups

You can assign groups to act upon tasks. Groups contain individual users who can claim
and act upon a task. For example, users jcooper and fkafka may be members of the
group LoanAgentGroup that you assign to act upon the task.

As with users, groups are defined in the identity store of the SOA Infrastructure.

• Application roles

You can assign users who are members of application roles to claim and act upon tasks.

Application roles consist of users or other roles grouped logically for application-level
authorizations. These roles are application-specific and are defined in the application Java
policy store rather than the identity store. These roles are used by the application directly
and are not necessarily known to a Java EE container.

Application roles define policy. Java permissions can be granted to application roles.
Therefore, application roles define a set of permissions granted to them directly or
indirectly through other roles (if a role is granted to a role). The policy can contain grants of
application roles to enterprise groups or users. In the jazn-data.xml file of the file-based
policy store, these roles are defined in <app-role> elements under <policy-store> and
written to system-jazn-data.xml at the farm level during deployment. You can also define
these roles after deployment using Oracle Enterprise Manager Fusion Middleware Control.
You can set a task owner or approver to an application role at design time if the role has
been previously deployed.

For more information about Oracle BPM Worklist, see Task Forms.

Chapter 27
Introduction to Human Workflow Concepts

27-5

Ad Hoc Routing
In processes dealing with significant variance, you cannot always determine all participants.
Human workflow enables you to specify that a participant can invite other participants as part
of performing the task.

For more information, see Allow All Participants to Invite Other Participants or Edit New
Participants.

Outcome-based Completion of Routing Flow
By default, a task goes from starting to final participant according to the flow defined in the
routing policy (as shown in Figure 27-2). However, sometimes a certain outcome at a particular
step within a task's routing flow makes it unnecessary or undesirable to continue presenting
the task to the next participants. For example, if an approval is rejected by the first manager, it
does not need to be routed to the second manager. Human workflow supports specifying that a
task or subtask be completed when a certain outcome occurs.

For more information, see Stopping Routing of a Task to Further Participants.

Static, Dynamic, and Rule-Based Task Assignment
There are different methods for assigning users, groups, and application roles to tasks.

• Static Task Assignment

• Dynamic Task Assignment

Static Task Assignment

You can assign users, groups, and application roles statically (or by browsing the identity
service). The values can be either of the following:

• A single user, group, or application role (for example, jstein, CentralLoanRegion, or
ApproverRole).

• A delimited string of users, groups, or application roles (for example, jstein, wfaulk,
cdickens).

Dynamic Task Assignment
You can assign users, groups, and application roles dynamically in the following ways:

• By using a task-assignment pattern. This pattern enables you to do the following:

– Simply enable participants to claim the task manually. This is the default behavior. No
task-assignment pattern is applied.

– If the participant type is either Single or FYI, then apply a task-assignment pattern to
select a single assignee of a requested type from all potential assignees in the
participant.

For example, suppose that the potential assignees comprise the user jcooper, the
group LoanAgent, and the application role Developers. Suppose further that the
requested type is user. Applying this task-assignment pattern selects a single user
from the user jcooper, and from all members of the group LoanAgent, and from all
users with the application role Developers.

Chapter 27
Introduction to Human Workflow Concepts

27-6

– If the particulates type is Parallel or Serial, then apply a task-assignment pattern to
select a single assignee of a requested type from each of the potential assignees in
the participant.

For example, suppose that the potential assignees comprise the user jcooper, the
group LoanAgent, and the application role Developers. Suppose further that the
requested type is user. Applying this task-assignment pattern selects the user
jcooper, and one user from the group LoanAgent, and one user with the application
role Developers.

• By using XPath expressions. These expressions enable you to dynamically determine
assignment to users not included in the participant type. Here you create a list of potential
assignees, one of whom must then claim the task.

For example, you may have a business requirement to create a dynamic list of task
approvers specified in a payload variable. The XPath expression can resolve to zero or
more XML nodes. Each node value can be either a single user, group, or application role
or a delimited string of users, groups, or application roles. The default delimiter for the
assignee delimited string is a comma (,).

For example, if the task has a payload message attribute named po within which the task
approvers are stored, you can use the following XPath expression:

/task:task/task:payload/po:purchaseOrder/po:approvers
ids:getManager('jstein', 'jazn.com')
This returns the manager of jstein.

ids:getReportees('jstein', 2, 'jazn.com')
This returns all reportees of jstein up to two levels.

ids:getUsersInGroup('LoanAgentGroup', false, 'jazn.com')
This returns all direct and indirect users in the group LoanAgentGroup.

You can use both options simultaneously—for example, you can use an XPath expression to
dynamically select a group, and then apply a task-assignment pattern to dynamically select a
user from that group.

Assign tasks with Business Rules
You can create the list of task participants with complex expressions. The result of using
business rules is the same as using XPath expressions. You can also apply the task-
assignment pattern to a participant list created using business rules.

Task Stakeholders
A task has multiple stakeholders. Participants are the users defined in the assignment and
routing section of the task definition. These users are the primary stakeholders that perform
actions on the task.

In addition to the participants specified in the assignment and routing policy, human workflow
supports additional stakeholders:

• Owner

This participant has business administration privileges on the task. This participant can be
specified as part of the task definition or from the invoking process (and for a particular
instance). The task owner can act upon tasks they own and also on behalf of any other
participant. The task owner can change both the outcome of the task and the assignments.

Chapter 27
Introduction to Human Workflow Concepts

27-7

For more information, see How to Specify a Task Owner to specify an owner in the Human
Task Editor or Specifying a Task Owner to specify an owner in the Advanced tab of the
Human Task dialog box.

• Initiator

The person who initiates the process (for example, the initiator files an expense report for
approval). This person can review the status of the task using initiated task filters. Also, a
useful concept is for including the initiator as a potential candidate for request-for-
information from other participants.

For more information, see Specifying the Task Initiator and Task Priority.

• Reviewer

This participant can review the status of the task and add comments and attachments. You
can grant the reviewer role to a participant at runtime using the process instance attributes
reviewer and reviewerType. The reviewer process attribute stores the name of the
reviewer, the default value is "ProcessReviewer" or the value assigned in the Human Task
configuration. The reviewerType process attribute stores the type of reviewer which can
be: user, role or group. You can set these attributes dynamically to modify the effective
reviewer.

• Admin

This participant can view all tasks and take certain actions such as reassigning a test,
suspending a task to handle errors, and so on. The task admin cannot change the
outcome of a task.

While the task admin cannot perform the types of actions that a task participant can, such
as approve, reject, and so on, this participant type is the most powerful because it can
perform actions such as reassign, withdraw, and so on.

• Error Assignee

When an error occurs, the task is assigned to this participant (for example, the task is
assigned to a nonexistent user). The error assignee can perform task recovery actions
from Oracle BPM Worklist, the task form in which you perform task actions during runtime.

For more information, see How to Configure the Error Assignee and Reviewers.

Task Deadlines
Human workflow supports the specification of deadlines associated with a task. You can
associate the following actions with deadlines:

• Reminders:

The task can be reminded multiple times based on the time after the assignment or the
time before the expiration.

• Escalation:

The task is escalated up the management hierarchy.

• Expiration:

The task has expired.

• Renewal:

The task is automatically renewed.

For more information, see Escalating, Renewing, or Ending the Task.

Chapter 27
Introduction to Human Workflow Concepts

27-8

Notifications
You can configure your human task to use notifications. Notifications enable you to alert
interested users to changes in the state of a task during the task lifecycle. For example, a
notification is sent to an assignee when a task has been approved or withdrawn.

You can specify for notifications to be sent to different types of participants for different actions.
For example, you can specify the following:

• For the owner of a task to receive a notification message when a task is in error (for
example, sent to a nonexistent user).

• For a task assignee to receive a notification message when a task has been escalated.

You can specify the contents of the notification message and the notification channel to use for
sending the message.

• Email

You can configure email notification messages to be actionable, meaning that a task
assignee can act upon a task from within the email.

• Instant messaging (IM)

• Short message service (SMS)

For example, you may send the message shown below by email when a task assignee
requests additional information before they can act upon a task:

For me to approve this task, more information is required to justify the need
 for this business trip

During runtime, you can mark a message sender's address as spam and also display a list of
bad or invalid addresses. These addresses are automatically added to the bad address list.

For more information about notifications, see the following:

• Using the Notification Service

• Specifying Participant Notification Preferences

• Part XI, "Using Oracle User Messaging Service"

Task Forms
Task forms provide you with a way to interact with a task. Oracle BPM Worklist displays all
worklist tasks that are assigned to task assignees in the task form. When you navigate into a
specific task, the task form displays the contents of the task to the user's worklist. For example,
an expense approval task may show a form with line items for various expenses, and a help
desk task form may show details such as severity, problem location, and so on.

The integrated development environment of Oracle SOA Suite includes Oracle Application
Development Framework (Oracle ADF) for this purpose. With Oracle ADF, you can design a
task form that depicts the human task in the SOA composite application.

ADF-based task forms can be automatically generated. Advanced users can design their own
task forms by using ADF data controls to lay out the content on the page and connect to the
workflow service engine at execution time to retrieve task content and act on tasks.

You can create task forms in JSF, .NET, or any other client technologies using the APIs.

For more information, see the following:

Chapter 27
Introduction to Human Workflow Concepts

27-9

• Designing Task Forms for Human Tasks

• Using Oracle BPM Worklist

Advanced Concepts
This section describes advanced human workflow concepts.

• Rule-based Routing

You can use Oracle Business Rules to dynamically alter the routing flow. If used, each time
a participant completes their step, the associated rules are invoked and the routing flow
can be overridden from the rules.

For more information, see How to Specify Advanced Task Routing Using Business Rules.

• Rule-based Participant Assignment

You can use Oracle Business Rules to dynamically build a list of users, groups, and roles
to associate with a participant.

For more information, see Assigning Task Participants.

• Stages

A stage is a way of organizing the approval process for blocks of participant types. You can
have one or more stages in sequence or in parallel. Within each stage, you can have one
or more participant type blocks in sequence or in parallel.

For more information, see Assigning Task Participants.

• Access Rules

You can specify access rules that determine the parts of a task that assignees can view
and update. For example, you can configure the task payload data to be read by
assignees. This action enables only assignees (and nobody else) to have read
permissions. No one, including assignees, has write permissions.

For more information, see Introduction to Access Rules.

• Callbacks

While human workflow supports detailed behavior that can be declaratively specified, in
some advanced situations, more extensible behavior may be required. Task callbacks
enable such extensibility; these callbacks can either be handled in the invoking BPEL
process or a Java class.

For more information, see Specifying Java Callbacks.

Reports and Audit Trails
Oracle BPM Worklist provides several out-of-the-box reports for task analysis:

• Unattended tasks

Analysis of tasks assigned to users' groups or reportees' groups that have not yet been
acquired.

• Tasks priority

Analysis of tasks assigned to a user, reportees, or their groups, based on priority.

• Tasks cycle time

Analysis of the time taken to complete tasks from assignment to completion based on
users' groups or reportees' groups.

Chapter 27
Introduction to Human Workflow Concepts

27-10

• Tasks productivity

Analysis of assigned tasks and completed tasks in a given time period for a user,
reportees, or their groups.

• Tasks time distribution

The time an assignee takes to perform a task.

You can view an audit trail of actions performed by the participants in the task and a snapshot
of the task payload and attachments at various points in the workflow. The short history for a
task lists all versions created by the following tasks:

• Initiate task

• Reinitiate task

• Update outcome of task

• Completion of task

• Erring of task

• Expiration of task

• Withdrawal of task

• Alerting of task to the error assignee

For more information, see Using Oracle BPM Worklist.

Introduction to the Stages of Human Workflow Design
Human workflow modeling consists of three stages of modeling:

• Stage 1: You create and define contents of the human task in the Human Task Editor,
including defining a participant type, routing policy, escalation and expiration policy,
notification, and so on. For more information, see Introduction to Creating a Human Task
Definition.

• Stage 2: You associate the human task definition with a BPEL process. The BPEL process
integrates a series of activities (including the human task activity) and services into an end-
to-end process flow. For more information, see Introduction to Associating the Human Task
Definition with a BPEL Process.

• Stage 3: You create a task form. This form displays the task details on which you act at
runtime in Oracle BPM Worklist. For more information, see Introduction to Generating the
Task Form.

Introduction to Human Workflow Use Cases
Get an overview of use cases for human workflow and services. After that, a tutorial guides
you through the design of a human task from start to finish.

Task Assignment to a User or Role
A vacation request process may start with getting the vacation details from a user and then
routing the request to their manager for approval. User details and the organizational hierarchy
can be looked up from a user directory or identity store. This scenario is shown in Figure 27-3.

Chapter 27
Introduction to Human Workflow Use Cases

27-11

Figure 27-3 Assigning Tasks to a User or Role from a Directory

Use of the Various Participant Types
A task can be routed through multiple users with a group vote, management chain, or
sequential list of approvers participant type. For example, consider a loan request that is part
of the loan approval flow. The loan request may first be assigned to a loan agent role. After a
specific loan agent acquires and accepts the loan, the loan may be routed further through
multiple levels of management if the loan amount is greater that $100,000. This scenario is
shown in Figure 27-4.

Figure 27-4 Flow Patterns and Routing Policies

You can use these types as building blocks to create complex workflows.

Escalation, Expiration, and Delegation
A high-priority task can be assigned to a certain user or role based on the task type through
use of custom escalation functions. However, if the user does not act on it in a certain time, the
task may expire and in turn be escalated to the manager for further action. As part of the
escalation, you may also notify the users by email or SMS. Similarly, a manager may delegate
tasks from one reportee to another to balance the load between various task assignees. All

Chapter 27
Introduction to Human Workflow Use Cases

27-12

tasks defined in BPEL have an associated expiration date. Additionally, you may specify
escalation or renewal policies, as shown in Figure 27-5. For example, consider a support call,
which is part of a help desk service request process. A high-priority task may be assigned to a
certain user, and if the user does not respond in two days, the task is routed to the manager for
further action.

Figure 27-5 Escalation and Notification

Automatic Assignment and Delegation
A user may decide to have another user perform tasks on their behalf. Tasks can be explicitly
delegated from the Oracle BPM Worklist or can be automatically delegated. For example, a
manager sets up a vacation rule saying that all their high priority tasks are automatically routed
to one of their direct reports while the manager is on vacation. In some cases, tasks can be
routed to different individuals based on the content of the task. Another example of automatic
routing is to allocate tasks among multiple individuals belonging to a group. For example, a
help desk supervisor decides to allocate all tasks for the western region based on a round
robin basis or assign tasks to the individual with the lowest number of outstanding tasks (the
least busy).

Dynamic Assignment of Users Based on Task Content
An employee named James in the human resources department requests new hardware that
costs $5000. The company may have a policy that all hardware expenses greater than $3000
must go through manager and vice president approval, and then review by the director of IT. In
this scenario, the workflow can be configured to automatically determine the manager of
James, the vice president of the human resources department, and the director of IT. The
purchase order is routed through these three individuals for approval before the hardware is
purchased.

Introduction to Human Workflow Architecture
An overview of human workflow architecture.

• The services that perform a variety of operations in the lifecycle of a task, such as querying
tasks for a user, retrieving metadata information related to a task, and so on.

• The two ways to use a human task:

Chapter 27
Introduction to Human Workflow Architecture

27-13

– Associated with a BPEL process service component

– Used in standalone mode

• The role of the service engine in the life of a human task

Human Workflow Services
Starting with release 11g, all human task metadata is stored and managed in the Metadata
Service (MDS) repository. The workflow service consists of many services that handle various
aspects of human interaction with a business process.

Figure 27-6 shows the following workflow service components:

• Task Service:

The task service provides task state management and persistence of tasks. In addition to
these services, the task service exposes operations to update a task, complete a task,
escalate and reassign tasks, and so on. The task service is used by Oracle BPM Worklist
to retrieve tasks assigned to users. This service also determines if notifications are to be
sent to users and groups when the state of the task changes. The task service consists of
the following services.

– Task Routing Service

The task routing service offers services to route, escalate, and reassign the task. The
service makes these decisions by interpreting a declarative specification in the form of
the routing slip.

– Task Query Service

The task query service queries tasks for a user based on a variety of search criterion
such as keyword, category, status, business process, attribute values, history
information of a task, and so on.

– Task Metadata Service

The task metadata service exposes operations to retrieve metadata information related
to a task.

• Identity Service

The identity service is a thin web service layer on top of the Oracle Application Server 11g
security infrastructure or any custom user repository. It enables authentication and
authorization of users and the lookup of user properties, roles, group memberships, and
privileges.

• Notification Service

The notification service delivers notifications with the specified content to the specified user
through the email, IM, and SMS channels. See Notifications from Human Workflow for
more information.

• User Metadata Service

The user metadata service manages metadata related to workflow users, such as user
work queues, preferences, vacations, and delegation rules.

• Runtime Config Service

The runtime config service provides methods for managing metadata used in the task
service runtime environment. It principally supports management of task payload mapped
attribute mappings.

• Evidence service

Chapter 27
Introduction to Human Workflow Architecture

27-14

The evidence service supports storage and nonrepudiation of digitally-signed workflow
tasks.

Figure 27-6 Workflow Services Components

Figure 27-7 shows the interactions between the services and the business process.

Chapter 27
Introduction to Human Workflow Architecture

27-15

Figure 27-7 Workflow Services and Business Process Interactions

Use of Human Task
You can use a human task in the following ways:

• Human task associated with a BPEL process

You can associate your human task with a BPEL process. The BPEL process integrates a
series of activities (including the human task activity) and services into an end-to-end
process flow.

• Human task associated with a BPMN process

Chapter 27
Introduction to Human Workflow Architecture

27-16

You can associate your human task with a BPMN process. The BPMN process may
contain other types of BPMN flow objects as part of the flow of the process. The human
task is the implementation of a BPMN user task.

• Standalone human task

You can also create the human task as a standalone component only in the SOA
Composite Editor and not associate it with a BPEL process. Standalone human task
service components are useful for environments in which there is no need for any
automated activity in an application. In the standalone case, the client can create the task
themselves.

Service Engines
During runtime, the business logic and processing rules of the human task service component
are executed by the human workflow service engine. Each service component (BPEL process,
human workflow, decision service (business rules), and Oracle Mediator) has its own service
engine container for performing these tasks. All human task service components, regardless of
the SOA composite application of which they are a part, are executed in this single human task
service engine.

For more information about configuring, monitoring, and managing the human workflow service
engine, see Administering Oracle SOA Suite and Oracle Business Process Management Suite.

Human Workflow and Business Rule Differences Between Oracle
SOA Suite and Oracle BPM Suite

Oracle SOA Suite and Oracle Business Process Management (BPM) Suite both provide
support for business rules and human workflow. However, Oracle BPM Suite provides
additional business rules and human workflow features that are not available in Oracle SOA
Suite.

Table 27-1 identifies which business rule and human workflow features are supported in each
suite.

Table 27-1 Business Rule and Human Workflow Features in Oracle SOA Suite and
Oracle BPM Suite

Feature Supported in Oracle
BPM Suite?

Supported in Oracle
SOA Suite?

Workspaces, process tracking, standard dashboards,
case management, and applications menu

Yes No

Approval groups (participant list) Yes No

Human workflow and business rules (participant list,
routing rules)

Yes Yes

Verbal rules Yes No

Rules business phrases Yes No

Oracle BPM Composer - design time rules editing Yes No

Process asset catalog (PAM) for source management
between Oracle BPM Studio and Oracle BPM
Composer

Yes No

Rules testing in both Oracle JDeveloper and SOA
Composer with usability enhancements

Yes Yes

Chapter 27
Human Workflow and Business Rule Differences Between Oracle SOA Suite and Oracle BPM Suite

27-17

Table 27-1 (Cont.) Business Rule and Human Workflow Features in Oracle SOA Suite
and Oracle BPM Suite

Feature Supported in Oracle
BPM Suite?

Supported in Oracle
SOA Suite?

Microsoft Excel import/export for rules decision tables Yes Yes

For more information about Oracle BPM Suite, see Developing Business Processes with
Oracle Business Process Management Studio.

Chapter 27
Human Workflow and Business Rule Differences Between Oracle SOA Suite and Oracle BPM Suite

27-18

28
Creating Human Tasks

Learn how to create a human task, save it, and associate it with a BPEL process. Also
describes how to delete a human task and remove its association with a BPEL process.

• Introduction to Human Tasks

• Creating Human Tasks

• Configuring Human Tasks

• Exiting the Human Task Editor and Saving Your Changes

• Associating Human Tasks with BPEL Processes

For information about human task concepts, see Getting Started with Human Workflow .

For information about troubleshooting human workflow issues, see section "Human Workflow
Troubleshooting" of Administering Oracle SOA Suite and Oracle Business Process
Management Suite.

For information about installing and using the organizational hierarchy of users and groups
known as the demo user community, see Appendix "Installing the Demo User Community in
the Database" of Administering Oracle SOA Suite and Oracle Business Process Management
Suite.

Introduction to Human Tasks
Oracle SOA Suite provides a graphical tool, known as the Human Task Editor, for modeling
your task metadata.

The modeling process consists of the following:

• Creating and modeling a human task service component in the SOA Composite Editor.

• Associating it with a BPEL process

• Generating the task form for displaying the human task during runtime in Oracle BPM
Worklist.

To use the Human Task Editor, you must understand human task design concepts, including
the following:

• The types of users to which to assign tasks

• The methods by which to assign users to tasks (statically, dynamically, or rule-based)

• The task participant types available for modeling a task to which you assign users

• The options for creating lists of task participants

• The participants involved in the entire life cycle of a task

This section provides a brief overview of these modeling tasks and provides references to
specific modeling instructions.

For more information about using the SOA Composite Editor, see Getting Started with
Developing SOA Composite Applications.

28-1

For information about available samples, see Human Workflow Tutorial.

Introduction to Creating a Human Task Definition
The Human Task Editor enables you to specify human task metadata such as task outcome,
payload structure, assignment and routing policy, expiration and escalation policy, notification
settings. This information is saved to a metadata task configuration file with a .task extension.
In addition, some workflow patterns may also need to use the Oracle Business Rules Designer
to define task routing policies or the list of approvers.

After you create a Human Task you can configure its metadata using the Human Task Editor.
For a detailed description of the metadata and configuration procedures, see Configuring
Human Tasks .

You define the metadata for the human task in either of two ways:

• By dragging a human task from the Components window into a BPEL process in Oracle
BPEL Designer and clicking the Add icon in the Create Human Task dialog that
automatically is displayed. This displays a dialog for creating the human task service
component. When creation is complete, the Human Task Editor is displayed.

• By dragging a human task service component from the Components window into the SOA
Composite Editor. This displays a dialog for creating the human task component. When
creation is complete, the Human Task Editor is displayed.

For more information, see Creating Human Tasks.

Introduction to Associating the Human Task Definition with a BPEL Process
You can associate the .task file that consists of the human task settings with a BPEL process
in Oracle BPEL Designer. Association is made with a human task that you drag into your BPEL
process flow for configuring, as shown in Figure 28-1.

Figure 28-1 Dragging a Human Task into a BPEL Process

You also specify the task definition, task initiator, task priority, and task parameter mappings
that carry the input data to a BPEL variable. You can also define advanced features, such as
the scope and global task variables names (instead of accepting the default names), task

Chapter 28
Introduction to Human Tasks

28-2

owner, identification key, BPEL callback customizations, and whether to extend the human task
to include other workflow tasks.

When association is complete, a task service partner link is created. The task service exposes
the operations required to act on the task.

You can also create the human task as a standalone component only in the SOA Composite
Editor and not associate it with a BPEL process. Standalone human task service components
are useful for environments in which there is no need for any automated activity in an
application. In the standalone case, the client can create the task themselves.

For more information, see Associating Human Tasks with BPEL Processes.

Introduction to Generating the Task Form
You can generate a task form using the Oracle Application Development Framework (ADF).
This form is used for displaying the task details on which you act at runtime in Oracle BPM
Worklist.

For information on generating the task form, see Designing Task Forms for Human Tasks .

Creating Human Tasks
The Human Task Editor enables you to define the metadata for the task. The editor enables
you to specify human task settings, such as task outcome, payload structure, assignment and
routing policy, expiration and escalation policy, notification settings, and so on.

You create a human task service component in the SOA Composite Editor or in Oracle BPEL
Designer. After creation, you design the component in the Human Task Editor. The method by
which you create the human task service component determines whether the component can
be associated later with a BPEL process service component or is a standalone component in
the SOA Composite Editor.

How to Create a Human Task Using the SOA Composite Editor
You can create a human task using the SOA Composite Editor. You can use this method to
create a human task to later associate with a BPEL process or use as a standalone
component.

To create a human task service component in the SOA Composite Editor:

1. Go to the SOA project in which to create a human task service component in the SOA
Composite Editor.

2. From the Components window list, select SOA.

The list refreshes to display service components and service adapters.

3. From the list, drag a Human Task into the designer.

The Create Human Task dialog appears.

4. In the Name field, enter a name.

The name you enter becomes the .task file name.

5. Note the Create Composite Service with SOAP Bindings check box. The selection of
this check box determines how the human task service component is created.

Chapter 28
Creating Human Tasks

28-3

a. To create a human task service component that you later associate with a BPEL
process service component, do not select the Create Composite Service with SOAP
Bindings check box. The human task service component is created as a component
that you explicitly associate with a BPEL process service component. Figure 28-2
provides details.

Figure 28-2 Human Task Component

b. To create the human task service component as a standalone component in the SOA
Composite Editor, select the Create Composite Service with SOAP Bindings check
box. This creates a human task service component that is automatically wired to a
Simple Object Access Protocol (SOAP) web service. Figure 28-3 provides details.

Figure 28-3 Standalone Human Task Component

This web service provides external customers with an entry point into the human task
service component of the SOA composite application.

6. Click OK.

For more information about creating a human task service component in the SOA Composite
Editor, see Getting Started with Developing SOA Composite Applications.

How to Create a Human Task Using Oracle BPEL Designer
You can create a human task using Oracle BPEL Designer. Generally you use this method
when you want to create a human task to use with a BPEL process.

To create a human task in Oracle BPEL Designer:

1. In the Components window, expand SOA Components.

2. From the list, drag a Human Task into the designer.

The Create Human Task dialog appears.

3. Click the Add icon to create a human task.

4. In the Name field, enter a name.

The name you enter becomes the .task file name.

5. In the Title field, enter a task.

Chapter 28
Creating Human Tasks

28-4

6. Click OK.

The Human Task Editor appears.

Note:

You can also create a human task that you later associate with a BPEL process by
selecting New from the File main menu, then selecting SOA Tier > Service
Components > Human Task.

What Happens When You Create a Human Task
When a human task is created, the following folders and files appear:

• The human task settings specified in the Human Task Editor are saved to a metadata task
configuration file in the metadata service (MDS) repository with a .task extension. This file
appears in the Applications window under SOA_Project_Name > SOA. You can re-edit
the settings in this file by double-clicking the following:

– The .task file in the Applications window in either the SOA Composite Editor or Oracle
BPEL Designer

– The human task icon in the SOA Composite Editor or in your BPEL process in Oracle
BPEL Designer.

This reopens the .task file in the Human Task Editor.

• A Human Tasks folder containing the human task you created appears in the Structure
window of the SOA Composite Editor.

Figure 28-4 shows these folders and files.

Chapter 28
Creating Human Tasks

28-5

Figure 28-4 Human Task Folders and Files

For information about available samples, see Human Workflow Tutorial.

Configuring Human Tasks
After creating a human task, modify its settings using the Human Task Editor.

For more information on how to configure a human task, see Configuring Human Tasks .

Exiting the Human Task Editor and Saving Your Changes
You can save your human task changes at any time. The task can be re-edited at a later time
by double-clicking the metadata task configuration .task file in the Applications window.

To exit the Human Task Editor and save your changes:

1. From the File main menu, select Save or click the X sign shown in Figure 28-5 to close
the .task metadata task configuration file.

Figure 28-5 File Closure

2. If you click the X sign, select Yes when prompted to save your changes.

Chapter 28
Configuring Human Tasks

28-6

Associating Human Tasks with BPEL Processes
To associate the human task service component created in the SOA Composite Editor with a
BPEL process, follow these instructions. When association is complete, a task service partner
link is created in Oracle BPEL Designer. The task service exposes the operations required to
act on a task.

How to Associate a Human Task with a BPEL Process
There are two ways to associate a human task service component with a BPEL process:

• If you have created a human task service component in the SOA composite application,
drag a human task activity into the BPEL process in Oracle BPEL Designer. Then, select
the existing human task service component from the Task Definition list of the Create
Human Task dialog. You can then specify the task title, initiator, parameter values, and
other values.

• If you have not created a human task service component, drag the human task activity into
the BPEL process in Oracle BPEL Designer Then, click the Add icon to the right of the
Task Definition list in the Create Human Task dialog. This action enables you to specify
the name of the new human task service component, the parameters, and the outcomes.
The Human Task Editor then opens for you to design the remaining task metadata. After
design completion, close the Human Task Editor.

To associate a human task with a BPEL process:

1. Go to the SOA Composite Editor.

2. Double-click the BPEL process service component with which to associate the .task file of
the human task service component.

3. In the Components window, expand SOA Components.

4. Drag a new Human Task activity into the BPEL process.

5. Double-click the Human Task activity.

The Human Task dialog appears.

6. From the Task Definition list of the General tab, select the human task, as shown in
Figure 28-6.

Chapter 28
Associating Human Tasks with BPEL Processes

28-7

Figure 28-6 Task Definition List Selection

The .task file of the human task service component is associated with the BPEL process.

Note:

After you complete association of your human task activity with a BPEL process
and close the Create Human Task dialog, you can always re-access this dialog
by double-clicking the human task activity in Oracle BPEL Designer.

What You May Need to Know About Deleting a Wire Between a Human
Task and a BPEL Process

If you delete the wire between a BPEL process and the human task service component that it
invokes, the invoke activity of the human workflow is deleted from the BPEL process. However,
the taskSwitch switch activity for taking action (contains the approve, reject, and otherwise
task outcomes) is still there. This is by design for the following reasons:

• The switch activity contains user-entered BPEL code.

• The switch can be reused if the intention for deleting the wire is only to point to another
human task.

• Deleting the switch is a single-step action.

If you then drag and drop a human task service component into the BPEL process to use the
same taskSwitch switch activity, a new taskSwitch switch activity is created. You then have
two switch activities in the BPEL process with the same name. To determine which one to
delete, you must go into the approve, reject, and otherwise task outcomes of the taskSwitch
switch activities to determine which is the older, modified switch and which is the newer switch.

Chapter 28
Associating Human Tasks with BPEL Processes

28-8

How to Define the Human Task Activity Title, Initiator, Priority, and
Parameter Variables

Figure 28-7 shows the General tab that displays after you select the human task.

Figure 28-7 Human Task — General Tab (After Selection)

The General tab of the Human Task activity enables you to perform the tasks shown in
Table 28-1:

Table 28-1 Human Task - General Tab

For this Field... See...

Task Title Specifying the Task Title

Initiator
Priority

Specifying the Task Initiator and Task Priority

Task Parameters Specifying Task Parameters

Specifying the Task Title
The title displays the task in Oracle BPM Worklist during runtime. This is a mandatory field.
Your entry in this field overrides the task title you entered in the Task Title field of the General
section of the Human Task Editor described in How to Specify a Task Title.

In the Task Title field of the General tab, enter the task title by entering the title manually.
Alternatively, click the icon to the right of the field to display the Expression Builder dialog to
dynamically create the title.

Chapter 28
Associating Human Tasks with BPEL Processes

28-9

You can also combine static text and dynamic expressions in the same title. To include
dynamic text, place your cursor at the appropriate point in the text and click the icon on the
right to invoke the Expression Builder dialog.

Specifying the Task Initiator and Task Priority
You can specify a task initiator. The initiator is the user who initiates a task. The initiator can
view their created tasks from Oracle BPM Worklist and perform specific tasks, such as
withdrawing or suspending a task.

To specify the task initiator and task priority:

1. To the right of the Initiator field of the General tab, enter the initiator (for example,
jcooper) or click the icon to display the Expression Builder dialog for dynamically
specifying an initiator. This field is optional. If not specified, the initiator defaults to the task
owner specified on the Advanced tab of the Human Task dialog. The initiator defaults to
bpeladmin if a task owner is also not specified.

2. From the Priority list, select a priority value between 1 (the highest) and 5. This field is
provided for user reference and does not make this task a higher priority during runtime.
Use the priority to sort tasks in Oracle BPM Worklist. This priority value overrides the
priority value you select in the Priority list of the General section of the Human Task
Editor.

For more information about specifying the priority in the Human Task Editor, see How to
Specify a Task Title.

Specifying Task Parameters
The task parameter table shown in Figure 28-8 displays a list of task parameters after you
complete the Task Title and Initiator fields.

Figure 28-8 Task Parameter Table

Chapter 28
Associating Human Tasks with BPEL Processes

28-10

To specify task parameters:

1. In the BPEL Variable column, double-click the dots to map the task parameter to the
BPEL variable. To display these dots for selection, you must have already specify your
data parameters. For more information on how to specify the data parameters, see How to
Specify the Task Payload Data Structure. You must map only the task parameters that
carry input data. For output data that is filled in from Oracle BPM Worklist, you do not need
to map the corresponding variables.

The Task Parameters dialog appears.

2. Expand the Variables tree shown in Figure 28-9 and select the appropriate task variable.

Figure 28-9 Variables Tree

3. Click OK.

The Human Task dialog shown in Figure 28-10 appears as follows.

Chapter 28
Associating Human Tasks with BPEL Processes

28-11

Figure 28-10 Human Task Dialog

4. To define advanced features for the human task activity, click the Advanced tab and go to
How to Define the Human Task Activity Advanced Features . Otherwise, click OK to close
the Human Task dialog.

How to Define the Human Task Activity Advanced Features
Figure 28-11 shows the Advanced tab.

Figure 28-11 Create Human Task — Advanced Tab

The Advanced tab of the Human Task activity enables you to perform the tasks shown in
Table 28-2:

Chapter 28
Associating Human Tasks with BPEL Processes

28-12

Table 28-2 Human Task - Advanced Tab

For this Field... See...

Scope Name
Global Task Variable Name

Specifying a Scope Name and a Global Task Variable Name

Owner Specifying a Task Owner

Identification Key Specifying an Identification Key

Identity Context Specifying an Identity Context

Application Context Specifying an Application Context

Include task history from Including the Task History of Other Human Tasks

Specifying a Scope Name and a Global Task Variable Name
You are automatically provided with default scope and global task variable names during
human task activity creation. However, you can specify custom names that are used to name
the scope and global variable during human task activity creation.

To specify a scope name and a global task variable name:

1. In the Scope Name field of the Advanced tab, enter the name for the BPEL scope to be
generated.

This BPEL scope encapsulates the entire interaction with the workflow service and BPEL
variable manipulation.

2. In the Global Task Variable Name field of the Advanced tab, enter the global task
variable name.

This is the name of the BPEL task variable used for the workflow interaction.

Specifying a Task Owner
The task owner can view tasks belonging to business processes they own and perform
operations on behalf of any of the task assignees. Additionally, the owner can also reassign,
withdraw, or escalate tasks.

If you do not specify a task initiator on the General tab of the Human Task dialog, it defaults to
the owner specified here. In the Owner field of the Advanced tab, enter the task owner name
or click the icon to the right to use the Expression Builder to dynamically specify the owner of
this task.

Specifying an Identification Key
The identification key can be used as a user-defined ID for the task. For example, if the task is
meant for approving a purchase order, the purchase order ID can be set as the identification
key of the task. Tasks can be searched from Oracle BPM Worklist using the identification key.
This attribute has no default value.

In the Identification Key field of the Advanced tab, enter an optional identification key value
to specify a key.

Chapter 28
Associating Human Tasks with BPEL Processes

28-13

Specifying an Identity Context
The identity realm name is used for the task when multiple realms are configured. You cannot
have assignees from multiple realms working on the same task. This field is required if you are
using multiple realms. To specify an identity context, in the Identity Context field of the
Advanced tab, enter a value

Specifying an Application Context
The stripe name of the application contains the application roles used in the task. To specify an
application context, in the Application Context field of the Advanced tab, enter a value.

Including the Task History of Other Human Tasks
This feature enables one human task to be continued with another human task. There are
many scenarios in which you have related tasks in a single BPEL process. For example,
assume you have the following:

• A procurement process to obtain a manager's approval for a computer

• Several BPEL activities in between

• Another task for the IT department to buy the computer

The participant of the second task may want to see the approval history, comments, and
attachments created when the manager approved the purchase. You can link these different
tasks in the BPEL process by chaining the second task to the first task with this option.

For chained tasks, the title of the new task cannot be set from the task metadata (.task file).
For example, assume existing Task A is chained with new task Task B, and Task B has a new
title set in the Human Task Editor; this title is not recognized. Therefore, if the chained task
requires a different title, it must be set in the task instance before calling the task service
reinitiate operation. If a BPEL process is initiating the tasks, set the task title before the
workflow service APIs are called. If a Java program is calling the workflow APIs
programatically, then it must set the title.

To include the task history of other tasks:

1. Select the Include task history from check box of the Advanced tab to extend a previous
workflow task in the BPEL process. Selecting this check box includes the task history,
comments, and attachments from the previous task. This provides you with a complete
end-to-end audit trail.

When a human task is continued with another human task, the following information is
carried over to the new workflow:

• Task payload and the changes made to the payload in the previous workflow

• Task history

• Comments added to the task in the previous workflow

• Attachments added to the task in the previous workflow

• Due date

In the Include task history from list, all existing workflows are listed.

2. Select a particular human task to extend (continue) the selected human task.

Chapter 28
Associating Human Tasks with BPEL Processes

28-14

For example, a hiring process is used to hire new employees. Each interviewer votes to
hire or not hire a candidate. If 75% of the votes are to hire, then the candidate is hired;
otherwise, the candidate is rejected. If the candidate is to be hired, an entry in the HR
database is created and the human resources contact completes the hiring process. The
HR contact also must see the interviewers and the comments they made about the
candidate. This process can be modeled using a parallel participant type for the hiring. If
the candidate is hired, a database adapter is used to create the entry in the HR database.
After this action, a simple workflow can include the task history from the parallel participant
type so that the hiring request, history, and interviewer comments are carried over. This
simple workflow is assigned to the HR contact.

3. Select a payload to use:

• Clear old payload and recreate

This option is applicable when the payload attributes in the XML files of the human
tasks involved in this extended workflow are different. For example, the payload
attribute for the human task whose history you are including has three extra attributes
than the payload of the other human task.

• Use existing payload

This option is applicable when the payload attributes in the XML files of the human
tasks involved in this extended workflow are the same.

How to View the Generated Human Task Activity
When you have completed modeling the human task activity, the human task is generated in
the designer.

Figure 28-12 shows how a workflow interaction is modeled. Figure 28-12 also illustrates the
interaction when no BPEL callbacks are modeled. In this case, after a task is complete, the
BPEL process is called back with the completed task. No intermediary events are propagated
to the BPEL process instance. It is recommended that any user customizations be done in the
first assign, AssignTaskAttributes, and that AssignSystemTaskAttributes not be changed.

Figure 28-12 Workflow Interaction Modeling

Chapter 28
Associating Human Tasks with BPEL Processes

28-15

Click the Expand icon next to the human task activity in Oracle BPEL Designer to display its
contents, as shown in Figure 28-13.

Figure 28-13 Expanding the Human Task Activity

Invoking BPEL Callbacks
If intermediary events must be propagated to the BPEL process instance, select the Allow
task and routing customization in BPEL callbacks check box in the Events section of the
Human Task Editor. When this option is selected, the workflow service invokes callbacks in the
BPEL instance during each update of the task. The callbacks are listed in the
TaskService.wsdl file and described as follows:

• onTaskCompleted
This callback is invoked when the task is completed, expired, withdrawn, or errored.

• onTaskAssigned
This callback is invoked when the task is assigned to a new set of assignees due to the
following actions:

– Outcome update

– Skip current assignment

– Override routing slip

• onTaskUpdated
This callback is invoked for any other update to the task that does not fall in the
onTaskComplete or onTaskAssigned callback. This includes updates on tasks due to a
request for information, a submittal of information, an escalation, a reassign, and so on.

• onSubTaskUpdated
This callback is invoked for any update to a subtask.

Figure 28-14 shows how a workflow interaction with callbacks is modeled. After this task is
initiated, a while loop is used to receive messages until the task is complete. The while loop
contains a pick with four onMessage branches — one for each of the above-mentioned
callback operations. The workflow interaction works fine even if nothing is changed in the
onMessage branches, meaning that customizations in the onMessage branches are not
required.

In this scenario, a workflow context is captured in the BPEL instance. This context can be used
for all interaction with the workflow services. For example, to reassign a task if it is assigned to
a group, then you need the workflow context for the reassignTask operation on the task
service.

It is recommended that any user customizations be performed in the first assign,
AssignTaskAttributes, and that AssignSystemTaskAttributes not be changed.

Chapter 28
Associating Human Tasks with BPEL Processes

28-16

Figure 28-14 Workflow Interaction Modeling (with Callbacks)

What You May Need to Know About Changing the Generated Human Task
Activity

If you must change a generated human task activity, note the following details:

• Do not modify the assign tasks that are automatically created in a switch activity when you
add a human task to a BPEL process flow. Instead, add a new assign activity outside the
switch activity.

• If the parameter passed into a human task is modified (for example, you change the
parameter type in the Edit Task Parameter dialog), you must open the human task activity
in the BPEL process flow and click OK to correct the references to the payload variable.
Not doing so causes the parameter name to change and become uneditable.

Chapter 28
Associating Human Tasks with BPEL Processes

28-17

If the task outcomes in the Human Task Editor are modified, you must edit the human task
activity and click OK. The switch case is then updated based on the changes to the
outcomes.

• If you make any changes to the translatable strings of the title or category of a task in the
resource bundle, those changes do not appear in any instances of that task that are
already initiated. However, they do appear in instances of that task that are initiated after
you make the changes.

• When you copy comments to a human task, make sure that those comments do not
contain the task ID. The taskId element must be empty.

What You May Need to Know About Deleting a Partner Link Generated by a
Human Task

Deleting a partner link that was generated by a human task (for example,
human_task_name.TaskService in the Partner Links swimlane) causes the human task to
become unusable. If you delete the partner link, you must delete the human task activity in
Oracle BPEL Designer and start over again.

How to Define Outcome-Based Modeling
In many cases, the outcome of a task determines the flow of the business process. To facilitate
modeling of the business logic, when a user task is generated, a BPEL switch activity is also
generated with prebuilt BPEL case activities. By default, one case branch is created for each
outcome selected during creation of the task. An otherwise branch is also generated in the
switch to represent cases in which the task is withdrawn, expired, or in error.

Specifying Payload Updates
The task carries a payload in it. If the payload is set from a business process variable, then an
assign activity with the name copyPayloadFromTask is created in each of the case and
otherwise branches to copy the payload from the task back to its source. If the payload is
expressed as other XPath expressions (such as ora:getNodes(...)), then this assign is not
created because of the lack of a process variable to copy the payload back. If the payload
does not require modification, then you can remove the assign generated in the switch-case
after the task scope.

Using Case Statements for Other Task Conclusions
By default, the switch activity contains case statements for the outcomes only. The other task
conclusions are captured in the otherwise branch. These conclusions are as follows:

• The task is withdrawn.

• The task is in error.

• The task is expired.

If business logic must be added for each of these other conclusions, then case statements can
be added for each of the preceding conditions. The case statements can be created as shown
in the following BPEL segment. The XPath conditions for the other conclusions in the case
activities for each of the preceding cases are shown in bold in the following example:

<switch name="taskSwitch">
 <case condition="bpws:getVariableData('SequentialWorkflowVar1',
'/task:task/task:state') = 'COMPLETED' and

Chapter 28
Associating Human Tasks with BPEL Processes

28-18

bpws:getVariableData('SequentialWorkflowVar1', '/task:task/task:conclusion') = 'ACCEPT'">
 <bpelx:annotation>
 <bpelx:pattern>Task outcome is ACCEPT
 </bpelx:pattern>
 </bpelx:annotation>
 ...
 </case>
 <case condition=
"bpws:getVariableData('SequentialWorkflowVar1', '/task:task/task:state') =
 'WITHDRAWN'">
 <bpelx:annotation>
 <bpelx:pattern>Task is withdrawn
 </bpelx:pattern>
 </bpelx:annotation>
 ...
 </case>
 <case condition=
"bpws:getVariableData('SequentialWorkflowVar1', '/task:task/task:state') =
 'EXPIRED'">
 <bpelx:annotation>
 <bpelx:pattern>Task is expired
 </bpelx:pattern>
 </bpelx:annotation>
 ...
 </case>
 <case condition=
"bpws:getVariableData('SequentialWorkflowVar1', '/task:task/task:state') =
 'ERRORED'">
 <bpelx:annotation>
 <bpelx:pattern>Task is errored
 </bpelx:pattern>
 </bpelx:annotation>
 ...
 </case>
 <otherwise>
 <bpelx:annotation>
 <bpelx:pattern>Task is EXPIRED, WITHDRAWN or ERRORED
 </bpelx:pattern>
 </bpelx:annotation>
 ...
 </otherwise>
</switch>

What You May Need to Know About Encoding an Attachment
To enable text files to be attached to a human task, you must set a flag that describes whether
the content of text attachments is encoded. This flag is named isContentEncoded.You can set
this flag by customizing the BPEL code in any Human Workflow sample that includes a human
task. To do this customization, in the .bpel file in the sample, enter the following copy rule in
the BPEL assign activity code:

<copy>
<from>true()</from>
<to>$initiateTaskInput.payload/task:task/task:attachment/task:isContentEncoded
</to>
</copy>

Once you have entered this copy rule, you can either save the file and continue designing the
BPEL process or, if you have finished designing, you can deploy the process.

Chapter 28
Associating Human Tasks with BPEL Processes

28-19

29
Configuring Human Tasks

Learn how to configure the different properties of a human task. It covers basic properties, task
payload data structure, participant assignment, routing policies, localization, escalation,
notification preferences, access policies and task actions, restrictions and Java and business
event callbacks.

• Accessing the Sections of the Human Task Editor

• Specifying the Title, Description, Outcome, Priority, Category, Owner, and Application
Context

• Specifying the Task Payload Data Structure

• Assigning Task Participants

• Selecting a Routing Policy

• Specifying Multilingual Settings and Style Sheets

• Specifying What to Show in Task Details in the Worklist

• Escalating, Renewing, or Ending the Task

• Specifying Participant Notification Preferences

• Specifying Access Policies and Task Actions on Task Content

• Specifying Restrictions on Task Assignments

• Specifying Java or Business Event Callbacks

For information about troubleshooting human workflow issues, see Human Workflow
Troubleshooting in Administering Oracle SOA Suite and Oracle Business Process
Management Suite.

Accessing the Sections of the Human Task Editor
Learn how to access the sections of the Human Task Editor.

To access the sections of the Human Task Editor:

• Double-click the Human Task icon in the SOA Composite Editor or double-click the
Human Task icon in Oracle BPEL Designer.

The Human Task Editor consists of the main sections shown on the left side in Figure 29-1.
These sections enable you to design the metadata of a human task.

29-1

Figure 29-1 Human Task Editor

Instructions for using these main sections of the Human Task Editor to create a workflow
task are listed in Table 29-1.

Table 29-1 Human Task Editor

Section Description See...

General
(title, description,
outcomes, category,
priority, owner, and
application context)

Enables you to define task details
such as title, task outcomes, owner,
and other attributes.

Specifying the Title, Description,
Outcome, Priority, Category,
Owner, and Application Context

Data Enables you to define the structure
(message elements) of the task
payload (the data in the task).

Specifying the Task Payload Data
Structure

Assignment Enables you to assign participants
to the task and create a policy for
routing the task through the
workflow.

Assigning Task Participants

Selecting a Routing Policy

Presentation Enables you to specify the following
settings:

• Multilingual settings
• WordML and custom style

sheets for attachments

Specifying Multilingual Settings
and Style Sheets

Deadlines Enables you to specify the expiration
duration of a task, custom escalation
Java classes, and due dates.

Escalating, Renewing, or Ending
the Task

Notification Enables you to create and send
notifications when a user is
assigned a task or informed that the
status of the task has changed.

Specifying Participant Notification
Preferences

Access Enables you to specify access rules
for task content and task actions,
workflow signature policies, and
assignment restrictions.

Specifying Access Policies and
Task Actions on Task Content

How to Specify a Workflow Digital
Signature Policy

Specifying Restrictions on Task
Assignments

Chapter 29
Accessing the Sections of the Human Task Editor

29-2

Table 29-1 (Cont.) Human Task Editor

Section Description See...

Events Enables you to specify callback
classes and task and routing
assignments in BPEL callbacks.

Specifying Java or Business
Event Callbacks

Specifying the Title, Description, Outcome, Priority, Category,
Owner, and Application Context

Learn how to specify the task details such as the title, description, outcome, priority, category
Owner and the Application context.

To specify the details of a task:

1. Access the Human Task Editor.

2. Click the General tab.

Figure 29-2 shows the General section of the Human Task Editor.

This section enables you to specify details such as the task title, description, task
outcomes, task category, task priority, and task owner.

Figure 29-2 Human Task Editor — General Section

Instructions for configuring the following subsections of the General section are listed in
Table 29-2:

Table 29-2 Human Task Editor — General Section

For This Subsection... See...

Title How to Specify a Task Title

Description How to Specify a Task Description

Outcomes How to Specify a Task Outcome

Priority How to Specify a Task Priority

Chapter 29
Specifying the Title, Description, Outcome, Priority, Category, Owner, and Application Context

29-3

Table 29-2 (Cont.) Human Task Editor — General Section

For This Subsection... See...

Category How to Specify a Task Category

Owner How to Specify a Task Owner

Application Context How To Specify an Application Context

How to Specify a Task Title
Enter an optional task title. The title defaults to this value only if the initiated task does not have
a title set in it. The title provides a visual identifier for the task. The task title displays in Oracle
BPM Worklist. You can also search on titles in Oracle BPM Worklist.

To specify a task title:

1. In the Task Title field of the General section, select a method for specifying a task title:

• Plain Text: Manually enter a name (for example, Vacation Request Approved).

• Text and XPath: Enter a combination of manual text and a dynamic expression. After
manually entering a portion of the title (for example, Approval Required for Order
Id:), place the cursor one blank space to the right of the text and click the icon to the
right of this field. This displays the Expression Builder for dynamically creating the
remaining portion of the title. After completing the dynamic portion of the name, click
OK to return to this field. The complete name is displayed. For example:

Approval Required for Order Id: <%/task:task/task:payload/task:orderId%>

The expression is resolved during runtime with the exact order ID value from the task
payload.

• Translation: Click the Lookup button and locate a translation bundle to use to specify
the title.

• Resource Xpath: Click the Lookup button and locate a resource bundle to use to
specify the title.

2. If you enter a title in the Task Title field of the General tab of the Create Human Task
dialog box described in Specifying the Task Title, the title you enter here is overridden.

How to Specify a Task Description
You can optionally specify a description of the task in the Description field of the General
section. The description enables you to provide additional details about a task. For example, if
the task title is Computer Upgrade Request, you can provide additional details in this field, such
as the model of the computer, amount of CPU, amount of RAM, and so on. The description
does not display in Oracle BPM Worklist.

To add a task description:

1. Select the drop-down menu and choose either Plain Text or Translation.

2. Provide the description:

Plain text:

a. Type a description into the dialog box.

b. Click Ok.

Chapter 29
Specifying the Title, Description, Outcome, Priority, Category, Owner, and Application Context

29-4

Translation:

a. Click the Lookup button.

b. Locate a resource bundle and provide a description.

c. Click Ok.

How to Specify a Task Outcome
Task outcomes capture the possible outcomes of a task. Oracle BPM Worklist displays the
outcomes you specify here as the possible task actions to perform during runtime. Figure 29-3
provides details.

Figure 29-3 Outcomes in Oracle BPM Worklist

You can specify the following types of task outcomes:

• Select a seeded outcome

• Enter a custom outcome

The task outcomes can also have runtime display values that are different from the actual
outcome value specified here. This permits outcomes to be displayed in a different language in
Oracle BPM Worklist. For more information about internationalization, see How to Specify
Multilingual Settings.

To specify a task outcome:

1. To the right of the Outcomes field in the General section, click the Search icon.

The Outcomes dialog box shown in Figure 29-4 displays the possible outcomes for tasks.
APPROVE and REJECT are selected by default.

Chapter 29
Specifying the Title, Description, Outcome, Priority, Category, Owner, and Application Context

29-5

Figure 29-4 Outcomes Dialog

2. Enter the information shown in Table 29-3.

Table 29-3 Outcomes Dialog

Field Description

Select one or more
outcomes

Select additional task outcomes or deselect the default outcomes.

Add icon Click to invoke a dialog box for adding custom outcomes.

In the Name field of the dialog box, enter a custom name, and click OK.
Your outcome displays in the Outcomes field.

Notes: Be aware of the following naming restrictions:

• Do not specify a custom name that matches a name listed in the
Actions tab of the Access section of the Human Task Editor (for
example, do not specify Delete). Specifying the same name can
cause problems at runtime.

• Do not specify a custom name with blank spaces (for example, On
Hold). This causes an error when the custom outcome is accessed
in Oracle BPM Worklist. If you must specify an outcome with spaces,
use a resource bundle. For more information, see Introduction to
Human Workflow Services.

• A custom task outcome must begin with a letter of the alphabet,
either upper or lower case. It should contain only letters of the
alphabet and the numbers zero (0) through nine (9).

Outcomes Requiring
Comment

Click to select an outcome to which an assignee adds comments in
Oracle BPM Worklist at runtime. The assignee must add the comments
and perform the action without saving the task at runtime.

Default Outcome Select the default outcome for this outcome.

The seeded and custom outcomes selected here display for selection in the Majority
Voted Outcome section of the parallel participant type.

3. For more information, see Specifying the Voting Outcome.

Chapter 29
Specifying the Title, Description, Outcome, Priority, Category, Owner, and Application Context

29-6

How to Specify a Task Priority
Specify the priority of the tasks. Priority can be 1 through 5, with 1 being the highest. By
default, the priority of a task is 3. This priority value is overridden by any priority value you
select in the General tab of the Create Human Task dialog box. You can filter tasks based on
priority and create views on priorities in Oracle BPM Worklist.

From the Priority list in the General section, select a priority for the task to specify a priority.

For more information about specifying a priority value in the Create Human Task dialog box,
see Specifying the Task Initiator and Task Priority.

How to Specify a Task Category
You can optionally specify a task category in the Category field of the General section. This
categorizes tasks created in a system. For example, in a help desk environment, you may
categorize customer requests as either software-related or hardware-related. The category
displays in Oracle BPM Worklist. You can filter tasks based on category and create views on
categories in Oracle BPM Worklist.

To specify a task category:

• Select a method for specifying a task category in the Category field of the General
section:

• By Name: Manually enter a name.

• By Expression: Click the icon to the right of this field to display the Expression Builder
for dynamically creating a category.

• Translation: If the composite contains a resource bundle file, then use the Lookup
button to locate the resource bundle file and to specify a category.

How to Specify a Task Owner
The task owner can view the tasks belonging to business processes they own and perform
operations on behalf of any of the assigned task participant types. Additionally, the owner can
also reassign, withdraw, or escalate tasks. The task owner can be considered the business
administrator for a task. The task owner can also be specified in the Advanced tab of the
Create Human Task dialog box described in Specifying a Task Owner. The task owner
specified in the Advanced tab overrides any task owner you enter here.

For more information about the task owner, see Task Stakeholders.

To specify a task owner:

• Select a method for specifying the task owner:

• Statically through the identity service user directory or the list of application roles

• Dynamically through an XPath expression

For example: If the task has a payload message attribute named po within which the
owner is stored, you can specify an XPath expression such as:

/task:task/task:payload/po:purchaseOrder/po:owner
ids:getManager('jstein', 'jazn.com')

Chapter 29
Specifying the Title, Description, Outcome, Priority, Category, Owner, and Application Context

29-7

The manager of jstein is the task owner.

For more information about users, groups, and application roles, see Task Assignment and
Routing.

Specifying a Task Owner Statically Through the User Directory or a List of Application
Roles

Task owners can be selected by browsing the user directory (Oracle Internet Directory, Java
AuthoriZatioN (JAZN)/XML, LDAP, and so on) or a list of application roles configured for use
with Oracle SOA Suite.

To specify a task owner statically through the user directory or a list of application
roles:

1. In the first list to the right of the Owner field in the General section, select User, Group, or
Application Role as the type of task owner. Figure 29-5 provides details.

Note:

By default, group names in human tasks are case sensitive. Therefore, if you
select Group and enter a name in upper case text (for example,
LOANAGENTGROUP), no task is displayed under the Administrative Tasks tab in
Oracle BPM Worklist. To enable group names to be case agnostic (case
insensitive), you must set the caseSensitiveGroups property to false in the
System MBeans Browser. For information, see Administering Oracle SOA Suite
and Oracle Business Process Management Suite.

Figure 29-5 Specify a Task Owner By Browsing the User Directory or Application
Roles

2. In the second list to the right of the Owner field in the General section, select Static.

3. See the step in Table 29-4 based on the type of owner you selected.

Table 29-4 Type of Owner

If You Selected... See Step...

User or Group 4

Application Role 5

4. If you selected User or Group, the Identity Lookup dialog box shown in Figure 29-6
appears.

Chapter 29
Specifying the Title, Description, Outcome, Priority, Category, Owner, and Application Context

29-8

Figure 29-6 Identity Lookup Dialog

To select a user or group, you must first create an application server connection by clicking
the Add icon. Note the following restrictions:

• Do not create an application server connection to an Oracle WebLogic Administration
Server from which to retrieve the list of identity service realms. This is because there is
no identity service running on the Administration Server. Therefore, no realm
information displays and no users display when performing a search with a search
pattern in the Identity Lookup dialog box. Instead, create an application server
connection to a managed Oracle WebLogic Server.

• You must select an application server connection configured with the complete domain
name (for example, myhost.us.example.com). If you select a connection configured
only with the hostname (for example, myhost), the Realm list may not display the
available realms. If the existing connection does not include the domain name, perform
the following steps:

– In the Resource Palette, right-click the application server connection.

– Select Properties.

– In the Configuration tab, add the appropriate domain to the hostname.

– Return to the Identity Lookup dialog box and reselect the connection.

a. Select or create an application server connection to display the realms for selection. A
realm provides access to a policy store of users and roles (groups).

b. Search for the owner by entering a search string such as jcooper, j*, *, and so on.
Clicking the Lookup icon to the right of the User Name field fetches all the users that
match the search criteria. Figure 29-7 provides details. One or more users or groups
can be highlighted and selected by clicking Select.

Chapter 29
Specifying the Title, Description, Outcome, Priority, Category, Owner, and Application Context

29-9

Figure 29-7 Identity Lookup with Realm Selected

c. View the hierarchy of a user by highlighting the user and clicking Hierarchy. Similarly,
clicking Reportees displays the reportees of a selected user or group. Figure 29-8
provides details.

Chapter 29
Specifying the Title, Description, Outcome, Priority, Category, Owner, and Application Context

29-10

Figure 29-8 User Hierarchy in Identity Lookup Dialog

d. View the details of a user or group by highlighting the user or group and clicking
Detail. Figure 29-9 provides details.

Figure 29-9 User or Group Details

e. Click OK to return to the Identity Lookup dialog box.

f. Click Select to add the user to the Selected User section.

g. Click OK to return to the Human Task Editor.

Your selection displays in the Owner field.

5. If you selected Application Role, the Select an Application Role dialog box appears.

a. In the Application Server list, select the type of application server that contains the
application role or click the Add icon to launch the Create Application Server
Connection wizard to create a connection.

Chapter 29
Specifying the Title, Description, Outcome, Priority, Category, Owner, and Application Context

29-11

b. In the Application list, select the application that contains the application roles (for
example, a custom application or soa-infra for the SOA Infrastructure application).

c. In the Available section, select appropriate application roles and click the > button. To
select all, click the >> button. Figure 29-10 provides details.

Figure 29-10 Application Role

d. Click OK.

Specifying a Task Owner Dynamically Through an XPath Expression
Task owners can be selected dynamically in the Expression Builder dialog box.

To specify a task owner dynamically:

1. In the first list to the right of the Owner field in the General section, select User, Group, or
Application Role as the type of task owner. Figure 29-11 provides details.

Figure 29-11 Specify a Task Owner Dynamically

Chapter 29
Specifying the Title, Description, Outcome, Priority, Category, Owner, and Application Context

29-12

2. In the second list to the right of the Owner field in the General section, select XPath.

3. Click the icon to launch the Expression Builder.

This displays the Expression Builder dialog box shown in Figure 29-12:

Figure 29-12 Expression Builder

4. Browse the available variable schemas and functions to create a task owner.

5. Click OK to return to the Human Task Editor.

Your selection displays in the Owner field.

For more information, see the following:

• Click Help for instructions on using the Expression Builder dialog box and XPath
Building Assistant

• XPath Extension Functions for information about workflow service dynamic
assignment functions, identity service functions, and instructions on using the XPath
Building Assistant

How To Specify an Application Context
You can specify the name of the application that contains the application roles used in the task.
This indicates the context in which the application role operates. If you do not explicitly create a
task, but end up having one, you can set up the context.

Chapter 29
Specifying the Title, Description, Outcome, Priority, Category, Owner, and Application Context

29-13

Note:

An application context is required to be set in the task definition in order to be able to
reassign the task to an application role in the Oracle Process Workspace and Oracle
BPM Worklist applications.

In the Application Context field of the General section, enter the name to specify an
application context.

Specifying the Task Payload Data Structure
Learn how to specify the structure (message elements) of the task payload (the data in the
task) defined in the XSD file.

Create parameters to represent the elements in the XSD file. This makes the payload data
available to the workflow task. For example:

• You create a parameter for an order ID element for placing an order from a store front
application.

• You create parameters for the location, type, problem description, severity, status, and
resolution elements for creating a help desk request.

Figure 29-13 shows the Data section of the Human Task Editor.Task payload data consists of
one or more elements or types. Based on your selections, an XML schema definition is created
for the task payload.

Figure 29-13 Human Task Editor — Parameters Section

How to Specify the Task Payload Data Structure
To specify the task payload data structure:

1. Click the Data tab.

2. Click the Add icon and select a payload type:

• String

• Integer

• Boolean

• Other

The Add Task Parameter dialog box is displayed, as shown in Figure 29-14.

Chapter 29
Specifying the Task Payload Data Structure

29-14

Figure 29-14 Add Task Parameter Dialog

3. Enter the details described in Table 29-5:

Table 29-5 Add Task Parameter Dialog Fields and Values

Field Description

Parameter Type Select Type or Element and click the Search icon to display the
Type Chooser dialog box for selecting the task parameter.

Parameter Name Accept the default name or enter a custom name. This field only
displays if Type is the selected parameter type.

Editable via worklist Select this check box to enable users to edit this part of the task
payload in Oracle BPM Worklist. For example, for a loan approval
task, the APR attribute may need to be updated by the user
reviewing the task, but the SSN field may not be editable.

You can also specify access rules that determine the parts of a task
that participants can view and update. For more information, see
Specifying Access Policies and Task Actions on Task Content.

Use Collections If a task uses collections, then define this parameter to use
collections. Click the Add button to provide the collection name and
the Xpath expression for the collection type. Use Expression Builder
to look up the collection type from the schema.

Chapter 29
Specifying the Task Payload Data Structure

29-15

Note:

You can only define payload mapped attributes (previously known as flex field
mappings) in Oracle BPM Worklist for payload parameters that are simple XML
types (string, integer, and so on) or complex types (for example, a purchase
order, and so on). If you must search tasks using keywords or define views or
delegation rules based on task content, then you must use payload parameters
based on simple XML types. These simple types can be mapped to flex columns
in Oracle BPM Worklist.

4. Select the type, as shown in Figure 29-15.

Figure 29-15 Parameter Type

5. Click OK to return to the Human Task Editor.

Your selection displays in the Data section.

6. To edit your selection, select it and click the Edit icon in the upper right part of the Data
section.

Assigning Task Participants
Learn how to select a participant type that meets your business requirements. While
configuring the participant type, you build lists of users, groups, and application roles to act
upon tasks.

Figure 29-16 shows the Assignment section of the Human Task Editor.

Chapter 29
Assigning Task Participants

29-16

Figure 29-16 Human Task Editor — Assignment Section

You can easily mix and match participant types to create simple or complex workflow routing
policies. You can also extend the functionality of a previously configured human task to model
more complex workflows.

A participant type is grouped in a block under a stage (for example, named Stage1 in
Figure 29-16). A stage is a way of organizing the approval process for blocks of participant
types. You can have one or more stages in sequence or in parallel. Within each stage, you can
have one or more participant type blocks in sequence or in parallel. The up and down keys
enable you to rearrange the order of your participant type blocks.

For example:

• You can create all participant type blocks in a single stage (for example, a purchase order
request in which the entire contents of the order are approved or rejected as a whole).

• You can create more complex approval tasks that may include one or more stages. For
example, you can place one group of participant type blocks in one stage and another
block in a second stage. The list of approvers in the first stage handles line entry approvals
and the list of approvers in the second stage handles header entry approvals.

Each of the participant types has an associated editor that you use for configuration tasks. The
sequence in which the assignees are added indicates the execution sequence.

To specify a different stage name or have a business requirement that requires you to create
additional stages, perform the following steps. Creating additional stages is an advanced
requirement that may not be necessary for your environment.

For more information about participant types, see Task Assignment and Routing.

How to Specify a Stage Name and Add Parallel and Sequential Blocks
The stage is named Stage1 by default, however you can change the name.

Chapter 29
Assigning Task Participants

29-17

To specify a stage name and add parallel and sequential blocks:

1. Double-click the name. The Edit dialog box displays.

2. In the Edit dialog box, enter the following details and click OK.

• Stage: The name of the stage.

• Non Repeating: Do not stage in parallel for each item in the collection.

• Repeat Stage in parallel for each item in a collection: Choose one collection from
the drop-down list to specify which collection type to use for the repeated stages.

3. Drag and drop the type of participant from the Participant palette on the right onto the
stage.

4. Drag Stage from the Participant Palette on the right and drop it on the green dot of the
existing stage.

When you bring the new stage closer to the current stage, four green dots display around
the current stage. Choose the green dot that is to right to the current stage. A second
stage is added in parallel to the first stage, as shown in Figure 29-17.

Figure 29-17 Parallel Stage

5. Drag Stage from the Participant Palette on the right and drop it on the green dot of the
existing stage

When you bring the new stage below the current stage, four green dots display around the
current stage. Choose the green dot that is below the current stage.

A sequential stage is added below the selected block.

Figure 29-18 Sequential Stage

Chapter 29
Assigning Task Participants

29-18

You create participant types within these blocks.

How to Assign Task Participants
To assign task participants:

1. In the Assignment section, perform one of the following tasks:

• Drag and drop Participants from the Components window onto Stage. The first time
you create a task participant, the box is labeled <Edit Participant>.

• Double-click the participant box.

The Edit Participant Type dialog box appears. This dialog box enables you to select a
specific participant type.

2. From the Type list, select a participant type shown in Figure 29-19.

Figure 29-19 Type List

3. See the section shown in Table 29-6 based on your selection.

Table 29-6 Participant Types

Participant
Type

For a Description of this Participant
Type, See...

For Instructions on Configuring this Participant Type, See...

• Single
• Parallel
• Serial
• FYI

Task Assignment and Routing How to Configure the Single Participant Type

How to Configure the Parallel Participant Type

How to Configure the Serial Participant Type

How to Configure the FYI Participant Type

How to Configure the Single Participant Type
Figure 29-20 shows the Edit Participant Type dialog box for the single participant type.
Figure 29-21 shows the expanded Advanced section.

Chapter 29
Assigning Task Participants

29-19

Figure 29-20 Edit Participant Type — Single Type

Chapter 29
Assigning Task Participants

29-20

Figure 29-21 Edit Participant Type — Advanced Tab

To be dynamically assigned to a task, a single participant can be selected from a group, an
application role, or a participant list.

To configure the single participant type:

• In the Label field, enter a recognizable label for this participant. This label must be unique
among all the participants in the task definition (for example, Approval Manager, Primary
Reviewers, and so on).

Instructions for configuring the following subsections of the Edit Participant Type dialog box
for the single participant type are listed in Table 29-7:

Table 29-7 Edit Participant Type — Single Type

For This Subsection... See...

Participant List Creating a Single Task Participant List

Limit allocated duration to (under
the Advanced section)

Specifying a Time Limit for Acting on a Task

Allow this participant to invite other
participants (under the Advanced
section)

Inviting Additional Participants to a Task

Specify skip rule (under the
Advanced section)

Bypassing a Task Participant

Chapter 29
Assigning Task Participants

29-21

Table 29-7 (Cont.) Edit Participant Type — Single Type

For This Subsection... See...

Assignment Control (under the
Advanced section)

If this participant is associated with a particular assignment
context, then add that name here. Use the Add button to
add new entry. Use the drop-down list to select the
assignment context Name and provide a value for this
assignment context.

Let participants manually claim task
(under the General section)

Creating Participant Lists Consisting of Value-Based
Names and Expressions

Auto assign task to a single user/
group/application role (under the
General section)

Creating Participant Lists Consisting of Value-Based
Names and Expressions

Creating a Single Task Participant List
Users assigned to a participant list can act upon tasks. In a single-task participant list, only one
user is required to act on the task. You can specify either a single user or a list of users,
groups, or application roles for this pattern. If a list is specified, then all users on the list are
assigned the task. You can specify either that one of them must manually claim and act upon
the task, or that one user from the list is automatically selected by an assignment pattern.
When one user acts on the task, the task is withdrawn from the task list of other assignees.

You can create several types of lists for the single user participant, and for the parallel, serial,
and FYI user participants, for example:

• Value-based name and expression lists

These lists enable you to statically or dynamically select users, groups, or application roles
as task assignees.

• Value-based management chain lists

Management chains are typically used for serial approvals through multiple users in a
management chain hierarchy. Therefore, this list is most likely useful with the serial
participant type. This is typically the case if you want all users in the hierarchy to act upon
the task. Management chains can also be used with the single participant type. In this
case, however, all users in the hierarchy get the task assigned at the same time. As soon
as one user acts on the task, it is withdrawn from the other users.

For example, a purchase order is assigned to a manager. If the manager approves the
order, it is assigned to their manager. If that manager approves it, it is assigned to their
manager, and so on until three managers approve the order. If any managers reject the
request or the request expires, the order is rejected if you specify an abrupt termination
condition. Otherwise, the task flow continues to be routed.

• Rule-based names and expression lists and management chain lists

Business rules enable you to create the list of task participants with complex expressions.
For example, you create a business rule in which a purchase order request below $5000 is
sent to a manager for approval. However, if the purchase order request exceeds $5000,
the request is sent to the manager of the manager for approval. Two key features of
business rules are facts and action types, which are described in How to Specify Advanced
Task Routing Using Business Rules.

When you select a participant type, a dialog box enables you to choose an option for building
your list of task participant assignees (users, groups, or application roles), as shown in
Figure 29-22. The three selections described above are available: Names and expressions,
Management Chain, and Rule-based.

Chapter 29
Assigning Task Participants

29-22

Figure 29-22 Build a List of Participants

After selecting an option, you dynamically assign task participant assignees (users, groups, or
application roles) and a data type, as shown in Figure 29-23.

Figure 29-23 Assignment of Task Assignees

This section describes how to create these lists of participants.

Chapter 29
Assigning Task Participants

29-23

Creating Participant Lists Consisting of Value-Based Names and Expressions

Select a method for statically or dynamically assigning a user, group, or application role as a
task participant. If the participant list contains a user, the selecting a group or an application
role causes the dynamic assignment to fail.

For conceptual information about:

• Users, groups, or application roles, see Task Assignment and Routing.

• Statically and dynamically assigning task participants, see Static, Dynamic, and Rule-
Based Task Assignment.

To create participant lists consisting of value-based names and expressions:

1. From the Build a list of participants using list, select Names and expressions.

2. Do either of the following:

• Select Let participants manually claim the task. If you select this option, then the
task is assigned to all participants in the list. An individual user from the task assignees
can then manually claim the task to work on it.

• Select Auto-assign to a single list, select User, Group, or Application Role, then
select an assignment pattern.

To find out more about each assignment pattern, and to select and configure it, click
Assignment Pattern. The Assignment Pattern dialog box appears. Figure 29-24
shows an example of an Assignment Pattern dialog box.

Figure 29-24 Selecting and Configuring an Assignment Pattern

When you specify an application server connection in the Application Server field, the
assignment patterns are loaded into the Assignment Pattern list. When you select one

Chapter 29
Assigning Task Participants

29-24

of the patterns from the Assignment Pattern list, a description of your selection
appears in the text box.

If you want the assignment pattern to consider all types of tasks, then select Use
tasks of all types to evaluate pattern criteria. Otherwise, the pattern considers only
this task type when determining the selected user. For example, to assign a vacation
request task to the least busy user, and you select Use tasks of all types to evaluate
pattern criteria, then all assigned tasks are taken into consideration when determining
the least busy user. If you do not select Use tasks of all types to evaluate pattern
criteria, then only assigned vacation request tasks are considered when determining
the least busy user.

A particular pattern may enable you to specify input parameters that control how the
pattern is evaluated. For example, as shown in Figure 29-24, the Most Productive
pattern enables you to specify the Time Period (in days) over which the productivity is
calculated. Input values can be static, or can be dynamically set by using an XPath
expression. Not all patterns accept parameters.

3. From the Specify attributes using list, select Value-based.

The dialog box refreshes to display the fields shown in Figure 29-25.

Figure 29-25 Value-Based Names and Expressions

4. Click the Add icon and select a user, group, or application role as a task participant.

The Identification Type column of the Participant Names table displays your selection of
user, group, or application role.

5. To change your selection in the Identification Type column, click it to invoke a drop-down
list.

6. In the Data Type column, click your selection to invoke a drop-down list to assign a value:

• By Name: If your identification type is a user or group, click the Browse icon (the dots)
on the right to display a dialog box for selecting a user or group configured through the
identity service. The identity service enables the lookup of user properties, roles, and
group memberships. User information is obtained from an LDAP server such as Oracle
Internet Directory. You can use wild cards (*) to search for IDs.

If your selection is an application role, click the Browse icon to display the Select an
Application Role dialog box for selecting an application role. To search for application
roles, you must first create a connection to the application server. When searching,
you must specify the application name to find the name of the role. The task definition
can refer to only one application name. You cannot use application roles from different
applications as assignees or task owners.

Chapter 29
Assigning Task Participants

29-25

• By Expression: For a user, group, or application role, click the Browse icon to
dynamically select a task assignee in the Expression Builder dialog box. Use the
bpws:getVariableData(...) expression or the ids:getManager() XPath function.

The Value column displays the value you specified.

7. To manually enter a value, click the field in the Value column and specify a value.

Creating Participant Lists Consisting of Value-Based Management Chains

Select a method for statically or dynamically assigning management chain parameters as task
participants.

For conceptual information about:

• Users, groups, or application roles, see Task Assignment and Routing.

• Statically and dynamically assigning task participants, see Static, Dynamic, and Rule-
Based Task Assignment.

• Management chains, see Creating a Single Task Participant List.

To create participant lists based on value-based management chains:

1. From the Build a list of participants using list, select Management Chain.

2. Do either of the following:

• Select Let participants manually claim the task. If you select this option, then the
task is assigned to all participants in the list. An individual user from the task assignees
can then manually claim the task to work on it.

• Select Auto-assign to a single list, select User, then select an assignment pattern.

To find out more about each assignment pattern, and to select and configure it, click
Assignment Pattern. The Assignment Pattern dialog box appears. Figure 29-24
shows an example of an Assignment Pattern dialog box.

When you specify an application server connection in the Application Server field, the
assignment patterns are loaded into the Assignment Pattern list. When you select one
of the patterns from the Assignment Pattern list, a description of your selection
appears in the text box.

If you want the assignment pattern to consider all types of tasks, then select Use
tasks of all types to evaluate pattern criteria. Otherwise, the pattern considers only
this task type when determining the selected user. For example, to assign a vacation
request task to the least busy user, and you select Use tasks of all types to evaluate
pattern criteria, then all assigned tasks are taken into consideration when determining
the least busy user. If you do not select Use tasks of all types to evaluate pattern
criteria, then only assigned vacation request tasks are considered when determining
the least busy user.

A particular pattern may enable you to specify input parameters that control how the
pattern is evaluated. For example, as shown in Figure 29-24, the Most Productive
pattern enables you to specify the Time Period (in days) over which the productivity is
calculated. Input values can be static, or can be dynamically set by using an XPath
expression. Not all patterns accept parameters.

3. From the Specify attributes using list, select Value-based.

The dialog box refreshes to display the fields shown in Figure 29-26.

Chapter 29
Assigning Task Participants

29-26

Figure 29-26 Value-Based Management Chains

4. See Step 4 through Step 7 of Creating a Single Task Participant List for instructions on
assigning a user, group, or application role to a list in the Starting Participant table.

5. In the Top Participant list, select a method for assigning the number of task participant
levels:

• By Title: Select the title of the last (highest) approver in the management chain.

• XPath: Select to dynamically enter a top participant through the Expression Builder
dialog box.

6. In the Number of Levels list, select a method for assigning a top participant:

• By Number: Enter a value for the number of levels in the management chain to
include in this task. For example, if you enter 2 and the task is initially assigned to user
jcooper, both the user jstein (manager of jcooper) and the user wfaulk (manager of
jstein) are included in the list (apart from jcooper, the initial assignee).

• XPath: Select to dynamically enter a value through the Expression Builder dialog box.

Creating Participant Lists Consisting of Rulesets

A ruleset provides a unit of execution for rules and for decision tables. In addition, rulesets
provide a unit of sharing for rules; rules belong to a ruleset. Multiple rulesets can be executed
in order. This is called rule flow. The ruleset stack determines the order. The order can be
manipulated by rule actions that push and pop rulesets on the stack. In rulesets, the priority of
rules applies to specify the order of firing of rules in the ruleset. Rulesets also provide an
effective date specification that identifies that the ruleset is always active, or that the ruleset is
restricted based on a time and date range, or a starting or ending time and date.

Chapter 29
Assigning Task Participants

29-27

The method by which you create a ruleset is based on how you access it. This is described in
the following section.

Note:

You cannot update facts after the rule dictionary is created.

To specify participant lists based on rulesets:

Business rules can define the participant list. There are two options for using business rules:

• Rules define parameters of a specific list builder (such as Names and Expressions or
Management Chain). In this case, the task routing pattern is modeled to use a specific list
builder. In the list builder, the parameters are listed as coming from rules. Rules return the
list builder of the same type as the one modeled in Oracle JDeveloper.

1. From the Build a list of participants using list, select Names and expressions or
Management Chain.

2. From the Specify attributes using list, select Rule-based.

3. In the List Ruleset field, enter a ruleset name.

Figure 29-27 provides details.

Figure 29-27 Rulesets

Chapter 29
Assigning Task Participants

29-28

4. Do either of the following:

– Select Let participants manually claim the task. If you select this option, then
the task is assigned to all participants in the list. An individual user from the task
assignees can then manually claim the task to work on it.

– Select Auto-assign to a single list, select User, Group, or Application Role,
then select an assignment pattern.

To find out more about each assignment pattern, and to select and configure it,
click Assignment Pattern. The Assignment Pattern dialog box appears.
Figure 29-24 shows an example of an Assignment Pattern dialog box.

When you specify an application server connection in the Application Server field,
the assignment patterns are loaded into the Assignment Pattern list. When you
select one of the patterns from the Assignment Pattern list, a description of your
selection appears in the text box.

If you want the assignment pattern to consider all types of tasks, then select Use
tasks of all types to evaluate pattern criteria. Otherwise, the pattern considers
only this task type when determining the selected user. For example, to assign a
vacation request task to the least busy user, and you select Use tasks of all types
to evaluate pattern criteria, then all assigned tasks are taken into consideration
when determining the least busy user. If you do not select Use tasks of all types
to evaluate pattern criteria, then only assigned vacation request tasks are
considered when determining the least busy user.

A particular pattern may enable you to specify input parameters that control how
the pattern is evaluated. For example, as shown in Figure 29-24, the Most
Productive pattern enables you to specify the Time Period (in days) over which the
productivity is calculated. Input values can be static, or can be dynamically set by
using an XPath expression. Not all patterns accept parameters.

5. Click OK.

• Rules define the list builder and the list builder parameters. In this case, the list itself is built
using rules. The rules define the list builder and the parameters.

1. From the Build a list of participants using list, select Rule-based.

2. In the List Ruleset field, enter a ruleset name.

Figure 29-28 provides details.

Chapter 29
Assigning Task Participants

29-29

Figure 29-28 Rulesets

3. Do either of the following:

– Select Let participants manually claim the task. If you select this option, then
the task is assigned to all participants in the list. An individual user from the task
assignees can then manually claim the task to work on it.

– Select Auto-assign to a single list, select User, Group, or Application Role,
then select an assignment pattern.

To find out more about each assignment pattern, and to select and configure it,
click Assignment Pattern. The Assignment Pattern dialog box appears.
Figure 29-24 shows an example of an Assignment Pattern dialog box.

When you specify an application server connection in the Application Server field,
the assignment patterns are loaded into the Assignment Pattern list. When you
select one of the patterns from the Assignment Pattern list, a description of your
selection appears in the text box.

If you want the assignment pattern to consider all types of tasks, then select Use
tasks of all types to evaluate pattern criteria. Otherwise, the pattern considers
only this task type when determining the selected user. For example, to assign a
vacation request task to the least busy user, and you select Use tasks of all types
to evaluate pattern criteria, then all assigned tasks are taken into consideration
when determining the least busy user. If you do not select Use tasks of all types
to evaluate pattern criteria, then only assigned vacation request tasks are
considered when determining the least busy user.

4. Click OK.

Chapter 29
Assigning Task Participants

29-30

Both options create a rule dictionary, if one is not already created, and preseed several rule
functions and facts for easy specifications of the participant list. In the rule dictionary, the
following rule functions are seeded to create participant lists:

• CreateResourceList
• CreateManagementChainList
The Task fact is asserted by the task service for basing rule conditions.

Viewing the Rule Dictionary

After the rule dictionary is created, the Oracle Business Rules Designer is displayed.

1. Model your rule conditions. In the action part, call one of the above functions to complete
building your lists. Figure 29-29 provides details.

Figure 29-29 Business Rules

The parameters for the rule functions are similar to the ones in Oracle JDeveloper
modeling. In addition to the configurations in Oracle JDeveloper, some additional options
are available in the Oracle Business Rules Designer for the following attributes:

• responseType: If the response type is REQUIRED, the assignee must act on the task.
Otherwise, the assignment is converted to an FYI assignment.

• ruleName: The rule name can create reasons for assignments.

• lists: This object is a holder for the lists that are built. Clicking this option shows a pre-
asserted fact Lists object to use as the parameter.

An example of rules specifying management chain-based participants is shown in
Figure 29-30.

Figure 29-30 Business Rules

Chapter 29
Assigning Task Participants

29-31

If multiple rules are fired, the list builder created by the rule with the highest priority is
selected.

Specifying a Time Limit for Acting on a Task
You can specify the amount of time a user, group, or application role receives to act on a task.
If the user, group, or role does not act in the time specified, the global escalation and renewal
policies that you set in the Deadlines section (known as the routing slip level) of the Human
Task Editor are applied. For example, if the global policy is set to escalate the task and this
participant does not act in the duration provided, the task is escalated to the manager or
another user, as appropriate.

To specify a time limit for acting on a task:

1. Expand the Advanced section of the Edit Participant Type dialog box for the single type,
as shown in Figure 29-31.

Figure 29-31 Advanced Section of Edit Participant Type — Single Type

2. Select Limit allocated duration to.

3. Specify the amount of time.

For more information about setting the global escalation and renewal policies in the
Deadlines section of the Human Task Editor, see Escalating, Renewing, or Ending the
Task.

Inviting Additional Participants to a Task
You can allow a task assignee to invite other participants into the workflow before routing it to
the next assignee in this workflow. For example, assume the approval workflow goes from
James Cooper to John Steinbeck. If this option is checked, James Cooper can decide to first
route it to Irving Stone before it goes to John Steinbeck.

This is also known as ad hoc routing. If this option is selected, Adhoc Route is added to the
Actions list in Oracle BPM Worklist at runtime.

Note:

Do not add adhoc assignees either above or below an FYI participant.

To invite additional participants to a task:

1. Expand the Advanced section of the Edit Participant Type dialog box for the single type,
as shown in Figure 29-31.

Chapter 29
Assigning Task Participants

29-32

2. Select Allow this participant to invite other participants.

Bypassing a Task Participant
You can bypass a task participant (user, group, or application role) if a specific condition is
satisfied. For example, if a user submits a business trip expense report that is under a specific
amount, no approval is required by their manager.

To bypass a task:

1. Expand the Advanced section of the Edit Participant Type dialog box for the single type,
as shown in Figure 29-31.

2. Select Specify skip rule.

This action displays an icon for accessing the Expression Builder dialog box for building a
condition.

The expression to bypass a task participant must evaluate to a boolean value. For
example, /task:task/task:payload/order:orderAmount < 1000 is a valid XPath
expression for skipping a participant.

For more information about creating dynamic rule conditions, see How to Specify
Advanced Task Routing Using Business Rules.

How to Configure the Parallel Participant Type
The parallel participant type is used when multiple users, working in parallel, must act
simultaneously, such as in a hiring situation when multiple users vote to hire or reject an
applicant. You specify the voting percentage that is needed for the outcome to take effect, such
as a majority vote or a unanimous vote. In case of parallel routing with parallel participants, the
voting and the percentage rule takes precedence to decide the final outcome of the parent
task.

For example, a business process collects the feedback from all interviewers in the hiring
process, consolidates it, and assigns a hire or reject request to each of the interviewers. At the
end, the candidate is hired if the majority of interviewers vote for hiring instead of rejecting.

Figure 29-32 and Figure 29-33 display the upper and lower sections of the Parallel dialog box.

Chapter 29
Assigning Task Participants

29-33

Figure 29-32 Edit Participant Type — Parallel Type (Upper Section of Dialog)

Figure 29-33 Edit Participant Type — Parallel Type (Lower Section of Dialog)

To assign participants to the parallel participant type:

• In the Label field, enter a recognizable label for this participant. This label must be unique
among all the participants in the task definition (for example, Approval Manager, Primary
Reviewers, and so on).

Instructions for configuring the following subsections of the Edit Participant Type dialog box
for the parallel participant type are listed in Table 29-8:

Table 29-8 Edit Participant Type — Parallel Type

For This Subsection... See...

Vote Outcome Specifying the Voting Outcome

Participant List Creating a Parallel Task Participant List

Chapter 29
Assigning Task Participants

29-34

Table 29-8 (Cont.) Edit Participant Type — Parallel Type

For This Subsection... See...

Limit allocated duration to (under
the Advanced section)

Specifying a Time Limit for Acting on a Task

Allow this participant to invite other
participants (under the Advanced
section)

Inviting Additional Participants to a Task

Specify skip rule (under the
Advanced section)

Bypassing a Task Participant

Add Assignment Context (under the
Advanced section)

If this participant is associated with a particular assignment
context, then add that name here. Use the Add button to
add a new entry. Use the drop-down list to select an
assignment context Name and to provide a value for this
assignment context.

Specifying the Voting Outcome
You can specify a voted-upon outcome that overrides the default outcome selected in the
Default Outcome list. This outcome takes effect if the required percentage is reached.
Outcomes are evaluated in the order listed in the table.

To specify group voting details:

1. Go to the Vote Outcome section of the Edit Participant Type dialog box for the parallel
type.

2. From the list in the Voted Outcomes column, select an outcome for the task (for example,
Any, ACCEPT, REJECT, or any other outcome specified in How to Specify a Task
Outcome).

The Any outcome enables you to determine the outcome dynamically at runtime. For
example, if you select Any and set the outcome percentage to 60, then at runtime,
whichever outcome reaches 60% becomes the final voted outcome. If 60% of assignees
vote to reject the outcome, then it is rejected.

3. From the list in the Outcome Type column, select a method for determining the outcome
of the final task.

• By Expression: Dynamically specify the details with an XPath expression.

• By Percentage: Specify a percentage value that determines when the outcome of this
task takes effect.

4. From the list in the Value column, specify a value based on your selection in Step 3.

• If you selected By Expression, click the Browse icon to the right of the field to display
the Expression Builder dialog box for creating an expression.

• If you selected By Percentage, enter a percentage value required for the outcome of
this task to take effect (for example, a majority vote (51) or a unanimous vote (100)).
For example, assume there are two possible outcomes (ACCEPT and REJECT) and
five subtasks. If two subtasks are accepted and three are rejected, and the required
acceptance percentage is 50%, the outcome of the task is rejected. Figure 29-34
provides details.

This functionality is nondeterministic. For example, selecting a percentage of 30%
when there are two subtasks does not make sense.

Chapter 29
Assigning Task Participants

29-35

Figure 29-34 Vote Outcomes Section

5. Click the Add icon to specify additional outcomes.

6. In the Default Outcome list, select the default outcome or enter an XPath expression for
this task to take effect if the consensus percentage value is not satisfied. This happens if
there is a tie or if all participants do not respond before the task expires. Seeded and
custom outcomes that you entered in the Outcomes dialog box in How to Specify a Task
Outcome display in this list.

Creating a Parallel Task Participant List
Users assigned to the list of participants can act upon tasks. You can create several types of
lists:

• Value-based name and expression lists

• Value-based management chain lists

• Rule-based names and expression lists

• Rule-based management chain lists

• Rule-based links

For information about creating these lists of participants, see section Creating a Single Task
Participant List.

Specifying a Time Limit for Acting on a Task
You can specify the amount of time a user, group, or application role receives to act on a task.
If the user, group, or role does not act in the time specified, the global escalation and renewal
policies that you set in the Deadlines section (known as the routing slip level) of the Human
Task Editor are applied. For example, if the global policy is set to escalate the task and this
participant does not act in the duration provided, the task is escalated to the manager or
another user, as appropriate.

To specify a time limit for acting on a task:

1. In the Advanced section of the Edit Participant Type dialog box for the parallel type, click
the Advanced tab to expand the section shown in Figure 29-33.

2. Select Limit allocated duration to.

3. Specify the amount of time.

For more information about setting the global escalation and renewal policies in the Deadlines
section of the Human Task Editor, see Escalating, Renewing, or Ending the Task.

Inviting Additional Participants to a Task
You can allow a task assignee to invite other participants into the workflow before routing it to
the next assignee in this workflow. For example, assume the approval workflow goes from

Chapter 29
Assigning Task Participants

29-36

James Cooper to John Steinbeck. If this option is checked, James Cooper can decide to first
route it to Irving Stone before it goes to John Steinbeck.

To invite additional participants to a task:

1. In the Advanced section of the Edit Participant Type dialog box for the parallel type, click
the Advanced icon to expand the section (if not expanded).

2. Select Allow this participant to invite other participants.

Bypassing a Task Participant
You can bypass a task participant (user, group, or application role) if a specific condition is
satisfied. For example, if a user submits a business trip expense report that is under a specific
amount, no approval is required by their manager.

To bypass a task participant:

• In the Edit Participant Type dialog box for the parallel type, select the Specify skip rule
check box.

This action displays an icon for accessing the Expression Builder dialog box for building a
condition. The expression must evaluate to a boolean value.

For information about a valid XPath expression for skipping a participant, see Bypassing a
Task Participant.

How to Configure the Serial Participant Type
This participant type enables you to create a list of sequential participants for a workflow. For
example, if you want a document to be reviewed by John, Mary, and Scott in sequence, use
this participant type. For the serial participant type, they can be any list of users or groups.

Figure 29-35 displays the Serial dialog box. Figure 29-36 shows the expanded Advanced
section.

Chapter 29
Assigning Task Participants

29-37

Figure 29-35 Edit Participant Type — Serial Type

Chapter 29
Assigning Task Participants

29-38

Figure 29-36 Edit Participant Type — Serial Type (Advanced Tab)

To configure the serial participant type:

• In the Label field, enter a recognizable label for this participant. This label must be unique
among all the participants in the task definition (for example, Approval Manager, Primary
Reviewers, and so on).

Instructions for configuring the following subsections of the Edit Participant Type dialog box
for the serial participant type are listed in Table 29-9.

Table 29-9 Edit Participant Type — Serial Type

For This Subsection... See...

Participant List Creating a Serial Task Participant List

Limit allocated duration to (under
the Advanced section)

Specifying a Time Limit for Acting on a Task

Note that if you specify the task expiry time at the level of a
serial participant, then, when that time expires, the task
does not move to the next participant in the series. Rather,
the entire task expires.

Allow this participant to invite other
participants (under the Advanced
section)

Inviting Additional Participants to a Task

Chapter 29
Assigning Task Participants

29-39

Table 29-9 (Cont.) Edit Participant Type — Serial Type

For This Subsection... See...

Specify skip rule (under the
Advanced section)

Bypassing a Task Participant

Assignment Context (under the
Advanced section)

If this participant is associated with a particular assignment
context, then add that name here. Use the Add button to
add a new entry. Use the drop-down list to select
assignment context Name and to provide a value for this
assignment context.

Creating a Serial Task Participant List
Users assigned to the list of participants can act upon tasks. You can create several types of
lists:

• Value-based name and expression lists

• Value-based management chain lists

• Rule-based names and expression lists

• Rule-based management chain lists

• Rule-based lists

See section Creating a Single Task Participant List for instructions on creating these lists of
participants.

Specifying a Time Limit for Acting on a Task
You can specify the amount of time a user, group, or application role receives to act on a task.
If the user, group, or role does not act in the time specified, the global escalation and renewal
policies that you set in the Deadlines section (known as the routing slip level) of the Human
Task Editor are applied. For example, if the global policy is set to escalate the task and this
participant does not act in the duration provided, the task is escalated to the manager or
another user, as appropriate.

To specify a time limit for acting on a task:

1. In the Advanced tab of the Edit Participant Type dialog box for the serial type, click the
Advanced icon to expand the section shown in Figure 29-35.

2. Click Limit allocated duration to.

3. Specify the amount of time.

Note:

If you specify the task expiry time at the level of a serial participant, then, when
that specified time limit is reached, the task does not move to the next participant
in the series. Rather, the entire task expires.

For more information about setting the global escalation and renewal policies in the
Deadlines section of the Human Task Editor, see Escalating, Renewing, or Ending the
Task.

Chapter 29
Assigning Task Participants

29-40

Inviting Additional Participants to a Task
You can allow a task assignee to invite other participants into the workflow before routing it to
the next assignee in this workflow. For example, assume the approval workflow goes from
James Cooper to John Steinbeck. If this option is checked, James Cooper can decide to first
route it to Irving Stone before it goes to John Steinbeck.

To invite additional participants to a task:

1. In the Advanced section of the Edit Participant Type dialog box for the serial type, click the
Advanced icon to expand the section (if not already expanded).

2. Select Allow this participant to invite other participants.

Note:

For the serial participant type, additional participants can be invited as follows:

• Globally specifying that the ad hoc participants can be invited at anytime. In
this case, even in a sequential workflow, approvers can invite other
participants at any level in the sequential workflow.

• Specifying that an ad hoc invitation of other participants can be done only in
specific points in the workflow. In this case, other ad hoc participants are
invited only when a series is complete.

Bypassing a Task Participant
You can bypass a task participant (user, group, or application role) if a specific condition is
satisfied. For example, if a user submits a business trip expense report that is under a specific
amount, no approval is required by their manager.

In the Advanced section of the Edit Participant Type dialog box for the serial type, select the
Specify skip rule check box to bypass a task participant. This action displays an icon for
accessing the Expression Builder dialog box for building a condition. The expression must
evaluate to a boolean value.

For more information about a valid XPath expression for skipping a participant, see Bypassing
a Task Participant.

How to Configure the FYI Participant Type
This participant type is used when a task is sent to a user, but the business process does not
wait for a user response; it just continues. FYIs cannot directly impact the outcome of a task,
but in some cases can provide comments or add attachments.

For example, a magazine subscription is due for renewal. If the user does not cancel the
current subscription before the expiration date, the subscription is renewed. This user is
reminded weekly until the request expires or the user acts on it.

Figure 29-37 displays the Edit Participant Type dialog box for the FYI type. This dialog box also
includes a Participants Exclusion List at the bottom that is not displayed in Figure 29-37.

Chapter 29
Assigning Task Participants

29-41

Figure 29-37 Edit Participant Type — FYI Type

To configure the FYI participant type, in the Label field, enter a recognizable label for this
participant. This label must be unique among all the participants in the task definition (for
example, Approval Manager, Primary Reviewers, and so on).

Creating an FYI Task Participant List
Users assigned to the list of participants can act upon tasks. You can create several types of
lists:

• Value-based name and expression lists

• Value-based management chain lists

• Rule-based names and expression lists

• Rule-based management chain lists

• Rule-based lists

See section Creating a Single Task Participant List for instructions on creating these lists of
participants.

Selecting a Routing Policy
You can select a routing policy in the Human Task Editor.

After you configure a participant type and are returned to the Human Task Editor, use the links
on the top right corner as shown in Figure 29-38.

Chapter 29
Selecting a Routing Policy

29-42

Figure 29-38 Human Task Editor — Assignment Section

Table 29-10 describes the routing policy methods provided.

Table 29-10 Routing Policy Method

Routing Policy Selection Use This Policy In Environments Where... Section

• Allow all participants
to invite other
participants

A participant can select users or groups as the
next assignee (ad hoc) when approving the
task.

Allow All Participants to Invite Other
Participants or Edit New Participants

• Complete task when a
participant chooses:
<outcome>

A participant in a task can accept or reject it,
thus ending the workflow without the task being
sent to any other participant. For example, a
manager rejects a purchase order, meaning that
purchase order is not sent to their manager for
review.

Stopping Routing of a Task to Further
Participants

• Enable early
completion in parallel
subtasks

Note: This option is for environments in which
you have multiple stages and participants
working in parallel.

Participants perform subtasks in parallel, and
one group's rejection or approval of a subtask
does not cause the other group's subtask to
also be rejected or approved.

Enabling Early Completion in Parallel
Subtasks

• Complete parent tasks
of early completing
subtasks

Note: This option is for environments in which
you have multiple stages and participants
working in parallel.

Participants perform subtasks in parallel, and
one group's rejection or approval of a subtask
causes the other group's subtask to also be
rejected or approved.

Completing Parent Subtasks of Early
Completing Subtasks

Chapter 29
Selecting a Routing Policy

29-43

Table 29-10 (Cont.) Routing Policy Method

Routing Policy Selection Use This Policy In Environments Where... Section

Use Advanced Rules The participants to whom the task is routed are
determined by the business rule logic that you
model. For example, a loan application task is
designed to go through a loan agent, their
manager, and then the senior manager. If the
loan agent approves the loan, but their manager
rejects it, the task is returned to the loan agent.

How to Specify Advanced Task Routing
Using Business Rules

Use External Routing The participants in a task are dynamically
determined. For example, a company's rules
may require the task participants to be
determined and then retrieved from a back-end
database during runtime.

How to Use External Routing

Assignment tab A participant is assigned a failed task for the
purposes of recovery.

How to Configure the Error Assignee and
Reviewers

How to Customize Tasks Routing
Tasks are reviewed by all the selected participants in the order they appear. This is the default
routing. However, you can add some Adhoc or Dynamic routing rules.

Dynamic and Adhoc Routing Rules

Dynamic and Adhoc Routing help you with the following:

• Allowing all participants to invite other participants

• Completing a task when a participant chooses

• Enabling early completion in parallel subtasks

• Completing parent subtasks of early completing subtasks

Exclude Task Creator from Approval List
Before you create the task and create routing rules for the tasks, you can exclude the task
creator from the list of approvers by adding the creator to the excluded participant list. At the
same time, you can assign to the task to the task creator’s manager.

To exclude the task creator from the participant list and add task creator’s manager to the
approval list:

1. Click the Configure icon on the top.

Task Properties screen appears.

2. Select the Skip Creator from Approval List option.

3. Select the Assign to Creator’s Manager option.

4. Click OK.

• When you select only the Skip Creator from Approval List option:

– If there are multiple users in the task and one of the users is the task creator, then the
assignment is skipped for the task creator and assigned to other users.

Chapter 29
Selecting a Routing Policy

29-44

– If there is only one user and the user is the task creator, then the task moves to
completed state. There is no assignee for the task.

• When you select both the Skip Creator from Approval List and Assign to Creator’s
Manager options:

– If there are multiple users in the task and one of the users is the task creator, then the
creator’s manager is fetched from the identity store and the task is assigned to the
manager along with other users.

– If there is only one user in the task and the user is the task creator, then the creator’s
manager is fetched from the identity store and the task is assigned to the manager.

Allow All Participants to Invite Other Participants or Edit New Participants
This check box is the equivalent of the ad hoc workflow pattern of pre-10.1.3 Oracle BPEL
Process Manager releases. This applies when there is at least one participant. In this case,
each user selects users or groups as the next assignee when approving the task.

To allow all participants to invite other participants:

1. Click Adhoc Routing.

2. Select the Allow all participants to invite other participants check box for this task
assignee to invite other participants into the workflow before routing it to the next assignee
in this workflow.

3. Select the Allow participants to edit new participants check box for this task assignee
to edit other adhoc participants that were added to the routing slip.

Note:

Do not add adhoc assignees either above or below an FYI participant.

Allow Initiator to Add Participants
In the Adhoc Routing screen, select the Allow all initiator to add participants check box so
this task initiator can invite other participants into the workflow before routing to the next
assignee in this workflow.

Stopping Routing of a Task to Further Participants
You can specify conditions under which a task can be marked complete early, regardless of the
other participants in the workflow.

For example, assume an expense report goes to the manager, and then the director. If the first
participant (manager) rejects it, you can end the workflow without sending it to the next
participant (director).

To abruptly complete a condition:

1. Click Early Completion.

2. Select the Complete task when a participant chooses: <outcome> check box.

The Abrupt Completion Details screen appears. There are two methods for specifying
the abrupt completion of a task:

Chapter 29
Selecting a Routing Policy

29-45

• Outcomes

• XPath expression routing condition

If outcomes are specified, any time the selected task outcome occurs, the task completes.
If both outcome and routing condition are specified, the workflow service performs a logical
OR operation on the two.

3. Select appropriate outcomes and click the > button, as shown in Figure 29-39. To select
all, click the >> button.

Figure 29-39 Abrupt Completion Details

4. To the right of the Routing Condition field, click the icon to display the Expression Builder
dialog box for dynamically creating a condition under which to complete this task early. For
example, if a user submits a business trip expense report that is under a specific amount,
no approval is required by their manager.

An early completion XPath expression is not evaluated until at least one user has acted
upon the task.

5. To enable early completion, click Enable early completion in parallel with subtasks. For
more information, see Enabling Early Completion in Parallel Subtasks.

6. To enable early completion of parent tasks, click Complete parent tasks of early
completing subtasks. For more information, see Completing Parent Subtasks of Early
Completing Subtasks.

7. Click OK to return to the Human Task Editor.

You can click the icon to the right of the Complete task when a participant chooses:
<outcome> check box to edit this information.

Enabling Early Completion in Parallel Subtasks
You can use this option in the following environments:

• Multiple stages and groups of participants perform subtasks in parallel.

• A participant in one group approves or rejects a subtask, which causes the other
participants in that same group to stop acting upon the task. However, this does not cause
the other parallel group to stop acting upon subtasks. That group continues taking actions
on tasks.

For example, assume there are two parallel subgroups, each in separate stages. One group
acts upon lines of a purchase order. The other group acts upon headers of the same purchase

Chapter 29
Selecting a Routing Policy

29-46

order. If participant ApproveLines.Participant2 of the first group rejects a line, all other task
participants in the first group stop acting upon tasks. However, the second parallel group
continues to act upon headers in the purchase order. In this scenario, the entire task does not
complete early. Figure 29-40 provides details.

Figure 29-40 Early Completion of Parallel Subtasks

Completing Parent Subtasks of Early Completing Subtasks
You can use this option in the following environments:

• Multiple stages and groups of participants perform subtasks in parallel.

• A participant in one group approves or rejects a subtask, which causes the other
participants in that same group to stop acting upon the task. This also causes the other
parallel group to stop acting upon subtasks.

For example, assume there are two parallel subgroups, each in separate stages, as shown in
Figure 29-40. One group acts upon lines of a purchase order. The other group acts upon
headers of the same purchase order. If participant ApproveLines.Participant2 of the first
group rejects a line, all other task participants in the first group stop acting upon tasks. In
addition, the second parallel group stops acting upon headers in the purchase order. In this
scenario, the entire task completes early.

How to Specify Advanced Task Routing Using Business Rules
Use advanced routing rules to create complex workflow routing scenarios. The participant
types (single, parallel, serial, and FYI) are used to create a linear flow from one set of users to
another with basic conditions such as abrupt termination, skipping assignees, and so on.
However, there is often a need to perform more complex back and forth routing between
multiple individuals in a workflow. One option is to use the BPEL process as the orchestrator of
these tasks. Another option is to specify it declaratively using business rules. This section
describes how you can model such complex interactions by using business rules with the
Human Task Editor.

Chapter 29
Selecting a Routing Policy

29-47

Introduction to Advanced Task Routing Using Business Rules
You can define state machine routing rules using Oracle Business Rules. This action enables
you to create Oracle Business Rules that are evaluated:

• After a routing slip task participant sets the outcome of the task

• Before the task is assigned to the next routing slip participant

This action enables you to override the standard task routing slip method described in How to
Route Tasks to All Participants in the Specified Order and build complex routing behavior into
tasks.

Using Oracle Business Rules, you define a set of rules (called a ruleset) that relies on business
objects, called facts, to determine which action to take.

Facts
A fact is an object with certain business data. Each time a routing slip assignee sets the
outcome of a task, instead of automatically routing the task to the next assignee, the task
service performs the following steps:

• Asserts facts into the decision service

• Executes the advanced routing ruleset

Rules can test values in the asserted facts and specify the routing behavior by setting values in
a TaskAction fact type.

Table 29-11 describes the fact types asserted by the task service.

Table 29-11 Fact Types Asserted By the Task Service

Fact Type Description

Task This fact contains the current state of the workflow task instance. All task
attributes can be tested against it. The task fact also contains the current task
payload. This fact enables you to construct tests against payload values and task
attribute values.

PreviousOutcome This fact describes the previous task outcome and the assignee who set the
outcome. The previous outcome fact contains the following attributes:

• actualParticipant: The name of the participant who set the task outcome
(for example, jstein)

• logicalParticipant: The logical name (or label) for the routing slip
participant responsible for setting the task outcome (for example,
assignee1)

• outcome: The outcome that was set (for example, approve or reject)

• level: If the previous participant was part of a management chain, then this
attribute records their level in the chain, where 1 is the first level in the chain.
For other participant types, the value is -1.

• totalNumberOfApprovals: The total number of users that have now set the
outcome of the task.

TaskAction This fact is not intended for writing rule tests against it. Instead, it is updated by
the ruleset, and returned to the task service to indicate how the task should be
routed. Rules should not directly update the TaskAction fact. Instead, they
should call one of the RL functions described in Action Types. These functions
handle updating the TaskAction fact with the appropriate values.

Chapter 29
Selecting a Routing Policy

29-48

Some fact types can only be used in workflow routing rules, while others can only be used in
workflow participant rules. Table 29-12 describes where you can use each type.

Table 29-12 Use of Fact Types

Fact Type Can Use in Routing Rules? Can Use in Participant Rules?

Task Yes Yes

PreviousOutcome Yes No

TaskAction Yes No

Lists No Yes

RoutingSlipObjectFactory No Yes

ResourceListType No Yes

ManagementChainListType No Yes

ResourceType No Yes

ParameterType No Yes

AutoActionType No Yes

ResponseType No Yes

Action Types
To instruct the task service on how to route the task, rules can specify one of many task
actions. This is done by updating the TaskAction fact asserted into the rule session. However,
rules should not directly update the TaskAction fact. Instead, rules should call one of the
action RL functions, passing the TaskAction fact as a parameter. These functions handle the
actual updates to the fact. For example, to specify an action of go forward, you must add a
call GO_FORWARD(TaskAction) to the action part of the rule.

Each time a state machine routing rule is evaluated, the rule takes one of the actions shown in
Table 29-13:

Table 29-13 Business Rule Actions

Action Description Parameters

GO_FORWARD Goes to the next participant in the routing slip
(default behavior).

None

PUSHBACK Goes back to the previous participant in the
routing slip (the participant before the one that
just set the task outcome).

Note: Pushback is designed to work with
single approvers and not with group votes.
Pushback from a stage with group vote (or
parallel) scenario to another stage is not
allowed. Similarly, you cannot push back from
a single assignee to a group vote (or parallel)
scenario.

None

Chapter 29
Selecting a Routing Policy

29-49

Table 29-13 (Cont.) Business Rule Actions

Action Description Parameters

GOTO Goes to a specific participant in the routing
slip.

participant'

A string that identifies the label of
the participant (for example,
Approver1) to which to route the
task.

COMPLETE Finishes routing and completes the task. The
task is marked as completed, and no further
routing is required.

None

ESCALATE Escalates and reassigns the task according to
the task escalation policy (usually to the
manager of the current assignee).

None

Sample Ruleset
This section describes how to use rules to implement custom routing behavior with a simple
example. A human workflow task is created for managing approvals of expense requests. The
outcomes for the task are approve and reject. The task definition includes an ExpenseRequest
payload element. One of the fields of ExpenseRequest is the total amount of the expense
request. The routing slip for the task consists of three single participants (assignee1,
assignee2, and assignee3).

By default, the task gets routed to each of the assignees, with each assignee choosing to
approve or reject the task.

Instead of this behavior, the necessary routing behavior is as follows:

• If the total amount of the expense request is less than $100, approval is only required from
one of the participants. Otherwise, it must be approved by all three.

• If an expense request is rejected by any of the participants, it must be returned to the
previous participant for re-evaluation. If it is rejected by the first participant, the expense
request is rejected and marked as completed.

This behavior is implemented using the following rules. When a rule dictionary is generated for
advanced routing rules, it is created with a template rule that implements the default
GO_FORWARD behavior. You can edit this rule, and make copies of the template rule by right-
clicking and selecting Copy Rule in the Oracle Business Rules Designer.

If the amount is greater than $100 and the previous assignee approved the task, it is not
necessary to provide a rule for routing a task to each of the assignees in turn. This is the
default behavior that is reverted to if none of the rules in the ruleset are triggered:

• Early approval rule (Figure 29-41):

Chapter 29
Selecting a Routing Policy

29-50

Figure 29-41 Early Approval Rule

• Push back on the rejected rule (Figure 29-42):

Figure 29-42 Push Back On The Rejected Rule

• Complete the Assignee1 rejected rule (Figure 29-43):

Figure 29-43 Completion of the Assignee1 Rejected Rule

For information about iterative design, see the workflow-106-IterativeDesign sample
available with the Oracle SOA Suite samples.

Linked Dictionary Support
For human workflow, business rule artifacts are now stored in two rules dictionaries. This is
useful for scenarios in which you must customize your applications. For example, you create
and ship version 1 of an application to a customer. The customer then customizes the rulesets
in the application with Oracle SOA Composer. Those customizations are now stored in a
different rules dictionary than the base rules dictionary. The rules dictionary that stores the
customized rulesets links with the rules in the base dictionary. When you later ship version 2 of
the application, the base rule dictionary may contain additional changes introduced in the

Chapter 29
Selecting a Routing Policy

29-51

product. The ruleset customization changes previously performed by the customer are
preserved and available with the new changes in the base dictionary. When an existing
application containing a task using rules is opened, if the rules are in the old format using one
dictionary, they are automatically upgraded and divided into two rules dictionaries:

• Base dictionary

• Custom dictionary

For more information about customizations, see Customizing SOA Composite Applications .

Creating Advanced Routing Rules

To create advanced routing rules:

1. In the Assignment section, click Dynamic Routing Rules.

The Use Advanced Rules edit box displays.

2. Click Create Rules.

This starts the Oracle Business Rules Designer with a pre-seeded repository containing all
necessary fact definitions, as shown in Figure 29-44. A decision service component is
created for the dictionary, and is associated with the task service component.

Figure 29-44 Human Task Rule Dictionary

3. Define state machine routing rules for your task using Oracle Business Rules.

This automatically creates a fully-wired decision service in the human task and the
associated rule repository and data model.

To edit the business rules, click the Edit icon, next to the Rules Dictionary field.

For more information about business rules, see the following documentation:

• Sample Ruleset for an example human task ruleset

• Designing Business Rules with Oracle Business Process Management

• Rules Language Reference for Oracle Business Process Management

How to Use External Routing
You configure an external routing service that dynamically determines the participants in the
workflow. If this routing policy is specified, all other participant types are ignored. It is assumed
that the external routing service provides a list of participant types (single approver, serial
approver, parallel approver, and so on) at runtime to determine the routing of the task.

Chapter 29
Selecting a Routing Policy

29-52

Use this option if you do not want to use any of the routing rules to determine task assignees.
In this case, all the logic of task assignment is delegated to the external routing service.

Note:

If you select Use External Routing in the Configure Assignment dialog box, specify
a Java class, and click OK to exit, the next time you open this dialog box, the other
two selections (Route task to all participants, in order specified and Use
Advanced Rules) no longer appear in the drop-down list. To access all three
selections again, you must delete the entire assignment.

To use external routing

1. Drag and drop External Routing Service from the Workflow Editor Components window.

The Use External Routing edit box displays.

2. Click the Edit icon.

The External Routing dialog box appears, as shown in Figure 29-45.

Figure 29-45 Use External Routing Dialog

3. In the Class Name field, enter the fully qualified class file name (for example, the
org.mycompany.tasks.RoutingService class name). This class must implement the
following interface:

oracle.bpel.services.workflow.task.IAssignmentService
4. Add name and pair value parameters by name or XPath expression that can be passed to

the external service, as shown in Table 29-14.

Chapter 29
Selecting a Routing Policy

29-53

Table 29-14 External Routing

Field Description

By Name Enter a name in the Name field and a value in the Value field.

By Expression Enter a name and dynamically enter a value by clicking the icon to
the right of the field to display the Expression Builder dialog box.

5. Click the Add icon to add additional name and pair value parameters.

How to Configure the Error Assignee and Reviewers
Tasks can error for reasons such as incorrect assignments. When such errors occur, the task is
assigned to the error assignee, who can perform corrective actions. Recoverable errors are as
follows:

• Invalid user and group for all participants

• Invalid XPath expressions that are related to assignees and expiration duration

• Escalation on expiration errors

• Evaluating escalation policy

• Evaluating renewal policy

• Computing a management chain

• Evaluating dynamic assignment rules. The task is not currently in error, but is still left as
assigned to the current user and is therefore recoverable.

• Dynamic assignment cyclic assignment (for example, user A > user B > user A). The task
is not currently in error, but is still left as assigned to the last user in the chain and is
therefore recoverable.

The following errors are not recoverable. In these cases, the task is moved to the terminating
state ERRORED.

• Invalid task metadata

• Unable to read task metadata

• Invalid GOTO participant from state machine rules

• Assignment service not found

• Any errors from assignment service

• Evaluating custom escalate functions

• Invalid XPath and values for parallel default outcome and percentage values

During modeling of workflow tasks, you can specify error assignees for the workflow. If error
assignees are specified, they are evaluated and the task is assigned to them. If no error
assignee is specified at runtime, an administration user is discovered and is assigned the
alerted task. The error assignee can perform one of the following actions:

• Ad hoc route

Route the task to the actual users assigned to the task. Ad hoc routing allows the task to
be routed to users in sequence, parallel, and so on. Note: Do not add adhoc assignees
either above or below a FYI participant.

• Reassign

Reassign the task to the actual users assigned to this task

Chapter 29
Selecting a Routing Policy

29-54

• Error task

Indicate that this task cannot be rectified.

If there are any errors in evaluating the error assignees, the task is marked as being in error.

This dialog box enables you to specify the users or groups to whom the task is assigned if an
error in assignment has occurred.

To configure the error assignee:

1. Click the Add icon to assign reviewers or error assignees, as shown in Figure 29-46.

Figure 29-46 Error Assignment Details

2. Click the Add icon and select a user, group, or application role to participate in this task.

The Identification Type column of the Starting Participant table displays your selection
of user, group, or application role.

3. See Step 5 through 7 of Creating a Single Task Participant List for instructions on selecting
a user, group, or application role.

4. If you are using parallel participant types, you can specify where to store the subtask
payload with the following options.

• Use server settings

The SharePayloadAcrossAllParallelApprovers System MBean Browser boolean
property in Oracle Enterprise Manager Fusion Middleware Control determines whether
to share the payload of subtasks in the root task. By default, this property is set to
true. If set to true, the All task participants share the same payload (better
performance and less storage space) option is used. If this property is set to false, the
Each parallel participant has a local copy of the payload option is used. To change
the settings, see How to Change Server Settings.

• All task participants share the same payload (better performance and less
storage space)

The payload for the subtasks is stored in their root task. This situation means that the
payload of the root task is shared across all its subtasks. Internally, this option provides
better performance and storage space consumption. Less storage space is consumed
because the payload of the root task is shared across all its subtasks.

Chapter 29
Selecting a Routing Policy

29-55

• Each parallel participant has a local copy of the payload

Each subtask has its own copy of the payload. Internally, this option provides lesser
performance and storage space consumption because more storage space is
consumed.

5. Click OK.

For more information about users, groups, or application roles, see Task Assignment and
Routing.

How to Change Server Settings
To change the default setting of SharePayloadAcrossAllParallelApprovers property, perform
the following steps:

1. Right-click soa-infra and select Administration > System MBean Browser.

2. Expand Application Defined MBeans > oracle.as.soainfra.config > Server:
server_name > WorkflowConfig > human-workflow.

3. Click SharePayloadAcrossAllParallelApprovers.

4. Change this property in the list, and click Apply.

Specifying Multilingual Settings and Style Sheets
You can specify resource bundles to displaying task details in different languages and custom
style sheets.

The Presentation section shown in Figure 29-47 enables you to specify resource bundles for
displaying task details in different languages in Oracle BPM Worklist and WordML and custom
style sheets for attachments.

Figure 29-47 Presentation Section

How to Specify WordML and Other Style Sheets for Attachments
To specify WordML style sheets for attachments:

1. In the Stylesheet for Attachments list of the Presentation section, select one of the
following options:

• Word ML: This option dynamically creates Microsoft Word documents for sending as
email attachments using a WordML XSLT style sheet. The XSLT style sheet is applied
on the task document.

Chapter 29
Specifying Multilingual Settings and Style Sheets

29-56

• Other: This option creates email attachments using an XSLT style sheet. The XSLT
style sheet is applied on the task document.

2. Click the Search icon to select the style sheet as an attachment.

How to Specify Multilingual Settings
You can specify resource bundles for displaying task details in different languages in Oracle
BPM Worklist. Resource bundles are supported for the following task details:

• Displaying the value for task outcomes in plain text or with the message(key) format.

• Making email notification messages available in different languages. At runtime, you
specify the hwf:getTaskResourceBundleString(taskId, key, locale?) XPath extension
function to obtain the internationalized string from the specified resource bundle. The
locale of the notification recipient can be retrieved with the function
hwf:getNotificationProperty(propertyName).

Resource bundles can also simply be property files. For example, a resource bundle that
configures a display name for task outcomes can look as follows:

• APPROVE=Approve
• REJECT=Reject

To specify multilingual settings:

1. In the Presentation section, click the Add icon across from Resource Bundle.

The Resource Details dialog box shown in Figure 29-48 appears.

Figure 29-48 Resource Details Dialog

2. In the Resource Name field, enter the name of the resource used in the resource bundle.
This should be a .properties-based resource bundle file.

3. In the Resource Location field, click the Search icon to select the JAR or ZIP resource
bundle file to use. The resource bundle is part of your system archive (SAR) file.

If the resource bundle is outside of the composite project, you are prompted to place a
local copy in SCA-INF/lib.

If the resource bundle file is not in the composite class loader (directly under SCA-INF/
classes or in a JAR file in SCA-INF/lib), you must specify its location. For example, if the

Chapter 29
Specifying Multilingual Settings and Style Sheets

29-57

resource bundle is accessible from a location outside of the composite class loader (for
example, an HTTP location such as http://host:port/bundleApp/taskBundles.jar),
then this location must be specified in this field.

4. Click OK to return to the Human Task Editor.

For more information, see How to Configure Notification Messages in Different Languages.

Specifying What to Show in Task Details in the Worklist
The Presentation section enables you to specify the records in the runtime history section of
the task details form in worklistapp.

Merge repeating stages: Select this option to view one aggregated entry for all repeating
stages. The Worklist UI also provides an option to set or unset this option.

Show future participants: Select this option to see details about all future participants in the
task.

Show only user performed actions: By default, task history details contain records for Admin
and system actions, such as root task updates. Select this option to not see only user-
performed action updates in the task details.

Escalating, Renewing, or Ending the Task
You can specify the expiration duration of a task in this global policy section (also known as the
routing slip level).

Figure 29-49 shows the Deadlines section of the Human Task Editor.

If the expiration duration is specified at the routing slip level instead of at the participant type
level, then this duration is the expiration duration of the task across all the participants.
However, if you specify expiration duration at the participant type level (through the Limit
allocated duration to check box), then those settings take precedence over settings specified
in the Deadlines section (routing slip level).

You can also specify that a task be escalated to a user's manager after a specified time period.
For more information, see Specifying a Time Limit for Acting on a Task.

Figure 29-49 Human Task Editor — Deadlines Section

Chapter 29
Specifying What to Show in Task Details in the Worklist

29-58

Introduction to Escalation and Expiration Policy
This section provides an overview of how specifying the expiration duration at this level makes
this setting the expiration duration of the task across all the participants.

For example, participant LoanAgentGroup and participant Supervisor have three days to act
on the task between them, as shown in Figure 29-50:

Figure 29-50 Expire After Policy

If there is no expiration specified at either the participant level or this routing slip level, then that
task has no expiration duration.

If expiration duration is specified at any level of the participants, then for that participant, the
participant expiration duration is used. However, the global expiration duration is still used for
the participants that do not have participant level expiration duration. The global expiration
duration is always decremented by the time elapsed in the task.

The policy for interpreting the participant level expiration for the participants is described as
follows:

• Serial

Each assignment in the management chain gets the same expiration duration as the one
specified in the serial. The duration is not for all the assignments resulting from this
assignment. If the task expires at any of the assignments in the management chain, the
escalation and renewal policy is applied.

• Parallel:

– In a parallel workflow, if the parallel participants are specified as a resource, a routing
slip is created for each of the resources. The expiration duration of each created
routing slip follows these rules:

The expiration duration equals the expiration duration of the parallel participant if it has
an expiration duration specified.

The expiration duration that is left on the task if it was specified at the routing slip level.

Otherwise, there is no expiration duration.

– If parallel participants are specified as routing slips, then the expiration duration for the
parallel participants is determined by the routing slip.

Chapter 29
Escalating, Renewing, or Ending the Task

29-59

Note:

When the parent task expires in a parallel task, the subtasks are withdrawn if those
tasks have not expired or completed.

How to Specify a Policy to Never Expire
You can specify for a task to never expire.

In the drop-down list in the Deadlines section, as shown in Figure 29-49, select Never Expire
to specify a policy to never expire.

How to Specify a Policy to Expire
You can specify for a task to expire. When the task expires, either the escalation policy or the
renewal policy at the routing slip level is applied. If neither is specified, the task expires. The
expiration policy at the routing slip level is common to all the participants.

To specify for a task to expire:

1. In the drop-down list of the Deadlines section, select Expire after, as shown in
Figure 29-51.

2. Specify the maximum time period for the task to remain open.

The expiration policy for parallel participants is interpreted as follows:

• If parallel participants are specified as resources in parallel elements, there is no
expiration policy for each of those participants.

• If parallel participants are specified as routing slips, then the expiration policy for the
routing slip applies to the parallel participants.

Figure 29-51 indicates that the task expires in three days.

Figure 29-51 Expire After Policy

Note:

The escalation time is limited to future times that are before the year 2286. Using
a value that is greater results in runtime errors. The technical limit of the future
value is 9,999,999,999,999 milliseconds since January 1, 1970, 00:00:00 GMT.

Chapter 29
Escalating, Renewing, or Ending the Task

29-60

How to Extend an Expiration Policy Period
You can extend the expiration period when the user does not respond within the allotted time.
You do this by specifying the number of times the task can be renewed upon expiration (for
example, renew it an additional three times) and the duration of each renewal (for example,
three days for each renewal period).

To extend an expiration policy period:

1. In the drop-down list of the Deadlines section, select Renew after, as shown in
Figure 29-52.

2. Specify the maximum number of times to continue renewing this task.

In Figure 29-52, when the task expires, it is renewed at most three times. It does not
matter if the task expired at the LoanAgentGroup participant or the Supervisor
participant.

Figure 29-52 Renew After Policy

How to Escalate a Task Policy
You can escalate a task if a user does not respond within the allotted time. For example, if you
are using the escalation hierarchy configured in your user directory, the task can be escalated
to the user's manager. If you are using escalation callbacks, the task is escalated to whoever
you have defined. When a task has been escalated the maximum number of times, it stops
escalating. An escalated task can remain in a user inbox even after the task has expired.

To escalate a task policy:

1. In the drop-down list of the Deadlines section, select Escalate after, as shown in
Figure 29-53.

2. Specify the following additional values. When both are set, the escalation policy is more
restrictive.

• Maximum Escalation Levels

Number of management levels to which to escalate the task. This field is required.

• Highest Approver Title

The title of the highest approver (for example, self, manager, director, or CEO). These
titles are compared against the title of the task assignee in the corresponding user
repository. This field is optional.

The escalation policy specifies the number of times the task can be escalated on expiration
and the renewal duration. In Figure 29-53, when the task expires, it is escalated at most

Chapter 29
Escalating, Renewing, or Ending the Task

29-61

three times. It does not matter if the task expired at the LoanAgentGroup participant or
the Supervisor participant.

Figure 29-53 Escalate After Policy

How to Specify Escalation Rules
This option allows a custom escalation rule to be plugged in for a particular workflow. For
example, to assign the task to a current user's department manager on task expiration, you
can write a custom task escalation function, register it with the workflow service, and use that
function in task definitions.

The default escalation rule is to assign a task to the manager of the current user. To add a new
escalation rule, follow these steps.

To specify escalation rules:

1. Implement the following interface:

oracle.bpel.services.workflow.assignment.dynamic.IDynamicTaskEscalationFunction

This implementation must be available in the class path for the server.

2. Log in to Oracle Enterprise Manager Fusion Middleware Control.

3. Expand the SOA folder in the navigator.

4. Right-click soa-infra, and select SOA Administration > Workflow Config > Task tab.

The Workflow Task Service Properties page appears.

5. Add a new function. For example:

• Function name: DepartmentSupervisor
• Classpath:

oracle.bpel.services.workflow.assignment.dynamic.patterns.DepartmentSuperv
isor

• Function parameter name

• Function parameter value

6. In the Custom Escalation Java Class field of the Deadlines section, enter the function
name as defined in the Workflow Task Service Properties page for the escalation rule.

For more information, see Custom Escalation Function.

How to Specify a Due Date
A due date indicates the date by which the task should be completed. The due date is different
from the expiration date. When a task expires it is either marked expired or automatically

Chapter 29
Escalating, Renewing, or Ending the Task

29-62

escalated or renewed based on the escalation policy. The due date is generally a date earlier
than the expiration date and an indication to the user that the task is about to expire.

You can enter a due date for a task, as shown in Figure 29-49. A task is considered overdue
after it is past the specified due date. This date is in addition to the expiration policy. A due
date can be specified irrespective of whether an expiration policy has been specified. The due
date enables Oracle BPM Worklist to display a due date, list overdue tasks, filter overdue tasks
in the inbox, and so on. Overdue tasks can be queried using a predicate on the
TaskQueryService.queryTask(...) API.

To specify a due date:

1. In the Deadlines section, select the Action Requested Before check box.

2. Select By Duration to enter a time duration or select By Expression to dynamically enter
a value as an XPath expression.

Note the following details:

• The due date can be set on both the task (using the Create ToDo Task dialog box in
Oracle BPM Worklist) and in the .task file (using the Human Task Editor). This is to
allow to-do tasks without task definitions to set a due date during initiation of the task.
A due date that is set in the task (a runtime object) overrides a due date that is set in
the .task file.

• In the task definition, the due date can only be specified at the global level, and not for
each participant.

• If the due date is set on the task, the due date in the .task file is ignored.

• If the due date is not set on the task, the due date in the .task file is evaluated and set
on the task.

• If there is no due date on either the task or in the .task file, there is no due date on the
task.

Note:

You cannot specify business rules for to-do tasks.

For more information, see How To Create a ToDo Task.

Specifying Participant Notification Preferences
Notifications indicate when a user or group is assigned a task or informed that the status of the
task has changed. Notifications can be sent through email, instant message (IM), or SMS.
Notifications are sent to different types of participants for different actions. Notifications are
configured by default with default messages. For example, a notification message is sent to
indicate that a task has completed and closed. You can create your own or modify existing
configurations.

Figure 29-54 shows the General tab of the Notification section of the Human Task Editor
(when fully expanded).

Chapter 29
Specifying Participant Notification Preferences

29-63

Note:

Embedded LDAP does not support group email addresses. Therefore, when a task is
assigned to a group ID, emails are sent to all of its members instead of to the group
email address.

Figure 29-54 Human Task Editor — General Tab of Notification Section

To specify participant notification preferences:

1. Click the Notification tab (displays as shown in Figure 29-54).

Instructions for configuring the following subsections of the General tab of the Notification
section are listed in Table 29-15.

Table 29-15 Human Task Editor — General Tab of Notification Section

For This Subsection... See...

Task Status
Recipient

How to Notify Recipients of Changes to Task Status

Notification Header How to Edit the Notification Message

For information about the notification service, see Notifications from Human Workflow.

2. In the Notification section, click the Advanced tab. Figure 29-55 provides details.

Chapter 29
Specifying Participant Notification Preferences

29-64

Figure 29-55 Notification Section - Advanced Tab

Instructions for configuring the following subsections of the Advanced tab of the
Notification section are listed in Table 29-16.

Table 29-16 Human Task Editor — Advanced Tab of Notification Section

For This Subsection... See...

Reminders How to Set Up Reminders

Encoding How to Change the Character Set Encoding

Make notifications secure (exclude
details)

How to Secure Notifications to Exclude Details

Show worklist URL in notifications How to Display the URL in Notifications

Make notifications actionable How to Make Email Messages Actionable

Send task attachments with email
notifications

How to Send Task Attachments with Email Notifications

Group notification configuration How to Send Email Notifications to Groups and Application
Roles

Notification header attributes How to Customize Notification Headers

How to Notify Recipients of Changes to Task Status
You can configure to send notifications to users when there is a change in Task Status. You
can configure for multiple Task Status types like Assign, Complete, Suspend and so on and
also for multiple recipients like Assignee, Initiator, Approvers, Owner, and Reviewer.

To notify recipients of changes to tasks status:

1. Click the Notification tab.

2. Select one of the Task Status types from the list:

• Alerted

Chapter 29
Specifying Participant Notification Preferences

29-65

When a task is in an alerted state, you can notify recipients. However, none of the
notification recipients (assignees, approvers, owner, initiator, or reviewer) can move
the task from an alerted state to an error state; they only receive an FYI notification of
the alerted state. The owner can reassign, withdraw, delete, or purge the task, or ask
the error assignee to move the task to an error state if the error cannot be resolved.
Only the error assignee can move a task from an alerted state to an error state.

You configure the error assignee on the Assignment tab of the Configure Assignment
dialog box under the Task will go from starting to final participant icon in the
Assignment section. For more information, see How to Configure the Error Assignee
and Reviewers.

• Assign

When the task is assigned to users or a group. This captures the following actions:

– Task is assigned to a user

– Task is assigned to a new user in a serial workflow

– Task is renewed

– Task is delegated

– Task is reassigned

– Task is escalated

– Information for a task is submitted

• Complete

• Error

• Expire

• Request Info

• Resume

• Suspend

• Update

– Task payload is updated

– Task is updated

– Comments are added

– Attachments are added and updated

• Update Outcome

• Withdraw

• All Other Actions

– Any action not covered in the above task types. This includes acquiring a task.

Notifications can be sent to users involved in the task in various capacities. This includes
when the task is assigned to a group, each user in the group is sent a notification if there is
no notification endpoint available for the group.

3. Select the recipient from the Recipient from the list of possible recipients for the
notification message for the Task Status type:

• Assignees

The users or groups to whom the task is currently assigned.

Chapter 29
Specifying Participant Notification Preferences

29-66

• Initiator

The user who created the task.

• Approvers

The users who have acted on the task up to this point. This applies in a serial
participant type in which multiple users have approved the task and a notification must
be sent to all of them.

• Owner

The task owner

• Reviewer

The user who can add comments and attachments to a task.

For more information, see How to Configure the Notification Channel Preferences.

4. Save the changes.

Note:

To configure notifications for additional Task Status types, click the + icon above
the Task Status section and to remove notification for a Task Status type, select
the task status row and click the X icon.

How to Edit the Notification Message
A default notification message is available for delivery to the selected recipient. If you want,
you can modify the default message text.

To edit the notification message:

1. In the Notification section, click the General tab.

2. In the Notification Header column, click the Edit icon to modify the default notification
message.

The Edit Notification Message dialog box shown in Figure 29-56 appears.

Figure 29-56 Edit Notification Message Dialog

Chapter 29
Specifying Participant Notification Preferences

29-67

This message applies to all the supported notification channels: email, instant messaging
(IM), and SMS. Email messages can also include the worklist task detail defined in this
message. The channel by which the message is delivered is based upon the notification
preferences you specify.

3. Modify the message wording as necessary.

4. Click OK to return to the Human Task Editor.

For more information about notification preference details, see Notifications from Human
Workflow.

How to Set Up Reminders
You can send task reminders, which can be based on the time the task was assigned to a user
or the expiration time of a task. The number of reminders and the interval between the
reminders can also be configured.

To set up reminders:

1. In the Notification section, click the Advanced tab.

2. From the list, select the number of reminders to send.

3. If you selected to remind the assignee one, two, or three times, select the interval between
reminders, and whether to send the reminder before or after the assignment.

For more information, see How to Send Reminders.

How to Change the Character Set Encoding
Unicode is a universally-encoded character set that enables information from any language to
be stored using a single character set. Unicode provides a unique code value for every
character, regardless of the platform, program, or language. You can use the default setting of
UTF-8 or you can specify a character set with a Java class.

To change the character set encoding

1. In the Notification section, click the Advanced tab.

2. From the Encoding list, select Specify by Java Class.

3. Enter the Java class to use.

How to Secure Notifications to Exclude Details
To secure notifications, make messages actionable, and send attachments:

1. In the Notification section, click the Advanced tab.

2. Select Make notifications secure (exclude details).

If selected, a default notification message is used. There are no HTML worklist task details,
attachments, or actionable links in the email. Only the task number is in the message.

For more information, see How to Send Secure Notifications.

How to Display the Oracle BPM Worklist URL in Notifications
You can configure whether to display the Oracle BPM Worklist URL in email notification
messages.

Chapter 29
Specifying Participant Notification Preferences

29-68

To display the Oracle BPM Worklist URL in notifications:

1. In the Notification section, click the Advanced tab.

2. Select the Show worklist URL in notifications check box to display the Oracle BPM
Worklist URL in email notification messages. If this check box is not selected, the URL is
not displayed.

How to Make Email Messages Actionable
To make email messages actionable:

1. In the Notification section, click the Advanced tab.

2. Select Make notification actionable. This action enables you to perform task actions
through email.

Note:

FYI tasks are not actionable and cannot be acknowledged from email messages.

For more information about additional configuration details, see How to Send Actionable
Messages.

For more information about configuring outbound and inbound emails, see Administering
Oracle SOA Suite and Oracle Business Process Management Suite.

How to Send Task Attachments with Email Notifications
You can send task attachments with email notifications.

To send task attachments with email notifications:

1. In the Notification section, click the Advanced tab.

2. Select Send task attachments with email notifications.

How to Send Email Notifications to Groups and Application Roles
You can send email notifications to groups and application roles to which tasks are assigned.

To send email notifications to groups and application roles:

1. In the Notification section, click the Advanced tab.

2. From the Group notification configuration list, select one of the following options.

• Send individual emails

Each user in the group or application role receives an individual email notification. This
is the default selection.

In addition, the Use separate task forms based on locale check box is automatically
selected. When selected, this sends individual emails with a separate task form based
on the language locale. When not selected, this sends individual emails and reuses
(shares) the task form.

Chapter 29
Specifying Participant Notification Preferences

29-69

• Send one email containing all user addresses

A shared notification email is generated once for a user locale in a group or application
role, thereby saving time in notification email content generation. The email is sent to
all users in the group or application role.

Note:

– Since all (or a subset of) users receive the same email, the users in the
group or application role are expected to have the same privilege. This
ensures that the user does not see task details to which they are not
entitled.

– When sending one email to all users, the maximum number of
characters allowed in the address field is 2000. If the limit is exceeded,
email is sent to only those user addresses contained within the maximum
limit.

How to Customize Notification Headers
Custom notification headers are used to specify name and value pairs to identify key fields
within the notification. These entries can be used by users to define delivery preferences for
their notifications. For example:You can set Name to ApprovalType and value to Expense or
Name to Priority and value to High.Users can then specify delivery preferences in Oracle
BPM Worklist. These preferences can be based on the contents of the notification.

The rule-based notification service is only used to identify the preferred notification channel to
use. The address for the preferred channel is still obtained from the identity service.

To customize notification headers:

1. In the Notification section, click the Advanced tab.

2. Expand Notification Header Attributes.

3. Add name and pair value parameters by name or XPath expression.

For more information about preferences, see the following sections:

• How to Send Inbound and Outbound Attachments

• How to Create Custom Notification Headers

• Developing Applications with Oracle User Messaging Service

Specifying Access Policies and Task Actions on Task Content
You can specify access rules on task content and actions to perform on that content.

You can specify access rules that determine the parts of a task that participants can view and
update. Access rules are enforced by the workflow service by applying rules on the task object
during the retrieval and update of the task.

Chapter 29
Specifying Access Policies and Task Actions on Task Content

29-70

Note:

Task content access rules and task actions access rules exist independently of one
another.

Introduction to Access Rules
Access rules are computed based on the following details:

• Any attribute configured with access rules declines any permissions for roles not
configured against it. For example, assume you configure the payload to be read by
assignees. This action enables only assignees and nobody else to have read permissions.
No one, including assignees, has write permissions.

• Any attribute not configured with access rules has all permissions.

• If any payload message attribute is configured with access rules, any configurations for the
payload itself are ignored due to potential conflicts. In this case, the returned map by the
API does not contain any entry for the payload. Write permissions automatically provide
read permissions.

• If only a subset of message attributes is configured with access rules, all message
attributes not involved have all permissions.

• Only comments and attachments have add permissions.

• Write permissions on certain attributes are meaningless. For example, write permissions
on history do not grant or decline any privileges on history.

• The following date attributes are configured as one in the Human Task Editor. The map
returned by TaskMetadataService.getVisibilityRules() contains one key for each.
Similarly, if the participant does not have read permissions on DATES, the task does not
contain any of the following task attributes:

– START_DATE
– END_DATE
– ASSIGNED_DATE
– SYSTEM_END_DATE
– CREATED_DATE
– EXPIRATION_DATE
– ALL_UPDATED_DATE

• The following assignee attributes are configured as one in the Human Task Editor. The
map returned by TaskMetadataService.getVisibilityRules() contains one key for each
of the following. Similarly, if the participant does not have read permissions on ASSIGNEES,
the task does not contain any of the following task attributes:

– ASSIGNEES
– ASSIGNEE_USERS
– ASSIGNEE_GROUPS
– ACQUIRED_BY

Chapter 29
Specifying Access Policies and Task Actions on Task Content

29-71

• Mapped attributes do not have individual representation in the map returned by
TaskMetadataService.getVisibilityRules().

• All message attributes in the map returned by
TaskMetadataService.getVisibilityRules() are prefixed by
ITaskMetadataService.TASK_VISIBILITY_ATTRIBUTE_PAYLOAD_MESSAGE_ATTR_PREFIX
(PAYLOAD).

An application can also create pages to display or not display task attributes based on the
access rules. This can be achieved by retrieving a participant's access rules by calling the API
on oracle.bpel.services.workflow.metadata.ITaskMetadataService. as shown in the
example below:

public Map<String, IPrivilege> getTaskVisibilityRules(IWorkflowContext context,
 String taskId)
 throws TaskMetadataServiceException;

For more information about this method, see Workflow Services Java API Reference for Oracle
SOA Suite.

Specifying User Privileges for Acting on Task Content
You can specify the privileges that specific users (such as the task creator or owner) have for
acting on specific task content (such as a payload).

To specify user privileges for acting on task content:

1. Click the Access tab.

2. Click the Content tab.

3. Select the task content for which to specify access privileges, as shown in Figure 29-57.

Figure 29-57 Configure Task Content Access

4. Assign privileges (read, write, or no access) to users to act upon task content. A user
cannot be assigned a privilege above their highest level. For example, an ADMIN user
cannot be assigned write access on the PAYLOAD task content. Table 29-17 shows the
maximum privilege each user has on task content.

Chapter 29
Specifying Access Policies and Task Actions on Task Content

29-72

Table 29-17 Highest Privilege Levels for Users of Task Content

Task Content Individual with Read Access Individual with Write Access

Assignees Admin, Approvers, Assignees,
Creator, Owner, Reviewers

--

Attachments Admin, Approvers Assignees, Creator, Owner,
Reviewers

Comments Admin, Approvers Assignees, Creator, Owner,
Reviewers

Dates Admin, Approvers, Assignees,
Creator, Owner, Reviewers

--

Flexfields Admin, Approvers, Reviewers Assignees, Creator, Owner

History Admin, Approvers, Assignees,
Creator, Owner, Reviewers

--

Payload Admin, Approvers, Reviewers Assignees, Creator, Owner

Reviewers Admin, Approvers, Assignees,
Creator, Owner, Reviewers

--

Payload elements Inherited from payload Inherited from payload

For example, if you accept the default setting of ASSIGNEES, CREATOR, and OWNER
with write access, ADMIN, APPROVERS, and REVIEWERS with read access, and
PUBLIC with no access to the PAYLOAD task content, the dialog box appears as shown in
Figure 29-57.

5. Select the method for displaying task content in this dialog box. Choosing the currently
unselected option causes all settings to reset to their default values.

• Coarse grained (default)

Displays the task content as a whole (for example, displays only one payload or
reviewer).

• Fine grained

Displays the content as individual elements (for example, displays all payloads (such
as p1, p2, and p3) and all reviewers assigned to this task (such as jstein, wfaulk, and
cdickens).

Note:

Access rules are always applied on top of what the system permits, depending on
who is performing the action and the current state of the task.

Specifying Actions for Acting Upon Tasks
You can specify the actions (either access or no access) that specific users (such as the task
creator or owner) have for acting on the task content (such as a payload) that you specified in
the Configure Task Content Access dialog box.

To specify actions for acting upon tasks:

1. Click the Access tab.

Chapter 29
Specifying Access Policies and Task Actions on Task Content

29-73

2. Click the Actions tab.

3. Select the task action for which to specify users, as shown in Figure 29-58.

Figure 29-58 Selection of Add Action Access Rule

4. Select if participants can or cannot perform the selected actions.

5. Select the method for displaying task actions in this dialog box. Choosing the currently
unselected option causes all settings to reset to their default values.

• Coarse grained (default)

Displays the task actions as a whole (for example, displays only one approval or
rejection).

• Fine grained

Displays the content actions as individual elements. (for example, displays all
approvals or rejections).

How to Specify a Workflow Digital Signature Policy
Digital signatures provide a mechanism for the nonrepudiation of digitally-signed human tasks.
This ability to mandate that a participant acting on a task signs the details and their action
before the task is updated ensures that they cannot repudiate it later.

Note:

If digital signatures are enabled for a task, actionable emails are not sent during
runtime. This is the case even if actionable emails are enabled during design time.

To specify a workflow digital signature policy:

1. Click the Access tab.

2. From the Signature Policy list, select Configure Policy, as shown in Figure 29-59.

Chapter 29
Specifying Access Policies and Task Actions on Task Content

29-74

Figure 29-59 Digital Signatures

3. Specify the signature policy for task participants to use:

• No signature required

Participants can send and act upon tasks without providing a signature. This is the
default policy.

• Password required

Participants specify a signature before sending tasks to the next participant.
Participants must reenter their password while acting on a task. The password is used
to generate the digital signature. A digital signature authenticates the identity of the
message sender or document signer. This ensures that the original content of the sent
message is unchanged.

• Digital certificate required

Participants must possess a digital certificate for the nonrepudiation of digitally-signed
human tasks. A digital certificate establishes the participant's credentials. It is issued
by a certification authority (CA). It contains the name, a serial number, expiration
dates, a copy of the certificate holder's public key (used for encrypting messages and
digital signatures), digital signature of the certificate-issuing authority so that message
authenticity can be established

The CA names and CA CRL and URLs of the issuing authorities must be configured
separately.

4. Click OK.

For more information, see Evidence Store Service and Digital Signatures.

Specifying a Certificate Authority
To use digital signatures, you must specify CAs you consider trustworthy in the System MBean
Browser in Oracle Enterprise Manager Fusion Middleware Control. Only certificates issued
from such CAs are considered valid by human workflow.

To specify a certificate authority:

1. From the SOA Infrastructure menu, select Administration > System MBean Browser.

2. Select Application Defined MBeans > oracle.as.soainfra.config > Server:
server_name > WorkflowConfig > human.workflow.

Chapter 29
Specifying Access Policies and Task Actions on Task Content

29-75

3. Click the Operations tab.

4. Click AddTrustedCA.

5. In the Value fields for CaName and CaURL, specify appropriate values.

6. Click Invoke.

7. Click Return.

You must validate these values before using them.

Specifying Restrictions on Task Assignments
You can restrict the users to which a task can be reassigned or routed by using a callback
class.

The user community seeded in a typical LDAP directory can represent the whole company or
division. However, it may be necessary at times to limit the potential list of users to associate
with a task based on the scope or importance of the task or associated data. For example, in a
large company with thousands of users, only a few people have the ability to approve and
create purchase orders. Specifically for such tasks, the users that can be chosen for ad hoc
routing and reassignment should not be the whole company. Instead, only a few users who are
relevant or have the right privilege should be chosen. This can be achieved by the restricted
assignment functionality. This is implemented as a callback class that can implement the logic
to choose the right set of users dynamically based on the task object that is passed containing
the instance data.

Note:

Certain functions, such as restricted task reassignment, are available only when a
single task is selected. If multiple tasks that use restricted reassignment are selected,
then the restricted reassignment algorithm is not invoked. In that case, the complete
list of users gets returned as though restricted reassignment had not been specified.

How to Specify Restrictions on Task Assignments
To specify restrictions on task assignments:

1. In the Access section, click Configure Restricted Assignments.

The Configure Restricted Assignment dialog box appears.

2. Enter the class name. The class must implement the
oracle.bpel.services.workflow.task.IRestrictedAssignmentCallback interface.

3. Click the Add icon to add name and value pairs for the property map passed to invoke the
callback.

4. Click OK.

Specifying Java or Business Event Callbacks
You can specify Java or business event callbacks. You can register callbacks for the workflow
service to call when a particular stage is reached during the lifecycle of a task.

Chapter 29
Specifying Restrictions on Task Assignments

29-76

Note:

If you implemented a callback, then the user callback implementation overrides any
other form of restricted assignment. When you perform a search, the result only
shows the users that the user callback returns.

Two types of callbacks are supported:

• Java callbacks: The callback class must implement the interface
oracle.bpel.services.workflow.task.IRoutingSlipCallback. Make the callback class
available in the class path of the server.

• Business event callbacks: You can have business events raised when the state of a
human task changes. You do not need to develop and register a Java class. The caller
implements the callback using an Oracle Mediator service component to subscribe to the
applicable business event to be informed of the current state of an approval transaction.

To specify callback classes on task status:

1. Click the Events tab.

The following state change callbacks are available for selection:

• OnAssigned

Select if the callback class must be called on any assignment change, including
standard routing, reassignment, delegation, escalation, and so on. If a callback is
required when a task has an outcome update (that is, one of the approvers in a chain
approves or rejects the task), this option must be selected.

• OnUpdated

Select if the callback class must be called on any update (including payload,
comments, attachments, priority, and so on).

• OnCompleted

Select if the callback class must finally be called when the task is completed and
control is about to be passed to the initiator (such as the BPEL process initiating the
task).

• OnStageCompleted

Select if the callback class must be called to enable business event callbacks in a
human workflow task. When the event is raised, it contains the name of the completed
stage, the outcome for the completed stage, and a snapshot of the task when the
callback is invoked.

• OnSubtaskUpdated

Select if the callback class must be called on any update (including payload,
comments, attachments, priority, and so on) on a subtask (one of the tasks in a
parallel-and-parallel scenario).

If your Oracle JDeveloper installation is updated to include both the BPEL and BPM
extensions, then the following content callbacks are also available for selection:

• Comments Callback

Select if the callback class must be called to store the comments in a schema other
than the WFCOMMENTS column. The callback class must implement the
oracle.bpel.services.workflow.callback.NotesStore interface.

Chapter 29
Specifying Java or Business Event Callbacks

29-77

• Attachment Call Back

Select if the callback class must be called to store the attachments in a schema other
than the WFATTACHMENT table in the soa-infra schema. The callback class must
implement the oracle.bpel.services.workflow.callback.AttachmentStore
interface.

• Validation Callback

Select if the callback class must be called to validate either the task or payload before
updating, approving, and so on. The callback class must implement the
oracle.bpel.services.workflow.task.ITaskValidationCallback interface.

2. See the following section based on the type of callback to perform.

• Specifying Java Callbacks

• Specifying Business Event Callbacks

Specifying Java Callbacks
To specify Java callbacks:

1. In the State column of the Events section, select a task state.

2. In the Java Class column, click the empty field to enter a value. This value is the complete
class name of the Java class that implements
oracle.bpel.services.workflow.task.IRoutingSlipCallback. Figure 29-60 provides
details.

Figure 29-60 CallBack Details Dialog with Java Selected

3. Click OK.

Specifying Business Event Callbacks
To specify business event callbacks:

1. In the State column of the Events section, select a task state. Leave the Java Class field
empty.

Chapter 29
Specifying Java or Business Event Callbacks

29-78

2. Select the Trigger Workflow Event check box. This action disables the Java Class
column, as shown in Figure 29-61. Each callback, such as OnAssigned, corresponds to a
business event point. When a business event is fired, the event details contain the task
object and a set of properties that are populated based on the context of the event being
fired.

Figure 29-61 CallBack Details Dialog with Business Events Selected

A pre-seeded, static event definition language (EDL) file
(JDev_Home\jdeveloper\integration\seed\soa\shared\workflow\HumanTaskEvent.edl)
provides the list of available business events to which to subscribe. These business events
correspond to the callbacks you select in the Callback Details dialog box. You must now
create an Oracle Mediator service component in which you reference the EDL file and
subscribe to the appropriate business event.

Note:

A file-based MDS connection is required so that the EDL file can be located. The
location for the file-based MDS is JDev_Home\jdeveloper\integration\seed.

3. Create an Oracle Mediator service component in the same or a different SOA composite
application that can subscribe to the event.

4. In the Template list during Oracle Mediator creation, select Subscribe to Events.

5. Click the Add icon to subscribe to a new event.

6. To the right of the Event Definition field, click the Browse icon to select the EDL file.

The SOA Resource Browser dialog box appears.

7. Select the previously created file-based MDS connection.

8. From the list at the top, select Resource Palette.

Chapter 29
Specifying Java or Business Event Callbacks

29-79

9. Select SOA > Shared > Workflow > HumanTaskEvent.edl.

Click OK.

The Event Chooser is now populated with EDL file business events available for selection.

10. In the Event field, select the event to which to subscribe. Figure 29-62 provides details.

Figure 29-62 Event Callbacks

You can have multiple human tasks available for subscribing to the event. For example,
assume you performed the following:

• Configured a human task named TaskA to subscribe to the event (for example,
OnAssigned)

• Configured a human task named TaskB to subscribe to the same event

To distinguish between events for TaskA and TaskB and ensure that an event is processed
only by the intended Oracle Mediator, you can add a static routing filter:

xpath20:compare(med:getComponentName(), 'TaskA')

This only invokes this routing when the sending component is TaskA.

11. If the EDL file was not selected from the file-based MDS connection, accept to import the
dependent XSD files when prompted, and click OK. If the EDL file was selected from the
file-based MDS connection, you are not prompted.

The Oracle Mediator service component is now populated with the business event to which
to subscribe. You can also subscribe to other business events defined in the same EDL file
now or at a later time.

See the following documentation for additional details about business events and callbacks:

• Using Business Events and the Event Delivery Network for specific details about business
events

• Sample workflow-116-WorkflowEventCallback, which is available with the Oracle SOA
Suite samples.

How to Specify Task and Routing Customizations in BPEL Callbacks
In general, the BPEL process calls into the workflow component to assign tasks to users.
When the workflow is complete, the human workflow service calls back into the BPEL process.

Chapter 29
Specifying Java or Business Event Callbacks

29-80

However, if you want fine-grained callbacks (for example, onTaskUpdate or onTaskEscalated)
to be sent to the BPEL process, you can use the Allow task and routing customization in
BPEL callbacks option.

Make sure to manually refresh the BPEL diagram for this callback setting.

To specify task and routing customizations in BPEL callbacks:

1. In the Events section, select the Allow task and routing customization in BPEL
callbacks check box.

2. Return to Oracle BPEL Designer.

3. Open the task activity dialog box.

4. Click OK.

This creates the while, pick, and onMessage branch of a pick activity for BPEL callback
customizations inside the task scope activity.

For more information about specifying task and routing customizations, see Invoking BPEL
Callbacks.

How to Disable BPEL Callbacks
A user talk activity (in Oracle BPEL Designer) has an invoke activity followed by a receive or
pick activity. Deselecting the Disable BPEL callbacks check box enables you to invoke the
task service without waiting for a reply.

To disable BPEL callbacks:

1. In the Events section, deselect the Disable BPEL callbacks check box.

2. Click OK.

Chapter 29
Specifying Java or Business Event Callbacks

29-81

30
Designing Task Forms for Human Tasks

Learn how to design and customize task forms for human tasks by using ADF task flows in
Oracle JDeveloper. Human tasks enable users to interact with the business process. Each task
has two parts—the task metadata and the task form. The task form is used to display the
contents of the task to the user's worklist.
Oracle BPM Worklist displays all worklist tasks that are assigned to a user or a group. When a
worklist user drills down into a specific task, the task form renders the details of that task.

• Introduction to the Task Form

• Associating the Task Flow with the Task Service

• Creating an ADF Task Flow Based on a Human Task

• Creating a Task Form

• Refreshing Data Controls When the Task XSD Changes

• Securing the Task Flow Application

• Creating an Email Notification

• Deploying a Composite Application with a Task Flow

• Displaying a Task Form in the Worklist

• Displaying a Task in an Email Notification

• Reusing the Task Flow Application with Multiple Human Tasks

For information about troubleshooting human workflow issues, see section "Human Workflow
Troubleshooting" of Administering Oracle SOA Suite and Oracle Business Process
Management Suite.

Introduction to the Task Form
If your SOA composite includes a human task, then you need a way for users to interact with
the task. The integrated development environment of Oracle SOA Suite includes Oracle
Application Development Framework (Oracle ADF) for this purpose. With Oracle ADF, you can
design a task form that depicts the human task in the SOA composite.

The task form is a Java Server Page XML (.jspx) file that you create in the Oracle JDeveloper
designer where you created the SOA composite containing the human task. You must set the
page encoding to UTF-8 in Oracle JDeveloper before creating the Java Server Page XML file.
You can do this in Oracle JDeveloper by choosing Tools > Preferences > Environment, and
selecting UTF-8 using the Encoding dropdown list.

Figure 30-1 shows the Oracle JDeveloper ADF Task Flow Based on Human Task option
where you start creating a task form.

30-1

Figure 30-1 ADF Task Flow Based on a Human Task, in Oracle JDeveloper

What You May Need to Know About Task Forms: Time Zone Conversion
Time zone conversion is not automatic for datetime elements in the task payload when a task
form is created. You must add the <af:convertDateTime> tag to enable time zone conversion
on a datetime element. See any standard task header time label for an example. The following
example shows a sample header:

<af:outputText value="#{bindings.createdDate.inputValue}"
 id="ot15">
 <f:convertDateTime type="#{pageFlowScope.dt}"
 timeZone="#{pageFlowScope.tz}"
 dateStyle="#{pageFlowScope.df}"
 timeStyle="#{pageFlowScope.tf}"/>
 </af:outputText>

Associating the Task Flow with the Task Service
When you create an ADF task flow based on a human task, you must select a task metadata
file to generate the data control. This data control is used to lay out the content on the page
and connect to the workflow service engine at execution time to retrieve task content and act
on tasks.

The hwtaskflow.xml file is used to capture the details on connecting with the service engine.
By default, it uses remote EJBs to connect to the workflow server. The SOA server URL and
port are automatically determined by using WebLogic Server runtime MBeans. However, you
can override these by explicitly specifying the URL and port information here.

Chapter 30
Associating the Task Flow with the Task Service

30-2

Seed a user that has ORMI privileges so that the task details application can connect to the
workflow service. You can seed this user by using Oracle Enterprise Manager Fusion
Middleware Control.

Creating an ADF Task Flow Based on a Human Task
ADF task flows are used to model the user interface for the task details page. You can create
the task flow in the same application that contains the human task or in a separate application.

You must have previously created a human task (.task file) as part of a SOA composite before
you can create a task flow. See Creating Human Tasks for how to create the.task file.

If the task flow is in the same application as the human task, create a different project for the
task flow. If the SOA composite contains multiple human tasks, create a separate project for
each ADF task flow associated with each human task. By using an ADF task flow, you create
data controls based on the task parameters and outcomes.

To autogenerate an ADF task form, access the human task in the SOA composite application
(form and task are in the same application). See How To Create an ADF Task Flow from the
Human Task Editor, for more information.

To create an ADF task form in a separate application, create the new application and project
and browse for the .task file for the human task. See How To Create an ADF Task Flow Based
on a Human Task, for more information.

An ADF task form does not validate user inputs. The only validation that is done is to check
that mandatory inputs have values. You should review your task forms and add additional
validators as needed.

How To Create an ADF Task Flow from the Human Task Editor
The.task file that specifies the human task is easily associated with the task flow when the two
are located in the same application.

To create an ADF task flow for a human task:

1. Open the BPEL process within the SOA composite application.

2. Double-click the human task activity and click Edit.

Figure 30-2 shows the Human Task dialog.

Chapter 30
Creating an ADF Task Flow Based on a Human Task

30-3

Figure 30-2 Editing a Human Task

3. In the .task tab (shown in Figure 30-3), click Form and select Auto-Generate Task Form.

Chapter 30
Creating an ADF Task Flow Based on a Human Task

30-4

Figure 30-3 Creating a Task Flow from the Human Task Editor

4. Provide a project name and a directory path (or use the default) and click OK.

The taskDetails1_jspx icon appears in the designer, as shown in Figure 30-4.

Figure 30-4 The taskDetails1_jspx Icon

Chapter 30
Creating an ADF Task Flow Based on a Human Task

30-5

The task flow and task form are complete and ready to be deployed.

How To Create an ADF Task Flow Based on a Human Task
The ADF Task Flow Based on Human Task option (shown in Figure 30-1) creates an ADF
task flow and additional artifacts to make deployment easier. When you select the .task file to
associate with the ADF task flow, human task data controls are created based on the task
parameters and outcomes. These are then available to use in the JSPX page. You must have
access to the SOA composite project while creating the task flow project.

To create an ADF task flow based on a human task:

1. From the File main menu, select New > Applications > Custom Application.

2. Click OK.

3. Provide an application name and directory information (or accept the default), and click
Finish.

4. Right-click the project name and select New.

5. Under Web Tier, select JSF.

6. Select ADF Task Flow Based on Human Task and click OK.

7. In the SOA Resource Browser, find and select the .task file where you defined the human
task and click OK.

a. If the human task is in the same application as the task definition, then click File
System to use the file browser to navigate to the .task file, which is typically in the
composite directory.

b. If the human task is in a different application, then click SOA-MDS to use the MDS
resource catalog and find the .task file in the composite application.

c. If the .task file is located within the current application, then click Application.

This displays the Create Task Flow dialog and creates the data controls.

8. In the Create Task Flow dialog, accept the defaults and click OK.

The taskDetails1_jspx icon appears in the designer, as shown in Figure 30-4. The task
flow has a view, a control flow, and a task return.

To continue creating the task form, see the following:

• How To Create a Task Form Using the Complete Task with Payload Drop Handler.

• How To Create Task Form Regions Using Individual Drop Handlers.

What Happens When You Create an ADF Task Flow Based on a Human
Task

With an ADF task flow based on a human task, the task flow application has task data controls
that wire the task form with the workflow services. The data controls provide the following:

• Various parameters and operations to access task data and act on it

• Drop handlers with which you can create interface regions to display the contents of the
task

The human task-aware data controls appear in the Data Controls panel of the Oracle
JDeveloper Applications window, as shown in Figure 30-5.

Chapter 30
Creating an ADF Task Flow Based on a Human Task

30-6

Figure 30-5 The Task Collection in the Data Controls Panel

The data controls for the task (represented by the Task node in Figure 30-5) have drop
handlers to render the task form. See Creating a Task Form, for more information.

What You May Need to Know About Having Multiple ADF Task Flows That
Contain the Same Element with Different Meta-attributes

You must create separate ADF task flows if both contain the same element, but with different
meta-attributes specified (for example, editable and noneditable).

For example, assume you perform the following tasks.

1. Create two task form applications for a SOA composite application:

• Task form application one (for example, named EnterBankDetails.task) has one
editable payload (for example, named BankDetails) and one noneditable payload (for
example, named Employee).

Chapter 30
Creating an ADF Task Flow Based on a Human Task

30-7

• Task form application two (for example, named ValidatePersonalInformation.task) has
one editable payload (for example, also Employee).

While creating the task form, the wizard provides you with the option to define the ADF
table for payload Employee.

2. Complete the wizard, then deploy the process.

3. Invoke the process.

4. Log in to Oracle BPM Worklist.

There is a Validate Personal Information task (for ValidatePersonalInformation.task).

5. Select the task.

Employee details are available for modification, as expected.

6. Add a new record, then approve the task.

7. Select the Enter Bank Details task (for EnterBankDetails.task). In the task form, the Insert
New and Delete buttons are still present for Employee data, even though it is a
noneditable payload.

8. Click Delete, then select Approve. The payload gets deleted.

Ensure that you create two separate ADF task flow applications because both contain the
Employee element, but with different meta-attributes specified (editable and noneditable).

Creating a Task Form
You can create a task form by using the Auto-Generate Task Form option, the Launch Task
Form Wizard option, or by using human task drop handlers.

• For how to use the Auto-Generate Task Form option, see How To Create an
Autogenerated Task Form.

• For how to use the Launch Task Form Wizard option, see How To Create a Task Form
Using the Custom Task Form Wizard.

• For how to use human task drop handlers, see the following:

– How To Create a Task Form Using the Complete Task with Payload Drop Handler

– How To Create Task Form Regions Using Individual Drop Handlers

– How To Add the Payload to the Task Form

Note:

A task form name must begin with a letter of the alphabet, either upper or lower case.
It should contain only letters of the alphabet and the numbers zero (0) through nine
(9).

How To Create an Autogenerated Task Form
Autogenerating a task form opens a default template that you can then modify.

To create an autogenerated task form:

1. Open the BPEL process within the SOA composite application.

Chapter 30
Creating a Task Form

30-8

2. Double-click the human task activity and click Edit.

3. From the .task editor, click Create Form and select Auto-Generate Task Form, as shown
in Figure 30-6.

Figure 30-6 Creating a Task Form

4. Provide a project name and a directory path (or use the default) and click OK.

The default form opens in the taskDetails1.jspx tab. The default form for
ApprovalHumanTask is shown in Figure 30-7.

Chapter 30
Creating a Task Form

30-9

Figure 30-7 Autogenerated Task Form for ApprovalHumanTask

How to Register the Library JAR File for Custom Page Templates
You can optionally specify your own custom page templates in the Custom Task Form wizard.
As described in How To Create a Task Form Using the Custom Task Form Wizard, you select
Custom in the Name and Definition page of the Custom Task Form Wizard and select the
library and .jspx template.

As a prerequisite, you first must register the library JAR file in Oracle JDeveloper.

To create the library JAR file for custom page templates:

1. From the Tools menu, select Manage Libraries.

2. Click New.

The Create Library dialog appears.

3. Highlight Class Path, and click Add Entry.

The Select Path Entry dialog appears.

4. Select the class path for the library, and click Select.

The class path is displayed below Class Path and the library JAR file name is displayed in
the Library Name field. Ensure that the library name you select ends with a suffix of .jar.
Figure 30-8 provides details.

Chapter 30
Creating a Task Form

30-10

Figure 30-8 Custom Library JAR File

5. Select the Deployed by Default check box.

6. Click OK.

When you run the Custom Task Form wizard, you select the Custom radio button on the
Name and Definition page, and select the library and template that you registered.

How To Create a Task Form Using the Custom Task Form Wizard
This wizard enables you to create a task form using ADF page templates and standardized
task regions. The page templates can be either of the following:

• Default page templates that are automatically provided at the following location:

[JDeveloper_Home}/jdeveloper/soa/modules/oracle.soa.worklist_11.1.1/
adflibWorklistComponents.jar

The default page templates are:

– Nontabbed, default template: taskDetailsTemplate.jspx
– Tabbed templates in which the payload and comments, attachment, and history

sections are displayed on a separate tab: taskDetailsTemplate2.jspx
In the Name and Definition page of the Custom Task Flow wizard, select Packaged, then
select either Default or Tabbed.

• Custom page templates that you define. In the Name and Definition page of the Custom
Task Flow wizard, select Custom, then select the library name and the template name.

Chapter 30
Creating a Task Form

30-11

You package a page template and its artifacts into an ADF library JAR file. These JAR files
can be packaged, deployed, discovered, and used like any other Oracle library component.
The wizard prompts you to specify the JAR name and template location in the JAR.

Page templates let you define entire page layouts, including values for certain attributes of the
page. When pages are created using a template, they all inherit the defined layout. When you
make layout modifications to the template, all pages that consume the template automatically
reflect the layout changes.

The templates used in the wizard generate content for the following six facets:

• Actions

• Attachments

• Body

• Comments

• Header

• History

For the action, header, and body facets, you can pick the content and attributes to be displayed
and then fine tune the layout.

All six facets are defined in the default page templates. In the case of custom templates, you
use these exact facet names in your template. If your template does not include these facets,
then the facet content is not generated in the JSPX file.

To create a custom task form:

1. Open the BPEL process within the SOA composite application.

2. Double-click the human task activity, and click the Edit icon.

The Human Task Editor appears.

3. Above the editor, click Form and select Launch Task Form Wizard.

4. Provide a project name and a directory path (or use the default), and click OK. The
Custom Form Wizard displays the Name and Definition screen as shown in Figure 30-9.

Chapter 30
Creating a Task Form

30-12

Figure 30-9 Custom Task Form Wizard: Form Name and Definition

5. In the Form Name field, provide the name of the form (.jspx file) that is to be generated at
the end of the wizard. If you do not provide a name, then the default name,
Humantasknumber_Form, is provided. Ensure that valid characters are used in the name.
Spaces are not permitted.

6. Specify the Task Flow Name, that is, the name of the ADF task flow that is generated at
the end of the wizard. Accept the default name of Humantasknumber_TaskFlow or specify a
different name.

7. In the Page Templates section, select either:

• Packaged: Select this to use one of the default page templates, then select the
particular template from the list.

• Custom: Select the library and template. If no library is listed, click Manage Libraries
and follow the instructions in How to Register the Library JAR File for Custom Page
Templates.

Click Next. The Header page appears.

8. On the Header page, shown in Figure 30-10, perform the following procedures and click
Next.

• In the Actions facet section, select the options to include in the title bar of the task
form:

Other actions (menu): Lists the system actions that are possible for the task, such as
Request Information, Reassign, Renew, Suspend, Escalate, and Save.

Outcomes (buttons): Displays buttons for task actions that are defined in the human
task, such as setting task outcomes.

• In the Header facet section, enter the number of display columns. If you want each
header label to display in its own column, then enter the same number as the number

Chapter 30
Creating a Task Form

30-13

of headers you move into the Selected list. If you enter 1, but select 7 headers, all 7
headers appear in one column.

• Move header labels into the Selected list and reorder them as needed.

Figure 30-10 Custom Task Form Wizard: Setting Up the Header

9. On the Body page, shown in Figure 30-11, perform the following procedures in the Body
facet section to set up the form, and click Next:

• Enter a title that describes the body panel.

• Enter the number of columns for row 1. For a simple form, you may want to enter the
same number as you entered for the number of header columns.

• Click the Add (+) button to add more rows. For each new row, you can also specify the
number of columns. Each row can have its own column layout. For each column in
each row, a body page is created, labeled Row1, Column1, and so on.

Chapter 30
Creating a Task Form

30-14

Figure 30-11 Custom Task Form Wizard: Setting Up the Body

Note:

If you specify rows or columns for which no payload data appears, then an
empty panel group is displayed. You can use this blank section to add
content to the form later by using data controls.

10. On the Row1 Column1 page, shown in Figure 30-12, move all or part of the payload to the
Selected list and click Next.

Figure 30-12 Custom Task Form Wizard: Selecting the Body Fields

11. For any Rown Columnn page after Row1 Column1, repeat Step 10 and click Next.

The Footer page that displays is based upon the page template you selected on the Name
and Definition page in Step 6 (either Default Page Template or Custom Page Template).

Chapter 30
Creating a Task Form

30-15

If you selected Default Page Template, the Footer page shown in Figure 30-13 is
displayed. Deselect any comments, attachments, or history facet that you do not want to
include in the footer, and click Next. By default, the comments, attachments, and history
facets are all selected.

Figure 30-13 Custom Task Form Wizard: Selecting the Footer Fields for the Default Page Template

12. On the Summary page, shown in Figure 30-14, inspect your selections. Click Back to
make changes or click Finish.

This form is created as an ADF task flow and added to the project.

Figure 30-14 Custom Task Form Wizard: Summary

Chapter 30
Creating a Task Form

30-16

The Designer initializes and the form_name.jspx tab is displayed, as shown in
Figure 30-15 (upper part of tab) and Figure 30-16 (lower part of tab).

Figure 30-15 Custom Task Form (Upper Part of Tab)

Chapter 30
Creating a Task Form

30-17

Figure 30-16 Custom Task Form (Lower Part of Tab)

How To Create a Task Form Using the Complete Task with Payload Drop
Handler

The human task drop handlers appear in the context menu of the designer, as shown in
Figure 30-17.

Chapter 30
Creating a Task Form

30-18

Figure 30-17 Human Task Drop Handlers for Creating the Task Form

Other ADF drop handlers—for forms, tables, trees, and so on (shown in Figure 30-17)—can
also be used to create task forms.

To create a task form using the Complete Task with Payload drop handler:

1. In the designer, double-click taskDetails1_jspx.

2. In the Create JSF Page dialog, provide a file name and directory information (or accept the
defaults) and click OK.

3. In the Data Controls panel of the Applications window, expand the human task node, then
the getTaskDetails node, and then the Return node.

4. Drag the Task icon into the taskDetails.jspx window.

5. Select Human Task, and then Complete Task with Payload.

6. In the Edit Action Binding dialog, shown in Figure 30-18, click OK.

Chapter 30
Creating a Task Form

30-19

Figure 30-18 Edit the Action Binding

7. In the next Edit Action Binding dialog, the data collection is selected, as shown in
Figure 30-19; click OK.

Chapter 30
Creating a Task Form

30-20

Figure 30-19 Select the Data Collection and Action

The task form is displayed, as shown in Figure 30-20.

Chapter 30
Creating a Task Form

30-21

Figure 30-20 Task Form

Complete Task with Payload
This option creates the combination of all the preceding task form components (the task
header, task history, task actions, and task comments and attachments), plus the interface for
the payload. The payload interface is created as follows:

• All text nodes are created as text input fields.

• If an element has maxOccurs="unbounded", then it appears as a table.

• Nested tables are not rendered; that is, if an element has maxOccurs="unbounded" and it
has a child with maxOccurs="unbounded", then the child element is not rendered.

• If there are multiple levels of nesting, then drag and drop the individual sections and use a
standard ADF drop handler.

Complete Task without Payload
This option creates the combination of all of the preceding task form components (the task
header, task history, task actions, and task comments and attachments).

Task Details for Email
This option creates an ADF region that renders well when sent by email. It generates the form
shown in Figure 30-21.

Chapter 30
Creating a Task Form

30-22

Figure 30-21 Task Form for Email Notification

See Creating an Email Notification , for more information.

Task Header
All the standard header fields are added to the task form. This includes the task number and
title; the state, outcome, and priority of the BPEL process, and information about who created,
updated, claimed, or is assigned to the task. The header also displays dates related to task
creation, last modification, and expiration. You can add or remove header fields as required for
your task display.

Figure 30-22 shows an example of header information.

Figure 30-22 Header Information

Buttons for task actions are also created in the header, as shown in Figure 30-23.

Figure 30-23 Task Header: Task Action Buttons

Chapter 30
Creating a Task Form

30-23

Task Actions
The following task actions appear from the Actions dropdown list or as buttons. The tasks that
appear depend on the state of the task (assigned, completed, and so on) and the privileges
that are granted to the user viewing the task. For example, when a task is assigned to a group,
only the Claim button appears. After the task is claimed, other actions such as Reject and
Approve appear.

The first three custom actions appear on the task form as buttons: Claim, Dismiss, and
Resume. Only those buttons applicable to the task appear. Other actions are displayed under
the Actions list, starting with Request for Information, Reassign, and Route. Systems
actions—Withdraw, Pushback, Escalate, Release, Suspend, and Renew—follow the
custom actions, followed by the Save button. These actions require no further dialog to
complete.

• Claim—A task that is assigned to a group or multiple users must be claimed first. Claim is
the only action available in the Task Action list for group or multiuser assignments. After a
task is claimed, all applicable actions are listed.

Note:

– If an FYI task is sent to multiple users, a user must first select the Claim
button to claim the task before they can dismiss it.

– Pushback is designed to work with single approvers and not with group
votes. Pushback from a stage with group vote (or parallel) scenario to
another stage is not allowed. Similarly, you cannot push back from a single
assignee to a group vote (or parallel) scenario.

• Dismiss—This action is used for a task that requires the person acting on the task to
acknowledge receipt, but not take any action (such as an FYI).

• Resume—A task that was halted by a Suspend action can be worked on again. See
Suspend.

• Request for Information—You can request more information from the task creator or any
of the previous assignees. If reapproval is not required, then the task is assigned to the
next approver or the next step in the business process.

• Reassign—Managers can reassign a task to reportees. The Reassign option also
provides a Delegate function. A task can be delegated to another user or group. The
delegated task appears in both the original user's and the delegated user's worklists. The
delegated user can act on behalf of the original assignee, and has the same privileges for
that task as the original assignee.

• Route—If there is no predetermined sequence of approvers or if the workflow was
designed to permit ad hoc routing, then the task can be routed in an ad hoc fashion. For
such tasks, a Route button appears on the task details page. From the Routing page, you
can look up one or more users for routing. When you specify multiple assignees, you can
choose whether the list of assignees is for simple (group assignment to all users),
sequential, or parallel assignment. In the case of parallel assignment, you provide the
percentage of votes required for approval.

• Withdraw—Only the task creator can withdraw (cancel) the task. The Comments area is
available for an optional comment. The business process determines what happens next.

Chapter 30
Creating a Task Form

30-24

• Pushback—This action sends a task up one level in the workflow to the previous
assignee. Note: Pushback is designed to work with single approvers and not with group
votes. Pushback from a stage with group vote (or parallel) scenario to another stage is not
allowed. Similarly, you cannot push back from a single assignee to a group vote (or
parallel) scenario.

• Escalate—An escalated task is assigned to the user's manager. The Comments area is
available for an optional comment.

• Release—Releasing a task makes it available to other assignees. A task assigned to a
group or multiple users can then be claimed by the other assignees.

• Suspend—This action suspends the expiration date indefinitely, until the task is resumed.
Suspending and resuming tasks are available only to users who have been granted the
BPMWorkflowSuspend role. Other users can access the task by selecting Previous in the
task filter or by looking up tasks in the Suspended status. Buttons that update a task are
disabled after suspension.

• Renew—Renewing a task extends the task expiration date seven days (P7D is the default).
The renewal duration is controlled from Oracle Enterprise Manager Grid Control. A renewal
appears in the task history. The Comments area is available for an optional comment.

• Save—Changes to the task are saved.

While you are creating a task form, all possible system action buttons appear, although only
those actions that are appropriate for the task state and fit the user's privileges appear in the
worklist.

Task History
The history of task actions appears on the task details page, and is displayed in the worklist as
a history table. The history includes the following fields:

• Version number

• Participant name—the person who acted on the task

• Action—for example, if the task was approved or assigned

• Updated By—name of the person who last updated the task

• Action date

See Figure 32-20 and Figure 32-21 for how task history is displayed in Oracle BPM Worklist,
including the options to take a history snapshot, list future participants, and list full task actions.

Task Comments and Attachments
A trail of comments with the comment date and comment writer's user name is maintained
throughout the life cycle of a task.

Files or reference URLs associated with a task can be added by any of the human task
participants.

Figure 30-24 shows an example of the comments and attachments region.

Chapter 30
Creating a Task Form

30-25

Figure 30-24 Comments and Attachment Region

How To Create Task Form Regions Using Individual Drop Handlers
You can create a display form with multiple regions using the individual Task Header, Task
Action, Task History, and Task Comment and Attachment drop handlers shown in
Figure 30-25.

Figure 30-25 Using Human Task Drop Handlers

Task Header provides both header and task actions, so you do not need the Task Action drop
handler when you use Task Header. Use Task Action when you want the actions dropdown
menu and buttons, but not header details.

To create the task form without building each region individually, see How To Create a Task
Form Using the Complete Task with Payload Drop Handler.

Before you create this task form, you must have created the following:

• A new application and SOA project, and a human task service.

• An ADF task flow based on the human task. See Introduction to the Human Workflow
Tutorial for more information.

To create task form regions using individual drop handlers:

1. In the designer, double-click taskDetails1.jspx.

2. In the Create JSF Page dialog, provide a file name and directory information (or accept the
defaults) and click OK.

3. In the Data Controls panel of the Applications window, expand the human task node, then
the getTaskDetails node, and then the Return node.

Chapter 30
Creating a Task Form

30-26

4. Drag the Task icon into the taskDetails.jspx window.

5. Select Human Task, and then Task Header.

This creates the Actions dropdown list and buttons for task actions, as shown in
Figure 30-26, and header details, as shown in Figure 30-27.

Figure 30-26 Designing the Task Form: Buttons for Task Actions

Figure 30-27 Designing the Task Form: Task Headers

6. Drag additional Task icons into the JSPX designer, selecting these options with each
iteration:

• Human Task, then Task History

• Human Task, then Task Comment and Attachment

The task form now has multiple regions for task action dropdown lists and buttons, task
header details, task history, and comments and attachments.

To continue creating the task form, see Step 1 in How To Add the Payload to the Task Form.

How To Add the Payload to the Task Form
In addition to adding the payload, you can create task form regions. See Step 1 in How To
Create Task Form Regions Using Individual Drop Handlers.

To add the payload to the task form:

1. From the Components window, select ADF Faces.

2. Expand Layout.

3. Drag Panel Group Layout between the Header and Comment sections.

4. In the Data Controls panel, expand Task, and then Payload.

5. Drag the payload data collection to the left of the Panel Group Layout area.

An alternative to dropping the payload node onto the form is to expand the payload node
and drop the necessary child elements onto the form. For example, to create a read-only
form for the VacationRequest payload, expand the payload node, drag the Vacation
Request Process Request node onto the form, and select Forms > ADF Read-only Form.

6. From the context menu, select Forms, then ADF Read-only Form, as shown in
Figure 30-28.

Chapter 30
Creating a Task Form

30-27

Figure 30-28 Adding ADF Read-Only Fields to the Task Form Payload Region

7. In the Edit Form Fields dialog, accept the defaults and click OK.

This creates read-only fields in the payload region, between the Details and History
sections.

The payload regions appear, as shown in Figure 30-29.

Figure 30-29 The Payload Region of the Task Form

The task form, shown in Figure 30-30, is complete and ready to be deployed.

Chapter 30
Creating a Task Form

30-28

Figure 30-30 The Task Form (taskDetails.jspx)

What Happens When You Create a Task Form
The form you designed is saved in the .jspx file at

JDev_Oracle_Home\mywork\task_form_application_name\project_name\public_html

The task form is ready to be deployed. See Deploying a Composite Application with a Task
Flow.

Refreshing Data Controls When the Task XSD Changes
When task metadata changes, refresh the Data Controls view (XSD changes are not
refreshed) that is based on that task metadata.

The refresh functionality re-creates the data control. Figure 30-31 shows the Refresh option.

Chapter 30
Refreshing Data Controls When the Task XSD Changes

30-29

Figure 30-31 Refreshing Data Controls

To refresh the data control:

1. Right-click the data control.

2. Select the Edit Definition option to display the Refresh Data Control dialog, as shown in
Figure 30-32.

Figure 30-32 The Refresh Data Control Button

Securing the Task Flow Application
You can use any container-based security for securing the task flow.

See Requirements for Client Applications For Identity Propagation , for more information.
Form-based authentication and SSO-based authentication are available for web security.

If you are sending a notification as email, do not secure the URL with "/notification/
secure" to use container-based security because this is accessed by SOA APIs using an
internal context that cannot be created outside of SOA. The URL pattern inside security cannot
contain "/" (all URLs) and "//notification".

Chapter 30
Securing the Task Flow Application

30-30

No additional steps are required for identity propagation. Identity is automatically propagated to
the server EJBs.

Creating an Email Notification
A task form is used to provide an email notification, if email notification is defined as part of the
human task.

Options for email notification include:

• Default email notification—Use the first page of the task form that you create for the human
task. The content is sent as an HTML-based email. Images in the task flow are included as
attachments so that the notification can be viewed in disconnected mode. All drop
handlers, including Complete Task with Payload and Complete Task without Payload,
are suitable for emails.

• Custom email notification—Use the Task display for email drop handler to create a
custom email notification task page.

Notifications from Human Workflow to review notification settings as part of a human task
definition (.task file).

How To Create an Email Notification
To send a custom email notification whose content and layout you have specified, create
another JSPX file in which you design an email notification page. (Note, however, that you can
use the default page for notification with no further modifications.) Create the custom
notification page by using the custom and standard drop handlers, or use the email notification
drop handler. In addition, do the following:

• Add a router to the task flow. The router directs the task flow to send either the email
notification page or the default page, depending on the control flow based on the
bpmClientType page flow scope value.

• Edit the generated inline CSS to customize the page. No additional CSS is included at
runtime and the ADF CSS is not available at runtime. See the samples notification-101 and
notification-102 available with the Oracle SOA Suite samples.

• Reference images directly from the HTML or JSF page. (Indirect references, for example,
an included JSF that in turn includes the image, are not allowed.)

Creating a Task Flow with a Router
The control flow case with a router enables you to direct the request to a specific page based
on certain parameters. For an ADF task flow based on a human task, you need a special page
for email notifications. This section describes how to create a special page for email
notifications.

To create a task flow with a router:

1. In the Applications window, expand the task flow project and double-click project_name
_TaskFlow.xml.

The XML file opens in the designer. In the diagram view, you see the taskDetails1.jspx
icon.

2. From the Components window, select ADF Task Flow, and drag the View icon into the
designer.

Chapter 30
Creating an Email Notification

30-31

3. Click view1 below the icon and enter a name for the email notification page.

Figure 30-33 shows an example using the name EmailPage.

Figure 30-33 Creating the Email Page

4. From the Components window, drag Router into the designer.

5. Click router1 below the icon and enter a router name.

Figure 30-35 shows an example using the name PageRouter.

6. To ensure that the router is called, right-click the router icon and click Mark Activity >
Default Activity, as shown in Figure 30-34.

Figure 30-34 Marking the Router as the Default Activity

Chapter 30
Creating an Email Notification

30-32

7. Click the router - router_name - Property Inspector tab.

8. In the default-outcome field, enter default.

9. Click Add, and in the Outcome field, enter the name of the email notification page.

10. Use the Expression Builder to enter the following in the expression field:
#{pageFlowScope.bpmClientType=="notificationClient"}

11. In the Components window, click Control Flow Case.

12. In the designer, drag from the router page icon to taskDetails1.jspx.

The control flow is automatically labeled default, as shown in Figure 30-35.

Figure 30-35 Connecting the Control Flow

13. In the Components window, click Control Flow Case.

14. In the designer, drag from the router page icon to the email notification page icon.

15. Click the control-flow-case - email_page_name - Property Inspector tab.

16. From the from-outcome list, select the name of the email notification page.

Figure 30-36 shows the completed control flow.

Chapter 30
Creating an Email Notification

30-33

Figure 30-36 Completed Control Flow for an Email Notification

To continue creating the email notification page, see Step 1 in Creating an Email Notification
Page.

Creating an Email Notification Page
Creating an email notification page is similar to creating a task form, with the addition of
defining layout and inline styles.

To create an email notification page:

1. In the designer, double-click EmailPage.

2. In the Create JSF Page dialog, provide a file name and directory information (or accept the
defaults) and click OK.

The EmailPage.jspx tab opens in the designer.

3. From the Components window, drag any of the Common Components (for an image,
for example) or Layout components into the designer.

4. For the layout component you selected, provide alignment and other details in the
Property Inspector tab.

Figure 30-37 shows the layout fields available when Panel Group Layout is selected.

Chapter 30
Creating an Email Notification

30-34

Figure 30-37 Specifying a Layout

5. Expand Appearance, Style and Theme, Behavior, Advanced, Customization, and
Annotations to specify other details, as shown in Figure 30-38.

Chapter 30
Creating an Email Notification

30-35

Figure 30-38 Specifying a Layout: More Details

6. From the Data Controls panel, expand the human task node, then the getTaskDetails
node, and then the Return node.

7. Drag Task into the panel group layout area.

8. Select Human Task, and then Task details for email, as shown in Figure 30-39.

Chapter 30
Creating an Email Notification

30-36

Figure 30-39 Human Task Drop Handlers

This drop handler includes a header with inline style, a payload using ADF, and a comment
using inline style. Because the payload is dynamically generated, it does not include an
inline style.

In general, you can find the inline styles for the Header section for each component and
use the same style for the Content section for the respective components.

9. In the Edit Action Bindings dialog, select the data collection and click OK.

The email task form is complete and ready to be deployed.

What Happens When You Create an Email Notification Page
The email notification page is sent as HTML content in the email message body. Images on the
page are inlined as attachments. Relative URLs are converted to absolute URLs.

A notification may not display correctly in email if the styles used in the fields of the form are
not valid for email. Editing the generated inline CSS to customize the page may be required.
See How To Create an Email Notification, for more information.

Security issues can also prevent the form from being rendered correctly. See Securing the
Task Flow Application, for more information.

Deploying a Composite Application with a Task Flow
The composite application that contains the task flow must be deployed before you can use the
task form in the Worklist Application.

The process for deploying an application with a task flow is basically the same as deploying
any SOA composite application, as described in How To Deploy a Composite Application with
a Task Flow. See Deploying SOA Composite Applications for more information.

How To Deploy a Composite Application with a Task Flow
An application server connection is required to do the following.

To deploy a composite application with a task flow:

1. Right-click the composite application name, select Deploy, and then application_name >
to > application_server_connection.

Chapter 30
Deploying a Composite Application with a Task Flow

30-37

If you do not have a connection, select New Connection and use the Application Server
Connection wizard.

2. In the Select Deployment Targets dialog, select a server instance.

3. Click OK.

How To Redeploy the Task Form
If you change the task form and want to redeploy it, repeat the deployment step. (Right-click
the task form application name, select Deploy, and then application_name > to >
application_server_connection.) A message asking you if you want to undeploy the form is
displayed. Click OK and deploy the task form again.

How To Deploy a Task Flow as a Separate Application
If you want to deploy the task flow as a separate application, outside of the SOA composite
application, then create an application and project as a container for the task flow. After you
deploy the SOA composite application, deploy the task flow application.

How To Deploy a Task Form to a non-SOA Oracle WebLogic Server
This section describes how to deploy a task form to a non-SOA Oracle WebLogic Server.

Before Deploying the Task Form: Port Changes
If you are not using the default values for RMI or HTTP ports, open the wf_client_config.xml
file in Oracle JDeveloper to change values.

When you want to deploy task details on non-SOA servers, you must configure the
wf_client_config.xml file. This file should be created and added to the task details project
only if the task detail is deployed to a separate managed server that is not the SOA server. The
<serverURL> and <rootEndpointURL> in the file should refer to the SOA server host name and
port number.

The following example shows a sample wf_client_config.xml file.

<?xml version="1.0" encoding="UTF-8" ?>
xmlns="http://xmlns.oracle.com/bpel/services/client">
 <server default="true" name="default">
 <localClient>

<participateInClientTransaction>false</participateInClientTransaction>
 </localClient>
 <remoteClient>
 <serverURL>t3://my_host.us.example.com:8001</serverURL>

<initialContextFactory>weblogic.jndi.WLInitialContextFactory</initialContextFactory>

<participateInClientTransaction>false</participateInClientTransaction>
 </remoteClient>
 <soapClient>

<rootEndPointURL>http://my_host.us.example.com:8001</rootEndPointURL>
 </soapClient>
 </server>
</workflowServicesClientConfiguration>

Chapter 30
Deploying a Composite Application with a Task Flow

30-38

Configuring Unique Cookie Context Paths for the Session Tracking Cookies
Before deploying the task form to a non-SOA Oracle Weblogic Server, ensure that the session
tracking cookie of your task-form web application is configured with a cookie trigger path
unique to your application. This ensures that your task form application has its unique session
tracking cookie and cannot be overwritten by the session tracking cookies created for other
Oracle BPM applications such as Oracle BPM Worklist or Oracle Business Process
Management Workspace.

To configure the session cookie trigger path, in JDeveloper, open the weblogic.xml file in your
web project. Choose the overview tab in your .xml file editor, and choose the session. In the
cookie trigger path field, enter the application context path of your web application. For
example, if the URL of your application is http://host:port/my-application-context-root
in which my-application-context-root is the name of your application context root, then the
cookie trigger path is set as follows:

/my-application-context-root

Deploying oracle.soa.workflow.jar to a non-SOA Oracle WebLogic Server
The oracle.soa.workflow.jar shared library is needed on the non-SOA Oracle WebLogic Server.
It is available from

ORACLE_JDEV_HOME\jdeveloper\soa\modules\oracle.soa.workflow_11.1.1

Use Oracle WebLogic Server Administration Console to deploy the JAR file.

To deploy oracle.soa.workflow.jar:

1. Go to Oracle WebLogic Server Administration Console at

http://remote_hostname:remote_portnumber/console
2. In the Domain Structure area, click Deployments.

3. Click Install, as shown in Figure 30-40.

Chapter 30
Deploying a Composite Application with a Task Flow

30-39

Figure 30-40 Oracle WebLogic Server Administration Console: List of Deployments

4. In the Path field, provide the following path and click Next.

ORACLE_JDEV_HOME/jdeveloper/soa/modules/oracle.soa.workflow_11.1.1/
oracle.soa.workflow.jar

5. Keep the same name for the deployment and click Next, as shown in Figure 30-41.

Chapter 30
Deploying a Composite Application with a Task Flow

30-40

Figure 30-41 Oracle WebLogic Server Administration Console: Install Applications Assistant

6. Select the Deploy as Library option and click Finish.

7. Confirm that the oracle.soa.workflow(11.1.1,11.1.1) library is in the Active state, as shown
in Figure 30-42.

Figure 30-42 Oracle WebLogic Server Administration Console: The oracle.soa.workflow Active
State

See Defining the Foreign JNDI Provider on a non-SOA Oracle WebLogic Server, to continue.

Defining the Foreign JNDI Provider on a non-SOA Oracle WebLogic Server
Use Oracle WebLogic Server Administration Console to complete this portion of the task.

Chapter 30
Deploying a Composite Application with a Task Flow

30-41

To define the foreign JNDI provider:

1. In the Domain Structure area, expand Services and click Foreign JNDI Providers.

2. Click New.

3. In the Name field, enter ForeignJNDIProvider-SOA, as shown in Figure 30-43, and click
Next.

Figure 30-43 Creating a Foreign JNDI Provider

4. Click the ForeignJNDIProvider-SOA link.

5. Do the following and click Save.

• For Initial Context Factory, enter weblogic.jndi.WLInitialContextFactory.

• For Provider URL, enter t3://soa_hostname:soa_portnumber/soa-infra.

In a clustered environment, for Provider URL, enter http://
soa_hostname:soa_portnumber/soa-infra.

• For User, enter weblogic.

• For Password, enter weblogic.

Figure 30-44 shows the page where you enter this information.

Chapter 30
Deploying a Composite Application with a Task Flow

30-42

Figure 30-44 Defining the Foreign JNDI Provider

See Defining the Foreign JNDI Provider Links on a non-SOA Oracle WebLogic Server, to
continue.

Defining the Foreign JNDI Provider Links on a non-SOA Oracle WebLogic Server
Use Oracle WebLogic Server Administration Console to complete this portion of the task.

To define the foreign JNDI provider links:

1. In the Domain Structure area, expand Services and click Foreign JNDI Providers.

2. Click the ForeignJNDIProvider-SOA link.

3. Click the Links tab.

4. Click New.

Figure 30-45 shows the Links tab.

Chapter 30
Deploying a Composite Application with a Task Flow

30-43

Figure 30-45 Defining the Foreign JNDI Provider Links: The Links Tab

5. Do the following and click OK.

• For Name, enter RuntimeConfigService.

• For Local JNDI Name, enter RuntimeConfigService.

• For Remote JNDI Name, enter RuntimeConfigService.

Figure 30-46 shows where you do this.

Figure 30-46 Defining the Foreign JNDI Provider Links: Link Properties

6. Do the following and click OK.

• For Name, Local JNDI Name, Remote JNDI Name, enter ejb/bpel/services/
workflow/TaskServiceBean.

• For Name, Local JNDI Name, Remote JNDI Name, enter ejb/bpel/services/
workflow/TaskMetadataServiceBean.

Chapter 30
Deploying a Composite Application with a Task Flow

30-44

• For Name, Local JNDI Name, Remote JNDI Name, enter TaskReportServiceBean.

• For Name, Local JNDI Name, Remote JNDI Name, enter TaskEvidenceServiceBean.

• For Name, Local JNDI Name, Remote JNDI Name, enter TaskQueryService.

• For Name, Local JNDI Name, Remote JNDI Name, enter UserMetadataService.

See Including a Grant for bpm-services.jar, to continue.

Including a Grant for bpm-services.jar
To include a grant for bpm-services.jar, edit the system-jazn-data.xml file and then restart the
non-SOA Oracle WebLogic Server.

To include a grant for bpm-services.jar:

1. Locate the system-jazn-data.xml file by navigating to the domain directory, soa-infra, and
then to

ORACLE_WEBLOGIC_INSTALL/user_projects/domains/your_domain_name/config/fmwconfig
2. In system-jazn-data.xml, add the following grant. (If all or some portion of the grant

exists, then add only what is missing.)

<grant>
 <grantee>
 <codesource>
 <url>file: ORACLE_JDEV_HOME/jdeveloper/soa/modules/oracle.soa.workflow_
11.1.1/bpm-services.jar</url>
 </codesource>
 </grantee>
 <permissions>
 <permission>
 <class>oracle.security.jps.JpsPermission</class>
 <name>VerificationService.createInternalWorkflowContext</name>
 </permission>
 <permission>
 <class>oracle.security.jps.service.credstore.CredentialAccessPermission
 </class>
 <name>credstoressp.credstore.BPM-CRYPTO.BPM-CRYPTO</name>
 <actions>read,write</actions>
 </permission>
 <permission>
 <class>oracle.security.jps.JpsPermission</class>
 <name>IdentityAssertion</name>
 <actions>*</actions>
 </permission>
 </permissions>
</grant>

3. Restart the non-SOA Oracle WebLogic Server.

See Deploying the Application, to continue.

Deploying the Application
Deploy the application that contains the task form to a non-SOA Oracle WebLogic Server the
same way other applications are deployed. When you set up the application server connection,
specify the domain on the non-SOA server (the domain you specified in Step 1 of Including a
Grant for bpm-services.jar.. See Deploying SOA Composite Applications for information on
deploying applications.

Chapter 30
Deploying a Composite Application with a Task Flow

30-45

What Happens When You Deploy the Task Form
When the task form is deployed, an automatic association is created between the task
metadata and the task flow application URL. Use Oracle Enterprise Manager Fusion
Middleware Control to update this mapping. Access the task flow component in the
Component Metrics table for a specific SOA composite application. The Administration tab
shows the URI for the task form. See Administering Oracle SOA Suite and Oracle Business
Process Management Suite for more information. If the task flow is configured for HTTPS
access, you may need to do additional settings in Enterprise Manager.

Note:

For the task form association to happen automatically, the SOA server must be
running. If the association does not happen, then you receive the message Task
details not found for this task when you try to access the task form for that task
in Worklist Application or Oracle Business Process Management Workspace. In this
case, you can either restart the application or go to Oracle Enterprise Manager and
register the task form URL manually.

See Using for information on how to act on tasks.

Note:

• For the task form to work correctly, always specify the URL using the complete
name for the host on which the task flow is deployed.

• If you want to access the task form from a different URL that has a different port
number than the hostname and port number previously set in Oracle WebLogic
Remote Console, then you must change the port number for the front-end in
Oracle WebLogic Remote Console and redeploy the task form so that the task
details appear correctly in the worklist.

What You May Need to Know About Undeploying a Task Flow
When a task flow Web application is deployed, the task flow URL is registered in the database.
This URL is displayed in Oracle BPM Worklist when a task is clicked and the task details are
displayed. If the task flow Web application is later undeployed or stopped, the task flow URL in
the database is not removed as part of the undeployment. Consequently, when you click the
task in the worklist to see the task details, a 404 Not Found error is displayed rather than the
message Details not available for task. To avoid the 404 Not Found error, use Oracle
Enterprise Manager Fusion Middleware Control to undeploy the task flow application from the
application home page.

Displaying a Task Form in the Worklist
The task form is displayed in Oracle BPM Worklist, a web-based interface for users to act on
their assigned human tasks. Specific actions are available or unavailable depending on a
user's privileges.

Chapter 30
Displaying a Task Form in the Worklist

30-46

Figure 30-47 shows how the task form for the help desk request example is displayed in the
Worklist Application task details page.

Figure 30-47 Worklist Task Details Page

The task form is available in Oracle BPM Worklist after you log in. See How To Log In to the
Worklist for instructions.

Displaying a Task in an Email Notification
Learn how to display a task in an email notification.

Figure 30-48 shows how an email task notification appears in email.

Chapter 30
Displaying a Task in an Email Notification

30-47

Figure 30-48 Email Task Notification

You can click an available action, RESOLVED or UNRESOLVED, or click the Worklist
Application link to log in to the worklist. Clicking an action displays an email composer window
in which you can add a comment and send the email.

By default, the text in a task notification refers to "Worklist Application," but you can change
that text and its associated URL.

Changing the Text for the Worklist Application in Task Notifications
By default, the text in a task notification refers to "Worklist Application," but you can change
that text. To change it, you create a custom resource bundle and modify the appropriate
strings.

To change the text in a task notification:

1. Open the WorkflowLabels.properties resource bundle in the sample workflow-110-
workflowCustomizations.

2. In the WorkflowLabels.properties file, modify the following strings:

TASK_NOTIF_MSG.WORKLIST_APPLICATION=Worklist Application
TASK_NOTIF_MSG.WORKSPACE_APPLICATION=Workspace Application

Chapter 30
Displaying a Task in an Email Notification

30-48

For more details on how to modify the resource bundle string, see the workflow-110-
workflowCustomizations sample.

3. Update the Workflow Custom Classpath URL configuration parameter on your instance.

You do not have to deploy the WorkflowLabels.properties file as an application for it to
work. Instead, you can do either of the following:

• Host it on the file system, using a URL beginning with file:/// to point to the
appropriate location.

• Host the file in MDS, using a URL beginning with oramds:///....

Changing the URL of the Worklist Application in Task Notifications
To change the text in a task notification:

1. Log in to Oracle Enterprise Manager Fusion Middleware Control.

2. In the navigator, expand the SOA folder.

3. Right-click soa-infra, and select SOA Administration > Workflow Config > Task tab.

The Workflow Task Service Properties page appears.

4. Expand Advanced.

5. Modify the Worklist Application URL. For example, you can change an existing entry like
this:

http://[HTTP_HOST]:[HTTP_PORT]/integration/worklistapp/TaskDetails?
taskId=PC_HW_TASK_ID_TAG

to something like this:

http://[HTTP_HOST]:[HTTP_PORT]/patch/info/page.jspx?taskId=PC_HW_TASK_ID_TAG

For information about showing or hiding the URL of the Worklist Application, see How to
Display the URL in Notifications.

Reusing the Task Flow Application with Multiple Human Tasks
You can reuse a single task flow application with multiple human tasks. To use this feature, all
human tasks must have both the payload elements and the outcomes must be identical.

How To Reuse the Task Flow Application with Multiple Human Tasks
1. Open the TASKFLOW_PROJ_DIR\adfmsrc\hwtaskflow.xml file.

2. For each additional human task, add the following element inside the file (at the bottom just
before </hwTaskFlows>):

<hwTaskFlow>
 <WorkflowName>$TASK_NAME</WorkflowName>
 <TaskDefinitionNamespace>$TASK_NAMESPACE</TaskDefinitionNamespace>
 <TaskFlowId>$TASK_FLOW_NAME</TaskFlowId>
 <TaskFlowFileName>$TASK_FLOW_FILENAME</TaskFlowFileName>
</hwTaskFlow

where:

Chapter 30
Reusing the Task Flow Application with Multiple Human Tasks

30-49

• $TASK_NAME is replaced with the name of the human task inside the .task file (value of
the <name> element).

• $TASK_NAMESPACE is replaced with the namespace of the human task inside the .task
file (value of the attribute targetNameSpace of element <taskDefinition>).

• $TASK_FLOW_NAME is copied from the existing <hwTaskFlow>/<TaskFlowId> element.

• $TASK_FLOW_FILENAME is copied from the existing <hwTaskFlow>/<TaskFlowFileName>
element.

How to Reuse the Task Flow Application with Different Actions
You can reuse a single task flow that has different actions for different tasks. To do this:

1. Define all actions in the task that you use to generate the taskflow.

2. In any given task, disable the actions that you do not want to include.

Chapter 30
Reusing the Task Flow Application with Multiple Human Tasks

30-50

31
Human Workflow Tutorial

Learn how to design your first workflow from start to finish.

• Introduction to the Human Workflow Tutorial

• Prerequisites

• Creating an Application and a Project with a BPEL Process

• Creating the Human Task Service Component

• Designing the Human Task

• Associating the Human Task and BPEL Process Service Components

• Creating a Task Form Project

• Deploying the Task Form

• Creating an Application Server Connection

• Deploying the SOA Composite Application

• Initiating the Process Instance

• Acting on the Task in Oracle BPM Worklist

Introduction to the Human Workflow Tutorial
Learn how to create a new application and SOA project and how to design a human task to
send a vacation request to a manager for approval or rejection with the help of the tutorial.

The application developed in this tutorial is based on the following use-case:

• an employee submits a vacation request

• the manager approves or rejects the vacation request

• the employee receives a notification that approves or rejects their request

The SOA composite application contains the following components:

• A BPEL process

• A human task, for approving a vacation request submitted by an employee

It also describes how to create an Oracle ADF-based task form that enables the end user to
act upon the vacation request once the application is deployed and running. To create an
Oracle ADF-based task form you must create a new application and a new project.

This tutorial guides you through the following tasks:

• Using the SOA Composite Editor

• Using the Human Task Editor

• Modeling a single approval workflow using Oracle BPEL Designer

• Creating an Oracle ADF-based Oracle BPM Worklist

• Using Oracle BPM Worklist to view and respond to the task

31-1

Prerequisites
This tutorial makes the following assumptions:

• Oracle SOA Suite is installed on a host on which the SOA Infrastructure is configured.

• You are familiar with basic BPEL constructs, including BPEL activities and partner links,
and basic XPath functions. Familiarity with the SOA Composite Editor and Oracle BPEL
Designer, the environment for designing and deploying BPEL processes, is also assumed.

Create a file named VacationRequest.xsd with the following syntax. This file includes the
schema for the vacation request and subsequent response.

<schema attributeFormDefault="qualified" elementFormDefault="qualified"
 targetNamespace="http://xmlns.oracle.com/VacationRequest"
 xmlns="http://www.w3.org/2001/XMLSchema">
 <element name="VacationRequestProcessRequest">
 <complexType>
 <sequence>
 <element name="creator" type="string"/>
 <element name="fromDate" type="date"/>
 <element name="toDate" type="date"/>
 <element name="reason" type="string"/>
 </sequence>
 </complexType>
 </element>
 <element name="VacationRequestProcessResponse">
 <complexType>
 <sequence>
 <element name="result" type="string"/>
 </sequence>
 </complexType>
 </element>
</schema>

Creating an Application and a Project with a BPEL Process
Learn how to create an application and a project with a BPEL process.

This tutorial makes the following assumptions:

• Oracle SOA Suite is installed on a host on which the SOA Infrastructure is configured.

• You are familiar with basic BPEL constructs, including BPEL activities and partner links,
and basic XPath functions. Familiarity with the SOA Composite Editor and Oracle BPEL
Designer, the environment for designing and deploying BPEL processes, is also assumed.

Create a file named VacationRequest.xsd with the following syntax. This file includes the
schema for the vacation request and subsequent response.

<schema attributeFormDefault="qualified" elementFormDefault="qualified"
 targetNamespace="http://xmlns.oracle.com/VacationRequest"
 xmlns="http://www.w3.org/2001/XMLSchema">
 <element name="VacationRequestProcessRequest">
 <complexType>
 <sequence>
 <element name="creator" type="string"/>
 <element name="fromDate" type="date"/>
 <element name="toDate" type="date"/>
 <element name="reason" type="string"/>

Chapter 31
Prerequisites

31-2

 </sequence>
 </complexType>
 </element>
 <element name="VacationRequestProcessResponse">
 <complexType>
 <sequence>
 <element name="result" type="string"/>
 </sequence>
 </complexType>
 </element>
</schema>

To create an application and a project with a BPEL process:

1. Start Oracle JDeveloper. From the File main menu, select New > Applications > SOA
Application.

Click OK.

2. In the Application Name field, enter VacationRequest, and click Next.

3. In the Project Name field, enter VacationRequest, and click Next.

4. In the Composite Template list, select Composite with BPEL Process, and click Finish.

The Create BPEL Process dialog appears.

5. In the Name field, enter VacationRequestProcess.

Go to the bottom of the Create BPEL Process dialog.

6. To the right of the Input field, click the Search icon.

The Type Chooser dialog appears.

7. In the upper right corner, click the Import Schema File icon.

The Import Schema File dialog appears.

8. Browse for and select the VacationRequest.xsd file.

Click OK until you are returned to the Type Chooser dialog.

Chapter 31
Creating an Application and a Project with a BPEL Process

31-3

Figure 31-1 Type Chooser Dialog with the Request and Response Elements

9. Select the input element VacationRequestProcessRequest, and click OK.

You are returned to the Create BPEL Process dialog.

10. To the right of the Output field, click the Search icon.

11. Select the output element VacationRequestProcessResponse, and click OK.

You are returned to the Create BPEL Process dialog.

Figure 31-2 BPEL Process Dialog

Chapter 31
Creating an Application and a Project with a BPEL Process

31-4

12. Accept the default values for all other settings, and click OK.

A BPEL process service component is created in the SOA Composite Editor. Because
Expose as a SOAP service was selected in the Create BPEL Process dialog, the BPEL
process is automatically connected with a service binding component. The service
exposes the SOA composite application to external customers.

Figure 31-3 BPEL Process in SOA Composite Editor

For more information about service components and the SOA Composite Editor, see
Getting Started with Developing SOA Composite Applications.

Creating the Human Task Service Component
Learn to create the human task service component in which you design your human task.

To create the human task service component:

1. From the Service Components section of the Components window, drag a Human Task
into the SOA Composite Editor.

The Create Human Task dialog appears.

2. Enter the details described in Table 31-1.

Table 31-1 Create Human Task Dialog Fields and Values

Field Value

Name Enter VacationRequestTask.

Namespace Accept the default value.

Create Composite Service
with SOAP Bindings

Do not select the check box. Instead, you create a human task that
you later associate with the BPEL process you created in Creating
an Application and a Project with a BPEL Process. The BPEL
process was created with an automatically-bound web service.

3. Click OK.

The Human Task icon appears in the SOA Composite Editor above the BPEL process, as
shown in Figure 31-4.

Chapter 31
Creating the Human Task Service Component

31-5

Figure 31-4 Human Task Icon in SOA Composite Editor

4. Double-click the Human Task icon.

The Human Task Editor appears. You are now ready to begin design of your human task.

Designing the Human Task
Learn how to design a human task.

To design the human task:

1. In the Task Title field, enter Request for Vacation.

2. Accept the default values for outcomes (APPROVE and REJECT). For this task, these
outcomes represent the two choices the manager has for acting on the vacation request.

3. Click the Data tab on the left side of the editor and click the Add icon to specify the task
payload

4. Select Add string parameter.

The Add Task Parameter dialog is displayed. You now create parameters to represent the
elements in your XSD file. This makes the payload data available to the workflow task.

5. Select Element. To the right of the Element field, click the Search icon.

The Type Chooser dialog appears.

6. Expand and select Project Schema Files > VacationRequest.xsd > process, and click
OK. Figure 31-5 provides details.

Chapter 31
Designing the Human Task

31-6

Figure 31-5 Type Chooser Dialog

Ensure that the Editable via worklist check box is selected. This provides you with the
option to modify this parameter during runtime from Oracle BPM Worklist.

Click OK on the Add Task Parameter dialog.

7. Click the Assignment tab on the left side of the editor.

8. From the Participants section from the Components window, grab a Single Participant type
and drop it in the <Drop participant here> box, as shown in Figure 31-6. You select this
type because a single assignee, the manager, acts on the vacation request task.

Oracle SOA Suite provides several out-of-the-box patterns known as participant types for
addressing specific business needs. For more information, see Task Assignment and
Routing.

Chapter 31
Designing the Human Task

31-7

Figure 31-6 Assignment and Routing Policy

9. Double-click the participant you added.

The Edit Participant Type dialog box opens.

10. In the Participant Names table, click the Add icon, and select Add User.

This participant type acts alone on the task.

11. Click the Data Type column, and select By Expression from the list that is displayed.
Figure 31-7 provides details.

This action enables the task to be assigned dynamically by the contents of the task. The
employee filing the vacation request comes from the parameter passed to the task (the
creator element in the XSD file you imported in Creating an Application and a Project with
a BPEL Process). The task is automatically routed to the employee's manager.

Figure 31-7 Selection of By Expression from the Data Type Column

12. In the Value column, click the Browse icon (the dots) to invoke the Expression Builder
dialog.

13. In the dropdown list in the Functions section, select Identity Service Functions.

14. Select getManager. This function gets the manager of the user who created the vacation
request task.

15. Above the Functions section, click Insert into Expression. Place the cursor between the
parentheses of the function.

16. In the Schema section, expand task:task > task:payload >
ns1:VacationRequestProcessRequest > ns1:creator.

where ns1 is the namespace for this example; your namespace may be different.

17. Click Insert into Expression.

The Expression Builder dialog displays the XPath expression in the Expression section.
Figure 31-8 provides details.

Chapter 31
Designing the Human Task

31-8

Figure 31-8 XPath Expression

18. Click OK to exit the Expression Builder dialog. Again, click OK to exit the Add Participant
Type dialog.

19. From the File menu, select Save All.

Associating the Human Task and BPEL Process Service
Components

Learn how to associate your human task with the BPEL.

Associate your human task with the BPEL process you created in Creating an Application and
a Project with a BPEL Process.

To associate the human task and BPEL process service component:

1. In the Applications window, double-click composite.xml.

2. Double-click the VacationRequestProcess BPEL process service component in the SOA
Composite Editor.

The BPEL process displays in Oracle BPEL Designer.

3. In the Components window, expand SOA Components.

4. Drag a Human Task beneath the receiveInput receive activity. Double-click the activity.

The Human Task dialog appears.

5. From the Task Definition list, select the VacationRequestTask task you created (if it is
not currently displaying).

The dialog refreshes as shown in Figure 31-9 to display additional fields.

Chapter 31
Associating the Human Task and BPEL Process Service Components

31-9

Figure 31-9 Human Task Dialog

6. In the BPEL Variable column, click the Browse icon (dots) shown in Figure 31-10.

Figure 31-10 BPEL Variable Entry

The Task Parameters dialog appears.

7. From the Type list, select Variable.

8. Expand Process > Variables > inputVariable > payload >
ns1:VacationRequestProcessRequest. Figure 31-11 provides details.

Chapter 31
Associating the Human Task and BPEL Process Service Components

31-10

Figure 31-11 Variable Selection

Click OK.

9. Click OK to close the Human Task dialog.

The human task activity appears as shown in Figure 31-12.

Chapter 31
Associating the Human Task and BPEL Process Service Components

31-11

Figure 31-12 Human Task and Partner Links in Oracle BPEL Designer

10. Return to the SOA Composite Editor and note that the BPEL process and human task
service components have been automatically connected. Figure 31-13 provides details.
From the File menu, select Save All.

Figure 31-13 SOA Composite Editor

Chapter 31
Associating the Human Task and BPEL Process Service Components

31-12

Creating a Task Form Project
Learn to create a project for the task form. This is a separate project from the one in which you
created the human task.

To create a task form project:

1. Double-click the VacationRequestTask human task.

The Human Task Editor is displayed.

2. From the Form menu at the top, select Auto-Generate Task Form. Figure 31-14 provides
details.

Figure 31-14 Task Form Creation

The Create Project dialog appears.

3. In the Project Name field, enter VacationRequestTaskFlow, and click OK.

4. From the File main menu, select Save All.

Deploying the Task Form
Learn how to deploy the task form.

To deploy the task form:

1. In the Applications window, right-click the VacationRequestTaskFlow project and select
Deploy > VacationRequestTaskFlow.

2. Follow the pages of the deployment wizard to deploy the task form.

The task form is deployed.

For more information about deployment, see Deploying SOA Composite Applications in .

3. Return to Oracle BPM Worklist.

4. Note that the task form now appears at the bottom of Oracle BPM Worklist.

Chapter 31
Creating a Task Form Project

31-13

Creating an Application Server Connection
Learn to create a connection to the application server on which Oracle SOA Suite is installed
and configured with the SOA Infrastructure. These instructions describe how to create a
connection to Oracle WebLogic Server.

To create an application server connection

1. From the File main menu, select New > Connections > Application Server Connection.

Click OK.

2. In the Connection Name field, enter a connection name.

3. From the Connection Type list, select WebLogic 10.3.

Click Next.

4. In the Username field, enter weblogic.

5. In the Password field, enter the password for connecting to the application server.

Click Next.

6. Enter the hostname for the application server that is configured with the SOA
Infrastructure.

7. In the Weblogic Domain field, enter the Oracle WebLogic Server domain.

Click Next.

8. Click Test Connection.

If successful, the message shown in Figure 31-15 is displayed.

Figure 31-15 Connection Success

9. Click Finish.

10. From the File menu, select Save All.

Chapter 31
Creating an Application Server Connection

31-14

Deploying the SOA Composite Application
Learn how to deploy to the application server on which you created the connection.

To deploy the SOA composite application

1. In the Applications window, right-click the VacationRequest project and select Deploy >
VacationRequest.

2. Follow the pages of the deployment wizard to deploy the project.

The project is deployed.

For more information about deployment, see Deploying SOA Composite Applications in .

Initiating the Process Instance
Learn how to initiate the process instance.

See Administering Oracle SOA Suite and Oracle Business Process Management Suite for
instructions on accessing the Test Web Service page for initiating the process instance.

Acting on the Task in Oracle BPM Worklist
Learn how to act on the tasks in Oracle BPM Worklist.

To resolve the task in Oracle BPM Worklist:

1. Go to Oracle BPM Worklist:

http://hostname:7001/integration/worklistapp
2. Log in to Oracle BPM Worklist.

3. Resolve the task.

Chapter 31
Deploying the SOA Composite Application

31-15

32
Using Oracle BPM Worklist

Get an overview of how worklist users and administrators interact with Oracle BPM Worklist,
and how to customize the worklist display to reflect local business needs, languages, and time
zones.

• Introduction to Oracle BPM Worklist

• Logging In to Oracle BPM Worklist

• Customizing the Task List Page

• Exporting Tasks to Microsoft Excel

• Acting on Tasks: The Task Details Page

• Approving Tasks

• Setting a Vacation Period

• Setting Rules

• Using the Worklist Administration Functions

• Specifying Notification Settings

• Using Mapped Attributes (Flex Fields)

• Creating Worklist Reports

• Accessing Oracle BPM Worklist in Local Languages and Time Zones

• Creating Reusable Worklist Regions

• Java Code for Enabling Customized Applications in Oracle BPM Worklist

For information about how to use the APIs exposed by the workflow service, Building a Custom
Worklist Client.

For information about troubleshooting human workflow issues, see section "Human Workflow
Troubleshooting" of Administering Oracle SOA Suite and Oracle Business Process
Management Suite.

Introduction to Oracle BPM Worklist
Oracle BPM Worklist enables business users to access and act on tasks assigned to them. For
example, from a worklist, a loan agent can review loan applications or a manager can approve
employee vacation requests.

Oracle BPM Worklist provides different functionality based on the user profile. Standard user
profiles include task assignee, supervisor, process owner, reviewer, and administrator. For
example, worklist users can update payloads or business data, attach documents or
comments, and route tasks to other users, in addition to completing tasks by providing
conclusions such as approvals or rejections. Supervisors or group administrators can use the
worklist to analyze tasks assigned to a group and route them appropriately.

Users can filter their tasks by creating views or saved searches.

Using Oracle BPM Worklist, task assignees can do the following:

32-1

• Perform authorized actions on tasks in the worklist, acquire and check out shared tasks,
define personal ToDo tasks, and define subtasks.

• Filter tasks in a worklist view based on various criteria.

• Work with standard work queues, such as high priority tasks, tasks due soon, and so on.
Work queues allow users to create a custom view to group a subset of tasks in the
worklist, for example, high priority tasks, tasks due in 24 hours, expense approval tasks,
and more.

• Define custom work queues.

• Gain proxy access to part of another user's worklist.

• Define custom vacation rules and delegation rules.

• Enable group owners to define task dispatching rules for shared tasks.

• Collect a complete workflow history and audit trail.

• Use digital signatures for tasks.

Figure 32-1 shows an illustration of Oracle BPM Worklist.

Figure 32-1 Oracle BPM Worklist—Access Tasks, Forms, Attachments, and Reports

The worklist is the list of tasks. A task form displays and updates the task details. You can
create a task form using ADF task flows in Oracle JDeveloper. See Designing Task Forms for
Human Tasks for more information.

You can build clients for workflow services using the APIs exposed by the workflow service.
The APIs enable clients to communicate with the workflow service using local and remote
EJBs, SOAP, and HTTP.

Chapter 32
Introduction to Oracle BPM Worklist

32-2

Logging In to Oracle BPM Worklist
The following are the different types of users recognized by Oracle BPM Worklist, based on the
privileges assigned to the user.

Table 32-1 Worklist User Types

Type of User Access

End user (user) Acts on tasks assigned to him or his group and has access to system and custom actions,
routing rules, and custom views

Supervisor (manager) Acts on the tasks, reports, and custom views of his reportees, in addition to his own end-user
access

Process owner Acts on tasks belonging to the process but assigned to other users, in addition to his own
end-user access

Group administrator Manages group rules and dynamic assignments, in addition to his own end-user access

Workflow administrator Administers tasks that are in an errored state, for example, tasks that must be reassigned or
suspended. The workflow administrator can also change application preferences and map
attributes, and manage rules for any user or group, in addition to his own end-user access.

Assignee Acts on tasks assigned to him, in addition to his own end-user access

Reviewer Acts on tasks assigned for review, in addition to his own end-user access

Note:

Multiple authentication providers (for example, SSO and forms) are not supported.

How to Log In to the Worklist
To log in, you must have installed Oracle SOA Suite and the SOA Server must be running. See
Installing and Configuring Oracle SOA Suite and Business Process Management for more
information.

Use a supported web browser:

Browser Minimum Version

Microsoft Edge 103

Google Chrome 103

Mozilla Firefox 102

Apple Safari 14

To log in:

1. Go to:

http://hostname:port_number/integration/worklistapp
• hostname is the name of the host computer on which Oracle SOA Suite is installed

• port_number is the port used at installation

Chapter 32
Logging In to Oracle BPM Worklist

32-3

2. Enter the user name and password.

You can use the preseeded user to log in as an administrator. If you have loaded the demo
user community in the identity store, then you can use other users such as jstein or
jcooper.

The user name and password must exist in the user community provided to JAZN. See
Administering Oracle SOA Suite and Oracle Business Process Management Suite for the
organizational hierarchy of the demo user community used in examples throughout this
chapter.

3. Click Login.

Enabling the weblogic User for Logging in to the Worklist
For the weblogic user in Oracle Internet Directory to log in to Oracle BPM Worklist, the Oracle
Internet Directory Authenticator must have an Administrators group, and the weblogic user
must be a member of that group.

To enable the weblogic user:

1. Create a weblogic user in Oracle Internet Directory using the LDAP browser. The
users.ldif file is imported to Oracle Internet Directory as follows:

dn: cn=weblogic,cn=Users,dc=us,dc=oracle,dc=com
objectclass: inetorgperson
objectclass: organizationalPerson
objectclass: person
objectclass: orcluser
objectclass: orcluserV2
objectclass: top
sn: weblogic
userpassword: welcome1
uid: weblogic

2. Create an Administrators group in Oracle Internet Directory and assign the weblogic user
to it. The groups.ldif file is imported to Oracle Internet Directory as follows:

dn: cn=Administrators,cn=Groups,dc=us,dc=oracle,dc=com
objectclass: groupOfUniqueNames
objectclass: orclGroup
objectclass: top
owner: cn=orcladmin,cn=Users,dc=us,dc=oracle,dc=com
uniquemember: cn=weblogic,cn=Users,dc=us,dc=oracle,dc=com

What Happens When You Log In to the Worklist
Identity service workflow APIs authenticate and authorize logins using a user name, password,
and optionally a realm set, if multiple realms were defined for an organization. See How to
Specify the Login Page Realm Label, for information on how administrators can set a
preference to change the realm label displayed in the interface, or specify an alternative
location for the source of the login page image.

Figure 32-2 shows an example of the Home page.

Chapter 32
Logging In to Oracle BPM Worklist

32-4

Figure 32-2 Oracle BPM Worklist—The Home (Task List) Page

This page lists all the tasks and work items assigned to you, depending on your role. For
example, all users can access the My Tasks and Initiated Tasks pages. Only supervisors can
access the My Staff page, and only Process Workspace administrators can access the
Administrative Tasks page.

At the far left, as shown in Figure 32-3, is a list of views with My Tasks selected. Expand this
list to select:

• A particular view showing the number of open tasks for each view. Selecting a particular
view refreshes the task count to the latest number.

• A list of applications deployed to Process Workspace

• Any favorite links or applications you may have specified

To keep this list visible while you work on tasks, click Pin. Then, to hide it, click Unpin

Chapter 32
Logging In to Oracle BPM Worklist

32-5

Figure 32-3 Selecting a View

Table 32-2 describes the components of the Home (task list) page.

Table 32-2 Components of the Home (Task List) Page

Component Description

Views list Inbox, Standard Views, My Views. For more information, see How To Create, Delete, and Customize
Worklist Views.

The inbox views displayed depend on the role granted to the logged-in user.

• Everyone (the user role) sees My Tasks, Initiated Tasks and Administrative Tasks.
• Users who are also managers see the My Tasks, Initiated Tasks, Administrative Tasks and My

Staff Tasks tabs.
• Users who are also administrators (the BPMWorkflowAdmin), but not managers, see the My Tasks,

Initiated Tasks, Administrative Tasks, Administration, and Evidence Search tabs.
• Users who are managers and administrators see all the tabs— My Tasks, Initiated Tasks, My Staff

Tasks, Administrative Tasks, Administration, and Evidence Search.
• Users with the workflow.admin.evidenceStore permission also see the Evidence Search tab.

See the following for more information:

• How To Act on Tasks That Require a Digital Signature, for information about evidence search
• How To Manage Other Users' or Groups' Rules (as an Administrator)

Worklist Views -

Task Status A bar chart shows the status of tasks in the current view. For more information, see How To Customize the
Task Status Chart.

Chapter 32
Logging In to Oracle BPM Worklist

32-6

Table 32-2 (Cont.) Components of the Home (Task List) Page

Component Description

Display Filters Specify search criteria from the Assignee or State fields. The category filters that are available depend on
which tab is selected.

• From the My Tasks tab, the Assignee filters are Me, My Group, Me & My Group, Me (Previously)
(tasks worked on previously), and Me (Review Only). From the Initiated Tasks tab, the assignee filter
is not available. From the My Staff Tasks tab, the only assignee filter is Reportees. From the
Administrative Tasks tab, the assignee filter is not available.

• The State filters include Any, Assigned, Completed, Suspended, Withdrawn, Expired, Errored,
Alerted, Information Requested.

Use Search to enter a keyword, or use Advanced Search. For more information, see How To Filter Tasks.

Actions List Select a group action (Claim) or a custom action (for example, Approve or Reject) that was defined for
the human task. Claim appears for tasks assigned to a group or multiple users, even if the task is an FYI
task; one user must claim the task before it can be worked on. Other possible actions for a task, such as
system actions, are displayed on the task details page for a specific task. You can also create ToDo tasks
and subtasks here.

Note:
• If a task is aggregated, you only see actions such as Approve and Reject, even if the aggregated

task includes FYI tasks. No acknowledge action is explicitly provided. Approve or Reject can be
interpreted as an acknowledge action.

• The Claim button remains enabled even when Auto Claim has been previously enabled. This button
enables a user to claim and continue working on the task rather than to simply approve it.

Default
Columns

Title—The title specified when the human task was created. Tasks associated with a purged or archived
process instance do not appear.

Number—A unique ID number assigned to the task.

Creator—The user who created the task.

Assigned—The date that the task was assigned.

Priority—The priority specified when the human task was created. The highest priority is 1; the lowest is
5.

Task Details Task details can be viewed in the lower half of the worklist by selecting the task in the Inbox. You can also
view them in the same window or a new window by hiding the task details pane in Edit Inbox Settings.
After you complete a task:

• The Task Details page for the completed task disappears.
• The task list refreshes to show only the remaining tasks.
• The details of the next open task are shown.
For more information, see Acting on Tasks: The Task Details Page.

Figure 32-2 also shows the Administration, Reports, and Preferences links (upper-right
corner). Table 32-3 summarizes the Home, Administration, Reports, and Preferences
pages.

Table 32-3 Worklist Main Pages Summary

Page Description

Home As described in Table 32-2, the logged-in user's list of tasks, details for a selected task, and
all the functions needed to start acting on a task are provided.

Chapter 32
Logging In to Oracle BPM Worklist

32-7

Table 32-3 (Cont.) Worklist Main Pages Summary

Page Description

Administration The following administrative functions are available:

• Setting application preferences
• Mapping attributes
• Searching the evidence store
• Administering approval groups
• Configuring tasks

Reports The following reports are available: Unattended Tasks Report, Tasks Priority Report, Tasks
Cycle Time Report, Tasks Productivity Report, and Tasks Time Distribution Report. For more
information, see How To Create Reports.

Preferences Preference settings include:

• Setting rules for users or groups, including vacation rules, and setting vacation periods
• Uploading certificates
• Specifying user notification channels and message filters

What Happens When You Change a User's Privileges While They are
Logged in to Oracle BPM Worklist

If you change a user's privileges in Oracle Enterprise Manager Fusion Middleware Control
while the user is logged in to Oracle BPM Worklist, the changes take effect only after a
subsequent login by the user. This is true for situations in which there are two active worklist
sessions, one in which the user is logged in before the privileges are changed, and one in
which the same user logs in after the privileges are changed. In the first case, the changes to
the user's privileges do not take effect while the user is logged in. In the second case, when
the user logs in to the second instance of the Worklist Application, the changes to the user's
privileges do take effect.

Customizing the Task List Page
You can customize your task list in several ways, including adding worklist views, selecting
which columns to display, setting the task details pane to show or hide, and displaying a subset
of the tasks based on filter criteria. Resize the task list display area to increase the number of
tasks fetched.

Note:

When you deploy SOA composite applications with human tasks to partitions, the
tasks created for these composites cannot be filtered using the partition as a
parameter inside Oracle BPM Worklist. For example, you can select a task type
corresponding to a particular partition (the same task type, but in different partitions),
but filtering does not work with the advanced search, custom views, custom rules,
and mapped attribute features. For example, assume VacationRequestApp is
deployed to partition 1 and partition 2. When the advanced search is used to select
tasks corresponding to composites deployed in partition 1, the result does not return
the tasks.

Chapter 32
Customizing the Task List Page

32-8

How To Filter Tasks
Figure 32-4 shows the filter fields.

Figure 32-4 Filters—Assignee, Status, Search, and Advanced Search

Filters are used to display a subset of tasks, based on the following filter criteria:

• Assignee

From the Assignee drop-down list, select from the following:

– Me—Retrieves tasks directly assigned to the logged-in user

– My Group—Retrieves the following:

* Tasks that are assigned to groups to which the logged-in user belongs

* Tasks that are assigned to an application role that the logged-in user is assigned

* Tasks that are assigned to multiple users, one of which is the logged-in user

– Me & My Group—Retrieves all tasks assigned to the user, whether through direct
assignment, or by way of a group, application role, or list of users

– Me (Previously)—Retrieves tasks that the logged-in user has previously updated or
closed

– Me (Review Only)—Retrieves task for which the logged-in user is a reviewer

From the My Staff Tasks tab, select Reportees.

• State—Select from the following: Any, Assigned, Completed, Suspended (can be
resumed later), Withdrawn, Expired, Errored (while processing), Alerted, or Information
Requested.

• Search—Enter a keyword to search task titles, comments, identification keys, and the flex
string fields of tasks that qualify for the specified filter criterion.

• Advanced—Provides additional search filters.

Note:

If a task is assigned separately to multiple reportees, then, when a manager looks at
the My Staff Tasks list, the manager sees as many copies of that task as the number
of reportees that the task is assigned to.

To Filter Tasks Based on Assignee or State

To filter tasks based on assignee or state:

Select options from the Assignee and State lists. The task list is automatically updated based
on the filter selections.

Chapter 32
Customizing the Task List Page

32-9

To Filter Tasks Based on Keyword Search

To filter tasks based on keyword search:

1. Enter a keyword to search task titles, comments, identification keys, and the flex string
fields of tasks that qualify for the specified filter criterion.

2. Press Enter or click Refresh.

To Filter Tasks Based on an Advanced Search

To filter tasks based on an advanced search:

Mapped attribute labels can be used in an advanced search if you select task types for which
mapped attribute mappings have been defined.

See How To Map Attributes, for more information.

1. Click Advanced.

2. (Optional) Check Save Search As View, provide a view name, and use the Display tab to
provide other information, as shown in Figure 32-5 and Figure 32-6.

Figure 32-5 Worklist Advanced Search—Definition Tab

Chapter 32
Customizing the Task List Page

32-10

Figure 32-6 Worklist Advanced Search—Display Tab

Table 32-4 describes the advanced search view columns available in the Display tab.

Table 32-4 Advanced Search—View Columns

Column Description

Start Date The start date of the task (used with ToDo tasks).

Task Definition Name The name of the task component that defines the task instance.

Owner Role The application role (if any) that owns the task instance. Task
owners can be application roles, users, or groups. If the owner of
the task is an application role, this field is set.

Updated Date The date the task instance was last updated.

Composite Version The version of the composite that contains the task component that
defines the task instance.

Creator The name of the creator of the task.

From User The from user for the task.

Percentage Complete The percentage of the task completed (used with ToDo tasks).

Owner Group The group (if any) that owns the task instance. Task owners can be
application roles, users, or groups. If the owner of the task is a
group, this field is set.

End Date The end date of the task (used with ToDo tasks).

Composite The name of the composite that contains the task component that
defines the task instance.

Due Date The due date of the task (used with ToDo tasks).

Chapter 32
Customizing the Task List Page

32-11

Table 32-4 (Cont.) Advanced Search—View Columns

Column Description

Composite Distinguished
Name

The unique name for the particular deployment of the composite
that contains the task component that defines the task instance.

Task Display URL The URL to display the details for the task.

Updated By The user who last updated the task.

Outcome The outcome of the task, for example Approved or Rejected. This is
only set on completed task instances.

Task Namespace A namespace that uniquely defines all versions of the task
component that defines this task instance. Different versions of the
same task component can have the same namespace, but no two
task components can have the same namespace.

Approvers The approvers of the task.

Application Context The application to which any application roles associated with the
tasks (such as assignees, owners, and so on) belong.

Owner User The user (if any) that owns the task instance. Task owners can be
application roles, users, or groups. If the owner of the task is a user,
this field is set.

Identifier The (optional) custom unique identifier for the task. This is an
additional unique identifier to the standard task number.

Category The category of the task.

Acquired By The name of the user who claimed the task in the case when the
task is assigned to a group, application role, or to multiple users,
and then claimed by the user.

Component The name of the task component that defines the task instance.

Original Assignee User The name of the user who delegated the task in the case when the
user delegates a task to another user.

Assigned The date that this task was assigned.

Partition The domain to which the composite that contains the task
component that defines the task instance belongs.

Title The title of the task.

Number An integer that uniquely identifies the task instance.

Priority An integer that defines the priority of the task. A lower number
indicates a higher priority—typically numbers 1 to 5 are used.

Assignees The current task assignees (users, groups or application roles).

State The state of the task instance.

Created The date that the task instance was created.

Expires The date on which the task instance expires.

Custom Date 1 Custom flex field 1 with Date data type

Custom Date 2 Custom flex field 2 with Date data type

Custom String 1 Custom flex field 1 with String data type

Custom String 2 Custom flex field 2 with String data type

Custom Number 1 Custom flex field 1 with Number data type

Custom Number 2 Custom flex field 2 with Number data type

The saved view appears in the Views pane under My Views, as shown in Figure 32-7.

Chapter 32
Customizing the Task List Page

32-12

Note:

When a user view is created, and there are multiple versions of the same
composite deployed, then selecting the task type with a particular version, for
example, 'TestCompositeHumanTask2.0 ' does not ensure that only the tasks
corresponding to this version are filtered. Instead use the task definition id
column in the conditions, apart from selecting the task type, to get the correct
result.

Figure 32-7 Saving a View

3. Select an assignee, as shown in Figure 32-8.

Figure 32-8 Worklist Advanced Search

4. Add conditions (filters), as shown in Figure 32-9.

Chapter 32
Customizing the Task List Page

32-13

Figure 32-9 Adding Filters for an Advanced Search on Tasks

Table 32-5 describes the available conditions.

Table 32-5 Advanced Search—Conditions

Condition Description

User Conditions -

Acquired By The name of the user who claimed the task in the case when the
task is assigned to a group, application role, or to multiple users,
and then claimed by the user.

Approvers The approvers of the task.

Creator The name of the creator of the task.

From User The from user for the task.

Original Assignee User The name of the user who delegated the task in the case when the
user delegates a task to another user.

Owner Group The group (if any) that owns the task instance. Task owners can be
application roles, users, or groups. If the owner of the task is a
group, this field is set.

Owner Role The application role (if any) that owns the task instance. Task
owners can be application roles, users, or groups. If the owner of
the task is an application role, this field is set.

Owner User The user (if any) that owns the task instance. Task owners can be
application roles, users, or groups. If the owner of the task is a user,
this field is set.

Updated By The user who last updated the task.

Advanced Conditions -

Application Context The application to which any application roles associated with the
tasks (such as assignees, owners, and so on) belong.

Component The name of the task component that defines the task instance.

Composite The name of the composite that contains the task component that
defines the task instance.

Chapter 32
Customizing the Task List Page

32-14

Table 32-5 (Cont.) Advanced Search—Conditions

Condition Description

Composite Distinguished
Name

The unique name for the particular deployment of the composite
that contains the task component that defines the task instance.

Composite Version The version of the composite that contains the task component that
defines the task instance.

Partition The domain to which the composite that contains the task
component that defines the task instance belongs.

Task Display URL The URL to display the details for the task.

Basic Conditions -

Category The category of the task.

Identifier The (optional) custom unique identifier for the task. This is an
additional unique identifier to the standard task number.

Number An integer that uniquely identifies the task instance.

Outcome The outcome of the task, for example Approved or Rejected. This is
only set on completed task instances.

Percentage Complete The percentage of the task completed (used with ToDo tasks).

Priority An integer that defines the priority of the task. A lower number
indicates a higher priority; typically numbers 1 to 5 are used.

State The state of the task instance.

Task Definition Name The name of the task component that defines the task instance.

Task Namespace The namespace of the task.

Title The title of the task.

Time Conditions The category of the task.

Assigned The date that this task was assigned.

Created The date that the task instance was created.

Due Date The due date of the task (used with ToDo tasks).

End Date The end date of the task (used with ToDo tasks).

Expires The date on which the task instance expires.

Start Date The start date of the task (used with ToDo tasks).

Updated Date The date that the task instance was last updated.

Custom Conditions -

Custom Date 1 Custom flex field 1 with Date datatype

Custom Date 2 Custom flex field 2 with Date datatype

Custom String 1 Custom flex field 1 with String datatype

Custom String 2 Custom flex field 2 with String datatype

Custom Number 1 Custom flex field 1 with Number datatype

Custom Number 2 Custom flex field 2 with Number datatype

5. Select Any or All for matching multiple filters.

6. Add parameter values, shown in Figure 32-10.

Chapter 32
Customizing the Task List Page

32-15

Figure 32-10 Advanced Search

7. Specify whether to share either this view's definition or its data, and the users or groups to
share it with.

8. Click Search.

The task list appears with the tasks filtered according to your criteria.

How To Create, Delete, and Customize Worklist Views
The Views menu, shown in Figure 32-11, displays the following:

• Inbox—Shows all tasks that result from any filters you may have used. The default shows
all tasks.

• Standard Views—Shows standard views and views that you defined.

• My Views—Shows views that you have created.

Chapter 32
Customizing the Task List Page

32-16

Figure 32-11 Worklist Views

Use Views to create, share, and customize views.

To create a worklist view:

1. In the Views section, click Add View. The Create User View dialog box appears as shown
in figure

2. Use the Definition tab of the Create User View dialog box, shown in Figure 32-12, to do
the following:

• Name—Specify a name for your view.

• Add to Standard Views—This option applies to administrators only. Administrators
select this option to create the view as a standard view, which then appears in the
Standard Views list for all worklist users.

• Assignee—Select Me, My Group, Me & My Group, Me (Previously), Me (Review
Only), Creator, Reportees, Admin, Owner.

• Match—Select All or Any to match the conditions you added.

• Add Condition (a plus sign)—Select the conditions that apply to your view.

• Share View—You can grant access to another user to either the definition of this view,
in which case the view conditions are applied to the grantee's data, or to the data itself,
in which case the grantee can see the grantor's worklist view, including the data.
Sharing a view with another user is similar to delegating all tasks that correspond to
that view to the other user; that is, the other user can act on your behalf. Shared views
are displayed under My Views.

• Users—Specify the users (grantees) who can share your view.

• Groups—Specify the groups who can share your view.

Chapter 32
Customizing the Task List Page

32-17

Figure 32-12 Creating a Worklist View

3. Use the Display tab of the Create User View dialog, shown in Figure 32-13, to customize
the fields that appear in the view.

Figure 32-13 Displaying Fields in a Worklist View

Chapter 32
Customizing the Task List Page

32-18

• Select View Columns—Specify which columns you want to display in your task list.
They can be standard task attributes or mapped attributes that have been mapped for
the specific task type. The default columns are the same as the columns in your inbox.

• Sort by—Select a column to sort on.

• Then by—Select a second column to sort on.

• Then by—Select a third column to sort on.

• Then by—Select a forth column to sort on.

• Sort Order—Select ascending or descending order.

4. Click OK.

The saved view appears in the Views panel under My Views

To delete a view:

Note:

If an administrator inadvertently deletes the pre-seeded standard views, then those
views do not remain permanently deleted. They are recreated when the server
restarts.

1. In the Views panel, select a view.

2. Click the Delete icon.

3. The Confirm Delete dialog box prompts you to confirm that you want to delete the view.

4. Click Yes. The view is deleted.

To Customize a Worklist View

To customize a worklist view:

1. In the Views pane, select the view you want to customize.

2. Select Edit View. The Edit User View dialog box appears.

3. Use the items in the Edit User View dialog box to customize the view, as shown in
Figure 32-14, and click OK.

Chapter 32
Customizing the Task List Page

32-19

Figure 32-14 Customizing Fields in a Worklist View

How To Customize the Task Status Chart
The bar chart shows tasks broken down by status, with a count of how many tasks in each
status category. The chart applies to the filtered set of tasks within the current view.

To customize the task status chart:

1. Click the Edit icon.

2. Add or remove status states for display, as shown in Figure 32-15, and click OK.

Figure 32-15 Customizing the Task Status Chart

Chapter 32
Customizing the Task List Page

32-20

How To Create a ToDo Task
Use the Create ToDo Task dialog, shown in Figure 32-16, to create a top-level ToDo task for
yourself or others. This task is not associated with a business task.

Figure 32-16 The Create ToDo Task Dialog

To-Do tasks appear in the assignee's Inbox.

You can create ToDo tasks that are children of other ToDo tasks or business tasks. A ToDo
task can have only one level of child ToDo tasks. When all child ToDo tasks are 100%
complete, the parent ToDo task is also marked as completed. If the parent ToDo task is
completed, then child ToDo tasks are at 100% within the workflow system. If the parent is a
business task, the child ToDo is not marked as completed. You must set the outcome and
complete it. If you explicitly set a ToDo task to 100%, there is no aggregation on the parent
task.

ToDo tasks can be reassigned, escalated, and so on, and deleted (logical delete) and purged
(physical delete). Reassignment, escalation, and so on of the parent task does not affect the
assignment of any child ToDo tasks. The completion percentage of a ToDo task can be reset to
less than 100% after it is completed.

Assignment rules (such as vacation rules) are not applied to ToDo tasks. You cannot specify
business rules for ToDo tasks.

To create a To-Do task:

1. From the Actions list, select Create To-Do Task, as shown in Figure 32-17.

Figure 32-17 Creating a To-Do Task

2. Provide details in the Create ToDo Task dialog, shown in Figure 32-16, and click OK.

• Task Title: Enter anything that is meaningful to you.

• Category: Enter anything that is meaningful to you.

• Priority: Select from 1 (highest) to 5 (lowest)

Chapter 32
Customizing the Task List Page

32-21

• Percentage Complete: This attribute indicates how much of the task is completed.
100% sets the attribute as completed.

• StartDate: The task start date. The start date need not be the current date.

• Due Date: The due date does not trigger an expiration. You can also see overdue
tasks.

• Assignee: You can assign yourself or someone else.

How to Create Subtasks in the Worklist Application
A subtask is a child of a parent task. Creating a subtask can be helpful, for example, when a
purchase order contains several line items and you need a separate approval process for one
of them.

Note:

You cannot create subtasks for ToDo tasks.

What You May Need to Know About Creating Subtasks
Here are some things to keep in mind when creating subtasks:

• If the parent is a business task and that task is completed, then the subtasks of that task
are withdrawn.

• If you are using a release of Oracle Business Process Management that is before 11g
Release 1 (11.1.1.7.0), then you must re-create the task form for any task for which you
are creating a subtask. You may, however, continue to use processes that were deployed
in earlier releases.

If you do not re-create the task form, then the Actions list in the task form itself does not
provide the option to create a subtask. You can, however, create a subtask by selecting
Create Subtask from the Actions list above the worklist.

• If you are the administrator for the BPMN service engine, be aware that subtasks do not
appear in the Oracle Enterprise Manager Fusion Middleware Control.

To create a subtask:

1. In the worklist, select the task for which you want to create a subtask.

2. From the Actions list, select Create Subtask.

The Create Subtask dialog box appears.

3. In the Create Subtask dialog, define the subtask, keeping the following in mind:.

• Title is a required field.

• If there is more than one available form for this subtask, then the Form field provides a
list for your selection. Otherwise, the Form field shows the name of the default form.
You can use a task form different from the one associated with the parent task.

• Possible routing types are:

– Single Approver

– Group Vote, also referred to as a parallel task. For this routing type, you are
prompted to enter multiple participants.

Chapter 32
Customizing the Task List Page

32-22

– Chain of Single Approvers, also referred to as a sequential task. For this routing
type, you are prompted to enter multiple participants.

• You specify participants by performing a search and selecting from the results. You can
select multiple users, groups, or application roles.

4. When you have finished specifying the subtask, in the Create Subtask dialog box, click
OK. This refreshes the task list. When you select the parent task, the Task Details page
now includes a Subtasks section displaying the details about the subtask you created for
that task.

Note:

• If you specified more than one participant for the subtask, then the Subtask
region displays a separate item for each participant.

• If a participant completes a subtask, then you must manually refresh the task
to show the details for that completed subtask.

Exporting Tasks to Microsoft Excel
You can export tasks to Excel based on a selected view.

The export downloads all rows and columns displayed in the selected view. For example, if you
select My Tasks view, you will download 16 tasks. If you select the Administrative Tasks view,
you will download 49,694 tasks, as shown in Figure 32-18:

Figure 32-18 Tasks Views

How to Export Tasks to Excel
Any logged-in user can export tasks.

To export tasks:

1. Select the appropriate View from the list.

2. Click the Export button

Chapter 32
Exporting Tasks to Microsoft Excel

32-23

3. Choose a folder location and enter a filename for the download and click Save.

4. Open the file in Excel to view the downloaded tasks.

Acting on Tasks: The Task Details Page
Any kind of change to the task details page, such as changing a priority or adding a comment
or attachment, requires you to save the change before you go on to make any other changes.

Task details can be viewed inline (see the lower section in Figure 32-2) or in the same window
or a new window (Modify settings in Edit Inbox Settings.)

Figure 32-19 shows the task details page.

Figure 32-19 Task Details Page

The task details page has the following components:

• Actions—Lists the system actions that are possible for the task, such as Request
Information, Reassign, Renew, Suspend, Escalate, and Save.

• Action buttons—Displays buttons for custom actions that are defined in the human task,
such as setting task outcomes (for example, Resolved and Unresolved for a help desk
request or Approve and Reject for a loan request). For the task initiator, manager, or
administrator, Withdraw may also appear.

• Details—Displays task attributes, including the assignee, task creator, task number, state,
priority, who acquired the task, and other mapped attributes. It also displays dates related
to task creation, last update, and expiration date.

• History—Displays the approval sequence and the update history for the task. See Task
History, for more information.

Table 32-6 tells what the icons used in the Task Details History section signify.

Chapter 32
Acting on Tasks: The Task Details Page

32-24

Table 32-6 Icons for Task Action History

Icon Description

Indicates an approver in an ad hoc routing scenario.

Indicates that the task has been approved.

Indicates that the participant is an FYI participant—that is, this participant just receives a
notification task and the business process does not wait for the participant's response.
Participant cannot directly impact the outcome of a task, but in some cases can provide
comments or add attachments.

Indicates that a set of people must work in parallel. This pattern is commonly used for
voting.

Indicates that the participant belongs to a management chain.

Indicates the simple case in which a participant maps to a user, group, or role.

Indicates that the task is untouched.

• Comments—Displays comments entered by various users who have participated in the
workflow. A newly added comment and the commenter's user name are appended to the
existing comments. A trail of comments is maintained throughout the life cycle of the task.
To add or delete a comment, you must have permission to update the task.

• Attachments—Displays documents or reference URLs that are associated with a task.
These are typically associated with the workflow as defined in the human task or attached
and modified by any of the participants using the worklist. To add or delete an attachment,

Chapter 32
Acting on Tasks: The Task Details Page

32-25

you must have permission to update the task. When adding file attachments, you can use
an absolute path name or browse for a file.

Note:

In an environment with servers clustered for high availability purposes, file
uploading is not supported if a failover occurs. If the active server shuts down,
then the uploading process is not assumed by the other server and the upload
fails.

Comments and attachments are shared between tasks and subtasks. For example, when you
create a business task and add comments and attachments, subtasks of this task include the
same comments and attachments.

The Task Details page may appear differently depending on the tool used during design time to
develop the task form it displays.

A user can view a task when associated with the task as the current assignee (directly or by
group membership), the current assignee's manager, the creator, the owner, or a previous
actor.

A user's profile determines his group memberships and roles. The roles determine a user's
privileges. Apart from the privileges, the exact set of actions a user can perform is also
determined by the state of the task, the custom actions, and restricted actions defined for the
task flow at design time.

Note:

Certain functions, such as restricted task reassignment, are available only when a
single task is selected. If multiple tasks that use restricted reassignment are selected,
then the restricted reassignment algorithm is not invoked. In that case, the complete
list of users gets returned as though restricted reassignment had not been specified.

The following algorithm is used to determine the actions a user can perform on a task:

1. Get the list of actions a user can perform based on the privileges granted to him.

2. Get the list of actions that can be performed in the current state of the task.

3. Create a combined list of actions that appear on the preceding lists.

4. Remove any action on the combined list that is specified as a restricted action on the task.

The resulting list of actions is displayed in the task list page and the task details page for the
user. When a user requests a specific action, such as claim, suspend, or reassign, the
workflow service ensures that the requested action is contained in the list determined by the
preceding algorithm.

Step 2 in the preceding algorithm deals with many cases. If a task is in a final, completed state
(after all approvals in a sequential flow), an expired state, a withdrawn state, or an errored
state, then no further update actions are permitted. In any of the these states, the task, task
history, and subtasks (parent task in parallel flow) can be viewed. If a task is suspended, then it
can only be resumed or withdrawn. A task that is assigned to a group must be claimed before
any actions can be performed on it.

Chapter 32
Acting on Tasks: The Task Details Page

32-26

Note:

If you act on a task from the task details page, for example, if you approve a task,
then any unchanged task details data is saved along with the saved changes to the
task. However if you act on a task from the Actions menu, then unchanged task
details are not saved.

System Actions
The action bar displays system actions, which are available on all tasks based on the user's
privileges. Table 32-7 lists system actions.

Table 32-7 System Task Actions

Action Description

Claim If a task is assigned to a group or multiple users, then the task must be claimed first. Claim is
the only action available in the Task Action list for group or multiuser assignments. After a
task is claimed, all applicable actions are listed.

Escalate If you are not able to complete a task, you can escalate it and add an optional comment in
the Comments area. The task is reassigned to your manager (up one level in a hierarchy).

Pushback Use this action to send a task down one level in the workflow to the previous assignee.

The pushback action overrides all other actions. For example, if a task is pushed back and
then reassigned, after the reassignee approves it, the task goes to the user who performed
the pushback. This is the expected behavior.

Note:
• If the task is aggregated, then the Pushback action is not available.
• Pushback is designed to work with single approvers and not with group votes. Pushback

from a stage with group vote (or parallel) scenario to another stage is not allowed.
Similarly, you cannot push back from a single assignee to a group vote (or parallel)
scenario.

Reassign If you are a manager, you can delegate a task to reportees.

Release If a task is assigned to a group or multiple users, it can be released if the user who claimed
the task cannot complete the task. Any of the other assignees can claim and complete the
task.

Renew If a task is about to expire, you can renew it and add an optional comment in the Comments
area. The task expiration date is extended one week. A renewal appears in the task history.
The renewal duration for a task can be controlled by an optional parameter. The default value
is P7D (seven days).

Submit Information and
Request Information

Use these actions if another user requests that you supply more information or to request
more information from the task creator or any of the previous assignees. If reapproval is not
required, then the task is assigned to the next approver or the next step in the business
process.

Suspend and Resume If a task is not relevant, you can suspend it. These options are available only to users who
have been granted the BPMWorkflowSuspend role. Other users can access the task by
selecting Previous in the task filter or by looking up tasks in the Suspended status. A
suspension is indefinite. It does not expire until Resume is used to resume working on the
task.

Withdraw If you are the creator of a task and do not want to continue with it, for example, you want to
cancel a vacation request, you can withdraw it and add an optional comment in the
Comments area. The business process determines what happens next. You can use the
Withdraw action on the home page by using the Creator task filter.

Chapter 32
Acting on Tasks: The Task Details Page

32-27

Table 32-7 (Cont.) System Task Actions

Action Description

Start/Stop Task When the user chooses to start or stop work on the task the time stamp is assigned to all the
tasks selected. It is used to calculate the working durations of the task. The user can use
Start/Stop Task multiple times on the same task, for example startTask -> stopTask ->
startTask -> stopTask -> startTask -> completeTask

The total working duration is the sum of all of these time intervals.

Start/Stop Task operations are only available for tasks in Assigned or Request Information
status. Start/Stop Task is not available for Aggregated Task.

Task History
The task history maintains an audit trail of the actions performed by the participants in the
workflow and a snapshot of the task payload and attachments at various points in the workflow.
The short history for a task lists all versions created by the following tasks:

• Initiate task

• Re-initiate task

• Update outcome of task

• Completion of task

• Error of task

• Expiration of task

• Withdrawal of task

• Alerting of task to the error assignee

You can include the following actions in the short history list by modifying the
shortHistoryActions element.

• Acquire

• Ad hoc route

• Auto release of task

• Delegate

• Escalate

• Information request on task

• Information submit for task

• Override routing slip

• Update outcome and route

• Push back

• Reassign

• Release

• Renew

• Resume

• Skip current assignment

Chapter 32
Acting on Tasks: The Task Details Page

32-28

• Suspend

• Update

The history provides a graphical view of a task flow, as shown in Figure 32-20.

Figure 32-20 History: Graphical View

Check Full task actions to see all actions performed, including those that do not make
changes to the task, such as adding comments, as shown in Figure 32-21.

Figure 32-21 History: Full Task Actions

Available ways to view the task history include:

• Take a task snapshot

• See future approvers

Chapter 32
Acting on Tasks: The Task Details Page

32-29

• See complete task actions

• Aggregate tasks

Note:

The history of a parent task also displays the history of any subtasks it contains.

How To Act on Tasks
If the human task was designed to permit ad hoc routing, or if no predetermined sequence of
approvers was defined, then the task can be routed in an ad hoc fashion in the worklist. For
such tasks, a Route button appears on the task details page. From the Route page, you can
look up one or more users for routing. When you specify multiple assignees, you can select
whether the list of assignees is for simple (group assignment to all users), sequential, or
parallel assignment.

Parallel tasks are created when a parallel flow pattern is specified for scenarios such as voting.
In this pattern, the parallel tasks have a common parent. The parent task is visible to a user
only if the user is an assignee or an owner or creator of the task. The parallel tasks themselves
(referred to as subtasks) are visible to whomever the task is assigned, just like any other task.
It is possible to view the subtasks from a parent task. In such a scenario, the task details page
of the parent task contains a View SubTasks button. The SubTasks page lists the
corresponding parallel tasks. In a voting scenario, if any of the assignees updates the payload
or comments or attachments, the changes are visible only to the assignee of that task.

A user who can view the parent task (such as the final reviewer of a parallel flow pattern), can
navigate to the subtasks and view the updates made to the subtasks by the participants in the
parallel flow. The parent task is a container for the subtasks while they are worked on by the
assignees. The task owner must not act on or approve the parent task.

The task list does not display the actions for a task. A user has to take action from the task
details.

If a human task was set up to require a password, then when you act on it, you must provide
the password.

Note:

Any kind of change to the task details page, such as changing a priority or adding a
comment, requires you to save the change. If you add an attachment to a task, it is
automatically saved.

To reassign or delegate a task:

1. From the Actions list, select Reassign, as shown in Figure 32-22.

Chapter 32
Acting on Tasks: The Task Details Page

32-30

Figure 32-22 Reassigning a Task

2. Select Reassign or Delegate.

Delegate differs from Reassign in that the privileges of the delegatee are based on the
delegator's privileges. This function can be used by managers' assistants, for example.

3. Provide or browse for a user or group name, as shown in Figure 32-23.

Figure 32-23 Reassigning a Task

A supervisor can always reassign tasks to any of his reportees.

4. Select the names by clicking the check box and click OK.

You can reassign to multiple users or groups. One of the assignees must claim the task, as
shown in Figure 32-24.

Chapter 32
Acting on Tasks: The Task Details Page

32-31

Figure 32-24 Claiming a Task

Note:

When task details have been upgraded from an earlier release, you can see a
"Request Failed" error when executing the Reassign action. Actually, the
reassign completes, and when you click OK again, a popup says the task is
already assigned.

To eliminate the error message, upgrade your task flow applications by opening
them in Oracle JDeveloper, then redeploy the task form.

To Request Information

To request information:

1. From the Actions list, select Request Information, as shown in Figure 32-25.

This action is available only when you enable the Allow participants to invite other
participants setting in the task definition.

Figure 32-25 Requesting Information

2. Request information from a past approver or search for a user name, or push the task back
to the previous assignee, as shown in Figure 32-26.

Chapter 32
Acting on Tasks: The Task Details Page

32-32

Figure 32-26 Requesting Information from Past Approvers or Another User, or
Pushing the Task Back

If you use the Search icon to find a user name, the Identity Browser appears, as shown in
Figure 32-27.

Figure 32-27 Identity Browser

Note:

If you are in a multi-tenancy environment, search for a user simply by the user
identifier and not by the tenant identifier. For example, if the user identifier is
jstein and the tenant identifier is company_name.jstein, you search by using
jstein.

3. Click OK.

Chapter 32
Acting on Tasks: The Task Details Page

32-33

To Route a Task

Note:

The task definition must be set to Allow participants to invite other participants
before the task can be routed.

To route a task:

1. From the Task Actions list, select Adhoc Route, as shown in Figure 32-28.

Figure 32-28 Ad Hoc Routing

2. Select an action and a routing option, as shown in Figure 32-29.

Figure 32-29 Routing a Task

Chapter 32
Acting on Tasks: The Task Details Page

32-34

• Single Approver: Use this option for a single user to act on a task. If the task is
assigned to a role or group with multiple users, then one member must claim the task
and act on it.

• Group Vote: Use this option when multiple users, working in parallel, must act, such
as in a hiring situation when multiple users vote to hire or reject an applicant. You
specify the voting percentage that is needed for the outcome to take effect, such as a
majority vote or a unanimous vote, as shown in Figure 32-30.

Figure 32-30 Providing Consensus Information

• Chain of Single Approvers: Use this option for a sequential list of approvers. The list
can comprise any users or groups. (Users are not required to be part of an
organization hierarchy.)

3. Add optional comments for the next participant on the route.

4. Provide or search for user or group names; then move the names to the Selected area.

5. Click OK.

To Add Comments or Attachments

Chapter 32
Acting on Tasks: The Task Details Page

32-35

To add comments or attachments:

Note:

• If you are the initiator of the task, then your comment is shared with all process
participants and not only with task assignees. The option to share with only task
participants is not available to you.

• Comments added to a parent task also appear in any subtasks of that parent.

• Click Save before you browse for or upload attachments, to ensure that any
previous changes to the task details page are saved.

• When you remove a file or URL attachment, the task is not automatically
updated. You must explicitly select Actions > Save. Otherwise, the attachment is
not removed, even though it is displayed as removed. This is the expected
behavior.

• If you add a file attachment, you do not need to explicitly select Actions > Save.

• If you add a URL attachment, you must explicitly select Actions > Save.

• In an environment with servers clustered for high availability purposes, file
uploading is not supported if a failover occurs. If the active server shuts down,
then the uploading process is not assumed by the other server and the upload
fails.

• If you are using an ADF connection and you receive a "No Protocol" error when
attempting to add an attachment, verify that your connections.xml file is
synchronized with the correct WSDL file. The connections.xml file is located in
the directory .adf/META-INF/ in your ADF workspace.

1. In the Comments or Attachments area, click Add.

Figure 32-31 Worklist Comments and Attachments

2. Enter comment text and click OK. Comments cannot be deleted after they are added.

The date and timestamp and your user name are included with the comment.

3. For attachments, provide a file or URL attachment, as shown in Figure 32-32, and click
OK.

Figure 32-32 Adding a Worklist Attachment

Chapter 32
Acting on Tasks: The Task Details Page

32-36

If you attach a URL file in Oracle BPM Worklist (for example, http://www.example.com/
technology/products/oem/management_partners/snmpwp6.gif), it is not sent as an email
attachment. Instead, it appears as a link in the task details of the email notification.
However, if a desktop file is attached, it can be seen as a separate attachment in the task
notification.

Note:

Attachment file names that use a multibyte character set (MBCS) are not
supported.

Attachments of up to 1998K can be uploaded. You can modify this setting by
setting the context parameter in web.xml as follows:

<context-param>
 <param-name>org.apache.myfaces.trinidad.UPLOAD_MAX_DISK_SPACE</param-name>
 <param-value>1998</param-value>
</context-param>

For more information about file uploading, see the Oracle Fusion Middleware
Web User Interface Developer's Guide for Oracle Application.

4. From the Task Actions list, click Save.

How To Act on Tasks That Require a Digital Signature
The worklist supports the signature policy created in the human task:

• No signature required — Participants can send and act on tasks without providing a
signature.

• Password required — Participants mus tspecify their login passwords.

• Digital certificate (signature) required —Participants must possess a digital certificate
before being able to send and act on tasks. A digital certificate contains the digital
signature of the certificate-issuing authority so that anyone can verify that the certificate is
real. A digital certificate establishes the participant's credentials. It is issued by a
certification authority (CA). It contains your name, a serial number, expiration dates, a copy
of the certificate holder's public key (used for encrypting messages and digital signatures),
and the digital signature of the certificate-issuing authority so that a recipient can verify that
the certificate is real.

When you act on a task that has a signature policy, the Sign button appears, as shown in
Figure 32-33.

Chapter 32
Acting on Tasks: The Task Details Page

32-37

Figure 32-33 Digital Signature Task Details

The evidence store service is used for digital signature storage and nonrepudiation of digitally
signed human tasks. You can search the evidence store, as shown in Figure 32-34.

Figure 32-34 The Evidence Store

See Evidence Store Service and Digital Signatures for more information.

To provide a digital signature:

1. In the upper right corner of Oracle BPM Worklist, click Preferences.

2. Select the Certificates link.

Chapter 32
Acting on Tasks: The Task Details Page

32-38

3. Upload the certificate you want to use to sign your decision, as shown in Figure 32-35.

When signing a task outcome using your certificate, you must upload the entire chain of
certificates through Oracle BPM Worklist as a .P7B (PKCS7 format) file, not just the one
certificate issued to you by the certificate issuer. The entire chain can be exported through
Internet Explorer. Mozilla Firefox does not let you export the chain as a .P7B file.
Therefore, you can perform the following steps:

a. Export the chain from Mozilla Firefox as a .P12 file (PKCS12 format that also contains
your private key).

b. Import the .P12 file in Internet Explorer.

c. Export it again from Internet Explorer as a .P7B file.

d. Upload it through Oracle BPM Worklist.

Figure 32-35 Uploading a Certificate

Note the following important points when providing your certificate to the system.
Otherwise, you cannot use your certificate to sign your decisions on tasks.

• The PKCS7 file format is a binary certificate format. Select this option if you have a
standalone certificate file stored on your disk.

• The PKCS12 file format is a keystore format. Select this option if you have your
certificate stored inside a keystore.

• If you want to copy and paste the contents of the certificate, select Type or Paste
Certificate Contents and paste the BASE64-encoded text into the field. Do not paste
a certificate in any other format into this field. Likewise, if you choose to upload a
certificate, do not try to upload a BASE64-encoded certificate. Only PKCS12 and
PKCS7 formatted files are supported for uploads.

4. Return to the task list by clicking the Home link in the upper-right corner of Oracle BPM
Worklist.

5. Click a task to approve or reject.

The task details are displayed.

Chapter 32
Acting on Tasks: The Task Details Page

32-39

6. Click either Approve or Reject.

Details about the digital signature are displayed.

7. For a task that has a signature policy, click Sign.

The Text Signing Report dialog appears.

8. Select the certificate from the list to use to sign your decision.

9. Enter the master password of the web browser that you are using.

10. Click OK.

The web browser signs the string displayed in the upper half of the Text Signing Request
with the certificate you selected and invokes the action (approval or rejection) that you
selected. The task status is appropriately updated in the human workflow service.

For more information about how certificates are uploaded and used, see Evidence Store
Service and Digital Signatures.

Approving Tasks
Get an overview of types of actions that can be performed on tasks by various task approvers.

Table 32-8 Task Actions and Approvers

Task Action Admin Owner (+
Owner Group)

Assignee (+ Assignee Manager +
Assignee Group + Proxy Assignee)

Creator Reviewer Approver

Acquire
(Claim)

No Yes Yes No No No

Custom No Yes1 Yes
1

No No No

Delegate No No Yes No No No

Delete No2 No
2

Yes
2

Yes
2

No No

Error No No Yes3 No No No

Escalate Yes4 Yes
4

Yes No No No

Info Request No No Yes No No No

Info Submit No No Yes No No No

Override
Routing Slip

Yes Yes No No No No

Push Back No No Yes No No No

Purge Yes
2

Yes2 No Yes No No

Reassign Yes5 Yes
5

Yes (No for proxy assignee) No No No

Release Yes Yes Yes No No No

Renew No Yes Yes No No No

Resume Yes Yes Yes No No No

Route No Yes Yes No No No

Skip Current
Assignment

Yes Yes No No No No

Suspend Yes Yes Yes No No No

Update No Yes Yes Yes No No

Update
Attachment

Yes Yes Yes Yes Yes No

Chapter 32
Approving Tasks

32-40

Table 32-8 (Cont.) Task Actions and Approvers

Task Action Admin Owner (+
Owner Group)

Assignee (+ Assignee Manager +
Assignee Group + Proxy Assignee)

Creator Reviewer Approver

Update
Comment

Yes Yes Yes Yes Yes No

View
Process
History

Yes Yes Yes Yes No No

View Sub
Tasks

Yes Yes Yes No No No

View Task
History

Yes Yes Yes Yes Yes Yes

Withdraw Yes Yes No Yes No No

1 Not valid for ToDo tasks
2 Valid only for ToDo tasks
3 Applicable for tasks in alerted states
4 Without claim and escalate to current assignee's manager
5 Without claim

Setting a Vacation Period
You can set a vacation period so that you are removed from automatic task assignment during
the dates you specify you are on vacation.

Vacation rules are not executed for ToDo tasks. See Setting Rules for how to set a vacation
rule that is synchronized with the vacation period.

To set a vacation period:

1. Click the Preferences link.

The My Rules tab is displayed.

Chapter 32
Setting a Vacation Period

32-41

Figure 32-36 Setting a Vacation Period

2. Select Enable vacation period.

3. Provide start and end dates for your vacation

4. Click Save.

The vacation period is enabled.

Setting Rules
Rules act on tasks, either a specific task type or all the tasks assigned to a user or group.

Figure 32-37 shows the Action section where you set rules, including vacation rules (different
from the vacation period settings described in Setting a Vacation Period).

Chapter 32
Setting Rules

32-42

Figure 32-37 Creating a Rule

A rule cannot always apply in all circumstances in which it is used. For example, if a rule
applies to multiple task types, it may not be possible to set the outcome for all tasks, since
different tasks can have different outcomes.

Rules are executed in the order in which they are listed. Rules can be reordered by using the
up and down buttons in the header, as shown in Figure 32-37.

If a rule meets its filter conditions, then it is executed and no other rules are evaluated. For
your rule to execute, you must be the only user assigned to that task. If the task is assigned to
multiple users (including you), the rule does not execute.

You cannot specify business rules for ToDo tasks.

How To Create User Rules
Specify the following when creating a user rule:

• Rule name.

• If the rule is a vacation rule. See Setting a Vacation Period for how to set the vacation
period that is synchronized with the vacation rule.

• Which task or task type the rule applies to. If specified as blank or null, then the rule will be
skipped. If a task type is specified, then any attributes mapped for that task type can be

Chapter 32
Setting Rules

32-43

used in the rule condition. To execute the user rule action for all task types, the task type
field must be removed from the rule condition.

• When the rule applies.

• Conditions on the rule—These are filters that further define the rule, such as specifying
that a rule acts on priority 1 tasks only, or that a rule acts on tasks created by a specific
user. The conditions can be based on standard task attributes and any mapped attributes
that have been mapped for the specific tasks. See How To Map Attributes for more
information.

User rules perform the following actions:

• Reassign to—Reassigns tasks to specified subordinates or groups you manage.

• Delegate to—Delegates to any user or group. Any access rights or privileges for
completing the task are determined according to the original user who delegated the task.
(Any subsequent delegations or reassignments do not change this from the original
delegating user.)

• Set outcome to—Specifies an automatic outcome if the workflow task was designed for
those outcomes. For example, accepting or rejecting the task. The rule must be for a
specific task type. If a rule is for all task types, then this option is not displayed.

• Take no action—Prevents other more general rules from applying. For example, to
reassign all your tasks to another user while you are on vacation, except for loan requests,
for which you want no action taken, then create two rules. The first rule specifies that no
action is taken for loan requests; the second rule specifies that all tasks are reassigned to
another user. The first rule prevents reassignment for loan requests.

Note:

If user cdickens has a vacation rule set to Reassign to, Delegate to, or Set
outcome to, the vacation rule will not be triggered if a task is assigned to cdickens
through Request Information, Adhoc Route, or Escalate. In these three cases, the
task will remain assigned to cdickens.

To create a user rule:

1. Click the Preferences link.

The My Rules tab is displayed.

2. In the Rules pane, click My Rules and click Add.

3. In the My Rule area, do the following and click Save:

• Provide a name for the rule.

• Select Use as a vacation rule if you are creating a vacation rule. The start and end
dates of the rule are automatically synchronized with the vacation period.

• Select Execute rule only between these dates and provide rule execution dates.

• In the Tasks area, select All Tasks or Tasks matching these conditions. Click Add
to add rule conditions.

• Browse for task types to which the rule applies.

• In the Action area, select actions to be taken: Reassign to, Delegate to, Set
outcome to, or Take no action, as described above.

Chapter 32
Setting Rules

32-44

The new rule appears under the My Rules node.

How To Create Group Rules
Creating a group rule is similar to creating a user rule, with the addition of a list of the groups
that you (as the logged-in user) manage. Examples of group rules include:

• Assigning tasks from a particular customer to a member of the group

• Ensuring an even distribution of task assignments to members of a group by using round-
robin assignment

• Ensuring that high-priority tasks are routed to the least busy member of a group

Group rules do the following actions:

• Assign to member via—You can specify a criterion to determine which member of the
group gets the assignment. This dynamic assignment criterion can include round-robin
assignment, assignment to the least busy group member, or assignment to the most
productive group member. You can also add your custom functions for allocating tasks to
users in a group.

• Assign to—As with user rules, you can assign tasks to subordinates or groups you directly
manage.

• Take no action—As with user rules, you can create a rule with a condition that prevents a
more generic rule from being executed.

To create a group rule:

1. Click the Preferences link

2. Click the Other Rules tab.

3. Select Group from the list.

4. Enter a group name and click the Search icon, or enter a group name.

The Identity Browser opens for you to find and select a group.

5. Select the group name under the Group Rules node and click Add New Rule, as shown
in Figure 32-38.

Chapter 32
Setting Rules

32-45

Figure 32-38 Creating a Group Rule

6. Provide group rule information and click Save.

• Provide a name for the rule.

• Browse for task types to which the rule applies.

• Provide rule execution dates.

• In the TASKS area, add rule conditions.

• In the ACTION area, select the actions to be taken (or none) (Assign to member via,
Assign to, or Take no action), as shown in Figure 32-38.

The new rule appears under the Group Rules node.

Assignment Rules for Tasks with Multiple Assignees
If a task has multiple assignees, then assignment rules are not evaluated for the task, and the
task is not automatically routed. This is because each of the task's assignees can define
assignment rules, which can potentially provide conflicting actions to take on the task. Only
tasks that are assigned exclusively to a single user are routed by the assignment rules.

For example, consider the following sequence:

1. A rule is created for user cdickens to reassign all assigned requests to user jstein.

2. User jcooper reassigns the allocated tasks to cdickens and cdoyle.

3. User cdickens claims the task, and the task appears in their inbox.

The task is not automatically reassigned to jstein. The task is routed to jstein, following the
assignment rule set for cdickens, if user jcooper explicitly reassigns the task only to cdickens
instead of reassigning the task to multiple users (cdickens and cdoyle).

Chapter 32
Setting Rules

32-46

How to Avoid Circular Logic in Reassigned Vacation Rules
When creating vacation rules, ensure that approval tasks are not reassigned in a circular
fashion.

For example, jstein is jcooper’s manager, and some tasks may need to go to jstein for
approval. If jstein creates a vacation rule, ensure that those tasks will not be reassigned to
jcooper.

Alternatively, you can use the Delegate option in vacation rules instead of Reassign. For more
information, see How To Create User Rules.

How To Avoid Circular Dependency

In this example, we define two rules for User2, who wants to set a vacation period and reassign
his tasks to someone else. The first rule states that if the task is not coming from User1, then
reassign it to User1. The second rule states that if the task is coming from User1, then reassign
it to User3.

The task flow is: jcooper to jstein to wfaulk. The rules are set for jstein.

1. Log in to Worklist as jstein and go to the Preferences page.

2. Ensure that the Vacation Period is disabled, as shown below:

3. Click My Rules and click Add New Rule +.

4. Enter a name for the rule, for example VacationRule1.
5. Clear the Use as vacation rule check box.

6. Check the Execute rule only between these dates check box and enter the appropriate
dates.

7. In the Tasks drop down, choose Tasks matching these conditions.

8. Click Add condition + and select User, From User.
9. In the new row, select isn't.
10. In the text box next to it, enter jcooper for the user name.

11. In the Action section, select Reassign to and enter jcooper for the user name.

12. Click Save.

Repeat the steps above to create another rule with these inputs:

13. Enter a name for the second rule, for example VacationRule2.

14. Select the same start and end dates as in VacationRule1.

15. Add a From User condition of is.

Chapter 32
Setting Rules

32-47

16. Enter jcooper for the user name.

17. In the Action section, select Reassign to and enter wfaulk for the user name.

18. Click Save.

Invoke the composite and the tasks will be assigned as expected based on these two new
rules defined for jstein.

Using the Worklist Administration Functions
Administrators who are granted the BPMWorkflowAdmin role, can use the worklist
Administration Funcations.

Administration functions include the following:

• Managing other users' or groups' rules

• Setting the worklist display (application preferences). Application preferences customize
the appearance of the worklist, including:

– The login realm label

– The resource bundle

– Where the language locale information is retrieved from

– The branding logo

– The branding title

– The branding skin

– Any external applications you want to use, for example, oracle.com, or google.com
• Specifying mapped attributes

An administrator can view and update all tasks assigned to all users. An administrator's
Assignee filter displays Admin when the Admin tab is selected.

• How To Manage Other Users' or Groups' Rules (as an Administrator)

• How to Specify the Login Page Realm Label

• How to Specify the Resource Bundle

• How to Specify the Language Locale Information

• How to Specify a Branding Logo

• How to Specify the Branding Title

• How to Choose a Skin

• How to Enable Customized Applications and Links

For information about specifying mapped attributes, see Using Mapped Attributes (Flex Fields)

How To Manage Other Users' or Groups' Rules (as an Administrator)
This function is useful for fixing a problem with a rule. Also, for a user who no longer works for
the company, administrators can set up a rule for that user so that all tasks assigned to the
user are automatically assigned to another user or group.

Chapter 32
Using the Worklist Administration Functions

32-48

To create a rule for another user or group:

1. Click the Preferences link

2. Click the Other Rules tab.

3. Search for the user or group for whom rules are to be created, as shown in Figure 32-39.

Figure 32-39 Creating Rules for Another User or Group

4. Click a user rules node, or click a group name (for a group rule).

5. Click the Add icon to create a rule.

6. Provide rule information, as shown in Figure 32-38, and click Save.

How to Specify the Login Page Realm Label
If the identity service is configured with multiple realms, then, when a user logs in to Oracle
BPM Worklist, the login page displays a list of realm names. LABEL_LOGIN_REALM specifies
the resource bundle key used to look up the label to display these realms. You can change the
term realm to fit the user community—terms such as country, company, division, or department
may be more appropriate. To change the term realm, customize the resource bundle, specify a
resource bundle key for this string, and then set the Login page realm label parameter to
point to that resource bundle key.

Figure 32-40 shows the Application Preferences page with the Login page realm label field
highlighted. You reach the Application Preferences page by clicking Administration on the
global toolbar at the very top of the Worklist Application interface.

Chapter 32
Using the Worklist Administration Functions

32-49

Figure 32-40 Specifying the Login Page Realm Label

How to Specify the Resource Bundle
The resource bundle provides the strings displayed in the Worklist Application. By default, the
class path to the resource bundle is:

oracle.bpel.worklistapp.resource.WorklistResourceBundle
Figure 32-41 shows the Application Preferences page with the Resource Bundle field
highlighted. You reach the Application Preferences page by clicking Administration on the
global toolbar at the very top of the Worklist Application interface.

Chapter 32
Using the Worklist Administration Functions

32-50

Figure 32-41 Specifying the Resource Bundle

As an administrator, you can add or modify strings shown in the application by creating a
custom resource bundle. You can then use the Resource Bundle field in the Application
Preferences page to specify the class path to your custom resource bundle.

For more information about customizing resource bundles, see Managing and Monitoring
Processes with Oracle Business Process Management.

How to Specify the Language Locale Information
From the Application Preferences page, you can specify how the Worklist Application display
language is determined. Information about the language locale can be derived from either the
user's browser or the identity provider that stores information on worklist users.

Figure 32-42 shows the Applications Preferences page with the Use language settings of
options highlighted. You reach the Application Preferences page by clicking Administration on
the global toolbar at the very top of the Worklist Application interface.

Figure 32-42 Specifying Language Local Information

How to Specify User Name Format
From the Application Preferences page, you can specify how the user's name is displayed on
the screen after they have logged in. You can choose to display the userid, such as jstein, or
the user's name, John Steinbeck.

Chapter 32
Using the Worklist Administration Functions

32-51

How to Specify a Branding Logo
A branding logo is the image displayed in the top left corner of every page of the Worklist
Application. The Oracle logo is the default, and you can change it to one of your choosing.

Note:

The ideal image size is 120px x 40px (length x width) for proper display. Although
images with high resolution and size are compressed to fit the branding logo size,
smaller images display better.

Figure 32-43 shows the Application Preferences page with the Branding Logo field
highlighted. You reach the Application Preferences page by clicking Administration on the
global toolbar at the very top of the Worklist Application interface.

Figure 32-43 Specifying the Branding Logo

To specify the branding logo:

Do one of the following:

• Refer to an external image-hosting web site. To do this task: In the Branding Logo field,
enter the URL of the image.

• Upload an image to a particular location on the server and, in the Branding Logo field,
enter its relative path, for example, /afr/my_logo.png.

• Refer to an image from the shared library. To do this task: In the Branding Logo field,
enter the path of the logo name as found in the shared library, for example, /
my_logo.pngv.

Chapter 32
Using the Worklist Administration Functions

32-52

Note:

Customizing the branding logo from either the Worklist Application or Process
Workspace changes the logo in both applications. For example, if you change the
logo from Worklist, the Workspace logo is changed automatically.

For information about deploying images and JAR files as part of a shared library, see
Managing and Monitoring Processes with Oracle Business Process Management.

How to Specify the Branding Title
You can specify the title for your site, changing the default title, BPM Worklist, to one that you
choose.

Figure 32-44 shows the Application Preferences field with the Branding Title field highlighted.
You reach the Application Preferences page by clicking Administration on the global toolbar
at the very top of the Worklist Application interface.

Figure 32-44 Specifying the Branding Title

To specify the branding title:

Do one of the following:

• In the Branding Title field, enter a simple string for your title.

• In the Branding Title field, enter a label that refers to a key-value pair in the Resource
Bundle. In this way, you can internationalize your title, for example,
LABEL_WORKLIST_TITLE.

Chapter 32
Using the Worklist Administration Functions

32-53

How to Choose a Skin
A skin determines the look and feel of your graphical interface. You specify the skin from the
Application Preferences page. You reach the Application Preferences page by clicking
Administration on the global toolbar at the very top of the Worklist Application interface.

Figure 32-45 shows the Application Preferences page with the Choose a Skin field highlighted.

Figure 32-45 Choosing a Skin

To Choose A Skin

To choose a skin:

Do one of the following:

• From the Choose a Skin list, select one of the default ADF skins

• Upload your own customized skin .css file in a .JAR file and deploy it as a part of shared
library. Then, when you restart your application from the console, your custom skin
appears in the Choose a Skin list.

To Create a JAR File Containing Customized Skins

To create a JAR file containing customized skins:

1. Create a directory structure similar to the following example:

C:\temp\META-INF\adf\oracle\skin\images
 META-INF\skins\custom.css
 META-INF\trinidad-skins.xml

In this example, you can change the word custom to the name of your own customized
skin.

Chapter 32
Using the Worklist Administration Functions

32-54

2. Make sure the content of trinidad-skins.xml file is as follows:

<?xml version="1.0" encoding="ISO-8859-1"?>
<skins xmlns="http://myfaces.apache.org/trinidad/skin">
 <skin>
 <id>custom.desktop</id>
 <family>custom</family>
 <extends>custom.desktop</extends>
 <render-kit-id>org.apache.myfaces.trinidad.desktop</render-kit-id>
 <style-sheet-name>skins/custom.css</style-sheet-name>
 </skin>
</skins>

3. Create the .JAR file by issuing the following command from the c:\temp directory:

jar -cvf customSkin.jar META-INF/
4. Copy this JAR file to the directory /scratch/username/sharedLib.

Note:

Refer to the images in your css file this way:

../adf/oracle/skin/images/example.gif (with the two trailing dots).

This allows the search for the META-INF root to start one directory above the META-
INF/skin directory in which the .css file is located.

For information about deploying JAR files as part of a shared library, see Managing and
Monitoring Processes with Oracle Business Process Management.

How to Enable Customized Applications and Links
For Process Workspace, you can create customized external applications and links that
become available in the External Applications panel. Moreover, in both Process Workspace
and the Worklist Application, you can specify the columns that appear in the Task Details pane.

You specify a custom application by using the Application Preferences page. You reach the
Application Preferences page by clicking Administration on the global toolbar at the very top
of the Worklist Application interface.

To see the Java code for specifying a custom application, see Java Code for Enabling
Customized Applications in Oracle BPM Worklist.

To enable customized applications:

1. In the Application Preferences page, enter the class name of your custom application in
the Application customization class name field, as shown in Figure 32-46.

Chapter 32
Using the Worklist Administration Functions

32-55

Figure 32-46 Specifying a Custom Application

2. Restart the application from the console.

Depending on your customization, you can now see its effects.

If your customization is for Process Workspace and involves either creating an external
application or specifying inbox columns in the Task Details pane or both, you see the
following:

• Your custom application listed in the External Applications panel of the Process
Workspace Home page as shown in Figure 32-47.

Figure 32-47 External Applications Panel in Process Workspace

• The columns of the Task Details inbox adjusted according to your specifications as
shown in Figure 32-48.

Figure 32-48 Customized Columns in Task Details Pane

Chapter 32
Using the Worklist Administration Functions

32-56

For more information about customizing applications in Worklist Application and
Process Workspace, see Managing and Monitoring Processes with Oracle Business
Process Management.

How to Specify an Image for a Task Action
If you are an administrator, then you can specify whether an action is displayed with a red X
icon or with a green check mark icon.

To specify an image for a task action:

1. Select Administration, then Application Preferences.

2. From the lists in the Map task actions to an image field, select the tasks you want to map
to either the green check mark icon or the red X icon.

3. Click Save.

Specifying Additional Process Workspace Settings
From the Application Preferences page, you can specify additional configuration items. These
include:

• 10g Workspace Application URL - specifies the URL for an ALBPM 10g Workspace to view
from within Process Workspace.

• Flex Field INTEGER Display.

• Activity Guide poll request interval - interval in seconds to wait between polls for the next
Activity Guide task.

• Activity Guide poll retries - maximum number of times the Activity Guide should poll to
move to the next task.

• File types to upload - Specify the extensions of the file types that can be uploaded by a
user. You can specify all file type extensions that you need. The file type extensions that
you enter in the field must be separated by a comma. For example, txt,pdf,zip and so
on.

• View task details in separate window - Choose the Enable option, if you want the task
details to be opened in a separate window.

Specifying Notification Settings
You can configure the notification settings to control how, when, and where you receive
messages in cases when you have access to multiple communication channels (delivery
types). Specifically, you can define messaging filters (delivery preferences) that specify the
channel to which a message should be delivered, and under what circumstances.

For example, you might want to create filters for messages received from customers with
different Service Level Agreements (SLA), specifying to be notified through business phone
and SMS channels for customers with a premium SLA and by EMAIL for customers with a
nonpremium SLA.

Chapter 32
Specifying Notification Settings

32-57

Configuring Alias for Notification Email ID
You can configure an alias for incoming mail notifications. For example, you can configure the
sender email ID to be the department name instead of the email ID of the sender.

You can set the alias at both global level for all tasks and also for individual tasks.

Configuring Alias for all Tasks

To configure alias for all tasks:

1. Click your user or login name in the top right corner.

2. Select Administration.

3. Scroll to Notification section.

4. Select from the three options:

• Email "From:" Display Name: Provide an alias to the sender email ID in the field. The
text field is limited 90 characters.

• Submitter: Send notification using Submitter ID.

• Previous Approver: Send notification using ID of previous approver.

5. Click Save.

Configuring Alias for Individual Tasks

When you configure sender’s name for an individual task, it overrides the global sender name
configuration. To configure sender’s name for an individual task:

1. Click your user or login name in the top right corner.

2. Select Administration.

3. Click Task Configuration.

4. Select the task that you have created under Tasks to be Configured section on the left
panel.

5. Click Notifications option in the main panel.

6. Expand More.

7. Select from the three options:

• Not Applicable: Not Applicable option is selected by default. If you do not modify, the
sender name that is configured at global level is used as display name.

• Email "From:" Display Name: Provide an alias to the sender email ID in the field. The
text field is limited 90 characters.

• Previous Approver: Send notification using ID of previous approver.

8. Click the Save button next to Tasks to be Configured.

Chapter 32
Specifying Notification Settings

32-58

Note:

• If Previous Approver option is selected, display name of previous approver is
used. If display name is not available, ID is used. If there is only first approver
and no previous approver in the approval chain, the submitter ID is used as alias
name.

• If no alias is given, Previous Approver is selected by default and if there is no
previous approver, the submitter name is displayed.

• If alias is updated but the bpm-services.jar does not have permissions to write to
the MBean, alias does not appear in the mail notifications.

Messaging Filter Rules
A messaging filter rule consists of rule conditions and rule actions. A rule condition consists of
a rule attribute, an operator, and an associated value. A rule action is the action to be taken if
the specified conditions in a rule are true.

Data Types
Table 32-9 lists data types supported by messaging filters. Each attribute has an associated
data type, and each data type has a set of predefined comparison operators.

Table 32-9 Data Types Supported by Messaging Filters

Data Type Comparison Operators

Date isEqual, isNotEqual, isGreaterThan, isGreaterThanOrEqual, isLessThan,
isLessThanOrEqual, Between, isWeekday, isWeekend

Time isEqual, isNotEqual, Between

Number isEqual, isNotEqual, Between, isGreaterThan, isGreaterThanOrEqual,
isLessThan, isLessThanOrEqual

String isEqual, isNotEqual, Contains, NotContains

Note:

The String data type does not support regular expressions.

Attributes
Table 32-10 lists the predefined attributes for messaging filters.

Table 32-10 Predefined Attributes for Messaging Filters

Attribute Data Type

Total Cost Number

From String

Chapter 32
Specifying Notification Settings

32-59

Table 32-10 (Cont.) Predefined Attributes for Messaging Filters

Attribute Data Type

Expense Type String

To String

Application Type String

Duration Number

Application String

Process Type String

Status String

Subject String

Customer Type String

Time Time

Group Name String

Processing Time Number

Date Date

Due Date Date

User String

Source String

Amount Number

Role String

Priority String

Customer Name String

Expiration Date Date

Order Type String

Organization String

Classification String

Service Request Type String

Rule Actions
For a given rule, a messaging filter can define the following actions:

• Send No Messages: Do not send a message to any channel.

• Send Messages to All Selected Channels: Send a message to all specified channels in
the address list.

• Send to the First Available Channel: Send a message serially to channels in the address
list until one successful message is sent. This entails performing a send to the next
channel when the current channel returns a failure status. This filter action is not supported
for messages sent from the human workflow layer.

Chapter 32
Specifying Notification Settings

32-60

Managing Messaging Channels
In Oracle BPM Worklist, messaging channels represent both physical channels, such as
business mobile phones, and also email client applications running on desktops. Specifically,
Oracle BPM Worklist supports the following messaging channels:

• EMAIL

• IM

• MOBILE

• SMS

• WORKLIST

Note the following about message channels:

• Addresses for messaging channels are fetched from the configured identity store.

• SMS and MOBILE notifications are sent to the mobile phone number.

• No special notification is sent when the messaging channel preference is WORKLIST.
Instead, log in to Oracle BPM Worklist to view tasks.

• EMAIL is the default messaging channel preference when a preferred channel has not
been selected.

You can use Available Channels to view, create, edit, and delete messaging channels.

Viewing Your Messaging Channels
You can display your existing messaging channels.

To view messaging channels:

1. Click the Preferences link.

2. Click the Notification tab.

3. Expand Available Channels.

The Available Channels list appears (Figure 32-49) and displays the following information:

• Name: The name of the messaging channel.

• Type: The type of messaging channel, such as EMAIL or SMS.

• Address: The address for the channel, such as a phone number or email address.

• Default: Specifies whether this channel is the default messaging channel.

Chapter 32
Specifying Notification Settings

32-61

Figure 32-49 Messaging Channels

4. Click View > Columns and select the columns to display or hide.

You can also click View > Reorder Columns to display a dialog to reorder the displayed
columns.

Messaging channel names and addresses are retrieved from the underlying identity store,
such as Oracle Internet Directory.

Creating, Editing, and Deleting a Messaging Channel
Oracle BPM Worklist uses an underlying identity store, such as Oracle Internet Directory, to
manage messaging channels and addresses. Therefore, you cannot directly create, modify, or
delete messaging channels using Oracle BPM Worklist.

To perform these actions, contact the system administrator responsible for managing your
organization's identity store.

Managing Messaging Filters
You can use Messaging Filters to define filters that specify the types of notifications you want
to receive along with the channels through which to receive these notifications. You can do this
through a combination of comparison operators (such as is equal to, is not equal to), attributes
that describe the notification type, content, or source, and notification actions, which send the
notifications to the first available messaging channels, all messaging channels, or to no
channels (effectively blocking the notification).

For example, you can create a messaging filter called Messages from Lise, that retrieves all
messages addressed to you from your boss, Lise. Notifications that match all of the filter
conditions might first be directed to your business mobile phone, for instance, and then to your
business email if the first messaging channel is unavailable.

Viewing Messaging Filters
You can display your existing messaging filters.

To view your messaging filters:

1. Click the Notification tab.

2. Expand Messaging Filters.

The Messaging Filters list appears (Figure 32-50) and displays the following information:

• Name: The name of the messaging filter

• Description: An optional description of the messaging filter

Chapter 32
Specifying Notification Settings

32-62

• Enabled: Specifies if this filter is being used in message handling

Figure 32-50 Messaging Filters

3. Click View > Columns and select the columns to display or hide.

Creating Messaging Filters

To create a messaging filter:

1. Click Create.

The Create Filter dialog box appears, as shown in Figure 32-51.

Figure 32-51 Adding a Messaging Filter

2. Specify the following information:

• Name: The name of the messaging filter.

• Description: An optional description for the messaging filter.

• Enabled: By default this option is checked. Clear if you do not want this filter used in
message handling.

3. Select whether notifications must meet all of the conditions or any of the conditions by
selecting either the Match all of the following conditions or the Match any of the
following conditions options.

4. Click Create.

Define the filter conditions in the Create Condition dialog box, as follows:

Chapter 32
Specifying Notification Settings

32-63

a. Select the attribute from the list.

b. Select the operator, such as isEqual, from the list.

c. Type the value of the condition in the Operand field.

d. Click OK to add the condition to the list.

e. Repeat these steps to add more filter conditions. To remove a filter condition, click
Delete.

5. Select from the following messaging options in the Action section:

• Do not send messages: Do not send a message to any channel.

• Send to all selected channels: Send a message to all specified channels in the
address list.

• Send to first available channel: Send a message serially to channels in the address
list until one successful message is sent. This entails performing a send to the next
channel when the current channel returns a failure status.

6. To set the delivery channel, select a channel from the Add Notification Channel list and
click Add. To remove a channel, click Delete.

7. Use the up and down arrows to prioritize channels. If available, the top-most channel
receives messages meeting the filter criteria if you select Send to the First Available
Channel.

8. Click OK.

The messaging filter appears on under Messaging Filters area. The Messaging Filters area
enables you to edit or delete the channel.

Editing a Messaging Filter
To edit a messaging filter:

1. Select the filter from the Messaging Filters area.

2. Click Edit.

3. Click OK to update the messaging filter. Click Cancel to dismiss the dialog without
modifying the filter.

Deleting a Messaging Filter
To delete a messaging filter:

1. Select the filter from the Messaging Filters area.

2. Click Delete. A confirmation dialog appears.

3. Click OK to delete the messaging filter. Click Cancel to dismiss the dialog without deleting
the filter.

Using Mapped Attributes (Flex Fields)
Human workflow mapped attributes (formerly referred to as flex fields) store and query use
case-specific custom attributes. These custom attributes typically come from the task payload
values.

Storing custom attributes in mapped attributes provides the following benefits:

Chapter 32
Using Mapped Attributes (Flex Fields)

32-64

• They can be displayed as a column in the task listing.

• They can filter tasks in custom views and advanced searches.

• They can be used for a keyword-based search.

For example the Requester, PurchaseOrderID, and Amount fields in a purchase order request
payload of a task can be stored in the mapped attributes. An approver logging into Oracle BPM
Worklist can see these fields as column values in the task list and decide which task to access.
The user can define views that filter tasks based on the mapped attributes. For example, a
user can create views for purchase order approvals based on different amount ranges. If the
user must also retrieve tasks at some point related to a specific requester or a purchase order
ID, they can specify this in the keyword field and perform a search to retrieve the relevant
tasks.

For the mapped attributes to be populated, an administrator must create mapped attribute
mappings, as follows:

1. Specify a label for the mapped attribute to be populated.

2. Map the payload attribute containing the data to the label.

These mappings are valid for a certain task type. Therefore, each task type can have different
mapped attribute mappings. After the mapping is complete and any new task is initiated, the
value of the payload is promoted to the mapped attribute. Tasks initiated before the mapping
do not contain the value in the mapped attribute. Only top-level simple type attributes in the
payload can be promoted to a mapped attribute. Complex attributes or simple types nested
inside a complex attribute cannot be promoted. It is important to define the payload for a task
in the Human Task Editor, keeping in mind which attributes from the payload may must
promoted to a mapped attribute. All text and number mapped attributes are automatically
included in the keyword-based search.

Essentially, the Human Task Editor is used only when defining the payload for a task. All other
operations are performed at runtime.

Directory naming is not available concomitant with the flex file naming convention.

Note:

• Mapped attributes must be defined before instances of the business process are
generated. Only instances generated after mapped attributes are created reflect
the correct mapped attributes. Older instances of the business process do not
reflect subsequent mapped attribute changes.

• When you add a new locale, the mapped attribute labels are not automatically
translated until you have flushed the cache. You may flush the cache either by
restarting the server, or by changing a value in the workflow configuration
settings—for example, by changing the workflowCustomClasspathURL property in
the workflow configuration to some new value, then changing it back again.

How To Map Attributes
An administrator, or users with special privileges, can use attribute mapping, shown in
Figure 32-52, to promote data from the payload to inline mapped attributes. By promoting data
to mapped attributes, the data becomes searchable and can be displayed as columns on the
task list page.

Chapter 32
Using Mapped Attributes (Flex Fields)

32-65

Administrators can map public mapped attributes. Users who have been granted the
workflow.mapping.publicFlexField privilege can map public mapped attributes, and see a
Public Flex Fields node on the Administration tab.

Figure 32-52 Mapped Attribute Mapping

To Create Labels

To create labels:

To create a mapped attribute mapping, an administrator first defines a semantic label, which
provides a more meaningful display name for the mapped attribute. Click Add to use the
Create Label dialog, as shown in Figure 32-53.

Chapter 32
Using Mapped Attributes (Flex Fields)

32-66

Figure 32-53 Creating a Label

As Figure 32-53 shows, labelName is mapped to the task attribute TextAttribute3. The
payload attribute is also mapped to the label. In this example, the Text attribute type is
associated with labelName. The result is that the value of the Text attribute is stored in the
TextAttribute3 column, and labelName is the column label displayed in the user's task list.
Labels can be reused for different task types. You can delete a label only if it is not used in any
mappings.

A mapped payload attribute can also be displayed as a column in a custom view, and used as
a filter condition in both custom views and workflow rules. The display name of the payload
attribute is the attribute label that is selected when doing the mapping.

Note the following restrictions:

• Only simple type payload attributes can be mapped.

• A mapped attribute (and thus a label) can be used only once per task type.

• Data type conversion is not supported for the number or date data types. For example, you
may not map a payload attribute of type string to a label of type number.

To Browse All Mappings

To browse all mappings:

1. Click Browse all mappings.

2. Select a row in the label table to display all the payload attributes mapped to a particular
label.

Chapter 32
Using Mapped Attributes (Flex Fields)

32-67

Figure 32-54 Browsing Mappings

To Edit Mappings by Task Type

To edit mappings by task type:

1. Click Edit mappings by task type, optionally provide a task type, and click Search.

2. Select a task type and click OK.

Chapter 32
Using Mapped Attributes (Flex Fields)

32-68

Figure 32-55 Selecting a Task Type

3. With the task type displayed in the Edit mappings by task type field, click Go.

All current mappings for the task type are displayed, as shown in Figure 32-56.

Chapter 32
Using Mapped Attributes (Flex Fields)

32-69

Figure 32-56 Selecting a Label

4. Select a mapping label and click Select.

Figure 32-57 shows a completed mapping.

Figure 32-57 Mapped Attribute Mapping Created

See Internationalization of Attribute Labels for more information.

Chapter 32
Using Mapped Attributes (Flex Fields)

32-70

Custom Mapped Attributes
The following mapped attributes are included in the WorkflowTask.xsd file and are available for
your use without restrictions.

Table 32-11 Custom Mapped Attributes

Attribute Data Type

customerAttributeString1 String

customerAttributeString2 String

customerAttributeNumber1 Double

customerAttributeNumber2 Double

customerAttributeDate1 Date

customerAttributeDate2 Date

Use the following Java Architecture for XML Binding (JAXB) methods to set and get these
attributes:

task.getCustomerAttributes.getCustomerAttributeString1()
task.getCustomerAttributes.setCustomerAttributeString1("String")
task.getCustomerAttributes.getCustomerAttributeNumber1()
task.getCustomerAttributes.setCustomerAttributeNumber2(9)
task.getCustomerAttributes.setCustomerAttributeDate1()
task.getCustomerAttributes.setCustomerAttributeDate2()
These fields are persisted in the database as customerAttributeString1,
customerAttributeString2, customerAttributeNumber1, customerAttributeNumber2,
customerAttributeDate1, customerAttributeDate2.

Creating Worklist Reports
Get an over view of worklist reports and various parameters in the reports.

Table 32-12 lists the worklist reports available for task analysis.

Table 32-12 Worklist Report Types

Report Name Description Input Parameters

Unattended Tasks Provides an analysis of
tasks assigned to users'
groups or reportees'
groups that have not yet
been acquired (the
"unattended" tasks).

• Assignee—This option (required) selects tasks assigned to the user's
group (My Group), tasks assigned to the reportee's groups
(Reportees), tasks where the user is a creator (Creator), or tasks
where the user is an owner (Owner).

• Creation Date—An optional date range
• Expiration Date—An optional date range
• Task State—The state (optional) can by Any, Assigned, Expired, or

Information Requested.
• Priority—The priority (optional) can be Any, Highest, High, Normal,

Low, or Lowest.

Chapter 32
Creating Worklist Reports

32-71

Table 32-12 (Cont.) Worklist Report Types

Report Name Description Input Parameters

Tasks Priority Provides an analysis of the
number of tasks assigned
to a user, reportees, or
their groups, broken down
by priority.

• Assignee—Depending on the assignee that you select, this required
option includes tasks assigned to the logged-in user (My), tasks
assigned to the user and groups that the user belongs to (My &
Group), or tasks assigned to groups to which the user's reportees
belong (Reportees).

• Creation Date—An optional date range
• Ended Date—An optional date range for the end dates of the tasks to

be included in the report
• Priority—The priority (optional) can by Any, Highest, High, Normal,

Low, or Lowest.

Tasks Cycle Time Provides an analysis of the
time taken to complete
tasks from assignment to
completion based on
users' groups or reportees'
groups.

• Assignee—Depending on the assignee that you select, this required
option includes your tasks (My) or tasks assigned to groups to which
your reportees belong (Reportees).

• Creation Date—An optional date range
• Ended Date—An optional date range for the end dates of the tasks to

be included in the report
• Priority—The priority (optional) can by Any, Highest, High, Normal,

Low, or Lowest.

Tasks Productivity Provides an analysis of
assigned tasks and
completed tasks in a given
time period for a user,
reportees, or their groups.

• Assignee—Depending on the assignee that the user selects, this
required option includes the user's tasks (My & Group) or tasks
assigned to groups to which the user's reportees belong (Reportees).

• Creation Date (range)—An optional creation date range. The default is
one week.

• Task Type—Use the Search (flashlight) icon to select from a list of
task titles. All versions of a task are listed on the Select Workflow Task
Type page (optional).

Tasks Time
Distribution

Provides the time an
assignee takes to perform
a task.

• Assignee—Depending on the assignee that the user selects, this
required option includes the user's tasks (My & Group) or tasks
assigned to groups to which the user's reportees belong (Reportees).

• From...to (date range)—An optional creation date range. The default is
one week.

• Task Type—Use the Search (flashlight) icon to select from a list of
task titles. All versions of a task are listed on the Select Workflow Task
Type page (optional).

How To Create Reports
Reports are available from the Reports link. Report results cannot be saved.

To create a report:

1. Click the Reports link.

2. Click the type of report you want to create.

Figure 32-58 shows the report types available.

Chapter 32
Creating Worklist Reports

32-72

Figure 32-58 Oracle BPM Worklist Reports

3. Provide inputs to define the search parameters of the report.

Figure 32-59 shows an example of the Unattended Tasks Report input page. The other
reports are similar. See Table 32-12 for information about input parameters for all the
report types.

Figure 32-59 Unattended Tasks Report—Input Page for Task Analysis

4. Click Run.

What Happens When You Create Reports
As shown in Figure 32-60, report results (for all report types) are displayed in both a table
format and a bar chart format. The input parameters used to run the report are displayed under
Report Inputs, in the lower-left corner (may require scrolling to view).

Chapter 32
Creating Worklist Reports

32-73

Figure 32-60 Report Display—Table Format, Bar Chart Format, and Report Inputs

Unattended Tasks Report
Figure 32-61 shows an example of an Unattended Tasks report.

Figure 32-61 Unattended Tasks Report

Chapter 32
Creating Worklist Reports

32-74

The report shows that the California group has 15 unattended tasks, the Supervisor group has
7 unattended tasks, and the LoanAgentGroup has 11 unattended tasks. The unattended
(unclaimed) tasks in this report are all DocumentReview tasks. If multiple types of unattended
task exists when a report is run, all task types are included in the report, and the various task
types are differentiated by color.

Tasks Priority Report
Figure 32-62 shows an example of a Tasks Priority report.

Figure 32-62 Tasks Priority Report

The report shows that the California group, the Supervisor group, and the LoanAgentGroup
each have 16 tasks of normal priority. The users rsteven and jcooper have 5 and 22 tasks,
respectively, all normal priority. Priorities (highest, high, normal, low, lowest) are distinguished
by different colors in the bar chart.

Tasks Cycle Time Report
Figure 32-63 shows an example of a Tasks Cycle Time Report.

Chapter 32
Creating Worklist Reports

32-75

Figure 32-63 Tasks Cycle Time Report

The report shows that it takes 1 hour and 6 minutes on average to complete DocumentReview
tasks, and 1 hour and 28 minutes on average to complete VacationApproval tasks. The bar
chart shows the average cycle time in milliseconds.

Tasks Productivity Report
Figure 32-64 shows an example of a Tasks Productivity Report.

Figure 32-64 Tasks Productivity Report

Chapter 32
Creating Worklist Reports

32-76

The report shows the number of tasks assigned to the California, LoanAgentGroup, and
Supervisor groups. For individual users, the report shows that jcooper has 22 assigned tasks.
In addition to his assigned tasks, jcooper has completed 2 tasks. The report shows that mtwain
and rsteven have completed 6 and 11 tasks respectively. In the bar chart, the two task states—
assigned and completed—are differentiated by color.

Note:

The Me and Group and Reportees options have been removed from the
Productivity Report.

Accessing Oracle BPM Worklist in Local Languages and Time
Zones

A user's preferred worklist language is configured from either the identity store or the browser
and preferred time zone is configured from the identity store.

If no preference information is available, then the user's preferred language and time zone are
determined by the system defaults. System defaults are based on the server settings for
language and time zone.

If the custom resource bundle class in the browser locale is not available and the custom
resource bundle class in default server locale is available, then the language is derived from
the custom resource bundle class in default server locale.If the custom resource bundle class
in the default server locale is also not available, then the language is derived from the custom
base class.

If no user language preferences are set, or if they are set to a language not supported by
Oracle BPM Worklist, then the Worklist Application defaults to English.

For more information, see the following sections for instructions on how to select Browser or
Identity Provider in the worklist interface:

• How to Specify the Login Page Realm Label for how to select Browser or Identity
Provider from the Application Preferences page

• Customizing the Task List Page and Figure 32-14

Strings in Oracle BPM Worklist
Most strings in the worklist come from the Worklist Application bundle. By default, this is the
class

oracle.bpel.services.workflow.resource.WorkflowResourceBundle

However, this can be changed to a custom resource bundle by setting the appropriate
application preference (see How to Specify the Resource Bundle) or by providing an updated
version of the default bundle class. See the Workflow Customizations sample for details.

For task attribute names, mapped attribute labels, and dynamic assignment function names,
the strings come from configuring the resource property file WorkflowLabels.properties. This
file exists in the wfresource subdirectory of the services config directory. See Introduction to
Human Workflow Services for information on adding entries to this file for dynamic assignment
functions and attribute labels.

Chapter 32
Accessing Oracle BPM Worklist in Local Languages and Time Zones

32-77

For custom actions and task titles, the display names come from the message bundle specified
in the task configuration file. If no message bundle is specified, then the values specified at
design time are used. See Introduction to Human Workflow Services for information on how to
specify message bundles so that custom actions and task titles are displayed in the preferred
language.

Note:

You cannot use Korean characters in the human task name. In place of Korean
characters, Oracle recommends using only letters A-Z, a-z, 0-9, and "_" in the human
task name.

How to Change the Preferred Language, Display Names of Users, and Time
Zone Settings if the Identity Store is LDAP-Based

If an LDAP-based provider such as Oracle Internet Directory is used, then language settings
are changed in the Oracle Internet Directory community. Connect to the embedded LDAP
server, where you can change language settings in the Oracle Internet Directory community.

1. Start an LDAP browser (for example, openLdap browser, ldapbrowser, jXplorer, and so
on). See the documentation for your browser for instructions.

2. Connect to the LDAP server by providing the hostname, the port number on which the
server is running, and the administration user credentials with which to log in.

• For Embedded LDAP:

a. The default managed server port number is 7001.

b. The administration credential username is cn=admin.

c. The administration password credential is accessible from the Oracle WebLogic
Remote Console by selecting Security > Embedded LDAP for your domain.

For instructions on changing the default password credential, see, "Managing the
Embedded LDAP Server" of Administering Security for Oracle WebLogic Server.

• For Oracle Internet Directory:

a. The default port number is 3060.

b. The administration username is cn=orcladmin.

c. The administration password is the password for the LDAP server.

3. To change a user's preferred language, navigate to the user entry, and either add or set the
preferredLanguage attribute. See Table 32-13 for a list of supported languages.

You can also determine the language in which user names are displayed. To do this task,
navigate to the user entry in the LDAP directory, then add or specify the displayname
attribute.

Chapter 32
Accessing Oracle BPM Worklist in Local Languages and Time Zones

32-78

Note:

• The user name that appears in the Assignee column in the worklist does not
honor the setting of the displayname attribute.

• Display names are taken from LDAP. So even when you change the display
name, only the LDAP user name is displayed when you log into workspace.

To change the time zone setting, either add or set the orclTimeZone attribute. The format
of the time zone string is Continent/Region. You can find the time zone values in
the $JAVA_HOME/jre/lib/zi directory. The directories specify the continent names, for
example, Africa, Asia, America, and so on, while the files within the directories specify the
regions. Some regions include subregions, for example America/Indiana/Indianapolis.

When a user logs in, the worklist pages are rendered in the user's preferred language and
time zone.

How to Change the Language in Which Tasks Are Displayed
For better performance, only the English language is listed for the LocaleList property in the
System MBean Browser in Oracle Enterprise Manager Fusion Middleware Control. If you want
to display the task title, category, and subcategory in other languages or add other languages,
you must change the required language locale in the System MBean Browser.

Note:

You should add all languages at the very beginning. If you add another language
later, then any tasks previously written in other languages no longer appear in the
worklist. For example, if the previously specified language was English, and you later
added French, then any tasks written before you added French no longer appear in
the worklist.

To add or change a language:

1. In Oracle Enterprise Manager Fusion Middleware Control, right-click soa-infra in the
navigator, select Administration, then select System MBean Browser.

2. Expand the following in sequence: Application Defined MBeans; then
oracle.as.soainfra.config; then Server: server_name; then WorkflowConfig.

3. Click human-workflow.

To change the language:

a. In the Name column, click LocaleList.

b. In the Value field, click the value.

c. In the Name column, click Language.

d. In the Value field, change en to the language value to use.

e. Click Apply.

To add additional languages:

Chapter 32
Accessing Oracle BPM Worklist in Local Languages and Time Zones

32-79

a. Click the Operations tab.

b. In the Name column, click createLocale.

c. In the Value field, enter a value. For better performance, ensure that you include only
the languages that you need for task title, category, and subcategory.

d. Click Invoke.

How To Change the Language Preferences from a JAZN XML File
In the JAZN XML file, change the portion in bold to set the user's preferred language.

<preferredLanguage>en</preferredLanguage>

Oracle BPM Worklist supports the languages shown in Table 32-13.

Table 32-13 Languages Supported in Oracle BPM Worklist

Language Format

English (en)

French (fr)

German (de)

Spanish (International) (es)

Italian (it)

Portuguese (Brazil) (pt-BR)

Japanese (ja)

Korean (ko)

Chinese (Traditional) (zh-TW)

Chinese (Simplified) (zh-CN)

Arabic (ar)

Czech (cs)

Danish (da)

Dutch (nl)

Finnish (fi)

Greek (el)

Hebrew (he)

Hungarian (hu)

Norwegian (no)

Polish (po)

Portuguese (pt)

Romanian (ro)

Russian (ru)

Slovak (sk)

Swedish (sv)

Thai (th)

Turkish (tr)

Canadian French (fr-CA)

Chapter 32
Accessing Oracle BPM Worklist in Local Languages and Time Zones

32-80

What You May Need to Know Setting Display Languages in Worklist
Oracle BPM Worklist can be configured to set the language from the browser or from the
identity store (LDAP). There are two levels to this setting: the application level and the user
level. If the user preference is set, as LDAP in the user setting, it takes precedence in
determining the worklist display language. If you do not set a language in LDAP, worklist
follows default language as server locale. However, email notifications always follow the
language set in LDAP. If no language is set in LDAP, email notifications follow server locale.

How To Change the Time Zone Used in the Worklist
The following is based on extracting a user's time zone from a JAZN XML file.

To change the time zone:

Change the string in bold to set the user's preferred time zone.

<timeZone>America/Los_Angeles</timeZone>

The format of the time zone string is Continent/Region. You can find the time zone values in
the $JAVA_HOME/jre/lib/zi directory. The directories specify the continent names, for
example Africa, Asia, America, and so on, while the files within the directories specify the
regions. Some regions include sub-regions, for example America/Indiana/Indianapolis.

Creating Reusable Worklist Regions
Some features available in worklist are exposed as standalone reusable components that can
be embedded in any application.

Moreover, these standalone task flows provide many customizations through parameters that
enable you to build and customize a worklist application to meet requirements. All of the task
flows are bundled in an ADF library that can be included in the embedding application.

How to Create an Application With an Embedded Reusable Worklist Region
The usage of each reusable worklist region is the same with a few exceptions. The following
procedure provides the detailed steps to create an application and embed the Task List task
flow in the application. Where applicable, notes on how to use other types of reusable worklist
regions are provided.

To create an application with an embedded reusable worklist region:

1. Create new Fusion Web Application in Oracle JDeveloper. In this example, the name of the
application is TaskListTaskFlowSample. Figure 32-65 provides details.

Chapter 32
Creating Reusable Worklist Regions

32-81

Figure 32-65 Creation of Application with an Embedded Reusable Worklist Region

2. Open the View Controller Project Properties, Libraries and Classpath section, and click
Add Library to add the following libraries in the class path:

• BPM Worklist Components Add this library to add the task flow JAR
adflibTaskListTaskFlow.jar and adflibWorklistComponents.jar, which are
required in the project's class path.

• BPM Services

• WSRP Container

Figure 32-66 provides details.

Figure 32-66 Libraries and Classpath Section

Chapter 32
Creating Reusable Worklist Regions

32-82

3. If your application runs on non-SOA server, you must perform two additional steps.

a. Install the oracle.soa.workflow shared library.

If your server has oracle.soa.workflow.wc already installed, you do not need to
install oracle.soa.workflow.

b. Configure a foreign JNDI on the server.

If you run the Task List task flow in federated mode, you do not need to do this step.
See "federatedMode" in section What You May Need to Know About Task List Task
Flow for information about how to use the task flow in federated mode.

4. Select the View Controller project and choose File > New > Current Project
Technologies > Web Tier > JSF Page to create a jspx file (for example,
testSample.jspx).

Be sure to select Create as XML document (*.jspx) in the Create JSF Page dialog.

5. Choose adflibTaskListTaskFlow.jar from the Components window. It contains the list of
all the Task Flows and Regions. Figure 32-67 provides details.

Figure 32-67 Components Window

6. Drag and drop one of the task flow Regions to the jspx page, and select Region in the
Create menu (for example, taskList-task-flow-definition for Task List Task Flow).

See the following sections for details about the task flow definitions:

• What You May Need to Know About Task List Task Flow

• What You May Need to Know About Certificates Task Flow

• What You May Need to Know About the Reports Task Flow

• What You May Need to Know About Application Preferences Task Flow

• What You May Need to Know About Mapped Attributes Task Flow

• What You May Need to Know About Rules Task Flow

• What You May Need to Know About Approval Groups Task Flow

• What You May Need to Know About Task Configuration Task Flow

7. If you chose flex-fields-task-flow-definition, rules-task-flow-definition, tasklist-
reports-task-flow-definition, or taskList-task-flow-definition, pass the task flow
parameters in the Edit Task Flow Binding dialog that appears.

8. A new entry is added to the pagenamePagedef.xml file.

Chapter 32
Creating Reusable Worklist Regions

32-83

For example, adding the taskList-task-flow-definition results in the following new entry:

<taskFlow id="taskListtaskflowdefinition1"
 taskFlowId="/WEB-INF/taskList-task-flow-definition.xml#taskList-task- flow-
definition"
 xmlns="http://xmlns.oracle.com/adf/controller/binding">
 <parameters>
 <parameter id="taskFlowMode" value="MODE_WORKLIST"/>
 <parameter id="showTaskDetailsPanel" value="true"/>
 <parameter id="showActionDropdown" value="true"/>
 <parameter id="showViewFilter" value="true"/>
 <parameter id="showStatusFilter" value="true"/>
 <parameter id="showSearchControl" value="true"/>
 </parameters>
</taskFlow>

9. Add the shared libraries in the weblogic-application.xml file. If you have
oracle.soa.workflow.wc installed on your server, add that library.

 <library-ref>
 <library-name>oracle.soa.workflow</library-name>
 </library-ref>

If the generated custom application is a module, use weblogic.xml.

 <library-ref>
 <library-name>oracle.soa.worklist.webapp</library-name>
 </library-ref>

Before deploying the application, see How to Set Up the Deployment Profile.

How to Set Up the Deployment Profile
Before deploying the application, you must edit the deployment profile.

To edit the deployment profile

1. Select the View Controller project and choose File > New > General > Deployment
Profiles, select WAR File, and click OK.

2. Select WEB-INF/lib > Filters, and check adflibTaskListTaskFlow.jar,
adflibWorklistComponents.jar and wsrp-container.jar.

How to Prepare Federated Mode Task Flows For Deployment
If you are using the task flow in federated mode, you must pass the list of federated servers to
the task flow. See "federatedMode" in section What You May Need to Know About Task List
Task Flow for details.

If the task flow is used in the federated mode, then enable global trust between the federated
servers. This is done so that the already authenticated user token is passed to all the federated
servers passed.

Do the below steps for all the federated servers and restart all the servers. It is very important
that you restart all the servers.

To restart the servers:

1. Login to the Oracle Weblogic Server console.

Chapter 32
Creating Reusable Worklist Regions

32-84

2. Select the domain name soainfra under Domain Structures. The domain name may be
different if a SOA server is not used.

3. Select the Security tab.

4. Select the Advanced link (near the bottom Save button).

5. Enter a password in the Credential field. (The same password must be given for all the
federated servers).

6. Click Save.

7. Restart the server.

What You May Need to Know About Task List Task Flow
The Task List task flow takes in the parameters to control the display behavior of the
embedded region. Figure 32-68 provides details.

Figure 32-68 Task List

Some of the parameters are listed below.

• federatedMode

• federatedServers

• showServerColumn

• wfCtxID

federatedMode

Chapter 32
Creating Reusable Worklist Regions

32-85

If this is passed as true, the task list is shown in the federated mode. To run the task flow in
federated mode, the list of federated servers must be passed to the task flow. You can pass the
federated servers list to the task flow in one of the following two ways.

• Provide the client configuration file wf_client_config.xml in the class path (APP-
INF\classes\wf_client_config.xml at the EAR level, or the WEB-INF\classes of the web
application). The client configuration file contains all federated server details.

• Construct a JAXB object, which contains the federated servers list. This JAXB object can
be passed to the task flow through the federatedServers parameter. See
"federatedServers" below for information about constructing the JAXB object.

If both the client configuration file (wf_client_config.xml) and the JAXB object were provided
to the task flow, the JAXB object takes the precedence.

federatedServers

This parameter is a JAXB object that contains the list of servers if the task flow is run in
federated mode. This parameter takes precedence over the client configuration file
(wf_client_config.xml) if it were also provided. See the code sample below for details about
constructing the JAXB object (WorkflowServicesClientConfigurationType).

Make sure that you set one of the servers as default, as shown in the code sample below.
Only one server is required to be designated as the default. Also, verify that the server you
designate as the default is excluded from the federated servers list. The relevant code for
doing this is in bold in the example.

The default server is used when you have many servers defined in wf_client_config.xml or
in the JAXB object, but the workflow client is desired for a single server. There are a few legacy
APIs that do not take a server name as a parameter. To support such legacy APIs, your must
define a single server as the default server, otherwise any legacy APIs that do not take a
server name do not work.

import oracle.bpel.services.workflow.client.config.IdentityPropagationType;
import oracle.bpel.services.workflow.client.config.PolicyReferenceType;
import oracle.bpel.services.workflow.client.config.PolicyReferencesType;
import oracle.bpel.services.workflow.client.config.RemoteClientType;
import oracle.bpel.services.workflow.client.config.ServerType;
import oracle.bpel.services.workflow.client.config.SoapClientType;
import
oracle.bpel.services.workflow.client.config.WorkflowServicesClientConfigurationType;

WorkflowServicesClientConfigurationType wscct =
 new WorkflowServicesClientConfigurationType();

List<ServerType> servers = wscct.getServer();

/**** Setting default server in the list ****/

ServerType defalutServer = new ServerType();
servers.add(defalutServer);

defalutServer.setDefault(true);
defalutServer.setExcludeFromFederatedList(true);
defalutServer.setName("default");

RemoteClientType rct = new RemoteClientType();
rct.setServerURL("t3://myhost.us.example.com:7001");
rct.setInitialContextFactory("weblogic.jndi.WLInitialContextFactory");
rct.setParticipateInClientTransaction(false);
defalutServer.setRemoteClient(rct);

Chapter 32
Creating Reusable Worklist Regions

32-86

SoapClientType sct = new SoapClientType();
PolicyReferencesType prts = new PolicyReferencesType();

PolicyReferenceType prt = new PolicyReferenceType();
prt.setEnabled(true);
prt.setCategory("security");
prt.setUri("oracle/wss10_saml_token_client_policy");
prts.getPolicyReference().add(prt);

IdentityPropagationType ipt = new IdentityPropagationType();
ipt.setMode("dynamic");
ipt.setType("saml");
ipt.setPolicyReferences(prts);

sct.setRootEndPointURL("http://myhost.us.example.com:7001");
sct.setIdentityPropagation(ipt);

defalutServer.setSoapClient(sct);

/****** Setting Federated Server 1 to the list ****/

ServerType server1 = new ServerType();
servers.add(server1);
server1.setName("Human Resource");

RemoteClientType rct1 = new RemoteClientType();
rct1.setServerURL("t3://myhost.us.example.com:7001");
rct1.setInitialContextFactory("weblogic.jndi.WLInitialContextFactory");
rct1.setParticipateInClientTransaction(false);
server1.setRemoteClient(rct1);

SoapClientType sct1 = new SoapClientType();
PolicyReferencesType prts1 = new PolicyReferencesType();

PolicyReferenceType prt1 = new PolicyReferenceType();
prt1.setEnabled(true);
prt1.setCategory("security");
prt1.setUri("oracle/wss10_saml_token_client_policy");
prts1.getPolicyReference().add(prt1);
IdentityPropagationType ipt1 = new IdentityPropagationType();
ipt1.setMode("dynamic");
ipt1.setType("saml");
ipt1.setPolicyReferences(prts1);

sct1.setRootEndPointURL("http://myhost.us.example.com:7001");
sct1.setIdentityPropagation(ipt1);

server1.setSoapClient(sct1);

/****** Setting Federated Server 2 to the list ****/

ServerType server2 = new ServerType();
servers.add(server2);
server2.setName("Financials");

RemoteClientType rct2 = new RemoteClientType();
rct2.setServerURL("t3://myhost.us.example.com:7001");
rct2.setInitialContextFactory("weblogic.jndi.WLInitialContextFactory");
rct2.setParticipateInClientTransaction(false);
server2.setRemoteClient(rct2);

Chapter 32
Creating Reusable Worklist Regions

32-87

SoapClientType sct2 = new SoapClientType();
PolicyReferencesType prts2 = new PolicyReferencesType();

PolicyReferenceType prt2 = new PolicyReferenceType();
prt2.setEnabled(true);
prt2.setCategory("security");
prt2.setUri("oracle/wss10_saml_token_client_policy");
prts2.getPolicyReference().add(prt2);

IdentityPropagationType ipt2 = new IdentityPropagationType();
ipt2.setMode("dynamic");
ipt2.setType("saml");
ipt2.setPolicyReferences(prts2);

sct2.setRootEndPointURL("http://myhost.us.example.com:7001");
sct2.setIdentityPropagation(ipt2);

server2.setSoapClient(sct2);

showServerColumn

If the task flow is run in federated mode, the server column in the task list is not shown by
default. The server column is shown if this parameter is passed as true, otherwise it is not.

wfCtxID

This is a workflow context token string. It is used to create workflow context inside the task
flow. If the application is SSO-enabled, or it is secured using ADF security, this parameter is
not required, otherwise this is a required parameter. You can get the workflow context ID as
shown in the code sample below:

IWorkflowContext wfCtx =
wfSvcClient.getTaskQueryService().authenticate(username,password,realm,null);
wfCtxID = wfCtx.getToken();

What You May Need to Know About Certificates Task Flow
The user can upload the certificate to use to sign a decision, as shown in the following graphic.
When signing a task outcome using your certificate, you must upload the entire chain of
certificates through Oracle BPM Worklist as a .P7B (PKCS7 format) file, not only the one
certificate issued to you by the certificate issuer.

A digital certificate contains the digital signature of the certificate-issuing authority, so that
anyone can verify that the certificate is real. A digital certificate establishes the participant's
credentials. It is issued by a certification authority (CA). It contains your name, a serial number,
expiration dates, a copy of the certificate holder's public key (used for encrypting messages
and digital signatures), and the digital signature of the certificate-issuing authority, so that a
recipient can verify that the certificate is real.

Certificates task flow does not have any parameters. Figure 32-69 provides details.

Chapter 32
Creating Reusable Worklist Regions

32-88

Figure 32-69 Digital Certificate

What You May Need to Know About the Reports Task Flow
Figure 32-70 shows the unattended tasks report.

Figure 32-70 Unattended Tasks Report

The following worklist reports are available for task analysis.

Unattended Tasks

Unattended Tasks provides an analysis of tasks assigned to users' groups or reportees' groups
that have not yet been acquired (the "unattended" tasks).

Chapter 32
Creating Reusable Worklist Regions

32-89

• Assignee -This option (required) selects tasks assigned to the user's group (My Group),
tasks assigned to the reportee's groups (Reportees), tasks where the user is a creator
(Creator), or tasks where the user is an owner (Owner).

• Creation Date - An optional date range

• Expiration Date - An optional date range

• Task State - The state (optional) can by Any, Assigned, Expired, or Information
Requested.

• Priority - The priority (optional) can be Any, Highest, High, Normal, Low, or Lowest.

Tasks Priority

Tasks Priority provides an analysis of the number of tasks assigned to a user, reportees, or
their groups, broken down by priority.

• Assignee - Depending on the assignee that you select, this required option includes tasks
assigned to the logged-in user (My), tasks assigned to the user and groups that the user
belongs to (My & Group), or tasks assigned to groups to which the user's reportees belong
(Reportees).

• Creation Date - An optional date range

• Ended Date - An optional date range for the end dates of the tasks to be included in the
report.

• Priority - The priority (optional) can be Any, Highest, High, Normal, Low, or Lowest.

Tasks Cycle Time

Tasks Cycle Time provides an analysis of the time taken to complete tasks from assignment to
completion based on users' groups or reportees' groups.

• Assignee - Depending on the assignee that you select, this required option includes your
tasks (My) or tasks assigned to groups to which your reportees belong (Reportees).

• Creation Date - An optional date range

• Ended Date - An optional date range for the end dates of the tasks to be included in the
report.

• Priority - The priority (optional) can be Any, Highest, High, Normal, Low, or Lowest.

Tasks Productivity

Tasks Productivity provides an analysis of assigned tasks and completed tasks in a given time
period for a user, reportees, or their groups.

• Assignee - Depending on the assignee that the user selects, this required option includes
the user's tasks (My & Group) or tasks assigned to groups to which the user's reportees
belong (Reportees).

• Creation Date (range) - An optional creation date range. The default is one week.

• Task Type - Use the Search (flashlight) icon to select from a list of task titles. All versions
of a task are listed on the Select Workflow Task Type page (optional).

Tasks Time Distribution

Tasks Time Distribution provides the time an assignee takes to perform a task.

• Assignee - Depending on the assignee that the user selects, this required option includes
the user's tasks (My & Group) or tasks assigned to groups to which the user's reportees
belong (Reportees).

Chapter 32
Creating Reusable Worklist Regions

32-90

• From...to (date range) - An optional creation date range. The default is one week.

• Task Type - Use the Search (flashlight) icon to select from a list of task titles. All versions
of a task are listed on the Select Workflow Task Type page (optional).

What You May Need to Know About Application Preferences Task Flow
Application preferences customize the appearance of the worklist. Administrators can specify
the following:

• Login page realm label-If the identity service is configured with multiple realms, then the
Oracle BPM Worklist login page displays a list of realm names. LABEL_LOGIN_REALM
specifies the resource bundle key used to look up the label to display these realms. The
term realm can be changed to fit the user community. Terms such as country, company,
division, or department may be more appropriate. Administrators can customize the
resource bundle, specify a resource key for this string, and then set this parameter to point
to the resource key.

• Global branding icon-This is the image displayed in the top left corner of every page of
the worklist. (The Oracle logo is the default.) Administrators can provide a .gif, .png,
or .jpg file for the logo. This file must be in the public_html directory.

• Resource bundle-An application resource bundle provides the strings displayed in the
worklist. By default, this is the class at
oracle.bpel.worklistapp.resource.WorklistResourceBundle. Figure 32-71 provides
details.

Chapter 32
Creating Reusable Worklist Regions

32-91

Figure 32-71 Application Preferences

What You May Need to Know About Mapped Attributes Task Flow
Human workflow mapped attributes store and query use case-specific custom attributes.
These custom attributes typically come from the task payload values. Storing custom attributes
in mapped attributes provides the following benefits:

• They can be displayed as a column in the task listing.

• They can filter tasks in custom views and advanced searches.

• They can be used for a keyword-based search.

For example the Requester, PurchaseOrderID, and Amount fields in a purchase order request
payload of a task can be stored in the mapped attributes. An approver logging into Oracle BPM
Worklist can see these fields as column values in the task list and decide which task to access.
The user can define views that filter tasks based on the mapped attributes.

For example, a user can create views for purchase order approvals based on different amount
ranges. If the user must also retrieve tasks at some point related to a specific requester or a
purchase order ID, they can specify this in the keyword field and perform a search to retrieve
the relevant tasks. Figure 32-72 provides details.

Chapter 32
Creating Reusable Worklist Regions

32-92

Figure 32-72 Mapped Attribute Mapping

What You May Need to Know About Rules Task Flow
Rules act on tasks, either a specific task type, or all the tasks assigned to a user or group. The
graphic below shows where you set rules, including vacation rules.

A rule cannot always apply in all circumstances in which it is used. For example, if a rule
applies to multiple task types, it may not be possible to set the outcome for all tasks, since
different tasks can have different outcomes.

Rules are executed in the order in which they are listed. Rules can be reordered by using the
up and down buttons in the header. If a rule meets its filter conditions, then it is executed and
no other rules are evaluated. For your rule to execute, you must be the only user assigned to
that task. If the task is assigned to multiple users (including you), the rule does not execute.

The showOtherUsersRules parameter takes a boolean value. When it is passed as True other
users' rules are displayed, and when it is passed as False other users' rules are not shown. In
addition, this user has to have required permission to view other user rules. Figure 32-73 and
Figure 32-74 provide details.

Chapter 32
Creating Reusable Worklist Regions

32-93

Figure 32-73 Vacation Period

Figure 32-74 My Rule

Chapter 32
Creating Reusable Worklist Regions

32-94

What You May Need to Know About Approval Groups Task Flow
Approval groups are either a statically defined or a dynamically generated list of approvers.
Approval groups usually are configured by the process owner using the worklist application.
Typically, they are used to model subject matter experts outside the transaction's managerial
chain of authority, such as human resources or legal counsel, that must act on a task before or
after management approval.

Static approval groups are predetermined lists of approvers, while dynamic approval groups
generate approver lists at runtime. Dynamic approval groups require:

• delivery of an implementation according to the dynamic approver list interface by the
developer

• registration of the implementation as a dynamic approval group using the Oracle BPM
Worklist's UI by the IT department

• availability of the class file in a globally well-known directory that is part of the SOA class
path

What You May Need to Know About Task Configuration Task Flow
Task Configuration is a web-based application in Worklist Application that enables business
users and administrators to review and modify rules that were predefined by the workflow
designer. These predefined rules can be changed for a specific customer based on the
customer's applicable corporate policies.

For example, suppose that a corporate policy requires two levels of approvals for expense
amounts greater than 1000. Suppose further that this policy is changed to require three levels.
You can use Task Configuration to change the rule rather than having your IT department
modify the rule in the underlying process and then deploy it again. Any change to the rule is
applied starting with the next instance, and instances already in progress use the current rule
definitions.

Task Configuration enables you to edit the event driven and data-driven rules associated with
an approval flow at runtime—that is, when the workflow has already been deployed.

Java Code for Enabling Customized Applications in Oracle BPM
Worklist

Given below is the Java Code for Enabling Customized Applications in Oracle BPM Worklist.

How to Enable Customized Applications and Links explained how to specify a custom
application by using the Application Preferences page of Oracle BPM Worklist. The Java code
for performing this specification is as follows:

package view.customisationimpl;
import java.util.ArrayList;
import java.util.HashMap;
import java.util.List;
import java.util.Map;

import oracle.bpel.services.workflow.client.IWorkflowServiceClient;
import oracle.bpel.services.workflow.runtimeconfig.IRuntimeConfigService;
import oracle.bpel.services.workflow.runtimeconfig.model.AttributeLabelType;
import oracle.bpel.services.workflow.runtimeconfig.model.AttributeLabelUsageList;

Chapter 32
Java Code for Enabling Customized Applications in Oracle BPM Worklist

32-95

import oracle.bpel.services.workflow.runtimeconfig.model.AttributeLabelUsages;
import oracle.bpel.services.workflow.verification.IWorkflowContext;
import oracle.bpm.ui.customization.CustomLink;
import oracle.bpm.ui.customization.IBPMUICustomizations;

public class WorkspaceCustomisationImpl implements IBPMUICustomizations {
 private static Map displayNameMap = new HashMap();
 public WorkspaceCustomisationImpl() {
 displayNameMap.put("instanceId", "Instance Id");
 displayNameMap.put("protectedTextAttribute1", "Business Status");
 }
 public List<CustomLink> getCustomGlobalLinks() {
 CustomLink globalLink1 =
 new CustomLink("Oracle Home Page", "www.oracle.com", null);
 CustomLink globalLink2 =
 new CustomLink("Self Services Application", "http://global-
ebusiness.example.com/",
 null);
 CustomLink globalLink3 =
 new CustomLink("BUG DB", "https://bug.example.com/", null);
 List<CustomLink> globalLinks = new ArrayList<CustomLink>();
 globalLinks.add(globalLink1);
 globalLinks.add(globalLink2);
 globalLinks.add(globalLink3);
 return globalLinks;
 }
 public String getColumnNames() {
 return "title,taskNumber,instanceId,creator,protectedTextAttribute1";
 }

 private static void initDisplayMap(IWorkflowServiceClient client,
 IWorkflowContext context) {
 // you can use service to load all label namess for text attributes
 if (displayNameMap == null) {
 synchronized (String.class) {
 if (displayNameMap == null) {
 displayNameMap = new HashMap();
 try {
 IRuntimeConfigService service =
 client.getRuntimeConfigService();
 AttributeLabelUsageList list =
 service.getAttributeLabelUsages(context, "Text");
 List<AttributeLabelUsages> list1 =
 list.getAttributeLabelUsages();
 for (AttributeLabelUsages usage : list1) {
 AttributeLabelType type = usage.getLabel();
 displayNameMap.put(type.getTaskAttribute(),
 type.getLabelName());
 }
 } catch (Exception exc) {
 }
 }
 }
 }
 }

 public String getColumnDisplayName(IWorkflowServiceClient client,
 IWorkflowContext context,
 java.lang.String colName) {
 initDisplayMap(client, context);
 return (String)displayNameMap.get(colName);

Chapter 32
Java Code for Enabling Customized Applications in Oracle BPM Worklist

32-96

 }
}

Chapter 32
Java Code for Enabling Customized Applications in Oracle BPM Worklist

32-97

33
Building a Custom Worklist Client

Learn how, starting with the sample Oracle BPM Worklist, a developer can build clients for
workflow services by using the APIs exposed by the workflow service. The APIs enable clients
to communicate with the workflow service by using remote EJBs, SOAP, and HTTP.

• Introduction to Building Clients for Workflow Services

• Packages and Classes for Building Clients

• Workflow Service Clients

• Class Paths for Clients Using SOAP

• Class Paths for Clients Using Remote EJBs

• Initiating a Task

• Changing Workflow Standard View Definitions

• Writing a Worklist Application Using the HelpDeskUI Sample

Introduction to Building Clients for Workflow Services
When creating a Java client application to call Human Workflow service, ensure that JRF is
running on the same environment as the Java client application.

The typical sequence of calls when building a simple worklist application is as follows.

To build a simple worklist application:

1. Get a handle to IWorklistServiceClient from WorkflowServiceClientFactory.

2. Get a handle to ITaskQueryService from IWorklistServiceClient.

3. Authenticate a user by passing a username and password to the authenticate method on
ITaskQueryService. Get a handle to IWorkflowContext.

4. Query the list of tasks using ITaskQueryService.

5. Get a handle to ITaskService from IWorklistServiceClient.

6. Iterate over the list of tasks returned, performing actions on the tasks using ITaskService.

The code sample below demonstrates how to build a client for workflow services. A list of all
tasks assigned to jstein is queried. A task whose outcome has not been set is approved.

try
{
 //Create JAVA WorflowServiceClient
 IWorkflowServiceClient wfSvcClient = WorkflowServiceClientFactory.getWorkflowServiceClient(
 WorkflowServiceClientFactory.REMOTE_CLIENT);
 //Get the task query service
 ITaskQueryService querySvc = wfSvcClient.getTaskQueryService();

 //Login as jstein
 IWorkflowContext ctx = querySvc.authenticate("jstein","welcome1".toCharArry(),null);
 //Set up list of columns to query
 List queryColumns = new ArrayList();

33-1

 queryColumns.add("TASKID");
 queryColumns.add("TASKNUMBER");
 queryColumns.add("TITLE");
 queryColumns.add("OUTCOME");

 //Query a list of tasks assigned to jstein
 List tasks = querySvc.queryTasks(ctx,
 queryColumns,
 null, //Do not query additional info
 ITaskQueryService.AssignmentFilter.MY,
 null, //No keywords
 null, //No custom predicate
 null, //No special ordering
 0, //Do not page the query result
 0);
 //Get the task service
 ITaskService taskSvc = wfSvcClient.getTaskService();
 //Loop over the tasks, outputting task information, and approving any
 //tasks whose outcome has not been set...
 for(int i = 0 ; i < tasks.size() ; i ++)
 {
 Task task = (Task)tasks.get(i);
 int taskNumber = task.getSystemAttributes().getTaskNumber();
 String title = task.getTitle();
 String taskId = task.getSystemAttributes().getTaskId();
 String outcome = task.getSystemAttributes().getOutcome();
 if(outcome == null)
 {
 outcome = "APPROVE";
 taskSvc.updateTaskOutcome(ctx,taskId,outcome);
 }
 System.out.println("Task #"+taskNumber+" ("+title+") is "+outcome);
 }

}
catch (Exception e)
{
 //Handle any exceptions raised here...
 System.out.println("Caught workflow exception: "+e.getMessage());
}

Packages and Classes for Building Clients
Use the following packages and classes for building clients.

• oracle.bpel.services.workflow.metadata.config.model
The classes in this package contain the object model for the workflow configuration in the
task definition file. The ObjectFactory class can create objects.

• oracle.bpel.services.workflow.metadata.routingslip.model
The classes in this package contain the object model for the routing slip. The
ObjectFactory class can create objects.

• oracle.bpel.services.workflow.metadata.taskdisplay.model
The classes in this package contain the object model for the task display. The
ObjectFactory class can create objects.

• oracle.bpel.services.workflow.metadata.taskdefinition.model

Chapter 33
Packages and Classes for Building Clients

33-2

The classes in this package contain the object model for the task definition file. The
ObjectFactory class can create objects.

• oracle.bpel.services.workflow.client.IWorkflowServiceClient
The interface for the workflow service client.

• oracle.bpel.services.workflow.client.WorkflowServiceClientFactory
The factory for creating the workflow service client.

• oracle.bpel.services.workflow.metadata.ITaskMetadataService
The interface for the task metadata service.

• oracle.bpel.services.workflow.task.ITaskService
The interface for the task service.

• oracle.bpel.services.workflow.task.IRoutingSlipCallback
The interface for the callback class to receive callbacks during task processing.

• oracle.bpel.services.workflow.task.IAssignmentService
The interface for the assignment service.

Workflow Service Clients
Any worklist application accesses the various workflow services through the workflow service
client. The workflow service client code encapsulates all the logic required for communicating
with the workflow services using different local and remote protocols. After the worklist
application has an instance of the workflow service client, it does not need to consider how the
client communicates with the workflow services.

The advantages of using the client are as follows:

• Hides the complexity of the underlying connection mechanisms such as SOAP/HTTP and
Enterprise JavaBeans

• Facilitates changing from using one particular invocation mechanism to another, for
example from SOAP/HTTP to remote Enterprise JavaBeans

The following class is used to create instances of the IWorkflowServiceClient interface:

oracle.bpel.services.workflow.client.WorkflowServiceClientFactory

WorkflowServiceClientFactory has several methods that create workflow clients. The
simplest method, getWorkflowServiceClient, takes a single parameter, the client type. The
client type can be one of the following:

• WorkflowServiceClientFactory.REMOTE_CLIENT—The client uses a remote Enterprise
JavaBeans interface to invoke workflow services located remotely from the client.

• WorkflowServiceClientFactory.SOAP_CLIENT—The client uses SOAP to invoke web
service interfaces to the workflow services, located remotely from the client.

The other factory methods enable you to specify the connection properties directly (rather than
having the factory load them from the wf_client_config.xml file), and enable you to specify
a logger to log client activity.

The following enhancements to the workflow service clients are included in this release:

• You can specify the workflow client configuration using either a JAXB object or a map, as
shown in example 1 and 2 below:

Chapter 33
Workflow Service Clients

33-3

Example 1

WorkflowServicesClientConfigurationType wscct = new WorkflowServicesClientConfigurationType();
 List<ServerType> servers = wscct.getServer();
 ServerType server = new ServerType();
 server.setDefault(true);
 server.setName(serverName);
 servers.add(server);

 RemoteClientType rct = new RemoteClientType();
 rct.setServerURL("t3://stapj73:7001");
 rct.setUserName("weblogic");
 rct.setPassword("weblogic"));
 rct.setInitialContextFactory("weblogic.jndi.WLInitialContextFactory");
 rct.setParticipateInClientTransaction(false);
 server.setRemoteClient(rct);
 IWorkflowServiceClient wfSvcClient = WorkflowServiceClientFactory.getWorkflowServiceClient(
 WorkflowServiceClientFactory.REMOTE_CLIENT, wscct, logger);

Example 2

Map<IWorkflowServiceClientConstants.CONNECTION_PROPERTY,java.lang.String> properties = new
 HashMap<IWorkflowServiceClientConstants.CONNECTION_PROPERTY,java.lang.String>();

properties.put(IWorkflowServiceClientConstants.CONNECTION_PROPERTY.MODE,
 IWorkflowServiceClientConstants.MODE_DYNAMIC);

properties.put(IWorkflowServiceClientConstants.CONNECTION_PROPERTY.SOAP_END_POINT_ROOT,
 "http://localhost:8888");

IWorkflowServiceClient client =
 WorkflowServiceClientFactory.getWorkflowServiceClient(WorkflowServiceClientFactory.SOAP_CLIENT,
 properties, null);

• Clients can optionally pass in a java.util.logging.Logger where the client logs
messages. If no logger is specified, then the workflow service client code does not log
anything. The code sample below shows how a logger can be passed to the workflow
service clients:

java.util.logging.Logger logger =;

IWorkflowServiceClient client =
 WorkflowServiceClientFactory.getWorkflowServiceClient(WorkflowServiceClientFactory.REMOTE_CLIENT,
 properties, logger);

Through the factory, it is possible to get the client libraries for all the workflow services. See
Table 34-1 for the clients available for each of the services.

You can obtain instances of BPMIdentityService and BPMIdentityConfigService by calling
the getSOAPIdentityServiceClient and getSOAPIdentityConfigServiceClient methods on
WorkflowServiceClientFactory. You can obtain all other services through an instance of
IWorkflowServiceClient.

The client classes use the configuration file wf_client_config.xml for the service endpoints.
In the client class path, this file is in the class path directly, meaning the containing directory is
in the class path. The wf_client_config.xml file contains:

• A section for remote clients, as shown in the code sample below:

<remoteClient>
 <serverURL>t3://hostname.domain_name:7001</serverURL>
 <userName>weblogic</userName>
 <password>weblogic</password>

Chapter 33
Workflow Service Clients

33-4

 <initialContextFactory>weblogic.jndi.WLInitialContextFactory
 </initialContextFactory>
 <participateInClientTransaction>false</participateInClientTransaction>
</remoteClient>

• A section for SOAP endpoints for each of the services, as shown in the code sample
below:

<soapClient>
 <rootEndPointURL>http://hostname.domain_name:7001</rootEndPointURL>
 <identityPropagation mode="dynamic" type="saml">
 <policy-references>
 <policy-reference enabled="true" category="security"
 uri="oracle/wss10_saml_token_client_policy"/>
 </policy-references>
 </identityPropagation>
</soapClient>

The workflow client configuration XML schema definition is in the wf_client_config.xsd file.

The IWorkflowServiceClient Interface
The IWorkflowServiceClient interface provides methods, summarized in Table 33-1, for
obtaining handles to the various workflow services interfaces.

Table 33-1 IWorkflowServiceClient Methods

Method Interface

getTaskService oracle.bpel.services.workflow.task.ITaskService

getTaskQueryService oracle.bpel.services.workflow.query.ITaskQueryService

getTaskReportService oracle.bpel.services.workflow.report.ITaskReportService

getTaskMetadataService oracle.bpel.services.workflow.metadata.ITaskMetadataService

getUserMetadataService oracle.bpel.services.workflow.user.IUserMetadataService

getRuntimeConfigService oracle.bpel.services.workflow.runtimeconfig.IRuntimeConfigService

getTaskEvidenceService oracle.bpel.services.workflow.metadata.ITaskMetadataService

Class Paths for Clients Using SOAP
SOAP clients must have the following JAR files in their class path.

$SOA_HOME/soa/modules/oracle.bpm.client_11.1.1/
 oracle.bpm.bpm-services.client.jar
 oracle.bpm.bpm-services.interface.jar
 oracle.bpm.client.jar
 oracle.bpm.web-resources.jar

Chapter 33
Class Paths for Clients Using SOAP

33-5

$SOA_HOME/soa/modules/oracle.bpm.project_11.1.1/
 oracle.bpm.project.catalog.jar
 oracle.bpm.project.draw.jar
 oracle.bpm.project.jar
 oracle.bpm.project.model.jar

$SOA_HOME/soa/modules/oracle.bpm.runtime_11.1.1/
 oracle.bpm.bpm-services.implementation.jar
 oracle.bpm.bpm-services.internal.jar
 oracle.bpm.core.jar
 oracle.bpm.lib.jar
 oracle.bpm.metadata.jar
 oracle.bpm.metadata-interface.jar
 oracle.bpm.papi.jar
 oracle.bpm.xml.jar

$SOA_HOME/soa/modules/oracle.soa.fabric_11.1.1/
 fabric-runtime.jar
 bpm-infra.jar

$SOA_HOME/soa/modules/oracle.soa.workflow_11.1.1/
 bpm-services.jar
 bpm-workflow-datacontrol.jar

$SOA_HOME/soa/modules/
 soa-startup.jar

$MW_HOME/oracle_common/modules/oracle.webservices_11.1.1/
 wsclient.jar

$MW_HOME/oracle_common/modules/oracle.jrf_11.1.1/
 jrf-api.jar

$MW_HOME/wlserver_10.3/server/lib/
 wlthint3client.jar

${bea.home}/wlserver/server/lib/
 wlfullclient.jar

$ORACLE_HOME/soa/plugins/jdeveloper/external/
 oracle.external.soa.jrf-wsclient-extended.jar

${bea.home}/oracle_common/module/clients/
 com.oracle.webservices.wls.jaxws-owsm-client_12.1.3.jar

You can generate the wlfullclient.jar file using the commands shown in the code sample
below:

cd ${bea.home}/wlserver/server/lib
java -jar ../../../modules/com.bea.core.jarbuilder_2.2.0.0.jar

Chapter 33
Class Paths for Clients Using SOAP

33-6

Note:

Client applications no longer use the system\services\config or
system\services\schema directories in the class path.

Class Paths for Clients Using Remote EJBs
Clients using remote EJBs must have the following JAR files in their class path.

• wlfullclient.jar
• oracle.external.soa.jrf-wsclient-extended.jar
• wlclient.jar
• xmlparserv2.jar
• xml.jar
• bpm-infra.jar
• bpm-services.jar
• fabric-runtime.jar

Note:

Client applications no longer use the system\services\config or
system\services\schema directories in the class path.

Initiating a Task
Tasks can be initiated programmatically.

Set the following task attributes:

• taskDefinitionId
• title
• payload
• priority
The following task attributes are optional, but are typically set by clients:

• creator
• ownerUser—Defaults to bpeladmin if empty

• processInfo
• identificationKey—Tasks can be queried based on the identification key from the

TaskQueryService.

Chapter 33
Class Paths for Clients Using Remote EJBs

33-7

Creating a Task
The task object model is available in the package

oracle.bpel.services.workflow.task.model

To create objects in this model, use the ObjectFactory class.

Creating a Payload Element in a Task
The task payload can contain multiple payload message attributes. Since the payload is not
well defined until the task definition, the Java object model for the task does not contain strong
type objects for the client payload. The task payload is represented by the AnyType Java
object. The AnyType Java object is created with an XML element whose root is payload in the
namespace

http://xmlns.oracle.com/bpel/workflow/task

The payload XML element contains all the other XML elements in it. Each XML element
defines a message attribute.

The code sample below shows how to set a task payload:

import oracle.bpel.services.workflow.task.model.AnyType;
import oracle.bpel.services.workflow.task.model.ObjectFactory;
import oracle.bpel.services.workflow.task.model.Task;
..........

Document document = //createXMLDocument
Element payloadElem = document.createElementNS("http://xmlns.oracle.com/bpel/workflow/
 task", "payload");
Element orderElem = document.createElementNS("http://xmlns.oracle.com/pcbpel/test/order", "order");
Element child = document.createElementNS("http://xmlns.oracle.com/pcbpel/test/order", "id");
 child.appendChild(document.createTextNode("1234567"));
 orderElem.appendChild(child);
 payloadElem.appendChild(orderElem);
 document.appendChild(payloadElem);

 task.setPayloadAsElement(payloadElem);

Note:

The AnyType.getContent() element returns an unmodifiable list of XML elements.
You cannot add other message attributes to the list.

Initiating a Task Programmatically
The code sample below shows how to initiate a vacation request task programmatically:

 // create task object
 ObjectFactory objectFactory = new ObjectFactory();
 Task task = objectFactory.createTask();

 // set title
 task.setTitle("Vacation request for jcooper");

Chapter 33
Initiating a Task

33-8

 // set creator
 task.setCreator("jcooper");

// set taskDefinitionId. taskDefinitionId is the target
// namespace of the task
// If namespace is used, the active version of the composite corresponding
// to that of the namespace will be used.
task.setTaskDefinitionId("http://xmlns.oracle.com/VacationRequest/
Project1/Humantask1"); (Your task definition ID will be different.)

 // create and set payload
 Document document = XMLUtil.createDocument();
 Element payloadElem = document.createElementNS(TASK_NS, "payload");
 Element vacationRequestElem = document.createElementNS(VACATION_REQUEST_NS,
 "VacationRequestProcessRequest");

 Element creatorChild = document.createElementNS(VACATION_REQUEST_NS, "creator");
 creatorChild.appendChild(document.createTextNode("jcooper"));
 vacationRequestElem.appendChild(creatorChild);

 Element fromDateChild = document.createElementNS(VACATION_REQUEST_NS, "fromDate");
 fromDateChild.appendChild(document.createTextNode("2006-08-05T12:00:00"));
 vacationRequestElem.appendChild(fromDateChild);

 Element toDateChild = document.createElementNS(VACATION_REQUEST_NS, "toDate");
 toDateChild.appendChild(document.createTextNode("2006-08-08T12:00:00"));
 vacationRequestElem.appendChild(toDateChild);

 Element reasonChild = document.createElementNS(VACATION_REQUEST_NS, "reason");
 reasonChild.appendChild(document.createTextNode("Hunting"));
 vacationRequestElem.appendChild(reasonChild);

 payloadElem.appendChild(vacationRequestElem);
 document.appendChild(payloadElem);

 task.setPayloadAsElement(payloadElem);

 IWorkflowServiceClient workflowServiceClient =
 WorkflowServiceClientFactory.getWorkflowServiceClient
 (WorkflowServiceClientFactory.SOAP_CLIENT);
 ITaskService taskService = workflowServiceClient.getTaskService();
 IInitiateTaskResponse iInitiateTaskResponse = taskService.initiateTask(task);
 Task retTask = iInitiateTaskResponse.getTask();
 System.out.println("Initiated: " + retTask.getSystemAttributes().getTaskNumber() + " - " +
 retTask.getSystemAttributes().getTaskId());
 return retTask;

Changing Workflow Standard View Definitions
The worklist application and the UserMetadataService API provide methods that you can use
to create, update, and delete standard views.

See User Metadata Service for more information.

Chapter 33
Changing Workflow Standard View Definitions

33-9

Writing a Worklist Application Using the HelpDeskUI Sample
Learn how to modify the help desk interface that is part of the HelpDeskRequest demo.

To write a worklist application

1. Create the workflow context by authenticating the user.

// get workflow service client
 IWorkflowServiceClient wfSvcClient =
 WorkflowServiceClientFactory.getWorkflowServiceClient
 (WorkflowServiceClientFactory.REMOTE_CLIENT);

//get the workflow context
IWorkflowContext wfCtx =
wfSvcClient.getTaskQueryService().authenticate(userId, pwd, null);

This is Step 3 in Introduction to Building Clients for Workflow Services.

The login.jsp file of HelpDeskRequest uses the preceding API to authenticate the user
and create a workflow context. After the user is authenticated, the statusPage.jsp file
displays the tasks assigned to the logged-in user. This example shows sample code from
the login.jsp file.

<%@ page import="javax.servlet.http.HttpSession"
 import="oracle.bpel.services.workflow.client.IWorkflowServiceClient"
 import="oracle.bpel.services.workflow.client.WorkflowServiceClientFactory"
 import="java.util.Set"
 import="java.util.Iterator"
 import="oracle.bpel.services.workflow.verification.IWorkflowContext"
 import="oracle.tip.pc.services.identity.config.ISConfiguration"%>
<%@ page contentType="text/html;charset=windows-1252"%>

<html>
<head>
<title>Help desk request login page</title>
<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1">
</head>

<body bgcolor="#F0F0F0" text="#000000" style="font: 12px verdana; line-height:18px">
<center>
<div style="width:640px;padding:15px;border-width: 10px; border-color: #87b4d9; border-style:
 solid;
background-color:white; text-align:left">

 <!-- Page Header, Application banner, logo + user status -->
 <jsp:include page="banner.jsp"/>

 <!-- Initiate Meta Information -->

 <div style="background-color:#F0F0F0; border-top:10px solid white;border-bottom:
 10px solid white;padding:10px;text-align:center" >
 Welcome to the HelpDesk application
 </div>

 <%
 String redirectPrefix = "/HelpDeskUI/";
 // Ask the browser not to cache the page
 response.setHeader("Pragma", "no-cache");
 response.setHeader("Cache-Control", "no-cache");

Chapter 33
Writing a Worklist Application Using the HelpDeskUI Sample

33-10

 HttpSession httpSession = request.getSession(false);
 if (httpSession != null) {

 IWorkflowContext ctx = (IWorkflowContext) httpSession.getAttribute("workflowContext");
 if (ctx != null) {
 response.sendRedirect(redirectPrefix + "statusPage.jsp");
 }
 else
 {
 String authFailedStr = request.getParameter("authFailed");
 boolean authFailed = false;
 if ("true".equals(authFailedStr))
 {
 authFailed = true;
 }
 else
 {
 authFailed = false;
 }

 if (!authFailed)
 {
 //Get page parameters:
 String userId="";
 if(request.getParameter("userId") != null)
 {
 userId = request.getParameter("userId");
 }
 String pwd="";
 if(request.getParameter("pwd") != null)
 {
 pwd = request.getParameter("pwd");
 }

 if(userId != null && (!("".equals(userId.trim())))
 && pwd != null && (!("".equals(pwd.trim()))))
 {
 try {
 HttpSession userSession = request.getSession(true);

 IWorkflowServiceClient wfSvcClient =
 WorkflowServiceClientFactory.getWorkflowServiceClient
 (WorkflowServiceClientFactory.REMOTE_CLIENT);
 IWorkflowContext wfCtx =
 wfSvcClient.getTaskQueryService().authenticate(userId, pwd, null);
 httpSession.setAttribute("workflowContext", wfCtx);
 response.sendRedirect(redirectPrefix + "statusPage.jsp");
 }
 catch (Exception e)
 {
 String worklistServiceError = e.getMessage();
 response.sendRedirect(redirectPrefix + "login.jsp?authFailed=true");
 out.println("error is " + worklistServiceError);
 }
 }
 } else
 {
 out.println("Authentication failed");
 }
 }
 }

Chapter 33
Writing a Worklist Application Using the HelpDeskUI Sample

33-11

 %>

 <form action='<%= request.getRequestURI() %>' method="post">
 <div style="width:100%">
 <table cellspacing="2" cellpadding="3" border="0" width="30%" align="center">
 <tr>
 <td>Username
 </td>
 <td>
 <input type="text" name="userId"/>
 </td>
 </tr>
 <tr>
 <td>Password
 </td>
 <td>
 <input type="password" name="pwd"/>
 </td>
 </tr>
 <tr>
 <td>
 <input type="submit" value="Submit"/>
 </td>
 </tr>
 </table>
 </form>
 </div>
</div>
</center>
 </body>
</html>

2. Query tasks using the queryTask API from TaskQueryService.

//add list of attributes to be queried from the task
List displayColumns = new ArrayList();
 displayColumns.add("TASKNUMBER");
 displayColumns.add("TITLE");
 displayColumns.add("PRIORITY");
 displayColumns.add("STATE");
 displayColumns.add("UPDATEDDATE");
 displayColumns.add("UPDATEDBY");
 displayColumns.add("CREATOR");
 displayColumns.add("OUTCOME");
 displayColumns.add("CREATEDDATE");
 displayColumns.add("ASSIGNEEUSERS");
 displayColumns.add("ASSIGNEEGROUPS");
 // get the list of tasks
 List tasks = wfSvcClient.getTaskQueryService().queryTasks
 (wfCtx,
 displayColumns,
 null,
 ITaskQueryService.AssignmentFilter.MY_AND_GROUP,
 null,
 null,
 null,
 0,
 0);
 // create listing page by using above tasks
 //add href links to title to display details of the task by passing taskId
 as input parameter
 Use getTaskDetailsById(IWorkflowContext wftx, String taskId);

Chapter 33
Writing a Worklist Application Using the HelpDeskUI Sample

33-12

This is Step 4 in Introduction to Building Clients for Workflow Services.

The statusPage.jsp file of HelpDeskRequest is used to display the status of help desk
requests. The code sample below shows the statusPage.jsp.

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"
"http://www.w3.org/TR/html4/loose.dtd">
<%@ page import="oracle.tip.pc.services.identity.BPMAuthorizationService,
 oracle.bpel.services.workflow.verification.IWorkflowContext,
 oracle.tip.pc.services.common.ServiceFactory,
 oracle.bpel.services.workflow.client.IWorkflowServiceClient,
 oracle.bpel.services.workflow.client.WorkflowServiceClientFactory,
 oracle.bpel.services.workflow.query.ITaskQueryService,
 oracle.bpel.services.workflow.task.model.Task,
 oracle.bpel.services.workflow.task.model.IdentityType,
 oracle.tip.pc.services.identity.BPMUser,
 java.util.List,
 java.util.Calendar,
 java.text.SimpleDateFormat,
 java.util.ArrayList"%>
<%@ page contentType="text/html;charset=UTF-8"%>
<html>
 <head>
 <meta http-equiv="Content-Type" content="text/html; charset=UTF-8"/>
 <title>RequestPage</title>
 <style TYPE="text/css">
 Body, Form, Table, Textarea, Select, Input, Option
 {
 font-family : tahoma, verdana, arial, helvetica, sans-serif;
 font-size : 9pt;
 }
 table.banner
 {
 background-color: #eaeff5;
 }
 tr.userInfo
 {
 background-color: #eaeff5;
 }
 tr.problemInfo
 {
 background-color: #87b4d9;
 }
 </style>
 </head>
 <body bgcolor="White">
 <%
 HttpSession httpSession = request.getSession(false);
 httpSession.setAttribute("pageType","STATUSPAGE");
 %>
 <table bordercolor="#eaeff5" border="4" width="100%">
 <tr><td> <jsp:include page="banner.jsp"/> </td></tr>
 </table>
 <%
 BPMUser bpmUser = null;
 String redirectPrefix = request.getContextPath() + "/";
 IWorkflowContext ctx = null;
 if (httpSession != null) {

 ctx = (IWorkflowContext) httpSession.getAttribute("workflowContext");
 if (ctx != null) {
 bpmUser = getAuthorizationService(ctx.getIdentityContext()).
 lookupUser(ctx.getUser());

Chapter 33
Writing a Worklist Application Using the HelpDeskUI Sample

33-13

 }
 else
 {
 response.sendRedirect(redirectPrefix + "login.jsp");
 return;
 }
 }
 else
 {
 response.sendRedirect(redirectPrefix + "login.jsp");
 return;
 }
 if(bpmUser == null)
 {
 response.sendRedirect(redirectPrefix + "login.jsp");
 return;
 }
 String status = (String)httpSession.getAttribute("requeststatus");
 if(status != null && !status.equals(""))
 {
 %>
 <p></p>
 <div style="text-align:left;color:red" >
 <%= status %>
 </div>
 <%
 }
 httpSession.setAttribute("requeststatus",null);
 IWorkflowServiceClient wfSvcClient =
 WorkflowServiceClientFactory.getWorkflowServiceClient(
 WorkflowServiceClientFactory.REMOTE_CLIENT);
 List displayColumns = new ArrayList();
 displayColumns.add("TASKNUMBER");
 displayColumns.add("TITLE");
 displayColumns.add("PRIORITY");
 displayColumns.add("STATE");
 displayColumns.add("UPDATEDDATE");
 displayColumns.add("UPDATEDBY");
 displayColumns.add("CREATOR");
 displayColumns.add("OUTCOME");
 displayColumns.add("CREATEDDATE");
 displayColumns.add("ASSIGNEEUSERS");
 displayColumns.add("ASSIGNEEGROUPS");
 List tasks = wfSvcClient.getTaskQueryService().queryTasks
 (ctx,
 displayColumns,
 null,
 ITaskQueryService.ASSIGNMENT_FILTER_CREATOR,
 null,
 null,
 null,
 0,
 0);
 %>
 <p></p>
 <div style="text-align:left;color:green" >

 Previous help desk request

 </div>
 <p></p>
 <div style="text-align:center" >

Chapter 33
Writing a Worklist Application Using the HelpDeskUI Sample

33-14

 <table cellspacing="2" cellpadding="2" border="3" width="100%">
 <TR class="problemInfo">
 <TH>TaskNumber</TH>
 <TH>Title</TH>
 <TH>Priority</TH>
 <TH>CreatedDate</TH>
 <TH>Assignee(s)</TH>
 <TH>UpdatedDate</TH>
 <TH>UpdatedBy</TH>
 <TH>State</TH>
 <TH>Status</TH>
 </TR>
 <%
 SimpleDateFormat dflong = new SimpleDateFormat("MM/dd/yy hh:mm a");
 for(int i = 0 ; i < tasks.size() ; i ++)
 {
 Task task = (Task)tasks.get(i);
 int taskNumber = task.getSystemAttributes().getTaskNumber();
 String title = task.getTitle();
 int priority = task.getPriority();
 String assignee = getAssigneeString(task);
 Calendar createdDate = task.getSystemAttributes().getCreatedDate();
 Calendar updateDate = task.getSystemAttributes().getUpdatedDate();
 String updatedBy = task.getSystemAttributes().getUpdatedBy().getId();
 String state = task.getSystemAttributes().getState();
 String outcome = task.getSystemAttributes().getOutcome();
 if(outcome == null) outcome = "";
 String titleLink = "http://" + request.getServerName() +
 ":" + request.getServerPort() +
 "/integration/worklistapp/TaskDetails?taskId=" +
 task.getSystemAttributes().getTaskId();
 %>
 <tr class="userInfo">
 <td><%=taskNumber%></td>
 <td><a href="<%=titleLink%>" target="_blank"><%=title%></td>
 <td><%=priority%></td>
 <td><%=dflong.format(createdDate.getTime())%></td>
 <td><%=assignee%></td>
 <td><%=dflong.format(updateDate.getTime())%></td>
 <td><%=updatedBy%></td>
 <td><%=state%></td>
 <td><%=outcome%></td>
 <tr>
 <%
 }
 %>
 </table>
 </div>
 <%!
 private BPMAuthorizationService getAuthorizationService(String identityContext)
 {
 BPMAuthorizationService authorizationService =
 ServiceFactory.getAuthorizationServiceInstance();
 if (identityContext != null)
 authorizationService = ServiceFactory.getAuthorizationServiceInstance(identityContext);

 return authorizationService;
 }
 private String getAssigneeString(Task task) throws Exception
 {
 List assignees = task.getSystemAttributes().getAssigneeUsers();
 StringBuffer buffer = null;

Chapter 33
Writing a Worklist Application Using the HelpDeskUI Sample

33-15

 for(int i = 0 ; i < assignees.size() ; i++)
 {
 IdentityType type = (IdentityType)assignees.get(i);
 String name = type.getId();
 if(buffer == null)
 {
 buffer = new StringBuffer();
 }
 else
 {
 buffer.append(",");
 }
 buffer.append(name).append("(U)");
 }
 assignees = task.getSystemAttributes().getAssigneeGroups();
 for(int i = 0 ; i < assignees.size() ; i++)
 {
 IdentityType type = (IdentityType)assignees.get(i);
 String name = type.getId();
 if(buffer == null)
 {
 buffer = new StringBuffer();
 }
 else
 {
 buffer.append(",");
 }
 buffer.append(name).append("(G)");
 }
 if(buffer == null)
 {
 return "";
 }
 else
 {
 return buffer.toString();
 }
 }
 %>
 </body>
</html>

Chapter 33
Writing a Worklist Application Using the HelpDeskUI Sample

33-16

34
Understanding Human Workflow Services

Human workflow services in Oracle SOA Suite perform a variety of operations in the life cycle
of a task.

• Introduction to Human Workflow Services

• Notifications from Human Workflow

• Assignment Service Configuration

• Class Loading for Callbacks and Resource Bundles

• Resource Bundles in Workflow Services

• Introduction to Human Workflow Client Integration with Oracle WebLogic Server Services

• Task States in a Human Task

• Database Views for Oracle Workflow

Note:

In earlier releases (prior to 11g (11.1.1.4)), Oracle BPM Worklist included a feature
known as flex fields, which are now known as mapped attributes.

Introduction to Human Workflow Services
Learn about human workflow services.

• SOAP, Enterprise JavaBeans, and Java Support for the Human Workflow Services

• Security Model for Services

• Task Service

• Task Query Service

• Identity Service

• Task Metadata Service

• User Metadata Service

• Task Report Service

• Runtime Config Service

• Evidence Store Service and Digital Signatures

• Task Instance Attributes

34-1

SOAP, Enterprise JavaBeans, and Java Support for the Human Workflow
Services

Table 34-1 lists the type of Simple Object Access Protocol (SOAP), Enterprise JavaBeans, and
Java support provided for the task services. Most human workflow services are accessible
through SOAP and remote Enterprise JavaBeans APIs. You can use these services directly by
using appropriate client proxies. Additionally, the client libraries are provided to abstract out the
protocol details and provide a common interface for all transports.

Table 34-1 Enterprise JavaBeans, SOAP, and Java Support

Service Name Supports SOAP
Web Services

Supports
Remote
Enterprise
JavaBeans

Task Service: Provides task state management and persistence of
tasks. In addition to these services, the task service exposes
operations to update a task, complete a task, escalate and
reassign tasks, and so on.

Yes Yes

Task Query Service: Queries tasks for a user based on a variety of
search criteria such as keyword, category, status, business
process, attribute values, history information of a task, and so on.

Yes Yes

Identity Service: Enables authentication of users and the lookup of
user properties, roles, group memberships, and privileges.

Yes No

Task Metadata Service: Exposes operations to retrieve metadata
information related to a task.

Yes Yes

User Metadata Service: Manages metadata related to workflow
users, such as user work queues, preferences, vacation, and
delegation rules.

Yes Yes

Task Reports Service: Provides workflow report details. Yes Yes

Runtime Config Service: Provides methods for managing
metadata used in the task service runtime environment.

Yes Yes

Evidence Store Service: Supports storage and nonrepudiation of
digitally-signed workflow tasks.

Yes Yes

Table 34-2 lists the location for the SOAP Web Services Description Language (WSDL) file for
each task service.

Table 34-2 SOAP WSDL Location for the Task Services

Service name SOAP WSDL location

Task Service http://host:port/integration/services/TaskService/
TaskServicePort?WSDL

Task Query Service http://host:port/integration/services/TaskQueryService/
TaskQueryService?WSDL

Identity Service http://host:port/integration/services/IdentityService/
configuration?WSDL
http://host:port/integration/services/IdentityService/
identity?WSDL

Chapter 34
Introduction to Human Workflow Services

34-2

Table 34-2 (Cont.) SOAP WSDL Location for the Task Services

Service name SOAP WSDL location

Task Metadata Service http://host:port/integration/services/
TaskMetadataService/TaskMetadataServicePort?WSDL

User Metadata Service http://host:port/integration/services/
UserMetadataService/UserMetadataService?WSDL

Task Report Service http://host:port/integration/services/
TaskReportService/TaskReportServicePort?WSDL

Runtime Config Service http://host:port/integration/services/
RuntimeConfigService/RuntimeConfigService?WSDL

Evidence Store Service http://host:port/integration/services/EvidenceService/
EvidenceService?WSDL

Table 34-3 lists the JDNI names for the different Enterprise JavaBeans.

Table 34-3 JNDI Names for the Different Enterprise JavaBeans

Service name JNDI Names for the Different Enterprise JavaBeans

Task Service ejb/bpel/services/workflow/TaskServiceBean
Task Service Enterprise
JavaBeans participating in
client transaction

ejb/bpel/services/workflow/
TaskServiceGlobalTransactionBean

Task Metadata Service ejb/bpel/services/workflow/TaskMetadataServiceBean
Task Query Service TaskQueryService
User Metadata Service UserMetadataService
Runtime Config Service RuntimeConfigService
Task Report Service TaskReportServiceBean
Task Evidence Service TaskEvidenceServiceBean

For more information about the client library for worklist services, see Building a Custom
Worklist Client for details.

Support for Foreign JNDI Names
Human workflow services can be integrated with J2EE applications through web services and
remote method invocation (RMI). To simplify the remote lookup of Enterprise JavaBeans in
other managed servers and clusters or even other Oracle WebLogic Server domains, Oracle
WebLogic Server includes foreign JNDI providers that are configured with the remote server's
host and port to link Enterprise JavaBeans from that remote server into the local server's JNDI
trees.

Workflow services expose the Enterprise JavaBeans listed in Table 34-3 that must all be linked
through the foreign JNDI providers to provide full support for the task query service, ADF task
flow for human task registration, and embedded worklist region use cases.

To provide support for foreign JNDI names:

1. Log in to Oracle WebLogic Remote Console Provider.

Chapter 34
Introduction to Human Workflow Services

34-3

2. Go to Edit Tree > Services > Foreign JNDI Providers.

There is one caveat when linking remote Enterprise JavaBeans names to the local JNDI
namespace through a foreign JNDI provider from a SOA server to a managed server or
cluster in the same Oracle WebLogic Server domain. The local JNDI names are exposed
to all of the managed servers within that domain. This causes namespace collisions on the
SOA server within that domain, which already has those Enterprise JavaBeans registered
from the Oracle BPM Worklist. An alternative, which avoids collisions while keeping
configuration to a minimum, is to use JNDI suffixing. This is done by appending a
consistent suffix to the end of all the local JNDI links of the remote workflow Enterprise
JavaBeans and creating a simple wf_client_config.xml file that contains the suffix key.

There are different ways to define client properties. For more information, see
Configuration Option.

3. Append the JNDI suffix to each Enterprise JavaBeans name shown in Table 34-3 to
register the foreign JNDI names.

• ejb/bpel/services/workflow/TaskServiceGlobalTransactionean_server1
• ejb/bpel/services/workflow/TaskServiceBean_server1
• ejb/bpel/services/workflow/TaskMetadataServiceBean_server1
• TaskQueryService_server1
• UserMetadataService_server1
• RuntimeConfigService_server1
• TaskReportServiceBean_server1
• TaskEvidenceServiceBean_server1

4. Define the remote name by specifying only the ejbJndiSuffix element value in the
wf_client_config.xml file, as shown in the code sample below. You can also use the
JAXB WorkflowServicesClientConfigurationType object or the
CONNECTION_PROPERTY.EJB_JNDI_SUFFIX in the Map<CONNECTION_PROPERTY, String>
properties.

<remoteClient>
 <ejbJndiSuffix>_server1</ejbJndiSuffix>
</remoteClient>

Security Model for Services
With the exception of the identity service, all services that use the above-mentioned APIs
(SOAP and remote Enterprise JavaBeans) require authentication to be invoked. All the above
channels support passing the user identity using the human workflow context. The human
workflow context contains either of the following:

• Login and password

• Token

The task query service exposes the authenticate operation that takes the login and password
and returns the human workflow context used for all services. Optionally, with each request, an
administrator can pass the human workflow context with the login and password.

The authenticate operation also supports the concept of creating the context on behalf of a
user with the admin ID and admin password. This operation enables you to create the context
for a logged-in user to the Oracle BPM Worklist if the password for that user is not available.

Chapter 34
Introduction to Human Workflow Services

34-4

Oracle recommends that you get the workflow context one time and use it everywhere. There
are performance implications for getting the workflow context for every request.

A realm is an identity service context from the identity configuration. The realm name can be
null if the default configuration is used.

Limitation on Propagating Identity to Workflow Services when Using SOAP Web
Services

Identity propagation is the replication of authenticated identities across multiple SOAP web
services used to complete a single transaction. SOAP web services also support web service
security. When web service security is used, the human workflow context does not need to be
present in the SOAP input. Web service security can be configured from Oracle Enterprise
Manager Fusion Middleware Control.

Note:

Human workflow SOAP clients have been enhanced to work with Security Assertion
Markup Language (SAML) token-based identity propagation when the web service is
secured.

Creating Human Workflow Context on Behalf of a User
The authenticateOnBehalfOf API method on the task query service can create the human
workflow context on behalf of a user by passing the user ID and password of an admin user in
the request. An admin user is a user with the workflow.admin privilege. This created context is
as if it was created using the password on behalf of the user.

This is useful for environments in which a back-end system acts on workflow tasks while users
act in their own system. There is no direct interaction with workflow services; the system can
use the on-behalf-of-user login to get a context for the user.

Note:

Oracle recommends that you only use this feature for system operations. This is
because you must create an admin user context and then query for the human
workflow context created on behalf of the user. If you instead use identity
propagation, the user is already authenticated and the client can get
IWorkflowContext for the already authenticated user. For more information, see
Obtaining the Workflow Context for a User Previously Authenticated by a JAAS
Application.

In the code sample below, the human workflow context is created for user jcooper.

String adminUser = "...."
String adminPassword = "...."
String realm = "...."

IWorkflowContext adminCtx =
taskQueryService.authenticate(user,password.toCharArray(),realm);

Chapter 34
Introduction to Human Workflow Services

34-5

IWorkflowContext behalfOfCtx =
 taskQueryService.authenticateOnBehalfOf(adminCtx,"jcooper");

Obtaining the Workflow Context for a User Previously Authenticated by a JAAS
Application

If the client wants to obtain the workflow context for a user previously authenticated by a JAAS
application, you can use identity propagation as shown in the code sample below.

public IWorkflowContext getWorkflowContextForAuthenticatedUser() throws
WorkflowException;

This API returns a workflow context for the authenticated user if the client configures the
identity propagation for the appropriate client type. If the client type is remote, Enterprise
JavaBeans identity propagation is used with this method. If the client type is SOAP, SAML
token propagation is used with this method.

Task Service
The task service exposes operations to act on tasks. Table 34-4 describes some of the
common operations of the task service. Package oracle.bpel.services.workflow.task
corresponds to the task service.

For more information about task service, see Workflow Services Java API Reference for
Oracle SOA Suite.

Table 34-4 Task Service Methods

Method Description

acquireTask Acquire a task.

acquireTasks Acquire a set of tasks.

addAttachment Add an attachment to a task.

Note: This API enables a client to call the API to add an attachment
before the creation of a task. If the task is not yet created, then the
client can call the API with taskId equals NULL. However, because
the attachment is uploaded before the task is created, Oracle
Workflow Services does not enable multiple attachments with the
same name to be added to the pre-initiation of a task.

If a task is already created, then Oracle Workflow Services keeps only
the latest version of the attachment in case multiple attachments have
the same name.

addComment Add a comment to a task.

createToDoTask Create a to-do task.

delegateTask Delegate a task to a different user. Both the current assignee and the
user to whom the task is delegated can view and act on the task.

delegateTasks Delegate a list of tasks to a different user. Both the current assignee
and the user to whom the list of tasks is delegated can view and act
on the tasks.

deleteTask Perform a logical deletion of a task. The task still exists in the
database.

deleteTasks Perform a logical deletion of a list of tasks. The tasks still exist in the
database.

Chapter 34
Introduction to Human Workflow Services

34-6

Table 34-4 (Cont.) Task Service Methods

Method Description

errorTask Cause the task to error. This operation is typically used by the error
assignee.

escalateTask Escalate a task. The default escalation is to the manager of the
current user. This can be overridden using escalation functions.

escalateTasks Escalate tasks in bulk. The default escalation is to the manager of the
current user. This can be overridden using escalation functions.

getApprovers Get the previous approvers of a task.

getFutureParticipants Get the future participants of a task. The future participants are
returned in the form of a routing slip that contains simple participants
(participant node and parallel nodes that contain routing slips).

getUsersToRequestInfoForT
ask

Get the users from whom a request for information can be requested.

initiateTask Initiate a task.

mergeAndUpdateTask Merge and update a task. Use this operation when a partial task
should be updated. A partial task is one in which not all the task
attributes are present. In this partial task, only the following task
attributes are interpreted:

• Task payload
• Comments
• Task state
• Task outcome

overrideRoutingSlip Override the routing slip of a task instance with a new routing slip. The
current task assignment is nullified and the new routing slip is
interpreted as its task is initiated.

purgeTask Remove a task from the persistent store.

purgeTasks Remove a list of tasks from the persistent store.

pushBackTask Push back a task to the previous approver or original assignees. The
original assignees do not need to be the approver, as they may have
reassigned the task, escalated the task, and so on. The property
PushbackAssignee in the System MBean Browser of Oracle
Enterprise Manager Fusion Middleware Control controls whether the
task is pushed back to the original assignees or the approvers.

1. From the SOA Infrastructure menu, select Administration >
System MBean Browser.

2. Select Application Defined MBeans >
oracle.as.soainfra.config > Server: soa_server1 >
WorkflowConfig > human-workflow.

3. Click PushbackAssignee to view or change the value.

Note: Pushback is designed to work with single approvers and not
with group votes. Pushback from a stage with group vote (or parallel)
scenario to another stage is not allowed. Similarly, you cannot push
back from a single assignee to a group vote (or parallel) scenario.

reassignTask Reassign a task.

reassignTasks Reassign tasks in bulk.

Chapter 34
Introduction to Human Workflow Services

34-7

Table 34-4 (Cont.) Task Service Methods

Method Description

reinitiateTask Reinitiate a task. Reinitiating a task causes a previously completed
task to be carried forward so that the history, comments, and
attachments are carried forward in a new task.

releaseTask Release a previously acquired task.

releaseTasks Release a set of previously acquired tasks.

removeAttachment Remove a task attachment.

renewTask Renew a task to extend the time it takes to expire.

requestInfoForTask Request information for a task.

requestInfoForTaskWithRea
pproval

Request information for a task with reapproval. For example, assume
jcooper created a task and jstein and wfaulk approved the task
in the same order. When the next approver, cdickens, requests
information with reapproval from jcooper, and jcooper submits the
information, jstein and wfaulk approve the task before it comes to
cdickens. If cdickens requests information with reapproval from
jstein, and jstein submits the information, wfaulk approves the
task before it comes to cdickens.

resumeTask Resume a task. Operations can only be performed by the task owners
(or users with the BPMWorkflowSuspend privilege) to remove the
hold on a workflow. After a human workflow is resumed, actions can
be performed on the task.

resumeTasks Resume a set of tasks.

routeTask Allow a user to route the task in an ad hoc fashion to the next user(s)
who must review the task. The user can specify to route the tasks in
serial, parallel, or single assignment. Routing a task is permitted only
when the human workflow permits ad hoc routing of the task.

skipCurrentAssignment Skip the current assignment and move to the next assignment or pick
the outcome as set by the previous approver if there are no more
assignees.

submitInfoForTask Submit information for a task. This action is typically performed after
the user has made the necessary updates to the task or has added
comments or attachments containing additional information.

suspendTask Allow task owners (or users with the BPMWorkflowSuspend privilege)
to put a human workflow on hold temporarily. In this case, task
expiration and escalation do not apply until the workflow is resumed.
No actions are permitted on a task that has been suspended (except
resume and withdraw).

suspendTasks Suspend a set of tasks.

updateOutcomeOfTasks Update the outcome of a set of tasks.

updatePriority Update the priority of the task and its subtasks for the given task ID. If
UpdatePriorityType is INCREMENT then the task is updated by
incrementing the given priority by 1—that is, the priority of the task is
raised. If the UpdatePriorityType is DECREMENT, then the task is
updated by decrementing the priority by 1—that is, the priority of the
task is lowered, otherwise the task is updated with the given priority.

Chapter 34
Introduction to Human Workflow Services

34-8

Table 34-4 (Cont.) Task Service Methods

Method Description

updatePriorityOfTasks For bulk update of tasks. A list of tasks for which the priority must be
updated can be passed as a parameter to this API. The priorities of
the list of tasks is updated. It updates the priority of the task and its
subtasks.

updateTask Update the task.

updateTaskOutcome Update the task outcome.

updateTaskOutcomeAndRoute Update the task outcome and route the task. Routing a task allows a
user to route the task in an ad hoc fashion to the next user(s) who
must review the task. The user can specify to route the tasks in serial,
parallel, or single assignment. Routing a task is permitted only when
the human workflow permits ad hoc routing of the task.

withdrawTask The creator of the task can withdraw any pending task if they are no
longer interested in sending it further through the human workflow. A
task owner can also withdraw a task on behalf of the creator. When a
task is withdrawn, the business process is called back with the state
attribute of the task set to Withdrawn.

withdrawTasks Withdraw a set of tasks.

For more information, see the following:

• Task Instance Attributes

• Workflow Services Java API Reference for Oracle SOA Suite

Task Query Service
The task query service queries tasks based on a variety of search criteria such as keyword,
category, status, business process, attribute values, historical information of a task, and so on.
Table 34-5 describes some of the common operations of the task query service. Package
oracle.bpel.services.workflow.query corresponds to the task query service.

For more information about task query service, see Workflow Services Java API Reference for
Oracle SOA Suite.

Table 34-5 Task Query Service Methods

Method Description

authenticate Authenticates a user with the identity authentication service and
passes back a valid IWorkflowContext object.

authenticateOnBehalfOf Optionally makes authentication on behalf of another user.

countTasks Counts the number of tasks that match the specified query criteria.

countViewTasks Counts the number of tasks that match the query criteria of the
specified view.

createContext Creates a valid IWorkflowContext object from a preauthenticated
HTTP request.

doesTaskExist Checks to see if any existing tasks match the specified query criteria.

Includes SYS as an assignment filter value to search across all pillar
data (that is, search across packages).

Chapter 34
Introduction to Human Workflow Services

34-9

Table 34-5 (Cont.) Task Query Service Methods

Method Description

doesViewTaskExist Checks to see if any tasks exist match the query criteria of the
specified view.

Includes SYS as an assignment filter value to search across all pillar
data (that is, search across packages).

destroyWorkflowContext Cleans up a human workflow context that is no longer needed. This
method is typically used when a user logs out.

Chapter 34
Introduction to Human Workflow Services

34-10

Table 34-5 (Cont.) Task Query Service Methods

Method Description

getPersistedTaskSequence Gets the cached task sequence object if it exists and
fetchTaskSequenceForRootTask is true. Otherwise, prepares a
new task sequence object with TaskSequenceType as ALL and
caches it. The task sequence object is processed to apply the filers
to remove or retain required task sequence records. The sequence
number is regenerated as a few of the task sequence records may be
removed. Aggregation logic is run at the end to ensure all the
repeating participants are collapsed in task sequence.

API Signature: Exposed as part of both EJB and SOAP.

TaskSequence
oracle.bpel.services.workflow.query.ITaskQueryServi
ce.getPersistedTaskSequence

(
IWorkflowContext ctx,
String taskId,List<String> taskDisplayColumns,
List<TaskSequenceType>
taskSequenceType,
List<TaskSequenceBuilderContext>
taskSequenceBuilderContext, boolean
fetchTaskSequenceForRootTask,
Set<TaskSequenceFilterOptionalInfoType>
optionalInfo
)
throws WorkflowException;

Input Attributes:
• ctx: The workflow context (can contain valid token or

credentials).
• taskId: The task Id whose Task Sequence details are needed.

• taskDisplayColumns: The task columns to query.

• taskSequenceType: List containing type of task sequence type
to be retrieved.

• taskSequenceBuilderContext: List containing context to the
task sequence builder. Supported only for STAGE and
WORKFLOW_PATTERN. If the value is
INCLUDE_SEQUENCE_FOR_SINGLE_CHILD or if multiple values
are passed, then an unsupported operation exception is thrown.

• fetchTaskSequenceForRootTask: If true, gets the task
sequence for the root task, else gets the task sequence for the
current task. The root task is the main task, which could have
subtasks that represent parallel tasks. Caching is done only if
fetchTaskSequenceForRootTask is true. Cached Task
Sequence is retrieved only if
fetchTaskSequenceForRootTask is true. If
fetchTaskSequenceForRootTask is false, Task Sequence is
recomputed.

• optionalInfo: Used for attachments, comments, and flags to
indicate system approval. Supported values are: COMMENTS,
ATTACHMENTS, ISSYSTEMAPPROVED, TRANSLATE, REFRESH.

Chapter 34
Introduction to Human Workflow Services

34-11

Table 34-5 (Cont.) Task Query Service Methods

Method Description

• @return TaskSequence object, which the represents the task
sequence tree.

• @exception WorkflowException if any runtime error occurs
while getting task sequence.

Limitations on API Usage:
• taskSequenceBuilderContext: Supported only for STAGE

and WORKFLOW_PATTERN. If the value is
INCLUDE_SEQUENCE_FOR_SINGLE_CHILD or if multiple values
are passed, then an unsupported operation exception is thrown.

• fetchTaskSequenceForRootTask: Caching is done only if
fetchTaskSequenceForRootTask is true. Cached Task
Sequence is retrieved only if
fetchTaskSequenceForRootTask is true. If
fetchTaskSequenceForRootTask is false, Task Sequence is
recomputed.

• Calls from declarative components and for email will not have
translation.

• Oracle Business Process Management will cache task sequence
data when any action is performed on task only if email
notification is enabled. If email is not enabled upon invocation of
getPersistedTasksequence(), only the task sequence will
be generated and stored in cache. To summarize, if email is not
enabled, upon first invocation of
getPersistedTaskSequence(), there will be a cache miss
and BPM will generate and store the data, and for subsequent
calls of getPersistedTaskSequence(), data that was
generated as part of first invocation will be used.

Chapter 34
Introduction to Human Workflow Services

34-12

Table 34-5 (Cont.) Task Query Service Methods

Method Description

getTask Gets a single task populated with details specified by the caller.

Interface:

public Task getTask(IWorkflowContext ctx,
TaskIdentifier taskIdentifier, List<String>
columnList, List<OptionalInfo> optionalInformation)
throws WorkflowException;
• IWorkflowContext ctx: The authenticated user context.

• TaskIdentifier taskIdentifier
TaskIdentifier {
 Type (enum): Id, Number, IdentificationKey
 Value (String): <value>
}

Any of the following unique identifiers of the task can be used:
– Task Id
– Task Number
– Identification Key

• List<String> columnList: The list of task-columns to
populate in the returned task object.
Note: There are some defaults columns such as TaskId and
TaskNumber that will always be populated.

• List<OptionalInfo> optionalInformation: List of
additional/optional data/information to be populated in the
returned task object such as comments, attachments, and
actions.
Note: None of the additional data will be populated by default.

• IdentificationKey: It is the responsibility of the system that
uses the Human Workflow Task to ensure that the
IdentificationKey is unique for a given task. If a task is
undergoing parallel (subtasks) then all the subtasks will have the
same IdentificationKey as the original/initiated task.
If more than one task has the same IdentificationKey
then the task with the highest task number will be fetched.
There is an existing index on the task IdentificationKey
column to support querying a single task based on its
IdentificationKey.

Benefits:
• Fetch a single task using a single API by any of its unique

identifiers: TaskID, TaskNumber, and IdentificationKey.

• The complete task need not be obtained when a single task is
needed:
– List<String> columnList parameter can be used to

specify what task information needs to be fetched and
populated in the task.

– List<OptionalInfo> optionalInformation parameter
can be used to specify what additional information needs to
be fetched and populated in the task.

• Use when only actions that can be performed by a user on a
task is required.

• Use when only a list of attachments on a task is required.
• Use when only a list of comments on a task is required.

Chapter 34
Introduction to Human Workflow Services

34-13

Table 34-5 (Cont.) Task Query Service Methods

Method Description

Recommendations and Usage Notes:

• Replace the usage of the following APIs with getTask:
– getTaskDetailsById
– getTaskDetailsByNumber
– queryTasks:

For fetching a single task
* Using IdentificationKey
* Since the following are only available in queryTasks:

List<String> columnList
List<OptionalInfo> optionalInformation

• If only the list of actions that can be performed by a user on a
task is required: call getTask with null/empty columnList and
only ALL_ACTIONS in optionalInformation.

• If only the list of attachments on a task is required: call getTask
with null/empty columnList and only ATTACHMENTS in
optionalInformation.

• If only list of comments on a task is required: call getTask with
null/empty columnList and only COMMENTS in
optionalInformation.

Chapter 34
Introduction to Human Workflow Services

34-14

Table 34-5 (Cont.) Task Query Service Methods

Method Description

getTaskActionsWithOptiona
lAttrs

Computes and returns all allowed actions based on the current task
state and roles assigned to the requesting user.

Interface:

public List<Task>
getTaskActionsWithOptionalAttrs(IWorkflowContext ctx,
List<TaskIdentifier> taskIdentifiers,
Map<TaskIdentifier, TaskActionsType> actions,
Map<TaskIdentifier, List<OptionalAttribute>>
optAttrs) throws WorkflowException;
• ctx and taskIdentifiers are mandatory parameters.

• taskIdentifiers can be one or many.

• TaskIdentifier currently supports taskId, taskNumber, and
IdentificationKey. The input list can contain any
combination of the TaskIdentifier type.

• actions is an optional parameter. If nothing requested for a
specific taskIdentifier, by default ALL_ACTIONS will be
computed for the corresponding taskIdentifier.

• TaskActionsType is an Enum containing following supported
values:
– ALL_ACTIONS
– GROUP_ACTIONS
– CUSTOM_ACTIONS

• The returned task object will contain the current set of allowed
actions for that task based on the actions input, task's current
state, and roles assigned to the requested user.

• The returned task object will contain task id, number, and
identificationKey if any as basic output parameters, besides
allowed actions and any optional info requested using the
optAttrs parameter. The returned actions can be accessed as
follows:
– returnTask.getSystemAttributes().getRestricted

Actions()
– returnTask.getSystemAttributes().getSystemActi

ons()
– returnTask.getSystemAttributes().getCustomActi

ons()
• The user can request more optional information using the

optAttrs parameter. Currently the only optional attribute
supported for this API is WORKLIST_URL. The returned value for
this attribute can be accessed using
returnTask.getSystemAttributes().getDisplayInfo().

• The returned task list count may not always match the requested
TaskIdentifier list count. Any task that's not found in the
system using the input TaskIdentifier will be ignored.

• May not satisfy <1s benchmark especially if the API is called for
multiple tasks.

• Validations: All the input parameters are validated. Any invalid
input will result in the API throwing WorkflowException citing
the root cause properly.

getTaskDetailsById Gets the details of a specific task from the task's taskId property.

Chapter 34
Introduction to Human Workflow Services

34-15

Table 34-5 (Cont.) Task Query Service Methods

Method Description

getTaskDetailsByNumber Gets the details of a specific task from the task's task number
property.

getTaskHistory Gets a list of the task versions for the specified task ID.

Chapter 34
Introduction to Human Workflow Services

34-16

Table 34-5 (Cont.) Task Query Service Methods

Method Description

getTasks Queries and retrieves tasks at a high level:
• Uses high level search attributes like task-definition,

identification-key, state, application stripe/role, and so
on.

• The API returns one of the following:
– Only the root tasks.
– Aggregated tasks (that is, both aggregated and tasks that

cannot/need not be aggregated).
– Root and sub tasks and no other tasks in the approval flow.
– FYI tasks when requested explicitly in addition to any one of

the above.
• For all other drill down cases, separate APIs are available for

better design and performance.

Example use cases are:
• Worklist+ to just fetch high level root tasks and FYI tasks and in

case of aggregation only aggregated tasks.
• HCM to fetch all root tasks and no need to explicitly specify

aggregation because it's not used.
• FIN for different use cases:

– Fetch all root tasks only. API usage: ROOT_TASK_ONLY.

– Fetch tasks including root tasks and sub tasks only. For
example, if an order has 100 lines, and the customer is
interested in getting the root cause for that order and the
sub tasks. That is, 100 collection target instances for those
100 lines and no other tasks even aggregated tasks
shouldn't be returned. API usage:
ROOT_TASK_AND_SUB_TASKS_ONLY.

– Fetch aggregated tasks; that is, tasks that are aggregated
and tasks that cannot be aggregated or don't have to
aggregated. API usage: AGGREGATED_TASKS.

Interface:

List<Task> getTasks(IWorkflowContext wfCtx,
Set<String> displayColumns, QueryContext qryCtx)
throws WorkflowException
The applicable parameters in QueryContext for this API are:

• QueryAssignmentFilter queryAssignmentFilter
(mandatory)

Currently the following are supported:

– MY
– GROUP
– MY_GROUP
– MY_GROUP_ALL
– OWNER
– CREATOR
Others will be added based on the need.

• QueryContextTaskIdentifier taskIdentifier
(mandatory)

– QueryContextTaskIdentifierEnum type

– List<String> values

– Enum QueryContextTaskIdentifierEnum

Chapter 34
Introduction to Human Workflow Services

34-17

Table 34-5 (Cont.) Task Query Service Methods

Method Description

* String TASK_DEFN_NAME
* String TASK_DEFN_ID
* String TASK_NAME_SPACE

• QueryContextTaskSelector taskSelector
– QueryContextTaskSelectorEnum type

– Enum QueryContextTaskSelectorEnum
* String ROOT_TASK_ONLY
* String AGGREGATED_TASKS
* String ROOT_TASK_AND_SUB_TASKS_ONLY

• List<String> identificationKeys = new
ArrayList<String>();

• List<String> applicationStripes = new
ArrayList<String>();

• List<String> applicationRoles = new
ArrayList<String>();

• QueryContextTaskStates taskStates;
– List<TaskStatesEnum> states;
– Enum TaskStatesEnum

* "ALERTED"
* "ASSIGNED"
* "COMPLETED"
* "DELETED"
* "ERRORED"
* "EXPIRED"
* "INFO_REQUESTED"
* "OUTCOME_UPDATED"
* "STALE"
* "SUSPENDED"
* "WITHDRAWN"

• boolean includeFYITasks (default is false)

• int startRow;
• int endRow;
• boolean localizeTasks (default is false)

• taskOutcome (single value) a choice of one of the following:

– custom value
– Enum of

* APPROVE
* REJECT
* DEFER
* YES
* OK
* ACCEPT
* NO

Usage notes:

• Both wfCtx and qryCtx are mandatory parameters in the
interface. displayColumns is an optional parameter if the user
wants to fetch additional display columns.

Chapter 34
Introduction to Human Workflow Services

34-18

Table 34-5 (Cont.) Task Query Service Methods

Method Description

• Within qryCtx:
– queryAssignmentFilter and taskIdentifier are

mandatory parameters and rest are all optional parameters.
– Default startRow is 0 and default endRow is 50.

– User cannot request a pagination size more than 50 rows.
– ROOT_TASK_ONLY will return only root tasks.

– AGGREGATED_TASKS will return aggregated tasks and tasks
that cannot be aggregated or don't have to be aggregated.

– ROOT_TASK_AND_SUB_TASKS_ONLY will return only the root
tasks and the subtasks (collection target instances) for each
root task.

• This API by default will exclude FYI tasks; that is,
includeFYITasks = false. The user can request explicitly to
return FYI tasks by setting this Boolean to true:
– When includeFYITasks=true along with

taskSelector=ROOT_TASK_ONLY, all root level FYI tasks
will also be returned.

– When includeFYITasks=true along with
taskSelector=AGGREGATED_TASKS, all aggregated FYI
tasks and FYI tasks that cannot be aggregated will also be
returned.

• Currently there is no option to specify ordering as a parameter.
Ordering is done by default using task-number in descending
order and nulls at the end.

• When no state is used for search filter the query fetches tasks in
all states hence this has a performance impact for retrieval of
data.

• When task state is searched for ASSIGNED or REQUEST_INFO or
both, this API only returns 'actionable' tasks by adding a sub
condition to the query: ASSIGNEES != null.

• This API will not do localization/translation of tasks by default for
performance reasons. Caller needs to use localizeTasks
attribute to explicitly request for translation of task fields like title.

• Action computation:
– This API will not do 'entire' action computation, hence won't

return any action related attributes.
– This API will do a 'limited' action computation to check if the

user has read access to the task, else populate an empty
task.

– Use getTaskActionsWithOptionalAttrs API for
complete action computation.

• Default column set:
– WFTASK_TASKID_COLUMN
– WFTASK_ASSIGNEES_COLUMN
– WFTASK_ASSIGNEESDISPLAYNAME_COLUMN
– WFTASK_ASSIGNEDDATE_COLUMN
– WFTASK_STATE_COLUMN
– WFTASK_SUBSTATE_COLUMN
– WFTASK_TITLE_COLUMN
– WFTASK_DUEDATE_COLUMN

Chapter 34
Introduction to Human Workflow Services

34-19

Table 34-5 (Cont.) Task Query Service Methods

Method Description

– WFTASK_TASKDISPLAYURL_COLUMN returns instance level
URL (whatever is stored in wftask table). No API level
processing due to performance reasons.

– WFTASK_UPDATEDBY_COLUMN
– <collection target>
– taskDefinitionId
– isRoot
– isAggregated
– isFyi

• Additional display column set: Only the following columns will
be allowed in the additional set:
– Identificationkey
– Stage
– VersionReason
– TaskDefinitionName
– RootTaskID
– ParentTaskId
– taskNumber (added due to worklist use case)

• Translatable fields in the returned field set: Only the following
columns will be allowed in the additional set:
– Title (translated value from wftask_tl table)

– State (translated value from wftask_tl table)

– Assignees (display name translation during query
processing)

– UpdatedBy (display name translation during query
processing)

• Will satisfy <1s benchmark.
Conditions for Task Selectors with includeFYITasks:

• includeFYITasks = true
– ROOT_TASK_ONLY

* Base Conditions AND (roottaskid = taskid)
– AGGREGATED_TASKS

* Base conditions AND (workflowpattern =
'AGGREGATION' OR (aggregationtaskid IS NULL
AND subtaskgroupinstanceid IS NOT NULL) OR
(roottaskid = taskid AND aggregationtaskid
IS NULL AND subtaskgroupinstanceid IS
NULL))

– ROOT_TASK_AND_SUB_TASKS_ONLY
* Base Conditions AND (roottaskid = taskid OR

subtaskgroupinstanceid IS NOT NULL)
• includeFYITasks = false

– ROOT_TASK_ONLY
* Base Conditions AND (IWT.taskid =

IWT.roottaskid AND EXISTS (select 1 from
wftask wfn where (wfn.workflowpattern IS
NULL OR wfn.workflowpattern <> 'FYI') AND
WT.rootTaskId = wfn.rootTaskId)

– AGGREGATED_TASKS

Chapter 34
Introduction to Human Workflow Services

34-20

Table 34-5 (Cont.) Task Query Service Methods

Method Description

* Base Conditions AND ((workflowpattern =
'AGGREGATION' AND EXISTS (select 1 from
wftask w2 where (w2.workflowpattern IS NULL
OR w2.workflowpattern <> 'FYI') AND
w2.aggregationtaskid = IWT.taskid)) OR
(aggregationtaskid IS NULL AND
subtaskgroupinstanceid IS NOT NULL AND
workflowpattern <> 'FYI') OR (roottaskid =
taskid AND aggregationtaskid IS NULL AND
subtaskgroupinstanceid IS NULL AND
workflowpattern <> 'FYI'))

– ROOT_TASK_AND_SUB_TASKS_ONLY
* Base Conditions AND ((IWT.taskid =

IWT.roottaskid OR subtaskgroupinstanceid IS
NOT NULL) AND EXISTS (select 1 from wftask
wfn (where wfn.workflowpattern IS NULL OR
wfn.workflowpattern <> 'FYI') AND
IWT.rootTaskId = wfn.rootTaskId))

getTaskSequence Gets the task sequence tree of a task whose ID is a task ID, for those
type of sequences.

getTaskVersionDetails Gets the specific task version details for the specified task ID and
version number.

getWorkflowContext Gets a human workflow context with the specified context token.

getWorkflowContextForAuth
enticatedUser

Gets the IWorkflowContext object for a user authenticated by a
JAAS application. Use this either with Enterprise JavaBeans or
SAML token identity propagation.

isFYITask Based on the taskId or rootTaskId input parameter, returns true
if associated task is an FYI task, or false if not.

Interface:

boolean isFYITask(IWorkflowContext wfCtx, String
taskId) throws WorkflowException
• Both wfCtx and taskId are mandatory parameters.

• Will satisfy <1s benchmark.
Behavior:

When the following conditions are satisfied, the API returns true,
else it returns false.

• root task as FYI itself: use rootTaskId as input.

• root having exactly 1 child as FYI or all children as FYI (both for
aggregation and non-aggregation): use rootTaskId as input.

• subtask as FYI itself: use taskId as input.

queryAggregatedTasks Executes the specified query, and aggregates a count of the tasks
returned by the query, grouped by the specified column.

queryTaskErrors Returns a list of task error objects matching the specified predicate.

Chapter 34
Introduction to Human Workflow Services

34-21

Table 34-5 (Cont.) Task Query Service Methods

Method Description

queryTasks Returns a list of tasks that match the specified filter conditions. Tasks
are listed according to the ordering condition specified (if any). The
entire list of tasks matching the criteria can be returned or clients can
execute paging queries in which only a specified number of tasks in
the list are retrieved. The filter conditions are as follows:

• assignmentFilter: Filters tasks according to whom the task is
assigned, or who created the task. Possible values for the
assignment filter are:

– ADMIN: No filtering; returns all tasks regardless of
assignment or creator.

– ALL: No filtering; returns all tasks regardless of assignment
or creator.

– CREATOR: Returns tasks in which the context user is the
creator.

– GROUP: Returns tasks that are assigned to a group,
application role, or list of users of which the context user is a
member.

– MY: Returns tasks that are assigned exclusively to the
context user.

– MY_AND_GROUP: Returns tasks that are assigned exclusively
to the context user, or to a group, application role, or list of
users of which the context user is a member, excluding any
tasks that have been claimed by other users.

– MY_AND_GROUP_ALL: Returns tasks that are assigned
exclusively to the context user, or to a group, application
role, or list of users of which the context user is a member,
including any tasks that have been claimed by other users.

– OWNER: Returns tasks in which the context user is the task
owner.

– PREVIOUS: Returns tasks the context user previously
updated.

– REPORTEES: Returns tasks that are assigned to reportees of
the context user.

– REVIEWER: Returns tasks for which the context user is a
reviewer.

• keywords: An optional search string. This only returns tasks in
which the string is contained in the task title, task identification
key, or one of the task text mapped attributes (formerly referred
to as flex fields).

• predicate: An optional
oracle.bpel.services.workflow.repos.Predicate
object that allows clients to specify complex, SQL-like query
predicates.

queryViewAggregatedTasks Executes the query as defined in the specified view, and aggregates
the selected tasks according to the chart property defined in the view.

queryViewTasks Returns a list of tasks according to the criteria in the specified view.
The entire list or paged list of tasks can be returned. Clients can
specify additional filter and ordering criteria to those in the view.

For more information, see the following:

• Task Instance Attributes

Chapter 34
Introduction to Human Workflow Services

34-22

• Workflow Services Java API Reference for Oracle SOA Suite

Identity Service
The identity service is a thin web service layer on top of the Oracle WebLogic Server security
infrastructure, namely Oracle Identity Management and Oracle Platform Security Services
(OPSS), or any custom user repository. The identity service enables authentication of users
and the lookup of user properties, roles, group memberships, and privileges. Oracle Identity
Management is the sole identity service provider for Oracle WebLogic Server. Oracle Identity
Management handles all storage and retrieval of users and roles for various repositories,
including XML, LDAP, and so on. More specifically, Oracle Identity Management provides the
following features:

• All providers are supported through Oracle Identity Management. The OracleAS JAAS
Provider (JAZN) and LDAP providers are no longer supported. The custom provider is
deprecated and supported only for backward compatibility. All customization of providers is
performed through the custom provider to Oracle Identity Management, through
configuring Oracle Virtual Directory (OVD) as an LDAP provider to Oracle Identity
Management, or through both. OVD aggregates data across various repositories.

• The OPSS layer is used, which includes the following:

– Identity store

– Policy store

– Credential store

– Framework

For more information, see Securing Applications with Oracle Platform Security Services.
All security configuration is done through the jps-config.xml file.

• All privileges are validated against permissions, as compared to actions in previous
releases.

• The following set of application roles are defined. These roles are automatically defined in
the SOA Infrastructure application of the OPSS policy store.

– SOAAdmin: Grant this role to users who must perform administrative actions on any
SOA module. This role is also granted the BPMWorkflowAdmin and B2BAdmin roles.

– BPMWorkflowAdmin: Grant this role to users who must perform any workflow
administrative action. This includes actions such as searching and acting on any task
in the system, creating and modifying user and group rules, performing application
customization, and so on. This role is granted the BPMWorkflowCustomize role and the
following permissions:

* workflow.mapping.protectedFlexField
* workflow.admin.evidenceStore
* workflow.admin

– BPMWorkflowCustomize: Grant this role to business users who must perform mapped
attributes (formally flex field) mapping to public mapped attributes. This role is also
granted the workflow.mapping.publicFlexField permission.

• The following workflow permissions are defined:

– workflow.admin: Controls who can perform administrative actions related to tasks,
user and group rules, and customizations.

Chapter 34
Introduction to Human Workflow Services

34-23

– workflow.admin.evidenceStore: Controls who can view and search evidence records
related to digitally-signed tasks (tasks that require a signature with the use of digital
certificates).

– workflow.mapping.publicFlexField: Controls who can perform mapping of task
payload attributes to public mapped attributes.

– workflow.mapping.protectedFlexField: Controls who can perform mapping of task
payload attributes to protected mapped attributes.

Note:

You cannot specify multiple authentication providers for Oracle SOA Suite. This is
because OPSS does not support multiple providers. The provider to use for human
workflow authentication must be the first one listed in the order of authentication
providers for Oracle SOA Suite.

Identity Service Providers
Oracle Identity Management is the only supported provider for release 11g, as shown in
Figure 34-1.

Figure 34-1 Identity Service Providers

Chapter 34
Introduction to Human Workflow Services

34-24

Custom User Repository Plug-ins
Starting with release 11g, custom provider plug-ins in the identity service are not supported. All
identity customizations are now done in the identity store. Oracle Fusion Middleware supports
providers that enable the User and Role API to interact with custom identity stores. For more
information, visit the following URL:

http://www.oracle.com/technetwork/middleware/id-mgmt/overview/index.html

Task Metadata Service
The task metadata service exposes operations to retrieve metadata information related to a
task. Table 34-6 describes some of the common operations of task metadata service. Package
oracle.bpel.services.workflow.metadata corresponds to the task metadata service.

For more information about the task metadata service, see Workflow Services Java API
Reference for Oracle SOA Suite.

Table 34-6 Task Metadata Service Methods

Method Description

getTaskMetadataByNamespa
ce

Gets the TaskMetadata object that describes the human task service
component with the specified task definition namespace and composite
version.

getOutcomes Gets the permitted outcomes of a task. The outcomes are returned
with their display values.

getResourceBundleInfo Gets the resource bundle information of the task. The resource bundle
information contains the location and the name of the bundle.

getRestrictedActions Gets the actions that are restricted for a particular task.

getTaskAttributesForTask
Definitions

Gets a list of TaskAttribute objects that describe standard task
attributes and mapped attribute columns that are common for the
specified task definitions.

getTaskAttributesForTask
Namespaces

Gets a list of TaskAttribute objects that describe standard task
attributes and mapped attribute columns that are common for task
definitions identified by the specified namespaces.

getTaskAttributes Gets the task message attributes.

getTaskAttributesForTask
Definition

Gets the message attributes for a particular task definition.

getTaskDefinition Gets the task definition associated with the task.

getTaskDefinitionById Gets the task definition by the task definition ID.

getTaskDefinitionOutcome Gets the outcomes given the task definition ID.

getTaskVisibilityRules Gets the task visibility rules.

getTaskDisplayRegion Gets the task display region for a task.

getVersionTrackedAttrs Gets the task attributes that when changed cause a task version
creation.

listTaskMetadata Lists the task definitions in the system.

Chapter 34
Introduction to Human Workflow Services

34-25

http://www.oracle.com/technetwork/middleware/id-mgmt/overview/index.html

User Metadata Service
The user metadata service provides methods for managing metadata specific to individual
users and groups. It is used for getting and setting user worklist preferences, managing user
custom views, and managing human workflow rules for users and groups.

For most methods in the user metadata service, the authenticated user can query and update
their own user metadata. However, they cannot update metadata belonging to other users.

In the case of group metadata (for example, human workflow rules for groups), only a user
designated as an owner of a group (or a user with the workflow.admin privilege) can query
and update the metadata for that group. However, a user with the workflow.admin privilege
can query and update metadata for any user or group.

Table 34-7 describes some of the common operations of the user metadata service. Package
oracle.bpel.services.workflow.user corresponds to the user metadata service.

For more information about user metadata service, see Workflow Services Java API Reference
for Oracle SOA Suite.

Table 34-7 User Metadata Service Methods

Method Description

createRule Creates a new rule.

decreaseRulePriority Decreases the priority of a rule by one. This method does nothing if this
rule has the lowest priority.

deleteRule Deletes a rule.

getVacationInfo Retrieves the date range (if any) during which a user is unavailable for the
assignment of tasks.

getRuleDetail Gets the details for a particular human workflow rule.

getRuleList Retrieves a list of rules for a particular user or group.

updateRule Updates an existing rule.

increaseRulePriority Increases the priority of a rule by one. Rules for a user or group are
maintained in an ordered list of priority. Higher priority rules (those closer
to the head of the list) are executed before rules with lower priority. This
method does nothing if this rule has the highest priority.

getUserTaskViewList Gets a list of the user task views that the user owns.

getGrantedTaskViewList Gets a list of user task views that have been granted to the user by other
users. Users can use granted views for querying lists of tasks, but they
cannot update the view definition.

getStandardTaskViewLis
t

Gets a list of standard task views that ship with the human workflow
service, and are available to all users.

getUserTaskViewDetails Gets the details for a single view.

createUserTaskView Creates a new user task view.

updateUserTaskView Updates an existing user task view.

deleteUserTaskView Deletes a user task view.

Chapter 34
Introduction to Human Workflow Services

34-26

Table 34-7 (Cont.) User Metadata Service Methods

Method Description

updateGrantedTaskView Updates details of a view grant made to this user by another user.
Updates are limited to hiding or unhiding the view grant (hiding a view
means that the view is not listed in the main inbox page of Oracle BPM
Worklist), and changing the name and description that the granted user
sees for the view.

getUserPreferences Gets a list of user preferences for the user. User preferences are simple
name-value pairs of strings. User preferences are private to each user
(but can still be queried and updated by a user with the workflow.admin
privilege).

setUserPreferences Sets the user preference values for the user. Any preferences that were
previously stored and are not in the new list of user preferences are
deleted.

getPublicPreferences Gets a list of public preferences for the user. Public preferences are
similar to user preferences, except that any user can query them.
However, only the user that owns the preferences, or a user with the
workflow.admin privilege, can update them. Public preferences are
useful for storing application-wide preferences (preferences can be stored
under a dummy user name, such as MyAppPrefs).

setPublicPreferences Sets the public preferences for the user.

setVacationInfo Sets a date range over which the user is unavailable for the assignment of
tasks. (Dynamic assignment functions do not assign tasks to a user that is
on vacation.)

getStandardTaskViewDet
ails

Gets the full details for a particular standard view, identified by its viewId.

For more information, see the following:

• Using Oracle BPM Worklist for details about the rule configuration and user preference
pages

• Workflow Services Java API Reference for Oracle SOA Suite

Task Report Service
The task report service executes a report and receives the results. Table 34-8 shows the list of
reports. Package oracle.bpel.services.workflow.report corresponds to the task report
service. The standard reports shown in Table 34-8 are available as part of installation.

Table 34-8 Task Report Service

Report Description

Unattended tasks report Provides an analysis of tasks assigned to users' groups or reportees'
groups that require attention because they have not yet been acquired.

Tasks priority report Provides an analysis of the number of tasks by priorities assigned to a
user, reportees, or their groups.

Tasks cycle time report Provides an analysis of time taken to complete tasks from assignment
to completion based on users' groups or reportees' groups.

Tasks productivity report Provides an analysis of tasks assigned and tasks completed in a given
time period for a user, reportees, or their groups.

Chapter 34
Introduction to Human Workflow Services

34-27

Table 34-8 (Cont.) Task Report Service

Report Description

Tasks time distribution report Provides an analysis of time taken to complete their part of the tasks
for a given user, user's groups, or reportees in the given time period.

Runtime Config Service
The runtime config service provides methods for managing metadata used in the task service
runtime environment. It principally supports the management of task payload mapped attribute
mappings and the URIs used for displaying task details.

The task object used by the task service contains many mapped attributes, which can be
populated with information from the task payload. This allows the task payload information to
be queried, displayed in task listings, and used in human workflow rules.

The runtime config service provides methods for querying and updating the URI used for
displaying the task details of instances of a particular task definition in a client application. For
any given task definition, multiple display URIs can be supported, with different URIs being
used for different applications. The method getTaskDisplayInfo can query the URIs for a
particular task definition. The method setTaskDisplayInfo can define new URIs or update
existing ones. Only users with the workflow.admin privilege can call setTaskDisplayInfo, but
any authenticated user can call getTaskDisplayInfo.

The runtime config service allows administrators to create mappings between simple task
payload attributes and these mapped attributes.

Only a user with the workflow.mapping.publicFlexField or
workflow.mapping.protectedFlexField privilege can make updates to payload mappings for
public mapped attributes. Only a user with the workflow.mapping.protectedFlexField
privilege can make updates to payload mappings for protected mapped attributes. Any
authenticated user can use the query methods in this service.

An administrator can create attribute labels for the various mapped attributes. These attribute
labels provide a meaningful label for the attribute (for example, a label Location may be
created for the mapped attribute TextAttribute1). A given mapped attribute may have
multiple labels associated with it. This attribute label is what is displayed to users when
displaying lists of attributes for a specific task in Oracle BPM Worklist. The attribute labels for a
specific task type can be determined by calling the getTaskAttributesForTaskDefinition
method on the task metadata service.

When defining attribute labels, the following fields are automatically populated by the service.
You do not need to specify values for these attributes when creating or updating attribute
labels:

• Id
• CreatedDate
• WorkflowType
• Active
Valid values for the task attribute field for public mapped attributes are as follows:

• TextAttribute1 through TextAttribute20
• FormAttribute1 through FormAttribute10

Chapter 34
Introduction to Human Workflow Services

34-28

• UrlAttribute1 through UrlAttribute10
• DateAttribute1 through DateAttribute10
• NumberAttribute1 through NumberAttribute10
Mappings can then be created between task payload fields and the attribute labels. For
example, the payload field customerLocation can be mapped to the attribute label Location.
Different task types can share the same attribute label. This allows payload attributes from
different task types that have the same semantic meaning to be mapped to the same attribute
label.

Note:

Payload fields that are simple XML types can be mapped directly, or an xpath
expression can be specified to select a simple XML type value from a complex
payload field.

The runtime config service also provides the following:

• Methods for querying the dynamic assignment functions supported by the server

• Methods for maintaining the task display URLs used for displaying the task details in
Oracle BPM Worklist and other applications

• Methods for getting the server HTTP and JNDI URLs

Table 34-9 describes some of the common operations of the runtime config service. Package
oracle.bpel.services.workflow.runtimeconfig corresponds to the runtime config service.

For more information about runtime config service, see Workflow Services Java API Reference
for Oracle SOA Suite.

Table 34-9 Runtime Config Service

Method Description

CreateAttributeLabel Creates a new attribute label for a particular task mapped attribute.

createPayloadMapping Creates a new mapping between an attribute label and a task payload
field.

DeleteAttributeLabel Deletes an existing attribute label.

deletePayloadMapping Deletes an existing payload mapping.

getAttributeLabelUsages Gets a list of attribute labels (either all attribute labels or labels for a
specific type of attribute) for which mapping (if any) the labels are
currently used.

getDynamicAssignmentFunc
tions

Returns a list of dynamic assignment functions that are implemented
on this server.

getTaskDisplayInfo Retrieves information relating to the URIs used for displaying task
instances of a specific task definition.

getTaskStatus Gets the status of a task instance corresponding to a particular task
definition and composite instance.

GetWorkflowPayloadMappin
gs

Gets a list of all the mapped attribute mappings for a particular human
workflow definition.

Chapter 34
Introduction to Human Workflow Services

34-29

Table 34-9 (Cont.) Runtime Config Service

Method Description

setTaskDisplayInfo Sets information relating to the URIs to be used for displaying task
instances of a specific task definition.

updateAttributeLabel Updates an existing attribute label.

For more information, see the following:

• Dynamic Assignment and Task Escalation Patterns

• Using Oracle BPM Worklist for details about mapped attribute mappings

• Workflow Services Java API Reference for Oracle SOA Suite

Internationalization of Attribute Labels
Attribute labels provide a method of attaching a meaningful label to a task mapped attribute. It
can be desirable to present attribute labels that are translated into the appropriate language for
the locale of the user.

To use a custom resource bundle, place it at the location identified by the workflow
configuration parameter workflowCustomClasspathURL (which can be a file or HTTP path).

This can be set in either of two places in Oracle Enterprise Manager Fusion Middleware
Control:

• System MBean Browser page

• Workflow Task Service Properties page

Entries for mapped attribute labels must be of the form:

FLEX_LABEL.[label name]=Label Display Name

For instance, the entry for a label named Location is:

FLEX_LABEL.Location=Location

Adding entries to these files for attribute labels is optional. If no entry is present in the file, the
name of the attribute label as specified using the API is used instead.

Evidence Store Service and Digital Signatures
The evidence store service is used for digital signature storage and nonrepudiation of digitally-
signed human workflows. A digital signature is an electronic signature that authenticates the
identity of a message sender or document signer. This ensures that the original content of the
message or document sent is unchanged. Digital signatures are transportable, cannot be
imitated by others, and are automatically time-stamped. The ability to ensure that the original
signed message arrived means that the sender cannot repudiate it later. Digital signatures
ensure that a human workflow document:

• Is authentic

• Has not been forged by another entity

• Has not been altered

• Cannot be repudiated by the sender

Chapter 34
Introduction to Human Workflow Services

34-30

A cryptographically-based digital signature is created when a public key algorithm signs a
sender's message with a sender's private key.

During design time, signatures are enabled for the task. During runtime in Oracle BPM
Worklist, when a user approves or rejects the task, the web browser:

• Asks the user to choose the private key to use for signing.

• Generates a digital signature using the private key and task content provided by Oracle
BPM Worklist.

Figure 34-2 provides an example.

Figure 34-2 Digital Signature and Certificate

Chapter 34
Introduction to Human Workflow Services

34-31

Note:

• The certificate refers to a Personal Information Exchange Syntax Standard (PFX)
file that includes a certificate and a private key, and is protected by a simple text
password. PFX specifies a portable format for storing or transporting a user's
private keys, certificates, miscellaneous secrets, and so on.

• The possession of a private key that corresponds to the public key of a certificate
is sufficient to sign the data, because the signature is verifiable through the public
key in the certificate. However, no attempt is made to correlate the name of a
user of a certificate with the person updating it. For example, user jstein can
sign using the private key of user cdickens if jstein has that private key.

The following digital signature features are supported:

• PKCS7 signatures based on X.509 certificates

• Browser-based, digitally-signed content without attachments

Prerequisites
Prerequisites for using digital signatures and certificates are as follows:

• Users of the Oracle BPM Worklist must have certificates

• The administrator must specify the CAs and corresponding CRL URL whose certificates
must be trusted. Users are expected to upload only certificates issued by these CAs. This
is done by editing the System MBean Browser in Oracle Enterprise Manager Fusion
Middleware Control.

1. Log in to Oracle Enterprise Manager Fusion Middleware Control.

2. In the navigator, expand the SOA folder.

3. Right-click soa-infra, and select Administration > System Mbean Browser.

The System Mbean Browser displays on the right side of the page.

4. Expand Application Defined MBeans > oracle.as.soainfra.config > Server:
server_name > WorkflowConfig > human-workflow.

5. Click the Operations tab on the right side of the page.

6. Click addTrustedCA.

7. Provide values for caName and caURL. You must do this for each certificate in the
trust chain. For example, values provided for each invocation may look as shown in
Table 34-10.

Table 34-10 caName and caURL Values

caName caURL

CN = Intg, OU
=AppServ, O =Oracle, C
= US

http://www.oracle.com/Integration%20CRL%20Data.crl

Chapter 34
Introduction to Human Workflow Services

34-32

Table 34-10 (Cont.) caName and caURL Values

caName caURL

CN = Intg1, OU
=AppServ, O =Oracle, C
= US

http://www.oracleindia.in.com/Integration%20In.crl

CN = Intg2, OU
=AppServ, O =Oracle, C
= US

http://www.oracle.us.com/integration.crl

8. Click Invoke.

Interfaces and Methods
Table 34-11 through Table 34-14 describe the methods in the evidence store service. Package
oracle.bpel.services.security.evidence corresponds to the evidence service.

Table 34-11 ITaskEvidenceService Interface

Method Description

createEvidence Creates evidence and stores it in the repository for nonrepudiation.

getEvidence Gets a list of evidence matching the given criteria. The result also
depends on the privileges associated with the user querying the
service. If the user has been granted the
workflow.admin.evidenceStore permission (points to a location
detailing how to grant the permission), all matching evidence is visible.
Otherwise, only that evidence created by the user is visible.

uploadCertificate Uploads certificates to be used later for signature verification. This is a
prerequisite for creating evidence using a given certificate. A user can
only upload their certificates.

updateEvidence Updates the CRL verification part of the status. This includes verified
time, status, and error messages, if any.

validateEvidenceSignatur
e

Validates the evidence signature. This essentially performs a
nonrepudiation check on the evidence. A value of true is returned if
the signature is verified. Otherwise, false is returned.

Table 34-12 Evidence Interface

Method Description

getCertificate Gets the certificate used to sign this evidence.

getCreateDate Gets the creation date of the evidence.

getErrorMessage Gets the error message associated with the CRL validation.

getEvidenceId Gets the unique identifier associated with the evidence.

getPlainText Gets the content that was signed as part of this evidence.

getPolicy Gets the signature policy of the evidence. This is either PASSWORD or
CERTIFICATE.

getSignature Gets the signature of this evidence.

getSignedDate Gets the date on which the signature was created.

Chapter 34
Introduction to Human Workflow Services

34-33

Table 34-12 (Cont.) Evidence Interface

Method Description

getStatus Gets the CRL validation status. This can be one of the following:

• AVAILABLE: The evidence is available for CRL validation.

• FAILURE: CRL validation failed.

• SUCCESS: CRL validation succeeded.

• UNAVAILABLE: The CRL data could not be fetched.

• WAIT: CRL validation is in progress.

getTaskId Gets the unique identifier of the task with which this evidence is
associated.

getTaskNumber Gets the task number of the task with which this evidence is
associated.

getTaskPriority Gets the task priority of the task with which this evidence is associated.

getTaskStatus Gets the task status of the task with which this evidence is associated.

getTaskSubStatus Gets the task substatus of the task with which this evidence is
associated.

getTaskTitle Gets the title of the task with which this evidence is associated.

getTaskVersion Gets the version of the task with which this evidence is associated.

getVerifiedDate Gets the date on which the CRL validation of the certificate used was
performed.

getWorkflowType Gets the workflow type of the task with which this evidence is
associated. This is typically BPELWF.

Table 34-13 Certificate Interface

Method Description

getCA Gets the certificate issuer's distinguished name (DN).

getCertificate Gets the certificate object that is abstracted by the interface.

getID Gets the certificate's serial number.

getIdentityContext Gets the identity context with which the uploader of this certificate is
associated.

getUserName Gets the user name with whom this certificate is associated.

isValid Returns true if the certificate is still valid.

Table 34-14 Policy Type and Workflow Type Interface

Method Description

fromValue Constructs an object from the string representation.

value Returns the string representation of this object.

For more information, see the following:

• How to Specify a Workflow Digital Signature Policy for details about specifying digital
signatures and digital certificates in the Human Task Editor

Chapter 34
Introduction to Human Workflow Services

34-34

• Designing Task Forms for Human Tasks for details about digitally signing a task action in
the Oracle BPM Worklist

Task Instance Attributes
A task is work that must be done by a user. When you create a task, you assign humans to
participate in and act upon the task. Table 34-15 describes the task attributes that are
commonly used and interpreted by applications.

Table 34-15 Task Attributes

Task Attribute Name Description

task/applicationContext The application with which any application roles associated with this
task (assignees, owners, and so on) belong.

task/category An optional category of the task.

task/creator The name of the creator of this task.

task/dueDate The due date for the task. This is used on to-do tasks.

task/identificationKey An optional, custom, unique identifier for the task. This can be set
as an additional unique identifier to the standard task ID and task
number. This key can retrieve a task based on business object
identifiers for which the task is created.

task/identityContext The identity realm under which the users and groups are seeded. In
a single realm environment, this defaults to the default realm.

task/ownerGroup The group (if any) that owns this task instance. Task owners can be
application roles, users, or groups. If the owner of the task is a
group, this field is set.

task/ownerRole The application role (if any) that owns this task instance. Task
owners can be application roles, users, or groups. If the owner of
the task is an application role, this field is set.

task/ownerUser The user (if any) that owns this task instance. Task owners can be
application roles, users, or groups. If the owner of the task is a user,
this field is set.

task/payload The task payload that is captured as XML.

task/percentageComplete The percentage of the task completed. This is used on to-do tasks.

task/priority An integer number that defines the priority of this task. A lower
number indicates a higher priority. The numbers 1 to 5 are typically
used.

task/startDate The start date for the task. This is used on to-do tasks.

task/subCategory An optional subcategory of the task.

task/taskDefinitionId The task definition ID that binds the task to the task metadata. At
task initiation time, this can be either the compositeDN/
componentName string or the targetNamespace in the .task file.
If the later is used, the active version matching the
targetNamespace is used.

task/taskDisplayUrl The URL to use to display the details for this task.

task/title The title of the task.

Table 34-16 lists the attributes that capture process metadata information.

Chapter 34
Introduction to Human Workflow Services

34-35

Table 34-16 Attributes Capturing Process Metadata Information

Attribute Description

task/sca/applicationName The partition to which the task component that defines this task
instance is deployed.

task/sca/componentName The name of the task component that defines this task instance.

task/sca/compositeDN A unique name for the particular deployment of the composite
that contains the task component that defines this task instance.

task/sca/compositeInstanceId The composite instance ID.

task/sca/compositeName The name of the composite that contains the task component
that defines this task instance.

task/sca/compositeVersion The version of the composite that contains the task component
that defines this task instance.

task/sca/compositeCreatedTime The date and time on which the composite flow to which this task
instance belongs was started.

task/sca/flowId A unique identifier for the composite flow to which this task
instance belongs.

Table 34-17 lists the attachment-related attributes.

Table 34-17 Attachment-related attributes

Attribute Description

task/attachment/content The attachment content.

task/attachment/mimeType The Multipurpose Internet Mail Extension (MIME) type of the
attachment.

task/attachment/name The name of the attachment.

task/attachment/
updatedBy

The user who updated the attachment.

task/attachment/
updatedDate

The date on which the attachment was updated.

task/attachment/URI The URI if the attachment is URI-based.

Table 34-18 lists the comment-related attributes.

Table 34-18 Comment-related Attributes

Attribute Description

task/userComment/comment The user comment.

task/userComment/updatedBy The user who added the comment.

task/userComment/updatedDate The date on which the comment was added. This is set by
services when saving comments. If set by client when saving the
comment, it is ignored.

task/userComment/
displayNameLanguage

Set by services when reading comments. This indicates the
language in which the updatedBy displayName is populated.

task/userComment/acl Not used.

Chapter 34
Introduction to Human Workflow Services

34-36

Table 34-18 (Cont.) Comment-related Attributes

Attribute Description

task/userComment/
doesBelongToParent

If the comment is inherited from parent (example process
comment).

task/userComment/
isSystemComment

Set by services if the comment is set by the workflow system
(example, a comment is created if the task goes into alerted
state).

task/userComment/taskId The taskId in which the comment was created. For example, if
the scope is "BPM", the comment may be visible in a task
different than the one in which it was created. Also, for parallel
task, the current taskId and comment taskId may be different.
This is set by services.

task/userComment/
commentScope

The values - null, empty or "TASK" implies that the comment is
for that task only. The value "BPM" implies that it is for the whole
process. The value has to be set to "BPM" when adding
comment if you want the comment to be applicable to the whole
process.

task/userComment/updatedBy/id ID of the user who updated the comment.

task/userComment/updatedBy/
displayName

Display name of the user who updated the comment.

task/userComment/updatedBy/
type

Type of User, Group, or Role of the user who updated the
comment.

Table 34-19 lists the attributes manipulated by the workflow services system.

Table 34-19 Attributes Manipulated by the Workflow Services System

Attribute Description

task/systemAttributes/
acquiredBy

If a task is assigned to a group, application role, or to multiple users,
and then claimed by a user, this field is set to the name of the user who
claimed the task.

task/systemAttributes/
approvers

The IDs of users who performed custom actions on the task.

task/systemAttributes/
assignedDate

The date that this task was assigned.

task/systemAttributes/
assignees

The current task assignees (can be users, groups, or application roles).

task/systemAttributes/
createdDate

The date the task instance was created.

task/systemAttributes/
customActions

The custom actions that can be performed on the task.

task/systemAttributes/
endDate

The end date for the task. This is used on to-do tasks.

task/systemAttributes/
expirationDate

The date on which the task instance expires.

task/systemAttributes/
fromUser

The user who previously acted on the task.

Chapter 34
Introduction to Human Workflow Services

34-37

Table 34-19 (Cont.) Attributes Manipulated by the Workflow Services System

Attribute Description

task/systemAttributes/
hasSubTasks

If true, there are subtasks.

task/systemAttributes/
isGroup

If true, the task is assigned to a group.

task/systemAttributes/
originalAssigneeUser

If a user delegates a task to another user, this field is populated with
the name of the user who delegated the task.

task/systemAttributes/
outcome

The outcome of the task (for example, approved or rejected). This is
only set on completed task instances.

task/systemAttributes/
parentTaskId

This is only set on reinitiated tasks (the task ID of the previous task that
is being reinitiated).

task/systemAttributes/
parentTaskVersion

This only set on a subtask. This refers to the version of the parent task.

task/systemAttributes/
participantName

The logical name of the participant as modeled from Oracle
JDeveloper.

task/systemAttributes/
reviewers

The reviewers of the task. This can be a user, group, or application
role.

task/systemAttributes/
rootTaskId

The ID of the root task. This is the same as the task ID for the root
task.

task/systemAttributes/
stage

The stage name that is being executed.

task/systemAttributes/
state

The current state of the task instance.

task/systemAttributes/
substate

The current substate of the task.

task/systemAttributes/
subTaskGroupInstanceId

A unique ID that is set on a subtask. This same ID is set on the parent
task's taskGroupInstanceId. This is required to identify which
subtasks were created at which time.

task/systemAttributes/
systemActions

The system actions (such as reassign, escalate, and so on) that can be
performed on a task.

task/systemAttributes/
taskDefinitionName

The name of the task component that defines this task instance.

task/systemAttributes/
taskGroupId

The ID of the immediate parent task. This only sets a subtask.

task/systemAttributes/
taskGroupInstanceId

A unique ID that is set on the parent task. This same ID is set on the
subtask's subTaskGroupInstanceId. This is required to identify
which subtasks were created at which time.

task/systemAttributes/
taskId

The unique ID of the task.

task/systemAttributes/
taskNamespace

A namespace that uniquely defines all versions of the task component
that defines this task instance. Different versions of the same task
component can have the same namespace, but no two task
components can have the same namespace.

task/systemAttributes/
taskNumber

An integer number that uniquely identifies this task instance.

Chapter 34
Introduction to Human Workflow Services

34-38

Table 34-19 (Cont.) Attributes Manipulated by the Workflow Services System

Attribute Description

task/systemAttributes/
updatedBy

The user who last updated the task.

task/systemAttributes/
updatedDate

The date this instance was last updated.

task/systemAttributes/
version

The version of the task.

task/systemAttributes/
versionReason

The reason the version was created.

task/systemAttributes/
workflowPattern

The pattern that is being executed (for example, parallel, serial, FYI, or
single).

Table 34-20 lists the mapped attributes.

Table 34-20 Mapped Attributes

Attribute Description

task/
systemMessageAttributes/
*

The mapped attributes.

Notifications from Human Workflow
Notifications are sent to alert users of changes to the state of a task. Notifications can be sent
through any of the following channels: email, instant messaging (IM), or short message service
(SMS). Notifications can be sent from a human task in a BPEL process or directly from a BPEL
process.

The human workflow email notification layer works with Oracle User Messaging Service to alert
users to changes in the state of a task. The Oracle User Messaging Service exposes
operations that can be invoked from the BPEL process or human task to send notifications
through email, IM, or SMS channels.

The Oracle User Messaging Service supports features such as:

• Sending and receiving messages and statuses

• Sending notifications to a specific address on a particular channel

• Sending notifications to a set of failover addresses

On application servers other than Oracle Fusion Middleware, the human workflow email
notification layer can be used for email notifications.

For more information about configuring the Oracle User Messaging Service, see the following:

• Using the Notification Service

• Developing Applications with Oracle User Messaging Service

Chapter 34
Notifications from Human Workflow

34-39

Contents of Notification
Each email notification can contain the following parts:

• The notification message

• The HTML content from Oracle BPM Worklist:

This is a read-only view of Oracle BPM Worklist on the task. For information on how you
can configure email notifications to include the content from Oracle BPM Worklist, see
Creating an Email Notification .

• Task attachments:

For notifications that include task attachments.

• Actionable links

Notifications through SMS and IM contain only the notification message.

The notification message is an XPath expression that can contain static text and dynamic
values. In creating the messages, only the task BPEL variable is available for dynamic values.
This restriction is because the messages are evaluated outside the context of the BPEL
process. The payload in the task variable is also strongly typed to contain the type of the
payload for XPath tree browsing. The XPath extension function
hwf:getNotificationProperty(propertyName) is available to get properties for a particular
notification. The function evaluates to corresponding values for each notification. The
propertyName can be one of the following values:

• recipient
The recipient of the notification

• recipientDisplay
The display name of the recipient

• taskAssignees
The task assignees

• taskAssigneesDisplay
The display names of the task assignees

• locale
The locale of the recipient

• taskId
The ID of the task for which the notification is meant

• taskNumber
The number of the task for which the notification is meant

• appLink
The HTML link to the Oracle BPM Worklist task details page

The following example demonstrates the use of hwf:getNotificationProperty and
hwf:getTaskResourceBundle:

concat('Dear ', hwf:getNotificationProperty('recipientDisplay'), ' Task ',
/task:task/task:systemAttributes/task:taskNumber, ' is assigned to you. ',

Chapter 34
Notifications from Human Workflow

34-40

hwf:getTaskResourceBundleString(/task:task/task:systemAttributes/task:taskId,
'CONGRATULATIONS', hwf:getNotificationProperty('locale')))

This results in a message similar to the following:

Dear Cooper, James Task 1111 is assigned to you. Congratulations

Error Message Support
The human workflow email notification layer is automatically configured to warn an
administrator about error occurrences in which intervention is required. Error notifications and
error response messages are persisted.

You can view messages in Oracle Enterprise Manager Fusion Middleware Control.

For more information about viewing messages, see Administering Oracle SOA Suite and
Oracle Business Process Management Suite.

Reliability Support
The human workflow email notification layer works with Oracle User Messaging Service to
provide the following reliability support:

• Messages are not lost:

– If the human workflow email notification layer fails after acknowledging receipt of a
message from the human workflow.

– If the human workflow email notification layer and Oracle User Messaging Service both
fail before the Oracle User Messaging Service acknowledges receipt of a message
from the human workflow.

– If the Oracle User Messaging Service is down. Message delivery is retried until
successful.

– If a notification channel is down.

• Notifications that cannot be delivered are retried three times and the address is marked as
invalid. The address is also added to the bad address list. If needed, you can manually
remove these addresses from the bad address list in Oracle Enterprise Manager Fusion
Middleware Control. Outgoing notifications are not resent until the address is corrected. To
guard against any incorrect identification, the address is marked as invalid only for about
an hour. No new notifications are sent in this time.

• Incoming notification responses from an address that has been identified as a spam
source are ignored.

• Incoming notification messages are persisted.

• Incoming notification responses that indicate notification delivery failure (for example, an
unknown host mail) are not ignored. Instead, corrective actions are automatically taken (for
example, the bad address list is updated).

• Incoming notification responses can be configured to send acknowledgements indicating
notification status to the sender.

• Validation of incoming notification responses is performed by correlating the incoming
notification message with the outgoing notification message.

For more information about notifications, see the following:

• Using the Notification Service

Chapter 34
Notifications from Human Workflow

34-41

• Administering Oracle SOA Suite and Oracle Business Process Management Suite

Management of Oracle Human Workflow Notification Service
An administrator can perform the following management tasks from Oracle Enterprise Manager
Fusion Middleware Control:

• View failed notifications and erroneous incoming notification responses and take corrective
actions.

• Perform corrective actions such as delete, resend, and edit on outgoing notifications and
addresses.

• View bad emails and block email addresses for incoming notification responses.

• Manage the bad email address list.

• Access runtime data of failed notifications. You can purge this data when it is no longer
needed.

For more information, see Administering Oracle SOA Suite and Oracle Business Process
Management Suite.

How to Configure the Notification Channel Preferences
To configure the notification channel preferences:

1. In Oracle JDeveloper, configure the notification service for email and other channels. See
Using the Notification Service for details.

2. Open the Human Task Editor in Oracle JDeveloper.

The notifications for a task can be configured during the creation of a task in the Human
Task Editor. Notifications can be sent to different types of participants for different actions.

The actions for which a task notification can be sent are described in How to Notify
Recipients of Changes to Task Status.

Notifications can be sent to users involved in the task in various capacities. These users
are described in How to Notify Recipients of Changes to Task Status.

When the task is assigned to a group, each user in the group is sent a notification if no
notification endpoint is available for the group.

For more information, see the following:

• Using the Notification Service

• Specifying Participant Notification Preferences to configure task notifications in the
Human Task Editor

• Administering Oracle SOA Suite and Oracle Business Process Management Suite for
details about configuring the notification channel

3. From the messaging server pages of Oracle Enterprise Manager Fusion Middleware
Control, configure the appropriate channel (for example, email). See Administering Oracle
SOA Suite and Oracle Business Process Management Suite for details.

4. From the Workflow Notification Properties pages of Oracle Enterprise Manager Fusion
Middleware Control, configure the notification mode parameter for the notification service
to either all channels or email.

By default, this value is set to NONE, meaning that no notifications are sent. The possible
values are:

Chapter 34
Notifications from Human Workflow

34-42

• ALL

The email, IM, and SMS channels are configured and notification is sent through any
channel.

• EMAIL

Only the email channel is configured for sending notification messages.

• NONE

No channel is configured for sending notification messages. This is the default setting.

How to Configure Notification Messages in Different Languages
A notification consists of four types of data generated from multiples sources and
internationalized differently.

To configure notification messages in different languages:

1. Use one of the following methods to internationalize messages in the notification content:

a. To use values from the resource bundle specified during the task definition, use the
following XPath extension function:

hwf:getTaskResourceBundleString(taskId, key, locale?)

This function returns the internationalized string from the resource bundle specified in
the task definition.

The locale of the notification recipient can be retrieved with the following function:

hwf:getNotificationProperty('locale')

The task ID corresponding to a notification can be retrieved with the following function:

hwf:getNotificationProperty('taskId')
b. If a different resource bundle is used, then use the following XPath extension to

retrieve localized messages:

orcl:get-localized-string()
However, for all internationalized notifications, the locale is obtained from the BPMUser object of
the identity service.

• Prepackaged strings (action links, comments, Oracle BPM Worklist, and so on)

These strings are internationalized in the product as part of the following package:

oracle.bpel.services.workflow.resource

The user's locale is used to get the appropriate message.

• Task details attachment

The user's locale is used to retrieve the task detail HTML content.

• Task outcome strings (approve, reject, and so on)

The resource bundle for outcomes is specified when the task definition is modeled in the
Advanced Settings section of the Human Task Editor. The key to each of the outcomes in
the resource bundle is the outcome name itself.

• Notification message

For more information, see How to Specify Multilingual Settings.

Chapter 34
Notifications from Human Workflow

34-43

How to Send Actionable Messages
There are several methods for sending actionable messages. This section provides an
overview of procedures.

Note:

If digital signatures are enabled for a task, actionable emails are not sent during
runtime. This is the case even if actionable emails are enabled during design time.

How to Send Actionable Emails for Human Tasks
Task actions can be performed through email if the task is set up to enable actionable email
(the same actions can also be performed from Oracle BPM Worklist). An actionable email
account is the account in which task action-related emails are received and processed.

To send actionable emails for human tasks:

1. In the Advanced tab of the Notification section of the Human Task Editor, select Make
notification actionable to make email notifications actionable. This action enables you to
perform task actions through email.

If a notification is actionable, the email contains links for each of the custom outcomes.

2. To send task attachments with the notification message, select Send task attachments
with email notifications.

When an actionable email arrives, perform the following tasks.

3. Set properties such as incoming server, outgoing mail server, outgoing user name and
password, and others from the Oracle User Messaging Service section of Oracle
Enterprise Manager Fusion Middleware Control.

4. In the Workflow Notification Properties page of Oracle Enterprise Manager Fusion
Middleware Control, set the notification mode to ALL or EMAIL.

5. Click the Approve link to invoke a new email window with approval data. Figure 34-3
provides details.

Chapter 34
Notifications from Human Workflow

34-44

Figure 34-3 Actionable Notifications

6. Add comments in the comments section of the approval mail. For example:

This contract has been approved based on the attached information.
7. Add attachments as needed, as shown in Figure 34-4.

Figure 34-4 Attachment to an Actionable Email

8. Do not change anything in the subject or the body in this email. If you change the content
with the NID substrings, the email is not processed.

9. Click Send.

10. In the Workflow Task Service Properties page of Oracle Enterprise Manager Fusion
Middleware Control, set the actionable email account name.

For more information about the Oracle User Messaging Service section, Workflow Notification
Properties page, and Workflow Task Service Properties page of Oracle Enterprise Manager
Fusion Middleware Control, see Administering Oracle User Messaging Service and
Administering Oracle SOA Suite and Oracle Business Process Management Suite.

How to Send Inbound and Outbound Attachments
If the include attachments flag is checked; only email is sent. The emails include all the task
attachments as email attachments.

Chapter 34
Notifications from Human Workflow

34-45

To send inbound and outbound attachments:

• Select Send task attachments with email notifications in the Advanced tab of the
Notification section of the Human Task Editor.

In the actionable email reply, the user can add attachments in the email. These
attachments are added as task attachments.

For more information, see How to Make Email Messages Actionable.

How to Send Inbound Comments
To send inbound comments:

• Add comments in the actionable email reply between Comments[[‘ and ‘]], as shown in
Figure 34-3. Those contents are added as task comments. For example, Comments[[looks
good]].

How to Send Secure Notifications
To send secure notifications:

• Select Make notifications secure (exclude details) in the Advanced tab of the
Notification section of the Human Task Editor. This action enables a default notification
message to be used. In this case, the notification message does not include the content of
the task. Also, this notification is not actionable. The default notification message includes
a link to the task in Oracle BPM Worklist. You must log in to see task details.

For more information, see How to Secure Notifications to Exclude Details.

How to Set Channels Used for Notifications
To set channels used for notifications:

• Set up preferred notification channels by using the preferences user interface in Oracle
BPM Worklist. The channel is dynamically determined by querying the user preference
store before sending the notification. If the user preference is not specified, then the email
channel is used.

How to Send Reminders
Tasks can be configured to send reminders, which can be based on the time the task was
assigned to a user or the expiration time of a task. The number of reminders and the interval
between the reminders can also be configured. The message used for reminders is the
message that is meant for ASSIGNEES when the task is marked as ASSIGNED.

To send reminders:

• Set reminders in the Advanced tab of the Notification section of the Human Task Editor.
Reminder configuration involves the following parameters:

• Specify the number of times reminders are sent. The values are No Reminders, Remind
Once, Remind Twice, Remind Three Times.

Chapter 34
Notifications from Human Workflow

34-46

• Specify when the reminder must be sent. Select the values from Day, Hour, Minutes,
and select Before Expiration or After Expiration. The values Before Expiration
or After Expiration are related to the expiration of the task.

For more information, see How to Set Up Reminders.

How to Set Automatic Replies to Unprocessed Messages
The human workflow notification service sends you an automatic reply message when it
cannot process an incoming message (due to system error, exception error, user error, and so
on). You can modify the text for these messages in the global resource bundle. The code
sample below shows the WorkflowLabels.properties file. For more information, see Global
Resource Bundle – WorkflowLabels.properties.

String to be prefixed to all auto reply messages
AUTO_REPLY_PREFIX_MESSAGE=Oracle Human Workflow Service
String to be sufixed to all auto reply mesages
AUTO_REPLY_SUFFIX_MESSAGE=This message was automatically generated by Human \
 Workflow Mailer. Do not reply to this mail.

Message indicating closed status of a notified task
TaskClosed=You earlier received the notification shown below. That notification \
 is now closed, and no longer requires your response. You may \
 simply delete it along with this message.

Message indicating that notification was "replied" to instead of "responded" by
using the response link.
EMailRepliedNotification=The message you sent appeared to be a reply to a \
 notification. To respond to a notification, use the \
 response link that was included with your notification.

#
EMailUnSolicited= The message you sent did not appear to be in response to a \
 notification. If you are responding to a notification \
 Use the response link that was included with your notification.

EMailUnknownContent= The message you sent did not appear to be in response to a \
 notification. If you are responding to a notification, \
 Use the response link that was included with your notification.

ResponseNotProcessed=Your response to notification could not be processed. \
 Log in to worklist application for more details.

ResponseProcessed=Your response to notification was successfully processed.

How to Create Custom Notification Headers
Some task participants may have access to multiple notification channels. You can use custom
notification headers to enable this type of participant to specify a single channel as the
preferred channel on which to receive notifications.

To create custom notification headers:

• In the Notification header attributes section of the Advanced tab of the Notification
section of the Human Task Editor, create custom notification headers that specify the
preferred notification channel to use (such as email, IM, or SMS). The human workflow
email notification layer provides these header values to the rule-based notification service
of the Oracle User Messaging Service for use.

For example, set the Name field to deliveryType and the Value field to SMS.

Chapter 34
Notifications from Human Workflow

34-47

The rule-based notification service is only used to identify the preferred notification channel
to use. The address for the preferred channel is obtained from Oracle Identity
Management. The notification message is created from the information provided by both
services.

For more information, see How to Send Task Attachments with Email Notifications.

Assignment Service Configuration
Learn how to configure the assignment service with dynamic assignment functions.

• Dynamic Assignment and Task Escalation Patterns

• Dynamically Assigning Task Participants with the Assignment Service

• Custom Escalation Function

Dynamic Assignment and Task Escalation Patterns
When tasks are assigned to a group, application role, or list of users a single user must claim a
task to act on it. However, you can also automatically send work to users by using various
dispatching mechanisms.

Automatic task dispatching is done through dynamic assignment patterns. Dynamic
assignment patterns select a particular user or group from either a group or a list of users or
groups. Similarly, when a task is escalated, a task escalation pattern can be used to determine
the user to whom the task should be escalated to. Several patterns are provided out of the box.
However, you can also create your own patterns for dynamic assignment and task escalation
and register them with the workflow service. Table 34-21 describes the three dynamic
assignment patterns and one task escalation pattern that are provided out-of-the-box.

Table 34-21 Dynamic Assignment Patterns

Assignment Pattern Type Description

LEAST_BUSY Dynamic assignment Picks the user or group with the least number of tasks
currently assigned to it.

MOST_PRODUCTIVE Dynamic assignment Picks the user or group that has completed the most
tasks over a certain time period (by default, the last
seven days).

ROUND_ROBIN Dynamic assignment Picks each user or group in turn.

MANAGERS_MANAGER Task escalation Picks the manager's manager.

These patterns all check a user's vacation status. A user that is currently unavailable is not
automatically assigned tasks.

Dynamic assignment patterns can be used when defining a task participant, as described in
How to Configure the Single Participant Type. They can also be used with task-assignment
rules allowing end-users to specify dynamic assignment of tasks to the members of groups that
they manage, as described in How To Create Group Rules.

The dynamic assignment patterns can also be called by using an xpath function in any xpath
expression in the task definition.

The signature of the function is:

Chapter 34
Assignment Service Configuration

34-48

hwf:dynamicTaskAssign(patternName, participants, inputParticipantType,
targetAssigneeType, isGlobal, invocationContext, parameter1, parameter2, ...,
parameterN)

The parameters are:

• patternName: Mandatory. Name of the pattern to use

• participants: Mandatory. The participant or participants to select the assignee from. Can
be a string or element containing a participant name or a comma-separated list of
participant names, or a set of elements containing participant names or comma-separated
lists of participant names. Participants must all be of the same type.

• inputParticipantType: Mandatory. The type of the input participants (user, group, or
application_role)

• targetAssigneeType: Mandatory. The type of assignee to select (user, group, or
application_role). Value must match the context in which the function is being used (for
example, must be user if dynamically selecting an owner user. If the inputParticipantType
is user, the only valid value here is user.

• isGlobal: Boolean value that indicates if the pattern should be assessed using tasks of all
types, or just tasks of the same type as the current task. Optional - defaults to false.

• invocationContext: String to uniquely identify where this function is being used. If not
specified, a default context is assigned.

• parameterN: Some dynamic assignment patterns allow parameters to be specified. The
parameter values can be specified as name-value pairs, using an “=" character as a
delimiter - for example, “TIME_PERIOD=7"

Example usages:

hwf:dynamicTaskAssign(“LEAST_BUSY","jcooper,jstein,mtwain","user","user","true","ErrorAss
ignee")

hwf:dynamicTaskAssign(“MOST_PRODUCTIVE",task:task/task:payload/
task:users,"user","user","false","OwnerUser","TIME_PERIOD=7")

hwf:dynamicTaskAssign(“LEAST_BUSY","DeveloperRole","application_role","group"):

Before 12c Release 1 (12.1.3), dynamic assignment could be achieved by using the XPath
functions wfDynamicUserAssign and wfDynamicGroupAssign. These XPath functions have
been deprecated in 12c Release 1 (12.1.3). They can still be used, but Oracle recommends
that you migrate any existing usage of these XPath functions to the new dynamicTaskAssign
function.

How to Implement a Dynamic Assignment Pattern
Follow these procedures to implement your own dynamic assignment pattern.

To implement dynamic assignment patterns:

Write a Java class that implements the following interface:

oracle.bpel.services.workflow.assignment.dynamic.IDynamicAssignmentPattern

Implementations must provide support for selecting a single assignee from a list of participants
(all of the same type) by implementing the method getAssigneeFromParticipantList.

Chapter 34
Assignment Service Configuration

34-49

An implementation does not have to support all assignee types. The interface provides the
method getSupportedAssigneeType to enable the implementation to specify which types of
assignee it supports.

Implementations can accept input parameters to specify selection criteria, the Dynamic
Assignment Framework validates these input parameters, and the implementation can define
its parameters (if any) in the method getPatternParameters().

An implementation can also accept initialization parameters, which are set when the
implementation is initialized by the framework. The parameter values are defined in the human
workflow configuration (either using configMBean, or by Human Workflow Service Engine
configuration in Oracle Enterprise Manager Fusion Middleware Control), where the dynamic
assignment pattern is registered.

For convenience, the framework provides the class AbstractDynamicAssignmentPattern
which implements some common functionality. Assignment pattern implementations can
extend this abstract class, to save implementing some parameter and localization support.

Before 11g (11.1.1.6.0), custom dynamic assignment patterns were implemented using one or
both of the following interfaces:

oracle.bpel.services.workflow.assignment.dynamic.IDynamicGroupAssignmentFunction
oracle.bpel.services.workflow.assignment.dynamic.IDynamicUserAssignmentFunction

These interfaces do not offer all the features available in the IDynamicAssingmentPattern
interface, and have been deprecated. The Dynamic Assignment Framework remains backward
compatible with implementations that use the old interface, but Oracle recommends that you
migrate any implementations you have to use the new interface.

For information about the Javadoc for dynamic assignment interfaces and utilities, see Oracle
Fusion Middleware Workflow Services Java API Reference for Oracle BPEL Process Manager.

How to Configure Dynamic Assignment Patterns
Dynamic assignment patterns are configured along with other human workflow configuration
parameters in Oracle Enterprise Manager Fusion Middleware Control.

Each dynamic assignment has two mandatory parameters:

• name:

The name of the pattern

• classpath:

The fully qualified class name of the class that implements the pattern.

In addition, each pattern can optionally have any number of properties. These properties are
simple name-value pairs that are passed as initialization parameters to the pattern.

The property values specified in these tags are passed as a map (indexed by the value of the
name attributes) to the setInitParameters method of the dynamic assignment patterns.

Two of the out-of-the-box patterns have initialization parameters. These are:

• ROUND_ROBIN
The parameter MAX_MAP_SIZE specifies the maximum number of sets of users or groups for
which the pattern can maintain ROUND_ROBIN counts. The dynamic assignment pattern
holds a list of users and groups in memory for each group (or list of users and groups) on
which it is asked to execute the ROUND_ROBIN pattern.

Chapter 34
Assignment Service Configuration

34-50

• MOST_PRODUCTIVE
The parameter DEAFULT_TIME_PERIOD specifies the length of time (in days) over which to
calculate the user's productivity. This value can be overridden when calling the
MOST_PRODUCTIVE dynamic assignment pattern.

How to Configure Display Names for Dynamic Assignment Patterns
The runtime config service provides methods for returning a list of available user and group
dynamic assignment patterns. These patterns return both the name of the pattern, and a user-
displayable label and description for the pattern and its parameters. The patterns support
localization of the display name, so that it displays in the appropriate language for the context
user. These patterns are used by Oracle BPM Worklist and the JDeveloper Human Task Editor
to show a list of available dynamic assignment patterns.

The dynamic assignment framework provides methods allowing pattern implementations to
provide human-readable display names and descriptions for patterns and their parameters.

The out-of-the-box pattern implementations, and custom implementations that extend the
AbstractDynamicPattern class use the WorkflowLabels.properties resource bundle file to
configure these display strings.

To configure display names for dynamic assignment patterns:

Specify display names and descriptions (and appropriate translations) for your dynamic
assignment patterns and their parameters by adding entries to the resource property file
WorkflowLabels.properties, and associated resource property files in other languages. This
file should be placed in the class path identified in the workflow configuration parameter
workflowCustomizationsClasspathURL, at the path

oracle/bpel/services/workflow/resource/WorkflowLabels.properties

Entries for dynamic assignment patterns must be of the following form:

DYN_ASSIGN_FN.[pattern name]=Pattern Display Name

DYN_ASSIGN_DESCR.[pattern name]=Function Description

DYN_ASSIGN_PARAM_LABEL.[pattern name].[parameter name]=Parameter Display Name

DYN_ASSIGN_PARAM_LABEL.[pattern name].[parameter name]=Parameter Description

For instance, the entries for the MOST_PRODUCTIVE pattern are:

DYN_ASSIGN_FN.MOST_PRODUCTIVE = Most Productive

DYN_ASSIGN_DESCR.MOST_PRODUCTIVE = Picks the user, group or application role that
has completed the highest number of tasks within a certain time period. For group
and application roles the total number of tasks completed by all the users who
are direct members of that group or role are counted. The time period to use can
be specified using the Time Period parameter. If no time period is specified,
then the default value specified in the dynamic assignment configuration for the
instance is used.

DYN_ASSIGN_PARAM_LABEL.MOST_PRODUCTIVE.TIME_PERIOD = Time Period

DYN_ASSIGN_PARAM_DESCR.MOST_PRODUCTIVE.TIME_PERIOD = The previous number of days
over which to count the number of completed tasks. If not specified, the default
value defined in the human workflow dynamic assignment configuration is used.

Chapter 34
Assignment Service Configuration

34-51

Adding entries to these files for dynamic assignment patterns is optional. If no entry is present
in the file, then the name of the function (for example, ROUND_ROBIN') is used instead.

How to Implement a Task Escalation Pattern
Task escalation functions are very similar to dynamic assignment patterns, but perform a
different function (determining to whom a task is assigned when it is escalated). Custom
implementations must implement a different interface (IDynamicTaskEscalationPattern).

Dynamically Assigning Task Participants with the Assignment Service
Human workflow participants are specified declaratively in a routing slip. The routing slip
guides the human workflow by specifying the participants and how they participate in the
human workflow (for example, management chain hierarchy, serial list of approvers, and so
on).

The Human Task Editor enables you to declaratively create the routing slip using various built-
in patterns. In addition, you can use advanced routing based on business rules to do more
complex routing. However, to do more sophisticated routing using custom logic, you implement
a custom assignment service to do routing.

To support a dynamic assignment, an assignment service is used. The assignment service is
responsible for determining the task assignees. You can also implement your own assignment
service and plug in that implementation for use with a particular human workflow.

The assignment service determines the following task assignment details in a human workflow:

• The assignment when the task is initiated.

• The assignment when the task is reinitiated.

• The assignment when a user updates the task outcome. When the task outcome is
updated, the task can either be routed to other users or completed.

• The assignees from whom information for the task can be requested.

• If the task supports reapproval from Oracle BPM Worklist, a user can request information
for reapproval.

• The users who reapprove the task if reapproval is supported.

The human workflow service identifies and invokes the assignment service for a particular task
to determine the task assignment.

For example, a simple assignment service iteration is as follows:

1. A client initiates an expense approval task whose routing is determined by the assignment
service.

2. The assignment service determines that the task assignee is jcooper.

3. When jcooper approves the task, the assignment service assigns the task to jstein. The
assignment service also specifies that a notification must be sent to the creator of the task,
jlondon.

4. jstein approves the task and the assignment service indicates that there are no more
users to whom to assign the task.

Chapter 34
Assignment Service Configuration

34-52

How to Implement an Assignment Service

To implement an assignment service:

• Implement the assignment service with the IAssignmentService interface. The human
workflow service passes the following information to the assignment service to determine
the task assignment:

• Task document

The task document that is executed by the human workflow. The task document
contains the payload and other task information like current state, and so on.

• Map of properties

When an assignment service is specified, a list of properties can also be specified to
correlate callbacks with back-end services that determine the task assignees.

• Task history

The task history is a list of chronologically-ordered task documents to trace the history
of the task. The task documents in this list contain a subset of attributes in the actual
task (such as state, updatedBy, outcome, updatedDate, and so on).

Example of Assignment Service Implementation

Note:

• The assignment service class cannot be stateful. This is because every time
human workflow services must call the assignment service, it creates a new
instance.

• The getAssigneesToRequestForInformation method can be called multiple
times because one of the criteria to show the request-for-information action is
that there are users to request information. Therefore, this method is called every
time the human workflow service tries to determine the permitted actions for a
task.

You can implement your own assignment service plug-in that the human workflow service
invokes during human workflow execution.

The code sample below provides a sample IAssignmentService implementation named
TestAssignmentService.java.

/* $Header: TestAssignmentService.java 24-may-2006.18:26:16 Exp $ */
/* Copyright (c) 2004, 2006, Oracle. All rights reserved. */
/*
 DESCRIPTION
 Interface IAssignmentService defines the callbacks an assignment
 service implements. The implementation of the IAssignmentService
 is called by the workflow service
 PRIVATE CLASSES
 <list of private classes defined - with one-line descriptions>
 NOTES
 <other useful comments, qualifications, etc.>
 MODIFIED (MM/DD/YY)

Chapter 34
Assignment Service Configuration

34-53

 */
/**
 * @version $Header: IAssignmentService.java 29-jun-2004.21:10:35 Exp
 $
 *
 *
 */
package oracle.bpel.services.workflow.test.workflow;
import java.util.ArrayList;
import java.util.List;
import java.util.Map;
import oracle.bpel.services.workflow.metadata.routingslip.model.*;
import oracle.bpel.services.workflow.metadata.routingslip.model.Participants;
import oracle.bpel.services.workflow.metadata.routingslip.model.ParticipantsType.*;
import oracle.bpel.services.workflow.task.IAssignmentService;
import oracle.bpel.services.workflow.task.ITaskAssignee;
import oracle.bpel.services.workflow.task.model.Task;
public class TestAssignmentService implements
 oracle.bpel.services.workflow.task.IAssignmentService {
 static int numberOfApprovals = 0;
 static String[] users = new String[]{"jstein", "wfaulk", "cdickens"};
 public Participants onInitiation(Task task,
 Map propertyBag) {
 return createParticipant();
 }
 public Participants onReinitiation(Task task,
 Map propertyBag) {
 return null;
 }
 public Participants onOutcomeUpdated(Task task,
 Map propertyBag,
 String updatedBy,
 String outcome) {
 return createParticipant();
 }
 public Participants onAssignmentSkipped(Task task,
 Map propertyBag) {
 return null;
 }
 public List getAssigneesToRequestForInformation(Task task,
 Map propertyBag) {
 List rfiUsers = new ArrayList();
 rfiUsers.add("jcooper");
 rfiUsers.add("jstein");
 rfiUsers.add("wfaulk");
 rfiUsers.add("cdickens");
 return rfiUsers;
 }
 public List getReapprovalAssignees(Task task,
 Map propertyBag,
 ITaskAssignee infoRequestedAssignee) {
 List reapprovalUsers = new ArrayList();
 reapprovalUsers.add("jstein");
 reapprovalUsers.add("wfaulk");
 reapprovalUsers.add("cdickens");
 return reapprovalUsers;
 }
 private Participants createParticipant() {
 if (numberOfApprovals > 2) {
 numberOfApprovals = 0;
 return null;

Chapter 34
Assignment Service Configuration

34-54

 }
 String user = users[numberOfApprovals++];

 ObjectFactory objFactory = new ObjectFactory();
 Participants participants = objFactory.createParticipants();
 Participant participant = objFactory.createParticipantsTypeParticipant();
 participant.setName("Loan Agent");
 ResourceType resource2 = objFactory.createResourceType(user);
 resource2.setIsGroup(false);
 resource2.setType("STATIC");
 participant.getResource().add(resource2);

 participants.getParticipantOrSequentialParticipantOrAdhoc().
 add(participant);
 return participants;
 }

}

How to Deploy a Custom Assignment Service

To deploy a custom assignment service:

• Use one of the following methods to make an assignment service implementation class
and its related classes available in the class path of Oracle BPEL Process Manager:

• Load your classes in SCA-INF/classes directly or in SCA-INF/lib as a JAR.

• Place the class files for your custom function in a directory tree or JAR file. Then,
update the worklfowCustomClasspathURL configuration parameter to point to the JAR
or root directory in which your classes are located. As this is a URL, it is possible to
host the class files on a web server, and make them accessible to multiple Oracle
WebLogic Servers through HTTP. It is even possible to deploy the files into the
metadata repository (MDS), and use an ORAMDS URL to point to the appropriate
location.

Note:

• You cannot create different versions of the assignment service for use in
different BPEL processes unless you change package names or class
names.

• Java classes and JAR files in the suitcase are not available in the class path
and therefore cannot be used as a deployment model for the assignment
service.

• The steps must be repeated for each node in a cluster.

Custom Escalation Function
The custom escalation function enables you to integrate a custom rule in a human workflow.

To implement a custom escalation function:

1. Create a custom task escalation function and register this with the human workflow service
that uses that function in task definitions.

Chapter 34
Assignment Service Configuration

34-55

2. Use the Human Task Editor to integrate the rule in a human workflow.

For more information, see How to Specify Escalation Rules.

Class Loading for Callbacks and Resource Bundles
You can load classes for callbacks and resource bundles directly from the SOA project instead
of having to load classes in the oracle.soainfra.common shared library and restarting Oracle
WebLogic Server.

Callbacks

• IAssignmentService
• IRestrictedAssignmentService
• IRoutingSlipCallback
• IPercentageCompletionCallback
• INotificationCallback
• Project level resource bundles

The callback classes can be in the following locations:

• JARs in the SCA-INF/lib directory of the project

• Classes in the SCA-INF/classes directory of the project

Additionally, to support backward compatibility, the project level resource bundles can also be
in the same directory as the .task file.

Resource Bundles in Workflow Services
Get an overview of the resource bundles used in human workflow services and how they can
be customized to provide alternative resource strings.

The human workflow service APIs and Oracle BPM Worklist use the locale set in the
IWorkflowContext object to access the APIs. This is the locale of the user in the user directory
configured with the identity service. If no locale is specified for the user, then the default locale
for the Java EE server is used instead.

It is possible for API clients to override this locale by setting a new value in the
IWorkflowContext object. Oracle BPM Worklist provides a user preference option that allows
users to use their browser's locale, rather than the locale set in their user directory.

Task Resource Bundles
Each human workflow component can be associated with a resource bundle. The bundle
defines the resource strings to use as display names for the task outcomes. The resource
strings are returned by the TaskMetadataService method getTaskDefinitionOutcomes, and
are displayed in Oracle BPM Worklist and the task flow task details application.

In addition, you can use the human workflow XPath function getTaskResourceBundle string to
look up resource strings for the task's resource bundle. For example, this XPath function can
be part of the XPath expression used to construct notification messages for the task.

A human workflow component is associated with a resource bundle by setting the Resource
Name and Resource Location fields of the Resource Details dialog in the Presentation

Chapter 34
Class Loading for Callbacks and Resource Bundles

34-56

section of the Human Task Editor. The value for the Resource Location field is a URL, and
the resource bundle can be contained within a JAR file pointed to by the URL. It is possible to
share the same resource bundle between multiple human workflow components by using a
common location for the resource bundle.

If no resource bundle is specified for the human workflow component, the resource string is
looked up in the global resource bundle. (See Global Resource Bundle –
WorkflowLabels.properties.) Commonly-used task outcomes can be defined in the global
resource bundle, alleviating the need to define a resource bundle for individual human
workflow components.

If no resource string can be located for a particular outcome, then the outcome name is used
as the display value in all locales.

Global Resource Bundle – WorkflowLabels.properties
The following global resource bundle is used by human workflow service APIs to look up
resource strings:

oracle.bpel.services.workflow.resource.WorkflowLabels.properties

You can customize this bundle to provide alternatives for existing display strings or to add
additional strings (for example, for mapped attribute labels, standard views, or custom dynamic
assignment functions).

The global resource bundle provides resource strings for the following:

• Task attributes:

Labels for the various task attributes displayed in Oracle BPM Worklist (or other clients).
Resource string values are returned from the following TaskMetadataService methods:

– getTaskAttributes
– getTaskAttributesForTaskDefinition
– getTaskAttributesForTaskDefinitions

• Mapped attribute labels:

Mapped attribute labels created through the runtime config service. These strings are used
in Oracle BPM Worklist when displaying mapped attributes. Resource string values are
returned from the TaskMetadataService methods:

– getTaskAttributesForTaskDefinition
– getTaskAttributesForTaskDefinitions
If translated resource strings are required for mapped attribute mappings, then customize
the WorkflowLabels.properties bundle to include the appropriate strings.

• Task outcomes:

Default resource strings for common task outcomes. These can be overridden by the task
resource bundle, as described above. The resource strings are returned by the
TaskMetadataService method getTaskDefinitionOutcomes, if no task-specific resource
bundle has been specified. As shipped, the global resource bundle contains resource
strings for the following outcomes:

– Approve

– Reject

– Yes

Chapter 34
Resource Bundles in Workflow Services

34-57

– No

– OK

– Defer

– Accept

– Acknowledge

• Dynamic assignment function names:

Labels for dynamic assignment functions. These strings are returned from the runtime
config service methods getUserDynamicAssignmentFunctions and
getGroupDynamicAssignmentFunctions. The shipped resource bundle contains labels for
the standard dynamic assignment functions (ROUND_ROBIN, LEAST_BUSY, and
MOST_PRODUCTIVE). If additional custom dynamic assignment functions have been created,
then modify the WorkflowLabels.properties resource bundle to provide resource strings
for the new functions.

• Standard view names:

Labels for standard views. If you want translated resource strings for any standard views
you create, then add them here. Standard view resource strings are looked up from the
resource bundle, and are returned as the standard view name from the
UserMetadataService methods getStandardTaskViewList and
getStandardTaskViewDetails. The key for the resource string should be the name given
to the standard view when it is created. If no resource string is added for a particular
standard view, then the name as entered is used instead.

• Notification messages:

Resource strings used when the task service sends automatic notifications. These can be
customized to suit user requirements.

• Task routing error comments:

When an error is encountered in the routing of a task, the task service automatically
appends comments to the task to describe the error. The various strings used for the
comments are defined in this resource bundle.

You can customize the WorkflowLabels.properties resource bundle.

To customize the file:

1. Edit the properties file.

2. Add the customized class to the class-path used for workflow services. Ensure that
customized file is located before the default class in the class-path.

3. Save the customized file to the following directory:

directory_path/oracle/bpel/services/workflow/resource/WorkflowLabels.properties
4. Update the worklfowCustomClasspathURL configuration parameter to point to

directory_path. As this is a URL, it is possible to host the resource bundles on a web
server, or to store them in the MDS repository for the SOA server, and use the 'oramds'
URL protocol, and make them accessible to multiple Oracle WebLogic Servers.

Worklist Client Resource Bundles
The ADF worklist client application uses two resource bundles that contain all the strings
displayed in the worklist client web application.

Chapter 34
Resource Bundles in Workflow Services

34-58

• oracle.bpel.worklistapp.resource.WorkflowResourceBundle:

This contains strings used by both the ADF Oracle BPM Worklist, and the JSP-based
sample Oracle BPM Worklist that shipped with version 10.1.3 of Oracle SOA Suite.

• oracle.bpel.worklistapp.resource.WorklistResourceBundle:

This contains strings used only by the ADF Oracle BPM Worklist.

.

Task Detail ADF Task Flow Resource Bundles
The ADF task flow applications and associated data controls that get created to display the
details of a particular task type use the resource bundle
oracle.bpel.services.workflow.worklist.resource.worklist to store their resource
strings.

You can provide your own custom resource strings for a task detail ADF task flow by adding a
customized resource bundle in the task flow application.

You can localize the XML element name displayed in the task flow form through this resource
bundle. You can add keys, and use them in the task flow form contents section. The input text
label looks as follows:

#{resources.mykeyword}

Specifying Stage and Participant Names in Resource Bundles
You can provide translated values for stage names and participant names in the composite
resource bundle. The resource bundle should contain entries such as the following:

• stage_name=translated_value
• participant_name=translated_value

Case Sensitivity in Group and Application Role Names
By default, the human workflow system is case insensitive to user names. All user names are
stored in lowercase. However, group names and application role names are always case
sensitive. User name case insensitivity can be changed in Oracle Enterprise Manager Fusion
Middleware Control.

Caution:

Only change this setting after performing a new installation. Changing this value on
an installation that is actively processing instances, or has many instances in the
database, causes serious issues.

To change case sensitivity:

1. Log in to Oracle Enterprise Manager Fusion Middleware Control.

2. In the navigator, expand the SOA folder.

3. Right-click soa-infra, and select Administration > System Mbean Browser.

The System MBean Browser displays on the right side of the page.

Chapter 34
Resource Bundles in Workflow Services

34-59

4. Expand Application Defined MBeans > oracle.as.soainfra.config > Server:
server_name > WorkflowIdentityConfig > human-workflow >
WorkflowIdentityConfig.PropertyType.

5. Click caseSensitive.

6. Click the Operations tab.

7. Click setValue.

8. In the Value field, enter true, and click Invoke.

If you are upgrading from 10.1.3, which by default was case sensitive, set caseSensitive to
true for the system to be the same as with 10.1.3.

Introduction to Human Workflow Client Integration with Oracle
WebLogic Server Services

Learn how human workflow clients integrate with Oracle WebLogic Server services.

Human Workflow Services Clients
Human workflow services expose the following workflow services:

• Task service

• Task query service

• User metadata service

• Task evidence service

• Task metadata service

• Runtime config service

• Task report service

To use any of these services, you must use the abstract factory pattern for workflow services.
The abstract factory pattern provides a way to encapsulate a group of individual factories that
have a common theme.

Perform the following tasks:

• Get the IWorkflowServiceClient instance for the specific service type. The
WorkflowServiceClientFactory provides a static factory method to get
IWorkflowServiceClient according to the service type.

• Use the IWorkflowServiceClient instance to get the service instance to use.

The supported service types are Remote and Soap.

Remote clients use Enterprise JavaBeans clients (remote Enterprise JavaBeans, accordingly).
SOAP uses SOAP clients. Each type of service requires you to configure workflow clients. The
first code sample in Workflow Client Configuration File - wf_client_config.xml provides details.

The client configuration file can contain definitions for several configurations. Each server must
have its own unique name. If the configuration file defines multiple servers, one server must be
set with the default attribute equal to true. The workflowServicesClientConfiguration has
an optional attribute named serverType that can be set to one of the following: LOCAL, REMOTE,
or SOAP. Each server can override the client type by using the optional attribute clientType.

Chapter 34
Introduction to Human Workflow Client Integration with Oracle WebLogic Server Services

34-60

The second code sample in Workflow Client Configuration File - wf_client_config.xml provides
details.

In the second example, server2 uses the default clientType of REMOTE, while server1
overrides the default clientType value to use the clientType of SOAP. The same rule applies if
the JAXB WorkflowServicesClientConfigurationType object is used instead of the
wf_client_config.xml file.

If the configuration defines a client type, you can use the factory method from the
WorkflowServiceClientFactory class. See the code sample below:

public static IWorkflowServiceClient
 getWorkflowServiceClient(WorkflowServicesClientConfigurationType wscc, Logger
 logger) throws WorkflowException

If the map defines a client type with the property CONNECTION_PROPERTY.CLIENT_TYPE, the
factory method in the code sample below can be used:

public static IWorkflowServiceClient getWorkflowServiceClient(Map<CONNECTION_
PROPERTY, String> properties, String serverName, Logger logger) throws
 WorkflowException

Task Query Service Client Code
The code sample below provides an example of the task query service client code:

/**
 * WFClientSample
 */
package oracle.bpel.services.workflow.samples;

import java.util.ArrayList;
import java.util.HashMap;
import java.util.List;
import java.util.Map;

import oracle.bpel.services.workflow.IWorkflowConstants;
import oracle.bpel.services.workflow.WorkflowException;
import oracle.bpel.services.workflow.client.IWorkflowServiceClient;
import oracle.bpel.services.workflow.client.WorkflowServiceClientFactory;
import oracle.bpel.services.workflow.client.IWorkflowServiceClientConstants
 .CONNECTION_PROPERTY;
import oracle.bpel.services.workflow.query.ITaskQueryService;
import oracle.bpel.services.workflow.query.ITaskQueryService.AssignmentFilter;
import oracle.bpel.services.workflow.query.ITaskQueryService.OptionalInfo;
import oracle.bpel.services.workflow.repos.Ordering;
import oracle.bpel.services.workflow.repos.Predicate;
import oracle.bpel.services.workflow.repos.TableConstants;
import oracle.bpel.services.workflow.verification.IWorkflowContext;

public class WFClientSample {

 public static List runClient(String clientType) throws WorkflowException {
 try {

 IWorkflowServiceClient wfSvcClient = null;
 ITaskQueryService taskQuerySvc = null;
 IWorkflowContext wfCtx = null;

 // 1. this step is optional since configuration can be set in wf_client_
 config.xml file

Chapter 34
Introduction to Human Workflow Client Integration with Oracle WebLogic Server Services

34-61

 Map<CONNECTION_PROPERTY, String> properties = new HashMap<CONNECTION_
PROPERTY, String>();
 if (WorkflowServiceClientFactory.REMOTE_CLIENT.equals(clientType)) {
 properties.put(CONNECTION_PROPERTY.EJB_INITIAL_CONTEXT_FACTORY,
 "weblogic.jndi.WLInitialContextFactory");
 properties.put(CONNECTION_PROPERTY.EJB_PROVIDER_URL,
 "t3://myhost.us.example.com:7001");
 properties.put(CONNECTION_PROPERTY.EJB_SECURITY_CREDENTIALS,
 "weblogic");
 properties.put(CONNECTION_PROPERTY.EJB_SECURITY_PRINCIPAL, "weblogic");
 } else if (WorkflowServiceClientFactory.SOAP_CLIENT.equals(clientType)) {
 properties.put(CONNECTION_PROPERTY.SOAP_END_POINT_ROOT,
 "http://myhost:7001");
 properties.put(CONNECTION_PROPERTY.SOAP_IDENTITY_
PROPAGATION,"non-saml"); // optional
 }
 // 2. gets IWorkflowServiceClient for specified client type
 wfSvcClient =
 WorkflowServiceClientFactory.getWorkflowServiceClient(clientType, properties,
 null);

 // 3. gets ITaskQueryService instance
 taskQuerySvc = wfSvcClient.getTaskQueryService();

 // 4. gets IWorkflowContext instance
 wfCtx = taskQuerySvc.authenticate("jcooper", "welcome1".toCharArray(),
 "jazn.com");

 // 5. creates displayColumns
 List<String> displayColumns = new ArrayList<String>(8);
 displayColumns.add("TASKID");
 displayColumns.add("TASKNUMBER");
 displayColumns.add("TITLE");
 displayColumns.add("CATEGORY");

 // 6. creates optionalInfo
 List<ITaskQueryService.OptionalInfo> optionalInfo = new
 ArrayList<ITaskQueryService.OptionalInfo>();
 optionalInfo.add(ITaskQueryService.OptionalInfo.DISPLAY_INFO);

 // 7. creates assignmentFilter
 AssignmentFilter assignmentFilter = AssignmentFilter.MY_AND_GROUP;

 // 8. creates predicate
 List<String> stateList = new ArrayList<String>();
 stateList.add(IWorkflowConstants.TASK_STATE_ASSIGNED);
 stateList.add(IWorkflowConstants.TASK_STATE_INFO_REQUESTED);
 Predicate predicate = new Predicate(TableConstants.WFTASK_STATE_COLUMN,
 Predicate.OP_IN, stateList);

 // 9. creates ordering
 Ordering ordering = new Ordering(TableConstants.WFTASK_DUEDATE_COLUMN,
 true, false);
 ordering.addClause(TableConstants.WFTASK_CREATEDDATE_COLUMN, true,
 false);

 // 10. calls service - query tasks
 List taskList = taskQuerySvc.queryTasks(wfCtx,
 (List<String>) displayColumns,
 (List<OptionalInfo>) optionalInfo,
 (AssignmentFilter)
 assignmentFilter,

Chapter 34
Introduction to Human Workflow Client Integration with Oracle WebLogic Server Services

34-62

 (String) null, // keywords is
 optional (see javadoc)
 // optional
 predicate,
 ordering,
 0, // starting row
 100); // ending row for paging, 0
 if no paging

 // Enjoy result
 System.out.println("Successfuly get list of tasks for client type: " +
 clientType +
 ". The list size is " + taskList.size());
 return taskList;
 } catch (WorkflowException e) {
 System.out.println("Error occurred");
 e.printStackTrace();
 throw e;
 }
 }

 public static void main(String args[]) throws Exception {
 runClient(WorkflowServiceClientFactory.REMOTE_CLIENT);
 runClient(WorkflowServiceClientFactory.SOAP_CLIENT);
 }

}

Configuration Option
Each type of client is required to have a workflow client configuration. You can set the
configuration in the following locations:

• JAXB object

• wf_client_config.xml file

• Property map

The property map is always complementary to the wf_client_config.xml file. The JAXB
object or property map can overwrite the configuration attribute. The file is optional. If it cannot
be found in the application class path, then the property map is the main source of
configuration.

JAXB Object
You can use the JAXB object to define the client configuration. The code sample below shows
how to use the WorkflowServiceClientFactory method.

public static IWorkflowServiceClient getWorkflowServiceClient(String
clientType,WorkflowServicesClientConfigurationType wscc,Logger logger) throws
WorkflowException

Workflow Client Configuration File - wf_client_config.xml
The client configuration XSD schema is present in the wf_client_config.xsd file.

The server configuration should contain three types of clients:

• localClient
• remoteClient

Chapter 34
Introduction to Human Workflow Client Integration with Oracle WebLogic Server Services

34-63

• soapClient
Oracle recommends that you specify all clients. This is because some services (for example,
the identity service) do not have remote clients. Therefore, when you use remote clients for
other services, the identity service uses the SOAP service.

An example of a client configuration XML file is shown in the code sample below. The
configuration defines a server named default. The XML file must go into the client
application's EAR file.

<workflowServicesClientConfiguration>
server name="default" default="true">

<remoteClient>
 <serverURL>t3://myhost.us.example.com:7001</serverURL>
 <userName>weblogic</userName>
 <password>weblogic</password>
 <initialContextFactory>weblogic.jndi.WLInitialContextFactory
 </initialContextFactory>
 <participateInClientTransaction>false</participateInClientTransaction>
</remoteClient>

<soapClient>
 <rootEndPointURL>http://myhost.us.example.com:7001</rootEndPointURL>
 <identityPropagation mode="dynamic" type="saml">
 <policy-references>
 <policy-reference enabled="true" category="security"
 uri="oracle/wss10_saml_token_client_policy"/>
 </policy-references>
 </identityPropagation>
</soapClient>

</server>
</workflowServicesClientConfiguration>

The following code sample shows an example of a client configuration file with multiple
configuration definitions:

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<workflowServicesClientConfiguration
 xmlns="http://xmlns.oracle.com/bpel/services/client" clientType="REMOTE"
 <server name="server1" default="true" clientType="SOAP">
 <remoteClient>
 <serverURL>t3://myhost1.us.example.com:7001</serverURL>
 <initialContextFactory>weblogic.jndi.WLInitialContextFactory</
initialContextFactory>
 <participateInClientTransaction>false</participateInClientTransaction>
 </remoteClient> -->
 <soapClient>
 <rootEndPointURL>http://myhost1.us.example.com:7001</rootEndPointURL>
 <identityPropagation mode="dynamic" type="saml">
 <policy-references>
 <policy-reference enabled="true" category="security"
 uri="oracle/wss10_saml_token_client_policy"/>
 </policy-references>
 </identityPropagation>
 </soapClient>
 </server>
 <server name="server2">
 <remoteClient>
 <serverURL>t3://myhost2.us.example.com:7001</serverURL>

Chapter 34
Introduction to Human Workflow Client Integration with Oracle WebLogic Server Services

34-64

 <initialContextFactory>weblogic.jndi.WLInitialContextFactory</
initialContextFactory>
 <participateInClientTransaction>false</participateInClientTransaction>
 </remoteClient> -->
 <soapClient>
 <rootEndPointURL>http://myhost2us.example.com:7001</rootEndPointURL>
 <identityPropagation mode="dynamic" type="saml">
 <policy-references>
 <policy-reference enabled="true" category="security"
 uri="oracle/wss10_saml_token_client_policy"/>
 </policy-references>
 </identityPropagation>
 </soapClient>
 </server>
</workflowServicesClientConfiguration>

You can define client properties in wf_client_config.xml when
WorkflowServicesClientConfigurationType wscc is null.

The WorkflowServiceClientFactory getWorkflowServiceClient() methods always look for
wf_client_config.xml in the class path. If this file is found, the client properties are loaded.

All properties defined in either the property map or the JAXB object override values defined in
the wf_client_config.xml file.

Workflow Client Configuration in the Property Map
To specify the connection property dynamically, you can use a java.util.Map to specify the
properties. The properties take precedence over definitions in the configuration file. Therefore,
the values of the properties overwrite the values defined in wf_client_config.xml. If you do
not want to dynamically specify connection details to the server, you can omit the property
setting in the map and pass a null value to the factory method. In that case, the configuration
wf_client_config.xml is searched for in the client application class path.

The configuration file must be in the class path only to get the configuration from the file. It is
optional to have the file if all settings from the specific client type are done through the property
map. The JAXB object is also not required to have the file, since all settings are taken from the
JAXB object. The code sample below provides details.

IWorkflowServiceClient wfSvcClient =
WorkflowServiceClientFactory.getWorkflowServiceClient(WorkflowServiceClientFactory
.REMOTE_CLIENT,
(Map<IWorkflowServiceClientConstants.CONNECTION_PROPERTY, String>) null, null);

If you do so, the value from wf_client_config.xml found in the class path is used by the client
to access the services. If the file is not found in the class path and you do not provide the
setting according to the service type, a workflow exception is thrown. If the properties map is
null and the file is not found, an exception is thrown. If the client omits some properties in the
map while the file is not found, the service call fails at runtime (the properties are
complementary to the file).

You can define client properties by using the WorkflowServiceClientFactory method. The
code sample below provides details.

public static IWorkflowServiceClient getWorkflowServiceClient(String
clientType,Map<CONNECTION_PROPERTY, String> properties,
Logger logger) hrows WorkflowException

If the map defines a client type with the property CONNECTION_PROPERTY type, the factory
method shown below can be used:

Chapter 34
Introduction to Human Workflow Client Integration with Oracle WebLogic Server Services

34-65

public static IWorkflowServiceClient getWorkflowServiceClient(Map<CONNECTION_
PROPERTY, String> properties, Logger logger) throws WorkflowException

The IWorkflowServiceClientConstants.CONNECTION_PROPERTY, which can be used in the
properties map for setting client properties, as shown below:

public enum CONNECTION_PROPERTY {
 MODE, // not supported , deprecated
 EJB_INITIAL_CONTEXT_FACTORY,
 EJB_PROVIDER_URL,
 EJB_SECURITY_PRINCIPAL,
 EJB_SECURITY_CREDENTIALS,
 // SOAP configuration
 SOAP_END_POINT_ROOT,
 SOAP_IDENTITY_PROPAGATION, // if value is 'saml' then SAML-token
 identity propagation is used
 SOAP_IDENTITY_PROPAGATION_MODE, // "dynamic'
 MANAGEMENT_POLICY_URI, // dafault value is "oracle/log_policy"
 SECURITY_POLICY_URI, // default value is "oracle/wss10_
 saml_token_client_policy"
 // REMOTE EJB
 TASK_SERVICE_PARTICIPATE_IN_CLIENT_TRANSACTION // default value is
 false
 //(task service EJB starts a new transaction)
 CLIENT_TYPE, DISCOVERY_OF_END_POINT,
 WSS_RECIPIENT_KEY_ALIAS,
 EJB_JNDI_SUFFIX // append to jndi name to used foreign jndi name
 };

Note:

If you use the properties map, you do not need to specify
IWorkflowServiceClientConstants.CONNECTION_PROPERTY.MODE. This property is
deprecated in 11g Release 1.

The code sample below provides an example for remote Enterprise JavaBeans clients.

Map<CONNECTION_PROPERTY,String> properties = new HashMap<CONNECTION_
PROPERTY,String>();
properties.put(CONNECTION_PROPERTY.EJB_INITIAL_CONTEXT_
FACTORY,"weblogic.jndi.WLInitialContextFactory");

properties.put(CONNECTION_PROPERTY.EJB_PROVIDER_URL,
 "t3://myhost.us.example.com:7001");
properties.put(CONNECTION_PROPERTY.EJB_SECURITY_PRINCIPAL, "weblogic");
properties.put(CONNECTION_PROPERTY.EJB_SECURITY_CREDENTIALS, "weblogic");
IWorkflowServiceClient client =
 WorkflowServiceClientFactory.getWorkflowServiceClient(
 WorkflowServiceClientFactory.REMOTE_CLIENT,
 properties, null);

The code sample below provides an example for a SOAP client.

Map<CONNECTION_PROPERTY,String> properties = new HashMap<CONNECTION_
PROPERTY,String>();
properties.put(CONNECTION_PROPERTY.SOAP_END_POINT_ROOT, "http://myhost:7001");
IWorkflowServiceClient client =
 WorkflowServiceClientFactory.getWorkflowServiceClient(

Chapter 34
Introduction to Human Workflow Client Integration with Oracle WebLogic Server Services

34-66

 WorkflowServiceClientFactory.SOAP_CLIENT,
 properties, null);

Client Logging
Clients can optionally pass in a java.util.logging.Logger to where the client logs messages.
If there is no logger specified, the workflow service client code does not log anything. The code
sample below shows how to pass a logger to the workflow service clients:

java.util.logging.Logger logger =;

IWorkflowServiceClient client =
WorkflowServiceClientFactory.getWorkflowServiceClient(WorkflowServiceClientFactory
.REMOTE_CLIENT, properties, logger);

Configuration Migration Utility
The client configuration schema has changed between release 10.1.3.x and 11g Release 1. To
migrate from release 10.1.3.x to 11g Release 1, use the utility shown in the code sample
below:

java -classpath wsclient_extended.jar:bpm-services.jar
 oracle.bpel.services.workflow.client.config.MigrateClientConfiguration
original_file [new_file];

where original_file is a wf_client_config.xml file from 10.1.3.x and new_file is the
optional name of the new configuration file. If a new name is not specified, the utility backs up
the original configuration file and overwrites the wf_client_config.xml file.

Identity Propagation
This section describes how to propagate identities using Enterprise JavaBeans and SAML-
tokens for SOAP clients.

There are performance implications for getting the workflow context for every request. This is
also true for identity propagation. If you use identity propagation with SAML-token or Enterprise
JavaBeans, authenticate the client by passing null for the user and password, get the workflow
context instance, and use another service call with workflow context without identity
propagation.

Enterprise JavaBeans Identity Propagation
The client application can propagate user identity to services by using Enterprise JavaBeans
identity propagation. The client code is responsible for securing the user identity.

Client Configuration
If you use identity propagation, the client code must omit the element's <userName> and
<password> under the <remoteClient> element in the wf_client_config.xml configuration
file. In addition, do not populate the following properties into
Map<IWorkflowServiceClientConstants.CONNECTION_PROPERTY,String> properties as you
did in Workflow Client Configuration in the Property Map.

• IWorkflowServiceClientConstants.CONNECTION_PROPERTY.EJB_SECURITY_PRINCIPAL
• IWorkflowServiceClientConstants.CONNECTION_PROPERTY.EJB_SECURITY_CREDENTIALS

Chapter 34
Introduction to Human Workflow Client Integration with Oracle WebLogic Server Services

34-67

Requirements for Client Applications For Identity Propagation
Identity propagation only works if the application is deployed under the Oracle WebLogic
Server container and secured with container security or the client is secured with a custom
JAAS login module.

End users log in to the client application with the correct user name and password. The users
using the client application must be available in the identity store used by the SOA application.
As a best practice, configure the client to use the same identity store as the workflow services
and Oracle SOA Suite are using. This guarantees that if the user exists on the client side, they
also exist on the server side.

For information about configuring the identity store, see Securing Applications with Oracle
Platform Security Services.

For information about interacting with custom identity stores, visit:

http://www.oracle.com/technetwork/middleware/id-mgmt/overview/index.html

SAML Token Identity Propagation for SOAP Client
If you use a SOAP client, you can use the SAML-token identity propagation supported by
Oracle web services.

This section assumes the application resides in and is secured by the Oracle WebLogic Server
container.

Client configuration
To enable identity propagation, the client configuration must specify a special propagation
mode.

Identity Propagation Mode Setting Through Properties

If properties are used, then populate the property
CONNECTION_PROPERTY.SOAP_IDENTITY_PROPAGATION with the value saml.

• Dynamic SAML token propagation mode

The SAML token policy is provided dynamically (the default). The property shown in the
code sample below is optional. If the identity propagation mode is set, you run by default in
dynamic mode.

properties.put(IWorkflowServiceClientConstants.CONNECTION_PROPERTY.SOAP_
IDENTITY_PROPAGATION_MODE , "dynamic");

By default, SAML-token constructs dynamic policy based on the following security policy URI:
oracle/wss10_saml_token_client_policy. Logging is not used. To overwrite the default policy
URI, the client can add the code shown below:

properties.put(CONNECTION_PROPERTY.SECURITY_POLICY_URI "oracle/wss10_saml_
token_client_policy");
properties.put(CONNECTION_PROPERTY.MANAGEMENT_POLICY_URI , "oracle/log_policy");

The code sample below shows the SAML token dynamic client:

Map<CONNECTION_PROPERTY,String> properties = new HashMap<ONNECTION_
PROPERTY,String>();
properties.put(CONNECTION_PROPERTY.SOAP_IDENTITY_PROPAGATION , "saml");
properties.put(CONNECTION_PROPERTY.SOAP_END_POINT_ROOT,

Chapter 34
Introduction to Human Workflow Client Integration with Oracle WebLogic Server Services

34-68

http://www.oracle.com/technetwork/middleware/id-mgmt/overview/index.html

 "http://myhost.us.example.com:7001");
properties.put(ONNECTION_PROPERTY.SECURITY_POLICY_URI, "oracle/wss10_saml_token_
client_policy"); //optional
properties.put(CONNECTION_PROPERTY.MANAGEMENT_POLICY_URI , "oracle/log_policy");
 //optional
IWorkflowServiceClient client =
 WorkflowServiceClientFactory.getWorkflowServiceClient(
 WorkflowServiceClientFactory.SOAP_CLIENT,
properties, null);

The client reference to the policy URI must match the server policy URI. Otherwise, SAML
token propagation fails.

Identity Propagation Mode Setting in Configuration File

In the configuration file, you can define the propagation mode by using the
<identityPropagation> element in the <soapClient>, as shown below:

<soapClient>
 <rootEndPointURL>http://myhost.us.example.com:7001</rootEndPointURL>
 <identityPropagation mode="dynamic" type="saml">
 <policy-references>
 <policy-reference enabled="true" category="security"
 uri="oracle/wss10_saml_token_client_policy"/>
 </policy-references>
 </identityPropagation> </soapClient>

Identity Propagation Mode Setting Through the JAXB Object

You can programmatically set the identity propagation mode with the JAXB object.

Public Key Alias
You can use the
oracle.wsm.security.util.SecurityConstants.ClientConstants.WSS_RECIPIENT_KEY_ALIA
S property with the workflow client. This property sets the alias for the recipient's public key that
is used to encrypt the type outbound message. Use this property to secure workflow services
with the public key alias. This property is only relevant when the SOAP client type uses identity
propagation.

The client code must add the WSS_RECIPIENT_KEY_ALIAS value to the map if the public key
alias is defined. The code sample below provides details.

Map<CONNECTION_PROPERTY,String> properties = new HashMap<ONNECTION_
PROPERTY,String>();
properties.put(CONNECTION_PROPERTY.SOAP_IDENTITY_PROPAGATION , "saml");
properties.put(CONNECTION_PROPERTY.SOAP_END_POINT_ROOT,
 "http://myhost.us.example.com:7001");
properties.put(CONNECTION_PROPERTY.WSS_RECIPIENT_KEY_ALIAS,keyAlias);
// where keyAlias is a key alias value
properties.put(ONNECTION_PROPERTY.SECURITY_POLICY_URI, "oracle/
wss10_saml_token_
client_policy"); //optional
properties.put(CONNECTION_PROPERTY.MANAGEMENT_POLICY_URI , "oracle/
log_policy");
 //optional
IWorkflowServiceClient client =

Chapter 34
Introduction to Human Workflow Client Integration with Oracle WebLogic Server Services

34-69

WorkflowServiceClientFactory.getWorkflowServiceClient(
 WorkflowServiceClientFactory.SOAP_CLIENT,
 properties, null);

If the client uses the JAXB WorkflowServicesClientConfigurationType object or the
wf_client_config.xml file, an optional element called wssRecipientKeyAlias is added under
the identityPropagation element for a SOAP client. The following code sample provides
details.

<xsd:complexType name="identityPropagationType">
 <xsd:sequence>
 <xsd:element name="policy-references" type="PolicyReferencesType"
 minOccurs="0" maxOccurs="1"/>
 <xsd:element name="wssRecipientKeyAlias" type="xsd:string"
minOccurs="0"
 maxOccurs="1"/> </xsd:sequence>
 <xsd:attribute name="type" type="xsd:string" default="saml"/>
 <xsd:attribute name="mode" type="xsd:string" default="dynamic"/>
</xsd:complexType>

For more information about how to create and use the public key alias in the credential store,
see Securing Web Services and Managing Policies with Oracle Web Services Manager in
Securing Web Services and Managing Policies with Oracle Web Services Manager.

Client JAR Files
A client application without identity propagation must have the bpm-services.jar file in its
class path. For 12c Release 1 (12.1.3), the client class path requires the files shown below:

$fmwhome/wlserver/server/lib/wlfullclient.jar
$fmwhome/wlserver/lib/weblogic.jar
$fmwhome/wlserver/server/lib/wlclient.jar
$fmwhome/oracle_common/modules/clients/com.oracle.webservices.fmw.client_
12.1.3.jar
$fmwhome/soa/soa/modules/com.oracle.webservices.fmw.client_12.1.3.jar
$fmwhome/oracle_common/modules/oracle.xdk_12.1.3/xml.jar
$fmwhome/oracle_common/modules/oracle.nlsrtl_11.2.0/orai18n-mapping.jar
$fmwhome/soa/soa/modules/oracle.soa.fabric_11.1.1/bpm-infra.jar
$fmwhome/soa/soa/modules/oracle.soa.workflow_11.1.1/bpm-services.jar
$fmwhome/soa/soa/modules/soa-startup.jar

The wlfullclient.jar file must be generated.

• Generate the wlfullclient.jar as follows:

cd $fmwhome/wlserver/server/lib
java -jar ../../modules/com.bea.core.jarbuilder_2.2.0.0.jar

Task States in a Human Task
The constants for all states are defined in IWorkflowConstants.java.

The following list identifies all the task states available in a human task.

• String TASK_STATE_ALERTED = "ALERTED";
• String TASK_STATE_ASSIGNED = "ASSIGNED";

Chapter 34
Task States in a Human Task

34-70

• String TASK_STATE_COMPLETED = "COMPLETED";
• String TASK_STATE_DELETED = "DELETED";
• String TASK_STATE_ERRORED = "ERRORED";
• String TASK_STATE_EXPIRED = "EXPIRED";
• String TASK_STATE_INFO_REQUESTED = "INFO_REQUESTED";
• String TASK_STATE_OUTCOME_UPDATED = "OUTCOME_UPDATED";
• String TASK_STATE_STALE = "STALE";
• String TASK_STATE_SUSPENDED = "SUSPENDED";
• String TASK_STATE_WITHDRAWN = "WITHDRAWN";
For more information about IWorkflowConstants.java, see Workflow Services Java API
Reference for Oracle SOA Suite.

Database Views for Oracle Workflow
Overview of database views that enable queries against the Oracle workflow services schema
to receive reports.

Table 34-22 lists the reports exposed in Oracle BPM Worklist and the database views
corresponding to these reports.

Table 34-22 Report Views

Existing Worklist Report Corresponding Database View

Unattended Tasks report WFUNATTENDEDTASKS_VIEW
Task Cycle Time report WFTASKCYCLETIME_VIEW
Task Productivity report WFPRODUCTIVITY_VIEW
Task Priority Report WFTASKPRIORITY_VIEW

Unattended Tasks Report View
Table 34-23 describes the WFUNATTENDEDTASKS_VIEW report view.

Table 34-23 Unattended Tasks Report View

Name Type

TASKID1 VARCHAR2(64)
TASKNAME VARCHAR2(200)
TASKNUMBER NUMBER
CREATEDDATE DATE
EXPIRATIONDATE DATE
STATE VARCHAR2(100)
PRIORITY NUMBER
ASSIGNEEGROUPS VARCHAR2(2000)

Chapter 34
Database Views for Oracle Workflow

34-71

1 NOT NULL column

For example:

• Query unattended tasks that have an expiration date of next week, as shown below:

SELECT tasknumber, taskname, assigneegroups FROM WFUNATTENDEDTASKS_VIEW
 WHERE expirationdate > current_date AND expirationdate < current_date +
 7;

• Query unattended tasks for mygroup, as shown below:

SELECT tasknumber, taskname, assigneegroups FROM WFUNATTENDEDTASKS_VIEW
 WHERE 'mygroup' IN assigneegroups;

• Query unattended tasks created in the last 30 days, as shown below:

SELECT tasknumber, taskname, assigneegroups FROM WFUNATTENDEDTASKS_VIEW
 WHERE createddate > current_date -30;

Task Cycle Time Report View
Table 34-24 describes the WFTASKCYCLETIME_VIEW report view.

Table 34-24 Task Cycle Time Report View

Name Type

TASKID1 VARCHAR2(64)
TASKNAME VARCHAR2(200)
TASKNUMBER NUMBER
CREATEDDATE DATE
ENDDATE DATE
CYCLETIME NUMBER(38)

1 NOT NULL column

For example:

• Compute the average cycle time (task completion time) for completed tasks that were
created in the last 30 days, as shown below:

SELECT avg(cycletime) FROM WFTASKCYCLETIME_VIEW WHERE createddate >
 (current_date - 30);

• Query the average cycle time for all completed tasks created in the last 30 days and group
them by task name, as shown below:

SELECT taskname, avg(cycletime) FROM WFTASKCYCLETIME_VIEW WHERE
 createddate > (current_date - 30) GROUP BY taskname;

• Query the least and most time taken by each task, as shown below:

SELECT taskname, min(cycletime), max(cycletime) FROM WFTASKCYCLETIME_VIEW
 GROUP BY taskname;

• Compute the average cycle time for tasks completed in the last seven days, as shown
below:

SELECT avg(cycletime) FROM WFTASKCYCLETIME_VIEW WHERE enddate >
 (current_date - 7);

Chapter 34
Database Views for Oracle Workflow

34-72

• Query tasks that took more than seven days to complete, as shown below:

SELECT taskname, avg(cycletime) FROM WFTASKCYCLETIME_VIEW WHERE cycletime
 > ((current_date +7) - current_date) GROUP BY taskname;

Task Productivity Report View
Table 34-25 describes the WFPRODUCTIVITY_VIEW report view.

Table 34-25 Task Productivity Report View

Name Type

TASKNAME VARCHAR2(200)
TASKID VARCHAR2(200)
TASKNUMBER NUMBER
USERNAME VARCHAR2(200)
STATE1 VARCHAR2(100)
LASTUPDATEDDATE DATE

1 For completed tasks, the state is null. Use decode(outcome, '', 'COMPLETED', outcome) in queries.

For example:

• Count the number of unique tasks that the user has updated in the last 30 days, as shown
below:

SELECT username, count(distinct(taskid)) FROM WFPRODUCTIVITY_VIEW WHERE
 lastupdateddate > (current_date -30) GROUP BY username;

• Count the number of tasks that the user has updated (one task may have been updated
multiple times) in the last seven days, as shown below:

SELECT username, count(taskid) FROM WFPRODUCTIVITY_VIEW WHERE
 lastupdateddate > (current_date -7) GROUP BY username;

• Count the number of tasks of each task type on which the user has worked, as shown
below:

SELECT username, taskname, count(taskid) FROM WFPRODUCTIVITY_VIEW GROUP
 BY username, taskname;

• Count the number of tasks of each task type that the user has worked on in the last 100
days, as shown below:

SELECT username, taskname, count(taskid) FROM WFPRODUCTIVITY_VIEW WHERE
 lastupdateddate > (current_date -100) GROUP BY username, taskname;

Task Priority Report View
Table 34-26 describes the WFTASKPRIORITY_VIEW report view.

Table 34-26 Task Priority Report View

Name Type

TASKID1 VARCHAR2(64)

Chapter 34
Database Views for Oracle Workflow

34-73

Table 34-26 (Cont.) Task Priority Report View

Name Type

TASKNAME VARCHAR2(200)
TASKNUMBER NUMBER
PRIORITY NUMBER
OUTCOME VARCHAR2(100)
ASSIGNEDDATE DATE
UPDATEDDATE DATE
UPDATEDBY VARCHAR2(64)

1 NOT NULL column

For example:

• Query the number of tasks updated by each user in each task priority, as shown below:

SELECT updatedby, priority, count(taskid) FROM WFTASKPRIORITY_VIEW GROUP
 BY updatedby, priority;

• Query task-to-outcome distribution, as shown below:

SELECT taskname, decode(outcome, '', 'COMPLETED', outcome), count
 (taskid) FROM WFTASKPRIORITY_VIEW GROUP BY taskname, outcome;

• Query the number of tasks updated by the given user in each priority, as shown below:

SELECT priority, count(taskid) FROM WFTASKPRIORITY_VIEW WHERE
 updatedby='jstein' GROUP BY priority;

Chapter 34
Database Views for Oracle Workflow

34-74

35
Design Time at Runtime in Oracle Business
Process Management

Oracle Business Process Management release 14.1.2.0.0 includes a new feature named
Design Time at Runtime.

The design time at runtime feature enables you to customize the human tasks and business
rules in Oracle BPM worklists at runtime.

Note:

While most of the customization options that were previously available only in Oracle
JDeveloper at design time are now available in Oracle BPM at runtime, not all the
actions in designing and updating human tasks can be performed in Oracle BPM at
runtime.
The initial task set up still needs to be performed in Oracle JDeveloper.

The RSCUSTOMIZATION tag in the workflow configuration enables you to access
the design time at runtime feature in Oracle BPM. The tag is enabled by default when
you create a task in Oracle JDeveloper. To disable the feature, you can remove the
tag from the task in Oracle JDeveloper.

Workflow
Users can modify and dynamically update the human tasks in Oracle BPM at runtime.

1. Developer sets up the human tasks and workflows in Oracle BPM worklist through the
Oracle JDeveloper at design time.

2. The changes reflect in Oracle BPM at runtime.

3. After the initial setup, if you need to customize or update the human tasks, you can
dynamically update the human tasks in Oracle BPM at runtime.

4. The changes reflect in the same version of the application in Oracle BPM. The changes
take effect for in-progress transactions and new transactions initiated after you commit the
change.

The design time at runtime feature enables the administrators to update the Oracle BPM
business rules and human tasks in Oracle BPM at runtime as the business needs of the users
evolve. You can update the tasks and rules without going through the hassle of understanding
the developer environment and the Oracle JDeveloper design time settings.

35-1

Note:

You can still set up and update Oracle BPM human tasks through Oracle JDeveloper
at design time. However, you cannot simultaneously customize the tasks through
both the Oracle JDeveloper design time as well as Oracle BPM runtime.
Oracle recommends you adhere to one method to iteratively edit the human tasks.

Using Design Time at Runtime in Task Editor
1. Access the Oracle BPM Worklist: http://<host>:<SOA server port>/integration/

worklistapp.

2. Log in as an Administrator. See Logging In to Oracle BPM Worklist.

3. Click your user or login name in the top right corner.

4. Select Administration.

5. Click Task Configuration.

6. Search and select the task created under the Tasks to be Configured section on the left
panel. To view all the human tasks, enter “*” in the search bar and click Search task
types.

The task definition is displayed with multiple options such as Task Aggregation, On Error
Notify, Assignment and Routing Policy, along with other configuration checkboxes that
allow you to update the settings and permissions for the human task.

You can update the task definition of a task in Oracle BPM at runtime. See Accessing the
Sections of the Human Task Editor. The following sections are displayed in the task definition
page.

Expiration and Escalation Policy

Enables you to specify the duration and expiration of a task.

See Escalating Renewing or Ending the Task.

Chapter 35
Using Design Time at Runtime in Task Editor

35-2

Notification Settings

Enables you to configure how to notify the user when the status of the task changes.

See Specifying Participant Notification Preferences

Task Access

Enables you to configure access policies and restrictions for the content of the task.

See Specifying Access Policies and Task Actions on Task Content.

Rules Tab

Using the Oracle BPM design time at run time feature, you can create and update rules,
rulesets, and design tables.

Chapter 35
Using Design Time at Runtime in Task Editor

35-3

See Assigning Task Participants, Working with Rulesets and Rules , and Working with Decision
Tables.

Reset, Save, and Commit Changes

After updating the Oracle BPM rules at runtime, you can perform the following actions using
the action buttons.

• Reset changes

• Save changes

• Commit changes

Chapter 35
Using Design Time at Runtime in Task Editor

35-4

Part VI
Using Binding Components

This section describes how to use binding components.

This part contains the following chapters:

• Getting Started with Binding Components

• Integrating REST Operations in SOA Composite Applications

• Integrating Enterprise JavaBeans with Composite Applications

• Using Direct Binding to Invoke Composite Services

36
Getting Started with Binding Components

This chapter describes the supported service and reference binding component types and
technologies that you can integrate in a SOA composite application. Supported binding
components include web services, HTTP binding, JCA adapters, Cloud adapters, Oracle
Business Activity Monitoring (BAM), Oracle B2B, Oracle Healthcare, ADF-BC services,
Enterprise JavaBeans (EJB) services, Managed File Transfer (MFT), Representational State
Transfer (REST) services, and direct binding services. Creation of tokens for use in the binding
URLs of external references is also described.
This chapter includes the following sections:

• Introduction to Binding Components

• Introduction to Integrating a Binding Component in a SOA Composite Application

• Creating Tokens for Use in the Binding URLs of External References

For more information, see Adding Service Binding Components and Adding Reference Binding
Components.

Introduction to Binding Components
Binding components establish the connection between a SOA composite application and the
external world. There are two types of binding components:

• Services

Provide the outside world with an entry point to the SOA composite application. The WSDL
file of the service advertises its capabilities to external applications. These capabilities are
used for contacting the SOA composite application components. The binding connectivity
of the service describes the protocols that can communicate with the service (for example,
SOAP/HTTP or REST binding).

• References

Enable messages to be sent from the SOA composite application to external services in
the outside world. For REST bindings, a Web Application Description Language (WADL)
file advertises the capabilities to external applications.

Figure 36-1 shows an OrderBookingComposite project in which a service
(UpdateOrderStatus) in the Exposed Services swimlane provides the entry point to the
composite and a reference (BAM_OrderDO) in the External References swimlane enables
information to be sent to an Oracle BAM Server in the outside world.

Figure 36-1 Service and Reference Binding Components

36-1

Binding components enable you to integrate the following types of technologies with SOA
composite applications:

• SOAP web services

• HTTP binding

• JCA adapters

• Oracle E-Business Suite

• Oracle BAM 11g (This adapter can only connect to an Oracle BAM 11g server.)

• Oracle B2B

• Oracle Healthcare

• Oracle Managed File Transfer (MFT)

• ADF-BC services

• EJB services

• Direct binding services

• REST binding

• Cloud adapters

These technologies are described in the following sections.

SOAP Web Services
This service enables you to integrate applications with a standards-based web service using
the Simple Object Access Protocol (SOAP) over HTTP. Web services are described in the
WSDL file.

Dragging a web service into a swimlane of the SOA Composite Editor invokes the Create Web
Service dialog for specifying configuration properties.

For more information about web services, see How to Define the Interface (WSDL) for a Web
Service.

For information about adding Message Transmission Optimization Mechanism (MTOM)
attachments to web services, see Sending and Receiving MTOM-Optimized Messages to SOA
Composite Applications.

WS-AtomicTransaction Support
The Create Web Service dialog also enables you to configure support for WS-Coordination and
WS-AtomicTransaction (WS-AT) transactions. WS-AT provides transaction interoperability
between Oracle WebLogic Server and other vendors' transaction services. Interoperability is
provided at two levels:

• Exporting transactions from the local Java Transaction API (JTA) environment for a web
service request.

• Importing transactions from a web service request into the local JTA environment. This
allows for distributed transaction processing between multiple nodes in the web services
environment.

Figure 36-2 shows the support for WS-AT at the bottom of the Create Web Service dialog.

Chapter 36
Introduction to Binding Components

36-2

Figure 36-2 WS-AT Support in Create Web Service Dialog

Table 36-1 describes the WS-AT fields. For a description of the remaining fields in the Create
Web Service dialog, see How to Define the Interface (WSDL) for a Web Service.

Table 36-1 WS-AT Fields of the Create Web Service Dialog

Property Description

Transaction
Participation

Select a value. If you added the web service to the Exposed Services swimlane, this
action enables external transaction managers to coordinate resources hosted on
Oracle WebLogic Server over WS-AT. If you added the web service to the External
References swimlane, this addition enables Oracle WebLogic Server transactions to
coordinate resources hosted in external environments over WS-AT.

• Never
No transaction context is imported (for services) or exported (for references). This
is the default value if you add the web service as a service binding component in
the Exposed Services swimlane.

• Supports
If a transaction exists, a transaction context is imported (for services) or exported
(for references). This information is added to the composite.xml file.

• Mandatory
A transaction context is imported (for services) or exported (for references). This
information is added to the composite.xml file. For exports, a web service
exception message is thrown if there is no active transaction. For imports, a fault is
returned to the client if there is no transaction context in the request.

• WSDLDriven
This property only displays if you add the web service as a reference binding
component in the External References swimlane. This is the default value.

Chapter 36
Introduction to Binding Components

36-3

Table 36-1 (Cont.) WS-AT Fields of the Create Web Service Dialog

Property Description

Version Displays the WS-AT supported version (1.0, 1,1, 1,2, or default). By default, this list is
only enabled if you select Supports or Mandatory from the Transaction
Participation list.

When complete, the composite.xml file displays your WS-AT selections, as shown in the
following example:

 <service name="Service1" ui:wsdlLocation="BPELProcess1.wsdl">
 <interface.wsdl interface="http://xmlns.oracle.com/Application5_
jws/Project1/BPELProcess1#wsdl.interface(BPELProcess1)"
 callbackInterface="http://xmlns.oracle.com/Application5_
jws/Project1/BPELProcess1#wsdl.interface(BPELProcess1Callback)"/>
 <binding.ws port="http://xmlns.oracle.com/Application5_
jws/Project1/BPELProcess1#wsdl.endpoint(Service1/BPELProcess1_pt)">
 <property name="weblogic.wsee.wsat.transaction.flowOption"
 type="xs:string" many="false">SUPPORTS</property>
 <property name="weblogic.wsee.wsat.transaction.version" type="xs:string"
 many="false">WSAT11</property>
 </binding.ws>

If you want to edit your changes, you can right-click the service and select Edit or double-click
the service in the SOA Composite Editor.

After deployment, you can modify the transaction participation and version values through the
System MBean Browser. For more information, see Administering Oracle SOA Suite and
Oracle Business Process Management Suite.

For more information about WS-AT and WS-Coordination, see Developing Oracle
Infrastructure Web Services and the WS-AT and WS-Coordination specifications, which are
available at the following URL:

http://www.oasis-open.org

Ensuring Participation of BPEL Processes in WS-AT
In addition to setting the WS-AT participation property, if a client calls a web service that is a
BPEL process, for that web service to be enlisted in the caller's transaction, the callee BPEL
process must have the transaction property set in its composite.xml file.

<property name="bpel.config.transaction">required</property>

This setting ensures that, if an error occurs (such as a database adapter invocation failing due
to an integrity constraint violation), a transaction rollback is successfully completed.

For more information about setting the transaction property, see How to Add a BPEL Process
Service Component, How to Define Deployment Descriptor Properties in the Property
Inspector, and Transaction Semantics.

WS-AT Transactions are Not Supported When Optimization is Enabled
You can configure a web service binding component as either a service or reference to support
WS-AT transactions from the Transaction Participation dropdown list of the Create Web
Service dialog. WS-AT transactions are supported in composite-to-web service environments,
or vice-versa, with the oracle.webservices.local.optimization property set to false.

Chapter 36
Introduction to Binding Components

36-4

http://www.oasis-open.org

WS-AT transactions are not supported in composite-to-composite calls, even with the
oracle.webservices.local.optimization property set to false.

For more information about the oracle.webservices.local.optimization property, see
Administering Oracle SOA Suite and Oracle Business Process Management Suite.

HTTP Binding Service
The HTTP binding service enables you to integrate SOA composite applications with HTTP
binding.

You drag the HTTP service from the Components window into a swimlane of the SOA
Composite Editor to invoke the HTTP Binding Wizard. This addition enables you to configure
HTTP binding as follows:

• As a service binding component in the Exposed Services swimlane to invoke SOA
composite applications through HTTP POST and GET operations

• As a reference binding component in the External References swimlane to invoke HTTP
endpoints through HTTP POST and GET operations

Note:

Note the following details about using HTTP binding in a SOA composite application.

• An outbound HTTP binding reference supports only XML as a response from an
external HTTP endpoint. The response should contain the correct XML part
name according to outbound expectations.

• You cannot change the httpBinding property for the HTTP binding component
during runtime in Oracle Enterprise Manager Fusion Middleware Control.

Supported Interactions
Table 36-2 shows the supported verbs, payloads, and operations for the inbound and outbound
directions.

Table 36-2 Supported Verbs, Payloads, and Operations

Direction Verb Payload Type Operation Supported?

Inbound GET URL-encoded One-way Yes

Inbound GET URL-encoded Request-response Yes

Inbound GET XML One-way No

Inbound GET XML Request-response No

Inbound POST URL-encoded One-way Yes

Inbound POST URL-encoded Request-response Yes

Inbound POST XML One-way Yes

Inbound POST XML Request-response Yes

Outbound GET URL-encoded One-way No

Outbound GET URL-encoded Request-response Yes

Outbound GET XML One-way No

Chapter 36
Introduction to Binding Components

36-5

Table 36-2 (Cont.) Supported Verbs, Payloads, and Operations

Direction Verb Payload Type Operation Supported?

Outbound GET XML Request-response Yes

Outbound POST URL-encoded One-way No

Outbound POST URL-encoded Request-response Yes

Outbound POST XML One-way No

Outbound POST XML Request-response Yes

Table 36-3 shows the supported XSD types for the inbound and outbound directions.

Table 36-3 Supported XSDs

Direction XSD Type Supported?

Inbound Simple Yes

Inbound Complex No

Inbound Native No

Outbound Simple Yes

Outbound Complex No

Outbound Native No

The following HTTP headers are not supported in either the inbound or outbound direction
(that is, you cannot access HTTP headers in the composite and set them in the composite):

• User-agent
• Content-type
• Content-length
• Server
• Server-port
• Referrer
• Authorization
• MIME-Version
• Location

How to Configure the HTTP Binding Service

To configure the HTTP binding service:

1. Invoke the HTTP Binding Wizard to configure HTTP binding by dragging the HTTP icon
from the Components window.

2. Provide appropriate responses on the Welcome, Service Name, and Adapter Interface
pages.

The HTTP Binding Component page of the wizard enables you to specify the operation
type, verb, and payload type. Figure 36-3 provides details.

Chapter 36
Introduction to Binding Components

36-6

Figure 36-3 Create HTTP Binding Wizard - HTTP Binding Configuration Page

3. Select the following operation types for inbound HTTP binding:

• A one-way operation that sends or receives messages to or from an HTTP endpoint

• A synchronous request-response operation that sends and receives input and output
messages to and from an HTTP endpoint

For HTTP POST request methods, you can select a payload type of either URL-encoded
(ampersand-separated name-value pairs) or XML.

For HTTP GET request methods, the payload type is URL-encoded.

For HTTP GET or POST request methods of reference binding components, you are also
prompted to specify the endpoint URL. Support for HTTP authentication and secure socket
layer (SSL) is also provided.

Note:

Secure HTTP (HTTPS) is supported in both the inbound and outbound
directions.

4. Click OK.

5. Browse for an existing request message schema or define your own schema with the links
to the right of the URL field on the Messages page. Figure 36-4 provides details.

Chapter 36
Introduction to Binding Components

36-7

Figure 36-4 Create HTTP Binding Wizard - Messages Page

6. Click OK.

7. If you select to define your own schema, you are prompted to specify the element names,
data types, minimum occurrence value, and maximum occurrence value in the Create
Schema dialog. Figure 36-5 provides details.

Figure 36-5 Create HTTP Binding Wizard - Create Schema Page

8. Click OK.

At runtime, the concrete WSDL is generated with an HTTP binding and a SOAP binding.
This is because the SOAP endpoint is used to provide HTTP support.

How to Enable Basic Authentication for HTTP Binding
Inbound and outbound HTTP binding supports basic authentication. If you want to enable basic
authentication for inbound HTTP binding, you must attach a security policy. Inbound HTTP
binding can also be used without enabling basic authentication.

To enable basic authentication:

1. Right-click the created HTTP binding service in the Exposed Services swimlane and
select Configure WS Policies.

Chapter 36
Introduction to Binding Components

36-8

2. In the Configure SOA WS Policies dialog, click the Add icon in the Security section.

3. Select the oracle/wss_http_token_service_policy policy, and click OK.

4. In the Configure SOA WS Policies dialog, click OK.

JCA Adapters
JCA adapters enable you to integrate services and references with the following technologies:

• Databases

• File systems

• FTP servers

• Message systems such as Advanced Queueing (AQ) and Java Messaging Systems (JMS)

• IBM WebSphere MQ

• TCP/IP sockets

• Third-party adapters (SAP, JDE World, and others)

• Oracle User Messaging Service

• Lightweight Directory Access Protocol (LDAP) server

• Coherence cache

Dragging a JCA adapter into a swimlane of the SOA Composite Editor invokes the Adapter
Configuration Wizard for specifying configuration properties:

• JCA Adapter Properties

Database Adapter
The database adapter enables a BPEL process, Oracle Mediator, or Oracle Service Bus to
communicate with Oracle databases or third-party databases through JDBC.

For more information, see Oracle JCA Adapter for Database in Understanding Technology
Adapters.

File Adapter
The file adapter enables a BPEL process or an Oracle Mediator to exchange (read and write)
files on local file systems. The file contents can be in both XML and non-XML data formats.

Note:

When calling the file adapter, Oracle BPEL Process Manager may process the same
file twice when run against Oracle Real Application Clusters planned outages. This is
because a file adapter is a non-XA compliant adapter. Therefore, when it participates
in a global transaction, it may not follow the XA interface specification of processing
each file only once.

For more information, see Oracle JCA Adapter for Files/FTP in Understanding Technology
Adapters.

Chapter 36
Introduction to Binding Components

36-9

FTP Adapter
The FTP adapter enables a BPEL process or Oracle Mediator to exchange (read and write)
files on remote file systems through use of the file transfer protocol (FTP). The file contents
can be in both XML and non-XML data formats.

For more information, see Oracle JCA Adapter for Files/FTP in Understanding Technology
Adapters.

AQ Adapter
The AQ adapter enables you to interact with a single consumer or multiconsumer queue.

Oracle Streams AQ provides a flexible mechanism for bidirectional, asynchronous
communication between participating applications. Advanced queues are an Oracle database
feature, and are therefore scalable and reliable. Multiple queues can also service a single
application, partitioning messages in a variety of ways and providing another level of scalability
through load balancing.

For more information, see Oracle JCA Adapter for AQ in Understanding Technology Adapters.

JMS Adapter
The JMS adapter enables an Oracle BPEL process or Oracle Mediator to interact with a Java
Messaging System (JMS).

The JMS architecture uses one client interface to many messaging servers. The JMS model
has two messaging domains:

• Point-to-point: Messages are exchanged through a queue and each message is delivered
to only one receiver.

• Publish-subscribe: Messages are sent to a topic and can be read by many subscribed
clients.

For more information, see Oracle JCA Adapter for JMS in Understanding Technology
Adapters.

MQ Adapter
The MQ adapter provides message exchange capabilities between BPEL processes and
Oracle Mediator and the WebSphere MQ queuing systems.

The Messaging and Queuing Series (MQ Series) is a set of products and standards developed
by IBM. The MQ Series provides a queuing infrastructure that provides guaranteed message
delivery, security, and priority-based messaging.

For more information, see Oracle JCA Adapter for MQ Series in Understanding Technology
Adapters.

Socket Adapter
The socket adapter enables you to create a client or a server socket, and establish a
connection. This adapter enables you to model standard or nonstandard protocols for
communication over TCP/IP sockets. The transported data can be text or binary in format.

For more information, see Oracle JCA Adapter for Sockets in Understanding Technology
Adapters.

Chapter 36
Introduction to Binding Components

36-10

Third-Party Adapter
The third-party adapter enables you to integrate third-party adapters such as PeopleSoft, SAP,
and others into a SOA composite application. These third-party adapters produce artifacts
(WSDLs and JCA files) that can configure a JCA adapter.

For more information, see Connecting with Third-Party Service Providers in Understanding
Technology Adapters.

Oracle User Messaging Service Adapter
The Oracle User Messaging Service supports messaging channels such as email, secure
messaging service (SMS), and instant messaging (IM). The Oracle User Messaging Service
provides a messaging proxy between the BPEL processes or Oracle Mediator service
component and the external world. The Oracle User Messaging Service provides two-way
messaging (inbound and outbound).

For more information, see Oracle JCA Adapter for UMS in Understanding Technology
Adapters.

LDAP Adapter
The LDAP adapter defines both asynchronous and synchronous interfaces to send requests to
and receive responses from LDAP directory servers. The LDAP adapter enables processes to
search, compare, and modify LDAP directories using the LDAP protocol.

For more information, see Oracle JCA Adapter for LDAP in Understanding Technology
Adapters.

Coherence Adapter
A Coherence cache is a collection of data objects that serves as an intermediary between the
database and client applications. Database data can be loaded into a cache and made
available to different applications. A Coherence cache reduces load on the database and
provides faster access to database data. Objects in the cache can be either XML or Plain Old
Java Objects (POJOs). The Coherence adapter enables you to perform the following
operations against a Coherence cache.

• Add an item

• Obtain an item

• Remove an item

• Query for an item

For more information, see Oracle JCA Adapter for Coherence in Understanding Technology
Adapters and Reading the Shipping Provider from Cache with the Coherence Adapter in
Understanding Oracle SOA Suite.

JCA Adapter Properties
For information about JCA adapter properties, see Oracle JCA Adapter Properties in
Understanding Technology Adapters.

If you are configuring newly created adapters in Reference Configuration mode, you can
modify JCA Adapter endpoint properties directly in the Adapter Configuration Wizard. See JCA
Endpoint Properties in the Adapter Configuration Wizard.

Chapter 36
Introduction to Binding Components

36-11

Oracle E-Business Suite Adapter
The Oracle applications adapter provides connectivity to Oracle Applications. The adapter
supports all modules of Oracle Applications in Release 12 and Release 11i, including selecting
custom integration interface types based on the version of Oracle E-Business Suite.

Oracle BAM 11g Adapter
The Oracle BAM 11g adapter enables you to integrate Java EE applications with an Oracle
BAM 11g server to send data. This adapter can only connect to an Oracle BAM 11g server.

Dragging a BAM 11g icon into a swimlane of the SOA Composite Editor invokes the Adapter
Configuration Wizard for specifying configuration properties.

Oracle B2B
The Oracle B2B service enables you to browse B2B metadata in the MDS repository and
select document definitions.

Oracle B2B is an e-commerce gateway that provides for the secure and reliable exchange of
transactions between an organization and its external trading partners. Oracle B2B and Oracle
SOA Suite are designed for e-commerce business processes that require process
orchestration, error mitigation, and data translation and transformation within an infrastructure
that addresses the issues of security, compliance, visibility, and management.

Dragging a B2B icon into a swimlane of the SOA Composite Editor invokes the B2B
Configuration Wizard for specifying configuration properties.

Oracle Healthcare Adapter
The Oracle Healthcare adapter enables you to create an end-to-end health care integration
process in a SOA composite application. The Healthcare adapter establishes the connection
between a SOA composite application and the external health care applications with which
data is shared or with an internal topic or queue, where data can be made available internally
or to other systems. You can use other Oracle SOA Suite components in your composite
application, including BPEL processes, Oracle Mediator components, a variety of adapters,
and so on.

The Healthcare Configuration Wizard in Oracle JDeveloper lets you add health care integration
binding components to a SOA composite application as follows:

• The component is used as a service (inbound) to receive messages from external systems
and deliver them to SOA composite applications. Oracle SOA Suite for health care
integration is the entry point to the SOA composite application.

• The component is used as a reference (outbound) to send messages from the SOA
composite application to external applications.

As you follow the steps in the Healthcare Configuration Wizard, you are prompted to select a
document definition created in Oracle SOA Suite for health care integration.

You can launch Oracle SOA Suite for health care integration from the wizard to create a
document definition if the right one does not already exist. This is the payload, or message,
that you are receiving from or sending to external systems.

Chapter 36
Introduction to Binding Components

36-12

Oracle MFT
Oracle MFT enables you to transfer files to and from many endpoint types, such as the
following:

• Embedded FTP or sFTP server

• Remote FTP or sFTP server

• Directories

• SOAP web service endpoints

• Oracle SOA Suite SOAP web service endpoints

• Oracle Service Bus web service endpoints

• Oracle B2B partners and Oracle Healthcare endpoints

• Oracle Data Integrator web service endpoints

ADF-BC Services
The ADF-BC service enables you to integrate Oracle Application Development Framework
(ADF) applications using service data objects (SDOs) with SOA composite applications.

Dragging an ADF-BC icon into a swimlane of the SOA Composite Editor invokes the Create
ADF-BC Service dialog for specifying configuration properties.

For more information about Oracle ADF, see the following:

• Delegating XML Data Operations to Data Provider Services

• Using Standalone SDO-based Variables

• Developing Fusion Web Applications with Oracle Application Development Framework

• Developing Web User Interfaces with Oracle ADF Faces

EJB Adapter
The EJB adapter enables Enterprise JavaBeans and SOA composite applications to interact
by passing Java interfaces (does not use a WSDL file to define the interface) or SDO
parameters (uses a WSDL file to define the interface).

SDOs enable you to modify business data regardless of how it is physically accessed.
Knowledge is not required about how to access a particular back-end data source to use SDO
in a SOA composite application. Consequently, you can use static or dynamic programming
styles and obtain connected and disconnected access.

Enterprise JavaBeans are server-side domain objects that fit into a standard component-based
architecture for building enterprise applications with Java. These objects become distributed,
transactional, and secure components.

Java interfaces eliminate the need for WSDL file definitions. This type of integration provides
support with the following objects:

• Native Java objects

• Java Architecture for XML Binding (JAXB)

Chapter 36
Introduction to Binding Components

36-13

Dragging an EJB icon into a swimlane of the SOA Composite Editor invokes the Create EJB
Service dialog for specifying configuration properties.

For more information, see Integrating Enterprise JavaBeans with Composite Applications .

Direct Binding Adapter
The direct binding adapter uses the Direct Binding Invocation API to invoke a SOA composite
application in the inbound direction and exchange messages over a remote method invocation
(RMI). This option supports the propagation of both identities and transactions across JVMs
and uses the T3-optimized path. Both synchronous and asynchronous invocation patterns are
supported.

You can also invoke an Oracle Service Bus flow or another SOA composite application in the
outbound direction.

Dragging a Direct icon into a swimlane of the SOA Composite Editor invokes the Create Direct
Binding dialog for specifying configuration properties.

For more information about direct binding, see Using Direct Binding to Invoke Composite
Services .

For information about the Direct Binding Invocation API, see Java API Reference for Oracle
SOA Suite Infrastructure Management.

For more information about Oracle Service Bus, see Developing Services with Oracle Service
Bus.

REST Binding
REST is an architecture for designing network applications. RESTful applications use HTTP
requests to post data (create and update), get data (for example, make queries), and delete
data. REST provides an alternative to using web services. A SOA composite can be REST-
enabled or invoke an existing REST service through the REST adapter.

For more information, see Integrating REST Operations in SOA Composite Applications.

Cloud Adapters
The cloud adapters enable you to send and receive messages from a cloud server. See the
following guides for more information:

• Using Ariba Adapter

• Using Oracle Eloqua Cloud Adapter

• Using Oracle ERP Cloud Adapter

• Using the NetSuite Adapter

• Using Oracle RightNow Cloud Adapter

• Using Oracle Sales Cloud Adapter

• Using Salesforce Adapter

• Using ServiceNow Adapter

• Using SuccessFactors Adapter

Chapter 36
Introduction to Binding Components

36-14

Introduction to Integrating a Binding Component in a SOA
Composite Application

You integrate a binding component with a SOA composite application by dragging it from the
Components window.

How to Integrate a Binding Component in a SOA Composite Application
To integrate a binding component in a SOA composite application:

• From the Technology section of the Components window, drag a binding component to
the appropriate swimlane. The swimlane in which to drag the component is based on the
action you want to perform. Not all adapters can be dropped in both swimlanes. If an
adapter is only available for references, then you cannot drop it into the services swimlane.

• If you want to provide the outside world with an entry point to the SOA composite
application, drag the binding component to the Exposed Services swimlane.

• If you want to enable messages to be sent from the SOA composite application to
external services in the outside world, drag the binding component to the External
References swimlane.

Figure 36-6 shows a SOAP web service being dragged into the composite. This action
invokes a dialog for specifying various configuration properties.

Figure 36-6 Integration of a Web Service Binding Component into a Composite

For more information about adding binding components, see Adding Service Binding
Components and Adding Reference Binding Components.

Chapter 36
Introduction to Integrating a Binding Component in a SOA Composite Application

36-15

How to Use ADF Binding to Invoke a Composite Application from a JSP/
Java Class

If a SOA composite application uses a web service binding to define an endpoint reference, the
composite cannot be invoked from a JSP/Java class. Web services binding is defined with the
binding.ws port="" location="" tag in the composite.xml file. The following example
provides details:

<service name="client_ep" ui:wsdlLocation="BPEL.wsdl">
 <interface.wsdl interface="http://xmlns.oracle.com/Application/Project/
 BPEL#wsdl.interface(BPEL)"/>
 <binding.ws port="http://xmlns.oracle.com/App/BPELProj/
 BPELProcess#wsdl.endpoint(bpel_client_ep/BPELProcess_pt)"/>
 </service>

Instead, use ADF binding for SOA composite interaction with ADF-BC Web Application. After
deployment of a composite with ADF binding, invocation from a JSP/Java class is successful.
The following example provides details:

<reference name="ADFWebService"
 ui:wsdlLocation="ADFWebService.wsdl">
 <interface.wsdl interface="http://example.com/hr/#wsdl.interface(HRAppService)"/>
 <binding.adf serviceName="{http://example.com/hr/}HRAppService"
 registryName="hrapp_JBOServiceRegistry"/>
 </reference>

For this example, hrapp is the ADF-BC web application name.

Creating Tokens for Use in the Binding URLs of External
References

You can create tokens in Oracle JDeveloper for the HTTP protocol, host, and port values in the
binding URLs of external references. The values that you assign to the tokens are then
substituted in place of the hardcoded HTTP host and port values in the location attribute of
the binding.ws element of the composite.xml file.

For example, the following code shows the location attribute with hardcoded values for
protocol (http), host (host.us.example), and port (80).

<binding.ws
port="http://www.globalcompany.example.com/ns/CreditAuthorizationService#wsdl.
endpoint(CreditAuthorizationService/CreditAuthorizationPort)"
location="http://host.us.example:80/apps/FusionOrderDemoShared/services/
creditAuthorization/CreditAuthorizationService.wsdl">

The following example shows the location attribute after the creation of tokens.

<binding.ws
port="http://www.globalcompany.example.com/ns/CreditAuthorizationService#wsdl.
endpoint(CreditAuthorizationService/CreditAuthorizationPort)"
location="${protocol}://${host1}:${port1}/apps/FusionOrderDemoShared/services/
creditAuthorization/CreditAuthorizationService.wsdl">

Chapter 36
Creating Tokens for Use in the Binding URLs of External References

36-16

Note:

• You can only use tokens in the location attribute of the binding.ws element of
the composite.xml file.

• You cannot use tokens for the protocol, host, and port values in other files, such
as WSDL files, schema files, and so on.

• Oracle JDeveloper only updates token files on the local file system that include
the token values. If you use a local token file at design time, you must move the
tokens to the SOA server at runtime. For information about creating tokens
during runtime, see Administering Oracle SOA Suite and Oracle Business
Process Management Suite.

How to Create Tokens for Use in the Binding URLs of External References
Follow the steps in this section to create tokens for use in the binding URLs of external
references.

To create tokens for use in the binding URLs of external references:

1. In Oracle JDeveloper, access the SOA composite application in which to create tokens.

2. Above the SOA Composite Editor, click the Binding URL Tokenizer icon. Figure 36-7
provides details.

Figure 36-7 Binding URL Tokenizer Icon

The Binding URLs dialog appears, as shown in Figure 36-8.

• Binding URLs of each external reference that has a binding.ws element with a
location attribute in the composite.xml file that starts with the following entries are
automatically displayed:

– http
– https
– ${ (for a URL that uses tokens in place of the hardcoded HTTP protocol, host, or

port values)

– callbackServerURL
• Binding URLs for REST references with the location attribute of the binding.rest

element are automatically displayed.

Chapter 36
Creating Tokens for Use in the Binding URLs of External References

36-17

Figure 36-8 Binding URLs Dialog

The Service2 reference in Figure 36-8 also includes an override of the callback location
using a reference property such as callbackServerURL:

<property name="callbackServerURL" type="xs:string" many="false">
${protocol}://${myhost1}:${myport1}/soa-infra/services/default/service/
bpelprocess1_client_ep</property>

The callbackServerURL property can be tokenized as shown in Figure 36-8.

3. Double-click a row or select the row and click the Edit icon to create tokens for the HTTP
protocol, host, and port values in the binding URLs of external references.

The Binding URL Tokenization dialog appears, as shown in Figure 36-9.

Chapter 36
Creating Tokens for Use in the Binding URLs of External References

36-18

Figure 36-9 Binding URL Tokenization Dialog

4. Provide values appropriate to your environment, as described in Table 36-4, and click OK.

Table 36-4 Binding URL Tokenization Dialog

Field Description

Token File Perform either of the following options:

• Click the Browse button to access a dialog for selecting the token file that
includes the token names and values. The file can be on the local file system.
The names and values specified in this file replace the hardcoded names and
values for protocol, host, and port in the binding.ws element. This field is
automatically populated with your file selection on subsequent invocations of
this dialog. If you specify a token file from the file system, it must be an XML
file that follows this format:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE properties SYSTEM
 "http://java.sun.com/dtd/properties.dtd">
<properties>
 <comment>
 URL Resolver file used by the Metadata
 manager to resolve $<variable> in URLs
 </comment>
 <entry key="protocol">oramds</entry>
 <entry key="host">MyHost</entry>
 <entry key="port">80</entry>
</properties>

• Skip this field entirely if you want to manually enter new token names and
values in the Token and Current Values fields, respectively.

Tokens that are not saved to a file are only placed in the location attribute
of the binding.ws element in the composite. It is expected that you supply a
token file at runtime that has tokens matching those manually entered at
design time.

Reference Displays the external reference you selected in Step 3.

Chapter 36
Creating Tokens for Use in the Binding URLs of External References

36-19

Table 36-4 (Cont.) Binding URL Tokenization Dialog

Field Description

Protocol Displays the field in which to specify the protocol token name.

• Click the Browse icon to select the token name to use from the Token Picker
dialog. The Token Picker dialog is populated with the token names that
appear in the token file you imported in the Token File field. The token name
you select (for example, port1) and its default value (for example, 80) are
added to the Token and Current Value fields, respectively. If the token file is
writable (meaning an unprotected file in the file system), you can change the
current value of the token name. See Step 5 for details about accessing the
Token Picker dialog. If the file is read-only, you are warned with a message
and allowed to cancel the operation and continue.

• Manually enter the token name and value to use. You can manually enter
information in these fields regardless of whether you imported a file in the
Token File field. If you imported a file that is writable in the Token File field
and manually enter a token name, it is added to the file if it does not already
exist. The current value for the new token name defaults to the value in the
URL that is being tokenized.

Host Displays the field in which to specify the host token name. See the description of
the Protocol field for details about how to specify information.

Port Displays the field in which to specify the port token name. See the description of
the Protocol field for details about how to specify information.

Apply these
tokens to
other
References
which have the
same Current
Values

Deselect this check box if you do not want other external references with the same
protocol, host, and port values to be replaced with the same tokens.

If this check box is selected and you tokenize just one or two of the URL objects,
then the references for only those objects are modified. For example, if you only
tokenize the host (with a current value of host1.us.oracle), all references that
have that same host value are updated.

5. If you selected the Browse button in the Protocol, Host, or Port fields, the Token Picker is
displayed, as shown in Figure 36-10. This dialog lists all the tokens that you have defined
in the file imported in the Token File field of the Binding URL Tokenization dialog.

Chapter 36
Creating Tokens for Use in the Binding URLs of External References

36-20

Figure 36-10 Token Picker Dialog

6. Select the token name to use through one of the following options:

• Scroll through the list and select the token.

• Begin entering the name in the Token field until the name is automatically completed
and the token is selected in the list.

7. Click OK.

You are returned to the Binding URL Tokenization dialog with the selected token name and
value displayed in the Token and Current Value fields, respectively.

Chapter 36
Creating Tokens for Use in the Binding URLs of External References

36-21

37
Integrating REST Operations in SOA
Composite Applications

This chapter describes how to integrate Representational State Transfer (REST) operations as
service binding components and reference binding components in SOA composite
applications. It also describes how to use a Web Application Description Language (WADL) file
during binding component configuration.
This chapter includes the following sections:

• Introduction to REST Support

• Creating REST Support in Service and Reference Binding Components

• Using JavaScript and JSON in BPEL Components

• Testing the REST Adapter with the HTTP Analyzer

• Testing and Configuring REST Reference Binding Components in Oracle Enterprise
Manager Fusion Middleware Control

• Configure Proxy Host and Proxy Port for an External REST Endpoint

For more information about using a REST adapter, see Defining a Shipping Resource with a
REST Service in Understanding Oracle SOA Suite.

Introduction to REST Support
REST is an architecture for designing network applications. RESTful applications use HTTP
requests to post data (create and update), get data (for example, make queries), update data,
and delete data. REST provides an alternative to using web services.

Starting in 12.2.1, your SOA composites can use end-to-end JSON. This means that the REST
service can receive the REST request and route it to the BPEL engine without translating it to
XML. The BPEL component can use the JavaScript action, and also use JavaScript in
conditional and iterative constructs, to work on JSON objects directly. The REST reference can
receive the REST message from the BPEL engine and route it to an external REST endpoint
without translation.

Note:

The REST interfaces and BPEL component support end-to-end JSON. However, if
you are using other service components, like the Mediator, you need to use the
12.1.3–style composite that internally maps REST resources and verbs to WSDL
operations and XML schemas, and translates the incoming payload into XML.

Oracle SOA Suite provides the following REST support:

• Support in SOA composite applications:

– Enable End-to-End JSON

– Enable REST support in new or existing services.

37-1

– Integrate with external REST APIs.

– Orchestrate a set of RESTful state transitions (RPC/Hypermedia as the Engine of
Application State (HATEOAS) approach).

– Support for XML, JavaScript Object Notation (JSON) (with automatic translation to and
from XML), text, opaque (binary), and URL-encoded payload data.

– Generation of sample URI for REST service operations.

– Support for WADL services. The WADL can be provided by a deployed Oracle SOA
Suite or Oracle Service Bus service or a non-Oracle SOA Suite or Oracle Service Bus
service such as a Jersey REST service.

• Ease of development:

– Oracle JDeveloper wizard provides several options for modeling REST interfaces and
WSDL operation bindings:

* Manually define resource paths and REST operations to generate an underlying
WSDL that contains the mapping from the REST definition to the WSDL.

* Select the WSDL of the service component or external reference from which to
map WSDL operations to resource paths and HTTP verbs.

* Select a WSDL from many sources (for example, the application server or SOA-
MDS) from which to automatically populate the REST adapter with operation
mappings.

– Readable API that publishes each method used upon deployment.

– Ability to browse and consume Oracle REST endpoints (including Oracle Service Bus)
from within Oracle JDeveloper.

• Oracle Web Service Manager (OWSM) policy support for REST security.

• Support for the following use cases:

– Get a list of customers

– Create a new customer

– Get customer details

– Update customer details

– Delete a customer

– Create a new address for a customer

– Get an address of a customer

– Update the address of a customer

Creating REST Support in Service and Reference Binding
Components

Oracle SOA Suite components, services, and references can be selected and exposed as a
REST service. This section describes:

• How to Configure the REST Binding Component in a SOA Composite Application

• How to Consume REST-Based Integrations Created in Oracle Integration from SOA
Composite Applications

• How to Configure the REST Adapter Through Shortcuts

Chapter 37
Creating REST Support in Service and Reference Binding Components

37-2

• How to Generate Schemas Manually

• How to Generate Schemas from Samples

• How to Use Global Token Variables

• How to Set REST Header Properties

• What You May Need to Know About REST Fault Binding

• What You May Need to Know About Converting a JSON Interchange Format to a REST
Schema

• What You May Need to Know About REST References Calling REST Services in the Same
Node

Note:

• Follow Java naming conventions for query, path, and template parameter names
while creating Inbound REST bindings (REST service). A REST reference does
not require any naming conventions as runtime does not create a Java stub for
REST references (outbound REST binding).

• You cannot attach a REST binding to an asynchronous component (for example,
an asynchronous BPEL process). If you attempt this attachment, a message is
displayed that indicates this is not supported and suggests a workaround of
placing an Oracle Mediator between the REST adapter and the service that has
a one-way interface and routing the service callback to another (outbound) REST
adapter service.

• You cannot connect a REST service binding component to a REST reference
binding component.

How to Configure the REST Binding Component in a SOA Composite
Application

This section describes how to add a REST binding component to a SOA composite
application. You can add the REST binding component as a service or reference binding
component.

To configure the REST adapter as a service or reference binding component in a SOA
composite application:

1. Add a REST service or reference component to the appropriate swimlane of your
composite view in JDeveloper. You can also drag a REST component from the
Components window.

• To add a REST service component, right-click the Exposed Services swimlane in the
SOA Composite Editor, and select Insert > REST. This action adds REST support as
a service binding component to interact with the appropriate service component.

• To add a REST reference component, right-click the External References swimlane in
the SOA Composite Editor, and select Insert > REST. This action adds REST support
as a reference binding component to interact with the external REST endpoint.

The REST Binding Configuration Wizard appears.

Chapter 37
Creating REST Support in Service and Reference Binding Components

37-3

2. Enter a Name for your REST service or reference.

The Type field displays the type of your REST binding. This is Service for a REST service
and Reference for a REST reference.

3. Optionally select the Service will invoke components using WSDL interfaces or
Reference will be invoked by components using WSDL interfaces option.

• For REST service, select Service will invoke components using WSDL interfaces if
your composite will internally use XML schemas and WSDL operations.

• For REST reference, select Reference will be invoked by components using WSDL
interfaces if your composite will internally use XML schemas and WSDL operations.

Starting in 12.2.1, your SOA composites can use end-to-end JSON. This means that the
REST service can receive the REST request and route it to the BPEL engine without
translating it to XML. The BPEL component can use the JavaScript action, and also use
JavaScript in conditional and iterative constructs, to work on JSON objects directly. The
REST reference can receive the REST message from the BPEL engine and route it to an
external REST endpoint without translation.

By default, the new REST service/reference binding uses WADL. However, select this
option if you need to use the 12.1.3–style composite that internally maps REST resources
and verbs to WSDL operations and XML schemas, and translates the incoming payload
into XML. You would also want to select this checkbox if your composite uses components
like the Mediator, which supports only WSDL-based operations.

• If you select this option, then the Enforce XML Schema Ordering option appears.

Select Enforce XML Schema Ordering to enforce the ordering of the XML schema.

When selected, this reorders JSON payloads to match the order of elements in the
XML schema. This includes inbound request payloads and responses from outbound
requests. This option may add a performance overload.

Chapter 37
Creating REST Support in Service and Reference Binding Components

37-4

Selecting this check box sets the REST service binding property
reorderJsonAsPerXmlSchema to true in the composite.xml file.

4. Click Next.

The Resources page is displayed.

Table 37-1 Resources Page

Field Description

Configuration Shortcut Provides configuration shortcuts based on the context.
• For REST Service interfaces:

– If you are creating a WADL-based REST service, you can choose to Add
resources and methods from a WADL service. This enables you to use an
existing WADL service to add resources and methods to your REST service.

– If your service will invoke components using WSDL interfaces, you get options to
REST enable a component or service and REST enable external web
service.This means that the fault bindings for the selected component or service
is automatically generated based on faults defined in the WSDL file.

The selected WSDL is read and the WSDL operations are mapped to resource
paths and HTTP verbs in the Operation Bindings section of the Resources
page. If an operation binding requires additional configuration mapping, this is
indicated by the value of no in the Complete column.

• For REST Reference interfaces:

Add resources and operation mappings based on WADL Service enables you to
add resources and operation mappings from a WADL resource. The WADL resource
can be in your local file system or project, in the design-time Oracle Metadata
Services Repository (MDS Repository), or on an application server.

Description This field appears for REST services.

Enter a description for the REST service. The description is published as part of the
readable API used during deployment.

Base URI This field appears for REST references.

Base URI connection information for all resources supported by the interface. For example:
http://search.mydomain.com/search.format

Resource Path Double-click the default resources path (/) to update the resource path or click Add to add
a new resource path.

In the Relative Path field, enter the resource path (for example, /orders), and click OK.

Operation Bindings This section appears if you are creating a 12.1.3–style composite that internally maps
REST resources and verbs to WSDL operations and XML schemas, and translates the
incoming payload into XML.

Click Add to add a new operation binding.

You can also select an existing operation binding and click Edit.

When you click Add or Edit, the REST Operation Binding dialog is displayed. See REST
Operation Binding Dialog.

Methods This section appears if you are creating a WADL-based service or reference that uses
untyped payload without schemas.
Click Add to add a new method.

You can also select an existing method and click Edit.

When you click Add or Edit, the REST Method Definition dialog is displayed. See REST
Method Definition Dialog.

5. Click Finish to complete your REST binding configuration.

Chapter 37
Creating REST Support in Service and Reference Binding Components

37-5

REST Operation Binding Dialog
Use the REST Operation Binding dialog to define REST operations for a REST service that
invokes components using WSDL interfaces. You can define resource paths and REST
operations. An underlying WSDL is generated that contains the mapping from the REST
definition to the WSDL.

Table 37-2 REST Operation Binding Dialog

Field Description

Method Displays the WSDL operation name that is being mapped. You can specify the name that is used
in the generated WSDL.

Resource Select an existing URL resource path from the list or click the Add icon to add a new resource
path.

The selected resource path is added to the URI Parameters table of the Request section at the
bottom of this dialog. If the selected resource contains a template variable, such as {var}, the
variable is added to the URI parameters.

HTTP Verb Select the operation to perform (for example, GET, PATCH, PUT, POST, DELETE).

When you pick a schema for the request, actions are taken based on the verb. URI parameters
are added if the verb does not have a payload (GET, DELETE). The URI Parameters table is
populated with mappings from the incoming REST query parameters to the WSDL schema. The
PATCH verb is used to partially update a resource, and the PUT verb is used to replace resource
entirely.

The HTTP verb for the operation is also added to the Operation Bindings section of the Create
REST Binding dialog.

Description Enter an optional description. Reference binding components have the Base URI field.

Chapter 37
Creating REST Support in Service and Reference Binding Components

37-6

Table 37-2 (Cont.) REST Operation Binding Dialog

Field Description

Request The Schema section displays the request schema being used.

• Schema URL: Displays the request schema to use. If you selected REST enable
component or reference in the Create REST Binding dialog, this field is read-only because
the schema is obtained from the service's operation WSDL. If you selected Add operation
binding in the Create REST Binding dialog, you must browse for a schema or create a new
schema from a sample using the Native Format Builder wizard.

• Element: Displays the element to use.
The Payload section enables you to specify the format of the request payload: XML (default
selection), JSON, URL-encoded, Text, Opaque or no payload. You can choose Other option and
define custom payload type. Click Generate Sample Payload to view a sample of the selected
request payload.

The URI Parameters section enables you to specify the mapping from the REST query
parameters to the WSDL schema. This section is automatically populated when a schema is
specified (depending on the verb) in the HTTP Verb list. For GET and DELETE verbs, the
parameters are bound to the WSDL schema. For POST and PUT verbs, the inbound payload is
mapped to the WSDL schema.

1. Click the Generate Sample URL for operation icon (first icon) to generate a sample URL
based on all previously entered binding information. This option is typically selected after all
parameters are configured.

2. Click the Add parameter icon (second icon) to manually add a mapping parameter.

3. In the Style column, click a specific row to invoke a list that enables you to select query or
template. Template variables are typically used for POST and PUT operations. Query
parameters are typically used for GET and Delete operations.

4. In the Type column, select the data type of the parameter. All XSD primitive types are
supported. In most case, when the parameter is automatically generated from a schema, the
type is already set for you. If you create a new parameter, the Type column enables you to
select the type from the list.

5. In the Default Value column, you can set a default value at design time for a parameter. If a
URI parameter is missing in the REST request, the corresponding default value is used by
the REST service.

6. In the Expression column, click a specific row to invoke the Expression Builder dialog for
adding an XPath expression function. If there is no schema defined for an operation, the
Expression Builder parameter only shows property variables and no message variables. The
expression binds a parameter to a field in the WSDL schema. In all cases in which the
parameter has been automatically generated (based on an existing or generated schema),
this expression is already generated for you. You only add an expression if you want to add a
new parameter and bind it to something else, such as a runtime property. The XPath
expression specifies the location in which to insert the particular URI parameter in the
normalized message.

To assign values to query parameters:

1. Double-click the invoke action that calls the REST binding component.

2. Select Properties > To.

3. Select the query parameter from the dropdown list and assign a variable or expression to it.
For more information about the invoke activity, see Invoke Activity.

Chapter 37
Creating REST Support in Service and Reference Binding Components

37-7

Table 37-2 (Cont.) REST Operation Binding Dialog

Field Description

Response The HTTP Statuses section enables you to specify the HTTP status code. You can enter multiple
statuses, separated by spaces. For a reference, these are the possible statuses that are
interpreted as successful. For a service, these are the possible successful statuses that can be
returned (as set by a service component such as BPEL).

The Payload section enables you to specify the possible response payloads: XML (default),
JSON, URL-Encoded, Text, Opaque or no payload. You can choose Other option and define
custom payload type. The output returned at runtime depends on the incoming requests. Click
Generate Sample Payload to view a sample of the selected response payload.

The Schema section displays the response schema being used if a possible payload type has
been selected. If no payload has been selected, this field is not displayed.

• Schema URL: Displays the response schema to use. If you have not specified a schema,
you can select to browse for an existing schema or create a new schema from a sample with
the Native Format Builder wizard. This wizard enables you to create a schema from a JSON
interchange format, XML sample, URI-encoded format, or URI sample. For more information,
see How to Generate Schemas from Samples.

• Element: Displays the element to use.
The Fault Bindings section displays the response fault name, type, status, and schema. If fault
details are defined in the WSDL file, a fault binding is automatically created in this section. You
can also manually define fault bindings.by clicking the Add icon. For more information about
faults, see What You May Need to Know About REST Fault Binding.

REST Method Definition Dialog
Use the REST Method Definition dialog to define REST methods for a SOA REST service or
reference that uses WADL and untyped payloads without schemas.

Table 37-3 REST Method Definition Dialog

Field Description

Method Enter a name for the REST method being defined.

Resource Select an existing URL resource path from the list or click the Add icon to add a new resource
path.

HTTP Verb Select the verb to be bound to the WSDL operation (for example, GET, PUT, POST, or DELETE).

Description Enter an optional description. This is the description text to be published for the method.

Chapter 37
Creating REST Support in Service and Reference Binding Components

37-8

Table 37-3 (Cont.) REST Method Definition Dialog

Field Description

Request The Payload section enables you to specify the format of the request payload:
• JSON (default selection)
• XML
• URL-encoded
• Text
• Opaque
• No Payload
• Other: Configure the REST binding with multipart form data by selecting the Other option

and specify multipart/formdata. With the multipart form data support, you can receive and
upload files to the Oracle Database. You can process both inbound (upload) and outbound
(read files) requests and call REST APIs that support multipart form data.

Click Generate Sample URL for Method to view a sample URL for the method operation.

The URI Parameters section enables you to specify the mapping from the REST query or
template parameters to the corresponding runtime property.

1. Click the Generate Sample URL for Method icon (first icon) to generate a sample URL
based on all previously entered binding information. This option is typically selected after all
parameters are configured.

2. Click the Add parameter icon (second icon) to manually add a mapping parameter.

3. Under Style, select query or template. Template variables are typically used for POST and
PUT operations. Query parameters are typically used for GET and Delete operations.

4. Under Type, select the data type of the parameter. All XSD primitive types are supported.

5. Under Default Value, you can set a default value at design time for a parameter. If a URI
parameter is missing in the REST request, the corresponding default value is used by the
REST service.

6. The Runtime Property displays the name of the runtime property to which the method
parameter gets mapped.

To assign values to query parameters:

1. Double-click the invoke action that calls the REST binding component.

2. Select Properties > To.

3. Select the query parameter from the dropdown list and assign a variable or expression to it.
For more information about the invoke activity, see Invoke Activity.

Response The Success and Failure sections enable you to select the response Payload and Status for the
method.

The default response payload is No Payload. The default HTTP status code for a successful
operation is 204 and that for a failed operation is 500.

Example: REST Enable an Existing Service Component
You can REST enable an existing service component by using the REST enable component
or service option from the Configuration Shortcut found in the REST Binding Configuration
Wizard.

1. Right-click the Exposed Services swimlane in the SOA Composite Editor, and select
Insert > REST

The REST Binding Configuration Wizard is displayed.

2. Select Service will invoke components using WSDL interfaces.

Chapter 37
Creating REST Support in Service and Reference Binding Components

37-9

3. Click Next.

4. Under Configuration Shortcut, select REST enable component or service.

The Service Explorer dialog is displayed.

5. Expand the navigator to select the WSDL of the service component (for this example, a
BPEL process), and click OK. This action enables you to map WSDL operations to
resource paths and HTTP verbs.

Figure 37-1 WSDL Selected to Map REST Operations to Resource Paths and HTTP
Verbs

The REST Binding Configuration Wizard Resources page is updated to appear as shown
in Resources Pages of the REST Binding Configuration Wizard.

The selected WSDL is read and the WSDL operation is mapped to resource paths and
HTTP verbs in the Operation Bindings section. Note that the Resource Path and HTTP
Verb sections require additional configuration mapping. This is also indicated by the value
of no in the Complete column.

Chapter 37
Creating REST Support in Service and Reference Binding Components

37-10

Figure 37-2 Resources Page of the REST Binding Configuration Wizard

The resource path and HTTP verb for each of the operations now require configuration.
For this example, there is only one operation. Depending upon your WSDL, multiple
operations can be displayed in the Operation column.

6. In the Resource Path table of the Resources section, double-click the default path entry
of /. You can also define the resource path before starting the operation bindings. In this
case, the selected resource is used for the new bindings.

This invokes the Update REST Resource dialog.

7. In the Relative Path field, enter the resource path (for this example, /orders), and click
OK.

Figure 37-3 Update REST Resource Dialog

Operation mappings that have the old resource path are updated with the new resource
path in the Resources section and Operation Bindings section (for this example, /
orders). If you are updating an existing component, all operations are typically updated.

You can create additional resource paths as needed by clicking the Add icon in the
Resources section to display the Create REST Resource dialog.

The HTTP Verb column of the Operation Bindings section now requires configuration.

Chapter 37
Creating REST Support in Service and Reference Binding Components

37-11

8. In the Operation Bindings section, select an operation and click Edit.

The REST Operation Binding dialog is displayed. This dialog enables you to select the
HTTP verb for the operation and populate the URI Parameters section in order to bind an
HTTP verb and resource to a WSDL operation and map REST parameters to the WSDL
schema of the component service. See REST Operation Binding Dialog.

9. From the Resource list, select the new resource, as needed.

The URI Parameters section is updated with your selection.

10. From the HTTP Verb list, select the operation (for this example, GET).

The URI Parameters section is updated with your selection.

The style (query or template) is automatically selected in the Style column of the URI
Parameters section.

If you select or create a new REST resource that contains a template variable, Oracle
JDeveloper attempts to create the template parameter with the same name. If a parameter
with that name already exists, it is reused (and made into a template parameter if it was a
query parameter). Duplicate parameter names are never created. You receive an error if a
duplicate parameter is manually created.

11. Click the Response tab to view HTTP status code, payload output type, schema, and fault
binding details. Since the schema was already defined in this example, those sections are
disabled from editing.

12. Double-click the fault name to invoke the REST Fault Binding dialog. For more details
about this dialog, click the Help icon or see What You May Need to Know About REST
Fault Binding.

13. Edit as necessary, and click OK.

14. Click OK to return to the Resources page. The HTTP verb you added is displayed.

15. In the Operation Bindings section, select an operation and click Edit to define resources
and HTTP verbs for any remaining operations.

16. Click OK to return to the SOA Composite Editor.

The REST service is wired to the BPEL process service component.

Example: Adding Resources and Operations from a WADL Service to a REST
Reference

You can add resources and operations to a REST reference from a WADL service using the
Configuration Shortcut found in the REST Binding Configuration Wizard.

1. Right-click the External References swimlane in the SOA Composite Editor, and select
Insert, then REST.

The REST Binding Configuration Wizard is displayed.

2. Enter a Name for your REST service or reference.

The Type field displays Reference.

3. Select Service will be invoked by components using WSDL interfaces.

4. Click Next.

5. Under Configuration Shortcut, select Add resources and operation mappings based
on WADL Service.

The WADL Location dialog is displayed.

Chapter 37
Creating REST Support in Service and Reference Binding Components

37-12

6. Specify a WADL file through one of the following methods:

• In the WADL URL field, specify the URL of the WADL file, then go to the next step.

or

a. Click the Search icon to invoke the WADL Chooser dialog for selecting the WADL file.
Options are provided for finding WADLs in the local file system or project, in the
design-time Oracle Metadata Services Repository (MDS Repository), or by connecting
to an application server to find WADLs associated with deployed Oracle SOA Suite or
Oracle Service Bus services.

Figure 37-4 WADL Chooser Dialog

b. Select the WADL file, and click OK.

7. Click OK.

8. Select copy schema artifacts into the project to copy schemas referenced in the WADL
file to the local project because they are used by the new REST adapter reference. This is
the recommended method.

9. See the table below for the next step based on the type of WADL file selected.

Chapter 37
Creating REST Support in Service and Reference Binding Components

37-13

Table 37-4 WADL File Status

If the Selected WADL File
Was Provided By...

Then... Next Step...

An Oracle SOA Suite or
Oracle Service Bus REST
service

The Resources page is
completely configured with
information from the WADL
file. All operations, resource
paths, and verbs are
displayed in the Operation
Bindings section. A
complete configuration is
indicated by a value of yes
in the Complete column of
the Operation Bindings
section.

View the Resources page and its
contents, and click OK.

Chapter 37
Creating REST Support in Service and Reference Binding Components

37-14

Table 37-4 (Cont.) WADL File Status

If the Selected WADL File
Was Provided By...

Then... Next Step...

A non-Oracle SOA Suite or
Oracle Service Bus REST
service such as a Jersey
service.

The WADL Parsing Issues
dialog indicates that
additional configuration is
required.

a. Review the list of recommended
corrective actions in the WADL
Parsing Issues dialog, then click
OK. The same information is
written to the Oracle JDeveloper
Log window for later reference.

A WADL file for a non-Oracle SOA
Suite or Oracle Service Bus
service typically does not include
all required information. You must
manually complete configurations.
In many cases, the WADL file
used does not supply the
schemas required to bind the
REST reference to a WSDL
operation. The schemas can often
be generated using the Native
Format Builder wizard using a
sample payload provided by the
REST service provider.

Figure 37-5 WADL Parsing
Issues

The Resources page is displayed.

For a REST binding that requires
further configuration, a value of no
is displayed in the Complete
column of the Operation
Bindings section. Tool tips in the
Complete column for each no

Chapter 37
Creating REST Support in Service and Reference Binding Components

37-15

Table 37-4 (Cont.) WADL File Status

If the Selected WADL File
Was Provided By...

Then... Next Step...

value identify what is missing so
that you can perform corrective
actions. The OK button is disabled
as long as at least one operation
has a value of no in the Complete
column.

Note:

All error and warnings
are also displayed in
more detail in the Log
window in Oracle
JDeveloper. For
example, the Log
window contains
entries such as the
following:

ERROR at [resource
path: containers/
{container}, method
name: PUT,
request/response:
response,
representation
mediaType:
application/xml] -
No schema
information is
available for
containers/
{container}.PUT
response. Please
specify a schema.

b. Perform the corrective actions
indicated by the tool tips. When
configuration has been
successfully completed, a value of
yes is displayed for all operations
in the Complete column of the
Operation Bindings section.

For more information about the
SOA design-time MDS
Repository, see Managing Shared
Data with the Design-Time MDS
Repository .

Chapter 37
Creating REST Support in Service and Reference Binding Components

37-16

How to Consume REST-Based Integrations Created in Oracle Integration
from SOA Composite Applications

The REST Adapter can connect to REST-based integrations created in Oracle Integration
through the Oracle Integration Connect plugin, which allows you to browse integrations created
in Oracle Integration (in Oracle Cloud) and select them for use in on-premises SOA composite
applications.

This type of integration may be called a hybrid integration—an integration developed in the
cloud that can be used in on-premises applications. The integration must meet the following
criteria to be used in SOA composite applications:

• Have a REST endpoint

• Be deployed and activated

• Have a Swagger document for the integration

To consume an integration in a SOA composite application, perform the following tasks:

• Create an Oracle Integration Connection

• Create a REST Binding

• Configure OWSM Policies on the REST Reference

• Configure and Deploy the Application

Create an Oracle Integration Connection
To create an Oracle Integration connection:

1. In the Oracle JDeveloper Resources window, click the New icon, select IDE
Connections, then select Oracle Integration Connection.

2. In the Create Oracle Integration Connection dialog, enter a name for the connection in the
Connection Name field.

3. In the URL field, enter the hostname and port number of the Oracle Integration instance.

4. Enter the User Name and Password of the Oracle Integration instance.

5. Click Test Connection and accept the security certificate.

6. Click OK.

Create a REST Binding
To create a REST binding:

1. In Oracle JDeveloper, right-click in the project design window (in the External References
swimlane), select Insert, then REST.

2. In Step 1 of the REST Binding Configuration Wizard, enter a name for the REST binding.

3. Click Next.

4. In Step 2 of the REST Binding Configuration Wizard, select the integration in one of two
ways:

Chapter 37
Creating REST Support in Service and Reference Binding Components

37-17

• Create a REST binding by selecting an integration:

– In the WADL or OpenAPI Chooser dialog, with the Oracle Integration Connect
plugin highlighted, select the connection that you created for the Oracle Integration
instance.

Chapter 37
Creating REST Support in Service and Reference Binding Components

37-18

If a connection does not exist for the Oracle Integration instance you need, you
can create a new connection. To create a connection, either click the Create new

connection icon or follow the steps in Create an Oracle Integration
Connection to open the Create Oracle Integration Connection dialog.

– Select the integration you want to use.

Click the Information icon to display details about the integration, including
name, version, description, and a View OpenAPI button to view the OpenAPI
document for the integration.

– Click OK.

– Click Finish in the wizard.

• Create a REST binding using the OpenAPI Document URL:

– In the OpenAPI URL field, enter the URL of the OpenAPI document for the
integration you want to use.

You can find this URL by selecting the integration in the OpenAPI Chooser dialog;
the OpenAPI document URL is displayed in the Selection field at the bottom of the
wizard. You can also obtain the OpenAPI URL in external Oracle Integration
Generation 2 and Oracle Integration 3 by clicking the How to run icon next to the
integration name, and clicking the Endpoint URL link.

Chapter 37
Creating REST Support in Service and Reference Binding Components

37-19

The wizard fetches the contents of the OpenAPI document, converts it into WADL,
and displays the resources.

– Click Finish.

Configure OWSM Policies on the REST Reference
If the Oracle Integration endpoint has configured policies, configure appropriate SOA OWSM
policies on the REST reference:

1. Right-click the created REST business object and select Configure Policy.

2. In the Policy Configuration screen, select From OWSM Policy Store.

3. Click the + icon for the policy type you wish to configure.

4. Select the policy.

5. Click Save.

Configure and Deploy the Application
To configure and deploy your application to use the integration:

1. Complete your application by adding Inbound and BPEL Process to invoke the REST
reference.

2. Deploy your application to the SOA server.

3. Test your application.

How to Invoke OAuth-Protected Oracle Integration REST Endpoints from
SOA Composite Applications

You can configure OAuth2.0 authentication in Oracle SOA Suite to access Oracle Integration
services.

This document assumes OAuth2.0 Client Credentials as the grant type. To use a different grant
type, see About OAuth2 with Oracle Web Services Manager.

With this new feature, you can invoke OAuth-protected Oracle Integration REST endpoints
from a SOA composite application. To do so, perform the following steps.

• Get Oracle Integration Cloud Instance Details

• Create a Keystore

• Design a SOA Composite and Invoke a REST-Triggered Oracle Integration

• Import SSL Certificates of Oracle Identity Cloud Service and Oracle Integration

Get Oracle Integration Cloud Instance Details
Contact your Oracle Integration Cloud administrator to create, configure, and activate an
Oracle Identity Cloud Service application.

See Add a Confidential ApplicationAdd a Confidential Application in Administering Oracle
Identity Cloud Service.

Note the client ID and client secret of your application, along with the Oracle Integration
instance details.

Chapter 37
Creating REST Support in Service and Reference Binding Components

37-20

https://docs.oracle.com/en/middleware/fusion-middleware/ws-manager/12.2.1.4/security/configuring-authorization-using-oracle-web-services-manager.html#GUID-13F43DB4-C837-42C2-B6C5-6D6E07266415

Create a Keystore
Perform the following steps to create a keystore.

1. Sign in to the Oracle Enterprise Manager Fusion Middleware Control instance:

http://administration_server_host:administration_server_port/em
The default Administration Server port number is 7001.

2. Create a stripe and name it owsm.

a. In the content pane, select WebLogic Domain, then Security, and then Keystore.

b. Click Create Stripe.

c. Enter owsm and then, click OK.

3. Create a keystore in the owsm stripe.

a. Select the owsm stripe you created and click Create Keystore.

Chapter 37
Creating REST Support in Service and Reference Binding Components

37-21

b. Enter the name of the keystore.

c. Set the protection type to Policy. (Password protected KSS keystores are not
supported in this release.)

d. Clear the Grant Permission check box.

e. Do not specify a code base URL.

f. Click OK.

Design a SOA Composite and Invoke a REST-Triggered Oracle Integration
Create a SOA composite application with a BPEL process service component. See Creating a
SOA Application and Getting Started with Oracle BPEL Process Manager in Developing SOA
Applications with Oracle SOA Suite.

Using the REST Adapter, connect to REST-based integrations created in Oracle Integration
through the Oracle Integration Connect plugin, which allows you to browse integrations created
in Oracle Integration (in Oracle Cloud) and select them for use in on-premises SOA composite
applications.

Chapter 37
Creating REST Support in Service and Reference Binding Components

37-22

Note:

If you are using Oracle Integration Cloud Generation 2, you can create either a basic
auth or an OAuth connection to browse through the REST integrations. If you are
using Oracle Integration Cloud 3, you must create an OAuth connection to browse
through the REST integrations.

See How to Consume REST-Based Integrations Created in Oracle Integration from SOA
Composite Applications

The completed setup looks as follows:

Chapter 37
Creating REST Support in Service and Reference Binding Components

37-23

Import SSL Certificates of Oracle Identity Cloud Service and Oracle Integration
1. Open the HTTPS URL of the Oracle Integration Cloud instance.

2. Click the padlock icon to the left of the URL.

3. Under Secure Connection, select More Information.

4. Go to the Security tab and click View Certificates.

5. In Certificate Viewer dialog, click the Details tab and select each certificate, such as PEM,
Secure Server CA and Root CA.

6. Click Export and save the certificates.

7. Import the Oracle Identity and Oracle Integration certificates to the configured SOA trust
store of the environment. After importing the certificates, restart the SOA server to see the
changes take effect.

Note:

• Perform the above step only if you use self-signed certificates and the trust
store in the Oracle SOA Suite instance does not already contain the self-
signed certificates.

• To import the certificates to the configured SOA trust store, refer to the
keytool commands in Import Certificates of External Web Services with
HTTPS in Oracle SOA Suite.

• The configured SOA trust store might differ based on the environment.

8. Create credential keys. The credential keys are used in the owsm policies that are
attached to the REST reference in the SOA composite application.

a. Sign in to the Oracle Enterprise Manager Fusion Middleware Control instance:
http://administration_server_host:administration_server_port/em
The default Administration Server port number is 7001.

Chapter 37
Creating REST Support in Service and Reference Binding Components

37-24

Note:

The sign in credentials might differ based on the environment. For example,
secure mode.

b. In the content pane, select WebLogic Domain, then Security, and then Credentials.

c. Click Create Key.

Enter the username and password of your Oracle Identity Cloud Service application.
See Get Oracle Integration Cloud Instance Details.

You have now created two credential keys: oic.user and idcs.client.secret.

9. In Oracle JDeveloper, attach the following policies to the REST reference. See About
Attaching Policies to Web Services and Clients Using Fusion Middleware Control.

Chapter 37
Creating REST Support in Service and Reference Binding Components

37-25

https://docs.oracle.com/en/middleware/fusion-middleware/ws-manager/12.2.1.4/security/attaching-policies-manage-and-secure-web-services.html#GUID-F2078FC5-A465-451D-BBF1-AFC98B1C835A
https://docs.oracle.com/en/middleware/fusion-middleware/ws-manager/12.2.1.4/security/attaching-policies-manage-and-secure-web-services.html#GUID-F2078FC5-A465-451D-BBF1-AFC98B1C835A

• oracle/http_oauth2_token_with_resource_owner_creds_over_ssl_client_policy
• oracle/oauth2_config_client_policy

Note:

The OWSM policies might differ based on the OAuth grant type. The policies
listed above are applicable for OAuth2.0 Client Credentials grant type.

10. Select and edit each policy and add the following configuration override properties.

a. Select and edit oracle/
http_oauth2_token_with_resource_owner_creds_over_ssl_client_policy and add
values for the following properties.

Property Information to Enter

csf.key Enter oic.user.

federated.client.token Enter false.

scope Enter scope received from the Oracle Integration Cloud
administrator.

Click OK.

b. Select and edit oracle/oauth2_config_client_policy and add values for the
following properties.

Property Information to Enter

token.uri Enter the token URI received from the Oracle Integration
Cloud administrator.

oauth2.client.csf.key Enter idcs.client.secret.

idcs:token.uri Enter the token URI received from the Oracle Integration
Cloud administrator.

idcs:oauth2.client.csf.key Enter idcs.client.secret.

Click OK.

11. Deploy and test the SOA composite application. See Deploying SOA Composite
Applications.

How to Configure the REST Adapter Through Shortcuts
You can configure the REST adapter through several shortcuts based on WSDL or WADL files.

To generate a REST service based on a web service deployed on an application
server:

1. From the Oracle JDeveloper main menu, select Window > Application Servers.

2. Right-click a WSDL service and select SOA > Expose as REST. Figure 37-6 provides
details.

Chapter 37
Creating REST Support in Service and Reference Binding Components

37-26

Figure 37-6 Automatic REST Adapter Service Binding Component Configuration

The Create REST Binding dialog is invoked and prepopulated with operation mappings
from the selected WSDL file.

3. Complete any necessary configuration by following the procedures in How to Configure the
REST Adapter as a Service Binding Component in a SOA Composite Application.

Note:

You are prompted to make a local copy of the selected WSDL and its dependent
artifacts. If you select to make a local copy, the binding.ws section for the SOAP
reference binding component contains the original concrete WSDL/endpoint
location that was selected and the copied WSDL is used as the abstract WSDL
(in the composite import, and so on).

When configuration is complete, a REST service binding component is wired to a SOAP
reference binding component. Figure 37-7 provides details.

Figure 37-7 REST Service Binding Component and SOAP Reference Binding
Component Configuration

Chapter 37
Creating REST Support in Service and Reference Binding Components

37-27

To generate a REST reference based on a REST service deployed on an application
server:

1. From the Oracle JDeveloper main menu, select Window > Application Servers.

2. Right-click a REST/WADL service and select SOA > Generate REST Reference.
Figure 37-8 provides details.

Figure 37-8 Automatic REST Adapter Reference Binding Component Configuration

The Create REST Binding dialog is invoked and prepopulated with information from the
selected WADL file.

3. Complete any necessary configuration by following the procedures in How to Configure the
REST Adapter as a Reference Binding Component in a SOA Composite Application.

When configuration is complete, a REST reference binding component is displayed, as
shown in Figure 37-9.

Figure 37-9 REST Adapter Reference Component

To generate a REST service based on a SOA component's WSDL service:
1. In the SOA Composite Editor, right-click a SOA component service or an external

reference, and select the Expose as REST option. Figure 37-10 provides details.

Chapter 37
Creating REST Support in Service and Reference Binding Components

37-28

Figure 37-10 Expose as REST Option

The Create REST Binding dialog is invoked and prepopulated with information from the
selected WADL file.

2. Complete any necessary REST adapter configuration.

When configuration is complete, REST support (for this example, a service binding
component) is created and automatically wired to the interface on which you clicked.
Figure 37-11 provides details.

Figure 37-11 REST Adapter Service Binding Component

How to Generate Schemas Manually
If you do not have a schema or sample data to generate a schema, you can manually enter the
parameters for which to generate a schema. To manually define a schema, click the Add icon,
and select Add operation binding in the Operation Bindings section of the Create REST
Binding dialog.

Note the following guidelines:

• In the URI Parameters section of the REST Operation Binding page, enter the necessary
query or template parameters. You can select a data type for each parameter, but you do
not need to enter an expression. If there is no schema and payload specified, when you
click OK, the parameter schema is automatically generated (embedded in the WSDL).
Parameters that have an expression that is mapped to a runtime property are not included
in the generated schema.

• If there is no schema defined for an operation, the Expression Builder dialog that is
accessible from the Expression column only shows property variables and no message
variables.

For complete instructions about creating REST support, see How to Configure the REST
Adapter as a Service Binding Component in a SOA Composite Application and How to
Configure the REST Adapter as a Reference Binding Component in a SOA Composite
Application.

How to Generate Schemas from Samples
You can generate schemas from sample files, including JSON interchange format.

Chapter 37
Creating REST Support in Service and Reference Binding Components

37-29

1. In the Request section of the REST Operation Binding dialog, click the Define Schema
for Native Format icon to the right of the Schema URL field. Figure 37-12 provides
details.

Figure 37-12 Define Schema for Native Format Icon

The Native Format Builder wizard is displayed.

2. Proceed through the initial pages of the wizard until you access the Choose Type page.

This page enables you to select to generate schemas from different format types.
Figure 37-13 provides details.

Figure 37-13 Types From Which to Generate Schemas

3. Select an appropriate type.

Each type provides an area in which to paste a JSON, XML, or URL sample or select a
sample file to import.

For more information about JSON interchange formats, see What You May Need to Know
About Converting a JSON Interchange Format to a REST Schema.

For complete instructions about creating REST support, see How to Configure the REST
Adapter as a Service Binding Component in a SOA Composite Application and How to
Configure the REST Adapter as a Reference Binding Component in a SOA Composite
Application.

How to Use Global Token Variables
You can assign global token variables for the host name, port number, and protocol in the
Base URI field of the Create REST Binding dialog.

To use global token variables:

1. Above the SOA Composite Editor, click the Binding URL Tokenizer icon.

2. Select the REST external reference, and click the Edit icon.

3. Specify the mdm-url-resolver.xml file or manually enter values for host, port, and protocol
(http or https), and click OK.

The values that you assign to the tokens are then substituted in place of the hard-coded
HTTP host and port values in the location attribute of the binding.ws element of the

Chapter 37
Creating REST Support in Service and Reference Binding Components

37-30

composite.xml file. For more information, see Creating Tokens for Use in the Binding
URLs of External References.

How to Set REST Header Properties
Normalized message properties are available for certain standard HTTP headers. These
properties are displayed for selection in the Properties tab of receive and reply activities in a
BPEL process in Oracle JDeveloper, as shown in Figure 37-14. These header properties are
not propagated by default across the service engines. You must manually propagate them by
providing the appropriate assignment logic.

Figure 37-14 Normalized Message Properties in Receive and Reply Activities

Inbound and Outbound Headers
For inbound cases in which an external client is interacting with a SOA REST service, you can
configure the service to send a hyperlink to the next resource with which the client interacts.
This hyperlink can be sent in the payload of the response or the HTTP link response header.
The following normalized message properties build and return the next link:

• rest.binding.requestBaseURI

This property is available on the request message. It holds the base URI of the REST
service. In the SOA composite application, this can be combined with the path of another
resource in the same REST service to build an absolute URL linking back to that resource.

• rest.binding.http.Link

When this property is set on the response message, a link header is added to the HTTP
response. The value of this header is the value of the normalized message property.

For outbound cases in which the SOA composite application is invoking an external REST
service, the service may return a response with the next link either in the link header or the
payload. The following normalized message properties are available to help get the next link
and invoke the resource located at that link:

• rest.binding.http.Link

If the HTTP response from the external REST service contains a link header, a
rest.binding.http.Link property is added to the response message. The value of this
property is the value in the link header.

• rest.binding.requestURI

The resource located at the next link can be invoked by setting the
rest.binding.requestURI property on the request message. If set, the URL in this property
overrides the URL provided at design time. It invokes the external REST service.

Chapter 37
Creating REST Support in Service and Reference Binding Components

37-31

There are several preconditions that must be satisfied when a SOA composite application is
invoking REST resources based on the next link it receives from the external REST service:

• The potential resources that can be invoked must be designed in the REST reference
binding component at design time.

• The structure of the request and response must be known and modeled at design time.

For information about setting normalized message properties in the Properties tab, see
Propagating Normalized Message Properties Through Message Headers.

Custom Header Support
REST services and references are capable of handling custom HTTP headers. Table 37-5
provides details.

Table 37-5 Custom Header Support

Direction Service Side Reference Side

Request Any HTTP headers that come in the request
are propagated as normalized message
properties. The headers are appended with
rest.binding.http.header-name. These
headers are available in the service engine
as part of normalized message properties.
For example, any individual header can be
obtained with the BPEL process in the
receive and reply activity properties.

All normalized message properties prefixed
with rest.binding.http.* are added as
HTTP headers to the HTTP request. The
REST service removes the prefix
rest.binding.http. from the header name.
before attaching the headers to the HTTP
request.

Response All normalized message properties prefixed
with rest.binding.http.* are added as
HTTP headers to the HTTP response. The
REST service removes the prefix
rest.binding.http. from the header name
before attaching the headers to the HTTP
response.

Any HTTP headers coming in the response
are propagated as normalized message
properties. The headers are appended with
rest.binding.http.header-name. These
headers are available in the service engine
as part of normalized message properties.
For example, any individual header can be
obtained with the BPEL process in the
receive and reply activity properties.

What You May Need to Know About REST Fault Binding
You define REST fault binding response details in the REST Fault Binding dialog, as shown in
Figure 37-15. If fault details are already defined in the WSDL file, a fault binding is
automatically created in the Fault Bindings section of the REST Operation Binding dialog. You
can also manually define fault bindings.by clicking the Add fault binding icon in the Fault
Bindings section.

Chapter 37
Creating REST Support in Service and Reference Binding Components

37-32

Figure 37-15 REST Fault Binding Dialog

By default, the fault status is 400 when there is a fault payload and 404 when there is no fault
payload.

Fault binding details are based on your selection in the Create REST Binding dialog:

• If you selected REST enable component or reference, fault bindings are automatically
generated based on faults defined in the WSDL file.

• If you selected Add operation binding, you must configure the fault bindings to be
supported, which are added to the WSDL being generated.

The Fault Bindings section of the REST Operation Binding dialogs shows the response fault
name, type, status, and schema. Figure 37-16 provides details.

Figure 37-16 Fault Bindings Definition

What You May Need to Know About Converting a JSON Interchange
Format to a REST Schema

You can select to create a REST schema from a JSON interchange format sample in the
Choose Type dialog of the Native Format Builder wizard, as shown in Figure 37-13. During
schema generation, the wizard attempts to do the following:

• Generate a REST schema with no namespace information

• Consume a JSON interchange format sample with no namespace information and
generate an XML with the correct namespaces

Chapter 37
Creating REST Support in Service and Reference Binding Components

37-33

Note:

Use the JVM property soa.rest.nillable.support to turn on nillable support for
SOA REST service. Values are:

• false (default): always returns null for an empty string in the response. For
example, if the payload includes data "mileage" : "", the response returns
"mileage" : null

• true: differentiates between "" and null. For example, if the payload includes
data "mileage" : "", the response returns "mileage" : ""

To set soa.rest.nillable.support to true:

• include attribute nillable="true" in the NXSD element

• include attribute xsi:nil="true" in the XML element

Example:

When soa.rest.nillable.supported is true, the mileage element returns "" or
null, matching what is provided as input ("" or null).

{
 "sampleData" : {
 "dateTime" : "2022-04-07 10:58:30",
 "mileage" : ""
 },
 "userInfo" : {
 "user" : "Davidson",
 "ctryCode" : "IN"
 }
}

When soa.rest.nillable.supported is false (default), the mileage element always
returns null, regardless of what is provided as input ("" or null).

{
 "sampleData" : {
 "dateTime" : "2022-04-07 10:58:30",
 "mileage" : null
 },
 "userInfo" : {
 "user" : "Davidson",
 "ctryCode" : "IN"
 }
}

There are cases in which the conversion cannot be handled.

• Sibling elements with duplicate names under a sequence group element cannot be
converted because this translates to an object with duplicate keys in JSON, which is not
valid.

Chapter 37
Creating REST Support in Service and Reference Binding Components

37-34

• Namespace information is retained to enable the JSON interchange format sample, shown
in the following example, to be converted. This is because the underlying schema has
elements and attributes from multiple namespaces.

<schema xmlns:us="http://xmlns.oracle.com/addresses/us"
xmlns:india="http://xmlns.oracle.com/addresses/india"
targetNamespace="http://xmlns.oracle.com"
xmlns="http://www.w3.org/2001/XMLSchema" elementFormDefault="qualified">
 <import ...>
 <element name="Person">
 <complexType>
 <choice>
 <element ref="us:Address"/>
 <element ref="india:Address"/>
 </choice>
 </complexType>
 </element>
</schema>
<schema targetNamespace="http://xmlns.oracle.com/addresses/us"
xmlns="http://www.w3.org/2001/XMLSchema" elementFormDefault="qualified">
 <element name="Address">
 <complexType>
 <sequence>
 <element name="Street" type="xsd:string"/>
 <element name="City" type="xsd:string"/>
 <element name="State" type="xsd:string"/>
 <element name="ZipCode" type="xsd:integer" minOccurs="0"/>
 </sequence>
 </complexType>
 </element>
</schema>
<schema targetNamespace="http://xmlns.oracle.com/addresses/india"
xmlns="http://www.w3.org/2001/XMLSchema" elementFormDefault="qualified">
 <element name="Address">
 <complexType>
 <sequence>
 <element name="Street" type="xsd:string"/>
 <element name="City" type="xsd:string"/>
 <element name="District" type="xsd:string" minOccurs="0"/>
 <element name="State" type="xsd:string"/>
 <element name="PinCode" type="xsd:integer" minOccurs="0"/>
 </sequence>
 </complexType>
 </element>
</schema>

What You May Need to Know About REST References Calling REST
Services in the Same Node

The SOAIncomingRequests_maxThreads property by default is configured based in the
SOADataSource data source in Oracle WebLogic Remote Console. This setting may be not
enough for REST services under a heavy load (for example, if you have 200 concurrent users
in a scenario in which a REST reference is calling a REST service within the same node). You
must increase the SOAIncomingRequests_maxThreads value to 400 to avoid the exception error
shown in the following example:

<May 2, 2014 10:16:11 AM PDT> <Error> <oracle.soa.bpel.system> <BEA-000000>
<cube engineJTA transaction is not in active state.
The transaction became inactive when executing activity "" for instance

Chapter 37
Creating REST Support in Service and Reference Binding Components

37-35

"30,023", bpel engine can not proceed further without an active transaction.
please debug the invoked subsystem on why the transaction is not in active
status. the transaction status is "MARKED_ROLLBACK".
The reason was The execution of this instance "30023" for process
"BuyCoffeeBPELProcess" is supposed to be in an active jta transaction, the
current transaction status is "MARKED_ROLLBACK", the underlying exception is
"Service Unavailable" .
Consult the system administrator regarding this error.
, Cikey=30023, FlowId=20014, Current Activity Key=30023-BpInv0-BpSeq0.3-3,
Current Activity Label=InvokeCreateOrder,
ComponentDN=default/CoffeeShopClient!1.0*soa_19d4a881-115b-42c5-824d-1af3fa766
62d/BuyCoffeeBPELProcess
oracle.fabric.common.FabricInvocationException: Service Unavailable
 at
. . .
. . .

Using JavaScript and JSON in BPEL Components
The BPEL component can work both with XML and JSON variables. You can use JavaScript at
all places where you can use XPath expressions. JavaScript can be used for predicates,
expressions, and within the JavaScript BPEL activity.

Using JSON Variables

You can choose to create a BPEL process based on an existing REST Service and add the
methods from the REST service. This is illustrated in the following image.

Chapter 37
Using JavaScript and JSON in BPEL Components

37-36

The Receive activity of the BPEL process is automatically configured to use a JSON object
variable in order to receive the input payload data.

Chapter 37
Using JavaScript and JSON in BPEL Components

37-37

You can create additional schema-less JSON variables for your BPEL process, as required.

Setting the Expression Language for Your BPEL Process

In BPEL Designer, right-click a blank area in the BPEL process area. The Edit Process dialog
appears. Set the Query Language and Expression Language fields, as required. To use
JavaScript you can use js.

Chapter 37
Using JavaScript and JSON in BPEL Components

37-38

Using JavaScript Expressions

You can use JavaScript at all places where you can use XPath expressions. You can use these
expressions in BPEL activities and conditional and iterative constructs. This section provides
some examples.

The following example shows a JavaScript expression used in an Assert activity. The
expression checks to see if the type of process input is an object.

Chapter 37
Using JavaScript and JSON in BPEL Components

37-39

The process variable is a global variable that is accessible to the JavaScript context during
execution.

The following code shows a JavaScript condition that might be used in a While activity:

process.counter < 10

The following code shows a JavaScipt expression that might appear in a Wait activity:

bpel.until(process.counter + 3)

The following code shows a JavaScript expression that might appear in a branch of the Switch
activity, and helps to test for odd numbers:

process.counter % 2 == 1

Using the JavaScript Activity

You can use the JavaScript activity in a BPEL process to add JavaScript code snippets or
blocks of code. To add a JavaScript activity, drag the JavaScript icon from the Components
window to the appropriate place in your BPEL process. You can double-click the added
JavaScript activity to edit it. The following image shows JavaScript code that calls xpath and
bpel object functions.

Chapter 37
Using JavaScript and JSON in BPEL Components

37-40

xpath is a global object that binds to all XPath functions. So, for example, var o =
process.output.xpath creates a new xpath object, and o.refid = xpath.ora.getECID()
calls the getECID function for the ora namespace prefix.

The following JavaScript code might appear in a JavaScript activity to write output to the server
console and BPEL audit log:

console.log("input: ", process.input)
console.log("output: ", process.output)
audit.log("output: ", process.output)

Importing JavaScript Files in Your BPEL Process

You can import external JavaScript files, containing JavaScript functions, into your BPEL
process. The JavaScript functions contained in these files then become available to be used
within your BPEL process. The following lines use the import and include statements to fetch
the main.js and one.js files into a BPEL process:

<bpelx:js include="jslib/main.js"/>
<bpelx:js import="jslib/one.js"/>
<import location="jslib/lib.js" importType="javascript"/>

The difference between include and import is that the import statement ensures that the file
is included only once irrespective of the number of imports.

The following image shows the source window of a BPEL process with the include/import
statements. Notice where the JavaScript files appear under the project folder.

Chapter 37
Using JavaScript and JSON in BPEL Components

37-41

Testing the REST Adapter with the HTTP Analyzer
You can test the REST adapter with the HTTP Analyzer.

To test the REST adapter with the HTTP Analyzer:

1. Copy the WADL file URL from the home page of the SOA composite application in Oracle
Enterprise Manager Fusion Middleware Control, as shown in Figure 37-17.

Figure 37-17 WADL File URL in Oracle Enterprise Manager Fusion Middleware
Control

2. In the HTTP Analyzer, click the Open URL icon, enter the WADL URL copied from Oracle
Enterprise Manager Fusion Middleware Control, and press Return.

The WADL file is included with the POST method. Figure 37-18 provides details.

Figure 37-18 WADL File and POST Method

Chapter 37
Testing the REST Adapter with the HTTP Analyzer

37-42

3. Click Test.

4. Copy and paste a sample request XML payload into the Request HTTP Headers section
and click Send Request. You can also specify JSON formats. Figure 37-19 provides
details.

Figure 37-19 Request Message

After processing completes, a response message is displayed. For this example, a
message with an order status of Shipped is displayed. Figure 37-20 provides details.

Figure 37-20 Response Message

Chapter 37
Testing the REST Adapter with the HTTP Analyzer

37-43

Testing and Configuring REST Reference Binding Components
in Oracle Enterprise Manager Fusion Middleware Control

You can initiate instances of SOA composite applications that include REST binding
components from the Test Instances page in Oracle Enterprise Manager Fusion Middleware
Control. This page enables you to test any WSDL or WADL. For more information, see
Initiating a Test Instance of a Business Flow in Administering Oracle SOA Suite and Oracle
Business Process Management Suite.

You can configure properties for REST reference binding components in Oracle Enterprise
Manager Fusion Middleware Control. For more information, see Configuring Properties for
REST Adapters in Administering Oracle SOA Suite and Oracle Business Process Management
Suite.

Configure Proxy Host and Proxy Port for an External REST
Endpoint

You can configure your SOA composite application to use a proxy to call an external REST
service. With the following two parameters, you can specify the details of the proxy host and
proxy port.

Configuration Property Property Name Description

HTTP Proxy

Proxy Host oracle.webservices.prox
yHost

URL of proxy to which client
will send the request.

For example, www-
proxy.mycompany.com

Proxy Port oracle.webservices.prox
yPort

Port number of the proxy.

For example, 80.

Multipart Form Data Support for REST Binding
When you define the REST operations, you can specify the format of the request payload in
the Payload section. The format can be XML (default selection), JSON, URL-encoded, Text,
Opaque or no payload. You can choose Other option and define custom payload type. Click
Generate Sample Payload to view a sample of the selected request payload.

To configure the REST binding component in a SOA composite application, see How to
Configure the REST Binding Component in a SOA Composite Application.

With the 14.1.2.0.0 release, the REST binding supports multipart form data format. Configure
the REST binding with multipart form data by selecting the Other option and specify multipart/
formdata.

Chapter 37
Testing and Configuring REST Reference Binding Components in Oracle Enterprise Manager Fusion Middleware Control

37-44

With the multipart form data support, you can receive and upload files to the Oracle Database.

You can process both inbound (upload) and outbound (read files) requests and call REST APIs
that support multipart form data.

Inbound Request

When you send a POST request to an API endpoint, you can opt for multipart/form data
content type in the request payload and upload files as part of the request. The REST binding
validates the content type and the input files and saves the files to the Oracle Database.

The BPEL process receives the file reference from the Oracle Database in the response. To
view the audit trail and process flow of the instance, see Viewing the Audit Trail and Process
Flow in the Flow Trace.

The following code sample shows a sample response with file reference and file name.

<?xml version="1.0" encoding="UTF-8"?><Variable1>
<json>
{
 "files": [
 {
 "ref": "f72338fe-eb13-11ed-b349-53b017953438",
 "key": "demofile2"
 },

Chapter 37
Multipart Form Data Support for REST Binding

37-45

 {
 "ref": "f72582ef-eb13-11ed-b349-53b017953438",
 "key": "demofile1"
 }
]
}</json>
</Variable1>

Outbound Request

When you send a POST request with the file reference and name, the file is fetched from
Oracle Database, and the system provides the input stream to the target service.

Sample JSON Request

{
 "files": [
 {
 "ref": "6fd90879-eb0d-11ed-b349-53b017953438",
 "key": "ddemofile21"
 },
 {
 "ref": "6fd89349-eb0d-11ed-b349-53b017953438",
 "key": "demofile11"
 }
]
}

Sample JSON Response

<?xml version="1.0" encoding="UTF-8"?><Variable1>
<json>
{
 "files": [
 {
 "ref": "61052bb5-eb16-11ed-b349-53b017953438",
 "key": "demofile21"
 },
 {
 "ref": "61072786-eb16-11ed-b349-53b017953438",
 "key": "demofile11"
 }
]
}</json>
</Variable1>

Chapter 37
Multipart Form Data Support for REST Binding

37-46

38
Integrating Enterprise JavaBeans with
Composite Applications

This chapter describes how to integrate Enterprise JavaBeans with SOA composite
applications through use of Java interfaces or service data object (SDO) parameters. It
describes how to design an SDO-based Enterprise JavaBeans application, create an
Enterprise JavaBeans service in Oracle JDeveloper, design an Enterprise JavaBeans client to
invoke Oracle SOA Suite, specify Enterprise JavaBeans roles, and configure JNDI access.
This chapter includes the following sections:

• Introduction to Enterprise JavaBeans Binding Integration with SOA Composite Applications

• Designing an SDO-Based Enterprise JavaBeans Application

• Creating an Enterprise JavaBeans Service in Oracle JDeveloper

• Designing an Enterprise JavaBeans Client to Invoke Oracle SOA Suite

• Specifying Enterprise JavaBeans Roles

• Configuring Enterprise JavaBeans Binding Support in the Credential Store Framework

Note:

Support is provided for Enterprise JavaBeans 3.0 and Enterprise JavaBeans 2.0
references (that is, when calling Enterprise JavaBeans 2.0 beans). Support is not
provided for Enterprise JavaBeans 2.0 services (that is, when being called with
Enterprise JavaBeans 2.0 beans).

Introduction to Enterprise JavaBeans Binding Integration with
SOA Composite Applications

There are two options for integrating Enterprise JavaBeans with SOA composite applications:

• Through use of Java interfaces (does not use a WSDL file to define the interface)

• Through use of SDO-based EJBs (uses a WSDL file to define the interface)

This chapter describes both options.

You can also use the spring service component to integrate Java interfaces with SOA
composite applications. For information about using the spring service component, see
Integrating the Spring Framework in SOA Composite Applications.

Integration Through Java Interfaces
You can integrate Enterprise JavaBeans with Oracle SOA Suite through Java interfaces,
therefore eliminating the need for WSDL file definitions. This type of integration provides
support with the following objects:

38-1

• Native Java objects

• Java Architecture for XML Binding (JAXB)

Java interfaces differ from SDO interfaces, which are defined in a WSDL file because of the
XML-centric nature of service components such as Oracle BPEL Process Manager, Oracle
Mediator, and others. No SDO parameters are required when using Java interfaces.

You use the Create EJB Service dialog in Oracle JDeveloper to define this integration, as
described in How to Integrate Java Interface-based Enterprise JavaBeans with SOA
Composite Applications. This option does not require the use of a WSDL file. Once complete,
the interaction is defined in the composite.xml file through the interface.java entry, as
shown in the example that follows. The Java interface classes must be compatible with the
WSDL file used by the connecting components (that is, if a message is sent to a BPEL
component). BPEL services are defined with a WSDL, and the Java interface classes must be
compatible with that WSDL.

<service name="PortfolioService">
 <interface.java interface="com.bigbank.services.MyService" />
 binding.ejb uri="MyJNDI" ejb-version="EJB3"/>

The Java class must be in the project's loader to be available to the user interface. The class
must be in SCA-INF to be deployed (not all JAR files in the project class path are deployed).
This typically means that the class must be in the SCA-INF/classes directory or in a JAR in the
SCA-INF/lib directory. However, it can also be an interface from the system class path.

For information about JAXB, see Solutions Guide for Oracle TopLink and Integrating the Spring
Framework in SOA Composite Applications.

Integration Through SDO-Based EJBs
SDOs enable you to modify business data regardless of how it is physically accessed.
Knowledge is not required about how to access a particular back-end data source to use SDOs
in a SOA composite application. Consequently, you can use static or dynamic programming
styles and obtain connected and disconnected access.

Enterprise JavaBeans are server-side domain objects that fit into a standard component-based
architecture for building enterprise applications with Java. These objects become distributed,
transactional, and secure components.

Many Oracle SOA Suite interfaces are described by WSDL files. Enterprise JavaBeans
interfaces are described by Java interfaces. Invocations between the two are made possible in
Oracle SOA Suite by an Enterprise JavaBeans Java interface that corresponds to an Oracle
SOA Suite WSDL interface.

Through this interface, Oracle SOA Suite provides support for the following:

• Invoking Enterprise JavaBeans with SDO parameters through an Enterprise JavaBeans
reference binding component. In this scenario, a SOA composite application passes SDO
parameters to an external Enterprise JavaBeans application.

• Invoking an Enterprise JavaBeans service binding component through Enterprise
JavaBeans with SDO parameters. In this scenario, an Enterprise JavaBeans application
passes SDO parameters into a SOA composite application.

Figure 38-1 provides an overview.

Chapter 38
Introduction to Enterprise JavaBeans Binding Integration with SOA Composite Applications

38-2

Figure 38-1 SDO and Enterprise JavaBeans Binding Integration

You use the Create EJB Service dialog in Oracle JDeveloper to define this integration, as
described in How to Integrate SDO-based Enterprise JavaBeans with SOA Composite
Applications. This option requires the use of a WSDL file. Once complete, the WSDL
interaction is defined in the composite.xml file through the interface.wsdl entry, as shown in
the following example:

<service name="PortfolioService">
 <interface.wsdl
 interface="http://bigbank.com/#wsdl.interface(PortfolioService)" />
 <binding.ejb javaInterface="java.class.ejb.com" serviceId="PortfolioService"
 jarLocation="soaejb.jar"/>

Designing an SDO-Based Enterprise JavaBeans Application
This section provides a high-level overview of the steps for designing an Enterprise JavaBeans
application. For more information, see the following documentation:

• Developing Enterprise JavaBeans for Oracle WebLogic Server

• Developing Fusion Web Applications with Oracle Application Development Framework

• Oracle JDeveloper online help table of contents for the following topics:

– Enterprise JavaBeans

– SDO for Enterprise JavaBeans/Java Persistence API (JPA)

Access the help by selecting Help > Table of Contents in Oracle JDeveloper.

How to Create SDO Objects Using the SDO Compiler
Select one of the following options for creating SDO objects:

• EclipseLink is an open source, object-relational mapping package for Java developers.
EclipseLink provides a framework for storing Java objects in a relational database or
converting Java objects to XML documents.

Use EclipseLink to create SDO objects. For instructions on installing, configuring, and
using EclipseLink to create SDO objects, visit the following URL:

http://wiki.eclipse.org/EclipseLink/Installing_and_Configuring_EclipseLink
• Oracle JDeveloper enables you to create an SDO service interface for JPA entities. While

this feature is more tailored for use with the Oracle Application Development Framework
(ADF) service binding in a SOA composite application, you can also use this feature with
the Enterprise JavaBeans service binding in SOA composite applications. The SDO
service interface feature generates the necessary WSDL and XSD files. If you use this
feature, you must perform the following tasks to work with the Enterprise JavaBeans
service binding:

Chapter 38
Designing an SDO-Based Enterprise JavaBeans Application

38-3

http://wiki.eclipse.org/EclipseLink/Installing_and_Configuring_EclipseLink

– Browse for and select this WSDL file in the WSDL Chooser dialog, which is accessible
from the WSDL URL field of the Create EJB Service dialog (described in Creating an
Enterprise JavaBeans Service in).

– Add the BC4J Service Runtime library to the SOA project. To add this library, double-
click the project and select Libraries and Classpath to add the library in the Project
Properties dialog. You are now ready to design the business logic.

For more information, see the SDO for Enterprise JavaBeans/JPA topic in the Oracle
JDeveloper online help (this includes instructions on how create to an SDO service
interface).

How to Create a Session Bean and Import the SDO Objects
To create a session bean and import the SDO objects:

1. Create a simple session bean with the Create Session Bean wizard. For details on using
this wizard, see the Creating a Session Bean topic in the Oracle JDeveloper online help.

2. Import the SDO objects into your project through the Project Properties dialog.

3. Add logic and necessary import and library files. In particular, you must import the
Commonj.sdo.jar file. JAR files can be added in the Libraries and Classpath dialog. This
dialog is accessible by double-clicking the project and selecting Libraries and Classpath
in the Project Properties dialog. You are now ready to design the logic.

4. Expose the method to the remote interface.

How to Create a Profile and an EAR File
To create a profile and an EAR file:

1. Create an Enterprise JavaBeans JAR profile in the Project Properties dialog.

2. Create an application level EAR file in the Application Properties dialog.

How to Define the SDO Types with an Enterprise JavaBeans Bean
An Enterprise JavaBeans bean must define the SDO types. The example that follows provides
details.

Chapter 38
Designing an SDO-Based Enterprise JavaBeans Application

38-4

Caution:

Where to call define can be nontrivial. You must force the types to be defined before
remote method invocation (RMI) marshalling must occur and in the right helper
context. The EclipseLink SDO implementation indexes the helper instance with the
application name or class loader.

When you invoke the Enterprise JavaBeans method, an application name is available
to the EclipseLink SDO runtime. The EclipseLink SDO looks up the context using the
application name as the key. Ensure that the types are defined when the application
name is visible. When an Enterprise JavaBeans static block is initialized, the
application name is not created. Therefore, putting the define in the static block does
not work if you are using the default application name-based context. One way to get
the application name initialized is to allocate more than two instance beans using the
weblogic-ejb-jar.xml file.

InputStreamReader reader = new InputStreamReader(url.openStream());
StreamSource source = new StreamSource(reader);
List<SDOType> list = ((SDOXSDHelper) XSDHelper.INSTANCE).define(source, null);

The weblogic-ejb-jar.xml file is the descriptor file that must be added in the deployment jar.
The weblogic-ejb-jar.xml file is automatically created when you create a session bean. This
file must be modified by adding the entries shown in the following example:

<?xml version = '1.0' encoding = 'windows-1252'?>
<weblogic-ejb-jar xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.bea.com/ns/weblogic/weblogic-ejb-jar
 http://www.bea.com/ns/weblogic/weblogic-ejb-jar/1.0/weblogic-ejb-jar.xsd"
 xmlns="http://www.bea.com/ns/weblogic/weblogic-ejb-jar">

 <weblogic-enterprise-bean>
 <ejb-name>HelloEJB</ejb-name>
 <stateless-session-descriptor>
 <pool>
 <initial-beans-in-free-pool>2</initial-beans-in-free-pool>
 </pool>
 </stateless-session-descriptor>
 </weblogic-enterprise-bean>

 </weblogic-ejb-jar>

Figure 38-2 provides a code example of a session bean with SDO logic defined.

Chapter 38
Designing an SDO-Based Enterprise JavaBeans Application

38-5

Figure 38-2 Session Bean with Defined SDO Logic

How to Use Web Service Annotations
To generate the WSDL file, the Enterprise JavaBeans interface must use the following web
service annotations. Use of these annotations is described in JSR 224: Java API for XML-
Based Web Services (JAX-WS) 2.0. Visit the following URL for details:

http://www.jcp.org/en/jsr/detail?id=224

In addition, only a document/literal WSDL is currently supported by the Enterprise JavaBeans
binding layer.

Table 38-1 describes the annotations to use.

Table 38-1 Annotations

Name Description

@javax.jws.WebResult;
@javax.jws.WebParam;

Customizes the mapping of an individual parameter to a web service
message part and XML element. Both annotations are used to map
SDO parameters to the correct XML element from the normalized
message payload.

Chapter 38
Designing an SDO-Based Enterprise JavaBeans Application

38-6

http://www.jcp.org/en/jsr/detail?id=224

Table 38-1 (Cont.) Annotations

Name Description

@javax.jws.Oneway; Denotes a method as a web service one-way operation that has only
an input message and no output message. The Enterprise JavaBeans
binding component does not expect any reply in this case.

@javax.xml.ws.RequestWra
pper;
@javax.xml.ws.ResponseWr
apper;

Tells the Enterprise JavaBeans binding components whether the
deserialized object must be unwrapped or whether a wrapper must be
created before serialization.

An Enterprise JavaBeans interface can be generated from an existing
WSDL or obtained by some other means. If the WSDL does not exist, it
can be generated.

@javax.xml.ws.WebFault; Maps WSDL faults to Java exceptions. This annotation captures the
fault element name used when marshalling the JAXB type generated
from the global element referenced by the WSDL fault message.

@oracle.webservices.Port
ableWebService

Specifies the targetNamespace and serviceName used for the
WSDL. For example:

@PortableWebService(
targetNamespace = "http://hello.demo.oracle/",
serviceName = "HelloService")

The serviceName is used as the WSDL file name. If it is not specified
in the annotations, the service endpoint interface (SEI) class name is
used instead.

Add appropriate method
parameter annotations

Controls how message elements and types are mapped to the WSDL.
For example, if your interface is in doc/lit/bare style, add the
following annotations to the methods.

@WebMethod
@SOAPBinding(parameterStyle =
SOAPBinding.ParameterStyle.BARE)

@SDODatabinding Adds to the interface class to use the existing schema instead of a
generated one. For example:

@SDODatabinding(schemaLocation = "etc/HelloService.xsd")

The following example provides an example of an Enterprise JavaBeans interface with
annotations.

@Remote
@PortableWebService(targetNamespace = "http://www.example.org/customer-example",
 serviceName = "CustomerSessionEJBService")
@SDODatabinding(schemaLocation = "customer.xsd")
public interface CustomerSessionEJB {
 @WebMethod(operationName="createCustomer")
 @SOAPBinding(parameterStyle = SOAPBinding.ParameterStyle.BARE)
 @WebResult(targetNamespace = "http://www.example.org/customer-example",
 partName = "parameters", name = "customer")
 CustomerType createCustomer();
 @WebMethod(operationName="addPhoneNumber")
 @SOAPBinding(parameterStyle = SOAPBinding.ParameterStyle.BARE)
 @WebResult(targetNamespace = "http://www.example.org/customer-example",
 partName = "parameters", name = "customer")
 CustomerType addPhoneNumber(@WebParam(targetNamespace =
 "http://www.example.org/customer-example", partName = "parameters", name =

Chapter 38
Designing an SDO-Based Enterprise JavaBeans Application

38-7

 "phone-number")PhoneNumber phNumber);
}

How to Deploy the Enterprise JavaBeans EAR File
To deploy the EAR file from Oracle JDeveloper:

1. Select the Application context menu to the right of the application name.

2. Select Deploy and deploy the EAR file to a previously created application server
connection.

Creating an Enterprise JavaBeans Service in Oracle JDeveloper
This section describes how to create an Enterprise JavaBeans reference binding component or
Enterprise JavaBeans service binding component in Oracle JDeveloper. The Enterprise
JavaBeans service enables the Enterprise JavaBeans application to communicate with Oracle
SOA Suite and Oracle SOA Suite to communicate with remote Enterprise JavaBeans.

This section describes how to create the following types of integrations:

• Integration through a Java interface

• Integration through an SDO interface

How to Integrate Java Interface-based Enterprise JavaBeans with SOA
Composite Applications

You can create the following types of Java interface-based Enterprise JavaBeans integrations
with SOA composite applications:

• Invoke Java interface-based Enterprise JavaBeans from a SOA composite application

• Invoke a SOA composite application from Enterprise JavaBeans using a Java interface

To integrate Java interface-based Enterprise JavaBeans with SOA composite
applications:

1. Go to the SOA composite application in the SOA Composite Editor.

2. In the Technology section of the Components window, drag the EJB icon into the
appropriate swimlane:

• To invoke an Enterprise JavaBeans reference binding component from a SOA
composite application, drag the icon to the External References swimlane.

• To invoke a SOA composite application from an Enterprise JavaBeans service binding
component, drag the icon to the Exposed Services swimlane.

3. In the Interface section, click Java (if it is not already selected).

4. The Create EJB Service dialog displays the fields shown in Figure 38-3.

Chapter 38
Creating an Enterprise JavaBeans Service in Oracle JDeveloper

38-8

Figure 38-3 Create EJB Service for Java Interface

5. Enter the details shown in Table 38-2. The fields are the same regardless of the swimlane
in which you dragged the EJB icon.

Table 38-2 Create EJB Service Dialog

Field Value

Name Accept the default value or enter a different name.

Type Displays the following value:

• Displays Reference if you dragged this icon into the External
References swimlane.

• Displays Service if you dragged this icon into the Exposed
Services swimlane.

Version Select the version of EJB to support: EJB2 or EJB3 (the default
selection).

Note: This field only displays if you dragged the EJB Service icon
into the External References swimlane.

Interface Select Java.

JNDI Name Enter the JNDI name of your Enterprise JavaBeans.

Jar File Click the Search icon to select the EJB JAR file created in
Designing an SDO-Based Enterprise JavaBeans Application. The
JAR Chooser dialog searches for and displays JAR files starting in
the SCA-INF/lib subdirectory of the current project directory. The
JAR file includes the interface class and any supporting classes.

Note: If you select a JAR file outside of the current project, Oracle
JDeveloper creates a copy of the JAR file in the SCA-INF/lib
directory of the current project. When prompted, click OK to accept.

Chapter 38
Creating an Enterprise JavaBeans Service in Oracle JDeveloper

38-9

Table 38-2 (Cont.) Create EJB Service Dialog

Field Value

Java Interface Select one of the following options.

• Enter the Java interface manually.
• Click the Browse for Class File icon to invoke the Class

Browser dialog for selecting the Java interface.

The class must be available in the runtime classpath. There are
several ways to make the class available in the runtime
classpath. One method is to put the class in the SCA-INF/
classes directory or in a JAR file in the SCA-INF/lib directory
at design time to ensure that it gets deployed. However, it can
also be an interface from the system class path.

There are several ways to make the class available at runtime,
but one way is to put the class or JAR into SCA-INF at design
time so that it gets deployed.

Note: If you use the Jar File field, you do not need to add a
new JAR file to the project by selecting Project Properties >
Libraries and Classpath > Add JAR/Directory from the
Application main menu.

• Click the Generate Java Interface from a WSDL icon to select
the WSDL file from which to generate the Java interface. This
option is the same as described in How to Integrate SDO-
based Enterprise JavaBeans with SOA Composite
Applications.

6. Click OK.

How to Integrate SDO-based Enterprise JavaBeans with SOA Composite
Applications

You can create the following types of SDO-based Enterprise JavaBeans integrations with SOA
composite applications:

• Invoke SDO-based Enterprise JavaBeans from a SOA composite application

• Invoke a SOA composite application from Enterprise JavaBeans using SDO parameters

To integrate SDO-based Enterprise JavaBeans with SOA composite applications:

1. Go to the SOA composite application in the SOA Composite Editor.

2. In the Technology section of the Components window, drag the EJB icon into the
appropriate swimlane, as described in Table 38-3.

Table 38-3 Swimlane for EJB Service

To Invoke... Drag the EJB Service to this Swimlane...

SDO-based Enterprise JavaBeans from a SOA
composite application

External References

A SOA composite application from Enterprise
JavaBeans using SDO parameters

Exposed Services

The Create EJB Service dialog is displayed.

3. In the Interface section, click WSDL.

Chapter 38
Creating an Enterprise JavaBeans Service in Oracle JDeveloper

38-10

4. See the step in Table 38-4 based on the swimlane in which you dragged the EJB service.

Table 38-4 Swimlane Location

If You Dragged the EJB Service to this Swimlane... Then Go To...

External References 44.a

Exposed Services 44.b

a. View the Create EJB Service dialog that displays in the External References
swimlane, as shown in Figure 38-4.

Figure 38-4 Create EJB Service in External References Swimlane

b. View the Create EJB Service dialog that displays in the Exposed Services swimlane,
as shown in Figure 38-5.

Chapter 38
Creating an Enterprise JavaBeans Service in Oracle JDeveloper

38-11

Figure 38-5 Create EJB Service in Exposed Services Swimlane

5. Enter values appropriate to your environment. The fields that display differ based on the
swimlane in which you dragged the EJB Service icon. Table 38-5 provides details.

Table 38-5 Create EJB Service Dialog

Field Value

Name Accept the default value or enter a different name.

Type Displays the following value:

• Displays Reference if you dragged this icon into the External
References swimlane.

• Displays Service if you dragged this icon into the Exposed
Services swimlane.

Version Note: This field only displays if you dragged the EJB Service icon
into the External References swimlane.

Select the version of EJB to support: EJB2 or EJB3 (the default
selection). If you select WSDL from the Interface list, only EJB3 is
available for selection.

Interface Select WSDL.

JNDI Name Note: This field only displays if you dragged the EJB Service icon
into the External References swimlane.

Enter the JNDI name of your Enterprise JavaBeans.

Jar File Click the Search icon to select the EJB JAR file created in
Designing an SDO-Based Enterprise JavaBeans Application. The
JAR Chooser dialog searches for and displays JAR files starting in
the SCA-INF/lib subdirectory of the current project directory. The
JAR file includes the interface class and any supporting classes.

Note: If you select a JAR file outside of the current project, Oracle
JDeveloper creates a copy of the JAR file in the SCA-INF/lib
directory of the current project. When prompted, click OK to accept.

Chapter 38
Creating an Enterprise JavaBeans Service in Oracle JDeveloper

38-12

Table 38-5 (Cont.) Create EJB Service Dialog

Field Value

Java Interface Click the Browse icon to invoke the Class Browser dialog for
selecting the fully qualified Java class name of the previously
created Enterprise JavaBeans interface. This class must exist in the
selected JAR file. If a JAR file is not specified, it is assumed that the
class is in the /SCA-INF/classes subdirectory of the current project
directory.

Note: If you use the Jar File field, you do not need to add a new
JAR file to the project by selecting Project Properties > Libraries
and Classpath > Add JAR/Directory from the Application main
menu.

WSDL URL Note: Ensure that you have created the annotations for the
Enterprise JavaBeans interface before generating the WSDL file, as
described in How to Use Web Service Annotations.

Click the second icon to the right to generate a WSDL file that
represents the Enterprise JavaBeans interface.

If you created SDO objects through Oracle JDeveloper, as
described in How to Create SDO Objects Using the SDO Compiler,
ensure that you select the WSDL file that was automatically
generated with this option.

Port Type Select the port type.

Callback Port Type Select the callback port type (for asynchronous services).

6. Click OK.

Designing an Enterprise JavaBeans Client to Invoke Oracle SOA
Suite

This section describes how to design an Enterprise JavaBeans client to invoke Oracle SOA
Suite.

How to Create a Java Interface-Based Client to Invoke Oracle SOA Suite
Use the standard Enterprise JavaBeans client. The following example provides details:

InitialContext ic = new InitialContext(jndiProps);
SimpleEjb svc = (SimpleEjb) ic.lookup("PassthroughRef");
String result = svc.addBreadCrumb("RemoteTest");

How to Invoke an SDO-Enterprise JavaBeans Service
To invoke an SDO - Enterprise JavaBeans service from Enterprise JavaBeans, you must use
the client library. Follow these guidelines to design an Enterprise JavaBeans client.

• Look up the SOAServiceInvokerBean from the JNDI tree.

• Get an instance of SOAServiceFactory and ask the factory to return a proxy for the
Enterprise JavaBeans service interface.

• You can include a client side Enterprise JavaBeans invocation library
($FMW_HOME/soa/soa/modules/oracle.soa.fabric_11.1.1/fabric-client.jar or the
fabric-runtime.jar file located in the Oracle JDeveloper home directory or Oracle

Chapter 38
Designing an Enterprise JavaBeans Client to Invoke Oracle SOA Suite

38-13

WebLogic Server) in the Enterprise JavaBeans client application. For example, the
fabric-runtime.jar file can be located in the
JDev_Home\jdeveloper\soa\modules\oracle.soa.fabric_11.1.1 directory.

If the Enterprise JavaBeans application is running in a different JVM than Oracle SOA
Suite, the Enterprise JavaBeans application must reference the ejbClient library. The
code that follows provides an example.

You must specify the complete path of the service ID with the MyTestEJBService
parameter of serviceFactory.createService (for example, "default/MyTestProject!
1.0/MyTestEJBService"). If the complete path is not specified, you receive an
EJBException- Could not locate the service error.

Properties props = new Properties();
 props.put(Context.INITIAL_CONTEXT_FACTORY,
 "weblogic.jndi.WLInitialContextFactory");
 props.put(Context.PROVIDER_URL, "t3://" + HOSTNAME + ":" + PORT);
 InitialContext ctx = new InitialContext(props);
 SOAServiceInvokerBean invoker =
 (SOAServiceInvokerBean)
 ctx.lookup("SOAServiceInvokerBean#oracle.integration.platform.blocks.sdox.ejb.api.
SOAServiceInvokerBean");

 //-- Create a SOAServiceFactory instance
 SOAServiceFactory serviceFactory = SOAServiceFactory.newInstance(invoker);

 //-- Get a dynamice proxy that is essentially a remote reference
 HelloInterface ejbRemote =
 serviceFactory.createService("complete_path/MyTestEJBService", HelloInterface.class);

 //-- Invoke methods
 Item item = (Item) DataFactory.INSTANCE.create(Item.class);
 item.setNumber(new BigInteger("32"));
 SayHello sayHello = (SayHello)
 DataFactory.INSTANCE.create(SayHello.class);
 sayHello.setItem(item);

 SayHelloResponse response = ejbRemote.sayHello(sayHello);
 Item reply = response.getResult();

Specifying Enterprise JavaBeans Roles
To specify role names required to invoke SOA composite applications from any Java EE
application, you add the roles names in the Enterprise JavaBeans service configuration. The
Enterprise JavaBeans service checks to see if the caller principal has the security role. The
following example provides details:

<service name="EJBService" ui:wsdlLocation="BPELEJBProcess.wsdl">
 <interface.wsdl
interface="http://xmlns.oracle.com/EJBApplication/EJBProject/BPELEJBProcess#wsdl.int
erface(BPELProcess1)"callbackInterface="http://xmlns.oracle.com/EJBApplication/
EJBProject/BPELEJBProcess#
wsdl.interface(BPELEJBProcessCallback)"/>
<property name="rolesAllowed">Superuser, Admin</property>
 <binding.ejb javaInterface="java.class.ejb.com" serviceId="EJBService"
 jarLocation="soaejb.jar"/>
</service>

Chapter 38
Specifying Enterprise JavaBeans Roles

38-14

Configuring Enterprise JavaBeans Binding Support in the
Credential Store Framework

This section describes how to configure Enterprise JavaBeans binding support in the credential
store framework.

How to Configure Enterprise JavaBeans Binding Support in the Credential
Store Framework

All Enterprise JavaBeans bindings support using the Credential Store Framework (CSF) to
store JNDI user access credentials, and not just service data object (SDO) Enterprise
JavaBeans bindings.

You can edit the following Enterprise JavaBeans binding JNDI properties in Oracle Enterprise
Manager Fusion Middleware Control:

• java.naming.factory.initial
• java.naming.provider.url
• java.naming.dns.url
• java.naming.factory.url.pkgs
• java.naming.factory.url.pkgs
• java.naming.security.authentication
• java.naming.security.protocol
• java.naming.security.principal
• java.naming.security.crendentials
• oracle.jps.credstore.map
• oracle.jps.credstore.key

To configure Enterprise JavaBeans binding support in the credential store framework:
To edit these properties, perform the following steps in Oracle Enterprise Manager Fusion
Middleware Control:

1. Right-click the SOA composite application that includes the Enterprise JavaBeans binding
component.

2. Select Service/Reference Properties.

3. Select the Enterprise JavaBeans binding component.

4. Click the Properties tab.

5. Set the appropriate properties.

To specify the oracle.jps.credstore.map and oracle.jps.credstore.key properties
Oracle recommends that you store the JNDI lookup principal/credentials in the CSF map by
specifying the properties oracle.jps.credstore.map and oracle.jps.credstore.key. Storing
the user name/password directly as properties is not secure.

Chapter 38
Configuring Enterprise JavaBeans Binding Support in the Credential Store Framework

38-15

1. In Oracle Enterprise Manager Fusion Middleware Control, navigate to one of the following
to display the Credentials page.

a. Domain > Security > Credentials (if the application is deployed on Oracle WebLogic
Server).

or

b. Cell > Security > Application Policies (if it is deployed on WebSphere Application
Server).

2. To add a new map, select Create Map.

3. Click the map to add a key entry for oracle.jps.credstore.map.

4. Repeat Steps 2 and 3 to add oracle.jps.credstore.key.

To grant SOA infrastructure runtime access to the CSF map store
After completing these steps, you must grant SOA Infrastructure runtime access to the CSF
map store.

1. Expand the WebLogic Domain.

2. Right-click soa-infra, and select Security > System Policies.

3. Search for type CodeBase, which includes the name fabric-runtime.

4. Select the entry and edit it to add a credential store access permission.

5. Grant at least the read action to the map.

Chapter 38
Configuring Enterprise JavaBeans Binding Support in the Credential Store Framework

38-16

39
Using Direct Binding to Invoke Composite
Services

This chapter describes the Direct Binding Invocation API and how to invoke a SOA composite
application. It describes how to create an inbound direct binding service, how to create an
outbound direct binding reference, and how to set an identity for Java 2 Platform, Standard
Edition (J2SE) clients invoking direct binding. Samples of using the Direct Binding Invocation
API are also provided.
This chapter includes the following sections:

• Introduction to Direct Binding

• Introduction to the Direct Binding Invocation API

• Exception Handling with SOA Direct Transport

• Invoking a SOA Composite Application in Oracle JDeveloper with the Invocation API

• Samples Using the Direct Binding Invocation API

Introduction to Direct Binding
A common way to invoke a composite is to use SOAP over HTTP. This is enabled by creating
a SOAP service for your composite using web service binding. However, you can also use
direct binding, which provides a tighter integration alternative. Direct binding enables Java
clients to directly invoke composite services, bypassing the intermediate conversion to XML
required with web service binding.

Direct binding provides two types of invocation styles:

• Inbound direct binding

The direct service binding component allows an external client to send messages using the
Direct Binding Invocation API, where the Direct Binding Invocation API takes the JNDI
connection parameters and creates a connection object on behalf of the client.

• Outbound direct binding (or direct reference binding)

The direct reference binding component provides support for sending SOA messages
directly to external services over a remote method invocation (RMI). These external
services must implement the SOA invocation API (the same as the direct inbound
invocation API).

In the case of direct outbound binding, the connection object is created with the JNDI
name of the external service bean configured for the binding.

Direct binding must be associated with the interface.wsdl, providing the interface clause and,
optionally, the callbackInterface clause. The associated WSDL must be imported into the
composite.

The service binding component also publishes a modified version of the WSDL that advertises
the direct binding.

39-1

Direct Service Binding Component
A sample configuration using the direct service binding component is shown in the following
example:

<service name="direct2">
 <interface.wsdl
interface="http://xmlns.oracle.com/asyncNonConvDocLit#wsdl.interface(asyncNonConvD
ocLit)"
callbackInterface="http://xmlns.oracle.com/asyncNonConvDocLit#wsdl.interface(async
NonConvDocLitCallback)" xmlns:ns="http://xmlns.oracle.com/sca/1.0"/>
 <binding.direct/>
</service>

Direct Reference Binding Component
The direct reference binding component requires the following information to connect to a user-
provided SOA invoker:

• Properties:

A set of properties that defines the DirectConnection for the end service (see
oracle.soa.management.facade.Locator).

• ConnectionFactory class name (see oracle.soa.management.facade.Locator).

The ConnectionFactory class must implement the
oracle.soa.api.invocation.DirectConnectFactory interface.

If the ConnectionFactory class name is not specified, the default
oracle.soa.api.JNDIDirectConnectionFactory is used. To use the default connection
factory, you must supply the lookup name for the EJB.

• Address used by the external service:

This address value is not processed by the binding component, but is passed on to the
service bean during invocation.

• addressingVersion (optional):

The default addressing version used is 2005/08.
• useSSLForCallback:

Use a secure socket layer (SSL) for the callback JNDI connection. If this flag is set to true,
then the WS-Addressing replyTo header instructs the service to call back at an SSL JNDI
port.

A sample configuration is shown in the following example:

<reference name="HelloReference" ui:wsdlLocation="HelloService.wsdl">
 <interface.wsdl
 interface="http://hello.demo.oracle/#wsdl.interface(HelloInterface)"/>
 <binding.direct connection-factory="oracle.soa.api.JNDIDirectConnectionFactory"
 addressingVersion="http://www.w3.org/2005/08/addressing"
 address="soadirect://syncOut"
 useSSLForCallback="false">
 <property
 name="oracle.soa.api.invocation.direct.bean">MyDirectTestServiceBean#directEjb.Tes
tInvoker</property>
 <property
 name="java.naming.factory.initial">weblogic.jndi.WLInitialContextFactory</property

Chapter 39
Introduction to Direct Binding

39-2

>
 <property name="java.naming.provider.url">t3://@host:@port</property>
 </binding.direct>
</reference>

The direct binding components support both synchronous and asynchronous invocation
patterns. Figure 39-1 describes a sample synchronous invocation pattern and Figure 39-2
describes a sample asynchronous invocation pattern.

Figure 39-1 Sample Synchronous Invocation Patterns

Figure 39-2 Sample Asynchronous Invocation Pattern

Chapter 39
Introduction to Direct Binding

39-3

Introduction to the Direct Binding Invocation API
The different packages used in the Direct Binding Invocation API are as follows:

• oracle.soa.management.facade.Locator
The oracle.soa.management.facade.Locator interface exposes a method,
createConnection, which returns a direct connection. The Locator exposes the method
shown in the following example for returning the DirectConnection.

import java.util.Map;
public interface DirectConnectionFactory {
 DirectConnection createDirectConnection(CompositeDN compositeDN,
 String serviceName) throws Exception;

You can use the LocatorFactory implementation to obtain the DirectConnection, as
shown in the following example:

Hashtable jndiProps = new Hashtable();
jndiProps.put(Context.PROVIDER_URL, "t3://" + hostname + ':' + portname + "/soa-
infra");
jndiProps.put(Context.INITIAL_CONTEXT_FACTORY,"weblogic.jndi.WLInitialContextFactory"
);
jndiProps.put(Context.SECURITY_PRINCIPAL,"weblogic");
jndiProps.put(Context.SECURITY_CREDENTIALS,"welcome1");
jndiProps.put("dedicated.connection","true");
Locator locator = LocatorFactory.createLocator(jndiProps);
CompositeDN compositedn = new CompositeDN(domainName, compositename, version);
String serviceName = "HelloEntry";
return locator.createDirectConnection(compositedn, serviceName);

• oracle.soa.api.invocation.DirectConnection
The DirectConnection interface invokes a composite service using direct binding. For
more information, see Java API Reference for Oracle SOA Suite Infrastructure
Management.

• oracle.soa.api.message.Message
The Message interface encapsulates the data exchanged. For more information, see Java
API Reference for Oracle SOA Suite Infrastructure Management.

Synchronous Direct Binding Invocation
Direct binding also supports the synchronous direct invocation with use of the method shown in
the following example:

<T> Message<T> request(String operationName, Message<T> message)
 throws InvocationException, FaultException

Asynchronous Direct Binding Invocation
Asynchronous invocation relies on the WS-Addressing headers set on the message instance.
All headers must adhere to the WS-Addressing specification.

The Direct Binding Invocation API allows the clients to specify the WS-Addressing ReplyTo
SOAP header to communicate a destination by which they can receive responses.

Chapter 39
Introduction to the Direct Binding Invocation API

39-4

Note:

The supported addressing version includes:

• http://www.w3.org/2005/08/addressing
• http://schemas.xmlsoap.org/ws/2004/08/addressing
• http://schemas.xmlsoap.org/ws/2003/03/addressing

An example of the WS-Addressing header used for asynchronous invocation is shown below:

<wsa:MessageID>D6202742-D9D9-4023-8167-EF0AB81042EC</wsa:MessageID>
 <wsa:ReplyTo xmlns:wsa="http://www.w3.org/2005/08/addressing">
 <wsa:Address>sb://testserver:9001/callback</wsa:Address>
 <wsa:ReferenceParameters>
 <soa:callback xmlns:soa="http://xmlns.oracle.com/soa/direct"
 connection-factory="mytest.MyDirectionConnectionFactory">
 <soa:property name="oracle.soa.api.invocation.direct.bean"
 value="myTest.MyDirectConnectionBean"/>
 <soa:property name="java.naming.provider.url" value="t3://test:8001"/>
 <soa:property name="java.naming.factory.initial"
 value="weblogic.jndi.WLInitialContextFactory"/>
 </soa:callback>
 </wsa:ReferenceParameters>
 </wsa:ReplyTo>

Note:

You must qualify the callback and its property elements properly with the SOA direct
namespace.

The direct binding component is responsible for parsing the addressing headers set on the
message instance. In this example, there are two headers: wsa:MessageID and wsa:ReplyTo.
The service binding component makes the following properties available for the internal SOA
components:

• replyToAddress = sb://testserver:9001/callback
• replyToReferenceParameter: element of WSA:ReferenceParameters

Required JAR Files for Compiling and Running the Direct Binding Java
Client Code

The following JAR file is required for compiling the direct binding Java client code:

• $FMWHOME/soa/soa/modules/oracle.soa.mgmt_11.1.1/soa-infra-mgmt.jar
The following JAR files are required for running the direct binding Java client code:

• $FMWHOME/wlserver/server/lib/wlthint3client.jar
• $FMWHOME/soa/soa/modules/oracle.soa.fabric_11.1.1/oracle-soa-client-api.jar

Chapter 39
Introduction to the Direct Binding Invocation API

39-5

http://www.w3.org/2005/08/addressing
http://schemas.xmlsoap.org/ws/2004/08/addressing
http://schemas.xmlsoap.org/ws/2003/03/addressing

SOA Direct Address Syntax
The service paths used with the Direct Binding Invocation API follow the SOA direct address
pattern:

• soadirect:/CompositeDN/serviceName, where CompositeDN stands for composite
distinguished name

In the SOA direct address, the CompositeDN has the following form (label is optional):

domainName/compositeName[!compositeVersion[*label]]

SOA Transaction Propagation
Direct binding supports the SOA transaction propagation feature. You can invoke this feature
from the client in the following ways:

• Begin the Java transaction from the client and, after performing all the database
operations, perform a commit. You should commit the database operations after a
successful commit from the client side.

• Begin the Java transaction from the client side. If a fault is thrown during any operation in
the SOA composite, then roll back the transaction from the client side. This rolls back all
the database operations.

Exception Handling with SOA Direct Transport
For Oracle BPEL to be able to catch SOAP faults thrown using the SOA-Direct binding, the
SOAP Fault has to follow some guidelines. Suppose your service is defined by the following
WSDL port and has a namespace of http://www.example.org/MyService:

<wsdl:portType name="MyServicePortType">
<wsdl:operation name="Execute">
<wsdl:input message="exp:ExecuteRequestMsg"/>
<wsdl:output message="exp:ExecuteResponseMsg"/>
<wsdl:fault name="executeFault" message="exp:ExecuteFaultMsg"/>
<wsdl:fault name="genericFault" message="exp:GenericFaultMsg"/>
</wsdl:operation>
</wsdl:portType>

When throwing a SOAP Fault, you must include the qualified name of the fault as declared in
the WSDL port. For SOAP 1.1 messages, the QName of the WSDL port fault should be
included in the faultcode element as seen bellow:

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/">
 <soapenv:Body>
 <soapenv:Fault xmlns:ns0="http://www.example.org/MyService">
 <faultcode>ns0:genericFault</faultcode>
 <faultstring/>
 <faultactor/>
 <detail>
 <GenericFault xmlns="http://www.example.org/FaultInfo">
 <FaultInfo>

Chapter 39
Exception Handling with SOA Direct Transport

39-6

http://schemas.xmlsoap.org/soap/envelope/
http://www.example.org/MyService
http://www.example.org/FaultInfo

 <ErrorDescription>Error - soap1.1</ErrorDescription>
 </FaultInfo>
 </GenericFault>
 </detail>
 </soapenv:Fault>
 </soapenv:Body>
</soapenv:Envelope>

For SOAP 1.2 messages, the QName of the WSDL port fault should be included in the Code/
Subcode/Value element as seen below:

<soap:Envelope xmlns:soap="http://www.w3.org/2003/05/soap-envelope">
 <soap:Header xmlns:exem="http://www.example.org/MyService"/>
 <soap:Body xmlns:exem="http://www.example.org/MyService">
 <soap:Fault>
 <soap:Fault>
 <soap:Value>soap:Receiver</soap:Value>
 <soap:Subcode>
 <soap:Value xmlns:ns1=" soap:value>"="" target="_blank">http://
www.example.org/MyService">ns1:genericFault</soap:Value>
 </soap:Subcode>
 </soap:Code>
 <soap:Reason>
 <soap:Text xml:lang="pt">Failure calling partner.</soap:Text>
 </soap:Reason>
 <soap:Node>...</soap:Node>
 <soap:Detail>
 <err:GenericFault xmlns:err="http://www.example.org/FaultInfo">
 <err:FaultInfo>
 <err:ErrorDescription>Error Desc</
err:ErrorDescription>
 </err:FaultInfo>
 </err:GenericFault>
 </soap:Detail>
 </soap:Fault>

 </soap:Body>
</soap:Envelope>

Invoking a SOA Composite Application in Oracle JDeveloper with
the Invocation API

The Direct icon in the Components window in Oracle JDeveloper, as shown in Figure 39-3,
provides support for exchanging SOA messages with SOA over RMI.

Chapter 39
Invoking a SOA Composite Application in Oracle JDeveloper with the Invocation API

39-7

http://www.w3.org/2003/05/soap-envelope
http://www.example.org/MyService
http://www.example.org/MyService
http://www.example.org/MyService
http://www.example.org/MyService
http://www.example.org/FaultInfo

Figure 39-3 Direct Binding Option

Oracle JDeveloper supports creating a direct service binding and a direct reference binding
that invokes either an Oracle Service Bus or another SOA composite.

Note:

For a client to invoke composite services over direct binding, its class path must
include both soa-infra-mgmt.jar, wlthint3client.jar, and oracle-soa-client-
api.jar.

For more information about the Direct Binding Invocation API, see Introduction to the Direct
Binding Invocation API.

How to Create an Inbound Direct Binding Service
You can invoke a SOA composite application using the Direct icon in the Components window
in Oracle JDeveloper.

To create an inbound direct binding service:

1. Open Oracle JDeveloper.

2. From the Components window, select SOA.

3. From the Technology list, drag the Direct icon into the Exposed Services swimlane. The
Create Direct Binding dialog appears.

4. Enter the details shown in Table 39-1.

Table 39-1 Create Direct Binding Dialog Fields and Values

Field Value

Name Enter a name.

Type Select Service from the list.

Reference Target This field is disabled when defining this service in the Exposed
Services swimlane.

WSDL URL The URL location of the WSDL file. If you have an existing WSDL,
then click the Find Existing WSDLs option. Otherwise, click
Generate WSDL from schema(s).

Port Type The port type of the WSDL file. You must select a port from the list.

Callback Port Type The callback port type for asynchronous processes.

Chapter 39
Invoking a SOA Composite Application in Oracle JDeveloper with the Invocation API

39-8

Table 39-1 (Cont.) Create Direct Binding Dialog Fields and Values

Field Value

Use SSL For Callback Select to use SSL for the callback.

Address This field is automatically populated when the WSDL is concrete
and it has at least one binding that is direct.

Provider URL This field is automatically populated when the WSDL is concrete
and it has at least one binding that is direct.

Use local JNDI Provider Select to use the local JNDI provider.

copy wsdl and its
dependent artifacts into the
project

Deselect this check box. If you select this check box, the local
copies of the WSDL file may result in synchronization issues if a
remote WSDL is updated.

When complete, the Create Direct Binding dialog appears as shown in Figure 39-4.

Figure 39-4 Create Direct Binding Dialog

5. Click OK.

The direct binding service displays in the SOA Composite Editor shown in Figure 39-5. The
single arrow in a circle indicates that this is a synchronous, one-way, direct binding
component.

Chapter 39
Invoking a SOA Composite Application in Oracle JDeveloper with the Invocation API

39-9

Figure 39-5 Direct Binding Service

How to Create an Outbound Direct Binding Reference
You can create an outbound direct binding reference using the Direct icon in the Components
window in Oracle JDeveloper to either invoke a SOA composite application or an Oracle
Service Bus.

Note:

When Oracle SOA Suite and Oracle Service Bus are in different domains, you must
enable trust between the domains.

To create an outbound direct binding reference:

1. Open Oracle JDeveloper.

2. From the Components window, select SOA.

3. From the Technology list, drag the Direct icon into the External References swimlane.
The Create Direct Binding dialog appears.

4. Enter the details shown in Table 39-2.

Table 39-2 Create Direct Binding Dialog Fields and Values

Field Value

Name Enter a name.

Type Select Reference from the list.

Reference Target Select the reference target on which you want the direct binding
service to operate:

• Oracle SOA Composite: Creates a direct binding with a SOA
composite application as a reference target.

• Oracle Service Bus: Creates a direct binding with an Oracle
Service Bus as a reference target.

WSDL URL The URL location of the WSDL file. If you have an existing WSDL,
then click the Find Existing WSDLs option.

Port Type The port type of the WSDL file. You must select a port from the list.

Chapter 39
Invoking a SOA Composite Application in Oracle JDeveloper with the Invocation API

39-10

Table 39-2 (Cont.) Create Direct Binding Dialog Fields and Values

Field Value

Callback Port Type The callback port type for asynchronous processes.

Use SSL For Callback Select to use SSL for the callback.

Address This field is automatically populated when you select a concrete
WSDL URL and port type. However, you must manually populate
this field if a nonconcrete WSDL is provided.

Provider URL This field is automatically populated when you select a concrete
WSDL URL and port type. However, you must manually populate
this field if a nonconcrete WSDL is provided.

Use local JNDI Provider Select to use the local JNDI provider.

copy wsdl and its
dependent artifacts into the
project

Deselect this check box. If you select this check box, the local
copies of the WSDL file may result in synchronization issues if a
remote WSDL is updated.

When complete, the Create Direct Binding dialog appears as shown in Figure 39-6. For
more information about using the Oracle SOA Suite services with Oracle Service Bus, see
Chapter "Oracle SOA Suite Transport (SOA-DIRECT)" of Developing Services with Oracle
Service Bus.

Figure 39-6 Create Direct Binding Dialog

5. Click OK.

The direct binding reference displays in the designer shown in Figure 39-7. The single
arrow in a circle indicates that this is a synchronous, one-way direct binding reference
component.

Chapter 39
Invoking a SOA Composite Application in Oracle JDeveloper with the Invocation API

39-11

Figure 39-7 Direct Binding Reference

How to Set an Identity for J2SE Clients Invoking Direct Binding
A user identity can be established when authenticating to the server during the process of
JNDI lookup by passing the JNDI security credential, as shown in the following example:

public static void main(String[] args) throws Exception {
 String operation = "process";

 // This is the request message XML
 String ns = "http://xmlns.oracle.com/DirectBinding_jws/EchoBPEL/BPELProcess1";
 String payloadXML = "<ns1:process xmlns:ns1=\"" + ns + "\">\n" +
 " <ns1:input>wew</ns1:input>\n" +
 "</ns1:process>";

 String serviceAddress = "soadirect:/default/EchoBPEL!1.0/DService1";

 // Specify the direct binding connection properties
 Map<String, Object> props = new HashMap<String, Object>();
 props.put(Context.INITIAL_CONTEXT_FACTORY, "weblogic.jndi.WLInitialContextFactory");
 props.put(Context.PROVIDER_URL, "t3://" + hostname + ':' + portname);
 props.put(Context.SECURITY_PRINCIPAL,username);
 props.put(Context.SECURITY_CREDENTIALS, password);

 // Create the direct binding connection, using those context properties
 DirectConnectionFactory factory = JNDIDirectConnectionFactory.newInstance();

 try {
 DirectConnection dc = factory.createConnection(serviceAddress, props);

 // Parse the XML request message
 DocumentBuilderFactory dbf = DocumentBuilderFactory.newInstance();
 Document doc =
 dbf.newDocumentBuilder().parse(new InputSource(new StringReader(payloadXML)));

 // Prepare the payload for inclusion in the Message object
 Map<String, Element> payload = new HashMap<String, Element>();
 payload.put("payload", doc.getDocumentElement());

 Message<Element> request =

Chapter 39
Invoking a SOA Composite Application in Oracle JDeveloper with the Invocation API

39-12

XMLMessageFactory.getInstance().createMessage(payload);

 Message<Element> response = dc.request(operation, request);
 } finally {
 dc.close();
 }
}

What You May Need to Know About Invoking SOA Composites on Hosts
with the Same Server and Domain Names

If one SOA composite application invokes another SOA composite application on another host
through direct binding, and both composites are on hosts with the same server name and
domain name, the invocation fails.

This is because the Oracle WebLogic Server transaction subsystem requires the domain
names and server names to be different for transaction management to work properly. The
transaction subsystem uses these names to track the location of a server related to a
transaction. If the two servers in the invocation have the same name, the transaction
subsystem can mistakenly confuse the two servers.

Ensure that you use hosts with separate server names and domain names.

Samples Using the Direct Binding Invocation API
This section provides some examples of how the API is used. It describes how the connection
parameter can invoke SOA composite applications over direct binding and how message
objects can be modified to invoke a direct binding invocation.

// The JNDIDirectConnectionFactory can be used to establish SOA instance
// connections for exchanging messages over the direct binding.
DirectConnectionFactory dcFactory = JNDIDirectConnectionFactory.newInstance();

// Connections are created based on the configuration, which is a map of standard
// naming properties, which will be used for the underlying connection lookup.
Map<String, Object> properties = new HashMap<String, Object>();
properties.put(Context.INITIAL_CONTEXT_FACTORY, jndi.WLInitialContextFactory");
properties.put(Context.PROVIDER_URL, "t3://HOST:PORT");
properties.put(Context.SECURITY_PRINCIPAL, USERNAME);
properties.put(Context.SECURITY_CREDENTIALS, PASSWORD);
DirectConnection conn =
 dcFactory.createConnection("soadirect:/default/MyComposite!1.0/MyService",
 properties);

// Messages are created using the MessageFactory
// Message objects are subsequently modified to be used for an invocation.
Message<Element> request = XMLMessageFactory.getInstance().createMessage();

// Define a Map of WSDL part names to matching XML Element objects
Map<String, Element> partData;

Payload<Element> payload = PayloadFactory.createXMLPayload(partData);
request.setPayload(payload);

// One-way invocation
conn.post("onewayoperation", request);

// Request-reply invocation
Message<Element> response = conn.request("requestreplyoperation", request);

Chapter 39
Samples Using the Direct Binding Invocation API

39-13

Hashtable jndiProps = new Hashtable();
jndiProps.put(Context.PROVIDER_URL, "t3://" + HOST + ':' + PORT);
jndiProps.put(Context.INITIAL_CONTEXT_FACTORY,
 "weblogic.jndi.WLInitialContextFactory");
jndiProps.put(Context.SECURITY_PRINCIPAL,USERNAME);
jndiProps.put(Context.SECURITY_CREDENTIALS, PASSWORD);
Locator locator = LocatorFactory.createLocator(jndiProps);
CompositeDN compositedn = new CompositeDN(domainName, compositename, version);
String serviceName = "HelloEntry";
DirectConnection conn = locator.createDirectConnection(compositedn, serviceName);

Chapter 39
Samples Using the Direct Binding Invocation API

39-14

Part VII
Sharing Functionality Across Service
Components

This part describes functionality that can be used by multiple service components.

This part contains the following chapters:

• Oracle SOA Suite Templates and Reusable Subprocesses

• Creating Transformations with the XSLT Map Editor

• Creating Transformations with the XQuery Mapper

• Using Business Events and the Event Delivery Network

• Working with Cross References

• Working with Domain Value Maps

• Using with Domain Value Maps

40
Oracle SOA Suite Templates and Reusable
Subprocesses

This chapter describes how to create and use Oracle SOA Suite templates in SOA projects,
service components, and BPEL scope activities and how to create and reuse standalone and
inline BPEL subprocesses within other processes.
This chapter includes the following sections:

• Introduction to Oracle SOA Suite Templates

• Introduction to Standalone and Inline BPEL Subprocess Invocations

• Differences Between Oracle SOA Suite Templates and Reusable Subprocesses

• Creating Oracle SOA Suite Templates

• Creating Standalone and Inline BPEL Subprocesses in a BPEL Process

Introduction to Oracle SOA Suite Templates
A template is a reusable part of an Oracle SOA Suite project that you can use to create new
projects. There are three types of templates, as described in Table 40-1.

Table 40-1 Template Types

Template Type Description

SOA project A complete SOA project packaged and used to start new projects. You
can create new SOA composite applications using this template.

Service component A service component, such as a BPEL 2.0 process (including sensors)
packaged for import into other projects. All dependent components and
wires are also packaged. It appears as a custom service component in
the SOA composite application's Components window.

Custom BPEL scope activity A scope activity of a BPEL process packaged as a custom activity in
the Components window and ready for import into other BPEL projects.
This custom activity can potentially surface in the BPEL activity palette
of the Components window.

Oracle SOA Suite templates provide the following benefits:

• Share common code (subpart of a process or a scope) between applications, composites,
and processes. You create once, then share with others. The template can be reused
multiple times.

• Store and reuse templates from the Oracle Metadata Services Repository (MDS
Repository).

• Fully editable upon consumption.

• Automatically discover templates in Oracle JDeveloper. Once the template is saved, it is
displayed in the Components window.

40-1

• No inheritance, meaning that future changes to source templates are not visible to
applications. If you make changes to the source template, a current user of the template
does not see the change.

• Custom icons are provided for component scope templates.

• No versioning in templates. To differentiate between versions, you specify the version
number in the template name.

• Support for templates in both the BPEL versions 1.1 and 2.0.

Changes made to a specific template are not propagated to projects previously created using
this template. This functionality is achievable through layered customization.

A new annotation is added to the composites/BPEL processes to identify the relationship to a
template.

For information about using templates, see Creating and Using a SOA Project Template,
Creating and Using a Service Component Template, and Creating and Using a BPEL Scope
Activity Template.

Introduction to Standalone and Inline BPEL Subprocess
Invocations

BPEL provides limited support for modularizing business process logic for reusability. The only
method is to package reusable process logic as completely separate processes, which are
utilized by the parent process (the process utilizing the reusable process logic) in a method
identical to using a web service (through the invoke activity).

To address this challenge, Oracle SOA Suite provides a subprocess extension to BPEL. A
subprocess is a fragment of BPEL code that can be reused within a particular processor by
separate processes. The subprocess extension provides the following benefits:

• BPEL process code reusability, which reduces the need to create the same activities
multiple times to perform the same tasks.

• Code modularity.

• Code maintenance (changes are propagated, which eliminates the need to implement
updates in multiple places every time a change is necessary).

• Less overhead than invoke activities.

• Memory footprint reduction, which can be considerable in a complex process.

Note:

• Subprocesses are only supported with BPEL version 2.0. There is no support
with BPEL version 1.1.

• Correlation sets are not supported in subprocesses. If you create a correlation
set in an inline or standalone subprocess, it fails during runtime.

• Subprocesses cannot be shared between multiple composites.

• Monitor view is not supported from inside a subprocess. Monitor view is
accessible from a BPEL process by selecting the Change to Monitor view icon
above Oracle BPEL Designer.

Chapter 40
Introduction to Standalone and Inline BPEL Subprocess Invocations

40-2

Oracle SOA Suite provides support for two types of subprocesses, as described in Table 40-2.

Table 40-2 Subprocess Types

Standalone Subprocess Inline Subprocess

• A BPEL call activity invokes the subprocess. • A BPEL call activity invokes the subprocess.

• Supports subprocesses in the same composite
only.

• Part of the parent BPEL process code and not
visible in the composite view.

• Visible in the Components window. • Visible in the Components window.

• Does not have an interface and can only be
called from another BPEL process. It can
include partner links.

• Subprocess code is re-entrant and reusable at
runtime:. Only one copy is stored in memory,
even if called many times.

• A fragment of a BPEL process that includes a
number of activities that are reused across
other BPEL processes.

• For groups of activities that are reused within
one BPEL process.

• In the composite view, the wire to a
subprocess is shown as a dotted line to
indicate that this is not a wire between actual
components.

• Can either define parameters to set or can use
the process parameters.

Not Applicable. • Activities must be in a scope activity to be
converted into a subprocess.

For information about creating a standalone
subprocess, see How to Create a Standalone
BPEL Subprocess.

For information about creating an inline
subprocess, see How to Create an Inline
Subprocess.

Introduction to a Standalone Subprocess
A standalone subprocess is defined, as shown in the following example, in a file with the
extension .sbpel (subprocess BPEL extension).

<!-- A subprocess is defined in a SBPEL file, containing a bpelx:subProcess
 ! document
 ! The bpelx:subProcess is similar to a standard bpel:process, with
 ! differences asnoted below.
-->

<bpelx:subProcess name="NCName" targetNamespace="anyURI"
 xmlns="http://docs.oasis-open.org/wsbpel/2.0/process/executable"
 xmlns:bpelx="http://schemas.oracle.com/bpel/extension" ...>

 <!-- Partner links and variables serve as sub-process arguments -->
 <partnerLinks>?
 <partnerLink name="NCName" partnerLinkType="QName" myRole="NCName"?
 partnerRole="NCName"?
 bpelx:argumentRequired=["yes"|"no"]? />
 <partnerLinks>
 <variables>?
 <variable name="BPELVariableName" messageType="QName"? type="QName"?
 element="QName"?
 bpelx:argumentRequired=["yes"|"no"]?>
 from-spec?
 </variable>
 </variables>

 <!-- Standard process definition here, except no <receive> or <pick> with -->
 <!-- createInstance="yes" -->

Chapter 40
Introduction to Standalone and Inline BPEL Subprocess Invocations

40-3

 /activity/
</bpelx:subProcess>

The <subProcess> element is an extension of the WS-BPEL 2.0 language. The <subProcess>
element is the root element for a subprocess definition. The namespace for this element is as
follows:

http://schemas.oracle.com/bpel/extension

The <subProcess> activity must be embedded in an <extensionActivity>, as specified in
section 10.9 of the Web Services Business Process Execution Language Specification Version
2.0.

A subprocess is of type tProcess, as defined in the following WS-BPEL target namespace:

http://docs.oasis-open.org/wsbpel/2.0/process/executable

It differs from tProcess in the following ways:

• Variables and partner links immediately under the <subProcess> element can serve as
arguments for the subprocess. Required arguments are marked by setting the attribute
argumentRequired to yes (the default value is no). The subprocess's required arguments
are the minimum set of arguments the caller must pass to it.

• A variable defined with an inline from-spec initializer serves as an optional argument with
a default value. If the caller passes this argument, the caller-supplied value for the
argument overrides the default value.

• Validation reports an error if a variable is referenced prior to setting the value if it is not a
required argument.

• The first activity in the subprocess cannot be a receive or pick activity with createInstance
set to yes. This is because no instance of a given subprocess type is created; the
subprocess is logically part of an existing process instance.

The subprocess /@name attribute defines the name of the subprocess that is unique within the
composite in which it is deployed.

The subprocess is self-contained. That is, all the variable and partner link references in the
process snippet resolve to local definitions or arguments. This contrasts with the
<inlineSubProcess> element, which allows unresolved references to variables and partner
links that are in-scope at the call activity.

In a typical scenario, more than one variable is exchanged between the parent and a
subprocess. If they are large documents, copying them is expensive. Because of this, passing
by reference is an option.

A subprocess can converse with partners synchronously (InOut) or asynchronously (InOnly).
The partner link for these interactions can be passed as an argument from a parent process or
configured within the subprocess. For asynchronous requests, the conversation ID for WS-
Addressing/normalized messages is set with the parent process instance ID. This enables
routing of callback messages to the correct process instance.

Subprocesses in a SOA composite application are enumerated in the composite.xml file. The
component element definition associates a subprocess's name with the sbpel file in which it is
defined. During deployment, the subprocess components are delegated to the BPEL process
service engine. The BPEL process service engine validates the process definition and builds a
map with the subprocess target name as the key and the subprocess definition as the value. At
most, only one instance of a subprocess exists in the service engine independent of consumer
count. For optimizing memory, it may lazily load the process or unload the process if it is not
actively used.

Chapter 40
Introduction to Standalone and Inline BPEL Subprocess Invocations

40-4

For information about creating a standalone subprocess, see How to Create a Standalone
BPEL Subprocess.

Introduction to an Inline Subprocess
An inline subprocess can be defined as part of a BPEL 2.0 process at the <process> level. The
syntax is shown in the following example:

<process name="NCName" targetNamespace="anyURI"
 xmlns="http://docs.oasis-open.org/wsbpel/2.0/process/executable" ...>
 <!--
 ! All sub-process definitions must appear prior to the WS-BPEL artifacts of
 ! the process definition.
 -->

 <!-- Inline sub-process definition at process scope -->
 <bpelx:inlineSubProcess xmlns:bpelx="http://schemas.oracle.com/bpel/extension"
 name="NCName">*
 ...
 <!-- Partner links and variables serve as sub-process arguments -->
 <partnerLinks>?
 <partnerLink name="NCName" partnerLinkType="QName" myRole="NCName"?
 partnerRole="NCName"?
 bpelx:argumentRequired=["yes"|"no"]? />+
 <partnerLinks>
 ...
 <variables>?
 <variable name="BPELVariableName" messageType="QName"? type="QName"?
 element="QName"?
 bpelx:argumentRequired=["yes"|"no"]?>+
 from-spec?
 </variable>
 </variables>
 ...
 <!--
 ! Standard process activity graph here, except that no <receive> or <pick>
 ! activities with createInstance = "yes" are allowed.
 -->
 activity
 </bpelx:inlineSubprocess>

 <!--
 ! BPEL code stripped for brevity
 -->
</process>

When a BPEL process instance is first created, all subprocess references are resolved. When
the process executes a particular call activity, it uses the subprocess resolved at instance
creation time. Therefore, two different instances of the same process may use different
versions of subprocesses referenced if, for example, the default composite revision for a
subprocess changes.

When the BPEL process instance executes the call activity, it is executed within the process's
execution space, sharing its state. The call activity transfers control to the subprocess, at which
time the subprocess scope is initialized with the argument variables:

• Each parameter is copied (by reference or value, as specified) from the call activity to the
subprocess's scope.

• Optional parameters (those with default values) that are not referred to in the call activity's
parameter list are initialized with their default values.

Chapter 40
Introduction to Standalone and Inline BPEL Subprocess Invocations

40-5

• All required parameters must be supplied by the call activity.

• All values supplied by the call activity's parameters must be type-compatible with the
corresponding variable (or partner link) defined in the subprocess.

• Each variable (or partner link) in the subprocess can be set only once in a call activity's
parameter list.

On completion of the subprocess, control is returned to the parent process. In the normal case,
execution continues with the next activity after the call activity. In the case of abnormal
subprocess completion, the parent process evolves the process according to the standard life
cycle rules of WS-BPEL.

From the monitoring and management view, there is no new process instance for the
subprocess created. It is represented by a call activity in the parent process instance.
Expanding the activity (navigate) shows subprocess execution details.

To minimize linking errors during runtime, upon deployment of the process and subprocess,
references are resolved. Parameter lists are validated as a postdeployment activity.
Preprocessing for creating a new process instance validates all subprocess references in the
process. If any reference is not resolved, the instance is not created. Instead, an error
message is returned, meaning essentially the following:

HTTP Status Code 503, "service not available

Upon a linking error, if the service consumer is waiting, an error message is sent to the
consumer that is inline with exit activity handling. Otherwise, the instance is suspended with
the reason set as linkage error. If a suitable subprocess is deployed and the reference is
resolvable, suspended instances can then be recovered and resume normal execution by
automatic recovery.

For information about creating an inline subprocess, see How to Create an Inline Subprocess.

Differences Between Oracle SOA Suite Templates and Reusable
Subprocesses

When determining whether templates or reusable subprocesses are the best solution for your
business use case, it is important to understand the differences:

• Templates

A template is a customizable, skeletal project, service component, or scope activity. You
can drag and drop a template into a SOA composite application or a BPEL process and
make additional changes. You essentially are copying and pasting a template. For
example, if there are 50 lines of code in a template and you copy it twice to use, the code
increases by 100 lines.

• Reusable subprocesses

A subprocess is a BPEL code snippet intended for a specific purpose. A subprocess that is
defined earlier can be called and used as it is. An inline subprocess of 50 lines can be
called twice and the parent process code remains at 50 lines, and not 100. Subprocesses
perform better and have a smaller memory foot print than templates.

Creating Oracle SOA Suite Templates
You can create the following types of templates:

• SOA project

Chapter 40
Differences Between Oracle SOA Suite Templates and Reusable Subprocesses

40-6

• Service component

• Custom BPEL scope activity

For conceptual information about templates, see Introduction to Templates and Differences
Between Oracle SOA Suite Templates and Reusable Subprocesses.

Creating and Using a SOA Project Template
This section describes how to create and use a SOA project as a template.

Note:

Use of templates is not supported in the Oracle JDeveloper Customization role.

How To Create a SOA Project Template

To create a SOA project template:

1. Open a SOA composite application.

2. In the Applications window, right-click either of the following:

• The composite_name

• The project name

3. Select Create SOA Template.

This invokes the Create SOA Template wizard. Default names and the location for saving
the template based on the composite name are automatically included. Figure 40-1
provides details.

Figure 40-1 Create SOA Template Wizard - Specify Template Information Page

Chapter 40
Creating Oracle SOA Suite Templates

40-7

4. Change the default values and enter a description, as necessary, and click Next. The
Browse icon for the Save in field enables you to save the template in the file system or the
Oracle SOA Suite design time section of the MDS Repository.

The Create SOA Template Wizard - Files to Bundle page is displayed. Figure 40-2
provides details. This page shows all the files packaged as part of this template.

You can also manually select measurements (business indicators) and test suites to
include. If your composite includes domain value maps (DVMs) (for example, a DVM
function is referenced in a BPEL scope activity), they are also included in the template.

For information about business indicators, see Configuring BPEL Process Analytics. For
information about test suites, see Introduction to the Composite Test Framework.

Figure 40-2 Create SOA Template Wizard - Files to Bundle Page

5. View the files to package and select additional files, and click Finish.

6. Click OK when prompted to acknowledge that the template was successfully created.

How to Use a Composite Template in Another SOA Composite
This section describes how to use the composite template created in How To Create a SOA
Project Template in another SOA composite application.

To use a composite template in another SOA composite

1. Create a new SOA composite application in Oracle JDeveloper.

2. On the Create SOA Application wizard - Configure SOA Settings page, select SOA
Template. Figure 40-3 provides details.

Chapter 40
Creating Oracle SOA Suite Templates

40-8

Figure 40-3 Custom Template Selection

The list of available templates is displayed. Figure 40-4 provides details.

Figure 40-4 SOA Templates Available for Selection

3. Select a template from the list, or click Add to select additional templates.

4. Click Finish.

Chapter 40
Creating Oracle SOA Suite Templates

40-9

The SOA Composite Editor is displayed with the custom template. The files of the template
are displayed in the Applications window.

You can rename components as necessary, such as renaming the binding components
and process names.

5. Right-click and select Rename.

Creating and Using a Service Component Template
This section describes how to create and use a service component template.

How to Create a Service Component Template

To create a service component template:

1. From the Oracle JDeveloper main menu, select File > New.

2. Select SOA Project, and click OK.

3. Enter a project name, and click Next.

4. Select a BPEL project, and click Finish.

5. Design a SOA composite application.

6. In the SOA Composite Editor, right-click the service component from which to create a
template.

7. Select Create Component Template.

This launches the Create Component Template wizard.

8. Provide appropriate responses, including optionally selecting an icon for the partner link,
and click Next. Figure 40-5 provides details.

Figure 40-5 Create Component Template Wizard - Specify Template Information
Page

Chapter 40
Creating Oracle SOA Suite Templates

40-10

The Create Component Template wizard - Files to Bundle Page is displayed.

9. View the files packaged and select additional files (such as adapters and measurements),
as required, and click Finish.

10. Click OK when prompted to acknowledge that the template was successfully created.

The service component template is added to the Component Templates section of the
Components window. Figure 40-6 provides details.

Figure 40-6 Service Component Template in Component Templates Section of
Components Window

How to Use a Service Component Template in Another SOA Composite
This section describes how to use the packaged service component template created in How
to Create a Service Component Template in another SOA composite application.

To use a service component template in another SOA composite:

1. Create an empty SOA composite application in Oracle JDeveloper.

2. In the SOA Composite Editor, select SOA Templates from the SOA list. Figure 40-7
provides details.

Figure 40-7 SOA Templates Option in SOA Menu

Chapter 40
Creating Oracle SOA Suite Templates

40-11

3. Drag the service component template into the SOA Composite Editor.

This invokes the Create SOA Component from Component Template dialog, as shown in
Figure 40-8. This dialog shows the template name, description, and files included in the
template.

Figure 40-8 Create SOA Component from Component Template Dialog

4. Click OK.

The service component template is displayed in the SOA composite application.

5. View the Applications window and note that files such as schemas and WSDLs are
displayed in the SOA composite application.

6. If you attempt to apply the service component template a second time to the same SOA
composite application, the Create SOA Component from Component Template dialog is
displayed and indicates that there is a conflict because schema and BPEL files are already
in the composite. Figure 40-9 provides details.

Chapter 40
Creating Oracle SOA Suite Templates

40-12

Figure 40-9 Create SOA Component from Component Template Dialog

7. Click Next.

8. In the Resolve Conflicts page, select to skip or overwrite all files or specific files that are in
conflict. Figure 40-10 provides details.

Figure 40-10 File Names in Conflict

9. When complete, click Finish.

Chapter 40
Creating Oracle SOA Suite Templates

40-13

Creating and Using a BPEL Scope Activity Template
This section describes how to create and use a BPEL scope activity template.

How to Create a BPEL Scope Activity Template

To create a BPEL scope activity template:

1. In Oracle BPEL Designer, drag a scope activity into a BPEL process.

2. Design the contents of the scope activity to include activities, event handlers, and catch
and catch all branches that include fault variables, as necessary.

3. Create a template from the scope.

a. Right-click the scope and select Create Custom Activity Template.

or

a. Expand the scope and select Create Custom Activity Template, as shown in
Figure 40-11.

Figure 40-11 Scope Template Creation

The Create Custom Activity Template wizard - Specify Template Information page is
displayed, as shown in Figure 40-12.

Chapter 40
Creating Oracle SOA Suite Templates

40-14

Figure 40-12 Create Custom Activity Template Wizard - Specify Template
Information Page

4. Specify details, and click Next.

The Create Custom Activity Template wizard - Variables page is displayed. Figure 40-13
provides details. This page is displayed if variables are used in the scope. This page is not
displayed if you have an empty scope or a scope that does not use variables.

Figure 40-13 Create Custom Activity Template Wizard - Variable Page

Chapter 40
Creating Oracle SOA Suite Templates

40-15

5. Select to convert your variables to local variables. This conversion is not recommended if
this variable is used outside of the scope activity in receive and reply activities. If the
variables are used only inside this scope, the check boxes are selected by default.

6. Enter an optional description of the variables, and click Next.

The Create Custom Activity Template wizard - Files to Bundle page is displayed as shown
previously in Figure 40-2. This page shows all the files packaged as part of this template.
You can also manually select test suites to include.

7. Select files, and click Finish.

How to Use a BPEL Scope Activity Template in Another BPEL Process
This section describes how to use a BPEL scope activity template in another BPEL process.

To use a BPEL scope activity template in another BPEL process

1. Create a new or open an existing BPEL process.

2. From the Custom Activity Templates section in the Components window, drag the scope
activity template created in How to Create a BPEL Scope Activity Template into the BPEL
process. Figure 40-14 provides details.

Note:

Only scope activity templates that are compatible with the BPEL service
component version are available. For example, if this is a BPEL 2.0 service
component, only scope activity templates for BPEL 2.0 are available for
selection. No BPEL version 1.1 scope activity templates are displayed.

Figure 40-14 Scope Activity Template

Any error handling you designed such as catch and catch all activities and any scope
variables you created are also copied into the BPEL process.

The Create Custom Activity from Template page is displayed, as shown in Figure 40-15.

Chapter 40
Creating Oracle SOA Suite Templates

40-16

Figure 40-15 Create Custom Activity from Template Wizard

3. Click Next.

If there are conflicts, the Create Custom Activity from Template wizard - Resolve Conflicts
page is displayed, as shown in Figure 40-16.

Figure 40-16 Create Custom Activity from Template Wizard - Resolve Conflicts
Page

4. Select to skip all or individual file conflicts, and click Next.

Chapter 40
Creating Oracle SOA Suite Templates

40-17

The Create Custom Activity from Template wizard - Variables page is displayed, as shown
in Figure 40-17.

If you selected to convert your variables to local variables on the Create Custom Activity
Template Wizard - Variable Page in Step 5 of How to Create a BPEL Scope Activity
Template, they do not require special processing and are not displayed on this page. Only
variables that were not converted to local variables are displayed on the Create Custom
Activity from Template wizard - Variable Bindings page.

Figure 40-17 Create Custom Activity from Template wizard - Variable Bindings
Page

5. If the template and the project both include this variable, you can choose to reuse the
variable or bind to a new variable from the list in the BPEL Variable column.

a. If you selected to bind to a new variable, enter a name and select whether to create
the variable locally for the template scope or globally for the BPEL process, then click
OK. Figure 40-18 provides details.

Figure 40-18 Bind to New Variable Dialog

If you drop an activity template inside of Scope A that is inside of Scope B, then Scope
A and Scope B also are in the list. This enables you to select among all locations
where variables can be declared.

6. Click Next.

Chapter 40
Creating Oracle SOA Suite Templates

40-18

7. If a scope uses partner links, the Create Custom Activity Template Wizard - Partner Links
Page is displayed.

8. Click Finish.

Managing Templates
You can manage all available template types from the Preferences dialog.

To manage templates:

1. From the Oracle JDeveloper main menu, select Tools > Preferences > SOA >
Templates.

The Preference dialog is displayed, as shown in Figure 40-19.

Figure 40-19 SOA Template Preferences

Templates can be stored in two locations:

• Folders: Templates are stored in the file system.

• SOA-MDS: Templates are stored in the MDS Repository and can be shared.

2. Right-click a folder to display a list of management tasks, as shown in Figure 40-20.

Chapter 40
Creating Oracle SOA Suite Templates

40-19

Figure 40-20 Management Tasks

Table 40-3 describes the management tasks you can perform.

Table 40-3 Template Management Tasks

Element Description

Browse Browses for a specific template name.

The Browse option uses Windows Explorer on Windows or the file browser
on Linux for the storage folder. Templates are stored as files, so you may
want to operate with them as with files (that is, upload with FTP, send by
email, copy to another folder to back up, and so on).

Refresh Refreshes the list of templates.

Add Storage Adds existing templates to the Preferences - SOA Templates dialog.

Remove Deletes the folder and its templates only from the Preferences - SOA
Templates dialog. The templates are not physically deleted from the file
system or MDS Repository. You can add them to this dialog again by
selecting Add Storage or clicking the Add icon. The template context
menu contains a Delete option that physically deletes a template.

All Templates Displays all templates.

Project Templates Displays only SOA project templates.

Component
Templates

Displays only service component templates.

Activity Templates Displays only BPEL scope activity templates.

3. If you want to import a template to the jdeveloper/integration/templates directory,
select File > Import > SOA Template. The file can then be added to the Preferences
dialog by clicking the Add icon or right-clicking a folder and selecting Add Storage.

Creating Standalone and Inline BPEL Subprocesses in a BPEL
Process

You can create standalone subprocesses in a SOA composite and inline BPEL subprocesses
in a BPEL process. A subprocess is a fragment of BPEL code that can be reused within a
particular processor by separate processes.

Chapter 40
Creating Standalone and Inline BPEL Subprocesses in a BPEL Process

40-20

For conceptual information about subprocesses, see Introduction to Standalone and Inline
BPEL Subprocess Invocations and Differences Between Oracle SOA Suite Templates and
Reusable Subprocesses.

Note:

• There is no restriction on one BPEL subprocess calling itself recursively. You
must determine if you want to recursively call the same BPEL subprocess and
the number of times the subprocess calls occur.

• You can create and successfully deploy a SOA composite application that
contains only a standalone subprocess. For example, create a SOA composite
application and add a standalone subprocess in which you define two
parameters for the subprocess and define an assign activity in the subprocess to
swap the values of both parameters. However, while a SOA composite
application that contains only a standalone subprocess and no other components
can be deployed, it has no practical purpose.

• A standalone subprocess cannot be shared in the MDS Repository. However, a
BPEL process with call activities for calling the subprocess can be shared in the
MDS Repository

How to Create a Standalone BPEL Subprocess
This section provides an example of how to create a simple application that uses a standalone
subprocess.

Note:

A standalone subprocess can include an inline subprocess.

To create a standalone BPEL subprocess:

1. Create a SOA composite application that includes a BPEL 2.0 process. For this example, a
synchronous BPEL 2.0 process is created.

2. Design a BPEL 2.0 process. For this example, the following process is designed:

• A variable of type string is created (for this example, named variable1) to pass in as a
parameter.

• An assign activity is created in which the client input string is mapped to variable1.

Figure 40-21 shows the BPEL process design.

Chapter 40
Creating Standalone and Inline BPEL Subprocesses in a BPEL Process

40-21

Figure 40-21 BPEL 2.0 Process Design

3. Click the composite_name link above Oracle BPEL Designer to access the SOA
Composite Editor.

4. Right-click inside the SOA Composite Editor, and select Insert > Subprocess or drag a
Subprocess icon from Components window into the composite.

The Create Subprocess dialog is displayed.

5. Enter appropriate values or accept the default values, and click OK to create the
standalone subprocess. Figure 40-22 provides details. For this example, the subprocess
name provided is Subprocess1.

Figure 40-22 Create Subprocess Dialog

6. Right-click the subprocess in the SOA Composite Editor, and select Edit.

7. Create a variable of type string in the subprocess (for this example, the variable is named
p1), and click OK,

You now design simple process logic in the standalone subprocess.

8. From the Components window, drag an Assign activity into the process.

9. In the Target section of the Copy Rules tab of the assign activity, drag the Expression
Builder icon onto the p1 variable.

Chapter 40
Creating Standalone and Inline BPEL Subprocesses in a BPEL Process

40-22

10. Create a concat expression to read the value out of the parameter in the subprocess and
update variable p1 with that value.

concat($p1,",from subprocess")
11. Save the composite or select Save All, and exit the BPEL 2.0 process.

12. In the SOA Composite Editor, right-click the BPEL process and select Edit.

13. From the Oracle Extensions subsection, drag a call activity below the assign activity in
Oracle BPEL Designer.

14. Right-click the call activity and select Edit.

This invokes the Edit Call dialog. Note that variable p1 is displayed in the Name column
after the selected Subprocess1.

15. Click inside the Value column to invoke the Variable Chooser dialog.

16. Select variable1, and click OK. This maps variable p1 from the standalone subprocess to
variable variable1 of the initial BPEL 2.0 process that you created.

17. Leave the Copy By Value check box deselected.

Leaving this check box deselected copies the variable by reference. Only variables or
partner links are accepted for variables, not XPath function queries. Copy by reference
supports both input and output variables. Copy by value supports only input values.

18. From the Components window, drag a second Assign activity below the call activity.

19. In the Copy Rules tab of the assign activity, update the output message with variable1,
and click OK. Figure 40-23 provides details.

Figure 40-23 Edit Assign Dialog

Figure 40-24 shows the BPEL 2.0 process with the subprocess. In this BPEL 2.0 process,
the following logic is designed:

• The string value in the input message in Assign1 is taken and assigned to variable1
in the call activity, to be passed by reference.

Chapter 40
Creating Standalone and Inline BPEL Subprocesses in a BPEL Process

40-23

• assign2 takes variable1 and creates the response. The variable1 value is updated by
the subprocess.

Figure 40-24 BPEL 2.0 Process

20. Go to the SOA Composite Editor and note that the BPEL subprocess is now connected to
the BPEL 2.0 process because of the call activity.

You are now ready to deploy the SOA composite application and create a business flow
instance in Oracle Enterprise Manager Fusion Middleware Control.

When you access the audit trail for the created business flow instance in Oracle Enterprise
Manager Fusion Middleware Control, note that the call activity and its contents are
displayed.

For more information about standalone BPEL subprocesses, see Section "Using
Templates and Standalone Subprocesses to Update the Order Status in the Database" of
Understanding Oracle SOA Suite.

How to Create an Inline Subprocess
An inline subprocess is similar to a standalone subprocess, except that the inline subprocess is
embedded in the parent process. For example, you may have a BPEL 2.0 process that
includes assign and invoke activities within a scope activity that update the status of a
customer order. You may have a business need for repeating these same activities later in the
same process. One method is to physically repeat the same assign and invoke activities of the
scope activity later in the process, but this can be error prone. In addition, every time a change
is necessary, it must be implemented in both scopes. As an alternative to repeating the
activities, you can use an inline subprocess.

Chapter 40
Creating Standalone and Inline BPEL Subprocesses in a BPEL Process

40-24

Note:

Creating an inline subprocess within an existing inline subprocess is not supported.

To create an inline subprocess:

1. Go to the scope activity in the BPEL 2.0 process that includes the assign and invoke
activities that update the status of a customer order.

Note:

Inline subprocesses can also be created in a BPEL process by selecting Inline
Subprocesses from the Property Structure menu above Oracle BPEL
Designer, selecting the Inline Subprocesses folder, and clicking Add.

2. Collapse the scope activity. Figure 40-25 provides details.

Figure 40-25 Scope Activity

3. Right-click the scope activity, and select Convert to a Subprocess.

The Create Inline Subprocess dialog is displayed, as shown in Figure 40-26.

Chapter 40
Creating Standalone and Inline BPEL Subprocesses in a BPEL Process

40-25

Figure 40-26 Create Inline Subprocess Dialog

4. Enter values appropriate to your environment, then click OK.

Table 40-4 Create Inline Subprocess Dialog

Element Description

Name Enter a name or accept the default value, which defaults to the scope
name.

Replace scope with
subprocess call

Select to automatically replace the scope with a BPEL call activity (the
default selection). If you want to create an inline subprocess and keep the
selected scope in the process, you can deselect this check box.

Label Optionally enter a description.

Comment Optimally enter a comment.

Image Select to replace the standard call activity icon with a unique image.

The scope activity is converted to a call activity in the BPEL 2.0 process, as shown in
Figure 40-27.

Figure 40-27 Call Activity

Chapter 40
Creating Standalone and Inline BPEL Subprocesses in a BPEL Process

40-26

The new inline subprocess is also displayed in the Subprocess section of the
Components window. Figure 40-28 provides details.

Figure 40-28 Inline Subprocess in Components Window

5. Above Oracle BPEL Designer, select Subprocess - updateOrderStatusSP to display the
contents of the subprocess (the same contents as the initial scope activity). Figure 40-29
provides details.

Figure 40-29 Subprocess Selection Above Oracle BPEL Designer

The contents of the inline subprocess are displayed. Figure 40-30 provides details.

Figure 40-30 Inline Subprocess Contents

6. Make changes to the subprocess, if required, such as adding additional invoke activities.

You can add the subprocess to the same BPEL 2.0 process, as necessary.

7. From the Subprocess section of the Components window, drag the inline subprocess into
an appropriate section of the BPEL 2.0 process. Figure 40-31 provides details.

Chapter 40
Creating Standalone and Inline BPEL Subprocesses in a BPEL Process

40-27

Figure 40-31 Subprocess Added to Same BPEL 2.0 Process

The subprocess name is automatically changed to Callnumber as shown in Figure 40-32.

Figure 40-32 Subprocess Name Changed

For more information about using inline BPEL subprocesses, see Section "Updating Order
Status with an Inline BPEL Subprocess" of Understanding Oracle SOA Suite.

How to Create a Standalone Subprocess that Takes a Partner Link as a
Parameter

This section describes how a subprocess takes a partner link as a parameter and uses it to call
the partner and return the result. You are essentially using a partner link from subprocess to
subprocess.

To create a standalone subprocess that takes a partner link as a parameter:

1. Create a SOA composite application that includes a BPEL 2.0 process. For this example, a
synchronous BPEL 2.0 process is created.

2. Go to the SOA composite application in the SOA Composite Editor.

3. Right-click and select Insert > Subprocess.

The Create Subprocess dialog is displayed.

4. Accept the default values (for this example, the default name is Subprocess1), and click
OK.

You now create a second process to use as the partner link.

Chapter 40
Creating Standalone and Inline BPEL Subprocesses in a BPEL Process

40-28

5. Create a second synchronous BPEL 2.0 process in the SOA composite application for this
example, named BPELProcess2). This is the process to call.

6. From the Components window, drag an Assign activity into the second BPEL 2.0 process.

7. In the Target section of the Copy Rules tab, drag the Expression Builder icon onto the
result variable. Figure 40-33 provides details.

Figure 40-33 Edit Assign Dialog

8. Build an XPath expression, and click OK.

string("hello from process2")
9. Save the second BPEL 2.0 process, and return to the subprocess.

10. Click the Partner Links icon, as shown in Figure 40-34.

Figure 40-34 Partner Link Creation

The Partner Links dialog is displayed.

11. Click the Add icon.

The Create Partner Link dialog is displayed. You now define this partner link as a
parameter.

12. Design the partner link (for this example, named PartnerLink1), and click OK.
Figure 40-35 provides details. The role of the partner link is as the provider.

Chapter 40
Creating Standalone and Inline BPEL Subprocesses in a BPEL Process

40-29

Figure 40-35 Partner Link Creation

The Partner Links dialog looks as shown in Figure 40-36.

Figure 40-36 Partner Links Dialog

Figure 40-37 shows the contents of the subprocess.

Figure 40-37 Subprocess Contents

13. Drag a Scope activity into the subprocess.

14. Click the Variables icon in the scope activity, and create request and response message
type variables. Figure 40-38 provides details.

Chapter 40
Creating Standalone and Inline BPEL Subprocesses in a BPEL Process

40-30

Figure 40-38 Request and Response Message Type Variable Creation

15. Drag a Sequence activity into the subprocess.

16. Drag an Invoke activity into the subprocess for invoking the partner link.

17. Design the invoke activity to invoke the partner link in the subprocess, as shown in
Figure 40-39. The design includes the output variable (Variable2).

Figure 40-39 Edit Invoke Dialog

Figure 40-40 shows the subprocess.

Chapter 40
Creating Standalone and Inline BPEL Subprocesses in a BPEL Process

40-31

Figure 40-40 BPEL Subprocess

18. Click the Variables icon in the subprocess to create a string variable to return the result.

The Variables dialog is displayed.

19. Click the Add icon to invoke the Create Variable dialog.

20. Create a string variable (for this example, named result).

21. Drag an assign activity into the subprocess.

22. Map the result of the partner link invocation to the result variable, and click OK, as shown
in Figure 40-41.

Figure 40-41 Edit Assign Activity

Subprocess design is now complete.

23. Return to the main BPEL 2.0 process in Oracle BPEL Designer (BPELProcess1).

24. Click the Variables icon in the process.

25. Click the Add icon to create a string variable to contain the result configured in Step 22
and passed back (for this example, named Variable1). Figure 40-42 provides details.

Chapter 40
Creating Standalone and Inline BPEL Subprocesses in a BPEL Process

40-32

Figure 40-42 Variables Dialog

26. Add an assign activity to assign the string value to Variable1.

27. Drag a call activity below the assign activity in Oracle BPEL Designer. Figure 40-43
provides details.

Figure 40-43 Subprocess Added to Main BPEL 2.0 Process

28. Right-click the Partner Links swimlane, and select Create Partner Link.

29. Design a partner link to invoke BPELProcess2, as shown in Figure 40-44.

Figure 40-44 Create Partner Link Dialog

30. Right-click the Call activity, and click Edit.

The Edit Call dialog shows the partner link created earlier in the subprocess.

31. In the result row, click the Value column to invoke the Variable Chooser dialog.

32. Select Variable1, and click OK.

Chapter 40
Creating Standalone and Inline BPEL Subprocesses in a BPEL Process

40-33

33. In the PartnerLink1 row, click the Value column to invoke the Partner Link Chooser dialog.

34. Select PartnerLink1, and click OK. Figure 40-45 shows the Edit Call dialog with design
complete. Since the variables are sent by reference, if the subprocess does something to
change the partner link (such as copying in another partner link), that impacts the calling
process's partner link. This is the same process as with variables.

Figure 40-45 Edit Call Dialog

35. Drag an Assign activity below the Call activity to return the result.

36. In the Copy Rules tab, map Variable1 to result to return the result to the caller.
Figure 40-46 provides details.

Figure 40-46 Edit Assign Dialog

37. Deploy the SOA composite application.

What You May Need to Know About Renaming a Subprocess
When you rename a subprocess, it is not updated in the invoking call activity. You must
manually update the subprocess name in the call activity.

Assume you perform the following steps:

1. Create an asynchronous BPEL 2.0 process.

2. Right-click the SOA Composite Editor, and select Insert > Subprocess.

3. Create a subprocess named SubProcessNew.

4. Right-click SubProcessNew, and click Edit.

Chapter 40
Creating Standalone and Inline BPEL Subprocesses in a BPEL Process

40-34

5. From the Components window, drag an Empty activity into the subprocess.

6. Open the asynchronous BPEL 2.0 process.

7. From the Components window, drag a Call activity into the process.

8. Invoke the SubProcessNew subprocess from the call activity.

9. Return to the SOA Composite Editor, and rename the SubProcessNew subprocess to
SubProcessRenamed.

10. Open the call activity in the asynchronous BPEL 2.0 process, and note that the
Subprocess field is now empty.

11. In the Subprocess field, manually enter the updated name of SubProcessRenamed.

Chapter 40
Creating Standalone and Inline BPEL Subprocesses in a BPEL Process

40-35

41
Creating Transformations with the XSLT Map
Editor

This chapter describes how to use the XSLT Map Editor in JDeveloper to create, design, and
test data transformations between source schema elements and target schema elements.

This chapter includes the following sections:

• Introduction to the XSLT Map Editor

• Creating an XSLT Map

• Editing an XSLT Map in Map View

• Editing an XSLT Map in XSLT View

• Using XPath Expressions

• Using Auto Map to Map Complex Nodes

• Checking the Completion Status of the Map

• Testing the Map

• Importing an External XSLT Map

• Using Variables and Parameters

• Substituting Elements and Types

• Using Named Templates

• Using Template Rules

• Using the Execution View

• Debugging the XSLT Map

• Troubleshooting Memory Issues

• Setting XSL Map Preferences

Introduction to the XSLT Map Editor
The XSLT Map Editor enables you to edit XSLT stylesheets using a graphical editor. It also
provides the feature to directly edit the XSLT source.

Figure 41-1 shows the XSLT Map Editor. You can switch between the graphical editor and the
source view using the tabs at the bottom of the editor. Click Design to edit using the graphical
editor. Click Source to edit using the source editor.

41-1

Figure 41-1 XSLT Map Editor

You can move back and forth between the Source and Design tabs. Any change made under
one tab is reflected in the other tab. A History tab is also available to enable you to view the
revision history, and revert to any point in the edit history.

The XSLT Map Editor fully supports XSLT 1.0 and XPath 1.0.

If you want to use XSLT 2.0, then you can change the XSLT version in the source view and
restart JDeveloper.

All XSLT 2.0-specific constructs must be added in the source view. You can then choose to
switch to the design view, and continue to edit the map. XSLT 2.0-specific constructs are
shown in design view, but can be modified only in the source view. XPath 2.0 constructs can
also be added in the design view. However, XPath 2.0 constructs are not parsed into separate
graphical elements in the design view. You must edit the full XPath statement in text form.
XPath 2.0 functions will be displayed in the Components Window when the XSLT Version is set
to 2.0 in the source and JDeveloper is restarted.

The XSLT Map Editor provides the following edit views under the design view:

• Map View

• XSLT View

You can switch between the two views using the buttons at the top right hand corner of the
XSLT editor. Click Map to use the traditional Map View of the XSLT editor. Click XSLT to use
the XSLT View for more complex XSLT maps.

Chapter 41
Introduction to the XSLT Map Editor

41-2

Using the Map View
Figure 41-1 shows the Map View of the XSLT Map Editor. The left pane contains the source
tree representing the incoming source XML document. The source tree can be created from an
XSD schema file or a sample XML file.

The center pane, or the canvas, is the place where you drop XPath expressions and functions
that can be mapped to XSLT elements.

The right pane is the target pane representing a merged view of the XSLT being created, and
the target tree that represents the target schema. The target tree can be created from an XSD
schema file or a sample XML file.

The grayed nodes, in italics, in the target tree represent nodes that haven't been mapped yet.
These nodes are not part of the XSLT, and are displayed for convenience. Once a grayed node
is mapped, it appears in regular font, and gets represented in the XSLT map.

Map View supports drag-and-drop mappings from source tree to target tree. Map View also
supports XPath function calls and XSLT statements such as xsl:if and xsl:for-each.
As Map View does not separate the XSLT statements from the target tree, it is limited to the
following:

• Only one XSLT template rule with the match='/' attribute is supported.

• The following XSLT statements are supported: xsl:for-each, xsl:value-of, xsl:text,
xsl:if, xsl:choose/when, xsl:variable and xsl:param.

Use the XSLT View for complex XSLT statements that require separating the XSLT statements
from the target tree.

Using the XSLT View
The XSLT View is a more advanced mode that enables you to separate the XSLT statements
from the target tree document. This enables you to create complex XSLT statements without
leaving the design view. Source and target schemas are optional in the XSLT View.

The XSLT View includes the same panes as the Map View, except that the right target pane is
divided into two panes. The top pane is called the XSLT pane and the lower pane is called the
target pane. If no target schema is defined, then the lower pane is not shown. If no source
schema is defined, the source pane is still displayed to enable you to add parameters and
variables, whose values can be referenced by the XSLT.

In XSLT View, you can create any series of XSLT statements without having to intersperse
these statements around target tree nodes. For instance, in the 11g mapper, all xsl:if
statements had to contain a single target output node. In XSLT View, the xsl:if statement can
be used anywhere, and can contain any other XSLT statement.

The XSLT View supports all XSLT 1.0 statements. The XSLT View also supports multiple
template rules with or without source and target schemas. The XSLT View enables you to
graphically display and edit any XSLT stylesheet, irrespective of the complexity involved.

Using the Components Window
The Components window contains all the XPath functions and XSLT elements and templates
that you can use in your XSLT map.

Chapter 41
Introduction to the XSLT Map Editor

41-3

The Components window is located at the upper right-hand corner of Oracle JDeveloper, by
default. If the Components window does not appear, click Components under the Window
menu to display the Components window. You can optionally choose to drag the Components
window to any convenient location in the JDeveloper window. You can also resize the
Components window, as desired.

The Components window organizes these functions, elements, and templates under the
following categories:

• Advanced XPath:

• General XPath:

• XML:

• XSLT Elements:

• XSLT Templates:

• All Pages:

• User Defined:

• My Components:

Using the Properties Window
The Properties window shows the content and properties of the item selected in the XSLT Map
Editor. Some of these properties can also be edited.

The Properties window is located below the XSLT Map Editor, by default. If the Properties
window does not appear, click Properties under the Window menu to display the Properties
window. You can optionally choose to drag the Properties window to any convenient location
within the JDeveloper window. You can also resize the Properties window, as desired.

The Properties window, in general, can be used to display and edit the properties of the
following items:

Selected Element in Editor What is Shown in Properties Window Whether
Editable
(Yes/No)

Source tree node Schema Information for the selected element or attribute. No

Target tree node Schema information for the selected element or attribute. No

XSLT tree node: XSLT element XSLT element attributes and their values Yes

XSLT tree node: literal element
or attribute

Literal element or attribute name and namespace Yes

XPath expression folder in
Canvas pane

Full text XPath expression Yes

Function icon within
expression folder in Canvas
pane

XPath field for each parameter of the function Yes

Line connecting source and
target node

Full text XPath expression Yes

Chapter 41
Introduction to the XSLT Map Editor

41-4

Creating an XSLT Map
XSLT maps can be created from scratch, or from other editors such as BPEL, BPM, and
Mediator.

How to Create an XSLT Map
To create an XSLT Map:

1. From the File main menu, select New > XSL Map. Alternatively, right-click the project
folder and select New > XSL Map.

The Create XSL Map File dialog appears.

2. Under File Name, specify a name for your .xsl map file.

3. Under Directory name, select the destination directory for the .xsl file.

4. Under Sources, select Use Source Schema(s) to specify a source schema for the map.

5. Under Primary Source, click Browse to select the source schema. The Select Schema
dialog box appears.

6. Choose Select Schema if you want to use an XSD schema file or WSDL file for the source
schema.

Note:

You can alternatively use a sample XML file as the schema source.

Select Generate from XML to generate the schema from an XML file. Select the
sample file and click Open. Go to Step 9.

7. Click Browse to select a schema file and element for the source schema. The Type
Chooser dialog appears.

8. Select the schema file and the corresponding element from the project schema files or
project WSDL files tree. Click OK.

If the schema or wsdl file that you need is not available in the tree, you may import a
schema or wsdl file by clicking the Import Schema File or Import WSDL File button at the
top right corner of the dialog.

9. Click OK in the Select Schema dialog.

Note:

Under Additional Sources, you can click the Add Schema button identified by the
green plus icon (+) to add any additional sources in the form of parameters.

10. Select Use target schema to specify a target schema for your XSL map.

11. Click Browse to select the target schema. The Select Schema dialog appears.

12. After selecting the target schema, click OK in the Select Schema dialog.

Chapter 41
Creating an XSLT Map

41-5

Note:

When a Target Schema is used, initial element and attribute nodes may be
generated in the XSLT pane depending upon the current Preferences setting.

The default setting is to generate a root template with a match=''/'' attribute
followed by all required elements and attributes in the target schema.

13. Click OK to create the XSL map file.

Note:

• Once the XSLT map is created you may add or replace source and target
schemas by selecting the appropriate option from the context menu in the
canvas pane.

For example, you may add additional sources as parameters by selecting
Add Parameter from the context menu on the source pane.

• You may edit a source or target schema file that is being used by an XSLT
Map, using JDeveloper. Upon saving the schema file, the source or target
tree in the XSLT editor is automatically updated.

How to Create an XSL Map File in Oracle BPEL Process Manager
An XSLT Transform activity enables you to create a transformation using the XSLT Map Editor
in Oracle BPEL Process Manager. This tool enables you to map one or more source elements
to target elements. For example, you can map incoming source purchase order schema data
to outgoing invoice schema data.

To create an XSL map file in Oracle BPEL Process Manager:

1. From the Components window, drag an XSLT Transform activity into your BPEL process
diagram. Figure 41-2 provides an example.

Chapter 41
Creating an XSLT Map

41-6

Figure 41-2 Transform Activity

2. Double-click the XSLT Transform activity.

The Transform dialog shown in Figure 41-3 appears.

Figure 41-3 Transform Dialog

3. Specify the following information:

a. Add source variables from which to map elements by clicking the Add icon and
selecting the variable and part of the variable as needed (for example, a payload
schema consisting of a purchase order request).

Chapter 41
Creating an XSLT Map

41-7

Note:

You can select multiple input variables. The first variable defined represents
the main XML input to the XSL map. Additional variables that are added here
are defined in the XSL map as input parameters.

b. Add target variables to which to map elements.

Note:

Figure 41-3 shows the Edit Transformation dialog for BPEL 2.0. The Edit
Transformation dialog for BPEL 1.1 is slightly different. In the Edit
Transformation dialog for BPEL 1.1, you can select the Target Variable from
the list of variables.

c. Add the target part of the variable (for example, a payload schema consisting of an
invoice) to which to map.

4. In the Mapper File field, specify a map file name or accept the default name. You create
your mappings in the map file using the XSLT Map Editor.

5. Click the Add icon (second icon to the right of the Mapper File field) to create a mapping.
If the file exists, click the Edit icon (third icon) to edit the mapping.

The XSLT Map Editor appears.

Note:

If you select a file with a.xslt extension such as xform.xslt, it opens the XSLT
Map Editor to create an XSL file named xform.xslt.xsl, even though your
intention was to use the existing xform.xslt file. A .xsl extension is appended
to any file that does not have a .xsl extension, and you must create the
mappings in the new file. As a work around, ensure that your files first have an
extension of .xsl. If the XSL file has an extension of .xslt, then rename it
to .xsl.

6. Go to Introduction to the XSLT Map Editor for an overview of using the XSLT Map Editor.

How to Create an XSL Map File from Imported Source and Target Schema
Files in Oracle BPEL Process Manager

The following steps provide a high level overview of how to create an XSL map in Oracle BPEL
Process Manager using a po.xsd file and invoice.xsd file.

To create an XSL map file from imported source and target schema files in Oracle BPEL
Process Manager:

1. In Oracle JDeveloper, select the application project in which you want to create the new
XSL map.

2. Import the po.xsd and invoice.xsd files into the project. For example:

Chapter 41
Creating an XSLT Map

41-8

a. In the Structure window of Oracle JDeveloper, right-click Schemas.

b. Select Import Schemas.

3. Right-click the selected project and select New.

The New Gallery dialog appears.

4. In the Categories tree, expand SOA Tier and select Transformations.

5. In the Items list, double-click XSL Map.

The Create XSL Map File dialog appears. This dialog enables you to create an XSL map
file that maps a root element of a source schema file or Web Services Description
Language (WSDL) file to a root element of a target schema file or WSDL file. Note the
following details:

• – WSDL files that have been added to the project appear under Project WSDL
Files.

– Schema files that have been added to the project appear under Project Schema
Files.

– Schema files that are not part of the project can be imported using the Import
Schema File facility. Click the Import Schema File icon (first icon to the right and
above the list of schema files).

– WSDL files that are not part of the project can be imported using the Import WSDL
File facility. Click the Import WSDL File icon (second icon to the right and above
the list of schema files).

6. In the File Name field, enter a name for the XSL map file.

7. Select the root element for the source and target trees. In the example in Figure 41-4, the
PurchaseOrder element is selected for the source root element and the Invoice element
is selected for the target root element.

Figure 41-4 Expanded Target Section

Chapter 41
Creating an XSLT Map

41-9

8. Click OK.

A new XSL map is created, as shown in Figure 41-5.

Figure 41-5 New XSL Map

9. Save and close the file now or begin to design your transformation. Information on using
the XSLT Map Editor is provided in Introduction to the XSLT Map Editor.

10. From the Components window, drag a transform activity into your BPEL process.

11. Double-click the transform activity.

12. Specify the following information:

a. Add source variables from which to map elements by clicking the Add icon and
selecting the variable and part of the variable as needed (for example, a payload
schema consisting of a purchase order request).

Note:

You can select multiple input variables. The first variable defined represents
the main XML input to the XSL map. Additional variables that are added here
are defined in the XSL map as input parameters.

b. Add target variables to which to map elements.

c. Add the target part of the variable (for example, a payload schema consisting of an
invoice) to which to map.

13. To the right of the Mapper File field, click the Search icon (first icon) to browse for the map
file name you specified in Step 6.

14. Click Open.

15. Click OK.

The XSLT Map Editor displays your XSL map file.

16. Go to Introduction to the XSLT Map Editor for an overview of using the XSLT Map Editor.

How to Create an XSL Map File in Oracle Mediator
The XSLT Map Editor enables you to create an XSL file to transform data from one XML
schema to another in Oracle Mediator. After you define an XSL file, you can reuse it in multiple
routing rule specifications. This section provides an overview of creating a transformation map
XSL file with the XSLT Map Editor.

The XSLT Map Editor is available from the Applications window in Oracle JDeveloper by
clicking an XSL file or from the Mediator Editor by clicking the transformation icon, as

Chapter 41
Creating an XSLT Map

41-10

described in the following steps. You can either create a new transformation map or update an
existing one.

To launch the XSLT Map Editor from the Mediator Editor and create or update a data
transformation XSL file, follow these steps.

To create an XSL map file in the Mediator Editor:

1. Open the Mediator Editor.

2. To the left of Routing Rules, click the + icon to open the Routing Rules panel.

The transformation map icon is visible in the routing rules panel.

3. To the right of the Transform Using field shown in Figure 41-6, click the appropriate
transformation map icon to open the Transformation Map dialog.

Figure 41-6 Routing Rules

The appropriate Transformation Map dialog displays with options for selecting an existing
transformation map (XSL) file or creating a new map file. For example, if you select the
transformation map icon in the Synchronous Reply section, the dialog shown in
Figure 41-7 appears.

Figure 41-7 Reply Transformation Map Dialog

Chapter 41
Creating an XSLT Map

41-11

If the routing rule includes a synchronous reply or fault, the Reply Transformation Map
dialog or Fault Transformation Map dialog contains the Include Request in the Reply
Payload option. When you enable this option, you can obtain information from the request
message. The request message and the reply and fault message can consist of multiple
parts, meaning you can have multiple source schemas. Callback and callback time-out
transformations can also consist of multiple parts.

Each message part includes a variable. For a reply transformation, the reply message
includes a schema for the main part (the first part encountered) and an in.partname
variable for each subsequent part. The include request message includes an
initial.partname variable for each part.

For example, assume the main reply part is the out1.HoustonStoreProduct schema and
the reply also includes two other parts that are handled as variables,
in.HoustonStoreProduct and in.HoustonStoreProduct2. The request message includes
three parts that are handled as the variables initial.expense, initial.expense2, and
initial.expense3. Figure 41-8 provides an example.

Figure 41-8 Reply Part

4. Choose one of the following options:

• Click the Search icon to browse for an existing XSLT map file (or accept the default
value).

• Click the Add icon, to create a new XSLT map file, and then enter a name for the file
(or accept the default value).

If the source message in the WSDL file has multiple parts, variables are used for each
part, as mentioned in Step 3. When the target of a transformation has multiple parts,
multiple transformation files map to these targets. In this case, Oracle Mediator's
transformation dialog has a separate panel for each target part. For example,
Figure 41-9 shows a request in which the target has three parts:

Chapter 41
Creating an XSLT Map

41-12

Figure 41-9 Request Transformation Map Dialog

5. Click OK.

If you chose to create a new XSLT map, the XSLT Map Editor opens to enable you to
correlate source schema elements to target schema elements.

6. Go to Introduction to the XSLT Map Editor for an overview of using the XSLT Map Editor.

What You May Need to Know About Creating an XSL Map File
XSL file errors do not display during a transformation at runtime if you manually remove all
existing mapping entries from an XSL file except for the basic format data. Ensure that you
always specify mapping entries. For example, assume you perform the following actions:

1. Create a transformation mapping of input data to output data in the XSLT Map Editor.

2. Design the application to write the output data to a file using the file adapter.

3. Manually modify the XSL file and remove all mapping entries except the basic format data.
For example:

<?xml version="1.0" encoding="UTF-8" ?>
<xsl:stylesheet version="1.0"
xmlns:xp20="http://www.oracle.com/XSL/Transform/java/oracle.tip.pc.services.fu
nctions.Xpath20"
xmlns:bpws="http://schemas.xmlsoap.org/ws/2003/03/business-process/"
xmlns:ns0="http://xmlns.oracle.com/pcbpel/adapter/file/MediaterDemo/Validation
UsingSchematron/WriteAccounInfoToFile/"
xmlns:orcl="http://www.oracle.com/XSL/Transform/java/oracle.tip.pc.services.fu
nctions.ExtFunc"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:dvm="http://www.oracle.com/XSL/Transform/java/oracle.tip.dvm.LookupValue
"
xmlns:hwf="http://xmlns.oracle.com/bpel/workflow/xpath"
xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
xmlns:mhdr="http://www.oracle.com/XSL/Transform/java/oracle.tip.mediator.servi
ce.common.functions.GetRequestHeaderExtnFunction"
xmlns:ids="http://xmlns.oracle.com/bpel/services/IdentityService/xpath"
xmlns:imp1="http://www.mycompany.com/MyExample/NewAccount"
xmlns:tns="http://oracle.com/sca/soapservice/MediaterDemo/ValidationUsingSchem
atron/CreateNewCustomerService"
xmlns:xref="http://www.oracle.com/XSL/Transform/java/oracle.tip.xref.xpath.XRe
fXPathFunctions"
xmlns:plt="http://schemas.xmlsoap.org/ws/2003/05/partner-link/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"

Chapter 41
Creating an XSLT Map

41-13

xmlns:ora="http://schemas.oracle.com/xpath/extension"
xmlns:inp1="http://www.mycompany.com/MyExample/NewCustomer"
exclude-result-prefixes="xsi xsl tns xsd inp1 ns0 imp1 plt xp20 bpws orcl dvm
hwf mhdr ids xref ora">
</xsl:stylesheet>

While the file can still be compiled, the XSL mapping is now invalid.

4. Deploy and create an instance of the SOA composite application.

During instance creation, an exception error occurs when the write operation fails because
it did not receive any input. However, no errors are displayed during XSL transformation.

What Happens at Runtime If You Pass a Payload Through Oracle Mediator
Without Creating an XSL Map File

If you design a SOA composite application to pass a payload through Oracle Mediator without
defining any transformation mapping or assigning any values, Oracle Mediator passes the
payload through.

However, for the payload to be passed through successfully, the source and target message
part names must be the same, and of the same type. Otherwise, the SOA project fails to
compile. For projects that have been upgraded from 11g, the project compiles, but the target
reference may fail to execute with error messages such as Input source like Null or Part
not found.

What Happens If You Receive an Empty Namespace Tag in an Output
Message

The XML representation from an XSL file may differ from that used in a scenario in which a
message is passed through with a transformation being performed or in which an assign
activity is used, even though the XMLs are syntactically and semantically the same. For
example, if you use an Oracle Mediator service component to map an inbound payload that
includes an element without a namespace to an outbound payload, you may receive an empty
namespace tag in the output message.

<Country xmlns="">US</Country>

This is the correct behavior. A blank namespace, xmlns="", is automatically added.

Editing an XSLT Map in Map View
This section discusses basic functionality available in Map View. The remaining sections
discuss editing in the XSLT View with notes on restrictions that might apply to Map View for the
specific activity being discussed.

How to Perform a Value Copy by Linking Nodes
To copy the value of an attribute or leaf-element in the source to an attribute or leaf-element in
the target, drag a line from the source node to the target node. A green highlighted line
appears as you are dragging and dropping. When you complete the drop, a line is drawn
connecting the source and target nodes.

Figure 41-10 shows the map view where the PurchaseOrder/ID source element is mapped to
the Invoice/ID target element. Notice that a line connects the source and target nodes. Also,

Chapter 41
Editing an XSLT Map in Map View

41-14

the ID element in the target tree is no longer grayed, and appears in normal font. This means
that the ID element has been added to the XSLT map.

Figure 41-10 Copying a Leaf Node in Map View

How to Create an Empty Node in the Output Document
To create an empty node in the output document:

1. Select the grayed node in the target pane.

2. Right-click the node, and select Create Node in XSLT from the context menu.

How to Set a Literal Text Value for a Target Node
To set a literal text value on an output/target node:

1. Right-click the node in the target pane. Select Edit Text Value from the context menu that
appears.

The Set Text dialog appears.

2. Enter the text value to be assigned to the node. Do not enclose the text in quotation marks.

3. Click OK.

A yellow T icon appears next to the node indicating that a text value has been set for the
item. If you move the mouse cursor over the node, the corresponding text appears. If the
node was grayed earlier, it no longer appears gray, as the node has been added to the
XSLT map.

How to Add an XSLT Statement
You can add XSLT statements to handle constructs such as conditional statements (if-then-
else) and iterations (for-each).

To Add an XSLT Statement:
1. Right-click the target node, and select Add XSL Instruction from the context menu that

appears. A submenu appears with the various XSL statements that you can add.

2. Select the desired XSL statement, such as if, choose, or for-each, from the submenu.

The xsl:text and xsl:variable XSLT statements can only be added for existing nodes.

Chapter 41
Editing an XSLT Map in Map View

41-15

To Add an xsl:text or xsl:variable Statement:
1. Make sure that the target node exists in the XSLT.

If the target node appears gray, right-click the target node and select Create Node in
XSLT from the context menu that appears. The node no longer appears gray, and is added
to the XSLT map.

2. Right-click the target node, and select Add XSL Instruction from the context menu that
appears. A submenu appears with the various XSL statements that you can add.

3. Select text or variable from the submenu.

Note:

The xsl:copy-of statement is not supported in Map View. It is supported in XSLT
View.

You can also choose to drag and drop XSLT statements from the Components window.

To Drag and Drop an XSLT statement to a Target Node:
1. Select the XSLT Elements page from the Components Window. A list of statement

categories appear.

2. Locate a supported statement, for Map View, from a category. For example, the for-each
statement appears under the Flow Control category.

The Map View supports only a subset of XSLT statements. These statements are
discussed individually in the sections that follow.

3. Drag the statement to the desired target node until green highlighting appears over the
node, indicating that the statement can be dropped.

4. Drop the statement to insert it into the XSLT map.

The following sections enumerate the different XSLT statements that you can add using the
map view:

• How to Add Conditional Processing Using xsl:if

• How to Add Conditional Processing Using xsl:choose

• How to Add Loops Using xsl:for-each

• How to Add xsl:sort for an xsl:for-each Statement

• How to Duplicate XSLT Instructions

How to Add Conditional Processing Using xsl:if
If a source and target node are optional in their respective schemas, the xsl:if statement is
often used to test for the existence of the source node before creating the corresponding target
node.

In Figure 41-11, the Comment node is optional for both the source and the target. The square
brackets around the Comment nodes indicate that they are optional nodes.

Chapter 41
Editing an XSLT Map in Map View

41-16

Figure 41-11 Optional Nodes in Source and Target Trees

If the source Comment node does not exist in the source document at runtime, its value is
empty. This creates a Comment node in the target document and sets its value to empty.

To prevent creating an empty node when the source node is not there, add an xsl:if
statement above the target Comment node. The xsl:if statement tests for the existence of
the source node before creating the target node.

To add an xsl:if statement using the context menu:
1. Right-click the target node and select Add XSL Instruction -> if from the context menu

that appears. An xsl:if node is added as the parent node of the target node.

2. To set the condition for the xsl:if node, drag and drop the source node to the xsl:if
node.

Figure 41-12 Dragging the Source Node to the xsl:if Node

Chapter 41
Editing an XSLT Map in Map View

41-17

To add an xsl:if statement using drag and drop:
1. In the Components window, select the XSLT Elements page.

2. Expand the Flow Control section. You can click the plus sign (+) next to Flow Control to
expand the section.

3. Drag the if icon to the right side of the target node until you can see the green highlighting,
as shown in Figure 41-13.

Figure 41-13 Adding an xsl:if Statement

4. Drop the if icon while the green highlighting is visible. An xsl:if node is added as the
parent node of the target node.

5. To set the condition for the xsl:if node, drag and drop the source node to the xsl:if
node.

When viewed in source view, the xsl:if statement looks similar to the following:

<xsl:if test="/ns0:PurchaseOrder/ns0:Comment">
 <tns1:Comment>
 <xsl:value-of select="/ns0:PurchaseOrder/ns0:Comment"/>
 </tns1:Comment>
</xsl:if>

The preceding xsl:if statement ensures that the target node is created only if the source
node exists.

How to Add Conditional Processing Using xsl:choose
The xsl:choose statement is similar to the xsl:if construct. You can use the xsl:choose
XSLT statement if there are multiple conditions to evaluate.

Figure 41-14 shows the XSLT Map Editor containing sample source and target schemas. The
source schema has an xsd:choice construct defined. The source schema can contain either an
HQAccount or a BranchAccount node, but not both. The target schema has a BilledToAccount/
AccountNumber node that must be defined.

If the HQAccount node exists, you must copy its AccountNumber to BilledToAccount/
AccountNumber in the target. If the HQAccount node does not exist, you must copy the
AccountNumber from the BranchAccount node. You can use the xsl:choose statement to
accomplish this task.

Chapter 41
Editing an XSLT Map in Map View

41-18

Figure 41-14 XSLT Map Editor Containing Sample Source and Target Schemas

To add an xsl:choose statement using the context menu:
1. Right-click the target node and select Add XSL Instruction -> choose from the context

menu that appears.

A choose statement is added as the parent node of the target node along with an xsl:when
statement. Figure 41-15 shows the result of adding the xsl:choose statement to the
AccountNumber node.

Figure 41-15 Adding an xsl:choose Statement

An xsl:choose statement can contain multiple xsl:when statements followed by an
optional xsl:otherwise statement.

2. To add an xsl:otherwise node to the xsl:choose node, right-click xsl:choose in the target
tree and select Add XSL Instruction -> otherwise from the context menu that appears.

Figure 41-16 shows the result of adding the xsl:otherwise statement to the xsl:choose
statement. Note that the AccountNumber node is copied to each section of the xsl:choose
statement.

Figure 41-16 Adding an xsl:otherwise Statement to an xsl:choose Statement

3. Map the xsl:when node to the source node whose existence is to be tested. In our current
example, you drag a line from the HQAccount node in the source to the xsl:when node in
the target.

Chapter 41
Editing an XSLT Map in Map View

41-19

4. Map the xsl:when and xsl:otherwise cases. In the current example, you drag a line from the
HQAccount/AccountNumber node to the xsl:choose/xsl:when/AccountNumber node.
Similarly, you drag a line from the BranchAccount/AccountNumber node to the
xsl:choose/xsl:otherwise/AccountNumber node.

Figure 41-17 shows the completed xsl:choose construct.

Figure 41-17 Sample xsl:choose Construct

To add an xsl:choose statement using drag and drop:
1. In the Components window, select the XSLT Elements page.

2. Expand the Flow Control section. You can click the plus sign (+) next to Flow Control to
expand the section.

3. Drag the choose icon to the right side of the target node until you can see the green
highlighting, as shown in Figure 41-18.

Figure 41-18 Dragging the choose Icon to the Target Node

4. Drop the choose icon while the green highlighting is visible. An xsl:choose node is added
as the parent node of the target node. The xsl:choose node contains a child xsl:when
node.

5. To create the otherwise clause, drag the otherwise icon from the Components Window to
the left of the xsl:choose node until you can see the green highlighting, as shown in
Figure 41-19.

Figure 41-19 Dragging the otherwise Icon to the xsl:choose Node

Chapter 41
Editing an XSLT Map in Map View

41-20

6. Drop the otherwise icon while the green highlighting is visible. An xsl:otherwise node is
added as the child node of the xsl:choose node.

7. Map the xsl:when node to the source node whose existence is to be tested. In our current
example, you drag a line from the HQAccount node in the source to the xsl:when node in
the target.

8. Map the xsl:when and xsl:otherwise cases. In our current example, you drag a line from
the HQAccount/AccountNumber node to the xsl:choose/xsl:when/AccountNumber
node. Similarly, you drag a line from the BranchAccount/AccountNumber node to the
xsl:choose/xsl:otherwise/AccountNumber node.

Figure 41-17 shows the completed xsl:choose construct.

When viewed in source view, the xsl:choose statement looks similar to the following:

<BilledToAccount>
 <xsl:choose>
 <xsl:when test="/ns0:PurchaseOrder/HQAccount">
 <AccountNumber>
 <xsl:value-of select="/ns0:PurchaseOrder/HQAccount/AccountNumber"/>
 </AccountNumber>
 </xsl:when>
 <xsl:otherwise>
 <AccountNumber>
 <xsl:value-of select="/ns0:PurchaseOrder/BranchAccount/AccountNumber"/>
 </AccountNumber>
 </xsl:otherwise>
 </xsl:choose>
</BilledToAccount>

How to Add Loops Using xsl:for-each
The xsl:for-each statement can be used to loop over a source node-set, or set of nodes, and
to create output nodes for each node in the source node-set.

To add an xsl:for-each statement using the context menu:
1. Right-click the target node and select Add XSL Instruction -> for-each from the context

menu that appears. An xsl:for-each statement is added as the parent node of the target
node.

2. To set the source node-set to loop over, drag and drop the source node to the xsl:for-
each statement.

Figure 41-20 shows an example of creating the xsl:for-each statement. The source
PurchaseOrder document contains the Item node. The Item node is a repeating node, as
represented by its icon. For each Item node in the source document, an Item node is
created in the target document using the xsl:for-each statement.

Chapter 41
Editing an XSLT Map in Map View

41-21

Figure 41-20 Creating an xsl:for-each Statement

To add an xsl:for-each statement using drag and drop:
1. In the Components window, select the XSLT Elements page.

2. Expand the Flow Control section. You can click the plus sign (+) next to Flow Control to
expand the section.

3. Drag the for-each icon to the right side of the target node until you can see the green
highlighting, as shown in Figure 41-21.

Figure 41-21 Dragging the for-each Icon to the Target Node

4. Drop the for-each icon while the green highlighting is visible. An xsl:for-each node is
added as the parent node of the target node.

5. To set the source node-set to loop over, drag and drop the source node to the xsl:for-
each statement, as shown in Figure 41-20.

When viewed in the source view, the xsl:for-each statement looks similar to the following:

<ShippedItems>
 <xsl:for-each select="/ns0:PurchaseOrder/Items/HighPriorityItems/Item">
 <Item/>
 </xsl:for-each>
</ShippedItems>

Chapter 41
Editing an XSLT Map in Map View

41-22

Note that the Item node, created inside the xsl:for-each statement, is an empty node. You can
map elements under the target Item node to set values for them.

For example, as shown in Figure 41-22, if you drag and drop Qty to Quantity, the value of the
Qty element is copied to the Quantity element in the output.

Figure 41-22 Mapping Qty to Quantity

The following example shows the resulting code in source view. It also shows a sample source
document and output document snippet.

<ShippedItems>
 <xsl:for-each select="/ns0:PurchaseOrder/Items/HighPriorityItems/Item">
 <Item>
 <Quantity>
 <xsl:value-of select="Qty"/>
 </Quantity>
 </Item>
 </xsl:for-each>
</ShippedItems>

The following snippet shows some sample values for the source document:

<HighPriorityItems>
 <Item PartNum="000-AA">
 <Qty>20</Qty>
 </Item>
 <Item PartNum="000-AB">
 <Qty>24</Qty>
 </Item>
</HighPriorityItems>

The following snippet shows the output values corresponding to the preceding source
document:

<ShippedItems>
 <Item>
 <Quantity>20</Quantity>
 </Item>
 <Item>
 <Quantity>24</Quantity>
 </Item>
</ShippedItems>

Within an xsl:for-each statement, XPath expressions are usually relative to the node
selected by the xsl:for-each statement. For instance, in the preceding example Qty is relative
to the current Item node /ns0:PurchaseOrder/Items/HighPriorityItems/Item:
 <xsl:for-each select="/ns0:PurchaseOrder/Items/HighPriorityItems/Item">
 <Item>
 <Quantity>
 <xsl:value-of select="Qty"/>

Chapter 41
Editing an XSLT Map in Map View

41-23

 </Quantity>
 </Item>
 </xsl:for-each>

Using absolute paths within the xsl:for-each statement can result in unintended results. For
example, if were to use absolute path in the preceding example instead of relative path, the
code looks as follows:

<ShippedItems>
 <xsl:for-each select="/ns0:PurchaseOrder/Items/HighPriorityItems/Item">
 <Item>
 <Quantity>
 <xsl:value-of
 select="/ns0:PurchaseOrder/Items/HighPriorityItems/Item/Qty"/>
 </Quantity>
 </Item>
 </xsl:for-each>
</ShippedItems>

The resultant output document looks like the following:

<ShippedItems>
 <Item>
 <Quantity>20</Quantity>
 </Item>
 <Item>
 <Quantity>20</Quantity> <!-- repeating incorrect value! -->
 </Item>
</ShippedItems>

The absolute path always selects the first Qty element in the Item node-set and you see a
repeating value placed into each output Item element.

The XSLT Map Editor creates relative paths when mapping nodes under a for-each statement,
if possible. It is recommended that you create the xsl:for-each statement before mapping
the nodes that appear under the for-each. If you map nodes such as Quantity before adding
the for-each, the editor shows a warning and attempts to refactor the absolute XPath
expressions to relative path expressions when you map the node-set to the for-each.

Note:

• Executing an auto map automatically inserts the xsl:for-each statement, where
required.

• Ensure that your design does not include infinite loops. Infinite loops can result in
errors similar to the following during deployment and invocation of your
application:

ORAMED-04001:
. . .
oracle.tip.mediator.service.BaseActionHandler requestProcess
SEVERE:
failed reference BPELProcess1.bpelprocess1_client operation = process

Chapter 41
Editing an XSLT Map in Map View

41-24

How to Add xsl:sort for an xsl:for-each Statement
The xsl:sort statement can be added to an xsl:for-each statement to specify a field based on
which sorting is performed. The xsl:sort instruction causes xsl:for-each to loop over the
defined node-set in a particular order.

To add an xsl:sort statement using the context menu:
1. Right-click the xsl:for-each node and select Add XSL Instruction -> sort from the

context menu that appears.

The Set Attributes dialog appears.

2. Optionally specify attributes for the xsl:sort statement. Click OK.

The Set Attributes dialog enables you to set attributes for the xsl:sort statement.
Attributes control the way in which the sort is executed. For example, if you select the
'order' Attribute, you can then select ascending or descending for the sort order. Select
the attributes desired for the sort.

Note:

The default values for attributes are pre-selected in the Set Attributes dialog.
These values are used in the absence of any selected attribute.

For instance, the default for sort order is ascending. You do not have to explicitly
select 'order' Attribute to turn on ascending order.

The xsl:sort statement is added just below the xsl:for-each statement and before any
other nodes under the for-each.

3. To set the element to sort with, drag and drop a node from under the source node-set to
the xsl:sort node. For instance, to sort on USPrice, drag the USPrice node from under
the node-set element Item to the xsl:sort node, as shown in Figure 41-23.

Figure 41-23 Connecting the Source Node-Set to the xsl:sort Node

To add an xsl:sort statement using drag and drop:
1. In the Components window, select the XSLT Elements page.

2. Expand the Flow Control section. You can click the plus sign (+) next to Flow Control to
expand the section.

3. Drag the sort icon to the top of the element below the for-each node until you can see the
green highlighting, as shown in Figure 41-24.

Chapter 41
Editing an XSLT Map in Map View

41-25

Figure 41-24 Adding sort to for-each

4. Drop the sort icon while the green highlighting is visible. An xsl:sort node is added as
the sibling node of the highlighted node. In the example shown in Figure 41-24, the
xsl:sort node is added as a sibling of the Item element.

5. To set the element to sort with, drag and drop a node from under the source node-set to
the xsl:sort node. For instance, to sort on USPrice, drag the USPrice node from under
the node-set element Item to the xsl:sort node, as shown in Figure 41-23.

When viewed in the source view, the xsl:sort statement looks similar to the following:

<xsl:for-each select="/ns0:PurchaseOrder/Items/HighPriorityItems/Item">
 <xsl:sort select="USPrice"/>
 <Item>
 <Quantity>
 <xsl:value-of select="Qty"/>
 </Quantity>
 </Item>
</xsl:for-each>

How to Duplicate XSLT Instructions
Sometimes, you must duplicate XSLT instructions in the target tree. For example, you may
create two for-each statements next to one another to loop over two node-sets in the source
document, or possibly to loop over the same node-set twice.

Other XSLT instructions, such as xsl:if and xsl:sort, can also be duplicated. This section
illustrates creating duplicate instructions using the xsl:for-each statement. The same process
applies to other XSLT instructions.

To duplicate an xsl:for-each statement:

1. Right-click the xsl:for-each node in the target tree and select Duplicate from the context
menu that appears.

The node is duplicated together with its children and mappings. Figure 41-25 shows the
duplicate nodes.

Chapter 41
Editing an XSLT Map in Map View

41-26

Figure 41-25 Duplicating the xsl:for-each Statement

2. Optionally modify the mapping for the xsl:for-each node or change mappings for nodes
below the xsl:for-each node.

Example: Modifying the Mapping by Changing the XPath Expression
In this example, you modify the duplicate xsl:for-each statement to loop over the Item nodes
under the LowPriorityItems node in the source document. There are several ways to modify
the mappings. The following example discusses one way to modify the mappings.

If you edit the XPath expression associated with a for-each statement, all relative mappings
under the for-each are automatically updated. Use the following steps to modify the XPath
expression associated with the duplicate for-each statement:

1. To edit the XPath expression, double-click the line connected to the second for-each. This
is the blue line in Figure 41-25.

The Edit XPath dialog appears. The XPath Expression field displays the XPath
expression corresponding to the map.

2. Change HighPriorityItems to LowPriorityItems in the XPath Expression. Click OK.

The xsl:for-each statement and all its children now reference the LowPriorityItems/
Item node-set.

Chapter 41
Editing an XSLT Map in Map View

41-27

Example: Modifying the Mapping by Deleting and Re-Creating It
To modify the mapping for the for-each statement, you can also choose to remove the mapping
and re-create it. The following steps illustrate the process to modify the mappings for the
duplicate for-each statement:

1. Right-click the duplicate xsl:for-each node and select Delete Mapping from the context
menu that appears.

The Refactor XPaths dialog appears asking if you want to refactor the XPath expressions
under the for-each statement.

2. Click No to refactoring. This keeps the relative paths, as you plan to apply these relative
paths to a different loop. After you click No, the lines underneath the for-each statement
become temporarily disconnected from the source tree.

Chapter 41
Editing an XSLT Map in Map View

41-28

In the preceding figure, the relative XPath expression assigned to the Quantity field is
Qty. Without the XPath expression on the for-each statement, the relative path has no
Item node to be relative to, and consequently, no reference is found in the source tree.

Note:

In general, XPath expressions that cannot be resolved to nodes in the source
tree are represented in the center panel. This can sometimes indicate an issue,
as in the preceding case. There is a relative path that cannot be resolved
because of a missing for-each expression above it.

An XPath expression can also be represented in the center pane if the
expression is too complex to determine a source reference node at design time.

3. Drag and drop a line from the LowPriorityItems/Item node in the source tree to the
duplicate xsl:for-each statement.

The mapping to the Quantity field automatically reconnects to the Qty field under the
LowPriorityItems/Item node, as shown in the following figure.

How to Duplicate an Element
In order to duplicate a target node in Map view, the node must have been defined as a
repeating node in the target schema. For certain cases, you can create repeating nodes using
for-each loops, as discussed in the preceding section. In other cases, you may need to create
several independent instances of a node and map data to them through different areas of the
source document.

To duplicate a repeating target node:

1. If the target node text is grayed, and in italics, right-click the node and select Create Node
in XSLT from the context menu that appears.

Chapter 41
Editing an XSLT Map in Map View

41-29

Figure 41-26 Creating Node in XSLT

2. Right-click the node again and select Duplicate from the context menu that appears. The
node is duplicated.

Figure 41-27 Duplicate Contact Nodes

3. Map the appropriate fields from the source document to the two duplicate elements.

In the following figure, the duplicate Contact nodes in the target tree are mapped to
different areas of the source document. The first Contact node is mapped to the ShipTo
data. The second Contact node is mapped to the BillTo data.

Chapter 41
Editing an XSLT Map in Map View

41-30

How to Delete an Element or Attribute
To delete an element or attribute from the current XSLT Map, the element or attribute must first
exist in the XSLT. Nodes in the target tree that are not grayed, and not in italics, are nodes that
exist in the XSLT. Nodes that are grayed, and in italics, are not part of the XSLT. Such grayed
nodes represent candidate elements and attributes from the target schema, and cannot be
deleted from the display.

To delete a target node that exists in the XSLT, do one of the following:

• Click the target node to select it. Press the Delete key.

• Right-click the target node and select Delete from the context menu that appears.

The node is removed from the XSLT and any mapping to the node is also removed. The
deleted node is not removed from the display. The deleted node becomes gray and italicized
indicating that it is now just a possible target node from the target schema, and is no longer
part of the XSLT. However, if the deleted node was a duplicate node, or was in a position non-
compliant with the target schema, then the node is removed from the display.

The following figure shows two comment nodes that are part of the XSLT map.

If you right-click the second Comment node and select Delete from the context menu, the
duplicate node is removed from the XSLT and the display, as shown in the figure below.

Next, you right-click and remove the remaining Comment node. The node is not removed from
the display, but is removed from the XSLT and its appearance changes to gray and italicized,
as shown in the following figure.

Chapter 41
Editing an XSLT Map in Map View

41-31

How to Remove Mappings from an Element or Attribute
To remove the mapping to any target node, right-click the node in the target tree and select
Delete Mapping from the context menu that appears. Alternatively, you can select the line
representing the mapping, and press the Delete key.

When you remove a mapping in Map View, the node that was mapped to is not removed from
the XSLT. To remove the node, right-click and select Delete from the context menu that
appears. If only the mappings are removed and the node is not, the XSLT generates an empty
node when executed.

Editing an XSLT Map in XSLT View
This section discusses basic editing using the XSLT pane in XSLT View. The following list
includes the major differences between editing in XSLT View and editing in Map View:

• XSLT View does not provide a merged view of the XSLT nodes and the target schema.
The right target pane is divided into two panes. The top pane is called the XSLT pane and
the lower pane is called the target pane. If no target schema is defined, then the lower
pane is not shown.

• In order to map to target nodes, these nodes must be explicitly added to the XSLT pane
before they can be mapped. The editor provides several ways to do this. These are
discussed in the subsequent sections.

• The complete range of XSLT 1.0 instructions is available in XSLT View. These instructions
can be added anywhere within the XSLT panel, so long as their position is consistent with
the XSLT specification.

• A number of advanced features are available in XSLT View, such as template rules
(matched templates), named templates, import/include, and so on. These advanced
features are discussed later in this chapter.

How to Add a Target Element or Attribute Before Mapping
Before mapping to target elements and attributes, the element or attribute must be explicitly
added to the XSLT pane. This section contains the following topics:

• How to Add Elements and Attributes from the Target Schema

• How to Add Literal Elements and Attributes When No Target Schema Is Present

• How to Create an Empty Node in the Output Document

Chapter 41
Editing an XSLT Map in XSLT View

41-32

How to Add Elements and Attributes from the Target Schema
If the target schema is present, you can add elements and attributes from the target tree to the
XSLT pane.

You can either use the context menu for an XSLT element or attribute to add a related element/
attribute, or drag and drop the desired element/attribute from the target tree to the XSLT tree.

If elements are placed in positions that are inconsistent with the target schema, or if the editor
cannot yet determine if the element is valid at the location due to an incomplete XSLT map,
then a question mark is shown over the element's icon. The following figure shows an XSLT
tree where the Item element is marked with a question mark.

To add elements and attributes when target schema is present:
1. Right-click the element, in the XSLT pane, that is to contain the child element(s) or

attribute(s). A context menu appears.

Note:

This action can also be executed from Map View if the selected node exists in the
XSLT.

In Map View, you can also add an empty XSLT node by choosing Create Node
in XSLT. See How to Create an Empty Node in the Output Document for more
details.

2. Select Add Children From Schema. A submenu appears with choices that are consistent
with the target schema. Figure 41-28 shows the Add Children From Schema submenu.

Chapter 41
Editing an XSLT Map in XSLT View

41-33

Figure 41-28 Selecting Child Elements/Attributes to Add

3. Select the element name or attribute name to add. To add all child elements or attributes,
select All Elements or All Attributes. Select All Required to add all required child
elements or attributes.

To drag and drop elements and attributes from the target schema tree:
• To insert an element as a child of an existing element:

Drag the target element, or a selected range of elements, from the target pane to the left of
the desired element in the XSLT tree. A green highlight appears to indicate that the
element is being inserted as a child. Upon drop, the child is appended to the list of
children.

If the green highlight does not appear at a particular position, then it means it is invalid to
insert the element at that position.

• To insert an element as a sibling after an existing element:

Drag the target element, or a selected range of elements, from the target pane to the
bottom of the existing element in the XSLT tree. A green highlight appears to indicate that
the element is being inserted as a sibling. Upon drop, the sibling is appended after the
existing element.

Chapter 41
Editing an XSLT Map in XSLT View

41-34

• To insert an element as a sibling before an existing element:

Drag the target element, or a selected range of elements, from the target pane to the top of
the existing element in the XSLT tree. A green highlight appears to indicate that the
element is being inserted as a sibling. Upon drop, the sibling is appended before the
existing element.

• To insert an element as a parent of an existing element:

Drag the target element, or a selected range of elements, from the target pane to the right
of the existing element in the XSLT tree. A green highlight appears to indicate that the
element is being inserted as a parent. Upon drop, the element is inserted as the parent of
the existing element.

How to Add Literal Elements and Attributes When No Target Schema Is Present
This section applies to both XSLT and Map views.

To add a literal element when there is no target schema:
1. Right-click an element in the XSLT pane. The context menu for the element appears.

2. Select the relative position of the new literal element relative to the existing element. You
can create the literal element as the child, sibling, or parent of the existing element.
Figure 41-29 shows the available options (Append Child, Insert Parent, Insert Sibling
Before, Insert Sibling After).

Chapter 41
Editing an XSLT Map in XSLT View

41-35

Figure 41-29 Adding a Literal Element to the XSLT Pane

3. Select Literal Element from the submenu. The Define Element dialog appears.

4. Under Local Name, enter a name for the literal element. You can optionally specify a
namespace for the element.

5. Click OK to close the Define Element dialog.

To add a literal attribute when there is no target schema:
1. Right-click an existing literal element in the XSLT pane. The context menu for the literal

element appears.

2. Select Append Child > Literal Attribute. The Define Element dialog appears.

3. Under Local Name, enter a name for the literal attribute. You can optionally specify a
namespace for the attribute.

4. Click OK to close the Define Attribute dialog.

How to Create an Empty Node in the Output Document
When you use the methods discussed under the preceding sections (How to Add Elements
and Attributes from the Target Schema and How to Add Literal Elements and Attributes When
No Target Schema Is Present) to add nodes to the XSLT pane, these nodes are created as
empty nodes unless you map them to source nodes. Also, when you add a complex node to
the XSLT pane, all required nodes under the complex node are created automatically.

You can also set the XSL Map Initialization Options in the XSL Maps: XSL Editor preferences
page to generate empty nodes when a map is created. See How to Set the XSL Editor
Preferences for more information.

How to Perform a Value Copy by Linking Nodes
To copy the value of an attribute or leaf-element in the source to an attribute or leaf-element in
the XSLT pane, drag a line from the source node to the XSLT node. A green highlighted line
appears as you are dragging and dropping. When you complete the drop, a line is drawn
connecting the source and target nodes.

Chapter 41
Editing an XSLT Map in XSLT View

41-36

Figure 41-30 shows the XSLT view where the PurchaseOrder/ID source element is mapped to
the Invoice/ID XSLT element. A line connects the source and XSLT node.

Figure 41-30 Performing a Value Copy

How to Insert an xsl:valueof Statement
When you map a source element to an XSLT element, as described in the preceding section,
an implicit xsl:valueof statement is created in the XSLT.

In XSLT View, you can explicitly create multiple xsl:valueof elements for an XSLT element.
The resultant value of the XSLT element is the concatenation of the individual xsl:valueof
values.

To create an xsl:valueof element for an XSLT element:

1. Right-click the literal element in the XSLT pane. The context menu appears.

2. Select Append Child > XSL > value-of from the context menu. The Set Attributes dialog
box appears.

3. Optionally select 'disable output escaping' Attribute. Click OK.

The xsl:value-of element is inserted.

4. Map the xsl:value-of element to a source element just as you map a literal element. This
is described in the preceding section.

If an xsl:value-of element is added to a literal element that has no mapping, the xsl:value-
of statement appears under the literal element until it is mapped. After you map the
xsl:value-of element, the editor hides the xsl:value-of statement under the literal element
and shows only the line indicating the mapping.

If you add multiple xsl:value-of statements to the literal element, then all xsl:value-of
statements are explicitly shown under the literal element, and mapping lines can be separately
drawn to each xsl:value-of element.

Chapter 41
Editing an XSLT Map in XSLT View

41-37

How to Set a Literal Text Value for an XSLT Node
To set a literal text value for an XSLT node:

1. Right-click the node in the XSLT pane. Select Edit Text Value from the context menu that
appears.

The Set Text dialog appears.

2. Enter the text value to be assigned to the node. Do not enclose the text in quotation marks.

3. Click OK.

A yellow T icon appears next to the node indicating that a text value has been set for the
item. If you move the mouse cursor over the node, the corresponding text appears.

How to Set a Literal Text Value Using an xsl:text Instruction
To set the value for a literal element using the xsl:text instruction:

1. Right-click the literal element in the XSLT pane. The context menu appears.

2. Select Append Child > XSL > text from the context menu. The Set Attributes dialog box
appears.

3. Optionally select 'disable output escaping' Attribute. Click OK.

The xsl:text element is inserted.

4. Right-click the newly inserted xsl:text element and select Edit Text Value from the context
menu that appears.

The Set Text dialog box appears.

5. Enter the text value to be assigned Do not enclose the text in quotation marks.

6. Click OK.

A yellow T icon appears next to the xsl:text node indicating that a text value has been
set for the element. If you move the mouse cursor over the node, the corresponding text
appears.

7. To change the text value at any time, right-click the xsl:text element again and select Edit
Text Value from the context menu that appears.

How to Add XSLT Statements
This procedure applies to XSLT View only. XSLT statements can be added using the
Components window or context menu.

To add an XSLT element using the context menu:
1. Right-click an element in the XSLT pane. The context menu for the element appears.

2. Select the relative position of the new element relative to the existing element. You can
create the literal element as the child, sibling, or parent of the existing element. The
available options are Append Child, Insert Parent, Insert Sibling Before, and Insert
Sibling After.

3. Select XSL from the submenu. A list of available XSLT elements valid for the position is
displayed. Figure 41-31 shows a sample XSL selection.

Chapter 41
Editing an XSLT Map in XSLT View

41-38

Figure 41-31 Inserting an XSLT Element

4. Select the desired XSLT element.

Depending on the element selected, a dialog may prompt you for attribute values. If so,
then enter the attribute values, and click OK.

5. The XSLT element gets added to the tree.

The attributes of the added element are not explicitly shown in the XSLT tree. Hover your
mouse over the element to see its attributes in the tooltip text. Alternatively, select the
XSLT element to view and edit the element properties in the Properties window.

To add XSLT elements from the Components window:
1. Make sure that the Components window is visible. The default location is the top right hand

corner of Oracle JDeveloper.

2. If the Components window is not visible, select Components from the Window menu.

3. Select the XSLT Elements page.

4. Select the desired section under XSLT Elements. Drag the desired XSLT element to the
XSLT pane.

• To insert the XSLT element as a child of an existing element:

Drag the XSLT element from the Components window to the left of the existing
element in the XSLT tree. A green highlight appears to indicate that the XSLT element
is being inserted as a child. Upon drop, the XSLT element is appended to the end of
any existing children.

If the green highlight does not appear at a particular position, then it means it is invalid
to insert the element at that position.

Chapter 41
Editing an XSLT Map in XSLT View

41-39

• To insert the XSLT element as a sibling after an existing element:

Drag the XSLT element from the Components window to the bottom of the existing
element in the XSLT tree. A green highlight appears to indicate that the XSLT element
is being inserted as a sibling. Upon drop, the XSLT element is appended after the
existing element.

• To insert the XSLT element as a sibling before an existing element:

Drag the XSLT element from the Components window to the top of the existing
element in the XSLT tree. A green highlight appears to indicate that the XSLT element
is being inserted as a sibling. Upon drop, the XSLT element is appended before the
existing element.

• To insert the XSLT element as a parent of an existing element:

Drag the XSLT element from the Components window to the right of the existing
element in the XSLT tree. A green highlight appears to indicate that the XSLT element
is being inserted as a parent. Upon drop, the XSLT element is added as the parent of
the existing element.

Depending on the XSLT element selected, a dialog may prompt you for attribute values. If
so, then enter the attribute values, and click OK.

5. The XSLT element gets added to the tree.

The attributes of the added element are not explicitly shown in the XSLT tree. Hover your
mouse over the element to see its attributes in the tooltip text. Alternatively, select the
XSLT element to view and edit the element properties in the Properties window.

Chapter 41
Editing an XSLT Map in XSLT View

41-40

How to Set the Value of an XSLT Expression Attribute
Many XSLT instructions contain special attributes that are interpreted as XPath expressions.
These expression attributes are generally named select or test. For example, the xsl:for-
each element contains a select attribute and the xsl:if element contains the test attribute.

Such attributes can be defined by XPath expressions. You can set the values for these
attributes using drag and drop to the XSLT element in the XSLT pane (in XSLT View) or target
pane (in Map View).

To set the value of an XSLT expression attribute using drag and drop from the source tree,
drag a line from the desired node in the source tree to the desired XSLT element in the XSLT
pane. A line appears connecting the source tree node to the XSLT element.

The appropriate expression attribute is inserted for the XSLT instruction in the source view. For
example:

<xsl:if test="/ns0:PurchaseOrder/BillTo/Address/@country">

The preceding example code is formed by dragging the country attribute in the source schema
to the xsl:if statement in the XSLT tree. The code causes the if condition to test for the
presence of the country attribute in the source schema.

How to Duplicate an Element
To duplicate a literal element in the XSLT pane that is defined as a repeating node in the target
schema, use the instructions under How to Duplicate an Element. The instructions are same
as those for the Map View.

If no target schema is defined, you can duplicate any node in XSLT View, except the root node.

If a node needs to be duplicated, but the node is not defined as a repeating node in the target
schema, you can create a duplicate node by explicitly creating a literal element as follows:

To duplicate a literal element that is not defined as a repeating node in the target
schema:

1. In the XSLT pane, right-click the element to be duplicated. The context menu appears.

2. Select Insert Sibling After -> Literal Element from the context menu. The Define
Element dialog appears.

3. Enter the element name and namespace of the node to be duplicated. Click OK.

How to Delete an Element or Attribute
This feature is available in both the XSLT and Map views. When using Map View, the action is
to be performed in the target pane.

To delete a target node that exists in the XSLT, do one of the following:

• Right-click the node in the XSLT pane. Select Delete from the context menu that appears.

• Click the node in the XSLT pane to select it. Press the Delete key.

The node is removed from the XSLT pane together with any mappings to the node.

Chapter 41
Editing an XSLT Map in XSLT View

41-41

How to Move an Element
You can move an element by dragging it from one position and dropping it to another position
in the XSLT pane. The element can be moved to become a sibling, parent, or child of another
element. You cannot move an element in Map View.

In Figure 41-32, the AccountNumber element is at an incorrect location in the XSLT pane. To
make it consistent with the target schema, you must move the AccountNumber element under
the BilledToAccount element.

Figure 41-32 AccountNumber Element

Drag the AccountNumber node in the XSLT pane to the left of the BilledToAccount node until
the green highlight appears, as shown in Figure 41-33. The green highlight indicates that the
AccountNumber element is dropped as a child of BilledToAccount.

Figure 41-33 Dragging the AccountNumber Node

Drop the element while the green highlight is visible. The AccountNumber node is repositioned
under the BilledToAccount node, as shown in Figure 41-34.

Chapter 41
Editing an XSLT Map in XSLT View

41-42

Figure 41-34 Repositioned AccountNumber Node

How to Remove Mappings from an Element or Attribute
To remove the mapping to any XSLT node, right-click the node and select Delete Mapping from
the context menu. Alternatively, you can select the line representing the mapping, and press
the Delete key. You can use the preceding methods in both the Map and XSLT views.

Using XPath Expressions
How to Perform a Value Copy by Linking Nodes and How to Perform a Value Copy by Linking
Nodes discussed how to use the drag and drop action to create a mapping between a source
and target element or attribute. The drag and drop action creates an XPath expression in the
XSLT that references specific nodes in the source document.

For example, the following XSLT code is generated by mapping a source element to a target
element:

<ID>
 <xsl:value-of select="/ns0:PurchaseOrder/ID"/>
</ID>

The preceding code contains an xsl:value-of statement. The select attribute for this
statement contains an XPath expression (/ns0:PurchaseOrder/ID)that references the source
node being mapped.

This XPath expression represents a location path expression. XPath expressions can also be
complex and include XPath functions and operators.

For example, the following code concatenates the value of the source element /
PurchaseOrder/ID to the value of the attribute, /PurchaseOrder/@PONumber. It then assigns
the result to the target element, <ID>.
<ID>
 <xsl:value-of select="concat(/ns0:PurchaseOrder/ID,/ns0:PurchaseOrder/@PONumber)"/>
</ID>

In the preceding code, the value in the select attribute is the XPath expression. The XPath
expression uses the concat function to concatenate two source node values.

The XSLT Map Editor provides a number of ways to enter more complex XPath expressions
than those that are created by simple drag and drop actions. The following methods for
creating XPath expressions are available in both Map and XSLT View.

Chapter 41
Using XPath Expressions

41-43

How to Modify an Existing Source to Target Mapping
You can modify the XPath expression for a mapping created from a drag and drop action
between a source and target node.

To edit an XPath expression using the Edit XPath dialog
1. Double-click the line representing the source to target mapping. The Edit XPath dialog

appears.

2. Edit the XPath Expression, as needed.

For example, if you want the Description field to contain the first Comment that occurs in
the source, you add a predicate to the expression with the index of the first Comment.

Click Help if you need more information on editing the XPath expression.

3. Click OK in the Edit XPath dialog.

To edit an existing XPath expression using the Properties window
1. If the Properties window is not visible, select Window > Properties from the Oracle

JDeveloper menu bar.

Chapter 41
Using XPath Expressions

41-44

The default location of the Properties window is below the XSLT Map Editor.

2. Click to select the line representing the source to target mapping. The Properties window
shows the XPath expression corresponding to the selected map line.

3. Edit the XPath Expression, as needed.

For example, if you want the Description field to contain the first Comment that occurs in
the source, you add a predicate to the expression with the index of the first Comment.

Click the Help icon in the Properties window, if you need more information on editing the
XPath expression.

4. To update the XSLT with the changes, click the Apply Changes icon in the upper left
corner of the Properties window. Alternatively, click anywhere in the XSLT Map Editor.

How to Add an XPath Function to an Existing XPath Expression
You can drag and drop a function onto an existing source to target mapping. When you drop a
function on a map, the existing location path expression is used to populate the first parameter
of the function that is dropped.

In the following steps, you change the expression you edited in the preceding section (How to
Modify an Existing Source to Target Mapping). You use the concat function to concatenate the
first Comment in the source with the Description in the source.

Chapter 41
Using XPath Expressions

41-45

To add an XPath function to an existing XPath expression

1. If the Components window is not visible, select Window > Components from the Oracle
JDeveloper menu bar.

2. In the Components window, select General XPath. Expand the String Functions section by
clicking the plus sign (+) next to it.

3. Drag the concat function icon from the String Functions section to the line representing the
existing map that you want to modify. The line turns green, indicating that you can drop the
function.

4. Drop the concat function on the line. The function is inserted into the map, and the first
parameter of the concat function is set to the value of the existing XPath expression.

Note:

If a function does not get added to the map, the function may not have any
parameters. For example, if you drag and drop the xp20:current-date function
onto the existing line, it has no effect because the xp20:current-date function
takes no parameters.

How to Modify an Existing Function XPath Expression in the Canvas Pane
XPath functions are shown in the canvas panel and can be edited in several ways. Continuing
our example from the previous section (How to Add an XPath Function to an Existing XPath
Expression), you set the value of the second parameter of the concat function in several ways.

Chapter 41
Using XPath Expressions

41-46

To set a function parameter using drag and drop:
1. Drag a line from the Description element in the source tree to the left side of the concat

function icon in the canvas pane. A pop-up panel appears with connectors for each
possible parameter in the function.

2. Drop the line on the desired connector. In the preceding figure, you drop the line on the
second connector, which represents the second required parameter. You can also choose
to drop the line on the third optional parameter, and fill in the second parameter value later.

The parameter is added to the function. The warning icon disappears after all required
parameters have been added.

To delete a function parameter:
To delete a function parameter, select the line representing the input to the function parameter
and press the Delete key. Alternatively, you can right-click the line and select Delete from the
context menu.

How to Edit a Function as a Full XPath Expression
You can edit an XPath function as a textual XPath Expression using the XPath Edit dialog or
the XPath Edit panel in the Properties Window.

Chapter 41
Using XPath Expressions

41-47

To edit a function as a textual XPath expression using the XPath Edit dialog:
1. Double-click the expression folder in the canvas pane, in the area bordering the function

icon. The Edit XPath dialog appears.

If you double-click the center icon instead, it brings up the Edit Function dialog.

2. Edit the XPath Expression, as desired. To add the XPath location path for the Description
node, for example, place the cursor after the first parameter. Press Ctrl + Space and
double-click /ns0:PurchaseOrder to select it.

/ns0:PurchaseOrder is inserted in the expression and the drop-down menu is populated
with the possible children of the /ns0:PurchaseOrder node.

Chapter 41
Using XPath Expressions

41-48

3. Double-click the Description entry to select it. You can also put the mouse cursor on an
entry, and press the Enter key to select it.

4. Click OK in the Edit XPath dialog.

To edit a function as a textual XPath expression using the Properties Window:
1. If the Properties window is not visible, select Window > Properties from the Oracle

JDeveloper menu bar.

The default location of the Properties window is below the XSLT Map Editor.

2. Click the expression folder in the canvas pane, in the area bordering the function icon. The
full XPath Expression for the function appears in the right pane of the Properties window.

3. Edit the XPath Expression, as desired. You can also refer to Steps 2 to 3 in the preceding
procedure.

4. To update the XSLT with the changes, click the Apply Changes icon in the upper left
corner of the Properties window. Alternatively, click anywhere in the XSLT Map Editor.

How to Edit Individual Function Parameters
The XSLT Map Editor can parse a function into its corresponding parameters, so that the
XPath for each parameter can be edited in a separate XPath Expression field.

To edit the parameters of a function using the Edit Function dialog:
1. Double-click the function icon in the canvas pane. The Edit Function dialog appears.

Chapter 41
Using XPath Expressions

41-49

Make sure you double-click the center function icon. Double-clicking the area bordering the
function icon brings up the Edit XPath dialog.

2. Edit the function parameters individually, as desired. Optionally click Help for more
information about editing the parameters.

3. Click the Add icon, represented by the green plus sign (+), to optionally add a new
parameter.

4. Click OK after you finish editing the parameters.

To edit the parameters of a function using the Properties window:
1. If the Properties window is not visible, select Window > Properties from the Oracle

JDeveloper menu bar.

The default location of the Properties window is below the XSLT Map Editor.

2. Click the center area of the function icon in the canvas pane. The function parameters
appear in the right pane of the Properties window.

3. Edit the function parameters, as desired. Optionally click the Help icon for more
information about editing the parameters.

4. Click the Add icon, represented by the green plus sign (+), to optionally add a new
parameter.

5. To update the XSLT with the changes, click the Apply Changes icon in the upper left
corner of the Properties window. Alternatively, click anywhere in the XSLT Map Editor.

How to Create a New Function in the Canvas Pane
There are several ways to create a new function in the XSLT canvas pane. These are
described in the sections that follow.

To create an XPath Function using the canvas context menu
1. Right-click a blank area in the center canvas pane. Select Create XPath from the context

menu that appears.

2. Select the desired function from the Create XPath submenu. For example, select the
current-date function from the Date Functions category.

Chapter 41
Using XPath Expressions

41-50

An Information dialog may appear, prompting you to connect the function to a target node.
Click OK.

The function icon appears on the canvas pane.

3. Map the function to a target node by dragging a line from the function to the target node.

4. If the function requires parameters, edit the parameters using one of the methods
discussed in How to Modify an Existing Function XPath Expression in the Canvas Pane.

To create an XPath function using the Components window
1. If the Components window is not visible, select Window > Components from the Oracle

JDeveloper menu bar.

2. In the Components window, select General XPath or Advanced XPath. Select a category
of functions, for example, String Functions.

3. Drag the desired function from the Components window to the center canvas pane of the
XSLT Map Editor.

4. Map the function to a target node by dragging a line from the function to the target node.

5. If the function requires parameters, edit the parameters using one of the methods
discussed in How to Modify an Existing Function XPath Expression in the Canvas Pane.

Chapter 41
Using XPath Expressions

41-51

To create an XPath function using the target tree context menu
1. Right-click the target tree node (Map View) or the XSLT tree node (XSLT View) to which

the XPath function needs to be assigned. The context menu appears.

2. Select Create XPath. Select the desired XPath function from the submenu that appears.

The function is created in the canvas pane and linked to the target/XSLT node for which it
was created.

3. If the function requires parameters, edit the parameters using one of the methods
discussed in How to Modify an Existing Function XPath Expression in the Canvas Pane.

To create an XPath function by dragging it to the target tree
1. If the Components window is not visible, select Window > Components from the Oracle

JDeveloper menu bar.

2. In the Components window, select General XPath or Advanced XPath. Select a category
of functions, for example, String Functions.

3. Drag the desired function from the Components window to the target tree node (Map
View), or XSLT tree node (XSLT View), to which the function is to be assigned. A green
highlight appears to the left of the target/XSLT tree node.

4. Drop the function while the green highlight is visible.

The function is created in the canvas pane and linked to the target/XSLT node where the
function was dropped.

Chapter 41
Using XPath Expressions

41-52

5. If the function requires parameters, edit the parameters using one of the methods
discussed in How to Modify an Existing Function XPath Expression in the Canvas Pane.

How to Chain Functions Together
To chain one function to another:

Complex expressions can be built by chaining functions (that is, mapping the output of one
function to the input of another). For example, to remove all leading and trailing spaces from
the output of the concat function, perform the following steps:

1. Drag the left-trim and right-trim functions into the border area of the concat function.

2. Chain them as shown in Figure 41-35 by dragging lines from the output side of one
function to the input side of the next function.

Chaining can also be performed by dragging and dropping a function onto a connecting link.

Figure 41-35 Chaining Functions

How to Remove an XPath Expression
To remove an XPath Expression:

1. Select the XPath expression/function icon in the Canvas pane.

2. Right-click the icon and select Delete from the context menu.

How to Import User-Defined Functions
You can create and import a user-defined Java function if you have complex functionality that
cannot be performed in XSLT or with XPath expressions.

Follow these steps to create and use your own functions. External, user-defined functions can
be necessary when logic is too complex to perform within the XSL map.

To import user-defined functions:

1. Code and build your functions.

The XSLT Map Editor extension functions are coded differently than the Oracle BPEL
Process Manager extension functions. Two examples are provided in the
SampleExtensionFunctions.java file of the mapper-107-extension-functions sample
scenario. You can download this and other samples on the Sample Code site.

Each function must be declared as a static function. Input parameters and the returned
value must be declared as one of the following types:

• java.lang.String

Chapter 41
Using XPath Expressions

41-53

• int
• float
• double
• boolean
• oracle.xml.parser.v2.XMLNodeList
• oracle.xml.parser.v2.XMLDocumentFragment
The text for these functions is as follows:

// SampleExtensionFunctions.java
package oracle.sample;
/*
This is a sample XSLT Map Editor User Defined Extension Functions implementation
class.
*/
public class SampleExtensionFunctions
{
 public static Double toKilograms(Double lb)
 {
 return new Double(lb.doubleValue()*0.45359237);
 }
 public static String replaceChar(String inputString, String oldChar, String
 newChar)
 {
 return inputString.replace(oldChar.charAt(0), newChar.charAt(0));
 }
}

2. Create an XML extension function configuration file. This file defines the functions and their
parameters.

This file must have the name ext-mapper-xpath-functions-config.xml. See Creating
User-Defined XPath Extension Functions for more information on the format of this file.
The following syntax represents the functions toKilograms and replaceChar as they are
coded in Step 1.

<?xml version="1.0" encoding="UTF-8"?>
<soa-xpath-functions version="11.1.1"
 xmlns="http://xmlns.oracle.com/soa/config/xpath" xmlns:sample=
"http://www.oracle.com/XSL/Transform/java/oracle.sample.SampleExtensionFunctions"
 >
 <function name="sample:toKilograms">
 <className>oracle.sample.SampleExtensionFunctions</className>
 <return type="number"/>
 <params>
 <param name="pounds" type="number"/>
 </params>
 <desc>Converts a value in pounds to kilograms</desc>
 </function>
 <function name="sample:replaceChar">
 <className>oracle.sample.SampleExtensionFunctions</className>
 <return type="string"/>
 <params>
 <param name="inputString" type="string"/>
 <param name="oldChar" type="string"/>
 <param name="newChar" type="string"/>
 </params>
 <desc>Returns a new string resulting from replacing all occurrences
 of oldChar in this string with newChar</desc>

Chapter 41
Using XPath Expressions

41-54

 </function>
</soa-xpath-functions>

Some additional rules apply to the definitions of XSLT extension functions:

• The functions need a namespace prefix and a namespace. In this sample, they are
sample and http://www.oracle.com/XSL/Transform/java/oracle.sample.Sam
pleExtensionFunctions.

• The function namespace must start with http://www.oracle.com/XSL/Transform/
java/ for extension functions to work with the Oracle XSLT processor.

• The last portion of the namespace, in this sample
oracle.sample.SampleExtensionFunctions, must be the fully qualified name of the
Java class that implements the extension functions.

• The types and their equivalent Java types can be used for parameter and return
values:

XML Configuration File Type Name Java Type

string java.lang.String
boolean boolean
number int, float, double
node-set oracle.xml.parser.v2.XMLNodeList
tree oracle.xml.parser.v2.XMLDocumentFragment

3. Create a JAR file containing both the XML configuration file and the compiled classes. The
configuration file must be contained in the META-INF directory for the JAR file. For the
example in this section, the directory structure is as follows with the oracle and META-INF
directories added to a JAR file:

• oracle
– sample (contains the class file)

• META-INF
– ext-mapper-xpath-functions-config.xml

The JAR file must then be registered with Oracle JDeveloper.

4. Go to Tools > Preferences > SOA.

5. Click the Add button and navigate to and select your JAR file.

6. Restart Oracle JDeveloper.

New functions appear in the Components window under the User Defined page in the
User Defined Extension Functions group.

7. To make the functions available in the runtime environment, see How to Deploy User-
Defined Functions to Runtime for details.

Using Auto Map to Map Complex Nodes
When you map a non-leaf source element to a non-leaf target element, the Auto Map feature
assists you by automatically matching the child source elements to their corresponding target
elements. Auto Map looks at the element names, types, and paths to come up with the correct
mappings. Auto map can also insert xsl:if statements for optional nodes, depending on your
preferences.

Chapter 41
Using Auto Map to Map Complex Nodes

41-55

The Auto Map feature is available only when a target schema is used. You can use Auto Map
in both Map View and XSLT View.

How to Set Auto Map Preferences
You can specify the behavior of the Auto Map feature using the Preferences dialog. Select
Preferences from the Tool menu. In the navigation tree on the left, select Auto Map under
XSL Maps. Figure 41-36 shows the default settings for the Auto Map preferences.

Figure 41-36 Auto Map Preferences

The following list describes the various Auto Map Preference settings that you can configure:

• Confirm Auto Map Results: If you select this option, Auto Map displays a list of matching
source and target elements prior to automatically mapping these elements. You can
choose the matches that you'd like to be applied.

• Prompt for Preferences before Auto Map: If you select this option, the Auto Map
Preferences dialog appears every time you try to map two complex nodes.

• Mode: Determines whether the Auto Map executes in Basic or Advanced mode. The mode
selection determines the rest of the options that appear in this dialog.

The following are the rest of the options available when Basic Mode is selected:

• Match Elements with Similar Names: Elements with similar names are matched.

• Match Elements with Exact Names: Elements with exactly same names are matched.

• Match Elements with Exact Types: Only elements with exactly same data types are
matched.

• Match Elements Considering Their Ancestor Names: Element path is considered along
with the element name when matching.

• Insert xsl:if: Determines if xsl:if statements are automatically inserted. The following
settings are used:

Chapter 41
Using Auto Map to Map Complex Nodes

41-56

– Never: xsl:if statements are not inserted automatically.

– Check source node exists: An xsl:if statement is inserted to check for the existence
of the source node before the node is created in the output.

– Check source node is not empty: An xsl:if statement is inserted to check that the
source node is not empty before creating the node in the output.

The following are the rest of the options available when Advanced Mode is selected:

• Ancestor Weight: A number between 0 and 5 indicating the emphasis to be placed on
matching of ancestors. The number 0 corresponds to turning the Match Elements
Considering Their Ancestor Names option off in Basic mode. The number 5 corresponds to
turning the Match Elements Considering Their Ancestor Names option on in Basic
mode.

• Linguistic Weight: A number between 0 and 5 indicating the emphasis to be placed on
matching of element names. The number 0 indicates that the element names need not
match. The number 5 indicates that the element names must be an exact match.

• Type Weight: A number between 0 and 5 indicating the emphasis to be placed on
matching of element names. The number 0 indicates that the element types need not
match. The number 5 indicates that the element types must be an exact match.

• Match Threshold (%): The Auto Map computes a percentage match for each map
(Ancestor, Linguistic, Type), and selects the highest percentage amongst these. If the
highest match is above the threshold percentage, then a match is made.

• Dictionaries: Enables you to add existing dictionaries to the Auto Map. Dictionaries can
be defined from existing maps and used in subsequent maps.

How to Execute an Auto Map
To execute an Auto Map:

1. Drag and drop a complex source node to the target element in the XSLT pane. If you are
using Map View, then you'd drop the source node to a node in the target pane.

2. Depending on your Auto Map Preferences, the Preferences dialog might appear. Select
your Auto Map preferences, and click OK.

3. Depending on your Auto Map Preferences, the Auto Map dialog might appear. Verify the
matches created by the Auto Map, and click OK.

Checking the Completion Status of the Map
If you are using a target schema for your map, you can check the completion status of the map
at any time. You can do this in both Map View and XSLT View. The completion status check
flags the following:

• All unmapped target elements and attributes. A flag indicates if the target element is a
required element in the target schema.

• Target elements mapped with incomplete XPath expressions. For instance, an XPath
function, mapped to a target node, might be missing a parameter.

• All missing target elements and attributes. A flag indicates if the missing target element is a
required element in the target schema.

To check the completion status of a map, right-click the Canvas (center) pane, and select
Completion Status from the context menu. The Completion Status dialog appears showing all
incomplete target nodes. Clicking a row in the Completion Dialog status selects the

Chapter 41
Checking the Completion Status of the Map

41-57

corresponding node location in the XSLT/target tree. Figure 41-37 shows the Completion
Status dialog with a missing node highlighted.

Figure 41-37 Completion Status Dialog

Testing the Map
The XSLT Map Editor provides a tool to test the map. To invoke the test tool, right-click the
Canvas pane, and select Test from the context menu. You can use the test tool in both Map
View and XSLT View.

Figure 41-38 demonstrates launching the Test XSL Map dialog.

Chapter 41
Testing the Map

41-58

Figure 41-38 Invoking the Test Dialog

How to Test the Transformation Mapping Logic
The Test XSL Map dialog shown in Figure 41-39 enables you to test the transformation
mapping logic you designed with the XSLT Map Editor. The test settings you specify are stored
and do not need to be entered again the next time you test. Test settings must be entered
again if you close and reopen Oracle JDeveloper.

Chapter 41
Testing the Map

41-59

Figure 41-39 Test XSL Map Dialog

To test the transformation mapping logic:

1. In the Source XML File field, choose to allow a sample source XML file to be generated
for testing or click Browse to specify a different source XML file.

When you click OK, the source XML file is validated. If validation passes, transformation
occurs, and the target XML file is created.

If validation fails, no transformation occurs and a message displays on-screen.

2. Select the Generate Source XML File check box to create a sample XML file based on
the map source XSD schema.

3. Select the Show Source XML File check box to display the source XML files for the test.
The source XML files display in an Oracle JDeveloper XML editor.

If the map has defined parameters, the Parameters With Schema or Parameters
Without Schema table can appear.

a. If the Parameters With Schema table appears, you can specify an input XML file for
the parameter using the Browse button. Select the Generate File check box to
generate a file.

b. If the Parameters Without Schema table appears, you can specify a value by
selecting the Specify Value check box and making appropriate edits to the Type and
Value columns.

4. In the Target XML File field, enter a file name or browse for a file name in which to store
the resulting XML document from the transformation.

Chapter 41
Testing the Map

41-60

5. Select the Show Target XML File check box to display the target XML file for the test. The
target XML file displays in an Oracle JDeveloper XML editor.

6. If you select to show both the source and target XML, you can customize the layout of your
XML editors. Select Enable Auto Layout in the upper right corner and click one of the
patterns.

7. Click OK.

The test results shown in Figure 41-40 appear.

For this example, the source XML and target XML display side-by-side with the XSL map
underneath (the default setting). Additional source XML files corresponding to the
Parameters With Schema table are displayed as tabs in the same area as the main
source file. You can right-click an editor and select Validate XML to validate the source or
target XML against the map source or target XSD schema.

Figure 41-40 Test Results

How to Test XSLT Maps that Use DVM Lookup Functions
You can test an XSLT map that contains DVM lookup functions. If your map uses DVM lookup
functions that reference local files or files in the MDS, and these files are accessible from your
JDeveloper environment, then you need not perform any additional steps.

If your map uses DVM lookup functions that reference files not accessible in your JDeveloper
environment, then you can create local DVM files for testing without requiring to modify the
DVM references in your XSLT. Use the following steps:

Chapter 41
Testing the Map

41-61

1. If you have not already run the XSLT test, execute the test tool once. The test tool
generates the file UnitTestURLs.dvm in the XSLNonDeployedFiles folder, located in the
same folder as your XSLT file.

The UnitTestURLs.dvm file contains mappings between the DVM references in your XSLT
file and DVM references to local test files. For example, if the XSLT file that you are testing
has a reference to the file, oramds:/apps/AIAMetaData/dvm/
CUSTOMERPARTY_STATUSCODE.dvm, but you do not have access to this file in JDeveloper,
then you can create a local DVM lookup file against which the test is performed.

2. Open the UnitTestURLs.dvm file, located in the XSLNonDeployedFiles folder, in
JDeveloper.

3. Under the serverURL column, add the reference for the DVM file that you reference in
your XSLT.

4. Under the testURL column, add the reference to a local file to be used for testing.

5. Save the UnitTestURLs.dvm file.

6. Populate your test DVM file with test data.

7. Execute the test tool. The lookup is performed against the local file. You do not need to
modify your XSLT to point to the local file. The test uses the UnitTestURLs.dvm file to look
up the correct test file for the reference defined in the serverURL column.

How to Test XSLT Maps that Use XREF Functions
You can use the local dvm lookup file, called UnitTestXrefFunctionReturn.dvm to emulate the
test. This file is automatically generated when you run the XSLT test for the first time.

The UnitTestXrefFunctionReturn.dvm file includes default responses for all the XREF functions.
This simulates the expected responses when the functions execute correctly. You may modify
the default responses. You can also create different return values for different calls of the same
function when the parameter values are different.

The following figure shows the initial DVM file.

Chapter 41
Testing the Map

41-62

Figure 41-41 The UnitTestXrefFunctionReturn.dvm File

The functionName column specifies the name of the function. To start with, there is only one
entry for each function with the default behavior defined. All XREF functions execute with this
default information. You can optionally create more entries for a given function, and enter
different return values for the function based on the input parameters.

The returnValue column specifies the return value from the function. This defines what you
would like to see returned from the function.

The other columns define qualifiers that you can use to differentiate one function call from
another, based on the value of a given parameter. Each of these columns define a parameter
available in a given function call. Not all parameters are available in all functions. When a
parameter is not available, it is marked as NA (Not Available) in the original table.

Working with returnValue:
The returnValue column can either be defined as a text value, such as SBL_001, or may be
defined by a parameter name. For instance, if we look at the first function, lookupXRef, this
function has a return value of RefColumnValue. As this is the name of a parameter
(RefColumnValue), the value of this parameter is the return value of the function to the XSLT.

For example, if the call to the lookupXRef function looks like the following:

lookupXRef(oramds:/apps/AIAMetaData/xref/CUSTOMERPARTY_PARTYLOCATIONID.xref",
"COMMON_ID", "COMMON_001", "SBL_ID", false())

Then the value COMMON_001 is returned, as this is the value of the RefColumnValue parameter
that was passed.

For the markForDelete function, the value true is returned, converted to Boolean.

For the lookupXRef1M and lookupPopulatedColumns functions, a node-set is returned by
the function. This node-set contains elements of the following form:

<column name="columnNameHere">columnValueHere</column>

As shown in Figure 41-41, the default value for the lookupXRef1M function is:

:RefColumnName:RefColumnValue:ColumnName:RefColumnValue

This encodes the column names and values for two column nodes that are returned in a node-
set from the function. The first character defines the delimiter to be used in parsing the
information. If your data contains a colon (:), you can use any character as the delimiter that is

Chapter 41
Testing the Map

41-63

not in your test data, by putting that character as the first character and using it to delimit the
data (say, #abc:def#abc:ghi).

For example, if we have the following function call to lookupXRef1M:

lookupXRef1M ("oramds:/mydata", "COMMON_ID", "COMMON_001", "SAP_ID", false())

Then using the default definition, for a return value
of :RefColumnName:RefColumnValue:ColumnName:RefColumnValue, you would receive back
two column elements:

<column name="COMMON_ID">COMMON_001</column>
<column name="SAP_ID">COMMON_001</column>

If you change the line in the DVM to have a returnValue
of :SAP_ID:SAP_001:SBL_ID:SBL_001:ORCL_ID:ORCL_001, then the function returns three
column nodes:

<column name="SAP_ID">SAP_001</column>
<column name="SBL_ID">SBL_001</column>
<column name="ORCL_ID">ORCL_001</column>

Adding Additional Rows:
You can also add additional rows to the DVM file. You can add additional rows for a function by
providing different input values for the parameters resulting in different return values.

For example, if we have several lookups against the same XREF file, but want to get different
values back from each lookup, we could add the following lines for lookupXRef to the DVM file:

In determining the correct return value, the design time emulator finds the first matching set of
parameter values by starting at the bottom of the DVM table. The return value corresponding to
the first matching row is returned.

As illustrated in the preceding figure, a call to lookupXRef("oramds:/apps/AIAMetaData/xref/
CUSTOMERPARTY_PARTYLOCATIONID.xref", "COMMON_ID", "COMMON_001", "SBL_ID",
false()), for example, would return the value, SBL_001.
A call to lookupXRef("oramds:/apps/AIAMetaData/xref/
CUSTOMERPARTY_PARTYLOCATIONID.xref", "COMMON_ID", "COMMON_002", "SBL_ID",
false()), on the other hand, does not match any of the last three rows, and returns the
default value COMMON_002 (the value of the parameter, RefColumnValue).

Chapter 41
Testing the Map

41-64

How to Generate Reports
You can generate an HTML report with the following information:

• XSL map file name, source and target schema file names, their root element names, and
their root element namespaces

• Target document mappings

• Target fields not mapped (including mandatory fields)

• Sample transformation map execution

Follow these instructions to generate a report.

• In the Canvas (center) pane, right-click and select Generate Report for XSLT Map.

The Generate Report dialog appears, as shown in Figure 41-42. If the map has defined
parameters, the appropriate parameter tables appear.

Figure 41-42 The Generate Report Dialog

For more information about the fields, see the online Help for the Generate Report dialog.

How to Customize Sample XML Generation
You can customize sample XML generation by specifying the following parameters. Select
Preferences > XSL Maps in the Tools main menu of Oracle JDeveloper to display the
Preferences dialog. You can modify the following settings under Sample XML Generation:

Chapter 41
Testing the Map

41-65

• Number of repeating elements

Specifies how many occurrences of an element are created if the element has the attribute
maxOccurs set to a value greater than 1. If the specified value is greater than the value of
the maxOccurs attribute for a particular element, the number of occurrences created for that
particular element is the maxOccurs value, not the specified number.

• Generate optional elements

If selected, any optional element (its attribute minOccurs set to a value of 0) is generated
the same way as any required element (its attribute minOccurs set to a value greater than
0).

• Maximum depth

To avoid the occurrence of recursion in sample XML generation caused by optional
elements, specify a maximum depth in the XML document hierarchy tree beyond which no
optional elements are generated.

Importing an External XSLT Map
If you have an XSLT map that has been developed with an editor other than JDeveloper, you
can import it into JDeveloper.

To import an external map:

1. From the File main menu, select New > From Gallery.

2. Under Categories, select General > XML. Under Items, select XSL Map from XSL
Stylesheet. Click OK. The XSLT Chooser dialog appears.

3. Select the XSLT file to be imported. Click OK. The file is opened and a default header is
inserted with no source or target schema definition.

4. To create source and target schema definitions, right-click the Canvas (center) pane, and
select Replace/Add Source Schema to set the source schema. Select Replace/Add
Target Schema to set the target schema.

Note:

Imported maps can use Map View only if both the source and target schemas are
defined and there are no XSLT features not supported in Map View.

All maps can use the XSLT View.

Using Variables and Parameters
You can add variables and parameters to the XSLT map. These are available in both Map View
and XSLT View.

How to Add Global Variables
Global variables can be used in both Map View and XSLT View.

Chapter 41
Importing an External XSLT Map

41-66

To create a global variable:

1. Right-click any node in the source pane and select Add Global Variable from the context
menu. Alternatively, click the Add icon, identified by the green plus sign in the XSLT
toolbar and select Add Global Variable. This option is also available on the canvas
context menu under the Create option.

The Variable dialog appears.

2. Enter a name for the variable, and an optional namespace and prefix if desired.

3. Click OK.

The variable node appears at the top of the XSLT pane or target pane depending on
whether you are using the XSLT View or Map View.

The variable also appears in the source tree within the Variables folder. This enables you
to map from the variable to XPath expressions or nodes in the target tree.

Note:

You cannot define a structure for the variable in the current release. If the
variable you are referencing represents a complex structure, you can reference
nodes within the structure by entering the appropriate XPath expression
manually.

How to Add Local Variables in Map View
To add a local variable in Map View:

1. Right-click an existing node in the target tree (not grayed/italicized) and select Add XSL
Instruction > variable from the context menu that appears.

The Variable dialog appears.

2. Enter a name for the variable, and an optional namespace and prefix if desired.

3. Click OK.

The variable is added to the target tree, just above the node that you selected.

The variable also appears in the source tree within the Variables folder. This enables you
to map from the variable to XPath expressions or nodes in the target tree.

To determine if the variable is in scope for a particular XSLT node or XPath expression,
select the target tree node or XPath expression. If the variable is in scope for the target
tree node or XPath expression, then the variable appears in bold in the source tree. If the
variable is not in scope for the selected target tree node or XPath expression, then the
variable appears disabled in the source tree.

Only scalar variables can be defined. You cannot define the structure of a variable. If the
variable you are referencing represents a complex structure, you can reference nodes
within the structure by entering the appropriate XPath expression manually.

Chapter 41
Using Variables and Parameters

41-67

How to Add Local Variables in XSLT View
In XSLT View, local variables are added in the same manner as other XSLT elements. See
How to Add XSLT Statements for details about adding XSLT elements using the context menu
or Components window.

So, for example, if you select Insert Sibling Before > XSL > Variable from the context menu
of an XSLT node, you get the Variable dialog box. Enter the name of the variable, optionally
specify a namespace, and click OK.

The variable appears at the appropriate place in the XSLT/target pane. You can choose to map
XPath expressions to the variable to set the value of the variable.

The variable also appears in the source tree under the Variables folder. This enables you to
map from the variable to other XPath expressions or XSLT nodes.

To determine if the variable is in scope for a particular XSLT node or XPath expression, select
the XSLT node or XPath expression. If the variable is in scope for the XSLT node or XPath
expression, then the variable appears in bold in the source tree. If the variable is not in scope
for the selected XSLT node or XPath expression, then the variable appears disabled in the
source tree.

Only scalar variables can be defined. You cannot define the structure of a variable. If the
variable you are referencing represents a complex structure, you can reference nodes within
the structure by entering the appropriate XPath expression manually.

Note:

If you are using XSLT 1.0, and using a complex variable, it might be necessary to
wrap the variable in the ora:node-set function before an XPath expression can be
used to access nodes within the variable.

For example, say the myVar variable has the following structure:

<xsl:variable name="myVar">
 <A>
 sometext

</xsl:variable>

The text in B can be referenced as ora:node-set($myVar)/A/B. The node-set
function is not necessary in XSLT 2.0.

How to Add Global Parameters
Parameters can be added to the XSLT map editor both as global parameters and named
template parameters.

You can add global parameters when creating an XSLT map. See How to Create an XSLT Map
for more details. You can also add global parameters to an existing map.

To add a global parameter to an existing map:

1. Right-click any node in the source pane, and select Add Global Parameter from the
context menu.

Chapter 41
Using Variables and Parameters

41-68

Alternatively, click the Add icon, identified by the green plus sign, in the XSLT toolbar, and
select Add Global Parameter. Figure 41-43 shows the XSLT toolbar, which resides at the
top of the XSLT Map Editor.

Figure 41-43 Adding Global Parameter from the XSLT Toolbar

You can also right-click anywhere on the canvas (center) pane, and select Create > Add
Global Parameter from the context menu.

The Add Parameter dialog appears. Figure 41-44 shows the Add Parameter dialog.

Figure 41-44 Add Parameter Dialog

2. Enter a Local Name for the parameter and optionally specify a namespace.

If the parameter is a complex parameter, you can specify a schema and an element
definition for the parameter. Click the Help button in the dialog to get more information on
the individual fields.

3. Click OK in the Add Parameter dialog to create the parameter.

The parameter node appears at the appropriate place in the target pane (for Map View) or
XSLT pane (for the XSLT View). This enables you to map XPath expressions to the parameter
to set the parameter's default value.

The parameter also appears in the source tree. This enables you to map the parameter to
XPath expressions or nodes in the XSLT tree.

Chapter 41
Using Variables and Parameters

41-69

Note:

You can also add parameters like other XSLT elements. See How to Add XSLT
Statements for details about adding XSLT elements using the context menu or
Components window.

Substituting Elements and Types
You can substitute elements and types in the source and target trees.

Use element substitution when:

• An element is defined as the head of a substitution group in the underlying schema. The
element may or may not be abstract. Any element from the substitution group can be
substituted for the original element.

• An element is defined as an any element. Any global element defined in the schema can
be substituted.

Use type substitution when:

• A global type is available in the underlying schema that is derived from the type of an
element in the source or target tree. The global type can then be substituted for the original
type of the element. Any type derived from an abstract type can be substituted for that
abstract type.

• An element in the source or target tree is defined to be of the type anyType. Any global
type defined in the schema can then be substituted.

Type substitution is supported by use of the xsi:type attribute in XML.

To substitute an element or type in the source and target trees:

1. In the source or target tree, right-click the element for which substitution applies. If you are
working in the XSLT pane, the element you select must exist in the XSLT before
substitution.

2. From the context menu, select Substitute Element or Type. If this option is disabled, no
possible substitutions exist for the element or its type in the underlying schema.

The Substitute Element or Type dialog shown in Figure 41-45 appears.

Figure 41-45 Substitute Element or Type Dialog

Chapter 41
Substituting Elements and Types

41-70

3. Select either Substitute an element or Substitute a type (only one may be available
depending upon the underlying schema).

A list of global types or elements that can be substituted displays in the dialog.

4. Select the type or element to substitute.

5. Click OK.

The element or type is substituted for the originally selected element. This selection
displays differently depending upon the type of substitution and where the substitution is
done, as described in the following sections:

• For Type Substitutions

– Type substitutions in the source tree

The xsi:type attribute is added beneath the original element, as shown in the
preceding figure. An S icon is displayed against the element to indicate that the
node was substituted. You can map from any structural elements in the substituted
type, including the xsi:type attribute.

Note:

Unlike element substitution, only one type substitution at a time can be
displayed in the source tree. However, this does not prevent you from
writing a map that allows the source to switch between the original type
and the substituted type.

If a node is not visible in the source tree, and the node is mapped to an
XPath expression, the XPath expression mapped to the node is still
displayed in the center canvas pane.

– Type substitutions in the Map View target tree

The xsi:type attribute is added beneath the original element, as shown in the
preceding figure. The attribute is disabled in Map View, and set to the type value
that was selected. An S icon is displayed against the element to indicate that the

Chapter 41
Substituting Elements and Types

41-71

node was substituted. You can map to any structural elements in the substituted
type, except the xsi:type attribute.

– Type substitutions in the XSLT pane of the XSLT View

The xsi:type attribute is added beneath the original element. It's value is set to the
type value that was selected, but may be mapped to. An S icon is displayed
against the element to indicate that the node was substituted. You can add any
structural elements through the Add Children From Schema context menu
option.

In some cases, it may be necessary to set the value of the xsi:type field
dynamically using an XPath statement. If you need to dynamically set the value of
the xsi:type, you can use type substitution to temporarily provide access to the
structural elements that are needed for the expected value at runtime.

Add the elements that are needed, then map the desired XPath statement to the
xsi:type attribute to set the value dynamically. As the runtime value for xsi:type is
not available at design time, question-mark icons (?)are displayed on elements
that depend upon the type value, if it is set dynamically.

– Type substitutions in the target pane of the XSLT View

You can also make substitutions in the target pane of the XSLT View. This pane
represents the target schema document. After you make a type substitution in the
target pane, the xsi:type attribute is added beneath the original element along
with any structural elements associated with that type, as shown in the following
figure.

Chapter 41
Substituting Elements and Types

41-72

You can select these elements and drop them into the XSLT pane, as needed.
These elements also show up in the Add Children From Schema context menu
option available in the XSLT pane.

For example, in the following figure, we select all children of a substituted element
(Item).

We then drop the new Item node as a child of the Items node in the XSLT pane,
as shown in the following figure.

The Item node and its children are added as children of the Items node. You can
similarly create different structures from different substitutions in the target pane.

Chapter 41
Substituting Elements and Types

41-73

• For Element Substitutions

– Element substitutions in the source tree

Both the original element and the substituted element are displayed in the source
tree, and are connected by a blue bracket. An S icon is displayed against the node
that is substituted. You can map from any structural elements in the substituted
element.

In the preceding figure, the ns1:ShipFutureDate is substituted for the any
element.

You can also substitute multiple elements at the same time, as shown in the
following figure.

– Element substitutions in the Map View target tree

As shown in the preceding figure, both the original element and the substituted
element are connected with a blue bracket. An S icon is displayed against the
node that was substituted. You may map to any structural elements in the
substituted element.

– Element substitutions in the XSLT pane of the XSLT View

In order to substitute an element in the XSLT pane, the original element must be
one that can appear in the XSLT. Any elements cannot appear in the XSLT pane,
and must be substituted in the XSLT View target pane, as discussed in the next
section. Abstract elements can be added to the XSLT pane temporarily, but should

Chapter 41
Substituting Elements and Types

41-74

not be used as final output. Elements that are the head of a substitution group and
are not abstract can be used as normal elements, and also be substituted.

In the following figure, the ns0:attachment element is an abstract element that is
also the head of a substitution group. When a substitution is made for this in the
XSLT pane, the element is replaced with the substitution.

After substitution, the abstract element is replaced with the selected element. The
S icon indicates the substitution. You can add child elements to the substituted
element using the Add Children From Schema context menu. This is depicted in
the following figure.

– Element substitutions in the target pane of the XSLT View

You can also make substitutions in the target pane of the XSLT View. The target
pane represents the target schema document. After making an element
substitution in the target pane, the elements substituted are added beneath the
original element along with any structural elements associated with that type, as
shown in the following figure.

Chapter 41
Substituting Elements and Types

41-75

You can select these elements and drop them into the XSLT pane, as needed.
These elements also show up in the Add Children From Schema context menu
option available in the XSLT pane.

6. To remove a substituted node, right-click any node with an S icon and select Remove
Substitution from the context menu.

7. To see all possible nodes where substitution is allowed, right-click the source or target tree
and select Show Substitution Node Icons.

All nodes where substitution is possible are marked with an * icon, as shown in
Figure 41-46.

Figure 41-46 All Possible Substitutions

8. To hide the icons, right-click and select Hide Substitution Node Icons.

Using Named Templates
You can add named templates to the XSLT map. These templates can be edited within the
XSLT Map Editor. You can invoke named templates by using the xsl:call-template
instruction.

Named templates can only be used with the XSLT View. Once you add a named template in an
XSLT map, the map can only be opened in XSLT View.

How to Create a Named Template
To create a new named template:

1. Right-click a blank area in the XSLT pane, and select New Named Template from the
context menu. Alternatively:

• Right-click a blank area in the canvas (center) pane, and select Create >New Named
Template from the context menu.

• Right-click any source node in the source pane, and select New Named Template
from the context menu.

• Select the Add button, identified by the green plus (+) icon, in the XSLT toolbar, and
select New Named Template.

The Add Named Template dialog appears.

2. Enter a name for the template. Optionally, set a namespace.

You can click Help to display help on the available options in the dialog.

3. Optionally click the Add button, identified by the green plus (+) icon, to add a parameter.
The Add Parameter dialog appears.

Chapter 41
Using Named Templates

41-76

4. Enter a name for the parameter. Optionally, set a namespace.

If the parameter is a complex parameter, you can specify a schema and an element
definition for the parameter. Click the Help button in the dialog to get more information on
the individual fields.

5. Click OK in the Add Parameter dialog to add the parameter.

6. Add any more parameters required for the named template.

7. Click OK in the Add Named Template dialog to create the named template.

How to Edit a Named Template
When a named template is first created, it is opened for editing in the XSLT Map Editor. You
can switch between editing the named template and editing the XSLT map by using the drop-
down list in the XSLT toolbar.

Figure 41-47 shows a named template being edited in the XSLT Map Editor. The top-left hand
corner has a drop-down list that lets you choose between the XSLT map and the named
template (createStreet).

The source tree, any global parameters, and the named template parameters appear in the
source pane on the left. The XSLT pane on the upper right represents the XSLT associated
with the named template. If a target schema is used, then the target tree appears at the
bottom-right corner of the editor.

Figure 41-47 Editing a Named Template

How to Add Parameters to an Existing Named Template
To add parameters to an existing named template:

1. Ensure that the named template appears in the XSLT Map Editor. To switch to the named
template, select the name of the named template from the drop-down list in the XSLT
toolbar. See Figure 41-47 for an example.

2. Right-click a source node and select Add Parameter from the context menu. Alternatively:

• Right-click in a blank area on the canvas (center) pane, and select Create > Add
Parameter from the context menu.

Chapter 41
Using Named Templates

41-77

• Click the Add button, identified by the green plus (+) icon, on the XSLT toolbar. Select
Add Parameter from the drop-down list that appears.

3. Specify a name for the parameter, and other details, in the Add Parameter dialog. Click the
Help button in the dialog to get more information on the individual fields.

4. Click OK in the Add Parameter dialog to add the parameter.

How to Invoke a Named Template
A named template is invoked using the xsl:call-template instruction. You can add the
xsl:call-template instruction as a node in the XSLT pane.

To invoke a named template:

1. Add the xsl:call-template instruction as an XSLT node. You can add the xsl:call-
template instruction from the context menu or the Component window. See How to Add
XSLT Statements for details about adding XSLT elements.

The Set Attribute dialog appears.

2. Select the named template to be invoked. Click OK.

The xsl:call-template instruction is added to the XSLT tree.The parameters (xsl:use-
param instructions) are added as child nodes.

3. Map values to the xsl:with-param XSLT nodes to set the values for the parameters.

Using Template Rules
Template rules are xsl:template statements with match attributes. Template rules are
supported by the XSLT Map Editor. You can use template rules in the XSLT View only.
Template rules are not supported in the Map View.

The XSLT Map Editor enables you to add template rules in various ways. You can insert the
template rule manually, or refactor an existing mapping to create a template rule.

When adding the template rule manually, you also need to insert an apply-templates
statement to invoke the template at the appropriate place in the XSLT. When refactoring an
existing map to create a template rule, the apply-templates statement is inserted
automatically.

How to Create a Template Rule
1. Use one of the following methods to invoke the New Template Rule dialog:

• Right-click the node in the source pane that is to serve as the match node. Select New
Template Rule from the context menu that appears.

• Right-click a node in the target pane. Select New Template Rule from the context
menu that appears.

• Right-click a node in the XSLT pane. Select New Template Rule from the context
menu that appears.

• Right-click a blank area in the canvas (center) pane. Select Create > New Template
Rule from the context menu that appears.

• Click the Add icon, identified by the green plus (+) sign, on the XSLT toolbar. Select
New Template Rule from the list of options that appears.

Chapter 41
Using Template Rules

41-78

The New Template Rule dialog appears. Figure 41-48 shows the New Template Rule
dialog.

Figure 41-48 New Template Rule Dialog

The New Template Rule dialog contains the following fields:

• Match Node: Specifies the value for the match attribute in the xsl:template definition.

The match attribute contains a pattern used to match a node in the input XML
document. The XSLT processor executes the instructions within a template when the
node it is processing matches the pattern defined in the template match attribute.

• Initialization Section: Used to determine the content of the new template rule.

You can choose to select Create empty template to create an xsl:template
instruction with no content. Alternatively, you can select Select nodes to generate in
template to view and select target schema nodes that you would like to create when
the template is executed.

The Select nodes to generate in template option is available only if a target schema
is being used.

• Search by local name: If the Select nodes to generate in template option is
selected, a tree representing the target schema is displayed. This option enables you
to search for a node in the target schema tree using its local name.

The New Template Rule dialog box may have automatically populated fields, depending on
the mode you choose to invoke the dialog. Table 41-1 lists the pre-populated fields
corresponding to each choice. If the method of invocation is not listed, then no fields are
pre-populated.

Chapter 41
Using Template Rules

41-79

Table 41-1 Methods of Invoking the New Template Rule Dialog

Invoked From Automatically Populated Information

A node in the source pane The Match Node is populated with the absolute path to the source
node. You can edit this value, if required.

The Create Emty Template option is pre-selected in the
Initialization section. You may change this selection, if required.

A node in the target pane The Select nodes to generate in template option is pre-selected
in the Initialization section and the target schema tree is displayed.
The target schema node used to invoke the New Template Rule
dialog is pre-selected in the target tree. You may change this
selection, if desired.

The Match Node field must be populated with the desired match
pattern for the template.

2. Set the Match Node as desired. Here are some common examples:

• /ns0:PurchaseOrder/ns0:ShipToContact/ns0:Region: The template executes when
the processor is processing the node with this path.

• Item: The template executes when the processor is processing any node with the
name Item.

• HighPriorityItems/Items/Item: The template executes when the processor is
processing any Item node that is a child of an Items node that in turn is a child of a
HighPriorityItems node.

3. Select the content desired in the Initialization section. If you know the output nodes that
you would like the template to create, select the Select nodes to generate in template
option, and select the output nodes from the target schema tree that is displayed. You can
use the Search by local name field to search within the target schema tree. You can
select multiple nodes in the target tree by clicking each desired node while holding down
the Shift key.

4. Click OK in the New Template Rule dialog to create the template. A new xsl:template
statement is inserted at the end of the XSLT.

5. If you do not have pre-existing apply-templates statement that invokes the template rule,
then insert an appropriate apply-templates statement to invoke the template rule.

If an apply-templates statement is not present, you can see a warning icon against the
xsl:template statement and question-mark (?) icons against any nodes within the
template. The following figure shows an example:

In general, the apply-templates statement is inserted at the position where you would like
to generate the nodes contained in the template. For example, in the preceding figure, the

Chapter 41
Using Template Rules

41-80

apply-templates statement needs to be inserted at the point where the Address node
and its children need to be created.

After you insert the apply-templates statement to invoke the template rule, the warning
icon and the question mark (?) icons disappear.

Example: Creating a Template Rule
As an example, let us create a template rule for an existing map, as shown below:

This example seeks to create a single template that processes the Address information in the
source ShipTo and BillTo elements to create the Address in the ShippedTo and BilledTo
elements in the target. The following steps illustrate the process:

1. Right-click the Address node under the ShipTo or BillTo node in the source pane, and
select New Template Rule from the context menu that appears.

The New Template Rule dialog appears. The Match Node is pre-populated with the path to
the Address node that you selected in the source pane. This match string is specific to the
Address element under ShipTo, but we need to create a template that will process any
Address field in the source document.

Chapter 41
Using Template Rules

41-81

2. Modify the Match Node string to contain only the name Address. This will match all
Address nodes in the source document irrespective of where they appear in the
document.

3. Select the Select nodes to generate in template option. The target schema tree appears.

When the template rule is invoked, we would like to create the Address element in the
target, along with its children.

4. Select the Address node under the ShippedTo or the BilledTo element, as both elements
have identical structures.

5. To select the children of the Address node, press and hold down the Shift key, and click the
Zip element, which is the last child of the Address element. This selects the Address
element and all its children.

Chapter 41
Using Template Rules

41-82

6. Click OK to create the template rule.

As the rule is not yet invoked anywhere in the map, a warning icon appears against the
template, and the nodes that the template creates have question mark (?) icons against
them.

Invoking the Template
Next, we need to invoke the template for both the ShipTo and BillTo Address elements in the
source to create the ShippedTo and BilledTo Address elements in the target. We need to
create apply-templates statements in the XSLT at the places where we would like to create
these Address elements. The following steps describe the process.

1. Right-click the Invoice node in the XSLT pane, and select Add Children From Schema >
BilledTo from the context menu that appears. The BilledTo node is inserted along with its
required child nodes.

2. Right-click the Invoice node in the XSLT pane, and select Add Children From Schema >
ShippedTo from the context menu that appears. The ShippedTo node is inserted along
with its required child nodes.

Chapter 41
Using Template Rules

41-83

3. Right-click the ShippedTo/Address node and select Delete. Repeat the same for the
BilledTo/Address node. We would create the Address nodes using the template rule that
we created.

4. Right-click the ShippedTo node and select Append Child > XSL > apply-templates from
the context menu that appears. The xsl:apply-templates statement is added.

5. Right-click the BilledTo node and select Append Child > XSL > apply-templates from
the context menu that appears. The xsl:apply-templates statement is added.

6. Drag a line from the ShipTo/Address node in the source pane to the ShippedTo/apply-
templates node in the XSLT pane. This sets the select attribute of the apply-templates
statement, so that only the ShipTo/Address node is processed by the xsl:apply-
templates statement.

7. Drag a line from the BillTo/Address node in the source pane to the BilledTo/apply-
templates node in the XSLT pane. This sets the select attribute of the apply-templates
statement, so that only the BillTo/Address node is processed by the xsl:apply-
templates statement.

At this point, the warning icon on the template rule disappears, as we have defined the
template invocation. If you click the template rule, the two source Address nodes
processed by the template are highlighted, as illustrated in the following figure.

Chapter 41
Using Template Rules

41-84

Next, the nodes below the template rule can be mapped.

8. Drag and drop lines from the elements under the BillTo/Address node, or the ShipTo/
Address node, to the appropriate elements under the Address template rule.

As you drag from either source Address (BillTo or ShipTo), lines are drawn to both
source addresses. This is because both BillTo/Address and ShipTo/Address are context
nodes for the template.

The source code for the template now appears as follows:

 <xsl:template match="Address">
 <Address country="{@country}">
 <Street>
 <xsl:value-of select="concat (Street1, ', ' , Street2)"/>
 </Street>
 <City>
 <xsl:value-of select="City"/>
 </City>
 <State>
 <xsl:value-of select="State"/>
 </State>
 <Zip>
 <xsl:value-of select="Zipcode"/>
 </Zip>
 </Address>
 </xsl:template>

How to Refactor an Existing Map to Create a Template Rule
You can refactor code from an existing template to create a new template rule. This is useful if
the template rule that is created can be reused in multiple places, as was the case with the
Address template rule created in the previous section.

The Create in Template option enables you to refactor a section of XSLT instructions into a
separate template that can be invoked from multiple places.

In the following example, we refactor an existing mapping to create a template rule.

In the following map, the XSLT that processes each Address element in the source is repeated
for each Address node. For easier maintenance, you may want to consolidate redundant code
into reusable templates. This way, if the code is later updated, you would not have to update
multiple copies.

Chapter 41
Using Template Rules

41-85

In the preceding map, if the XPath concat expression that creates Street from Street1 and
Street2 needs to be modified, there are two copies that would have to be modified. However, if
the concat function exists in a single template that is reused to produce both Address
elements, then only one concat statement needs to be modified in future.

In the following steps, we refactor the existing mapping to create a single template that
processes the Address elements:

1. Make sure that you are in the XSLT View. You can click XSLT in the top right corner of the
XSLT Map Editor to switch to the XSLT View.

2. Right-click the ShippedTo/Address element in the XSLT pane and select Create in
Template from the context menu that appears.

The New Template Rule dialog appears.

Chapter 41
Using Template Rules

41-86

The Match Node is pre-populated with a suggested match pattern derived from XPath
expressions contained under the selected node in the XSLT pane. The elements selected
in the target schema tree are the Address node and its children. These elements would be
moved to a new template rule.

3. Click OK.

A new template rule is created and an apply-templates statement is inserted in place of
the Address node. The XPath expressions defined for the elements under the Address
node in the XSLT pane are updated to contain relative paths to the Address node (context
node) for the new template.

Chapter 41
Using Template Rules

41-87

Next, we use this template for both the ShipTo and BillTo Address elements.

4. Double-click the new template node. The Set Attributes dialog appears.

5. Under Enter Pattern, enter Address.

6. Click OK.

7. Delete the BilledTo/Address element in the XSLT pane.

8. Right-click the BilledTo node and select Add Child > XSL > apply-templates. This
creates an xsl:apply-templates statement in place of the Address node.

9. Drag a line from the BillTo/Address node in the source pane to the new BilledTo/apply-
templates node in the XSLT pane.

Both BilledTo and ShippedTo Address elements are now created using a single template
rule.

Using the Execution View
The Execution View displays the order of execution of your XSLT statements. When creating
complex XSLT that uses named templates and template rules, it can get difficult to determine
the order of execution of XSLT templates. The Execution View helps you troubleshoot issues
by creating an execution tree for your XSLT.

Chapter 41
Using the Execution View

41-88

The execution tree shows when the output nodes are created, and shows exactly which
templates are invoked at various points during the XSLT execution.

How to Use Execution View to Prevent or Troubleshoot Runtime Errors
To launch the Execution View dialog, right-click the canvas (center) pane, and select
Execution View. Alternatively, click the Execution View for XSLT Map button on the XSLT
toolbar.

The Execution View is available in both the Map and XSLT views. However, it is most useful
when the map contains multiple templates and the user needs to figure out as to where the
templates are being invoked.

Figure 41-49 shows the Execution View dialog for an XSLT map that contains multiple
templates. As per the execution view, the root template with match='/' executes first. This is
followed by the creation of the Invoice, Description, and ID nodes. An apply-templates
statement then invokes the ShipTo template followed by an apply-templates statement that
invokes the BillTo template. Other nodes and templates are then created.

Figure 41-49 Execution View Dialog and Corresponding XSLT Tree

If you click an element in the Execution View tree, the corresponding element is highlighted in
the XSLT tree. For example, as shown in Figure 41-49, if you want to locate the apply-
templates node that invokes the BillTo template, select the apply-templates node in the
Execution View and the corresponding apply-templates statement is highlighted in the XSLT
pane.

Execution View also shows calls to named templates. When you select a node inside a named
template call in the Execution View tree, the XSLT editor view is refreshed to show the selected
node in the named template implementation.

Execution View helps you understand the overall flow of an XSLT stylesheet. Using the
Execution View, you can locate issues related to templates that are not invoked, or apply-
templates statements that are invoking incorrect templates.

Chapter 41
Using the Execution View

41-89

When using imported named templates or template rules, Execution View shows the
corresponding calls, and you can use Execution View to troubleshoot problems like import
precedence. However, Execution View cannot navigate to the external XSLT files.

Searching for Nodes
The Execution View dialog has a search facility that enables you to search for specific nodes in
the Execution View tree. Click in the Search local names field, and type a name to search.

Setting Display Options
You can choose to show or hide certain XSLT elements in the execution tree. Click Options to
bring up the Execution View Options dialog. Figure 41-50 shows the default selections in
Execution View Options.

Figure 41-50 Default Execution View Options

Debugging the XSLT Map
Starting in 12.2.1, you can debug your XSLT maps using the SOA Debugger. You can add
breakpoints at strategic locations in the XSLT map. When debugging, the debugger halts
execution at the breakpoints, enabling you to verify the data and output.

XSLT maps can be complex, making them difficult to debug. For example, you may have a
Java function or other functionality that is best tested in the application server. Also, you might
find it easier to debug in the application environment, as the XSLT may be invoked from many
different applications in the server. The SOA debugger provides remote debugging capability
for XSLT maps that have been deployed in the application server.

You can debug any XSLT transformation used in a BPEL process or Mediator. When the BPEL
process or Mediator is invoked in the composite, the debugger pauses at the breakpoints
defined in the map. The XSLT map opens in JDeveloper and user data corresponding to the
XSLT processing appears in the Data window.

You can also use the debugger with your Oracle Service Bus projects. For more details on
using the debugger with Service Bus projects, see Debugging Oracle Service Bus
Applications.

Chapter 41
Debugging the XSLT Map

41-90

Setting Breakpoints in the XSLT Map Editor
You can set breakpoints in the Design view of the XSLT Map Editor. This enables you to debug
your XSLT map at runtime, using test data or payload.

Breakpoints may be set in either the Map or XSLT View. Breakpoints are marked with red dots
in the breakpoint bar, which is to the right of the target or XSLT pane.
Before you can set breakpoints, make sure that the XSLT map is open and the Design tab is
selected.

Use one of the following methods to set a breakpoint:

• Click the breakpoint bar to the right of an XSLT element or node.

• Right-click the breakpoint bar to the right of an XSLT element, or node, and select Toggle
Breakpoint from the context menu that appears.

• Right-click an XSLT element, and select Debug > Toggle Breakpoint from the context
menu that appears.

Note:

You can also use the preceding steps to remove existing breakpoints.
You can also choose to disable a breakpoint by selecting Disable Breakpoint from
the context menus mentioned above. Disabled breakpoints show as gray icons in the
breakpoint bar.

The following image shows a breakpoint set against the ponumber node.

Running the Debugger on the XSLT Map

Initiating a Debugging Session

After setting the breakpoints for your XSLT map, follow these instructions to start the SOA
debugger:

Debugging a SOA Composite Application

Chapter 41
Debugging the XSLT Map

41-91

Note:

For the debugger to step into the XSLT map, the map must be invoked by a mediator
or BPEL process in your SOA composite.

Working with the Debugger in the XSLT Map Editor

After you run the debugger, and when the debugger comes across a breakpoint in the XSLT
map, the debugger stops execution at the breakpoint. A blue arrow to the left of the breakpoint
bar indicates the current position of the debugger. Also, a flashing blue icon appears against
the corresponding XSLT element or node.

When the debugger is stepping through the XSLT map, all valid breakpoints in the XSLT editor
change to red and green dots. Breakpoints that remain a solid red are currently invalid and are
ignored by the debugger.

Note:

Some processes that invoke the XSLT map have time-out limits. If the debugger ends
unexpectedly after exiting an XSLT map, the invoking process may have a time-out
value defined. This time-out value may need to be redefined to support debugging
the full process. Check server log files for information in the event of the debugger
unexpectedly aborting.

The following example image shows breakpoints, as they appear during runtime. The
breakpoints appear against the tID and Item elements. The debugger is currently at the Item
node, as indicated by the blue arrow and flashing icon.

Chapter 41
Debugging the XSLT Map

41-92

You can use the Step Over button in the main JDeveloper toolbar to step through the
execution. The Step In button can be used to step into loops, call-template, apply-
template, and apply-imports.The Step Out button can be used to step out of call-
template, apply-template and apply-imports to the next XSLT statement.

At any point during the execution, you can look at the current values of parameters and
variables in the Debugger Data window. The Data window also shows you the Context Node,
Context Position, Context Size, and the Output Document being built by the XSLT processing.
You can also choose to add any item visible in the Debugger Data window to the Watches
window.

The following image shows sample debugger data, as it appears in the Data window on the
right.

You can choose to edit the XSLT when debugging. You would need to redeploy the project
before you can debug again.

Viewing Breakpoints
Breakpoints appear on the breakpoint bar along the right edge of the XSLT Map Editor. You
can choose to see a list of all breakpoints in the XSLT map or the SOA project.

Viewing a List of All Breakpoints in the XSLT Map

Use one of the following methods to see all breakpoints in the current XSLT map:

• Right-click anywhere in the center canvas pane and select Breakpoints from the context
menu that appears.

Chapter 41
Debugging the XSLT Map

41-93

• Right-click anywhere on the breakpoint bar and select Breakpoints from the context menu
that appears.

• Click Breakpoints in the XSLT toolbar.

The Breakpoints dialog appears, listing all breakpoints in the XSLT map. If a breakpoint is
currently hidden in the XSLT pane, you can navigate to it by clicking the breakpoint in the
Breakpoints dialog.

You can also use the Breakpoints dialog to disable or delete one or more breakpoints. A
disabled breakpoint would appear as a grey dot on the breakpoint bar.

The Valid column indicates if a breakpoint is currently valid. Breakpoints can become invalid if
edits to the XSLT map makes them invalid. You can choose to delete invalid breakpoints.
Alternatively, invalid breakpoints can become valid again if you undo the changes made to the
XSLT map.

Viewing all Breakpoints in the Current Project

The JDeveloper Breakpoints window shows all breakpoints in the current project. Select
Breakpoints from the Window menu to see the Breakpoints window. You can double-click a
breakpoint in the Breakpoints Window to navigate to that breakpoint in the project. You can
also edit or delete breakpoints from the Breakpoints window. However, you cannot add a
breakpoint from the Breakpoints window.

Setting Conditions for XSLT Breakpoints
You can set conditions for breakpoints, so that the execution is halted only when the breakpoint
condition evaluates to true.

Use the following steps to set conditions for an XSLT breakpoint:

If the Breakpoints window is not visible, you can select Breakpoints from the JDeveloper
Window menu.

1. Right-click the breakpoint in the Breakpoints window. Select Edit from the context menu
that appears.

The Edit XSLT Breakpoint dialog appears.

2. Under the Conditions tab, enter a conditional expression using javascript syntax.

For example, the breakpoint below will break when the PartNum attribute in the $Part
variable equals p1.

Chapter 41
Debugging the XSLT Map

41-94

3. You can also choose to set a Pass Count for the condition. The pass count tells the
debugger to ignore the breakpoint until it has been passed a certain number of times. After
the pass count is met, the debugger breaks execution at the breakpoint.

4. Click OK to set the conditions.

Troubleshooting Memory Issues
If you work with large schema documents, you may sometimes encounter an out-of-memory
error during auto-mapping, or during test and report generation. If you receive an out-of-
memory error when using the XSLT Map Editor, you must increase the heap size of the JVM to
resolve the problem.

To increase the JVM heap size:

1. Locate the config file for your application installation.

Locate the shared Oracle JDeveloper product.conf file or the optional tool-specific .conf file
located in the user's home directory. The location of these files depends on the host
platform.

• For Windows Platforms:

The location of user/product files is often configured during installation, but may be
found here:

%APPDATA%\JDeveloper\product-version\product.conf
%APPDATA%\JDeveloper\product-version\jdev.conf

• For UNIX Platforms:

$HOME/.jdeveloper/product-version/product.conf
$HOME/.jdeveloper/product-version/jdev.conf

2. Edit the file to change the AddVMOption to the desired value. For example:

AddVMOption -Xmx1024M

Note:

The AddVMOption value can be large for 64-bit machines. Setting it close to the
amount of RAM provided by the machine provides better performance.

Setting XSL Map Preferences
Use the Preferences dialog to set preferences related to XSLT maps, such as expansion
depth, and the XSLT Map Editor, such as initialization options.

Chapter 41
Troubleshooting Memory Issues

41-95

How to Set XSLT Map Preferences
To set XSLT map preferences, select Preferences from the Tools menu. Click XSL Maps in
the navigation tree that appears in the left pane of the Preferences dialog. Figure 41-51 shows
the XSL Maps dialog that appears.

Figure 41-51 XSL Maps Preferences

You can set various options such as the expansion depth of the source and target trees. You
can click the Help button for more information on each field.

How to Set the XSL Editor Preferences
To set XSLT map preferences, select Preferences from the Tools menu. In the navigation tree
that appears in the left pane of the Preferences dialog, click the plus sign (+) next to XSL
Maps. This expands the XSL Maps node. Select XSL Editor. Figure 41-52 shows the XSL
Editor Preferences dialog.

Chapter 41
Setting XSL Map Preferences

41-96

Figure 41-52 XSL Editor Preferences

You can set various preferences for the XSLT Map Editors, such as the initialization mode.
Click Help for more information on each field.

How to Import a Customization File to Specify Display Preferences in the
XSLT Map Editor

You can specify a customization file containing display preferences for the XSLT Map Editor. In
the XSL Editor Preferences dialog (Figure 41-52), click the Browse button to the right of the
Custom Display Options Config File field. Select the file to import.

The customization file is an XML file that must conform to the XSLTEditorOptions.xsd schema
located in the bpm-ide-common.jar file at:

oracle/tip/tools/ide/common/resource/XSLTEditorOptions.xsd
The following example shows a sample customization file. The important elements in the file
are described following the example.

<?xml version="1.0" encoding="UTF-8" ?>
 <customizeXSLTeditor>
 <selectedArea>HL7</selectedArea>
 <abbreviationLists>
 <abbreviationList name="Siebel">
 <abbreviation long="Account" short="Acct"/>
 </abbreviationList>
 <abbreviationList name="SalesGeneral">
 <abbreviation long="SalesOrder" short="SO"/>
 <abbreviation long="PurchaseOrder" short="PO"/>
 <abbreviation long="BillOfMaterial" short="BOM"/>
 <abbreviation long="CreateEngineeringChangeOrderList" short="CECOL"/>
 </abbreviationList>

Chapter 41
Setting XSL Map Preferences

41-97

 </abbreviationLists>
 <customization area="HL7">
 <showFixedValueInElementName>
 <path>@LongName</path>
 <path>@LongName2</path>
 <path>@Name</path>
 </showFixedValueInElementName>
 <abbreviations>
 <apply display="treeLabels">
 <hideText part="matchValue" maxLength="13" hide="left"/>
 <hideText part="namedTemplateName" maxLength="15" hide="left"/>
 <hideText part="importHref" maxLength="20" hide="left"/>
 </apply>
 <apply display="dropDownLists">
 <hideText part="namedTemplateName" maxLength="40" hide="center"/>
 </apply>
 </abbreviations>
 </customization>
 <customization area="AIA">
 <abbreviations>
 <applyAbbreviations list="Siebel"/>
 <applyAbbreviations list="SalesGeneral"/>
 <apply display="treeLabels">
 <hideText part="matchValue" maxLength="13" hide="left"/>
 <hideText part="namedTemplateName" maxLength="15" hide="left"/>
 <hideText part="importHref" maxLength="20" hide="left"/>
 </apply>
 <apply display="dropDownLists">
 <hideText part="namedTemplateName" maxLength="40" hide="center"/>
 </apply>
 </abbreviations>
 </customization>
 </customizeXSLTeditor>

The following list describes the important elements in the preceding example:

• <selectedArea>: Selects the customization area to be used by the editor. A list of
customization areas may be defined in the file.

• <abbreviationList name="listName">: Defines an abbreviation list that can be
referenced by a customization area.

• <abbreviation name="Account" short="Acct">: Defines a specific abbreviation to use in
an abbreviation list.

• <abbreviations>: Used within a customization area to define abbreviations and cut-off
lengths for text in the editor.

• <applyAbbreviations>: Selects an abbreviation list or lists to use in this customization
area.

• <apply display="treeLabels" | "dropDownLists">: Selects an area where text cut-offs
occur.

• <hideText>: Selects specific text fields to cut-off when they are too long.

• @part: Either "matchValue", "namedTemplateName", or "importHref".
• @maxLength: Text value length limit.

• @hide: Specifies portion of the text to hide, "left" truncates the text on the left side,
"right" truncates the text on the right side, "center" removes text in the center replacing
it with '…'.

Chapter 41
Setting XSL Map Preferences

41-98

• <showFixedValueInElementName>: Used within a customization area. This element selects
fixed value attributes that contain the long name or other text that the user wants to see
displayed as part of the element name in the editor source or target tree.

For example:

<showFixedValueInElementName>
 <path>@LongName</path>
 <path>@LongName2</path>
 <path>@Name</path>
</showFixedValueInElementName>

In the preceding example, the first fixed attribute found on any element in the XSLT Map
Editor trees with the name LongName, LongName2, or Name is shown as part of the element
tree name.

The fixed attribute value is shown in parentheses to the right of the actual element name in
the tree. This is particularly useful for HL7 schemas where descriptive names are added as
fixed attribute values in the schema.

Chapter 41
Setting XSL Map Preferences

41-99

42
Creating Transformations with the XQuery
Mapper

This chapter describes how to create, edit, and test XQuery transformations using the XQuery
Mapper in JDeveloper. The XQuery Mapper enables you to transform data between various
XML and non-XML types, enabling you to integrate heterogeneous applications rapidly. You
can use the XQuery (.xqy) files created using XQuery Mapper as resources in Oracle BPEL
Process Manager, Oracle Mediator, or Oracle Service Bus.
This chapter includes the following sections:

• Introduction to the XQuery Mapper

• Creating an XQuery Map File

• Using the XQuery Mapper

• Using XQuery Functions

• Using Library Modules

• Working with Zones and FLWOR Constructs

• Using Type Annotations to Improve XQuery Performance

• Testing Your XQuery Map

Introduction to the XQuery Mapper
The XQuery Mapper supports XQuery 1.0. The older XQuery 2004 is also supported.

The XQuery Mapper includes the following views:

• XQuery Mapper Graphical View

• XQuery Mapper Source Editor

Note:

The XQuery Mapper graphical view is not supported for XQuery 2004 files. Only the
source view is supported for this older XQuery version.

When you create a new XQuery file, it opens in the graphical view by default. The graphical
view can also be accessed by clicking the XQuery Mapper tab at the bottom of the XQuery
map.

Figure 42-1 shows the graphical view of the XQuery mapper.

42-1

Figure 42-1 XQuery Mapper

The left pane of the XQuery Mapper includes the input sources or parameters for the XQuery
function. If your XQuery file has multiple functions, you can choose the function to display
using the toolbar over the mapper panes.

The right pane includes the target schema tree, which corresponds to the XQuery function's
result type. The center pane helps you map the source and the target schema elements using
XQuery functions.

About the Source and Target Trees
The left pane of the XQuery Mapper shows the source tree, and the right pane shows the
target tree. Tree nodes can be XML elements, attributes, and some other XQuery constructs.

XML elements are identified by the <> icon. Attributes use a different icon, and attribute names
are prefixed with the @ symbol, as they appear in an XPath expression. The element or
attribute multiplicity is shown using the following standard suffixes:

• ?: Zero or one occurrence of an element/attribute.

• +: One or more occurrences of an element/attribute.

• *: Zero or more occurrences of an element/attribute.

The source tree shows the input sources or parameters for the selected XQuery function. The
root level elements represent the input parameters for the function. If a root node is a complex
element, then its child elements and attributes appear under the root node.

The target tree can include XML elements, attributes, and some programming control
structures. The elements and attributes can appear in the following forms:

Chapter 42
Introduction to the XQuery Mapper

42-2

• Grayed Font: An element that is part of the target schema, but not defined yet. Once you
map a grayed element to a source element, it appears in normal font.

• Normal Font: An element that either corresponds to an element constructor in the source,
or copied implicitly from the source data.

• Underlined Font: An element that is incompatible with the specified target schema. This
element may appear because of an incorrect element name used in an element
constructor, or because of a sequence assignment with an incorrect schema type.

The target tree can also contain programming control structures like If-Then-Else, Union
operator, and comma operator:

• If-Then-Else Operator: The If-Then-Else operator shows up as a node called Conditional.
The Conditional node has nested branches for If Then and Else. You can choose the Make
Conditional option from the context menu of a node to make it conditional.

• Union Operator (and other sequence combining operators): These cannot be created in
the graphical view of the XQuery Mapper. However, if the source view contains such an
operator, it is represented in the target tree with a node called All, and the operands are
represented as subnodes of the all node.

• Comma Operator: The comma operator shows up as a node called List. The subnodes
represent the comma-limited operands of the comma operator. You can choose the Clone
option from the context menu of target tree node to apply a comma operator.

Using the XQuery Mapper Toolbar
The XQuery Mapper toolbar is located above the XQuery Mapper panes. The toolbar contains
various tools to work with the graphical mapper. Figure shows the XQuery Mapper toolbar.

Figure 42-2 XQuery Mapper Toolbar

The XQuery Mapper toolbar contains the following tools:

• Function Selector: The function selector box is identified by a green icon with the letter f
on it. You can use the Function Selector to select the function to display in the source
pane. This is useful if your XQuery map contains multiple functions.

• Add New Function: The Add New Function button is identified by the green plus (+) sign.
Use Add New Function to add a new function to the XQuery map file.

• Rename Function: The Rename Function button is to the right of the Add New Function
button. Use the Rename Function button to rename a function in the XQuery map file.

• Delete Function: The Delete Function is identified by a red cross (X) sign. Use Delete
Function to delete a function from the XQuery map file.

• Import Library Module: The Import Library Module button is to the right of the Delete
Function button. Use Import Library Module to import a library XQuery function into the
map. You must specify the library module files to be imported.

• Mapping Mode: The XQuery mapper can use different mapping modes. These modes
affect the XQuery expressions created when the user drags and drops a line from a source
node to a target node. The next three buttons are used to select the corresponding
mapping mode:

Chapter 42
Introduction to the XQuery Mapper

42-3

– Value Mapping: Constructs target XML elements and attributes from the input source,
and copies the input source values, using XML constructors. For example:

<ID>{fn:data($pParam1/ID)}</ID>
The above code creates the ID element in the target from the ID element in the input
source parameter.

Value mapping is the default mapping mode.

– Overwrite Mapping: The XML elements from the input source parameters are copied
to the result sequence. Any existing mapping are replaced with the new mapping. For
example:

{
$pParam1/Items
}

The above code copies the Items subtree, together with its child elements and
attributes, to the target tree.

– Append Mapping: This mode works like overwrite mapping, except that any existing
mappings are not overwritten. New additional mapping are created.

See Using the XQuery Mapper for more information on using the mapping modes.

• Show/Hide Target Type Differences: Use the Show/Hide Target Type Differences button
to manage the visibility of XML elements and attributes in the right target tree. You can
choose to hide elements and attributes that haven't been mapped yet.

• Search: Use the Search field to search for elements, attributes, data types, and so on in
the source and target trees. Use the Up and down arrows to look for the next and previous
items respectively.

Using the Properties Window
The Properties window displays the XQuery expression for the node selected in the target tree.
XQuery expressions created using drag and drop can be edited in the Properties window. The
Properties window can also be used to create more complex XQuery expressions.

The Properties window is located below the XQuery Mapper, by default. If the Properties
window is not visible, click Properties under the JDeveloper Window menu to display the
Properties window.

Tip:

When working with the XQuery Mapper, you might want to move the Properties
window from the bottom right hand corner of the screen to the bottom of the screen,
directly below the mapper window. A larger Properties window makes it easy to edit
XQuery expressions and view the variable tree.

You can directly edit the XQuery expression, for the selected target node, in the Properties
window. You can also drag XQuery functions, constructs, and operators from the Components
window into your XQuery expression in the Properties window. The Components window is
located to the right of the XQuery Mapper, by default. If you cannot see the Components
window, select Window > Components from the Oracle JDeveloper menu bar.

Chapter 42
Introduction to the XQuery Mapper

42-4

To save the changes, click the Commit button in the top left corner of the Properties window.
The XQuery is recompiled, and the XQuery Mapper view is updated.

If you make an error when editing the XQuery expression, click Revert to mapper sources, in
the top left area of the Properties window, to undo the changes and start again.

The Properties window also includes a variable tree on the left hand side. The variable tree
shows all variables, both local variables and XQuery function parameters, that are visible in the
current scope. The scope is determined by the node highlighted in the target tree pane. You
can drag and drop nodes from the variable tree into your XQuery expression in the right pane.

Figure 42-3 shows the Properties window. The Properties window is highlighted in red. The
comment node is shown selected in the target tree. The corresponding variable tree and
XQuery expression (fn:data($pParam1/Comment)) appears in the Properties window.

Figure 42-3 Properties Window

Using the Components Window
The Components window contains all the XQuery functions and operators that you can use in
your XQuery maps. These functions and operators can be dragged and dropped to the center
pane of the XQuery Mapper. You can also drag and drop a function onto a target tree node, if
the target tree node has already been created using the Insert context menu option.

Note:

You can also drag functions and operators to an XQuery expression in the Properties
window, as described in the preceding section.

When a function is dragged and dropped on an existing link between a source and target node,
for example, it becomes a part of the expression corresponding to that link. Some functions

Chapter 42
Introduction to the XQuery Mapper

42-5

without parameters must be dragged to an empty area of the center pane, and associated with
a target node. Functions can also be chained together.

The Components window organizes the XQuery function and operators into the following
categories:

• XQuery Functions: Includes various categories of XQuery functions, like aggregate
functions, date functions, mathematical functions, string functions, and so on.

• XQuery Constructs: Includes standard XQuery constructs like If-Then-Else and FLWOR
constructs.

• XQuery Operators: Includes various categories of XQuery operators, like logical
operators, node comparison operators, and so on.

• User-Defined Functions: Includes all the functions that you have defined in the current
XQuery map file, and any functions from imported library modules.

• My Components: Includes your favorite components that you can add to this category. It
also includes the recently used functions.

Source Editor
The source editor enables you to edit the XQuery map directly, and also allows you to perform
tasks that cannot be directly performed in the graphical view.

Click the XQuery Source tab at the bottom left of the XQuery Mapper graphical view to display
the source editor. Figure 42-4 shows the XQuery Mapper source editor.

Figure 42-4 XQuery Mapper Source Editor

Chapter 42
Introduction to the XQuery Mapper

42-6

The XQuery source view provides code editing features like code highlighting, code
completion, error highlighting, and code folding. You can also use Ctrl + click (click the left
mouse button while holding down the Ctrl key) on a function name, variable name, schema, or
schema element to navigate to the corresponding declaration for the function, variable,
schema, or schema element respectively.

Creating an XQuery Map File
Use Oracle JDeveloper to create XQuery maps. XQuery maps are included in the project
as .xqy files.

XQuery maps can be created as main modules and library modules. A main module is an
executable XQuery file. A library module is used to group and store XQuery functions. When
you import a library module into a main module, all functions in the library module become
available in the main module.

How to Create an XQuery Main/Library Module
To create an XQuery Main/Library Module:

1. Click the File menu. Select one of the following:

• To create an XQuery main module, select New > XQuery File ver 1.0. The Create
XQuery Map Main Module dialog box appears.

Figure 42-5 Create Main Module Dialog

• To create an XQuery library module, select New > XQuery Library ver 1.0. The
Create XQuery Map Library Module dialog box appears.

Chapter 42
Creating an XQuery Map File

42-7

Figure 42-6 Create Library Module Dialog

2. Under File Name, enter the name for the XQuery map file to be created. The file must
have a .xqy extension.

3. Under Directory Name, specify the directory in which the map file should be created. This
is usually the Transformations directory in your project folder. You can click the tree icon on
the right to browse and select the directory of your choice.

4. If you are creating a library module, select the target namespace for the library module
under Target Namespace URI. Optionally edit the Prefix for the namespace.

Every function defined in a library module automatically uses the library's target
namespace.

5. Select Generate Function to create a function in the XQuery file. If you do not select this,
an empty XQuery file is created, and you can add functions later.

6. Under Function Name, enter the name of the function to be created in the XQuery file.

7. If you are creating a main module, select these additional fields for the function:

• NS URI specifies the namespace for the function. NS URI is automatically populated.
You can also select a different namespace.

• Prefix specifies the namespace prefix of the function. Prefix is populated
automatically. You can also edit the suggested namespace prefix.

8. Add parameters for the function under the Sources section. To add a parameter, click the
Add Source button identified by the green plus sign (+). The Function Parameter dialog
box appears.

Chapter 42
Creating an XQuery Map File

42-8

Figure 42-7 Function Parameter Dialog

9. Under Name, enter the name of the function parameter.

10. Select Set a Namespace to specify a namespace for the function parameter:

Under NS URI, select the namespace for the function parameter. The namespace prefix
appears in the Prefix field. You can optionally edit this.

11. Under Sequence Type, click the button identified by the pencil icon to specify the data
type for the parameter. The Function Parameter Type dialog box appears.

Figure 42-8 Function Parameter Type Dialog

Use the XML Schema tab to specify an XML schema type as the data type for the function
parameter. The Untyped tab can be used to specify an untyped (non-XML schema based)
form of the parameter. You use an XML schema type in this procedure.

12. In the Function Parameter Type dialog, click the button to the right of Schema Object
Reference (identified by the tree icon) to select a schema object as the data type.

Chapter 42
Creating an XQuery Map File

42-9

This brings up the Type Chooser dialog box. You can choose from Project Schema Files,
XML Schema Simple Types, and schemas embedded in Project WSDL Files. Navigate
to the desired XML type and click OK to close the Type Chooser dialog box.

13. In the Function Parameter Type dialog, the Possible Sequence Type Form, Schema
Location, and Prefix are automatically populated depending on your choice of Schema
Object Reference. Optionally change any values if required.

14. Under Occurrence, optionally change the multiplicity of the parameter. The resultant
XQuery expression appears under Result XQuery Expression.

15. Click OK to close the Function Parameter Type dialog box.

16. Click OK to close the Function Parameter dialog box.

17. In the Create XQuery Map Main Module/Library Module dialog, specify the function's result
data type under the Target section. Click the button, with the pencil icon, to the right of the
Target field.

The Function Result Type dialog box appears. This dialog box is identical to the Function
Parameter Type dialog box. Use instructions under Steps 12 to 14 to specify the function's
result data type.

18. Click OK to close the Function Result Type dialog box.

19. In the Create XQuery Map Main Module/Library Module dialog box, under the Options
section, select Generate XQuery version line to generate a standard line at the beginning
of the XQuery file.

For example, the following line might be generated at the beginning of the file:

xquery version "1.0" encoding "utf-8";
20. Select Use schema type annotations to create a weak-typed XQuery file that uses type

annotations in place of schema object references. This may improve the XQuery
performance for certain scenarios.

If you deselect this option, XQuery generates a strong-typed XQuery file that can contain
references to schema objects.

See Using Type Annotations to Improve XQuery Performance for more information on type
annotations.

21. Click OK. The newly created XQuery map opens up in the XQuery Mapper graphical view.
If you want to see the XQuery source editor, click XQuery Source.

Using the XQuery Mapper
This section contains the following topics:

• How to Use Value Mapping to Copy a Leaf Element Value to a Target Leaf Element

• How to Use Overwrite Mapping to Copy an Element Subtree to the Target Tree

• How to Use Append Mapping to Copy an Element Subtree to the Target Tree

• How to Perform Multiple Value Mappings with One Drag and Drop Action

Chapter 42
Using the XQuery Mapper

42-10

How to Use Value Mapping to Copy a Leaf Element Value to a Target Leaf
Element

To create a value map for a leaf element:

1. Make sure that Value Mapping mode is selected in the XQuery toolbar.

2. Select the source leaf element whose value needs to be copied.

3. Hold down the left mouse button, and drag the mouse pointer to the target leaf element.
Release the left mouse button.

A solid line connecting the source and target leaf node appears. The source leaf element is
now value-mapped to the target leaf element.

How to Use Overwrite Mapping to Copy an Element Subtree to the Target
Tree

To create an overwrite map for an element subtree

1. Make sure that Overwrite Mapping mode is selected in the XQuery toolbar.

2. Select the source element. The element can have child elements, or can also be a leaf
element.

3. Hold down the left mouse button, and drag the mouse pointer to the target element.
Release the left mouse button.

The source element subtree gets copied to the specified location in the target tree. A solid
line connects the root of the copied source subtree to the target subtree. If there are no
type mismatches with the target schema, then the copied element and its child elements
appear in normal font. If there is a mismatch, the elements show up in underlined font.

How to Use Append Mapping to Copy an Element Subtree to the Target
Tree

To create an append map for an element subtree

1. Make sure that Append Mapping mode is selected in the XQuery toolbar.

2. Select the source element. The element can have child elements, or can also be a leaf
element.

3. Hold down the left mouse button, and drag the mouse pointer to the target element.
Release the left mouse button.

The source element subtree gets appended as the child of the selected element in the
target tree. A solid line connects the root of the source subtree to the root of the appended
subtree in the target. If there are no type mismatches with the target schema, then the
copied element and its child elements appear in normal font. If there is a mismatch, the
elements show up in underlined font.

Chapter 42
Using the XQuery Mapper

42-11

How to Perform Multiple Value Mappings with One Drag and Drop Action
To create multiple value mapping with one drag and drop action

1. Make sure that Value Mapping mode is selected in the XQuery toolbar.

2. Select the non-leaf source element.

3. Hold down the left mouse button, and drag the mouse pointer to the target element.
Release the left mouse button.

If the source and target elements have the same schema types, individual mappings are
created for all the child elements of the source element and target element. A mapping is
also created between the source and target element.

If an element has multiple occurrences, then a FLOWR cycle is automatically created for
the element. For example, the code segment below copies each Item iteratively:

for $Item in $pParam1/Items/Item
 return <Item PartNum="{fn:data($Item/@PartNum)}">
 <ProductName>{fn:data($Item/ProductName)}</ProductName>
 <Quantity>{fn:data($Item/Quantity)}</Quantity>
 <Price>{fn:data($Item/Price)}</Price>
 <Currency>{fn:data($Item/Currency)}</Currency>
 </Item>

Using XQuery Functions
You can add XQuery functions to your existing XQuery map. The Components window
contains a list of XQuery functions that you can drag and drop into the source editor or the
center pane of the XQuery mapper.

The Components window also includes a set of XQuery constructs, like FLWOR, and XQuery
operators, like logical AND. These constructs and operators can only be dragged and dropped
into the source editor.

How to Add an XQuery Function in the XQuery Mapper
You can drag and drop an XQuery function from the Components window to the center pane of
the XQuery mapper.

To add an XQuery function:
1. Make sure that the Components Window is visible. The default location is the top right

hand corner of Oracle JDeveloper.

If the Components Window is not visible, select Components from the Window menu.

2. In the Component Window, select the XQuery Functions page.

3. Click the Category that contains your function. For example, to add the concat function,
click String Functions.

4. Drag the desired function from the Components window to the center pane of the XQuery
mapper. When you drag the function to the center pane, the output of the function
connects to different target nodes, as you move along.

Figure 42-9 shows a function being dragged to the center pane of the XQuery Mapper.

Chapter 42
Using XQuery Functions

42-12

Figure 42-9 Dragging a Function to the Center Pane of the XQuery Mapper

5. Drop the function on the center pane when the function output is shown connected to the
desired target node.

Note:

You can also drop a function to an existing map line in the center pane of the
XQuery mapper.

The function gets connected to both the source (input) and target (output) nodes.

6. If the function requires additional input parameters, then a Warning icon appears on the
function icon. Drag a line from a source node to the left end of the function to specify an
input parameter.

7. Repeat the previous step for any more source nodes that you must add as input
parameters.

To edit a function's parameters:
1. Click the function icon in the center pane. The expression corresponding to the function

appears in the Properties window.

The Properties window is located at the lower right-hand corner of Oracle JDeveloper, by
default. If the Properties window does not appear, click Properties under the Window menu
to display the Properties window. You can optionally choose to drag the Properties window
to any convenient location within the JDeveloper window. You can also resize the
Properties window, as desired.

2. Edit the expression that appears in the right pane of the Properties window.

The left pane of the Properties window shows the variable tree that includes all variables
visible in the current scope. You can drag and drop variables to the expression on the right
to help build your function definition.

3. Click Commit at the top left corner of the Properties window to save the changes.
Alternatively, click Revert to mapper sources to revert changes made in the Properties
window.

Chapter 42
Using XQuery Functions

42-13

Using Library Modules
How to Create an XQuery Main/Library Module discusses the process of creating a library
module file. To use a library module, you can import the library module into the main module.
This makes all the library module functions available in the main module.

How to Import a Library Module
You can import a library module from the source editor of your main module.

To import a library module:

1. Make sure that your XQuery main module map file is open in the XQuery Mapper.

2. Click the XQuery Source tab at the bottom left of the XQuery Mapper window to switch to
the source editor.

3. Right-click anywhere in the source editor window. A context menu appears.

4. Select Import library module from the context menu. The Select XQuery Library Files
dialog appears.

5. Browse and select the XQuery library module file to be imported. Click OK.

An import statement, corresponding to the library module, is added to the main module
source view.

Working with Zones and FLWOR Constructs
You can create FLWOR (For, Let, Where, Order By, Return) expressions in the Source View.
FLWOR expressions are represented as zones in the XQuery Mapper target tree.

Zones identify areas in the target tree that are associated with FLOWR constructs or If-Then-
Else conditional constructs. Zones are represented by yellow brackets to the left of the target
tree.

If you move the mouse over a yellow line representing a zone, the line turns blue. For FLWOR
zones, additional buttons appear, corresponding to the For-Let, Where, and Order By clauses.
Figure 42-10 shows a sample XQuery with zones.

Chapter 42
Using Library Modules

42-14

Figure 42-10 Zones and FLWOR Zones in XQuery Mapper

How to Edit a FLWOR Construct
You can edit a FLWOR construct directly in the source view. You can also perform limited
editing of a FLOWR construct in the XQuery Mapper.

To edit a FLWOR construct in XQuery Mapper:

1. Click on the yellow bracket representing the FLWOR zone to select the zone. The yellow
bracket turns blue, and additional buttons appear. These buttons correspond to the
different clauses of the FLWOR construct.

2. Click the FL button to edit the For-Let properties for the FLWOR construct. The Properties
window shows the For-Let clause properties.

Click the Help icon in the Properties window to display help on editing the For-Let
properties.

3. Click the W button to edit the Where properties for the FLWOR construct.

The Properties window enables you to directly edit the Where expression. You can also
drag and drop variables from the left pane of the Properties window.

4. Click the O button to edit the Order By properties for the FLWOR construct.

The Properties window enables you to directly edit the Order By expression. You can also
drag and drop variables from the left pane of the Properties window.

Using Type Annotations to Improve XQuery Performance
When an XQuery is run, the XQuery engine performs schema type validations in the XQuery
file before running the XQuery. This may cause performance overheads for certain
applications.

If you must optimize your XQuery for performance, you can use type annotations to specify
schema information in the XQuery file. Type annotations enable you to hide the schema type

Chapter 42
Using Type Annotations to Improve XQuery Performance

42-15

definitions from the XQuery execution engine. The schema definitions are still visible to the
Xquery Mapper, which enables you to edit your XQuery map in the usual fashion.

To use type annotations in your XQuery file, select Use Schema Type Annotations in the
Create XQuery Map Main/Library Module dialog when creating a new XQuery file. See How to
Create an XQuery Main/Library Module for more information on creating an XQuery file.

Type annotations, in an XQuery file, look similar to standard XQuery comments. While
standard XQuery comments are delimited by the parentheses and colon, type annotations use
parentheses and double colons. So, for example:

(: This is an XQuery comment :)
(:: This is a type annotation ::)

An XQuery file that uses type annotations has the following version annotation at the beginning
of the file, immediately following the version declaration:

(:: OracleAnnotationVersion "1.0" ::)

The following example compares a few XQuery constructs with and without the type
annotations.

• Schema import (without type annotation):

import schema namespace ns1="http://www.oracle.com/pcbpel/po" at "../Schemas/
PurchaseOrder.xsd";

Schema import (with type annotation):

declare namespace ns1="http://www.oracle.com/pcbpel/po";
(:: import schema at "../Schemas/PurchaseOrder.xsd" ::)

• Variable declaration (without type annotation):

declare variable $test_param as schema-element(ns1:PurchaseOrder) external;

Variable declaration (with type annotation):

declare variable $test_param as element()
(:: schema-element(ns1:PurchaseOrder) ::) external;

Testing Your XQuery Map
You can test run your XQuery map from within Oracle JDeveloper. Testing the XQuery at
design time helps prevent runtime errors.

How to Test an XQuery Map
You must be in the Source Editor view to test the XQuery map.

To Test an XQuery Map:

1. Make sure that the XQuery main module is open in the XQuery Mapper.

2. If you are not in the Source Editor view, click the XQuery Source tab at the bottom of the
XQuery Mapper window to switch to the source editor.

3. Right-click anywhere in the source editor. Select Run XQuery from the context menu that
appears.

The Run XQuery dialog appears. Figure 42-11 shows the Run XQuery dialog.

Chapter 42
Testing Your XQuery Map

42-16

Figure 42-11 Run XQuery Dialog

4. Specify values for all source variables that appear in the Source variables section.

For simple data types, you can specify a value directly under the Value field. If your source
variable uses a complex schema, click the ellipses (. . .) button to bring up the Edit Variable
dialog. You can use an existing XML file to specify test data for the variable, or create an
XML file with test data. Click Help for additional help with completing the Edit Variable
dialog.

5. Select Open result in a new tab in JDeveloper if you want to use a new tab to display
test results. Select Save target file to save the result file. You must select one, or both, of
these options.

6. Click the Save icon to the right of Target filename to specify a result file into which the
result data is saved.

You must specify a Target filename even if you haven't selected Save target file in the
preceding step.

7. Optionally select Autosave configuration to automatically save the configuration settings
when the XQuery is run. The next time you try to run the XQuery, the configuration settings
are retrieved.

8. If you want to save the settings made in the Run XQuery dialog, click Save Configuration.

9. If you want to delete any previously saved configuration settings, click Delete
Configuration.

10. Click Run to run the XQuery.

Chapter 42
Testing Your XQuery Map

42-17

43
Using Business Events and the Event Delivery
Network

This chapter describes how to subscribe to or publish business events from Oracle Mediator or
a BPEL process in a SOA composite application. Business events are published to the Event
Delivery Network (EDN) and consist of message data sent as the result of an occurrence in a
business environment. When a business event is published, other service components can
subscribe to it.
This chapter includes the following sections:

• Introduction to Business Events

• Creating Business Events in Oracle JDeveloper

• Subscribing to or Publishing a Business Event from an Oracle Mediator Service
Component

• Subscribing to or Publishing a Business Event from a BPEL Process Service Component

• How to Integrate Oracle ADF Business Component Business Events with Oracle Mediator

For information about creating composite sensors on service components that subscribe to
business events, see Defining Composite Sensors .

For information about troubleshooting business events, including specifying the number of
threads, stopping event delivery, and specifying the maximum number of deliveries, see
Troubleshooting Oracle SOA Suite and Oracle BPM Suite in Administering Oracle SOA Suite
and Oracle Business Process Management Suite.

For information about managing business events from Oracle Enterprise Manager Fusion
Middleware Control, see Managing Business Events in Administering Oracle SOA Suite and
Oracle Business Process Management Suite.

Introduction to Business Events
You can raise business events when a situation of interest occurs. For example, in a loan flow
scenario, a BPEL process service component executing a loan process can raise a loan
completed event at the completion of the process. Other systems within the infrastructure of
this application can listen for these events and, upon receipt of one instance of an event:

• Use the event context to derive business intelligence or dashboard data.

• Signal to a mail department that a loan package must be sent to a customer.

• Invoke another business process.

• Send information to Oracle Business Activity Monitoring (BAM).

Business events are typically a one-way, fire-and-forget, asynchronous way to send a
notification of a business occurrence. The business process does not:

• Rely on any service component receiving the business event to complete.

• Care if any other service components receive the business event.

• Need to know where subscribers (if any) are and what they do with the data.

43-1

These are important distinctions between business events and direct service invocations that
rely on the Web Services Description Language (WSDL) file contract (for example, a SOAP
service client). If the author of the event depends on the receiver of the event, then messaging
typically must be accomplished through service invocation rather than through a business
event. Unlike direct service invocation, the business event separates the client from the server.

A business event is defined using the event definition language (EDL). The EDL is a schema
used to build business event definitions. Applications work with instances of the business event
definition.

The EDL consists of the following:

• Defined events

One or more event definitions (event-definition element) with the same namespace
(targetNamespace attribute of definitions root element), each having a local name (name
attribute of the event-definition element). The namespace and local name constitute an
event name (QName).

• Payload definition

The most common use for a definition is an XML Schema (XSD). The payload of a
business event is defined in an XSD that is imported (through the schema-import element)
into the EDL. Each defined event (that is, event-definition element) can have a
reference to an imported payload XSD element (the element attribute of the content
element). The schema URI is contained in the root element of the payload.

The following example shows an EDL file with two business events in the BugReport event
definition: bugUpdated and bugCreated. The namespace (/model/events/edl/BugReport) and
associated schema file (BugReport.xsd) are referenced.

<?xml version = '1.0' encoding = 'UTF-8'?>
<definitions targetNamespace="/model/events/edl/BugReport"
 xmlns:ns0="/model/events/schema/BugReport"
 xmlns="http://schemas.oracle.com/events/edl">
 <schema-import namespace="/model/events/schema/BugReport"
 location="BugReport.xsd"/>

 <event-definition name="bugCreated">
 <content element="ns0:bugCreatedInfo"/>
 </event-definition>

 <event-definition name="bugUpdated">
 <content element="ns0:bugUpdatedInfo"/>
 </event-definition>
</definitions>

These two events are available for subscription in Oracle Mediator and a BPEL process.

Business events are deployed to the Oracle Metadata Services Repository (MDS Repository).
Deploying a business event to the MDS Repository along with its artifacts (for example, the
XSDs) is known as publishing the EDL (or event definition). This action transfers the EDL and
its artifacts to a shared area in the MDS Repository. An object in an MDS Repository shared
area is visible to all applications in the Resources window of Oracle JDeveloper. After an EDL
is published, it can be subscribed to by SOA components such as Oracle Mediator or a BPEL
process.

A subscription is for a specific qualified name (QName) (for example, x.y.z/newOrders). A
QName is a tuple (URI, localName) that may be derived from a string prefix:localName with a
namespace declaration such as xmlns:prefix=URI or a namespace context. In addition,
subscriptions can be further narrowed down by using content-based filters.

Chapter 43
Introduction to Business Events

43-2

Business events are published to the EDN. The EDN runs within every Oracle SOA Suite
instance. Raised events are delivered by EDN to the subscribing service components. Oracle
Mediator service components and BPEL process service components can subscribe to and
publish events.

The EDN is based on a standard JMS messaging infrastructure that supports business event-
based interactions among Oracle SOA Suite components and non-Oracle SOA Suite
components. The EDN provides two JMS-based types:

• Oracle WebLogic Server JMS: By default, all business events use a single, default Oracle
WebLogic Server JMS topic.

• Oracle Advanced Queueing (AQ) JMS

You can create additional JMS topics (Oracle WebLogic Server JMS or AQ JMS) and map
different event types to these additional JMS topics in Oracle Enterprise Manager Fusion
Middleware Control.

EDN Integration with Oracle SOA Suite
Oracle SOA Suite EDN provides the following features:

• A standard JMS-based messaging infrastructure that provides the following:

– A JMS-based event publish and subscribe architecture for Oracle SOA Suite and non-
Oracle SOA Suite clients.

– Support for bidirectional interactions (can both publish to and subscribe from Oracle
SOA Suite and non-Oracle SOA Suite clients).

– Support for both the Oracle AQ JMS and Oracle WebLogic Server JMS providers. An
Oracle WebLogic Server JMS topic (default) and an AQ JMS topic are automatically
configured for EDN use after installation. The default JMS type can be switched from
Oracle WebLogic Server JMS (default) to AQ JMS in Oracle Enterprise Manager
Fusion Middleware Control. For more information, see "Mapping Business Events to
JMS Topic Destinations on the Business Events Page" of Administering Oracle SOA
Suite and Oracle Business Process Management Suite.

– EDN support as a lightweight manager above both JMS providers.

– A plain JMS API and an Oracle SOA Suite, value-added EDN API for remote, non-
Oracle SOA Suite clients to use for integrating with Oracle SOA Suite. For more
information, see Java API Reference for Oracle SOA Suite Event Delivery Network.

– JMS transactions to guarantee EDN delivery (for both the one-and-only-one (OAOO)
and guaranteed consistency methods).

– Durable and persistent publishing delivery options to prevent message loss. These
default options are beneficial for interactions with remote, non-Oracle SOA Suite
clients.

– A JMS adapter used internally for implementing many JMS features. For information
about the JMS adapter, see the "Oracle JCA Adapter for JMS" chapter of
Understanding Technology Adapters.

– No duplicate event processing in a multinode cluster.

• Scalability at a fine-grained level. This enables different events to map to different JMS
topic destinations, thereby eliminating the need for a single location to handle all events.
This reduces potential bottlenecks. Mapping is performed by an administrator in Oracle
Enterprise Manager Fusion Middleware Control. For more information, see the "Mapping
Business Events to JMS Topic Destinations" section of Administering Oracle SOA Suite
and Oracle Business Process Management Suite.

Chapter 43
Introduction to Business Events

43-3

• Support for the following publish and subscribe scenarios:

– Publish and subscribe to events across the same composite or different composites.

* Use the default EDN Oracle WebLogic Server JMS topic automatically provided.

* Use the custom event-to-JMS-topic mapping provided in Oracle Enterprise
Manager Fusion Middleware Control.

– Publish and subscribe to events with remote, non-Oracle SOA Suite participants
through one of the following APIs:

* Plain JMS API (for J2SE client environments)

* EDI API EdnJmsConnection (for J2SE and J2EE client environments)

• Instance tracking and fault recovery support in the Error Hospital. For more information,
see Administering Oracle SOA Suite and Oracle Business Process Management Suite.

• The storage of EDL files in the MDS Repository. This makes the files available for
browsing in the Resources window in Oracle JDeveloper. For more information, see
Managing Shared Data with the Design-Time .

Note:

For memory recommendations on sending large payloads in the event delivery
network (EDN) with Oracle AQ JMS, see JVM Memory Sizing Recommendations for
SOA Composite Applications.

Business Event API Support for Remote Clients
For remote clients to publish and subscribe to events in Oracle SOA Suite, there are several
API options. Table 43-1 provides details.

Table 43-1 Remote API Options

Option Description Supported By Advantages/Disadvantages

Plain JMS API Use to directly interact with EDN JMS
topics. This is typically a J2SE client
with raw JMS access.

The remote client must configure
JNDI properties to point to the SOA
server.

• Oracle WebLogic
Server JMS

• AQ JMS

The advantages are:

• Supports the standard JMS API,
meaning you can use many JMS
software tools.

The disadvantages are:

• Service level degradation.
• Requires manual discovery of

mapped JMS and configuration
of JNDI.

• Requires extra coding, including
handling of the internal EDN
event structure, filter translation,
subject propagation, transaction,
error handling, and so on.

Chapter 43
Introduction to Business Events

43-4

Table 43-1 (Cont.) Remote API Options

Option Description Supported By Advantages/Disadvantages

EDN API -
EdnJmsConnect
ion

For a J2SE client, such as Oracle
Event Processing. This option
provides all standard publish and
subscribe options.

The remote client must perform the
following tasks:

• Configure JNDI properties to
point to the SOA server.

• Invoke the EDN helper method
findRelevantBEConnFactory
to return an appropriate
connection factory. This enables
you to use a JMS connection for
publishing and subscribing to
events.

• Oracle WebLogic
Server JMS

• AQ JMS

The advantages are:

• No client JNDI configuration or
JMS adapter deployment

• Handles JMS mapping,
conversion, and translation.

The disadvantages are:

• Based on the plain JMS
connection factory and topic.

For information about the JMS
adapter, see the "Oracle JCA Adapter
for JMS" chapter of Understanding
Technology Adapters.

For more information about the EDN APIs, see Java API Reference for Oracle SOA Suite
Event Delivery Network.

Guidelines for Manually Setting Event Delivery Network Properties When Invoking the
BusinessEvent.setProperty API

When publishing an event delivery network (EDN) business event, most properties cannot be
manually set by invoking the BusinessEvent.setProperty(String name, Object value) API.

Properties That Cannot Be Manually Set

Do not set the following EDN business event properties. The values for these properties are
internally set and used by EDN.

• General properties:

– BusinessEvent.EVENT_ID ("id")
– BusinessEvent.PARENT_ID ("parent-id")
– BusinessEvent.PUBLISHED_TIME ("published-time")
– BusinessEvent.OWNER ("owner")
– BusinessEvent.SOURCE ("source")
– BusinessEvent.MODE ("mode")

• All tracking properties, for example:

– BusinessEvent.PROPERTY_ECID ("tracking.ecid")
– BusinessEvent.PROPERTY_COMPOSITE_INSTANCE_ID

("tracking.compositeInstanceId")
– BusinessEvent.PROPERTY_PARENT_COMPONENT_INSTANCE_ID

("tracking.parentComponentInstanceId")
– BusinessEvent.PROPERTY_CONVERSATION_ID ("tracking.conversationId")

Chapter 43
Introduction to Business Events

43-5

– tracking.compositeInstanceCreatedTime"

Properties That Can Be Manually Set

You can set the following properties:

• BusinessEvent.PRIORITY ("priority")
• BusinessEvent.CONTEXT ("context")

Local and Remote Event Connections
A single SOA composite application instance can reside in a single container or can be
clustered across multiple containers. Another application (for example, an Oracle Application
Development Framework (ADF) Business Component application) can be configured to run in
the same container as the SOA composite application instance or in a different container.

Raising an event from a Java EE application can be done through a local event connection or
a remote event connection:

• Local event connection

If the publisher resides on the same Oracle WebLogic Server as the application and the
publisher uses a local business event connection factory, the event is raised through a
local event connection.

• Remote event connection

If the caller resides in a different container (different JVM) then the application, the event is
raised through a remote event connection.

If another application (for example, an Oracle ADF Business Component application) is
configured to run in the same container as the SOA composite application, it is optimized to
use local event connections.

Creating Business Events in Oracle JDeveloper
This section provides a high-level overview of how to create and subscribe to a business
event.

How to Create a Business Event
To create a business event:

1. Create a SOA project as an empty composite.

2. Launch the Create Event Definition wizard in either of the following ways:

a. From the File main menu, select New > Event Definition.

b. From the File main menu, select New > Application > SOA Tier > Service
Components > Event Definition.

The Create Event Definition dialog appears.

3. Enter the details described in Table 43-2.

Chapter 43
Creating Business Events in Oracle JDeveloper

43-6

Table 43-2 Create Event Definition Dialog Fields and Values

Field Value

Name Enter a name or accept the default name of
EventDefinitionnumber. The name you enter here becomes the
EDL file name in the Applications window.

Note: Do not enter a forward slash (/) as the event name. This
creates an event definition file consisting of only an extension for a
name (.edn).

Directory Displays the directory path in which to create the event definition
file.

Namespace Accept the default namespace or enter a value for the namespace
in which to place the event. This enables the subscriber to receives
events of the indicated namespace.

4. Click the Add icon to add an event.

The Create Event dialog appears.

5. Click the Search icon to select the payload, and click OK. Figure 43-1 provides details.

Figure 43-1 Select the Payload

You are returned to the Create Event dialog.

6. In the Name field, enter a name.

7. Click OK.

The added event now appears in the Events section. Figure 43-2 provides details.

Chapter 43
Creating Business Events in Oracle JDeveloper

43-7

Figure 43-2 Create Event Definition

8. Above the editor, click the cross icon (x) next to event_definition_name.edl to close the
editor.

9. Click Yes when prompted to save your changes. If you do not save your changes, the
event is not created and cannot be selected in the Event Chooser window.

The business event is published to the MDS Repository and you are returned to the SOA
Composite Editor. The business event displays for browsing in the Resources window.

Subscribing to or Publishing a Business Event from an Oracle
Mediator Service Component

This section describes how to subscribe to a business event or publish a business event from
an Oracle Mediator service component.

How to Subscribe to a Business Event
To subscribe to a business event:

1. From the Components window, drag a Mediator service component into the SOA
Composite Editor. This service component enables you to subscribe to the business event.

2. In the Name field, enter a name.

3. From the Template list, select Subscribe to Events.

The dialog is refreshed to display an events table.

4. Click the Add icon to select an event.

The Event Chooser dialog appears.

5. Select an existing event or click the Add icon to create a new event, and click OK.

You are returned to the Create Mediator dialog.

6. Complete the remaining fields of the dialog. Table 43-3 provides details.

Chapter 43
Subscribing to or Publishing a Business Event from an Oracle Mediator Service Component

43-8

Table 43-3 Events Table of Create Mediator Dialog

Element Description

Consistency Click inside the Consistency column to select a level of delivery consistency
for the event.

• one and only one
Events are delivered to the subscriber in its own global (that is, JTA)
transaction. Any changes made by the subscriber within that transaction
are committed after the event processing is complete. If the subscriber
fails, the transaction is rolled back. Failed events with retriable exceptions
are automatically retried a configured number of times before they are
moved to the Error Hospital for recovery (that is, subject to manual
retries). Failed events with nonretriable exceptions are moved to the Error
Hospital without automatic retries, and are not recoverable.

• guaranteed
Events are delivered to the subscriber in a local JMS transaction. The
subscriber can choose to create its own local transaction for processing,
but it is committed independently of the rest of event processing. The
guaranteed consistency level is a lower quality of service option than one
and only one, because a local transaction is used instead of a global
transaction. Failed events with retriable exceptions are automatically
retried a configured number of times before they are moved to the Error
Hospital where they are recoverable, (that is, subject to manual retries.
Failed events with nonretriable exceptions are moved to the Error Hospital
without automatic retries, and are not recoverable.

For information about the Error Hospital, see Section "Recovering From
Faults in the Error Hospital" of Administering Oracle SOA Suite and
Oracle Business Process Management Suite.

Durable Durable subscriptions prevent against message loss caused by different life
cycles of publishers, subscribers, and the framework. Select an option:

• yes: Events are retained if the subscriber is not running. This is the default
selection.

• no: Events are dropped if the subscriber is not running.

Run as Publisher Select a security publishing option:

• yes: The subscriber has the event publisher's security identity. This is the
default selection.

• no: The subscriber does not have the event publisher's security identity.

Filter If you want to filter the event, double-click the Filter column of the selected
event or select the event and click the filter icon (first icon) above the table.
This displays the Expression Builder dialog. This dialog enables you to specify
an XPath filter expression. A filter expression specifies that the contents
(payload or headers) of a message be analyzed before any service is invoked.
For example, you can apply a filter expression that specifies that a service be
invoked only if the message includes a customer ID.

When the expression logic is satisfied, the event is accepted for delivery.

For more information about filters, see How to Specify an Expression for
Filtering Messages.

Figure 43-3 shows the Create Mediator dialog.

Chapter 43
Subscribing to or Publishing a Business Event from an Oracle Mediator Service Component

43-9

Figure 43-3 Create Mediator Dialog

7. Click OK.

Figure 43-4 shows an icon on the left side that indicates that Oracle Mediator is configured
for an event subscription.

Figure 43-4 Configuration for Event Subscription

How to Publish a Business Event
You can create a second Oracle Mediator to publish the event that you subscribed to in How to
Subscribe to a Business Event. While not shown here, you can also create a BPEL component
to publish the event.

To publish a business event:

1. Create a second Oracle Mediator service component that publishes the event to which the
first Oracle Mediator subscribes.

2. Return to the first Oracle Mediator service component.

3. In the Routing Rules section, click the Add icon.

4. Click Service when prompted by the Target Type window.

5. Select the second Oracle Mediator service component.

6. From the File main menu, select Save All.

Chapter 43
Subscribing to or Publishing a Business Event from an Oracle Mediator Service Component

43-10

What Happens When You Create and Subscribe to a Business Event
The source code in the following example provides details about the subscribed event of the
Oracle Mediator service component.

<component name="OrderPendingEvent">
 <implementation.mediator src="OrderPendingEvent.mplan"/>
 <business-events>
 <subscribe
 xmlns:sub1="/oracle/fodemo/storefront/entities/events/edl/OrderEO"
 name="sub1:NewOrderSubmitted" consistency="oneAndOnlyOne"
 durable="true" runAsRoles="$publisher"/>
</business-events>
</component>

While not explicitly demonstrated in this example, you can define XPath filters on events. In the
following example, the event is accepted for delivery only if the initial deposit is greater than
50000:

 <business-events>
 . . .
 . . .
 <filter>
 <xpath xmlns:be="http://oracle.com/fabric/businessEvent"
 xmlns:ns1="http://xmlns.oracle.com/singleString"
 <xpath expression= "/be:business-event/be:content/
 sub1:AccountInfo/Details[@initialDeposit > 50000]" />
 </filter>
 . . .
 . . .
 </business-events>

What Happens When You Publish a Business Event
Two Oracle Mediator service components appear in the following example. One service
component (OrderPendingEvent) subscribes to the event and the other service component
(PublishOrderPendingEvent) publishes the event.

<component name="PublishOrderPendingEvent">
 <implementation.mediator src="PublishOrderPendingEvent.mplan"/>
 <business-events>
 <publishes xmlns:sub1="/oracle/fodemo/storefront/entities/events/edl/OrderEO"
 name="pub1:NewOrderSubmitted" persistent="true" priority="7"
 timeToLive="36000000"/>
 </business-events>
 </component>

<component name="OrderPendingEvent">
 <implementation.mediator src="OrderPendingEvent.mplan"/>
 <business-events>
 <subscribe
 xmlns:sub1="/oracle/fodemo/storefront/entities/events/edl/OrderEO"
 name="sub1:NewOrderSubmitted" consistency="oneAndOnlyOne"
 durable="true" runAsRoles="$publisher"/>
</business-events>
</component>

Chapter 43
Subscribing to or Publishing a Business Event from an Oracle Mediator Service Component

43-11

What You May Need to Know About Subscribing to a Business Event
Only subscribers in default revisions of the SOA composite applications can receive business
events. For example, note the following behavior.

To subscribe to a business event:

1. Create a composite application with an initial Oracle Mediator service component named
M1 that publishes an event and a second Oracle Mediator service component named M2
that subscribes to the event. The output is written to a directory.

2. Deploy the composite application as revision 1.

3. Modify the composite application by adding a third Oracle Mediator service component
named M3 that subscribes to the same event and writes the output to a different directory.

4. Deploy the composite application as revision 2 (the default).

5. Invoke revision 2 of the composite application.

Oracle Mediator M2 writes the output to one file in the directory. As expected, Oracle
Mediator M3 picks up the event and writes the output successfully to another directory.
However, Oracle Mediator M2 (from revision 1) is not picking up the published event from
revision 2 of the composite application.

What You May Need to Know About Publishing Events Across Domains
Using SAF

When publishing events across domains using Store-and-Forward (SAF), local subscribers
cannot subscribe to the event. For example, assume you have the following subscribers:

• Local subscriber (deployed on the same domain as the event publisher)

• Remote subscriber (deployed on a domain external to the event publisher)

Both subscribe to the same event (for this example, named E), which has been configured to
listen to the SAF topic. In this environment, only the remote subscriber can subscribe to the
event. The local subscriber cannot subscribe to the event.

The JMS topic for EDN must be provisioned as a physical JMS topic instead of as an imported
SAF topic. This is because an imported SAF topic has its own rules of context lookup and
security checking that EDN does not natively support.

Workaround for Local Subscribers
As a workaround, you must perform the following procedures:

1. Create a local JMS topic that the publisher can locate. For example, in local domain A,
which the event publisher can locate, you provision a regular Oracle WebLogic Server JMS
topic (for example, named Ta) to which to publish events, and a subscriber (local in domain
A) to listen for this topic.

2. In remote domain B, which a remote subscriber can locate, you create an imported SAF
topic (for example, named safTb) that maps to topic Ta from domain A, and have the
remote subscriber listen to safTb.

As an alternative to Step 2, you can provision another JMS topic (for example, named Tb) in
domain B to which a remote subscriber listens, and create a JMS bridge that bridges source
topic Ta to destination topic Tb.

Chapter 43
Subscribing to or Publishing a Business Event from an Oracle Mediator Service Component

43-12

How to Configure a Foreign JNDI Provider to Enable Administration Server
Applications to Publish Events to the SOA Server

This section describes how to configure a foreign JNDI provider when the publishing
application (for example, an ADF EAR file) is deployed on the administration server instead of
the SOA server.

To configure a foreign JNDI provider to enable administration server applications to
publish events to the SOA Server:

1. Log in to the Oracle WebLogic Server Administration Console.

http://host:port/console
2. In the Domain Structure section, expand Services > Foreign JNDI Providers.

3. Click Lock & Edit.

4. Click New.

5. In the Name field, enter a name (for example, SOA_JNDI), and click Next.

6. Select the AdminServer check box, and click Finish.

7. In the Name column, click the provider name you entered in Step 5.

8. Enter the details shown in Table 43-4, and click Save.

Table 43-4 Configuration Details

Field Description

Initial Context Factory Enter weblogic.jndi.WLInitialContextFactory.

Provider URL Enter t3://hostname:soa_server_port.

User Enter the Oracle WebLogic Server user name.

Password and Confirm
Password

Enter the password for the Oracle WebLogic Server user name.

9. Click Links > New.

10. Enter the details shown in Table 43-5, and click OK.

Table 43-5 Configuration Details

Field Description

Name Enter SOA_EDNDataSource.

Local Name Enter jdbc/EDNDataSource.

Remote Name Enter jdbc/EDNDataSource.

11. Click New.

12. Enter the details shown in Table 43-6, and click OK.

Chapter 43
Subscribing to or Publishing a Business Event from an Oracle Mediator Service Component

43-13

Table 43-6 Configuration Details

Field Description

Name Enter SOA_EDNLocalTxDataSource.

Local Name Enter jdbc/EDNLocalTxDataSource.

Remote Name Enter jdbc/EDNLocalTxDataSource.

13. Click OK.

14. Click Activate Changes.

15. Modify the FMW_Home/user_projects/domains/domain_name/bin/setDomainEnv.sh file for
Linux (or setDomainEnv.bat file for Windows) as follows:

WLS_JDBC_REMOTE_ENABLED="-Dweblogic.jdbc.remoteEnabled=true"
16. Restart the server.

How to Configure the Connection Factory When the Oracle WebLogic
Server JMS Runs in the Same Local JVM as the JMS Adapter

If Oracle WebLogic Server JMS is running in the local JVM (the same JVM as the JMS
adapter), you must correctly configure the isTransacted connector factory property. For your
servlet client, which is locally colocated with the Oracle WebLogic Server JMS server to work,
perform the following steps:

1. Log in to Oracle WebLogic Remote Console.

2. Navigate to the Monitoring Tree.

3. Select Deployments, and then select Application Management.

4. From the list of adapters, select JmsAdapter.

5. Click Create Plan.

The Create Plan dialog appears.

6. Click Done.

7. In JmsAdapter, select Configuration, and then select Outbound Connection Pool
Groups.

8. Select oracle.tip.adapter.jms.IJmsConnectionFactory, and then select Outbound
Connection Pool Instances.

9. From the list of instances, select eis/wls/EDNLocalTxTopic.

10. Under eis/wls/EDNLocalTxTopic, select Properties.

11. Click IsTransacted.

12. Set the Value field to false.

13. Click Save.

A message confirms that the changes are saved.

14. Commit the changes in the Shopping Cart.

15. Save and restart the SOA server.

For more information, see Section "Synchronous/Asynchronous Request Reply Interaction
Pattern" of Understanding Technology Adapters.

Chapter 43
Subscribing to or Publishing a Business Event from an Oracle Mediator Service Component

43-14

Subscribing to or Publishing a Business Event from a BPEL
Process Service Component

This section describes how to subscribe to a business event or publish a business event from
a BPEL process service component.

How to Subscribe to a Business Event
To subscribe to a business event:

1. From the Components window, drag a BPEL Process service component into the SOA
Composite Editor.

2. In the Name field, enter a name. Do not change any other default option and click OK.

The BPEL process service component is created.

3. Double-click the BPEL process service component. Oracle BPEL Designer is opened.
Alternatively, you can also right-click the BPEL process service component and click Edit.

4. Drag a Receive activity from the Components window into the SOA Composite Editor,
below the receiveInput activity.

Note:

The onMessage branch of a pick activity can also be set up to receive events
from the EDN. For more information about the onMessage branch, see Selecting
Between Continuing or Waiting on a Process with a Pick Activity.

5. Double-click the Receive activity. The Receive dialog opens. Alternatively, you can also
right-click the Receive activity and click Edit.

6. In the Name field, enter a name.

7. From the Interaction Type list, select Event. The layout of the Receive dialog changes.

8. Click the Browse Events icon to the right of the Event field. The Subscribed Events dialog
appears, as shown in Figure 43-5.

Figure 43-5 Subscribed Events Dialog

Chapter 43
Subscribing to or Publishing a Business Event from a BPEL Process Service Component

43-15

9. Click the Add icon to select an event.

The Event Chooser dialog appears, as shown in Figure 43-6.

Figure 43-6 Event Chooser Dialog

10. Select the event you created and click OK.

You are returned to the Subscribed Events dialog.

11. Select a level of delivery consistency for the event. Table 43-7 provides details.

Table 43-7 Events Table of Subscribed Events Dialog

Element Description

Consistency Click inside the Consistency column to select a level of delivery consistency
for the event.

• one and only one
Events are delivered to the subscriber in its own global (that is, JTA)
transaction. Any changes made by the subscriber within that transaction
are committed after the event processing is complete. If the subscriber
fails, the transaction is rolled back. Failed events with retriable exceptions
are automatically retried a configured number of times before they are
moved to the Error Hospital for recovery (that is, subject to manual
retries). Failed events with nonretriable exceptions are moved to the Error
Hospital without automatic retries, and are not recoverable.

• guaranteed
Events are delivered to the subscriber in a local JMS transaction. The
subscriber can choose to create its own local transaction for processing,
but it is committed independently of the rest of event processing. The
guaranteed consistency level is a lower quality of service option than one
and only one, because a local transaction is used instead of a global
transaction. Failed events with retriable exceptions are automatically
retried a configured number of times before they are moved to the Error
Hospital where they are recoverable, (that is, subject to manual retries.
Failed events with nonretriable exceptions are moved to the Error Hospital
without automatic retries, and are not recoverable.

For information about the Error Hospital, see Section "Recovering From
Faults in the Error Hospital" of Administering Oracle SOA Suite and
Oracle Business Process Management Suite.

Chapter 43
Subscribing to or Publishing a Business Event from a BPEL Process Service Component

43-16

Table 43-7 (Cont.) Events Table of Subscribed Events Dialog

Element Description

Durable Durable subscriptions prevent against message loss caused by different life
cycles of publishers, subscribers, and the framework. Select an option:

• yes: Events are retained if the subscriber is not running. This is the default
selection.

• no: Events are dropped if the subscriber is not running.

Run as Publisher Select a security publishing option:

• yes: The subscriber has the event publisher's security identity. This is the
default selection.

• no: The subscriber does not have the event publisher's security identity.

Filter If you want to filter the event, double-click the Filter column of the selected
event or select the event and click the filter icon (first icon) above the table.
This displays the Expression Builder dialog. This dialog enables you to specify
an XPath filter expression. A filter expression specifies that the contents
(payload or headers) of a message be analyzed before any service is invoked.
For example, you can apply a filter expression that specifies that a service be
invoked only if the message includes a customer ID.

When the expression logic is satisfied, the event is accepted for delivery.

For more information about filters, see How to Specify an Expression for
Filtering Messages.

12. Click OK to close the Subscribed Events dialog.

You are returned to the Receive dialog.

Note:

Optionally, you can select the Create Instance check box, if this receive activity
is the initiating receive activity that starts the BPEL process service component
instance. This action enables creation of a new BPEL process service
component instance for every invocation.

If this receive activity is a midprocess receive activity in which the BPEL instance
is already started, then this receive activity waits for another event to continue
the execution of this BPEL instance.

13. Click OK.

Figure 43-7 shows a BPEL process service component that is configured for event
subscription.

Figure 43-7 BPEL Process Service Component Configuration for Event
Subscription

Chapter 43
Subscribing to or Publishing a Business Event from a BPEL Process Service Component

43-17

How to Publish a Business Event
To publish a business event:

1. Drag an Invoke activity from the Components window into the SOA Composite Editor,
below the Receive activity created in How to Subscribe to a Business Event.

2. Double-click the Invoke activity. The Invoke dialog opens. Alternatively, you can also right-
click the Invoke activity and click Edit.

3. In the Name field, enter a name.

4. From Interaction Type list, select Event. The layout of the Invoke dialog changes.

5. To the right of the Event field, click the Browse Events icon. The Event Chooser dialog
appears.

6. Select the event you created and click OK.

You are returned to the Invoke dialog.

7. Click OK.

Figure 43-8 shows a BPEL process service component that is configured for an event
subscription and publication. The blue lightning bolt in the circle on the left side indicates
event subscription. The yellow lightning bolt in the circle on the right side indicates event
publication. Clicking the blue arrow inside the title changes it to display the title of the
published event.

Figure 43-8 BPEL Process Service Component Configuration for Event
Subscription and Publishing

What Happens When You Subscribe to and Publish a Business Event
The source code in the following example shows how the composite.xml source changes for
the subscribed and published events of a BPEL process service component.

<component name="EventBPELProcess">
 <implementation.bpel src="EventBPELProcess.bpel"/>
 <property name="configuration.monitorLocation" type="xs:string"
 many="false">EventBPELProcess.monitor</property>
 <business-events>
 <subscribe xmlns:sub1="http://mycompany.com/events/orders"
 name="sub1:OrderReceivedEvent" consistency="oneAndOnlyOne"
 durable="true" runAsRoles="$publisher"/>
 <publishes xmlns:pub1="http://mycompany.com/events/orders"
 name="pub1:ProductSoldAlert" persistent="true" priority="7"
 timeToLive="36000000"/>/>
 </business-events>
</component>

Chapter 43
Subscribing to or Publishing a Business Event from a BPEL Process Service Component

43-18

 <business-events>
 <publishes xmlns:sub1="/oracle/fodemo/storefront/entities/events/edl/OrderEO"
 name="pub1:NewOrderSubmitted" persistent="true" priority="7"
 timeToLive="36000000"/>
 </business-events>
 </component>

While not explicitly demonstrated in this example, you can define XPath filters on events. A
filter is typically present in event subscriptions. The subscribe element limits the type of event
to which this service component is subscribed, and the filter section further limits the event
to specific content in which the component is interested. In the following example, the event is
accepted for delivery only if the initial deposit is greater than 50000.

 <business-events>
 . . .
 . . .
 <filter>
 <xpath xmlns:be="http://oracle.com/fabric/businessEvent"
 xmlns:ns1="http://xmlns.oracle.com/singleString"
 <xpath expression= "/be:business-event/be:content/
 sub1:AccountInfo/Details[@initialDeposit > 50000]" />
 </filter>
 . . .
 . . .
 </business-events>

The standard BPEL activities such as receive, invoke, onMessage, and onEvent (in BPEL 2.0)
are extended with an extra attribute bpelx:eventName, so that the BPEL process service
component can receive events from the EDN event bus. The schema for the eventName
attribute is shown in the following example:

<xs:attribute name="eventName" type="xs:QName">
 <xs:annotation>
 <xs:appinfo>
 <tns:parent>
 <bpel11:onMessage/>
 <bpel11:receive/>
 <bpel11:invoke/>
 </tns:parent>
 </xs:appinfo>
 </xs:annotation>
 </xs:attribute>

The following example shows how the eventName attribute is used in the BPEL source file:

<receive name="OrderPendingEvent" createInstance="yes"
 bpelx:eventName="ns1:OrderReceivedEvent"/>
<invoke name="Invoke_1" bpelx:eventName="ns1:ProductSoldAlert"/>

If the bpelx:eventName attribute is used in a receive, invoke, onMessage, or onEvent (in BPEL
2.0) activity, then the standard attributes such as partnerLink, operation, or portType are not
present. This is because the existence of the bpelx:eventName attribute shows that the activity
is only interested in receiving events from the EDN event bus or publishing events to the EDN
event bus.

The XSD file for the BPEL process service component is slightly modified, so that the
partnerLink, operation, and portType attributes are no longer mandatory. The Oracle
JDeveloper validation logic enforces the presence of either the bpelx:eventName attribute or
the partnerLink, operation, and portType attributes, but not both. The following example
shows the modified schema definition of a BPEL receive activity:

Chapter 43
Subscribing to or Publishing a Business Event from a BPEL Process Service Component

43-19

<complexType name="tReceive">
 <complexContent>
 <extension base="bpws:tExtensibleElements">
 <sequence>
 <element name="correlations" type="bpws:tCorrelations"
minOccurs="0"/>
 <group ref="bpws:activity"/>
 </sequence>
 <!- BPEL mandatory attributes relaxed to optional for supporting BPEL-
EDN ->
 <attribute name="partnerLink" type="NCName" use="optional"/>
 <attribute name="portType" type="QName" use="optional"/>
 <attribute name="operation" type="NCName" use="optional"/>
 <attribute name="variable" type="NCName" use="optional"/>
 </extension>
 </complexContent>
 </complexType>

The schema definition for the invoke and onMessage activities are modified similarly.

How to Integrate Oracle ADF Business Component Business
Events with Oracle Mediator

This section provides a high-level overview of how to integrate Oracle ADF Business
Component event conditions with SOA components. The SOA components include Oracle
Mediator service components and BPEL process service components.

To integrate Oracle ADF Business Component business events with SOA components:

1. Create a business component project.

2. Add a business event definition to the project. This action generates an EDL file and an
XSD file. The XSD file contains the definition of the payload. Ensure also that you specify
that the event be raised by the Oracle ADF Business Component upon creation.

For more information about creating and publishing Oracle ADF Business Component
business events, see Developing Fusion Web Applications with Oracle Application
Development Framework.

3. Create a SOA composite application and manually copy the EDL and XSD schema files to
the root directory of the SOA project. For example:

JDeveloper/mywork/SOA_application_name/SOA_project_name
4. Place schema files at the proper relative location from the EDL file based on the import.

5. Create an Oracle Mediator service component as described in How to Subscribe to a
Business Event.

6. In the Event Chooser window, select the EDL file of the event, as described in How to
Subscribe to a Business Event.

7. Create a BPEL process service component in the same SOA composite application for
Oracle Mediator to invoke. Ensure that you select the payload of the Business Component
business event XSD created in Step 2.

8. Double-click the BPEL process service component.

9. Drag an Email activity into the BPEL process service component.

10. Use the payload of the business event XSD to complete the Subject and Body fields.

Chapter 43
How to Integrate Oracle ADF Business Component Business Events with Oracle Mediator

43-20

11. Return to the Oracle Mediator service component in the SOA Composite Editor.

12. Design a second service component to publish the event, such as a BPEL process service
component or a second Oracle Mediator service component.

SOA composite application design is now complete.

Chapter 43
How to Integrate Oracle ADF Business Component Business Events with Oracle Mediator

43-21

44
Working with Cross References

This chapter describes how to use the cross referencing feature of Oracle SOA Suite to
associate identifiers for equivalent entities created in different applications. It includes a
reference of the XRef functions you can use to populate, view, and maintain entries in the
cross reference tables.
This chapter includes the following sections:

• Introduction to Cross References

• Introduction to Cross Reference Tables

• Oracle Data Integrator Support for Cross Referencing

• Creating and Modifying Cross Reference Tables

• Populating Cross Reference Tables

• Looking Up Cross Reference Tables

• Deleting a Cross Reference Table Value

• Creating and Running the Cross Reference Use Case

• Creating and Running Cross Reference for 1M Functions

Introduction to Cross References
Cross references enable you to dynamically map values for equivalent entities created in
different applications.

Note:

The cross referencing feature enables you to dynamically integrate values between
applications, whereas domain value maps enable you to specify values at design
time and edit values at runtime. For more information about domain value maps, see
Working with Domain Value Maps and Using Oracle SOA Composer with Domain
Value Maps .

When you create or update objects in one application, you may also want to propagate the
changes to other applications. For example, when a new customer is created in an SAP
application, you may want to create an entry for the same customer in your Oracle E-Business
Suite application named EBS. However, the applications that you are integrating may be using
different entities to represent the same information. For example, for each new customer in an
SAP application, a new row is inserted in its Customer database with a unique identifier such
as SAP_001. When the same information is propagated to an Oracle E-Business Suite
application and a Siebel application, the new row should be inserted with different identifiers
such as EBS_1001 and SBL001. In such cases, you need some type of functionality to map
these identifiers with each other so that they can be interpreted by different applications to be
referring to the same entity. This can be done by using cross references.

44-1

Introduction to Cross Reference Tables
Cross references are stored in the form of tables. Table 44-1 shows a cross reference table
containing information about customer identifiers in different applications.

Table 44-1 Cross Reference Table Sample

SAP EBS SBL

SAP_001 EBS_1001 SBL001
SAP_002 EBS_1002 SBL002

The identifier mapping is also required when information about a customer is updated in one
application and the changes must be propagated to other applications. You can integrate
different identifiers by using a common value integration pattern, which maps to all identifiers in
a cross reference table. For example, you can add one more column named Common to the
cross reference table shown in Table 44-1. The updated cross reference table then appears, as
shown in Table 44-2.

Table 44-2 Cross Reference Table with Common Column

SAP EBS SBL Common

SAP_001 EBS_1001 SBL001 CM001
SAP_002 EBS_1002 SBL002 CM002

Figure 44-1 shows how you can use common value integration patterns to map identifiers in
different applications.

Figure 44-1 Common Value Integration Pattern Example

Chapter 44
Introduction to Cross Reference Tables

44-2

A cross reference table consists of two parts: metadata and actual data. The metadata is
saved as the .xref file created in Oracle JDeveloper, and is stored in the Metadata Services
(MDS) repository as an XML file. By default, the actual data is stored in the XREF_DATA table of
the database in the SOA Infrastructure database schema. You can also generate a custom
database table for each cross reference entity. The database table depends on the metadata
of the cross reference entity.

Consider the following two cross reference entities:

• ORDER with cross reference columns SIEBEL, COMMON, and EBS, as shown in Table 44-3

• CUSTOMER with cross reference columns EBS, COMMON, and PORTAL, as shown in Table 44-4

Table 44-3 ORDER Table

Column Name SIEBEL COMMON EBS

Column Value SBL_101 COM_100 EBS_002
Column Value COM_110 EBS_012

Table 44-4 CUSTOMER Table

Column Name EBS COMMON PORTAL

Column Value EBS_201 COM_200 P2002

If you chose to save all the runtime data in one generic table, then the data is stored in the
XREF_DATA table, as shown in Table 44-5.

Table 44-5 XREF_DATA Table

XREF_TABLE_NA
ME

XREF_COLUMN_
NAME

ROW_NUMBER VALUE IS_DELETED

ORDER SIEBEL 100012345 SBL_101 N
ORDER COMMON 100012345 COM_100 N
ORDER EBS 100012345 EBS_002 N
ORDER COMMON 110012345 COM_110 N
ORDER EBS 110012345 EBS_012 N
CUSTOMER EBS 200212345 EBS_201 N
CUSTOMER COMMON 200212345 COM_200 N
CUSTOMER PORTAL 200212345 P2002 N

This approach has the following advantages:

• The process of adding, removing, and modifying the columns of the cross reference
entities is simple.

• The process of creating and deleting cross reference entities from an application is
straightforward.

However, this approach has the following disadvantages:

• A large number of rows are generated in the database because each cross reference cell
is mapped to a different row in the database. This reduces the performance of the queries.

Chapter 44
Introduction to Cross Reference Tables

44-3

• In the generic table, the data for the columns XREF_TABLE_NAME and XREF_COLUMN_NAME is
repeated across a large number of rows.

To overcome these problems, you can generate a custom database table for each cross
reference entity. The custom database tables depend on the metadata of the cross reference
entities. For example, for the XREF_ORDER table and XREF_CUSTOMER table, you can generate the
custom database tables shown in Table 44-6 and Table 44-7.

Table 44-6 XREF_ORDER Table

ROW_ID SIEBEL COMMON EBS

100012345 SBL_101 COM_100 EBS_002
110012345 COM_110 EBS_012

Table 44-7 XREF_CUSTOMER Table

ROW_ID EBS COMMON PORTAL

200212345 EBS_201 COM_200 P2002

This approach requires you to execute Data Definition Language (DDL) scripts to generate the
custom database tables. For more information about custom database tables, see How to
Create Custom Database Tables.

Oracle Data Integrator Support for Cross Referencing
Oracle Data Integrator (ODI) achieves data integration through an E-LT (extract, load,
transform) model. You can use ODI to help with your cross-referencing needs. ODI provides
three Knowledge Modules for handling SOA cross references that perform the following
functions: Populate the cross-reference table, create a common ID for the target table, push
the common ID and the source primary key to the cross-reference table, and create and push
a unique row number that creates the cross reference between the source primary key and the
common ID. With the modules, you can create an integration interface that both loads a target
table from several source tables and handles cross-references between one of the sources
and the target.

For more information about ODI and cross referencing, see Oracle SOA Suite Cross
References in Connectivity and Knowledge Modules Guide for Oracle Data Integrator
Developer's Guide.

Creating and Modifying Cross Reference Tables
You can create cross references tables in a SOA composite application and then use it with a
BPEL process service component or an Oracle Mediator service component during
transformations.

Note:

You can also create cross-reference tables in Service Bus projects and use them in
message flows during transformations.

Chapter 44
Oracle Data Integrator Support for Cross Referencing

44-4

How to Create Cross Reference Metadata
To create cross reference metadata:

1. In Oracle JDeveloper, select the SOA project in which you want to create the cross
reference.

2. Right-click the project and select New.

The New Gallery dialog is displayed.

3. Select SOA Tier from the Categories section, and then select Transformations.

4. Select Cross Reference(XREF) from the Items section.

5. Click OK.

The Create Cross Reference(XREF) File dialog is displayed.

6. In the File Name field, specify the name of the cross reference file. For example, specify
Customer.

A cross reference name is used to uniquely identify a cross reference table. Two cross
reference tables cannot have same name in the cross reference repository. The cross
reference file name is the name of the cross reference table with an extension of .xref.

7. In the Description field, enter a description for the cross reference. For example:

Cross reference of Customer identifiers.
8. In the End System fields, enter the end system names.

The end systems map to the cross reference columns in a cross reference table. For
example, you can change the first end system name to SAP and the second end system
name to EBS. Each end system name must be unique within a cross reference

A sample Create Cross Reference(XREF) File dialog is displayed in Figure 44-2.

Figure 44-2 Create Cross Reference(XREF) File Dialog

9. Click OK.

Chapter 44
Creating and Modifying Cross Reference Tables

44-5

The Cross Reference Editor is displayed, as shown in Figure 44-3. You can use this editor
to modify the cross reference.

Figure 44-3 Cross Reference Editor

What Happens When You Create a Cross Reference
A file with extension .xref gets created and appears in the Applications window. All .xref files
are based on the schema definition (XSD) file shown in the following example:

<?xml version="1.0" encoding="UTF-8" ?>
<schema xmlns="http://www.w3.org/2001/XMLSchema"
 targetNamespace="http://xmlns.oracle.com/xref"
 xmlns:tns="http://xmlns.oracle.com/xref" elementFormDefault="qualified">
 <element name="xref" type="tns:xrefType"/>
 <complexType name="xrefType">
 <sequence>
 <element name="table">
 <complexType>
 <sequence>
 <element name="description" type="string" minOccurs="0"
 maxOccurs="1"/>
 <element name="columns" type="tns:columnsType" minOccurs="0"
 maxOccurs="1"/>
 <element name="rows" type="tns:rowsType" maxOccurs="1"
 minOccurs="0"/>
 </sequence>
 <attribute name="name" type="string" use="required"/>
 </complexType>
 </element>
 </sequence>
 </complexType>

 <complexType name="columnsType">
 <sequence>
 <element name="column" minOccurs="1" maxOccurs="unbounded">

Chapter 44
Creating and Modifying Cross Reference Tables

44-6

 <complexType>
 <attribute name="name" type="string" use="required"/>
 </complexType>
 </element>
 </sequence>
 </complexType>

 <complexType name="rowsType">
 <sequence>
 <element name="row" minOccurs="1" maxOccurs="unbounded">
 <complexType>
 <sequence>
 <element name="cell" minOccurs="1" maxOccurs="unbounded">
 <complexType>
 <attribute name="colName" type="string" use="required"/>
 </complexType>
 </element>
 </sequence>
 </complexType>
 </element>
 </sequence>
 </complexType>
</schema>

How to Create Custom Database Tables
As mentioned previously, all the runtime data by default gets stored in the XREF_DATA table. If
you want to create custom database tables, then perform the following steps.

To create custom database tables:

1. From the Optimize list, select Yes in the Cross Reference Editor.

The name of the custom database table to be generated is displayed in the Table Name
field, as shown in Figure 44-4.

Chapter 44
Creating and Modifying Cross Reference Tables

44-7

Figure 44-4 Generating Custom Database Tables

The Table Name field is editable and you can change the name of the custom table. The
custom database table name should be prefixed with xref_. If you do not prefix your table
name with xref_, then while generating the table, you receive the following error message:

Table name should begin with 'xref_' and cannot be 'xref_data' or
'xref_deleted_data' which are reserved table names for XREF runtime.

2. Click Generate Table DDL. The Optimize XREF dialog is displayed.

3. Select the Generate Drop DDL check box to drop the table and associated indexes, if a
table with the same name already exists. If you select this option and click Run, then the
Running Drop DDL Warning dialog is displayed with the following message:

Running the Drop DDL will remove the table and indexes, do you want to
continue?

4. Click Run. The Run Table DDL dialog is displayed.

5. From the Connection list, select the database connection to use.

If there is no available connection, then click Create a new database connection to open
the Create Database Connection dialog, as shown in Figure 44-5. If you want to edit an
existing connection, then select the connection and click Edit selected database
connection to open the Edit Database Connection dialog.

Chapter 44
Creating and Modifying Cross Reference Tables

44-8

Figure 44-5 Create Database Connection Dialog

6. Enter all the required details and click OK. The Connection list of the Run Table DDL
dialog is now populated.

Note:

Create the database table in the soainfra schema of the database.

7. Click OK on the Run Table DDL dialog to run the DDL script.

The Table DDL Run Results dialog displays the execution status of your DDL scripts.

For custom database tables, two additional attributes, namely mode and dbtable, are added to
the schema definition mentioned in What Happens When You Create a Cross Reference. They
are added for the table element in the following way:

 <attribute name="mode" type="string" default="generic" />
 <attribute name="dbtable" type="string" default="xref_data"/>

How to Add an End System to a Cross Reference Table
To add an end system to a cross reference table:

1. Click Add.

A new row is added.

2. Double-click the newly-added row.

3. Enter the end system name. For example, SBL.

Chapter 44
Creating and Modifying Cross Reference Tables

44-9

Populating Cross Reference Tables
You can create a cross reference table in a SOA composite application in Oracle JDeveloper
and then use it to look up column values at runtime. However, before using a cross reference
to look up a particular value, you must populate it at runtime. You can use the cross reference
XPath functions to populate the cross-reference tables. The XPath functions enable you to
populate a cross reference column, perform lookups, and delete a column value. These XPath
functions can be used in the Expression Builder dialog to create an expression or in the XSLT
Mapper to create transformations. For example, you can use the xref:populateXRefRow
function to populate a cross reference column with a single value and the
xref:populateXRefRow1M function to populate a cross reference column with multiple values.

You can access the Expression Builder dialog through an assign activity, an XSL
transformation, or the filtering functionality of a BPEL process service component or an Oracle
Mediator service component. Figure 44-6 shows how you can select the cross reference
functions in the Expression Builder dialog.

Figure 44-6 Expression Builder Dialog with Cross Reference Functions

The XSLT Mapper is displayed when you create an XSL file to transform data from one XML
schema to another. Figure 44-7 shows how you can select the cross reference functions in the
XSLT Mapper.

Chapter 44
Populating Cross Reference Tables

44-10

Figure 44-7 XSLT Mapper Dialog with Cross Reference Functions

A cross reference table must be populated at runtime before using it. By default, the data is
stored in the XREF_DATA table under the SOA Infrastructure database schema. You can use the
xref:populateXRefRow function to populate a cross reference column with a single value and
the xref:populateXRefRow1M function to populate a cross reference column with multiple
values.

Note:

You can also store the data in a different database schema by configuring a data
source in the following way:

• The JNDI name of the data source should be jdbc/xref.

• The ORACLE_HOME/rcu/integration/soainfra/sql/xref/
createschema_xref_oracle.sql file should be loaded to create the XREF_DATA
table in this data source.

About the xref:populateXRefRow Function
The xref:populateXRefRow function populates a cross reference column with a single value.
The xref:populateXRefRow function returns a string value, which is the cross reference value
being populated. For example, as shown in Table 44-8, the Order table has the following
columns: EBS, Common, and SBL with values E100, 100, and SBL_001 respectively.

Chapter 44
Populating Cross Reference Tables

44-11

Table 44-8 Cross Reference Table with Single Column Values

EBS Common SBL

E100 100 SBL_001

Note:

If you find you have concurrency issues when using this function, you can also use
the populateLookupXRefRow function. The populateLookupXRefRow function should
only be used in cases where simultaneous updates are being made, resulting in
unique constraint violations. This function is described under About the
xref:populateLookupXRefRow Function.

The syntax of the xref:populateXRefRow function is shown in the following example:

xref:populateXRefRow(xrefLocation as string, xrefReferenceColumnName as string,
 xrefReferenceValue as string, xrefColumnName as string, xrefValue as string, mode
 as string) as string

Parameters

• xrefLocation: The cross reference table URI.

• xrefReferenceColumnName: The name of the reference column.

• xrefReferenceValue: The value corresponding to the reference column name.

• xrefColumnName: The name of the column to be populated.

• xrefValue: The value to be populated in the column.

• mode: The mode in which the xref:populateXRefRow function populates the column. You
can specify any of the following values: ADD, LINK, or UPDATE. Table 44-9 describes these
modes.

Table 44-9 xref:populateXRefRow Function Modes

Mode Description Exception Reasons

ADD Adds the reference value and the value to be
added.

For example, the following mode:

xref:populateXRefRow("customers.xref"
,"EBS","EBS100", "Common","CM001",
"ADD")

Adds the reference value EBS100 in the ESB
reference column and the value CM001 in the
Common column.

Exceptions can occur for the following
reasons:

• The specified cross reference table
is not found.

• The specified columns are not
found.

• The values provided are empty.
• The value being added is not

unique across that column for that
table.

• The column for that row already
contains a value.

• The reference value exists.

Chapter 44
Populating Cross Reference Tables

44-12

Table 44-9 (Cont.) xref:populateXRefRow Function Modes

Mode Description Exception Reasons

LINK Adds the cross reference value corresponding to
the existing reference value.

For example, the following mode:

xref:populateXRefRow("customers.xref"
,"Common","CM001","SBL","SBL_
001","LINK")

Links the value CM001 in the Common column to
the SBL_001 value in the SBL column.

Exceptions can occur for the following
reasons:

• The specified cross reference table
is not found.

• The specified columns are not
found.

• The values provided are empty.
• The reference value is not found.
• The value being linked exists in

that column for that table.

UPDATE Updates the cross reference value
corresponding to an existing reference column-
value pair.

For example, the following mode:

xref:populateXRefRow("customers.xref"
,"SBL","SBL_001", "SBL","SBL_
1001","UPDATE")

Updates the value SBL_001 in the SBL column
to the value SBL_1001.

Exceptions can occur for the following
reasons:

• The specified cross reference table
is not found.

• The specified columns are not
found.

• The values provided are empty.
• Multiple values are found for the

column being updated.
• The reference value is not found.
• The column for that row does not

have a value.

Note:

The mode parameter values are case-sensitive and should be specified in upper
case only, as shown in Table 44-9.

Table 44-10 describes the xref:populateXRefRow function modes and exception conditions for
these modes.

Table 44-10 xref:populateXRefRow Function Results with Different Modes

Mode Reference Value Value to be Added Result

ADD Absent
Present
Present

Absent
Absent
Present

Success

Exception

Exception

LINK Absent
Present
Present

Absent
Absent
Present

Exception

Success

Exception

UPDATE Absent
Present
Present

Absent
Absent
Present

Exception

Exception

Success

Chapter 44
Populating Cross Reference Tables

44-13

About the xref:populateLookupXRefRow Function
Like the xref:populateXRefRow function, the xref:populateLookupXRefRow function populates
a cross reference column with a single value. Unlike the xref:populateXRefRow function, the
xref:populateLookupXRefRow function does not throw a unique constraint violation error when
records with the same ID are added simultaneously. Instead, it behaves as a lookup and
returns the existing source value that caused the error and does not stop the processing flow.
Use this function to resolve any concurrency issues that could arise when using the
xref:populateXRefRow function.

The xref:populateLookupXRefRow function returns a string value, which is the cross reference
value being populated or, with a unique constraint violation, the cross reference value that was
already populated by the first committed thread. For example, as shown in Table 44-8, the
XREF_CUSTOMER_DATA table has the following columns: EBS, Common, and SBL. The
xref:populateLookupXRefRow function is invoked by two threads in parallel with following
values:

• Thread One: xref: populateLookupXRefRow ("default/xref/example.xref", "EBS",
"EBS100", "Common" "CM001", "ADD")

• Thread Two: xref: populateLookupXRefRow ("default/xref/example.xref", "EBS",
"EBS100", "Common" "CM002", "ADD")

The table is populated as shown in Table 44-11. Since thread one is committed first, thread two
returns "CM001" to the caller.

Table 44-11 Cross Reference Table Populated by xref:populateLookupXRefRow

EBS Common SBL

EBS100 CM001

The syntax of the xref:populateLookupXRefRow function is shown in the following example:

xref:populateLookupXRefRow(xrefMetadataURI as string, xrefReferenceColumnName as
 string, xrefReferenceValue as string, xrefColumnName as string, xrefValue as
 string, mode as string) as string

Parameters

• xrefMetadataURI: The cross reference table URI.

• xrefReferenceColumnName: The name of the reference column.

• xrefReferenceValue: The value corresponding to the reference column name.

• xrefColumnName: The name of the column to be populated.

• xrefValue: The value to be populated in the column.

• mode: The mode in which the xref:populateXRefRow function populates the column. You
can specify ADD or LINK. Table 44-10 describes these modes and exception conditions for
the modes.

Chapter 44
Populating Cross Reference Tables

44-14

Note:

The mode parameter values are case-sensitive and should be specified in upper
case only.

Table 44-12 xref:populateLookupXRefRow Function Results with Different Modes

Mode Reference Value Value to be Added Result

ADD Absent
Present
Present

Absent
Absent
Present

Success

Exception (Success only
when Exception is
Unique constraint
violation)

Exception (Success only
when Exception is
Unique constraint
violation)

LINK Absent
Present
Present

Absent
Absent
Present

Exception

Success

Exception

Usage Notes

• When using a custom table approach, you must add the primary constraint on the columns
that must be unique in the cross-reference table. Using Table 44-11 as an example, the
SQL statement is similar to the following:

alter table xref_customer_data add constraint xref_vnx_data_pk
 primary key (common, ebs);

Populate the primary constraint columns first and then populate the remaining columns in
subsequent calls.

• This function should not be used for inserting cross references for primary objects, since
this could mask data inconsistency issues. Only use the function for secondary objects to a
main dependent object. For example, do not use the function to determine whether an
account already exists when creating customer accounts; but do use it if the addresses in
those customer accounts are being synchronized.

About the xref:populateXRefRow1M Function
Two values in an end system can correspond to a single value in another system. In such a
scenario, you should use the xref:populateXRefRow1M function to populate a cross reference
column with a value. For example, as shown in Table 44-13, the SAP_001 and SAP_0011 values
refer to one value of the EBS and SBL applications. To populate columns such as SAP, you can
use the xref:populateXRefRow1M function.

Chapter 44
Populating Cross Reference Tables

44-15

Table 44-13 Cross Reference Table with Multiple Column Values

SAP EBS SBL

SAP_001
SAP_0011

EBS_1001 SBL001

SAP_002 EBS_1002 SBL002

The syntax of the xref:populateXRefRow1M function is shown in the following example:

xref:populateXRefRow1M(xrefLocation as string, xrefReferenceColumnName as string,
 xrefReferenceValue as string, xrefColumnName as string, xrefValue as string, mode
 as string) as string

Parameters

• xrefLocation: The cross reference URI.

• xrefReferenceColumnName: The name of the reference column.

• xrefReferenceValue: The value corresponding to the reference column name.

• xrefColumnName: The name of the column to be populated.

• xrefValue: The value to be populated in the column.

• mode: The mode in which the xref:populateXRefRow function populates the column. You
can specify either of the following values: ADD or LINK. Table 44-14 describes these modes:

Table 44-14 xref:populateXRefRow1M Function Modes

Mode Description Exception Reasons

ADD Adds the reference value and the value to be added.

For example, the following mode:

xref:populateXRefRow1M("customers.xref","
EBS","EBS_1002", "SAP","SAP_0011","ADD")

Adds the reference value EBS_1002 in the reference
column EBS and the value SAP_0011 in the SAP
column.

Exceptions can occur for the
following reasons:

• The specified cross reference
table is not found.

• The specified columns are not
found.

• The values provided are
empty.

• The value being added is not
unique across that column for
that table.

• The reference value exists.

LINK Adds the cross reference value corresponding to the
existing reference value.

For example, the following mode:

xref:populateXRefRow1M("customers.xref","
EBS","EBS_1002", "SAP","SAP_002","LINK")

Links the value SAP_002 in the SAP column to the
EBS_1002 value in the EBS column.

Exceptions can occur for the
following reasons:

• The specified cross reference
table is not found.

• The specified columns are not
found.

• The values provided are
empty.

• The reference value is not
found.

• The value being added is not
unique across the column for
that table.

Chapter 44
Populating Cross Reference Tables

44-16

Table 44-15 describes the xref:populateXRefRow1M function modes and exception conditions
for these modes.

Table 44-15 xref:populateXRefRow1M Function Results with Different Modes

Mode Reference Value Value to be Added Result

ADD Absent
Present
Present

Absent
Absent
Present

Success

Exception

Exception

LINK Absent
Present
Present

Absent
Absent
Present

Exception

Success

Exception

How to Populate a Column of a Cross Reference Table
To populate a column of a cross reference table:

1. In the XSLT Mapper, expand the trees in the Source and Target panes.

2. Drag and drop a source element to a target element.

3. In the Components window, select Advanced.

4. Select XREF Functions.

5. Drag and drop the populateXRefRow function to the line that connects the source object
to the target object.

A populateXRefRow icon appears on the connecting line.

6. Double-click the populateXRefRow icon.

The Edit Function – populateXRefRow dialog is displayed, as shown in Figure 44-8.

Figure 44-8 Edit Function – populateXRefRow Dialog

7. Specify the following values for the fields in the Edit Function – populateXRefRow dialog:

Chapter 44
Populating Cross Reference Tables

44-17

a. In the xrefLocation field, enter the location URI of the cross reference file.

Click Browse to the right of the xrefLocation field to select the cross reference file.
You can select an already-deployed cross reference from MDS and also from a shared
location in MDS using the Resource Palette.

b. In the referenceColumnName field, enter the name of the cross reference column.

Click Browse to the right of the referenceColumnName field to select a column name
from the columns defined for the cross reference you previously selected.

c. In the referenceValue field, you can manually enter a value or press Ctrl-Space to
launch the XPath Building Assistant. Press the up and down keys to locate an object in
the list and press Enter to select that object.

d. In the columnName field, enter the name of the cross reference column.

Click the Browse icon to the right of the columnName field to select a column name
from the columns defined for the cross reference you previously selected.

e. In the value field, you can manually enter a value or press Ctrl-Space to launch the
XPath Building Assistant.

f. In the mode field, enter a mode in which you want to populate the cross reference
table column. For example, enter ADD.

You can also click Browse to select a mode. The Select Populate Mode dialog is
displayed from which you can select a mode.

8. Click OK.

A populated Edit Function – populateXRefRow dialog is shown in Figure 44-9.

Figure 44-9 Populated Edit Function – populateXRefRow Dialog

Looking Up Cross Reference Tables
After populating the cross reference table, you can use it to look up a value. The
xref:lookupXRef and xref:lookupXRef1M functions enable you to look up a cross reference
for single and multiple values, respectively.

Chapter 44
Looking Up Cross Reference Tables

44-18

About the xref:lookupXRef Function
You can use the xref:lookupXRef function to look up a cross reference column for a value that
corresponds to a value in a reference column. For example, the following function looks up the
Common column of the cross reference tables described in Table 44-2 for a value corresponding
to the SAP_001 value in the SAP column.

xref:lookupXRef("customers.xref","SAP","SAP_001","Common",true())

The syntax of the xref:lookupXRef function is shown in the following example:

xref:lookupXRef(xrefLocation as string, xrefReferenceColumnName as string,
xrefReferenceValue as string, xrefColumnName as string, needAnException as
boolean) as string

Parameters

• xrefLocation: The cross reference URI.

• xrefReferenceColumnName: The name of the reference column.

• xrefReferenceValue: The value corresponding to the reference column name.

• xrefColumnName: The name of the column to be looked up for the value.

• needAnException: When the value is set to true, an exception is thrown if the value is not
found. Otherwise, an empty value is returned.

Exception Reasons

At runtime, an exception can occur for the following reasons:

• The cross reference table with the given name is not found.

• The specified column names are not found.

• The specified reference value is empty.

• Multiple values are found.

About the xref:lookupXRef1M Function
You can use the xref:lookupXRef1M function to look up a cross reference column for multiple
values corresponding to a value in a reference column. The xref:lookupXRef1M function
returns a node-set containing multiple nodes. Each node in the node-set contains a value.

For example, the following function looks up the SAP column of Table 44-13 for multiple values
corresponding to the EBS_1001 value in the EBS column:

xref:lookupXRef1M("customers.xref","EBS","EBS_1001","SAP",true())

The syntax of the xref:lookupXRefRow1M function is shown in the following example:

xref:lookupXRef1M(xrefLocation as String, xrefReferenceColumnName as String,
 xrefReferenceValue as String, xrefColumnName as String, needAnException as
 boolean) as node-set

Parameters

• xrefLocation: The cross reference URI.

• xrefReferenceColumnName: The name of the reference column.

Chapter 44
Looking Up Cross Reference Tables

44-19

• xrefReferenceValue: The value corresponding to the reference column name.

• xrefColumnName: The name of the column to be looked up for the value.

• needAnException: If this value is set to true, an exception is thrown when the referenced
value is not found. Otherwise, an empty node-set is returned.

Example of the xref:lookupXRefRow1M Function

Consider the Order table shown in Table 44-16 with the following three columns: Siebel,
Billing1, and Billing2.

Table 44-16 Order Table

Siebel Billing1 Billing2

100 101 102
110 111

112

For 1:1 mapping, the xref:lookupPopulatedColumns("Order","Siebel","100","false")
method returns the values shown in the following example:

<column name="BILLING1">101</column>
<column name="BILLING2">102</column>

In this case, both the columns, Billing1 and Billing2, are populated.

For 1:M mapping, the xref:lookupPopulatedColumns("Order","Siebel","110","false")
method returns the values shown in the following example:

<column name="BILLING2">111</column>
<column name="BILLING2">112</column>

In this case, Billing1 is not populated.

Exception Reasons

An exception can occur for the following reasons:

• The cross reference table with the given name is not found.

• The specified column names are not found.

• The specified reference value is empty.

About the xref:lookupPopulatedColumns Function
You can use the xref:lookupPopulatedColumns function to look up all the populated columns
for a given cross reference table, a cross reference column, and a value. The
xref:lookupPopulatedColumns function returns a node-set with each node containing a
column name and the corresponding value.

The syntax of the xref:LookupPopulatedColumns function is shown in the following example:

xref:LookupPopulatedColumns(xrefTableName as String,xrefColumnName as
 String,xrefValue as String,needAnException as boolean)as node-set

Parameters

• xrefTableName: The name of the reference table.

Chapter 44
Looking Up Cross Reference Tables

44-20

• xrefColumnName: The name of the reference column.

• xrefValue: The value corresponding to the reference column name.

• needAnException: If this value is set to true, then an exception is thrown when no value is
found in the referenced column. Otherwise, an empty node-set is returned.

Exception Reasons

An exception can occur for the following reasons:

• The cross reference table with the given name is not found.

• The specified column names are not found.

• The specified reference value is empty.

How to Look Up a Cross Reference Table for a Value
To look up a cross reference table column:

1. In the XSLT Mapper, expand the trees in the Source and Target panes.

2. Drag and drop the source element to the target element.

3. In the Components window, select Advanced.

4. Select XREF Functions.

5. Drag and drop the lookupXRef function to the line that connects the source object to the
target object.

A lookupXRef icon appears on the connecting line.

6. Double-click the lookupXRef icon.

The Edit Function – lookupXRef dialog is displayed, as shown in Figure 44-10.

Figure 44-10 Edit Function – lookupXRef Dialog

7. Specify the following values for the fields in the Edit Function – lookupXRef dialog:

a. In the xrefLocation field, enter the location URI of the cross reference file.

Chapter 44
Looking Up Cross Reference Tables

44-21

Click Browse to the right of the xrefLocation field to select the cross reference file.
You can select an already deployed cross reference from MDS and also from a shared
location in MDS by using the Resource Palette.

b. In the referenceColumnName field, enter the name of the cross reference column.

Click Browse to the right of the referenceColumnName field to select a column name
from the columns defined for the cross reference you previously selected.

c. In the referenceValue field, you can manually enter a value or press Ctrl-Space to
use the XPath Building Assistant. Press the up and down keys to locate an object in
the list and press Enter to select that object.

d. In the columnName field, enter the name of the cross reference column.

Click Browse to the right of the columnName field to select a column name from the
columns defined for the cross reference you previously selected.

e. Click Browse to the right of needException field. The Need Exception dialog is
displayed. Select Yes to raise an exception if no value is found. Otherwise, select No.

8. Click OK.

A populated Edit Function – lookupXRef dialog is shown in Figure 44-11.

Figure 44-11 Populated Edit Function – lookupXRef Dialog

Deleting a Cross Reference Table Value
You can use the xref:markForDelete function to delete a value in a cross reference table. The
row, containing the column value passed to the function, is deleted from the XREF_DATA table
and moved to the XREF_DELETED_DATA table. This function returns true if the deletion is
successful. Otherwise, it returns false.

A cross reference table row should have at least two mappings. If you have only two mappings
in a row and you mark one value for deletion, then the value in another column is also deleted.

The syntax for the xref:markForDelete function is shown in the following example:

xref:markForDelete(xrefTableName as string, xrefColumnName as string,
xrefValueToDelete as string) return as boolean

Chapter 44
Deleting a Cross Reference Table Value

44-22

Parameters

• xrefTableName: The cross reference table name.

• xrefColumnName: The name of the column that contains the value to be deleted.

• xrefValueToDelete: The value to be deleted.

Exception Reasons

An exception can occur for the following reasons:

• The cross reference table with the given name is not found.

• The specified column name is not found.

• The specified value is empty.

• The specified value is not found in the column.

• Multiple values are found.

How to Delete a Cross Reference Table Value
To delete a cross reference table value:

1. In the XSLT Mapper, expand the trees in the Source and Target panes.

2. Drag and drop the source element to the target element.

3. In the Components window, select Advanced.

4. Select XREF Functions.

5. Drag and drop the markForDelete function to the line that connects the source object to
the target object.

A markForDelete icon appears on the connecting line.

6. Double-click the markForDelete icon.

The Edit Function – markForDelete dialog is displayed, as shown in Figure 44-12.

Figure 44-12 Edit Function – markForDelete Dialog

7. Specify the following values for the fields in the Edit Function – markForDelete dialog:

Chapter 44
Deleting a Cross Reference Table Value

44-23

a. In the xrefLocation field, enter the location URI of the cross reference file.

Click the Search icon to the right of the xrefLocation field to select the cross
reference file. You can select an already deployed cross reference from MDS and also
from a shared location in MDS by using the Resource Palette.

b. In the columnName field, enter the name of cross reference table column.

Click the Search icon to the right of the columnName field to select a column name
from the columns defined for the cross reference you previously selected.

c. In the Value field, manually enter a value or press Ctrl-Space to launch the XPath
Building Assistant. Press the up and down keys to locate an object in the list and press
Enter to select that object.

A populated Edit Function – markForDelete dialog is shown in Figure 44-13.

Figure 44-13 Populated Edit Function – markForDelete Dialog

8. Click OK.

Creating and Running the Cross Reference Use Case
This cross reference use case implements an integration scenario between Oracle EBS, SAP,
and Siebel instances. In this use case, when an insert, update, or delete operation is
performed on the SAP_01 table, the corresponding data is inserted or updated in the EBS and
SBL tables. Figure 44-14 provides an overview of this use case.

Chapter 44
Creating and Running the Cross Reference Use Case

44-24

Figure 44-14 XrefCustApp Use Case in SOA Composite Editor

How to Create the Use Case
This section provides the design-time tasks for creating, building, and deploying your SOA
Composite application. These tasks should be performed in the order in which they are
presented.

Task 1: How to Configure the Oracle Database and Database Adapter

To configure the Oracle database and database adapter:

1. You need the SCOTT database account with password TIGER for this use case. You must
ensure that the SCOTT account is unlocked.

You can log in as SYSDBA and then run the setup_user.sql script available in the
XrefOrderApp1M/sql directory to unlock the account.

2. Run the create_schema.sql script available in the XrefOrderApp1M/sql directory to create
the tables required for this use case.

3. Run the create_app_procedure.sql script available in the XrefOrderApp1M/sql directory
to create a procedure that simulates the various applications participating in this
integration.

4. Run the createschema_xref_oracle.sql script available in the OH/rcu/integration/
soainfra/sql/xref/ directory to create a cross reference table to store runtime cross
reference data.

5. Copy the ra.xml and weblogic-ra.xml files from $BEAHOME/META-INF to the newly created
directory called META-INF on your computer.

6. Edit the weblogic-ra.xml file available in the $BEAHOME/META-INF directory as follows:

• Modify the property to xADataSourceName as follows:

Chapter 44
Creating and Running the Cross Reference Use Case

44-25

<property>
 <name>xADataSourceName</name>
 <value>jdbc/DBConnection1</value>
</property>

• Modify the jndi-name as follows:

<jndi-name> eis/DB/DBConnection1</jndi-name>
This sample uses eis/DB/DBConnection1 to poll the SAP table for new messages and to
connect to the procedure that simulates Oracle EBS and Siebel instances.

7. Package the ra.xml and weblogic-ra.xml files as a RAR file and deploy the RAR file by
using Oracle WebLogic Server Administration Console.

8. Create a data source using the Oracle WebLogic Server Administration Console with the
following values:

• jndi-name=jdbc/DBConnection1
• user=scott
• password=tiger
• url=jdbc:oracle:thin:@host:port:service
• connection-factory factory-class=oracle.jdbc.pool.OracleDataSource

9. Create a data source using the Oracle WebLogic Server Administration Console with the
following values:

• jndi-name=jdbc/xref
• user=scott
• password=tiger
• url=jdbc:oracle:thin:@host:port:service
• connection-factory factory-class=oracle.jdbc.pool.OracleDataSource

Task 2: How to Create an Oracle JDeveloper Application and a Project

To create an Oracle JDeveloper application and a project:

1. In Oracle JDeveloper, click File and select New.

The New Gallery dialog appears.

2. In the New Gallery, expand the General node, and select the Applications category.

3. In the Items list, select SOA Application and click OK.

The Create SOA Application wizard appears.

4. In the Application Name field, enter XrefCustApp, and then click Next.

The Name your SOA project page appears.

5. In the Project Name field, enter XrefCustApp and click Next.

The Configure SOA settings page appears.

6. From the Composite Template list, select Empty Composite and then click Finish.

The Applications window of Oracle JDeveloper is updated with the new application and
project and the SOA Composite Editor contains a blank composite.

Chapter 44
Creating and Running the Cross Reference Use Case

44-26

7. From the File menu, select Save All.

Task 3: How to Create a Cross Reference
After creating an application and a project for the use case, you must create a cross reference
table.

To create a cross reference table:

1. In the Applications window, right-click the XrefCustApp project and select New.

2. In the New Gallery dialog, expand the SOA Tier node, and then select the
Transformations category.

3. In the Items list, select Cross Reference(XREF) and click OK.

The Create Cross Reference(XREF) File dialog is displayed.

4. In the File Name field, enter customer.xref.

5. In the End System fields, enter SAP_01 and EBS_i76.

6. Click OK.

The Cross Reference Editor is displayed.

7. Click Add.

A new row is added.

8. Enter SBL_78 as the end system name in the newly added row.

9. Click Add and enter Common as the end system name.

The Cross Reference Editor appears, as shown in Figure 44-15.

Figure 44-15 Customer Cross Reference

10. From the File menu, select Save All and close the Cross Reference Editor.

Chapter 44
Creating and Running the Cross Reference Use Case

44-27

Task 4: How to Create a Database Adapter Service

To create a database adapter service:

1. In the Oracle JDeveloper Components window, select SOA.

2. Select Database and drag it to the Exposed Services swimlane.

The Adapter Configuration wizard Welcome page is displayed.

3. Click Next.

The Service Name page is displayed.

4. In the Service Name field, enter SAP.

5. Click Next.

The Service Connection page is displayed.

6. In the Application Connection field, select DBConnection1.

7. In the JNDI Name field, enter eis/DB/DBConnection1.

8. Click Next.

The Operation Type page is displayed.

9. Select Poll for New or Changed Records in a Table and click Next.

The Select Table page is displayed.

10. Click Import Tables.

The Import Tables dialog is displayed.

11. Select Scott from Schema.

12. In the Name Filter field, enter %SAP% and click Query.

The Available field is populated with SAP_01 table name.

13. Double-click SAP_01.

The selected field is populated with SAP_01.

14. Click OK.

The Select Table page now contains the SAP_01 table.

15. Select SAP_01 and click Next.

The Define Primary Key page is displayed.

16. Select ID as the primary key and click Next.

The Relationships page is displayed.

17. Click Next.

The Attribute Filtering page is displayed.

18. Click Next.

The After Read page is displayed.

19. Select Update a Field in the [SAP_01] Table (Logical Delete) and click Next.

The Logical Delete page is displayed.

20. In the Logical Delete field, select LOGICAL_DEL.

Chapter 44
Creating and Running the Cross Reference Use Case

44-28

21. In the Read Value field, enter Y.

22. In the Unread Value field, enter N.

Figure 44-16 shows the Logical Delete page of the Adapter Configuration wizard.

Figure 44-16 Logical Delete Page: Adapter Configuration Wizard

23. Click Next.

The Polling Options page is displayed.

24. Click Next.

The Define Selection Criteria page is displayed.

25. Click Next.

The Finish page is displayed.

26. Click Finish.

A database adapter service named SAP is created, as shown in Figure 44-17.

Chapter 44
Creating and Running the Cross Reference Use Case

44-29

Figure 44-17 SAP Database Adapter Service in SOA Composite Editor

27. From the File menu, select Save All.

Task 5: How to Create EBS and SBL External References

To create EBS and SBL external references:

1. In the Components window, select SOA.

2. Select Database Adapter and drag it to the External References swimlane.

The Adapter Configuration wizard Welcome page is displayed.

3. Click Next.

The Service Name page is displayed.

4. In the Service Name field, enter EBS.

5. Click Next.

The Service Connection page is displayed.

6. In the Application Connection field, select DBConnection1.

7. In the JNDI Name field, enter eis/DB/DBConnection1.

8. Click Next.

The Operation Type page is displayed.

9. Select Call a Stored Procedure or Function and click Next.

The Specify Stored Procedure page is displayed.

10. Select Scott from Schema.

11. Click Browse.

The Stored Procedures dialog is displayed.

12. Select POPULATE_APP_INSTANCE, as shown in Figure 44-18.

Chapter 44
Creating and Running the Cross Reference Use Case

44-30

Figure 44-18 Stored Procedure Dialog

13. Click OK.

The Specify Stored Procedure page appears, as shown in Figure 44-19.

Figure 44-19 Specify Stored Procedure Page of Adapter Configuration Wizard

14. Click Next.

The Finish page is displayed.

15. Click Finish.

Chapter 44
Creating and Running the Cross Reference Use Case

44-31

Figure 44-20 shows the EBS reference in the SOA Composite Editor.

Figure 44-20 EBS Reference in SOA Composite Editor

16. From the File menu, select Save All.

17. Repeat Step 2 through Step 16 to create another external reference named SBL.

After completing this task, the SOA Composite Editor appears, as shown in Figure 44-21.

Figure 44-21 SBL Reference in SOA Composite Editor

Task 6: How to Create the Logger File Adapter External Reference

To create the Logger file adapter external reference:

1. From the Components window, select SOA.

2. Select File Adapter and drag it to the External References swimlane.

The Adapter Configuration wizard Welcome page is displayed.

3. Click Next.

The Service Name page is displayed.

Chapter 44
Creating and Running the Cross Reference Use Case

44-32

4. In the Service Name field, enter Logger.

5. Click Next.

The Operation page is displayed.

6. In the Operation Type field, select Write File.

7. Click Next.

The File Configuration page is displayed.

8. In the Directory for Outgoing Files (physical path) field, enter the name of the directory
in which you want to write the files.

9. In the File Naming Convention field, enter output.xml and click Next.

The Messages page is displayed.

10. Click Search.

The Type Chooser dialog is displayed.

11. Navigate to Type Explorer > Project Schema Files >
SCOTT_POPULATE_APP_INSTANCE.xsd, and then select OutputParameters.

12. Click OK.

13. Click Next.

The Finish page is displayed.

14. Click Finish.

Figure 44-22 shows the Logger reference in the SOA Composite Editor.

Figure 44-22 Logger Reference in SOA Composite Editor

15. From the File menu. select Save All.

Chapter 44
Creating and Running the Cross Reference Use Case

44-33

Task 7: How to Create an Oracle Mediator Service Component

To create an Oracle Mediator service component:

1. Drag and drop a Mediator icon from the Components window to the Components section
of the SOA Composite Editor.

The Create Mediator dialog is displayed.

2. From the Template list, select Define Interface Later.

3. Click OK.

An Oracle Mediator with name Mediator1 is created.

4. Connect the SAP service to the Mediator1, as shown in Figure 44-23.

Figure 44-23 SAP Service Connected to Mediator1

5. From the File menu, select Save All.

6. Drag and drop another Mediator icon from the Components window to the Components
section of the SOA Composite Editor.

The Create Mediator dialog is displayed.

7. From the Template list, select Interface Definition From WSDL.

8. Deselect Create Composite Service with SOAP Bindings.

9. To the right of the WSDL File field, click Find Existing WSDLs.

10. Navigate to and then select the Common.wsdl file. The Common.wsdl file is available in
the Samples folder.

11. Click OK.

12. Click OK.

An Oracle Mediator with name Common is created.

Chapter 44
Creating and Running the Cross Reference Use Case

44-34

Task 8: How to Specify Routing Rules for an Oracle Mediator Service Component
You must specify routing rules for the following operations:

• Insert

• Update

• UpdateID

• Delete

To create routing rules for an insert operation:

1. Double-click the Mediator1 Oracle Mediator.

The Mediator Editor is displayed.

2. In the Routing Rules section, click the Create a new Routing Rule icon.

The Target Type dialog is displayed.

3. Select Service.

The Target Services dialog is displayed.

4. Navigate to XrefCustApp > Mediators > Common, Services > Common.

5. Select Insert and click OK.

6. Click the Filter icon.

The Expression Builder dialog is displayed.

7. In the Expression field, enter the following expression:

$in.Sap01Collection/top:Sap01Collection/top:Sap01/top:operation='INSERT'
8. Click OK.

9. Next to the Transform Using field, click the Transformation icon.

The Request Transformation map dialog is displayed.

10. Select Create New Mapper File and enter SAP_TO_COMMON_INSERT.xsl.

11. Click OK.

An SAP_TO_COMMON_INSERT.xsl file is displayed in the XSLT Mapper.

12. Drag and drop the top:SAP01 source element to the inp1:Customer target element.

The Auto Map Preferences dialog is displayed.

13. From the During Auto Map options, deselect Match Elements Considering their
Ancestor Names.

14. Click OK.

The transformation is created, as shown in Figure 44-24.

Chapter 44
Creating and Running the Cross Reference Use Case

44-35

Figure 44-24 SAP_TO_COMMON_INSERT.xsl Transformation

15. From the Components window, select Advanced.

16. Select XREF Functions.

17. Drag and drop the populateXRefRow function from the Components window to the line
connecting the top:id and inp1:id elements.

18. Double-click the populateXRefRow icon.

The Edit Function-populateXRefRow dialog is displayed.

19. Click Search to the right of the xrefLocation field.

The SOA Resource Lookup dialog is displayed.

20. Select customer.xref and click OK.

21. In the referenceColumnName field, enter "SAP_01" or click Search to select the column
name.

22. In the referenceValue column, enter /top:Sap01Collection/top:Sap01/top:id.

23. In the columnName field, enter "Common" or click Search to select the column name.

24. In the value field, enter oraext:generate-guid().

25. In the mode field, enter "Add" or click Search to select this mode.

Figure 44-25 shows the populated Edit Function – populateXRefRow dialog.

Figure 44-25 Edit Function – populateXRefRow Dialog: XrefCustApp Use Case

Chapter 44
Creating and Running the Cross Reference Use Case

44-36

26. Click OK.

27. From the File menu, select Save All and close the SAP_TO_COMMON_INSERT.xsl file.

The Routing Rules section appears, as shown in Figure 44-26.

Figure 44-26 Routing Rules Section with Insert Operation

To create routing rules for an update operation:

1. In the Routing Rules section, click the Create a new Routing Rule icon.

The Target Type dialog is displayed.

2. Select Service.

The Target Services dialog is displayed.

3. Navigate to XrefCustApp > Mediators > Common, Services > Common.

4. Select Update and click OK.

5. Click the Filter icon.

The Expression Builder dialog is displayed.

6. In the Expression field, enter the following expression:

$in.Sap01Collection/top:Sap01Collection/top:Sap01/top:operation='UPDATE'
7. Click OK.

8. Next to the Transform Using field, click the Transformation icon.

The Request Transformation map dialog is displayed.

9. Select Create New Mapper File and enter SAP_TO_COMMON_UPDATE.xsl.

10. Click OK.

An SAP_TO_COMMON_UPDATE.xsl file is displayed.

11. Drag and drop the top:Sap01 source element to the inp1:Customer target element.

The Auto Map Preferences dialog is displayed.

12. Click OK.

13. From the Components window, select Advanced.

14. Select XREF Functions.

15. Drag and drop the lookupXRef function from the Components window to the line
connecting the top:id and inp1:id elements.

Chapter 44
Creating and Running the Cross Reference Use Case

44-37

16. Double-click the lookupXRef icon.

The Edit Function-lookupXRef dialog is displayed.

17. To the right of the xrefLocation field, click Search.

The SOA Resource Lookup dialog is displayed.

18. Select customer.xref and click OK.

19. In the referenceColumnName field, enter "SAP_01" or click Search to select the column
name.

20. In the referenceValue column, enter /top:Sap01Collection/top:Sap01/top:id.

21. In the columnName field, enter "COMMON" or click Search to select the column name.

22. In the needException field, enter true() or click Search to select this mode.

Figure 44-27 shows the populated Edit Function – looupXRef dialog.

Figure 44-27 Edit Function – lookupXRef Dialog: XrefCustApp Use Case

23. Click OK.

24. From the File menu, select Save All and close the SAP_TO_COMMON_UPDATE.xsl file.

The Routing Rules section appears, as shown in Figure 44-28.

Figure 44-28 Insert Operation and Update Operation

Chapter 44
Creating and Running the Cross Reference Use Case

44-38

To create routing rules for an updateID operation:

Perform the following tasks to create routing rules for an updateID operation:

1. In the Routing Rules section, click the Create a new Routing Rule icon.

The Target Type dialog is displayed.

2. Select Service.

The Target Services dialog is displayed.

3. Navigate to XrefCustApp > Mediators > Common, Services > Common.

4. Select updateid and click OK.

5. Click the Filter icon.

The Expression Builder dialog is displayed.

6. In the Expression field, enter the following expression:

$in.Sap01Collection/top:Sap01Collection/top:Sap01/top:operation = 'UPDATEID'
7. Click OK.

8. Next to the Transform Using field, click the Transformation icon.

The Request Transformation map dialog is displayed.

9. Select Create New Mapper File and enter SAP_TO_COMMON_UPDATEID.xsl.

10. Click OK.

An SAP_TO_COMMON_UPDATEID.xsl file is displayed.

11. Drag and drop the top:Sap01 source element to the inp1:Customer target element.

The Auto Map Preferences dialog is displayed.

12. Click OK.

13. From the Components window, select Advanced.

14. Select XREF Functions.

15. Drag and drop the populateXRefRow function from the Components window to the line
connecting the top:id and inp1:id elements.

16. Double-click the populateXRefRow icon.

The Edit Function-populateXRefRow dialog is displayed.

17. To the right of the xrefLocation field, click Search.

The SOA Resource Lookup dialog is displayed.

18. Select customer.xref and click OK.

19. In the referenceColumnName field, enter "SAP_01" or click Search to select the column
name.

20. In the referenceValue column, enter /top:Sap01Collection/top:Sap01/top:refId.

21. In the columnName field, enter "SAP_01" or click Search to select the column name.

22. In the value field, enter /top:Sap01Collection/top:Sap01/top:Id.

23. In the mode field, enter "UPDATE" or click Search to select this mode.

Chapter 44
Creating and Running the Cross Reference Use Case

44-39

Figure 44-29 shows a populated Edit Function – populateXRefRow dialog.

Figure 44-29 Edit Function – populateXRefRow Dialog: XrefCustApp Use Case

24. Drag and drop the lookupXRef function from the Components window to the line
connecting the top:id and inp1:id elements.

25. Double-click the lookupXRef icon.

The Edit Function-lookupXRef dialog is displayed.

26. To the right of the xrefLocation field, click Search.

The SOA Resource Lookup dialog is displayed.

27. Select customer.xref and click OK.

28. In the referenceColumnName field, enter "SAP_01" or click Search to select the column
name.

29. In the referenceValue column, enter the following:

xref:populateXRefRow("customer.xref","SAP_
01",/top:Sap01Collection/top:Sap01/top:refId,"SAP_
01",/top:Sap01Collection/top:Sap01/top:id,"UPDATE").

30. In the columnName field, enter "COMMON" or click Search to select the column name.

31. In the needException field, enter false() or click Search to select this mode.

Figure 44-30 shows a populated Edit Function – lookupXRef dialog.

Chapter 44
Creating and Running the Cross Reference Use Case

44-40

Figure 44-30 Edit Function – lookupXRef Dialog: XrefCustApp Use Case

32. Click OK.

33. From the File menu, select Save All and close the SAP_TO_COMMON_UPDATEID.xsl
file.

The Routing Rules section appears, as shown in Figure 44-31.

Figure 44-31 Insert, Update, and UpdateID Operations

To create routing rules for a delete operation:

1. In the Routing Rules section, click the Create a new Routing Rule icon.

The Target Type dialog is displayed.

2. Select Service.

The Target Services dialog is displayed.

3. Navigate to XrefCustApp > Mediators > Common, Services > Common.

Chapter 44
Creating and Running the Cross Reference Use Case

44-41

4. Select delete and click OK.

5. Click the Filter icon.

The Expression Builder dialog is displayed.

6. In the Expression field, enter the following expression:

$in.Sap01Collection/top:Sap01Collection/top:Sap01/top:operation = 'DELETE'
7. Click OK.

8. Next to the Transform Using field, click the Transformation icon.

The Request Transformation map dialog is displayed.

9. Select Create New Mapper File and enter SAP_TO_COMMON_DELETE.xsl.

10. Click OK.

A SAP_TO_COMMON_DELETE.xsl file is displayed.

11. Right-click <sources> and select Add Parameter.

The Add Parameter dialog is displayed.

12. In the Local Name field, enter COMMONID.

13. Select Set Default Value.

14. Select Expression.

15. In the XPath Expression field, enter

xref:lookupXRef("customer.xref","SAP_
01",/top:Sap01Collection/top:Sap01/top:id,"COMMON",false()).

16. Click OK.

17. Drag and drop the top:Sap01 source element to the inp1:Customer target element.

The Auto Map Preferences dialog is displayed.

18. Click OK.

19. Delete the line connecting top:id and inp1:id.

20. Connect COMMONID to inp1:id.

21. Right-click inp1:id and select Add XSL node and then if.

A new node if is inserted between inp1:customer and inp1:id.

22. Connect top:id to the if node.

23. From the Components window, select Advanced.

24. Select XREF Functions.

25. Drag and drop the markForDelete function from the Components window to the line
connecting top:id and the if node.

26. Double-click the markForDelete icon.

The Edit Function-markForDelete dialog is displayed.

27. Click Search to the right of the xrefLocation field.

The SOA Resource Lookup dialog is displayed.

28. Select customer.xref and click OK.

29. In the columnName field, enter "SAP_01" or click Search to select the column name.

Chapter 44
Creating and Running the Cross Reference Use Case

44-42

30. In the value field, enter /top:Sap01Collection/top:Sap01/top:Id.

Figure 44-32 shows a populated Edit Function – markForDelete dialog.

Figure 44-32 Edit Function – markForDelete Dialog: XrefCustApp Use Case

31. Click OK.

The SAP_TO_COMMON_DELETE.xsl file appears, as shown in Figure 44-33.

Figure 44-33 SAP_TO_COMMON_DELETE.xsl

32. From the File menu, select Save All and close the SAP_TO_COMMON_DELETE.xsl file.

The Routing Rules section appears, as shown in Figure 44-34.

Chapter 44
Creating and Running the Cross Reference Use Case

44-43

Figure 44-34 Insert, Update, UpdateID, and Delete Operations

Task 9: How to Specify Routing Rules for the Common Oracle Mediator
You must specify routing rules for the following operations of the Common Oracle Mediator:

• Insert

• Delete

• Update

• UpdateID

To create routing rules for the insert operation:

1. Double-click the Common Oracle Mediator.

The Mediator Editor is displayed.

2. In the Routing Rules section, click the Create a new Routing Rule icon.

The Target Type dialog is displayed.

3. Select Service.

The Target Services dialog is displayed.

4. Navigate to XrefCustApp > References > SBL.

5. Select SBL and click OK.

6. Next to the Transform Using field, click the Transformation icon.

The Request Transformation map dialog is displayed.

7. Select Create New Mapper File and enter COMMON_TO_SBL_INSERT.xsl.

8. Click OK.

A COMMON_TO_SBL_INSERT.xsl file is displayed.

Chapter 44
Creating and Running the Cross Reference Use Case

44-44

9. Drag and drop the inp1:Customers source element to the db:InputParameters target
element.

The Auto Map Preferences dialog is displayed.

10. Click OK.

The transformation is created, as shown in Figure 44-35.

Figure 44-35 COMMON_TO_SBL_INSERT.xsl Transformation

11. From the File menu, select Save All and close the COMMON_TO_SBL_INSERT.xsl file.

12. In the Synchronous Reply section, click Browse for target service operations.

The Target Type dialog is displayed.

13. Select Service.

The Target Services dialog is displayed.

14. Navigate to XrefCustApp > References > Logger.

15. Select Write and click OK.

16. Next to the Transform Using field, click the Transformation icon.

The Reply Transformation map dialog is displayed.

17. Select Create New Mapper File and enter SBL_TO_COMMON_INSERT.xsl.

18. Select Include Request in the Reply Payload.

19. Click OK.

A SBL_TO_COMMON_INSERT.xsl file is displayed.

20. Connect the inp1:Customers source element to db:X:APP_ID.

21. Drag and drop the populateXRefRow function from the Components window to the
connecting line.

22. Double-click the populateXRefRow icon.

The Edit Function-populateXRefRow dialog is displayed.

23. Enter this information in the following fields:

• xrefLocation: "customer.xref"
• referenceColumnName: "Common"
• referenceValue: $initial.Customers/inp1:Customers/inp1:Customer/inp1:Id
• columnName: "SBL_78"
• value: /db:OutputParameters/db:X_APP_ID
• mode: "LINK"

Chapter 44
Creating and Running the Cross Reference Use Case

44-45

24. Click OK.

The SBL_TO_COMMON_INSERT.xsl file appears, as shown in Figure 44-36.

Figure 44-36 SBL_TO_COMMON_INSERT.xsl Transformation

25. From the File menu, select Save All and close the SBL_TO_COMMON_INSERT.xsl file.

26. In the Synchronous Reply section, click the Assign Values icon.

The Assign Values dialog is displayed.

27. Click Add.

The Assign Value dialog is displayed.

28. In the From section, select Expression.

29. Click the Invoke Expression Builder icon.

The Expression Builder dialog is displayed.

30. In the Expression field, enter the following expression and click OK.

concat('INSERT-',$in.OutputParameters/db:OutputParameters/db:X_APP_ID,'.xml')
31. In the To section, select Property.

32. Select the jca.file.FileName property and click OK.

33. Click OK.

The insert operation section appears, as shown in Figure 44-37.

Figure 44-37 Insert Operation with SBL Target Service

34. From the File menu, select Save All.

35. Repeat Step 2 through Step 34 to specify another target service named EBS and its
routing rules.

Figure 44-38 shows the insert operation section with SBL and EBS target services.

Chapter 44
Creating and Running the Cross Reference Use Case

44-46

Figure 44-38 Insert Operation with SBL and EBS Target Services

To create routing rules for a delete operation:

Perform the following tasks to create the routing rules for a delete operation.

1. In the Routing Rules section, click the Create a new Routing Rule icon.

The Target Type dialog is displayed.

2. Select Service.

The Target Services dialog is displayed.

3. Navigate to XrefCustApp > References > SBL.

4. Select SBL and click OK.

5. Next to the Transform Using field, click the Transformation icon.

The Request Transformation map dialog is displayed.

6. Select Create New Mapper File and enter COMMON_TO_SBL_DELETE.xsl.

7. Click OK.

A COMMON_TO_SBL_DELETE.xsl file is displayed.

8. Drag and drop the inp1:Customers source element to the db:InputParameters target
element.

The Auto Map Preferences dialog is displayed.

9. Click OK.

The transformation is created, as shown in Figure 44-39.

Chapter 44
Creating and Running the Cross Reference Use Case

44-47

Figure 44-39 COMMON_TO_SBL_DELETE.xsl Transformation

10. Drag and drop the lookupXRef function from the Components window to the line
connecting inp1:id and db:XCUSTOMER_ID.

11. Double-click the lookupXRef icon.

The Edit Function: lookupXRef dialog is displayed.

12. Enter this information in the following fields:

• xrefLocation: "customer.xref"
• referenceColumnName: "Common"
• referenceValue: /inp1:Customers/inp1:Customer/inp1:Id
• columnName: "SBL_78"
• needException: false()

13. Click OK.

14. From the File menu, select Save All and close the COMMON_TO_SBL_DELETE.xsl file.

15. In the Synchronous Reply section, click Browse for target service operations.

The Target Type dialog is displayed.

16. Select Service.

The Target Services dialog is displayed.

17. Navigate to XrefCustApp > References > Logger.

18. Select Write and click OK.

19. Next to the Transform Using field, click the Transformation icon.

The Reply Transformation map dialog is displayed.

20. Select Create New Mapper File and enter SBL_TO_COMMON_DELETE.xsl.

21. Click OK.

The SBL_TO_COMMON_DELETE.xsl file is displayed.

22. Connect the db:X_APP_ID source element to the db:X:APP_ID target.

23. Drag and drop the markForDelete function from the Components window to the
connecting line.

24. Double-click the markForDelete icon.

The Edit Function-markForDelete dialog is displayed.

25. Enter this information in the following fields:

• xrefLocation: "customer.xref"
• columnName: "SBL_78"
• value: /db:OutputParameters/db:X_APP_ID

Chapter 44
Creating and Running the Cross Reference Use Case

44-48

26. Click OK.

27. From the File menu, select Save All and close the SBL_TO_COMMON_DELETE.xsl file.

28. In the Synchronous Reply section, click the Assign Values icon.

The Assign Values dialog is displayed.

29. Click Add.

The Assign Value dialog is displayed.

30. In the From section, select Expression.

31. Click the Invoke Expression Builder icon.

The Expression Builder dialog is displayed.

32. In the Expression field, enter the following expression, and click OK.

concat('DELETE-',$in.OutputParameters/db:OutputParameters/db:X_APP_ID,'.xml')
33. In the To section, select Property.

34. Select the jca.file.FileName property and click OK.

35. Click OK.

The delete operation section appears, as shown in Figure 44-40.

Figure 44-40 Delete Operation with SBL Target Service

36. From the File menu, select Save All.

37. Repeat Step 1 through Step 36 to specify another target service named EBS and specify
the routing rules.

Figure 44-41 shows the delete operation section with SBL and EBS target services.

Chapter 44
Creating and Running the Cross Reference Use Case

44-49

Figure 44-41 Delete Operation with SBL and EBS Target Service

To create routing rules for the update operation:

Perform the following tasks to create routing rules for the update operation.

1. In the Routing Rules section, click the Create a new Routing Rule icon.

The Target Type dialog is displayed.

2. Select Service.

The Target Services dialog is displayed.

3. Navigate to XrefCustApp, References > SBL.

4. Select SBL and click OK.

5. Click the Transformation icon next to the Transform Using field.

The Request Transformation map dialog is displayed.

6. Select Create New Mapper File and enter COMMON_TO_SBL_UPDATE.xsl.

7. Click OK.

A COMMON_TO_SBL_UPDATE.xsl file is displayed.

8. Drag and drop the inp1:Customers source element to the db:InputParameters target
element.

The Auto Map Preferences dialog is displayed.

9. Click OK.

The transformation is created, as shown in Figure 44-39.

10. Drag and drop the lookupXRef function from the Components window to the line
connecting inp1:id and db:XCUSTOMER_ID.

11. Double-click the lookupXRef icon.

Chapter 44
Creating and Running the Cross Reference Use Case

44-50

The Edit Function: lookupXRef dialog is displayed.

12. Enter this information in the following fields:

• xrefLocation: "customer.xref"
• referenceColumnName: "Common"
• referenceValue: /inp1:Customers/inp1:Customer/inp1:Id
• columnName: "SBL_78"
• needException: true()

13. Click OK.

14. From the File menu, select Save All and close the COMMON_TO_SBL_UPDATE.xsl file.

15. In the Synchronous Reply section, click Browse for target service operations.

The Target Type dialog is displayed.

16. Select Service.

The Target Services dialog is displayed.

17. Navigate to XrefCustApp > References > Logger.

18. Select Write and click OK.

19. Next to the Transform Using field, click the Transformation icon.

The Reply Transformation map dialog is displayed.

20. Select Create New Mapper File and enter SBL_TO_COMMON_UPDATE.xsl.

21. Click OK.

A SBL_TO_COMMON_UPDATE.xsl file is displayed.

22. Connect the db:X:APP_ID source element to db:X:APP_ID.

23. From the File menu, select Save All and close the SBL_TO_COMMON_UPDATE.xsl file.

24. In the Synchronous Reply section, click the Assign Values icon.

The Assign Values dialog is displayed.

25. Click Add.

The Assign Value dialog is displayed.

26. In the From section, select Expression.

27. Click the Invoke Expression Builder icon.

The Expression Builder dialog is displayed.

28. In the Expression field, enter the following expression and click OK.

concat('UPDATE-',$in.OutputParameters/db:OutputParameters/db:X_APP_ID,'.xml')
29. In the To section, select Property.

30. Select the jca.file.FileName property and click OK.

31. Click OK.

The update operation section appears, as shown in Figure 44-42.

Chapter 44
Creating and Running the Cross Reference Use Case

44-51

Figure 44-42 Update Operation with SBL Target Service

32. From the File menu, select Save All.

33. Repeat Step 1 through Step 32 to specify another target service named EBS and its
routing rules.

Figure 44-43 shows the update operation section with SBL and EBS target services.

Figure 44-43 Update Operation with SBL and EBS Target Service

To create routing rules for the UpdateID operation:

Perform the following tasks to create routing rules for the UpdateID operation.

1. In the Routing Rules section, click the Create a new Routing Rule icon.

The Target Type dialog is displayed.

2. Select Service.

The Target Services dialog is displayed.

3. Navigate to XrefCustApp > References > SBL.

Chapter 44
Creating and Running the Cross Reference Use Case

44-52

4. Select SBL and click OK.

5. Next to the Transform Using field, click the Transformation icon.

The Request Transformation map dialog is displayed.

6. Select Create New Mapper File and enter COMMON_TO_SBL_UPDATEID.xsl.

7. Click OK.

The COMMON_TO_SBL_UPDATEID.xsl file is displayed.

8. Drag and drop the inp1:Customers source element to the db:InputParameters target
element.

The Auto Map Preferences dialog is displayed.

9. Click OK.

The transformation is created, as shown in Figure 44-39.

10. Drag and drop the lookupXRef function from the Components window to the line
connecting inp1:id and db:X_CUSTOMER_ID.

11. Double-click the lookupXRef icon.

The Edit Function: lookupXRef dialog is displayed.

12. Enter this information in the following fields:

• xrefLocation: customer.xref
• referenceColumnName: Common
• referenceValue: /inp1:Customers/inp1:Customer/inp1:Id
• columnName: SBL_78
• needException: false()

13. Click OK.

14. From the File menu, select Save All and close the COMMON_TO_SBL_UPDATEID.xsl
file.

15. In the Synchronous Reply section, click Browse for target service operations.

The Target Type dialog is displayed.

16. Select Service.

The Target Services dialog is displayed.

17. Navigate to XrefCustApp > References > Logger.

18. Select Write and click OK.

19. Next to the Transform Using field, click the Transformation icon.

The Reply Transformation map dialog is displayed.

20. Select Include Request in the Reply Payload.

21. Click OK.

The SBL_TO_COMMON_UPDATEID.xsl file is displayed.

22. Connect inp1:Customers source element to the db:X:APP_ID.

23. Drag and drop the populateXRefRow function from the Components window to the
connecting line.

24. Double-click the populateXRefRow icon.

Chapter 44
Creating and Running the Cross Reference Use Case

44-53

The Edit Function-populateXRefRow dialog is displayed.

25. Enter this information in the following fields:

• xrefLocation: customer.xref
• referenceColumnName: Common
• referenceValue: $initial.Customers/inp1:Customers/inp1:Customer/inp1:Id
• columnName: SBL_78
• value: /db:OutputParameters/db:X_APP_ID
• mode: UPDATE

26. Click OK.

27. From the File menu, select Save All and close the SBL_TO_COMMON_UPDATEID.xsl
file.

28. In the Synchronous Reply section, click the Assign Values icon.

The Assign Values dialog is displayed.

29. Click Add.

The Assign Value dialog is displayed.

30. In the From section, select Expression.

31. Click the Invoke Expression Builder icon.

The Expression Builder dialog is displayed.

32. In the Expression field, enter the following expression and click OK.

concat('UPDATEID-',$in.OutputParameters/db:OutputParameters/db:X_APP_ID,'.xml')
33. In the To section, select Property.

34. Select the jca.file.FileName property and click OK.

35. Click OK.

The updateid operation section appears, as shown in Figure 44-44.

Figure 44-44 Updateid Operation with SBL Target Service

36. From the File menu, select Save All.

37. Repeat Step 1 through Step 36 to specify another target service named EBS and specify
the routing rules.

Figure 44-45 shows the updateid operation section with the SBL and EBS target services.

Chapter 44
Creating and Running the Cross Reference Use Case

44-54

Figure 44-45 Updateid Operation with SBL and EBS Target Service

Task 10: How to Configure an Application Server Connection
An application server connection is required for deploying your SOA composite application. For
information on creating an application server connection, see Creating an Application Server
Connection.

Task 11: How to Deploy the Composite Application
Deploying the XrefCustApp composite application consists of the following steps:

• Creating an application deployment profile

• Deploying the application to the application server

For detailed information about these steps, see How to Deploy a Single SOA Composite in
Oracle JDeveloper.

How to Run and Monitor the XrefCustApp Application
After deploying the XrefCustApp application, you can run it by using any command from the
insert_sap_record.sql file present in the XrefCustApp/sql folder. On successful completion,
the records are inserted or updated in the EBS and SBL tables and the Logger reference writes
the output to the output.xml file.

For monitoring the running instance, you can use the Oracle Enterprise Manager Fusion
Middleware Control at the following URL:

http://hostname:port_number/em

where hostname is the host on which you installed the Oracle SOA Suite infrastructure and
port_number is the port running the service.

Chapter 44
Creating and Running the Cross Reference Use Case

44-55

Creating and Running Cross Reference for 1M Functions
The cross reference use case implements an integration scenario between two end-system
Oracle EBS and SAP instances. In this use case, the order passes from SAP to EBS. SAP
represents the orders with a unique ID, whereas EBS splits the order into two orders: ID1 and
ID2. This scenario is created using database adapters. When you poll the SAP table for
updated or created records, an SAP instance is created. In EBS, the instance is simulated by a
procedure and the table is populated. Figure 44-46 provides an overview of this use case.

Figure 44-46 XrefOrderApp Use Case in SOA Composite Editor

How to Create the Use Case
This section provides the design-time tasks for creating, building, and deploying your SOA
composite application. These tasks should be performed in the order in which they are
presented.

Task 1: How to Configure the Oracle Database and Database Adapter

To configure the Oracle database and database adapter:

1. You need the SCOTT database account with password TIGER for this use case. You must
ensure that the SCOTT account is unlocked.

You can log in as SYSDBA and then run the setup_user.sql script available in the
XrefOrderApp1M/sql folder to unlock the account.

2. Run the create_schema.sql script available in the XrefOrderApp1M/sql folder to create
the tables required for this use case.

3. Run the create_app_procedure.sql script available in the XrefOrderApp1M/sql folder to
create a procedure that simulates the various applications participating in this integration.

4. Run the createschema_xref_oracle.sql script available in the Oracle_Home/rcu/
integration/soainfra/sql/xref/ folder to create a cross reference table to store runtime
cross reference data.

Chapter 44
Creating and Running Cross Reference for 1M Functions

44-56

5. Copy the ra.xml and weblogic-ra.xml files from $BEAHOME/META-INF to the newly created
directory called META-INF on your computer.

6. Edit the weblogic-ra.xml file, which is available in the $BEAHOME/src/oracle/tip/
adapter/db/test/deploy/weblogic/META-INF folder for your SOA application, as follows:

• Modify the property to xADataSourceName as follows:

<property>
 <name>xADataSourceName</name>
 <value>jdbc/DBConnection1</value>
</property>

• Modify the jndi-name as follows:

<jndi-name> eis/DB/DBConnection1</jndi-name>
This sample uses eis/DB/DBConnection1 to poll the SAP table for new messages and to
connect to the procedure that simulates Oracle EBS and Siebel instances.

7. Package the ra.xml and weblogic-ra.xml files as a RAR file and deploy the RAR file by
using Oracle WebLogic Remote Console.

8. Create a data source using the Oracle WebLogic Remote Console with the following
values:

• jndi-name=jdbc/DBConnection1
• user=scott
• password=tiger
• url=jdbc:oracle:thin:@host:port:service
• connection-factory factory-class=oracle.jdbc.pool.OracleDataSource

9. Create a data source using the Oracle WebLogic Remote Console with the following
values:

• jndi-name=jdbc/xref
• user=scott
• password=tiger
• url=jdbc:oracle:thin:@host:port:service
• connection-factory factory-class=oracle.jdbc.pool.OracleDataSource

Task 2: How to Create an Oracle JDeveloper Application and a Project

To create an Oracle JDeveloper application and a project:

1. In Oracle JDeveloper, click File and select New.

The New Gallery dialog appears.

2. In the New Gallery, expand the General node, and select the Applications category.

3. In the Items list, select SOA Application and click OK.

The Create SOA Application wizard appears.

4. In the Application Name field, enter XRefOrderApp, and then click Next.

The Name your project page appears.

Chapter 44
Creating and Running Cross Reference for 1M Functions

44-57

5. In the Project Name field, enter XRefOrderApp and click Next.

The Configure SOA Settings page appears.

6. In the Composite Template list, select Empty Composite and then click Finish.

The Applications window of Oracle JDeveloper is updated with the new application and
project and the SOA Composite Editor contains a blank project.

7. From the File menu, select Save All.

Task 3: How to Create a Cross Reference
After creating an application and a project for the use case, you must create a cross reference
table.

To create a cross reference table:

1. In the Applications window, right-click the XRefOrderApp project and select New.

2. In the New Gallery dialog, expand the SOA Tier node, and then select the
Transformations category.

3. In the Items list, select Cross Reference(XREF) and click OK.

The Create Cross Reference(XREF) File dialog is displayed.

4. In the File Name field, enter order.xref.

5. In the End System fields, enter SAP_05 and EBS_i75.

6. Click OK.

The Cross Reference Editor is displayed.

7. Click Add.

A new row is added.

8. Enter COMMON as the End System name.

The Cross Reference Editor appears, as shown in Figure 44-47.

Figure 44-47 Customer Cross Reference

9. From the File menu, select Save All and close the Cross Reference Editor.

Chapter 44
Creating and Running Cross Reference for 1M Functions

44-58

Task 4: How to Create a Database Adapter Service

To create a database adapter service:

1. In the Components window, select SOA.

2. Select Database Adapter and drag it to the Exposed Services swimlane.

The Adapter Configuration wizard Welcome page is displayed.

3. Click Next.

The Service Name page is displayed.

4. In the Service Name field, enter SAP.

5. Click Next.

The Service Connection page is displayed.

6. In the Connection field, select DBConnection1.

7. In the JNDI Name field, enter eis/DB/DBConnection1.

8. Click Next.

The Operation Type page is displayed.

9. Select Poll for New or Changed Records in a Table and click Next.

The Select Table page is displayed.

10. Click Import Tables.

The Import Tables dialog is displayed.

11. Select Scott from the Schema.

12. In the Name Filter field, enter %SAP% and click Query.

The Available field is populated with the SAP_05 table name.

13. Double-click SAP_05.

The selected field is populated with SAP_05.

14. Click OK.

The Select Table page now contains the SAP_05 table.

15. Select SAP_05 and click Next.

The Define Primary Key page is displayed.

16. Select ID as the primary key and click Next.

The Relationships page is displayed.

17. Click Next.

The Attribute Filtering page is displayed.

18. Click Next.

The After Read page is displayed.

19. Select Update a Field in the [SAP_05] Table (Logical Delete) and click Next.

The Logical Delete page is displayed.

Chapter 44
Creating and Running Cross Reference for 1M Functions

44-59

20. In the Logical Delete field, select LOGICAL_DEL.

21. In the Read Value field, enter Y.

22. In the Unread Value field, enter N.

Figure 44-16 shows the Logical Delete page of the Adapter Configuration wizard.

23. Click Next.

The Polling Options page is displayed.

24. Click Next.

The Define Selection Criteria page is displayed.

25. Click Next.

The Advanced Options page is displayed.

26. Click Next.

The Finish page is displayed.

27. Click Finish.

A database adapter service named SAP is created, as shown in Figure 44-48.

Figure 44-48 SAP Database Adapter Service in SOA Composite Editor

28. From the File menu, select Save All.

Task 5: How to Create an EBS External Reference

To create an EBS external reference:

1. In the Components window, select SOA.

2. Select Database Adapter and drag it to the External References swimlane.

The Adapter Configuration wizard Welcome page is displayed.

3. Click Next.

The Service Name page is displayed.

4. In the Service Name field, enter EBS.

Chapter 44
Creating and Running Cross Reference for 1M Functions

44-60

5. Click Next.

The Service Connection page is displayed.

6. In the Connection field, select DBConnection1.

7. In the JNDI Name field, enter eis/DB/DBConnection1.

8. Click Next.

The Operation Type page is displayed.

9. Select Call a Stored Procedure or Function and click Next.

The Specify Stored Procedure page is displayed.

10. Select Scott from the Schema.

11. Click Browse.

The Stored Procedures dialog is displayed.

12. Select POPULATE_APP_INSTANCE_IM, as shown in Figure 44-49.

Figure 44-49 Stored Procedure Dialog

13. Click OK.

The Specify Stored Procedure page appears, as shown in Figure 44-50.

Chapter 44
Creating and Running Cross Reference for 1M Functions

44-61

Figure 44-50 Specify Stored Procedure Page of Adapter Configuration Wizard

14. Click Next.

The Advanced Options page is displayed.

15. Click Next.The Finish page is displayed.

16. Click Finish.

Figure 44-51 shows the EBS reference in the SOA Composite Editor.

Figure 44-51 EBS Reference in SOA Composite Editor

17. From the File menu, select Save All.

Task 6: How to Create a Logger File Adapter External Reference

To create a Logger file adapter external reference:

Chapter 44
Creating and Running Cross Reference for 1M Functions

44-62

1. From the Components window, select SOA.

2. Select File Adapter and drag it to the External References swimlane.

The Adapter Configuration wizard Welcome page is displayed.

3. Click Next.

The Service Name page is displayed.

4. In the Service Name field, enter Logger.

5. Click Next.

The Adapter Interface page is displayed.

6. Click Define from operation and schema (specified later).

The Operation page is displayed.

7. In the Operation Type field, select Write File.

8. Click Next.

The File Configuration page is displayed.

9. In the Directory for Outgoing Files (physical path) field, enter the name of the directory
in which you want to write the files.

10. In the File Naming Convention field, enter output.xml and click Next.

The Messages page is displayed.

11. Click Search.

The Type Chooser dialog is displayed.

12. Navigate to Type Explorer > Project Schema Files >
SCOTT_POPULATE_APP_INSTANCE_1M.xsd, and then select OutputParameters.

13. Click OK.

14. Click Next.

The Finish page is displayed.

15. Click Finish.

Figure 44-52 shows the Logger reference in the SOA Composite Editor.

Figure 44-52 Logger Reference in SOA Composite Editor

16. From the File menu. select Save All.

Chapter 44
Creating and Running Cross Reference for 1M Functions

44-63

Task 7: How to Create an Oracle Mediator Service Component

To create an Oracle Mediator service component:

1. Drag and drop a Mediator icon from the Components window to the Components
swimlane.

The Create Mediator dialog is displayed.

2. From the Template list, select Define Interface Later.

3. Click OK.

An Oracle Mediator with name Mediator2 is created.

4. Connect the SAP service to Mediator2, as shown in Figure 44-53.

Figure 44-53 SAP Service Connected to Mediator2

5. From the File menu. select Save All.

6. Drag and drop a Mediator icon from the Components window to the Components section
of the SOA Composite Editor.

The Create Mediator dialog is displayed.

7. From the Template list, select Interface Definition From WSDL.

8. Deselect Create Composite Service with SOAP Bindings.

9. To the right of the WSDL File field, click Find Existing WSDLs.

10. Navigate to and then select the Common.wsdl file. The Common.wsdl file is available in
the Samples folder.

11. Click OK.

12. Click OK.

An Oracle Mediator named Common is created.

Task 8: How to Specify Routing Rules for an Oracle Mediator Component
You must specify routing rules for following operations:

• Insert

Chapter 44
Creating and Running Cross Reference for 1M Functions

44-64

• Update

To create routing rules for the insert operation:

1. Double-click the Mediator2 Oracle Mediator.

The Mediator Editor is displayed.

2. In the Routing Rules section, click the Create a new Routing Rule icon.

The Target Type dialog is displayed.

3. Select Service.

The Target Services dialog is displayed.

4. Navigate to XrefOrderApp > Mediators > Common, Services > Common.

5. Select Insert and click OK.

6. Click the Filter icon.

The Expression Builder dialog is displayed.

7. In the Expression field, enter the following expression:

$in.Sap05Collection/top:Sap05Collection/top:Sap05/top:operation='INSERT'
8. Click OK.

9. Next to the Using Transformation field, click the Transformation icon.

The Request Transformation map dialog is displayed.

10. Select Create New Mapper File and enter SAP_TO_COMMON_INSERT.xsl.

11. Click OK.

An SAP_TO_COMMON_INSERT.xsl file is displayed.

12. Drag and drop the top:SAP05 source element to the inp1:Order target element.

The Auto Map Preferences dialog is displayed.

13. From the During Auto Map options list, deselect Match Elements Considering their
Ancestor Names.

14. Click OK.

The transformation is created, as shown in Figure 44-54.

Figure 44-54 SAP_TO_COMMON_INSERT.xsl Transformation

15. From the Components window, select Advanced.

16. Select XREF Functions.

Chapter 44
Creating and Running Cross Reference for 1M Functions

44-65

17. Drag and drop the populateXRefRow1M function from the Components window to the line
connecting the top:id and inp1:id elements.

18. Double-click the populateXRefRow1M icon.

The Edit Function-populateXRefRow dialog is displayed.

19. To the right of the xrefLocation field, click Search.

The SOA Resource Lookup dialog is displayed.

20. Select Order.xref and click OK.

21. In the referenceColumnName field, enter "SAP_05" or click Search to select the column
name.

22. In the referenceValue column, enter /top:Sap05Collection/top:Sap05/top:id.

23. In the columnName field, enter "Common" or click Search to select the column name.

24. In the value field, enter orcl:generate-guid().

25. In the mode field, enter "Add" or click Search to select this mode.

Figure 44-55 shows the populated Edit Function – populateXRefRow1M dialog.

Figure 44-55 Edit Function – populateXRefRow1M Dialog: XrefOrderApp Use Case

26. Click OK.

27. From the File menu, select Save All and close the SAP_TO_COMMON_INSERT.xsl file.

The Routing Rules section appears, as shown in Figure 44-56.

Chapter 44
Creating and Running Cross Reference for 1M Functions

44-66

Figure 44-56 Routing Rules Section with Insert Operation

To create routing rules for the update operation:

Perform the following tasks to create routing rules for the update operation.

1. In the Routing Rules section, click the Create a new Routing Rule icon.

The Target Type dialog is displayed.

2. Select Service.

The Target Services dialog is displayed.

3. Navigate to XrefOrderApp > Mediators > Common, Services > Common.

4. Select Update and click OK.

5. Click the Filter icon.

The Expression Builder dialog is displayed.

6. In the Expression field, enter the following expression:

$in.Sap05Collection/top:Sap05Collection/top:Sap05/top:operation='UPDATE'
7. Click OK.

8. Next to the Transform Using field, click the Transformation icon.

The Request Transformation map dialog is displayed.

9. Select Create New Mapper File and enter SAP_TO_COMMON_UPDATE.xsl.

10. Click OK.

An SAP_TO_COMMON_UPDATE.xsl file is displayed.

11. Drag and drop the top:Sap05 source element to the inp1:Order target element.

The Auto Map Preferences dialog is displayed.

12. Click OK.

13. From the Components window, select Advanced.

14. Select XREF Functions.

15. Drag and drop the lookupXRef function from the Components window to the line
connecting the top:id and inp1:id elements.

16. Double-click the lookupXRef icon.

The Edit Function-lookupXRef dialog is displayed.

Chapter 44
Creating and Running Cross Reference for 1M Functions

44-67

17. To the right of the xrefLocation field, click Search.

The SOA Resource Lookup dialog is displayed.

18. Select customer.xref and click OK.

19. In the referenceColumnName field, enter "SAP_05" or click Search to select the column
name.

20. In the referenceValue column, enter /top:Sap05Collection/top:Sap05/top:id.

21. In the columnName field, enter "COMMON" or click Search to select the column name.

22. In the needException field, enter true() or click Search to select this mode.

Figure 44-57 shows the populated Edit Function – looupXRef dialog.

Figure 44-57 Edit Function – looupXRef Dialog: XRefOrderApp Use Case

23. Click OK.

24. From the File menu, select Save All and close the SAP_TO_COMMON_UPDATE.xsl file.

The Routing Rules section appears, as shown in Figure 44-58.

Chapter 44
Creating and Running Cross Reference for 1M Functions

44-68

Figure 44-58 Insert Operation and Update Operation

Task 9: How to Specify Routing Rules for the Common Oracle Mediator
You must specify routing rules for the following operations of the Common Oracle Mediator:

• Insert

• Update

To create routing rules for the insert operation:

1. Double-click the Common Oracle Mediator.

The Mediator Editor is displayed.

2. In the Routing Rules section, click the Create a new Routing Rule icon.

The Target Type dialog is displayed.

3. Select Service.

The Target Services dialog is displayed.

4. Navigate to XrefOrderApp > References > EBS.

5. Select EBS and click OK.

6. Next to the Transform Using field, click the Transformation icon.

The Request Transformation map dialog is displayed.

7. Select Create New Mapper File and enter COMMON_TO_EBS_INSERT.xsl.

8. Click OK.

A COMMON_TO_EBS_INSERT.xsl file is displayed.

9. Drag and drop the inp1:Order source element to the db:InputParameters target element.

The Auto Map Preferences dialog is displayed.

10. Set the value of the db:X_APP_INSTANCE node on the right side to EBS_i75.

Click OK.

Chapter 44
Creating and Running Cross Reference for 1M Functions

44-69

The transformation is created, as shown in Figure 44-59.

Figure 44-59 COMMON_TO_EBS_INSERT.xsl Transformation

11. From the File menu, select Save All and close the COMMON_TO_EBS_INSERT.xsl file.

12. In the Synchronous Reply section, click Browse for target service operations.

The Target Type dialog is displayed.

13. Select Service.

The Target Services dialog is displayed.

14. Navigate to XrefOrderApp > References > Logger.

15. Select Write and click OK.

16. Next to the Transform Using field, click the Transformation icon.

The Reply Transformation map dialog is displayed.

17. Select Create New Mapper File and enter EBS_TO_COMMON_INSERT.xsl.

18. Select Include Request in the Reply Payload.

19. Click OK.

An EBS_TO_COMMON_INSERT.xsl file is displayed.

20. Connect the inp1:Order source element to db:X:APP_ID.

21. Drag and drop the populateXRefRow function from the Components window to the
connecting line.

22. Double-click the populateXRefRow icon.

The Edit Function-populateXRefRow dialog is displayed.

23. Enter this information in the following fields:

• xrefLocation: order.xref
• referenceColumnName: Common
• referenceValue: $initial.Customers/inp1:Customers/inp1:Order/inp1:Id
• columnName: EBS_75
• value: /db:OutputParameters/db:X_APP_ID
• mode: LINK

24. Click OK.

The EBS_TO_COMMON_INSERT.xsl file appears, as shown in Figure 44-60.

Chapter 44
Creating and Running Cross Reference for 1M Functions

44-70

Figure 44-60 EBS_TO_COMMON_INSERT.xsl Transformation

25. From the File menu, select Save All and close the EBS_TO_COMMON_INSERT.xsl file.

26. In the Synchronous Reply section, click the Assign Values icon.

The Assign Values dialog is displayed.

27. Click Add.

The Assign Value dialog is displayed.

28. In the From section, select Expression.

29. Click the Invoke Expression Builder icon.

The Expression Builder dialog is displayed.

30. In the Expression field, enter the following expression and click OK.

concat('INSERT-',$in.OutputParameters/db:OutputParameters/db:X_APP_ID,'.xml')
31. In the To section, select Property.

32. Select the jca.file.FileName property and click OK.

33. Click OK.

The insert operation section appears, as shown in Figure 44-61.

Figure 44-61 Insert Operation with EBS Target Service

34. From the File menu, select Save All.

To create routing rules for the update operation:

Perform the following tasks to create routing rules for the update operation.

Chapter 44
Creating and Running Cross Reference for 1M Functions

44-71

1. In the Routing Rules section, click the Create a new Routing Rule icon.

The Target Type dialog is displayed.

2. Select Service.

The Target Services dialog is displayed.

3. Navigate to XrefOrderApp > References > EBS.

4. Select EBS and click OK.

5. Click the Transformation icon next to the Transform Using field.

The Request Transformation map dialog is displayed.

6. Select Create New Mapper File and enter COMMON_TO_EBS_UPDATE.xsl.

7. Click OK.

The COMMON_TO_EBS_UPDATE.xsl file is displayed.

8. Drag and drop the inp1:Orders source element to the db:InputParameters target
element.

The Auto Map Preferences dialog is displayed.

9. Click OK.

The transformation is created, as shown in Figure 44-39.

10. Drag and drop the lookupXRef function from the Components window to the line
connecting inp1:id and db:X_APP_ID.

11. Double-click the lookupXRef icon.

The Edit Function: lookupXRef dialog is displayed.

12. Enter this information in the following fields:

• xrefLocation: order.xref
• referenceColumnName: Common
• referenceValue: /inp1:Customers/inp1:Order/inp1:Id
• columnName: EBS_i75
• needException: true()

13. Click OK.

14. From the File menu, select Save All and close the COMMON_TO_EBS_UPDATE.xsl file.

15. In the Synchronous Reply section, click Browse for target service operations.

The Target Type dialog is displayed.

16. Select Service.

The Target Services dialog is displayed.

17. Navigate to XrefOrderApp > References > Logger.

18. Select Write and click OK.

19. Next to the Transform Using field, click the Transformation icon.

The Reply Transformation map dialog is displayed.

20. Select Create New Mapper File and enter EBS_TO_COMMON_UPDATE.xsl.

21. Click OK.

Chapter 44
Creating and Running Cross Reference for 1M Functions

44-72

The EBS_TO_COMMON_UPDATE.xsl file is displayed.

22. Connect the db:X:APP_ID source element to db:X:APP_ID.

23. From the File menu, select Save All and close the EBS_TO_COMMON_UPDATE.xsl file.

24. In the Synchronous Reply section, click the Assign Values icon.

The Assign Values dialog is displayed.

25. Click Add.

The Assign Value dialog is displayed.

26. In the From section, select Expression.

27. Click the Invoke Expression Builder icon.

The Expression Builder dialog is displayed.

28. In the Expression field, enter the following expression, and click OK.

concat('UPDATE-',$in.OutputParameters/db:OutputParameters/db:X_APP_ID,'.xml')
29. In the To section, select Property.

30. Select the jca.file.FileName property and click OK.

31. Click OK.

The update operation section appears, as shown in Figure 44-62.

Figure 44-62 Update Operation with EBS Target Service

32. From the File menu, select Save All.

Task 10: How to Configure an Application Server Connection
An application server connection is required for deploying your SOA composite application. For
information about creating an application server connection, see Creating an Application
Server Connection.

Task 11: How to Deploy the Composite Application
Deploying the XrefOrderApp composite application to the application server consists of the
following steps:

Chapter 44
Creating and Running Cross Reference for 1M Functions

44-73

• Creating an application deployment profile

• Deploying the application to the application server

For detailed information about these steps, see How to Deploy a Single SOA Composite in
Oracle JDeveloper.

Chapter 44
Creating and Running Cross Reference for 1M Functions

44-74

45
Working with Domain Value Maps

This chapter describes how to create and use domain value maps to map the terms used by
different domains to describe the same entity, allowing you to map values used by one domain
for specific fields to the values used by other domains for the same fields. This chapter also
describes the XPath functions used for domain value lookups.
This chapter includes the following sections:

• Introduction to Domain Value Maps

• Creating Domain Value Maps

• Editing a Domain Value Map

• Using Domain Value Map Functions

• Creating a Domain Value Map Use Case for a Hierarchical Lookup

• Creating a Domain Value Map Use Case For Multiple Values

Introduction to Domain Value Maps
When information is transmitted between different domains, each domain might use different
terminology or processing codes to describe the same entity. For example, one domain might
use complete city names in its messages (Boston), while another domain uses a code to
indicate the city (BO). Rather than requiring each domain to standardize their data to one set of
terminology, you can use domain value maps to map the terms used in one domain to the
terms used in other domains. Domain value maps operate on the actual data values in the
messages that are transmitted through an application at runtime.

While each domain value map typically defines the mapping for only one field or category, a
single SOA composite can require mappings for multiple categories. Thus, one SOA composite
might contain several domain value maps. For example, you might have one domain value
map that defines city name mapping, one that defines state name mapping, and one that
defines country name mapping.

A direct mapping of values between two or more domains is known as point-to-point mapping.
Table 45-1 shows a point-to-point mapping for cities between two domains:

Table 45-1 Point-to-Point Mapping

CityCode CityName

BELG_MN_STLouis BelgradeStLouis
BELG_NC BelgradeNorthCarolina
BO Boston
NP Northport
KN_USA KensingtonUSA
KN_CAN KensingtonCanada

45-1

Domain value map values are static. You specify the domain value map values at design time
using Oracle JDeveloper, and then at runtime the application performs a lookup for the values
in the domain value maps. For information about editing domain value maps at runtime with
Oracle SOA Composer, see Using Oracle SOA Composer with Domain Value Maps .

Note:

To dynamically integrate values between applications, you can use the cross
referencing feature of Oracle SOA Suite. For information about cross references, see
Working with Cross References .

Domain Value Map Features
Oracle SOA Suite domain value maps let you further refine the performance and results of the
domain value map lookups that are performed at runtime. For example, you can specify
qualifying information that provides additional information to assist with mapping. Domain value
maps also support one-to-many mappings.

Qualifier Domains
Qualifier domains contain information solely to clarify the mapping. A mapping might be
ambiguous unless this additional information is defined. For example, a domain value map that
defines a city name mapping could have multiple mappings from KN to Kensington because
Kensington is a city in both Canada and the USA. Therefore, this mapping requires a qualifier
(USA or Canada) to indicate which mapping to use. An example of this is shown in Table 45-2.

Table 45-2 Qualifier Support Example

Country (Qualifier) CityCode CityName

USA BO Boston
USA BELG_NC Belgrade
USA BELG_MN_Streams Belgrade
USA NP Northport
USA KN Kensington
Canada KN Kensington

A domain value map can contain multiple qualifier domains. For example, as shown in
Table 45-3, the mappings are also qualified with a state name.

Table 45-3 Multiple Qualifier Support Example

Country (Qualifier) State (Qualifier) CityCode CityName

USA Massachusetts BO Boston
USA North Carolina BELG Belgrade
USA Minnesota BELG Belgrade
USA Alabama NP Northport

Chapter 45
Introduction to Domain Value Maps

45-2

Table 45-3 (Cont.) Multiple Qualifier Support Example

Country (Qualifier) State (Qualifier) CityCode CityName

USA Kansas KN Kensington
Canada Prince Edward Island KN Kensington

Qualifiers are used only to qualify the mappings. Therefore, the qualifier values cannot be
looked up.

Qualifier Hierarchies
When there are multiple qualifier domains, you can specify a qualifier order to indicate how
they are used during runtime lookups. The order of a qualifier varies from highest to lowest
depending on the role of the qualifier in defining a more exact match. In Table 45-3, the state
qualifier is probably given a higher order than the country qualifier because a matching state
indicates a more precise match.

Domain value maps support hierarchical lookup. If you specify a qualifier value during a lookup
and no exact match is found, then the lookup mechanism tries to find a more generalized
match by setting the higher order qualifiers to empty quotes (""). It proceeds until a match is
found, or until a the lookup is exhausted and no match is found. Figure 45-1 describes the
steps of a hierarchical lookup performed for the following lookup (based on the values in
Table 45-3):

State=Arkansas, Country=Canada, CityCode=KN_USA

In this example, the State qualifier has a qualifier order of 1 and the Country qualifier has a
qualifier order of 2. As shown in Figure 45-1, the lookup mechanism sets the higher order
qualifier State to the exact lookup value Arkansas and uses Canada|"" for the lower order
qualifier Country.

Figure 45-1 Hierarchical Lookup Example

If no match is found, the lookup mechanism sets the higher order qualifier State to a value of
"" and sets the next higher qualifier Country to an exact value of Canada. If no match is found,
the lookup mechanism sets the value of the previous higher order qualifier Country to a value
of "". One matching row is found where CityCode is KN_USA and Kensington is returned as a
value.

Table 45-4 provides a summary of these steps.

Chapter 45
Introduction to Domain Value Maps

45-3

Table 45-4 Domain Value Map Lookup Result

State Country Short Value Lookup Result

Arkansas CANADA|" " KN_USA No Match
" " CANADA KN_USA No Match
" " " " KN_USA Kensington

One-to-Many Mappings
One value can be mapped to multiple values in a domain value map. For example, a domain
value map for payment terms can contain a mapping of payment terms to multiple values, such
as discount percentage, discount period, and net credit period, as shown in Table 45-5.

Table 45-5 One-to-Many Mapping Support

Payment Term Discount
Percentage

Discount Period Net Credit Period

GoldCustomerPaymentTerm 10 20 30
SilverCustomerPaymentTerm 5 20 30
RegularPaymentTerm 2 20 30

Creating Domain Value Maps
You can create one or more domain value maps in a SOA composite application in Oracle
JDeveloper, and then use the maps to look up the mapped values at runtime. Creating a
domain value map creates a file with a .dvm extension in the application file structure.

How to Create Domain Value Maps
Create and configure domain value maps using the Create Domain Value Map(DVM) File
dialog in Oracle JDeveloper. This dialog lets you define two domains, each with one value.
Upon completion, the Domain Value Map Editor appears so you can define additional domains
and corresponding values.

To create a domain value map:

1. In the Applications window, right-click the project in which you want to create a domain
value map and select New.

The New Gallery dialog appears.

2. Expand the SOA Tier node, and then select the Transformations category.

3. In the Items list, select Domain Value Map(DVM) and click OK.

The Create Domain Value Map(DVM) File dialog appears.

4. In the File Name field, enter a unique and descriptive name for the domain value map file.
The file name must have an extension of .dvm.

5. In the Description field, enter a description for the domain value map. This field is
optional.

Chapter 45
Creating Domain Value Maps

45-4

6. In the Domain Name field, enter a name for each domain. These names are the column
names for the domain value map, and each represents a fields in a different domain.

Note:

Domain names must be of the type NCName (non-colonized name), which is a
valid XML element name with no colons. Each domain name must be unique in a
domain value map. You can add more domains later.

7. In the Domain Value field, enter a value corresponding to each domain. For example,
enter BO for a CityCode domain and Boston for a CityName domain, as shown in
Figure 45-2.

Figure 45-2 Populated Create Domain Value Map File Dialog

8. Click OK.

The Domain Value Map Editor appears with the new domain value map displayed.

What Happens When You Create a Domain Value Map
A file with the extension .dvm is created in the project file structure and appears in the
Applications window, as shown in Figure 45-3.

Chapter 45
Creating Domain Value Maps

45-5

Figure 45-3 A Domain Value Map File in Applications Window

All .dvm files are based on the schema definition (XSD) file shown in the following example:

<?xml version="1.0" encoding="UTF-8" ?>
<!-- Copyright (c) 2006, Oracle. All rights reserved. -->
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 targetNamespace="http://xmlns.oracle.com/dvm"
 xmlns:tns="http://xmlns.oracle.com/dvm"
 elementFormDefault="qualified"
 attributeFormDefault="unqualified">

<xsd:element name="dvm">
 <xsd:annotation>
 <xsd:documentation>The Top Level Element
 </xsd:documentation>
 </xsd:annotation>
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="description" minOccurs="0" type="xsd:string">
 <xsd:annotation>
 <xsd:documentation>The DVM Description. This is optional
 </xsd:documentation>
 </xsd:annotation>
 </xsd:element>
 <xsd:element name="columns">
 <xsd:annotation>
 <xsd:documentation>This element holds DVM's column List.
 </xsd:documentation>
 </xsd:annotation>
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="column" minOccurs="2" maxOccurs="unbounded">
 <xsd:annotation>
 <xsd:documentation>This represents a DVM Column
 </xsd:documentation>
 </xsd:annotation>
 <xsd:complexType>
 <xsd:attribute name="name" use="required" type="xsd:string"/>
 <xsd:attribute name="qualifier" default="false" type="xsd:boolean"
 use="optional"/>
 <xsd:attribute name="order" use="optional" type="xsd:positiveInteger"/>

Chapter 45
Creating Domain Value Maps

45-6

 </xsd:complexType>
 </xsd:element>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 <xsd:element name="rows" minOccurs="0">
 <xsd:annotation>
 <xsd:documentation>This represents all the DVM Rows.
 </xsd:documentation>
 </xsd:annotation>
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="row" minOccurs="1" maxOccurs="unbounded">
 <xsd:annotation>
 <xsd:documentation>
 Each DVM row of values
 </xsd:documentation>
 </xsd:annotation>
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="cell" minOccurs="2" maxOccurs="unbounded"
 type="xsd:string">
 <xsd:annotation>
 <xsd:documentation>This is the value for this row and for
 each column in the same order as defined in Columns.
 </xsd:documentation>
 </xsd:annotation>
 </xsd:element>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 </xsd:sequence>
 <xsd:attribute name="name" use="required" type="xsd:string"/>
 </xsd:complexType>
 </xsd:element>
 <xsd:annotation>
 <xsd:documentation>This Schema is used to validate the DVM Document got for
 creation and
 update of a DVM.
 </xsd:documentation>
 </xsd:annotation>
</xsd:schema>

Editing a Domain Value Map
After you create the framework for a domain value map, you can add domains and
corresponding domain values to the map using the Domain Value Map Editor.

How to Add Domains to a Domain Value Map
You can define additional domains to map, which are represented as columns in the domain
value map. You can also specify whether each new domain contains values to be included in
the lookups at runtime or if it is only used to qualify the mapping. Note that domain (column)
names must be of the type NCName (non-colonized name), which is a valid XML element name
with no colons.

Chapter 45
Editing a Domain Value Map

45-7

To add a domain to a domain value map:

1. If the map file is not open in the Domain Value Map Editor, double-click the DVM file in the
Applications window.

2. In the Map Table, click Add and then select Add Domain.

The Create Domain dialog appears.

3. In the Name field, enter a column name.

4. In the Qualifier field, select True to set this column as a qualifier. Otherwise, select False.

Tip:

For more information about qualifier domains and qualifier order, see Qualifier
Domains and Qualifier Hierarchies.

5. In the Qualifier Order field, enter a number indicating the priority of the qualifier domain.

This field is enabled only if you selected True in the Qualifier field.

Figure 45-4 Domain Value Map - Create Domain Dialog

6. Click OK.

A new column appears in the Map Table.

How to Edit a Domain
Once you add a domain to a domain value map, you can change the name, change whether it
is a qualifier domain, and change the qualifier order.

To edit a domain

1. In the Domain Value Map Editor, select the name of the domain you want to modify.

2. Click Edit Domain/Values.

The Edit Domain dialog appears.

Chapter 45
Editing a Domain Value Map

45-8

Figure 45-5 Domain Value Map - Edit Domain Dialog

3. Change any of the fields on the dialog, and then click OK.

Note:

Domain names must be of the type NCName (non-colonized name), which is a
valid XML element name with no colons.

How to Add Domain Values to a Domain Value Map
Domain values are displayed in rows in the domain value map, with each row containing the
values to be mapped for each domain. You can add as many domain values as required to fully
define the mapping between domains.

To add domain values to a domain value map:

1. In the Domain Value Map Editor, click Add and then select Add Domain Values.

A new row appears beneath the existing rows in the Map Table.

2. Enter the values for each domain in the new row.

3. Repeat the above steps to create additional rows. When you are done making changes,
click Save All on the Oracle JDeveloper toolbar.

How to Edit Domain Values
Once you add domain values to a domain value map, you can modify the values if needed.

To modify domain values

1. In the Domain Value Map Editor, select the row containing the values you want to modify.

2. Click Edit Domain/Values.

The Edit Domain Values dialog appears.

Chapter 45
Editing a Domain Value Map

45-9

Figure 45-6 Domain Value Map - Edit Domain Values

3. Modify any of the fields on the dialog, and then click OK.

Using Domain Value Map Functions
After creating a domain value map, you can use the XPath functions of the domain value map
to look up appropriate values and populate the targets for the applications at runtime.

Understanding Domain Value Map Functions
The dvm:lookupValue and dvm:lookupValue1M XPath functions look up a domain value map
for a single value or multiple values at runtime.

dvm:lookupValue
The dvm:lookupValue function returns a string by looking up the value for the target column in
a domain value map, where the source column contains the given source value.

• The following code shows an example of dvm:lookupValue function syntax.

dvm:lookupValue(dvmMetadataURI as string, SourceColumnName as string,
 SourceValue as string, TargetColumnName as string, DefaultValue as string) as
 string

The following code provides an example of dvm:lookupValue function use.

dvm:lookupValue('cityMap.dvm','CityCodes','BO', 'CityNames',
'CouldNotBeFound')

• The following code shows another example of dvm:lookupValue function syntax:

dvm:lookupValue(dvmMetadataURI as string, SourceColumnName as string,
SourceValue as string, TargetColumnName as string, DefaultValue as string,
(QualifierSourceColumn as string, QualifierSourceValue as string)*) as string

The following code provides another example of dvm:lookupValue function use:

dvm:lookupValue ('cityMap.dvm','CityCodes','BO','CityNames',
 'CouldNotBeFound', 'State', 'Massachusetts')

Arguments

• dvmMetadataURI - The domain value map URI.

Chapter 45
Using Domain Value Map Functions

45-10

• SourceColumnName - The source column name.

• SourceValue - The source value (an XPath expression bound to the source document of
the XSLT transformation).

• TargetColumnName - The target column name.

• DefaultValue - If the value is not found, then the default value is returned.

• QualifierSourceColumn: The name of the qualifier column.

• QualifierSourceValue: The value of the qualifier.

dvm:lookupValue1M
The dvm:lookupValue1M function returns an XML document fragment containing values for
multiple target columns of a domain value map, where the value for the source column is equal
to the source value. The following example provides details:

dvm:lookupValue1M(dvmMetadataURI as string, SourceColumnName as string,
 SourceValue as string,(TargetColumnName as string)?)as nodeset

Arguments

• dvmMetadataURI - The domain value map URI.

• SourceColumnName - The source column name.

• SourceValue - The source value (an XPath expression bound to the source document of
the XSLT transformation).

• TargetColumnName - The name of the target columns. At least one column name should be
specified. The question mark symbol (?) indicates that you can specify multiple target
column names.

The following code shows an example of dvm:lookupValue1M function use.

dvm:lookupValue1M ('cityMap.dvm','CityCode','BO','CityName',
'CityNickName')

The result is shown in the following example:

<CityName>Boston</CityName>
<CityNickName>BeanTown</CityNickName>

How to Use Domain Value Map Functions in Transformations
The domain value map functions can be used for transformations with a BPEL process service
component or a Mediator service component. Transformations are performed by using the
XSLT Mapper, which appears when you create an XSL file to transform the data from one XML
schema to another.

For information about the XSLT Mapper, see Creating Transformations with the XSLT Map
Editor .

To use the lookupValue1M function in a transformation:

1. In the Applications window, double-click an XSL file to open the XSLT Mapper.

2. In the XSLT Mapper, expand the trees in the Source and Target panes.

3. In the Components window, click the down arrow, and then select Advanced.

Chapter 45
Using Domain Value Map Functions

45-11

4. Select DVM Functions, as shown in Figure 45-7.

Figure 45-7 Domain Value Map Functions in the Components Window

5. Drag and drop lookupValue1M onto the line that connects the source to the target.

A dvm:lookupValue1M icon appears on the connecting line.

6. Double-click the lookupValue1M icon.

The Edit Function – lookupValue1M dialog appears, as shown in Figure 45-8.

Figure 45-8 Edit Function – lookupValue1M Dialog

7. Specify values for the following fields in the Edit Function – lookupValue1M dialog:

a. In the dvmLocation field, enter the location URI of the domain value map file or click
Browse to the right of the dvmLocation field to select a domain value map file. You
can select an already deployed domain value map from the metadata service (MDS)

Chapter 45
Using Domain Value Map Functions

45-12

and also from the shared location in MDS. This can be done by selecting the Resource
Palette.

b. In the sourceColumnName field, enter the name of the domain value map column
that is associated with the source element value, or click Browse to select a column
name from the columns defined for the domain value map you previously selected.

c. In the sourceValue field, enter a value or press Ctrl-Space to use the XPath Building
Assistant. Press the up and down arrow keys to locate an object in the list, and press
Enter to select an item.

d. In the targetColumnName field, enter the name of the domain value map column that
is associated with the target element value, or click Browse to select the name from
the columns defined for the domain value map you previously selected.

e. Click Add to add another column as the target column and then enter the name of the
column.

A populated Edit Function - lookupValue1M dialog is shown in Figure 45-9.

Figure 45-9 Populated Edit Function – lookupValue1M Dialog

8. Click OK.

The XSLT Mapper appears with the lookupValue1M function icon.

9. From the File menu, select Save All.

For more information about selecting deployed domain value maps, see How to Deploy and
Use Shared Data Across Multiple SOA Composite Applications in Oracle JDeveloper .

Chapter 45
Using Domain Value Map Functions

45-13

How to Use Domain Value Map Functions in XPath Expressions
You can use the domain value map functions to create XPath expressions in the Expression
Builder dialog. You can access the Expression Builder dialog through the Filter Expressions or
the Assign Values functionality of an Oracle Mediator service component.

For information about the Assign Values functionality, see How to Assign Values.

To use the lookupValue function in the Expression Builder dialog:

1. In the Functions list, select DVM Functions.

2. Double-click the dvm:lookupValue function to add it to the expression field.

3. Specify the various arguments of the lookupValue function. For example:

dvm:lookupValue('citymap.dvm','CityCodes',$in.Customer/inp1:Customer/Address/Ci
ty,'CityNames','NotFound')

This expression, also shown in Figure 45-10, looks up a domain value map for the city
name equivalent of a city code. The value of the city code depends on the value specified
at runtime.

Figure 45-10 Domain Value Map Functions in the Expression Builder Dialog

What Happens at Runtime
At runtime, a BPEL process service component or a Mediator service component uses the
domain value map to look up appropriate values.

Chapter 45
Using Domain Value Map Functions

45-14

Creating a Domain Value Map Use Case for a Hierarchical
Lookup

This section provides a tutorial for using domain value maps in a SOA composite. This use
case demonstrates the hierarchical lookup feature of domain value maps. The hierarchical
lookup use case consists of the following steps:

1. Files are retrieved from a directory by an adapter service named ReadOrders.

2. The ReadOrders adapter service sends the file data to a Mediator named ProcessOrders.

3. The ProcessOrders Mediator then transforms the message to the structure required by the
adapter reference. During transformation, Mediator looks up the UnitsOfMeasure domain
value map for an equivalent value of the Common domain.

4. The ProcessOrders Mediator sends the message to an external reference named
WriteOrders.

5. The WriteOrders reference writes the message to a specified output directory.

To download the sample files mentioned in this section, see the Oracle SOA Suite samples
page.

How to Create the HierarchicalValue Use Case
This section provides the design-time tasks for creating, building, and deploying your SOA
composite application. These tasks must be performed in the order in which they are
presented.

Task 1: How to Create an Oracle JDeveloper Application and a Project

To create an Oracle JDeveloper application and a project:

1. In Oracle JDeveloper, click File and select New.

The New Gallery dialog appears.

2. In the New Gallery, expand the General node, and select the Applications category.

3. In the Items list, select SOA Application and click OK.

The Create SOA Application wizard appears.

4. In the Application Name field, enter Hierarchical and then click Next.

The Name your project page appears.

5. In the Project Name field, enter HierarchicalValue and click Next.

The Configure SOA settings page appears.

6. In the Composite Template list, select Empty Composite and then click Finish.

The Applications window of Oracle JDeveloper is populated with the new application and
the project, and the SOA Composite Editor contains a blank composite.

7. From the File menu, select Save All.

Task 2: How to Create a Domain Value Map
After creating an application and a project for the use case, create a domain value map.

Chapter 45
Creating a Domain Value Map Use Case for a Hierarchical Lookup

45-15

To create a domain value map:

1. In the Applications window, right-click the HierarchicalValue project and select New.

2. In the New Gallery dialog, expand the SOA Tier node, and then select the
Transformations category.

3. In the Items list, select Domain Value Map(DVM) and click OK.

The Create Domain Value Map(DVM) File dialog appears.

4. In the File Name field, enter UnitsOfMeasure.dvm.

5. In the Domain Name fields, enter Siebel and Common.

6. In the Domain Value field corresponding to the Siebel domain, enter Ea.

7. In the Domain Value field corresponding to the Common domain, enter Each.

8. Click OK.

The Domain Value Map Editor appears.

9. Click Add and then select Add Column.

The Create DVM Column dialog appears.

10. In the Name field, enter TradingPartner.

11. In the Qualifier list, select true.

12. In the QualifierOrder field, enter 1 and click OK.

13. Repeat Step 9 through Step 12 to create another qualifier named StandardCode with a
qualifier order value of 2.

14. Click Add and then select Add Domain Values.

Repeat this step to add two more rows.

15. Enter the information shown in Table 45-6 in the newly added rows of the domain value
map table.

Table 45-6 Information for Rows of Domain Value Map Table

Siebel Common TradingPartner StandardCode

EC Each OAG
E-RN Each A.C.Networks RN
EO Each ABC Inc RN

The Domain Value Map Editor appears, as shown in Figure 45-11.

Chapter 45
Creating a Domain Value Map Use Case for a Hierarchical Lookup

45-16

Figure 45-11 UnitsOfMeasure Domain Value Map

16. From the File menu, select Save All and close the Domain Value Map Editor.

Task 3: How to Create a File Adapter Service
After creating the domain value map, create a file adapter service named ReadOrders to read
the XML files from a directory.

Note:

Oracle Mediator may process the same file twice when run against Oracle Real
Application Clusters (Oracle RAC) planned outages. This is because a file adapter is
a non-XA compliant adapter. Therefore, when it participates in a global transaction, it
may not follow the XA interface specification of processing each file only once.

To create a file adapter service:

1. From the Components window, select SOA.

2. Select File Adapter and drag it to the Exposed Services swimlane.

3. If the Adapter Configuration wizard Welcome page appears, click Next.

The Service Name page appears.

4. In the Service Name field, enter ReadOrders and then click Next.

The Operation page appears.

5. In the Operation Type field, select Read File and then click Next.

The File Directories page appears.

6. In the Directory for Incoming Files (physical path) field, enter the directory from which
you want to read the files.

7. Click Next.

Chapter 45
Creating a Domain Value Map Use Case for a Hierarchical Lookup

45-17

The File Filtering page appears.

8. In the Include Files with Name Pattern field, enter *.xml and then click Next.

The File Polling page appears.

9. Change the Polling Frequency field value to 10 seconds and then click Next.

The Messages page appears.

10. Click Search.

The Type Chooser dialog appears.

11. Click Import Schema File.

The Import Schema File dialog appears.

12. Click Search and select the Order.xsd file in the Samples folder.

13. Click OK.

14. Expand the navigation tree to Type Explorer > Imported Schemas > Order.xsd.

15. Select listOfOrder and click OK.

16. Click Next.

The Finish page appears.

17. Click Finish.

18. From the File menu, click Save All.

Figure 45-12 shows the ReadOrders service in the SOA Composite Editor.

Figure 45-12 ReadOrders Service in the SOA Composite Editor

Task 4: How to Create ProcessOrders Mediator Component

To create a Mediator named ProcessOrders:

1. Drag and drop a Mediator icon from the Components window to the Components section
of the SOA Composite Editor.

The Create Mediator dialog appears.

2. In the Name field, enter ProcessOrders.

3. From the Template list, select Define Interface Later.

Chapter 45
Creating a Domain Value Map Use Case for a Hierarchical Lookup

45-18

4. Click OK.

A Mediator with name ProcessOrders is created.

5. In the SOA Composite Editor, connect the ReadOrders service to the ProcessOrders
Oracle Mediator, as shown in Figure 45-13.

This specifies the file adapter service to invoke the ProcessOrders Mediator while reading
a file from the input directory.

Figure 45-13 ReadOrders Service Connected to the ProcessOrders Mediator

6. From the File menu, select Save All.

Task 5: How to Create a File Adapter Reference

To create a file adapter reference:

1. From the Components window, select SOA.

2. Select File Adapter and drag it to the External References swimlane.

The Adapter Configuration wizard Welcome page appears.

3. Click Next.

The Service Name page appears.

4. In the Service Name field, enter WriteCommonOrder.

5. Click Next.

The Operation page appears.

6. In the Operation Type field, select Write File.

7. Click Next.

The File Configuration page appears.

8. In the Directory for Outgoing Files (physical path) field, enter the name of the directory
in which you want to write the files.

9. In the File Naming Convention field, enter common_order_%SEQ%.xml and click Next.

The Messages page appears.

10. Click Search.

The Type Chooser dialog appears.

Chapter 45
Creating a Domain Value Map Use Case for a Hierarchical Lookup

45-19

11. Navigate to Type Explorer > Project Schema Files > Order.xsd, and then select
listOfOrder.

12. Click OK.

13. Click Next.

The Finish page appears.

14. Click Finish.

Figure 45-14 shows the WriteCommonOrder reference in the SOA Composite Editor.

Figure 45-14 WriteCommonOrder Reference in the SOA Composite Editor

15. From the File menu, select Save All.

Task 6: How to Specify Routing Rules
You must specify the path that messages take from the ReadOrders adapter service to the
external reference.

To specify routing rules:

1. Connect the ProcessOrders Oracle Mediator to the WriteCommonOrder reference, as
shown in Figure 45-15.

Figure 45-15 ProcessOrders Mediator Connected to the WriteCommonOrder
Reference

Chapter 45
Creating a Domain Value Map Use Case for a Hierarchical Lookup

45-20

2. Double-click the ProcessOrders Oracle Mediator.

3. To the right of the Transform Using field, click the icon.

The Request Transformation Map dialog appears.

4. Select Create New Mapper File and click OK.

A listOfOrder_To_listOfOrder.xsl file appears in the XSLT Mapper.

5. Drag and drop the imp1:listOfOrder source element onto the imp1:listOfOrder target
element.

The Auto Map Preferences dialog appears.

6. From the During Auto Map options, deselect Match Elements Considering their
Ancestor Names.

7. Click OK.

The listOfOrder_To_listOfOrder.xsl file appears, as shown in Figure 45-16.

Figure 45-16 imp1:listOfOrder To imp1:listOfOrder Transformation

8. In the Components window, select Advanced.

9. Click DVM Functions.

10. Drag and drop lookupValue on the line connecting the unitsOfMeasure elements, as
shown in Figure 45-17.

Figure 45-17 Adding lookupValue Function to imp1:listOfOrder To
imp1:listOfOrder.xsl

Chapter 45
Creating a Domain Value Map Use Case for a Hierarchical Lookup

45-21

11. Double-click the lookupvalue icon.

The Edit Function-lookupValue dialog appears.

12. To the right of the dvmLocation field, click Search.

The SOA Resource Lookup dialog appears.

13. Select UnitsofMeasure.dvm and click OK.

14. To the right of the sourceColumnName field, click Search.

The Select DVM Column dialog appears.

15. Select Siebel and click OK.

16. In the sourceValue column, enter the following:

/imp1:listOfOrder/imp1:order/imp1:baseData/imp1:unitOfMeasure
17. To the right of the targetColumnName field, click Search.

The Select DVM Column dialog appears.

18. Select Common and click OK.

19. In the defaultValue field, enter "No_Value_Found".

20. Click Add.

A qualifierColumnName row is added.

21. In the qualifierColumnName field, enter "StandardCode".

22. Click Add.

A qualifierValue row is added.

23. In the qualifierValue field, enter the following:

/imp1:listOfOrder/imp1:order/imp1:baseData/imp1:standard.

24. Click Add to insert another qualifierColumnName row.

25. In the qualifierColumnName field, enter "TradingPartner".

26. Click Add to insert another qualifierValue row.

27. In the qualifierValue field, enter the following:

/imp1:listOfOrder/imp1:order/imp1:baseData/imp1:tp.

The Edit Function-lookupValue dialog appears, as shown in Figure 45-18.

Chapter 45
Creating a Domain Value Map Use Case for a Hierarchical Lookup

45-22

Figure 45-18 Edit Function-lookupValue Function Dialog: Hierarchical Lookup Use
Case

28. Click OK.

The transformation appears, as shown in Figure 45-19.

Figure 45-19 Complete imp1:listOfOrder To imp1:listOfOrder Transformation

29. From the File menu, select Save All and close the listOfOrder_To_listOfOrder.xsl file at
the top.

Task 7: How to Configure an Application Server Connection
An application server connection is required for deploying your SOA composite application. For
information on creating an application server connection, see Creating an Application Server
Connection.

Chapter 45
Creating a Domain Value Map Use Case for a Hierarchical Lookup

45-23

Task 8: How to Deploy the Composite Application
Deploying the HierarchicalValue composite application to an application server consists of the
following steps:

• Creating an application deployment profile.

• Deploying the application to the application server.

For detailed information about these steps, see How to Deploy a Single SOA Composite in
Oracle JDeveloper.

How to Run and Monitor the HierarchicalValue Application
After deploying the HierarchicalValue application, you can run it by copying the input XML file
sampleorder.xml to the input folder. This file is available in the samples folder. On successful
completion, a file named common_order_1.xml is written to the specified output directory.

For monitoring the running instance, you can use Oracle Enterprise Manager Fusion
Middleware Control at the following URL:

http://hostname:port/em

where hostname is the host on which you installed the Oracle SOA Suite infrastructure.

For detailed information about these steps, see How to Deploy a Single SOA Composite in
Oracle JDeveloper.

Creating a Domain Value Map Use Case For Multiple Values
This section provides a tutorial demonstrating how to create a domain value map with multiple
values to look up. This use case demonstrates the integration scenario for using a domain
value map lookup between two endpoints to look up multiple values. For example, if the
inbound value is State, then the outbound values are Shortname of State, Language, and
Capital. The multivalue lookup use case consists of the following steps:

1. Files are retrieved from a directory by an adapter service named readFile.

2. The readFile adapter service sends the file data to an Oracle Mediator named
LookupMultiplevaluesMediator.

3. The LookupMultiplevaluesMediator Oracle Mediator then transforms the message to the
structure required by the adapter reference. During transformation, Oracle Mediator looks
up the multivalue domain value map for an equivalent value of the Longname and
Shortname domains.

4. The LookupMultiplevaluesMediator Oracle Mediator sends the message to an external
reference named writeFile.

5. The writeFile reference writes the message to a specified output directory.

To download the sample files mentioned in this section, see Oracle SOA Suite samples page.

How to Create the Multivalue Use Case
This section provides the design-time tasks for creating, building, and deploying your SOA
composite application. Perform these tasks in the order in which they are presented.

Chapter 45
Creating a Domain Value Map Use Case For Multiple Values

45-24

Task 1: How to Create an Oracle JDeveloper Application and Project

To create an Oracle JDeveloper application and project:

1. In Oracle JDeveloper, click File and select New.

The New Gallery dialog appears.

2. In the New Gallery, expand the General node, and select the Applications category.

3. In the Items list, select SOA Application and click OK.

The Create SOA Application wizard appears.

4. In the Application Name field, enter Multivalue and then click Next.

The Name your project page appears.

5. In the Project Name field, enter Multivalue and click Next.

The Configure SOA settings page appears.

6. From the Composite Template list, select Empty Composite and then click Finish.

The Applications window of Oracle JDeveloper is populated with the new application and
project, and the SOA Composite Editor contains a blank composite.

7. From the File menu, select Save All.

Task 2: How to Create a Domain Value Map
After creating an application and a project for the use case, create the domain value map.

To create a domain value map:

1. In the Applications window, right-click the Multivalue project and select New.

2. In the New Gallery dialog, expand the SOA Tier node, and then select the
Transformations category.

3. In the Items list, select Domain Value Map(DVM) and click OK.

The Create Domain Value Map(DVM) File dialog appears.

4. In the File Name field, enter multivalue.dvm.

5. In the Domain Name fields, enter Longname, Shortname, Language, and Capital.

6. In the Domain Value field corresponding to the Longname domain, enter Karnataka.

7. In the Domain Value field corresponding to the Shortname domain, enter KA.

8. In the Domain Value field corresponding to the Language domain, enter Kannada.

9. In the Domain Value field corresponding to the Capital domain, enter Bangalore.

10. Click OK.

The Domain Value Map Editor appears.

11. Click Add and then select Add Row.

Repeat this step to add two more rows.

12. Enter the information shown in Table 45-7 in the newly added rows of the domain value
map table:

Chapter 45
Creating a Domain Value Map Use Case For Multiple Values

45-25

Table 45-7 Information for Rows of Domain Value Map Table

Longname Shortname Language Capital

Karnataka KA Kannada Bangalore
Tamilnadu TN Tamil Chennai
Andhrapradesh AP Telugu Hyderbad
Kerala KL Malayalam Trivandram

The Domain Value Map Editor appears, as shown in Figure 45-20.

Figure 45-20 Multivalue Domain Value Map

13. From the File menu, select Save All and close the Domain Value Map Editor.

Task 3: How to Create a File Adapter Service
After creating the domain value map, create a file adapter service named readFile to read the
XML files from a directory.

Note:

Mediator may process the same file twice when run against Oracle RAC planned
outages. This is because a file adapter is a non-XA compliant adapter. Therefore,
when it participates in a global transaction, it may not follow the XA interface
specification of processing each file only once.

To create a file adapter service:

1. From the Components window, select SOA.

2. Select File Adapter and drag it to the Exposed Services swimlane.

3. If the Adapter Configuration wizard Welcome page appears, click Next.

The Service Name page appears.

Chapter 45
Creating a Domain Value Map Use Case For Multiple Values

45-26

4. In the Service Name field, enter readFile and then click Next.

The Adapter Interface page appears.

5. Click Define from operation and schema (specified later) and then click Next.

The Operation page appears.

6. In the Operation Type field, select Read File and then click Next.

The File Directories page appears.

7. In the Directory for Incoming Files (physical path) field, enter the directory from which
you want to read the files.

8. Click Next.

The File Filtering page appears.

9. In the Include Files with Name Pattern field, enter *.xml and then click Next.

The File Polling page appears.

10. Change the Polling Frequency field value to 1 second and then click Next.

The Messages page appears.

11. Click Search.

The Type Chooser dialog appears.

12. Click Import Schema File.

The Import Schema File dialog appears.

13. Click Search and select the input.xsd file in the Samples folder.

14. Click OK.

15. Expand the navigation tree to Type Explorer > Imported Schemas > input.xsd.

16. Select Root-Element and click OK.

17. Click Next.

The Finish page appears.

18. Click Finish.

19. From the File menu, select Save All.

Figure 45-21 shows the readFile service in the SOA Composite Editor.

Chapter 45
Creating a Domain Value Map Use Case For Multiple Values

45-27

Figure 45-21 readFile Service in the SOA Composite Editor

Task 4: How to Create the LookupMultiplevaluesMediator Mediator

To create the LookupMultiplevaluesMediator Mediator:

1. Drag and drop a Mediator icon from the Components window to the Components section
of the SOA Composite Editor.

The Create Mediator dialog appears.

2. In the Name field, enter LookupMultiplevaluesMediator.

3. From the Template list, select Define Interface Later.

4. Click OK.

An Oracle Mediator with the name LookupMultiplevaluesMediator is created.

5. In the SOA Composite Editor, connect the readFile service to the
LookupMultiplevaluesMediator Oracle Mediator, as shown in Figure 45-22.

This specifies the file adapter service to invoke the LookupMultiplevaluesMediator
Oracle Mediator while reading a file from the input directory.

Figure 45-22 readFile Service Connected to the LookupMultiplevaluesMediator
Mediator

6. From the File menu, select Save All.

Chapter 45
Creating a Domain Value Map Use Case For Multiple Values

45-28

Task 5: How to Create a File Adapter Reference

To create a file adapter reference:

1. From the Components window, select SOA.

2. Select File Adapter and drag it to the External References swimlane.

The Adapter Configuration wizard Welcome page appears.

3. Click Next.

The Service Name page appears.

4. In the Service Name field, enter writeFile and then click Next.

The Adapter Interface page appears.

5. Click Define from operation and schema (specified later) and then click Next.

The Operation page appears.

6. Click Next.

The Operation page appears.

7. In the Operation Type field, select Write File.

8. Click Next.

The File Configuration page appears.

9. In the Directory for Outgoing Files (physical path) field, enter the name of the directory
where you want to write the files.

10. In the File Naming Convention field, enter multivalue_%SEQ%.xml and click Next.

The Messages page appears.

11. Click Search.

The Type Chooser dialog appears.

12. Navigate to Type Explorer > Project Schema Files > output.xsd, and then select Root-
Element.

13. Click OK.

14. Click Next.

The Finish page appears.

15. Click Finish.

Figure 45-23 shows the writeFile reference in the SOA Composite Editor.

Chapter 45
Creating a Domain Value Map Use Case For Multiple Values

45-29

Figure 45-23 writeFile Reference in SOA Composite Editor

16. From the File menu, select Save All.

Task 6: How to Specify Routing Rules
You must specify the path that messages take from the readFile adapter service to the external
reference.

To specify routing rules

1. Connect the LookupMultiplevaluesMediator Mediator to the writeFile reference, as
shown in Figure 45-24.

Figure 45-24 LookupMultiplevaluesMediator Mediator Connected to the writeFile
Reference

2. Double-click the LookupMultiplevaluesMediator Mediator.

3. To the right of the Transform Using field, click the icon.

The Request Transformation Map dialog appears.

4. Select Create New Mapper File and click OK.

An Input_To_Output_with_multiple_values_lookup.xsl file appears in the XSLT
Mapper.

5. Drag and drop the imp1:Root-Element source element to the ns2:Root-Element target
element.

The Auto Map Preferences dialog appears.

Chapter 45
Creating a Domain Value Map Use Case For Multiple Values

45-30

6. From the During Auto Map options list, deselect Match Elements Considering their
Ancestor Names.

7. Click OK.

The Input_To_Output_with_multiple_values_lookup.xsl file appears in the XSLT
Mapper, as shown in Figure 45-25.

Figure 45-25 imp1:Root-Element To ns2:Root-Element Transformation

8. In the Components window, select Advanced.

9. Click DVM Functions.

10. Drag and drop lookupValue1M in the center panel, as shown in Figure 45-26.

Figure 45-26 Adding lookupValue Function to imp1:Root-Element to ns2:Root-
Element

11. Double-click the lookupvalue1M icon.

The Edit Function-lookupValue1M dialog appears.

12. To the right of the dvmLocation field, click Search.

The SOA Resource Lookup dialog appears.

13. Select multivalue.dvm and click OK.

14. To the right of the sourceColumnName field, click Search.

The Select DVM Column dialog appears.

15. Select Longname and click OK.

16. In the sourceValue column, enter the following:

/imp1:Root-Element/imp1:Details/imp1:Longname.

17. To the right of the targetColumnName field, click Search.

The Select DVM Column dialog appears.

18. Select Shortname and click OK.

Chapter 45
Creating a Domain Value Map Use Case For Multiple Values

45-31

19. Click Add.

A targetColumnName row is added.

20. In the targetColumnName field, enter "Language".

21. Click Add to insert another targetColumnName row.

22. In the targetColumnName field, enter "Capital".

The Edit Function-lookupValue dialog appears, as shown in Figure 45-27.

Figure 45-27 Edit Function-lookupValue Function Dialog: Multiple Value Lookup
Use Case

23. Click OK.

The Transformation appears, as shown in Figure 45-28.

Figure 45-28 Complete imp1:Root-Element To ns2:Root-Element Transformation

24. From the File menu, select Save All and close the
Input_To_Output_with_multiple_values_lookup.xsl file.

Task 7: How to Configure an Application Server Connection
An application server connection is required for deploying your SOA composite application. For
information on creating an application server connection, see Creating an Application Server
Connection.

Chapter 45
Creating a Domain Value Map Use Case For Multiple Values

45-32

Task 8: How to Deploy the Composite Application
Deploying the Multivalue composite application to an application server consists of the
following steps:

• Creating an application deployment profile.

• Deploying the application to the application server.

For detailed information about these steps, see How to Deploy a Single SOA Composite in
Oracle JDeveloper.

How to Run and Monitor the Multivalue Application
After deploying the Multivalue application, you can run it by copying the input XML file
sampleinput.xml to the input folder. This file is available in the samples folder. On successful
completion, a file with name multivalue_1.xml is written to the specified output directory.

For monitoring the running instance, you can use Oracle Enterprise Manager Fusion
Middleware Control at the following URL:

http://hostname:port/em

where hostname is the host on which you installed the Oracle SOA Suite infrastructure.

In Oracle Enterprise Manager Fusion Middleware Control, you can click Multivalue to see the
project dashboard.

To view the detailed execution trail, click the instance ID in the instance column. The Flow
Trace page appears.

Preloading DVM Cache for Faster First-Use
When a DVM is first called into use, the DVM gets loaded into the cache from the MDS.
Subsequent lookups are faster, as the DVM is picked from the cache.

If you have a lot of records in your DVMs, you may want to preload the DVMs into the cache
during server startup, so that the DVMs are readily available for first use.

You can choose to preload the DVM cache at server startup using the MBean property
LoadDVMsAtStartup in the System MBean Browser of Oracle Enterprise Manager Fusion
Middleware Control. Setting LoadDVMsAtStartup to true loads all the DVMs into the cache at
server startup. The default value for LoadDVMsAtStartup is false.

How to Preload DVM Cache at Server Startup
To preload DVM cache at server startup:

1. Log in to Oracle Enterprise Manager Fusion Middleware Control.

2. From the SOA Infrastructure menu, select SOA Administration > Common Properties.

3. At the bottom of the SOA Infrastructure Common Properties page, click More SOA Infra
Advanced Configuration Properties.

4. Click LoadDVMsAtStartup.

5. In the Value field, select true.

Chapter 45
Preloading DVM Cache for Faster First-Use

45-33

6. Click Apply.

7. Click Return.

Chapter 45
Preloading DVM Cache for Faster First-Use

45-34

46
Using Oracle SOA Composer with Domain
Value Maps

This chapter describes how to modify domain value maps for an Oracle SOA Suite project at
runtime using Oracle SOA Composer. Domain value maps let you map values from one
vocabulary used in a given domain to another vocabulary used in a different domain.
In earlier releases, for editing a domain value map at runtime, you first had to make the
changes in Oracle JDeveloper, and then redeploy the domain value map in the application
server. Oracle SOA Composer now offers support for editing domain value maps at runtime.

This chapter includes the following sections:

• Introduction to Oracle SOA Composer

• Viewing Domain Value Maps at Runtime

• Editing Domain Value Maps at Runtime

• Exporting and Importing Customizations to Domain Value Maps at Runtime

• Publishing Changes at Runtime

• Detecting Conflicts

For more information about domain value maps, see Working with Domain Value Maps .

Introduction to Oracle SOA Composer
Oracle SOA Composer is an EAR file that is installed as part of the Oracle SOA Suite
installation. Oracle SOA Composer enables you to manage deployed domain value maps
during runtime without needing to redeploy the project that uses the domain value maps.
Domain value map metadata can be associated either with a SOA composite application, or it
can be shared across different composite applications. Figure 46-1 shows how Oracle SOA
Composer lets you access a domain value map from the Metadata Service (MDS) repository.

Figure 46-1 Oracle SOA Composer High-Level Deployment Topology

46-1

How to Sign In to Oracle SOA Composer
To sign in to Oracle SOA Composer:

1. Enter the following URL in your web browser:

http://hostname:port/soa/composer

The Oracle SOA Composer Sign In page is displayed.

Figure 46-2 Oracle SOA Composer Sign In Page

2. Enter your credentials in the User Name and Password fields, then click Sign In.

After you sign in to Oracle SOA Composer, the Oracle SOA Composer home page is
displayed.

Chapter 46
Introduction to Oracle SOA Composer

46-2

Figure 46-3 Oracle SOA Composer Home Page

You must have the SOADesigner application role to access Oracle SOA Composer metadata.
By default, all users with Oracle Enterprise Manager Fusion Middleware Control administrator
privileges have this role. If you log in to Oracle SOA Composer without this role, you see the
following message:

Currently logged in user is not authorized to modify SOA metadata.

For information about adding the SOADesigner application role to users without administrator
privileges, see Administering Oracle SOA Suite and Oracle Business Process Management
Suite.

Viewing Domain Value Maps at Runtime
You can view domain value maps at runtime. Perform the following steps to open and view a
domain value map.

How To View Domain Value Maps at Runtime
To view domain value maps at runtime:

1. Select Types View in the Applications window panel on the left.

2. Expand Domain Value Maps folder by clicking the right arrow icon before it.

3. Select the domain value map file (.dvm) that you want to view or edit.

4. Click the Open icon to open the domain value map.

5. From the Open menu, select Open DVM. The DVM details appear in view mode.

Figure 46-4 shows a sample domain value map in SOA Composer.

Chapter 46
Viewing Domain Value Maps at Runtime

46-3

Figure 46-4 Domain Value Map in SOA Composer

Note:

To get a direct link to the selected domain value map, click Bookmark.

Editing Domain Value Maps at Runtime
You can edit domain value maps while the applications using the domain value map are
running.

Note:

When you update a DVM using SOA Composer, the DVM cache also gets updated
with the updated DVM.

How to Edit Domain Value Maps at Runtime
By default, domain value maps open in view mode. Once you change to edit mode, you can
modify row information. When you finish making changes, be sure to save and commit them as
described in Publishing Changes at Runtime.

Chapter 46
Editing Domain Value Maps at Runtime

46-4

Changing to Edit Mode

To change to edit mode:

1. Open the domain value map for viewing, as described in How To View Domain Value Maps
at Runtime.

2. Click Create Session in the top right section of the SOA Composer window. If you have a
previously active session, you must click Edit Session.

The domain value map opens in edit mode.

Adding Rows

To add rows to the current domain value map:

1. Click Add Domain Values.

2. In the dialog, enter values and click OK.

The entered values are added to the domain value map.

3. Click the Save icon.

Editing Rows

To edit rows in the current domain value map:

1. Select the row to edit.

2. Click Edit Domain Values.

3. In the dialog, edit the values as required and click OK.

4. Click the Save icon.

Deleting Rows

To delete rows from the current domain value map:

1. Select the rows to delete.

2. Click Delete Domain Values.

3. Click the Save icon.

Exporting and Importing Customizations to Domain Value Maps
at Runtime

At runtime, you can use SOA Composer to export customizations to an XML file, and import
the changes into another SOA composite that is the same version as the source SOA
composite. The changes are reflected immediately, with no need to restart the composite.
Customizations in a SOA composite can be exported and imported for domain value maps,
business rules, and worklists.

Chapter 46
Exporting and Importing Customizations to Domain Value Maps at Runtime

46-5

How to Export Customizations to a Domain Value Map at Runtime
To export customizations made to a domain value map at runtime:

1. In SOA Composer, go to the domain value map that you want to export. See How To View
Domain Value Maps at Runtime.

2. If you want to update the domain value map, click Create Session and make
customizations to the domain value map.

3. Click the Save icon.

4. Click Publish and optionally enter a description in the Publish Session dialog.

5. Click Export/Import and select Export SOA Changes.

6. In the Export SOA Changes dialog, click Export to export the customizations that you
made to an .xml file.

7. When the export operation completes, click Download.

8. Save the downloaded .xml file to your local computer to later import it into another SOA
composite to apply the customizations. See How to Import Customizations to a Domain
Value Map at Runtime.

Note:

The target SOA composite must the same version as the source SOA composite.

How to Import Customizations to a Domain Value Map at Runtime
To import customizations to a domain value map at runtime:

1. In SOA Composer, go to the domain value map that you want to customize. See How To
View Domain Value Maps at Runtime.

2. Click Export/Import and select Import SOA Changes.

Chapter 46
Exporting and Importing Customizations to Domain Value Maps at Runtime

46-6

3. In the Import SOA Changes dialog, browse to the .xml file on your local computer saved
from a prior export of a domain value map customization in a SOA composite that is the
same version as the current SOA composite.

4. Click Import.

The customization is imported and reflected immediately, with no need to restart the
composite.

Publishing Changes at Runtime
Every time a domain value map is opened in an edit session, a sandbox is created per domain
value map, per user. If you save your changes, then the changes are saved in your sandbox.

You must publish the changes you make to have them picked up by the runtime and be saved
permanently to the MDS repository. In a session, you can also save your changes without
publishing them. In such a case, the domain value map remains in the saved state. You can
reopen the domain value map and publish the changes later.

How to Publish Changes at Runtime
To publish changes at runtime:

1. Click Publish in the top right section of SOA Composer. A confirmation dialog appears.

2. Enter an optional description for the changes made in the session. Click OK.

How to Discard Changes at Runtime
You can also choose to discard any changes made to the DVM in the session.

To discard changes at runtime:

1. Click Discard in the top right section of SOA Composer. A confirmation dialog appears.

2. Click OK to discard changes made in the session. This includes any changes that you
might have saved to the sandbox.

Chapter 46
Publishing Changes at Runtime

46-7

Detecting Conflicts
Oracle SOA Composer detects conflicts that can occur among concurrent users. If you open a
domain value map that is being edited by another user, then you see a dialog asking you to
confirm whether you want to go ahead with the edit.

If you still want to edit the domain value map, you can click Yes and make the modifications.

If the other user makes changes to the domain value map and commits the changes, you
receive a notification message while trying to commit your changes.

If you click Yes and commit your changes, then the changes made by the other user are
overwritten by your changes.

Chapter 46
Detecting Conflicts

46-8

Part VIII
Completing Your Application

This part describes how to complete design of your application.

This part contains the following chapters:

• Enabling Security with Policies and Message Encryption

• Deploying SOA Composite Applications

• Using the Development Maven Plug-In

• Debugging and Auditing SOA Composite Applications

• Automating Testing of SOA Composite Applications

47
Enabling Security with Policies and Message
Encryption

This chapter describes how to attach policies to binding components and service components
during design-time in SOA composite applications and encrypt and decrypt specific fields of
messages. Policies apply security to the delivery of messages. This chapter also describes
how to override policy configuration property values.
This chapter includes the following sections:

• Introduction to Policies

• Attaching Policies to Binding Components and Service Components

• Encrypting and Decrypting Specific Fields of Messages

Introduction to Policies
Oracle Fusion Middleware uses a policy-based model to manage and secure Web services
across an organization. Policies apply security to the delivery of messages. Policies can be
managed by both developers in a design-time environment and system administrators in a
runtime environment.

Policies are comprised of one or more assertions. A policy assertion is the smallest unit of a
policy that performs a specific action. Policy assertions are executed on the request message
and the response message, and the same set of assertions is executed on both types of
messages. The assertions are executed in the order in which they appear in the policy.

Table 47-1 describes the supported policy categories.

Table 47-1 Supported Policy Categories

Category Description

Message Transmission
Optimization Mechanism
(MTOM)

Ensures that attachments are in MTOM format. This format enables binary
data to be sent to and from web services. This reduces the transmission size
on the wire.

Reliability Supports the WS-Reliable Messaging protocol. This guarantees the end-to-
end delivery of messages.

Addressing Verifies that simple object access protocol (SOAP) messages include WS-
Addressing headers in conformance with the WS-Addressing specification.
Transport-level data is included in the XML message rather than relying on
the network-level transport to convey this information.

Security Implements the WS-Security 1.0 and 1.1 standards. They enforce
authentication and authorization of users. identity propagation, and message
protection (message integrity and message confidentiality).

Management Logs request, response, and fault messages to a message log. Management
policies can also include custom policies.

Within each category there are one or more policy types that you can attach. For example, if
you select the reliability category, the following types are available for selection:

47-1

• oracle/no_reliable_messaging_policy

Supports the disabling of reliable messaging configured at a higher scope

• oracle/no_wsrm_policy

Supports the disabling of a globally attached Web Services Reliable Messaging policy

• oracle/reliable_messaging_policy

Supports the enabling of Web services reliable messaging

• oracle/wsrm10_policy

Supports version 1.0 of the Web Services Reliable Messaging protocol

• oracle/wsrm11_policy

Supports version 1.1 of the Web Services Reliable Messaging protocol

For more information about available policies, details about which ones to use in your
environment, and global policies, see Securing Web Services and Managing Policies with
Oracle Web Services Manager.

Attaching Policies to Binding Components and Service
Components

You can attach or detach policies to and from service binding components, service
components, and reference binding components in a SOA composite application. Use Oracle
JDeveloper to attach policies for testing security in a design-time environment. When your
application is ready for deployment to a production environment, you can attach or detach
runtime policies in Oracle Enterprise Manager Fusion Middleware Control.

For more information about runtime management of policies, see Administering Oracle SOA
Suite and Oracle Business Process Management Suite.

How to Attach Policies to Binding Components and Service Components
To attach policies to binding components and service components:

1. In the SOA Composite Editor, right-click a service binding component or reference binding
component.

2. Select Configure SOA WS Policies.

Depending upon the interface definition of your SOA composite application, you may be
prompted with an additional menu of options.

• If the selected service or reference is interfacing with a synchronous BPEL process or
Oracle Mediator service component, a single policy is used for both request and
response messages. The Configure SOA WS Policies dialog immediately appears. Go
to Step 4.

• If the service or reference is interfacing with an asynchronous BPEL process or Oracle
Mediator service component, the policies must be configured separately for request
and response messages. The policy at the callback is used for the response sent from
service to client. An additional menu is displayed. Go to Step 3.

3. Select the type of binding to use:

• For Request:

Chapter 47
Attaching Policies to Binding Components and Service Components

47-2

Select the request binding for the service component with which to bind. You can only
select a single request binding. This action enables communication between the
binding component and the service component.

When request binding is configured for a service in the Exposed Services swimlane,
the service acts as the server. When request binding is configured for a reference in
the External References swimlane, the reference acts as the client.

• For Callback: (only for interactions with asynchronous processes)

Select the callback binding for the service component with which to bind. This action
enables message communication between the binding component and the service
component. You can only select a single callback binding.

When callback binding is configured for a service in the Exposed Services swimlane,
the service acts as the client. When callback binding is configured for a reference in
the External References swimlane, the reference acts as the server.

The Configure SOA WS Policies dialog shown in Figure 47-1 appears. For this example,
the For Request option was selected for a service binding component. The same types of
policy categories are also available if you select For Callback.

Figure 47-1 Configure SOA WS Policies Dialog

4. Click the Add icon next to the type of policy to attach:

• MTOM

• Reliability

• Addressing

Chapter 47
Attaching Policies to Binding Components and Service Components

47-3

• Security

• Management

For this example, Security is selected. The dialog shown in Figure 47-2 is displayed.

Figure 47-2 Security Policies

5. Click the icon to the right of the policy name to display a description of policy capabilities.

6. Select the type of policy to attach.

7. Click OK.

You are returned to the Configure SOA WS Policies dialog shown in Figure 47-3. The
attached security policy displays in the Security section.

Chapter 47
Attaching Policies to Binding Components and Service Components

47-4

Figure 47-3 Attached Security Policy

8. If necessary, add additional policies.

You can temporarily disable a policy by clicking the Disable selected policies icon.
Figure 47-4 provides details. This action does not detach the policy.

Figure 47-4 Disable Selected Policies Icon

9. To enable the policy again, click the Enable selected policies icon to the left.

10. To detach a policy, click the Delete icon.

11. When complete, click OK in the Configure SOA WS Policies dialog.

You are returned to the SOA Composite Editor.

12. Place your cursor over the icon on the service binding component to display details about
the attached policy. Figure 47-5 provides details.

Figure 47-5 Policy Description Icon

Chapter 47
Attaching Policies to Binding Components and Service Components

47-5

To attach a policy to a service component:
1. Right-click a service component.

2. Select Configure SOA WS Policies.

The Configure SOA WS Policies dialog shown in Figure 47-6 appears.

Figure 47-6 Configure SOA WS Policies Dialog

3. Click the Add icon next to the type of policy to attach.

• Security

• Management

The dialog for your selection appears.

4. Select the type of policy to attach.

5. Click OK.

6. If necessary, add additional policies.

7. When complete, click OK in the Configure SOA WS Policies dialog.

For information about attaching policies during runtime in Oracle Enterprise Manager Fusion
Middleware Control, see Administering Oracle SOA Suite and Oracle Business Process
Management Suite.

How to Override Policy Configuration Property Values
Your environment may include multiple clients or servers with the same policies. However,
each client or server may have their own specific policy requirements. You can override the
policy property values based on your runtime requirements.

Overriding Client Configuration Property Values
You can override the default values of client policy configuration properties on a per client basis
without creating new policies for each client. In this way, you can override client policies that

Chapter 47
Attaching Policies to Binding Components and Service Components

47-6

define default configuration values and customize those values based on your runtime
requirements.

1. Right-click one of the following binding components:

• A service binding component in the Exposed Services swimlane, and select For
Callback.

• A reference binding component in the External References swimlane, and select For
Request.

2. Go to the Security and Management sections. These instructions assume you previously
attached policies in these sections.

The Edit icon is enabled for both sections. Figure 47-7 provides details.

Figure 47-7 Client Policy Selection

3. Click the Edit icon.

4. In the Override Value column, enter a value to override the default value shown in the
Value column. Figure 47-8 provides details.

Figure 47-8 Client Policy Override Value

5. Click OK to exit the Config Override Properties dialog.

6. Click OK to exit the Configure SOA WS Policies dialog.

For more information about overriding policy settings, see Securing Web Services and
Managing Policies with Oracle Web Services Manager.

Chapter 47
Attaching Policies to Binding Components and Service Components

47-7

Overriding Server Configuration Property Values
You can override the default values of server policy configuration properties on a per server
basis without creating new policies for each server. In this way, you can override server policies
that define default configuration values and customize those values based on your runtime
requirements.

To override server configuration property values:

1. Right-click one of the following binding components:

• A service binding component in the Exposed Services swimlane, and select For
Request.

• A reference binding component in the External References swimlane, and select For
Callback.

2. Go to the Security or Management section. These instructions assume you previously
attached policies in these sections.

The Edit icon is not enabled by default for both sections. You must explicitly select a policy
to enable this icon. This is because you can override fewer property values for the server.
Figure 47-9 provides details.

Figure 47-9 Server Policy Selection

3. Select an attached policy that permits you to override its value, and click the Edit icon.

4. In the Override Value column, enter a value to override the default value shown in the
Value column. Figure 47-10 provides details. If the policy store is unavailable, the words no
property store found in the store display in red in the Value column.

Figure 47-10 Server Policy Override Value

Chapter 47
Attaching Policies to Binding Components and Service Components

47-8

5. Click OK to exit the Config Override Properties dialog.

6. Click OK to exit the Configure SOA WS Policies dialog.

For more information about overriding policy settings, see Securing Web Services and
Managing Policies with Oracle Web Services Manager.

Encrypting and Decrypting Specific Fields of Messages
You can encrypt and decrypt fields of a message to protect sensitive data (known as personally
identifiable information (PII)) flowing in web services and JCA adapters in Oracle SOA Suite
and Oracle Service Bus. This feature provides for the obfuscation of certain fields (for example,
SSNs) to prevent this data from appearing in administration consoles in clear text.

Figure 47-11 shows an incoming message being encrypted when entering the SOA composite
application in a service binding component and an outgoing message being decrypted when
exiting the SOA composite application in a reference binding component. Messages outside
the composite can be protected with other message protection policies (WS-Security/SSL).

Figure 47-11 Message Encryption and Decryption in a SOA Composite Application

The following code shows an example of an unencrypted message. The PII fields are name and
driversLicense.

<person>
 <name>John</name>
 <driversLicense>B1234</driversLicense>
 <ssn>123-456-789</ssn>
</person>

The following code shows an example of the encrypted message with the name and
driversLicense fields in encrypted format.

<person>
 <name>John</name>
 <driversLicense>encrypted:fdslj[lmsfwer09fsn;keyname=pii-csf-key</driversLicense>
 <ssn>encrypted:gdf45md%mfsd103k;keyname=pii-csf-key</ssn>
</person>

The encryption format is as follows:

encrypted:<CIPHER_TEXT>;keyname:<CSF_KEY_NAME>

Chapter 47
Encrypting and Decrypting Specific Fields of Messages

47-9

Note:

If both a PII policy and authorization policy are attached to a SOA composite
application, the authorization policy is executed before the PII policy. This is because
the PII policy may encrypt the field used for authorization.

If the authorization policy is attached to a component and it requires an already-
encrypted field, authorization fails.

How to Encrypt and Decrypt Specific Fields of Messages

Note:

• You must decrypt PIIs when an encrypted message leaves the composite. If you
attach a PII policy to a service binding component and do not attach a PII policy
to a reference binding component, PIIs in the outbound message are not
decrypted. This is not a recommended practice, and you receive a runtime error.

• PIIs encrypted in one SOA composite application cannot be decrypted in another
SOA composite application.

To encrypt and decrypt specific fields of messages:

1. Right-click a service binding component, and select Protect Sensitive Data > Encrypt
Request Data.

The PII Configuration dialog is displayed, as shown in Figure 47-12.

You must now perform the initial encryption on the incoming message.

Figure 47-12 PII Configuration Dialog for Encryption

2. Click the Edit icon to identify the elements in the schema to encrypt.

The Input tab of the Select fields to encrypt dialog is displayed.

3. Click the Add icon to create an XPath expression that identifies the fields of the request
message to encrypt (for example, a user's name, credit card number, or social security
number).

Chapter 47
Encrypting and Decrypting Specific Fields of Messages

47-10

4. Click the CSF tab.

5. Select the credential store framework (CSF) key to use. The credential store is used for the
secure storage of credential keys.

After encryption is complete, the message proceeds through the service components of
the SOA composite application.

When the message reaches a reference binding component and is ready to exit the SOA
composite application, you must decrypt the encrypted message.

6. Right-click the reference binding component, and select Decrypt Sensitive Data.
Figure 47-13 provides details.

Figure 47-13 PII Configuration Dialog for Decryption

7. Click the Edit icon.

The Input tab of the Select fields to decrypt dialog is displayed. For asynchronous
processes, there are two steps: one for the input message and one for the output
message.

8. Click the Add icon to invoke the Expression Builder dialog for creating an XPath
expression that identifies the fields to decrypt (for example, a credit card number or driver's
license field).

9. Click OK when complete.

After configuring composites with oracle/pii_security_policy, you must add keys and user
credentials to the credential store.

10. Use the createCred WLST command to create entries in the oracle.wsm.security
credential map for any csf-key user credentials.

connect("weblogic","password","t3://myAdminServer.example.com:7001")

wls:/DefaultDomain/serverConfig> createCred(map="oracle.wsm.security",
key="pii-csf-key", user="weblogic", password="password", desc="Key for
pii_security_policy")

If you do not perform this task, the following error occurs:

oracle.wsm.security.SecurityException: WSM-00016 : The
username/password credentials or certificates pii-csf-key are missing.

Chapter 47
Encrypting and Decrypting Specific Fields of Messages

47-11

48
Deploying SOA Composite Applications

This chapter describes how to deploy SOA composite applications. You can deploy single
composites, multiple composites, and composites using shared data such as WSDLs, XSDs,
and other file types with Oracle JDeveloper and the ant scripting tool, and create configuration
plans for moving SOA composite applications to and from different environments.

This chapter includes the following sections:

• Introduction to Deployment

• Deployment Prerequisites

• Understanding the Packaging Impact

• Anatomy of a Composite

• Preparing the Target Environment

• Customizing Your Application for the Target Environment Before Deployment

• Deploying SOA Composite Applications or Projects in Oracle JDeveloper

• Deploying and Managing SOA Composite Applications with the WLST Utility

• Deploying and Managing SOA Composite Applications with ant Scripts

• Deploying SOA Composite Applications from Oracle Enterprise Manager Fusion
Middleware Control

• Deploying SOA Composite Applications with No Servers Running

• Importing XSLT Customizations into a Deployed SOA Composite Application

• Postdeployment Configuration

• Testing and Troubleshooting

• Patching Running Instances of a SOA Composite

See Administering Oracle SOA Suite and Oracle Business Process Management Suite for
instructions about deploying SOA composite applications from Oracle Enterprise Manager
Fusion Middleware Control and WLST Command Reference for SOA Suite for instructions
about deploying SOA composite applications with the WLST utility.

Introduction to Deployment
This chapter describes the following deployment life cycle topics:

• Deployment prerequisites

• Packaging details

• Anatomy of a composite

• Target environment preparation

• Target environment configuration tasks

• Composite deployment

48-1

• Postdeployment configuration tasks

• Testing and troubleshooting composite applications

For more information about the deployment life cycle, see Administering Oracle Fusion
Middleware.

Deployment Prerequisites
This section describes the basic prerequisites required for creating and deploying a SOA
composite application.

Creating the Oracle SOA Suite Schema
Oracle SOA Suite components require schemas that must be installed in the Oracle or
Microsoft SQL Server database. You create and load these schemas in your database with the
Repository Creation Utility (RCU). For information about installing and configuring your
schemas, see Installing and Configuring Oracle SOA Suite and Business Process
Management and Creating Schemas with the Repository Creation Utility.

If you use the Oracle SOA Suite Quick Start installation in a development environment, the
schema is automatically created in the Java database for you. For more information, see
Installing SOA Suite and Business Process Management Suite Quick Start for Developers.

Creating a SOA Domain
After installation, you use the Oracle Fusion Middleware Configuration Wizard to create and
configure a new Oracle WebLogic Server domain, and choose products such as Oracle SOA
Suite to configure in that domain. This new domain contains the administration server and
other managed servers, depending on the products you choose to configure. For more
information, see Installing and Configuring Oracle SOA Suite and Business Process
Management.

If you install the Oracle SOA Suite Quick Start, you can configure the Integrated WebLogic
Server's default domain in Oracle JDeveloper. For information, see Installing SOA Suite and
Business Process Management Suite Quick Start for Developers.

Configuring a SOA Cluster
You can deploy a SOA composite application into a clustered environment. For more
information on creating and configuring a clustered environment, see High Availability Guide.

Understanding the Packaging Impact
You can separately package all required artifact files within the project of a SOA composite
application into a SOA archive (SAR) JAR file though use of the following tools:

• Oracle JDeveloper

During deployment on the Deployment Action page, you select the Generate SAR File
option. For more information, see Deploying the Profile.

• ant scripts

Use the ant-sca-package script to package your artifacts. For more information, see How
to Use ant to Package a SOA Composite Application into a Composite SAR File.

Chapter 48
Deployment Prerequisites

48-2

• WLST commands

Use the sca_package script to package your artifacts. For more information, see WLST
Command Reference for SOA Suite.

• Maven plug-in

Use the Maven plug-in to compile, package, deploy, test, and undeploy a SOA composite
application in a Maven environment. For more information, see Using the Oracle SOA
Suite Development Maven Plug-In.

A SAR file is a special JAR file that requires a prefix of sca_ (for example,
sca_HelloWorld_rev1.0.jar).

In addition, when you deploy a SOA composite application with the Deploy to Application
Server option on the Deployment Action page in Oracle JDeveloper, all required artifact files
within a project are automatically packaged into one of the following files:

• A self-contained JAR file (for single SOA composite applications)

For more information about self-contained composites, see How to Deploy a Single SOA
Composite in Oracle JDeveloper and How to Deploy Multiple SOA Composite Applications
in Oracle JDeveloper.

• A ZIP file of multiple SOA composite applications that share metadata with one another

You can deploy and use shared data across SOA composite applications. Shared data is
deployed to the SOA Infrastructure on the application server as an Oracle Metadata
Services (MDS) Repository archive JAR file. The archive file contains all shared resources.
For more information, see How to Deploy and Use Shared Data Across Multiple SOA
Composite Applications in Oracle JDeveloper .

Anatomy of a Composite
When you deploy a SOA composite application in Oracle JDeveloper, the composite is
packaged in a JAR file (for a single composite application) or a ZIP file (for multiple SOA
composite applications). These files can include the following artifacts:

• Binding components and service components.

• References to Oracle B2B agreements, Oracle Web Service Manager (OWSM) policies,
and human workflow task flows.

• Shared data such as WSDL and XSD files. All shared data is deployed to an existing SOA
Infrastructure partition on the server. This data is deployed under the /apps namespace.
When you refer to this artifact in Oracle JDeveloper using a SOA-MDS connection, the
URL is prefixed with oramds.

Preparing the Target Environment
The target environment is the SOA Infrastructure environment to which you want to deploy
your SOA composite application. This is typically a development, test, or production
environment. Depending upon the components, identity service provider, and security policies
you are using in your composite application, additional configuration steps may be required as
you move your application from one target environment to another. This section describes
these tasks.

Chapter 48
Anatomy of a Composite

48-3

How to Create Data Sources and Queues
A Java Database Connectivity (JDBC) data source is an object bound to the Java Naming and
Directory Interface (JNDI) tree that includes a pool of JDBC connections. Applications can look
up a data source in the JNDI tree and then reserve a database connection from the data
source. You create queues in which to enqueue outgoing messages or dequeue incoming
messages. The Oracle JCA adapters listed in Table 48-1 require JDBC data sources and
queues to be configured before deployment.

Table 48-1 Oracle JCA Adapter Tasks

Adapter Configuration Task See Section...

Database adapter JDBC data source “Deployment" of Understanding Technology Adapters

AQ adapter JDBC data source “Configuring the Data Sources in the Oracle WebLogic
Remote Console" of Understanding Technology
Adapters

JMS adapter Queue “Using the Adapter Configuration Wizard to Configure
Oracle JMS Adapter" of Understanding Technology
Adapters

Script for Creation of JMS Resource and Redeployment of JMS Adapter
The following example provides a script for creating the JMS resource and redeploying the
JMS adapter:

Note:

This script is for demonstration purposes. You may need to modify this script based
on your environment.

lookup the JMSModule
 jmsSOASystemResource = lookup("SOAJMSModule","JMSSystemResource")

 jmsResource = jmsSOASystemResource.getJMSResource()

 cfbean = jmsResource.lookupConnectionFactory('DemoSupplierTopicCF')
 if cfbean is None:
 print "Creating DemoSupplierTopicCF connection factory"
 demoConnectionFactory =
 jmsResource.createConnectionFactory('DemoSupplierTopicCF')
 demoConnectionFactory.setJNDIName('jms/DemoSupplierTopicCF')
 demoConnectionFactory.setSubDeploymentName('SOASubDeployment')

 topicbean = jmsResource.lookupTopic('DemoSupplierTopic')
 if topicbean is None:
 print "Creating DemoSupplierTopic jms topic"
 demoJMSTopic = jmsResource.createTopic("DemoSupplierTopic")
 demoJMSTopic.setJNDIName('jms/DemoSupplierTopic')
 demoJMSTopic.setSubDeploymentName('SOASubDeployment')

try:
 save()

Chapter 48
Preparing the Target Environment

48-4

 # activate the changes
 activate(block="true")
 print "jms topic and factory for SOA Fusion Order Demo successfully created"
except:
 print "Error while trying to save and/or activate!!!"
 dumpStack()

print "Creating jms adapter connection factory information"
try:
 redeploy('JmsAdapter', '@deployment.plan@', upload='true', stageMode='stage')

except:
 print "Error while modifying jms adapter connection factory"

For information about JMS queues and topics and connection factories, see Section
"Configuring Basic JMS System Resources" of Administering JMS Resources for Oracle
WebLogic Server.

Script for Creation of the Database Resource and Redeployment of the Database
Adapter

The following example provides a script for creating the database resource and redeploying
the database adapter.

Note:

This script is for demonstration purposes. You may need to modify this script based
on your environment.

import os
connect(userName,passWord,'t3://'+wlsHost+':'+adminServerListenPort)
edit()
startEdit()

soaJDBCSystemResource1 = create('DBAdapterTestDataSource',"JDBCSystemResource")
soaJDBCResource1 = soaJDBCSystemResource1.getJDBCResource()
soaJDBCResource1.setName('DBAdapterDataSource')

soaConnectionPoolParams1 = soaJDBCResource1.getJDBCConnectionPoolParams()
soaConnectionPoolParams1.setTestTableName("SQL SELECT 1 FROM DUAL")

soaConnectionPoolParams1.setInitialCapacity(10)
soaConnectionPoolParams1.setMaxCapacity(100)

soaDataSourceParams1 = soaJDBCResource1.getJDBCDataSourceParams()
soaDataSourceParams1.addJNDIName('jdbc/dbSample')
soaDriverParams1 = soaJDBCResource1.getJDBCDriverParams()
soaDriverParams1.setUrl('jdbc:oracle:thin:@'+db_host_name+':'+db_port+':'+db_sid)
soaDriverParams1.setDriverName('oracle.jdbc.xa.client.OracleXADataSource')
soaDriverParams1.setPassword('my_password')

soaDriverProperties1 = soaDriverParams1.getProperties()
soaProperty1 = soaDriverProperties1.createProperty("user")
soaProperty1.setValue('scott')

varSOAServerTarget = '/Servers/'+serverName
soaServerTarget = getMBean(varSOAServerTarget)

Chapter 48
Preparing the Target Environment

48-5

soaJDBCSystemResource1.addTarget(soaServerTarget)

dumpStack()

try :

save()

activate(block="true")

except:
 print "Error while trying to save and/or activate!!!"
 dumpStack()

print "Creating DB adapter resource information"
try:
 redeploy('DBAdapter', '@deployment.plan@', upload='true', stageMode='stage')

except:
 print "Error while modifying db adapter connection factory"

For information about JDBC data sources, see Section "Configuring JDBC Data Sources" of
Administering JDBC Data Sources for Oracle WebLogic Server.

How to Create Connection Factories and Connection Pooling
The Oracle JCA adapters are deployed as JCA 1.5 resource adapters in an Oracle WebLogic
Server container. Adapters are packaged as Resource Adapter Archive (RAR) files using a
JAR format. When adapters are deployed, the RAR files are used and the adapters are
registered as connectors with the Oracle WebLogic Server or middle-tier platform. The RAR file
contains the following:

• The ra.xml file, which is the deployment descriptor XML file containing deployment-
specific information about the resource adapter

• Declarative information about the contract between Oracle WebLogic Server and the
resource adapter

Adapters also package the weblogic-ra.xml template file, which defines the endpoints for
connection factories.

For information about creating connection factories and connection pools, see Understanding
Technology Adapters.

How to Enable Security
If you are using an identity service provider with human workflow or attaching authentication
and authorization policies, you must perform additional setup tasks.

• Identity service provider for human workflow

By default, the identity service uses the embedded LDAP server in Oracle WebLogic
Server as the default authentication provider. If you are using human workflow, you can
configure Oracle WebLogic Server to use an alternative identity service provider, such as
Oracle Internet Directory, Microsoft Active Directory, or Oracle iPlanet. For more
information, see Administering Oracle SOA Suite and Oracle Business Process
Management Suite. The embedded LDAP server is not supported in clustered
environments.

Chapter 48
Preparing the Target Environment

48-6

• Authentication provider (OWSM policies)

Policies that use certain types of tokens (for example, the username, X.509, and SAML
tokens) require an authentication provider. For information about selecting and configuring
an authentication provider, see Securing Web Services and Managing Policies with Oracle
Web Services Manager.

• Authorization provider (OWSM policies)

After a user is authenticated, you must verify that the user is authorized to access a web
service with an authorization policy. You can create an authorization policy with several
types of assertion templates. For information about authorization policies and which
resources to protect, see Securing Web Services and Managing Policies with Oracle Web
Services Manager.

How to Set the Business Flow Instance Name or Composite Instance Name
at Design Time

You can set the business flow instance name or composite instance name of a SOA composite
application during design time for Oracle Mediator and Oracle BPEL Process Manager. The
name appears in the Name column on the Flow Instances page of a SOA composite
application in Oracle Enterprise Manager Fusion Middleware Control. When you specify a
search criteria on the Flow Instances page of a SOA composite application, a partition, or the
SOA Infrastructure in Oracle Enterprise Manager Fusion Middleware Control, you can specify
this name in the Name field.

Setting the Business Flow Instance Name in Oracle Mediator

To set the business flow instance name in Oracle Mediator:

Use the XPath expression function oraext:setFlowInstanceTitle() in an assign activity. For
example:

<assign>
 <copy
 target="$out.property.tracking.setFlowInstanceTitle"
 expression="oraext:setFlowInstanceTitle("sample")"
 xmlns:med="http://schemas.oracle.com/mediator/xpath"/>
</assign>

Setting the Business Flow Instance Name in a BPEL Process
A business flow instance corresponds to an end-to-end business transaction. Business flows
consist of a single SOA composite application or multiple SOA composite applications
connected together to fulfill a specific business process.

To set the business flow instance name in a BPEL process:

• Use the Java BPEL exec extension bpelx:exec. This extension includes the built-in
method setFlowInstanceTitle(String title)for setting the business flow instance
name.

For more information about business flow instances, see Chapter "Tracking Business Flow
Instances" of Administering Oracle SOA Suite and Oracle Business Process Management
Suite.

Chapter 48
Preparing the Target Environment

48-7

Setting the Composite Instance Name in a BPEL Process
The setCompositeInstanceTitle method is provided for backward compatibility. The
composite instance name is different from the business flow instance name. More than one
composite instance can participate in a single business flow instance. There is a one-to-many
relationship between the flow instance name and the composite instance name.

To set the composite instance name in a BPEL process:

• Use the Java BPEL exec extension bpelx:exec. This extension includes the built-in
method setCompositeInstanceTitle(String title)for setting the instance name.

For more information, see Administering Oracle SOA Suite and Oracle Business Process
Management Suite.

How to Deploy Trading Partner Agreements and Task Flows
If you are using Oracle B2B or a human task, you must perform additional setup tasks.

To deploy trading partner agreements and task flows:

• Deploying trading partner agreements

A trading partner agreement defines the terms that enable two trading partners, the initiator
and the responder, to exchange business documents. It identifies the trading partners,
trading partner identifiers, document definitions, and channels. You must deploy the
agreement from the design-time repository to the run-time repository. For more
information, see User's Guide for Oracle B2B.

• Deploying the task flow

You must deploy the task flow to use it in Oracle BPM Worklist. For more information, see
Deploying the Profile.

How to Create an Application Server Connection
To deploy a SOA composite application that does not share data with another composite, use
the Create Application Server Connection wizard to create an application server connection.
For more information, see Creating an Application Server Connection.

How to Create a SOA-MDS Connection
To deploy a SOA composite application that shares data with other composites, use the Create
SOA-MDS Connection wizard to create a connection to a database-based Oracle MDS
Repository server. For more information, see Creating a SOA-MDS Connection.

What You May Need to Know About Opening the composite.xml File Through a SOA-
MDS Connection

If you create a SOA-MDS connection in Oracle JDeveloper, expand the connection, and
attempt to open the composite.xml file of a composite from the Resources window, the file
may not load correctly. Only open a composite from the Applications window.

For information about the Oracle MDS Repository, see Administering Oracle Fusion
Middleware.

Chapter 48
Preparing the Target Environment

48-8

Customizing Your Application for the Target Environment Before
Deployment

Not all customization tasks must be manually performed as you move to and from
development, test, and production environments. This section describes how to use a
configuration plan to automatically configure your SOA composite application for the next
target environment.

How to Use Configuration Plans to Customize SOA Composite Applications
for the Target Environment

As you move projects from one environment to another (for example, from testing to
production), you typically must modify several environment-specific values, such as JDBC
connection strings, hostnames of various servers, and so on. Configuration plans enable you
to modify these values using a single text (XML) file. The configuration plan is created in either
Oracle JDeveloper or with WLST commands. During process deployment, the configuration
plan searches the SOA project for values that must be replaced to adapt the project to the next
target environment.

Introduction to Configuration Plans
This section provides an overview of creating and attaching a configuration plan:

• You create and edit a configuration plan file in which you can replace the following
attributes and properties:

– Any composite, service component, reference, service, and binding properties in the
SOA composite application file (composite.xml)

– Attribute values for bindings (for example, the location for binding.ws)

– schemaLocation attribute of an import in a WSDL file

– location attribute of an include in a WSDL file

– schemaLocation attribute of an include, import, and redefine in an XSD file

– Any properties in JCA adapter files

– Policy references for the following:

* Service component

* Service and reference binding components

Chapter 48
Customizing Your Application for the Target Environment Before Deployment

48-9

Note:

The configuration plan does not alter XSLT artifacts in the SOA composite
application. To modify any XSL, use the XSLT Map Editor. Using a configuration
plan is not useful. For example, you cannot change references in XSL using the
configuration plan file. Instead, they must be changed manually in the XSLT Map
Editor in Oracle JDeveloper when moving to and from test, development, and
production environments. This ensures that the XSLT Map Editor opens without
any issues in design time. However, leaving the references unchanged does not
impact runtime behavior. For more information about transformations and the
XSLT Map Editor, see Creating Transformations with the XSLT Map Editor .

• You attach the configuration plan file to a SOA composite application JAR file or ZIP file (if
deploying a SOA bundle) during deployment with one of the following tools:

– Oracle JDeveloper

For more information, see Deploying the Profile.

– ant scripts

For more information, see How to Use ant to Deploy a SOA Composite Application.

– WLST commands

For more information, see WLST Command Reference for SOA Suite.

• During deployment, the configuration plan file searches the composite.xml, WSDL, and
XSD files in the SOA composite application JAR or ZIP file for values that must be
replaced to adapt the project to the next target environment.

Introduction to a Configuration Plan File
The following example shows a configuration plan in which you modify the following:

• An inFileFolder property for composite FileAdaptorComposite is replaced with
mytestserver/newinFileFolder.

• A hostname (myserver17) is replaced with test-server and port 8888 is replaced with
8198 in the following locations:

– All import WSDLs

– All reference binding.ws locations

The composite.xml file looks as shown in the following example:

<composite>
 <import namespace="http://example.com/hr/"
 location="http://myserver17.us.example.com:8888/hrapp/HRAppService?WSDL"
 importType="wsdl"/>
 <service name="readPO">
 <interface.wsdl
interface="http://xmlns.oracle.com/pcbpel/adapter/file/readPO/#wsdl.interface(Read
_ptt)"/>
 <binding.jca config="readPO_file.jca"/>
 <property name="inFileFolder" type="xs:string" many="false"
 override="may">/tmp/inFile</property>
 </service>
 <reference name="HRApp">
 <interface.wsdl

Chapter 48
Customizing Your Application for the Target Environment Before Deployment

48-10

 interface="http://example.com/hr/#wsdl.interface(HRAppService)"/>
 <binding.ws
port="http://example.com/hr/#wsdl.endpoint(HRAppService/HRAppServiceSoapHttpPort)"
 location="http://myserver17.us.example.com:8888/hrapp/HRAppService?WSDL"/>
 <binding.java serviceName="{http://example.com/hr/}HRAppService"
 registryName="HRAppCodeGen_JBOServiceRegistry"/>
 </reference>
</composite>

The configuration plan file looks as shown in the following example:

<?xml version="1.0" encoding="UTF-8"?>
<SOAConfigPlan
 xmlns:jca="http://platform.integration.oracle/blocks/adapter/fw/metadata"
 xmlns:wsp="http://schemas.xmlsoap.org/ws/2004/09/policy"
 xmlns:orawsp="http://schemas.oracle.com/ws/2006/01/policy"
 xmlns:edl="http://schemas.oracle.com/events/edl"
 xmlns="http://schemas.oracle.com/soa/configplan">
 <composite name="FileAdaptorComposite">
 <service name="readPO">
 <binding type="*">
 <property name="inFileFolder">
 <replace>/mytestserver/newinFileFolder</replace>
 </property>
 </binding>
 </service>
 </composite>
 <!-- For all composite replace host and port in all imports wsdls -->
 <composite name="*">
 <import>
 <searchReplace>
 <search>myserver17</search>
 <replace>test-server</replace>
 </searchReplace>
 <searchReplace>
 <search>8888</search>
 <replace>8198</replace>
 </searchReplace>
 </import>
 <reference name="*">
 <binding type="ws">
 <attribute name="location">
 <searchReplace>
 <search>myserver17</search>
 <replace>test-server</replace>
 </searchReplace>
 <searchReplace>
 <search>8888</search>
 <replace>8198</replace>
 </searchReplace>
 </attribute>
 </binding>
 </reference>
 </composite>
</SOAConfigPlan>

A policy is replaced if a policy for the same URI is available. Otherwise, it is added. This is
different from properties, which are modified, but not added.

Chapter 48
Customizing Your Application for the Target Environment Before Deployment

48-11

Introduction to Use Cases for a Configuration Plan
The following steps provide an overview of how to use a configuration plan when moving from
development to testing environments:

1. User A creates SOA composite application Foo.

2. User A deploys Foo to a development server, fixes bugs, and refines the process until it is
ready to test in the staging area.

3. User A creates and edits a configuration plan for Foo, which enables the URLs and
properties in the application to be modified to match the testing environment.

4. User A deploys Foo to the testing server using Oracle JDeveloper or a series of command-
line scripts (can be WLST-based). The configuration plan created in Step 3 modifies the
URLs and properties in Foo.

5. User A deploys SOA composite application Bar in the future and applies the same plan
during deployment. The URLs and properties are also modified.

How to Use a Configuration Plan when Creating Environment-Independent Processes
The following steps provide an overview of how to use a configuration plan when creating
environment-independent processes:

Note:

This use case is useful for users that have their own development server and a
common development and testing server if they share development of the same
process. Users that share the same deployment environment (that is, the same
development server) may not find this use case as useful.

1. User A creates SOA composite application Foo.

2. User A deploys Foo to their development server, fixes bugs, and refines the process until it
is ready to test in the staging area.

3. User A creates a configuration plan for Foo, which enables the URLs and properties in the
process to be modified to match the settings for User A's environment.

4. User A checks in Foo and the configuration plan created in Step 3 to a source control
system.

5. User B checks out Foo from source control.

6. User B makes a copy of the configuration plan to match their environment and applies the
new configuration plan onto Foo's artifacts.

7. User B imports the application into Oracle JDeveloper and makes several changes.

8. User B checks in both Foo and configuration plan B (which matches user B's
environment).

9. User A checks out Foo again, along with both configuration plans.

Chapter 48
Customizing Your Application for the Target Environment Before Deployment

48-12

How to Create a Configuration Plan in Oracle JDeveloper
This section describes how to create and use a configuration plan. In particular, this section
describes the following:

• Creating and editing a configuration plan

• Attaching the configuration plan to a SOA composite application JAR file

• Validating the configuration plan

• Deploying the SOA composite application JAR or ZIP file in which the configuration plan is
included

To create a configuration plan in Oracle JDeveloper:

1. Open Oracle JDeveloper.

2. In the Applications window, right-click the composite_name file (also known as the
composite.xml file) of the project in which to create a configuration plan, and select
Generate Config Plan. Figure 48-1 provides details.

Figure 48-1 Generate a Configuration Plan

The Composite Configuration Plan Generator dialog appears, as shown in Figure 48-2.

Chapter 48
Customizing Your Application for the Target Environment Before Deployment

48-13

Figure 48-2 Composite Configuration Plan Generator Dialog

3. Create a configuration plan file for editing, as shown in Table 48-2.

Table 48-2 Generate a Configuration Plan

Field Description

Specify the file name (.xml)
for the configuration plan

Enter a specific name or accept the default name for the
configuration plan. The file is created in the directory of the project
and packaged with the SOA composite application JAR or ZIP file.

Note: During deployment, you can specify a different configuration
file when prompted in the Deploy Configuration page of the
deployment wizard. For more information, see Deploying the Profile.

Overwrite existing file Click to overwrite an existing configuration plan file with a different
file in the project directory.

4. Click OK.

This creates and opens a single configuration plan file for editing. You can modify URLs
and properties for the composite.xml, WSDL, and schema files of the SOA composite
application. Figure 48-3 provides details.

Figure 48-3 Configuration Plan Editor

Chapter 48
Customizing Your Application for the Target Environment Before Deployment

48-14

5. Add values for server names, port numbers, and so on to the existing syntax. You can also
add replacement-only syntax when providing a new value. You can add multiple search
and replacement commands in each section.

6. From the File menu, select Save All.

7. Above the editor, click the x to the right of the file name to close the configuration plan file.

8. In the Applications window, right-click the composite_name file again, and select Validate
Config Plan.

The Composite Configuration Plan Validator appears, as shown in Figure 48-4.

Figure 48-4 Validate the Configuration Plan

9. Select the configuration plan to validate. This step identifies all search and replacement
changes to be made during deployment. Use this option for debugging only.

10. Note the directory in which a report describing validation results is created, and click OK.

The Log window in Oracle JDeveloper indicates if validation succeeded and lists all search
and replacement commands to perform during SOA composite application deployment.
This information is also written to the validation report.

Note:

The old composite.xml, WSDL, and XSD files are not replaced with files
containing the new values for the URLs and properties appropriate to the next
environment. Replacement occurs only when the SOA composite application is
deployed.

11. Deploy the SOA composite application by following the instructions in one of the following
sections:

• How to Deploy a Single SOA Composite in

• How to Deploy Multiple SOA Composite Applications in

• How to Deploy and Use Shared Data Across Multiple SOA Composite Applications in

During deployment in Oracle JDeveloper, the Deploy Configuration page shown in Step 4
of Deploying the Profile prompts you to select the configuration plan to include in the SOA
composite application archive.

12. Select the configuration plan to include with the SOA composite application.

Chapter 48
Customizing Your Application for the Target Environment Before Deployment

48-15

13. Click OK.

How to Create a Configuration Plan with the WLST Utility
As an alternative to using Oracle JDeveloper, you can use the WLST command line utility to
perform the following configuration plan management tasks:

• Generate a configuration plan for editing:

sca_generatePlan(configPlan, sar, composite, overwrite, verbose)
• Attach the configuration plan file to the SOA composite application JAR file:

sca_attachPlan(sar, configPlan, overwrite, verbose)
• Validate the configuration plan:

sca_validatePlan(reportFile, configPlan, sar, composite, overwrite, verbose)
• Extract a configuration plan packaged with the JAR file for editing:

sca_extractPlan(sar, configPlan, overwrite, verbose)
For information about using these commands, see WLST Command Reference for SOA Suite.

How to Attach a Configuration Plan with ant Scripts
As an alternative to using Oracle JDeveloper, you can use ant scripts to attach the
configuration plan file to the SOA composite application JAR or ZIP file during deployment. For
instructions, see How to Use ant to Deploy a SOA Composite Application.

How to Create Global Token Variables
You can define global token variables for specific URIs in SOA composite applications. For
example, instead of updating the SOA composite application name in ten different
configuration plans, you can set the name globally. The value is retrieved and replaces the
value of the global token variable for the composite name in the composite.xml file of the
deployed SOA composite application.

For more information, see Administering Oracle SOA Suite and Oracle Business Process
Management Suite.

Deploying SOA Composite Applications or Projects in Oracle
JDeveloper

This section describes how to deploy SOA composite applications or projects in JDeveloper in
the following topics:

• How to Deploy a Single SOA Composite in Oracle JDeveloper

• How to Deploy Multiple SOA Composite Applications in Oracle JDeveloper

• How to Deploy and Use Shared Data Across Multiple SOA Composite Applications in
Oracle JDeveloper

• How to Deploy an Existing SOA Archive in Oracle JDeveloper

Chapter 48
Deploying SOA Composite Applications or Projects in Oracle JDeveloper

48-16

Note:

Oracle recommends that you deploy SOA projects that are developed in Reference
Configuration mode to a server that is in a Reference Configuration domain. Contact
your server administrator to move the server into a Reference Configuration domain.
If the SOA project is developed in Classic mode and the server to which it is
deployed is in a Reference Configuration domain, or vice versa, JDeveloper displays
a Mismatch notification in the Deploy Composite Wizard. You can click OK and
deploy the SOA project even when there is a configuration mismatch. In this case,
deployment will proceed as normal and any Reference Configuration property
settings will be ignored by the domain.

Note that the integrated WebLogic server in JDeveloper does not support a Reference
Configuration domain.

How to Deploy a Single SOA Composite in Oracle JDeveloper
Oracle JDeveloper requires the use of profiles for SOA projects and applications to be
deployed to Oracle WebLogic Server.

Creating an Application Server Connection
You must create a connection to the application server to which to deploy a SOA composite
application. The following instructions describe how to create a connection to Oracle WebLogic
Server. For information about using the IntegratedWebLogicServer connection available with
the Oracle SOA Suite Quick Start installation, see Installing SOA Suite and Business Process
Management Suite Quick Start for Developers.

Note:

You can also create an application server connection by selecting Window >
Application Servers, then right-clicking the Application Servers node in the
Applications window and selecting New Application Server. This option prompts
you to create a standalone server connection or Integrated WebLogic Server
connection.

To create an application server connection:

1. From the File main menu, select New.

2. In the General list, select Connections.

3. Select Application Server Connection, and click OK.

The Name and Type page appears.

4. In the Connection Name field, enter a name for the connection.

5. In the Connection Type list, select WebLogic 12.x to create a connection to Oracle
WebLogic Server.

6. Click Next.

The Authentication page appears.

Chapter 48
Deploying SOA Composite Applications or Projects in Oracle JDeveloper

48-17

7. In the Username field, enter the user authorized for access to the application server.

8. In the Password field, enter the password for this user.

9. Click Next.

The Configuration page appears.

10. In the Weblogic Hostname (Administration Server) field, enter the host on which the
Oracle WebLogic Server is installed.

11. In the Port and SSL Port fields, enter appropriate port values or accept the default values.

12. If you want to use secure socket layer (SSL), select the Always use SSL check box.
Table 48-3 describes what occurs when you select this check box.

Table 48-3 Deployment to HTTPS and HTTP Servers

If This Check Box Is... Then...

Selected An HTTPS server URL must exist to deploy the composite with SSL.
Otherwise, deployment fails.

If the server has only an HTTP URL, deployment also fails. This option
enables you to ensure that SSL deployment must not go through a non-
SSL HTTP URL, and must only go through an HTTPS URL.

Not selected An HTTP server URL must exist to deploy to a non-SSL environment.
Otherwise, deployment fails.

If the server has both HTTPS and HTTP URLs, deployment occurs
through a non-SSL connection. This option enables you to force a non-
SSL deployment from Oracle JDeveloper, even though the server is SSL-
enabled.

13. In the WebLogic Domain field, enter the Oracle SOA Suite domain. For additional details
about specifying domains, click Help. Figure 48-5 provides details.

Figure 48-5 Server Name and Domain Selection

Chapter 48
Deploying SOA Composite Applications or Projects in Oracle JDeveloper

48-18

14. Click Next.

15. Click Test Connection to test your server connection.

16. If the connection is successful, click Finish. Otherwise, click Back to make corrections in
the previous dialogs. Even if the connection test is unsuccessful, a connection is created.
Figure 48-6 provides details.

Figure 48-6 Application Server Connection Test

Optionally Creating a Project Deployment Profile
A required deployment profile is automatically created for your project. The application profile
includes the JAR files of your SOA projects. If you want, you can create additional profiles.

To create a project deployment profile:

1. In the Applications window, right-click the SOA project.

2. Select Project Properties.

The Project Properties dialog appears.

3. Click Deployment.

4. Click the New Profile icon.

The Create Deployment Profile dialog appears.

5. Enter the values shown in Table 48-4.

Chapter 48
Deploying SOA Composite Applications or Projects in Oracle JDeveloper

48-19

Table 48-4 Create Deployment Profile Dialog Fields and Values

Field Description

Profile Type Select SOA-SAR File.

A SAR is a deployment unit that describes the SOA composite
application. The SAR packages service components such as BPEL
processes, business rules, human tasks, and Oracle Mediator
routing services into a single application. The SAR file is analogous
to the BPEL suitcase archive of previous releases, but at the higher
composite level and with any additional service components that
your application includes (for example, human tasks, business rules,
and Oracle Mediator routing services).

Deployment Profile Name Enter a deployment profile name.

Description Enter a description for the profile name.

6. Click OK.

The SAR Deployment Profile Properties dialog appears, as shown in Figure 48-7.

Figure 48-7 SAR Deployment Profile Properties

7. Optionally specify the target folder in which to save the SAR file.

8. Click OK to close the SAR Deployment Profile Properties dialog.

The deployment profile shown in Figure 48-8 displays in the Project Properties dialog.

Chapter 48
Deploying SOA Composite Applications or Projects in Oracle JDeveloper

48-20

Figure 48-8 Project Profile

Deploying the Profile
You now deploy the project profile to Oracle WebLogic Server. Deployment requires the
creation of an application server connection. You can create a connection during deployment
by clicking the Add icon in Step 10 or before deployment by following the instructions in
Creating an Application Server Connection.

To deploy the profile:

1. In the Applications window, right-click the SOA project.

2. Select Deploy > project_name.

The value for project_name is the SOA project name.

The Deployment Action page of the Deploy Project_Name wizard appears. Figure 48-9
provides an example.

Chapter 48
Deploying SOA Composite Applications or Projects in Oracle JDeveloper

48-21

Figure 48-9 Deployment Action Page

3. Select one of the following deployment options:

• Deploy to Application Server

Creates a JAR file for the selected SOA project and deploys it to an application server
such as Oracle WebLogic Server.

• Generate SAR File

Creates a SAR (JAR) file of the selected SOA project, but does not deploy it to an
application server such as Oracle WebLogic Server. This option is useful for
environments in which:

– Oracle WebLogic Server may not be running, but you want to create the artifact
JAR file.

– You want to deploy multiple JAR files to Oracle WebLogic Server from a batch
script. This option offers an alternative to opening all project profiles (which you
may not have) and deploying them from Oracle JDeveloper.

The page that displays differs based on your selection.

4. Select the deployment option appropriate for your environment. Table 48-5 provides
details.

Table 48-5 Deployment Target

If You Select... Go to...

Deploy to Application Server Step 44.a

Generate SAR File Step 44.b

a. View the Deploy Configuration page shown in Figure 48-10.

Chapter 48
Deploying SOA Composite Applications or Projects in Oracle JDeveloper

48-22

Figure 48-10 Deploy Configuration Page for Application Server Deployment

b. View the Deploy Configuration page shown in Figure 48-11.

Figure 48-11 Deploy Configuration Page for Generate SAR File Deployment

5. Provide values appropriate to the deployment option you selected in Step 4, as described
in Table 48-6. If you selected to deploy to an application server, additional fields are
displayed.

Chapter 48
Deploying SOA Composite Applications or Projects in Oracle JDeveloper

48-23

Table 48-6 SOA Deployment Configuration Dialog

Field Description

Composite Revision ID Expand to display details about the project.

• Project Displays the project name.

• Current Revision ID Displays the current revision ID of the project.

• New Revision ID Optionally change the revision ID of the SOA composite application.
You can specify a new value or continue to use the current value.
This revision ID becomes the value for the $
{composite.revision_id} variable in the application name. For
example, if you enter 2.0 as the new revision ID for a composite
named OrderBooking, ${composite.revision_id} is replaced
with _rev2.0 (sca_OrderBooking_rev2.0.jar).

SOA Configuration Plan Expand to display details about the configuration plan.

The configuration plan enables you to define the URL and property
values to use in different environments. During process deployment,
the configuration plan is used to search the SOA project for values
that must be replaced to adapt the project to the next target
environment.

• Do not attach Select to not include a configuration plan with the SOA composite
application JAR file. If you have not created a configuration plan,
this field is disabled. This is the default selection.

• Configuration_plan.xml Select the specific plan. A configuration plan must already exist in
the SOA project for this selection to be available.

See How to Use Configuration Plans to Customize SOA Composite
Applications for the Target Environment for instructions on creating
a configuration plan.

BPEL Monitor Expand to display details about BPEL monitors.

• Ignore BPEL Monitor
deployment errors

Note: This check box only
appears if there is at least
one .monitor file in the
application.

Deselect this check box to display BPEL Monitor deployment errors.
This check box corresponds to the ignoreErrors property in the
monitor.config BPEL project file. This file defines runtime and
deployment properties needed to connect with Oracle BAM Server
to create the Oracle BAM data objects and dashboards.If Oracle
BAM Server is unreachable, and ignoreErrors is set to true,
deployment of the composite does not stop. If set to false and
Oracle BAM Server is unavailable, deployment fails.

Mark composite revision as
default

If you do not want the new revision to be the default, you can
deselect this box. By default, a newly deployed composite revision is
the default. This revision is instantiated when a new request comes
in.

This option only displays if you selected Deploy to Application
Server on the Deployment Action page.

Overwrite any existing
composites with the same
revision ID

Select to overwrite any existing SOA composite application of the
same revision value.

This option only displays if you selected Deploy to Application
Server on the Deployment Action page.

Chapter 48
Deploying SOA Composite Applications or Projects in Oracle JDeveloper

48-24

Table 48-6 (Cont.) SOA Deployment Configuration Dialog

Field Description

Keep running instances on
after redeployment

Note: This option is displayed if Oracle BPM Suite is installed in
Oracle JDeveloper, and only supported for the deployment of Oracle
BPM composites. Do not select this option if you are deploying:

• A SOA composite application from an Oracle JDeveloper
environment in which Oracle BPM Suite is also installed.

• An Oracle BPM composite that includes a durable BPEL
process, regardless of whether that process has been modified.
Durable BPEL processes are those that take time to complete
execution. Examples of durable BPEL processes are
asynchronous processes (which are always durable) and
synchronous processes that include a durable activity such as
a wait activity.

If you select this option and attempt to redeploy a durable BPEL
process, then deployment fails.

Select to enable existing instances of the overwritten revision to
continue running instead of being aborted. These instances run side
by side with any new instances that you create with the new revision
of the Oracle BPM composite application.

Force deployment of
incompatible processes

This option is only displayed for Oracle BPM Suite composites.

If Keep running instances on after redeployment is checked, this
option is displayed. Select this check box to force deployment of
incompatible BPM processes. When a composite with BPM
processes is overwritten, the system checks to see if the BPM
processes being overwritten are compatible with the processes
being deployed. If they are compatible, running instances of these
processes are not marked as aborted and deployment is successful.
If they are incompatible, deployment fails unless you select this
check box.

Use the following SOA
configuration plan for all
composites

Click Browse to select the same configuration plan to use for all
composite applications. This option is used when deploying multiple
composite applications.

6. When finished, click Next.

7. If the SOA project you selected for deployment includes a task flow project defined for a
human task, you are prompted with the Task Flow Deployment dialog, as shown in
Figure 48-12.

Otherwise, go to Step 10.

You create or configure an Enterprise Resource Archive (EAR) file for the task flow forms
of human tasks. The EAR file consists of a Web Resource Archive (WAR) profile that you
select in the Deployable Taskflow Projects table of this dialog.

Chapter 48
Deploying SOA Composite Applications or Projects in Oracle JDeveloper

48-25

Figure 48-12 Task Flow Deployment Page

8. Provide values appropriate to your environment, as described in Table 48-7.

Table 48-7 Task Flow Deployment Dialog

Field Description

Application Name Select the EAR file to include in the deployment. This list displays all
available EAR profiles in the current Oracle JDeveloper application.
These EAR profiles are used as a template to create an EAR profile
to deploy based on the WAR profiles selected in the Deployable
Taskflow Projects table. You can also enter any EAR profile name
to deploy.

Deploy to specific
composite revision &
partition

Select to append the revision number of the composite to the EAR
file name. If selected, this check box includes the composite revision
in the EAR name, WAR profile, and context root. This option
enables you to deploy an application specific to a composite
revision.

Add generated profiles to
application

Select to add the generated EAR profile to the current SOA
composite application's EAR deployment profile list. The application
may have to be saved to persist the generated EAR profile. Once
the deployment profile is available, you can deploy the EAR profile
by selecting Application > Deploy. This option enables you to
avoid using the SOA deployment wizard, if only task flow application
deployment is necessary.

Overwrite Existing
Application

Select to overwrite the existing version of the EAR file on the server.

Deployable Taskflow
Projects

Select the task flow project WAR profiles to include in the EAR file.
The task flow project WAR profiles are grouped in accordance with
the composites that include the human task related to the task flow
project. The context root of the WAR changes if the Add generated
profiles to application check box is selected.

Note: If you do not select a WAR profile, no task flows are deployed.

Chapter 48
Deploying SOA Composite Applications or Projects in Oracle JDeveloper

48-26

Table 48-7 (Cont.) Task Flow Deployment Dialog

Field Description

• Projects Select from the list of deployable task flow projects or select the
Projects check box to choose all available task flows. The task
flows that display are based on the composites included in the SOA
project or bundle selected for deployment.

• WAR Profiles Select the task flow project WAR files. Only the most recently
created or modified task flow of the human task is available for
selection.

• App Context Root Displays the application context root directory based on your
selection for the WAR profile.

When you deploy a task form for a human task, as part of notification, the task form details
are included in an email. For dynamic payloads, this email includes the content of the
payload as it appears at that particular time.

For information about deploying SOA composite applications with task flows to multiple
partition environments, see What You May Need to Know About Deploying Human Task
Composites with Task Flows to Partitions.

9. Click Next.

10. If you selected to deploy to an application server in Step 3, the Select Server page appears
for selecting an existing connection to an application server such as Oracle WebLogic
Server from the list or clicking the Add icon to create a connection to a server.
Figure 48-13 provides details.

If you selected to generate a SAR file in Step 3, go to Step 15.

Figure 48-13 Select Server Page

11. Click Next.

Chapter 48
Deploying SOA Composite Applications or Projects in Oracle JDeveloper

48-27

12. Select the target SOA servers to which to deploy this archive. If there are multiple servers
or cluster nodes, select to deploy to one or more servers or nodes. Figure 48-14 provides
details.

13. Select the partition in which to deploy this archive. If the server contains no partitions, you
cannot deploy this archive. Also, if the server is not in a running state, you cannot deploy
this archive. By default, a partition named default is automatically included with Oracle
SOA Suite. You create partitions in the Manage Partitions page of Oracle Enterprise
Manager Fusion Middleware Control.

Note:

Human workflow artifacts such as task mapped attributes (previously known as
flex field mappings) and rules (such as vacation rules) are defined based on the
namespace of the task definition. Therefore, the following issues are true when
the same SOA composite application with a human workflow task is deployed
into multiple partitions:

• For the same task definition type, mapped attributes defined in one partition
are visible in another partition.

• Rules defined on a task definition in one partition can apply to the same
definition in another partition.

Figure 48-14 SOA Servers Page

14. Click Next.

15. Review the archive details on the Summary page shown in Figure 48-15, and click Finish.

Chapter 48
Deploying SOA Composite Applications or Projects in Oracle JDeveloper

48-28

Figure 48-15 Summary Page

16. If you selected to deploy to an application server in Step 3, view the messages that display
in the Deployment log window at the bottom of Oracle JDeveloper.

17. Enter the user name and password, and click OK.

If deployment is successful, the following actions occur:

• A JAR file for the SOA project is created with a naming convention of
sca_composite_name_revrevision_number.jar.

• The project is displayed in the Resources window under
application_server_connection_name > SOA > SOA_server_name >
partition_name.

• The project is displayed in the Application Servers window under
application_server_connection_name > SOA > SOA_server_name >
partition_name.

You are now ready to monitor your application from Oracle Enterprise Manager Fusion
Middleware Control. See Administering Oracle SOA Suite and Oracle Business Process
Management Suite for details.

If deployment is unsuccessful, view the messages that display in the Deployment log
window and take corrective actions. For more information, see Testing and
Troubleshooting.

For information about creating partitions, see the following documentation:

• Deploying and Managing SOA Composite Applications with ant Scripts

• Administering Oracle SOA Suite and Oracle Business Process Management Suite

• WLST Command Reference for SOA Suite

Chapter 48
Deploying SOA Composite Applications or Projects in Oracle JDeveloper

48-29

Note:

If you want to redeploy the same version of a SOA composite application, you
cannot change the composite name. You can deploy with the same revision
number if you selected the Overwrite any existing composites with the same
revision ID check box on the Deploy Configuration page.

What You May Need to Know About Deploying Human Task Composites with Task
Flows to Partitions

To deploy a SOA composite application with a task flow from Oracle JDeveloper to a multiple
partition environment, select the task flows to be deployed to the same partition in which the
SOA composite application is being deployed.

When the task flow is deployed using only the EAR profile (deploying the task flow using the
EAR deployer), the task flow is not partition-aware. Therefore, you must modify the
hwtaskflow.xml file to include the partition name in the generated EAR file (the project version
of the file remains unchanged). This file is located under the TaskForm project adfmsrc
directory (for example, HelpDeskRequestTaskFlow\adfmsrc\hwtaskflow.xml). The following
example provides details:

<hwTaskFlows
 xmlns="http://xmlns.oracle.com/bpel/workflow/hwTaskFlowProperties">
 <ApplicationName>worklist</ApplicationName>
 <LookupType>LOCAL</LookupType>
 <TaskFlowDeploy>false</TaskFlowDeploy>
 <PartitionName>partition2</PartitionName>

If you want to deploy the task flow for the SOA composite application on all partitions, leave
PartitionName blank. If you want to use different task flows for the composites on different
partitions, then PartitionName must be specified.

In addition, if you want to reuse the same task flow project for another partition, you must
change the web context root.

How to Deploy Multiple SOA Composite Applications in Oracle JDeveloper
You can deploy multiple SOA composite applications to an application server such as Oracle
WebLogic Server at the same time by using the SOA bundle profile. This profile enables you to
include one or more SAR profiles in the bundle and deploy the bundle to an application server.

Note:

• This section assumes you have created an application server connection. If not,
see Creating an Application Server Connection for instructions.

• You cannot deploy multiple SOA applications that are dependent upon one
another in the same SOA bundle profile. For example, if application A calls
application B, then you must first deploy application B separately.

Chapter 48
Deploying SOA Composite Applications or Projects in Oracle JDeveloper

48-30

To deploy multiple SOA composite applications:

1. From the Application menu, select Application Properties, as shown in Figure 48-16.

Figure 48-16 Application Properties

2. In the Application Properties dialog, click Deployment.

3. Click New.

The Create Deployment Profile dialog appears.

4. In the Archive Type list, select SOA Bundle.

5. In the Name field, enter a name.

Figure 48-17 provides details.

Figure 48-17 Select the SOA Bundle

6. Click OK.

7. In the navigator on the left, select the Dependencies node.

8. Select the SARs you want to include in this bundle, as shown in Figure 48-18.

Chapter 48
Deploying SOA Composite Applications or Projects in Oracle JDeveloper

48-31

Figure 48-18 Select the SAR

9. Click OK.

10. Click OK to close the Application Properties dialog.

11. Select the Application menu again, then select Deploy > SOA_Bundle_Name.

This invokes the deployment wizard.

12. See Step 3 for details about responses to provide.

How to Deploy and Use Shared Data Across Multiple SOA Composite
Applications in Oracle JDeveloper

This section describes how to deploy and use shared data such as WSDLs, XSDs, and other
file types across multiple SOA composite applications.

Shared data is deployed to the SOA Infrastructure on the application server as a JAR file. The
JAR file should contain all the resources to share. In Oracle JDeveloper, you can create a JAR
profile for creating a shared artifacts archive.

All shared data is deployed to an existing SOA Infrastructure partition on the server. This data
is deployed under the /apps namespace. For example, if you have a MyProject/xsd/
MySchema.xsd file in the JAR file, then this file is deployed under the /apps namespace on the
server. When you refer to this artifact in Oracle JDeveloper using a SOA-MDS connection, the
URL becomes oramds:/apps/MyProject/xsd/MySchema.xsd.

Chapter 48
Deploying SOA Composite Applications or Projects in Oracle JDeveloper

48-32

Note:

• You always deploy to the /apps location. The directory hierarchy must exist in the
JAR file to deploy. Do not create the directory hierarchy in the Oracle MDS
Repository first and then deploy the JAR file to that location. For example, to
deploy to /apps/demo/credit card, the JAR file must include the demo/credit
card directory hierarchy inside it.

• Files that begin with a period (for example, .designer) cannot be shared across
SOA composite applications.

This section describes how to perform the following tasks:

• Create a JAR profile and include the artifacts to share

• Create a SOA bundle that includes the JAR profile

• Deploy the SOA bundle to the application server

Create a JAR Profile and Include the Artifacts to Share

To create a JAR profile and include the artifacts to share:

1. In the Applications window, right-click the SOA project.

2. Select Project Properties.

The Project Properties dialog appears.

3. Click Deployment in the navigational tree on the left.

4. Click New.

The Create Deployment Profile dialog appears.

5. From the Archive Type list, select JAR File.

6. In the Name field, enter a name (for this example, shared_archive is entered).

The Create Deployment Profile dialog looks as shown in Figure 48-19.

Chapter 48
Deploying SOA Composite Applications or Projects in Oracle JDeveloper

48-33

Figure 48-19 JAR File Selection

7. Click OK.

The JAR Deployment Profile Properties dialog appears.

8. Select JAR Options from the navigational tree on the left.

9. Deselect Include Manifest File (META-INF/MANIFEST.MF), as shown in Figure 48-20.

This prevents the archive generator from adding the manifest file (META-INF/MANIFEST.MF)
into the JAR file.

Chapter 48
Deploying SOA Composite Applications or Projects in Oracle JDeveloper

48-34

Figure 48-20 JAR File Options

10. Select File Groups > Project Output > Contributors from the navigational tree on the
left.

11. Deselect the Project Output Directory and Project Dependencies options, as shown in
Figure 48-21.

This prevents the archive generator from adding the contents of the project output and
project dependencies into the archive.

Chapter 48
Deploying SOA Composite Applications or Projects in Oracle JDeveloper

48-35

Figure 48-21 Contributors

12. Click Add to add a new contributor.

The Add Contributor dialog appears. This dialog enables you to add artifacts to your
archive.

13. Click Browse.

14. Select the folder in which your artifacts reside, as shown in Figure 48-22. This selection
also determines the hierarchy of artifacts in the archive.

Chapter 48
Deploying SOA Composite Applications or Projects in Oracle JDeveloper

48-36

Figure 48-22 Artifact Selection

15. Click Select to close the Choose Directory dialog.

16. Click OK to close the Add Contributor dialog.

17. Select File Groups > Project Output > Filters from the navigational tree on the left.

18. Select only the artifacts to include in the archive, as shown in Figure 48-23. For this
example, the archive contains the following XSD files:

• SOADemoComposite/xsd/DemoProcess.xsd

• SOADemoComposite/xsd/Quote.xsd

• SOADemoComposite/xsd/VacationRequest.xsd

Chapter 48
Deploying SOA Composite Applications or Projects in Oracle JDeveloper

48-37

Figure 48-23 Artifacts to Include in the Archive

19. Click OK to save changes to the JAR deployment profile.

20. Click OK to save the new deployment profile.

21. From the File main menu, select Save All.

Create a SOA Bundle that Includes the JAR Profile

To create a SOA bundle that includes the JAR profile:

1. From the Application Menu, select Application Properties > Deployment.

2. Click New to create a SOA bundle profile.

The Create Deployment Profile dialog appears.

3. From the Archive Type list, select SOA Bundle. A bundle is a collection of multiple SOA
composite applications.

4. In the Name field, enter a name (for this example, sharedArtifactBundle is entered).
Figure 48-24 provides details.

Chapter 48
Deploying SOA Composite Applications or Projects in Oracle JDeveloper

48-38

Figure 48-24 SOA Bundle Creation

5. Click OK.

6. Select Dependencies from the navigational tree on the left.

7. Select the JAR file and SOA-SAR profiles you previously created (for this example, named
shared_archive and sharedArtifactBundle, respectively). You have the option of a JAR,
a SOA-SAR, or both. Figure 48-25 provides details.

Chapter 48
Deploying SOA Composite Applications or Projects in Oracle JDeveloper

48-39

Figure 48-25 Deployment Profile Dependencies

8. Click OK to save the SOA bundle deployment profile changes.

9. Click OK to save the new deployment profile.

10. From the File main menu, select Save All.

Deploy the SOA Bundle with Oracle JDeveloper

To deploy the SOA bundle with Oracle JDeveloper:

1. Right-click the Application menu and select Deploy > SOA_Bundle_Name.

This invokes the deployment wizard.

2. See Step 3 of Deploying the Profile for details about responses to provide.

This deploys the SOA bundle to the application server (shared artifacts are deployed to the
Oracle MDS Repository database of Oracle SOA Suite).

To deploy the SOA bundle with ant:
See How to Use ant to Deploy a SOA Composite Application.

Use Shared Data
This section describes how to browse and select the shared data you created in How to Deploy
and Use Shared Data Across Multiple SOA Composite Applications in Oracle JDeveloper .

Creating a SOA-MDS Connection

Chapter 48
Deploying SOA Composite Applications or Projects in Oracle JDeveloper

48-40

To create a SOA-MDS connection:

1. From the File menu, select New > Application > Connections > SOA-MDS Connection.

The Create SOA-MDS Connection dialog shown in Figure 48-26 is displayed.

Figure 48-26 Create SOA-MDS Connection Dialog

2. Provide values appropriate to your environment, as shown in Table 48-8.

Table 48-8 Create SOA-MDS Connection Dialog

Field Description

Create Connection In: Ensure that IDE Connection is selected. This option enables the
connection to display in the Resources window and be available to
multiple applications.

You cannot create a connection with the Application Resources
option. This selection is disabled.

Connection Name Enter a connection name. Upon successful completion of this
connection creation, this name displays under SOA-MDS in the
Resources window.

Chapter 48
Deploying SOA Composite Applications or Projects in Oracle JDeveloper

48-41

Table 48-8 (Cont.) Create SOA-MDS Connection Dialog

Field Description

Connection Type Select a connection type. An Oracle MDS Repository can be file-
based or database-based. The dialog is refreshed based on your
selection.

• DB Based MDS
For most production environments, you use a database-based
repository. Most components, such as Oracle SOA Suite,
require that a schema be installed in a database, necessitating
the use of a database-based repository. To use a database-
based repository, you must first create it with the Repository
Creation Utility.

• File Based MDS

Choose a database
connection

Select an existing connection or create a new connection to the
Oracle SOA Suite database with the MDS schema.

Select MDS Partition Select the MDS partition (for example, soa-infra).

Test Connection Click to test the SOA-MDS connection.

Note: Even if the connection test fails, a connection is created.

Status Displays status of the connection test.

3. Click OK.

You can now browse the connection in the Resources window and view shared artifacts
under the /apps node.

Creating a BPEL Process
You can now browse and use the shared data from a different SOA composite application. For
this example, you create a BPEL process service component in a different application.

To create a BPEL process:

1. Create a new BPEL process service component in a different application.

2. In the Create BPEL Process dialog, click the Browse icon to the right of the Input field.

The Type Chooser dialog appears.

3. In the upper right corner, click the Import Schema File icon.

The Import Schema File dialog appears.

4. To the right of the URL field, click the Browse icon.

The SOA Resource Browser dialog appears.

5. At the top of the dialog, select SOA-MDS.

6. Select shared data. For this example, the Quote.xsd file that you selected to include in the
archive in Step 18 of "Create a JAR Profile and Include the Artifacts to Share is selected.

7. Click OK.

8. In the Import Schema File dialog, click OK.

9. In the Type Chooser dialog, select a node of Quote.xsd (for this example,
QuoteRequest), and click OK.

10. In the Create BPEL Process dialog, click OK to complete creation.

11. In the Applications window, select the WSDL file for the BPEL process.

Chapter 48
Deploying SOA Composite Applications or Projects in Oracle JDeveloper

48-42

12. Click Source.

The WSDL file includes the following definition.

<wsdl:types>
 <schema xmlns="http://www.w3.org/2001/XMLSchema">
 <import namespace="http://www.mycompany.com/ns/salesquote"
 schemaLocation="oramds:/apps/SOADemoComposite/xsd/Quote.xsd" />
 </schema>
</wsdl:types>

13. Continue modeling the BPEL process as necessary.

14. Deploy the SOA composite application that includes the BPEL process.

The Type Chooser dialog includes a Recent Files folder in which information is kept for
the duration of the Oracle JDeveloper session. For example, if you create a new BPEL
process and want to define the input variable from a schema in the SOA Design-Time MDS
Repository, you go there once. When you want to define the output variable from the same
schema, the schema remains visible in the Recent Files folder.

How to Deploy an Existing SOA Archive in Oracle JDeveloper
You can deploy an existing SOA archive from the Application Servers window in Oracle
JDeveloper.

Note:

• The archive must exist. You cannot create an archive in the Deploy SOA Archive
dialog.

• These instructions assume you have created an application server connection to
an Oracle WebLogic Administration Server or another supported application
server on which the SOA Infrastructure is deployed. Creating a connection to an
Oracle WebLogic Administration Server enables you to browse for SOA
composite applications deployed in the same domain. From the File main menu,
select New > Application > Connections > Application Server Connection to
create a connection.

To deploy an existing SOA archive from Oracle JDeveloper:

1. From the Window menu, select Application Servers.

2. In the Applications window, expand your connection name.

3. Right-click the SOA folder.

4. Select Deploy SOA Archive.

Chapter 48
Deploying SOA Composite Applications or Projects in Oracle JDeveloper

48-43

Figure 48-27 SOA Archive Deployment from the Applications Window

The Deploy SOA Archive dialog shown in Figure 48-28 appears.

Figure 48-28 Deploy SOA Archive Dialog

5. Provide responses appropriate to your environment, as described in Table 48-9.

Table 48-9 Deploy SOA Archive Dialog Fields and Values

Field Description

SOA Server Select the SOA server to which to deploy the archive.

Partition Select the partition in which to deploy the archive. If the
server contains no partitions, you cannot deploy this
archive. By default, a partition named default is
automatically included with Oracle SOA Suite.

Status Displays the status of the server. If the server is not in a
running state, you cannot deploy this archive.

Server URL Displays the URL of the server.

Chapter 48
Deploying SOA Composite Applications or Projects in Oracle JDeveloper

48-44

Table 48-9 (Cont.) Deploy SOA Archive Dialog Fields and Values

Field Description

Archive Location Click Browse to select a prebuilt SOA composite
application archive. The archive consists of a JAR file of a
single application or a SOA bundle ZIP file containing
multiple applications.

Configuration Plan (Optional) Click Browse to select a configuration plan to attach to the
SOA composite application archive. The configuration plan
enables you to define the URL and property values to use
in different environments. During process deployment, the
configuration plan is used to search the SOA project for
values that must be replaced to adapt the project to the
next target environment.

For information about creating configuration plans, see
How to Create a Configuration Plan in or How to Create a
Configuration Plan with the WLST Utility.

Mark composite revision as default If you do not want the new revision to be the default, you
can deselect this box. By default, a newly deployed
composite revision is the default. This revision is
instantiated when a new request comes in.

Overwrite any existing composites
with the same revision ID

Select to overwrite (redeploy) an existing SOA composite
application with the same revision ID. The consequences
of this action are as follows:

• A new version 1.0 of the SOA composite application is
redeployed, overwriting a previously deployed 1.0
version.

• The older, currently-deployed version of this revision is
removed (overwritten).

• If the older, currently-deployed version of this revision
has running instances, the state of those instances is
changed to aborted.

6. Click OK.

For more information on deploying and testing SOA composite applications from the
Application Servers window, see Managing and Testing a SOA Composite Application.

Deploying and Managing SOA Composite Applications with the
WLST Utility

You can manage SOA composite applications with the WLST utility. This utility is well-suited for
automation and can be easily integrated into existing release processes. For instructions, see
WLST Command Reference for SOA Suite.

Deploying and Managing SOA Composite Applications with ant
Scripts

You can manage SOA composite applications with the ant utility. ant is a Java-based build tool
used by Oracle SOA Suite for managing SOA composite applications. The configuration files
are XML-based and call out a target tree where various tasks are executed. The ant utility is
well-suited for automation and can be easily integrated into existing release processes.

Chapter 48
Deploying and Managing SOA Composite Applications with the WLST Utility

48-45

Note:

Before using the Oracle SOA Suite ant scripts, you must first run the
setDomainEnv.sh script (for Linux) or setDomainEnv.cmd script (for Windows). This
script adds the necessary JAR files for using ant to the classpath.

Table 48-10 lists the ant scripts available in the Middleware_Home\SOA_Suite_Home\bin
directory.

Table 48-10 ant Management Scripts

Script Description

ant-sca-test.xml Automates the testing of SOA composite applications.

ant-sca-compile.xml Compiles a SOA composite application.

ant-sca-package.xml Packages a SOA composite application into a composite SAR file.

ant-sca-deploy.xml Deploys a SOA composite application.

ant-sca-deploy.xml
undeploy

Undeploys a SOA composite application.

ant-sca-deploy.xml
exportComposite

Exports a composite into a SAR file.

ant-sca-deploy.xml
exportUpdates

Exports postdeployment changes of a composite into a JAR file.

ant-sca-deploy.xml
importUpdates

Imports postdeployment changes of a composite.

ant-sca-deploy.xml
exportSharedData

Exports shared data of a given pattern into a JAR file.

ant-sca-deploy.xml
removeSharedData

Removes a top-level shared data folder.

ant-sca-mgmt.xml
startComposite

Starts a SOA composite application.

ant-sca-mgmt.xml
stopComposite

Stops a SOA composite application.

ant-sca-mgmt.xml
activateComposite

Activates a SOA composite application.

ant-sca-mgmt.xml
retireComposite

Retires a SOA composite application.

ant-sca-mgmt.xml
assignDefaultComposite

Assigns a default revision version.

ant-sca-mgmt.xml
listDeployedComposites

Lists deployed SOA composite applications.

ant-sca-mgmt.xml
listPartitions

Lists all available partitions in the SOA Infrastructure.

ant-sca-mgmt.xml
listCompositesInPartitio
n

Lists all composites in a partition.

Chapter 48
Deploying and Managing SOA Composite Applications with ant Scripts

48-46

Table 48-10 (Cont.) ant Management Scripts

Script Description

ant-sca-mgmt.xml
createPartition

Creates a partition in the SOA Infrastructure.

ant-sca-mgmt.xml
deletePartition

Undeploys all composites in a partition before deleting the partition.

ant-sca-mgmt.xml
startCompositesInPartiti
on

Starts all composites in a partition.

ant-sca-mgmt.xml
stopCompositesInPartitio
n

Stops all composites in a partition.

ant-sca-mgmt.xml
activateCompositesInPart
ition

Activates all composites in a partition.

ant-sca-mgmt.xml
retireCompositesInPartit
ion

Retires all composites in a partition.

ant-sca-upgrade.xml Migrates BPEL and Oracle Enterprise Service Bus (ESB) release
10.1.3 metadata to release 11g.

Note: If any Java code is part of the project, you must manually modify
the code to pass compilation with an 11g compiler. For BPEL process
instance data, active data used by the 10.1.3 Oracle BPEL Server is
not migrated.

For additional information about ant, visit the following URL:

http://ant.apache.org

How to Use ant to Automate the Testing of a SOA Composite Application
The following provides an example of executing a test case. Test cases enable you to
automate the testing of SOA composite applications:

ant -f ant-sca-test.xml -Dscatest.input=MyComposite
-Djndi.properties=/home/jdoe/jndi.properties

Table 48-11 describes the syntax.

Chapter 48
Deploying and Managing SOA Composite Applications with ant Scripts

48-47

http://ant.apache.org

Table 48-11 ant Testing Commands

Argument Definition

scatest Possible inputs are as follows:

• java.passed.home
The script picks this from the environment value of JAVA_HOME. Provide
this input to override.

• wl_home
This is the location of Oracle WebLogic Server home (defaults to
Oracle_Home/.../wlserver_10.3).

• scatest.input
The name of the composite to test.

• scatest.format
The format of the output file (defaults to native; the other option is
junit).

• scatest.result
The result directory in which to place the output files (defaults to
temp_dir/out).

• jndi.properties.input
The jndi.properties file to use.

jndi. properties Absolute path to the JNDI property file. This is a property file that contains
JNDI properties for connecting to the server. For example:

java.naming.factory.initial=weblogic.jndi.WLInitialContextFactory
java.naming.provider.url=t3://myserver.us.example.com:8001/soa-
infra
java.naming.security.principal=weblogic
dedicated.connection=true
dedicated.rmicontext=true

Since a composite test (in a test suite) is executed on the SOA Infrastructure,
this properties file contains the connection information. For this example, these
properties create a connection to the SOA Infrastructure hosted in
myserver.us.example.com, port 8001 and use a user name of weblogic.
You are prompted to specify the password.

You typically create one jndi.properties file (for example, in /home/
myhome/jndi.properties) and use it for all test runs.

For more information on creating and running tests on SOA composite applications, see
Automating Testing of SOA Composite Applications and Administering Oracle SOA Suite and
Oracle Business Process Management Suite.

How to Use ant to Compile a SOA Composite Application
The following provides an example of compiling a SOA composite application, which validates
it for structure and syntax:

ant -f ant-sca-compile.xml
-Dscac.input=/myApplication/myComposite/composite.xml

Table 48-12 describes the syntax.

Chapter 48
Deploying and Managing SOA Composite Applications with ant Scripts

48-48

Table 48-12 ant Compiling Commands

Argument Definition

scac Possible inputs are as follows:

• java.passed.home
The script picks this from the environment value of JAVA_HOME. Provide
this input to override.

• wl_home
This is the location of Oracle WebLogic Server home.

• scac.input
The composite.xml file to compile.

• scac.output
The output file with scac results (defaults to temp_dir/out.xml).

• scac.error
The file with scac errors (defaults to temp_dir/out.err).

• scac.application.home
The Oracle JDeveloper application home directory of the SOA composite
application being compiled that contains the .adf directory in it. This
argument is optional only when you compile the SOA composite
application from within the project directory.

• scac.displayLevel
Controls the level of logs written to scac.output file. The value can be 1,
2, or 3 (this defaults to 1).

How to Use ant to Package a SOA Composite Application into a Composite
SAR File

The following provides an example of packaging a SOA composite application into a composite
SAR file. The outcome of this command is a SOA archive. Check the output of the command
for the exact location of the resulting file.

ant -f ant-sca-package.xml
-DcompositeDir=C:\demo\end2end-105-POProcessing\po\solutions\ch9\POProcessing\POPr
ocessing
-DcompositeName=POProcessing
-Drevision=6-cmdline
-Dsca.application.home=C:\demo\end2end-105-POProcessing\po\solutions\ch9\POProces
sing

Table 48-13 describes the syntax.

Table 48-13 ant Packaging Commands

Argument Definition

compositeDir Absolute path of a directory that contains composite artifacts.

compositeName Name of the composite.

revision Revision ID of the composite.

Chapter 48
Deploying and Managing SOA Composite Applications with ant Scripts

48-49

Table 48-13 (Cont.) ant Packaging Commands

Argument Definition

sca.application.ho
me

Absolute path of the application home directory. This property is required if
your SOA composite application accesses shared artifacts in the MDS
Repository. If not, it is optional.

oracle.home Optional. The oracle.home property.

How to Use ant to Deploy a SOA Composite Application
The following provides an example of deploying a SOA composite application. You can also
use this command to deploy shared data such as WSDLs, XSDs, and other file types across
SOA composite applications. For information about shared data, see How to Deploy and Use
Shared Data Across Multiple SOA Composite Applications in Oracle JDeveloper .

ant -f ant-sca-deploy.xml
-DserverURL=http://localhost:8001
-DsarLocation=C:\demo\end2end-105-POProcessing\po\solutions\ch9\POProcessing\POPro
cessing\deploy\sca_POProcessing_rev6-cmdline.jar
-Doverwrite=true
-Duser=weblogic
-DforceDefault=true
-Dconfigplan=C:\demo\end2end-105-POProcessing\po\solutions\ch9\POProcessing\POProc
 essing\demed_cfgplan.xml
-Dscac.user.classpath=C:\jarfolder\custom.jar
-Dpartition=partition.name

Note:

After specifying the user name, enter the password when prompted.

Table 48-14 describes the syntax.

Table 48-14 ant Deployment Commands

Argument Definition

serverURL URL of the server that hosts the SOA Infrastructure application (for example,
http://myhost10:8001).

sarLocation Absolute path to one the following:

• SAR file.
• ZIP file that includes multiple SARs.

overwrite Optional. Indicates whether to overwrite an existing SOA composite
application on the server.

• false (default): Does not overwrite the file.

• true: Overwrites the file.

user Optional. User name to access the composite deployer servlet when basic
authentication is configured.

Chapter 48
Deploying and Managing SOA Composite Applications with ant Scripts

48-50

Table 48-14 (Cont.) ant Deployment Commands

Argument Definition

password Optional. Password to access the composite deployer servlet when basic
authentication is configured.

If you enter the user name, you are prompted to enter the password if you do
not provide it here.

forceDefault Optional. Indicates whether to set the version being deployed as the default
version for that composite application.

• true (default): Makes it the default composite.

• false: Does not make it the default composite.

configplan Absolute path of a configuration plan to be applied to a specified SAR file or to
all SAR files included in the ZIP file.

sysPropFile Passes in a system properties file that is useful for setting extra system
properties, for debugging, for SSL configuration, and so on.

If you specify a file name (for example, tmp-sys.properties), you can
define properties such as the following:

javax.net.debug=all

scac.user.classpat
h

Optional. The name of the external custom library. If you have a SOA
composite application with a BPEL process service component that refers to a
custom JAR file, set this property.

partition Optional. The name of the partition in which to deploy the SOA composite
application. The default value is default. If you do not specify a partition, the
composite is automatically deployed into the default partition.

Note:

Human workflow artifacts such as task mapped attributes (previously known as flex
field mappings) and rules (such as vacation rules) are defined based on the
namespace of the task definition. Therefore, the following issues are true when the
same SOA composite application with a human workflow task is deployed into
multiple partitions:

• For the same task definition type, mapped attributes defined in one partition are
visible in another partition.

• Rules defined on a task definition in one partition can apply to the same definition
in another partition.

How to Use ant to Undeploy a SOA Composite Application
The following provides an example of undeploying a SOA composite application.

ant -f ant-sca-deploy.xml undeploy
-DserverURL=http://localhost:8001
-DcompositeName=POProcessing
-Drevision=rev6-cmdline
-Duser=weblogic
-Dpartition=partition.name

Chapter 48
Deploying and Managing SOA Composite Applications with ant Scripts

48-51

Note:

After specifying the user name, enter the password when prompted.

Table 48-15 describes the syntax.

Table 48-15 ant Undeployment Commands

Argument Definition

serverURL URL of the server that hosts the SOA Infrastructure application (for example,
http://myhost10:7001).

compositeName Name of the SOA composite application.

revision Revision ID of the SOA composite application.

user Optional. User name to access the composite deployer servlet when basic
authentication is configured.

If you enter the user name, you are prompted to enter the corresponding
password.

password Optional. Password to access the composite deployer servlet when basic
authentication is configured.

partition Optional. The name of the partition in which the SOA composite application is
located. The default value is default. If you do not specify a partition, the
default partition is searched for the SOA composite application. However, no
other partitions are searched.

How to Use ant to Export a Composite into a SAR File
The following provides an example of exporting a composite into a SAR file.

ant -f ant-sca-deploy.xml exportComposite -DserverURL=server.url
 -DupdateType=update.type -DsarFile=sar.file
 -DcompositeName=composite.name -Drevision=revision -Duser=user

Note:

After specifying the user name, enter the password when prompted.

Table 48-16 describes the syntax.

Table 48-16 ant Export Commands

Argument Definition

serverURL The URL of the server that hosts the SOA Infrastructure application (for
example, http://myhost:8001).

Chapter 48
Deploying and Managing SOA Composite Applications with ant Scripts

48-52

Table 48-16 (Cont.) ant Export Commands

Argument Definition

updateType The type of postdeployment changes to be included:

• none: No postdeployment changes are included.

• all: All postdeployment changes are included.

• property: Property changes are included (binding component properties,
composite properties such as audit level settings and payload validation
status, and policy attachments).

• runtime: Postdeployment runtime changes are included (rules dictionary
and domain value maps (DVMs)).

sarFile The absolute path of the SAR file to be generated.

compositeName The name of the composite to be exported.

revision The revision of the composite to be exported.

user Optional. The user name for accessing the server when basic configuration is
configured.

password Optional. The password for accessing the server when basic configuration is
configured.

The following example shows how to export a composite without including any postdeployment
changes:

ant -f ant-sca-deploy.xml exportComposite -DserverURL=http://myhost:8001
 -DupdateType=none
 -DsarFile=/tmp/sca_HelloWorld_rev1.0.jar -DcompositeName=HelloWorld
 -Drevision=1.0

The following example shows how to export a composite with all postdeployment changes:

ant -f ant-sca-deploy.xml exportComposite -DserverURL=http://myhost:8001
 -DupdateType=all
 -DsarFile=/tmp/sca_HelloWorld_rev1.0-all.jar -DcompositeName=HelloWorld
 -Drevision=1.0

The following example shows how to export a composite with property postdeployment
updates:

ant -f ant-sca-deploy.xml exportComposite -DserverURL=http://myhost:8001
 -DupdateType=property
 -DsarFile=/tmp/sca_HelloWorld_rev1.0-prop.jar -DcompositeName=HelloWorld
 -Drevision=1.0

The following example shows how to export a composite with runtime/metadata
postdeployment updates:

ant -f ant-sca-deploy.xml exportComposite -DserverURL=http://myhost:8001
 -DupdateType=runtime
 -DsarFile=/tmp/sca_HelloWorld_rev1.0-runtime.jar
 -DcompositeName=HelloWorld -Drevision=1.0

Chapter 48
Deploying and Managing SOA Composite Applications with ant Scripts

48-53

How to Use ant to Export Postdeployment Changes of a Composite into a
JAR File

The following provides an example of exporting postdeployment changes of a composite into a
JAR file.

ant -f ant-sca-deploy.xml exportUpdates -DserverURL=server.url
 -DupdateType=update.type -DjarFile=jar.file
 -DcompositeName=composite.name -Drevision=revision -Duser=user

Note:

After specifying the user name, enter the password when prompted.

Table 48-17 describes the syntax.

Table 48-17 ant Postdeployment Export Commands

Argument Definition

serverURL The URL of the server that hosts the SOA Infrastructure application (for
example, http://myhost:8001).

updateType The type of postdeployment changes to be exported.

• all: Includes all postdeployment changes.

• property: Includes only property postdeployment changes (binding
component properties, composite properties such as audit level settings
and payload validation status, and policy attachments).

• runtime: Includes only runtime (rules dictionary and domain value maps
(DVMs)).

jarFile The absolute path of the JAR file to be generated.

compositeName The name of the composite to be exported.

revision The revision of the composite to be exported.

user Optional. The user name for accessing the server when basic configuration is
configured.

password Optional. The password for accessing the server when basic configuration is
configured.

The following example shows how to export all postdeployment updates:

ant -f ant-sca-deploy.xml exportUpdates -DserverURL=http://myhost:8001
 -DupdateType=all
 -DjarFile=/tmp/all-HelloWorld_rev1.0.jar -DcompositeName=HelloWorld
 -Drevision=1.0

The following example shows how to export property postdeployment updates:

ant -f ant-sca-deploy.xml exportUpdates -DserverURL=http://myhost:8001
 -DupdateType=property
 -DjarFile=/tmp/prop-HelloWorld_rev1.0.jar -DcompositeName=HelloWorld
 -Drevision=1.0

Chapter 48
Deploying and Managing SOA Composite Applications with ant Scripts

48-54

The following example shows how to export runtime/metadata postdeployment updates.

ant -f ant-sca-deploy.xml exportUpdates -DserverURL=http://myhost:8001
 -DupdateType=runtime
 -DjarFile=/tmp/runtime-HelloWorld_rev1.0.jar -DcompositeName=HelloWorld
 -Drevision=1.0

How to Use ant to Import Postdeployment Changes of a Composite
The following provides an example of importing postdeployment changes of a composite.

ant -f ant-sca-deploy.xml importUpdates -DserverURL=server.url -DjarFile=jar.file
 -DcompositeName=composite.name -Drevision=revision -Duser=user

Note:

After specifying the user name, enter the password when prompted.

Table 48-18 describes the syntax.

Table 48-18 ant Postdeployment Import Commands

Argument Definition

serverURL The URL of the server that hosts the SOA Infrastructure application (for
example, http://myhost:8001).

jarFile The absolute path of the JAR file that contains postdeployment changes.

compositeName The name of the composite into which the postdeployment changes are
imported.

revision The revision of the composite to which the postdeployment changes are
imported.

user Optional. The user name for accessing the server when basic configuration is
configured.

password Optional. The password for accessing the server when basic configuration is
configured.

The following example shows how to import postdeployment changes of a composite:

ant -f ant-sca-deploy.xml importUpdates -DserverURL=http://myhost:8001
 -DjarFile=/tmp/prop-HelloWorld_rev1.0.jar -DcompositeName=HelloWorld
 -Drevision=1.0

How to Use ant to Export Shared Data of a Given Pattern into a JAR File
The following provides an example of exporting shared data of a given pattern into a JAR file.

ant -f ant-sca-deploy.xml exportSharedData -DserverURL=server.url
 -DjarFile=jar.file -Dpattern=pattern -Duser=user

Chapter 48
Deploying and Managing SOA Composite Applications with ant Scripts

48-55

Note:

After specifying the user name, enter the password when prompted.

Table 48-19 describes the syntax.

Table 48-19 ant Shared Data Export Commands

Argument Definition

serverURL The URL of the server that hosts the SOA Infrastructure application (for
example, http://myhost:8001).

jarFile The absolute path of the JAR file to be generated.

pattern The file pattern supported by Oracle MDS Repository transfer APIs. Use the
semicolon delimiter (;) if multiple patterns are specified. Exclude the shared
data namespace /apps in the pattern. For example:

/Project1/**;/Project2/**

This example exports all documents under /apps/Project1 and /apps/
Project2.

user Optional. The user name for accessing the server when basic configuration is
configured.

password The password for accessing the server when basic configuration is configured.
This parameter is optional.

The following example shows how to export shared data of a given pattern into a JAR file.

ant -f ant-sca-deploy.xml exportSharedData -DserverURL=http://myhost:8001
 -DjarFile=/tmp/MySharedData.jar
 -Dpattern="/Project1/**"

How to Use ant to Remove a Top-level Shared Data Folder
The following provides an example of removing a top-level shared data folder, even if there are
composites deployed in the service engine:

ant -f ant-sca-deploy.xml removeSharedData -DserverURL=server.url
 -DfolderName=folder.name -Duser=user

Note:

After specifying the user name, enter the password when prompted.

Table 48-20 describes the syntax.

Chapter 48
Deploying and Managing SOA Composite Applications with ant Scripts

48-56

Table 48-20 ant Shared Data Folder Removal Commands

Argument Definition

serverURL URL of the server that hosts the SOA Infrastructure application (for example,
http://myhost10:8001).

foldername The name of the top-level shared data folder to remove.

user Optional. The user name for accessing the server when basic configuration is
configured.

password Optional. The password for accessing the server when basic configuration is
configured.

The following example shows how to remove a top-level shared data folder named Project1:

ant -f ant-sca-deploy.xml removeSharedData -DserverURL=http://myhost:8001
 -DfolderName=Project1

How to Use ant to Start a SOA Composite Application
The following provides an example of starting a SOA composite application:

ant -f ant-sca-mgmt.xml startComposite -Dhost=myhost -Dport=8001 -Duser=weblogic
 -DcompositeName=HelloWorld -Drevision=1.0 -Dpartition=partition.name

Note:

After specifying the user name, enter the password when prompted.

Table 48-21 describes the syntax.

Table 48-21 ant SOA Composite Application Startup Commands

Argument Definition

host Hostname of the Oracle WebLogic Server (for example, myhost).

port Port of the Oracle WebLogic Server (for example, 7001).

user User name for connecting to the running server to get MBean information (for
example, weblogic).

password Password for the user name.

compositeName Name of the SOA composite application.

revision Revision of the SOA composite application.

label Optional. Label of the SOA composite application. The label identifies the MDS
artifacts associated with the application. If the label is not specified, the system
finds the latest one.

partition Optional. The name of the partition in which the SOA composite application is
located. The default value is default. If you do not specify a partition, the
default partition is searched for the SOA composite application. However, no
other partitions are searched.

Chapter 48
Deploying and Managing SOA Composite Applications with ant Scripts

48-57

How to Use ant to Stop a SOA Composite Application
The following provides an example of stopping a SOA composite application:

ant -f ant-sca-mgmt.xml stopComposite -Dhost=myhost -Dport=8001 -Duser=weblogic
-DcompositeName=HelloWorld -Drevision=1.0 -Dpartition=partition.name

Note:

After specifying the user name, enter the password when prompted.

Table 48-22 describes the syntax.

Table 48-22 ant SOA Composite Application Stop Commands

Argument Definition

host Hostname of the Oracle WebLogic Server (for example, myhost).

port Port of the Oracle WebLogic Server (for example, 7001).

user User name for connecting to the running server to get MBean information (for
example, weblogic).

password Password for the user name.

compositeName Name of the SOA composite application.

revision Revision of the SOA composite application.

label Optional. Label of the SOA composite application. The label identifies the MDS
artifacts associated with the application. If the label is not specified, the system
finds the latest one.

partition Optional. The name of the partition in which the SOA composite application is
located. The default value is default. If you do not specify a partition, the
default partition is searched for the SOA composite application. However, no
other partitions are searched.

How to Use ant to Activate a SOA Composite Application
The following provides an example of activating a SOA composite application.

ant -f ant-sca-mgmt.xml activateComposite -Dhost=myhost -Dport=8001
-Duser=weblogic-DcompositeName=HelloWorld -Drevision=1.0 -Dpartition=partition.name

Note:

After specifying the user name, enter the password when prompted.

Table 48-23 describes the syntax.

Chapter 48
Deploying and Managing SOA Composite Applications with ant Scripts

48-58

Table 48-23 ant SOA Composite Application Activation Commands

Argument Definition

host Hostname of the Oracle WebLogic Server (for example, myhost).

port Port of the Oracle WebLogic Server (for example, 7001).

user User name for connecting to the running server to get MBean information (for
example, weblogic).

password Password for the user name.

compositeName Name of the SOA composite application.

revision Revision of the SOA composite application.

label Optional. Label of the SOA composite application. The label identifies the MDS
artifacts associated with the application. If the label is not specified, the system
finds the latest one.

partition Optional. The name of the partition in which the SOA composite application is
located. The default value is default. If you do not specify a partition, the
default partition is searched for the SOA composite application. However, no
other partitions are searched.

How to Use ant to Retire a SOA Composite Application
The following provides an example of retiring a SOA composite application:

ant -f ant-sca-mgmt.xml retireComposite -Dhost=myhost -Dport=8001 -Duser=weblogic
-DcompositeName=HelloWorld -Drevision=1.0 -Dpartition=partition.name

Note:

After specifying the user name, enter the password when prompted.

Table 48-24 describes the syntax.

Table 48-24 ant SOA Composite Application Retirement Commands

Argument Definition

host Hostname of the Oracle WebLogic Server (for example, myhost).

port Port of the Oracle WebLogic Server (for example, 7001).

user User name for connecting to the running server to get MBean information (for
example, weblogic).

password Password for the user name.

compositeName Name of the SOA composite application.

revision Revision of the SOA composite application.

label Optional. Label of the SOA composite application. The label identifies the MDS
artifacts associated with the application. If the label is not specified, the system
finds the latest one.

Chapter 48
Deploying and Managing SOA Composite Applications with ant Scripts

48-59

Table 48-24 (Cont.) ant SOA Composite Application Retirement Commands

Argument Definition

partition Optional. The name of the partition in which the SOA composite application is
located. The default value is default. If you do not specify a partition, the
default partition is searched for the SOA composite application. However, no
other partitions are searched.

How to Use ant to Assign the Default Version to a SOA Composite
Application

The following provides an example of assigning the default version to a SOA composite
application.

ant -f ant-sca-mgmt.xml assignDefaultComposite -Dhost=myhost -Dport=8001
-Duser=weblogic -DcompositeName=HelloWorld -Drevision=1.0 -Dpartition=partition.name

Note:

After specifying the user name, enter the password when prompted.

Table 48-25 describes the syntax.

Table 48-25 ant SOA Composite Application Default Version Assignment Commands

Argument Definition

host Hostname of the Oracle WebLogic Server (for example, myhost).

port Port of the Oracle WebLogic Server (for example, 7001).

user User name for connecting to the running server to get MBean information (for
example, weblogic).

password Password for the user name.

compositeName Name of the SOA composite application.

revision Revision of the SOA composite application.

partition Optional. The name of the partition in which the SOA composite application is
located. The default value is default. If you do not specify a partition, the
default partition is searched for the SOA composite application. However, no
other partitions are searched.

How to Use ant to List the Deployed SOA Composite Applications
The following provides an example of listing the deployed SOA composite applications.

ant -f ant-sca-mgmt.xml listDeployedComposites -Dhost=myhost -Dport=8001
-Duser=weblogic

Chapter 48
Deploying and Managing SOA Composite Applications with ant Scripts

48-60

Note:

After specifying the user name, enter the password when prompted.

Table 48-26 describes the syntax.

Table 48-26 ant SOA Composite Application Deployment List Commands

Argument Definition

host Hostname of the Oracle WebLogic Server (for example, myhost).

port Port of the Oracle WebLogic Server (for example, 7001).

user User name for connecting to the running server to get MBean information (for
example, weblogic).

password Password for the user name.

How to Use ant to List All Available Partitions in the SOA Infrastructure
The following provides the syntax for listing all available partitions in the SOA Infrastructure.

ant -f ant-sca-mgmt.xml listPartitions -Dhost=host -Dport=port -Duser=user

Note:

After specifying the user name, enter the password when prompted.

Table 48-27 describes the syntax.

Table 48-27 ant SOA Infrastructure Partitioning List Commands

Argument Definition

host Hostname of the Oracle WebLogic Server (for example, myhost).

port Port of the Oracle WebLogic Server (for example, 7001).

user User name for connecting to the running server to get MBean information (for
example, weblogic).

password Password for the user name.

The following provides an example of listing all available partitions in the SOA Infrastructure:

ant -f ant-sca-mgmt.xml listPartitions -Dhost=myhost10 -Dport=8001

How to Use ant to List All Composites in a Partition
The following provides the syntax for listing all composites in a partition.

ant -f ant-sca-mgmt.xml listCompositesInPartition -Dhost=host -Dport=port -Duser=user -
Dpartition=partition.name

Chapter 48
Deploying and Managing SOA Composite Applications with ant Scripts

48-61

Note:

After specifying the user name, enter the password when prompted.

Table 48-28 describes the syntax.

Table 48-28 ant Composite Partitioning List Commands

Argument Definition

host Hostname of the Oracle WebLogic Server (for example, myhost).

port Port of the Oracle WebLogic Server (for example, 7001).

user User name for connecting to the running server to get MBean information (for
example, weblogic).

password Password for the user name.

partition The name of the partition.

The following provides an example of listing all composites in a partition named myPartition.

ant -f ant-sca-mgmt.xml listCompositesInPartition -Dhost=myhost10 -Dport=8001 -
Dpartition=myPartition

How to Use ant to Create a Partition in the SOA Infrastructure
The following provides the syntax for creating a partition in the SOA Infrastructure.

ant -f ant-sca-mgmt.xml createPartition -Dhost=host -Dport=port -Duser=user
-Dpartition=partition.name

Note:

After specifying the user name, enter the password when prompted.

Table 48-29 describes the syntax.

Table 48-29 ant Partition Creation Commands

Argument Definition

host Hostname of the Oracle WebLogic Server (for example, myhost).

port Port of the Oracle WebLogic Server (for example, 7001).

user User name for connecting to the running server to get MBean information (for
example, weblogic).

password Password for the user name.

partition The name of the partition to create.

The following provides an example of creating a partition in the SOA Infrastructure named
myPartition:

Chapter 48
Deploying and Managing SOA Composite Applications with ant Scripts

48-62

ant -f ant-sca-mgmt.xml createPartition -Dhost=myhost10 -Dport=8001
-Dpartition=myPartition

How to Use ant to Delete a Partition in the SOA Infrastructure
The following provides the syntax for deleting a partition in the SOA Infrastructure. This
command undeploys all composites in the partition before deleting the partition.

ant -f ant-sca-mgmt.xml deletePartition -Dhost=host -Dport=port -Duser=user
-Dpartition=partition.name

Note:

After specifying the user name, enter the password when prompted.

Table 48-30 describes the syntax.

Table 48-30 ant Partition Deletion Commands

Argument Definition

host Hostname of the Oracle WebLogic Server (for example, myhost).

port Port of the Oracle WebLogic Server (for example, 7001).

user User name for connecting to the running server to get MBean information (for
example, weblogic).

password Password for the user name.

partition The name of the partition to delete.

The following provides an example of deleting a partition in the SOA Infrastructure named
myPartition:

ant -f ant-sca-mgmt.xml deletePartition -Dhost=myhost10 -Dport=8001
-Dpartition=myPartition

How to Use ant to Start All Composites in the Partition
The following provides the syntax for starting all composites in the partition:

ant -f ant-sca-mgmt.xml startCompositesInPartition -Dhost=host -Dport=port
-Duser=user -Dpartition=partition.name

Note:

After specifying the user name, enter the password when prompted.

Table 48-31 describes the syntax.

Chapter 48
Deploying and Managing SOA Composite Applications with ant Scripts

48-63

Table 48-31 ant Partition Startup Commands

Argument Definition

host Hostname of the Oracle WebLogic Server (for example, myhost).

port Port of the Oracle WebLogic Server (for example, 7001).

user User name for connecting to the running server to get MBean information (for
example, weblogic).

password Password for the user name.

partition The name of the partition.

The following provides an example of starting all composites in the partition named
myPartition:

ant -f ant-sca-mgmt.xml startCompositesInPartition -Dhost=myhost10 -Dport=8001
-Dpartition=myPartition

How to Use ant to Stop All Composites in the Partition
The following provides the syntax for stopping all composites in the partition:

ant -f ant-sca-mgmt.xml stopCompositesInPartition -Dhost=host -Dport=port
-Duser=user -Dpartition=partition.name

Note:

After specifying the user name, enter the password when prompted.

Table 48-32 describes the syntax.

Table 48-32 ant Partition Composite Stop Commands

Argument Definition

host Hostname of the Oracle WebLogic Server (for example, myhost).

port Port of the Oracle WebLogic Server (for example, 7001).

user User name for connecting to the running server to get MBean information (for
example, weblogic).

password Password for the user name.

partition The name of the partition.

The following provides an example of stopping all composites in the partition named
myPartition:

ant -f ant-sca-mgmt.xml stopCompositesInPartition -Dhost=myhost10 -Dport=8001
-Dpartition=myPartition

How to Use ant to Activate All Composites in the Partition
The following provides the syntax for activating all composites in the partition.

Chapter 48
Deploying and Managing SOA Composite Applications with ant Scripts

48-64

ant -f ant-sca-mgmt.xml activateCompositesInPartition -Dhost=host -Dport=port
-Duser=user -Dpartition=partition.name

Note:

After specifying the user name, enter the password when prompted.

Table 48-33 describes the syntax.

Table 48-33 ant Partition Composite Activation Commands

Argument Definition

host Hostname of the Oracle WebLogic Server (for example, myhost).

port Port of the Oracle WebLogic Server (for example, 7001).

user User name for connecting to the running server to get MBean information (for
example, weblogic).

password Password for the user name.

partition The name of the partition.

The following provides an example of activating all composites in the partition named
myPartition:

ant -f ant-sca-mgmt.xml activateCompositesInPartition -Dhost=myhost10 -Dport=8001
-Dpartition=myPartition

How to Use ant to Retire All Composites in the Partition
The following provides the syntax for retiring all composites in the partition:

ant -f ant-sca-mgmt.xml retireCompositesInPartition -Dhost=host -Dport=port
 -Duser=user -Dpartition=partition.name

Note:

After specifying the user name, enter the password when prompted.

Table 48-34 describes the syntax.

Table 48-34 ant Partition Composite Retirement Commands

Argument Definition

host Hostname of the Oracle WebLogic Server (for example, myhost).

port Port of the Oracle WebLogic Server (for example, 7001).

user User name for connecting to the running server to get MBean information (for
example, weblogic).

password Password for the user name.

Chapter 48
Deploying and Managing SOA Composite Applications with ant Scripts

48-65

Table 48-34 (Cont.) ant Partition Composite Retirement Commands

Argument Definition

partition The name of the partition.

The following provides an example of retiring all composites in the partition named
myPartition:

ant -f ant-sca-mgmt.xml retireCompositesInPartition -Dhost=myhost10 -Dport=8001
-Dpartition=myPartition

How to Use ant to Manage SOA Composite Applications
You can use ant scripts to compile, package, and deploy the application. You can create the
initial ant build files by selecting New > Application > Ant > Buildfile from Project from the
File main menu.

Figure 48-29 shows the build.properties and build.xml files that display in the Applications
window after creation.

Figure 48-29 ant Build Files

• build.properties

A file that you edit to reflect your environment (for example, specifying Oracle home and
Java home directories, setting server properties such as hostname and port number to use
for deployment, specifying the application to deploy, and so on).

• build.xml

Used by ant to compile, build, and deploy composite applications to the server specified in
the build.properties file.

1. Modify the build.properties file to reflect your environment.

2. From the Build menu, select Run Ant on project_name.

This builds targets defined in the current project's build file.

Deploying SOA Composite Applications from Oracle Enterprise
Manager Fusion Middleware Control

You can deploy SOA composite applications from Oracle Enterprise Manager Fusion
Middleware Control. You must first create a deployable archive in Oracle JDeveloper or

Chapter 48
Deploying SOA Composite Applications from Oracle Enterprise Manager Fusion Middleware Control

48-66

through the ant or WLST command line tools. The archive can consist of a single SOA
composite application revision in a JAR file or multiple composite application revisions (known
as a SOA bundle) in a ZIP file. For more information, see Administering Oracle SOA Suite and
Oracle Business Process Management Suite.

Deploying SOA Composite Applications with No Servers Running
You can deploy SOA composite applications and shared data (for example, WSDL and XSD
files) with no managed SOA servers or administration servers running (known as offline
deployment mode). When the servers are restarted, the SOA composite applications and
shared data are deployed.

Offline deployment is beneficial for the following use cases:

• Shared data and new SOA composite applications (for example, the system is new and
does not have any deployed composites).

• One-off patches that may contain a single SOA composite application (new or patched) or
a resource bundle of shared data.

Note the following guidelines when using offline deployment:

• The SOA composite applications and shared data are available in read-only format in the
Oracle home directory. You cannot delete or update the composites.

• The same SOA composite application or shared data file can be included in one or all of
the supported use cases when offline deployment occurs. However, for a particular SOA
composite application, only one composite SAR or shared data file is in the data location
relative to the product data root directory. All cases must point to the same root product
data directory. The same composite data is overwritten by the order of applied use cases.

• You cannot redeploy or undeploy the SOA composite application through offline
deployment.

• Shared data (resource bundle) redeployment is supported since there is no revision
concept with shared data.

• WLST commands are provided for adding and removing individual SOA composite
applications and shared data to and from offline deployments. For information, see SOA
Composite Application Offline Management Deployment in WLST Command Reference for
SOA Suite.

• Configuration plans are not supported with offline deployments.

For information about SAR file naming conventions, see Deployed Service Archives.

For information about shared data, see How to Deploy and Use Shared Data Across Multiple
SOA Composite Applications in Oracle JDeveloper .

Note:

• You cannot deploy ZIP files in offline mode. This is because ZIP files contain
other archives.

• You can only deploy a particular composite SAR file into one partition through
offline deployment.

Chapter 48
Deploying SOA Composite Applications with No Servers Running

48-67

Offline Deployment Configuration Files
Two configuration files control offline deployment:

• soa-configuration.xml (offline deployment configuration list file).

• composite-offline-deployments-version_number.xml (offline deployment configuration
file). The version_number can be any value, but the composite-offline-deployments-
part is fixed and required.

Offline Deployment Configuration List File
The offline deployment configuration list file identifies the location from which to read the offline
deployment configuration files. The file is named soa-configuration.xml and appears in
the $DOMAIN/config/fmwconfig directory. The offline deployment process uses this
configuration file to generate a consolidated configuration list to use in offline deployment. The
following example shows a soa-configuration.xml file in which two directory locations are
listed:

<?xml version="1.0" encoding="UTF-8"?>
<soa-configuration xmlns="http://xmlns.oracle.com/config/soa">
 <soa-directories>
<soa-directory>/scratch/aime/appTop/common/soa-composiste/soa1</soa-directory>
<soa-directory>/scratch/aime/appTop/common/soa-composiste/soa2</soa-directory>
 </soa-directories>
</soa-configuration>

Offline Deployment Configuration File
The offline deployment configuration file specifies the following elements for offline
deployments.

• Partitions are created, as necessary, before the SOA composite applications and shared
resources are deployed. Note the following order of precedence for partition use:

– The partition specified in the <partition> element is created.

– If a partition used in <composite-deployment> is not specified in the <partition>
element, it is created implicitly.

– If the partition attribute is not specified in the <composite-deployment> element, the
composite is deployed into the default partition.

• Shared resources

Shared resources are deployed before the SOA composite applications.

• SOA composite applications

You can list multiple SOA composite applications in the file. However, they are not
deployed in the order in which they are listed in the file.

The file naming convention is composite-offline-deployments-version_number.xml, where
version_number can be any value, but the composite-offline-deployments- part is fixed and
required.

The following example shows the structure of the offline deployment file. The file is divided into
the three sections to represent partitions, SOA composite applications, and shared data.

Chapter 48
Deploying SOA Composite Applications with No Servers Running

48-68

<offline-configuration>
 <partitions>?
 <partition name="partition_name"/>*
 </partitions>
 <composite-deployments>?
 <composite-deployment location="/some/path" partition="partition_name"?>*
 </composite-deployments>
 <shared-resources>?
 <shared-resource location="/some/path"/>*
 </shared-resources>
</offline-configuration>

The following example shows an offline deployment configuration file in which the following is
defined:

• Partition one and two are created.

• The composite SAR file /some/path/sca_composite1.jar is deployed into partition one.

• The composite SAR file /another/path/sca_composite2.jar is deployed into partition
two.

• The composite SAR file /yet/another/path/sca_composite3.jar is deployed into the
default partition.

• The shared data JAR files /some/path/shareddata1.jar and /another/path/
shareddata2.jar are deployed into the shared data location.

<offline-configuration>
 <composite-deployments>
 <composite-deployment location="/some/path/sca_composite1.jar"
 partition="one">
 <composite-deployment location="/another/path/sca_composite2.jar"/
 partition="two">
 <composite-deployment location="/yet/another/path/sca_composite3.jar"/>
 </composite-deployments>
 <shared-resources>
 <shared-resource location="/some/path/shareddata1.jar"/>
 <shared-resource location="/another/path/shareddata2.jar"/>
 </shared-resources>
</offline-configuration>

The following example shows an offline configuration deployment file in which the following
occurs:

• The shared data JAR file named shareddata.jar is deployed.

• The composite SAR file named sca_soaApp1.jar is deployed into the myPartition
partition.

• The composite SAR file named sca_soaApp2.jar is deployed by default into the default
partition because no partition is explicitly defined.

<offline-configuration>
 <composite-deployments>
 <composite-deployment
 location="/scratch/aime/appTop/soa1/sca_soaApp1.jar“
 partition=“myPartition“/>
 <composite-deployment
 location="/scratch/aime/appTop/soa1/sca_soaApp2.jar“/>
 </composite-deployments>
 <shared-resources>
 <shared-resource location="/scratch/aime/appTop/soa1/shareddata.jar"/>

Chapter 48
Deploying SOA Composite Applications with No Servers Running

48-69

 </shared-resources>
</offline-configuration>

The following example shows an offline deployment configuration file in which only shared data
located in the two defined directories is deployed:

<offline-configuration>
 <shared-resources>
 <shared-resource location="/some/path/shareddata1.jar"/>
 <shared-resource location= "/another/path/shareddata2.jar"/>
 </shared-resources>
</offline-configuration>

The following example shows an offline deployment file in which partition one and two are
created. No SOA composite applications or shared data are deployed:

<offline-configuration>
 <partitions>
 <partition name="one"/>
 <partition name="two"/>
 </partitions>
</offline-configuration>

Relative Configuration File Paths
Relative paths are also supported in the offline deployment configuration file. The following
example shows the soa-configuration.xml file:

<?xml version="1.0" encoding="UTF-8"?>
<soa-configuration xmlns="http://xmlns.oracle.com/config/soa">
 <soa-directories>
<soa-directory>/scratch/aime/appTop/common/soa-composiste/soa1</soa-directory>
 </soa-directories>
</soa-configuration>

The following example shows the offline deployment composite-offline-
deployments-1.0.xml file. The two composite SAR files and one shared data JAR file are all
located in the soa1 directory shown in the preceding example.

<offline-configuration>
 <composite-deployments>
 <composite-deployment location="sca_soaApproval.jar" >
 <composite-deployment location="sca_soaNotification.jar">
 </composite-deployments>
 <shared-resources>
 <shared-resource location="soashareddata.jar"/>
 </shared-resources>
</offline-configuration>

Order of Deployment
Offline deployments are processed in the following order:

• The soa-configuration.xml offline deployment configuration list file is read to identify the
location of the offline deployment configuration files (composite-offline-deployments-
version.xml).

• The composite-offline-deployments-version.xml files are read and a consolidated list
is created based on the file location. The consolidated list contains the partitions, shared
data files, and SOA composite application files.

Chapter 48
Deploying SOA Composite Applications with No Servers Running

48-70

• The consolidated list is processed in the following order:

– Partitions

– Shared data files

– SOA composite application files

How to Deploy SOA Composite Applications and Shared Data with No
Server Running

This section provides an overview of the procedures for deploying SOA composite applications
and shared data with no server running.

To deploy SOA composite applications and shared data with no server running:

1. Create an offline deployment configuration list file. This file identifies the location from
which to read the offline deployment configuration files. For examples of the contents of
this file, see Offline Deployment Configuration List File.

2. Create offline deployment configuration files. This file specifies the elements to include in
the offline deployment (partitions, shared data, or SOA composite applications). For
examples of the contents of this file, see Offline Deployment Configuration File.

3. Restart the SOA servers.

The composites are deployed and displayed in the Deployed Composites tab of the SOA
Infrastructure in Oracle Enterprise Manager Fusion Middleware Control. For more
information, see "Managing the State of All Applications at the SOA Infrastructure Level" of
Administering Oracle SOA Suite and Oracle Business Process Management Suite.

If troubleshooting is required, you can view deployment results in the SOA server
diagnostic log file.

What You May Need to Know About Offline Composite Deployment in a
Cluster Environment

When the server starts up during offline composite deployment, the SOA composite application
is deployed to all nodes in the cluster. The registration files are supported in one physical
domain location, rather than synchronizing the files across all physical domain locations in the
cluster. If the cluster is configured where the domain location is present on different physical
hosts, select the domain directory on one host and use that as the offline registration location.

What You May Need to Know About Deploying SOA Composite Applications
that Reference Shared Data That is Not in the MDS Repository

Offline deployment enables a SOA composite application that references shared artifacts in the
MDS Repository to be deployed when the shared data is not present in the MDS Repository.

This is the expected behavior. To save time during server startup, offline deployment uses lazy
loading by default. With lazy loading, you do not see a deployment error when the composite is
deployed during server startup if the composite is referencing nonexistent shared data.
However, you do see the failure when you invoke the composite for the first time. The
composite fails if it references non-existent, shared data. With lazy loading, the failure point is
different; it is not in the deployment, but in the first invocation.

Chapter 48
Deploying SOA Composite Applications with No Servers Running

48-71

Importing XSLT Customizations into a Deployed SOA Composite
Application

Use WLST commands to update XSLT customizations in an existing SOA composite
application.

To import XSLT customizations into an existing SOA composite application:

1. Start WLST:

sh FMW_HOME/oracle_common/common/bin/wlst.sh
2. Use the sca_exportUpdates command to export the customizations to a .jar file.

For example:

sca_exportUpdates('http://soa_server_host:soa_server_port', 'all',
'/tmp/test/sca_SupplierMaintenance_updates.jar', 'SupplierMaintenance',
'1.0', user='weblogic', password='weblogic1')

Note:

If there are no previous customizations, this command will not create a .jar file.
In this case, simply create a dummy .jar file using zip. For example, /tmp/test/
sca_SupplierMaintenance_updates.jar.

3. Connect to the SOA server.

connect('weblogic','weblogic1','t3://soa_server_host:soa_server_port')
4. Use the exportMetadata command to export the existing XSLT (.xsl) file.

exportMetadata(application='soa-infra',server='soa_server1',toLocation='/tmp/
test/',docs='/deployed-composites/default/SupplierMaintenance_rev1.0/Transformations/
Transformation_InitializeBusinessRule.xsl')

5. Edit the .xsl with required updates.

6. Add the updates to the .jar file.
For example:

zip -r sca_SupplierMaintenance_updates.jar Transformations/*

Now the .jar file includes the updated .xsl file under the same directory structure.

7. Use the sca_importUpdates command to import the update back into the SOA composite
application to save the customization.
For example:

 sca_importUpdates('http://soa_server_host:soa_server_port', '/tmp/test/
sca_SupplierMaintenance_updates.jar', 'SupplierMaintenance', '1.0', user='weblogic',
password='weblogic1')

8. Use the sca_exportUpdates command to export the updates again and confirm the
changes are in place.
For example:

 sca_exportUpdates('http://soa_server_host:soa_server_port', 'all', '/tmp/test/
sca_SupplierMaintenance_updates.jar', 'SupplierMaintenance', '1.0', user='weblogic',
password='weblogic1')

Chapter 48
Importing XSLT Customizations into a Deployed SOA Composite Application

48-72

Postdeployment Configuration
This section describes postdeployment configuration tasks.

Security
For information about securing SOA composite applications, see Administering Oracle SOA
Suite and Oracle Business Process Management Suite.

Updating Connections
Ensure that any connections that you created to the application server or MDS Repository are
recreated to point to servers applicable to the next target environment. For more information,
see Creating an Application Server Connection and Creating a SOA-MDS Connection.

Updating Data Sources and Queues
Ensure that all JDBC data source, queue, and connection factory locations that you previously
configured are applicable to the next target environment. For more information, see How to
Create Data Sources and Queues and How to Create Connection Factories and Connection
Pooling.

Attaching Policies
You can attach policies to a deployed SOA composite application during runtime in Oracle
Enterprise Manager Fusion Middleware Control. For more information, see Administering
Oracle SOA Suite and Oracle Business Process Management Suite.

Testing and Troubleshooting
This section describes how to test and troubleshoot your SOA composite application.

Verifying Deployment
You can verify that you have successfully deployed your SOA composite application to the
SOA Infrastructure. If successful, the deployed composite displays in the Deployed
Composites tab of the SOA Infrastructure page of Oracle Enterprise Manager Fusion
Middleware Control. For more information, see Administering Oracle SOA Suite and Oracle
Business Process Management Suite.

Initiating an Instance of a Deployed Composite
You can initiate an instance of a deployed SOA composite application from the Test Web
Service page in Oracle Enterprise Manager Fusion Middleware Control. For more information,
see Administering Oracle SOA Suite and Oracle Business Process Management Suite.

Automating the Testing of Deployed Composites
You can create, deploy, and run test cases that automate the testing of SOA composite
applications. Test cases enable you to simulate the interaction between a SOA composite

Chapter 48
Postdeployment Configuration

48-73

application and its web service partners before deployment in a production environment. You
create test cases in Oracle JDeveloper and include them in a SOA composite application that
is then deployed and run from either Oracle JDeveloper or Oracle Enterprise Manager Fusion
Middleware Control.

For information about creating and running test cases from Oracle JDeveloper, see Automating
Testing of SOA Composite Applications.

For information about running test cases from Oracle Enterprise Manager Fusion Middleware
Control, see Administering Oracle SOA Suite and Oracle Business Process Management
Suite.

Recompiling a Project After Receiving a Deployment Error
If you receive the error shown in the following example when deploying a SOA composite
application from Oracle JDeveloper, recompile the project and redeploy the composite. This
error is intermittent and should not occur again.

Error deploying BPEL suitcase.
error while attempting to deploy the BPEL component file
"/scratch/aime1/work/mw9507/user_projects/domains/WLS_SOAWC/deployed-composites
/ManagementChainParticipantRuleComposite_rev1.0/sca_ManagementChainParticipantR
uleComposite_rev1.0/soa_59d10d76-08a5-41f0-ba89-32dcc2250002";
the exception reported is: java.lang.Exception: BPEL 1.1 compilation failed

This error contained an exception thrown by the underlying deployment module.
Verify the exception trace in the log (with logging level set to debug mode).

at
com.collaxa.cube.engine.deployment.DeploymentManager.deployComponent(Deployment
Manager.java:197)
at
com.collaxa.cube.ejb.impl.CubeServerManagerBean._deployOrLoadComponent(CubeServ
erManagerBean.java:820)
at
com.collaxa.cube.ejb.impl.CubeServerManagerBean.deployComponent(CubeServerManag
erBean.java:119)

Reducing Java Code Size to Resolve Java Compilation Errors
If you receive the Java compilation error shown in the following example in your server log
files, you may have too much code in your Java classes.

Failed to compile bpel generated classes.
failure to compile the generated BPEL classes for BPEL process
"Review_Supply_Plan_ProcessProcess" of composite "default/Review_Supp
ly_Plan_Process!1.0*a9ca2907-8540-4375-b672-ceb560d7b826"
The class path setting is incorrect.
Ensure that the class path is set correctly. If this happens on the server
side, verify that the custom classes or jars which this BPEL process is
depending on are deployed correctly. Also verify that the runtime is using
the same release/version.
. . .
. . .
 at
com.collaxa.cube.lang.compiler.template.CubeProcessGenerator.compile(CubeProce
ssGenerator.java:304)
 at
com.collaxa.cube.lang.compiler.template.CubeProcessGenerator.generate(CubeProc
essGenerator.java:164)

Chapter 48
Testing and Troubleshooting

48-74

 at
com.collaxa.cube.lang.compiler.BPEL1Processor.transform(BPEL1Processor.java:25
7)
 at
com.collaxa.cube.lang.compiler.BPEL1Processor.process(BPEL1Processor.java:161)

To reduce Java code size to resolve Java compilation errors:

1. Open the $MIDDLEWARE_HOME/user_projects/domains/domain_name/bin/
SetDomainEnv.sh file (for Linux) or SetDomainEnv.bat file (for Windows).

2. Locate the EXTRA_JAVA_PROPERTIES="-Dorabpel.codegen.density" property in this file. If
this property is not explicitly set, it defaults to values of 64,32.

3. Reduce the values:

EXTRA_JAVA_PROPERTIES="-Dorabpel.codegen.density=32,16"

By reducing these two values, you increase the number of classes and methods that are
generated for the compiled process map. As a best practice, if the process fails to compile
using the default settings, set the property with smaller values. The following values are
good combinations to try:

32,16
16,8
8,4
4,2

4. Save your changes.

5. Restart the server.

6. Recompile your SOA composite application.

Troubleshooting Common Deployment Errors
This section describes how to troubleshoot common deployment errors.

For information about general composite application troubleshooting issues, see Administering
Oracle SOA Suite and Oracle Business Process Management Suite.

Common Oracle JDeveloper Deployment Issues
This section provides a list of common deployment issues to check.

• If you are deploying a single composite application, ensure that you are deploying from the
Project menu. Right-click the project name in the Applications window, and select Deploy
> SOA_profile_name.

• If you are deploying multiple composite applications, ensure that you are deploying from
the Application menu. (Right-click the application name in the Applications window, and
select Deploy > SOA_bundle_profile_name).

• Once you click Deploy and select the profile name, ensure that the Deployment Action
page of the deployment wizard is displayed.

• Optionally enter a new revision ID (optional) and select the configuration plan (if any).

• If the composite application you are deploying is already located on the server with the
same revision ID, then check the Overwrite any existing composites with the same
revision ID check box in the Deploy Configuration page of the deployment wizard. Without
selecting this option, deployment fails.

Chapter 48
Testing and Troubleshooting

48-75

• If compilation fails, a compiler error occurred, and not a deployment error. You only see this
error when you compile your project.

• If compiler messages are not obvious, check the compiler log. A link to this log file
(scac.log) is displayed in the Messages tab. The message looks similar to that shown in
the following example.

Compilation of project 'FirstComposite.jpr' finished. Check '/scratch/myhome/
jdevWorkarea/mywork/Application11/FirstComposite/SCA-INF/classes/scac.log' for
details.

• After compilation is successful, a SAR/SOA bundle archive is built for the composite. For a
SAR archive, the message shown in the following example is displayed in the Deployment
tab.

Wrote Archive Module to
/scratch/myhome/jdevWorkarea/mywork/Application11/FirstComposite/deploy/sca_
FirstComposite_rev1.0.jar

For a SOA bundle archive, the message shown in the following example is displayed in the
Deployment tab.

Wrote Archive Module to
/scratch/myhome/jdevWorkarea/mywork/Application11/SecondComposite/deploy/sca_
SecondComposite_rev1.0.jar
Wrote Archive Module to
/scratch/myhome/jdevWorkarea/mywork/Application11/FirstComposite/deploy/sca_
FirstComposite_rev1.0.jar
Wrote Archive Module to
/scratch/myhome/jdevWorkarea/mywork/Application11/deploy/soabundle1.zip

• Ensure that all SAR file URLs look as follows:

sca_CompositeName_revRevisionID.jar

For example, sca_FirstComposite_rev1.0.jar.

• After this occurs, Oracle JDeveloper sends the archive binaries to the server. The following
message is displayed in the Deployment tab. At this point, Oracle JDeveloper's
deployment role ends and the server (SOA Infrastructure) takes control of deployment.

Deploying sca_FirstComposite_rev1.0.jar to myhost19:7001
• Upon successful deployment, you see the message shown in the following example in the

Deployment tab.

Received HTTP response from the server, response code=200 Successfully deployed
archive soa_bundle_name.zip to soa_server_name

• If deployment fails, the message shown in the following example is displayed in the
Deployment tab with an error message (if any) from the server.

Error deploying the archive. Check server log for more details.
Connection refused.
Elapsed time for deployment: 8 seconds

• In most cases, the server provides some information about the error that occurred on the
server. If you do not receive any error message from the server, then check soa_server1-
diagnostic.log on the server to find additional information (where soa_server1 is the
name of the managed server). This file is located on the server in domain_home/servers/
soa_server1/logs.

Chapter 48
Testing and Troubleshooting

48-76

Common Configuration Plan Issues
This section provides a list of common configuration plan issues to check.

• If you selected a configuration plan to deploy, and it is not taking effect on the server, open
the SAR file containing the configuration plan. You can find the file location from the
Deployment tab in Oracle JDeveloper. The following example provides details.

Wrote Archive Module to
/scratch/myhome/jdevWorkarea/mywork/Application11/FirstComposite/deploy/sca_
FirstComposite_rev1.0.jar

• Open the JAR file and ensure that it contains the soaconfigplan.xml file. This file is
generated during deployment based on the configuration plan you selected.

• If this file is not present, try deploying the composite application again to ensure that you
have correctly selected the configuration plan in the Deploy Configuration page of the
deployment wizard.

Deploying to a Managed Oracle WebLogic Server
If you start a managed Oracle WebLogic Server without starting an Oracle WebLogic
Administration Server (known as running in independence mode) and attempt to deploy a SOA
composite application from Oracle JDeveloper, you receive the following error:

Deployment cannot continue! No SOA Configured target servers found

The Oracle WebLogic Administration Server must be running. Deployment uses the Oracle
WebLogic Administration Server connection to identify the servers running Oracle SOA Suite.
In addition, do not create an application server connection to a Managed Server; only create
connections to an Oracle WebLogic Administration Server.

You can also receive a similar error if the condition of the SOA-configured Oracle WebLogic
Server is not healthy. This condition displays in the Health column of the Servers page of
Oracle WebLogic Remote Console.

You can use WLST to deploy SOA composite applications to a managed Oracle WebLogic
Server without starting an Oracle WebLogic Administration Server. See Deploying and
Managing SOA Composite Applications with the WLST Utility for details.

Deploying to a Two-Way, SSL-Enabled Oracle WebLogic Server
Deployment from Oracle JDeveloper to a two-way, SSL-enabled Oracle WebLogic Server is
not supported.

Deploying with an Unreachable Proxy Server
You can receive an error similar to that shown in Figure 48-30 during SOA composite
application deployment if you have a proxy server set in Oracle JDeveloper that is not
reachable from your host.

Chapter 48
Testing and Troubleshooting

48-77

Figure 48-30 Deployment Error Message

A valid proxy setting is necessary for accessing a SOA Infrastructure (for example,
soa_server1) outside the network. If the SOA Infrastructure is within the network, perform one
of the following actions:

To change the proxy setting:

1. From the Tools menu, select Preferences > Web Browser and Proxy.

2. Perform one of the following tasks if the SOA server is within the network:

a. Deselect Use HTTP Proxy Server if you can directly access the SOA Infrastructure
without any proxy.

b. In the Exceptions field, enter the hostname of the unreachable SOA server.

Releasing Locks to Resolve ADF Task Form EAR File Deployment Errors
If you deploy a SOA composite application JAR file and ADF task form EAR file, and the SOA
JAR file is deployed successfully, but while deploying the EAR file, the following errors are
displayed:

[wldeploy] weblogic.management.ManagementException: [Deployer:149163]The
domain edit lock is owned by another session in non-exclusive mode - this
deployment operation requires exclusive access to the edit lock and hence
cannot proceed. If you are using "Automatically Aquire Lock and Activate
Changes" in the console, then the lock will expire shortly so retry this
operation.

This error means you must first release the lock from Oracle WebLogic Server Administration
Console to successfully deploy the EAR file.

To release locks to resolve ADF task form EAR file deployment errors:

1. Log in to the Oracle WebLogic Server Administration Console.

2. Below the console banner at the top of the page, click Preferences > User Preferences.

3. Deselect Automatically Acquire Lock and Activate Changes.

4. Click Save and note that buttons such as Lock and Edit and Release Configuration are
visible.

Note the following description that is displayed in the Oracle WebLogic Server
Administration Console:

Automatically acquire the lock that enables configuration editing and
automatically activate changes as the user modifies, adds and deletes items
 (for example, when the user clicks the 'Save' button). This feature is not
 available in production mode.

This error can occur regardless of the deployment method you are using (for example,
deploying through Oracle JDeveloper or through ant scripts).

Chapter 48
Testing and Troubleshooting

48-78

Increasing Memory to Recover from Compilation Errors
If you receive out-of-memory errors during compilation of a SOA composite application,
perform the following step to increase memory.

1. Open the ant-sca-compile.xml file in the $ORACLE_HOME/bin directory.

2. Under the scac element, increase the memory setting. For example:

<jvmarg value="-Xmx512M"/>

Oracle JDeveloper Compilation Error When Property Alias Definition is Missing for a
Receive Activity with a Correlation Set

When a property alias definition is missing for a receive activity with a correlation set, the
Oracle JDeveloper compiler fails with SCAC-50012 error.

ADF Binding Service Names Must Be Unique Across All Deployed SOA Composite
Applications

All ADF bindings must have a unique service name across all deployed SOA composite
applications.

For example, assume you perform the following steps:

1. Build and successfully deploy a SOA composite application that includes multiple
composites to the SOA server.

2. Change one of the composites in the SOA composite application by adding new
components and an outbound external reference.

3. Compile and successfully build the updated SOA composite application as revision 2.0.

4. Deploy the updated SOA composite application to the same partition or a different
partition.

You can receive the following error:

<Oct 7, 2013 11:52:01 AM EDT> <Error> <ServletContext-/soa-infra>
<BEA-000000> <Error during deployment
oracle.fabric.common.FabricException: Deployment Failed: The serviceName
attribute "OrderProcessorService" has already been used. ServiceName must
be unique among all deployed composites. The new service will overwrite the
old one.
 at
oracle.integration.platform.blocks.deploy.StandaloneCompositeDeploymentCoordin
atorImpl.coordinateCompositeDeployment(StandaloneCompositeDeploymentCoordinato
rImpl.java:99)
. . .
. . .

This error occurred because all ADF bindings must have a unique service name across all
deployed SOA composite applications.

5. As a workaround, you must edit the composite.xml file and assign a different name for the
service in the.adf binding.adf section. For example:

<binding.adf serviceName="OrderProcessorService_v2" registryName=""/>
 <!-- exposed for using via direct binding api -->

Chapter 48
Testing and Troubleshooting

48-79

Patching Running Instances of a SOA Composite
Oracle SOA Suite 12c (12.2.1) supports Composite Instance Patching, which enables you to
patch running instances of a composite and recover faulted instances after patching the
runtime. You can only include those fixes in the patch that are compatible with Composite
Instance Patching. Use the SOA Patch Developer role in Oracle JDeveloper to make the fixes
and create the patch.

Composite Instance Patching enables you to deliver urgent composite fixes that can be picked
up by long running instances. You can make compatible/allowed changes without aborting in-
flight instances. If a patched running instance comes across a business process that has been
fixed by the patch, say a BPEL transformation, then it picks up the fixes applied to the business
process.

Note:

This SOA Suite feature is part of Oracle Integration Continuous Availability. Please
refer to the Oracle Fusion Middleware Licensing Information for more details on
Oracle SOA Suite for Middleware Options.

When designing the patch, the SOA Patch Developer mode in JDeveloper automatically
disables changes that cannot be made to the patch. Some of the compatible changes that you
can make include:

• Non-schema related XSLT changes, changes to fault policy, sensor data, and analytics
data.

• Compatible BPEL changes such as transformation activity, assign operations, etc.

• JCA Adapter configuration properties.

You do not specify any composite version during deployment. The composite revision that you
create the patch for, in Oracle JDeveloper, is the composite revision to which the patch is
deployed.

You can validate the patch before deploying.

Use the following steps to create and deploy the patch to runtime.

1. Use the SOA Patch Developer role in Oracle JDeveloper to make changes to your
composite and create the patch.

See Using the SOA Patch Developer Mode in JDeveloper for details.

2. Validate and deploy the patch using the WLST command-line utility.

See Verifying and Deploying the Patch Using WLST for details.
If the patch contains fixes to your composite, you can recover faulted instances in
Enterprise Manager Fusion Middleware Control after deploying the patch.

Using the SOA Patch Developer Mode in JDeveloper
Use the SOA Patch Developer mode in Oracle JDeveloper to create a patch, containing fixes,
for your deployed composite. The patch created in this mode can be applied to the currently

Chapter 48
Patching Running Instances of a SOA Composite

48-80

deployed composite without changing the version number of the deployed composite. You can
apply the patch to runtime even if the composite has running instances.

To use the SOA Patch Developer mode in JDeveloper:

• If you already have your project open in JDeveloper, you need to switch to the SOA Patch
Developer mode. Select Tools > Switch Roles > SOA Patch Developer from the Oracle
JDeveloper menu bar.

The Confirm Restart dialog appears.

The dialog reminds you of the fact that you can make only limited edits in the SOA Patch
Developer mode. Click OK to restart JDeveloper.

• If you do not have Oracle JDeveloper open, start JDeveloper and select the SOA Patch
Developer role in the Select Role dialog.

Chapter 48
Patching Running Instances of a SOA Composite

48-81

After JDeveloper starts in the SOA Patch Developer mode, you’d notice that the composite
editor has the SOA Patch mode label. This reminds you that you can only make edits that are
compatible with the patch mode.

Also, when you are editing a BPEL component, for example, the BPEL editor has the Patch
mode label.

Chapter 48
Patching Running Instances of a SOA Composite

48-82

Only certain activities in the BPEL process are available for editing, the rest of them appear in
gray. Also, notice that the Components window shows only those components that are
available for use in the SOA Patch Developer mode. A number of properties appear in read-
only mode.

Generating the Patch XML File
When you make changes to your composite in the SOA Patch Developer mode of Oracle
JDeveloper, and save the changes, a patch.xml file is automatically generated. The
patch.xml file indicates the changes that you have made to the composite.

The following steps discuss creating and viewing the patch.xml file in JDeveloper

Make sure that you are in the SOA Patch Developer mode and your SOA composite is open
for editing.

1. Affect the changes, or fixes, required to the composite.

Only limited changes are allowed in the SOA Patch Developer mode. These are changes
that can be deployed to the runtime without affecting running instances.

For example, you might want to make fixes to an XSLT map associated with a BPEL
transformation activity.

2. Save all your files in JDeveloper.

You can click on the Save All button in the JDeveloper main toolbar, for example.

A patch.xml file is automatically created under project_directory/SOA/SCA-INF
directory. The patch.xml file gets updated every time you make and save changes to
your composite in the SOA Patch Developer mode.

3. Optionally view the patch.xml file.

You can select Application > Overview from the main menu bar and select patch.xml
under XML Files. Click Edit to open the patch.xml file.

The following image shows a sample patch.xml file. You can see that an XSL
transformation and a BPEL process have been patched.

Chapter 48
Patching Running Instances of a SOA Composite

48-83

Note:

The patch also includes any sensor information. This ensures that any Design-
Time at Runtime (DT@RT) related changes are retained.

Creating a Sparse Deployment Profile
After creating a patch in the SOA Patch Developer mode, create a sparse deployment profile
for deploying the changes to runtime. This creates a patch jar file in the deploy directory that
you can deploy to runtime.

Use the following steps to create a sparse deployment profile using JDeveloper.

1. Right-click the project name in the Applications window, and select Deploy >
Your_Project_Name.

You can also choose to create a new deployment profile.

The Deploy Project_Name wizard appears.

2. Complete the wizard steps, as you would do to deploy a project.

Notice that the Deploy Configuration screen does not allow you to create a new version, or
overwrite an existing version. This is because the patch would be deployed to runtime
without creating another version, and without affecting running instances.

Chapter 48
Patching Running Instances of a SOA Composite

48-84

The Summary screen shows you the name and path of the
sca_projectname_patch.jar file that is created in the deploy directory.

3. Click Finish to create the patch jar file.

The project_name/deploy directory should now contain the patch jar in addition to the
original project jar.
You can open the patch jar to view the components included in it. The patch jar contains
only those components that you modified in the SOA Patch Developer mode.

Verifying and Deploying the Patch Using WLST
You can validate and deploy the patch jar file using the WLST command-line tool. Use the
sca_validatePatch and sca_patchComposite commands to validate and deploy the path file
respectively.

For Non-Secure Mode

Use the following steps to verify and deploy the packaged jar (composite SAR) to runtime.

1. Use the sca_validatePatch command to validate your patch jar file.

You can use help(‘sca_validatePatch’) to get detailed information on the
sca_validatePatch command syntax and arguments.

For example:

sca_validatePatch('http://my_soa_server:8001', 'weblogic', 'welcome', '/
home/sca_HelloWorld_patch.jar')

Chapter 48
Patching Running Instances of a SOA Composite

48-85

The preceding command validates if the sca_HelloWorld_patch.jar patch file can be
successfully deployed to the my_soa_server SOA server runtime.

The following message indicates that the patch was successfully validated:

Composite patch has been validated successfully.

2. Use the sca_patchComposite command to deploy your patch jar file to runtime in non-
secure mode.

You can use help(‘sca_patchComposite’) to get detailed information on the
sca_patchComposite command syntax and arguments.

For example:

sca_patchComposite('http://my_soa_server:8001', 'weblogic', 'welcome', '/
home/sca_HelloWorld_patch.jar')

The preceding command uses the sca_HelloWorld_patch.jar patch file to patch the
HelloWorld composite on the my_soa_server runtime.

The following message indicates that the patch was successfully applied:

Composite has been patched successfully.

For Secure Mode

Use the following steps to verify and deploy the packaged jar (composite SAR) to runtime.

1. Use the sca_validatePatch command to validate your patch jar file.

You can use help(‘sca_validatePatch’) to get detailed information on the
sca_validatePatch command syntax and arguments.

For example:

sca_validatePatch('http://my_soa_server:8001', 'weblogic', 'welcome', '/
home/sca_HelloWorld_patch.jar')

The preceding command validates if the sca_HelloWorld_patch.jar patch file can be
successfully deployed to the my_soa_server SOA server runtime.

The following message indicates that the patch was successfully validated:

Composite patch has been validated successfully.

2. Use the nsca_patchComposite command to deploy your patch jar file to runtime in non-
secure mode.

You can use help(‘sca_patchComposite’) to get detailed information on the
sca_patchComposite command syntax and arguments.

For example:

nsca_patchComposite('https://adc00001:8001', 'weblogic', 'welcome', '/tmp/
sca_HelloWorld.jar', folder='myFolder', listenerPort='15695',
 mergeLogFile='/tmp/merge.log')

Chapter 48
Patching Running Instances of a SOA Composite

48-86

The preceding command uses the sca_HelloWorld_patch.jar patch file to patch the
HelloWorld composite on the my_soa_server runtime.

The following message indicates that the patch was successfully applied:

Composite has been patched successfully.

You have successfully patched the composite on runtime. If you had any previously faulted
flow instances in Enterprise Manager Fusion Middleware Control that can be recovered after
applying this patch, you may attempt to recover them now.

Deleting the Patch File
If you try to open a SOA project in JDeveloper using a role other than SOA Patch Developer,
and if the composite has a previously existing patch file, you get a warning stating that you
should delete the patch.xml file before you can edit the project.

If you have already applied the patch, you can safely choose the option to delete the
patch.xml file.

You can now continue to edit the SOA project.

Chapter 48
Patching Running Instances of a SOA Composite

48-87

49
Using the Oracle SOA Suite Development
Maven Plug-In

This chapter describes how to use the Oracle SOA Suite development Maven plug-in to build
and manage SOA composite application projects. The Oracle SOA Suite development Maven
plug-in enables you to compile, package, deploy, test, and undeploy a SOA composite
application in a Maven environment.
This chapter includes the following sections:

• Introduction to the Oracle SOA Suite Maven Plug-in

• Installing the Oracle SOA Suite Maven Plug-in

• Using the Oracle SOA Suite Maven Archetype

For more information about using Maven with Oracle Fusion Middleware, see Developing
Applications Using Continuous Integration and Using the WebLogic Maven Plug-In in
Developing Applications for Oracle WebLogic Server.

For detailed information on using Maven to build applications and projects, see http://
maven.apache.org/users/index.html.

Introduction to the Oracle SOA Suite Maven Plug-in
Maven is a build automation tool that enables you to create and manage runtime projects.
Using the Oracle SOA Suite Maven plug-in, you can build and manage a SOA composite
application. Maven relies on an artifact repository for all of its dependencies. All the installed
Oracle libraries are propagated into the Maven repository. This enables Maven to recognize
them as artifacts and address them in the Project Object Model (POM) file.

POM Files and Archetypes
Maven projects are configured using a POM file. The POM file describes dependencies such
as the SOA Infrastructure tools that are required to build the composites.

An archetype is a template for creating a project. Archetypes are provided to create a new
SOA application containing a single SOA project, or to add an additional SOA project to an
existing SOA application. These archetypes provide for the ability to compile, package, deploy,
test, and undeploy a SOA composite application.

The following shows a sample Maven POM file for Oracle SOA Suite:

<?xml version="1.0" encoding="UTF-8"?>
<project xsi:schemaLocation="http://maven.apache.org/POM/4.0.0
 http://maven.apache.org/xsd/maven-4.0.0.xsd"
 xmlns="http://maven.apache.org/POM/4.0.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <modelVersion>4.0.0</modelVersion>
 <groupId>com.test</groupId>
 <artifactId>MyComposite</artifactId>
 <version>1.0-SNAPSHOT</version>
 <packaging>sar</packaging>

49-1

http://maven.apache.org/users/index.html
http://maven.apache.org/users/index.html

 <!--
 This POM was generated from the SOA Maven Archetype.
 Comments in this POM guide you how to use it with your project.
 This POM relates to this SOA Composite, i.e. the one in this same
 directory. There is another POM in the SOA Application directory (up
 one) which handles the whold SOA Application, which may contain
 additional projects.

 The parent points to the common SOA parent POM. That is a special POM
 that is shipped by Oracle as a point of customization (only). You can
 add default values for properties like serverUrl, etc. to the SOA
 common parent POM, so that you do not have to specify them over and
 over in every project POM.
 -->
 <parent>
 <groupId>com.oracle.soa</groupId>
 <artifactId>soa-project-common</artifactId>
 <version>???</version>
 </parent>

 <properties>
 <!-- these parameters are used by the compile goal -->
 <scac.input.dir>${project.basedir}/SOA/</scac.input.dir>
 <scac.output.dir>${project.basedir}/target</scac.output.dir>
 <scac.input>${scac.input.dir}/composite.xml</scac.input>
 <scac.output>${scac.output.dir}/out.xml</scac.output>
 <scac.error>${scac.output.dir}/error.txt</scac.error>
 <scac.displayLevel>1</scac.displayLevel>
 <!-- if you are using a config plan, uncomment the following line and
 update to point to your config plan -->
 <!--<configplan>${scac.input.dir}/configplan.xml</configplan>-->

 <!-- these parameters are used by the deploy and undeploy goals -->
 <composite.name>${project.artifactId}</composite.name>
 <composite.revision>${project.version}</composite.revision>
 <composite.partition>default</composite.partition>
 <serverUrl>serverUrl</serverUrl>
 <user>user</user>
 <password>password</password>
 <overwrite>true</overwrite>
 <forceDefault>true</forceDefault>
 <regenerateRulebase>false</regenerateRulebase>
 <keepInstancesOnRedeploy>false</keepInstancesOnRedeploy>

 <!-- these parameters are used by the test goal -->
 <!-- if you are using the sca-test (test) goal, you need to uncomment the
 following line and point it to your jndi.properties file. -->
 <jndi.properties.input>${basedir}/jndi.properties</jndi.properties.input>
 <scatest.result>${scac.output.dir}/testResult</scatest.result>
 <!-- input is the name of the composite to run test suties against -->
 <input>MyComposite</input>
 </properties>

 <!--
 These refer to the properties defined above. You should probably not
 need to make any changes beflow this point - these just point to the
 properties above.
 -->
 <build>
 <plugins>
 <plugin>

Chapter 49
Introduction to the Oracle SOA Suite Maven Plug-in

49-2

 <groupId>com.oracle.soa.plugin</groupId>
 <artifactId>oracle-soa-plugin</artifactId>
 <version>???</version>
 <configuration>
 <compositeName>MyComposite</compositeName>
 <composite>${scac.input}</composite>
 <sarLocation>${scac.output.dir}/sca_${project.artifactId}_
 rev${composite.revision}.jar</sarLocation>
 <serverUrl>${serverUrl}</serverUrl>
 <!-- note: compositeRevision is needed to package, revision is
 needed to undeploy -->
 <compositeRevision>${composite.revision}</compositeRevision>
 <revision>${composite.revision}</revision>
 <scacInputDir>${scac.input.dir}</scacInputDir>
 <!-- note: if this composite contains a component that depends
 on MDS to build, e.g. a Human Task or Business Rule, then
 you will need to uncomment the next line, and edit it to
 point to your application directory (which contains
 .adf/adf-config.xml file with MDS configuration in it -->
 <!--<appHome>${project.basedir}/..</appHome>-->
 <!-- If you have a composite which contains a component that
 depends on MDS (eg. Human Task, Business Rule) AND you
 want to use a file-based MDS repository, then you
 need to do either:
 1. update the .adf/META-INF/adf-config.xml to point to
 the correct location of the file based repository,
 i.e. remove the reference to ${oracle.home} in that
 file, or
 2. define oracleHome here and leave the adf-config.xml
 file as is. Note that the correct value is the path
 to your SOA Quickstart or JDeveloper install
 directory, with "/soa" appended to it.
 -->
 <!--<oracleHome>JDEV_HOME/soa</oracleHome>-->
 <user>${user}</user>
 <password>${password}</password>
 <input>${input}</input>
 </configuration>
 <!-- extensions=true is needed to use the custom sar packaging
 type -->
 <extensions>true</extensions>
 </plugin>
 </plugins>
 </build>
</project>

Note:

If you are using a component in your composite that depends on MDS, such as
Human Tasks or Business rules, you must uncomment the <appHome>$
{project.basedir}/..</appHome> line and edit it to point to your application
directory.

If you are using a component that depends on MDS and you want to use a file-based
MDS, such as the one referenced in the default adf-config.xml file, you must also
uncomment the <oracleHome>JDEV_HOME/soa</oracleHome> line and edit it to point
to your SOA Quickstart or JDeveloper install directory, with /soa appended to it.

Chapter 49
Introduction to the Oracle SOA Suite Maven Plug-in

49-3

The following shows the archetype coordinates in the POM file for creating an Oracle SOA
Suite Application:

<groupId>com.oracle.soa.archetype</groupId>
<artifactId>oracle-soa-application</artifactId>
<version>???</version>

Maven Plug-in Goals
Goals are associated with different phases of the composite life cycle.

When you invoke a goal associated with a life cycle phase, Maven executes all goals mapped
to all phases up to and including the goal you name. For example, if you execute the test goal,
the compile, package, and deploy goals are executed before the test goal. The description of
each goal in this section lists the actions performed when each goal is invoked.

To support the life cycle of building and deploying a SOA composite application, the following
executable plug-in goals are provided.

• compile (scac)

• package (sar)

• deploy

• test (sca-test)

• undeploy

Before executing a goal, ensure that you have provided all of the necessary parameters for
that goal in the POM file. See POM Files and Archetypes for a sample POM file.

Note:

If you have changed the name of the project, composite, or project directory, ensure
that you update the POM file with the new names before executing any of these
goals.

The following example shows the groupId, artifactId, and version coordinates for Oracle
SOA Suite plug-ins in the POM file.

<groupId>com.oracle.soa.plugin</groupId>
<artifactId>oracle-soa-plugin</artifactId>
<version>???</version>

compile
The compile goal compiles a SOA composite application. Oracle SOA Suite provides a native
Maven implementation for this goal. The following command compiles the SOA composite
application:

mvn compile

package
The package goal packages the artifacts of a SOA composite application into a SOA archive
(SAR) file. The following command compiles and packages the SOA composite application:

Chapter 49
Introduction to the Oracle SOA Suite Maven Plug-in

49-4

mvn package

deploy
The deploy goal deploys the SOA composite application. Oracle SOA Suite provides a native
Maven implementation for this goal. The following command compiles the SOA composite
application, packages the composite into a SAR file, and deploys the SAR file to the server.

mvn pre-integration-test

test
The test goal performs a test of a SOA composite application. Oracle SOA Suite provides a
native Maven implementation for this goal.

You must first create tests in Oracle JDeveloper before running the test goal. For more
information about creating tests using JDeveloper, see Automating Testing of SOA Composite
Applications.

You must also include a jndi.properites file before running the test goal. Edit the following
line in the POM file to point to a jndi.properties file: <jndi.properties.input>${basedir}/
jndi.properties</jndi.properties.input>

The following shows a sample jndi.properties file:

 java.naming.factory.initial=weblogic.jndi.WLInitialContextFactory
 java.naming.provider.url=t3://servername:7103/soa-infra
 java.naming.security.principal=weblogic
 java.naming.security.credentials=welcome1
 dedicated.connection=true
 dedicated.rmicontext=true

The following command compiles the composite, packages the composite into a SAR file,
deploys the SAR file to the server, and tests the composite.

mvn verify

undeploy
The undeploy goal undeploys the SOA composite application. Oracle SOA Suite provides a
native Maven implementation for this goal. The following command undeploys the composite.

Note:

The undeploy goal is not mapped to a life cycle phase. You must explicitly invoke it
by name.

mvn com.oracle.soa.plugin:oracle-soa-plugin:undeploy

Using Maven Online Help
Maven online help provides you with a list of goals and their associated commands. For
example, enter the following command to obtain online help for the Maven test goal:

mvn help:describe -Ddetail=true -Dplugin=com.oracle.soa.plugin:oracle-soa-plugin:??? -
Dgoal=test

Chapter 49
Introduction to the Oracle SOA Suite Maven Plug-in

49-5

This command displays the following help details:

oracle-soa:test
Description: Description: To execute SCA Test Suites.
Implementation: com.oracle.soa.plugin.SoaTest
Language: java
Bound to phase: verify
Goal Prefix: oracle-soa

Available parameters:

 format (Default: native)
 User property: format
 The format of the output - 'native' or 'junit'.

 input
 Required: true
 User property: input
 The name of the composite to execute tests against.

 jndiPropertiesInput
 Required: true
 User property: jndi.properties.input
 Path to JNDI properties file required for SCA Test execution.
 This file should contain contents similar to the following:
 java.naming.factory.initial=weblogic.jndi.WLInitialContextFactory
 java.naming.provider.url=t3://servername:7103/soa-infra
 java.naming.security.principal=weblogic
 java.naming.security.credentials=welcome1
 dedicated.connection=true
 dedicated.rmicontext=true

 partition (Default: default)
 User property: partition
 Which SOA partition the composite is deployed in.

 result (Default: ${java.io.tmpdir}/out)
 User property: result
 Where to place the results.

 timeout (Default: 300)
 User property: timeout
 How long to wait for tests to complete before timing out.

Installing the Oracle SOA Suite Maven Plug-in
A distribution of Maven 3.0.5 is included with Oracle Fusion Middleware in the following
location:

Middleware_Home/Oracle_Home/oracle_common/modules/org.apache.maven_3.0.5

For information about installing Maven for Oracle Fusion Middleware, see Installing and
Configuring Maven for Build Automation and Dependency Management in Developing
Applications Using Continuous Integration.

How to Configure the Oracle SOA Suite Maven Plug-In
Before you can use the Oracle SOA Suite Maven plug-in you must populate the Maven
repository with Oracle artifacts. For more information about populating the repository, see

Chapter 49
Installing the Oracle SOA Suite Maven Plug-in

49-6

Populating the Maven Repository Manager in Developing Applications Using Continuous
Integration for more information. The steps below link to specific sections of this guide.

To configure the Oracle SOA Suite development Maven plug-in:

1. Navigate to ORACLE_HOME/oracle_common/plugins/maven/com/oracle/maven/oracle-
maven-sync/12.2.1.

2. Run the following command to install the Maven sync plug-in:

mvn install:install-file -DpomFile=oracle-maven-sync-12.2.1.pom -Dfile=oracle-maven-
sync-12.2.1.jar

For more options, see "Installing Oracle Maven Synchronization Plug-In."

3. Run the following command to seed the Oracle SOA Suite development Maven plug-in into
the Maven repository:

mvn com.oracle.maven:oracle-maven-sync:push -DoracleHome=ORACLE_HOME

Where ORACLE_HOME is the full path to your Oracle Fusion Middleware installation. For more
options, see "Running the Oracle Maven Synchronization Plug-In."

4. Validate whether you have successfully installed the plug-in using the Maven
help:describe goal.

mvn help:describe -DgroupId=com.oracle.soa.plugin
-DartifactId=oracle-soa-plugin -Dversion=???

The following is an excerpt of the information that confirms installation of the Oracle SOA
Suite plug-in:

Name: Oracle SOA Maven Plugin
Description: This plugin allows users to compile, package, deploy, test and
undeploy SOA composites.
Group Id: com.oracle.soa.plugin
Artifact Id: oracle-soa-plugin
Version: ???
Goal Prefix: oracle-soa
This plugin has 6 goals:
oracle-soa:compile

Using the Oracle SOA Suite Maven Archetype
Use the Oracle SOA Suite archetype to generate a POM file for a SOA application. Run the
following command from the parent directory into which you want to add a SOA application.
The SOA application is created in a subdirectory named from the value of the artifactId
property.

Note:

SOA Applications created using the Oracle SOA Suite Maven archetype are the
same as those created in Oracle JDeveloper using the Create SOA Application
wizard.

mvn archetype:generate
 -DarchetypeGroupId=com.oracle.soa.archetype
 -DarchetypeArtifactId=oracle-soa-application

Chapter 49
Using the Oracle SOA Suite Maven Archetype

49-7

 -DarchetypeVersion=???
 -DarchetypeRepository=local
 -DgroupId=org.my.test
 -DartifactId=test-soa-application
 -DprojectName=test-soa-project
 -Dversion=1.0-SNAPSHOT

Where:

Property Description

archetypeGroupId Enter the group ID of the archetype to use
(com.oracle.soa.archetype).

archetypeArtifactId Enter the artifact ID of the archetype to use (oracle-soa-
application).

archetypeVersion Enter the archetype version (???).

archetypeRepository Enter the Maven repository to use. (Optional)

groupId Enter the group ID of the project to build (for this example,
org.my.test).

artifactId Enter the artifact ID of the project to build. This becomes the name
of the subdirectory (for this example, test-soa-project) in the
current directory. The SOA application and the first SOA project are
created in this subdirectory.

projectName Enter the name for the SOA Project to be created inside the SOA
application This is also the name of the composite.

package Enter the name for the SOA Project to be created inside the SOA
application. (Optional)

version Enter the version of the project to build (for this example, 1.0-
SNAPSHOT)

Chapter 49
Using the Oracle SOA Suite Maven Archetype

49-8

50
Debugging and Auditing SOA Composite
Applications

This chapter describes how to debug SOA composite applications with the SOA debugger in
Oracle JDeveloper, test HTTP requests and response messages in the HTTP Analyzer, and
configure auditing for BPEL process activities in a SOA composite application.
This chapter includes the following sections:

• Introduction to the SOA Debugger

• Debugging a SOA Composite Application

• Testing SOA Composite Applications with the HTTP Analyzer

• Auditing SOA Composite Applications at the BPEL Activity Level

Introduction to the SOA Debugger
You can test and debug SOA composite applications with the SOA debugger in Oracle
JDeveloper. The SOA debugger reduces the development cycle for a SOA composite
application by providing a troubleshooting environment within Oracle JDeveloper. This
eliminates the lengthy process of building a SOA composite application in Oracle JDeveloper,
deploying it to the SOA Infrastructure, starting Oracle Enterprise Manager Fusion Middleware
Control to test or view audit trails and flow traces, and then returning to Oracle JDeveloper to
repeat the exercise. Instead, you can set breakpoints in Oracle JDeveloper for troubleshooting
on the following components:

• Binding components and service components in SOA composite applications

• Synchronous and asynchronous BPEL processes

• Oracle BPM processes

• Oracle Service Bus pipelines (see Debugging Oracle Service Bus Applications in
Developing Services with Oracle Service Bus)

Note the following guidelines when using the SOA debugger:

• The SOA composite application name and the Oracle JDeveloper project name must be
the same.

• Any SOA composite application encountered during a debugging session must reside in
the currently active workspace in Oracle JDeveloper.

• Debugging is limited to design view in Oracle JDeveloper. You cannot run the SOA
debugger in Oracle Enterprise Manager Fusion Middleware Control.

• Debugging is a localized user experience. If you want to switch to other tasks (for example,
search for instances or initiate new instances of the same composite from Oracle
Enterprise Manager Fusion Middleware Control), close the debugging session.

• You cannot set breakpoints on REST services.

• The breakpoints that you create for debugging in a SOA composite application in one
installation of Oracle JDeveloper are not available to other Oracle JDeveloper installations.
You must create the breakpoints again for debugging.

50-1

• During a debugging session in which you are using the embedded Integrated WebLogic
Server, you cannot use the version of Oracle Enterprise Manager Fusion Middleware
Control included with the embedded server to generate new instances or query instances.
For information about the Integrated WebLogic Server, see Installing SOA Suite and
Business Process Management Suite Quick Start for Developers.

• You cannot debug cross-language features, such as a Java exec activity, XSLT and
XQuery transformations, and so on.

• You can debug SOA composite applications on servers on which Oracle SOA Suite is
installed. For example, if Oracle SOA Suite runs on managed servers, clients must connect
using the managed server host and port.

• Only one client at a time can connect to the SOA debugger.

• You cannot debug multiple instances of the same SOA composite application at a given
time even though Oracle JDeveloper does not restrict you from this action. This is not the
correct approach. The SOA debugger is a development tool. It is your responsibility to
ensure that only a single instance is debugged at any given time.

• Adapter endpoint errors are not displayed in the SOA debugger in Oracle JDeveloper.
Those errors are logged in the log file.

• You can only debug if the server is in development mode. Debugging in production mode
is not supported.

• Oracle B2B and Oracle SOA for Healthcare service and reference binding components
cannot be debugged with the SOA debugger even though you can set debugging points on
both components.

• SOA composite application-to-SOA composite application debugging is not supported.

Debugging a SOA Composite Application
This section describes how to create breakpoints and debug SOA composite applications in
Oracle JDeveloper.

Note:

Do not attempt to debug SOA composite applications with very large payloads.
Attempting to do so results in the SOA debugger breakpoints hanging in the
outbound direction.

How to Start the SOA Debugger
To start the SOA debugger:

1. Start the Integrated WebLogic Server. For information about starting the Integrated
WebLogic Server with the Start Server Instance option, see Section "Installing Oracle
SOA Suite Quick Start for Developers" of Installing SOA Suite and Business Process
Management Suite Quick Start for Developers.

2. Start the SOA debugger in either of the following ways. This is limited to single composite
debugging.

a. Click the debugger icon above the SOA Composite Editor, as shown in Figure 50-1.

Chapter 50
Debugging a SOA Composite Application

50-2

Figure 50-1 Debugger Icon in SOA Composite Editor

b. Right-click the SOA composite application in the Applications window, and select
Debug. Figure 50-2 provides details.

Figure 50-2 Debug Menu Option for a SOA Composite Application in the
Applications Window

The SOA Debugger Connection Settings dialog is displayed, as shown in Figure 50-3. This
dialog enables you to define the SOA debugging server to use.

Figure 50-3 SOA Debugger Connection Settings Dialog

3. Enter values appropriate to your environment, and click OK. Table 50-1 provides details.

Chapter 50
Debugging a SOA Composite Application

50-3

Table 50-1 SOA Debugger Connection Setting Dialog

Field Description

Host Select the debugging server to which to connect. By default, the name of the
local host is displayed. This is the embedded Integrated WebLogic Server in
Oracle JDeveloper. You can also enter a remote server. When a project is
imported from a different host, the host that was used there is displayed here.

Port Enter the port on which the debugging agent listens. The default value is 5004.
Debugging is automatically enabled in development environments when you
install the Oracle SOA Suite Developer Quick Install. The debugger cannot be
enabled in production mode or when the server is part of a cluster. For
development environments, the debugger can be overridden by adding the
following property settings in the setDomainEnv.sh file.

export SOA_DEBUG_FLAG="true"
export SOA_DEBUG_PORT="5004"

Timeout Specify in minutes how long the client should wait while attempting to establish
a debugging session before stopping. The default value is 5 minutes. For
synchronous processes, you can increase the default value:

• Increase the SyncMaxWaitTime property in Oracle Enterprise Manager
Fusion Middleware Control. For more information, see How To Specify
Transaction Timeout Values.

• Increase the Idle Timeout and Transaction Timeout values for the
Enterprise JavaBeans property BPELDeliveryBean in Oracle WebLogic
Server Administration Console. For information about accessing these
properties, see the "Long Running, Synchronous Calls To Remote Web
Services Error Out or Asynchronous Transactions Return with an Error after
a Long Time" section of Administering Oracle SOA Suite and Oracle
Business Process Management Suite.

• Increase the Java Transaction API (JTA) timeout value located under the
JTA link on the Oracle WebLogic Server Administration Console home
page.

Skip this dialog
next time

Select to skip this dialog the next time you begin a debugger session. The
settings you previously defined are used.

You can display this dialog again by right-clicking the project in the Applications
window. Select Project Properties > Run/Debug > Edit > Tool Settings >
Debugger > Remote, and select the Show Dialog Box Before Connecting
Debugger check box.

Note:

You can also edit these properties by right-clicking the project in the Applications
window, and selecting Project Properties > Run/Debug > Edit > Tool Settings
> Debugger > Remote.

A check is made to determine if the SOA composite application selected for debugging is
deployed. Table 50-2 provides details.

Chapter 50
Debugging a SOA Composite Application

50-4

Table 50-2 Check to Determine if the SOA Composite Application is Deployed

If the SOA Composite Application Is... Then...

Deployed The following message is displayed on the right handle
of the service binding component:

Use context menu to initiate WS debugging

See Figure 50-5 for an example of this message.

You are ready to begin debugging. Go to How to Set
Breakpoints and Initiate Debugging.

• Not deployed
• Deployed, but there has been a

design change in the composite since
it was deployed.

Note: Composites deployed a second
time with the Overwrite any existing
composites with the same revision
ID check box selected do not require
an additional redeployment.

• Deployed, but you removed the
Oracle JDeveloper system folder. The
system folder is identified by
selecting Help > About >
Properties, and searching for
ide.system.dir.

• Deployed in one Oracle JDeveloper,
but the ZIP file of the SOA composite
application was opened in a different
installation of Oracle JDeveloper.

The Deployment Action page of the Deploy
Project_Name wizard is displayed, and you must deploy
the composite.

a. Select Deploy to Application Server.

b. Follow the pages of the wizard to deploy the SOA
composite application to an application server.

For information about deploying SOA composite
applications, see Deploying the Profile.

c. When deployment is complete, go to How to Set
Breakpoints and Initiate Debugging.

You are ready to begin a debugging session when the following message is displayed in
the Log window:

Debugger attempting to connect to remote process at host_name 5004
Debugger connected to remote process at host_name 5004
Debugger process virtual machine is SOA Debugger.

How to Set Breakpoints and Initiate Debugging
Breakpoints are the intentional pausing locations in a SOA composite application that you set
for debugging purposes. You can set breakpoints on the following components:

• Service binding components

• Inbound and outbound parts of BPEL process activities and BPM process service
components

• Reference binding components such as web services and JCA adapters

• Oracle Service Bus services (see "Debugging Oracle Service Bus Applications" of
Developing Services with Oracle Service Bus)

Components on which breakpoints are set are designated with red request (outbound) icons,
reply (inbound) icons, or request-reply (outbound-inbound) icons. Figure 50-4 provides an
example of a SOA composite application in which breakpoint icons have been set.

Chapter 50
Debugging a SOA Composite Application

50-5

Figure 50-4 SOA Composite Application with Breakpoints Set

To set breakpoints and initiate debugging:

1. Select the component on which to set the breakpoint, as shown in Table 50-3.

Table 50-3 Components on Which to Set Breakpoints

To Set a Breakpoint on a... Go to Step...

Service binding component 2

Reference binding component 3

Service component such as a BPEL
process or BPM process

4

2. To set a breakpoint on a service binding component.

a. Right-click the right handle of the service on which the following message is displayed.

Use context menu to initiate WS debugging

This action invokes the context menu shown in Figure 50-5.

Figure 50-5 SOA Debugger Breakpoint Menu Options

b. Select the appropriate breakpoint interaction option shown in Table 50-4.

Table 50-4 Breakpoint Interaction Options

Option Description

Create Breakpoints Pair Set for a request-reply (outbound-inbound) interaction. This is
useful for scenarios in which both the request and reply are
important.

Create Request
Breakpoint

Set for a request (outbound) interaction. This is useful for
scenarios in which only the request is important.

Chapter 50
Debugging a SOA Composite Application

50-6

Table 50-4 (Cont.) Breakpoint Interaction Options

Option Description

Create Reply Breakpoint Set for a reply (inbound) interaction. This is useful for scenarios
in which only the reply is important.

Initiate WS Debugging Initiate a debugging session. For example, the debugging
session encompasses an initiating SOAP request from a web
service to a BPEL process to an adapter reference binding
component.

Red icons representing your interaction choice are added.

For example, if you select Create Breakpoints Pair, request and reply breakpoint
icons are added. Figure 50-6 provides details.

Figure 50-6 Request and Reply Breakpoint Icons on a Service Binding
Component

c. Go to Step 5.

3. To set a breakpoint on a reference binding component.

a. Right-click the applicable reference binding component (for example, a web service or
a database adapter), and select one of the breakpoint options described in Table 50-4.

For example, if you select Create Breakpoints Pair for several references, request
and reply breakpoint icons are added. Figure 50-7 provides details.

Figure 50-7 Breakpoints Set on Reference Binding Components

b. Go to Step 5.

4. To set a breakpoint on a service component (for this example, a BPEL process is
selected).

Chapter 50
Debugging a SOA Composite Application

50-7

a. Select Edit, as shown in Figure 50-8.

Figure 50-8 Request and Reply Breakpoint Icons on a BPEL Process

This opens the BPEL process in Oracle BPEL Designer.

b. Right-click the BPEL activity on which to set a breakpoint, and select Toggle
Breakpoint. Figure 50-9 provides details.

Figure 50-9 Breakpoint Setting for a BPEL Process

An icon is added to the activity. These breakpoint icons are only red dots because the
flow is always in one direction. It is recommended that you always set a breakpoint on
the first activity within an asynchronous BPEL process.

c. To disable the breakpoint, right-click and select Toggle Breakpoint again. The red dot
is removed. To display a list of all breakpoints set in the BPEL process, right-click the
activity and select Breakpoints. You can also enable and disable breakpoints from this
dialog.

d. Go to Step 5.

5. To begin debugging of the SOA composite application, right-click the right handle of the
service binding component shown in Figure 50-5, and select Initiate WS Debugging from
the menu.

This invokes the HTTP Analyzer.

6. Enter the request message data to send, and click Send Request or click HTTP Content
to copy and paste the contents from an XML file. You can either enter data field-by-field or
copy and paste an XML document. Figure 50-10 provides details.

Chapter 50
Debugging a SOA Composite Application

50-8

Figure 50-10 SOA Debugger Message Data

The debugger stops at the first breakpoint you set (for this example, on the service binding
component).

7. In the Log window at the bottom of Oracle JDeveloper, click Data.

8. Expand the message contents. Figure 50-11 provides details. You can double-click a value
to change it. For non-XML variables, right-click and choose View value (for example, the
return message from a database adapter).

Figure 50-11 Message Contents After Debugger Invocation

How to Step Through a Debugging Session
When you create a breakpoint, a corresponding frame is created in the Structure window, as
shown in Figure 50-12. This frame was created for the request-reply entry point on the service
binding component.

Chapter 50
Debugging a SOA Composite Application

50-9

A frame is a location. A stack of frames is a bread crumb trail of the locations that lead you to
your current location. This is equivalent to a stack trace. It shows you where you are and how
you got there. Frames are created independent of breakpoints. When you stop at a breakpoint,
all frames that have been created in the Structure window are displayed. A stack frame also
contains the data that existed at that point of time. Clicking a different stack frame in the
Structure pane also updates the Data tab.

For example, if you have a web service connected to a BPEL process connected to a
reference, if you set a breakpoint on the reference, you see a stack that generally looks as
follows:

• Reference

• BPEL invoke

• BPEL scope

• Web service

If you click the web service frame, the SOAP payload in the Data tab is displayed. If you then
click the BPEL invoke frame, the various BPEL variables and other details are displayed in the
Data tab.

You can step over the frame and begin debugging at a different location, such as a different
breakpoint (for this example, the LoanProcess BPEL process). As you proceed with
debugging, the following frames are created. Frames are where variables are located.

• Scope frame: Contains scope variables.

• Process frame: Contains global variables.

Variables are visible to a process from the top frame through the bottom frame. Frames are
displayed in the Structure window.

Figure 50-12 Frames in Structure Window

Chapter 50
Debugging a SOA Composite Application

50-10

To step through a debugging session:

1. Go to the tool bar in Oracle JDeveloper. The step options are shown in Figure 50-13.

Figure 50-13 Step Options in Oracle JDeveloper

Table 50-5 describes each option.

Table 50-5 Step Options in Oracle JDeveloper Main Menu

Icon Description

Ends or detaches from a debugging session.

Steps over a frame.

This places you at the next breakpoint (for example, the receive activity in the BPEL
process on which a breakpoint was set in Figure 50-9). If there are no breakpoints, it
steps over all the frames and goes back to the first frame.

You can also press F8 to step over a frame.

Steps into the next valid location.

This can be a new frame or the same frame, but in a different location.

You can also press F7 to step into a frame.

Steps out of a frame.

This option is only used to process a BPEL scope or sequence activity. After
completion of scope processing, it pauses at the next scope or activity in the
process. You can also press Shift-F7.

Resumes a step operation.

You can also press F9 to resume.

2. If you selected the Step Over option, it stops at the receive activity.

Chapter 50
Debugging a SOA Composite Application

50-11

3. In the Log window, click Data and expand the contents to view the variables defined in the
BPEL process, as shown in Figure 50-14. You can edit BPEL process variables during
debugging. The payload is empty for the example shown in Figure 50-14.

Figure 50-14 Empty Payload

This is because the breakpoint on the receive activity has not been executed, as shown in
Figure 50-15.

Figure 50-15 Empty Payload Before Receive Activity Breakpoint Execution

4. Click the Step Into option, as described in Table 50-5.

This executes the receive activity shown in Figure 50-16.

Figure 50-16 Populated Payload After Receive Activity Breakpoint Execution

5. Expand the payload.

The payload is populated with the data you entered in Step 6 of How to Set Breakpoints
and Initiate Debugging. Figure 50-17 provides details.

Chapter 50
Debugging a SOA Composite Application

50-12

Figure 50-17 Expanded Payload

6. Select the Step Over option, as described in Table 50-5. This causes the debugger to
pause at the next breakpoint (for this example, a web service reference binding
component, as shown in Figure 50-7).

The contents of the request message to the web service call are shown in Figure 50-18.

Figure 50-18 Request Message Payload Contents

7. Select the Step Over option.

8. Expand the payload to view the message reply. Figure 50-19 provides details.

Figure 50-19 Request Message Payload Contents

9. Proceed with debugging.

If you step through the copy rules of an assign activity, the SOA debugger displays a
window showing which copy rule it is on within the assign activity. The window has a table
showing all the copy rules and there is a breakpoint icon next to the copy rule at which the
debugger is stopped.

Note:

If you set a breakpoint on an adapter (for example, a database adapter), the SOA
debugger steps out of the BPEL process service component and goes to the
SOA Composite Editor.

Chapter 50
Debugging a SOA Composite Application

50-13

How to End or Detach from a Debugging Session
To end or detach from a debugging session:

1. Click the button in the tools menu to end a debugging session. Figure 50-20 provides
details.

Figure 50-20 End or Detach from a Debugging Session

The Terminate Debugger Process dialog is displayed.

2. Select an option. Table 50-6 provides details.

Table 50-6 Breakpoint Menu Options

Option Description

Detach Removes the debugger without ending the debugging process.

Terminate Ends the debugging process.

3. If you selected Detach, click the debugger icon above the SOA Composite Editor shown in
Figure 50-1 to resume debugging.

4. If you selected Terminate, right-click and select Initiate WS Debugging to reinitiate the
debugger and start a new debugging session.

How to Remove Breakpoints
You can remove individual breakpoints or all breakpoints.

To remove breakpoints:

1. To remove an individual breakpoint, perform the following:

• Right-click an activity on which a breakpoint has been set and select Toggle
Breakpoint.

• Click the Breakpoints icon above Oracle BPEL Designer and select the activity on
which to remove a breakpoint in the Breakpoints dialog.

2. To remove all breakpoints, right-click in the SOA composite application, and select
Remove All Breakpoints.

3. Click the icon above the BPEL process in Oracle BPEL Designer, as shown in
Figure 50-21.

Figure 50-21 Breakpoints Icon in Oracle BPEL Designer

Chapter 50
Debugging a SOA Composite Application

50-14

This invokes the Breakpoints dialog, as shown in Figure 50-22.

Figure 50-22 Breakpoints Dialog

4. In the Enable check boxes, select BPEL process breakpoints to disable.

How to View Adapter Properties
You can view adapter properties under the Data tab in the Log window.

To view adapter properties:

1. Click the Step Over icon until you stop at a breakpoint on a reference binding component
such as a database adapter. Figure 50-23 provides details.

Figure 50-23 JCA Adapter Properties

The process is stopped to check on the existence of the customer. Adapter endpoint
properties are displayed. Figure 50-24 provides details. The SQL syntax to be executed is
also displayed.

Chapter 50
Debugging a SOA Composite Application

50-15

Figure 50-24 Adapter Output

2. Right-click a property and select View Whole Value to view the data being passed to the
customer (for this example, nativePayload is selected). Figure 50-25 shows the customer
ID being passed. View Whole Value is also useful for non-XML BPEL variables.

Figure 50-25 Request Message Contents Being Passed

3. Click the Step Over icon to execute the database adapter.

4. Right-click a property and select View Whole Value to view the customer reply message
data. For this example, the value of 1 indicates that the customer exists. Figure 50-26
provides details.

Figure 50-26 Reply Message Contents Being Returned

5. To change a value, right-click a property and select Modify Value.

How to View Threads
A process instance is always run by a single logical thread, whether it is a synchronous or
asynchronous process (the process ID can be thought of as the thread). The SOA debugger

Chapter 50
Debugging a SOA Composite Application

50-16

sees and uses the logical thread. If a process has a flow or flowN activity, then several logical
threads run the flow or flowN activity.

To view threads:

1. From the main menu, select Window > Debugger > Threads.

The Threads tab is displayed in the Structure window.

2. Step into the service binding component of the BPEL process to begin debugging.

The thread value for the request is 40, as shown in the Structure window in Figure 50-27.

Figure 50-27 Request Thread Value

3. Step into the receive activity of the asynchronous BPEL process.

The thread value for the reply is 41, as shown in Figure 50-28.

Figure 50-28 Reply Thread Value

Testing SOA Composite Applications with the HTTP Analyzer
You can test HTTP requests and responses in a SOA composite application with the HTTP
Analyzer in Oracle JDeveloper. The HTTP Analyzer enables you to examine the content of
HTTP request/response package pairs. You can edit the content of a request package, resend
it, and observe the response packet returned. For more information about the HTTP Analyzer,
see the "Auditing and Monitoring Java Projects" chapter of Developing Applications with Oracle
JDeveloper.

To test the SOA composite application with the HTTP Analyzer:

1. From the Window main menu, select Application Servers.

2. In the Application Servers window, expand the SOA composite application.

3. Right-click the component to test (for this example, a web service binding component), and
select Test Web Service. Figure 50-29 provides details.

Chapter 50
Testing SOA Composite Applications with the HTTP Analyzer

50-17

Figure 50-29 Component to Test in the Application Servers Window

The HTTP Analyzer is displayed.

4. Enter the request message data to send, and click Send Request or click HTTP Content
to copy and paste the contents from an XML file. Figure 50-30 provides details.

Figure 50-30 HTTP Analyzer

Chapter 50
Testing SOA Composite Applications with the HTTP Analyzer

50-18

If successful, output similar to that shown in Figure 50-31 is displayed in the right pane.

Figure 50-31 Response HTTP Headers

You can also use the Test Web Service page to perform testing. For more information, see
Section "Initiating a Test Instance of a Business Flow" of Administering Oracle SOA Suite and
Oracle Business Process Management Suite.

Auditing SOA Composite Applications at the BPEL Activity Level
Audit trail data often accounts for a large percentage of the state data persisted to the
database. To reduce the amount of persisted state data, you can specify finer-grained levels of
auditing at the BPEL process activity level. These settings take precedence over the audit trail
settings configured at the service component, SOA composite application, BPEL process
service engine, and SOA Infrastructure levels.

You perform the following procedures:

• Create and configure an audit policy XML file that defines the level of auditing to perform
on BPEL activities in the SOA composite application.

• Create and configure an audit policy binding XML file that binds the audit policy to the
BPEL process.

• Place the files in the same directory location as the composite.xml file or in a separate
directory that you identify with properties in the composite.xml file.

• Deploy the SOA composite application to the SOA Infrastructure.

• View the audit trail of the BPEL process activities in the flow trace of the SOA composite
application in Oracle Enterprise Manager Fusion Middleware Control.

Chapter 50
Auditing SOA Composite Applications at the BPEL Activity Level

50-19

Note the following guidelines:

• The audit policy supports the auditing of both standard BPEL 1.1 and 2.0 activities and
scopes and BPEL extension activities, such as emails, notifications, and all others. Within
a parent scope, you can configure specific child scopes to be audited, and other child
scopes to not be audited.

• The supported auditing levels are shown in Table 50-7.

Table 50-7 Auditing Levels

Level Description

Inherit Logging matches the SOA Infrastructure audit level that you set on the SOA
Infrastructure Common Properties page in Oracle Enterprise Manager Fusion
Middleware Control. This is the default setting.

Production Minimal information for business flow instances is collected. For example, the BPEL
process service engine does not capture the payload. Therefore, the payload
details are not available in the flow audit trails. This level is optimal for most
standard operations and testing.

Development Complete information for BPEL process activities is collected. This option allows
both composite instance tracking and payload tracking. This setting may have an
impact on performance because the payload is stored at each step in the message
flow. This setting is useful for debugging purposes.

Off No logging is performed. Composite instance tracking information and payload
tracking information are not collected.

• Support is provided for wild-card matching of process names and revision numbers in the
fault policy binding file. For example:

– Entering Order* applies to BPEL process service components included in the
composite named OrderProcess, OrderRejected, and OrderConfirmed:

<process auditPolicy="noLoops" name="Order*"/>
– Entering 1* applies to composite revisions 1.0, 1.1, and 1.2:

<process auditPolicy="noAssign" name="*" revision="1.*"/>
The following example shows the audit policy schema to use:

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema targetNamespace="http://schemas.oracle.com/bpel/auditpolicy"
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns:tns="http://schemas.oracle.com/bpel/auditpolicy"
 elementFormDefault="qualified">
 <!-- activity can have a type or a name as optional attribute.-->
 <!-- Audit rules apply to all activities if no specific type or name is -->
 <!-- provided -->
 <xs:complexType name="Activity">
 <xs:attribute name="type" type="xs:QName" use="optional"/>
 <xs:attribute name="name" type="tns:idType" use="optional"/>
 <xs:attribute name="auditLevel" type="tns:auditLevelType" use="required"/>
 </xs:complexType>
 <xs:simpleType name="idType">
 <xs:restriction base="xs:string">
 <xs:minLength value="1"/>
 </xs:restriction>
 </xs:simpleType>
 <xs:simpleType name="auditLevelType">
 <xs:restriction base="xs:string">
 <xs:enumeration value="off"/>

Chapter 50
Auditing SOA Composite Applications at the BPEL Activity Level

50-20

 <xs:enumeration value="minimal"/>
 <xs:enumeration value="production"/>
 <xs:enumeration value="development"/>
 </xs:restriction>
 </xs:simpleType>
 <xs:element name="auditPolicy">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="activity" type="tns:Activity" minOccurs="0"
 maxOccurs="unbounded"/>
 </xs:sequence>
 <xs:attribute name="id" type="tns:idType" use="required"/>
 <xs:attribute name="version" type="xs:string" default="1.0"/>
 </xs:complexType>
 <!-- we restrict users to provide mulitple rules for same activity -->
 <xs:key name="UniqueActivity">
 <xs:selector xpath="tns:activity"/>
 <xs:field xpath="@type"/>
 <xs:field xpath="@name"/>
 </xs:key>
 </xs:element>
</xs:schema>

The following example shows the audit policy binding schema to use.

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema targetNamespace="http://schemas.oracle.com/bpel/auditpolicyBinding"
 xmlns:tns="http://schemas.oracle.com/bpel/auditpolicy"
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 elementFormDefault="qualified">
 <xs:complexType name="Process">
 <xs:attribute name="auditPolicyId" type="tns:idType" use="optional"/>
 <xs:attribute name="name" type="tns:idType" use="optional"/>
 <xs:attribute name="revision" type="tns:idType" use="optional"/>
 </xs:complexType>
 <xs:simpleType name="idType">
 <xs:restriction base="xs:string">
 <xs:minLength value="1"/>
 </xs:restriction>
 </xs:simpleType>
 <xs:element name="auditPolicyBinding">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="process" type="tns:Process"
 minOccurs="0" maxOccurs="unbounded"/>
 </xs:sequence>
 <xs:attribute name="version" type="xs:string"
 default="1.0"/>
 </xs:complexType>
 <xs:key name="UniqueActivity">
 <xs:selector xpath="tns:process"/>
 <xs:field xpath="@name"/>
 <xs:field xpath="@revision"/>
 </xs:key>
 </xs:element>
</xs:schema>

How to Audit SOA Composite Applications at the BPEL Activity Level
This section describes how to create and configure the audit policy and audit policy binding
files.

Chapter 50
Auditing SOA Composite Applications at the BPEL Activity Level

50-21

To audit SOA composite applications at the BPEL activity level:

1. Create and configure an audit policy file (for example, named audit-policy.xml) that
defines the audit level settings for the BPEL activities. The file can have any name and
must follow the schema described in the preceding section.

<auditPolicies xmlns="http://schemas.oracle.com/bpel/auditpolicy"
xmlns:bpel="http://schemas.xmlsoap.org/ws/2003/03/business-process/"
xmlns:bpelx="http://schemas.oracle.com/bpel/extension" version="1.0">
 <auditPolicy name="whilePolicy">
 <!-- enabling this will cause all assign activities to not log -->
 <!-- anything to the audit trail -->
 <activity type="bpel:assign" auditLevel="production"/>

 <!-- enabling this will cause all scope activities and all -->
 <!-- enclosed activities to not log anything to the audit trail -->
 <activity type="bpel:scope" auditLevel="production"/>
 <!-- enabling this will cause all while activities to log with -->
 <!-- minimak level -->
 <activity type="bpel:while" auditLevel="production"/>
 <activity type="bpel:reply" auditLevel="production"/>
 <activity type="bpel:flow" auditLevel="production"/>
 <activity type="bpel:switch" auditLevel="off"/>
 <activity type="bpel:terminate" auditLevel="production"/>
 <activity type="bpel:empty" auditLevel="development"/>
 <activity type="bpel:wait" auditLevel="production"/>
 <activity type="bpel:throw" auditLevel="off"/>
 <activity type="bpel:catchAll" auditLevel="production"/>
 <activity type="bpel:sequence" auditLevel="off"/>
 <activity type="bpel:receive" auditLevel="production"/>
 </auditPolicy>
</auditPolicies>

Note:

To enable BPEL extensions to be audited, enter bpelx:exec with an appropriate
auditing level (for example, production).

<activity type="bpelx:exec" auditLevel="production"/>

2. Create and configure an audit policy binding XML file (for example, named audit-
binding.xml) that binds the audit policy to the BPEL process. The file can have any name
and must follow the schema described in the previous section. This example uses the
wildcard option to enable all BPEL processes that begin with myProcess to be audited.
Several other auditing options have been commented out.

<auditPolicyBindings xmlns="http://schemas.oracle.com/bpel/auditpolicyBinding"
 version="1.0">
 <!-- enabling this will cause all processes in the domain to use this -->
 <!-- policy audit -->
 <!-- <process auditPolicyName="whilePolicy" name="BPELProcess*"/> -->
 <!-- enabling this will cause all processes that start with the name -->
 <!-- myProcess to use the audit policy 'noLoops' -->
 <process auditPolicyName="noLoops" name="myProcess*"/>
 <!-- enabling this will cause all processes -->
 <!-- process auditPolicyName="noAssign" name="*"/> -->
</auditPolicyBindings>

Chapter 50
Auditing SOA Composite Applications at the BPEL Activity Level

50-22

3. Place the XML file in the same directory as the composite.xml file.

4. Define the audit-policy.xml and audit-binding.xml files in the composite.xml file.

<property name="oracle.composite.bpelAuditPolicyFile">audit-policy.xml</property>
<property
name="oracle.composite.bpelAuditBindingFile">audit-binding.xml</property>

5. Deploy the SOA composite application.

Chapter 50
Auditing SOA Composite Applications at the BPEL Activity Level

50-23

51
Automating Testing of SOA Composite
Applications

This chapter describes how to create, deploy, and run test cases that automate the testing of
SOA composite applications. You can also create test cases for testing BPEL process service
components included in the SOA composite application. Test cases enable you to simulate the
interaction between a SOA composite application and its web service partners before
deployment in a production environment. This helps to ensure that a process interacts with
web service partners as expected when it is ready for deployment to a production environment.
This chapter includes the following sections:

• Introduction to the Composite Test Framework

• Introduction to the Components of a Test Suite

• Creating Test Suites and Test Cases with the Create Composite Test Wizard

• Editing the Contents of Test Cases in Test Mode in the SOA Composite Editor

• Testing BPEL Process Service Components

• Deploying and Running a Test Suite

Introduction to the Composite Test Framework
Oracle SOA Suite provides an automated test suite framework for creating and running
repeatable tests on a SOA composite application.

The test suite framework provides the following features:

• Simulates web service partner interactions

• Validates process actions with test data

• Creates reports of test results

Test Cases Overview
The test framework supports testing at the SOA composite application level. In this type of
testing, wires, service binding components, service components (such as BPEL processes and
Oracle Mediator service components), and reference binding components are tested.

For more information, see Creating Test Suites and Test Cases with the Create Composite Test
Wizard.

Overview of Test Suites
Test suites consist of a logical collection of one or more test cases. Each test case contains a
set of commands to perform as the test instance is executed. The execution of a test suite is
known as a test run. Each test corresponds to a single SOA composite application instance.

For more information, see the following:

51-1

• Creating Test Suites and Test Cases with the Create Composite Test Wizard

• Editing the Contents of Test Cases in Test Mode in the SOA Composite Editor

Overview of Emulations
Emulations enable you to simulate the behavior of the following components with which your
SOA composite application interacts during execution:

• Internal service components inside the composite

• Binding components outside the composite

Instead of invoking another service component or binding component, you can specify a
response from the component or reference.

For more information, see the following:

• Emulations

• Editing the Contents of Test Cases in Test Mode in the SOA Composite Editor

Overview of Assertions
Assertions enable you to verify variable data or process flow. You can perform the following
types of assertions:

• Entire XML document assertions:

Compare the element values of an entire XML document to the expected element values.
For example, compare the exact contents of an entire loan request XML document to
another document. The XMLTestCase class in the XMLUnit package includes a collection of
methods for performing assertions between XML files. For more information about these
methods, visit the following URL:

http://xmlunit.sourceforge.net
• Part section of message assertions:

Compare the values of a part section of a message to the expected values. An example is
a payload part of an entire XML document message.

• Nonleaf element assertions:

Compare the values of an XML fragment to the expected values. An example is a loan
application, which includes leaf elements SSN, email, customerName, and loanAmount.

• Leaf element assertions:

Compare the value of a selected string or number element or a regular expression pattern
to an expected value. An example is the SSN of a loan application.

For more information about asserts, see Assertions.

Introduction to the Components of a Test Suite
This section describes and provides examples of the test components that comprise a test
case. Methods for creating and importing these tests into your process are described in
subsequent sections of this chapter.

Chapter 51
Introduction to the Components of a Test Suite

51-2

http://xmlunit.sourceforge.net

Process Initiation
You first define the operation of your process in a binding component service such as a SOAP
web service. The following example defines the operation of initiate to initiate the TestFwk
SOA composite application. The initiation payload is also defined in this section:

<?xml version="1.0" encoding="UTF-8" ?>
<!-- Generated by Oracle SCA Test Modeler version 1.0 at [6/13/07 10:50 AM]. -->
<compositeTest compositeDN="TestFwk"
 xmlns="http://xmlns.oracle.com/sca/2006/test">
 <about></about>
 <initiate serviceName="client" operation="initiate" isAsync="true">
 <message>
 <part partName="payload">
 <content>
 <loanApplication xmlns="http://www.autoloan.com/ns/autoloan">
 <SSN>111222333</SSN>
 <email>joe.smith@example.com</email>
 <customerName>Joe Smith</customerName>
 <loanAmount>20000</loanAmount>
 <carModel>Camry</carModel>
 <carYear>2007</carYear>
 <creditRating>800</creditRating>
 </loanApplication>
 </content>
 </part>
 </message>
 </initiate>
</compositeTest>

Emulations
You create emulations to simulate the message data that your SOA composite application
receives from web service partners.

In the test code in the following example, the loan request is initiated with an error. A fault
message is received in return from a web service partner:

<?xml version="1.0" encoding="UTF-8" ?>
<!-- Generated by Oracle SCA Test Modeler version 1.0 at [7/3/07 3:29 PM]. -->
<compositeTest compositeDN="CompositeTest"
 xmlns="http://xmlns.oracle.com/sca/2006/test">
 <about></about>
 <initiate serviceName="client" operation="initiate" isAsync="true">
 <message>
 <part partName="payload">
 <filePath>loanApplication.xml</filePath>
 </part>
 </message>
 </initiate>
 <wireActions wireSource="LoanBroker/CreditRatingService" operation="process">
 <emulate duration="PT0S">
 <fault faultName="ser:NegativeCredit" xmlns:ser="http://services.otn.com">
 <message>
 <part partName="payload">
 <filePath>creditRatingFault.xml</filePath>
 </part>
 </message>
 </fault>
 </emulate>

Chapter 51
Introduction to the Components of a Test Suite

51-3

 </wireActions>
</compositeTest>

Two message files, loanApplication.xml and creditRatingFault.xml, are invoked in this
emulation. If the loan application request in loanApplication.xml contains a social security
number beginning with 0, the creditRatingFault.xml file returns the fault message shown in
the following example:

<error xmlns="http://services.otn.com">
 Invalid SSN, SSN cannot start with digit '0'.
</error>

For more information, see Editing the Contents of Test Cases in Test Mode in the SOA
Composite Editor.

Assertions
You create assertions to validate an entire XML document, a part section of a message, a
nonleaf element, or a leaf element at a point during SOA composite application execution. The
following example instructs Oracle SOA Suite to ensure that the content of the customerName
variable matches the content specified.

<?xml version="1.0" encoding="UTF-8" ?>
<!-- Generated by Oracle SCA Test Modeler version 1.0 at [6/13/07 10:51 AM]. -->
<compositeTest compositeDN="TestFwk"
 xmlns="http://xmlns.oracle.com/sca/2006/test">
 <about></about>
 <initiate serviceName="client" operation="initiate" isAsync="true">
 <message>
 <part partName="payload">
 <content>
 <loanApplication xmlns="http://www.autoloan.com/ns/autoloan">
 <SSN>111222333</SSN>
 <email>joe.smith@example.com</email>
 <customerName>Joe Smith</customerName>
 <loanAmount>20000</loanAmount>
 <carModel>Camry</carModel>
 <carYear>2007</carYear>
 <creditRating>800</creditRating>
 </loanApplication>
 </content>
 </part>
 </message>
 </initiate>
 <wireActions wireSource="client" operation="initiate">
 <assert comparisonMethod="string">
 <expected>
 <location key="input" partName="payload"
 xpath="/s1:loanApplication/s1:customerName"
 xmlns:s1="http://www.autoloan.com/ns/autoloan"/>
 <simple>Joe Smith</simple>
 </expected>
 </assert>
 </wireActions>
</compositeTest>

For more information, see Editing the Contents of Test Cases in Test Mode in the SOA
Composite Editor.

Chapter 51
Introduction to the Components of a Test Suite

51-4

Message Files
Message instance files provide a method for simulating the message data received back from
web service partners. You can manually enter the received message data into this XML file or
load a file through the test mode of the SOA Composite Editor. For example, the following
message file simulates a credit rating result of 900 returned from a partner:

<rating xmlns="http://services.otn.com">900</rating>

For more information about loading message files into test mode, see Editing the Contents of
Test Cases in Test Mode in the SOA Composite Editor.

Creating Test Suites and Test Cases with the Create Composite
Test Wizard

This section describes how to create test suites and their test cases for a SOA composite
application. The test cases consist of sets of commands to perform as the test instance is
executed.

You can create test suites and test cases in either of two ways:

• In the Applications window

• From the Oracle JDeveloper main menu

Both options invoke the Create Composite Test wizard, which enables you to define the
initiating operation, callback operation, and input and output messages.

Note:

Do not enter a multibyte character string as a test suite name or test case name.
Doing so causes an error to occur when the test is executed from Oracle Enterprise
Manager Fusion Middleware Control.

1. Perform one of the following steps to create a new test suite or create a new composite
test in an existing test suite. Table 51-1 provides details.

Chapter 51
Creating Test Suites and Test Cases with the Create Composite Test Wizard

51-5

Table 51-1 Test Suite Creation or Selection

From the... Perform...

Oracle JDeveloper main menu a. Select File > New > Application > SOA Tier > Tests >
Composite Test Suite.

The Create Test Suite dialog is displayed.

b. Enter a test suite name, and click OK.

or

a. Select File > From Gallery > SOA Tier > Tests >
Composite Test Suite.

The Create Test Suite dialog is displayed.

b. Enter a test suite name, and click OK.

Applications window a. Right-click the testsuites folder and select Create Test
Suite.

The Create Test Suite dialog is displayed.

b. Enter a test suite name, and click OK.

Structure window a. Right-click Test Suites and select Create Test Suite.

The Create Test Suite dialog is displayed.

b. Enter a test suite name, and click OK.

Oracle JDeveloper main menu a. Select File > New > Application > SOA Tier > Tests >
Composite Test.

or

a. Select File > New > Composite Test.

Note: Both selections provide the option of creating a new test
suite or selecting an existing test suite in which to include the
new composite test.

The Create Composite Test Wizard - Test Name and Suite page appears, as shown in
Figure 51-1.

Chapter 51
Creating Test Suites and Test Cases with the Create Composite Test Wizard

51-6

Figure 51-1 Create Composite Test Wizard - Test Name and Suite Page

This wizard enables you to create simple tests without manually creating test details in test
mode in the SOA Composite Editor, as described in Editing the Contents of Test Cases in
Test Mode in the SOA Composite Editor. You only must manually use this editor in test
mode if you want to add additional test metadata such as emulations.

2. Provide values appropriate to your environment, as described in Table 51-2, and click
Next.

Table 51-2 Create Composite Test Wizard - Test Name and Suite Page

Field Description

Test Name Enter a name for the test.

Description Enter an optional description of the test. The description is displayed in the
Description column of the Test Cases page of the Unit Tests tab in Oracle
Enterprise Manager Fusion Middleware Control.

Test Suite Select an existing test suite to include this test or click the icon to create a
new test suite in the Create Test Suite dialog.

The Create Composite Test Wizard - Service and Operation page appears, as shown in
Figure 51-2.

Chapter 51
Creating Test Suites and Test Cases with the Create Composite Test Wizard

51-7

Figure 51-2 Create Composite Test Wizard - Service and Operation Page

3. Provide values appropriate to your environment, as described in Table 51-3, and click
Next.

Table 51-3 Create Composite Test Wizard - Service and Operation Page

Field Description

Service Select the SOA composite application to test.

Operator Select the operation.

Callback Operation Optionally select the callback (response) operation.

The Create Composite Test Wizard - Input Message page appears, as shown in
Figure 51-3. This page enables you to specify the input message to test the operation.

Chapter 51
Creating Test Suites and Test Cases with the Create Composite Test Wizard

51-8

Figure 51-3 Create Composite Test Wizard - Input Message Page

Provide values appropriate to your environment, as described in Table 51-4, and click
Next.

Table 51-4 Create Composite Test Wizard - Input Message Page

Field Description

Part Select the message part containing the input (for example, payload). If the
operation input message has multiple parts, then specify each message
part by changing the part name, one by one.

For each message part, you can either enter the XML document contents
manually or you can load the document from an XML file.

Value Create a simulated input message to send to a web service partner:

• Enter Manually Click to manually enter message data in the Enter Value field. A Generate
Sample button enables you to automatically generate a sample file from the
message part schema for testing. Click Save As to save the sample file for
later use by the same test or other tests in the same test suite.

• Load From File Click the Browse icon to load message data from a file. The file is added to
the messages folder in the Applications window.

The Create Composite Test Wizard - Output Message page appears, as shown in
Figure 51-4. This page specifies the output message expected from the operation or
callback operation.

Chapter 51
Creating Test Suites and Test Cases with the Create Composite Test Wizard

51-9

Figure 51-4 Create Composite Test Wizard - Output Message Page

Provide values appropriate to your environment, as described in Table 51-5, and click
Finish.

Table 51-5 Create Composite Test Wizard - Output Message Page

Field Description

From Select the external web service from which to receive the message.

Part Select the message part containing the output (for example, payload). If the
operation input message has multiple parts, then specify each message
part by changing the part name, one by one.

For each message part, you can either enter the XML document contents
manually or you can load the document from an XML file.

Value Create a simulated output message to return from a web service partner:

• Enter Manually Click to manually enter message data in the Enter Value field. A Generate
Sample button enables you to automatically generate a sample file for
testing. Click Save As to save the sample file.

• Load From File Click the Browse icon to load message data from a file. The file is added to
the messages folder in the Applications window.

The test suite is created, and the test mode of the SOA Composite Editor is displayed to
show the test. Figure 51-5 provides details. You can add additional test metadata such as
emulations, if necessary. If the current test is complete, you can continue to create another
test by clicking the test image button on the toolbar. If you want to run the test, you can
press the green arrow button.

Chapter 51
Creating Test Suites and Test Cases with the Create Composite Test Wizard

51-10

Figure 51-5 Test Suite Creation

A test is created in the Applications window, along with the following subfolders:

• componenttests

• includes

• messages

Contains message test files that you load into this directory through the test mode user
interface.

• tests

Contains the XML file for the test suite.

A folder named after the test suite also displays in the Structure window. This indicates that
you are in the test mode of the SOA Composite Editor. You can create test initiations,
assertions, and emulations in test mode. No other modifications, such as editing the
property dialogs of service components or dropping service components into the editor,
can be performed in test mode.

The following operating system test suite directory is also created:

C:\JDeveloper\mywork\application_name\project_name\testsuites\test_suite_name
4. If you want to exit test mode and return to design mode in the SOA Composite Editor, click

the last icon above the designer. Figure 51-6 provides details.

Figure 51-6 Test Mode Exit

5. Save your changes when prompted.

6. Under the testsuites folder in the Applications window, double-click the XML file name to
return to test mode. Figure 51-7 provides details.

Chapter 51
Creating Test Suites and Test Cases with the Create Composite Test Wizard

51-11

Figure 51-7 Test Mode Access

Note:

• Do not edit the filelist.xml files that display under the subfolders of the
testsuites folder. These files are automatically created during design time
and used during runtime to calculate the number of test cases.

• You cannot create test suites within other test suites. However, you can
organize a test suite into subdirectories.

Editing the Contents of Test Cases in Test Mode in the SOA
Composite Editor

After creating the basic contents of test suites and test cases with the Create Composite Test
Wizard, you can make additional updates in the test mode of the SOA Composite Editor.

Test cases consist of process initiations, emulations, and assertions. You create process
initiations to initiate client inbound messages into your SOA composite application. You create
emulations to simulate input or output message data, fault data, callback data, or all of these
types that your SOA composite application receives from web service partners. You create
assertions to validate entire XML documents, part sections of messages, nonleaf elements,
and leaf elements as a process is executed.

Note:

You can also edit test case contents in the Property Inspector. Single-click the
component or wire to edit to invoke the Property Inspector at the bottom of the page
for editing.

How to Initiate Inbound Messages
To initiate inbound messages:

You must first initiate the sending of inbound client messages to the SOA composite
application.

Chapter 51
Editing the Contents of Test Cases in Test Mode in the SOA Composite Editor

51-12

1. Go to the SOA Composite application in test mode.

2. Double-click the service binding component shown in Figure 51-8.

Figure 51-8 Service Binding Component Access

The Initiate Messages dialog appears.

3. Enter the details shown in Table 51-6:

Table 51-6 Initiate Messages Dialog Fields and Values

Field Value

Service Displays the name of the binding component service (client).

Operation Displays the operation type of the service binding component
(initiate).

Part Select the type of inbound message to send (for example, payload).

Value Create a simulated message to send from a client:

• Enter Manually Click to manually enter message data in the Enter Value field. A
Generate Sample button enables you to automatically generate a
sample file for testing. Click Save As to save the sample file.

• Load From File Click the Browse icon to load message data from a file. The file is
added to the messages folder in the Applications window.

Figure 51-9 shows this dialog:

Chapter 51
Editing the Contents of Test Cases in Test Mode in the SOA Composite Editor

51-13

Figure 51-9 Initiate Messages Dialog

The inbound process initiation message from a client looks as follows:

<?xml version="1.0" encoding="UTF-8" ?>
<!-- Generated by Oracle SCA Test Modeler version 1.0 at [7/12/07 8:36 AM]. -->
<compositeTest compositeDN="CompositeTest"
 xmlns="http://xmlns.oracle.com/sca/2006/test">
 <about/>
 <initiate serviceName="client" operation="initiate" isAsync="true">
 <message>
 <part partName="payload">
 <filePath>loanApplication.xml</filePath>
 </part>
 </message>
 </initiate>
. . .
. . .

The loanApplication.xml referenced in the process initiation file contains a loan
application payload:

<loanApplication xmlns="http://www.autoloan.com/ns/autoloan">
 <SSN>111222333</SSN>
 <email>joe.smith@example.com</email>
 <customerName>Joe Smith</customerName>
 <loanAmount>20000</loanAmount>
 <carModel>Camry</carModel>
 <carYear>2007</carYear>
 <creditRating>800</creditRating>
</loanApplication>

4. Click OK.

Chapter 51
Editing the Contents of Test Cases in Test Mode in the SOA Composite Editor

51-14

How to Emulate Outbound Messages
To emulate outbound messages:

Note:

The creation of multiple emulations in an instance in a test case is supported only if
one emulation is for an output message and the other is for a callback message.

You can simulate a message returned from a synchronous web service partner.

1. Go to the SOA composite application in test mode.

2. Beneath the testsuites folder in the Applications window, double-click a test case.
Figure 51-10 provides details.

Figure 51-10 Test Case Access

The SOA composite application in the SOA Composite Editor is refreshed to display in test
mode. This mode enables you to define test information.

3. Double-click the wire of the SOA composite application area to test. For the example
shown in Figure 51-11, the wire between the LoanBroker process and the synchronous
CreditRating web service is selected.

Figure 51-11 Wire Access

This displays the Wire Actions dialog shown in Figure 51-12, from which you can design
emulations and assertions for the selected part of the SOA composite application.

Chapter 51
Editing the Contents of Test Cases in Test Mode in the SOA Composite Editor

51-15

Figure 51-12 Wire Actions Dialog

4. Click the Emulates tab.

5. Click the Add icon.

6. Click Emulate Output.

7. Enter the details described in Table 51-7:

Table 51-7 Emulate Output Message Dialog Fields and Values

Field Value

Part Select the message part containing the output (for example,
payload).

Value Create a simulated output message to return from a web service
partner:

• Enter Manually Click to manually enter message data in the Enter Value field. A
Generate Sample button enables you to automatically generate a
sample file for testing. Click Save As to save the sample file.

• Load From File Click the Browse icon to load message data from a file. The file is
added to the messages folder in the Applications window.

Duration Enter the maximum amount of time to wait for the message to be
delivered from the web service partner.

Figure 51-13 shows this dialog:

Chapter 51
Editing the Contents of Test Cases in Test Mode in the SOA Composite Editor

51-16

Figure 51-13 Emulate Dialog with Emulate Output Selected

A simulated output message from a synchronous web service partner that you enter
manually or load from a file looks as follows:

<?xml version="1.0" encoding="UTF-8" ?>
<!-- Generated by Oracle SCA Test Modeler version 1.0 at [7/3/07 3:26 PM]. -->
<compositeTest compositeDN="CompositeTest"
 xmlns="http://xmlns.oracle.com/sca/2006/test">
 <about></about>
 <initiate serviceName="client" operation="initiate" isAsync="true">
 <message>
 <part partName="payload">
 <filePath>loanApplication.xml</filePath>
 </part>
 </message>
 </initiate>
 <wireActions wireSource="LoanBroker/CreditRatingService" operation="process">
 <emulate duration="PT0S">
 <message>
 <part partName="payload">
 <filePath>creditRatingResult.xml</filePath>
 </part>
 </message>
 </emulate>
 </wireActions>
</compositeTest>

The creditRatingResult.xml message file referenced in the output message provides
details about the credit rating result.

<rating xmlns="http://services.otn.com">900</rating>

Chapter 51
Editing the Contents of Test Cases in Test Mode in the SOA Composite Editor

51-17

8. Click OK.

How to Emulate Callback Messages
To emulate callback messages:

Note:

The creation of multiple emulations in an instance in a test case is supported only if
one emulation is for an output message and the other is for a callback message.

You can simulate a callback message returned from an asynchronous web service partner.

1. Access the Wire Actions dialog by following Step 1 through Step 3 of How to Emulate
Outbound Messages.

2. Click the Emulates tab.

3. Click the Add icon.

4. Click Emulate Callback. This field is only enabled for asynchronous processes.

5. Enter the details described in Table 51-8:

Table 51-8 Emulate Callback Message Fields

Field Value

Callback Operation Select the callback operation (for example, onResult).

Callback Message Displays the callback message name of the asynchronous process.

Part Select the message part containing the callback (for example,
payload).

Value Create a simulated callback message to return from an
asynchronous web service partner:

• Enter Manually Click to manually enter message data in the Enter Value field. A
Generate Sample button enables you to automatically generate a
sample file for testing. Click Save As to save the sample file.

• Load From File Click the Browse icon to load message data from a file. The file is
added to the messages folder in the Applications window.

Duration Enter the maximum amount of time to wait for the callback message
to be delivered from the web service partner.

Figure 51-14 shows this dialog:

Chapter 51
Editing the Contents of Test Cases in Test Mode in the SOA Composite Editor

51-18

Figure 51-14 Emulate Dialog with Emulate Callback Selected

The simulated callback message from a web service partner looks as follows. You enter
this message manually or load it from a file:

<?xml version="1.0" encoding="UTF-8" ?>
<!-- Generated by Oracle SCA Test Modeler version 1.0 at [7/3/07 3:27 PM]. -->
<compositeTest compositeDN="CompositeTest"
 xmlns="http://xmlns.oracle.com/sca/2006/test">
 <about></about>
 <initiate serviceName="client" operation="initiate" isAsync="true">
 <message>
 <part partName="payload">
 <filePath>loanApplication.xml</filePath>
 </part>
 </message>
 </initiate>
 <wireActions wireSource="LoanBroker/LoanService" operation="initiate">
 <emulate callbackOperation="onResult" duration="PT0S">
 <message>
 <part partName="payload">
 <filePath>loanOffer.xml</filePath>
 </part>
 </message>
 </emulate>
 </wireActions>
</compositeTest>

The loanOffer.xml message file referenced in the callback message provides details
about the credit rating approval.

<loanOffer xmlns="http://www.autoloan.com/ns/autoloan">
 <providerName>Bank Of America</providerName>

Chapter 51
Editing the Contents of Test Cases in Test Mode in the SOA Composite Editor

51-19

 <selected>false</selected>
 <approved>true</approved>
 <APR>1.9</APR>
</loanOffer>

6. Click OK.

How to Emulate Fault Messages
To emulate fault messages:

You can simulate a fault message returned from a web service partner. This simulation enables
you to test fault handling capabilities in your process.

1. Access the Wire Actions dialog by following Step 1 through Step 3 of How to Emulate
Outbound Messages.

2. Click the Emulates tab.

3. Click the Add icon.

4. Click Emulate Fault.

5. Enter the details described in Table 51-9:

Table 51-9 Emulate Fault Message Fields

Field Value

Fault Select the fault type to return from a partner (for example,
NegativeCredit).

Fault Message Displays the message name.

Part Select the message part containing the fault (for example, payload).

Value Create a simulated fault message to return from a web service
partner:

• Enter Manually Click to manually enter message data in the Enter Value field. A
Generate Sample button enables you to automatically generate a
sample file for testing. Click Save As to save the sample file.

• Load From File Click the Browse icon to load message data from a file. The file is
added to the messages folder in the Applications window.

Duration Enter the maximum amount of time to wait for the fault message to
be delivered from the web service partner.

Figure 51-15 shows this dialog:

Chapter 51
Editing the Contents of Test Cases in Test Mode in the SOA Composite Editor

51-20

Figure 51-15 Emulate Dialog with Emulate Fault Selected

An example of a simulated fault message from a web service partner that you enter
manually or load from a file is shown in Emulations.

6. Click OK.

How to Create Assertions
To create assertions:

You perform assertions to verify variable data or process flow. Assertions enable you to
validate test data in an entire XML document, a part section of a message, a nonleaf element,
or a leaf element as a process is executed. This is done by extracting a value and comparing it
to an expected value.

1. Access the Wire Actions dialog by following the steps in How to Emulate Outbound
Messages.

2. Click the Asserts tab.

Figure 51-16 shows this dialog:

Chapter 51
Editing the Contents of Test Cases in Test Mode in the SOA Composite Editor

51-21

Figure 51-16 Wire Actions Dialog with Asserts Tab Selected

3. Click the Add icon.

The Create Assert dialog appears.

4. Select the type of assertion to perform at the top of the dialog, as shown in Table 51-10. If
the operation supports only input messages, the Assert Input button is enabled. If the
operation supports both input and output messages, the Assert Input and Assert Output
buttons are both enabled.

Table 51-10 Assertion Types

Type Description

Assert Input Select to create an assertion in the inbound direction.

Assert Output Select to create an assertion in the outbound direction.

Assert Callback Select to create an assertion on a callback.

Assert Fault Select to assert a fault into the application flow.

5. See the section shown in Table 51-11 based on the type of assertion you want to perform.

Table 51-11 Assertion Types

For an Assertion on... See...

• A part section of a
document

• A nonleaf element
• An entire XML document

Creating Assertions on a Part Section, Nonleaf Element, or Entire
XML Document

A leaf element Creating Assertions on a Leaf Element

Creating Assertions on a Part Section, Nonleaf Element, or Entire XML Document

To create assertions on a part section, nonleaf element, or entire XML document:

This test compares the values to the expected values.

Note:

If the message contains multiple parts (for example, payload1, payload2, and
payload3), you must create separate assertions for each part.

1. Click Browse to select the target part section, nonleaf element, or entire XML document to
assert.

Chapter 51
Editing the Contents of Test Cases in Test Mode in the SOA Composite Editor

51-22

The Select Assert Target dialog appears.

2. Select a value, and click OK. For example, select a variable such as payload to perform a
part section assertion.

Figure 51-17 shows this dialog. While this example shows how to perform a part section
assertion, selecting LoanBrokerRequestMessage is an example of an entire XML
document assertion and selecting loanApplication is an example of a nonleaf assertion.

Figure 51-17 Select a Part Section of a Message

The Create Assert dialog refreshes based on your selection of a variable.

3. Enter details in the remaining fields, as shown in Table 51-12:

Table 51-12 Create Assert Dialog Fields and Values

Field Value

Fault Select the type of fault to assert (for example, NegativeCredit). This
field only displays if you select Assert Fault in Step 4.of How to
Create Assertions.

Assert Target Displays the assert target you selected in Step 2.

Chapter 51
Editing the Contents of Test Cases in Test Mode in the SOA Composite Editor

51-23

Table 51-12 (Cont.) Create Assert Dialog Fields and Values

Field Value

Compare By Specify the strictness of the comparison.

• xml-identical: Used when the comparison between the
elements and attributes of the XML documents must be exact.
If there is any difference between the two XML documents, the
comparison fails. For example, the comparison fails if one
document uses an element name of purchaseOrder, while the
other uses an element name of invoice. The comparison also
fails if the child attributes of two elements are the same, but the
attributes are ordered differently in each element.

• xml-similar: Used when the comparison must be similar in
content, but does not need to exactly match. For example, the
comparison succeeds if both use the same namespace URI,
but have different namespace prefixes. The comparison also
succeeds if both contain the same element with the same child
attributes, but the attributes are ordered differently in each
element.

In both of these examples, the differences are considered
recoverable, and therefore similar.

For more information about comparing the contents of XML files,
see the XMLUnit web site:

http://xmlunit.sourceforge.net/userguide/html/
ar01s03.html#The%20Difference%20Engine

Part Select the message part containing the XML document (for
example, payload).

Value Create an XML document whose content is compared to the assert
target content:

• Enter Manually Click to manually enter message data in the Enter Value field. A
Generate Sample button enables you to automatically generate a
sample file for testing. Click Save As to save the sample file.

• Load From File Click the Browse icon to load message data from a file. The file is
added to the messages folder in the Applications window.

Description Enter an optional description.

Figure 51-18 shows this dialog with Assert Input selected:

Chapter 51
Editing the Contents of Test Cases in Test Mode in the SOA Composite Editor

51-24

http://xmlunit.sourceforge.net/userguide/html/ar01s03.html#The%20Difference%20Engine
http://xmlunit.sourceforge.net/userguide/html/ar01s03.html#The%20Difference%20Engine

Figure 51-18 Create Assert Dialog with Assert Input Selected

4. Click OK.

The Wire Actions dialog shown in Figure 51-19 displays your selection.

Figure 51-19 Wire Actions Dialog with Asserts Tab Selected

5. Click OK.

Creating Assertions on a Leaf Element

To create assertions on a leaf element:

This test compares the value to an expected value.

1. Click Browse to select the leaf element to assert.

The Select Assert Target dialog appears.

2. Select a leaf element, and click OK. For example, select loanAmount to perform an
assertion. Figure 51-20 provides details.

Chapter 51
Editing the Contents of Test Cases in Test Mode in the SOA Composite Editor

51-25

Figure 51-20 Selection of a Leaf Element

The Create Assert dialog refreshes based on your selection of an entire XML document.

3. Enter details in the remaining fields, as shown in Table 51-13:

Table 51-13 Create Assert Dialog Fields and Values

Field Value

Fault Select the type of fault to assert (for example, NegativeCredit). This
field only displays if you select Assert Fault in Step 4 of How to
Create Assertions.

Callback Operation Select the type of callback to assert (for example, onResult). This
field only displays if you select Assert Callback in Step 4 of How to
Create Assertions.

Assert Target Displays the variable assert target you selected in Step 2.

Compare By Select the type of comparison:

• string: Compares string values.
• number: Compares numeric values.
• pattern-match: Compares a regular expression pattern (for

example, [0-9]*). Java Development Kit (JDK) regular
expression (regexp) constructs are supported. For example,
entering a pattern of ab[0-9]*cd means that a value of
ab123cd or ab456cd is correct. An asterisk (*) indicates any
number of occurrences.

Assert Value Enter the value you are expecting. This value is compared to the
value for the assert target.

Description Enter an optional description.

Figure 51-21 shows this dialog with Assert Input selected:

Chapter 51
Editing the Contents of Test Cases in Test Mode in the SOA Composite Editor

51-26

Figure 51-21 Create Assert Dialog

4. Click OK.

The Wire Actions dialog shown in Figure 51-22 displays your selection.

Figure 51-22 Wire Actions Dialog with Asserts Tab Selected

What You May Need to Know About Assertions
When a test is executed, and the response type returned is different from the type expected,
the assertion is skipped. For example, you are expecting a fault (RemoteFault) to be returned
for a specific message, but a response (BpelResponseMessage) is instead returned.

As a best practice, always assert and emulate the expected behavior.

Testing BPEL Process Service Components
After creating the basic contents of test suites and test cases with the Create Composite Test
Wizard, you can automate the testing of an individual BPEL process service component
included in a new or existing SOA composite application test suite. These test cases enable

Chapter 51
Testing BPEL Process Service Components

51-27

you to simulate the interaction between a BPEL process and its web service partners before
deployment in a production environment. This helps to ensure that a BPEL process interacts
with web service partners as expected by the time it is ready for deployment to a production
environment.

The following provides an example of a SOA composite application test suite that includes a
component test for the LoanBroker BPEL process service component.

<compositeTest compositeDN="TestFwk"
 xmlns="http://xmlns.oracle.com/sca/2006/test">
 <about></about>
 <initiate serviceName="client" operation="initiate" isAsync="true">
 <message>
 <part partName="payload">
 <content>
 <loanApplication xmlns="http://www.autoloan.com/ns/autoloan">
 <SSN>111222333</SSN>
 <email>joe.smith@example.com</email>
 <customerName>Joe Smith</customerName>
 <loanAmount>20000</loanAmount>
 <carModel>Camry</carModel>
 <carYear>2007</carYear>
 <creditRating>800</creditRating>
 </loanApplication>
 </content>
 </part>
 </message>
 </initiate>
 <componentTest componentName="LoanBroker" filePath="assert.xml"/>
</compositeTest>

The assert.xml test shown in the preceding example specifies assertions for variables and
faults.

Note:

You cannot automate the testing of business rule, human task, Oracle Mediator, or
spring service components.

Overview of Assertions on BPEL Process Activities
You can create variable and fault assertions on BPEL process activities. The following example
instructs the BPEL process to ensure that the contents of textVar and crOutput match the
contents specified:

 <bpelTest xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns="http://xmlns.oracle.com/sca/2006/test"
 componentName="LoanBroker">
 <activityActions activityName="elementAssign">
 <assert comparisonMethod="number">
 <description>Some other assertion.</description>
 <expected>
 <location key="textVar"
 xmlns:loan="http://www.autoloan.com/ns/autoloan"/>
 <simple>111222333</simple>
 </expected>
 </assert>

Chapter 51
Testing BPEL Process Service Components

51-28

 </activityActions>
 <activityActions activityName="invokeCR">
 <assert comparisonMethod="number">
 <description>Make sure we got the output.</description>
 <expected>
 <location key="crOutput" partName="payload" xpath="/tns:rating"
 xmlns:tns="http://services.otn.com"/>
 <simple>560</simple>
 </expected>
 </assert>
 </activityActions>
</bpelTest>

For more information about creating assertions on BPEL process activities, see How to Create
Assertions.

Overview of a Fast Forward Action on a Wait Activity
A wait activity allows a process to wait for a given time period or until a time limit has been
reached. When testing a BPEL process service component, you may want to bypass the wait
activity to continue with testing. A fast forward action enables you to specify the amount of time
for which to bypass a wait activity and move forward in the test scenario. The following
example instructs the BPEL process to bypass the wait activity for 1 second.

<bpelTest xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://xmlns.oracle.com/sca/2006/test
 TestFwk.xsd"
 xmlns="http://xmlns.oracle.com/sca/2006/test"
 componentName="LoanBroker">
 <activityActions activityName="wait1">
 <fastForward duration="PT1S"/>
 </activityActions>
</bpelTest>

For more information about creating fast forward actions on wait activities, see How to Bypass
a Wait Activity.

Overview of Assert Activity Execution
You can specify and validate the number of times an activity is executed in a BPEL process.
The following example instructs the BPEL process to execute the invoke, elementAssign,
invokeCR, and replyOutput activities one time each.

<bpelTest xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns="http://xmlns.oracle.com/sca/2006/test"
 componentName="LoanBroker">
 <assertActivityExecuted activityName="invoke" executionCount="1"/>
 <assertActivityExecuted activityName="elementAssign" executionCount="1"/>
 <assertActivityExecuted activityName="invokeCR" executionCount="1"/>
 <assertActivityExecuted activityName="replyOutput" executionCount="1"/>
</bpelTest>

For more information about creating assert activity executions, see How to Specify the Number
of Times to Execute an Activity.

Chapter 51
Testing BPEL Process Service Components

51-29

How to Create BPEL Process Service Component Tests
To create BPEL process service component tests:

1. Double-click a BPEL process in a test suite (for this example, LoanBroker).

If you have not yet created a test suite, see Creating Test Suites and Test Cases with the
Create Composite Test Wizard. The BPEL process service component test that you create
is included in the overall test suite for the SOA composite application.

The Create Component Test dialog is displayed, as shown in Figure 51-23.

Figure 51-23 Create Component Test Dialog

2. Accept the default name or enter a different name, as shown in Figure 51-23.

3. Click OK.

The BPEL process in test mode is displayed, as shown in Figure 51-24.

In the lower left section, the Structure window displays the Asserts, Fast Forwards, and
Assert Execution Counts folders. You can right-click these folders to create assertions,
fast forwards (to bypass executions of wait activities), and assertion execution counts,
respectively.

Above the designer, the following buttons are displayed:

• BPEL: Click to access the BPEL process service component in design mode of Oracle
BPEL Designer (that is, in nontest mode). This button is currently enabled in
Figure 51-24 because you are in test mode for the BPEL process.

• Monitor: Click to configure BPEL process monitors in Oracle BPEL Designer. BPEL
process monitors can send data to Oracle BAM for analysis and graphical display
through the Oracle BAM adapter.

• Test: This button is currently disabled because you are in test mode for the BPEL
process service component. This button is enabled when you click the BPEL button to
enter design mode in Oracle BPEL Designer.

• Analytics: Click to create a uniform measurement mechanism across Oracle SOA
Suite components such as Oracle BPMN, human workflow, and BPEL processes for
collecting disparate data.

Chapter 51
Testing BPEL Process Service Components

51-30

Figure 51-24 BPEL Process Service Component in Test Mode

How to Create Assertions
You can create assertions for variables and faults in BPEL process activities.

To create assertions:

1. Select the activity on which to create an assertion through one of the following methods:

a. In the Structure window, right-click the Asserts folder and select Create, or select the
Asserts folder and click the Add button.

The Assert dialog is displayed.

b. In the Activity Name field, click the Browse icon to select an activity.

or

a. Right-click a specific BPEL activity in the designer, and select Edit Activity Test Data.

b. Click the Asserts tab.

c. Click the Add icon.

The activity you selected is displayed in the Activity Name field.

2. Enter details in the remaining fields, as shown in Table 51-14.

Table 51-14 Assertions on BPEL Activities

Field Value

Assert Variable Select to assert a variable.

Assert Fault Select to assert a fault.

Chapter 51
Testing BPEL Process Service Components

51-31

Table 51-14 (Cont.) Assertions on BPEL Activities

Field Value

Target Select a target to assert:

• If you selected Assert Variable, click the Browse icon to select the
type of variable to assert (for example, /autoloan:loanApplication/
autoloan:SSN).

• If you selected Assert Fault, click the Browse icon to select the type
of fault to assert (for example, NegativeCredit).

Compare By If comparing XML documents, specify the strictness of the comparison:

• XML Identical: Use when the comparison between the elements and
attributes of the XML documents must be exact. If there is any
difference between the two XML documents, the comparison fails. For
example, the comparison fails if one document uses an element name
of purchaseOrder, while the other uses an element name of
invoice. The comparison also fails if the child attributes of two
elements are the same, but the attributes are ordered differently in
each element.

• XML Similar: Use when the comparison must be similar in content,
but does not need to exactly match. For example, the comparison
succeeds if both use the same namespace URI, but have different
namespace prefixes. The comparison also succeeds if both contain
the same element with the same child attributes, but the attributes are
ordered differently in each element.

In both of these examples, the differences are considered recoverable,
and therefore similar.

If comparing variables, specify the type:

• String: Select to compare string values.
• Pattern Match Using Java Regular Expressions: Select to compare

a regular expression pattern (for example, [0-9]*). Java Development
Kit (JDK) regular expression (regexp) constructs are supported. For
example, entering a pattern of ab[0-9]*cd means that a value of
ab123cd or ab456cd is correct. An asterisk (*) indicates any number
of occurrences.

• Number: Select to compare numeric values.

Parts Select the message part containing the XML document (for example,
payload).

Value Create an XML document whose content is compared to the assert target
content:

• Enter Manually Click to manually enter message data in the Enter Value field. A Generate
Instance Sample icon enables you to automatically generate a sample file
for testing. Click the Save As icon to save the sample file.

• Load From File Click the Browse icon to load message data from a file. The file is added
to the messages folder in the Applications window.

Description Enter an optional description.

3. Click OK.

Expand the Assert folder in the Structure window to view the activities on which you have
created asserts. Figure 51-25 provides details.

Chapter 51
Testing BPEL Process Service Components

51-32

Figure 51-25 Assert Folder in Structure Window

How to Bypass a Wait Activity
You can specify the amount of time for which to bypass a wait activity and move forward in the
test scenario. Once the time limit expires, the wait activity is processed.

To bypass a wait activity:

1. Select the wait activity to bypass through one of the following methods:

a. In the Structure window, right-click the Fast Forwards folder and select Create, or
select the Fast Forwards folder and click the Add button.

The Fast Forward dialog is displayed.

b. In the Activity Name field, click the Browse icon to select the wait activity.

or

a. Right-click a specific wait activity in the designer, and select Edit Activity Test Data.

b. Click the Fast Forward tab. This tab is only displayed if there are wait activities in the
BPEL process.

c. Click the Add icon.

The wait activity you selected is displayed in the Activity Name field.

2. In the Duration list, specify a time period for which to bypass the wait activity (for example,
1 second).

3. Click OK.

Chapter 51
Testing BPEL Process Service Components

51-33

4. Expand the Fast Forwards folder in the Structure window to view the amount of time for
which to bypass the wait activity and move forward in the test scenario. Figure 51-26
provides details.

Figure 51-26 Fast Forwards Folder in Structure Window

For more information about wait activities, see Setting an Expiration Time with a Wait Activity .

How to Specify the Number of Times to Execute an Activity
You can specify to execute an activity a specified number of times. This provides a method for
verifying that an activity executes the correct number of times in a process flow (for example,
ensuring that a while activity executes the correct number of times).

To specify the number of times an activity is executed:

1. Select the activity to execute through one of the following methods:

a. In the Structure window, right-click the Assert Execution Counts folder and select
Create, or select the Assert Execution Counts folder and click the Add button.

The Assert Execution Count dialog is displayed.

b. In the Activity Name field, click the Browse icon to select the activity to execute.

or

a. Right-click a specific BPEL activity in the designer, and select Edit Activity Test Data.

b. Click the Assert Execution Count tab.

c. Click the Add icon.

The activity you selected is displayed in the Activity Name field.

2. In the Count list, select a value.

3. Click OK.

The Activity Test Data dialog looks as shown in Figure 51-27.

Chapter 51
Testing BPEL Process Service Components

51-34

Figure 51-27 Activity Test Data Dialog

4. Expand the Assert Execution Counts folder in the Structure window to view execution
counts assigned to activities. Figure 51-28 provides details.

Figure 51-28 Assert Execution Counts Folder in the Structure Window

Deploying and Running a Test Suite
After creating a test suite of test cases, you deploy the suite as part of a SOA composite
application. You then run the test suites from Oracle JDeveloper, Oracle Enterprise Manager
Fusion Middleware Control, an Oracle WebLogic Scripting Tool (WLST) script, or an ant
command.

How to Deploy and Run a Test Suite from Oracle JDeveloper
You can run a test suite from Oracle JDeveloper. After test suites are created, you can select
multiple test suites to run, an individual test suite to run, or an individual test in a test suite to
run.

Chapter 51
Deploying and Running a Test Suite

51-35

To deploy and run a test suite from Oracle JDeveloper:

1. Perform the appropriate task shown in Table 51-15.

Table 51-15 Test Suite Execution Options

To... In the Applications Window...

Run the test suite currently
open in test mode in the SOA
Composite Editor.

a. Click the Run Test icon above the SOA Composite Editor.

Run all test suites. a. Right-click the testsuites folder, and select Run Test Suites.

Run an individual test suite. a. Right-click the test suite name, and select Run Test Suite.

Chapter 51
Deploying and Running a Test Suite

51-36

Table 51-15 (Cont.) Test Suite Execution Options

To... In the Applications Window...

Run an individual test in a test
suite.

a. Right-click the individual test in the tests folder, and select Run
Test.

If you have not configured the test server to use, the Specify Test Server dialog is
displayed.

2. Enter the test server host name and optionally select the Do not ask again, save it in
Tools-> Preferences-> SOA check box. This prevents this dialog from being displayed
again until you go to Tools > Preferences > SOA and change the configuration.

3. Click OK.

The Test Run dialog is displayed.

4. Perform the following steps:

a. Specify the test run name.

b. Select or deselect tests to run.

c. Specify the timeout value in seconds for running tests on the test server.

d. Click OK.

Figure 51-29 provides details.

Chapter 51
Deploying and Running a Test Suite

51-37

Figure 51-29 Test Run Dialog

A check is made to see if the SOA composite application (including the tests) has ever
been deployed on the test server. You must first deploy the composite before you can run
tests on the test server.

5. Perform the steps shown in Table 51-16 based on the deployment status of the SOA
composite application.

Table 51-16 Check to Determine if the SOA Composite Application is Deployed

If the SOA Composite Application ... Then ...

Is deployed. Go to Step 6.

• Has never been deployed on the test
server.

• Has been deployed on the test
server, but the composite (including
the tests) has been changed since
the last deployment.

The Confirm to Deploy Composite dialog is displayed.

a. Click OK to deploy the SOA composite application.

The Deployment Action page of the Deploy
Project_Name wizard is displayed.

b. Select Deploy to Application Server.

c. Follow the pages of the wizard to deploy the SOA
composite application to an application server.

For information about deploying SOA composite
applications, see Deploying the Profile.

d. When deployment is complete, go to Step 6.

After deployment has completed, the tests run on the test server.

6. View the test results. Figure 51-30 provides details. The Test Results dialog is per test
server and composite DN. The test server URL (the SOA server host name and port
number) and composite DN are displayed in the top right corner to indicate the context.
You can run tests as many times as you want, and can select different test combinations to
run on the same test server or different test servers.

Chapter 51
Deploying and Running a Test Suite

51-38

Figure 51-30 Test Results Dialog

Test results are displayed in three collapsible tables, from master to details. Table 51-17
provides details.

Chapter 51
Deploying and Running a Test Suite

51-39

Table 51-17 Test Results Tables

Test Runs Test Cases Assert Results

Shows the current test run and
its status summary if you just
submitted a test run. If you just
queried the test server for test
runs, the table shows all test
runs matching your query
criteria.

• Name of the test run that
you entered in the Test Run
dialog.

• Status of the test run: either
passed or failed. The status
is passed if all test cases in
the test run passed.
Otherwise, the status is
failed, which means at least
one test case failed.

• Success percentage of the
test run.

• Total number of test cases.
• Number of passed, failed,

in error, and running test
cases.

• Start and end times for a
test run.

Shows all test cases and the
statuses of the selected test run
from the Test Runs table. Click
the Refresh button to refresh
the test case statuses.

• Test file name of the test
case. Click to access its
test editor.

• Status of the test case,
either passed or failed. The
status is passed if all
assertions in the test case
passed. Otherwise, the
status is failed, which
means at least one
assertion failed.

• Test suite of the test case.

Shows all assertion results of
the selected test case from the
Test Cases table.

• Assertion location. This is
the wire source (service or
reference) for a wire assert
and the component (BPEL
process) activity name for a
component assert. This is a
hyperlink to the location of
the assert in its test editor.
Figure 51-31 provides
details.

• Assertion status: Passed or
failed. The status is passed
if the actual value matches
the expected value.

• Expected and actual values
of the assert. This is a
simple value if it is a simple
value assert and a
hyperlink to a popup to
show the XML value if it is
an XML value assert.

• Error message if the status
is failed.

• Assertion type: either wire
or component. Wire means
to assert on a composite
wire. Component means to
assert within a component
(BPEL process).

• Assertion description that
you entered for the
assertion when created.

Chapter 51
Deploying and Running a Test Suite

51-40

Figure 51-31 Assertion XML Results

7. Perform the following additional tasks in the Test Runs table in Figure 51-30:

a. Click the Search icon above the Test Runs table to query test runs from the test
server by specifying search criteria.

b. Click the Refresh icon above the Test Runs table to refresh the status of test runs.

8. Perform the following additional tasks in the Test Cases table in Figure 51-30:

a. Click the Refresh icon above the Test Cases table to refresh the test case statuses.

9. Perform the following additional tasks in the Asserts Results table in Figure 51-30:

a. Select the Show Failures Only check box above the Asserts Results table to show
failed asserts only.

How to Deploy and Run a Test Suite from Oracle Enterprise Manager
Fusion Middleware Control

For information about deploying a SOA composite application and running a test suite from
Oracle Enterprise Manager Fusion Middleware Control, see Administering Oracle SOA Suite
and Oracle Business Process Management Suite.

How to Deploy and Run a Test Suite with a WLST Command
For information about using the sca_test WLST command to execute a test suite, see Section
"sca_test" of WLST Command Reference for SOA Suite.

Chapter 51
Deploying and Running a Test Suite

51-41

How to Deploy and Run a Test Suite with an ant Script
For information about using the ant-sca-test.xml ant script to execute a test suite, see How
to Use ant to Automate the Testing of a SOA Composite Application.

Chapter 51
Deploying and Running a Test Suite

51-42

Part IX
Advanced Topics

This part describes advanced topics.

This part contains the following chapters:

• Managing Large Documents and Large Numbers of Instances

• Customizing SOA Composite Applications

• Defining Composite Sensors

• Creating Dynamic Business Processes

• Integrating the Spring Framework in SOA Composite Applications

52
Managing Large Documents and Large
Numbers of Instances

This chapter describes the best practices for managing large documents and metadata and
managing environments with large numbers of instances in Oracle SOA Suite. It also describes
use cases for handling large documents, limitations on concurrent processing of large
documents, and tuning recommendations.
This chapter includes the following sections:

• Best Practices for Handling Large Documents

• Best Practices for Handling Large Metadata

• Best Practices for Handling Large Numbers of Instances

For more information about Oracle SOA Suite tuning and performance, see Tuning
Performance.

For information about troubleshooting Oracle SOA Suite issues, see Chapter "Troubleshooting
Oracle SOA Suite and Oracle BPM Suite" of Administering Oracle SOA Suite and Oracle
Business Process Management Suite.

For information about using Oracle Data Integrator to perform fast bulk data movement and
handle complex data transformations, visit the following URL:

http://www.oracle.com/technetwork/middleware/data-integrator

Best Practices for Handling Large Documents
This section describes the following scenarios for handling large documents and the best
practice approach for each scenario. Oracle recommends that you follow these best practices
before developing and executing large payloads.

Use Cases for Handling Large Documents
This section describes use cases for handling large documents.

Passing Binary Objects as Base64-Encoded Text in XML Payloads
This section describes use cases for passing binary objects as Base64-encoded text in the
XML payload.

SOAP Inline

In this use case, the binary attachments (for example, an image) are Base64-encoded as text
and then passed inline in the XML document. Table 52-1 provides details.

52-1

http://www.oracle.com/technetwork/middleware/data-integrator

Table 52-1 Capabilities

Capability Description

Security Supported.

Filter/Transformation/Assign Use of transformations may lead to slower performance, out-of-
memory errors, or both.

Fanout Supported.

Binding WS binding sends it as a document object model (DOM).

Oracle BPEL Process Manager/
Oracle Mediator

Can be decoded in a BPEL process using Java exec.

SOAP MTOM

In this use case, the binary attachments (for example, an image) are Base64-encoded as text
and then passed as a Message Transmission Optimization Mechanism (MTOM) document.
Table 52-2 provides details.

Table 52-2 Capabilities

Capability Description

Security Supported.

Filter/Transformation/Assign Assign activities are supported.

Fanout Supported.

Binding WS binding materializes the attachment sent as MTOM and puts it
inside in Base64-encoded format (streaming is not supported).

Oracle BPEL Process Manager/
Oracle Mediator

No additional work is required.

Opaque Passed by File/FTP Adapters

In this use case, the binary attachments (for example, an image) are Base64-encoded as text
and then passed inline in the XML document. Table 52-3 provides details.

Table 52-3 Capabilities

Capability Description

Security Not supported.

Filter/Transformation/Assign Pass through.

Fanout Supported.

Binding Adapter encodes it to Base64 format.

Oracle BPEL Process Manager/
Oracle Mediator

Supported. Opaque content cannot be manipulated in an assign or a
transform activity.

Opaque Passed by Oracle B2B

Chapter 52
Best Practices for Handling Large Documents

52-2

In this use case, the binary attachments (for example, an image) are Base64-encoded as text
encoded. Table 52-4 provides details.

Table 52-4 Capabilities

Capability Description

Security Not supported.

Filter/Transformation/Assign Pass through.

Fanout Supported.

Oracle B2B Oracle B2B encodes the native payload to Base64 format. For this
scenario, you must configure the Oracle B2B binding document
definition handling to be opaque.

End-to-End Streaming with Attachments
This section describes use cases for end-to-end streaming of attachments.

Note:

Direct Internet Message Encapsulation (DIME) attachments are not supported.

SOAP with Attachments

In this use case, the binary attachments (for instance, an image) are passed end-to-end as a
stream. Table 52-5 provides details.

Table 52-5 Capabilities

Capability Description

Security Not supported.

Filter/Transformation/Assign Pass through. You must use an XPath extension function in Oracle
BPEL Process Manager.

Binding WS binding creates stream iterators for the SOAP attachment.

Oracle BPEL Process Manager/
Oracle Mediator

Oracle Mediator can perform a pass through without materializing it.
Oracle BPEL Process Manager persists it.

Tuning Manage the database tablespace when using with Oracle BPEL
Process Manager.

WSDL code for defining SOAP
with attachments

<mime:part>
 <mime:content part="bin" type=“image/jpeg"/>
</mime:part>

Chapter 52
Best Practices for Handling Large Documents

52-3

Note:

• You cannot stream attachments as part of a web service callback response.

• The spring service component does not support processing MIME attachments.
Only MTOM attachments are supported.

• You can use various binding components such as direct binding, web services,
and so on to process large attachments. However, processing large attachments
with direct binding is not recommended and results in out-of-memory errors.

Working with Streaming Attachments
Oracle Fusion Middleware web services enable you to pass large attachments as a stream.
Unlike the JAX-RPC API, which treats attachments as if they are entirely in memory, streams
make the programming model more efficient to use. Streams also enhance performance and
scalability because there is no need to load the attachment into memory before service
execution.

As with embedded attachments, streamed attachments conform to the multipart MIME binary
format. Embedded attachments refer to inlined/encoded attachments.

On the wire, messages with streamed attachments are identical to any other SOAP message
with attachments.

The following example provides a sample message with a streamed attachment. The first part
in the message is the SOAP envelope (<SOAP-ENV:Envelope...). The second part is the
attachment (for this example, myImage.gif).

MIME-Version: 1.0
Content-Type: Multipart/Related; boundary=MIME_boundary; type=text/xml;
Content-Description: This is the optional message description.

--MIME_boundary
Content-Type: text/xml; charset=UTF-8
Content-Transfer-Encoding: 8bit
Content-ID: NotSure/DoesntMatter

<?xml version='1.0' ?>
<SOAP-ENV:Envelope
xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">
<SOAP-ENV:Body>
. . .
<DocumentName>MyImage.gif</DocumentName>
. . .
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

--MIME_boundary
Content-Type: image/gif
Content-Transfer-Encoding: binary
Content-ID: AnythingYoudLike

...binary GIF image...
--MIME_boundary--

Chapter 52
Best Practices for Handling Large Documents

52-4

Creating Composites that Use MIME Attachments
Perform the following procedures to create composites that use MIME attachments.

To create composites that use MIME attachments:

1. Create a composite using a payload schema (for example, an inbound web service wired
to an Oracle Mediator wired to an outbound web service).

2. Within the WSDL file of Oracle Mediator, perform the following steps:

a. From the WSDL designer, open the Oracle Mediator WSDL file.

b. Drag and drop bindings into the middle swimlane.

c. Select the RPC binding.

d. Enter a name.

e. Go to Source view of the WSDL and modify the WSDL input and WSDL output with
MIME multiparts.

<wsdl:input>
 <mime:multipartRelated>
 <mime:part>
 <soap:body parts="payload" use="literal"/>
 </mime:part>
 <mime:part>
 <mime:content part="bin" type="application/octet-stream"/>
 </mime:part>
 </mime:multipartRelated>
</wsdl:input>

f. Add the MIME part in the request/response message.

<wsdl:message name="BPELProcess1RequestMessage">
 <wsdl:part name="payload" element="ns1:purchaseOrder" />
 <!--add below part-->
 <wsdl:part name="bin" type="xsd:base64Binary"/>
</wsdl:message>

g. Add a namespace in the WSDL definitions.

xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:mime="http://schemas.xmlsoap.org/wsdl/mime/">

When complete, the WSDL that references a MIME attachment is displayed.

<wsdl:definitions
 name="PhotoCatalogService"
 targetNamespace="http://examples.com/PhotoCatalog"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:types="http://examples.com/PhotoCatalog/types"
 xmlns:mime="http://schemas.xmlsoap.org/wsdl/mime/"
 xmlns:tns="http://examples.com/PhotoCatalog">
 <wsdl:message name="addPhotoRequest">
 <wsdl:part name="photo" type="xsd:hexBinary"/>
 </wsdl:message>
 <wsdl:message name="addPhotoResponse">
 <wsdl:part name="status" type="xsd:string"/>
 </wsdl:message>
 <wsdl:message name="replacePhotoRequest">
 <wsdl:part name="oldPhoto" type="xsd:string"/>

Chapter 52
Best Practices for Handling Large Documents

52-5

 <wsdl:part name="newPhoto" type="xsd:hexBinary"/>
 </wsdl:message>
 <wsdl:message name="replacePhotoResponse">
 <wsdl:part name="status" type="xsd:string"/>
 </wsdl:message>
 <wsdl:portType name="PhotoCatalog">
 <wsdl:operation name="addPhoto">
 <wsdl:input message="tns:addPhotoRequest"/>
 <wsdl:output message="tns:addPhotoResponse"/>
 </wsdl:operation>
 <wsdl:operation name="replacePhoto">
 <wsdl:input message="tns:replacePhotoRequest"/>
 <wsdl:output message="tns:replacePhotoResponse"/>
 </wsdl:operation>
 </wsdl:portType>
 <wsdl:binding name="PhotoCatalogBinding" type="tns:PhotoCatalog">
 <soap:binding style="document"
transport="http://schemas.xmlsoap.org/soap/http"/>
 <wsdl:operation name="addPhoto">
 <wsdl:input>
 <mime:multipartRelated>
 <mime:part>
 <soap:body use="literal"/>
 </mime:part>
 <mime:part>
 <mime:content part="photo"
 type="image/jpeg"/>
 </mime:part>
 </mime:multipartRelated>
 </wsdl:input>
 <wsdl:output>
 <mime:multipartRelated>
 <mime:part>
 <soap:body use="literal"/>
 </mime:part>
 <mime:part>
 <mime:content part="status" type="text/plain"/>
 <mime:content part="status" type="text/xml"/>
 </mime:part>
 </mime:multipartRelated>
 </wsdl:output>
 </wsdl:operation>
 <wsdl:operation name="replacePhoto">
 <wsdl:input>
 <mime:multipartRelated>
 <mime:part>
 <soap:body parts="oldPhoto" use="literal"/>
 </mime:part>
 <mime:part>
 <mime:content part="newPhoto"
 type="image/jpeg"/>
 </mime:part>
 </mime:multipartRelated>
 </wsdl:input>
 <wsdl:output>
 <soap:body parts="status" use="literal"/>
 </wsdl:output>
 </wsdl:operation>
 </wsdl:binding>
</wsdl:definitions>

Chapter 52
Best Practices for Handling Large Documents

52-6

Performance Overhead and Pass Through Attachments
Because Oracle Mediator is stateless, there is no performance overhead with pass through
attachments. However, Oracle BPEL Process Manager dehydrates attachments and has
performance overhead, even for pass through attachments. When using Oracle BPEL Process
Manager for attachments over a period, the SOA Infrastructure schema can grow to its
maximum size and encounter memory issues. It is recommended that you extend the database
tablespace appropriately for the SOA Infrastructure schema to accommodate large
attachments. Simultaneously, you can use purge scripts to purge completed instances along
with the attachments table.

For information about purge scripts, see Administering Oracle SOA Suite and Oracle Business
Process Management Suite.

For information about extending tablespaces, see Section "Extending Tablespaces to Avoid
Problems at Runtime" of Administering Oracle SOA Suite and Oracle Business Process
Management Suite.

In scenarios in which one BPEL process calls a second BPEL process within the same
composite, the second BPEL process does not dehydrate the same attachment again.

In scenarios in which one BPEL process from composite 1 invokes a second BPEL process
from composite 2 and optimization is disabled, composite 1 makes a SOAP call to composite
2. The second BPEL process does dehydrate attachments.

Properties for Streaming Attachments
To stream attachments, add the following properties in the composite.xml file. If optimization is
enabled, then a native call is used instead of a SOAP call. The following example provides
details.

<binding.ws
port="http://services.otn.com#wsdl.endpoint(MIMEService/MIMEService)"
xmlns:ns="http://xmlns.oracle.com/sca/1.0"
streamIncomingAttachments="true" streamOutgoingAttachments="true">
<!--Add this prop to reference bindings to make a SOAP call. -->
<property name="oracle.webservices.local.optimization">false</property>
</binding.ws>

For information about the oracle.webservices.local.optimization property, see Policy
Attachments and Local Optimization in Composite-to-Composite Invocations and Configuring
Local Optimization in Administering Oracle SOA Suite and Oracle Business Process
Management Suite.

Note:

Oracle Web Services Manager (OWSM) does not inspect or enforce policies on
streamed attachments. For more information about OWSM, see Administering Web
Services.

Chapter 52
Best Practices for Handling Large Documents

52-7

Streaming Attachments from the SOA Web Service Binding Layer
You can receive the error shown in the following example when steaming attachments from the
SOA web service (WS) binding layer.

java.lang.OutOfMemoryError: Java heap space
 at java.util.Arrays.copyOf(Arrays.java:2271)
 at java.io.ByteArrayOutputStream.grow(ByteArrayOutputStream.java:113)
 at
java.io.ByteArrayOutputStream.ensureCapacity(ByteArrayOutputStream.java:93)
 at
java.io.ByteArrayOutputStream.write(ByteArrayOutputStream.java:140)
 at

To resolve this error, add the following properties in the composite.xml file for service and
reference binding components.

• streamIncomingAttachments="true"
• streamOutgoingAttachments="true"
See the preceding section for information about setting these properties.

Reading and Encoding SOAP Attachment Content
The ora:getAttachmentContent function reads SOAP attachment content and encodes that
data in Base64 format in a BPEL process by providing the BPEL variable as an argument,
which has an href of the SOAP attachment. The following example shows how to use this
function:

<copy>
 <from expression="ora:getAttachmentContent('input','bin')"/>
 <to variable="initiateTaskInput" part="payload"
 query="/taskservice:initiateTask/task:task/task:attachment/task:content"/>
</copy>

The preceding example copies the attachment content, which has its href stored in the
"input/bin" variable, to the content variable in Base64-encoded format.

Sending Attachment Streams
Oracle BPEL Process Manager supports sending the attachment stream to multiple receivers.
For Oracle BPEL Process Manager to send a stream to multiple receivers, it must read the
attachment stream from the database using the readBinaryFromFile XPath function and pass
the stream to the appropriate targets.

With the default configuration, Oracle Mediator can pass an attachment stream to only one
target receiver, which can be another component or a web service/adapter. The second target
cannot receive the attachment. When you define the persistStreamAttachment property for
the Oracle Mediator component, Oracle Mediator can pass an attachment stream to multiple
target receivers.

Oracle Mediator requires the persistStreamAttachment property for streaming attachments
where the source message that contains the attachment is shared by multiple target receivers.
Set this property to true in composite.xml to enable the streaming of attachments to multiple
targets. The following example provides details.

component name="Mediator1">
 <implementation.mediator src="Mediator1.mplan"/>

Chapter 52
Best Practices for Handling Large Documents

52-8

 <property name="persistStreamAttachment">true</property>
</component>

Overriding Pass Through Settings for Attachments in Oracle Mediator
Oracle Mediator automatically propagates attachments to target receivers for Oracle Mediator
components that are pass through (that is, they do not contain a transformation or assign rule),
and it does not propagate attachments for Oracle Mediator components that are not pass
through. The passThroughAttachment property lets you override the pass through settings just
for attachments. Setting this property to true copies all attachments to the target receiver
implicitly.

Use this property to propagate attachments when the Oracle Mediator component is not a pass
through, or use it to block attachments when the Oracle Mediator component is pass through.
To implement the pass through attachment override, add the property to the project's
composite.xml file in the component element for the Oracle Mediator component. Set the
property to true to override an Oracle Mediator component that is not pass through. Set it to
false to override a pass through component. The following example provides details:

<component name="Mediator">
 <implementation.mediator src="Mediator.mplan"/>
 <property name="passThroughAttachment">true</property>
</component>

Sharing Attachments Using Synchronous Flows
When Oracle BPEL Process Manager-based composites share attachments using
synchronous flows, it is necessary to use the same end-to-end transaction. This is applicable
to composites that are colocated and use local/optimized calls. This can be achieved by setting
the property shown in the following example on all the called BPEL components (callees) in the
call chain:

<property name="bpel.config.transaction" many="false"
type="xs:string">required</property>

If such composites do not execute as part of the same transaction context, the attachment data
saved by the first BPEL component in the call chain is not visible to the other BPEL
components in the call chain. In addition, they incur database locking and timeout exceptions:

"ORA-02049: timeout: distributed transaction waiting for lock"

Attachment Options of File/FTP Adapters

In this use case, the adapter streams the binary data to a database store and publishes an
href to the service engine (Oracle BPEL Process Manager or Oracle Mediator). Table 52-6
provides details.

Table 52-6 Capabilities

Capability Description

Security N/A.

Filter/Transformation/Assign Filters and transformations on the attachment are not supported.

Fanout Supported.

Binding The adapter streams the non-XML to the database as a binary large
object (BLOB) and passes the key to the service engines.

Chapter 52
Best Practices for Handling Large Documents

52-9

Table 52-6 (Cont.) Capabilities

Capability Description

Oracle BPEL Process Manager/
Oracle Mediator

Supported.

Tuning • Extend the database tablespace for the Oracle SOA Suite
schema.

• Delete the attachments after message processing completion.

Documentation See Understanding Technology Adapters.

Writing Attachments Using an Outbound File Adapter

The following example shows a sample schema that can be used by the file adapter to write
attachments to disk:

<?xml version="1.0" encoding="windows-1252" ?>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns="http://xmlns.oracle.com/attachment"
 targetNamespace="http://xmlns.oracle.com/attachment"
 elementFormDefault="qualified">
 <xsd:element name="attach">
 <xsd:complexType>
 <xsd:attribute name="href" type="xsd:string"/>
 </xsd:complexType>
 </xsd:element>
</xsd:schema>

Use Oracle Mediator in the flow to map the attachment part from the source (Oracle Mediator)
to the target (file adapter) using an Oracle Mediator assign.

If you use Oracle BPEL Process Manager, the attachment is written to the dehydration store,
which slows down the process.

Transforming Attachments with the ora:doStreamingTranslate XPath Function

Use of the ora:doStreamingTranslate XPath function is only recommended while
transforming attachments within an Oracle BPEL Process Manager or Oracle Mediator service
component. This function expects the attachment location to be a relative path on the server.
This function cannot translate incoming attachment streams.

For more information about this function, see doStreamingTranslate.

Oracle B2B Attachment

In this use case, Oracle B2B stores the binary data to a database and publishes an href to the
service engine (Oracle BPEL Process Manager or Oracle Mediator) based on an Oracle B2B-
defined XSD. Oracle B2B protocols define the attachment. Table 52-7 provides details.

Table 52-7 Capabilities

Capability Description

Security N/A.

Filter/Transformation/Assign Filters and transformations on the attachment are not supported.

Fanout Supported.

Chapter 52
Best Practices for Handling Large Documents

52-10

Table 52-7 (Cont.) Capabilities

Capability Description

Binding Oracle B2B passes it as an href key to service engines.

Tuning Extend the database tablespace for the Oracle SOA Suite schema.

Sending and Receiving MTOM-Optimized Messages to SOA Composite Applications
Within a SOA composite application, you must attach the Oracle WS-MTOM policy to service
and reference binding components to receive and send MTOM (MIME binary) optimized
messages. When a service binding component (defined under binding.ws in the
composite.xml file) is configured with an Oracle WS-MTOM policy, Oracle SOA Suite's MTOM
message handling feature is used. When a reference binding component (also defined under
binding.ws in the composite.xml file) is configured with an Oracle MTOM policy, Oracle SOA
Suite sends MTOM-optimized messages.

Note the following issues with MTOM attachments:

• When attachments are inline and encoded, Oracle recommends that you not use the file
adapter to write attachments to a file.

• The default mtomThreshold value is 1024 bytes and cannot be modified. If an attachment is
less than 1024 bytes, for outbound configurations, Oracle SOA Suite sends it as an inline
attachment. If the size is greater than 1024 bytes, then the attachment is sent as an
attachment part with an href attribute in the message, and is sent as a WSDL-defined
format on the wire. However, if the incoming request (for example, from a different web
services provider) has an xop href node for small binary data (that is, size is less than
1024 bytes), Oracle SOA Suite uses the same href attribute in the payload in the flow
trace. For example:

<xop:Include xmlns:xop="http://www.w3.org/2004/08/xop/include"
 href="cid:e29caf23dc8045908451fdfaafa26dce" />

• If a service binding component of a composite does not include an Oracle WS-MTOM
policy reference, this indicates that the service can accept non-MTOM messages. This
indicates that the calling composite (the appropriate reference binding) does not have an
Oracle WS-MTOM policy reference and can send out non-MTOM messages to that
service.

• MTOM streaming of attachments is not supported by Oracle SOA Suite.

• MTOM attachments are supported only with web service bindings. Other bindings (for
example, HTTP bindings) are not supported.

• Oracle Mediator pass through scenarios are supported. If Oracle Mediator does not
contain any transformation or assign statements, it is known as a pass through Oracle
Mediator. The message and attachment received are propagated to the target without
modifying the payload and attachment. Likewise, multiple MTOM attachments in the same
message can be sent and received by Oracle SOA Suite.

• Oracle recommends that you not use both streaming and the MTOM message handling
feature for sending and receiving attachments. Use either streaming or the MTOM
message handling feature.

Chapter 52
Best Practices for Handling Large Documents

52-11

Note:

If the input is of type text/xml, there is no significant decrease in file size when
sending files in MTOM format.

• As a best practice, Oracle recommends that you not use the XSLT Map Editor to
propagate binary data. Instead, use an assign activity. If you must use a style sheet to
propagate binary data, it is recommended that you use the xsl:copy-of instruction (copy-
of copies everything, including attributes) or use custom functions to copy attributes from
source to target.

• MTOM attachments should not be gigabytes in size. Instead, use the SOAP with
attachments streaming feature for very large attachments. For more information, see
SOAP with Attachments.

Scenarios for Storing SwA and MTOM-Optimized Attachments to the Database

When a SOA composite application with a BPEL process receives an MTOM-optimized SOAP
message, the attachment contents of each of the MTOM-optimized elements (the ones with an
<xop href="">) are stored in the dehydration store. Similarly, when receiving a SOAP
message with attachments (SwA) message with one or more attachments, each attachment is
stored in the dehydration store. These attachments can then be passed around by reference
using an href attribute that identifies them in the database. In fact, all of the text content of
these attachment elements is removed and replaced by this href attribute. For MTOM-
optimized messages, the same value of the incoming href attribute from the <xop> element is
reused. Similarly, for SwA, the href attributes of the attachment elements are reused.

The attachments are stored in the dehydration store when the message is delivered to the
BPEL process service engine. (when the incoming message is saved into the DLV_MESSAGE
table). Therefore, it is applicable only for one-way and asynchronous BPEL processes with
bpel.config.oneWayDeliveryPolicy set to async.persist (the default value) in the
composite.xml file.

Attachments are not persisted in the following use cases:

• If the SOAP message was received by a synchronous BPEL process or a one-way/
asynchronous BPEL process with bpel.config.oneWayDeliveryPolicy set to sync or
async.cache.

• Contents of all elements within the SOAP request with inline binary content are not
persisted, but passed as-is. (That is, they do not have a child element <xop:Include>, but
do have a base64 encoded string as a child.) An MTOM-optimized message can be a mix
of one or more elements that have inline base64 data, and one or more elements that are
XOP-packaged, at any level.

Chapter 52
Best Practices for Handling Large Documents

52-12

Note:

Even if the service binding component is MTOM-enabled, it does not automatically
indicate that the service receives MTOM-optimized messages. The calling service/
application must send MTOM-optimized messages over the wire to ensure the
message is received. MTOM-enabled bindings can also receive ordinary non-MTOM
messages. Therefore, when it receives one, the SOAP requests arriving into the
service can have nonoptimized inline binary data elements that are not be persisted
into the database.

Even though the content of the MTOM-optimized elements or SwA attachments have their
value replaced by an href attribute at runtime, their design-time WSDLs still remain unaltered.
You do not see these changes in Oracle JDeveloper. Their element type definitions do not
change from hexBinary, base64Binary, and so on to that of an empty content with an href
attribute.

However, this is transparent to you. For instance, when you use an assign activity to copy
across their content, the href values are copied over at runtime. Similarly, when invoking an
outbound reference such as a web service or an adapter, Oracle SOA Suite automatically
resolves the href attribute to the actual data and executes the invocation.

Processing Large XML with Repeating Constructs
This section describes use cases for processing large XML with repeating constructs.

Debatching with the File/FTP Adapter

In this use case, the inbound adapter splits a source document into multiple batches of
records, each of which initiates a composite instance. Table 52-8 provides details.

Table 52-8 Capabilities

Capability Description

Security N/A.

Filter/Transformation/Assign Supported.

Fanout Supported.

Binding The file/FTP adapter debatches it to a small chunk based on the
native XSD (NXSD) definition.

Oracle BPEL Process Manager/
Oracle Mediator

Supported.

Tuning For repeating structures, XSLT is supported for scenarios in which
the repeating structure is of smaller payloads compared to the overall
payload size. Substitution with assign activities is preferred, as it
performs a shadow copy.

Documentation See Understanding Technology Adapters.

Chunking with the File/FTP Adapters

Chapter 52
Best Practices for Handling Large Documents

52-13

In this use case, a loop within a BPEL process reads a chunk of records at a time and process
(that is, cursor). Table 52-9 provides details.

Table 52-9 Capabilities

Capability Description

Security Supported.

Filter/Transformation/Assign Supported.

Fanout Supported.

Oracle BPEL Process Manager/
Oracle Mediator

Supported only from Oracle BPEL Process Manager.

Documentation See Understanding Technology Adapters.

Processing Large XML Documents with Complex Structures
This section describes use cases for processing very large XML documents with complex
structures.

Streaming with the File/FTP Adapters

In this use case, very large XML files are streamed through Oracle SOA Suite. Table 52-10
provides details.

Table 52-10 Capabilities

Capability Description

Security N/A.

Filter/Transformation/Assign Supported, but must optimize to avoid issues.

Fanout Supported.

Binding The adapter streams the payload to a database as an SDOM and
passes the key to the service engines.

Documentation See Understanding Technology Adapters.

Oracle B2B Streaming

In this use case, large XML files are passed by Oracle B2B to Oracle SOA Suite as an SDOM.
This only occurs when a large payload size is defined in the Oracle B2B user interface.
Table 52-11 provides details.

Table 52-11 Capabilities

Capability Description

Security N/A.

Filter/Transformation/Assign Supported, but must optimize to avoid issues.

Fanout Supported.

Binding Oracle B2B streams the payload to a database as SDOM and
passes the key to the service engines.

Chapter 52
Best Practices for Handling Large Documents

52-14

Table 52-11 (Cont.) Capabilities

Capability Description

Oracle BPEL Process Manager/
Oracle Mediator

Can use an XPath extension function to manipulate the payload.

Limitations on Concurrent Processing of Large Documents
This section describes the limitations on concurrent processing of large documents.

Opaque Schema for Processing Large Payloads
There is a limitation when you use an opaque schema for processing large payloads. The
entire data for the opaque translator is converted to a single Base64-encoded string. An
opaque schema is generally used for smaller data. For large data, use the attachments feature
instead of the opaque translator.

JVM Memory Sizing Recommendations for SOA Composite Applications
Sending messages with payloads that are 100 MB or larger in size can exceed JVM heap size
limits if not correctly tuned.

For example, when sending large payloads in the event delivery network (EDN) with Oracle
advanced queueing (AQ) JMS, ensure that you set the maximum memory value by first testing
with a typical message payload size and a maximum potential message size. Using a lesser
memory value can result in an ORACLE.JMS.AQJMSEXCEPTION error. For example, to send a
payload of 100 MB, it is recommended that you change the JTA time out and maximum
memory to 5 GB.

For more information about tuning the JVM heap size, see General Tuning Recommendations
and Section "Java HotSpot VM Heap Size Options" of Tuning Performance of Oracle
WebLogic Server.

General Tuning Recommendations
This section provides general tuning recommendations.

For more information about Oracle SOA Suite tuning and performance, see Tuning
Performance.

General Recommendations
This section provides general tuning recommendations.

• Increase the JTA transaction timeout to 500 seconds in Oracle WebLogic Remote Console.
For instructions, see section "Resolving Connection Timeouts" of Administering Oracle
SOA Suite and Oracle Business Process Management Suite.

• In Oracle Enterprise Manager Fusion Middleware Control, set the audit level to Off or
Production at the SOA composite application level. See Setting Audit Levels from for
Large Payload Processing for additional information.

• Uncomment the following line in setDomainEnv.sh (for Linux) or setDomainEnv.bat (for
Windows) for JAVA_OPTIONS, and restart the server. If this line does not exist, add it.

Chapter 52
Best Practices for Handling Large Documents

52-15

Without this setting, large payload scenarios fail with a ResourceDisabledException error
for the dehydration data source.

-Dweblogic.resourcepool.max_test_wait_secs=30
• Update the heap size in setSOADomainEnv.sh or setDomainEnv.bat as follows:

DEFAULT_MEM_ARGS="-Xms1024m -Xmx2048m"
• Use optimized translation functions, which are available while performing transformations

and translations of large payloads (for example, ora:doTranslateFromNative,
ora:doTranslateToNative, ora:doStreamingTranslate, and so on).

For information about these functions, see XPath Extension Functions.

• Extend data files for handling large attachments.

• Increase the HTTP POST timeout for SocketException: Broken pipe errors in Oracle
WebLogic Remote Console. See Increasing the HTTP POST Timeout

• If you are processing large documents and run into timeout errors, perform the following
tasks:

– Increase the timeout property value.

– Increase the Stuck Thread Max Time property value.

For more information, see Increasing the Timeout Value.

Increasing the HTTP POST Timeout
Increase the HTTP POST timeout for SocketException: Broken pipe errors in Oracle
WebLogic Server Administration Console.

1. Navigate to the Edit Tree.

2. From the left navigation pane, select Environment, and then select Servers.

3. From the list of servers, select the SOA server.

4. Select the Protocols tab. Further select the Http tab.

5. In the Post Timeout field, enter 120 (maximum).

Increasing the Timeout Value
Increase the timeout property value as follows:

1. Log in to Oracle Web Services Manager Administration Console.

2. Navigate to Deployments > soa-infra > EJBs.

3. Click each of the following beans, select Configuration, and increase the timeout value:

• BpelEngineBean

• BpelDeliveryBean

• CompositeMetaDataServiceBean

To increase the Stuck Thread Max Time property value:

Follow the instructions in Chapter "Using the WebLogic 8.1 Thread Pool Model" of Tuning
Performance of Oracle WebLogic Server.

Chapter 52
Best Practices for Handling Large Documents

52-16

Setting Audit Levels from Oracle Enterprise Manager for Large Payload Processing
For large payload processing, turn off audit level logging for the specific composite. You can
set the composite audit level option to Off or Production in Oracle Enterprise Manager Fusion
Middleware Control. If you set the composite audit level option to Development, it serializes
the entire large payload into an in-memory string, which can lead to an out-of-memory error.

For more information about setting audit levels, see Administering Oracle SOA Suite and
Oracle Business Process Management Suite.

Using the Assign Activity in Oracle BPEL Process Manager and Oracle Mediator
When using the assign activity in Oracle BPEL Process Manager or Oracle Mediator to
manipulate large payloads, do not assign the complete message. Instead, assign only the part
of the payload that you need.

In addition, when using the assign activity in Oracle BPEL Process Manager, Oracle
recommends using local variables instead of process variables, wherever possible. Local
variables are limited to the scope of the BPEL process. These get deleted from memory and
from the database after you close the scope. However, the life cycle of a global variable is tied
with the instance life cycle. These variables stay in memory or remain on disk until the instance
completes. Thus, local variables are preferred to process or global variables.

Using XSLT Transformations on Large Payloads (For Oracle BPEL Process Manager)
Until 11g Release 1 11.1.1.3, for XSLT operations in Oracle BPEL Process Manager, the result
was cached into memory as a whole document in binary XML format. For large document
processing, this caused out-of-memory errors. Starting with 11g Release 1 11.1.1.4, a the
streamResultToTempFile property was added. This property enables XSLT results to be
streamed to a temporary file and then loaded from the temporary file. Set
streamResultToTempFile to yes when processing large payload using XSLT. The default value
is no.

This property is applicable when using the following BPEL XPath functions:

• ora:processXSLT('template','input','properties'?)
• ora:doXSLTransformForDoc('template','input','name', 'value')

To configure large XML documents to be processed using XSLT:

1. Create a BPEL common properties schema. For example:

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema targetNamespace ="http://schemas.oracle.com/service/bpel/common"
 xmlns:common = "http://schemas.oracle.com/service/bpel/common"
 xmlns:xs = "http://www.w3.org/2001/XMLSchema"
 elementFormDefault="qualified" blockDefault="#all">

 <xs:element name="serviceProperties" type="common:PropertiesType"/>
 <xs:element name="anyProperties" type="common:ArrayOfNameAnyTypePairType"/>
 <xs:complexType name="NameValuePairType">
 <xs:sequence>
 <xs:element name="name" type="xs:string"/>
 <xs:element name="value" type="xs:string"/>
 </xs:sequence>
 </xs:complexType>
 <xs:complexType name="ArrayOfNameValuePairType">

Chapter 52
Best Practices for Handling Large Documents

52-17

 <xs:sequence>
 <xs:element name="item" type="common:NameValuePairType"
 maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:complexType>
 <xs:complexType name="NameAnyTypePairType">
 <xs:sequence>
 <xs:element name="name" type="xs:string"/>
 <xs:element name="value" type="xs:anyType"/>
 </xs:sequence>
 </xs:complexType>
 <xs:complexType name="ArrayOfNameAnyTypePairType">
 <xs:sequence>
 <xs:element name="item" type="common:NameAnyTypePairType"
 maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:complexType>
 <xs:complexType name="PropertiesType">
 <xs:sequence>
 <xs:element name="property" type="common:NameValuePairType"
 maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:complexType>
 <xs:complexType name="ArrayOfAnyTypeType">
 <xs:sequence>
 <xs:element name="item" type="xs:anyType" maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:complexType>
</xs:schema>

2. Within a BPEL process, add the namespace in the import section:

xmlns:common = "http://schemas.oracle.com/service/bpel/common"
3. Create a global variable (for this example, named propertiesXMLVar):

<variable name="propertiesXMLVar" element="common:anyProperties"/>
4. Set the streamResultToTempFile property to yes. This assign activity should exist before

performing an XSLT transformation.

<assign name="Assign_xsltprop">
 <copy>
 <from>
 <common:anyProperties>
 <common:item>
 <common:name>streamResultToTempFile</common:name>
 <common:value>yes</common:value>
 </common:item>
 </common:anyProperties>
 </from>
 <to variable="propertiesXMLVar"/>
 </copy>
</assign>

Using XSLT Transformations on Large Payloads (For Oracle Mediator)
Until 11g Release 1 11.1.1.3, for XSLT operations in Oracle Mediator, the result was cached
into memory as a whole document in binary XML format. For large document processing, this
caused out-of-memory errors. Starting with 11g Release 1 11.1.1.4, the
streamResultToTempFile property was added. This property enables XSLT results to be
streamed to a temporary file and then loaded from the temporary file. Set

Chapter 52
Best Practices for Handling Large Documents

52-18

streamResultToTempFile to yes when processing large payloads using XSLT. The default
value is no.

Note:

This property is recommended only for processing large payloads. Enabling this
property could reduce performance for normal payloads.

To configure large XML documents to be processed using XSLT:

1. Create an Oracle SOA Suite project with an Oracle Mediator component.

2. Open the composite.xml file for the project in Source view.

3. In the composite.xml file, scroll to the component element that defines the Oracle
Mediator component to process large XML documents, and add the
streamResultToTempFile property. Set the property to yes as shown below.

<component name="Mediator1">
 <implementation.mediator src="Mediator1.mplan"/>
 <property name="streamResultToTempFile">yes</property>
</component>

4. Save and close the file.

Using XSLT Transformations for Repeating Structures
In scenarios in which the repeating structure is of smaller payloads compared to the overall
payload size, Oracle recommends using XSLT transformations because the current XSLT
implementation materializes the entire DOM in memory. For example, use
PurchaseOrder.LineItem.Supplier (a subpart of a large payload).

You can also substitute it with the assign activity, as it performs a shadow copy. Although a
shadow copy does not materialize DOM, it creates a shadow node to point to the source
document.

You can also use the following optimized translation functions while performing
transformations/translations of large payloads:

• ora:doTranslateFromNative or med:doTranslateFromNative
• ora:doTranslateToNative or med:doTranslateToNative
• ora:doStreamingTranslate or med:doStreamingTranslate
For more information about these functions, see XPath Extension Functions and
Understanding Technology Adapters.

Processing Large Documents in Oracle B2B
For processing large documents in Oracle B2B, tune the following parameters:

• mdsCache
• Cache Size
• Protocol Message Size
• Number of threads

Chapter 52
Best Practices for Handling Large Documents

52-19

• Stuck Thread Max Time
• Tablespace
• Large payload size

The following sections describe the parameters you must set for processing large documents
in Oracle B2B. For more information, see Section "Using Document Streams to Handle Large
Payloads" of User's Guide for Oracle B2B.

MDSInstance Cache Size

To set the Oracle Metadata Services (MDS) Repository instance cache size, use Oracle
Enterprise Manager Fusion Middleware Control. This property depends on the size of the
metadata. Specify a value based on the metadata/endpoint count. The default value is 100000.
For information, see Section "Setting B2B Configuration Properties in Fusion Middleware
Control" of User's Guide for Oracle B2B.

Protocol Message Size

If Oracle B2B wants to send or receive more than 10 MB of message or the import/export
configuration is more than 10 MB, then change the following setting accordingly at the Oracle
WebLogic Server Administration Console:

To configure the protocol message size:

1. Navigate to the Edit Tree.

2. Select Environment, and then select Servers.

3. Under Servers, select the SOA server.

4. Select the Protocols tab. Further, select General.

5. Change the value for Maximum Message Size.

This setting can also be added/modified in the $DOMAIN_HOME/config/config.xml file next to
the server name configuration, as shown in the following example:

<name>soa_server1</name>
<max-message-size>150000000</max-message-size>

Note:

By default, max-message-size is not available in the config.xml file.

Number of Threads

This parameter improves the message processing capability of Oracle B2B and must be set in
the Oracle Enterprise Manager Fusion Middleware Control. For more information, see Section
"Configuring Oracle B2B Server Properties" of Administering Oracle SOA Suite and Oracle
Business Process Management Suite.

• b2b.inboundThreadCount

• b2b.inboundSleepTime

Chapter 52
Best Practices for Handling Large Documents

52-20

• b2b.outboundThreadCount

• b2b.outboundSleepTime

• b2b.defaultThreadCount

Stuck Thread Max Time Parameter
The Stuck Thread Max Time parameter checks the number of seconds that a thread must
continually work before the server considers the thread stuck. You must change the following
setting in the Oracle WebLogic Remote Console:

To configure the Stuck Thread Max Time parameter:

1. Navigate to the Edit Tree.

2. Select Environment, and then select Servers.

3. From the list of servers, select the SOA server.

4. Select Advanced tab. Further, select Tuning tab.

In the Tuning tab, you can tune the performance and functionality of the server.

5. Change the value of the Stuck Thread Timer Interval field.

Tablespace

If you must store more than a 150 MB configuration in the data file, then you must extend or
add the data file to increase the tablespace size, as shown in the following example:

ALTER TABLESPACE sh_mds add DATAFILE 'sh_mds01.DBF' SIZE 100M autoextend on next
 10M maxsize unlimited;
ALTER TABLESPACE sh_ias_temp add TEMPFILE 'sh_ias_temp01.DBF' SIZE 100M autoextend
 on next 10M maxsize unlimited;

Setting a Size Restriction on Inbound Web Service Message Size
If you want to set a size restriction on inbound web service message size, configure the
binding component property max-message-size in the composite.xml file. The property value
is made available to the underlying web service infrastructure, which uses the value to test
against the incoming message size. If the value specified is exceeded, an exception is thrown
indicating that the message size is too large and the transaction is not processed. The
following example provides details:

<composite name="LrgMsg" revision="1.0" label="2011-09-08_22-53-53_259"
 mode="active" state="on">
 <import namespace="http://xmlns.oracle.com/LargeMsg/LrgMsg/BPELProcess1"
 location="BPELProcess1.wsdl" importType="wsdl"/>
 <service name="bpelprocess1_client_ep" ui:wsdlLocation="BPELProcess1.wsdl">
 <interface.wsdl
 interface="http://xmlns.oracle.com/LargeMsg/LrgMsg/BPELProcess1# wsdl.interface
(BPELProcess1)"/>

<binding.ws port="http://xmlns.oracle.com/LargeMsg/LrgMsg/BPELProcess1
 #wsdl.endpoint(bpelprocess1_client_ep/BPELProcess1_pt)">
 <property name="max-message-size" type="xs:integer" many="false"
 override="may">4</property>
</binding.ws>
</service>

 <component name="BPELProcess1" version="1.1">

Chapter 52
Best Practices for Handling Large Documents

52-21

 <implementation.bpel src="BPELProcess1.bpel"/>
 </component>

 <wire>
 <source.uri>bpelprocess1_client_ep</source.uri>
 <target.uri>BPELProcess1/bpelprocess1_client</target.uri>
 </wire>
</composite>

Using XPath Functions to Write Large XSLT/XQuery Output to a File System
You can use the following functions to write the results of large XSLT/XQuery operations to a
temporary file in a directory system. The document is then loaded from the temporary file when
needed. This eliminates the need for caching an entire document as binary XML in memory.

• ora:processXSLT
• ora:doXSLTransformForDoc
With the ora:processXSLT function, you use the properties argument to enable this
functionality.

ora:processXSLT('template','input','properties'?)

You retrieve the value of this argument within your XSLT in a way similar to extracting data
from XSL variables. The properties argument is an XML element of the structure shown in
the example that follows. For large payload results (for example, above 10 MB), set
streamResultToTempFile to yes. For small payload results in which you do not need to write
results to a temporary file, leave this property set to its default value of no.

<propertiesXMLVar>
 <common:item xmlns:common="http://schemas.oracle.com/service/bpel/common">
 <common:name>streamResultToTempFile</common:name>
 <common:value>yes</common:value>
 </common:item>
</propertiesXMLVar>

Within the XSLT, the parameters are accessible through the name of streamResultToTempFile
and its value of yes.

In Oracle BPEL Process Manager, a literal assign is performed to populate the properties for
ora:processXSLT('template','input','properties'?).

For more information about using this function, see processXSLT.

With the ora:doXSLTransformForDoc function, you set the name and value properties to enable
this functionality.

ora:doXSLTransformForDoc('template','input','name', 'value')

With this function, the name of streamResultToTempFile and the value of yes are passed.

For more information about using the function, see doXSLTransformForDoc.

Best Practices for Handling Large Metadata
This section provides recommendations for handling large metadata.

Chapter 52
Best Practices for Handling Large Metadata

52-22

Boundary on the Processing of Large Numbers of Activities in a BPEL
Process

There is a limit to the number of activities that can be executed in a BPEL process. When you
exceed this limit, system memory fills up, which can cause timeouts to occur. For example,
with the following parameters, two fault instances occur due to a timeout:

• 100 threads

• 1 second of think time

• 1000 incoming request messages

Keep the number of incoming request messages at a proper level to ensure system memory
stability.

Using Large Numbers of Activities in BPEL Processes (Without FlowN)
To deploy BPEL processes that have a large number of activities (for example, 50,000), the
following settings are required:

MEM_ARGS: -Xms512m -Xmx1024m -XX:PermSize = 128m -XX:MaxPermSize = 256m
Number of Concurrent Threads = 20
Number of Loops = 5 Delay = 100 ms

The above settings enable you to deploy and execute BPEL processes, which use only while
loops without the flowN activities, successfully.

Using Large Numbers of Activities in BPEL Processes (With FlowN)
To deploy BPEL processes that have a large number of activities (for example, 50,000), the
following settings are required:

USER_MEM_ARGS: -Xms2048m -Xmx2048m -XX:PermSize=128m -XX:MaxPermSize=256m
Number of Concurrent Threads= 10
Number of Loops=5 Delay=100 ms

Set the StatsLastN property to -1 in the System MBean Browser of Oracle Enterprise
Manager Fusion Middleware Control.

The above settings enable you to deploy and execute BPEL processes, which use the flowN
activities, successfully.

For more information, see Customizing the Number of Flow Activities with the flowN Activity in
BPEL 1.1 and Section "Configuring BPEL Process Service Engine Properties" of Administering
Oracle SOA Suite and Oracle Business Process Management Suite.

Using a Flow With Multiple Sequences
BPEL processes that have up to 7000 activities can be deployed and executed successfully
with the following settings:

USER_MEM_ARGS: -Xms2048m -Xmx2048m -XX:PermSize=128m -XX:MaxPermSize=256m

Chapter 52
Best Practices for Handling Large Metadata

52-23

Note:

If you deploy BPEL processes with more than 8000 activities, Oracle BPEL Process
Manager compilation throws errors.

Using a Flow with One Sequence
BPEL processes that have up to 7000 activities can be deployed and executed successfully
with the following settings:

USER_MEM_ARGS: -Xms2048m -Xmx2048m -XX:PermSize=128m -XX:MaxPermSize=512m

Note:

If you deploy BPEL processes with more than 10,000 activities, the process
compilation fails.

Using a Flow with No Sequence
You can deploy and execute BPEL processes that have a large number of activities (for
example, up to 5000) successfully.

There is a probability that the BPEL process compilation may fail for 6000 activities.

Large Numbers of Oracle Mediators in a Composite
Oracle recommends that you not have more than 50 Oracle Mediators in a single composite.
Increase the JTA Transaction timeout to a high value based on the environment.

Importing Large Data Sets in Oracle B2B
Oracle recommends that you do not use browsers for large data set imports, and that you use
the command line utility. The following utility commands are recommended for large data
configuration:

• purge: Purges the entire repository.

• import: Imports the specified ZIP file.

• deploy: Deploys an agreement with whichever name is specified. If no name is specified,
then all the agreements are deployed.

However, the purgeimportdeploy option is not recommended for transferring or deploying the
Oracle B2B configuration.

For more information, see User's Guide for Oracle B2B.

Best Practices for Handling Large Numbers of Instances
This section provides recommendations for handling large numbers of instance and fault
metrics.

Chapter 52
Best Practices for Handling Large Numbers of Instances

52-24

Instance and Rejected Message Deletion with the Purge Script or Oracle
Enterprise Manager Fusion Middleware Control

You can delete thousands of instances and rejected messages with the PL/SQL purge script or
from the Auto Purge page in Oracle Enterprise Manager Fusion Middleware Control.

For more information, see Administering Oracle SOA Suite and Oracle Business Process
Management Suite.

Chapter 52
Best Practices for Handling Large Numbers of Instances

52-25

53
Customizing SOA Composite Applications

This chapter describes how to customize SOA composite applications with the customization
feature available with a BPEL process service component. It describes how to create a
customizable application, customize the vertical version of the application, and customize the
customer version of the application. It also describes how to upgrade to the next version of the
application.
This chapter includes the following sections:

• Introduction to Customizing SOA Composite Applications

• Creating the Customizable Composite

• Customizing the Vertical Application

• Customizing the Customer Version

• Upgrading the Composite

Introduction to Customizing SOA Composite Applications
This section describes the life cycle for customizing SOA composite applications. For example,
assume the following organizations require use of the same composite, but with slight
modifications:

• A core applications development team

• A vertical applications team

• A customer

The core applications development team creates a base customizable composite and delivers
it to a vertical applications team that customizes it for a certain industry (for example,
telecommunications). The tailored solution is then sold to a telecommunications customer that
further customizes the composite for their specific geographic business needs. Essentially,
there is a base composite and several layers of customized composites. At a later time in the
composite life cycle, the core applications development team creates the next version of the
base composite, triggering an upgrade cycle for the vertical applications team and the
customer.

Layer values are the values for a given customization layer. It is a one-to-many relationship
from a layer to its layer values. You select a layer value from a layer to perform customizations.
For example, assume you specify a customization class representing a customization layer
called Country. You can then specify countries for its values, such as USA, China, and India.
When you restart Oracle JDeveloper in the Customization Developer role to perform
customizations, you must select one of the layer values (that is, a country) of the layer from the
Oracle JDeveloper Customization Context window such as USA, which means you want to
create the customization for that country.

Creating the Customizable Composite
This section provides an overview of the steps required for creating the customizable, base
SOA composite application.

53-1

How to Create Customization Classes
This section describes how to create customization classes. In this example, you create a
class for a customization layer named MyCustomizationLayer.

To create customization classes:

1. Invoke the Create Java Class Wizard in Oracle JDeveloper by selecting File > From
Gallery > General > Java.

2. Create a Java class extending from the following class:

oracle.tip.tools.ide.fabric.custom.GenericSOACustomizationClass
3. Provide the following content for the customization class.

package myCustomizationPackage;

import oracle.tip.tools.ide.fabric.custom.GenericSOACustomizationClass;

public class MyCustomizationClass extends GenericSOACustomizationClass {

 public MyCustomizationClass() {
 super();

 // set the customization layer name
 setName("MyCustomizationLayer");
 }
}

For the customization class to have the correct customization layer, the customization layer
name must be set by adding the following to the constructor without parameters:

 // set the customization layer name
 setName("MyCustomizationLayer");

You can also optionally remove the constructor with parameters.

The Create Java Class Wizard automatically generates the following content:

package myCustomizationPackage;

import oracle.tip.tools.ide.fabric.custom.GenericSOACustomizationClass;

public class MyCustomizationClass extends GenericSOACustomizationClass {
 public MyCustomizationClass(String string, String string1) {
 super(string, string1);
 }

 public MyCustomizationClass() {
 super();
 }
}

To make the customization class effective, compile the customization class by building the
SOA project.

4. In the Applications window, right-click the SOA project and select Build
SOA_project_name.jpr.

5. Ensure that the build succeeds by reviewing the output in the Log window at the bottom of
Oracle JDeveloper.

Chapter 53
Creating the Customizable Composite

53-2

How to Create the Customizable Composite
To create the customizable composite:

1. Start Oracle JDeveloper and select the Default Role.

2. From the File menu, select New > Applications > SOA Application, and click OK.

3. Follow the steps in the Create SOA Application wizard.

4. In the Configure SOA Settings dialog of the Create SOA Application wizard (Step 3 of 3),
select both Composite With BPEL Process and the Customizable check box, and click
Finish.

5. Design the BPEL process.

Note:

If you design a transformation, note the following customization restrictions in the
XSLT Map Editor:

• The Create in Template option that is displayed by right-clicking a node in
the target panel is disabled.

• The Test XSL Map option is disabled for the call templates and apply
templates for imported XSL files. This option works for named templates, but
not for template rules with a match attribute.

6. Customize the BPEL process by creating a scope activity. This action is required because
by default the BPEL process is not customizable.

Note:

You can only customize the composite.xml file, .bpel file (for Oracle BPEL
Process Manager), .xsl map file, and .mplan file (for Oracle Mediator) when
logged into Oracle JDeveloper with the Customization Developer role.

7. Right-click the scope and select Customizable. If you expand the scope and right-click it,
you do not see the Customizable option.

8. In the Applications window, expand Application Resources > Descriptors > ADF
META_INF.

9. Open the adf-config.xml file and select the MDS tab.

10. Click the Add icon to add the required customization classes, as shown in Figure 53-1.

In real environments, the customization classes are provided by the core applications
team, as described in the example scenario in Introduction to Customizing SOA Composite
Applications. When you use your own customization classes, you must add your
customization class JAR file to your project to make the classes available for the adf-
config.xml file.

Chapter 53
Creating the Customizable Composite

53-3

Figure 53-1 Customization Classes

11. Right-click the SOA project and select Deploy.

Note:

You can receive a compilation error if your scope activity is empty. You can drag
an empty activity into the scope activity to pass compilation.

12. On the Deployment Action page, select Generate SAR File. This creates a JAR file
package. This JAR is also known as a SOA archive (SAR).

13. Check the application into a source code control system. The file is now ready for delivery
to the vertical applications team.

For information on how to write customization classes, see Developing Fusion Web
Applications with Oracle Application Development Framework.

How to Add an XSD or WSDL File
To add an XSD or WSDL file:

You can add an XML schema or WSDL document in Oracle JDeveloper when logged in with
the Customization Developer role.

1. Right-click the Oracle SOA Suite project in the Applications window.

2. Select SOA.

3. Select the artifact to create:

• Create XML Schema

Invokes the Create XML Schema dialog for adding a new XML schema file in the
project. When complete, the new schema file automatically opens.

Chapter 53
Creating the Customizable Composite

53-4

• Create WSDL Document

Invokes the Create WSDL dialog to add a new WSDL file in the project.

How to Search for Customized Activities in a BPEL Process
You can search for customized activities in a BPEL process in Oracle JDeveloper.

To search for customized activities:

1. Access Oracle JDeveloper using the Customization Developer role.

2. In the Search menu for the BPEL process at the top of the designer, select Customization
Search, as shown in Figure 53-2.

Figure 53-2 Customization Search Option

The search results display in the Search for Customizations tab of the Log window at the
bottom of the designer.

What You May Need to Know About Resolving Validation Errors in Oracle
JDeveloper

In the customization role, the Oracle Metadata Services (MDS) Repository merges
customizations with the base metadata. The merging can result in an invalid XML document
against its schema. MDS Repository merging does not invoke a schema validation to ensure
that the merging always creates a valid XML document. This can cause a problem for MDS
clients that rely on the validity of the metadata to render their metadata UI editors.

Whenever a SOA file such as composite.xml becomes invalid, you must switch to Source
view in Oracle JDeveloper to directly fix the XML source. If Source view is not editable (for
example, you have accessed Oracle JDeveloper using the Customization Developer role),
you must use the Structure window in Oracle JDeveloper to fix the XML source.

For example, assume you created a base SOA composite application with a BPEL process
that included a customizable scope. The SAR file for the base application was then imported
into a new application in which the following components were added when accessing Oracle
JDeveloper with the Customization Developer role:

• An outbound file adapter

• An invoke activity (added to the customizable scope) for invoking the file adapter

When version two of the base SOA composite application was created, a synchronous Oracle
Mediator service component was added, which caused the routing rules to the BPEL process
service component to be updated.

The SAR file for version two of the base application was then imported into the customized
application. When the user accessed Oracle JDeveloper with the Customization Developer

Chapter 53
Creating the Customizable Composite

53-5

role, an invalid composite error was displayed. The composite.xml file in the Structure window
showed the following invalid structure for the sequence of service components and reference
binding components. The following example provides details:

<component> </component>
<reference> </reference>
<component> </component>

The <reference> component (in this case, the outbound file adapter added when the user
accessed Oracle JDeveloper with the Customization Developer role in version one of the
base application) should have displayed last. The following example provides details.

<component> </component>
<component> </component>
<reference> </reference>

To resolve this error, go to the Structure window and copy and paste these components into
the correct order. This action resolves the composite validation error.

What You May Need to Know About Resolving a Sequence Conflict
This section provides an example of how to resolve a sequence conflict.

To resolve a sequence complex:

1. Customize version 1 of a SOA composite application.

For example, while logged into Oracle JDeveloper with the Customization Developer
role, you add new activities into a customizable scope activity of the BPEL process. The
BPEL process creates a sequence activity into which the new activities are added.

2. Create version 2 of the SOA composite application.

In the version 2 composite, if new activities are added into the same customizable scope, a
new sequence activity is created.

3. Import version 2 of the SOA composite application into a customized application.

4. Open Oracle JDeveloper in the Customization Developer role.

The following error is displayed:

Sequence element is not expected

To resolve the conflict:
1. Go to the Structure window.

2. Expand the sequence.

3. Copy each component and paste it into another sequence.

4. Delete the components in the sequence from which they were copied.

5. Delete the sequence when it is empty.

What You May Need to Know About Compiling and Deploying a Customized
Application

When you deploy or compile a customized application at the core application, vertical
application, or customer level, warning messages describing unexpected ID attributes are

Chapter 53
Creating the Customizable Composite

53-6

displayed, as shown in the following example. You can safely ignore these messages. These
messages display because the schema definition does not include these simple-type elements,
which is expected behavior. These messages do not prevent the customized composite from
being successfully deployed.

[scac] warning: in
 /scratch/qizhong/my-jdev/mywork/CompositeTestApp2/Project2/composite.xml(22,32):
 Schema validation failed for
 /scratch/qizhong/my-jdev/mywork/CompositeTestApp2/Project2/composite.xml<Line 22,
 Column 32>: XML-24535: (Error) Attribute
 'http://www.w3.org/XML/1998/namespace:id' not expected.
 [scac] warning: in
 /scratch/qizhong/my-jdev/mywork/CompositeTestApp2/Project2/composite.xml(23,32):
 Schema validation failed for
 /scratch/qizhong/my-jdev/mywork/CompositeTestApp2/Project2/composite.xml<Line 23,
 Column 32>: XML-24535: (Error) Attribute
 'http://www.w3.org/XML/1998/namespace:id' not expected.

Customizing the Vertical Application
This section provides an overview of the steps required for customizing the vertical SOA
composite application.

Note:

Do not customize the same SOA composite application for different layer values.
Layer values are the customizations made to the base composite, as described in
Introduction to Customizing SOA Composite Applications. Only a single layer value
for customization is supported. If you must support another layer value, always import
the base composite into a different project and change the composite name to be
specific to the layer value you want to customize. This approach is also useful for
deployments in which you do not want to deploy different layer values with the same
composite name.

How to Customize the Vertical Application
To customize the vertical application:

1. Add the layer values for the customization layers through either of the following methods:

a. To add application-specific layer values, click the Configure Design Time
Customization Layer Values link, as shown in Figure 53-3.

Figure 53-3 Configure Design Time Customization Layer Values Link

Chapter 53
Customizing the Vertical Application

53-7

b. Add the layer values.

After you specify the values and save the file, the CustomizationLayerValues.xml file
is displayed in the MDS DT folder under Application Resources. The customization
class provides the layer name and the CustomizationLayerValues.xml file provides
the layer values. Both are required. You can double-click the file in this location to open
an editor for making additional modifications.

or

a. To add global values applicable to all applications, open the
CustomizationLayerValues.xml file in $JDEV_HOME/jdeveloper/jdev and add the
layer values for the customization layers. For example, add the value Communications
to the industry layer.

<cust-layers xmlns="http://xmlns.oracle.com/mds/dt">
 <cust-layer name="industry">
 <cust-layer-value value="communications" display-name="Communications"/>
 </cust-layer>
</cust-layers>

2. Start Oracle JDeveloper and select the Default Role.

3. Create a new SOA application with a different name than the core application.

4. From the File menu, select Import > SOA Archive Into SOA Project.

5. Click Browse to select the composite archive JAR file created by the core application team
in Creating the Customizable Composite.

6. In the Composite Name field, enter a different name than the core SOA project.

Note:

Do not select any SOA project. You must create a new SOA project for the JAR
file that you import.

7. Select the Import for Customization check box.

8. In the Applications window, right-click the project, and select SOA > Customizable.

9. Restart Oracle JDeveloper.

The Customization Context dialog displays the available customization layers and layer
values.

10. Select a layer and value to customize, as shown in Figure 53-4 (for this example, layer
industry and value Communications are selected).

Figure 53-4 Customization Context

Chapter 53
Customizing the Vertical Application

53-8

11. In the SOA Composite Editor, double-click the BPEL process to access Oracle BPEL
Designer.

You can only edit scope activities that have been set to customizable. In the example
shown in Figure 53-5, the core applications team set only one scope to be customizable.
The other activities in the BPEL process are disabled and cannot be edited.

Figure 53-5 One Customizable Scope

12. Right-click the SOA project in the Applications window and select Deploy to create a JAR
file of the customized composite (SAR).

Since deployment is invoked with the customization role enabled, the base composite with
the appropriate layers based on the current customization context is automatically merged.

13. Check in the application to a source code control system.

The JAR file contains a merged composite that in turn acts as a base process for the next
level of customization. The JAR file can now be delivered to the customer.

Note:

You can create WSDL and XSD files while logged into Oracle JDeveloper with the
Customization Developer role. In the Applications window, right-click the project
name and select SOA > Create WSDL Document or SOA > Create XML Schema.

Customizing the Customer Version
This section provides an overview of the steps required for customizing the customer version
of the SOA composite application.

Chapter 53
Customizing the Customer Version

53-9

How to Customize the Customer Version
How to customize the customer version:

1. Add the layer values for the customization layers through either of the following methods:

a. To add application-specific layer values, click the Configure Design Time
Customization Layer Values link, as shown in Step 1 of Customizing the Vertical
Application.

b. Add the layer values.

After you specify the values and save the file, the CustomizationLayerValues.xml file
is displayed in the MDS DT folder under Application Resources. You can double-click
the file in this location to open an editor for making additional modifications.

or

a. To add global values applicable to all applications, open the
CustomizationLayerValues.xml file in $JDEV_HOME/jdeveloper/jdev and add the
layer values for the customization layers. For example, add the values North America
and Asia Pacific to the site layer.

<cust-layers xmlns="http://xmlns.oracle.com/mds/dt">
 <cust-layer name="site">
 <cust-layer-value value="communications" display-name="North America"/>
 <cust-layer-value value="communications" display-name="Asia Pacific"/>
 </cust-layer>
</cust-layers>

2. Start Oracle JDeveloper and select the Default Role.

3. Create a new SOA application with a different name than the core application or
customized application.

4. From the File menu, select Import > SOA Archive Into SOA Project.

5. Click Browse to select the composite archive JAR file created by the vertical applications
team in Customizing the Vertical Application.

6. Select the Import for Customization check box.

7. From the Tools menu, select Switch Roles > Customization Developer.

8. Restart Oracle JDeveloper.

The Customization Context dialog displays the available customization layers and layer
values.

9. Select a layer and value to customize, as shown in Figure 53-6 (for this example, the layer
site and value North America are selected).

Figure 53-6 Customization Context

Chapter 53
Customizing the Customer Version

53-10

10. Customize the BPEL process.

11. Right-click the SOA project and select Deploy to create a JAR file (SAR) for the North
American region.

12. Check the application into a source code control system.

Upgrading the Composite
This section provides an overview of the steps required for upgrading the SOA composite
application to the next version.

How to Upgrade the Core Application Team Composite
The core application team fixes bugs, makes product enhancements. and creates the next
version of the composite.

To upgrade the core application team composite:

1. Check out the application created in Creating the Customizable Composite from source
control.

2. Start Oracle JDeveloper and select the Default Role.

3. Make bug fixes and product enhancements.

4. Deploy the composite to create the next revision of the JAR file.

5. Deliver the JAR file to the vertical applications team.

How to Upgrade the Vertical Applications Team Composite
The vertical applications team customizes the new base composite to create a version of the
JAR file.

To upgrade the vertical applications team composite:

1. Check out the application created in Customizing the Vertical Application from source
control.

2. Start Oracle JDeveloper and select the Default Role.

3. Open the checked-out application.

4. Select the project node in the Applications window to set the current project context. This is
important because the import command in the next step imports the SOA archive into the
selected project to upgrade the base.

5. From the File menu in Oracle JDeveloper, import the new revision of the JAR file created
in How to Upgrade the Core Application Team Composite.

6. From the Tools menu, select Switch Roles > Customization Developer.

7. Restart Oracle JDeveloper.

8. In the Customization Context dialog, select a layer and value to customize (for example,
select the layer industry and value Communications).

9. Open the BPEL process to see if the new base composite can be merged with layers for
the above selected context.

10. Review the Log window for potential warnings and errors.

Chapter 53
Upgrading the Composite

53-11

11. If required, fix errors and warnings by modifying the process. This edits the layers behind
the scenes.

12. Deploy the composite to create the next revision of the customized JAR file and deliver it to
the customer for an upgrade.

How to Upgrade the Customer Composite
The customer follows the same procedures as the vertical applications team in How to
Upgrade the Vertical Applications Team Composite to apply their layers to the new base
composite.

Chapter 53
Upgrading the Composite

53-12

54
Defining Composite Sensors

This chapter describes how to define composite sensors that provide a method for
implementing trackable fields on messages in a SOA composite application. It describes how
to define sensors on binding components and on service components that have subscribed to
business events. It also describes restrictions on using composite sensors and how to manage
composite sensors during runtime in Oracle SOA Composer.
This chapter includes the following sections:

• Introduction to Composite Sensors

• Adding Composite Sensors

• Monitoring Composite Sensor Data During Runtime

• Creating and Managing Composite Sensors During Runtime from Oracle SOA Composer

For information about activity, fault, and variable sensors in a BPEL process, see Using
Sensors and Analytics .

For examples of using composite sensors in business scenarios, see Understanding Oracle
SOA Suite.

Introduction to Composite Sensors
Composite sensors provide a method for implementing trackable fields on messages.
Composite sensors enable you to perform the following tasks:

• Monitor incoming and outgoing messages.

• Specify composite sensor details in the search utility of the Flow Instances pages for the
SOA Infrastructure, partition, and SOA composite application in Oracle Enterprise Manager
Fusion Middleware Control. This action enables you to display details about a particular
instance with a composite sensor.

• Publish JMS data computed from incoming and outgoing messages.

• Track composite instances initiated through business event subscriptions.

You define composite sensors on service and reference binding components or on service
components that have business event subscriptions in Oracle JDeveloper. This functionality is
similar to variable sensors in BPEL processes. During runtime, composite sensor data is
persisted in the database.

You can also define composite sensors during runtime in Oracle SOA Composer. Oracle SOA
Composer changes are picked up immediately by the runtime, whereas changes made using
Oracle JDeveloper require SOA composite application redeployment.

For information about searching for composite sensors in Oracle Enterprise Manager Fusion
Middleware Control, see Section "Tracking Business Flow Instances at the SOA Infrastructure
or Partition Level" of Administering Oracle SOA Suite and Oracle Business Process
Management Suite.

54-1

Restrictions on Use of Composite Sensors
Note the following restrictions on the use of composite sensors:

• Functions in XPath expressions cannot be used with properties.

• Any composite sensor that is defined by an expression always captures values as strings.
This causes the sensor type to always be a string. This action makes the search possible.

Capturing values as strings may be useful when dealing with XML types derived from a
string. The following example provides details:

<xs:element name="CardNum">
 <xs:simpleType>
 <xs:restriction base="xs:string">
 <xs:length value="16"/>
 </xs:restriction>
 </xs:simpleType>
</xs:element>

Even if the expression is a number, it is captured as a string. You cannot use other logical
operators such as <, >, =, or any combination of these.

• Any composite sensor that is defined by a variable uses the variable type to determine the
sensor type. Sensors can be one of the following types:

– STRING
– NUMBER
– DATE
– DATE_TIME
– Complex XML

• Composite sensors only support two types of sensor actions: Enterprise Manager and
JMS.

• Header-based sensors are only supported for web service bindings.

• Sensor actions for Oracle B2B, service data objects (SDOs), web services invocation
framework (WSIF), and Oracle Business Activity Monitoring bindings are not supported.

• When creating an XPath expression for filtering, all functions that return a node set must
be explicitly cast as a string:

xpath20:upper-case(string($in.request/inp1:updateOrderStatus/inp1:orderStatus)) =
"PENDING"

• Sensors cannot be configured on service components that publish business events.

• Sensors based on business event headers are not allowed (only payloads are allowed).

• PL/SQL subscriptions are not supported.

Adding Composite Sensors
You add sensors to the following components of a SOA composite application in the SOA
Composite Editor:

• Service or reference binding components

Chapter 54
Adding Composite Sensors

54-2

• Service components such as a BPEL process or Oracle Mediator that have subscribed to
business events

How to Add Composite Sensors
To add composite sensors:

1. Use one of the following options to add a composite sensor in the SOA Composite Editor:

• Option 1:

a. Right-click a specific service or reference binding component in the Exposed
Services or External References swimlane or a service component that has a
subscribed business event. A service component that has a subscribed business
event includes the word Subscribed on it.

b. Select Configure Sensors.

Note:

The service component must already have a subscribed business event
for the Configure Sensors option to be displayed.

If you selected a binding component, the Composite Sensors dialog displays the
details shown in Figure 54-1. For this example, a service binding component is
selected.

Figure 54-1 Composite Sensors Dialog for the Selected Binding
Component

If you selected a service component, the Composite Sensors dialog displays the
details shown in Figure 54-2.

Chapter 54
Adding Composite Sensors

54-3

Figure 54-2 Composite Sensors Dialog for the Selected Service Component

c. Select the binding component or service component in the dialog, and click the
Add icon.

• Option 2:

a. Click the Composite Sensor icon above the SOA Composite Editor, as shown in
Figure 54-3.

Figure 54-3 Composite Sensor Icon

The Composite Sensors dialog for the SOA composite application appears, as
shown in Figure 54-4. This option displays all the service and reference binding
components and service components with subscribed business events in the SOA
composite application.

Chapter 54
Adding Composite Sensors

54-4

Figure 54-4 Composite Sensors Dialog

b. Select the specific service, reference, or business event to which to add a
composite sensor, then click the Add icon.

If you selected a binding component such as a service, the Create Composite Sensor
dialog appears as shown in Figure 54-5.

Figure 54-5 Create Composite Sensor Dialog for a Service Binding Component

Chapter 54
Adding Composite Sensors

54-5

If you selected a service component that has a business event subscription, the Create
Composite Sensor dialog appears as shown in Figure 54-6.

Figure 54-6 Create Composite Sensor Dialog for a Service Component

2. Enter the details shown in Table 54-1.

Table 54-1 Create Composite Sensor Dialog

Name Description

Name Enter a name for the composite sensor. You must enter a name to enable the
Edit icon of the Expression field.

Service Displays the name of the service. This field is only displayed if you are creating
a composite sensor for a service binding component. This field cannot be
edited.

Service sensors monitor the messages that the service receives from the
external world or from another composite application.

Reference Displays the name of the reference. This field is only displayed if you are
creating a composite sensor for a reference binding component. This field
cannot be edited.

Reference sensors monitor the messages that the reference sends to the
external world or to another composite application.

Operation Select the operation for the port type of the service or reference. This field only
displays for service or reference binding components.

Event Displays the name of the service component. This field is only displayed if you
are creating a composite sensor for a service component. This field cannot be
edited.

Event sensors track composite instances initiated through a business event.
You can create multiple sensors per business event.

Event Type Displays the Subscribe business event type. This field cannot be edited. The
publish business event type is not supported.

Chapter 54
Adding Composite Sensors

54-6

Table 54-1 (Cont.) Create Composite Sensor Dialog

Name Description

Expression Click the Edit icon to display a dropdown list for selecting the type of
expression to create:

• Variables: Select to create an expression value for a variable. See How to
Add a Variable.

• Expression: Select to open the Expression Builder dialog for creating an
XPath expression. This action always captures values as strings. See
How to Add an Expression.

• Properties: Select to create an expression value for a normalized
message header property. These are the same properties that display
under the Properties tab of the invoke activity, receive activity, reply
activity, OnEvent branch of a scope activity (in BPEL 2.0), and
OnMessage branch of a pick activity and scope activity (in BPEL 2.0).
See How to Add a Property.

Filter Click the Edit icon to open the Expression Builder dialog to create an XPath
filter for the expression. You must first create an expression to enable this field.

For example, you may create an expression for tracking purchase order
amounts over 10,000:

$in.inDict/tns:inDict/ns2:KeyValueOfstringstring/ns2:Value >
10000.00

Composite Sensor
Actions

Displays the supported sensor actions. This feature enables you to store
runtime sensor data. You can select both Enterprise Manager and either JMS
Queue or JMS Topic.

• Enterprise Manager
Select to make runtime sensor data searchable in the Flow Instances tab
of a SOA composite application in Oracle Enterprise Manager Fusion
Middleware Control. This selection is the same as the DBSensorAction
selection of previous releases.

Note: When Enterprise Manager is selected, sensor data is sent to the
trackable fields tables. When it is not selected, data is not sent. However,
in both cases, Oracle Enterprise Manager Fusion Middleware Control still
displays the fields that enable you to search for composite instances
based on that sensor.

For more information, see Administering Oracle SOA Suite and Oracle
Business Process Management Suite.

• JMS Queue
Select to store composite sensor data (XML payload) in a JMS queue.
You must specify the JMS connection factory and queue name.

• JMS Topic
Select to store composite sensor data (XML payload) in a JMS topic. You
must specify the JMS connection factory and topic name.

Notes: The JMS Queue and JMS Topic selections enable the composite
sensor data (XML payload) to be used by other consumers, including Oracle
Business Activity Monitoring (BAM) and Oracle Complex Event Processing.
Both selections use the native JMS support provided with Oracle WebLogic
Server, and not the Oracle SOA Suite JMS adapter described in
Understanding Technology Adapters. You can view JMS messages in the
Oracle WebLogic Remote Console.

3. Click OK.

For a service or reference binding component, a composite sensor icon displays in the
upper right corner, as shown in Figure 54-7.

Chapter 54
Adding Composite Sensors

54-7

Figure 54-7 Sensor Icon on Binding Component

For a service component, a composite sensor icon also displays in the upper right corner,
as shown in Figure 54-8.

Figure 54-8 Sensor Icon on Service Component

4. Place your cursor over the composite sensor icon to display details about the composite
sensor.

How to Add a Variable
The Select XPath Expression dialog shown in Figure 54-9 enables you to select an element for
tracking.

To add a variable:

1. Expand the tree and select the element to track (for this example, an order ID).

Figure 54-9 Variables

Chapter 54
Adding Composite Sensors

54-8

2. Click OK when complete.

How to Add an Expression
The Expression Builder dialog shown in Figure 54-10 enables you to create an expression for
tracking.

For more information, see Building XPath Expressions in the Expression Builder in Oracle
JDeveloper.

To add an expression:

1. Build an XPath expression of an element to track.

Figure 54-10 Expression

2. Click OK when complete.

Note:

For variables, Expression Builder inserts $in/variablename. If you are using payload
arguments in your expression, you must manually update this syntax
to $in.payload/variablename. For example:
concat($in.payload/element, '_', $in.payload/element2)

How to Add a Property
The Select Property dialog shown in Figure 54-11 enables you to select a normalized message
header property for tracking.

To add a property:

1. Select a normalized message header property to track.

Chapter 54
Adding Composite Sensors

54-9

Figure 54-11 Properties

2. Click OK when complete.

For more information about normalized messages, see Propagating Normalized Message
Properties Through Message Headers.

What You May Need to Know About Duplicate Composite Sensor Names
Note the following details when using duplicate names for composite sensors.

• If you create composite sensors with duplicate names, the entire contents of their
definitions are compared. Duplicate names are permitted where one or more additional
parameters are different (for example, either different configuration types or different
expressions, filters, operation names, and so on). Something must be different in the
definitions for duplicate names to be permitted.

• If you have duplicate sensor definitions, only the last executed sensor value is persisted.
Therefore, you can use this type of configuration for mutually exclusive paths (for example,
a composite can be invoked through service 1 or service 2). Therefore, you can define the
same sensor name on both the services. However, if you define the same names for
service 1 and reference 1, only the sensor value from reference 1 (the last executed
sensor) is stored.

• You typically use multiple sensors with the same name to point to the same logical entity
extracted from different sources (for example, Oracle Enterprise Manager Fusion
Middleware Control displays the final sensor value). Therefore, it can be confusing if the
same sensor name is used to extract an email value and a social security value from
different sources.

• Sensor actions apply to all occurrences of the same sensor name. This situation means
the sensor actions on the most recently defined sensor with the same name take
precedence.

For the scenario shown in sensor.xml in the following example:

Chapter 54
Adding Composite Sensors

54-10

• The first two sensors named Service1 are identical. In addition, the configuration type for
both is serviceConfig (composite sensors defined on a service binding component).
Therefore, the sensors become one entry (the second one is ignored).

• The third sensor named Service1 has a different configuration type of eventConfig (a
composite sensor defined on a business event). Therefore, this sensor is represented with
a separate entry.

• The two sensors named PurchaseOrder Id have different configuration types (eventConfig
and serviceConfig). Therefore, they are represented with separate entries.

• The two sensors named PurchaseOrder have the same configuration type (eventConfig),
but different expressions. Therefore, they are represented with separate entries.

<sensors xmlns="http://xmlns.oracle.com/bpel/sensor">
 <sensor sensorName="Service1" kind="service" target="undefined" filter="">
 <serviceConfig service="OrderPublisher_ep"
 expression="$in.property.tracking.ecid" operation="execute"
 outputDataType="string" outputNamespace="http://www.w3.org/2001/XMLSchema"/>
 </sensor>
 <sensor sensorName="Service1" kind="service" target="undefined" filter="">
 <serviceConfig service="OrderPublisher_ep"
 expression="$in.property.tracking.ecid" operation="execute"
 outputDataType="string" outputNamespace="http://www.w3.org/2001/XMLSchema"/>
 </sensor>
 <sensor sensorName="Service1" kind="event" target="undefined" filter=""
 xmlns:po="http://www.mycompany.com/ns/order">
 <eventConfig component="EventMediator"
 expression="$in/po:PurchaseOrder/po:OrderID"
 event="{http://mycompany.com/events/orders}OrderReceivedEvent"
 outputDataType="string" outputNamespace="http://www.w3.org/2001/XMLSchema"/>
 <sensor sensorName="Event1" kind="event" target="undefined" filter="">
 <eventConfig component="EventMediator" actionType="Subscribe"
 expression="$in.property.tracking.ecid"
 event="{http://mycompany.com/events/orders}OrderReceivedEvent"
 outputDataType="string" outputNamespace="http://www.w3.org/2001/XMLSchema"/>
 </sensor>
 <sensor sensorName="PurchaseOrder Id" kind="event" target="undefined" filter=""
 xmlns:po="http://www.mycompany.com/ns/order">
 <eventConfig component="EventMediator"
 expression="$in/po:PurchaseOrder/po:OrderID"
 event="{http://mycompany.com/events/orders}OrderReceivedEvent"
 outputDataType="string" outputNamespace="http://www.w3.org/2001/XMLSchema"/>
 </sensor>
 <sensor sensorName="PurchaseOrder Id" kind="service" target="undefined"
 filter="">
 <serviceConfig service="OrderPublisher_ep"
 expression="$in.property.tracking.ecid" operation="execute"
 outputDataType="string" outputNamespace="http://www.w3.org/2001/XMLSchema"/>
 </sensor>
 <sensor sensorName="PurchaseOrder" kind="event" target="undefined" filter=""
 xmlns:po="http://www.mycompany.com/ns/order">
 <eventConfig component="EventMediator" expression="$in/po:PurchaseOrder"
 event="{http://mycompany.com/events/orders}OrderReceivedEvent"
 outputDataType="PurchaseOrder"
 outputNamespace="http://mycompany.com/events/orders"/>
 </sensor>
 <sensor sensorName="PurchaseOrder" kind="event" target="undefined" filter=""
 xmlns:po="http://www.mycompany.com/ns/order">
 <eventConfig component="EventMediator"
 expression="$in/po:PurchaseOrder/po:OrderID"
 event="{http://mycompany.com/events/orders}OrderReceivedEvent"

Chapter 54
Adding Composite Sensors

54-11

 outputDataType="string" outputNamespace="http://www.w3.org/2001/XMLSchema"/>
 </sensor>
 </sensor>
</sensors>

Monitoring Composite Sensor Data During Runtime
During runtime, composite sensor data can be monitored in Oracle Enterprise Manager Fusion
Middleware Control:

• Composite sensor data displays in the flow trace of a SOA composite application.

• Composite sensor data can be searched for on the Flow Instances page at the SOA
Infrastructure, individual partition, and SOA composite application levels.

For more information about searching for composite sensors in Oracle Enterprise Manager
Fusion Middleware Control, see Section "Monitoring and Deleting SOA Composite Application
Instances at the SOA Infrastructure Level" and Section "Monitoring and Deleting SOA
Composite Application Instances from the Application Home Page" of Administering Oracle
SOA Suite and Oracle Business Process Management Suite.

Creating and Managing Composite Sensors During Runtime from
Oracle SOA Composer

You can create, update, and delete composite sensors during runtime from Oracle SOA
Composer without having to redeploy a SOA composite application. The following example
describes how to create a composite sensor. Changes to composite sensors can be carried to
new revisions of the composite through patching.

Ensure that you understand the issues around using duplicate names for composite sensors.
For more information, see What You May Need to Know About Duplicate Composite Sensor
Names.

To create and manage composite sensors during runtime from Oracle SOA Composer:

1. Log in to Oracle SOA Composer.

http://host:soa_server_port/soa/composer
2. Expand the navigator on the left and double-click the composite in which to make changes.

Figure 54-12 provides details.

Figure 54-12 Oracle SOA Composer

Chapter 54
Monitoring Composite Sensor Data During Runtime

54-12

3. Click Create Session.

The page is refreshed to display the Add, Edit, and Delete icons.

4. Click the Add icon and select an option:

• Create Service Sensor: Data is coming from a service binding component call.

• Create Reference Sensor: Data is coming from a reference binding component call.

• Create Event Sensor: Data is coming from a service component that has subscribed
to a business event.

For this example, Create Service Sensor is selected because the data is coming from a
service binding component call. Figure 54-13 provides details.

Figure 54-13 Composite Sensor Creation

The Create Composite Sensor dialog is displayed.

5. Click the Edit icon in the Expression section, and select an option:

• Variables: Select to create an expression value for a variable.

• Expression: Select to invoke the Expression Builder dialog for creating an XPath
expression. This action always captures values as strings.

• Properties: Select to create an expression value for a normalized message header
property. These are the same properties that display under the Properties tab of the
invoke activity, receive activity, reply activity, OnEvent branch of a scope activity (in
BPEL 2.0), and OnMessage branch of a pick activity and scope activity (in BPEL 2.0).

For this example, Expression is selected to build an XPath expression.

Figure 54-14 provides details.

Figure 54-14 XPath Expression Selection of Create Composite Sensor Dialog

The selections of variables, expressions, and header properties are the same as with the
Create Composite Sensor dialog in Oracle JDeveloper, as described in Table 54-1.

The Expression Builder dialog is displayed.

6. Build an XPath expression and click OK. You can also select custom XPath expressions
that you created.

You are returned to the Create Composite Sensor dialog.

Chapter 54
Creating and Managing Composite Sensors During Runtime from Oracle SOA Composer

54-13

7. Select the Enterprise Manager check box in Figure 54-15 to make this composite sensor
a searchable, trackable field from the Flow Instances page of a SOA composite application
in Oracle Enterprise Manager Fusion Middleware Control, and click OK. If you do not
select this check box, the composite sensor is not searchable.

Figure 54-15 Create Composite Sensor

The new composite sensor is displayed, including the sensor name, the type and name of
the component in which the sensor is defined, any XPath expression or filter defined on the
sensor, the storage location for runtime sensor data (Enterprise Manager or a JMS queue
and topic), and any JMS targets. Figure 54-16 provides details.

Figure 54-16 Composite Sensors in Oracle SOA Composer

8. Click Save.

9. In the upper right corner, click Publish to publish this session. Figure 54-17 provides
details.

Chapter 54
Creating and Managing Composite Sensors During Runtime from Oracle SOA Composer

54-14

Figure 54-17 Publish Button

10. Enter an optional description for the session when prompted, then click OK.

The composite sensor is now running automatically in the deployed SOA composite
application.

11. Go to the Test Web Service page in Oracle Enterprise Manager Fusion Middleware Control
to invoke a new instance. For information about the Test Web Service page, see "Initiating
a SOA Composite Application Test Instance" of Administering Oracle SOA Suite and
Oracle Business Process Management Suite.

12. Create a new instance of the SOA composite application that includes the composite
sensor (for this example, named loanAmount), and click Invoke.

13. Go to the Flow Instances page of the SOA Infrastructure.

14. In the Sensor Name field of the Flow Instance part of the Search Options section,
specify the composite sensor you added. Figure 54-18 provides details.

Figure 54-18 Searchable Field

15. Click Search.

16. In the Search Results table, select the instance of the SOA composite sensor and click
Show Details.

Instance details are displayed in the Faults, Composite Sensor Values, Composites,
and Resequencing Groups tabs at the bottom of the page.

17. Click the Composite Sensor Values tab.

This tab displays the values of composite sensors detected in the selected business flow.

• Name: Displays the composite sensor name (for this example, loanAmount).

Chapter 54
Creating and Managing Composite Sensors During Runtime from Oracle SOA Composer

54-15

• Value: Displays the value assigned to the composite sensor.

• Location: Displays the service or reference binding component or service component
in which the composite sensor is defined.

• Composite: Displays the SOA composite application in which the composite sensor is
defined.

18. If you want to edit or delete the composite sensor, return to Oracle SOA Composer, as
shown in Figure 54-16, and click Create Session.

The page is refreshed to again display the Add, Edit, and Delete icons.

19. If you set the oracle.soacomposer.composite.showSensorXmlFiles Oracle WebLogic
Server startup script system property, the Show Sensor XML button appears at the
bottom of the page.

20. Click this property to show sensor.xml and sensor-action.xml content. This helps you to
test both to see that they are what you expect them to be.

If you later import this SOA composite application in to Oracle JDeveloper, the composite
sensors created during runtime in Oracle SOA Composer are displayed.

What You May Need to Know About Viewing Composite Sensor Changes in
Oracle SOA Composer

When you add or remove composite sensors in Oracle SOA Composer, you must close and
reopen the project tab above the Composite Sensors table to see the changes. For example:

1. Create and deploy a SOA composite application with a composite sensor (for this example,
named p1).

2. Log in to Oracle SOA Composer, and select the composite in the navigator.

The p1 composite sensor is displayed.

3. Create an additional composite sensor (for this example, named p2) in the composite and
redeploy it.

4. In the navigator tree of Oracle SOA Composer, click the Refresh button, and select the
composite.

Only composite sensor p1 is displayed, and not p2.

5. Close the project tab above the Composite Sensors page, as shown in Figure 54-19, and
reopen it by selecting the composite in the navigator.

Figure 54-19 Composite Tab in Composite Sensors Page

This enables composite sensors p1 and p2 to be displayed.

Chapter 54
Creating and Managing Composite Sensors During Runtime from Oracle SOA Composer

54-16

55
Creating Dynamic Business Processes

This chapter describes how to use two-layer Business Process Management (BPM). Two-layer
BPM enables you to create dynamic business processes whose execution, rather than being
predetermined at design time, depends on elements of the context in which the process
executes. Such elements can include, for example, the type of customer, the geographical
location, or the channel.
To illustrate further, assume you have an application that performs multichannel banking using
various processes. In this scenario, the execution of each process depends on the channel for
each particular process instance.

This chapter includes the following sections:

• Introduction to Two-Layer Business Process Management

• Creating a Phase Activity

• Creating the Dynamic Routing Decision Table

Introduction to Two-Layer Business Process Management
Two-layer BPM enables you to model business processes using a layered approach. In that
model, a first level is a very abstract specification of the business process. Activities of a first-
level process delegate the work to processes or services in a second level. Figure 55-1
illustrates this behavior.

Figure 55-1 Two-Layer BPM

In Figure 55-1, the phase I activity of the business process can delegate its work to one of the
corresponding layer II processes: Task 1.1, Task 1.2, or Task 1.3.

The two-layer BPM functionality enables you to create the key element (namely, the phase
activity) declaratively.

55-1

By using the design time and runtime functionality of Oracle Business Rules, you can add
more channels dynamically without having to redeploy the business process. Design time at
runtime enables you to add rules (columns) to the dynamic routing decision table at runtime.
Then, during runtime, business process instances consider those new rules and eventually
route the requests to a different channel.

The design time at runtime functionality of Oracle Business Rules also enables you to modify
the endpoint reference of a service that is invoked from a phase activity, pointing that reference
to a different service.

Note:

You can use the design time at runtime functionality of Oracle Business Rules
through Oracle SOA Composer and the Oracle Business Rules SDK.

For information about using Oracle SOA Composer and the Oracle Business Rules
SDK, see:

• Designing Business Rules with Oracle Business Process Management

• Java API Reference for Oracle Business Rules

Creating a Phase Activity
In two-layer BPM, a phase is a level-1 activity in the BPEL process. It complements the
existing higher-level Oracle Business Rules and human task BPEL activities.

You add a phase activity to a process declaratively in Oracle BPEL Designer by dragging and
dropping it from the Oracle Extensions section of the Components window to the process
model. Figure 55-2 provides details.

Figure 55-2 Phase Activity in Oracle BPEL Designer

Chapter 55
Creating a Phase Activity

55-2

Note:

The reference WSDL (layer 2 or called references) must have the same abstract
WSDL as that for the phase reference that gets automatically created.

How to Create a Phase Activity
You create the phase activity for your composite application after you have created the
necessary variables.

To create a phase activity:

1. Double-click the Phase activity.

2. In the Name field, enter a value.

3. In the Input and Output Variables section, select the Add icon to add input and output
variables.

4. Select Add Input Variable. The dialog for selecting a variable appears.

5. Select an existing variable or select the Variables folder and click the Add icon to create a
new variable.

6. Click OK. The Phase dialog is displayed with the variable populated.

7. From the Input and Output Variables icon, select Add Output Variable. The dialog for
selecting a variable appears.Select an existing variable or select the Variables folder and
click the Add icon to create a new variable.

8. Click OK. The Phase dialog is displayed with the input and output variable names
populated.Click OK. The Oracle BPEL Designer displays the BPEL process.

9. From the File menu, select Save All.

10. Close the BPEL process.

11. Click the composite_name link (that is, the composite.xml file) above Oracle BPEL
Designer. The SOA Composite Editor appears.

What Happens When You Create a Phase Activity
When you create a phase activity, the artifacts described in Table 55-1 are created.

Table 55-1 Artifacts Created with a Phase Activity

Artifact Description

BPEL scope At the location where the user dropped the phase activity in the BPEL process, a
new BPEL scope is created and inserted into the BPEL process. The scope has
the name of the phase activity. Within the scope, several standard BPEL activities
are created. The most important ones are one invoke activity to an Oracle
Mediator and one receive activity from the Oracle Mediator.

Chapter 55
Creating a Phase Activity

55-3

Table 55-1 (Cont.) Artifacts Created with a Phase Activity

Artifact Description

Oracle Mediator
component

With the SOA composite application of the BPEL process service component, a
new Oracle Mediator service component is created. The Oracle Mediator service
component is wired to the phase activity of the BPEL component that comprises
the level-1 BPEL process where the phase activity has been dropped into the
process model. The input and output of the Oracle Mediator service component
is defined by the input and output of the phase activity.

The Oracle Mediator plan (the processing instructions of the Oracle Mediator
service component) is very simple; it delegates creation of the processing
instructions to the Oracle Business Rules service component.

Oracle Business
Rules component

Within the SOA composite application of the BPEL process service component, a
new Oracle Business Rules service component is created and wired to the
Oracle Mediator component associated with the phase activity of the BPEL
process service component. The Oracle Business Rules service component
includes a rule dictionary. The rule dictionary contains metadata for such Oracle
Business Rules engine artifacts as fact types, rulesets, rules, decision tables, and
similar artifacts. As part of creating the Oracle Business Rules service
component, the rule dictionary is preinitialized with the following data:

• Fact Type Model: The data model used for modeling rules. The rule
dictionary is populated with a fact type model that corresponds to the input of
the phase activity with some fixed data model that is required as part of the
contract between the Oracle Mediator and Oracle Business Rules service
components.

• Ruleset: A container of rules used as a grouping mechanism for rules. A
ruleset can be exposed as a service. One ruleset is created within the rule
dictionary.

• Decision Table: From an Oracle Business Rules perspective, a decision table
is a collection of rules with the same fact type model elements in the
condition and action part of the rules so that the rules can be visualized in a
tabular format. The new decision table is created within the ruleset.

• Decision Service: A decision service is created that exposes the ruleset as a
service of the Oracle Business Rules service component. The service
interface is used by Oracle Mediator to evaluate the decision table.

What Happens at Runtime When You Create a Phase Activity
At runtime, the input of the phase activity is used to evaluate the dynamic routing decision
table. This is performed by a specific decision component of the phase activity. The result of
this evaluation is an instruction for the Oracle Mediator. The Oracle Mediator routes the
request to a service based on instructions from the decision component.

Note:

In the current release, an asynchronous phase activity is supported. A synchronous
or one-way phase activity is not supported.

What You May Need to Know About Creating a Phase Activity
When creating a phase activity, you must know the following:

Chapter 55
Creating a Phase Activity

55-4

• Rules that you must either configure or create in the decision service. This is based on
data from the payload that you use to evaluate a rule.

• For each rule created in the decision service, you must know the corresponding endpoint
URL that must be invoked when a rule evaluates to true. This endpoint URL is used by the
Oracle Mediator to invoke the service in layer 2.

Note:

No transformation, assignment, or validation can be performed on a payload.

Creating the Dynamic Routing Decision Table
A Dynamic Routing Decision Table is a decision table evaluated by Oracle Business Rules.
Conditions are evaluated on the input data of a phase activity. The result of the evaluation is a
routing instruction for the Oracle Mediator.

How to Create the Dynamic Routing Decision Table
After you have created the phase activity, the wizard launches the Oracle Business Rules
Designer in Oracle JDeveloper for you to edit the Dynamic Routing Decision Table. Figure 55-3
shows a sample decision table within the Oracle Business Rules Designer.

Figure 55-3 Sample Decision Table

You can leave the information empty while modeling the level-2 process phases and complete
it after the level-1 process is being deployed using Oracle SOA Composer.

Once you have created and edited the Dynamic Routing Decision Table, the new level-1 phase
activity appears in the BPEL process in Oracle JDeveloper, as shown in Figure 55-4.

Chapter 55
Creating the Dynamic Routing Decision Table

55-5

Figure 55-4 Completed Level-1 Phase in Oracle JDeveloper

What Happens When You Create the Dynamic Routing Decision Table
By creating the Dynamic Routing Decision Table, you are configuring the decision service to
dynamically evaluate the conditions applied to the incoming payload and give the
corresponding routing rules to Oracle Mediator. Oracle Mediator then executes these rules
when invoking the service in layer 2.

More specifically, here is what happens at design time when you create the Dynamic Routing
Decision Table:

• A new decision component is created in the composite of the project.

• A new rule dictionary is created in the composite project directory.

• The rule dictionary is populated with a data model that reflects the data model of the phase
input; that is, the XML schema of the phase input is imported into the rule dictionary.

Chapter 55
Creating the Dynamic Routing Decision Table

55-6

56
Integrating the Spring Framework in SOA
Composite Applications

This chapter describes how to use the spring framework to integrate components that use Java
interfaces into SOA composite applications. Oracle SOA Suite uses the spring framework
functionality provided by the WebLogic Service Component Architecture (SCA) of Oracle
WebLogic Server. This chapter also describes how to integrate components that use Java
interfaces with components that use WSDL files in the same SOA composite application. It
also describes using Java Architecture for XML Binding (JAXB) and the EclipseLink O/X-
Mapper (OXM) to map Java classes to XML data.
This chapter includes the following sections:

• Introduction to the Spring Service Component

• Integration of Java and WSDL-Based Components in the Same SOA Composite
Application

• Creating a Spring Service Component in Oracle JDeveloper

• Defining Custom Spring Beans Through a Global Spring Context

• Using the Predefined Spring Beans

• JAXB and OXM Support

• Configuring Groovy and Aspectj Classes with the Spring Service Component

• Troubleshooting Spring Errors

For more information about the WebLogic SCA functionality used by Oracle SOA Suite, see
Developing WebLogic SCA Applications for Oracle WebLogic Server.

For samples about how to use the spring framework, see the Oracle SOA Suite samples site.

Introduction to the Spring Service Component
The spring framework is a lightweight container that makes it easy to use different types of
services. Lightweight containers can accept any JavaBean, instead of specific types of
components.

WebLogic SCA enables you to use the spring framework to create Java applications using
plain old Java objects (POJOs) and expose components as SCA services and references. In
SCA terms, a WebLogic spring framework SCA application is a collection of POJOs plus a
spring SCA context file that wires the classes with SCA services and references.

You can use the spring framework to create service components and wire them within a SOA
composite application using its dependency injection capabilities. SCA can extend spring
framework capabilities as follows:

• Publish spring beans as SCA component services that can be accessed by other SCA
components or by remote clients

• Provide spring beans for service references wired to services of other components

56-1

As with all service components, spring components are defined in the composite.xml file. The
spring component defined in the composite.xml file has service and reference elements with
binding.java.

Services are implemented by beans and are targeted in the spring context file. References are
supplied by the runtime as implicit (or virtual) beans in the spring context file.

You can also integrate Enterprise JavaBeans (EJB) with SOA composite applications through
use of Java interfaces (with no requirement for SDO parameters). For information, see
Integrating Enterprise JavaBeans with Composite Applications .

Integration of Java and WSDL-Based Components in the Same
SOA Composite Application

You can integrate components using Java interfaces and WSDL files in a SOA composite
application in the SOA Composite Editor. As an example, this integration enables a spring
service component to invoke an Oracle BPEL Process Manager or an Oracle Mediator service
component to invoke an EJB, and so on.

The following types of component integrations are supported:

• Java components to WSDL components

If you drag a wire from a Java interface (for example, EJB service or spring service
component) to a component that does not support Java interfaces (for example, Oracle
Mediator, Oracle BPEL Process Manager, or others), a compatible WSDL is generated for
the component interfaces.

• WSDL components to Java components

If you drag a wire from a WSDL interface to a component that does not support WSDL files
(for example, a spring service component), a compatible Java interface is automatically
generated. It is also possible to wire an existing WSDL interface to an existing Java
interface. In this case, there is no checking of the compatibility between the WSDL and
Java interfaces. You must ensure that it is correct.

• Java components to Java components

If you create a spring service component, you can automatically configure it with Java
interface-based EJB service and reference binding components. No WSDL files are
required.

Java and WSDL-Based Integration Example
When wiring any two service components (or a service component with a binding component),
each end of the wire has an interface defined. With XML, those interfaces must have the same
WSDL definition, and are defined with interface.wsdl in the composite.xml file.

From the JAX-WS point of view, when wiring a Java interface (which is defined by
interface.java) to a WSDL interface, it is assumed that the two interfaces are compatible.
This is typically enforced and automated by Oracle JDeveloper.

Chapter 56
Integration of Java and WSDL-Based Components in the Same SOA Composite Application

56-2

Note:

Only use Oracle JDeveloper in Design view to create and modify the composite.xml
and spring context files described in this section. Do not directly edit these files in
Source view. These examples are provided to show you how Java interfaces and
WSDL files are integrated in a SOA composite application. Use of Oracle JDeveloper
to achieve this functionality is described in subsequent sections of this chapter.

For example, assume you have a Java interface for a service, as shown in the following
example:

public interface PortfolioService {
 public double getPorfolioValue(String portfolioId);
}

Assume the implementation can use an additional StockQuote service that is implemented by
another component that may be an external web service, or an EJB. The following example
provides details:

public interface StockQuote {
 public double getQuote (String symbol);
}

The composite.xml file for the spring framework lists the PortfolioService service and the
StockQuote service with the interface.java definitions. The following example provides
details.

<component name="PortfolioComp">
 <implementation.spring src="Spring/PortfolioComp.xml"/>
 <componentType>
 <service name="PortfolioService">
 <interface.java interface="com.bigbank.PortfolioService"/>
 </service>
 <reference name="StockService">
 <interface.java interface="com.bigbank.StockQuote"/>
 </reference>
 </componentType>
 </component>

The implementation class implements the service interface and provides a setter for the
reference interface. The following example provides details:

public class PortfolioServiceImpl implements PortfolioService {
 StockQuote stockQuoteRef;

 public void setStockService (StockQuote ref) {
 stockQuoteRef = ref;
 }

 public double getPorfolioValue(String portfolioId) {
 //-- use stock service
 //-- return value
 }
}

The spring context file calls out the services and references and binds them to the
implementation. The following example provides details:

Chapter 56
Integration of Java and WSDL-Based Components in the Same SOA Composite Application

56-3

<beans ...>
 <sca:service name="PortfolioService" type="com.bigbank.PortfolioService"
 target="impl">
 </sca:service>

 <sca:reference name="StockService" type="com.bigbank.StockQuote">
 </sca:reference>

 <bean id ="impl" class ="com.bigbank.PortfolioServiceImpl">
 <property name="stockService" ref="StockService"/>
 </bean>
</beans>

Using Callbacks with the Spring Framework
Oracle SOA Suite uses callbacks for both interface.wsdl and interface.java. However, the
concept of callbacks does not exist in the spring framework. For Oracle SOA Suite services
and references, a callback is specified (in the metadata) as a second port type for
interface.wsdl or a second Java name for interface.java. The spring metadata has only
sca:services and sca:references and no way to specify a callback.

To design a callback with spring, you must provide sca:services and sca:references with a
specific name. If you create both a sca:service and sca:reference using the naming
conventions of someService and someServiceCallback, Oracle SOA Suite recognizes this
convention and creates a single service or reference with a callback.

For example, assume you create the syntax shown in the following example in the spring
context file with the spring editor in Oracle JDeveloper:

<sca:service name="StockService"
 type="oracle.integration.platform.blocks.java.callback.StockService"
 target="impl" />
 <sca:reference name="StockServiceCallback"
 type="oracle.integration.platform.blocks.java.callback.StockServiceReply" />

Oracle SOA Suite automatically creates a single service as shown in the following example:

 <service name="StockService">
 <interface.java
 interface="oracle.integration.platform.blocks.java.callback.StockService"

callbackInterface="oracle.integration.platform.blocks.java.callback.StockServiceRe
ply"/>
 </service>

In the SOA Composite Editor, if a spring interface.java with a callback interface is dragged
to a WSDL component (for example, Oracle BPEL Process Manager, Oracle Mediator, or
others), a WSDL with two port types is generated (technically, a wrapper WSDL, which is a
WSDL that imports two other WSDLs, each having a single port type).

If you drag a WSDL or Java interface that has a callback to a spring service component, a
single interface is displayed in the SOA Composite Editor. However, inside the spring editor,
you find both a sca:service and sca:reference that have the same naming conventions
(someService and someServiceCallback).

Creating a Spring Service Component in Oracle JDeveloper
This section describes how to create a spring service component and wire the component as
follows in Oracle JDeveloper:

Chapter 56
Creating a Spring Service Component in Oracle JDeveloper

56-4

• To Java interface-based EJB services and references (Java-to-Java integration)

• To an Oracle Mediator service component (Java-to-WSDL integration)

How to Create a Spring Service Component in Oracle JDeveloper
To create a spring service component in Oracle JDeveloper:

1. From the Components window, drag a Spring service component into the SOA Composite
Editor, as shown in Figure 56-1.

Figure 56-1 Spring Context Service Component

The Create Spring dialog is displayed.

2. In the Name field, enter a name for the spring service component. The name becomes
both the component name and the spring context file name. Figure 56-2 provides details.

You can also select Use Existing Context and click Browse to select an existing spring
file. For example, you may want to import a spring context that was created in Oracle
JDeveloper, but outside of Oracle SOA Suite. If you browse and select a spring context
from another project, it is copied to the SOA project.

Figure 56-2 Create Spring Dialog

Chapter 56
Creating a Spring Service Component in Oracle JDeveloper

56-5

Note:

A standalone spring version of WebLogic SCA is also available for use. This
version is typically used outside of Oracle SOA Suite. This version is accessible
by selecting Spring 2.5 JEE from the Components window while inside the
spring editor.

3. Click OK.

A spring icon is displayed in the SOA Composite Editor.

4. If the contents are not automatically displayed, double-click the icon to display the contents
of the spring context in the spring editor.

5. From the Components window, select Weblogic SCA from the dropdown list.

The list is refreshed to display the selections shown in Figure 56-3.

Figure 56-3 WebLogic SCA Menu

6. Drag a Service icon into the spring editor.

The Insert Service dialog appears.

7. Complete the fields shown in Table 56-1 to define the target bean and Java interface.

Table 56-1 Insert Service Dialog

Field Description

name Enter a name.

target Enter the target bean. This action enables you to expose the bean
as a service.

Note: Ensure that this target exists. There is no validation support
that checks for the existence of this target.

type Enter the Java interface.

When complete, the Insert Service dialog looks as shown in Figure 56-4.

Figure 56-4 Insert Service Dialog

8. Click OK.

Chapter 56
Creating a Spring Service Component in Oracle JDeveloper

56-6

The target bean becomes the service interface in the spring context.

<?xml version="1.0" encoding="UTF-8" ?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:util="http://www.springframework.org/schema/util"
 xmlns:jee="http://www.springframework.org/schema/jee"
 xmlns:lang="http://www.springframework.org/schema/lang"
 xmlns:aop="http://www.springframework.org/schema/aop"
 xmlns:tx="http://www.springframework.org/schema/tx"
 xmlns:sca="http://xmlns.oracle.com/weblogic/weblogic-sca"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans.xsd
 http://www.springframework.org/schema/tool
 http://www.springframework.org/schema/tool/spring-tool.xsd
 http://www.springframework.org/schema/util
 http://www.springframework.org/schema/util/spring-util.xsd
 http://www.springframework.org/schema/aop
 http://www.springframework.org/schema/aop/spring-aop.xsd
 http://www.springframework.org/schema/cache
 http://www.springframework.org/schema/cache/spring-cache.xsd
 http://www.springframework.org/schema/context
 http://www.springframework.org/schema/context/spring-context.xsd
 http://www.springframework.org/schema/task
 http://www.springframework.org/schema/task/spring-task.xsd
 http://www.springframework.org/schema/jee
 http://www.springframework.org/schema/jee/spring-jee.xsd
 http://www.springframework.org/schema/lang
 http://www.springframework.org/schema/lang/spring-lang.xsd
 http://www.springframework.org/schema/tx
 http://www.springframework.org/schema/tx/spring-tx.xsd
 http://www.springframework.org/schema/jdbc
 http://www.springframework.org/schema/jdbc/spring-jdbc.xsd
 http://www.springframework.org/schema/jms
 http://www.springframework.org/schema/jms/spring-jms.xsd
 http://www.springframework.org/schema/oxm
 http://www.springframework.org/schema/oxm/spring-oxm.xsd
 http://www.springframework.org/schema/mvc
 http://www.springframework.org/schema/mvc/spring-mvc.xsd
 http://xmlns.oracle.com/weblogic/weblogic-sca META-INF/weblogic-sca.xsd">
 <!--Spring Bean definitions go here-->
 <sca:service name="scaserv1" target="cp"
 type="oracle.mypackage.myinterface"/>
</beans>

If you close the spring editor and return to the SOA Composite Editor, you see that a
handle has been added to the left side of the spring service component, as shown in
Figure 56-5.

Figure 56-5 Service Handle

Chapter 56
Creating a Spring Service Component in Oracle JDeveloper

56-7

9. Return to the spring editor.

10. Drag a Reference icon from the list shown in Figure 56-3 into the spring editor.

The Insert Reference dialog is displayed.

11. Complete the dialog, as shown in Table 56-2, and click OK.

Table 56-2 Insert Reference Dialog

Field Description

name Enter a name.

type Enter the Java interface.

When complete, the spring context displays the service and reference in the spring editor.

<?xml version="1.0" encoding="UTF-8" ?>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:util="http://www.springframework.org/schema/util"
 xmlns:jee="http://www.springframework.org/schema/jee"
xmlns:lang="http://www.springframework.org/schema/lang"
 xmlns:aop="http://www.springframework.org/schema/aop"
xmlns:tx="http://www.springframework.org/schema/tx"
 xmlns:sca="http://xmlns.oracle.com/weblogic/weblogic-sca"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd
http://www.springframework.org/schema/tool
http://www.springframework.org/schema/tool/spring-tool.xsd
http://www.springframework.org/schema/util
http://www.springframework.org/schema/util/spring-util.xsd
http://www.springframework.org/schema/aop
http://www.springframework.org/schema/aop/spring-aop.xsd
http://www.springframework.org/schema/cache
http://www.springframework.org/schema/cache/spring-cache.xsd
http://www.springframework.org/schema/context
http://www.springframework.org/schema/context/spring-context.xsd
http://www.springframework.org/schema/task
http://www.springframework.org/schema/task/spring-task.xsd
http://www.springframework.org/schema/jee
http://www.springframework.org/schema/jee/spring-jee.xsd
http://www.springframework.org/schema/lang
http://www.springframework.org/schema/lang/spring-lang.xsd
http://www.springframework.org/schema/tx
http://www.springframework.org/schema/tx/spring-tx.xsd
http://www.springframework.org/schema/jdbc
http://www.springframework.org/schema/jdbc/spring-jdbc.xsd
http://www.springframework.org/schema/jms
http://www.springframework.org/schema/jms/spring-jms.xsd
http://www.springframework.org/schema/oxm
http://www.springframework.org/schema/oxm/spring-oxm.xsd
http://www.springframework.org/schema/mvc
http://www.springframework.org/schema/mvc/spring-mvc.xsd
http://xmlns.oracle.com/weblogic/weblogic-sca META-INF/weblogic-sca.xsd">
 <!--Spring Bean definitions go here-->
 <sca:service name="scaserv1" target="cp"
type="oracle.mypackage.myinterface"/>
 <sca:reference name="scaref1" type="external.bean.myInterface"/>
</beans>

12. Close the spring context file, as shown in Figure 56-6.

Chapter 56
Creating a Spring Service Component in Oracle JDeveloper

56-8

Figure 56-6 Spring Context File

A handle is added to the right side of the spring service component, as shown in
Figure 56-7.

Figure 56-7 Reference Handle

13. Drag the left handle into the Exposed Services swimlane to create a service binding
component, as shown in Figure 56-8.

Figure 56-8 Service Binding Component

You are prompted to select to expose the service as either a web service or as an EJB
service, as shown in Figure 56-9.

Figure 56-9 Service Type To Create

Chapter 56
Creating a Spring Service Component in Oracle JDeveloper

56-9

• EJB: This exposes the EJB service through a Java interface; this selection does not
require the use of a WSDL file.

• Web Service: This exposes the web service through a SOAP WSDL interface. If you
select this option, a WSDL is generated from the Java Interface for compatibility with
the spring service component.

14. Select to expose this service as either an EJB or web service. A service is automatically
created in the Exposed Services swimlane and wired to the spring service component (for
this example, EJB is selected). Figure 56-10 provides details.

Figure 56-10 EJB Service Binding Component Wired to the Spring Service
Component

15. Double-click the EJB service to display the automatically completed configuration, as
shown in Figure 56-11. The configuration details were created from the values you entered
in the Insert Service dialog in Step 7.

Figure 56-11 EJB Service Dialog in Exposed Services Swimlane

16. Replace the default JNDI name that was automatically generated with the name applicable
to your environment.

Chapter 56
Creating a Spring Service Component in Oracle JDeveloper

56-10

17. Close the dialog.

18. Drag the right handle of the spring service component into the External References
swimlane to create a reference binding component.

You are prompted with the same spring type option message as shown in Step 13.

19. Select an option to expose this reference. A reference is automatically created in the
External References swimlane and wired to the spring service component (for this
example, EJB is selected). Figure 56-12 provides details.

Figure 56-12 EJB Reference Binding Component Wired to the Spring Service
Component

20. Double-click the EJB reference to display the automatically completed configuration, as
shown in Figure 56-13. The configuration details were created from the values you entered
in the Insert Reference dialog in Step 11.

Figure 56-13 EJB Reference Dialog in External References Swimlane

21. Close the dialog and return to the SOA Composite Editor, as shown in Figure 56-14.

Chapter 56
Creating a Spring Service Component in Oracle JDeveloper

56-11

Figure 56-14 Java Interface-Based EJB Service and Reference Binding
Components

22. Place the cursor over both the right handle of the service (as shown in Figure 56-15) and
the left handle of the spring service component (as shown in Figure 56-16). The Java
interface is displayed.

Figure 56-15 Java Interface of Service

Figure 56-16 Java Interface of Spring Service Component

23. Perform the same action on the right handle of the spring service component and the left
handle of the reference binding component to display its Java interface.

24. Select Source view for the composite.xml file to display similar details.

<?xml version="1.0" encoding="UTF-8" ?>
<!-- Generated by Oracle SOA Modeler version 12.1.3.0.0 at [5/16/14 3:05 AM].
 -->
<composite name="Project1"
. . .
. . .
<service name="scaserv1">
 <interface.java interface="oracle.mypackage.myinterface"/>
 <binding.ejb uri="scaserv1_ejb_ep" ejb-version="EJB3"/>
</service>
<property name="productVersion" type="xs:string"
 many="false">12.1.3.0.0</property>
<property name="compositeID" type="xs:string"
 many="false">4c07dbf0-5c01-450e-bde6-8c3866f45edc</property>
<component name="MySpring">
 <implementation.spring src="Spring/MySpring.xml"/>

Chapter 56
Creating a Spring Service Component in Oracle JDeveloper

56-12

 <componentType>
 <service name="scaserv1">
 <interface.java interface="oracle.mypackage.myinterface"/>
 </service>
 <reference name="scaref1">
 <interface.java interface="external.bean.myInterface"/>
 </reference>
 </componentType>
</component>
<reference name="scaref1">
 <interface.java interface="external.bean.myInterface"/>
 <binding.ejb uri="scaref1_ejb_ep" ejb-version="EJB3"/>
</reference>
<wire>
 <source.uri>scaserv1</source.uri>
 <target.uri>MySpring/scaserv1</target.uri>
</wire>
<wire>
 <source.uri>MySpring/scaref1</source.uri>
 <target.uri>scaref1</target.uri>
</wire>
</composite>

25. If you wire the right handle of the spring service component to an XML-based component
such as Oracle Mediator instead of the Java interface-based EJB reference, a Java
interface is generated from the Oracle Mediator's existing WSDL interface. The following
steps provide details.

a. Drag the right handle of the spring service component to the Oracle Mediator, as
shown in Figure 56-17.

Figure 56-17 Integration of Spring Service Component and Oracle Mediator

b. Click OK when prompted to acknowledge that a compatible interface was created from
the Oracle Mediator WSDL file.

Chapter 56
Creating a Spring Service Component in Oracle JDeveloper

56-13

Figure 56-18 Java File Creation from the Oracle Mediator WSDL File

If you drag a wire between a Java interface and a WSDL-based component, and the
WSDL file with the default name (based on the Java Interface name) already exists,
you are prompted with four options. Click Cancel to cancel creation of the wire.
Figure 56-19 provides details.

Figure 56-19 Existing WSDL File

c. Place the cursor over both the right handle of the spring service component (as shown
in Figure 56-20) and the left handle of the Oracle Mediator (as shown in Figure 56-21)
to display the compatible interface.

Figure 56-20 Spring Service Component Interface

Chapter 56
Creating a Spring Service Component in Oracle JDeveloper

56-14

Figure 56-21 Oracle Mediator Interface

d. Double-click the spring service component to display the contents of the spring context
file in the spring editor.

<?xml version="1.0" encoding="windows-1252" ?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:util="http://www.springframework.org/schema/util"
 xmlns:jee="http://www.springframework.org/schema/jee"
 xmlns:lang="http://www.springframework.org/schema/lang"
 xmlns:aop="http://www.springframework.org/schema/aop"
 xmlns:tx="http://www.springframework.org/schema/tx"
 xmlns:sca="http://xmlns.oracle.com/weblogic/weblogic-sca"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans-2.5.xsd
 http://www.springframework.org/schema/util
 http://www.springframework.org/schema/util/spring-util-2.5.xsd
 http://www.springframework.org/schema/aop
 http://www.springframework.org/schema/aop/spring-aop-2.5.xsd
 http://www.springframework.org/schema/jee
 http://www.springframework.org/schema/jee/spring-jee-2.5.xsd
 http://www.springframework.org/schema/lang
 http://www.springframework.org/schema/lang/spring-lang-2.5.xsd
 http://www.springframework.org/schema/tx
 http://www.springframework.org/schema/tx/spring-tx-2.5.xsd
 http://www.springframework.org/schema/tool
 http://www.springframework.org/schema/tool/spring-tool-2.5.xsd
 http://xmlns.oracle.com/weblogic/weblogic-sca META-INF/weblogic-sca.xsd">
 <!--Spring Bean defintions go here-->
 <sca:service name="scaserv1" target="ep" type="oracle.mypackage.myinterface"/>
 <sca:reference type="mediator1.project1.application4.com.oracle.xmlns.Execute_
ptt" name="Mediator1.Mediator1"/>
</beans>

Note:

• When integrating a component that uses a Java interface with a component that
uses a WSDL file in the SOA Composite Editor, if a specific interface class is not
found in the classpath (including the JAR files in the SCA-INF/lib directory), but
the source file does exist in the SOA project, you are prompted to automatically
compile the source.

• You can also create BPEL process partner links with services that use Java
interfaces. You select this type of service in the Service Explorer dialog when
creating a partner link. For more information, see Introduction to Partner Links.

Chapter 56
Creating a Spring Service Component in Oracle JDeveloper

56-15

What You May Need to Know About Java Class Errors During Java-to-
WSDL Conversions

When a Java-to-WSDL conversion fails because of a bad Java class and you modify the Java
code to correct the problem, you must restart Oracle JDeveloper. Not doing so results in a
Java-to-WSDL conversion failure because the new class is not reloaded.

Defining Custom Spring Beans Through a Global Spring Context
You can define custom spring beans through a global spring context definition. This
configuration enables you to define these beans only once, at the global level.

How to Define Custom Spring Beans Through a Global Spring Context
To define custom spring beans through a global spring context:

1. Add the custom spring bean definitions into the following file:

SOA_HOME/soa/modules/oracle.soa.ext_11.1.1/classes/
springse-extension-global-beans.xml

2. Add the corresponding classes in either the lib directory (as a JAR file) or the classes
directory (as extracted files of the JAR file).

SOA_HOME/soa/modules/oracle.soa.ext_11.1.1/lib | classes
For more information, see the readme.txt file located in the following directory:

SOA_HOME/soa/modules/oracle.soa.ext_11.1.1

Note:

A server restart is required to pick up newly added spring beans.

Using the Predefined Spring Beans
Oracle SOA Suite provides the following predefined spring beans:

• headerHelperBean: For getting and setting header properties.

• instanceHelperBean: For getting the following information:

– The instance ID of the flow instance currently running.

– The instance ID of the component instance currently running.

– The composite distinguished name (DN) containing the component.

– The name of the spring service component.

• loggerBean: For providing context-aware logging messages.

The predefined spring beans are automatically injected into the spring service component.
However, you must explicitly integrate the predefined spring beans into a SOA composite
application by providing a reference to the bean in the spring context file.

Chapter 56
Defining Custom Spring Beans Through a Global Spring Context

56-16

For an example of how to reference loggerBean and headerHelperBean in a spring context file,
see How to Reference Predefined Spring Beans in the Spring Context File.

IHeaderHelperBean.java Interface for headerHelperBean
The following example shows the IHeaderHelperBean.java interface for the
headerHelperBean bean:

package oracle.soa.platform.component.spring.beans;
/**
 * Interface for getting and setting header properties.
 * These properties will be set on the normalized message - and passed on
 * to the respective reference that the local reference is wired to on
 * composite level.
 *

 * To use this bean from within your context, declare property
 * with ref="headerHelperBean". E.g.
 * <property name="headerHelper" ref="headerHelperBean"/>
 */
public interface IHeaderHelperBean
{
 /**
 * Get a property from the normalized message header. Note that these
 * properties are defined, and are the same ones, one can get/set via
 * mediator or bpel process
 * @param pKey the property key, case sensitive
 * @return the value, or null in case not found
 */
 public String getHeaderProperty (String pKey);
 /**
 * Set a property on the normalized message header. Note that these
 * properties are defined, and are the same ones, one can get/set via
 * mediator or bpel process
 * @param pKey the property key, case sensitive
 * @param pValue the value to be set
 */
 public void setHeaderProperty (String pKey, String pValue);
}

IInstanceHelperBean.java Interface for instancerHelperBean
The following example shows the IInstanceHelperBean.java interface for the
instanceHelperBean bean:

package oracle.soa.platform.component.spring.beans;

import oracle.integration.platform.instance.engine.ComponentInstanceContext;
/**
 * Instancehelper Bean, gives access to composite / component + instance
 information
 *

 * To use this bean from within your context, declare property
 * with ref="instanceHelperBean". E.g.
 * <property name="instanceHelper" ref="instanceHelperBean"/>
 */
public interface IInstanceHelperBean
{
 /**
 * Returns the instance id of the composite instance currently running
 * @return the composite instance id

Chapter 56
Using the Predefined Spring Beans

56-17

 */
 public String getCompositeInstanceId ();

 /**
 * Returns the instance id of the component instance currently running
 * @return the component instance id
 */
 public String getComponentInstanceId ();

 /**
 * Returns the composite dn containing this component
 * @return the composite dn
 */
 public String getCompositeDN ();

 /**
 * Returns the name of this spring component
 * @return the component name
 */
 public String getComponentName ();

}

ILoggerBean.java Interface for loggerBean
The following example shows the ILoggerBean.java interface for the loggerBean bean:

package oracle.soa.platform.component.spring.beans;

import java.util.logging.Level;

/**
 * Logger bean interface, messages will be logged as
 * [<composite instance id>/<component instance id>] <message>
 *

 * To use this bean from within your context, declare property
 * with ref="loggerBean". E.g.
 * <property name="logger" ref="loggerBean"/>
 */
public interface ILoggerBean
{

 /**
 * Log a message, with Level.INFO
 * @param message
 */
 public void log (String message);

 /**
 * Log a message with desired level
 * @param pLevel the log level
 * @param message the message to log
 */
 public void log (Level pLevel, String message);

 /**
 * Log a throwable with the desired level
 * @param level the level to log with
 * @param message the message
 * @param th the exception (throwable) to log
 */
 public void log (Level level, String message, Throwable th);

Chapter 56
Using the Predefined Spring Beans

56-18

}

How to Reference Predefined Spring Beans in the Spring Context File
You create references to the predefined beans in the spring context file.

To reference predefined spring beans in the spring context file:

1. Open the spring context file in Source view in Oracle JDeveloper.

2. Add references to the loggerBean and headerHelperBean predefined beans.

<?xml version="1.0" encoding="windows-1252" ?>
. . .
. . .
 <!--
 The below sca:service(s) corresponds to the services exposed by the
 component type file: SpringPartnerSupplierMediator.componentType
 -->
 <!-- expose the InternalPartnerSupplierMediator + EJB as service
 <service name="IInternalPartnerSupplier">
 <interface.java
 interface="com.otn.sample.fod.soa.internalsupplier.IInternalPartnerSupplier"/>
 </service>
 -->
 <sca:service name="IInternalPartnerSupplier"
 target="InternalPartnerSupplierMediator"
type="com.otn.sample.fod.soa.internalsupplier.IInternalPartnerSupplier"/>
 <!-- expose the InternalPartnerSupplierMediator + Mock as service
 <service name="IInternalPartnerSupplierSimple">
 <interface.java
 interface="com.otn.sample.fod.soa.internalsupplier.IInternalPartnerSupplier"/>
 </service>
 -->
 <sca:service name="IInternalPartnerSupplierSimple"
 target="InternalPartnerSupplierMediatorSimple"
type="com.otn.sample.fod.soa.internalsupplier.IInternalPartnerSupplier"/>
 <!-- the partner supplier mediator bean with the mock ep -->
 <bean id="InternalPartnerSupplierMediatorSimple"
class="com.otn.sample.fod.soa.internalsupplier.InternalSupplierMediator"
 scope="prototype">
 <!-- inject the external partner supplier bean -->
 <property name="externalPartnerSupplier"
 ref="IExternalPartnerSupplierServiceMock"/>
 <!-- inject the quoteWriter -->
 <property name="quoteWriter" ref="WriteQuoteRequest"/>
 <!-- context aware logger, globally available bean [ps3] -->
 <property name="logger" ref="loggerBean"/>
 <!-- headerHelper bean -->
 <property name="headerHelper" ref="headerHelperBean"/>
 </bean>
 <!-- the partner supplier mediator bean with the ejb -->
 <bean id="InternalPartnerSupplierMediator"
class="com.otn.sample.fod.soa.internalsupplier.InternalSupplierMediator"
 scope="prototype">
 <!-- inject the external partner supplier bean -->
 <property name="externalPartnerSupplier"
 ref="IExternalPartnerSupplierService"/>
 <!-- inject the quoteWriter -->
 <property name="quoteWriter" ref="WriteQuoteRequest"/>
 <!-- context aware logger, globally available bean [ps3] -->

Chapter 56
Using the Predefined Spring Beans

56-19

 <property name="logger" ref="loggerBean"/>
 <!-- headerHelper bean -->
 <property name="headerHelper" ref="headerHelperBean"/>
 </bean>
. . .
. . .

JAXB and OXM Support
Oracle Fusion Middleware provides support for using JAXB and EclipseLink OXM to map Java
classes to XML data. You can store and retrieve data in memory in any XML format without
implementing a specific set of XML routines for the program's class structure. This support
enables you to perform the following:

• Map Java objects to XML data

• Map XML data back to Java objects

For design information about external metadata for JAXB mappings, visit the following URL:

http://wiki.eclipse.org/EclipseLink/DesignDocs/277920

For information about JAXB OXM and the OXM mapping file (eclipselink-oxm.xsd), visit the
following URLs:

http://wiki.eclipse.org/EclipseLink/Examples/MOXy

http://wiki.eclipse.org/Category:XML

You can also map Java classes to XML data when integrating an EJB with SOA composite
applications. For more information, see Integrating Enterprise JavaBeans with Composite
Applications .

Extended Mapping Files
Oracle SOA Suite extends JAXB and OXM file support through use of an extended mapping
(EXM) file. If an EXM file is present in the class path of the design time project, then it can be
used for Java-to-WSDL conversions. The EXM file provides data binding metadata in the
following situations:

• When you cannot add the JAXB annotations into the Java source and must specify them
separately

• When scenarios are not covered by JAXB (for example, with top level elements like
method return types or parameter types)

The external JAXB annotations can be specified either directly in the EXM file or included in
the separate TopLink JAXB mapping OXM file that can be referred to from the EXM file.

The EXM file name must match the Java class name and reside in the same package location.
For example, if the Java class is named pack1.pack2.myJavaInterface.class, the EXM file
must be named pack1/pack2/myJavaInterface.exm.

Oracle SOA Suite design time supports placing the EXM file in either the source path (SCA-
INF/src) or the class path (SCA-INF/classes or a JAR in SCA-INF/lib).

Placing the EXM file in the source path (SCA-INF/src) enables you to edit the EXM using
Oracle JDeveloper (files in the class path do not appear in the Applications window in Oracle

Chapter 56
JAXB and OXM Support

56-20

http://wiki.eclipse.org/EclipseLink/DesignDocs/277920
http://wiki.eclipse.org/EclipseLink/Examples/MOXy
http://wiki.eclipse.org/Category:XML

JDeveloper). When project compilation is complete, the EXM file (and any XML files that it
imports) is copied to the class path (SCA-INF/classes) for deployment. If the EXM file is in the
source path, it must still be in the same corresponding directory structure.

If you place the EXM (and OXM) files in SCA-INF/src, ensure that your Oracle JDeveloper
project is configured so that SCA-INF/src is the default source directory (right-click the project
name, and select Project Properties > Java Source Paths). EXM files can also be found in
JAR files that are in the project's class path.

When you drag and drop a Java interface (Enterprise JavaBeans) to a BPEL process, Oracle
SOA Suite checks to see if the EXM file exists. If it does, it is passed to the web services
java2wsdl API.

After the WSDL file is generated, an informational message is displayed. If an EXM file was
used, the message displayed takes the following format:

The WSDL file {0} was generated based on the JAVA class {1} using extended mapping file
{2}

The following provides an example of an EXM file:

 <java-wsdl-mapping name="com.hello.sei.MyServiceEndpointInterface"
 xmlns="http://xmlns.oracle.com/weblogic/weblogic-wsee-databinding"
 xmlns:oxm="http://www.eclipse.org/eclipselink/xsds/persistence/oxm"
 databinding="toplink.jaxb">
 <xml-schema-mapping>
 <toplink-oxm-file java-package="com.hello.foo" file-path="./foo-oxm.xml"/>
 <toplink-oxm java-package="com.hello.coo">
 <xml-bindings
 xmlns="http://www.eclipse.org/eclipselink/xsds/persistence/oxm">
 <xml-schema
 element-form-default="QUALIFIED"
 attribute-form-default="UNQUALIFIED"
 namespace="urn:customer">
 <xml-ns prefix="ns1" namespace-uri="urn:customer" />
 </xml-schema>
 <java-types>
 <java-type name="Person" xml-transient="true">
 <java-attributes>
 <xml-transient java-attribute="id"/>
 </java-attributes>
 </java-type>
 <java-type name="Customer">
 <xml-see-also>org.example.employee.Employee</xml-see-also>
 </java-type>
 </java-types>
 </xml-bindings>
 </toplink-oxm>
 </xml-schema-mapping>
. . .
</java-wsdl-mapping>

The EXM schema file for external mapping metadata for the data binding framework is
available at the following URL:

http://www.oracle.com/technology/weblogic/weblogic-wsee-databinding/1.1/weblogic-
wsee-databinding.xsd

The data defines the attributes of a particular Java web service endpoint. This schema defines
three types of XML constructs:

Chapter 56
JAXB and OXM Support

56-21

http://www.oracle.com/technology/weblogic/weblogic-wsee-databinding/1.1/weblogic-wsee-databinding.xsd
http://www.oracle.com/technology/weblogic/weblogic-wsee-databinding/1.1/weblogic-wsee-databinding.xsd

• Constructs that are analogous to JAX-WS or JSR-181 that override or define attributes on
the service endpoint interface (SEI) and JAXB annotations for the value types used in the
interfaces of the SEI.

• Additional mapping specifications not available using standard JAX-WS or JAXB
annotations, primarily for use with the java.util.Collections API.

• References to external JAXB mapping metadata from a Toplink OXM file.

When a construct is the direct analog of a JAX-WS, JSR-181, or JAXB annotation, the
comment in the schema contains a notation such as:

Corresponding Java annotation: javax.jws.WebParam.Mode

Configuring Groovy and Aspectj Classes with the Spring Service
Component

If you configure a Groovy or Aspectj class in the spring configuration file, you must follow these
conventions:

• Use the classpath protocol:

script-source="classpath:"

Using a relative file path is not possible because the SCA package is not treated as a
regular JAR file for the class loader. For example, the following classpath protocol
indicates to find the Groovy file from the class path.

script-source="classpath:service/GroovyGreeter.groovy"
• Add Groovy and Aspectj files in any of the following directories when using the classpath

protocol. No other directories are possible.

– SCA-INF/classes
– SCA-INF/lib
– Shared SOA lib
If your build scripts are configured to clean the classes directory, either put the Groovy
files in the SCA-INF/lib directory or design your build scripts to prevent cleaning.

• Add spring extension JAR file libraries for Groovy or Aspectj to the class path of the
managed server's setDomainENV.sh or setDomainENV.bat file and restart the server. This
ensures that deployment is successful. The restart is required because spring uses Java
reflection to instantiate aspect-oriented programming (AOP). The use of reflection restricts
the search for classes to the system class loader. Any changes to the system class loader
require a server restart.

Troubleshooting Spring Errors
This section describes how to troubleshoot errors with the spring service component.

Spring Bean Interface to Invoke Cannot Be Found
Assume you have a SOA composite application in which a BPEL process invokes a spring
context. However, the spring bean interface to invoke cannot be found. The administration
server diagnostic log file displays the error shown in the following example:

Chapter 56
Configuring Groovy and Aspectj Classes with the Spring Service Component

56-22

[2012-04-09T10:30:07.499-07:00] [AdminServer] [NOTIFICATION] [SOA-31704]
[oracle.integration.platform.blocks.java] [tid: [ACTIVE].ExecuteThread: '2' for
queue: 'weblogic.kernel.Default (self-tuning)'] [userId: <anonymous>] [ecid:
11d1def534ea1be0:2058db3f:1369787a1b8:-8000-0000000000002be6,0:2] [WEBSERVICE_
PORT.name: SOACohSpringBPELProcess_pt] [APP: soa-infra] [composite_name:
SOACohSpringProj] [component_name: SOACohSpringBPELProcess] [component_instance_
id: 270006] [J2EE_MODULE.name: fabric] [WEBSERVICE.name: soacohspringbpelprocess_
client_ep] [J2EE_APP.name: soa-infra] No mapping found for class
SOACohSpringProj.CohEJBInterface.

Ensure that you deploy the JAR file containing the class into the SCA-INF/lib directory or the
classes into the SCA-INF/classes directory of the SAR file.

Unable to Add a Spring Service Component in the SOA Composite Editor
The Oracle SOA Suite Quick Start installation automatically includes the spring extension files
for invoking the spring editor. This enables you to successfully add a spring service component
in the SOA Composite Editor and invoke the Create Spring dialog, as described in How to
Create a Spring Service Component in Oracle JDeveloper.

If you use the standard Oracle JDeveloper installation outside of Oracle SOA Suite, you must
install the spring editor by selecting Check for Updates from the Help main menu in Oracle
JDeveloper, then selecting the spring extension files in the Update Center. Otherwise, you
cannot successfully add a spring service component into the SOA Composite Editor and
invoke the Create Spring dialog. Instead, you receive the error shown in Figure 56-22.

Figure 56-22 Spring Unavailability Error

Chapter 56
Troubleshooting Spring Errors

56-23

Part X
Appendices

This part describes Oracle SOA Suite appendixes.

This part contains the following appendixes:

• BPEL Process Activities and Services

• XPath Extension Functions

• Deployment Descriptor Properties

• Understanding Sensor Public Views and the Sensor Actions XSD

• Propagating Normalized Message Properties Through Message Headers

• Interfaces Implemented By Rules Dictionary Editor Task Flow

• Oracle SOA Suite Configuration Properties Road Map

A
BPEL Process Activities and Services

This appendix describes the BPEL process activities and services that you use when designing
a BPEL process in a SOA composite application.
This appendix includes the following sections:

• Introduction to Activities and Components

• Introduction to BPEL 1.1 and 2.0 Activities

• Introduction to BPEL Services

Introduction to Activities and Components
When you expand SOA Components in the Components window of Oracle BPEL Designer,
service components are displayed. Figure A-1 shows the service components that display for a
BPEL 2.0 or 1.1 process.

Figure A-1 SOA Components

See the following sections for additional details about service components.

• BPEL process

See Using the BPEL Process Service Component

• Oracle Mediator

See Using the Oracle Mediator Service Component

• Business rule

See Using the Business Rules Service Component

• Human task

Using the Human Workflow Service Component

• Spring

Integrating the Spring Framework in SOA Composite Applications

A-1

For information about Oracle BPEL Designer, see Getting Started with Oracle BPEL Process
Manager .

Introduction to BPEL 1.1 and 2.0 Activities
This section provides a brief overview of BPEL activities and provides references to other
documentation that describes how to use these activities.

Oracle BPEL Designer includes BPEL 1.1 and BPEL 2.0 activities that can be added to a
BPEL process. These activities enable you to perform specific tasks within a process. Some
activities are available in both BPEL 1.1 and BPEL 2.0. Others are available in only BPEL 1.1
or BPEL 2.0.

To access these activities, go to the Components window of Oracle BPEL Designer. The
activities display in the following categories:

• BPEL Constructs: Displays core activities (also known as constructs) provided by
standard BPEL 1.1 and 2.0 functionality. The activities in this category are displayed under
additional subcategories of Web Service, Activities, and Structured Activities in BPEL
1.1 and Web Service, Basic Activities, and Structured Activities in BPEL 2.0.

• Subprocesses: Displays any created subprocesses. If no subprocesses have been
created, this category is empty. For more information about subprocesses, see Introduction
to Standalone and Inline BPEL Subprocess Invocations.

• Oracle Extensions: Displays extension activities that add value and ease of use to BPEL
1.1 and 2.0 functionality.

• SOA Components: Displays the business rules, human tasks, and Oracle Mediator
service components that can be added to a BPEL process.

• BPEL Services: Displays the partner links that can be added to a BPEL process, including
JCA adapters (AQ, file, FTP, database, JMS, MQ, Oracle User Messaging Service, socket,
JDE World, SAP, LDAP server, Coherence cache, and third-party), Oracle BAM 11g
binding component, Oracle Healthcare binding component, Oracle B2B binding
component, EJB binding component, ADF-BC binding component, Oracle E-Business
Suite adapter, direct binding component, HTTP binding component, and Oracle Managed
File Transfer (MFT) adapter.

• Custom Activity Templates: Displays any created custom scope activity templates. For
more information about templates, see Introduction to Templates.

Table A-1 lists the available activities.

Table A-1 BPEL 1.1 and 2.0 Constructions and Extensions

Activity Display Under... Supported in BPEL
1.1

Supported in BPEL 2.0 For More Information

Assign BPEL Constructs Yes Yes Assign Activity

Assert Oracle Extensions Yes Yes Assert Activity

Bind Entity Oracle Extensions Yes No Bind Entity Activity

Call Oracle Extensions No Yes Call Activity

Compensate BPEL Constructs Yes Yes Compensate Activity

CompensateScope BPEL Constructs No Yes CompensateScope Activity

Create Entity Oracle Extensions Yes No Create Entity Activity

Dehydrate Oracle Extensions Yes Yes Dehydrate Activity

Appendix A
Introduction to BPEL 1.1 and 2.0 Activities

A-2

Table A-1 (Cont.) BPEL 1.1 and 2.0 Constructions and Extensions

Activity Display Under... Supported in BPEL
1.1

Supported in BPEL 2.0 For More Information

Dynamic Partner
Link

BPEL Constructs Yes No Dynamic Partner Link
Activity

Email Oracle Extensions Yes Yes Email Activity

Empty BPEL Constructs Yes Yes Empty Activity

Exit BPEL Constructs No Yes

Note: Replaces the
terminate activity in BPEL
2.0.

Exit Activity

Flow BPEL Constructs Yes Yes Flow Activity

FlowN Oracle Extensions Yes No

Note: Replaced by the
forEach activity in BPEL
2.0

FlowN Activity

forEach BPEL Constructs No Yes

Note: Replaces the FlowN
activity in BPEL 2.0.

forEach Activity

If BPEL Constructs No Yes

Note: Replaces the switch
activity in BPEL 2.0.

If Activity

IM Oracle Extensions Yes Yes IM Activity

Invoke BPEL Constructs Yes Yes Invoke Activity

Java Embedding Oracle Extensions Yes Yes Java Embedding Activity

Partner Link BPEL Constructs Yes Yes Partner Link Activity

Phase Oracle Extensions Yes Yes Phase Activity

Pick BPEL Constructs Yes Yes Pick Activity

Receive BPEL Constructs Yes Yes Receive Activity

Receive Signal Oracle Extensions Yes Yes Receive Signal Activity

Remove Entity Oracle Extensions Yes No Remove Entity Activity

RepeatUntil BPEL Constructs No Yes RepeatUntil Activity

Replay Oracle Extensions Yes Yes Replay Activity

Reply BPEL Constructs Yes Yes Reply Activity

Rethrow BPEL Constructs No Yes Rethrow Activity

Schedule Job Oracle Extensions Yes Yes Schedule Job

Scope BPEL Constructs Yes Yes Scope Activity

Sequence BPEL Constructs Yes Yes Sequence Activity

Signal Oracle Extensions Yes Yes Signal Activity

SMS Oracle Extensions Yes Yes SMS Activity

Switch BPEL Constructs Yes No

Note: Replaced by the if
activity in BPEL 2.0.

Switch Activity

Appendix A
Introduction to BPEL 1.1 and 2.0 Activities

A-3

Table A-1 (Cont.) BPEL 1.1 and 2.0 Constructions and Extensions

Activity Display Under... Supported in BPEL
1.1

Supported in BPEL 2.0 For More Information

Terminate BPEL Constructs Yes No

Note: Replaced by the exit
activity in BPEL 2.0

Terminate Activity

Throw BPEL Constructs Yes Yes Throw Activity

Translate Oracle Extensions Yes Yes Translate Activity

User Notification Oracle Extensions Yes Yes User Notification Activity

Validate Oracle Extensions
(in BPEL 1.1)

BPEL Constructs (in
BPEL 2.0)

Yes Yes Validate Activity

Wait BPEL Constructs Yes Yes Wait Activity

While BPEL Constructs Yes Yes While Activity

XQuery Transform Oracle Extensions Yes Yes XQuery Transform Activity

XSLT Transform Oracle Extensions Yes Yes XSLT Transform Activity

For more information about activities, see the Business Process Execution Language for Web
Services Specification or the Web Services Business Process Execution Language
Specification Version 2.0 by visiting the following URL:

http://www.oasis-open.org

Tabs Common to Many Activities
While each activity performs specific tasks, many activities include tabs that enable you to
perform similar tasks. This section describes these common tabs.

Annotations Tab
The Annotations tab displays on all activities and enables you to provide descriptions in
activities in the form of code comments and name-and-pair value assignments.

The Annotations tab does not provide a method for changing the order of annotations. As a
work around, change the order of annotations in the Source view of the project's BPEL file in
Oracle BPEL Designer.

Assertions Tab
The Assertions tab displays in invoke, receive, reply, and the onMessage branches of pick
and scope activities. A set of assertions are executed upon receipt of a callback message at a
request-response operation in these activities. The assertions specify an XPath expression
that, when evaluated to false, causes a BPEL fault to be thrown from the activity. This provides
an alternative to using a potentially large number of switch, assign, and throw activities after a
partner callback.

You can select when to execute a condition:

• Preassert: This condition is executed before the invoke or reply activity send out the
outbound message.

Appendix A
Introduction to BPEL 1.1 and 2.0 Activities

A-4

http://www.oasis-open.org

• Postassert: This condition is executed after an invoke activity, receive activity, or
onMessage branch receives the inbound message.

For more information, see the online help for this tab and Throwing Faults with Assertion
Conditions.

Correlations Tab
The Correlations tab displays in invoke, receive, and reply activities, the onMessage branch
of pick activities, and the OnMessage branch of scope activities. Correlation sets address
complex interactions between a process and its partners by providing a method for explicitly
specifying correlated groups of operations within a service instance. A set of correlation tokens
is defined as a set of properties shared by all messages in the correlated group.

For more information, see the online help for this tab and Introduction to Correlation Sets in an
Asynchronous Service.

Documentation Tab
The Documentation tab enables you to embed human documentation in the activities of a
BPEL file. These comments only display in the source code of the BPEL file. The following
example provides details.

<invoke>
. . .
 <documentation>
 Invokes the credit rating service partner link
 </documentation>
. . .

Note:

This tab is only available in BPEL 2.0 projects.

Headers Tab
The Headers tab displays in invoke, receive, and reply activities, and the onMessage branch
of pick and scope (for BPEL 1.1) activities. You create header variables for use with adapters,
such as Advanced Queuing (AQ), file, FTP, MQ, and Java Message Service (JMS).

For more information, see the online help for this tab and Understanding Technology Adapters

Properties Tab
The Properties tab displays in invoke, receive, and reply activities, and the onMessage branch
of pick and scope activities. You can define normalized message header properties for
components such as Oracle BPEL Process Manager, Oracle Mediator, Oracle JCA adapters,
REST adapters, and Oracle B2B.

For more information, see the online help for this tab and Propagating Normalized Message
Properties Through Message Headers.

Appendix A
Introduction to BPEL 1.1 and 2.0 Activities

A-5

Skip Condition Tab
The Skip Condition tab displays in most activities and enables you to specify an XPath
expression that, when evaluated to true, causes the activity to be skipped. This extension
provides an alternative to the case pattern of a switch activity that you use to make an activity
conditional.

For more information, see the online help for this tab and Specifying XPath Expressions to
Bypass Activity Execution.

Sources and Targets Tabs
The Sources and Targets tabs enable you to define the source and target activities to execute
in a flow activity. This feature enables you to synchronize the execution of activities within a
flow activity to ensure that a target activity only executes after a source activity has completed.

For more information, see the online help for this tab and Synchronizing the Execution of
Activities in a Flow Activity.

Timeout Tab
The Timeout tab displays in receive activities and provides a timeout setting for request-
response operations. This provides an alternative to the onMessage and onAlarm branches of
a pick activity that you must use when you want to specify a time out duration for partner
callbacks.

For more information, see the online help for this tab and Setting Timeouts for Request-Reply
and In-Only Operations in Receive Activities.

Using the Native Format Builder Wizard Outside of Adapter Configuration
The Native Format Builder wizard enables you to create a native XSD schema file. You can
now invoke the Native Format Builder wizard outside of adapter creation to create new
schemas and edit existing schemas.

To create a native format schema from the Applications Window:
1. From the Oracle JDeveloper main menu, select File > New.

2. From the Categories list, select SOA Tier > Interfaces.

3. Click NXSD Schema to invoke the Native Format Builder wizard.

4. On the Welcome page, click Next.

5. On the File Name and Directory page, specify the file name of the schema (for example,
addresses_schema.xsd) and directory path.

6. Follow the remaining pages of the wizard to create the native format schema.

For more information about the Native Format Builder wizard, see Chapter "Native Format
Builder Wizard" of Understanding Technology Adapters.

Appendix A
Introduction to BPEL 1.1 and 2.0 Activities

A-6

To edit an existing native format schema from the Applications Window:
You can access the Native Format Builder wizard for schema editing from the Applications
window. The context menu option Edit NXSD is available for selection if the schema file is
detected to be a native format schema file.

1. In the Applications window, right-click a native format schema file (for example,
addresses.xsd).

2. Select Edit NXSD.

For more information about the Native Format Builder wizard, see Chapter "Native Format
Builder Wizard" of Understanding Technology Adapters.

Assign Activity
This activity provides a method for data manipulation, such as copying the contents of one
variable to another. Copy operations enable you to transfer information between variables,
expressions, endpoints, and other elements.

Figure A-2 shows the Copy Rules tab of the Assign dialog for BPEL 1.1. You create a
mapping between source and target nodes in the tree in either of the following ways:

• Drag the source node to the target node to create a BPEL copy rule from the source to the
target node. This action creates a line that connects the source and target types.

• Select the source node, select the target node, and then click the Add icon above the table
at the bottom of the dialog. The mapping is then added to the table and the connecting line
between the nodes is drawn in the tree.

The copy rule is displayed in the From and To sections at the bottom of the dialog.

Figure A-2 Copy Rules Tab of Edit Assign Dialog

The Select Insertion Mode list above the source node section enables you to insert the next
copy rule you create either after or before the rule selected at the bottom of the dialog.

Appendix A
Introduction to BPEL 1.1 and 2.0 Activities

A-7

Icons display above the target node that enable you to perform the following tasks (from left to
right) on target nodes. By default, the center canvas is open. If it is closed, drag the bars open
to display the center canvas.

• Expression icon: Drag this icon to a target node to invoke the Expression Builder dialog
for assigning an XPath expression to that node. You can also drag this icon to the center
canvas to invoke this dialog, specify the expression, save and close the dialog, and then
drag the icon to the target node.

• Literal (BPEL 2.0 specification) icon or XML Fragment (BPEL 1.1 specification) icon: Drag
this icon to a target node to invoke a dialog for assigning a literal (if the BPEL project
supports the BPEL 2.0 specification) or XML fragment (if the BPEL project supports the
BPEL 1.1 specification) to that target node. You can also drag this icon to the center
canvas to invoke this dialog, specify the value, save and close the dialog, and then drag
the icon to the target node.

• Remove icon: Drag this icon to a target node to create a bpelx:remove extension rule. You
can also drag this icon to the center canvas to invoke this dialog, specify the rule, save and
close the dialog, and then drag the icon to the target node.

• Rename icon: Drag this icon to rename a target node. This adds a bpelx:rename
extension rule with an elementTo attribute. You can also drag this icon to the center canvas
to invoke a dialog, specify the rule, save and close the dialog, and then drag the icon to the
target node.

• Recast icon: Drag this icon to recast a target node. This adds a bpelx:rename extension
rule with a typeCastTo attribute. This results in an xsi:type attribute in the XML output.
You can also drag this icon to the center canvas to invoke a dialog, specify the rule, save
and close the dialog, and then drag the icon to the target node.

You can also change a selected copy rule to a bpelx extension type (bpelx:copyList,
bpelx:insertAfter, bpelx:insertBefore, or bpelx:append).

The method of selection differs between BPEL 1.1 and BPEL 2.0.

Figure A-3 shows how you select an extension type in BPEL 1.1. You select a copy rule, select
the Copy dropdown list, and then select the appropriate extension.

Appendix A
Introduction to BPEL 1.1 and 2.0 Activities

A-8

Figure A-3 Copy Rule Converted to bpelx Extension in BPEL 1.1

Figure A-4 shows how you select an extension type in BPEL 2.0. You right-click a copy rule,
select Change rule type, and then select the appropriate extension.

Figure A-4 Copy Rule Converted to bpelx Extension in BPEL 2.0

For more information about manipulating XML data with bpelx extensions, see Manipulating
XML Data with bpelx Extensions.

Appendix A
Introduction to BPEL 1.1 and 2.0 Activities

A-9

In the From and To XPath fields, you can also place your cursor over the icon to the left of the
source type to display the operation being performed (for example, copy, append, and so on).
Each operation type is represented by a different icon. You can also right-click a copy rule to
display a list of actions to perform:

• Edit 'From' expression or Edit 'To' expression: Select this option to edit XPath
expression values when the created copy rule contains a query for the source or target
node. This selection invokes the Expression Builder dialog. The menu option that displays
is based on the current content of your copy rule selection.

• ignoreMissingFromData: Select this option to toggle the ignoreMissingFromData
attribute on the copy rule on and off. When toggled on, this suppresses any
bpel:selectionFailure standard faults. For more information, see
ignoreMissingFromData Attribute.

• insertMissingToData: Select this option to toggle the insertMissingToData attribute on
the copy rule on and off. For more information, see Section insertMissingToData Attribute.

• keepSrcElementName (in BPEL 2.0 projects only): Select this option to toggle the
keepSrcElementName attribute on the copy rule on and off. This option enables you to
replace the element name of the destination (as selected by the to-spec) with the element
name of the source.

• Change Rule Type (in BPEL 2.0 projects only): Select this option to change the type of the
selected rule to one of the BPEL extension rules: bpelx:copyList, bpelx:insertAfter,
bpelx:insertBefore, or bpelx:append.

• Delete rule: Select this option to delete the selected rule.

For more information about the ignoreMissingFromData, insertMissingToData, and
keepSrcElementName attributes, see How to Use Assign Extension Attributes.

The icons above the To section enable you to add, delete, move up, and move down a
selected copy rule.

For more information about the assign activity, see the online Help for the Copy Rules dialog
and Manipulating XML Data in a BPEL Process.

Note:

If an assign activity contains multiple bpelx:append settings, it must be split into two
assign activities. Otherwise, bpelx:append is moved to the end of the list each time,
which can cause problems. As a work around, move it manually.

Assert Activity
This activity enables you to perform an assertion on a specified expression.

This is a standalone activity in which to specify assertions. This activity can be placed
anywhere in the BPEL process flow. You can also specify assertions in message exchange
activities from the Assertions tab in invoke activities, reply activities, receive activities, and the
onMessage branch of pick and scope activities.

Figure A-5 shows the Assert dialog.

Appendix A
Introduction to BPEL 1.1 and 2.0 Activities

A-10

Figure A-5 Assert Dialog

For more information about the standalone assert activity, see Assertion Conditions in a
Standalone Assert Activity and What Happens When You Create Assertion Conditions.

Bind Entity Activity
This activity enables you to select the entity variable to act as the data handle to access and
plug in different data provider service technologies.

The entity variable can be used with an Oracle Application Development Framework (ADF)
Business Component data provider service using service data object (SDO)-based data. The
entity variable enables you to specify BPEL data operations to be performed by an underlying
data provider service. The data provider service performs the data operations in a data store
behind the scenes and without use of other data store-related features provided by Oracle
BPEL Process Manager (for example, the database adapter). This action enhances Oracle
BPEL Process Manager runtime performance and incorporates native features of the
underlying data provider service during compilation and runtime.

Figure A-6 shows the Bind Entity dialog.

Appendix A
Introduction to BPEL 1.1 and 2.0 Activities

A-11

Figure A-6 Bind Entity Dialog

Call Activity
This activity enables you to execute referenced subprocess code in standalone and inline
subprocesses in BPEL 2.0. A subprocess is a fragment of BPEL code that can be reused
within a particular processor by separate processes.

Figure A-7 shows the Edit Call dialog.

Figure A-7 Edit Call Dialog

For more information about the call activity, see Introduction to Standalone and Inline BPEL
Subprocess Invocations and Creating Standalone and Inline BPEL Subprocesses in a BPEL
Process.

Appendix A
Introduction to BPEL 1.1 and 2.0 Activities

A-12

Compensate Activity
This activity invokes compensation on an inner scope activity that has successfully completed.
This activity can be invoked only from within a fault handler or another compensation handler.
Compensation occurs when a process cannot complete several operations after completing
others. The process must return and undo the previously completed operations. For example,
assume a process is designed to book a rental car, a hotel, and a flight. The process books the
car and the hotel, but cannot book a flight for the correct day. In this case, the process
performs compensation by unbooking the car and the hotel.The compensation handler is
invoked with the compensate activity, which names the scope on which the compensation
handler is to be invoked.

Figure A-8 shows the Compensate dialog in BPEL 1.1. You can perform the following tasks:

• Click the General tab to provide the activity with a meaningful name.

• Select the scope activity on which to invoke the compensation handler.

Figure A-8 Compensate Dialog

In BPEL 2.0, the Compensate dialog includes a Documentation tab.

For more information about the compensate activity, see Using Compensation After Undoing a
Series of Operations.

CompensateScope Activity
This activity enables you to start compensation on a specified inner scope that has already
completed successfully. Only use this activity from within a fault handler, another compensation
handler, or a termination handler.

Appendix A
Introduction to BPEL 1.1 and 2.0 Activities

A-13

Note:

This activity is only supported in BPEL 2.0 projects.

Figure A-9 shows the CompensateScope dialog.

Figure A-9 CompensateScope Dialog

For more information about the compensateScope activity, see Using Compensation After
Undoing a Series of Operations.

Create Entity Activity
This activity enables you to create an entity variable. The entity variable can be used with an
Oracle ADF Business Component data provider service using SDO-based data.

Figure A-10 shows the Create Entity dialog.

Appendix A
Introduction to BPEL 1.1 and 2.0 Activities

A-14

Figure A-10 Create Entity Dialog

For more information, see Delegating XML Data Operations to Data Provider Services.

Dehydrate Activity
By default, dehydration points are set on activities such as a receive, onMessage, onAlarm,
and wait. The dehydrate activity enables you to explicitly specify a dehydration point. This
activity acts as a dehydration point to automatically maintain long-running asynchronous
processes and their current state information in a database while they wait for asynchronous
callbacks. Storing the process in a database preserves the process and prevents any loss of
state or reliability if a system shuts down or a network problem occurs. This feature increases
both BPEL process reliability and scalability.

The bpelx:dehydrate extension implements dehydration. For BPEL projects that support
BPEL version 1.1, the syntax is as follows:

<bpelx:dehydrate name="DehydrateInstance"/>

For BPEL projects that support BPEL version 2.0, the syntax is as shown in the following
example:

<extensionActivity>
 <bpelx:dehydrate name="DehydrateInstance"/>
 </extensionActivity>

Figure A-11 shows the Dehydrate dialog in BPEL 2.0.

Appendix A
Introduction to BPEL 1.1 and 2.0 Activities

A-15

Figure A-11 Dehydrate Dialog

Dynamic Partner Link Activity
This activity enables you to dynamically assign an endpoint reference to a partner link for use
at runtime in BPEL version 1.1.

Figure A-12 shows the Dynamic Partner Link dialog in BPEL 1.1.

Figure A-12 Dynamic Partner Link Dialog

Appendix A
Introduction to BPEL 1.1 and 2.0 Activities

A-16

For more information, see Creating a Dynamic Partner Link at Design Time for Use at Runtime.

Email Activity
This activity enables you to send an email notification about an event.

For example, an online shopping business process of an online bookstore sends a courtesy
email message to you after the items are shipped. The business process calls the notification
service with your user ID and notification message. The notification service gets the email
address from Oracle Internet Directory.

Figure A-13 shows the Email dialog in BPEL 2.0.

Figure A-13 Email Dialog

For more information about the email activity, see How To Configure the Email Notification
Channel.

Empty Activity
This activity enables you to insert a no-operation instruction into a process. This activity is
useful when you must use an activity that does nothing (for example, when a fault must be
caught and suppressed).

Figure A-14 shows the Empty dialog in BPEL 2.0.

Appendix A
Introduction to BPEL 1.1 and 2.0 Activities

A-17

Figure A-14 Empty Dialog

For more information about the empty activity, see How to Insert No-Op Instructions into a
Business Process with an Empty Activity.

Exit Activity
This activity enables you to immediately end all currently running activities on all parallel
branches without involving any termination handling, fault handling, or compensation handling
mechanisms.

Note:

This activity replaces the terminate activity in BPEL 2.0 projects.

Figure A-15 shows the Exit dialog.

Appendix A
Introduction to BPEL 1.1 and 2.0 Activities

A-18

Figure A-15 Exit Dialog

For more information about the exit activity, see Immediately Ending a Business Process
Instance with the Exit Activity in BPEL 2.0.

Flow Activity
This activity enables you to specify one or more activities to be performed concurrently. A flow
activity completes when all activities in the flow have finished processing. Completion of a flow
activity includes the possibility that it can be skipped if its enabling condition is false.

For example, assume you use a flow activity to enable two loan offer providers (United Loan
service and Star Loan service) to start in parallel. In this case, the flow activity contains two
parallel activities – the sequence to invoke the United Loan service and the sequence to invoke
the Star Loan service. Each service can take an arbitrary amount of time to complete their loan
processes.

Figure A-16 shows an initial flow activity with its two panels for parallel processing. You drag
activities into both panels to create parallel processing. When complete, a flow activity looks as
shown in Figure A-17.

Figure A-16 Flow Dialog (At Time of Creation)

Appendix A
Introduction to BPEL 1.1 and 2.0 Activities

A-19

Figure A-17 Flow Dialog (After Design Completion)

You can also synchronize the execution of activities within a flow activity. This ensures that
certain actives only execute after other activities have completed.

Note:

Oracle's BPEL implementation executes flows in the same, single execution thread of
the BPEL process, and not in separate threads.

For more information about the flow activity, see Creating a Parallel Flow.

FlowN Activity
This activity enables you to create multiple flows equal to the value of N, which is defined at
runtime based on the data available and logic within the process. An index variable increments
each time a new branch is created, until the index variable reaches the value of N.

Note:

This activity is replaced by the forEach activity in BPEL 2.0 projects.

Figure A-18 shows the FlowN dialog.

Appendix A
Introduction to BPEL 1.1 and 2.0 Activities

A-20

Figure A-18 FlowN Dialog

For more information about the flowN activity, see Customizing the Number of Flow Activities
with the flowN Activity in BPEL 1.1.

forEach Activity
This activity enables you to process multiple sets of activities sequentially or in parallel. The
forEach activity executes its contained (child) scope activity exactly N+1 times, where N equals
the final counter value minus the starting counter value that you specify in the Counter Values
tab of the For Each dialog. While other structured activities such as a flow activity can have
any type of activity as its contained activity, the forEach activity can only use a scope activity.

Note:

This activity replaces the flowN activity in BPEL 2.0 projects.

Figure A-19 shows a forEach activity with its contained scope.

Appendix A
Introduction to BPEL 1.1 and 2.0 Activities

A-21

Figure A-19 forEach Activity

For more information about the forEach activity, see Processing Multiple Sets of Activities with
the forEach Activity in BPEL 2.0.

If Activity
This activity enables you to define conditional behavior for specific activities to decide between
two or more branches. Only one activity is selected for execution from a set of branches.

Note:

This activity replaces the switch activity in BPEL 2.0 projects.

Figure A-20 shows an if activity with the following defined if, elseif, and else branches.

Appendix A
Introduction to BPEL 1.1 and 2.0 Activities

A-22

Figure A-20 If Activity

For more information about the if activity, see Defining Conditional Branching with the If Activity
in BPEL 2.0.

IM Activity
This activity enables you to send an automatic, asynchronous instant message (IM) notification
to a user, group, or destination address. Figure A-21 shows the IM dialog.

Figure A-21 IM Dialog

For more information, see How to Configure the IM Notification Channel.

Invoke Activity
This activity enables you to specify an operation you want to invoke for the service (identified
by its partner link). The operation can be one-way or request-response on a port provided by
the service. You can also automatically create variables in an invoke activity. An invoke activity
invokes a synchronous web service or initiates an asynchronous web service.

Appendix A
Introduction to BPEL 1.1 and 2.0 Activities

A-23

The invoke activity opens a port in the process to send and receive data. It uses this port to
submit required data and receive a response. For synchronous callbacks, only one port is
needed for both the send and receive functions.

Figure A-22 shows the Invoke dialog in BPEL 2.0. You can perform the following tasks:

• Provide the activity with a meaningful name.

• Select the partner link for which to specify an operation.

• Select the operation to perform.

• Automatically create a variable or select an existing variable in which to transport the data
(payload).

Figure A-22 Invoke Dialog

For more information about the invoke activity, see the following:

• Introduction to Interaction Patterns in a BPEL Process

• Mapping WSDL Message Parts in BPEL 2.0

• Invoke Activity for Performing a Request

• Adding an Invoke Activity

• How to Return a Fault in an Asynchronous Interaction

• Throwing Faults with Assertion Conditions

Appendix A
Introduction to BPEL 1.1 and 2.0 Activities

A-24

Java Embedding Activity
This activity enables you to add custom Java code to a BPEL process using the Java BPEL
extension bpelx:exec. This is useful when you have Java code that can perform a function,
and want to use this existing code instead of starting over. In BPEL 2.0 projects, the
bpelx:exec extension and Java code are wrapped in an <extensionActivity> element.

Figure A-23 shows the Edit Java Embedding dialog in BPEL 2.0.

Figure A-23 Edit Java Embedding Dialog

For more information about the Java embedding activity, see Incorporating Java and Java EE
Code in a BPEL Process.

Partner Link Activity
This activity enables you to define the external services with which your process interacts. A
partner link type characterizes the conversational relationship between two services by
defining the roles played by each service in the conversation and specifying the port type
provided by each service to receive messages within the conversation. For example, if you
create a process to interact with a Credit Rating Service and two loan provider services (United
Loan and Star Loan), you create partner links for all three services.

Figure A-24 shows the Partner Link dialog in BPEL 2.0. You provide the following details:

Appendix A
Introduction to BPEL 1.1 and 2.0 Activities

A-25

• A meaningful name for the service.

• The web services description language (WSDL) file of the external service.

• The actual service type (defined as Partner Link Type).

• The role of the service (defined as Partner Role).

• The role of the process requesting the service (defined as My Role).

Figure A-24 Partner Link Activity

For more information about partner links, see Invoking an Asynchronous Web Service from a
BPEL Process.

Phase Activity
This activity creates Oracle Mediator and business rules service components for integration
with a BPEL process. You create message request input and message response output
variables and design business rules for evaluating variable content for the BPEL process.

When you complete these tasks, the following activities and service components are created:

• An assign activity that includes the message request input and message response output
variables.

• An invoke activity that is automatically designed to invoke an Oracle Mediator partner link
in the BPEL process.

• An Oracle Mediator partner link that is automatically designed to route the message
request input variable to the business rules service component in the SOA composite
application of which this BPEL process is a part. The business rules service component
displays in the SOA Composite Editor. Oracle Mediator also displays as a service
component in the SOA Composite Editor.

• A business rules service component that evaluates the content of the message request
input variable and returns the results in the message response output variable to Oracle

Appendix A
Introduction to BPEL 1.1 and 2.0 Activities

A-26

Mediator. Oracle Mediator then makes a routing decision and routes the message to the
correct target destinations.

Figure A-25 shows the Phase dialog in BPEL 2.0.

Figure A-25 Phase Dialog

For more information, see Creating Dynamic Business Processes .

Pick Activity
This activity waits for the occurrence of one event in a set of events and performs the activity
associated with that event. The occurrence of events is often mutually exclusive (the process
either receives an acceptance or rejection message, but not both). If multiple events occur, the
selection of the activity to perform depends on which event occurred first. If the events occur
nearly simultaneously, there is a race and the choice of activity to be performed is dependent
on both timing and implementation.

The pick activity provides an OnMessage branch. When you double-click the OnMessage icon
in BPEL 2.0, the dialog shown in Figure A-26 appears.

Appendix A
Introduction to BPEL 1.1 and 2.0 Activities

A-27

Figure A-26 OnMessage Dialog

The two branches of the pick activity are as follows:

• OnMessage (Automatically displays below the Pick activity icon.)

Contains the code for receiving a reply, for example, from a loan service.

• OnAlarm (Does not automatically display; you must manually add this branch by selecting
the Pick activity icon and clicking the Add OnAlarm icon.)

Contains the code for a timeout, for example, after one minute.

Whichever branch completes first is executed; the other branch is not executed. The branch
that has its condition satisfied first is executed.

Figure A-27 shows the OnAlarm dialog of the pick activity in BPEL 2.0.

Appendix A
Introduction to BPEL 1.1 and 2.0 Activities

A-28

Figure A-27 OnAlarm Branch Dialog of a Pick Activity

Note:

You can also create OnMessage branches in BPEL 1.1 scope activities and OnAlarm
branches in BPEL 1.1 and 2.0 scope activities. Expand the Scope activity in Oracle
JDeveloper, and browse the icons on the left side to find the branch you want to add.

If you add correlations to an OnMessage branch, the correlations syntax is placed after the
assign activity syntax. The correlation syntax must go before the assign activity.

To put the correlation syntax before the assign activity:
1. Create a correlation set in Oracle JDeveloper.

2. Assign this to the OnMessage branch.

3. Complete the remaining design tasks.

4. Before making or deploying the BPEL process, move the correlation syntax before the
assign activity in the BPEL source code.

For more information about the pick activity, see the following:

• Introduction to Interaction Patterns in a BPEL Process

• Mapping WSDL Message Parts in BPEL 2.0

• Throwing Faults with Assertion Conditions

• Selecting Between Continuing or Waiting on a Process with a Pick Activity

• Setting Timeouts for Durable Synchronous Processes

Appendix A
Introduction to BPEL 1.1 and 2.0 Activities

A-29

Receive Activity
This activity specifies the partner link from which to receive information and the port type and
operation for the partner link to invoke. This activity waits for an asynchronous callback
response message from a service, such as a loan application approval service. While the
BPEL process is waiting, it is dehydrated (compressed and stored) until the callback message
arrives. The contents of this response are stored in a response variable in the process.

Figure A-28 shows the Receive dialog in BPEL 2.0. You can perform the following tasks:

• Provide a meaningful name.

• Select the partner link service for which to specify an operation.

• Select the operation to be performed.

• Automatically create a variable or select an existing variable in which to transport the
callback response.

Figure A-28 Receive Dialog

For more information about the receive activity, see the following:

• Introduction to Interaction Patterns in a BPEL Process

• Mapping WSDL Message Parts in BPEL 2.0

• Adding a Receive Activity

• Throwing Faults with Assertion Conditions

Appendix A
Introduction to BPEL 1.1 and 2.0 Activities

A-30

• Setting Timeouts for Request-Reply and In-Only Operations in Receive Activities

Receive Signal Activity
Use this activity in detail processes to wait for the notification signal from the master process to
begin processing and in a master process to wait for the notification signal from all detail
processes indicating that processing has completed.

Figure A-29 shows the Edit Receive Signal dialog.

Figure A-29 Receive Signal Dialog

For more information, see Coordinating Master and Detail Processes .

Remove Entity Activity
This activity enables you to remove an entity variable. This action removes the row.

Figure A-30 shows the Remove Entity dialog.

Appendix A
Introduction to BPEL 1.1 and 2.0 Activities

A-31

Figure A-30 Remove Entity Dialog

RepeatUntil Activity
Use this activity if the body of an activity must be performed at least once. The XPath
expression condition in the repeatUntil activity is evaluated after the body of the activity
completes. The condition is evaluated repeatedly (and the body of the activity processed) until
the provided boolean condition is true. Figure A-31 shows the Repeat Until dialog.

Note:

This activity is only supported in BPEL 2.0 projects.

Appendix A
Introduction to BPEL 1.1 and 2.0 Activities

A-32

Figure A-31 Repeat Until Dialog

For more information about the repeatUntil activity, see, Defining Conditional Branching with
the repeatUntil Activity.

Replay Activity
This activity enables you to re-execute the activities inside a selected scope.

Figure A-32 shows the Replay dialog in BPEL 2.0.

Figure A-32 Replay Dialog

Appendix A
Introduction to BPEL 1.1 and 2.0 Activities

A-33

For more information about the replay activity, see Re-executing Activities in a Scope Activity
with the Replay Activity.

Reply Activity
This activity allows the process to send a message in reply to a message that was received
through a receive activity. The combination of a receive activity and a reply activity forms a
request-response operation on the WSDL port type for the process.

Figure A-33 shows the Reply dialog in BPEL 2.0.

Figure A-33 Reply Dialog

For more information about the reply activity, see the following:

• Introduction to Interaction Patterns in a BPEL Process

• Mapping WSDL Message Parts in BPEL 2.0

• How to Return a Fault in a Synchronous Interaction

Rethrow Activity
This activity enables you to rethrow a fault originally captured by the immediately enclosing
fault handler.

Appendix A
Introduction to BPEL 1.1 and 2.0 Activities

A-34

Note:

This activity is only supported in BPEL 2.0 projects.

Figure A-34 shows a rethrow activity within a fault handler (catch activity).

Figure A-34 Rethrow Activity

For more information about rethrowing faults, see Rethrowing Faults with the Rethrow Activity.

Schedule Job
This activity enables you to schedule an Oracle Enterprise Scheduler job in a BPEL process.
Figure A-35 shows the Schedule Job dialog.

Appendix A
Introduction to BPEL 1.1 and 2.0 Activities

A-35

Figure A-35 Schedule Job Dialog

For more information, see Invoking an Oracle Enterprise Scheduler Job in a BPEL Process.

Scope Activity
This activity consists of a collection of nested activities that can have their own local variables,
fault handlers, compensation handlers, and so on. A scope activity is analogous to a { } block
in a programming language.

Each scope has a primary activity that defines its behavior. The primary activity can be a
complex structured activity, with many nested activities within it of arbitrary depth. The scope is
shared by all the nested activities.

Figure A-36 shows the Scope dialog in BPEL 2.0. Define appropriate activities inside the scope
activity.

Appendix A
Introduction to BPEL 1.1 and 2.0 Activities

A-36

Figure A-36 Scope Dialog

Fault handling is associated with a scope activity. The goal is to undo the incomplete and
unsuccessful work of a scope activity in which a fault has occurred. You define catch activities
in a scope activity to create a set of custom fault-handling activities. Each catch activity is
defined to intercept a specific type of fault.

Figure A-37 shows the Add Catch icon inside a scope activity. Figure A-38 shows the catch
activity area that appears when you click the Add Catch icon. Within the area defined as Drop
Activity Here, you drag additional activities to create fault handling logic to catch and manage
exceptions.

For example, a client provides a social security number to a credit rating service when applying
for a loan. This number is used to perform a credit check. If a bad credit history is identified or
the social security number is identified as invalid, an assign activity inside the catch activity
notifies the client of the loan offer rejection. The entire loan application process is terminated
with a terminate activity.

Figure A-37 Creating a Catch Branch

Appendix A
Introduction to BPEL 1.1 and 2.0 Activities

A-37

Figure A-38 Catch Activity Icon

For more information about the scope activity and fault handling, see the following:

• Introduction to Interaction Patterns in a BPEL Process

• Mapping WSDL Message Parts in BPEL 2.0

• Managing a Group of Activities with a Scope Activity

Sequence Activity
This activity enables you to define a collection of activities to perform in sequential order. For
example, you may want the following activities performed in a specific order:

• A customer request is received in a receive activity.

• The request is processed inside a flow activity that enables concurrent behavior.

• A reply message with the final approval status of the request is sent back to the customer
in a reply activity.

A sequence activity makes the assumption that the request can be processed in a reasonable
amount of time, justifying the requirement that the invoker wait for a synchronous response
(because this service is offered as a request-response operation).

When this assumption cannot be made, it is better to define the customer interaction as a pair
of asynchronous message exchanges.

When you double-click the Sequence icon, the activity area shown in Figure A-39 appears.
Drag and define appropriate activities inside the sequence activity.

Figure A-39 Sequence Activity

For more information about the sequence activity, see the following:

Appendix A
Introduction to BPEL 1.1 and 2.0 Activities

A-38

• Introduction to Interaction Patterns in a BPEL Process

• Creating a Parallel Flow

Signal Activity
This activity is used in a master process to notify detail processes to perform processing at
runtime and used in detail processes to notify a master process that processing has
completed. Figure A-40 shows the Edit Signal dialog.

Figure A-40 Signal Dialog

For more information, see Coordinating Master and Detail Processes .

SMS Activity
This activity enables you to send a short message system (SMS) notification about an event.

Figure A-41 shows the SMS dialog in BPEL 2.0.

Appendix A
Introduction to BPEL 1.1 and 2.0 Activities

A-39

Figure A-41 SMS Dialog

For more information about the SMS activity, see How to Configure the SMS Notification
Channel.

Switch Activity
This activity consists of an ordered list of one or more conditional branches defined in a case
branch, followed optionally by an otherwise branch. The branches are considered in the order
in which they appear. The first branch whose condition is true is taken and provides the activity
performed for the switch. If no branch with a condition is taken, then the otherwise branch is
taken. If the otherwise branch is not explicitly specified, then an otherwise branch with an
empty activity is assumed to be available. The switch activity is complete when the activity of
the selected branch completes.

A switch activity differs in functionality from a flow activity. For example, a flow activity enables
a process to gather two loan offers at the same time, but does not compare their values. To
compare and make decisions on the values of the two offers, a switch activity is used. The first
branch is executed if a defined condition (inside the case branch) is met. If it is not met, the
otherwise branch is executed.

Note:

This activity is replaced by the if activity in BPEL 2.0 projects.

Figure A-42 shows a switch activity with the following defined branches.

Appendix A
Introduction to BPEL 1.1 and 2.0 Activities

A-40

Figure A-42 Switch Activity

For more information about the switch activity, see the following:

• Introduction to Interaction Patterns in a BPEL Process

• Defining Conditional Branching with the Switch Activity in BPEL 1.1

Terminate Activity
This activity enables you to end the tasks of an activity (for example, the fault handling tasks in
a catch branch). For example, if a client's bad credit history is identified or a social security
number is identified as invalid, a loan application process is terminated, and the client's loan
application document is never submitted to the service loan providers.

Note:

• The terminate activity is replaced by the exit activity in BPEL 2.0 projects.

• Do not use the terminate activity with a synchronous BPEL process because it
can lead to timeouts.

Figure A-43 shows several terminate activities in the otherwise branch of a switch activity.

Figure A-43 Terminate Activity

Appendix A
Introduction to BPEL 1.1 and 2.0 Activities

A-41

For more information about the terminate activity, see Stopping a Business Process Instance
with the Terminate Activity in BPEL 1.1.

Throw Activity
This activity generates a fault from inside the business process.

Figure A-44 shows the Throw dialog in BPEL 2.0.

Figure A-44 Throw Dialog

For more information about the throw activity, see Throwing Internal Faults with the Throw
Activity.

Translate Activity
This activity enables you to configure an inbound (with automatic use of the
doTranslateFromNative function) translation or outbound (with automatic use of the
doTranslateToNative function) translation.

• Inbound translation consists of native format to XML and opaque to XML.

• Outbound translation consists of XML to native format and large XML to an attachment in a
directory.

This activity is supported in both BPEL 1.1. and 2.0. Figure A-45 shows the Translate dialog.

Appendix A
Introduction to BPEL 1.1 and 2.0 Activities

A-42

Figure A-45 Translate Dialog

For more information, see Translating Between Native Data and XML.

User Notification Activity
This activity enables you to design a BPEL process in which you do not explicitly select a
notification channel during design time, but simply indicate that a notification must be sent. The
channel to use for sending notifications is resolved at runtime based on preferences defined by
the end user in the User Messaging Preferences user interface of the Oracle User Messaging
Service. This moves the responsibility of notification channel selection from Oracle BPEL
Designer to the end user. If the end user does not select a preferred channel or rule, email is
used by default for sending notifications to that user. Figure A-46 provides details.

Appendix A
Introduction to BPEL 1.1 and 2.0 Activities

A-43

Figure A-46 User Notification Dialog

For more information about user notifications, see Allowing the End User to Select Notification
Channels.

For more information about the Oracle User Messaging Service, see Administering Oracle
User Messaging Service and Developing Applications with Oracle User Messaging Service.

Validate Activity
This activity enables you to validate variables in the list. The variables are validated against
their XML schema.

Figure A-47 shows the Validate dialog in BPEL 2.0.

Appendix A
Introduction to BPEL 1.1 and 2.0 Activities

A-44

Figure A-47 Validate Dialog

For more information about the validate activity, see Validating XML Data.

Wait Activity
This activity allows a process to specify a delay for a certain period or until a certain deadline is
reached. A typical use of this activity is to invoke an operation at a certain time. This activity
enables you to wait for a given time period or until a certain time has passed. Exactly one of
the expiration criteria must be specified.

Figure A-48 shows the Wait dialog in BPEL 2.0.

Appendix A
Introduction to BPEL 1.1 and 2.0 Activities

A-45

Figure A-48 Wait Dialog

For more information about the wait activity, see Setting an Expiration Time with a Wait
Activity .

While Activity
This activity supports repeated performance of a specified iterative activity. The iterative activity
is repeated until the given while condition is no longer true.

Figure A-49 shows the While dialog in BPEL 2.0. You can enter expressions in this dialog.

Appendix A
Introduction to BPEL 1.1 and 2.0 Activities

A-46

Figure A-49 While Dialog

For more information about the while activity, see Defining Conditional Branching with the
While Activity.

XQuery Transform Activity
This activity enables you to create an XQuery transformation that maps source elements to
target elements (for example, incoming purchase order data into outgoing purchase order
acknowledgment data).

Figure A-50 shows the XQuery dialog in BPEL 2.0. This dialog enables you to perform the
following tasks:

• Define the source and target variables and parts to map.

• Specify the XQuery mapper file.

• Click the second icon (the Add icon) to the right of the Mapper File field to access the
XQuery Mapper for creating a new XQuery file for graphically mapping source and target
elements. Click the Edit icon (third icon) to edit an existing XQuery file.

Appendix A
Introduction to BPEL 1.1 and 2.0 Activities

A-47

Figure A-50 XQuery Dialog

For more information, see Creating Transformations with the XQuery Mapper.

XSLT Transform Activity
This activity enables you to create an XSL transformation that maps source elements to target
elements (for example, incoming purchase order data into outgoing purchase order
acknowledgment data).

Figure A-51 shows the Transform dialog in BPEL 2.0. This dialog enables you to perform the
following tasks:

• Define the source and target variables and parts to map.

• Specify the transformation mapper file.

• Click the second icon (the Add icon) to the right of the Mapper File field to access the
XSLT Map Editor for creating a new XSL file for graphically mapping source and target
elements. Click the Edit icon (third icon) to edit an existing XSL file.

Appendix A
Introduction to BPEL 1.1 and 2.0 Activities

A-48

Figure A-51 Transform Dialog

For more information about the transform activity, see Creating Transformations with the XSLT
Map Editor .

Introduction to BPEL Services
BPEL processes can communicate with web-based applications and clients through SOAP
web services, Oracle ADF Business Component (BC) services, JCA adapters, Oracle B2B
services, Oracle Healthcare services, Oracle Business Activity Monitoring 11g, HTTP binding,
direct binding, EJB services, REST adapters, Oracle E-Business Suite, JDE World, SAP, cloud
adapters, and partner links.

To access BPEL services:

1. In the Components window of Oracle BPEL Designer, expand BPEL Services to display
the services.

2. Drag and drop the service to the appropriate swimlane. Table A-2 lists the available
services and provides references to documentation that describes these services.

Table A-2 BPEL Services

BPEL Service For More Information, See...

ADF-BC services ADF-BC Services

AQ adapter • AQ Adapter
• Understanding Technology Adapters

Oracle B2B • Oracle B2B
• User's Guide for Oracle B2B

Oracle Business Activity
Monitoring (BAM) 11g

• Oracle BAM 11g Adapter
• Monitoring Business Activity with Oracle BAM

Appendix A
Introduction to BPEL Services

A-49

Table A-2 (Cont.) BPEL Services

BPEL Service For More Information, See...

Coherence Cache • Coherence Adapter
• Understanding Technology Adapters

Database adapter • Database Adapter
• Understanding Technology Adapters

Direct binding service • Direct Binding Adapter
• Using Direct Binding to Invoke Composite Services

Oracle E-Business Suite
adapter

• Oracle E-Business Suite Adapter

EJB service • EJB Adapter
• Integrating Enterprise JavaBeans with Composite Applications

File adapter • File Adapter
• Understanding Technology Adapters

FTP adapter • FTP Adapter
• Understanding Technology Adapters

Healthcare adapter • Oracle Healthcare Adapter
• olink:HFPUG1732Using Oracle SOA Suite for Healthcare

Integration

HTTP binding HTTP Binding Service

JDE World adapter http://www.oracle.com/technetwork/middleware/adapters/
documentation/index.html

JMS adapter • JMS Adapter
• Understanding Technology Adapters

LDAP • LDAP Adapter
• Using Oracle Managed File Transfer

Oracle MFT • Oracle MFT
• Using Oracle Managed File Transfer

MQ adapter • MQ Adapter
• Understanding Technology Adapters

REST service Integrating REST Operations in SOA Composite Applications

Cloud adapters Cloud Adapters

SAP adapter http://www.oracle.com/technetwork/middleware/adapters/
documentation/index.html

SOAP • Adding Service Binding Components
• SOAP Web Services

Socket adapter • Socket Adapter
• Understanding Technology Adapters

Third-party adapter • Third-Party Adapter
• Understanding Technology Adapters

Oracle User Messaging
Service

• Oracle User Messaging Service Adapter
• Understanding Technology Adapters

Appendix A
Introduction to BPEL Services

A-50

http://www.oracle.com/technetwork/middleware/adapters/documentation/index.html
http://www.oracle.com/technetwork/middleware/adapters/documentation/index.html
http://www.oracle.com/technetwork/middleware/adapters/documentation/index.html
http://www.oracle.com/technetwork/middleware/adapters/documentation/index.html

B
XPath Extension Functions

This appendix describes the XPath extension functions that are displayed in the Expression
Builder dialog in Oracle JDeveloper. It also describes how to build XPath expressions in the
Expression Builder and how to create user-defined XPath extension functions. Oracle provides
XPath functions that use the capabilities built into Oracle SOA Suite and XPath standards for
adding new functions.
This appendix includes the following sections:

• Advanced Functions

• BPEL Extension Functions

• BPEL XPath Extension Functions

• Conversion Functions

• DVM Functions

• Database Functions

• Date Functions

• Identity Service Functions

• Logical Functions

• Mathematical Functions

• Node Set Functions

• String Functions

• Workflow Service Functions

• XREF Functions

• Building XPath Expressions in the Expression Builder in Oracle JDeveloper

• Creating User-Defined XPath Extension Functions

For additional information about XPath functions, visit the following URL:

http://www.w3.org

Advanced Functions
This section describes the advanced functions.

batchProcessActive
This function returns the number of active processes in the batch.

Signature:

ora:batchProcessActive(String rootId, String processId)
Arguments:

B-1

http://www.w3.org

• rootId: The ID of the root.

• processId: The ID of the process.

Property IDs:

• namespace-uri:http://schemas.oracle.com/xpath/extension
• namespace-prefix: ora

batchProcessCompleted
This function returns the number of completed processes in the batch.

Signature:

ora:batchProcessCompleted(String rootId, String processId)
Arguments:

• rootId: The ID of the root.

• processId: The ID of the process.

Property IDs:

• namespace-uri:http://schemas.oracle.com/xpath/extension
• namespace-prefix: ora

copyList

Note:

While the copyList function is still available for use, Oracle recommends that you
use the bpelx:copyList extension to copy a node list or a node. For more
information, see How to Use bpelx:copyList.

This function copies a node list or a node. The node list to be copied to should not be null or
empty.

Signature:

ora:copyList('variableName', 'partName'?, 'locationPath'?, Object)
Arguments:

• variableName: The source variable for the data.

• partName: The part to select from the variable (optional).

• locationPath: Provides an absolute location path (with / meaning the root of the
document fragment representing the entire part) to identify the root of a subtree within the
document fragment representing the part (optional).

• Object: The object can be either a list or a single item. If the object is a list, each item in
the list is copied. Each item to be copied is either an element, or an element with the string
value of the node created.

Property IDs:

Appendix B
Advanced Functions

B-2

• deprecated
Use the bpelx:copyList extension activity to append to a list.

• namespace-uri: http://schemas.oracle.com/xpath/extension
• namespace-prefix: ora

create-nodeset-from-delimited-string
This function takes a delimited string and returns a nodeSet.

Signature:

oraext:create-nodeset-from-delimited-string(qname, delimited-string, delimiter)
Arguments:

• qname: The qualified name in which each node in the node set must be created. The
QName can be represented in two forms:

– task:assignee
– {http://mytask/task}assignee

• delimited-string: The sting of elements separated by the delimiter.

• delimiter: The character that separates the items in the input string; for example, a
comma or a semicolon.

Property IDs:

• namespace-uri: http://www.oracle.com/XSL/Transform/java/
oracle.tip.pc.services.functions.ExtFunc

• namespace-prefix: oraext

createDelimitedString
This function creates a delimited string from the passed-in arguments.

Signature:

ora:createDelimitedString(delimiter as string, nodeList)
Arguments:

• delimiter as string: The character that separates the items in the input string (for
example, a comma or a semicolon).

• nodeList: Provides an ordered collection of nodes.

Property IDs:

• namespace-uri:
• namespace-prefix:ora

createEssParameter
This function creates a parameter for a job in Oracle Enterprise Scheduler.

Signature:

Appendix B
Advanced Functions

B-3

ess:createEssParameter(dataType,name,scope,value)
Arguments:

• dataType
• name
• scope
• value
Property IDs:

• namespace-uri:
• namespace-prefix:ess
For more information about Oracle Enterprise Scheduler, see Developing Applications for
Oracle Enterprise Scheduler.

doStreamingTranslate
This function translates using the streaming XPath APIs. It uses batching so that the
transformation engine does not materialize the result of the transformation into memory.
Therefore, it can handle arbitrarily large payloads of the order of gigabytes. However, it can
only handle forward-only XSL constructs such as for-each. The targetType can be SDOM or
ATTACHMENT.

Signature:

med:doStreamingTranslate('input','streaming xpath
context','targetType','attachment element'?)
Arguments:

• input: The input data of the XPath function. This can be an SDOM or attachment element.

• streaming xpath context
• targetType: Determines how the XPath function translates the native data into XML.

• attachment element: The attachment for the returned XML. This parameter is optional.

Property IDs:

• namespace-uri: http://schemas.oracle.com/xpath/extension
• namespace-prefix: med
Example:

med.doStreamingTranslate($in.request/inp1:request/
inp1:sourceAttachmentElement,$in.request/inp1:request/inp1:streamingcontext,
'ATTACHMENT', $in.request/inp1:request/inp1:targetAttachmentElement)

doTranslateFromNative
This function translates the input data to XML, where the input can be a string to translate, a
file or FTP adapter attachment, an attachment, or an element that contains Base64-encoded
data. The targetType can be DOM, ATTACHMENT or SDOM.

Signature:

Appendix B
Advanced Functions

B-4

med:doTranslateFromNative('input','nxsdTemplate','nxsdRoot','targetType','attachm
ent element'?)
Arguments:

• input: The input data of the XPath function. The data is in a native format, such as
comma-separated values (CSV).

• nxsdTemplate: The NXSD schema to use to translate the input data to XML format.

• nxsdRoot: The root element in the NXSD schema.

• targetType: Determines how the XPath function translates the native data into XML.

• attachment element: The attachment for the returned XML. This parameter is optional.

Property IDs:

• namespace-uri: http://schemas.oracle.com/xpath/extension
• namespace-prefix: med
Example:

med:doTranslateFromNative(string($in.request/inp1:request/inp1:source),'xsd/
address_csv.xsd','Root-Element','DOM')

doTranslateToNative
This function translates the input DOM to a string or attachment. The targetType can be a
STRING or ATTACHMENT.

Signature:

med:doTranslateToNative('input','nxsdTemplate','nxsdRoot','targetType','attachmen
t element'?)
Arguments:

• input: The input data of the XPath function. The data can either be DOM or SDOM data
that must be translated to a native format such as comma-separated values (CSV).

The input node is usually the root element of the incoming DOM, as shown in the following
example:

med:doTranslateToNative($in.request/inp1:Root-Element, 'xsd/address_csv.xsd',
 @ 'Root-Element','STRING')"

However, the input node can also be a subelement and not the root element of the
incoming DOM, as shown in the following example:

med:doTranslateToNative($in.request/inp1:requestToNative/ns1:Root-Element,
 'xsd/address_csv.xsd', 'Root-Element','ATTACHMENT',
 $in.request/inp1:requestToNative/inp1:attachment)

In this case, you must set the useArrayIdenitifer property to true in the schema node of
the NXSD, as shown below.

nxsd:useArrayIdentifiers="true"

This setting can adversely impact the performance of this function for very large inputs.
You can use the dostreamingxlate function in this case.

• nxsdTemplate: The NXSD schema to use to translate the input data to XML format.

Appendix B
Advanced Functions

B-5

• nxsdRoot: The root element in the NXSD schema.

• targetType: Determines how the XPath function translates the native data into XML.

• attachment element: The attachment for the returned XML. This parameter is optional.

Property IDs:

• namespace-uri: http://schemas.oracle.com/xpath/extension
• namespace-prefix: med
Example:

med:doTranslateToNative($in.request/inp1:Root-Element,'xsd/
address_csv.xsd','Root-Element','STRING')

format
This function formats a message using Java's message format.

Signature:

ora:format(formatStrings, args+)
Arguments:

• formatStrings: The string of data to be formatted.

• args+: The arguments referenced by the format specifiers in the format string. If there are
more arguments than format specifiers, the extra arguments are ignored. The number of
arguments is variable and may be zero.

Property IDs:

• namespace-uri: http://schemas.oracle.com/xpath/extension
• namespace-prefix: ora

genEmptyElem
This function generates a list of empty elements for the given QName.

Signature:

ora:genEmptyElem('ElemQName',size?, 'TypeQName'?, xsiNil?)
Arguments:

• ElemQName: The first argument is the QName of the empty elements.

• size: The second optional integer argument for the number of empty elements. If missing,
the default size is 1.

• TypeQName: The third optional argument is the QName, which is the xsi:type of the
generated empty name. This xsi:type pattern matches SOAPENC:Array. If missing or an
empty string, the xsi:type attribute is not generated.

• xsiNil: The fourth optional boolean argument is to specify whether the generated empty
elements are XSI - nil, provided the element is XSD-nillable. The default is false. If
missing or false, xsi:nil is not generated.

Property IDs:

Appendix B
Advanced Functions

B-6

• namespace-uri: http://schemas.oracle.com/xpath/extension
• namespace-prefix: ora
For more information about this function, see Generating Functionality Equivalent to an Array
of an Empty Element.

generate-guid
This function generates a unique GUID.

Signature:

oraext:generate-guid()
Arguments:

There are no arguments for this function.

Property IDs:

• namespace-uri: http://www.oracle.com/XSL/Transform/java/
oracle.tip.pc.services.functions.ExtFunc

• namespace-prefix: oraext

get-content-from-file-function
This function parses the file in the specified native format. Use this function when designing
assign activities in BPEL processes.

Signature:

oraext:get-content-from-file-function(fileName, nxsdTemplate?, nxsdRoot?)
Example:

oraext:get-content-from-file-function("file:/c:/Ftab.txt",
"file:/c:/Ftab_1.xsd","root")
Arguments:

• fileName: The name of the file.

• nxsdTemplate: The native XSD (NXSD) template for the output.

• nxsdRoot: The NXSD root.

Property IDs:

• namespace-uri: http://www.oracle.com/XSL/Transform/java/
oracle.tip.pc.services.functions.ExtFunc

• namespace-prefix: oraext

getApplicationName
This function returns the partition/folder name.

Signature:

ora:getApplicationName()

Appendix B
Advanced Functions

B-7

Arguments:

There are no arguments for this function.

Property IDs:

• namespace-uri: http://schemas.oracle.com/xpath/extension
• namespace-prefix: ora

getAttachmentContent
This function gets the attachment content from an href function.

Signature:

ora:getAttachmentContent(varName[, partName[, query]])
Arguments:

• varName: Specifies the source variable for the data.

• partName: (Optional) Specifies the part to select from the variable.

• query: (Optional) Specifies an absolute location path (with / meaning the root of the
document fragment representing the entire part) to identify the root of a subtree within the
document fragment representing the part.

Property IDs:

• namespace-uri: http://schemas.oracle.com/xpath/extension
• namespace-prefix: ora
For more information, see Reading and Encoding SOAP Attachment Content.

getAttachmentProperty
Gets a SOAP attachment property from an href that is stored in varName, partName, and
query.

Signature: ora:getAttachmentProperty(propertyName, varName[, partName[, query]])
Arguments:

• varName: Specifies the source variable for the data.

• partName: (Optional) Specifies the part to select from the variable.

• query: (Optional) Specifies an absolute location path (with / meaning the root of the
document fragment representing the entire part) to identify the root of a subtree within the
document fragment representing the part.

Property IDs:

• namespace-uri: http://schemas.oracle.com/xpath/extension
• namespace-prefix: ora

getChildElement
This function gets a child element for the given element.

Appendix B
Advanced Functions

B-8

Signature:

ora:getChildElement(element, index)
Arguments:

• element: The source for the data.

• index: The integer value of the child element index.

Property IDs:

• namespace-uri: http://schemas.oracle.com/xpath/extension
• namespace-prefix: ora

getComponentInstanceID
This function returns the component instance ID.

Signature:

ora:getComponentInstanceID()
Arguments:

There are no arguments for this function.

Property IDs:

• namespace-uri: http://schemas.oracle.com/xpath/extension
• namespace-prefix: ora

getComponentName
This function returns the component name.

Signature:

mdhr:getComponentName()
Arguments:

There are no arguments for this function.

Property IDs:

• namespace-uri: http://schemas.oracle.com/xpath/extension
• namespace-prefix: mdhr

getCompositeInstanceID

Note:

This function is deprecated in 12c Release 1 (12.1.3) and is not displayed in the
Expression Builder.

Appendix B
Advanced Functions

B-9

This function returns the composite instance ID.

Signature:

ora:getComponentInstanceId()
Arguments:

There are no arguments for this function.

Property IDs:

• namespace-uri: http://schemas.oracle.com/xpath/extension
• namespace-prefix: ora

getCompositeName
This function returns the composite name.

Signature:

ora:getCompositeName()
Arguments:

There are no arguments for this function.

Property IDs:

• namespace-uri: http://schemas.oracle.com/xpath/extension
• namespace-prefix: ora

getCompositeURL
This function returns the composite URL.

Signature:

ora:getCompositeURL()
Arguments:

There are no arguments for this function.

Property IDs:

• namespace-uri: http://schemas.oracle.com/xpath/extension
• namespace-prefix: ora

getECID
This function returns the execution context ID (ECID).

Signature:

ora:getECID()
Arguments:

There are no arguments for this function.

Appendix B
Advanced Functions

B-10

Property IDs:

• namespace-uri: http://schemas.oracle.com/xpath/extension
• namespace-prefix: ora

getFaultAsString
This function returns the fault as a string value.

Signature:

ora:getFaultAsString()
Arguments:

There are no arguments for this function.

Property IDs:

• namespace-uri: http://schemas.oracle.com/xpath/extension
• namespace-prefix: ora
For more information, see Getting Fault Details with the getFaultAsString XPath Extension
Function.

getFaultAsXML
This function returns the fault as an XML element.

Signature:

ora:getFaultAsXML()
Arguments:

There are no arguments for this function.

Property IDs:

• namespace-uri: http://schemas.oracle.com/xpath/extension
• namespace-prefix:ora

getFaultName
This function returns the fault name.

Signature:

ora:getFaultName()
Arguments:

There are no arguments for this function.

Property IDs:

• namespace-uri: http://schemas.oracle.com/xpath/extension
• namespace-prefix: ora

Appendix B
Advanced Functions

B-11

getMilestoneName
This function returns the milestone name.

Signature:

ora:getMilestoneName
Arguments:

There are no arguments for this function.

Property IDs:

• namespace-uri: http://schemas.oracle.com/xpath/extension
• namespace-prefix: ora

getOwnerDocument
This function returns the document object associated with the node.

Signature:

ora:getOwnerDocument(node)
Arguments:

• node: Specifies the XML node.

Property IDs:

• namespace-uri: http://schemas.oracle.com/xpath/extension
• namespace-prefix: ora

getParentComponentInstanceID
This function returns the BPEL process instance parent component instance ID.

Signature:

ora:getParentComponentInstanceID()
Arguments:

There are no arguments for this function.

Property IDs:

• namespace-uri: http://schemas.oracle.com/xpath/extension
• namespace-prefix: ora

getRevision
This function does not take any arguments and returns the current revision of the composite
from which it is invoked.

Signature:

Appendix B
Advanced Functions

B-12

ora:getRevision
Arguments:

There are no arguments for this function.

Property IDs:

• namespace-uri: http://schemas.oracle.com/xpath/extension
• namespace-prefix: ora

getTaskReminderDuration
This function computes the next reminder to be sent for the task.

Signature:

ora:getTaskReminderDuration(taskId)
Argument:

• taskId: The task ID of the task.

Property IDs:

• namespace-uri: http://schemas.oracle.com/xpath/extension
• namespace-prefix: ora

instanceOf
This function extracts arbitrary values from BPEL variables.

Signature:

ora:instanceOf(an_xpath_expression, 'typeQName')
Arguments:

• an_xpath_expression: An XPath expression that returns an element.

• typeQName: The QName of a globally-declared XSD type.

Property IDs:

• namespace-uri: http://schemas.oracle.com/xpath/extension
• namespace-prefix: ora

lookup-xml
This function returns the string value of an element defined by lookupXPath in an XML file
(docURL) given its parent XPath (parentXPath), the key XPath (keyXPath), and the value of the
key (key).

Example:

oraext:lookup-xml('file:/d:/country_data.xml', '/Countries/Country',
'Abbreviation', 'FullName', 'UK') returns the value of the element FullName child of /
Countries/Country, where Abbreviation = 'UK' is in the file D:\country_data.xml.

Signature:

Appendix B
Advanced Functions

B-13

oraext:lookup-xml(docURL, parentXPath, keyXPath, lookupXPath, key)
Arguments:

• docURL: The XML file.

• parentXPath: The parent XPath.

• keyXPath: The key XPath.

• lookupXPath: The lookup XPath.

• key: The key value.

Property IDs:

• namespace-uri: http://www.oracle.com/XSL/Transform/java/
oracle.tip.pc.services.functions.ExtFunc

• namespace-prefix: oraext

parseEscapedXML
This function parses a string to a DOM.

Note:

This function is also displayed for selection under the BPEL XPath Extension
Functions option.

Signature:

oraext:parseEscapedXML(contentString)
Arguments:

• contentString: The string that this function parses to a DOM.

Property IDs:

• namespace-uri: http://schemas.oracle.com/xpath/extension
• namespace-prefix: oraext
For more information about this function, see How To Convert from a String to an XML
Element.

parseXML
This function parses a string to a DOM element.

Signature:

oraext:parseXML(contentString)
Arguments:

• contentString: The string that this function parses to a DOM element.

Property IDs:

Appendix B
Advanced Functions

B-14

• namespace-uri: http://www.oracle.com/XSL/Transform/java/
oracle.tip.pc.services.functions.ExtFunc

• namespace-prefix: oraext

processScalableDocumentToNative
This function transforms the scalable document directly to the output stream.

Signature:

ora:processScalableDocumentToNative(template, input, outputFilePath, nxsd, root,
batchsize, properties)
Arguments:

• template
• input
• outputFilePath
• nxsd
• root
• batchsize
• properties

processXSLTAttachmentFromNativeToNative
This function translates the inbound native data (for example, comma-separated value to XML)
and then applies the user-supplied XSL to the translated content. The result of the XSL
transformation is then translated to a native file (for example. comma-separated value). The
input to this XPath function can either be an attachment or href. It uses batching so that the
transformation engine does not put the result of the transformation into memory. Therefore, it
can handle arbitrarily large payloads of the order of gigabytes. The XPath function translates
the inbound native data to XML, runs the transformation on the XML, and then translates the
transformed XML to native format.

Signature:

ora:processXSLTAttachmentFromNativeToNative(template, input href, output href,
input nxsd path, input root element name, output nxsd path, output root element
name. batch size)

processXSLTAttachmentFromNativeToStream
This function translates the inbound native data (for example, customer-separated value to
XML) and then applies the user-supplied XSL to the translated content. The output of the
transformation is streamed to the output file.The input to this XPath function can either be an
attachment or href. It uses batching so that the transformation engine does not put the result
of the transformation into memory. Therefore, it can handle arbitrarily large payloads of the
order of gigabytes. However, it can only handle forward-only XSL constructs such as for-each.

Signature:

ora:processXSLTAttachmentFromNativeToStream(template,input href, output href,
input nxsd path, nxsd root element name, batchsize,properties)

Appendix B
Advanced Functions

B-15

processXSLTAttachmentToNativeStream
This function transforms the inbound XML by applying the user-supplied XSL and then
translates the transformed XML into a native file (for example, comma-separated value). The
input to this XPath function can either be an attachment or href. It uses batching so that the
transformation engine does not put the result of the transformation into memory. Therefore, it
can handle arbitrarily large payloads of the order of gigabytes. This function first transforms the
incoming XML data by applying the XSL and then translates the transformed XML into native
data.

Signature:

ora:processXSLTAttachmentToNativeStream(template, input href, output href, nxsd
schema, nxsd root element, batch size)

processXSLTAttachmentToStream
This function directly streams the result of XSLT transformation to the output file. The input to
this XPath function can either be an attachment or href. It uses batching so that the
transformation engine does not put the result of the transformation into memory. Therefore, it
can handle arbitrarily large payloads of the order of gigabytes. However, it can only handle
forward-only XSL constructs such as for-each.

Signature:

ora:processXSLTAttachmentToStream(template, input href, output href, batchsize,
properties)

processXSLTForScalableDocument
This function returns a scalable document after an XSLT transformation.

Signature:

ora:processXSLTForScalableDocument(template, input, batchsize, properties)

setCompositeInstanceTitle
This function sets the composite instance title and returns it.

Signature:

ora:setCompositeInstanceTitle(title)
Arguments:

• title: The composite instance title.

BPEL Extension Functions
This section describes the BPEL extension functions.

BPEL Extension Functions in BPEL 1.1 and BPEL 2.0
This section describes BPEL extension functions.

Appendix B
BPEL Extension Functions

B-16

Table B-1 lists the BPEL extension functions supported by either version 1.1 or version 2.0 of
the BPEL specification. If a function is supported by a specific version, it displays for selection
in the BPEL Extension Functions list of the Expression Builder dialog in Oracle JDeveloper.
Otherwise, it does not appear. BPEL version 1.1 functions use the namespace prefix bpws.
BPEL version 2.0 functions use the namespace prefix bpel.

Table B-1 BPEL Extension Functions Supported in BPEL 1.1 or BPEL 2.0

Function Supported in BPEL 1.1? Supported in BPEL 2.0?

bpws:getLinkStatus Yes No

bpws:getVariableData Yes No

getVariableProperty Yes No

bpel:getVariableProperty No Yes

bpel:doXslTransform No Yes

getLinkStatus
This function returns a boolean value indicating the status of the link. If the status of the link is
positive, the value is true. Otherwise, the value is false. This function can only be used in a
join condition.

The linkName argument refers to the name of an incoming link for the activity associated with
the join condition.

Signature:

bpws:getLinkStatus ('linkName')
Arguments:

• variableName: The source variable for the data.

• propertyName: The QName of the property.

Property IDs:

• namespace-uri: http://schemas.xmlsoap.org/ws/2003/03/business-process/
• namespace-prefix: bpws

getVariableData
This function extracts arbitrary values from BPEL variables.

When only the first argument is present, the function extracts the value of the variable, which
must be defined using an XML schema simple type or element. Otherwise, the return value of
this function is a node set containing the single node representing either an entire part of a
message type (if the second argument is present and the third argument is absent) or the
result of the selection based on the locationPath (if both optional arguments are present).

Signature:

bpws:getVariableData ('variableName', 'partName'?, 'locationPath'?)
Arguments:

• variableName: The source variable for the data.

Appendix B
BPEL Extension Functions

B-17

• partName: The part to select from the variable (optional).

• locationPath: Provides an absolute location path (with / meaning the root of the
document fragment representing the entire part) to identify the root of a subtree within the
document fragment representing the part (optional).

Property IDs:

• namespace-uri: http://schemas.xmlsoap.org/ws/2003/03/business-process/
• namespace-prefix: bpws

selectionFailure Fault is Thrown if the Result Node Set is a Size Other Than One During
Execution

According to the Business Process Execution Language for Web Services Specification, if the
locationPath argument selects a node set of a size other than one during execution, the
standard fault bpws:selectionFailure must be thrown by a compliant implementation.

For example, the count() function shown in the following code does not work if there are
multiple entries of product elements under StoreRequest; this causes a selectionFailure
fault to be thrown:

count(bpws:getVariableData('inputVariable',
 'payload','/ns2:StoreRequest/ns2:product'))

To make this work, change the syntax to the following:

"count($inputVariable.payload/ns2:product)"

getVariableProperty (For BPEL 1.1)
This function extracts arbitrary values from BPEL variables. The first argument specifies the
source variable for the data and the second argument identifies the QName of the property to
select from that variable. If the given property selects a node set of a size other than one
during execution, the standard fault bpws:selectionFailure is thrown.

Signature:

bpws:getVariableProperty ('variableName', 'propertyname')
Arguments:

• variableName: The source variable for the data.

• propertyName: The QName of the property.

Property IDs:

• namespace-uri: http://schemas.xmlsoap.org/ws/2003/03/business-process/
• namespace-prefix: bpws

getVariableProperty (For BPEL 2.0)
This function extracts arbitrary values from BPEL variables. The first argument specifies the
source variable for the data and the second argument identifies the QName of the property to
select from that variable. If the given property selects a node set of a size other than one
during execution, the standard fault bpws:selectionFailure is thrown.

Signature:

Appendix B
BPEL Extension Functions

B-18

bpel:getVariableProperty ('variableName', 'propertyname')
Arguments:

• variableName: The source variable for the data.

• propertyName: The QName of the property. If the given property selects a node set of a
size other than one during execution, the standard fault selectionFailure is thrown.

Property IDs:

• namespace-uri: http://schemas.xmlsoap.org/ws/2003/03/business-process/
• namespace-prefix: bpel

doXslTransform (For BPEL 2.0)
This function returns the result of XSLT transformation with multiple sources.

Note:

If the input is meant to be an XML document, call ora:getOwnerDocument to wrap the
input or use function ora:doXSLTransformForDoc instead of this function.

Signature:

bpel:doXslTransform(template,input, [paramQName, paramValue]*)

BPEL XPath Extension Functions
This section describes the BPEL XPath extension functions.

addQuotes
This function returns the content of a string with single quotes added.

Signature:

ora:addQuotes(string)
Arguments:

• string: The string to which this function adds quotes.

Property IDs:

• namespace-uri: http://schemas.oracle.com/xpath/extension
• namespace-prefix: ora

authenticate
This function authenticates an LDAP user and returns true or false.

The authenticate, listUsers, lookupUser, and search XPath functions provide the lookup
and search functionality to obtain information from the LDAP server (typically, the LDAP user
details).

Appendix B
BPEL XPath Extension Functions

B-19

These XPath functions use a configuration file to obtain server access information for the JNDI
(for example, context factory, LDAP server provider URL, authenticate type, and so on). The
configuration file is named directories.xml and must be placed in the same directory in
which the .bpel file for the BPEL project is located. To call these XPath functions, you must
provide this file.

The following example shows the format of the directories.xml file:

<?xml version="1.0" ?>
<directories>
<directory name='people'>
<property name="java.naming.provider.url">ldap://servername:port</property>
<property
name="java.naming.factory.initial">com.sun.jndi.ldap.LdapCtxFactory</property>
<property name="java.naming.security.principal">[username]</property>
<property name="java.naming.security.authentication">simple</property>

<property name="java.naming.security.credentials">[passord]</property>
<property name="entryDN">[entry dn]</property>

</directory>
</directories>

The following shows an example of the directories.xml file:

<?xml version="1.0" ?>
<directories>
<directory name='people'>
<property
name="java.naming.provider.url">ldap://myhost.us.example.com:7001</property>
<property
name="java.naming.factory.initial">com.sun.jndi.ldap.LdapCtxFactory</property>
<property name="java.naming.security.principal">cn=admin</property>
<property name="java.naming.security.credentials">weblogic</property>
<property name="java.naming.security.authentication">simple</property>
<property name="entryDN">ou=people,ou=myrealm,dc=soainfra</property>
</directory>
</directories>

• Signature:

ldap:authenticate('directoryName','userId','password')
• Parameters:

– directoryName: The directory name specified in the directories.xml file.

– userId: The LDAP server login user ID.

– password: The LDAP server login password.

• Return:

true or false
Example:

ldap:authenticate('people','weblogic','weblogic')

For this XPath function, only two properties must be specified in the directories.xml file:

– java.naming.provider.url
– java.naming.factory.initial

Appendix B
BPEL XPath Extension Functions

B-20

countNodes

Note:

While the countNodes function is still available for use, Oracle recommends that you
use version 1.0 of the XPath count() function to return the size of the elements as an
integer.

This function returns the size of the elements as an integer.

Signature:

ora:countNodes('variableName', 'partName'?, 'locationPath'?)
Arguments:

• variableName: The source variable for the data.

• partName: The part to select from the variable (optional).

• locationPath: Provides an absolute location path (with / meaning the root of the
document fragment representing the entire part) to identify the root of a subtree within the
document fragment representing the part (optional).

Property IDs:

• namespace-uri: http://schemas.oracle.com/xpath/extension
• namespace-prefix: ora

doXSLTransform
This function implements the WS-BPEL 2.0's doXSLTransform function that supports multiple
parameters of XSLT. When using this function, the XSL template match must not be set to root
(which is /). It must be the root element.

Signature:

ora:doXSLTransform('url_to_xslt',input,['paramQname',paramValue]*)
Arguments:

• url_to_xslt: Specifies the XSL style sheet URL.

• input: Specifies the input variable name.

• paramQname: Specifies the parameter QName.

• paramValue: Specifies the value of the parameter.

Property IDs:

• namespace-uri: http://schemas.oracle.com/xpath/extension
• namespace-prefix: ora

Appendix B
BPEL XPath Extension Functions

B-21

doXSLTransformForDoc
This function is a complementary XPath function to doXSLTransform(). It aims to perform the
transformation when the XSLT template matches the document.

The following example shows the doXSLTransformForDoc function:

<function name="ora:doXSLTransformForDoc">
 <className>com.collaxa.cube.xml.xpath.functions.xml.DoXSLTransformForDocument
 </className>
 <return type="node-set"/>
 <params>
 <param name="template" type="string"/>
 <param name="input" type="string"/>
 <param name="properties" type="string" minOccurs="0" maxOccurs="unbounded"/>
 </params>
 <desc resourceKey="PI_FUNCTION_DESC_DOXSLTRANSFORM_FOR_DOC"></desc>
 <detail resourceKey="PI_FUNCTION_DESC_LONG_DOXSLTRANSFORM_FOR_DOC">
 This function is a complement xpath function to doXSLTransform(). It aims
 to do the transformation when the xslt template matching the
document. The signature of this function is <i>ora:doXSLTransformForDoc('url_to_
xslt',input,['paramQname',paramValue]*)</i>.
 </detail>
 <group>BPEL XPath Extension Functions</group>
 </function>

Signature:

ora:doXSLTransformForDoc('url_to_xslt',input,['paramQname',paramValue]*)
Arguments:

• url_to_xslt: Specifies the XSL style sheet URL.

• input: Specifies the input variable name.

• paramQname: Specifies the parameter QName.

• paramValue: Specifies the value of the parameter.

Property IDs:

• namespace-uri: http://schemas.oracle.com/xpath/extension
• namespace-prefix: ora
You can use the ora:doXSLTransformForDoc function to write the results of large XSLT/XQuery
operations to a temporary file in a directory system. The document is then loaded from the
temporary file when needed. This eliminates the need for caching an entire document as
binary XML in memory.

For more information, see Using XPath Functions to Write Large XSLT/XQuery Output to a File
System.

doc
This function returns the content of an XML file.

Signature:

ora:doc('fileName','xpath'?)

Appendix B
BPEL XPath Extension Functions

B-22

Arguments:

• fileName: The name of the XML file.

• xpath: A part of an XML file (for example, the node set, node list, or leaf node).

Property IDs:

• namespace-uri: http://schemas.oracle.com/xpath/extension
• namespace-prefix: ora

formatDate
This function converts standard XSD date formats to characters suitable for output.

Signature:

ora:formatDate('dateTime','format')
Arguments:

• dateTime: Contains a date-related value in XSD format. For nonstring arguments, this
function behaves as if a string() function were applied. If the argument is not a date, the
output is an empty string. If it is a valid XSD date and some fields are empty, this function
attempts to fill unspecified fields. For example, 2003-06-10T15:56:00.

• format: Contains a string formatted according to java.text.SimpleDateFormat format.

Property IDs:

• namespace-uri: http://schemas.oracle.com/xpath/extension
• namespace-prefix: ora

generateGUID
Generates a unique GUID.

Signature:

ora:generateGUID()
Arguments:

There are no arguments for this function.

Property IDs:

• namespace-uri: http://schemas.oracle.com/xpath/extension
• namespace-prefix: ora

getConfigProperty
This function gets the component property value.

Signature:

ora:getConfigProperty(propertyName)
Argument:

Appendix B
BPEL XPath Extension Functions

B-23

• propertyName: The property name.

getContentAsString
This function returns the content of an element as an XML string.

Signature:

ora:getContentAsString(element elementAsNodeList)
Arguments:

• element: The element (source of the data).

• elementAsNodeList: The element as the node list.

Property IDs:

• namespace-uri: http://schemas.oracle.com/xpath/extension
• namespace-prefix: ora

getConversationId
This function returns the conversation ID.

Signature:

ora:getConversationId()
Arguments:

There are no arguments for this function.

Property IDs:

• namespace-uri: http://schemas.oracle.com/xpath/extension
• namespace-prefix: ora

getCreator
This function returns the instance creator.

Signature:

ora:getCreator()
Arguments:

There are no arguments for this function.

Property IDs:

• namespace-uri: http://schemas.oracle.com/xpath/extension
• namespace-prefix: ora

getCurrentDate
This function returns the current date as a string.

Appendix B
BPEL XPath Extension Functions

B-24

Signature:

ora:getCurrentDate('format'?)
Argument:

• format: (Optional) Specifies a string formatted according to java.text.SimpleDateFormat
format (optional).

Property IDs:

• namespace-uri: http://schemas.oracle.com/xpath/extension
• namespace-prefix: ora
For more information, see How to Assign a Date or Time.

getCurrentDateTime
This function returns the current date time as a string.

Signature:

ora:getCurrentDateTime('format'?)
Argument:

• format: (Optional) Specifies a string formatted according to java.text.SimpleDateFormat
format (optional).

Property IDs:

• namespace-uri: http://schemas.oracle.com/xpath/extension
• namespace-prefix: ora

getCurrentTime
This function returns the current time as a string.

Signature:

ora:getCurrentTime('format'?)
Argument:

• format: (Optional) Specifies a string formatted according to java.text.SimpleDateFormat
format (optional).

Property IDs:

• namespace-uri: http://schemas.oracle.com/xpath/extension
• namespace-prefix: ora

getElement
This function returns an element using an index from the array of elements.

Signature:

ora:getElement('variableName', 'partName', 'locationPath', index)

Appendix B
BPEL XPath Extension Functions

B-25

Arguments:

• variableName: The source variable for the data.

• partName: The part to select from the variable (required).

• locationPath: Provides an absolute location path (with / meaning the root of the
document fragment representing the entire part) to identify the root of a subtree within the
document fragment representing the part (required).

• index: Dynamic index value. The index of the first node is 1.

Property IDs:

• namespace-uri: http://schemas.oracle.com/xpath/extension
• namespace-prefix: ora

getInstanceId
This function returns the instance ID.

Signature:

ora:getInstanceId()
Arguments:

There are no arguments for this function.

Property IDs:

• namespace-uri: http://schemas.oracle.com/xpath/extension
• namespace-prefix: ora

getNodeValue
This function returns the value of a DOM node as a string.

Signature:

ora:getNodeValue(node)
Arguments:

• node: The DOM node.

Property IDs:

• namespace-uri: http://schemas.oracle.com/xpath/extension
• namespace-prefix: ora

getNodes
This function gets a node list. This is implemented as an alternate to bpws:getVariableData,
which does not return a node list.

Signature:

ora:getNodes('variableName', 'partName'?, 'locationPath'?)

Appendix B
BPEL XPath Extension Functions

B-26

Arguments:

• variableName: The source variable for the data.

• partName: The part to select from the variable (optional).

• locationPath: Provides an absolute location path (with / meaning the root of the
document fragment representing the entire part) to identify the root of a subtree within the
document fragment representing the part (optional).

Property IDs:

• namespace-uri: http://schemas.oracle.com/xpath/extension
• namespace-prefix: ora

getPreference
This function returns the value of a property specified in the preferences section of the BPEL
suitcase descriptor.

Signature:

ora:getPreference(preferenceName)
Arguments:

• preferenceName: The name of the preference as specified in the BPEL suitcase descriptor.

Property IDs:

• namespace-uri: http://schemas.oracle.com/xpath/extension
• namespace-prefix: ora

getProcessId
This function returns the ID of the current BPEL process.

Signature:

ora:getProcessId()
Arguments:

There are no arguments for this function.

Property IDs:

• namespace-uri: http://schemas.oracle.com/xpath/extension
• namespace-prefix: ora

getProcessOwnerId
This function returns the ID of the user who owns the process, if specified in the
TaskServiceAliases section of the BPEL suitcase descriptor.

Signature:

ora:getProcessOwnerId()
Arguments:

Appendix B
BPEL XPath Extension Functions

B-27

There are no arguments for this function.

Property IDs:

• namespace-uri: http://schemas.oracle.com/xpath/extension
• namespace-prefix: ora

getProcessURL
This function returns the root URL of the current BPEL process.

Signature:

ora:getProcessURL()
Arguments:

There are no arguments for this function.

Property IDs:

• namespace-uri: http://schemas.oracle.com/xpath/extension
• namespace-prefix: ora

getProcessVersion
This function returns the current process version.

Signature:

ora:getProcessVersion()
Arguments:

There are no arguments for this function.

Property IDs:

• namespace-uri: http://schemas.oracle.com/xpath/extension
• namespace-prefix: ora

integer
This function returns the content of the node as an integer.

Signature:

ora:integer(node)
Arguments:

• node: The input node.

Property IDs:

• namespace-uri: http://schemas.oracle.com/xpath/extension
• namespace-prefix: ora

Appendix B
BPEL XPath Extension Functions

B-28

listUsers
This function returns a list of LDAP users.

Signature:

ldap:listUsers('directoryName',filter')
Arguments:

• directoryName: The directory name specified in the directories.xml file. For information
about the directories.xml file, see authenticate.

• filter: The filter expression to use for the search; this value cannot be null.

Returns:

An XML element that contains a list of users.For this XPath function, all properties must be
specified in the directories.xml file.

Example:

ldap:listUsers('people','ou=people');

The following provides an example of the output:

<users xmlns="http://schemas.oracle.com/bpel/ldap">
 <user dn="uid=weblogic">
 <uid>weblogic</uid>
 <userpassword>
Unknown macro: {ssha}

bHDVJRfWVt/Uwlzb4TKU+QTOLB4FLySO</userpassword>

 <objectclass>inetOrgPerson</objectclass>
 <objectclass>organizationalPerson</objectclass>
 <objectclass>person</objectclass>
 <objectclass>top</objectclass>
 <objectclass>wlsUser</objectclass>
 <description>This user is the default administrator.</description>
 <wlsMemberOf>cn=Administrators,ou=groups,ou=myrealm,dc=soainfra</wlsMember
Of>
 <orclguid>8AC1B6206FDD11DEBF9A7F3D47003274</orclguid>
 <sn>weblogic</sn>
 <cn>weblogic</cn>
 </user>
</users>

lookupUser
This function returns LDAP user information.

:Signature:

ldap:lookupUser('directoryName','userId')
Arguments:

• directoryName: The directory name specified in the directories.xml file. For information
about the directories.xml file, see authenticate.

• userId: The user ID to be searched.

Appendix B
BPEL XPath Extension Functions

B-29

Returns:

An XML element that contains the user information.

For this XPath function, all properties must be specified in the directories.xml file.

Example:

ldap:lookupUser('people','ou=people');
The following provides an example of the output:

<user dn="" xmlns="http://schemas.oracle.com/bpel/ldap">
<ou>people</ou>
<objectclass>organizationalUnit</objectclass>
<objectclass>top</objectclass>
<orclguid>8ABB9BA06FDD11DEBF9A7F3D47003274</orclguid>
</user>

parseEscapedXML
This function parses an XML string to an XML element.

Note:

This function is also displayed for selection under the Advanced Functions option.

Signature:

ora:parseEscapedXML(xmlString)
Arguments:

• xmlString: The string that this function parses to a DOM.

Property IDs:

• namespace-uri: http://schemas.oracle.com/xpath/extension
• namespace-prefix: ora
For more information about this function, see How To Convert from a String to an XML
Element.

processXQuery
It is advisable to use processXQuery10 instead.

This function returns the result of an XQuery transformation.

Signature:

ora:processXQuery('query','context'?)
Arguments:

• query: The XQuery.

• input: The input data to be transformed.

Appendix B
BPEL XPath Extension Functions

B-30

Property IDs:

• namespace-uri: http://schemas.oracle.com/xpath/extension
• namespace-prefix: ora

processXQuery10
This function returns the result of an XQuery 1.0 transformation.

Signature: ora:processXQuery10(<path to xquery> [, <xquery external variable
name>, <value>]*)

processXQuery2004
This function is deprecated. Use processXQuery10 instead.

This function returns the result of an XQuery 2004 transformation.

Signature: ora:processXQuery2004(query,context?)

processXSLT
This function returns the result of an XSLT transformation using the Oracle XDK XSLT
processor.

The following example shows the 12c version of processXSLT:

<function name="ora:processXSLT">
 <className>com.collaxa.cube.xml.xpath.functions.xml.GetElementFromXDKXSLTFunction
 </className>
 <return type="node-set"/>
 <params>
 <param name="template" type="string"/>
 <param name="input" type="string"/>
 <param name="properties" type="string" minOccurs="0" maxOccurs="unbounded"/>
 </params>
 <desc resourceKey="PI_FUNCTION_DESC_PROCESSXSLT"></desc>
 <detail resourceKey="PI_FUNCTION_DESC_LONG_PROCESSXSLT">
 This function returns result of XSLT transformation by using Oracle XDK
 XSLT processor.
 </detail>
 <group>BPEL XPath Extension Functions</group>
 </function>

Signature:

• 12c version of the signature:

ora:processXSLT('template','input','properties'?)
Arguments:

• template: The XSLT template. Both HTTP and file URLs are supported.

• input: The input data to be transformed.

• properties: The properties that translate to XSL parameters that can be accessed within
the XSL map using the construct <xsl:param name="paramName"/>. The properties are
defined as follows:

Appendix B
BPEL XPath Extension Functions

B-31

1. Create a params.xsd file to define the name-value pair (every property is a name-value
pair). For example:

<?xml version="1.0" encoding="windows-1252" ?>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns="http://schemas.oracle.com/service/bpel/common"
 targetNamespace="http://schemas.oracle.com/service/bpel/common"
 elementFormDefault="qualified">
 <!-- Root Element for Parameters -->
 <xsd:element name="parameters">
 <xsd:complexType>
 <xsd:sequence>
 <!-- Each Parameter is represented by an "item" node that contains
 one unique name and a string value
 -->
 <xsd:element name="item" minOccurs="1" maxOccurs="unbounded">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="name" type="xsd:string"/>
 <xsd:element name="value" type="xsd:string"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
</xsd:schema>

2. Create a SetParams.xsl file to populate the properties. Within the XSLT, the
parameters are accessible through their names. For this example, the parameter
names are userName and location, and the values are jsmith and CA, respectively.

<?xml version="1.0" encoding="UTF-8" ?>
<?oracle-xsl-mapper
 <mapSources>
 <source type="XSD">
 <schema location="TestXSLParams.xsd"/>
 <rootElement name="TestXSLParamsProcessRequest"
 namespace="http://xmlns.oracle.com/TestXSLParams"/>
 </source>
 </mapSources>
 <mapTargets>
 <target type="XSD">
 <schema location="params.xsd"/>
 <rootElement name="ArrayOfNameAnyTypePairType"
 namespace="http://schemas.oracle.com/service/bpel/common"/>
 </target>
 </mapTargets>
 <!-- GENERATED BY ORACLE XSL MAPPER 10.1.3.1.0(build 061009.0802) AT [WED
 APR 18 14:35:04 PDT 2007]. -->
?>
<xsl:stylesheet version="1.0"
 xmlns:ns2="http://schemas.oracle.com/service/bpel/common"
xmlns:xp20="http://www.oracle.com/XSL/Transform/java/oracle.tip.pc.services
.functions.Xpath20"

 xmlns:bpws="http://schemas.xmlsoap.org/ws/2003/03/business-
process/"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:ora="http://schemas.oracle.com/xpath/extension"
xmlns:ehdr="http://www.oracle.com/XSL/Transform/java/oracle.tip.esb.server.
headers.ESBHeaderFunctions"
 xmlns:ns0="http://www.w3.org/2001/XMLSchema"

Appendix B
BPEL XPath Extension Functions

B-32

 xmlns:orcl="http://www.oracle.com/XSL/Transform/java/
oracle.tip.pc.services
.functions.ExtFunc"
 xmlns:ids="http://xmlns.oracle.com/bpel/services/IdentityService/
xpath"
 xmlns:hwf="http://xmlns.oracle.com/bpel/workflow/xpath"
 xmlns:ns1="http://xmlns.oracle.com/TestXSLParams"
 exclude-result-prefixes="xsl ns0 ns1 ns2 xp20 bpws ora ehdr
 orcl ids hwf">
 <xsl:template match="/">
 <ns2:parameters>
 <ns2:item>
 <ns2:name>
 <xsl:value-of select="'userName'"/>
 </ns2:name>
 <ns2:value>
 <xsl:value-of select="'jsmith'"/>
 </ns2:value>
 </ns2:item>
 <ns2:item>
 <ns2:name>
 <xsl:value-of select="'location'"/>
 </ns2:name>
 <ns2:value>
 <xsl:value-of select="'CA'"/>
 </ns2:value>
 </ns2:item>
 </ns2:parameters>
 </xsl:template>
</xsl:stylesheet>

3. Invoke SetParams.xsl from the .bpel file. For example:

– Within assign activity initializeXSLParameters, you initialize the parameter
variable from the specific BPEL variable whose information you want to access
from within the XSLT.

– Within assign activity executeXSLT, you invoke the XSLT with the parameters as
the properties (third) argument of the function processXSLT.

For example:

<process name="TestXSLParams"
 . . .
 . . .
 <sequence name="main">
 <receive name="receiveInput" partnerLink="client"
 portType="client:TestXSLParams" operation="initiate"
 variable="inputVariable" createInstance="yes"/>
 <assign name="initializeXSLParameters">
 <bpelx:annotation>
 <bpelx:pattern>transformation</bpelx:pattern>
 </bpelx:annotation>
 <copy>
 <from expression="ora:processXSLT ('SetParams.xsl',
 bpws:getVariableData('inputVariable','payload'))"/>
 <to variable="propertiesXMLVar"/>
 </copy>
 </assign>
 <assign name="executeXSLT">
 <bpelx:annotation>
 <bpelx:pattern>transformation</bpelx:pattern>
 </bpelx:annotation>

Appendix B
BPEL XPath Extension Functions

B-33

 <copy>
 <from expression="ora:processXSLT('TestXSLParams.xsl',
 bpws:getVariableData('inputVariable','payload'),
 bpws:getVariableData('propertiesXMLVar'))"/>
 <to variable="outputVariable" part="payload"/>
 </copy>
 </assign>
 <invoke name="callbackClient" partnerLink="client"
 portType="client:TestXSLParamsCallback"
 operation="onResult"
 inputVariable="outputVariable"/>
 </sequence>
</process>

4. In a BPEL process, you use the properties to process the XSLT function.

Property IDs:

• namespace-uri: http://schemas.oracle.com/xpath/extension
• namespace-prefix: ora (for 12c)

You can use the ora:processXSLT function to write the results of large XSLT/XQuery
operations to a temporary file in a directory system. The document is then loaded from the
temporary file when needed. This eliminates the need for caching an entire document as
binary XML in memory.

For more information, see Using XPath Functions to Write Large XSLT/XQuery Output to a File
System.

readBinaryFromFile
This function reads data from a file.

Signature:

ora:readBinaryFromFile(fileName)
Arguments:

• fileName: The file name from which to read data.

Property IDs:

• namespace-uri:http://schemas.oracle.com/xpath/extension
• namespace-prefix: ora
For more information, see Sending Attachment Streams.

readBinaryFromFileWithMimeHeaders
This function returns the content of a binary file with MIME headers.

Signature:

ora:readBinaryFromFileWithMimeHeaders(fileName, contentId, contentType,
contentDisposition, contentTransferEncoding, contentDescription, contentLanguage)

Appendix B
BPEL XPath Extension Functions

B-34

readFile
This function returns the content of the file.

Signature:

ora:readFile('fileName','nxsdTemplate'?,'nxsdRoot'?)
Arguments:

• fileName: The name of the file. This argument can also be an HTTP URL.

This function by default reads files relative to the suitcase JAR file for the process. If the
file to read is located in a different directory path, you must specify an extra directory slash
(/) to indicate that this is an absolute path. For example:

ora:readFile('file:///c:/temp/test.doc')

If you specify only two directory slashes (//), you receive an error similar to that shown in
the following example:

XPath expression failed to execute.
Error while processing xpath expression,
the expression is "ora:readFile("file://c:/temp/test.doc")",
the reason is c. Verify the xpath query.

• nxsdTemplate: The NXSD template for the output.

• nxsdRoot -The NXSD root.

Property IDs:

• namespace-uri: http://schemas.oracle.com/xpath/extension
• namespace-prefix: ora

Note:

Currently, the readFile function does not support the functionality to access files on
a web server that requires authorization. If you tried to access such a file, then you
get the following error:

java.io.IOException: Server returned HTTP response code: 401 for URL

search
This function returns a list of LDAP entries.

Signature:

ldap:search('directoryName','filter','scope')
Parameters:

• directoryName: The directory name specified in the directories.xml file. For information
about the directories.xml file, see authenticate.

• filter: The filter expression to use for the search; this value cannot be null.

Appendix B
BPEL XPath Extension Functions

B-35

• scope: The scope of the search. It must be one of the following values: 1: one level, 2:
subtree, or 0: named object. This parameter is optional. By default, its value is 2.

Returns:

An XML element that contains the list of entries.For this XPath function, all properties must be
specified in the directories.xml file.

Example

ldap:search('people','cn=weblogic');

The following provides an example of the output:

 <searchResult xmlns="http://schemas.oracle.com/bpel/ldap">
 <searchResultEntry dn="uid=weblogic" xmlns="urn:oasis:names:tc:DSML:2:0:core">
 <attr name="uid">
 <value>weblogic</value>
 </attr>
 <attr name="userpassword">
 <value>
Unknown macro: {ssha}

bHDVJRfWVt/Uwlzb4TKU+QTOLB4FLySO</value>

 </attr>

 <attr name="objectclass">
 <value>inetOrgPerson</value>
 <value>organizationalPerson</value>
 <value>person</value>
 <value>top</value>
 <value>wlsUser</value>
 </attr>
 <attr name="description">
 <value>This user is the default administrator.</value>
 </attr>
 <attr name="wlsMemberOf">
 <value>cn=Administrators,ou=groups,ou=myrealm,dc=soainfra</value>
 </attr>
 <attr name="orclguid">
 <value>8AC1B6206FDD11DEBF9A7F3D47003274</value>
 </attr>
 <attr name="sn">
 <value>weblogic</value>
 </attr>
 <attr name="cn">
 <value>weblogic</value>
 </attr>
 </searchResultEntry>
 <searchResultEntry xmlns="urn:oasis:names:tc:DSML:2:0:core"/>
</searchResult>

toCDATA
This function returns a DOM node as a CDATA section.

Signature:

ora:toCDATA(node)

Appendix B
BPEL XPath Extension Functions

B-36

tryToCastToBoolean
This function returns a boolean value if the input is a string of true, false, 1, or 0.

Signature:

ora:tryToCastToBoolean(string)
Argument:

• string: String value to attempt to convert to a boolean value.

writeBinaryToFile
This function writes the binary bytes of a variable (or part of the variable) to a file of the given
file name.

Signature:

ora:writeBinaryToFile(varName[, partName[, query]])
Arguments:

• varName: The name of the variable.

• partName: The name of the part in the messageType variable.

• query: The query string to a child of the root element.

Property IDs:

• namespace-uri:http://schemas.oracle.com/xpath/extension
• namespace-prefix: ora

getGroupIdsFromGroupAlias
This function returns a list of user IDs for a group alias specified in the TaskServiceAliases
section of the BPEL suitcase descriptor.

Signature:

ora:getGroupIdsFromGroupAlias(String aliasName)
Arguments:

• aliasName: The alias for a list of users or groups.

Property IDs:

• namespace-uri: http://schemas.oracle.com/xpath/extension
• namespace-prefix: ora

getUserIdsFromGroupAlias
This function returns a list of user IDs for a group alias specified in the TaskServiceAliases
section of the BPEL suitcase descriptor.

Signature:

Appendix B
BPEL XPath Extension Functions

B-37

ora:getUserIdsFromGroupAlias(String aliasName)
Arguments:

• aliasName: Alias name of the group.

Property IDs:

• namespace-uri: http://schemas.oracle.com/xpath/extension
• namespace-prefix: ora

Conversion Functions
This section describes the conversion functions.

boolean
This function converts the input to a boolean. A number is true only if it is neither positive or
negative zero or NaN. A node-set is true only if it is nonempty. A string is true only if its length
is nonzero.

Signature:

boolean(input as any)
Arguments

• input as any: Any value.

For example:

boolean('false') returns true.

Property IDs:

• namespace-uri:

number
This function converts the input to a number. A string that consists of optional white space,
followed by an optional minus sign, followed by a number, followed by white space is converted
to the IEEE 754 number that is nearest (according to the IEEE 754 round-to-nearest rule) to
the mathematical value represented by the string. Any other string is converted to a NaN. A
boolean true is converted to 1. A boolean false is converted to 0. A node-set is first converted
to a string as if by a call to the string function and then converted in the same way as a string
parameter.

Signature:

number(input as string or boolean or node-set)
Arguments

• input as string or boolean or node-set: Value to convert.

For example:

number('12.3') returns 12.3.

Appendix B
Conversion Functions

B-38

string
This function converts an object to a string.

Signature:

string(input as any)
Arguments

• input as any: The object to convert.

For example:

string(12.3) returns '12.3'.

Property IDs:

• namespace-uri:
• namespace-prefix:

DVM Functions
This section describes the domain value map (DVM) functions.

lookupValue
This function returns a string by looking up the value for the target column in a domain value
map, where the source column contains the given source value.

Signature:

dvm:lookupValue(dvmLocation,sourceColumnName,sourceValue,targetColumnName,default
Value)
Arguments:

• dvmLocation: The domain value map URI.

• sourceColumnName: The source column name.

• sourceValue: The source value (an XPath expression bound to the source document of
the XSLT transformation).

• targetColumnName: The target column name.

• defaultValue: If the value is not found, then the default value is returned.

• QualifierSourceColumn: The name of the qualifier column.

• QualifierSourceValue: The value of the qualifier.

Property IDs:

• namespace-uri: http://www.oracle.com/XSL/Transform/java/
oracle.tip.dvm.LookupValue

• namespace-prefix: dvm
For more information, see dvm:lookupValue.

Appendix B
DVM Functions

B-39

lookupValue1M
This function returns an XML document fragment containing values for multiple target columns
of a domain value map, where the value for the source column equals the source value.

Signature:

dvm:lookupValue1M(dvmLocation,sourceColumnName,sourceValue,targetColumnName1,targ
etColumnName2...)
Arguments:

• dvmMetadataURI: The domain value map URI.

• SourceColumnName: The source column name.

• SourceValue: The source value (an XPath expression bound to the source document of
the XSLT transformation).

• TargetColumnName: The name of the target columns. You must specify at least one column
name. The question mark symbol (?) indicates that you can specify multiple target column
names.

Property IDs:

• namespace-uri: http://www.oracle.com/XSL/Transform/java/
oracle.tip.dvm.LookupValue

• namespace-prefix:dvm
For more information, see dvm:lookupValue1M.

Database Functions
This section describes the database functions.

lookup-table
This function returns a string based on the SQL query generated from the parameters.

The string is obtained by executing:

SELECT outputColumn FROM table WHERE inputColumn = key

You execute it against the data source that can be either a JDBC connect string
(jdbc:oracle:thin:username/password@host:port:sid) or a data source JNDI identifier. Only
the Oracle thin driver is supported if the JDBC connect string is used.

Example:

oraext:lookup-table('employee','id','1234','last_name','jdbc:oracle:thin:xyz/
xyz@localhost:1521:ORCL')
Signature:

oraext:lookup-table(table, inputColumn, key, outputColumn, data source)
Arguments:

• table: The table from which to draw the data.

Appendix B
Database Functions

B-40

• inputColumn: The column within the table.

• key: The key value of the input column.

• outputColumn: The column to output the data.

• data source: The source of the data.

Property IDs:

• namespace-uri: http://www.oracle.com/XSL/Transform/java/
oracle.tip.pc.services.functions.ExtFunc

• namespace-prefix: oraext

query-database
This function returns a node set by executing the SQL query against the specified database.

Signature:

oraext:query-database(sqlquery as string, rowset as boolean, row as boolean, data
source as string)
Arguments:

• sqlquery: The SQL query to perform.

• rowset: Indicates if the rows should be enclosed in an element.

• row: Indicates if each row should be enclosed in an element.

• data source: Either a JDBC connect string (jdbc:oracle:thin:username/
password@host:port:sid) or a JNDI name for the database.

Property IDs:

• namespace-uri: http://www.oracle.com/XSL/Transform/java/
oracle.tip.pc.services.functions.ExtFunc

• namespace-prefix: oraext

sequence-next-val
Returns the next value of an Oracle sequence.

The next value is obtained by executing the following:

SELECT sequence.nextval FROM dual

You execute it against a data source that can be either a JDBC connect string
(jdbc:oracle:thin:username/password@host:port:sid) or a data source JNDI identifier. Only
the Oracle thin driver is supported if a JDBC connect string is used.

Example:

oraext:sequence-next-val('employee_id_sequence','jdbc:oracle:thin:xyz/
xyz@localhost:1521:ORCL')
Signature:

oraext:sequence-next-val(sequence as string, data source as string)
Arguments:

Appendix B
Database Functions

B-41

• sequence: The sequence number in the database.

• data source: Either a JDBC connect string or a data source JNDI identifier.

Property IDs:

• namespace-uri: http://www.oracle.com/XSL/Transform/java/
oracle.tip.pc.services.functions.ExtFunc

• namespace-prefix: oraext

Date Functions
This section describes the date functions.

add-dayTimeDuration-to-dateTime
This function returns a new date time value adding dateTime to the given duration.

If the duration value is negative, then the resulting value precedes dateTime.

Signature:

xpath20:add-dayTimeDuration-from-dateTime(dateTime as string, duration as string)
Arguments:

• dateTime as string: The dateTime to which the function adds the duration, in string
format.

• duration as string: The duration to add to the dateTime, or subtract if the duration is
negative, in string format.

Property IDs:

• namespace-uri: http://www.oracle.com/XSL/Transform/java/
oracle.tip.pc.services.functions.Xpath20

• namespace-prefix: xpath20

current-date
This function returns the current date in the ISO format of YYYY-MM-DD.

Signature:

xpath20:current-date(object)
Arguments:

• Object: The time in standard format.

Property IDs:

• namespace-uri: http://www.oracle.com/XSL/Transform/java/
oracle.tip.pc.services.functions.Xpath20

• namespace-prefix: xpath20

Appendix B
Date Functions

B-42

current-dateTime
This function returns the current datetime value in the ISO format of CCYY-MM-
DDThh:mm:ss.sTZD (where s denotes the time in milliseconds).

For example, if the time is 6 hours, 17 minutes, 15 seconds, 125 milliseconds in the evening
(PM) of May 12, 2004 in time zone Z, current-dateTime returns a value of:

2004-05-12T18:17:15.125Z

If com.oracle.soa.xpath.datetimeWithoutMillis is set to true in the setDomainEnv file, this
function returns the current datetime value in the following format (where ss denotes the time
in seconds):

CCYY-MM-DDThh:mm:ss.TZD

Signature:

xpath20:current-dateTime(object)
Arguments:

• object: The time in standard format.

Property IDs:

• namespace-uri: http://www.oracle.com/XSL/Transform/java/
oracle.tip.pc.services.functions.Xpath20

• namespace-prefix: xpath20

To display the datetime value in seconds:
1. Open the following file:

• On UNIX operating systems, open $MIDDLEWARE_HOME/user_projects/domains/
domain_name/bin/setDomainEnv.sh.

• On Window operating systems, open
MIDDLEWARE_HOME\user_projects\domains\domain_name\bin\setDomainEnv.bat.

2. Add com.oracle.soa.xpath.datetimeWithoutMillis with a value of true in the
JAVA_OPTIONS section. For example, JAVA_OPTIONS is currently set as follows:

JAVA_OPTIONS="${JAVA_OPTIONS} ${JAVA_PROPERTIES}
-Dwlw.iterativeDev=${iterativeDevFlag} -Dwlw.testConsole=${testConsoleFlag}
-Dwlw.logErrorsToConsole=${logErrorsToConsoleFlag} "

After modification, JAVA_OPTIONS appears as follows:

 JAVA_OPTIONS="${JAVA_OPTIONS} ${JAVA_PROPERTIES}
-Dwlw.iterativeDev=${iterativeDevFlag} -Dwlw.testConsole=${testConsoleFlag}
-Dwlw.logErrorsToConsole=${logErrorsToConsoleFlag}
-Dcom.oracle.soa.xpath.datetimeWithoutMillis=true"

3. Restart the server.

Appendix B
Date Functions

B-43

current-time
This function returns the current time in ISO format. The format is hh:mm:ssTZD.

Signature:

xpath20:current-time(object)
Arguments:

• object: The time in standard format.

Property IDs:

• namespace-uri: http://www.oracle.com/XSL/Transform/java/
oracle.tip.pc.services.functions.Xpath20

• namespace-prefix: xpath20

day-from-dateTime
This function returns the day from dateTime. The default day is 1.

Signature:

xpath20:day-from-dateTime(object)
Arguments:

• object: The time in standard format as a string.

Property IDs:

• namespace-uri: http://www.oracle.com/XSL/Transform/java/
oracle.tip.pc.services.functions.Xpath20

• namespace-prefix: xpath20

format-dateTime
This function returns the formatted string of dateTime using the format provided. For examples
of date and time formatting strings, see the W3C XSL Transformations documentation; for
example, [Y0001]-[M01]-[D01].

Signature:

xpath20:format-dateTime(dateTime as string, format as string)
Arguments:

• dateTime: The dateTime to be formatted.

• format: The format for the output.

Property IDs:

• namespace-uri: http://www.oracle.com/XSL/Transform/java/
oracle.tip.pc.services.functions.Xpath20

• namespace-prefix: xpath20

Appendix B
Date Functions

B-44

hours-from-dateTime
This function returns the hour from dateTime. The default hour is 0.

Signature:

xpath20:hours-from-dateTime(dateTime as string)
Arguments:

• dateTime: The string with the date and time.

Property IDs:

• namespace-uri: http://www.oracle.com/XSL/Transform/java/
oracle.tip.pc.services.functions.Xpath20

• namespace-prefix: xpath20

minutes-from-dateTime
This function returns the minutes from dateTime. The default minute is 0.

Signature:

xpath20:minutes-from-dateTime(dateTime as string)
Arguments:

• dateTime as string: The date and time.

Property IDs:

• namespace-uri: http://www.oracle.com/XSL/Transform/java/
oracle.tip.pc.services.functions.Xpath20

• namespace-prefix: xpath20

month-from-dateTime
This function returns the month from dateTime. The default month is 1 (January).

Signature:

xpath20:month-from-dateTime(dateTime as string)
Arguments:

• dateTime as string: The dateTime to be formatted.

Property IDs:

• namespace-uri: http://www.oracle.com/XSL/Transform/java/
oracle.tip.pc.services.functions.Xpath20

• namespace-prefix: xpath20

seconds-from-dateTime
This function returns the seconds from dateTime. The default second is 0.

Appendix B
Date Functions

B-45

Signature:

xpath20:seconds-from-dateTime(dateTime as string)
Arguments:

• dateTime as a string: The dateTime as a string.

Property IDs:

• namespace-uri: http://www.oracle.com/XSL/Transform/java/
oracle.tip.pc.services.functions.Xpath20

• namespace-prefix: xpath20

subtract-dayTimeDuration-from-dateTime
This function returns a new dateTime value after subtracting the duration from dateTime.

If the duration value is negative, then the resulting dateTime value follows input-dateTime
value.

Signature:

xpath20:subtract-dayTimeDuration-from-dateTime(dateTime as string, duration as
string)
Arguments:

• dateTime as string: The dateTime from which the function subtracts the duration, in
string format.

• duration as string: The duration to subtract from the dateTime, or to add if the duration
is negative, in string format.

Property IDs:

• namespace-uri: http://www.oracle.com/XSL/Transform/java/
oracle.tip.pc.services.functions.Xpath20

• namespace-prefix: xp20

timezone-from-dateTime
This function returns the time zone from dateTime. The default time zone is GMT+00:00.

Signature:

xpath20:timezone-from-dateTime(dateTime as string)
Arguments:

• dateTime as string: The dateTime for which this function returns a time zone.

Property IDs:

• namespace-uri: http://www.oracle.com/XSL/Transform/java/
oracle.tip.pc.services.functions.Xpath20

• namespace-prefix: xpath20

Appendix B
Date Functions

B-46

year-from-dateTime
This function returns the year from dateTime.

Signature:

xpath20:year-from-dateTime(dateTime as string)
Arguments:

• dateTime: The dateTime as a string.

Property IDs:

• namespace-uri: http://www.oracle.com/XSL/Transform/java/
oracle.tip.pc.services.functions.Xpath20

• namespace-prefix: xpath20

Identity Service Functions
This section describes the identity service functions.

getDefaultRealmName
This function returns the default realm name.

Signature:

ids:getDefaultRealmName()
Arguments:

There are no arguments for this function.

Property IDs:

• namespace-uri: http://xmlns.oracle.com/bpel/services/IdentityService/xpath
• namespace-prefix: ids

getGroupProperty
This function returns the property value for the given group. If the group or attribute does not
exist, it returns null.

Signature:

ids:getGroupProperty(groupName, attributeName, realmName)
Arguments:

• groupName: String or element containing the group whose attribute must be retrieved.

• attributeName: String or element containing the name of the group attribute.

If the identity service uses the LDAP providerType or JAZN LDAP-based providers,
configure the LDAP server to enable searching by those attributes.

Appendix B
Identity Service Functions

B-47

• realmName: The realm name. This is optional. If not specified, the default realm is
assumed.

Property IDs:

• namespace-uri: http://xmlns.oracle.com/bpel/services/IdentityService/xpath
• namespace-prefix: ids

getManager
This function gets the manager of a given user. If the user does not exist or there is no
manager for this user, it returns null.

Signature:

ids:getManager(userName, realmName)
Arguments:

• userName: The user name.

• realmName: The realm name. This is optional. If not specified, the default realm is
assumed.

Property IDs:

• namespace-uri:http://xmlns.oracle.com/bpel/services/IdentityService/xpath
• namespace-prefix: ids

getManagerFromManagementChain
This function gets the management chain for a given user based on upToUserName, upToTitle,
and upToLevel. If the user does not exist or if there is no manager for the user, it returns null.
Regular expressions can be used in upToTitle and upToUser parameters.

Signature:

ids:getManagerFromManagementChain()

getReportees
This function gets the reportees of the user. If the user does not exist, it returns null. This
function returns a list of nodes. Each node in the list is called user.

Signature:

ids:getReportees(userName, upToLevel, realmName)
Arguments:

• userName: The user name.

• upToLevel- Defines the levels of indirect reportees to be included in the result. If the value
is 1, it returns only direct reportees. If the value is -1, it returns all levels of reportees. It can
be either an element with value xsd:number or a string, for example '1'.

• realmName: The realm name. This is optional and, if not specified, the default realm is
assumed.

Property IDs:

Appendix B
Identity Service Functions

B-48

• namespace-uri:http://xmlns.oracle.com/bpel/services/IdentityService/xpath
• namespace-prefix: ids

getSupportedRealmNames
This function returns the supported realm names.

Signature:

ids:getSupportedRealms()
Property IDs:

• namespace-uri: http://xmlns.oracle.com/bpel/services/IdentityService/xpath
• namespace-prefix: ids

getUserProperty
This function returns the property of the user. If the user does not exist, it returns null. Use
custom attributes if the desired attribute does not exist.

Signature:

ids:getUserProperty(userName, attributeName, realmName)
Arguments:

• userName: String or element containing the user whose attribute must be retrieved.

• attributeName: The name of the user attribute.

If the identity service uses the LDAP providerType or JAZN LDAP-based providers,
configure the LDAP server to enable searching by those attributes.

• realmName: The realm name. This is optional. If not specified, the default realm name is
assumed.

Property IDs:

• namespace-uri: http://xmlns.oracle.com/bpel/services/IdentityService/xpath
• namespace-prefix: ids
For more information, see How to Select Email Addresses and Telephone Numbers
Dynamically.

getUserRoles
This function gets the user roles. This function returns a list of objects, either application roles
or groups, depending on the roleType. If the user or role does not exist, it returns null.

Signature:

ids:getUserRoles(userName, roleType, direct)
Arguments:

• userName: String or element containing the user whose roles are to be retrieved.

• roleType: The role type that takes one of three values: ApplicationRole,
EnterpriseRole, or AnyRole.

Appendix B
Identity Service Functions

B-49

• direct: A string or element indicating if direct or indirect roles must be fetched. This is
optional. If not specified, only direct roles are fetched. This is either xsd:boolean or string
true/false.

Property IDs:

• namespace-uri:http://xmlns.oracle.com/bpel/services/IdentityService
• namespace-prefix: ids

getUsersInAppRole
This function returns the list of users who are granted this application role. If either the
application role name or the application name provided as input is null, then it returns null.

Signature: ids:getUsersInAppRole(appRoleName, appName, direct, realmName)
Arguments:

• appRoleName: String or element containing the application role whose members should be
retrieved.

• appName: Application name within which the application role is created.

• direct: String or element indicating if only direct grantees or all users should be fetched.

• realmName: String or element containing the realm name. This is optional and, if not
specified, the default realm is used.

getUsersInGroup
This function gets the users in a group. If the group does not exist, it returns null. This function
returns a list of nodes. Each node in the list is called user.

Signature:

ids:getUsersInGroup(groupName, direct, realmName)
Arguments:

• groupName: The group name.

• direct: A boolean flag. If true, this function returns direct user grantees; otherwise, all
user grantees are returned. It can be either an element with value xsd:boolean or string
'true'/'false'.

• realmName: The realm name. This is optional. If not specified, the default realm name is
assumed.

Property IDs:

• namespace-uri: http://xmlns.oracle.com/bpel/services/IdentityService/xpath
• namespace-prefix: ids

isUserInAppRole
This function verifies if a user has a specific application role.

Signature:

ids:isUserInAppRole(userName, appRoleName, appName, realmName)

Appendix B
Identity Service Functions

B-50

Arguments:

• userName: String or element containing the user whose participation in the role must be
verified.

• appRoleName: The application role name.

• appName: The application name (for example, OracleBPMProcessRolesApp,
OracleBPMComposerRolesApp, and so on).

• realmName: The realm name. This is optional. If not specified, the default realm is
assumed. This function returns a boolean true or false.

isUserInRole
This function verifies if a user has a specific role.

Signature:

ids:isUserInRole(userID, roleName, realmName)
Arguments:

• userID: A string or element containing the user whose participation in the role must be
verified.

• roleName: The role name.

• realmName: The realm name. This is optional. If not specified, the default realm name is
assumed.

Property IDs:

• namespace-uri:http://xmlns.oracle.com/bpel/services/IdentityService/xpath
• namespace-prefix: ids

lookupGroup
This function gets the group. If the group does not exist, it returns null.

Signature:

ids:lookupGroup(groupName, realmName)
Arguments:

• groupName: The group name.

• realmName: The realm name. This is optional. If not specified, the default realm name is
assumed.

Property IDs:

• namespace-uri:http://xmlns.oracle.com/bpel/services/IdentityService/xpath
• namespace-prefix: ids

lookupUser
This function gets the user object. If the user does not exist, it returns null.

Signature:

Appendix B
Identity Service Functions

B-51

ids:lookupUser(userName, realmName)
Arguments:

• userName: The user name.

• realmName: The realm name. This is optional. If not specified, the default realm name is
assumed.

Property IDs:

• namespace-uri: http://xmlns.oracle.com/bpel/services/IdentityService/xpath
• namespace-prefix: ids

Logical Functions
This section describes the logical function.

and
This function returns true if both parameters evaluate to true. Otherwise, it returns false.

Signature:

a-boolean and another-boolean
Arguments:

• a-boolean: One boolean value to evaluate.

• another-boolean: The other boolean value to evaluate.

equals
This function returns true if the two parameters are equal. Otherwise, it returns false.

Signature:

parameter1 = parameter2
Arguments:

• parameter1: One parameter to evaluate.

• parameter2: The other parameter to evaluate.

false
This function returns a boolean value of false.

Signature:

false()

greater
This function returns true if the first parameter is greater than the second parameter.
Otherwise, it returns false.

Appendix B
Logical Functions

B-52

Signature:

parameter1 > parameter2
Arguments:

• parameter1: First parameter to evaluate.

• parameter2: Second parameter to evaluate.

greater equals
This function returns true if the first parameter is greater than or equal to the second
parameter. Otherwise, it returns false.

Signature:

parameter1 >= parameter2

less
This function returns true if the first parameter is less than the second parameter. Otherwise, it
returns false.

Signature:

parameter1 < parameter2
Arguments:

• parameter1: First parameter to evaluate.

• parameter2: Second parameter to evaluate.

less equals
This function returns true if the first parameter is less than or equal to the second parameter.
Otherwise, it returns false.

Signature:

parameter1 <= parameter2
Arguments:

• parameter1: First parameter to evaluate.

• parameter2: Second parameter to evaluate.

not
This function returns the negation of the parameter.

Signature:

unobtainable as boolean)
Argument:

• input as boolean: The value to evaluate.

Appendix B
Logical Functions

B-53

not equals
This function returns true if the two parameters are not equal. Otherwise, it returns false.

Signature:

parameter1!= parameter2
Arguments:

• parameter1: First parameter to evaluate.

• parameter2: Second parameter to evaluate.

or
This function returns true if either parameter evaluates to true. Otherwise, it returns false.

Signature:

a-boolean or another-boolean
Arguments:

• a-boolean: First parameter to evaluate.

• another-boolean: Second parameter to evaluate.

true
This function returns a boolean value of true.

Signature:

true()
Property IDs:

• namespace-uri:

• namespace-prefix:

Mathematical Functions
This section describes the mathematical functions.

abs
This function returns the absolute value of inputNumber.If the inputNumber is not negative, the
inputNumber is returned. If the inputNumber is negative, the negation of inputNumber is
returned.

Example:

abs(-1) returns 1.

Signature:

xpath20:abs(inputNumber as number)

Appendix B
Mathematical Functions

B-54

Arguments:

• inputNumber as number: The number for which the function returns an absolute value.

Property IDs:

• namespace-uri: http://www.oracle.com/XSL/Transform/java/
oracle.tip.pc.services.functions.Xpath20

• namespace-prefix: xpath20

add
This function adds two numbers.

Example:

2 + 2 = 4

ceiling
This function returns the smallest (closest to negative infinity) number that is not less than the
input number and is an integer.

Example:

ceiling(1.6) returns 2.0.

count
This function returns the number of nodes in the input node set.

Example:

count(inputNodeSet as node-set)
Argument:

• inputNodeSet: The input node set.

divide
This function returns the first number divided by the second number.

Example:

2 div 2 = 1

floor
This function returns the largest (closest to positive infinity) number that is not greater than the
input number and is an integer.

Signature:

floor(1.6) returns 1.0

Appendix B
Mathematical Functions

B-55

max-value-among-nodeset
This function returns the maximum value from a list of input numbers, the node set
inputNumber. The node set inputNumber can be a collection of text nodes or elements
containing text nodes. In the case of elements, the first text node's value is considered.

Signature:

oraext:max-value-among-nodeset(inputNumber as node-set)
Arguments:

• inputNumber: The node set of input numbers.

Property IDs:

• namespace-uri: http://www.oracle.com/XSL/Transform/java/
oracle.tip.pc.services.functions.ExtFunc

• namespace-prefix: oraext

min-value-among-nodeset
This function returns the minimum value from a list of input numbers, the node set
inputNumbers. The node set can be a collection of text nodes or elements containing text
nodes. In the case of elements, the first text node's value is considered.

Signature:

oraext:min-value-among-nodeset(inputNumbers as node-set)
Arguments:

• inputNumber: The node set of input numbers.

Property IDs:

• namespace-uri: http://www.oracle.com/XSL/Transform/java/
oracle.tip.pc.services.functions.ExtFunc

• namespace-prefix: oraext

mod
This function returns the remainder from a truncating division.

Example:

5 mod 2 returns 1

multiply
This function multiplies two numbers.

Example:

2 * 2 = 4

Appendix B
Mathematical Functions

B-56

round
This function returns the number that is closest to the input number and is an integer. If there
are two numbers, the one that is closest to positive infinity is returned.

Example:

round(1.5) returns 2.0.

square-root
This function returns the square root of inputNumber.

Example:

oraext:square-root(25) returns 5
Signature:

oraext:square-root(inputNumber as number)
Arguments:

• inputNumber: The input number for which the function calculates the square root.

Property IDs:

• namespace-uri: http://www.oracle.com/XSL/Transform/java/
oracle.tip.pc.services.functions.ExtFunc

• namespace-prefix: oraext

subtract
This function subtracts the second number from the first number.

Example:

2 - 2 = 0

sum
This function returns the sum of all nodes in numbers.

Signature:

sum(numbers as node-set-set)
Argument:

• numbers as node-set-set: Total number of node sets.

Property IDs:

• namespace-uri:

• namespace-prefix:

Appendix B
Mathematical Functions

B-57

unary
This function multiplies a number by -1.

Signature:

-(-1) = 1

Node Set Functions
This section describes the node set functions.

last
This function returns the context size.

Signature:

last()

local-name
This function returns the local part of the name of a node.

Signature:

local-name([inputNodeSet as node-set])
Arguments:

• inputNodeSet as node-set: The name of the node set.

name
This function returns the QName of a node.

Signature:

name([inputNodeSet as node-set])
Argument:

• inputNodeSet as node-set: The name of the node set.

namespace-uri
This function returns the URI namespace of a node.

Signature:

namespace-uri([inputNodeSet as node])
Argument:

• inputNodeSet as node-set: The name of the node set.

Appendix B
Node Set Functions

B-58

position
This function returns the context position.

Signature:

position()

union
This function computes the union of its operands, which must be node sets.

Signature:

node-set | node-set

String Functions
This section describes the string functions.

compare
This function returns the lexicographical difference between inputString and compareString
by comparing the unicode value of each character of both the strings.

This function returns -1 if inputString lexicographically precedes the compareString.

This function returns 0 if both inputString and compareString are equal.

This function returns 1 if inputString lexicographically follows the compareString.

Example:

xpath20:compare('Audi', 'BMW') returns -1
Signature:

xpath20:compare(inputString as string, compareString as string)
Arguments:

• variableName: The source variable for the data.

• propertyName: The qualified name (QName) of the property.

Property IDs:

• namespace-uri: http://www.oracle.com/XSL/Transform/java/
oracle.tip.pc.services.functions.Xpath20

• namespace-prefix: xpath20

compare-ignore-case
This function returns the lexicographical difference between inputString and compareString
while ignoring case and comparing the unicode value of each character of both the strings.
Table B-2 provides details.

Appendix B
String Functions

B-59

Table B-2 Values Returned

This Function Returns... If...

-1 inputString lexicographically precedes the compareString.

0 Both inputString and compareString are equal.

1 inputString lexicographically follows the compareString.

Example:

oraext:compare-ignore-case('Audi','bmw') returns -1
Signature:

xp:compare-ignore-case(inputString as string, compareString as string)
Arguments:

• inputString: The string of data to be searched.

• CompareString: The string to compare against the input string.

Property IDs:

• namespace-uri: http://www.oracle.com/XSL/Transform/java/
oracle.tip.pc.services.functions.Xpath20

• namespace-prefix: oraext

concat
This function returns the concatenation of its string parameters.

Signature:

concat(string1 as string, string2 as string, ...)
Arguments:

• string1: String value to concatenate.

• string2: String value to concatenate.

contains
This function returns true if inputString contains searchString. Otherwise, it returns false.

Signature:

contains(inputString as string,searchString as string)
For example:

contains('Michael Kay','Michael') returns true.

create-delimited-string
This function returns a delimited string created from a nodeSet delimited by a delimiter.

Appendix B
String Functions

B-60

Signature:

oraext:create-delimited-string(nodeSet as node-set, delimiter as string)
Arguments:

• nodeSet: The node set to convert into a delimited string.

• delimiter: The character that separates the items in the output string (for example, a
comma or a semicolon).

Property IDs:

• namespace-uri: http://www.oracle.com/XSL/Transform/java/
oracle.tip.pc.services.functions.ExtFunc

• namespace-prefix: oraext

ends-with
This function returns true if inputString ends with searchString.

Example:

xpath20:ends-with('XSL Map','Map') returns true
Signature:

xpath20:ends-with(inputString as string, searchString as string)
Arguments:

• inputString: The string of data to be searched.

• searchString: The string for which the function searches.

Property IDs:

• namespace-uri: http://www.oracle.com/XSL/Transform/java/
oracle.tip.pc.services.functions.Xpath20

• namespace-prefix: xpath20

format-string
This function returns the message formatted with the arguments passed. At least one
argument is required and supports up to a maximum of 10 arguments.

Example:

oraext:format-string('{0} + {1} = {2}','2','2','4') returns '2 + 2 = 4'
Signature:

oraext:format-string(string,string,string...)
Arguments:

• string: One of the strings to use in the formatted output.

Property IDs:

• namespace-uri: http://www.oracle.com/XSL/Transform/java/
oracle.tip.pc.services.functions.ExtFunc

Appendix B
String Functions

B-61

• namespace-prefix: oraext

get-content-as-string
This function returns the XML representation of the input element.

Signature:

oraext:get-content-as-string(element as node-set)
Arguments:

• element as node-set: The input element that the function returns as an XML
representation.

Property IDs:

• namespace-uri: http://www.oracle.com/XSL/Transform/java/
oracle.tip.pc.services.functions.ExtFunc

• namespace-prefix: oraext

get-localized-string
This function returns the locale-specific string for the key. This function uses language, country,
variant, and resource bundle to identify the correct resource bundle. All parameters must be in
string format. Use the string() function to convert any parameter values to strings before
sending them to get-localized-string.

The resource bundle is obtained by resolving resourceLocation against the resourceBaseURL.
The URL is assumed to be a directory only if it ends with /.

Usage: oraext:get-localized-string(resourceBaseURL as string, resourceLocation as
string, resource bundle as string, language as string, country as string, variant
as string, key as string)
Example: oraext:get-localized-
string('file:/c:/','','MyResourceBundle','en','US','','MSG_KEY') returns a locale-
specific string from a resource bundle 'MyResourceBundle' in the C:\ directory.

Signature:

oraext:get-localized-
string(resourceURL,resourceLocation,resourceBundleName,language,country,variant,m
essageKey)
Arguments:

• resourceURL: The URL of the resource.

• resourceLocation: The subdirectory location of the resource.

• resourceBundleName: The name of the ZIP file containing the resource bundle.

• language: The language of the localized output.

• country: The country of the localized output.

• variant: The language variant of the localized output.

• messageKey: The message key in the resource bundle.

Appendix B
String Functions

B-62

Property IDs:

• namespace-uri: http://www.oracle.com/XSL/Transform/java/
oracle.tip.pc.services.functions.ExtFunc

• namespace-prefix: oraext

index-within-string
This function returns the zero-based index of the first occurrence of searchString within the
inputString.

This function returns -1 if searchString is not found.

Example:

oraext:index-within-string('ABCABC, 'B') returns 1
Signature:

oraext:index-within-string(inputString as string, searchString as string)
Arguments:

• inputString: The string of data to be searched.

• searchString: The string for which the function searches in inputString.

Property IDs:

• namespace-uri: http://www.oracle.com/XSL/Transform/java/
oracle.tip.pc.services.functions.ExtFunc

• namespace-prefix: oraext

last-index-within-string
This function returns the zero-based index of the last occurrence of searchString within
inputString.

This function returns -1 if searchString is not found.

Example:

oraext:last-index-within-string('ABCABC', 'B') returns 4
Signature:

oraext:last-index-within-string(inputString as string, searchString as string)
Arguments:

• inputString: The string of data to be searched.

• searchString: The string for which the function searches in the inputString.

Property IDs:

• namespace-uri: http://www.oracle.com/XSL/Transform/java/
oracle.tip.pc.services.functions.ExtFunc

• namespace-prefix: oraext

Appendix B
String Functions

B-63

left-trim
This function returns the value of inputString after removing all the leading white spaces.

Example:

oraext:left-trim(' account ') returns 'account '
Signature:

oraext:left-trim(inputString)
Arguments:

• inputString: The string to be left-trimmed.

Property IDs:

• namespace-uri: http://www.oracle.com/XSL/Transform/java/
oracle.tip.pc.services.functions.ExtFunc

• namespace-prefix: oraext

lower-case
This function returns the value of inputString after translating every character to its lower-
case correspondent.

Example:

xpath20:lower-case('ABc!D') returns 'abc!d'
Signature:

xpath20:lower-case(inputString)
Arguments:

• inputString: The string of data that is in lowercase.

Property IDs:

• namespace-uri: http://www.oracle.com/XSL/Transform/java/
oracle.tip.pc.services.functions.Xpath20

• namespace-prefix: xpath20

matches
This function returns true if intputString matches the regular expression pattern
regexPattern.

Example:

xpath20:matches('abracadabra', '^a.*a$') returns true
Signature:

xpath20:matches(intputString, regexPattern)
Arguments:

Appendix B
String Functions

B-64

• inputString: The string of data that must be matched.

• regexPattern: The regular expression pattern.

Property IDs:

• namespace-uri: http://www.oracle.com/XSL/Transform/java/
oracle.tip.pc.services.functions.Xpath20

• namespace-prefix: xpath20

normalize-space
This function returns the input string with white space normalized by stripping leading and
trailing white space and replacing sequences of white space characters with a single space.

Signature:

normalize-space([inputString as string])
Arguments:

• inputString: The input string.

For example:

normalize-space(' book title ') returns 'book title'.

right-trim
This function returns the value inputString after removing all the trailing white spaces.

Example:

oraext:right-trim(' account ') returns ' account'
Signature:

oraext:right-trim(inputString as string)
Arguments:

• inputString: The input string to be right-trimmed.

Property IDs:

• namespace-uri: http://www.oracle.com/XSL/Transform/java/
oracle.tip.pc.services.functions.ExtFunc

• namespace-prefix: oraext

starts-with
This function returns true if the input string starts with a search string. Otherwise, it returns
false.

Signature:

starts-with(inputString as string,searchString as string)
Arguments:

• inputString: The input string.

Appendix B
String Functions

B-65

• searchString: The search string.

For example:

starts-with('data type','data') returns true.

string-length
This function returns the number of characters in the input string.

Signature:

string-length([inputString as string])
Argument:

• inputString: The input string.

For example,

string-length('xml') returns 3.

Property IDs:

• namespace-uri:

• namespace-prefix:

substring
This function returns the substring of the input string starting at the position specified in the
starting location with the length specified in length.

Signature:

substring(inputString as string,startingLoc as number,[length as number])
Arguments:

• inputString: The input string.

• startingLoc: The starting location.

• length as number: The length as a number.

For example:

substring('12345',2) returns '2345'.

substring-after
This function returns the substring of the input string that follows the first occurrence of the
search string, or the empty string if the input string does not contain the search string.

Signature:

substring-after(inputString as string,searchString as string)
Arguments:

• inputString: The input string.

• searchString: The string for which to search.

Appendix B
String Functions

B-66

For example,

substring-after('1999/04/01','/') returns '04/01.

substring-before
This function returns the substring of the input string that precedes the first occurrence of the
search string or the empty string if the input string does not contain the search string.

Signature:

substring-before(inputString as string,searchString as string)
Arguments:

• inputString: The input string.

• searchString: The string for which to search.

For example:

substring-before('1999/04/01','/') returns '1999'.

translate
Signature:

translate(inputString as string,fromString as string,toString as string)
Arguments:

• inputString: The input string.

• fromString: The from string.

• toString: The to string.

For example,

translate('--aaa--','abc-','ABC') returns 'AAA'.

upper-case
This function returns the value of inputString after translating every character to its
uppercase correspondent.

Example:

xpath20:upper-case('abCd0') returns 'ABCD0'
Signature:

xpath20:upper-case(inputString as string)
Arguments:

• inputString: The string of data that is in uppercase.

Property IDs:

• namespace-uri: http://www.oracle.com/XSL/Transform/java/
oracle.tip.pc.services.functions.Xpath20

Appendix B
String Functions

B-67

• namespace-prefix: xpath20

Workflow Service Functions
This section describes the workflow service functions.

clearTaskAssignees
This function clears the current task assignees.

Signature:

hwf:clearTaskAssignees(taskID)
Arguments:

• task: The task ID of the task.

Property IDs:

• namespace-uri: http://xmlns.oracle.com/bpel/workflow/xpath
• namespace-prefix: hwf

createWordMLDocument
This function creates a Microsoft Word ML document as a base 64-encoded string.

Signature:

hwf:createWordMLDocument(node, xsltURI)
Arguments:

• node: The node is an XML node that is an input to the transformation.

• xsltURI: The XSLT used to transform the node (the first argument) to Microsoft Word ML.

Property IDs:

• namespace-uri: http://xmlns.oracle.com/bpel/workflow/xpath
• namespace-prefix: hwf

dynamicTaskAssign
This function selects an assignee of the specified type from the input, using the specified
pattern, in the context of the current task.

This function can only be used in the context of a human task.

Signature:

hwf:dynamicTaskAssign(patternName, participants, inputParticipantType,
targetAssigneeType, isGlobal, invocationContext, parameter1, parameter2, ...,
parameterN)
Arguments:

Appendix B
Workflow Service Functions

B-68

• patternName: (Mandatory) Name of the pattern to use. The patterns ROUND_ROBIN,
LEAST_BUSY, and MOST_PRODUCTIVE are automatically provided. It is possible to configure
the SOA server with custom patterns.

• participants: (Mandatory) The participant or participants from which to select the
assignee. This can be a string or element containing a participant name or a comma-
separated list of participant names, or a set of elements containing participant names or
comma-separated lists of participant names. Participants must all be of the same type.

• inputParticipantType: (Mandatory) The type of the input participants (user, group, or
application_role).

• targetAssigneeType: (Mandatory) The type of assignee to select (user, group, or
application_role). The value must match the context in which the function is used (for
example, it must be a user if dynamically selecting an owner user. Note that if
inputParticipantType is the user, the only valid value here is the user.

• isGlobal: A boolean value that indicates to access the pattern using tasks of all types or
tasks of the same type as the current task. This is optional. It defaults to false.

• invocationContext: The string to uniquely identify where this function is used. If not
specified, a default context is assigned.

• parameterN : Some dynamic assignment patterns enable parameters to be specified. The
parameter values can be specified as name-value pairs, using an ?=? character as a
delimiter (for example, ?TIME_PERIOD=7?).

Examples:

hwf:dynamicTaskAssign(?LEAST_BUSY?,?jcooper,jstein,mtwain?,?user?,?user?,?true?,?
ErrorAssignee?)
hwf:dynamicTaskAssign(?ROUND_ROBIN?,?LoanAgentGroup?,?group?,?user?,?false?,?
OwnerUser?)
hwf:dynamicTaskAssign(?MOST_PRODUCTIVE?,task:task/task:payload/task:users,?
user?,?user?,?false?,?OwnerUser?,?TIME_PERIOD=7?)
hwf:dynamicTaskAssign(?LEAST_BUSY?,?DeveloperRole?,?application_role?,?group?)

getNotificationProperty
This function retrieves a notification property. This function evaluates to corresponding values
for each notification. Only use this function in the notification content XPath expression. If used
elsewhere, it returns null.

Signature:

hwf:getNotificationProperty(propertyName)
Arguments:

• propertyName: The name of the notification property. It can be one of the following values:

– recipient: The recipient of the notification.

– recipientDisplay: The display name of the recipient.

– taskAssignees: The task assignees.

– taskAssigneesDisplay: The display names of the task assignees.

– locale: The locale of the recipient.

Appendix B
Workflow Service Functions

B-69

– taskId: The task ID of the task for which the notification is meant.

– taskNumber: The task number of the task for which the notification is meant.

– appLink: The HTML link to the Oracle BPM Worklist task details page.

Property IDs:

• namespace-uri: http://xmlns.oracle.com/bpel/workflow/xpath
• namespace-prefix: hwf

getNumberOfTaskApprovals
This function computes the number of times the task was approved.

Signature:

hwf:getNumberOfTaskApprovals(taskId)
Arguments:

• taskId: The ID of the task.

Property IDs:

• namespace-uri: http://xmlns.oracle.com/bpel/workflow/xpath
• namespace-prefix: hwf

getPreviousTaskApprover
This function retrieves the previous task approver.

Signature:

hwf:getPreviousTaskApprover(taskId)
Arguments:

• taskId: The ID of the task.

Property IDs:

• namespace-uri: http://xmlns.oracle.com/bpel/workflow/xpath
• namespace-prefix: hwf

getTaskAttachmentByIndex
This function retrieves the task attachment at the specified index.

Signature:

hwf:getTaskAttachmentByIndex(taskId, attachmentIndex)
Arguments:

• taskId: The task ID of the task.

• attachmentIndex: The index of the attachment. The index begins at 1. The
attachmentIndex argument can be a node whose value evaluates to the index number as
a string (all node values are strings). If specified statically, it can be specified as '1'.

Appendix B
Workflow Service Functions

B-70

Property IDs:

• namespace-uri: http://xmlns.oracle.com/bpel/workflow/xpath
• namespace-prefix: hwf

getTaskAttachmentByName
This function retrieves the task attachment by the attachment name.

Signature:

hwf:getTaskAttachmentByName(taskId, attachmentName)
Arguments:

• taskId: The task ID of the task.

• attachmentName: The name of the attachment.

Property IDs:

• namespace-uri: http://xmlns.oracle.com/bpel/workflow/xpath
• namespace-prefix: hwf

getTaskAttachmentContents
This function retrieves the task attachment contents by the attachment name.

Signature:

hwf:getTaskAttachmentContents(taskId, attachmentName)
Arguments:

• taskId: The task ID of the task.

• attachmentName: The name of the attachment.

Property IDs:

• namespace-uri:http://xmlns.oracle.com/bpel/workflow/xpath
• namespace-prefix: hwf

getTaskAttachmentsCount
This function retrieves the number of task attachments.

Signature:

hwf:getTaskAttachmentsCount(taskId)
Arguments:

• taskId: The task ID of the task.

Property IDs:

• namespace-uri: http://xmlns.oracle.com/bpel/workflow/xpath
• namespace-prefix: hwf

Appendix B
Workflow Service Functions

B-71

getTaskResourceBundleString
This function returns the internationalized resource value from the resource bundle associated
with a task definition.

Signature:

hwf:getTaskResourceBundleString(taskId, key, locale?)
Arguments:

• taskId: The task ID of the task.

• key: The key to the resource.

• locale: (Optional) The locale. This value defaults to system locale. This returns a
resourceString XML element in the namespace http://xmlns.oracle.com/bpel/
services/taskService, which contains the string from the resource bundle.

Property IDs:

• namespace-uri: http://xmlns.oracle.com/bpel/workflow/xpath
• namespace-prefix: hwf

XREF Functions
This section describes the cross reference (XREF) functions.

lookupPopulatedColumns
This function looks up a cross-reference column for a single value or multiple values
corresponding to a value in a reference column.

Signature:

xref:lookupPopulatedColumns(tableName,columnName,value,needAnException)
Arguments:

• xrefTableName: The name of the reference table.

• xrefColumnName: The name of the reference column.

• xrefValue: The value corresponding to the reference column name.

• needAnException: If this value is set to true, then an exception is thrown when no value is
found in the referenced column. Otherwise, an empty node set is returned.

Property IDs:

• namespace-uri:http://www.oracle.com/XSL/Transform/java/
oracle.tip.xref.xpath.XRefXPathFunctions

• namespace-prefix: xref

lookupXRef
This function looks up a cross-reference column for a value that corresponds to a value in a
reference column.

Appendix B
XREF Functions

B-72

Signature:

xref:lookupXRef(tableName,referenceColumnName,referenceValue,columnName,needAnExc
eption)
Arguments:

• xrefLocation: The cross-reference URI.

• xrefReferenceColumnName: The name of the reference column.

• xrefReferenceValue: The value corresponding to the reference column name.

• xrefColumnName: The name of the column to be looked up for the value.

• needAnException: When the value is set to true, an exception is thrown if the value is not
found. Otherwise, an empty value is returned.

Property IDs:

• namespace-uri:http://www.oracle.com/XSL/Transform/java/
oracle.tip.xref.xpath.XRefXPathFunctions

• namespace-prefix: xref
For more information, see About the xref:lookupXRef Function.

lookupXRef1M
This function looks up a cross-reference column for multiple values corresponding to a value in
a reference column.

Signature:

xref:lookupXRef1M(tableName,referenceColumnName,referenceValue,columnName,needAnE
xception)
Arguments:

• xrefLocation: The cross-reference URI.

• xrefReferenceColumnName: The name of the reference column.

• xrefReferenceValue: The value corresponding to the reference column name.

• xrefColumnName: The name of the column to be looked up for the value.

• needAnException: If this value is set to true, then an exception is thrown when the
referenced value is not found. Otherwise, an empty node set is returned.

Property IDs:

• namespace-uri:http://www.oracle.com/XSL/Transform/java/
oracle.tip.xref.xpath.XRefXPathFunctions

• namespace-prefix: xref
For more information, see About the xref:lookupXRef1M Function.

markForDelete
This function deletes a value in a cross-reference table. The row, containing the column value
passed to the function, is deleted from the XREF_DATA table and moved to the

Appendix B
XREF Functions

B-73

XREF_DELETED_DATA table. This function returns true if the deletion is successful. Otherwise, it
returns false.

Signature:

xref:markForDelete(tableName,columnName,value)
Arguments:

• xrefTableName: The cross-reference table name.

• xrefColumnName: The name of the column that contains the value to be deleted.

• xrefValueToDelete: The value to be deleted.

Property IDs:

• namespace-uri:http://www.oracle.com/XSL/Transform/java/
oracle.tip.xref.xpath.XRefXPathFunctions

• namespace-prefix: xref
For more information, see How to Delete a Cross Reference Table Value.

populateLookupXRefRow
This function populates the column value in the cross-reference table (XREF) in which the
reference column has the reference value. Depending on the mode, the reference value may
also be populated. Unlike the xref:populateXRefRow function, the
xref:populateLookupXRefRow function does not throw a unique constraint violation error when
records with the same ID are added simultaneously. Instead, it behaves as a lookup and
returns the existing source value that caused the error and does not stop the processing flow.
Use this function to resolve any concurrency issues that can arise when using the
xref:populateXRefRow function.

Signature:

xref:populateLookupXRefRow(xrefLocation as string, referenceColumnName as string,
referenceValue as string, columnName as string, value as string, mode as string)
For example:

xref:populateLookupXRefRow("C:\xrefs\customer-id.xref", "Oracle System" ,
"ORCL_100", "SAP System", "SAP_001", "ADD")

populateXRefRow
This function populates the column name in the cross-reference table (XREF) in which the
reference column has the reference value.

Signature:

xref:populateXRefRow(tableName,referenceColumnName,referenceValue,columnName,valu
e,mode)
Arguments:

• xrefLocation: The cross-reference URI.

• xrefReferenceColumnName: The name of the reference column.

• xrefReferenceValue: The value corresponding to the reference column name.

Appendix B
XREF Functions

B-74

• xrefColumnName: The name of the column to be looked up for the value.

• xrefvalue: The value corresponding to the reference column name.

• xrefmode: The name of the XREF population mode.

Property IDs:

• namespace-uri:http://www.oracle.com/XSL/Transform/java/
oracle.tip.xref.xpath.XRefXPathFunctions

• namespace-prefix: xref
For more information, see About the xref:populateXRefRow Function.

populateXRefRow1M
This function populates the column with multiple values in the cross-reference table (XREF) in
which the reference column has the reference value.

Signature:

xref:populateXRefRow1M(tableName,referenceColumnName,referenceValue,columnName,va
lue,mode)
Arguments:

• xrefLocation: The cross-reference URI.

• xrefReferenceColumnName: The name of the reference column.

• xrefReferenceValue: The value corresponding to the reference column name.

• xrefColumnName: The name of the column to be looked up for the value.

• xrefvalue: The value corresponding to the reference column name.

• xrefmode: The name of the XREF population mode.

Property IDs:

• namespace-uri:http://www.oracle.com/XSL/Transform/java/
oracle.tip.xref.xpath.XRefXPathFunctions

• namespace-prefix: xref
For more information, see About the xref:populateXRefRow1M Function.

Building XPath Expressions in the Expression Builder in Oracle
JDeveloper

You can use the Expression Builder dialog and the XPath Building Assistant to create XPath
expressions. You can visually design XPath expressions in a BPEL process, human workflow,
or Oracle Mediator service component in the Expression Builder dialog.

How to Use the Expression Builder
To use the Expression Builder:

1. In the Functions list, select the function category to use (for example, Identity Service
Functions).

Appendix B
Building XPath Expressions in the Expression Builder in Oracle JDeveloper

B-75

2. Select the function (for example, getManager).

3. Click Insert Into Expression, as shown in Figure B-1.

Figure B-1 Expression Builder Dialog

This inserts the function into the Expression field at the top.

4. In the Expression field, place the cursor between the parentheses of the function, as
shown in Figure B-2.

Figure B-2 Placement of Cursor

5. In the Schema section, expand the schema path to make your selection, as shown in
Figure B-3.

Appendix B
Building XPath Expressions in the Expression Builder in Oracle JDeveloper

B-76

Figure B-3 Selection of Schema

6. Click Insert Into Expression.

The expression is inserted into the function, as shown in Figure B-4.

Figure B-4 XPath Expression Creation

Introduction to the XPath Building Assistant
Several dialogs enable you to specify XPath expressions with the XPath Building Assistant,
including:

• Expression field of the Expression Builder dialog

• Expression field of the Initialize tab of the Create Variable dialog in BPEL 2.0

• Edit XPath Expression and Edit Function dialogs of the XSLT Map Editor

Manually specifying long and complex expressions is supported, but can be a cumbersome
and error-prone process. The XPath Building Assistant provides the following set of features
that simplify this process:

• Automatic completion of the following:

– Elements and attributes

– Functions

– BPEL variables and parts

• Function parameter tool tips

• Syntactic and semantic validation of XPaths

How to Use the XPath Building Assistant
This section provides an example of using the XPath Building Assistant to build an expression
in the Expression field of the Expression Builder dialog.

Appendix B
Building XPath Expressions in the Expression Builder in Oracle JDeveloper

B-77

To use the XPath Building Assistant:

1. Click inside the Expression field and press Ctrl and then the space bar. The menu of
available selections is displayed.

2. Make a selection from the list in either of the following ways:

• Scroll down the list and double-click a function.

• Enter the beginning letter (for example, c) to display only items starting with that letter,
and double-click the appropriate function.

Figure B-5 provides details.

Figure B-5 List of Values for Building an Expression

This value is added to the Expression field. The list automatically displays again with
different options and prompts you to enter the next portion of the XPath expression.

3. Select and double-click the next portion. Figure B-6 provides details.

Figure B-6 Invocation of Next Portion of Function

This value is added to the Expression field. The list automatically displays again and
prompts you to enter the next portion of the XPath expression.

4. Continue this process to build the remaining parts of the XPath expression.

5. Manually add text as appropriate. Figure B-7 provides details.

Figure B-7 Manual Addition of Text

Appendix B
Building XPath Expressions in the Expression Builder in Oracle JDeveloper

B-78

Note:

Instead of double-clicking selections in the XPath Building Assistant popups, you can
also use the Enter key to make the selection. If your expression is complete, but you
are still being prompted to enter information, press Esc. This closes the list.

Using the XPath Building Assistant in the XSLT Mapper
This section provides an example of using the XPath Building Assistant to build an expression
in the Edit XPath Expression dialog of the XSLT Mapper.

To use the XPath Building Assistant in the XSLT Mapper:

1. Go to the XSLT Map Editor.

2. From the Component Palette list, select Advanced Functions.

3. Scroll down the list to the xpath-expression function.

4. Drag and drop the xpath-expression function into the XSLT Map Editor, as shown in
Figure B-8.

Figure B-8 xpath-expression

5. Double-click the function to display the Edit XPath Expression dialog.

6. Click the cursor inside the XPath Expression field.

7. Press Ctrl and then the space bar to display a list of values for building an expression, as
shown in Figure B-9.

Appendix B
Building XPath Expressions in the Expression Builder in Oracle JDeveloper

B-79

Figure B-9 List of Values for Building an Expression

8. Make a selection from the list (for this example, concat(String) as String) in either of the
following ways:

• Scroll down the list and double-click concat(String) as String.

• Enter the letter c to display only items starting with that letter, then select and double-
click concat(String) as String.

Figure B-10 provides details.

Figure B-10 Expression List Selection

This selection is added to the XPath Expression field. The list automatically displays
again with different options and prompts you to enter the next portion of the XPath
expression.

9. Continue this process to build the remaining parts of the XPath expression.

10. Click OK to close the Edit XPath Expression dialog when complete.

Function Parameter Tool Tips
Function parameter tool tips display the expected arguments of a chosen XPath function. For
example, if you manually enter the function concat, and then enter (, the parameter tool tip
appears and displays the expected arguments of the concat function. The current argument
name of the function is highlighted in bold. Figure B-11 provides details.

Figure B-11 Current Argument Name of the Function

Appendix B
Building XPath Expressions in the Expression Builder in Oracle JDeveloper

B-80

Once you finish specifying one argument, and enter a comma to move to the next argument,
the tool tip updates itself to highlight the second argument name in bold, and so on. While
editing existing XPaths that contain functions, you can re-invoke parameter tool tips by
positioning the cursor within the function and then pressing a combination of the Ctrl, Shift, and
space bar keys.

Syntactic and Semantic Validation
Within Oracle JDeveloper, an XPath expression is considered syntactically valid if it conforms
to the XPath 1.0 specification. The XPath Building Assistant warns you about syntactically
incorrect XPath functions (for example, a missing parenthesis or apostrophe) by underlining
the erroneous area in red. Drag the mouse pointer over this area. The error message displays
as a tool tip. The red underlining error disappears after you make corrections. Figure B-12
provides details.

Figure B-12 Syntactically Incorrect XPaths

Syntactically valid XPath functions may be semantically invalid. This can cause unexpected
errors at runtime. For example, you can misspell the name of an element, variable, function, or
part. The XPath Building Assistant warns you about semantic errors by underlining the
erroneous area in blue. Drag the mouse pointer over this area. The error message displays as
a tool tip. The blue underlining error disappears after you make corrections. Figure B-13
provides details.

Figure B-13 Semantically Incorrect XPaths

Creating Expressions with Free Form Text and XPath Expressions
You can mix free form text with XPath expressions in some dialogs.

1. Place your cursor over the field to display a popup message that describes this
functionality. Figure B-14 provides details.

Figure B-14 Functionality Description Menu

Appendix B
Building XPath Expressions in the Expression Builder in Oracle JDeveloper

B-81

2. Enter free form text (in this example, 'Hello, your telephone number'). Figure B-15
provides details.

Figure B-15 Free Form Text

3. Enter <% when you are ready to invoke the XPath Building Assistant. Figure B-16 provides
details.

Figure B-16 XPath Building Assistant Invocation Preparation

A red underline appears, which indicates that you are being prompted to add information.

4. Press Ctrl and then the space bar to invoke the XPath Building Assistant. Figure B-17
provides details.

Figure B-17 XPath Building Assistant Invocation

5. Scroll down the list and double-click the value you want.

6. Continue this process to build the remaining parts of the expression.

Using Double Slashes for Directory Paths in XPath Functions on Windows
Can Cause Errors

The use of slashes to represent directory paths in XPath extension functions on Windows
operating systems can be interpreted in two ways:

• With double slashes. For example, file://c:/Ftab.txt.

• With single slashes. For example, file:/c:/Ftab.txt.

If you specify double slashes and receive an error message, try specifying single slashes.

For example, the following use of double slashes does not work:

oraext:get-content-from-file-function("file://c:/Ftab.txt","file:
//c:/Ftab_1.xsd","root")

Appendix B
Building XPath Expressions in the Expression Builder in Oracle JDeveloper

B-82

Whereas, the following use of single slashes works correctly:

oraext:get-content-from-file-function("file:/c:/Ftab.txt","file:
/c:/Ftab_1.xsd","root")

Creating User-Defined XPath Extension Functions
You can create user-defined (custom) XPath extension functions for use in Oracle SOA Suite.
These functions can be created for the following components:

• Oracle BPEL Process Manager

• Oracle Mediator

• XSLT Mapper

• Human workflow

• Shared by all of these components

XPath extension functions in Oracle SOA Suite adhere to the following standards:

• A single schema defines the configuration syntax for both system functions and user-
defined functions.

• XPath functions are categorized based on usage (Oracle BPEL Process Manager, Oracle
Mediator, human workflow, XSLT Mapper, and those commonly used by all).

• System functions are separated from user-defined functions.

• A repository hosts both system function configuration files and user-defined function
configuration files.

• A repository hosts user-defined function implementation JAR files and automatically makes
them available for the Java Virtual Machine (JVM) (class loaders).

As a best practice, follow these conventions for creating functions:

• If possible, write functions that can be shared across all components. Functions shared by
all components can be created in a configuration file named ext-soa-xpath-functions-
config.xml. You must implement XSLT Mapper functions differently than Oracle BPEL
Process Manager, Oracle Mediator, and human workflow functions.

For more information about these implementation differences, see How to Implement User-
Defined XPath Extension Functions.

• If you create a function for one component that cannot be used by others (for example, a
function for Oracle BPEL Process Manager that cannot be used by Oracle Mediator or
human workflow), then create that function in the configuration file specific to that
component. For this example, the Oracle BPEL Process Manager function must be created
in a configuration file named ext-bpel-xpath-functions-config.xml.

The types and their equivalent Java types can be used for parameter and return values:

XML Configuration File Type Name Java Type

string java.lang.String
boolean boolean
number int, float, double
node-set oracle.xml.parser.v2.XMLNodeList
tree oracle.xml.parser.v2.XMLDocumentFragment

Appendix B
Creating User-Defined XPath Extension Functions

B-83

The following example shows the function schema used by system and user-defined functions:

<?xml version="1.0" encoding="UTF-8"?>
<schema xmlns="http://www.w3.org/2001/XMLSchema"
 xmlns:tns="http://xmlns.oracle.com/soa/config/xpath"
 targetNamespace="http://xmlns.oracle.com/soa/config/xpath"
 elementFormDefault="qualified">
 <element name="soa-xpath-functions" type="tns:XpathFunctionsConfig"/>
 <element name="function" type="tns:XpathFunction"/>
 <complexType name="XpathFunctionsConfig">
 <sequence>
 <element ref="tns:function" minOccurs="1" maxOccurs="unbounded"/>
 </sequence>
 <attribute name="resourceBundle" type="string"/>
 <attribute name="version" type="string"/>
 </complexType>

 <complexType name="XpathFunction">
 <sequence>
 <element name="className" type="string"/>
 <element name="return">
 <complexType>
 <attribute name="type" type="tns:XpathType"
 use="required"/>
 </complexType>
 </element>
 <element name="params" type="tns:Params" minOccurs="0"
 maxOccurs="1"/>
 <element name="desc">
 <complexType>
 <simpleContent>
 <extension base="string">
 <attribute name="resourceKey"
 type="string"/>
 </extension>
 </simpleContent>
 </complexType>
 </element>
 <element name="detail" minOccurs="0">
 <complexType>
 <simpleContent>
 <extension base="string">
 <attribute name="resourceKey"
 type="string"/>
 </extension>
 </simpleContent>
 </complexType>
 </element>
 <element name="icon" minOccurs="0">
 <complexType>
 <simpleContent>
 <extension base="string">
 <attribute name="resourceKey"
 type="string"/>
 </extension>
 </simpleContent>
 </complexType>
 </element>
 <element name="helpURL" minOccurs="0">
 <complexType>
 <simpleContent>
 <extension base="string">

Appendix B
Creating User-Defined XPath Extension Functions

B-84

 <attribute name="resourceKey"
 type="string"/>
 </extension>
 </simpleContent>
 </complexType>
 </element>
 <element name="group" minOccurs="0">
 <complexType>
 <simpleContent>
 <extension base="string">
 <attribute name="resourceKey" type="string"/>
 </extension>
 </simpleContent>
 </complexType>
 </element>
 <element name="wizardClass" type="string" minOccurs="0"/>
</sequence>
<attribute name="name" type="string" use="required"/>
 <attribute name="deprecated" type="boolean" use="optional"/>
</complexType>

 <complexType name="Params">
 <sequence>
 <element name="param" minOccurs="1" maxOccurs="unbounded">
 <complexType>
 <attribute name="name" type="string" use="required"/>
 <attribute name="type" type="tns:XpathType"
 use="required"/>
 <attribute name="minOccurs" type="string"
 default="1"/>
 <attribute name="maxOccurs" type="string"
 default="1"/>
 <attribute name="wizardEnabled" type="boolean"
 default="false"/>
 </complexType>
 </element>
 </sequence>
 </complexType>
 <simpleType name="XpathType">
 <restriction base="string">
 <enumeration value="string"/>
 <enumeration value="boolean"/>
 <enumeration value="number"/>
 <enumeration value="node-set"/>
 <enumeration value="tree"/>
 </restriction>
 </simpleType>
</schema>

How to Implement User-Defined XPath Extension Functions
This section describes how to implement user-defined XPath extension functions for Oracle
SOA Suite components.

How to Implement Functions for the XSLT Mapper
Implementation of user-defined XPath extension functions for the XSLT Map Editor is different
than for other components:

• Each XSLT Map Editor function requires a corresponding public static method from a
public static class. The function name and method name must match.

Appendix B
Creating User-Defined XPath Extension Functions

B-85

• XSLT Map Editor function namespaces must take the form http://www.oracle.com/XSL/
Transform/java/mypackage.MyFunctionClass, where mypackage.MyFunctionClass is the
fully-qualified class name of the public static class containing the public static methods for
the functions.

How to Implement Functions for All Other Components
For Oracle BPEL Process Manager, Oracle Mediator, and human workflow functions, you must
implement either the oracle.fabric.common.xml.xpath.IXPathFunction interface (defined in
the fabric-runtime.jar file) or javax.xml.xpath.XPathFunction.

To implement functions for all other components:

• Implement the oracle.fabric.common.xml.xpath.IXPathFunction interface for your
XPath function. The IXPathFunction interface has one method named call(context,
args). The signature of this method is as shown in the following example:

 package oracle.fabric.common.xml.xpath;
 public interface IXPathFunction
 {
 /** Call this function.
 *
 * @param context The context at the point in the
 * expression when the function is called.
 * @param args List of arguments provided during
 * the call of the function.
 */
 public Object call(IXPathContext context, List args) throws
 XPathFunctionException;
 }

where:

• context: The context at the point in the expression when the function is called.

• args: The list of arguments provided during the call of the function.

For the following example, a function named getNodeValue(arg1) is implemented that
gets a value of w3c node:

package com.collaxa.cube.xml.xpath.dom.functions;
 import oracle.fabric.common.xml.xpath.IXPathFunction;
 import oracle.fabric.common.xml.xpath.IXPathFunction
 . . .

 public class GetNodeValue implements IXPathFunction {
 Object call(IXPathContext context, List args) throws XPathFunctionException
 {
 org.w3c.dom.Node node = (org.w3c.dom.Node) args.get(0);
 return node.getNodeValue()
 }
 }

How to Configure User-Defined XPath Extension Functions
To configure user-defined XPath extension functions:

1. Create an XPath extension configuration file in which to define the function. The following
example shows a sample configuration file that follows the function schema shown in

Appendix B
Creating User-Defined XPath Extension Functions

B-86

Creating User-Defined XPath Extension Functions. In this example, two functions are
created: mf:myFunction1 and mf:myFunction2.

<?xml version="1.0" encoding="UTF-8"?>
<soa-xpath-functions resourceBundle="myPackage.myResourceBundle"
 xmlns="http://xmlns.oracle.com/soa/config/xpath"
 xmlns:mf="http://www.my-functions.com">
 <function name="mf:myFunction1">
 <className>myPackage.myFunctionClass1</className>
 <return type="node-set"/>
 <params>
 <param name="p1" type="node-set" wizardEnabled="true"/>
 <param name="p2" type="string"/>
 <param name="p3" type="number" minOccurs="0"/>
 <param name="p4" type="boolean" minOccurs="0" maxOccurs="3"/>
 </params>
 <desc resourceKey="func1-desc-key">this is my first function</desc>
 <detail resourceKey="func2-long-desc-key">my first function does ... </detail>
 <icon>myPackage/resource/image/myFunction1.png</icon>
 <group resourceKey="func-group-key">My Function Group</group>
 <wizardClass>myPackage.myWizardClass1</wizardClass>
 </function>
 <function name="mf:myFunction2">
 <className>myPackage.myFunctionClass2</className>
 <return type="string"/>
 <params>
 <param name="p1" type="node-set" wizardEnabled="true"/>
 <param name="p2" type="string"/>
 <param name="p3" type="number" minOccurs="0"/>
 <param name="p4" type="boolean" minOccurs="0" maxOccurs="unbounded"/>
 </params>
 <desc resourceKey="func2-desc-key">this is my second function</desc>
 <detail resourceKey="func2-long-desc-key">my second function does ...</detail>
 <icon>myPackage/resource/image/myFunction2.png</icon>
 <group resourceKey="func-group-key">My Function Group</group>
 <wizardClass>myPackage.myWizardClass2</wizardClass>
 </function>
</soa-xpath-functions>

Table B-3 describes the elements of the configuration file. Each function configuration file
uses soa-xpath-functions as its root element. The root element has an optional
resourceBundle attribute. The resourceBundle value is the fully qualified class name of
the resource bundle class providing national language support (NLS) for all function
configurations.

Table B-3 Function Schema Elements

Element Description

className The fully qualified class name of the function implementation class.

return The return type of the function. This can be one of the following types supported by XPath and XSLT:
string, number, boolean, node-set, and tree. For equivalent Java types, see the table at the
beginning of this section (Creating User-Defined XPath Extension Functions.

Appendix B
Creating User-Defined XPath Extension Functions

B-87

Table B-3 (Cont.) Function Schema Elements

Element Description

params The parameters of the function. A function can have no parameters. A parameter has the following
attributes:

• name: The name of the parameter.

• type: The type of the parameter. This can be one of the following types supported by XPath and
XSLT: string, number, boolean, node-set, and tree. For equivalent Java types, see the table at
the beginning of this section (Creating User-Defined XPath Extension Functions.

• minOccurs: The minimum occurrences of the parameter. If set to 0, the parameter is optional. If set
to 1, the parameter is required. The current restriction is that this attribute must only take a value of
either 0 or 1 and that optional parameters must be defined after the required parameters. The default
value is 1 if this attribute is absent.

• maxOccurs: The maximum occurrences of the parameter. If set to unbounded, the parameter can
repeat anytime. This can support functions such as XPath 1.0 function concat(), which can take
unlimited parameters. The current restriction is that no parameters except the last parameter of the
function can have maxOccurs greater than 1 or unbounded. The default value is 1 if this attribute is
absent.

• wizardEnabled: Indicates whether to enable a wizard to enter the parameter value. This supports a
user interface where the parameter value must be entered. If set to true, a wizard launch button is
rendered next to the parameter value field. The wizard launch button, when pressed, launches a
popup wizard to help the user enter the parameter value. The wizard class must be specified later.
The default value is false if this attribute is absent, meaning there is no wizard support for the
parameter by default.

desc An optional description of the function. If the resourceKey is present, the description is retrieved from
the resource bundle specified earlier on the root element.

detail An optional longer (detailed) description of the function. If the resourceKey is present, the description is
retrieved from the resource bundle specified earlier on the root element.

icon An optional icon URL of the function. If the resourceKey is present, the icon URL is retrieved from the
resource bundle specified earlier on the root element. This is to support a user interface in which the
function must be displayed.

helpURL An optional help HTML URL of the function. If the resourceKey is present, the help URL is retrieved
from the resource bundle specified earlier on the root element. This is to support a user interface in
which the function help link must be displayed.

group An optional group name of the function. If the resourceKey is present, the group name is retrieved from
the resource bundle specified earlier on the root element. This is to support a user interface where
functions must be grouped. If no group name is specified, the function falls into a built-in advanced
functions group when being grouped in a user interface.

wizardClass The fully qualified class name of the wizard class for all parameters that are wizard-enabled. This is to
support a user interface in which parameter values must be entered. This wizard class is invoked by
wizard launch buttons to help you enter parameter values. If there is no wizard-enabled parameter, this
element must be absent.

Note: This element is not supported for user-defined functions. Only system functions currently support
this feature.

2. Name your user-defined XPath extension configuration file based on the component type
with which to use the function. Table B-4 describes the naming conventions to use for user-
defined configuration files.

Table B-4 User-Defined Configuration Files

To Use with This Component... Use This Configuration File Name...

Oracle BPEL Process Manager ext-bpel-xpath-functions-config.xml

Appendix B
Creating User-Defined XPath Extension Functions

B-88

Table B-4 (Cont.) User-Defined Configuration Files

To Use with This Component... Use This Configuration File Name...

Oracle Mediator ext-mediator-xpath-functions-config.xml
XSLT Mapper ext-mapper-xpath-functions-config.xml
Human workflow ext-wf-xpath-functions-config.xml
All components ext-soa-xpath-functions-config.xml

3. Place the configuration file inside a JAR file along with the compiled classes. Within the
JAR file, the configuration file must be located in the META-INF directory. The JAR file does
not need to reside in a specific directory.

Note:

The customXpathFunction JAR must be added explicitly as it is not part of the
SOA composite.

4. In Oracle JDeveloper, go to Tools > Preferences > SOA.

5. Click the Add button and select your JAR file.

6. Restart Oracle JDeveloper for the changes to take effect.

The JAR file is automatically added to the JVM's class path to make it available for use.

How to Deploy User-Defined Functions to Runtime
The soa/modules/oracle.soa.ext_11.1.1 directory is provided for adding custom JAR files
and classes. For information, see Adding Custom Classes and JAR Files.

Appendix B
Creating User-Defined XPath Extension Functions

B-89

C
Deployment Descriptor Properties

This appendix describes how to define deployment descriptor configuration and partner link
properties for BPEL process service components used at runtime by Oracle WebLogic Server,
Oracle Enterprise Manager Fusion Middleware Control, or both.
This appendix includes the following section:

• Introduction to Deployment Descriptor Properties

For more information about deployment descriptor properties, see Chapter "Oracle BPEL
Process Manager Performance Tuning" of Tuning Performance.

Introduction to Deployment Descriptor Properties
Deployment descriptors are BPEL process service component properties used at runtime by
Oracle WebLogic Server, Oracle Enterprise Manager Fusion Middleware Control, or both.
There are two types of properties:

• Configuration

• Partner link binding

Table C-1 lists the configuration deployment descriptor properties.

When you define configuration properties, you must add a prefix of bpel.config to the
property name. For example, the property inMemoryOptimization must be defined as
bpel.config.inMemoryOptimization. For information on defining properties in the Property
Inspector in Oracle JDeveloper, see How to Define Deployment Descriptor Properties in the
Property Inspector.

Table C-1 Properties for the configurations Deployment Descriptors

Property Name Description

completionPersistPolicy This property configures how the instance data is saved. It can only be set at the BPEL
service component level. The following values are available:

• on (default): The completed instance is saved normally.

• deferred: The completed instance is saved, but with a different thread and in
another transaction.

• faulted: Only The faulted instances are saved.

Note: When an unhandled fault occurs, regardless of these flags, audit information
for instances is persisted within the CUBE_INSTANCE table.

• off: No instances of this process are saved.

disableAsserts This property, when set to true, disables assertions in BPEL projects.

globalTxMaxRetry If using outbound adapters in an asynchronous BPEL process, specify the maximum
number of retries for a remote fault.

globalTxRetryInterval If using outbound adapters in an asynchronous BPEL process, specify the time interval
in milliseconds between retries for a remote fault.

C-1

Table C-1 (Cont.) Properties for the configurations Deployment Descriptors

Property Name Description

inMemoryOptimization Default value is false. This property can only be set to true if it does not have
dehydration points. Activities like wait, receive, onMessage, and onAlarm create
dehydration points in the process. If this property is set to true, in-memory
optimization is attempted on the instances of this process on to-spec queries.

keepGlobalVariables Specify whether the server can keep global variable values in the instance store when
the instance completes:

• false (default): Global variable values are deleted when the instance completes.

• true: Global variable values are not deleted.

oneWayDeliveryPolicy This property sets the persistence policy of the process in the delivery layer. The
possible values are:

• async.persist: Messages are persisted in the database. With this setting,
reliability is obtained with some performance impact on the database. In some
cases, overall system performance can be impacted.

• async.cache: Incoming delivery messages are kept only in the in-memory cache.
If performance is preferred over reliability, consider this setting. When set to
async.cache, if the rate at which one-way messages arrive is much higher than
the rate at which they are delivered, or if the server fails, messages can be lost. In
addition, the system can become overloaded (messages become backlogged in
the scheduled queue) and you can receive out-of-memory errors. Consult your
own use case scenarios to determine if this setting is appropriate.

When you set oneWayDeliveryPolicy to async.cache in high availability
environments, invoke and callback messages in the middle of execution at the time
of a server crash may be lost or duplicated. Server failover is not supported for
async.cache.

• sync: Direct invocation occurs on the same thread. The scheduling of messages in
the invoke queue is bypassed, and the BPEL instance is invoked synchronously. In
some cases this setting can improve database performance.

For information about setting this property during BPEL process creation, see How to
Add a BPEL Process Service Component.

reenableAggregationOnComple
te

This property controls the number of instances to create and use to route messages.
The possible values are:

• true: Creates a new instance to handle the messages of the same correlation.

• false: Creates only one instance for handling messages.

For more information, see Routing Messages to the Same Instance.

sensorActionLocation The location of the sensor action XML file. The sensor action XML file configures the
action rule for the events.

sensorLocation The location of the sensor XML file. The sensor XML file defines the list of sensors into
which events are logged.

Appendix C
Introduction to Deployment Descriptor Properties

C-2

Table C-1 (Cont.) Properties for the configurations Deployment Descriptors

Property Name Description

transaction This property configures the transaction behavior of the BPEL instance for initiating
calls.

• requiresNew: A new transaction is created for the execution, and the existing
transaction (if there is one) is suspended. This behavior is true for both request/
response (initiating) environments and one-way, initiating environments in which
bpel.config.oneWayDeliveryPolicy is set to sync.

• required: In request/response (initiating) environments, this setting joins a caller's
transaction (if there is one) or creates a new transaction (if there is no transaction).
In one-way, initiating environments in which
bpel.config.oneWayDeliveryPolicy is set to sync, the invoke message is
processed using the same thread in the same transaction.

• notSupported: Executes a business process without the need for a transaction.
For more information, see Executing a Business Process Without a Transaction.

Note: This property does not apply for midprocess receive activities. In those cases,
another thread in another transaction is used to process the message. This is because
a correlation is needed and it is always done asynchronously.

For information about setting this property during BPEL process creation, see How to
Add a BPEL Process Service Component.

Table C-2 lists the partner link binding deployment descriptor properties.

When you define partner link binding properties, you must add a prefix of
bpel.partnerLink.partner_link_name to the property name. For example, the property
nonBlockingInvoke must be defined as
bpel.partnerLink.partner_link_name.nonBlockingInvoke. For information on defining
properties in the Property Inspector in Oracle JDeveloper, see How to Define Deployment
Descriptor Properties in the Property Inspector.

Table C-2 Properties for the partnerLinkBinding Deployment Descriptors

Property Name Description

idempotent An idempotent activity is an activity that can be retried (for example, an assign activity
or an invoke activity). The instance is saved after a nonidempotent activity. This
property is applicable to both durable and transient processes.

• true (default): If the server fails, it performs the activity again after restarting. This
is because the server does not dehydrate immediately after the invoke and no
record exists that the activity executed.

• false: Activity is dehydrated immediately after execution and recorded in the
dehydration store. When idempotent is set to false, it provides better failover
protection, but may impact performance if the BPEL process accesses the
dehydration store frequently.

For information about using fault handling with the idempotent property set to
false, see What You May Need to Know About the idempotent Property and Fault
Handling.

For more information about the idempotent property, see Managing Idempotence at
the Partner Link Operation Level.

nonBlockingInvoke Default value is false. When this is set to true, a separate thread is spawned to
perform the invocation so that the invoke activity does not block the instance.

For more information, see What You May Need to Know About the Execution of Parallel
Flow Branches in a Single Thread.

Appendix C
Introduction to Deployment Descriptor Properties

C-3

Table C-2 (Cont.) Properties for the partnerLinkBinding Deployment Descriptors

Property Name Description

validateXML Enables message boundary validation. When set to true, the XML message is
validated against the XML schema during a receive activity and an invoke activity for
this partner link. If the XML message is invalid, then a bpelx:invalidVariables
runtime fault is thrown. This overrides the domain level validateXML property.

How to Define Deployment Descriptor Properties in the Property Inspector
You define configuration and partner link binding deployment descriptor properties and values
in the Property Inspector of Oracle JDeveloper. When complete, the properties are displayed in
the BPEL process service component section of the composite.xml file.

1. In the SOA Composite Editor, select the BPEL process service component, as shown in
Figure C-1.

Figure C-1 Selected BPEL Process Service Component

2. Go to the Property Inspector in the lower right corner of Oracle JDeveloper.

3. In the Properties section, click the Add icon, as shown in Figure C-2.

For this example, the oneWayDeliveryPolicy property is already defined because the
Delivery option was selected in the Create BPEL Process dialog during BPEL process
creation. For more information about setting this property during BPEL process creation,
see How to Add a BPEL Process Service Component.

Figure C-2 Property Inspector

Appendix C
Introduction to Deployment Descriptor Properties

C-4

The Create Property dialog is displayed.

4. In the Name field, enter the deployment descriptor property. For this example, the
configuration deployment descriptor property oneWayDeliveryPolicy is defined. Therefore,
a prefix of bpel.config is required. For more information about configuration deployment
descriptor properties, see Table C-1.

If you instead add a partner link binding property, a prefix of
bpel.partnerLink.partner_link_name is required, where partner_link_name is the
name of the partner link (for example, LoanService). For more information about partner
link binding deployment descriptor properties, see Table C-2.

5. In the Value field, enter an applicable value for this property (for example, async.persist).

6. Click OK.

The Property Inspector displays the added deployment descriptor property.

7. Click Source in the SOA Composite Editor.

The oneWayDeliveryPolicy configuration property with the bpel.config prefix is displayed
in the composite.xml file, as shown in the following example:

<component name="LoanApproval" version="2.0">
. . .
 <componentType>
 . . .
 . . .
 <property name="bpel.config.oneWayDeliveryPolicy" type="xs:string"
 many="false">async.persist</property>
 </componentType>
</component>

If you instead define a partner link binding deployment descriptor property in the Property
Inspector (for example, the nonBlockingInvoke partner link binding property), it is displayed in
the composite.xml file, as shown in the example that follows. Note the prefix of
bpel.partnerLink.partner_link_name, which is required for this type of property.

<component name="myBPELServiceComponent" version="2.0">
 . . .
 <componentType>
 . . .
 . . .
 <property name="bpel.partnerLink.partner_link_name.nonBlockingInvoke">
false</property>
 </componentType>
</component>

How to Get the Value of a Preference within a BPEL Process
The value of a property can be read by a BPEL process using the XPath extension function
ora:getPreference(myPref). This gets the value of bpel.preference.myPref.

This function can be used as part of a simple assign statement, used in condition expressions,
or used as part of a more complex XPath expression.

Appendix C
Introduction to Deployment Descriptor Properties

C-5

D
Understanding Sensor Public Views and the
Sensor Actions XSD

This appendix describes the available sensor public views and the sensor actions XSD file that
you can import into Oracle BPEL Designer.
This appendix includes the following sections:

• Introduction to Sensor Public Views and the Sensor Actions XSD File

• Sensor Public Views

• Sensor Actions XSD File

For more information, see Using Sensors and Analytics .

Introduction to Sensor Public Views and the Sensor Actions XSD
File

A set of public views is exposed to allow SQL access to sensor values from literally any
application interested in the data. In addition, a sample sensor action schema is provided for
importing into Oracle BPEL Designer.

Sensor Public Views
The sensor framework of Oracle BPEL Process Manager provides the functionality to persist
sensor values created by processing BPEL instances in a relational schema stored in the
dehydration store of Oracle BPEL Process Manager. The data is used to display the sensor
values of a process instance in Oracle Enterprise Manager Fusion Middleware Control.

Schema
The database publisher persists the sensor data in a predefined relational schema in the
database. The following public views can be used from a client (Oracle Warehouse, portals,
and so on) to query the sensor values using SQL.

Note:

In Table D-1 through Table D-4, the Indexed or Unique? column provides unique
index names and the order of the attributes. For example, U1,2 means that the
attribute is the second one in a unique index named U1. PK means primary key.

BPEL_PROCESS_INSTANCES
Table D-1 provides an overview of all the process instances of Oracle BPEL Process Manager
and Oracle Mediator.

D-1

Table D-1 BPEL_PROCESS_INSTANCES View

Attribute Name SQL Type Attribute
Size

Indexed or
Unique?

Null? Comment

INSTANCE_KEY NUMBER -- PK N Unique instance ID

APPLICATION_NAM
E

VARCHAR2 500 -- N User-defined application name

COMPOSITE_NAME VARCHAR2 500 -- N User-defined composite name

REVISION VARCHAR2 50 -- N User-defined revision number

LABEL VARCHAR2 500 -- N User-defined label

COMPONENT_NAME VARCHAR2 500 -- N User-defined component name

TITLE NVARCHAR2 200 -- Y User-defined title of the BPEL process

STATE NUMBER -- -- Y State of the BPEL process instance

STATE_TEXT VARCHAR2 21 -- Y Text presentation of the state attribute

PRIORITY NUMBER -- -- Y User-defined priority of the BPEL process
instance

STATUS NVARCHAR2 200 -- Y User-defined status of the BPEL process

STAGE VARCHAR2 100 -- Y User-defined stage property of a BPEL
process

CONVERSATION_ID VARCHAR2 256 -- Y User-defined conversation ID of a BPEL
process

CREATION_DATE TIMESTAMP 6 -- N Creation time stamp of the process
instance

MODIFY_DATE TIMESTAMP 6 -- Y Time stamp when the process instance
was modified

TS_DATE DATE -- -- Y Date portion of modify_date
TS_HOUR NUMBER -- -- Y Hour portion of modify_date
EVAL_TIME NUMBER -- -- Y Evaluation time of the process instance in

milliseconds

BPEL_ACTIVITY_SENSOR_VALUES
Table D-2 contains all the activity sensor values of the monitored BPEL processes.

Table D-2 BPEL_ACTIVITY_SENSOR_VALUES View

Attribute Name SQL Type Attribute
Size

Indexed or
Unique?

Null? Comment

SENSOR_NAME NVARCHAR2 200 U1,2 N The name of the sensor that fired

SENSOR_TARGET NVARCHAR2 512 -- N The target of the fired sensor

ACTION_NAME NVARCHAR2 200 U1,3 N The name of the sensor action

ACTION_FILTER NVARCHAR2 512 -- Y The filter of the action

CREATION_DATE TIMESTAMP 6 -- N The creation date of the activity sensor
value

MODIFY_DATE TIMESTAMP 6 -- Y The time stamp of last modification

Appendix D
Sensor Public Views

D-2

Table D-2 (Cont.) BPEL_ACTIVITY_SENSOR_VALUES View

Attribute Name SQL Type Attribute
Size

Indexed or
Unique?

Null? Comment

TS_DATE DATE -- -- Y Date portion of modify_date
TS_HOUR NUMBER -- -- Y Hour portion of modify_date
CRITERIA_SATISF
IED

VARCHAR2 1 -- Y NULL, Y, or N

ACTIVITY_NAME NVARCHAR2 200 -- N The name of the BPEL activity

ACTIVITY_TYPE VARCHAR2 30 -- N The type of the BPEL activity

ACTIVITY_STATE VARCHAR2 30 -- Y The state of the BPEL activity

EVAL_POINT VARCHAR2 30 -- N The evaluation point of the activity sensor

ERROR_MESSAGE NCLOB -- -- Y An error message

RETRY_COUNT NUMBER -- -- Y The number of retries of the activity

EVAL_TIME NUMBER -- -- Y Evaluation time of the activity in
milliseconds

ID NUMBER -- PK N Unique ID

INSTANCE_KEY NUMBER -- U1,1 N BPEL process ID

APPLICATION_NAM
E

VARCHAR2 500 -- N User-defined application name

COMPOSITE_NAME VARCHAR2 500 -- N User-defined composite name

REVISION VARCHAR2 50 -- N User-defined revision number

LABEL VARCHAR2 500 -- N User-defined label

COMPONENT_NAME VARCHAR2 500 -- N User-defined component name

BPEL_FAULT_SENSOR_VALUES
Table D-3 contains all the fault sensor values.

Table D-3 BPEL_FAULT_SENSOR_VALUES View

Attribute Name SQL Type Attribute
Size

Indexed or
Unique?

Null? Comment

ID NUMBER -- PK N Unique ID

INSTANCE_KEY NUMBER -- U1,1 N BPEL process ID

APPLICATION_NAM
E

VARCHAR2 500 -- N User-defined application name

COMPOSITE_NAME VARCHAR2 500 -- N User-defined composite name

REVISION VARCHAR2 50 -- N User-defined revision number

LABEL VARCHAR2 500 -- N User-defined label

COMPONENT_NAME VARCHAR2 500 -- N User-defined component name

SENSOR_NAME NVARCHAR2 200 U1,2 N The name of the sensor that fired

SENSOR_TARGET NVARCHAR2 512 -- N The target of the fired sensor

Appendix D
Sensor Public Views

D-3

Table D-3 (Cont.) BPEL_FAULT_SENSOR_VALUES View

Attribute Name SQL Type Attribute
Size

Indexed or
Unique?

Null? Comment

ACTION_NAME NVARCHAR2 200 U1,3 N The name of the sensor action

ACTION_FILTER NVARCHAR2 512 -- Y The filter of the action

CREATION_DATE TIMESTAMP 6 -- N The creation date of the activity sensor
value

MODIFY_DATE TIMESTAMP 6 -- Y The time stamp of last modification

TS_DATE DATE -- -- Y Date portion of modify_date
TS_HOUR NUMBER -- -- Y Hour portion of modify_date
CRITERIA_SATISF
IED

VARCHAR2 1 -- Y NULL if no action filter specified; Y if action
filter is specified and evaluates to true; N
otherwise

ACTIVITY_NAME NVARCHAR2 200 -- N The name of the BPEL activity

ACTIVITY_TYPE VARCHAR2 30 -- N The type of the BPEL activity

MESSAGE CLOB -- -- Y The fault message

BPEL_VARIABLE_SENSOR_VALUES
Table D-4 contains all the variable sensor values.

Table D-4 BPEL_VARIABLE_SENSOR_VALUES View

Attribute Name SQL Type Attribute
Size

Indexed or
Unique?

Null? Comment

ID NUMBER -- PK N Unique ID

INSTANCE_KEY NUMBER -- U1,1 N BPEL process ID

APPLICATION_NAM
E

VARCHAR2 500 -- N User-defined application name

COMPOSITE_NAME VARCHAR2 500 -- N User-defined composite name

REVISION VARCHAR2 50 -- N User-defined revision number

LABEL VARCHAR2 500 -- N User-defined label

COMPONENT_NAME VARCHAR2 500 -- N User-defined component name

SENSOR_NAME NVARCHAR2 200 U1,2 N Name of the sensor that fired

SENSOR_TARGET NVARCHAR2 512 -- N Target of the sensor

ACTION_NAME NVARCHAR2 200 U1,3 N Name of the action

ACTION_FILTER NVARCHAR2 512 -- Y Filter of the action

ACTIVITY_SENSOR NUMBER -- -- Y ID of the corresponding activity sensor
value

CREATION_DATE TIMESTAMP 6 -- N Creation date

TS_DATE DATE -- -- N Date portion of creation_date
TS_HOUR NUMBER -- -- N Hour portion of creation_date
VARIABLE_NAME NVARCHAR2 512 -- N The name of the BPEL variable

Appendix D
Sensor Public Views

D-4

Table D-4 (Cont.) BPEL_VARIABLE_SENSOR_VALUES View

Attribute Name SQL Type Attribute
Size

Indexed or
Unique?

Null? Comment

EVAL_POINT VARCHAR2 30 -- Y Evaluation point of the corresponding
activity sensor

CRITERIA_SATISF
IED

VARCHAR2 1 -- Y NULL, Y, or N

TARGET NVARCHAR2 512 -- -- --

UPDATER_NAME NVARCHAR2 200 -- N The name of the activity or event that
updated the variable

UPDATER_TYPE NVARCHAR2 200 -- N The type of the BPEL activity or event

SCHEMA_NAMESPAC
E

NVARCHAR2 512 -- Y Namespace of variable sensor value

SCHEMA_DATATYPE NVARCHAR2 512 -- Y Data type of the variable sensor value

VALUE_TYPE NUMBER -- -- N The value type of the variable
(corresponds to java.sql.Types values)

VARCHAR2_VALUE NVARCHAR2 4000 -- Y The value of string-like variables

NUMBER_VALUE NUMBER -- -- Y

DATE_VALUE TIMESTAMP 6 -- Y User-defined date

DATE_VALUE_TZ VARCHAR2 10 -- Y User-defined time zone

BLOB_VALUE BLOB -- -- Y

CLOB_VALUE CLOB -- -- Y

Sensor Actions XSD File
The following example provides a sample sensor action schema that you can import into
Oracle BPEL Designer. This schema is also relevant to custom data publishers.

<?xml version="1.0" encoding="utf-8"?>
<!--
 This schema contains the sensor definition. Sensors monitor data
 and execute callbacks appropriately.

 BPEL designer uses this file as a template to generate to generate
 SensorActionData.xsd. It does this by replacing special tags.
 Do not modify these special tags. For details, see comments in the file.
 The replacement is done using a simple text replacement, so the white
 spaces too should be preserved as indicated in comments.
-->
<xsd:schema blockDefault="#all" elementFormDefault="qualified"
 targetNamespace="http://xmlns.oracle.com/bpel/sensor"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:sensor="http://xmlns.oracle.com/bpel/sensorDataPlaceHolder"
 xmlns:nxsd="http://xmlns.oracle.com/pcbpel/nxsd"
 xmlns:tns="http://xmlns.oracle.com/bpel/sensor"
 nxsd:encoding="UTF-8">

<!-- *** The following line is a place holder. Do not remove it. It must remain as
 is, including any whitespace. If you change this, please let BAM sensor action
 developer know. -->

Appendix D
Sensor Actions XSD File

D-5

<!-- $importSensorVar -->

 <xsd:simpleType name="tSensorActionPublishType">
 <xsd:annotation>
 <xsd:documentation>
 This enumeration lists the possibe publishing types for probes.
 </xsd:documentation>
 </xsd:annotation>
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="BpelReportsSchema"/>
 <xsd:enumeration value="JMSQueue"/>
 <xsd:enumeration value="JMSTopic"/>
 <xsd:enumeration value="BAM"/>
 <xsd:enumeration value="LogFile"/>
 <xsd:enumeration value="Custom"/>
 </xsd:restriction>
 </xsd:simpleType>

 <xsd:complexType name="tSensorActionProperty">
 <xsd:simpleContent>
 <xsd:extension base="xsd:string">
 <xsd:attribute name="name" use="required" type="xsd:string"/>
 </xsd:extension>
 </xsd:simpleContent>
 </xsd:complexType>

 <!--
 Attributes of a sensor action
 -->
 <xsd:attributeGroup name="tSensorActionAttributes">
 <xsd:attribute name="name" type="xsd:string" use="optional"/>
 <xsd:attribute name="enabled" type="xsd:boolean" use="optional"
 default="true"/>
 <xsd:attribute name="filter" type="xsd:string"/>
 <xsd:attribute name="publishName" type="xsd:string" use="required"/>
 <xsd:attribute name="publishType" type="tns:tSensorActionPublishType"
 use="required"/>
 <!--
 the name of the JMS Queue/Topic or custom java API, ignored for other
 publishTypes
 -->
 <xsd:attribute name="publishTarget" type="xsd:string" use="optional"/>
 </xsd:attributeGroup>

 <!--
 The sensor action type. A sensor action consists:
 + unique name
 + effective date
 + expiration date - Optional. If not defined, the probe is active
 indefinitely.
 + filter (to potentially suppress data publishing even if a sensor marks
 it as interesting). - Optional. If not defined, no filter is
 used.
 + publishName A name of a publisher
 + publishType What to do with the sensor data?
 + publishTarget Name of a JMS Queue/Topic or custom publisher.
 + potentially many sensors.
 -->
 <xsd:complexType name="tSensorAction">
 <xsd:sequence>
 <xsd:element name="sensorName" type="xsd:string" minOccurs="1"
 maxOccurs="unbounded"/>

Appendix D
Sensor Actions XSD File

D-6

 <xsd:element name="property" minOccurs="0" maxOccurs="unbounded"
 type="tns:tSensorActionProperty"/>
 </xsd:sequence>
 <xsd:attributeGroup ref="tns:tSensorActionAttributes"/>
 </xsd:complexType>

 <!--
 define a listing of sensor actions in a single document. It might be a good
 idea to
 have one sensor action list per business process.
 -->
 <xsd:complexType name="tSensorActionList">
 <xsd:sequence>
 <xsd:element name="action" type="tns:tSensorAction" minOccurs="0"
 maxOccurs="unbounded"/>
 </xsd:sequence>
 </xsd:complexType>

 <xsd:simpleType name="tSensorKind">
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="fault"/>
 <xsd:enumeration value="variable"/>
 <xsd:enumeration value="activity"/>
 <xsd:enumeration value="service"/>
 <xsd:enumeration value="reference"/>
 <xsd:enumeration value="event"/>
 </xsd:restriction>
 </xsd:simpleType>

 <xsd:complexType name="tActivityConfig">
 <xsd:annotation>
 <xsd:documentation>
 The configuration part of an activity sensor comprises of a mandatory
 'evalTime' attribute
 and an optional list of variable configurations
 </xsd:documentation>
 </xsd:annotation>
 <xsd:complexContent>
 <xsd:extension base="tns:tSensorConfig">
 <xsd:sequence>
 <xsd:element name="variable" type="tns:tActivityVariableConfig"
 maxOccurs="unbounded" minOccurs="0"/>
 </xsd:sequence>
 <xsd:attribute name="evalTime" type="xsd:string" use="required"/>
 </xsd:extension>
 </xsd:complexContent> </xsd:complexType>

 <xsd:complexType name="tVariableConfig">
 <xsd:complexContent>
 <xsd:extension base="tns:tSensorConfig">
 <xsd:attribute name="outputDataType" use="required" type="xsd:string"/>
 <xsd:attribute name="outputNamespace" use="required" type="xsd:string"/>
 <xsd:attribute name="queryName" use="optional" type="xsd:string"/>
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>

 <xsd:complexType name="tActivityVariableConfig">
 <xsd:complexContent>
 <xsd:extension base="tns:tVariableConfig">
 <xsd:attribute name="target" type="xsd:string" use="required"/>
 </xsd:extension>

Appendix D
Sensor Actions XSD File

D-7

 </xsd:complexContent>
 </xsd:complexType>

 <xsd:complexType name="tFaultConfig">
 <xsd:complexContent>
 <xsd:extension base="tns:tSensorConfig"/>
 </xsd:complexContent>
 </xsd:complexType>

 <xsd:complexType name="tSensorConfig"/>

 <xsd:complexType name="tExpressionConfig">
 <xsd:complexContent>
 <xsd:extension base="tns:tVariableConfig">
 <xsd:attribute name="expression" use="required" type="xsd:string">
 <xsd:annotation>
 <xsd:documentation>
 expresion="$in/$payload/$partName/xpathExpression |
 $in/$header/xpathExpression |
 $in/$property/name |
 $out/$payload/$partName/xpathExpression |
 $out/$header/xpathExpression |
 $out/$property/name |
 $fault/$payload/$partName/xpathExpression |
 $fault/$header/xpathExpression |
 $fault/$property/name"

 Where
 $in - The input/request message to the operation/event
 $out - The output/Response message from the operation
 $fault - The fault message from the operation
 </xsd:documentation>
 </xsd:annotation>
 </xsd:attribute> </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>

 <xsd:complexType name="tOperationConfig">
 <xsd:complexContent>
 <xsd:extension base="tns:tExpressionConfig">
 <xsd:attribute name="operation" use="required" type="xsd:string">
 <xsd:annotation>
 <xsd:documentation>
 The name of the operation in the service/reference on which the
 sensor is defined.
 </xsd:documentation>
 </xsd:annotation>
 </xsd:attribute>
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>

 <xsd:complexType name="tServiceConfig">
 <xsd:complexContent>
 <xsd:extension base="tns:tOperationConfig">
 <xsd:attribute name="service" use="required" type="xsd:string">
 <xsd:annotation>
 <xsd:documentation>
 The name of the service on which the sensor is defined.
 </xsd:documentation>
 </xsd:annotation>
 </xsd:attribute>

Appendix D
Sensor Actions XSD File

D-8

 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>

 <xsd:complexType name="tReferenceConfig">
 <xsd:complexContent>
 <xsd:extension base="tns:tOperationConfig">
 <xsd:attribute name="reference" use="required" type="xsd:string">
 <xsd:annotation>
 <xsd:documentation>
 The name of the reference on which the sensor is defined.
 </xsd:documentation>
 </xsd:annotation>
 </xsd:attribute>
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>

 <xsd:complexType name="tEventConfig">
 <xsd:complexContent>
 <xsd:extension base="tns:tExpressionConfig"> <xsd:attribute
name="component" type="xsd:string" use="required">
 <xsd:annotation>
 <xsd:documentation>
 The name of the component which raises or receives the event.
 </xsd:documentation>
 </xsd:annotation>
 </xsd:attribute>
 <xsd:attribute name="event" use="required" type="xsd:string">
 <xsd:annotation>
 <xsd:documentation>
 The name of the event that the component raises or receives.
 </xsd:documentation>
 </xsd:annotation>
 </xsd:attribute>
 <xsd:attribute name="actionType" use="required">
 <xsd:simpleType>
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="Publish"/>
 <xsd:enumeration value="Subscribe"/> </
xsd:restriction>
 </xsd:simpleType>
 </xsd:attribute> </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>

 <xsd:complexType name="tSensor">
 <xsd:sequence>
 <xsd:element name="activityConfig" type="tns:tActivityConfig"
 minOccurs="0"/>
 <xsd:element name="faultConfig" type="tns:tFaultConfig" minOccurs="0"/>
 <xsd:element name="variableConfig" type="tns:tVariableConfig"
 minOccurs="0"/>
 <xsd:element name="serviceConfig" type="tns:tServiceConfig" minOccurs="0"/>
 <xsd:element name="referenceConfig" type="tns:tReferenceConfig"
 minOccurs="0"/>
 <xsd:element name="eventConfig" type="tns:tEventConfig" minOccurs="0"/>
 </xsd:sequence>
 <xsd:attribute name="sensorName" use="required" type="xsd:string"/>
 <xsd:attribute name="kind" use="required" type="tns:tSensorKind"/>
 <xsd:attribute name="target" use="required" type="xsd:string"/>
 <xsd:attribute name="filter" type="xsd:string"/>

Appendix D
Sensor Actions XSD File

D-9

 </xsd:complexType>

 <xsd:complexType name="tSensorList">
 <xsd:sequence>
 <xsd:element name="sensor" type="tns:tSensor" minOccurs="0"
 maxOccurs="unbounded"/>
 </xsd:sequence>
 </xsd:complexType>

 <xsd:complexType name="tProperty">
 <xsd:simpleContent>
 <xsd:extension base="xsd:string">
 <xsd:attribute name="name" use="required" type="xsd:string"/>
 </xsd:extension>
 </xsd:simpleContent>
 </xsd:complexType>

 <xsd:complexType name="tHeaderInfo">
 <xsd:sequence>
 <xsd:element name="applicationName" type="xsd:string"/>
 <xsd:element name="compositeName" type="xsd:string"/>
 <xsd:element name="compositeInstanceId" type="xsd:string"/>
 <xsd:element name="compositeRevision" type="xsd:string"/>
 <xsd:element name="compositeLabel" type="xsd:string"/>
 <xsd:element name="componentName" type="xsd:string"/>
 <xsd:element name="processName" type="xsd:string"/>
 <xsd:element name="processRevision" type="xsd:string"/>
 <xsd:element name="domain" type="xsd:string"/>
 <xsd:element name="instanceId" type="xsd:integer"/>
 <xsd:element name="midTierInstance" type="xsd:string"/>
 <xsd:element name="timestamp" type="xsd:dateTime"/>
 <xsd:element name="sensor" type="tns:tSensor"/>
 <xsd:element name="property" minOccurs="0" maxOccurs="unbounded"
 type="tns:tProperty"/>
 </xsd:sequence>
 </xsd:complexType>

 <xsd:complexType name="tSensorData">
 <xsd:sequence>
 <xsd:element name="activityData" type="tns:tActivityData" minOccurs="0"/>
 <xsd:element name="faultData" type="tns:tFaultData" minOccurs="0"/>
 <xsd:element name="variableData" type="tns:tVariableData" minOccurs="0"
 maxOccurs="unbounded"/>
 <xsd:element name="serviceData" type="tns:tServiceData" minOccurs="0"
 maxOccurs="unbounded"/>
 <xsd:element name="referenceData" type="tns:tReferenceData" minOccurs="0"
 maxOccurs="unbounded"/>
 <xsd:element name="eventData" type="tns:tEventData" minOccurs="0"
 maxOccurs="unbounded"/>
 </xsd:sequence>
 </xsd:complexType>

 <xsd:complexType name="tFaultData">
 <xsd:sequence>
 <xsd:element name="activityName" type="xsd:string"/>
 <xsd:element name="activityType" type="xsd:string"/>
 <xsd:element name="faultName" type="xsd:QName"/>
 <!-- *** The following line is a place holder. Do not remove it. It must
 remain as is, including any whitespace. If you change this, please let BAM
 sensor action developer know. -->
 <xsd:element name="data" type="xsd:anyType" minOccurs="0"/> <!-- DO NOT
 MODIFY: fault data type -->

Appendix D
Sensor Actions XSD File

D-10

 </xsd:sequence>
 </xsd:complexType>

 <!--
 xml type that will be provided to sensors for variable Datas. Note the
 any element represents variable data.
 -->
 <xsd:complexType name="tVariableData">
 <xsd:sequence>
 <xsd:element name="dataType" type="xsd:integer"/>
 <!-- *** The following line is a place holder. Do not remove it. It must
 remain as is, including any whitespace. If you change this, please let BAM
 sensor action developer know. -->
 <xsd:element name="data" type="xsd:anyType"/> <!-- DO NOT MODIFY: sensor
 variable data type -->
 <xsd:element name="queryName" type="xsd:string"/>
 <xsd:element name="target" type="xsd:string"/>
 <xsd:element name="updaterName" type="xsd:string" minOccurs="1"/>
 <xsd:element name="updaterType" type="xsd:string" minOccurs="1"/>
 </xsd:sequence>
 </xsd:complexType>

 <xsd:complexType name="tServiceData">
 <xsd:sequence>
 <xsd:element name="sensorName" type="xsd:string"/>
 <xsd:element name="data" type="xsd:anyType"/>
 <xsd:element name="dataType" type="xsd:integer"/>
 </xsd:sequence>
 </xsd:complexType>

 <xsd:complexType name="tReferenceData">
 <xsd:sequence>
 <xsd:element name="sensorName" type="xsd:string"/>
 <xsd:element name="data" type="xsd:anyType"/>
 <xsd:element name="dataType" type="xsd:integer"/>
 </xsd:sequence>
 </xsd:complexType>

 <xsd:complexType name="tEventData">
 <xsd:sequence>
 <xsd:element name="sensorName" type="xsd:string"/>
 <xsd:element name="data" type="xsd:anyType"/>
 <xsd:element name="dataType" type="xsd:integer"/>
 </xsd:sequence>
 </xsd:complexType>

 <xsd:complexType name="tActivityData">
 <xsd:sequence>
 <xsd:element name="activityType" type="xsd:string"/>
 <xsd:element name="evalPoint" type="xsd:string"/>
 <xsd:element name="durationInSeconds" minOccurs="0" type="xsd:double"/>
 <xsd:element name="duration" type="xsd:duration" minOccurs="0"/>
 <xsd:element name="errorMessage" nillable="true" minOccurs="0"
 type="xsd:string"/>
 </xsd:sequence>
 </xsd:complexType>

 <!--
 The header of the document contains some metadata.
 -->
 <!--

Appendix D
Sensor Actions XSD File

D-11

 Sensor Action data is presented in the form of a header and potentially many
 data
 elements depending on how many sensors associated to the sensor action marked
 the
 data as interesting.
 -->
 <xsd:complexType name="tSensorActionData">
 <xsd:sequence>
 <xsd:element name="header" type="tns:tHeaderInfo"/>
 <xsd:element name="payload" type="tns:tSensorData" minOccurs="1"
 maxOccurs="1"/>
 </xsd:sequence>
 </xsd:complexType>

<!--
 <xsd:simpleType name="tActivityEvalPoint">
 <xsd:restriction>
 <xsd:enumeration value="start"/>
 <xsd:enumeration value="complete"/>
 <xsd:enumeration value="fault"/>
 <xsd:enumeration value="compensate"/>
 <xsd:enumeration value="retry"/>
 </xsd:restriction>
 </xsd:simpleType>

-->

 <!--
 The process sensor value header comprises of a timestamp
 where the sensor was triggered and the sensor metadata
 -->
 <xsd:complexType name="tProcessSensorValueHeader">
 <xsd:sequence>
 <xsd:element name="timestamp" type="xsd:dateTime"/>
 <xsd:element ref="tns:sensor"/>
 </xsd:sequence>
 </xsd:complexType>
 <!--
 Extend tActivityData to include more elements
 -->
 <xsd:complexType name="tProcessActivityData">
 <xsd:complexContent>
 <xsd:extension base="tns:tActivityData">
 <xsd:sequence>
 <xsd:element name="creationDate" type="xsd:dateTime" minOccurs="0"
 maxOccurs="1"/>
 <xsd:element name="modifyDate" type="xsd:dateTime" minOccurs="0"
 maxOccurs="1"/>
 <xsd:element name="evalTime" type="xsd:long" minOccurs="0"
 maxOccurs="1"/>
 <xsd:element name="retryCount" type="xsd:int" minOccurs="0"
 maxOccurs="1"/>
 </xsd:sequence> </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>

 <!--
 Extend tVariableData to include more elements
 -->
 <xsd:complexType name="tProcessVariableData">
 <xsd:complexContent>
 <xsd:extension base="tns:tVariableData">

Appendix D
Sensor Actions XSD File

D-12

 <xsd:sequence>
 <xsd:element name="creationDate" type="xsd:dateTime" minOccurs="0"
 maxOccurs="1"/>
 <xsd:element name="modifyDate" type="xsd:dateTime" minOccurs="0"
 maxOccurs="1"/>
 </xsd:sequence> </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>

 <!--
 Extend tFaultData to include more elements
 -->
 <xsd:complexType name="tProcessFaultData">
 <xsd:complexContent>
 <xsd:extension base="tns:tFaultData">
 <xsd:sequence>
 <xsd:element name="creationDate" type="xsd:dateTime" minOccurs="0"
 maxOccurs="1"/>
 <xsd:element name="modifyDate" type="xsd:dateTime" minOccurs="0"
 maxOccurs="1"/>
 </xsd:sequence> </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>

 <!--
 Copy of tSensorData type with some modified types.
 -->
 <xsd:complexType name="tProcessSensorData">
 <xsd:sequence>
 <xsd:element name="activityData" type="tns:tProcessActivityData"
 minOccurs="0"/>
 <xsd:element name="faultData" type="tns:tProcessFaultData" minOccurs="0"/>
 <xsd:element name="variableData" type="tns:tProcessVariableData"
 minOccurs="0" maxOccurs="unbounded"/>
 </xsd:sequence>
 </xsd:complexType>

 <!--
 A single process sensor value comprises of the sensor value metadata
 (sensor and timestamp) and the payload (the value) of the sensor
 -->
 <xsd:complexType name="tProcessSensorValue">
 <xsd:sequence>
 <xsd:element name="header" type="tns:tProcessSensorValueHeader"/>
 <xsd:element name="payload" type="tns:tProcessSensorData"/>
 </xsd:sequence>
 </xsd:complexType>

 <!--
 Process instance header.
 -->
 <xsd:complexType name="tProcessInstanceInfo">
 <xsd:sequence>
 <xsd:element name="processName" type="xsd:string"/>
 <xsd:element name="processRevision" type="xsd:string"/>
 <xsd:element name="domain" type="xsd:string"/>
 <xsd:element name="instanceId" type="xsd:integer"/>
 </xsd:sequence>
 </xsd:complexType>

 <!--
 The list of sensor values comprises of a process header describing the

Appendix D
Sensor Actions XSD File

D-13

 BPEL process with name, cube instance id etc. and a list of sensor values
 comprising of sensor metadata information and sensor values.
 -->
 <xsd:complexType name="tProcessSensorValueList">
 <xsd:sequence>
 <xsd:element name="process" type="tns:tProcessInstanceInfo" minOccurs="1"
 maxOccurs="1"/>
 <xsd:element name="sensorValue" type="tns:tProcessSensorValue" minOccurs="0"
 maxOccurs="unbounded"/>
 </xsd:sequence>
 </xsd:complexType>

 <!-- The sensor list is the root element of the sensor.xml document in the
 bpel process suitcase and is used to define sensors. -->
 <xsd:element name="sensors" type="tns:tSensorList"/>

 <!-- A sensor is used to monitor a particular aspect of a bpel process -->
 <xsd:element name="sensor" type="tns:tSensor"/>

 <!-- The actions element is the root element of the sensorAction.xml document
 in the bpel process suitcase and is used to define sensor actions.
 Sensor actions define how to publish data captured by sensors -->
 <xsd:element name="actions" type="tns:tSensorActionList"/>

 <!-- actionData elements are produced by the sensor framework and sent to the
 appropriate data publishers when sensors 'fire' -->
 <xsd:element name="actionData" type="tns:tSensorActionData"/>

 <!-- This element is used when the client API is used to query sensor values
 stored in the default reports schema -->
 <xsd:element name="sensorValues" type="tns:tProcessSensorValueList"/>
</xsd:schema>

Appendix D
Sensor Actions XSD File

D-14

E
Propagating Normalized Message Properties
Through Message Headers

This appendix describes how to set normalized message properties that enable you to
propagate these properties through message headers.
This appendix includes the following sections:

• Introduction to Normalized Messages

• Manipulating Normalized Message Properties with bpelx Extensions

Introduction to Normalized Messages
Header manipulation and propagation is a key business integration messaging requirement.
Components such as Oracle BPEL Process Manager, Oracle Mediator, Oracle JCA adapters,
REST adapters, and Oracle B2B rely extensively on header support to solve customers'
integration needs. For example, you can preserve a file name from the source directory to the
target directory by propagating it through message headers. In Oracle BPEL Process Manager
and Oracle Mediator, you can access, manipulate, and set headers with varying degrees of
user interface support.

A normalized message is simplified to have only two parts, properties and payload.

Typically, properties are name-value pairs of scalar types. To fit the existing complex headers
into properties, properties are flattened into scalar types.

The user experience is simplified while manipulating headers in design time, because the
complex properties are predetermined. In the Mediator Editor or Oracle BPEL Designer, you
can manipulate the headers with some reserved key words.

However, this method does not address the properties that are dynamically generated based
on your input. Based on your choice, the header definitions are defined. These definitions are
not predetermined and therefore cannot be accounted for in the list of predetermined property
definitions. You cannot design header manipulation of the dynamic properties before they are
defined. To address this limitation, you must generate all the necessary services (composite
entry points) and references. This restriction applies to services that are expected to generate
dynamic properties. Once dynamic properties are generated, they must be stored for each
composite. Only then can you manipulate the dynamic properties in the Mediator Editor or
Oracle BPEL Designer.

For information about normalized message properties in JCA adapters and Oracle B2B, see
Understanding Technology Adapters and User's Guide for Oracle B2B.

Oracle Web Services Addressing Properties
Table E-1 lists the predetermined properties of a normalized message for Web Services
Addressing (WS-Addressing). The WS-Addressing headers from incoming SOAP requests are
propagated within Oracle SOA Suite through the normalized message properties. However,
overriding of WS-Addressing headers in the outbound SOAP message through use of these
normalized message properties is not supported.

E-1

Table E-1 Properties for Oracle Web Services Addressing

Property Name Propagatable
(Yes/No)

Direction
(Inbound /
Outbound)

Data Type Range of
Valid Values

Description

wsa.messageId No Inbound String URI format This property specifies
the identifier for the
message and the
endpoint to which replies
to this message should
be sent as an endpoint
reference.

wsa.relatesTo No Inbound String URI format This optional (repeating)
element information item
contributes one abstract
relationship property
value, in the form of an
(IRI, IRI) pair. The
content of this element (of
type xs:anyURI) conveys
the message ID of the
related message.

wsa.replyToAddress No Inbound String URI format Represents a contract
between two components
communicating
asynchronously.

wsa.replyToPortType No Inbound QName Any QName This value is passed to
the web service to
configure the portType
on the service's callback.
It is translated to the WS-
Addressing callback
endpoint reference's
PortType element.

wsa.replyToService No Inbound QName Any QName This value is passed to
the web service to
configure service on the
service's callback. It is
translated to the WS-
Addressing callback
endpoint reference's
ServiceName element.

wsa.action No Inbound String URI format This required element
(whose content is of type
xs:anyURI) conveys the
value of the action
property.

Appendix E
Introduction to Normalized Messages

E-2

Table E-1 (Cont.) Properties for Oracle Web Services Addressing

Property Name Propagatable
(Yes/No)

Direction
(Inbound /
Outbound)

Data Type Range of
Valid Values

Description

wsa.to No Inbound String URI format This optional element
(whose content is of type
xs:anyURI) provides the
value for the destination
property. If this element is
not present, then the
value of the (destination)
property is http://
www.w3.org/2005/08/
addressing/
anonymous.

How to Set Normalized Message Properties in Message Headers
To set normalized message properties in message headers:

1. In the dialog of the selected activity, click the Properties tab.

2. For BPEL 2.0 projects, perform the following tasks:

a. Click the Add icon.

b. From the Name list, select the property. Figure E-1 provides details.

Figure E-1 Properties Tab for Normalized Messages Header Properties

c. Select the value of the property:

Appendix E
Introduction to Normalized Messages

E-3

http://www.w3.org/2005/08/addressing/anonymous
http://www.w3.org/2005/08/addressing/anonymous
http://www.w3.org/2005/08/addressing/anonymous
http://www.w3.org/2005/08/addressing/anonymous

If You Select... Perform the Following Steps...

Expression i. Click Search to invoke the XPath Expression Builder dialog.

ii. Create the XPath expression, and click OK.

iii. Click OK.

Variable i. Click Search to invoke the Variable XPath Builder dialog.

ii. Select the variable, and click OK.

iii. Click OK.

The defined property is displayed.

3. For BPEL 1.1 projects, perform the following tasks:

a. Scroll down and select the property.

b. In the Value column, double-click to display the ellipses.

c. Click the ellipses.

The Adapter Property Value dialog is displayed.

d. Enter the variable name as the value, and click OK.

e. For activities with a Type column (for example, invoke activities), click the row of the
property.

f. From the list that is displayed, select input or output for the message direction.

g. Click Apply, then OK.

Manipulating Normalized Message Properties with bpelx
Extensions

Oracle BPEL Process Manager uses bpelx extensions to manipulate normalized message
properties in message exchange operations. The syntax is different based on whether your
BPEL project supports BPEL version 1.1 or 2.0.

BPEL 2.0 bpelx Extensions Syntax
The following example shows bpelx extensions syntax in BPEL 2.0:

<invoke ...>
 <bpelx:fromProperties>?
 <bpelx:fromProperty name="NCName" .../>+
 </bpelx:fromProperties>
 <bpelx:toProperties>?
 <bpelx:toProperty name="NCName" .../>+
 </bpelx:toProperties>
</invoke>

<receive ...>
 <bpelx:fromProperties>?
 <bpelx:fromProperty name="NCName" .../>+
 </bpelx:toProperties>
</receive>

<onEvent ...>

Appendix E
Manipulating Normalized Message Properties with bpelx Extensions

E-4

 <bpelx:fromProperties>?
 <bpelx:fromProperty name="NCName" .../>+
 </bpelx:fromProperties>
</onEvent>

<reply...>
 <bpelx:toProperties>?
 <bpelx:toProperty name="NCName" .../>+
 </bpelx:toProperties>
</reply>

<reply ...>
 <bpelx:toProperties>
 <bpelx:toProperty name="NCName" .../>
 </bpelx:toProperties>
</reply>

Note the following details:

• The toProperty is a from-spec. This copies a value from the from-spec to the property of
the given name.

• The fromProperty is a to-spec. This copies a value from the property to the to-spec.

BPEL 1.1 bpelx Extensions Syntax
The following example shows bpelx extensions syntax in BPEL 1.1:

<invoke ...>
 <bpelx:inputProperty name="NCName" expression="string" variable="NCName"
 part="NCName" query="string"/>*
 <bpelx:outputProperty name="NCName" expression="string" variable="NCName"
 part="NCName" query="string"/>*
</invoke>

<receive ...>
 <bpelx:property name="NCName" expression="string" variable="NCName"
 part="NCName" query="string"/>*
</receive>

<onMessage...>
 <bpelx:property name="NCName" expression="string" variable="NCName"
 part="NCName" query="string"/>*
</onMessage>

<reply ...>
 <bpelx:property name="NCName" expression="string" variable="NCName"
 part="NCName" query="string"/>*
</reply>

Appendix E
Manipulating Normalized Message Properties with bpelx Extensions

E-5

F
Interfaces Implemented By Rules Dictionary
Editor Task Flow

This appendix describes the Oracle Business Rules Dictionary Editor Task Flow, which
implements the MetadataDetails and NLSPrefrences interfaces when creating an ADF-based
Web application. The interfaces are defined in the soaComposerTemplates.jar file.
This appendix includes the following sections:

• The MetadataDetails Interface

• The NLSPreferences Interface

The MetadataDetails Interface
The MetadataDetails interface is a part of the
oracle.integration.console.metadata.model.share package and is defined in the
soaComposerTemplates.jar file.

The MetadataDetails interface defines three methods, as shown below:

public interface MetadataDetails {
 /**
 * Retrieve the details of the metadata document
 * @return document in string format.
 */
 String getDocument();

 /**
 * Get related document.
 */
 String getRelatedDocument(final RelatedMetadataPath relatedPath);

 /**
 * Update the metadata document.
 * @param doc represents the updated document.
 */
 void setDocument(String doc) throws Exception;
}

The getDocument Method
This method is used to retrieve the rules file in a string format. For doing this action, you must
connect to the Oracle Metadata Repository (MDS) or a file system, and return the rules file in a
string format.

The code sample below shows how to get the file from a local file system:

private static final String RULES_FILE1 =
"file:///C:/scratch/<username>/system/mywork/linkedD/AutoAppProj/oracle/rules/credit/
CreditRatingRules.rules";

 public String getDocument() {

F-1

 URL url = null;
 try {
 url = new URL(RULES_FILE1);
 return readFile(url);
 } catch (IOException e) {
 System.err.println(e);
 }
 return "";
 }

 private String readFile(URL dictURL) {
 InputStream is;
 try {
 is = dictURL.openStream();
 } catch (IOException e) {
 System.err.println(e);
 return "";
 }
 BufferedReader reader;
 try {
 reader = new BufferedReader(new InputStreamReader(is, "UTF-8"));
 } catch (UnsupportedEncodingException e) {
 System.err.println(e);
 return "";
 }
 String line = null;
 StringBuilder stringBuilder = new StringBuilder();
 String ls = System.getProperty("line.separator");
 try {
 while ((line = reader.readLine()) != null) {
 stringBuilder.append(line);
 stringBuilder.append(ls);
 }
 } catch (IOException e) {
 System.err.println(e);
 return "";
 } finally {
 try {
 reader.close();
 } catch (IOException e) {
 System.err.println(e);
 }
 }
 return stringBuilder.toString();
 }

The getRelatedDocument Method
This method is required when you work with linked dictionaries. You must connect to MDS, find
the related dictionary file, and then return it in a string format. The code sample below shows
how to find the path of the linked dictionaries that are stored within the ../oracle/rules
directory in a local file system:

public String getRelatedDocument(RelatedMetadataPath relatedMetadataPath) {
 String currPath = RULES_FILE1.substring(0, RULES_FILE1.indexOf("oracle/rules"));
 String relatedDoc = currPath + "oracle/rules/" + relatedMetadataPath.getValue();

 URL url = null;
 try {
 url = new URL(relatedDoc);
 return readFile(url);

Appendix F
The MetadataDetails Interface

F-2

 } catch (IOException e) {
 System.err.println(e);
 }
 return "";
 }

The setDocument Method
This method is used to store the rules file. It returns a String doc value, which is the name of
the updated dictionary based on user edits performed by using Rules Dictionary Editor Task
Flow. You must store the rules file in MDS or a file system. The code sample below shows how
to save the document in the local file system:

public void setDocument(String string) {
 URL url = null;

 try {
 url = new URL(RULES_FILE1);
 } catch (MalformedURLException e) {
 System.err.println(e);
 return;
 }
 Writer writer = null;
 try {
 //os = new FileWriter(url.getPath());
 writer =
 new OutputStreamWriter(new FileOutputStream(url.getPath()),
 "UTF-8");
 } catch (FileNotFoundException e) {
 System.err.println(e);
 return;
 } catch (IOException e) {
 System.err.println(e);
 return;
 }
 try {
 writer.write(string);
 } catch (IOException e) {
 System.err.println(e);
 } finally {
 if (writer != null) {
 try {
 writer.close();
 } catch (IOException ioe) {
 System.err.println(ioe);
 }
 }
 }
 }

The NLSPreferences Interface
The NLSPrefrences interface defines four methods as shown below:

public interface NLSPreferences
{
 /**
 * Returns the locale to be used.
 **/
 Locale getLocale();

Appendix F
The NLSPreferences Interface

F-3

 /**
 * Return the timezone to be used.
 **/
 TimeZone getTimeZone();

 /**
 * Return the dateformat to be used.
 */
 String getDateFormat();

 /**
 * Return the time format to be used.
 */
 String getTimeFormat();

 /**
 * Returns the grouping seperator.
 */
 char getGroupingSeparator();

 /**
 * Returns the grouping seperator.
 */
 char getDecimalSeparator();
}

The code sample below shows a sample implementation of the NLSPreferences interface:

public class MyNLSPreferences implements NLSPreferences {
 private static final String DATE_STYLE = "yyyy-MM-dd";
 private static final String TIME_STYLE = "HH-mm-ss";
 private static final char G_SEP = ',';
 private static final char D_SEP = '.';

 public Locale getLocale() {
 return Locale.FRENCH;
 }

 public TimeZone getTimeZone() {
 return TimeZone.getTimeZone("America/Los_Angeles");
 }

 public String getDateFormat() {
 return DATE_STYLE;
 }

 public String getTimeFormat() {
 return TIME_STYLE;
 }

 public char getGroupingSeparator() {
 return G_SEP;
 }

 public char getDecimalSeparator() {
 return D_SEP;
 }
 }

Appendix F
The NLSPreferences Interface

F-4

G
Oracle SOA Suite Configuration Properties
Road Map

This appendix describes the locations of Oracle SOA Suite design time and runtime
configuration properties and provides references to documentation that describes how to
configure these properties.
This appendix includes the following sections:

• Deployment Descriptor Properties

• Normalized Message Header Properties

• SOA Composite Application Properties

• Fault Policy and Adapter Rejected Message Properties

• Oracle B2B System Properties

• Oracle Healthcare Properties

• Oracle Business Activity Monitoring Properties

• Property Pages

• System MBean Browser Advanced Properties

Oracle BPEL Process Manager Deployment Descriptor
Properties

Deployment descriptors are BPEL process service component properties used at runtime by
Oracle WebLogic Server, Oracle Enterprise Manager Fusion Middleware Control, or both. You
set these properties during design time in the composite.xml file of the SOA composite
application. Examples of deployment descriptor properties include completionPersistPolicy,
inMemoryOptimization, oneWayDeliveryPolicy, transaction, nonBlockingInvoke, and
others.

For more information about available deployment descriptor properties, see How to Define
Deployment Descriptor Properties in the Property Inspector and Transaction and Fault
Propagation Semantics in BPEL Processes.

Normalized Message Header Properties
Header manipulation and propagation are key business integration messaging requirements.
You can set normalized message header properties during design time in the Properties tab of
receive activities, invoke activities, OnMessage branches of pick and (for BPEL 1.1) scope
activities, and reply activities. You can set properties for the following components:

• Oracle JCA adapters

• Oracle BPEL Process Manager

• Oracle Web Services Addressing

G-1

• Oracle B2B

• REST adapters

For more information, see Propagating Normalized Message Properties Through Message
Headers.

Oracle JCA Adapter Message Header Properties
Oracle JCA adapters expose the underlying back-end operation-specific properties as header
elements and allow for manipulation of these elements within a business process.

For more information about available Oracle JCA adapter message header properties, see the
following guide:

Appendix A, "Oracle JCA Adapter Properties" of Understanding Technology Adapters for JCA
adapter properties

Oracle BPEL Process Manager and Oracle Web Services Addressing
Message Header Properties

Oracle BPEL Process Manager and Oracle Web Services Addressing rely extensively on
header support to solve customers' integration needs.

For more information about available Oracle BPEL Process Manager and Oracle Web Services
Addressing message header properties, see Propagating Normalized Message Properties
Through Message Headers.

Oracle B2B Message Header Properties
In Oracle B2B, you can manipulate headers with reserved key words.

For more information about available Oracle B2B message header properties, see Appendix,
“Back-End Applications Interface" of User's Guide for Oracle B2B.

SOA Composite Application Properties
While most updates you make to the composite.xml file are performed from within the dialogs
of the SOA Composite Editor during design time, other properties must be added manually to
this file from within Source view. Table G-1 lists these properties and provides references to
documentation that describes how to configure these properties.

Table G-1 Oracle SOA Suite Properties

Property Description See...

endpointURI Specifies multiple partner link endpoint
locations. This capability is useful for
failover purposes if the first endpoint is
down.

Multiple Runtime Endpoint
Locations

oracle.composite.faul
tPolicyFile

Specifies the location of the fault policy
file if it is different from the default
location. This option is useful if a fault
policy must be used by multiple SOA
composite applications.

Handling Faults with the Fault
Management Framework

Appendix G
SOA Composite Application Properties

G-2

Table G-1 (Cont.) Oracle SOA Suite Properties

Property Description See...

oracle.composite.faul
tBindingFile

Specifies the location of the fault
binding file if it is different from the
default location. This option is useful if a
fault policy must be used by multiple
SOA composite applications.

Handling Faults with the Fault
Management Framework

passThroughHeader By default, SOAP headers are not
passed through by Oracle Mediator. To
pass SOAP headers, add this property
to the corresponding Oracle Mediator
routing service.

How to Assign Values

How to Access Headers for
Filters and Assignments

rolesAllowed Specifies role names required to invoke
SOA composite applications from any
Java EE application.

Specifying Enterprise JavaBeans
Roles

streamIncomingAttachm
ents
and

streamOutgoingAttachm
ents

Specify these properties to stream
attachments with SOAP.

SOAP with Attachments

oracle.webservices.lo
cal.optimization

Specifies to override a local
optimization setting for a policy.

SOAP with Attachments

and

Administering Oracle SOA Suite
and Oracle Business Process
Management Suite

oracle.soa.local.opti
mization.force

You can override the
oracle.webservices.local.optim
ization property and force
optimization.

Administering Oracle SOA Suite
and Oracle Business Process
Management Suite

one.way.returns.fault Controls how faults and one-way
messages are handled for one-way
interface SOAP calls.

One-way Message Exchange
Patterns

mtomThreshold Specifies the attachment size in bytes. Sending and Receiving MTOM-
Optimized Messages to SOA
Composite Applications

Fault Policy and Adapter Rejected Message Properties
A fault policy file defines fault conditions and their corresponding fault recovery actions. Each
fault condition specifies a particular fault or group of faults, which it attempts to handle, and the
corresponding action for it.

You can enter fault policy properties automatically through the Fault Policy Editor or manually
in a fault policy framework file. Table G-2 lists these properties and provides references to
documentation that describes how to configure these properties.

Appendix G
Fault Policy and Adapter Rejected Message Properties

G-3

Table G-2 Oracle SOA Suite Fault Policy Properties

Property Description See...

retryInterval Provides a delay between
retries of an activity (in
seconds).

Manually Creating a Fault Policy File for
Automated Fault Recovery

retryCount Retries an activity a
specified number of times.

How to Design a Fault Policy for
Automated Fault Recovery with the Fault
Policy Wizard or Manually Creating a
Fault Policy File for Automated Fault
Recovery

org.quartz.scheduler.idl
eWaitTime

Specifies a time in seconds
for the scheduler to wait
before retrying.

How to Design a Fault Policy for
Automated Fault Recovery with the Fault
Policy Wizard or Actions

You can also enter adapter rejected message properties in the fault policy framework file
during design time.

For more information, see Section "Error Handling" of Understanding Technology Adapters.

Oracle B2B System Properties
You can set most Oracle B2B properties on the Configuration tab of the Oracle B2B interface.
These settings override property settings performed at Oracle Enterprise Manager Fusion
Middleware Control.

For more information about available Oracle B2B properties, see Chapter "Configuring B2B
System Parameters" of User's Guide for Oracle B2B.

Oracle Healthcare Properties
You can configure Oracle Healthcare runtime and user interface, workflow notification, and
normalized message header properties.

For more information about available Oracle Healthcare properties, see Using Oracle SOA
Suite for Healthcare Integration.

Oracle Business Activity Monitoring Properties
You can configure Oracle Business Activity Monitoring (BAM) business view properties.

For more information about Oracle BAM properties, see Monitoring Business Activity with
Oracle BAM.

Oracle Enterprise Manager Fusion Middleware Control Property
Pages

You can configure properties for the following components during runtime in the property pages
of Oracle Enterprise Manager Fusion Middleware Control:

• SOA Infrastructure

Appendix G
Oracle B2B System Properties

G-4

• Oracle BPEL Process Manager

• Human workflow notification and task service

• Oracle Mediator

• Cross references

• Oracle B2B

• Service and reference binding components (JCA adapters, web services, REST adapters,
and Oracle Service Registry)

• Global token variables and automatic database purging

SOA Infrastructure Properties
You can configure properties for the SOA Infrastructure on the SOA Infrastructure Common
Properties page. These property settings can apply to all SOA composite applications running
in the SOA Infrastructure. The following types of properties can be set:

• Audit level

• Payload validation

• Time duration during which to retrieve instances and faults data

• Universal Description, Discovery, and Integration (UDDI) registry

• Callback server and server URLs

• BPM Analytics, BPEL sensors, and composite sensors

• Java Naming and Directory Interface (JNDI) data source

• Web service binding properties

• Advanced configuration properties

For more information about available SOA Infrastructure properties, see Chapter "Configuring
the SOA Infrastructure" of Administering Oracle SOA Suite and Oracle Business Process
Management Suite.

Oracle BPEL Process Manager Properties
You can configure BPEL process service engine properties on the BPEL Service Engine
Properties page. These properties are used by the BPEL process service engine during
processing of BPEL service components. The following types of properties can be set:

• Audit trail level

• Audit trail and large document thresholds

• Payload schema validation

• BPEL monitor and sensor enabling

• Advanced configuration properties

For more information about available Oracle BPEL Process Manager properties, see Chapter
"Configuring BPEL Process Service Components and Engines" of Administering Oracle SOA
Suite and Oracle Business Process Management Suite.

Appendix G
Oracle Enterprise Manager Fusion Middleware Control Property Pages

G-5

Human Workflow Notification and Task Service Properties
You can configure human workflow notification and task service properties on the Mailer and
Task tabs of the Workflow Notification Properties page. These properties are used by the
human workflow service engine during processing of human workflow service components.
The following types of properties can be set:

• The notification mode for messages

• The actionable addresses

• The actionable email account name

• The workflow session time out and custom class path URL values

• The dynamic assignment and task escalation functions of the assignment service

• Advanced configuration properties

For more information about available human workflow notification and task service properties,
see Chapter "Configuring Human Workflow Service Components and Engines" of
Administering Oracle SOA Suite and Oracle Business Process Management Suite.

Oracle Mediator Properties
You can configure Oracle Mediator properties. These properties are used by the Oracle
Mediator service engine during processing of Oracle Mediator service components. The
following types of properties can be set:

• Audit level and metrics level

• Parallel maximum rows retrieved

• Parallel locker thread sleep

• Custom configuration parameters

• Container ID refresh time and container ID lease timeout

• Resequencer locker thread sleep and maximum groups locked

• Advanced configuration properties

For more information about available Oracle Mediator properties, see Chapter "Configuring
Oracle Mediator Service Components and Engines" of Administering Oracle SOA Suite and
Oracle Business Process Management Suite.

Cross Reference Properties
You can configure cross references to dynamically map values for equivalent entities created in
different applications.

For more information about available cross reference properties, see Chapter "Managing
Cross-References" of Administering Oracle SOA Suite and Oracle Business Process
Management Suite.

Oracle B2B Properties
You can enable Oracle B2B Dynamic Monitoring Service (DMS) metrics and configure
advanced properties.

Appendix G
Oracle Enterprise Manager Fusion Middleware Control Property Pages

G-6

For more information about available Oracle B2B properties, see Chapter "Configuring Oracle
B2B" of Administering Oracle SOA Suite and Oracle Business Process Management Suite.

Service and Reference Binding Component Properties
You can configure the following service and reference binding component properties:

• Activation specification (for services), interaction specification (for references), and
endpoint properties (such as time outs, thresholds, maximum intervals, and others) for the
JCA adapters

• Web services properties such as enabling REST; enabling the WSDL, metadata exchange,
and endpoint of the web service; and others

For more information about available service and reference binding component properties, see
Chapter "Configuring Service and Reference Binding Components" of Administering Oracle
SOA Suite and Oracle Business Process Management Suite.

Global Token Variables and Automatic Database Purging Properties
You can configure additional properties in Oracle Enterprise Manager Fusion Middleware
Control:

• Define global token variables for specific URIs in SOA composite applications.

• Enable automatic purging of large numbers of instances from the database.

For more information about token configurations, see the "Managing Global Token Variables
for Multiple SOA Composite Applications" section of Administering Oracle SOA Suite and
Oracle Business Process Management Suite.

For more information, see the "Deleting Large Numbers of Instances with Oracle Enterprise
Manager Fusion Middleware Control" section of Administering Oracle SOA Suite and Oracle
Business Process Management Suite.

System MBean Browser Advanced Properties
The System MBean Browser of Oracle Enterprise Manager Fusion Middleware Control
enables you to modify advanced properties that do not display in the property pages described
in Property Pages. These advanced properties display beneath a link at the bottom of
properties pages for the following components:

• SOA Infrastructure

• Oracle BPEL Process Manager

• Oracle Mediator

• Human workflow notification and task service

• Oracle B2B

Note:

In addition to advanced properties, the same properties that display for modifying in
the property pages described in Property Pages also display for modifying in the
System MBean Browser.

Appendix G
System MBean Browser Advanced Properties

G-7

SOA Infrastructure Advanced Properties
The More SOA Infra Advanced Configuration Properties link at the bottom of the SOA
Infrastructure Common Properties page enables you to display System MBean Browser
advanced properties for the SOA Infrastructure. Properties that display for modifying include,
but are not limited to, the following:

• The maximum number of times an invocation exception can be retried

• The number of seconds between retries for an invocation exception

• The HTTP proxy authentication realm

• The HTTP proxy authentication type

• The HTTP proxy host

• The password for HTTP proxies that require authentication

• The HTTP proxy port number

• The user name for HTTP proxies that require authentication

• The HTTP protocol URL published as part of the SOAP address of a process in the WSDL
file

• The HTTPS protocol URL published as part of the SOAP address of a process in the
WSDL file

• The path to the Oracle SOA Suite keystore

For more information about available SOA Infrastructure System MBean Browser properties,
see Chapter "Configuring the SOA Infrastructure" of Administering Oracle SOA Suite and
Oracle Business Process Management Suite.

Oracle BPEL Process Manager Advanced Properties
The More BPEL Configuration Properties link at the bottom of the BPEL Service Engine
Properties page enables you to display System MBean Browser properties for the BPEL
process. Properties that display for modifying include, but are not limited to, the following:

• The extra BPEL class path to include when compiling BPEL-generated Java sources

• The maximum number of times a failed expiration call (wait/onAlarm) is retried before
failing

• The delay between expiration retries

• The size of the block of instance IDs to allocate from the dehydration store during each
fetch

• The number of invoke messages stored in in-memory cache

• Whether one-way invocation messages are delivered

For more information about available Oracle BPEL Process Manager System MBean Browser
properties, see Chapter "Configuring BPEL Process Service Components and Engines" of
Administering Oracle SOA Suite and Oracle Business Process Management Suite.

Oracle Mediator Advanced Properties
The More Mediator Configuration Properties link at the bottom of the Mediator Service
Engine Properties page enables you to display System MBean Browser properties for Oracle

Appendix G
System MBean Browser Advanced Properties

G-8

Mediator. Most of the System MBean Browser properties that display for Oracle Mediator can
also be modified on the Mediator Service Engine Properties page.

For more information about available Oracle Mediator System MBean Browser properties, see
Chapter "Configuring Oracle Mediator Service Components and Engines" of Administering
Oracle SOA Suite and Oracle Business Process Management Suite.

Human Workflow Notification and Task Service Advanced Properties
The More Workflow Notification Configuration Properties link at the bottom of the Workflow
Notification Properties page and the More Workflow Task Service Configuration Properties
link at the bottom of the Workflow Task Service Properties page enables you to display System
MBean Browser properties for human workflow. Properties that display for modifying include,
but are not limited to, the following:

• The address at which to receive incoming instant messages (IMs)

• Whether to return custom notification service property names

For more information about available human workflow notification and task service System
MBean Browser properties, see Chapter "Configuring Human Workflow Service Components
and Engines" of Administering Oracle SOA Suite and Oracle Business Process Management
Suite.

Oracle B2B Advanced Properties
The More B2B Configuration Properties link at the bottom of the B2B Server Properties
page enables you to display System MBean Browser properties for Oracle B2B. Properties that
display for modifying include, but are not limited to, Oracle B2B payload obfuscation.

For more information about available Oracle B2B properties, see Chapter "Configuring Oracle
B2B" of Administering Oracle SOA Suite and Oracle Business Process Management Suite.

Appendix G
System MBean Browser Advanced Properties

G-9

H
Working with Large Schemas in the XSLT
Editor

The XSLT Editor displays source and target trees that provide an XML representation of the
input and output documents for the XSLT map that is being edited. The editor creates these
trees from the XSD schema documents after you select a root element definition.
These schema trees can become large and difficult to work with in a graphical mapping tool,
such as the XSLT Editor. Some schema documents define hundreds of child nodes for each
parent node. Expanding a few parent nodes like this, in the tree, can generate thousands of
tree nodes to scroll through when trying to create an XSLT Map.

If the mapping is sparse, i.e. there are only a few mapped target nodes even though the
schema is very large, the user needs to constantly scroll through nodes that do not need to be
mapped. On the other hand, if the mapping is not sparse, and many mappings exist, the user
faces a lot of crisscrossing lines that make it difficult to make sense out of the mappings.

This appendix discusses strategies for both sparse and non-sparse maps, as well as ways to
reduce clutter.

Sparse Mappings
Schemas are often created to handle a large range of possibilities. When schemas of this type
are used to produce source and target trees, the trees can contain hundreds of thousands, or
even millions of nodes. However, in many cases, the user is only interested in using or
populating a small portion of the nodes defined in the schema.

There are various ways of handling sparse mappings.

Using Sample XML to Generate a Schema

The 12c XSLT Editor has the ability to create schemas from XML documents that can then be
used as schema documents for a source or target tree. If you have a sample XML document
for your source and/or target, this document can be used to build small schema documents
that contain only those nodes that you need for the map.

To create an XSLT map using sample source and target XML documents, select the Generate
from XML option while selecting the schema for a source or target in a new XSL map.

H-1

A schema is generated and placed in the Schemas folder. This schema will be used to create
the source and target trees for your mapping, and consequently will contain only the nodes that
exist in your original sample XML document.

If you wish to switch back and forth from the small sample schema to the larger schema that
you might be avoiding, you can select Replace/Add Source or Target Schema from the
canvas context menu. Then select either the small sample schema from the Schemas folder or
the larger schema.

Appendix H
Sparse Mappings

H-2

Using XSLT View

The 12c editor contains a new view available within the Design View tab. This is the XSLT
View. It can be reached by clicking the XSLT button on the top right of the XSLT editor toolbar.

XSLT View shows the existing statements in the XSLT file. Users who have previously edited
XSLT in a source xml editor may appreciate this view. It is organized in the same way as
statements would appear in the XSLT source. Using this view will provide a condensed look at
the mappings you are creating. For instance, here is a map against a large target schema
document in Map View. Note that some lines run off the bottom of the display as they map to
nodes that appear in the schema later in the tree.

Appendix H
Sparse Mappings

H-3

Here is the same mapping in XSLT view:

You can now see all of your mappings clearly without unused target nodes taking up space. If
you need to add a new target element from the schema, use the Add Children From Schema
option on the context menu.

From the context menu on any parent node select the Add Children From Schema option and
a list of possible child nodes will appear that can be selected and added. You also have the
option to select All Attributes/All Elements/All Required from this menu for any parent node.

Appendix H
Sparse Mappings

H-4

As an added bonus, when nodes are added this way, all required children of any node you
insert will be added automatically for you. In the example above, when we select the
ns2:records element to be added, it is inserted at its correct place in the tree and its required
ns1:id node is automatically added for you.

If you are used to editing in Source view, an option was added in 12.2.1.0.0 to allow you to
move easily back and forth from source to design view. Right-click any node in the XSLT panel
and select Locate in Source View.

Appendix H
Sparse Mappings

H-5

The source view opens and the node is selected:

To navigate back to any node in Design view, you can select the Locate in Design View
option while in Source View.

XSLT view can also be used to insert any XSLT statement and allows the use of named and
matched templates (template rules). See Editing an XSLT Map in XSLT View for more
information on XSLT view.

Quick Start for XSLT View
You can set the Preference settings to always start the XSLT Editor in XSLT view. These
settings also control the automatic creation of target nodes to get you started. To set the
preferences for XSLT View, select Tools > Preferences to bring up the Preferences dialog.
Then select XSL Maps > XSL Editor.

Appendix H
Sparse Mappings

H-6

To start in XSLT View, select the XSLT View Initialization option with the desired options. If
you are working with a large schema, it is a good idea to set a limit to the number of levels of
children to be generated.

Then, when you create your XSLT map these options will be used. In addition, these options
are used anytime you select the Clear XSLT Map option from the canvas context menu.

Appendix H
Sparse Mappings

H-7

If you do not like your preference settings for a particular map, you can make changes to the
preferences and regenerate the initial map by selecting Clear XSLT Map.

Non-Sparse Mappings
Sometimes, it is necessary to create or modify existing maps that contain large numbers of
target elements and consequently large numbers of mappings. When editing a map like this, it
can be difficult to keep track of what is going on. For such situations, the 12c XSLT Editor has
a new feature that enables the user to set the scope of the mapping to show only mappings
below a selected target node.

For instance, the following is a non-sparse mapping.

We can set the scope of the mapping to an area in the target tree we would like to work in.
Right-click a target node, and select Set Display Scope.

The display is scoped to the target node selected. All lines indicating mappings outside of this
area are not drawn and the source tree becomes condensed, showing only nodes that are
mapped.

Appendix H
Non-Sparse Mappings

H-8

You can then continue to work in the scoped area.

Hidden areas in the source tree can be expanded to show nodes that might be needed for
additional mapping. Right-click on any Hidden item in the Source tree to see a popup menu
with options for searching within the tree and selecting nodes to be shown.

Any search done from this popup will wrap through the tree beyond the currently selected
Hidden area, so that you do not have to select the correct Hidden area for the node you are
looking for.

There are also options on the main context menu that will hide and expand areas of the source
tree. If you right-click on any non-Hidden node in the tree, there are options to show and hide
siblings and children of the selected node.

Appendix H
Non-Sparse Mappings

H-9

In the target tree, you can add nodes from the schema by using the Add Children from
Schema option.

Appendix H
Non-Sparse Mappings

H-10

To exit the scoped display, click on a target node outside of the scoped area or select Exit
Display Scope from the context menu in the target tree.

Reducing Textual Clutter
The 12c XSLT Editor provides the ability to abbreviate node names and other information in the
source and target trees. If you select the Abbreviate Text option from the canvas context
menu, prefixes will be hidden and the text for certain types of nodes will be abbreviated.

Before abbreviation:

Appendix H
Reducing Textual Clutter

H-11

After abbreviation:

You may also create a Custom Display Options Config file where abbreviations for node name
text may be defined. For instance, in the example above, the phrase CustomerPartyList
appears in many node names. This could be abbreviated to CPL using a Custom Display

Appendix H
Reducing Textual Clutter

H-12

Options Config file. Then node names such as $EscapedSyncCustomerPartyListEBM will
appear as $EscapedSyncCPLEBM in the tree.

This does not change the node name in the XSLT or in any XPath statements generated. It
only applies to the name that appears on the tree node and can help to reduce overall clutter
when schema node definitions use verbose names.

A Custom Display Options Config file can be loaded under XSL Editor preferences. See How
to Import a Customization File to Specify Display Preferences in the XSLT Map Editor for more
details.

Searching Trees
When searching through large schemas for element names, the search can take long. In
12.1.3, the search does not have a cancel option. This has been added in 12.2.1.

If the search is taking too long, the tree size can be truncated by reducing the Expansion
Depth for the trees in preferences. Go to Tools > Preferences. Select XSL Maps from the
navigator. Click the Show Advanced Options button and change the Expansion Depth for
the XML Schema Maximum Expansion Depth option to a much smaller value. For trees that
have hundreds of children at a single level, this value needs to be around 10 levels. This will
mean that the search will not go below the level set here, but some trees can contain millions
of nodes and the search can take long in that event.

Copying and Modifying a Large Input Document
A user may be tempted to try to copy an input XML document by using the automap feature of
the XSLT editor. However, automap generates specific XSLT statements for every node in the
schema. On large schemas, this is not an efficient way to copy an input document. This can
generate XSLT files that are many MBs in size, and these will be slow to load and difficult to
edit. In addition, if the user’s mapping is sparse, generating thousands of lines of XSLT to
execute against nodes that are defined in the schema, but will never exist at runtime is
inefficient.

The 12c XSLT Editor now supports the creation of matched templates (template rules). In
particular, you can now add an identity template that can copy all nodes in the source tree. Use
the following steps:

1. Switch to XSLT view.

2. Select XSLT Templates from the Components Window.

3. Drag and drop the Identity Template from the Miscellaneous Templates section to the left
side of the xsl:stylesheet node. You will see a green highlight when the drop is in the
correct position indicating that the template will be added as a child of the stylesheet node.

4. Delete the original root match=”/” template from the XSLT.

Appendix H
Searching Trees

H-13

Your display would look something like the following:

Every node in the input document will be processed by the identity template. This is
indicated by the bubble highlighting on each node of the source tree that indicates the
context nodes for the selected template. When each node is processed, the xsl:copy
statement will execute to copy the node to the output. The apply-templates statement
tells the processor to continue processing any child nodes of the current context node
being processed. This will then copy the entire input document.

Additional templates can then be added to make modifications to the tree while it is being
copied. For instance, suppose we need to simply remove a node from the input tree. We
can do this by adding an empty template for the node we want to remove from the output.
In other words, when we process this node, we will output nothing, which will effectively
remove the node from the tree.

To add an empty template for a node, right-click the source node and select New
Template Rule.

Click OK on the New Template Dialog that follows. The template is added. Note the
difference in the display for the node when the identity template is selected. It is no longer
bubble highlighted, indicating it is no longer processed by the identity template.

Appendix H
Copying and Modifying a Large Input Document

H-14

Selecting the new empty template will now highlight this node, showing that this template
will process the node and output nothing when it is processed.

Now, suppose we also want to upper-case some text in another node. We can create
another template to explicitly process that node to perform the upper-case. We create a
template with the New Template Rule option selected from the BrokenPlace node in the
source tree. When the New Template Rule dialog appears, we select the node we want to
create in the template.

Click OK and the template and the node will be created. We then assign an upper-case
function to the node.

Appendix H
Copying and Modifying a Large Input Document

H-15

When this node is created in the output, its text will be upper-cased.

In this manner, you can copy and modify a large input XML with very few XSLT statements.

Generating Test Files with Element and Type Substitutions
It is possible in the XSLT editor to perform element and type substitutions based on derived
types and substitution groups defined in the XSD. Many schemas contain abstract elements or
types that can be overloaded with elements from substitution groups or elements from derived
types using xsi:type.
The test tool in the XSLT editor does not currently support generation of input XML documents
that contain substituted elements. So, when you invoke an XSLT map where substitutions have
been made in the source tree, the following warning occurs.

The user then has to modify the input document generated or provide their own test input
document. This can become problematic, as the user must make the substitutions themselves
in the input document with the correct syntax for the xsi:type definition or element substitution
needed. This can be more problematic in large schemas where multiple substitutions have
been made.

Using the XSLT editor, we can generate an input document that contains the correctly
substituted elements with all of the appropriate namespaces/prefixes defined for us. This will
provide us with a template for the input test document.

Appendix H
Generating Test Files with Element and Type Substitutions

H-16

In the mapping above there are two substitutions done in the source tree. The first is a
substituted element CommentList from a substitution group defined the schema document. The
second is an Item type substitution for a derived item type defined in the schema document.

We would like to write a small XSLT map that will generate a document we can use as a test
input file for testing this map. It has to contain the correct xsi:type and element substitution
information defined in our source document.

We create a new map, selecting no schema document for the source and selecting the
PurchaseOrder schema for the target, as we want to output a PurchaseOrder document we
can use as test input for the PurchaseOrder source in our existing map.

By using Add Child From Schema and performing the same substitutions on the
PurchaseOrder target that we have on our PurchaseOrder source, we can create a map that
looks like the following:

We then execute this XSLT with the test tool to create our PurchaseOrder template document.

Appendix H
Generating Test Files with Element and Type Substitutions

H-17

This generates a template for our test input document with the correct substitutions for our test.

Appropriate test data can then be entered in the fields defined. Alternatively, you can define
data values in the XSLT that generates the test file to pre-populate the test file.

Appendix H
Generating Test Files with Element and Type Substitutions

H-18

Index

Index-1

	Contents
	Preface
	Audience
	Documentation Accessibility
	Diversity and Inclusion
	Related Documents
	Conventions

	Part I Getting Started with Oracle SOA Suite
	1 Introduction to Building Applications with Oracle SOA Suite
	Introduction to Oracle SOA Suite
	Service-Oriented Architecture
	Services
	Oracle SOA Suite
	Standards Used by Oracle SOA Suite to Enable SOA
	Service Component Architecture within SOA Composite Applications
	Service Components
	Binding Components
	Wires

	Runtime Behavior of a SOA Composite Application
	Service Infrastructure
	Service Engines
	Deployed Service Archives

	Approaches for Designing SOA Composite Applications

	Getting Started with Oracle SOA Suite
	Setting Accessibility Options
	Setting Accessibility Options in Oracle JDeveloper
	Setting Accessibility Options in Oracle SOA Composer and Oracle BPM Worklist
	How to Set Accessibility Features Before Logging In
	How to Set Accessibility Options After Logging In

	2 Getting Started with Developing SOA Composite Applications
	Developing SOA Projects in Reference Configuration Mode
	Creating a SOA Application
	Create a SOA Application and Project
	What Happens When You Create a SOA Application and Project

	Adding Service Components
	How to Add a Service Component
	What You May Need to Know About Adding and Deleting a Service Component
	How to Edit a Service Component

	Adding Service Binding Components
	How to Add a Service Binding Component
	How to Define the Interface (WSDL) for a Web Service
	Defining a New WSDL Using a Schema
	Selecting an Existing WSDL
	Automatically Defining a Service Interface WSDL from a Component

	How to View Schemas
	How to Edit a Service Binding Component
	What You May Need to Know About Adding and Deleting Services
	What You May Need to Know About Using the Same Namespace in Different WSDL Files in the Same Composite
	What You May Need to Know About Multiple Schema Elements in a WSDL Types Section
	What You May Need to Know About WSDL Browsing in the Resources Window When the SOA Infrastructure Uses Both Internal and External Oracle HTTP Servers

	Adding Reference Binding Components
	How to Add a Reference Binding Component
	What You May Need to Know About Adding and Deleting References
	What You May Need to Know About WSDL References
	What You May Need to Know About Mixed Message Types in a WSDL File
	What You May Need to Know About Invoking the Default Revision of a Composite

	Adding Wires
	How to Wire a Service and a Service Component
	How to Wire a Service Component and a Reference
	What You May Need to Know About Adding and Deleting Wires

	Adding Descriptions to SOA Composite Applications
	How to Add Descriptions to SOA Composite Applications

	Renaming, Deleting, and Moving Components and Artifacts
	How to Rename and Delete Components in the SOA Composite Editor
	How to Rename, Move, and Delete Artifacts in the Applications Window

	Viewing Component Details in the Property Inspector
	Adding Security Policies
	Deploying a SOA Composite Application
	How to Invoke Deployed SOA Composite Applications

	Managing and Testing a SOA Composite Application
	How to Manage Deployed SOA Composite Applications in Oracle JDeveloper
	How to Test and Debug a Deployed SOA Composite Application

	3 Managing Shared Data with the Design-Time MDS Repository
	Introduction to SOA Design-Time MDS Repository Management
	Introduction to the Default SOA Design-Time MDS Repository Connection

	Changing the Default SOA-MDS Location
	How to Change the Default SOA-MDS Location

	Sharing Data with the SOA Design-Time MDS Repository
	How to Share Data with the SOA Design-Time MDS Repository

	Creating and Deleting Subfolders Under the /apps Folder
	How to Create and Delete Subfolders Under the /apps Folder

	Exporting the Selected Contents of the /apps Folder to a JAR File
	How to Export the Selected Contents of the /apps Folder to a JAR File

	Importing the Contents of the JAR File into the /apps Folder
	How to Import the Contents of the JAR File into the /apps Folder

	Transferring the Selected Contents of the /apps Folder to Another MDS Repository
	How to Transfer the Selected Contents of the /apps Folder to Another MDS Repository

	Exporting an Existing Release 11g MDS Repository to a JAR File
	How to Export an Existing Release 11g MDS Repository to a JAR File

	Browsing for Files in the SOA Design-Time MDS Repository

	Part II Using the BPEL Process Service Component
	4 Getting Started with Oracle BPEL Process Manager
	Introduction to the BPEL Process Service Component
	How to Add a BPEL Process Service Component
	How to Validate a BPEL Process Service Component

	Introduction to Activities
	How to Edit BPEL Activities in the Property Inspector
	How to Copy and Paste Activities in BPEL Projects
	How to Add a Description of Actions to BPEL Process Activities

	Introduction to Partner Links
	Creating a Partner Link
	How to Create a Partner Link
	Partner Links for an Outbound Adapter
	Partner Links for an Inbound Adapter
	Partner Links from an Abstract WSDL to Call a Service
	Partner Links from an Abstract WSDL to Implement a Service
	Partner Links and Human Tasks or Business Rules
	Partner Links from an Existing Human Task, Business Rule, or Oracle Mediator

	Introduction to Adapters
	Introduction to BPEL Process Monitors

	5 Introduction to Interaction Patterns in a BPEL Process
	Introduction to One-Way Messages
	BPEL Process Service Component as the Client
	BPEL Process Service Component as the Service

	Introduction to Synchronous Interactions
	BPEL Process Service Component as the Client
	BPEL Process Service Component as the Service
	Synchronous BPEL Process Invoking an Asynchronous Process

	Introduction to Asynchronous Interactions
	BPEL Process Service Component as the Client
	BPEL Process Service Component as the Service

	Introduction to Asynchronous Interactions with a Timeout
	BPEL Process Service Component as the Client
	BPEL Process Service Component as the Service

	Introduction to Asynchronous Interactions with a Notification Timer
	BPEL Process Service Component as the Client
	BPEL Process Service Component as the Service

	Introduction to One Request, Multiple Responses
	BPEL Process Service Component as the Client
	BPEL Process Service Component as the Service

	Introduction to One Request, One of Two Possible Responses
	BPEL Process Service Component as the Client
	BPEL Process Service Component as the Service

	Introduction to One Request, a Mandatory Response, and an Optional Response
	BPEL Process Service Component as the Client
	BPEL Process Service Component as the Service

	Introduction to Partial Processing
	BPEL Process Service Component as the Client
	BPEL Process Service Component as the Service

	Introduction to Multiple Application Interactions

	6 Manipulating XML Data in a BPEL Process
	Introduction to Manipulating XML Data in BPEL Processes
	XML Data in BPEL Processes
	Data Manipulation and XPath Standards in Assign Activities

	Delegating XML Data Operations to Data Provider Services
	How to Create an Entity Variable
	Understanding How SDO Works in the Inbound Direction
	Understanding How SDO Works in the Outbound Direction
	Creating an Entity Variable and Choosing a Partner Link
	Creating a Binding Key

	Translating Between Native Data and XML
	How to Translate Native Data to XML Data
	How to Translate XML Data to Native Data
	How to Translate Inbound Native Data to XML Stored as an Attachment

	Using Standalone SDO-based Variables
	How to Declare SDO-based Variables
	How to Convert from XML to SDO

	Initializing a Variable with Expression Constants or Literal XML
	How To Assign a Literal XML Element

	Copying Between Variables
	How to Copy Between Variables
	How to Initialize Variables with an Inline from-spec in BPEL 2.0

	Copy Between JSON and XML Variables in a BPEL Process
	Create a JSON Variable
	Render and Map Individual JSON Elements

	Moving and Copying Variables in the Structure Window
	To Move Variables in the Structure Window:
	To Copy Variables in the Structure Window:

	Accessing Fields in Element and Message Type Variables
	How to Access Fields Within Element-Based and Message Type-Based Variables

	Assigning Numeric Values
	How to Assign Numeric Values

	Using Mathematical Calculations with XPath Standards
	How To Use Mathematical Calculations with XPath Standards

	Assigning String Literals
	How to Assign String Literals

	Concatenating Strings
	How to Concatenate Strings

	Assigning Boolean Values
	How to Assign Boolean Values

	Assigning a Date or Time
	How to Assign a Date or Time

	Manipulating Attributes
	How to Manipulate Attributes

	Manipulating XML Data with bpelx Extensions
	How to Use bpelx:append
	bpelx:append in BPEL 1.1
	bpelx:append in BPEL 2.0

	How to Use bpelx:insertBefore
	bpelx:insertBefore in BPEL 1.1
	bpelx:insertBefore in BPEL 2.0

	How to Use bpelx:insertAfter
	bpelx:insertAfter in BPEL 1.1
	bpelx:insertAfter in BPEL 2.0

	How to Use bpelx:remove
	bpelx:remove in BPEL 1.1
	bpelx:remove in BPEL 2.0

	How to Use bpelx:rename and XSD Type Casting
	bpelx:rename in BPEL 1.1
	bpelx:rename in BPEL 2.0

	How to Use bpelx:copyList
	bpelx:copyList in BPEL 1.1
	bpelx:copyList in BPEL 2.0

	How to Use Assign Extension Attributes
	ignoreMissingFromData Attribute
	insertMissingToData Attribute
	keepSrcElementName Attribute

	Validating XML Data
	How to Validate XML Data in BPEL 2.0
	Validate XML in an Assign Activity
	Validate XML in a Standalone, Extended Validate Activity

	How to Validate XML Data in BPEL 1.1
	Validate XML in an Assign Activity
	Validate XML in a Standalone, Extended Validate Activity

	Using Element Variables in Message Exchange Activities in BPEL 2.0
	Mapping WSDL Message Parts in BPEL 2.0
	How to Map WSDL Message Parts

	Importing Process Definitions in BPEL 2.0
	Manipulating XML Data Sequences That Resemble Arrays
	How to Statically Index into an XML Data Sequence That Uses Arrays
	How to Use SOAP-Encoded Arrays
	SOAP-Encoded Arrays in BPEL 2.0
	Declaring a SOAP Array Using a wsdl:arrayType Attribute Inside a Schema

	How to Determine Sequence Size
	How to Dynamically Index by Applying a Trailing XPath to an Expression
	Applying a Trailing XPath to the Result of getVariableData
	Using the bpelx:append Extension to Append New Items to a Sequence
	Merging Data Sequences
	Generating Functionality Equivalent to an Array of an Empty Element

	What You May Need to Know About Using the Array Identifier

	Converting from a String to an XML Element
	How To Convert from a String to an XML Element

	Understanding Document-Style and RPC-Style WSDL Differences
	How To Use RPC-Style Files

	Manipulating SOAP Headers in BPEL
	How to Receive SOAP Headers in BPEL
	How to Send SOAP Headers in BPEL

	Declaring Extension Namespaces in BPEL 2.0
	How to Declare Extension Namespaces
	What Happens When You Create an Extension

	7 Invoking a Synchronous Web Service from a BPEL Process
	Introduction to Invoking a Synchronous Web Service
	Invoking a Synchronous Web Service
	How to Invoke a Synchronous Web Service
	How Does the BPEL Process Work

	What Happens When You Invoke a Synchronous Web Service
	Partner Link in the BPEL Code
	Partner Link Type and Port Type in the BPEL Code
	Invoke Activity for Performing a Request
	Synchronous Invocation in BPEL Code

	Specifying Transaction Timeout Values in Durable Synchronous Processes
	How To Specify Transaction Timeout Values
	What You May Need to Know About SyncMaxWaitTime and Durable Synchronous Requests Not Timing Out

	Calling a One-Way Mediator with a Synchronous BPEL Process

	8 Invoking an Asynchronous Web Service from a BPEL Process
	Introduction to Invoking an Asynchronous Web Service
	Invoking an Asynchronous Web Service
	How to Invoke an Asynchronous Web Service
	Adding a Partner Link for an Asynchronous Service
	Adding an Invoke Activity
	Adding a Receive Activity
	Performing Additional Activities

	What Happens When You Invoke an Asynchronous Web Service
	portType Section of the WSDL File
	partnerLinkType Section of the WSDL File
	Partner Links Section in the BPEL File
	Composite Application File
	Invoke and Receive Activities
	createInstance Attribute for Starting a New Instance
	Dehydration Points for Maintaining Long-Running Asynchronous Processes
	Multiple Runtime Endpoint Locations

	What You May Need to Know About Midprocess Receive Activities Consuming Messages After Timing Out
	What You May Need to Know About Multiple Client Components Invoking a Composite
	What You May Need to Know About Limitations on BPEL 2.0 IMA Support
	What Happens When You Specify a Conversation ID
	bpelx:conversationId in BPEL 1.1
	bpelx:conversationId in BPEL 2.0

	Routing Callback Messages to the Correct Endpoint when Multiple Receive or Pick Activities Use the Same Partner Link
	How to Route Callback Messages to the Correct Endpoint when Multiple Receive and Pick Activities Use the Same Partner Link

	Managing Idempotence at the Partner Link Operation Level
	How to Manage Idempotence at the Partner Link Operation Level

	Creating a Dynamic Partner Link at Design Time for Use at Runtime
	How To Create a Dynamic Partner Link at Design Time for Use at Runtime

	Overriding Security Certificates when Invoking Dynamic Partner Links
	Overriding WSDL Files of Dynamic Partner Links
	Using WS-Addressing in an Asynchronous Service
	How to Use WS-Addressing in an Asynchronous Service
	Using TCP Tunneling to View Messages Exchanged Between Programs
	Setting Up a TCP Listener for Synchronous Services
	Setting Up a TCP Listener for Asynchronous Services

	9 Using Correlation Sets and Message Aggregation
	Introduction to Correlation Sets in an Asynchronous Service
	Scenarios for Using Correlation Sets
	Understanding Correlation Set Contents and Concepts
	Overview of Correlation Set Creation

	Creating Correlation Sets in Oracle JDeveloper
	How to Create a Correlation Set with the Correlation Wizard
	How to Manually Create Correlation Sets From the Correlations Tab
	Step 1: Creating a Project
	Step 2: Configuring Partner Links and File Adapter Services
	Creating an Initial Partner Link and File Adapter Service
	Creating a Second Partner Link and File Adapter Service
	Creating a Third Partner Link and File Adapter Service

	Step 3: Creating Three Receive Activities
	Creating an Initial Receive Activity
	Creating a Second Receive Activity
	Creating a Third Receive Activity

	Step 4: Creating Correlation Sets
	Creating an Initial Correlation Set
	Creating a Second Correlation Set

	Step 5: Associating Correlation Sets with Receive Activities
	Associating the First Correlation Set with a Receive Activity
	Associating the Second Correlation Set with a Receive Activity
	Associating the Third Correlation Set with a Receive Activity

	Step 6: Creating Property Aliases
	Creating Property Aliases for NameCorr
	Creating Property Aliases for IDCorr

	Step 7: Reviewing WSDL File Content

	What You May Need to Know About Conversion IDs and Different Composite Revisions
	What You May Need to Know About Setting Correlations for an IMA Using a fromParts Element With Multiple Parts

	Routing Messages to the Same Instance
	How to Configure BPEL Process Instance Creation
	How to Use the Same Operation in Entry and Midprocess Receive Activities
	How to Route a Message to a New or Existing Instance when Using Correlation Sets

	10 Using Parallel Flow in a BPEL Process
	Introduction to Parallel Flows in BPEL Processes
	What You May Need to Know About the Execution of Parallel Flow Branches in a Single Thread

	Creating a Parallel Flow
	How to Create a Parallel Flow
	What Happens When You Create a Parallel Flow
	Synchronizing the Execution of Activities in a Flow Activity
	How to Create Synchronization Between Activities Within a Flow Activity
	What Happens When You Create Synchronization Between Activities Within a Flow Activity
	What You May Need to Know About Join Conditions in Target Activities

	Customizing the Number of Parallel Branches
	Processing Multiple Sets of Activities with the forEach Activity in BPEL 2.0
	How to Create a forEach Activity
	What Happens When You Create a forEach Activity

	Customizing the Number of Flow Activities with the flowN Activity in BPEL 1.1
	How to Create a flowN Activity
	What Happens When You Create a FlowN Activity

	11 Using Conditional Branching in a BPEL Process
	Introduction to Conditional Branching
	Defining Conditional Branching with the If or Switch Activity
	Defining Conditional Branching with the If Activity in BPEL 2.0
	How to Create an If Activity
	What Happens When You Create an If Activity

	Defining Conditional Branching with the Switch Activity in BPEL 1.1
	How to Create a Switch Activity
	What Happens When You Create a Switch Activity

	Defining Conditional Branching with the While Activity
	How To Create a While Activity
	What Happens When You Create a While Activity

	Defining Conditional Branching with the repeatUntil Activity
	How to Create a repeatUntil Activity
	What Happens When You Create a repeatUntil Activity

	Specifying XPath Expressions to Bypass Activity Execution
	How to Specify XPath Expressions to Bypass Activity Execution
	What Happens When You Specify XPath Expressions to Bypass Activity Execution

	12 Using Fault Handling in a BPEL Process
	Introduction to a Fault Handler
	Introduction to BPEL Standard Faults
	BPEL 1.1 Standard Faults
	BPEL 2.0 Standard Faults
	Fault Handling Order of Precedence in BPEL 2.0

	Introduction to the Business and Runtime Fault Categories of BPEL Faults
	Business Faults
	Runtime Faults
	bindingFault
	remoteFault
	replayFault

	How to Add and Propagate Fault Handling in a Synchronous BPEL Process
	Edit the Schema and WSDL Files
	Add a Fault Handler
	Create a Fault Response Variable
	Add an Assign Activity to the Catch Activity Branch
	Add a Reply Activity to the Catch Activity Branch

	Handling Faults with the Fault Management Framework
	Understanding How the Fault Policy Binding Resolution Works
	How to Design a Fault Policy for Automated Fault Recovery with the Fault Policy Wizard
	Step 1: Defining Property Sets
	Step 2: Defining Alerts
	Step 3: Defining Actions
	Step 4: Defining Fault Names and Policies
	Step 5: Defining the Fault Policy Bindings for the Fault Policy

	How to Manually Design a Fault Policy for Automated Fault Recovery
	Manually Creating a Fault Policy File for Automated Fault Recovery
	Associating a Fault Policy with Fault Policy Binding
	Additional Fault Policy and Fault Policy Binding File Samples
	Designing a Fault Policy with Multiple Rejection Handlers

	How to Execute a Fault Policy
	How to Use a Java Action Fault Policy
	How to Design Fault Policies for Oracle BPM Suite
	What You May Need to Know About Designing a Fault Policy in a Synchronous BPEL Process
	What You May Need to Know About Fault Management Behavior When the Number of Instance Retries is Exceeded
	What You May Need to Know About Binding Level Retry Execution Within Fault Policy Retries

	Catching BPEL Runtime Faults
	How to Catch BPEL Runtime Faults

	Getting Fault Details with the getFaultAsString XPath Extension Function
	How to Get Fault Details with the getFaultAsString XPath Extension Function

	Throwing Internal Faults with the Throw Activity
	How to Create a Throw Activity
	What Happens When You Create a Throw Activity

	Rethrowing Faults with the Rethrow Activity
	How to Create a Rethrow Activity
	What Happens When You Rethrow Faults

	Returning External Faults
	How to Return a Fault in a Synchronous Interaction
	How to Return a Fault in an Asynchronous Interaction

	Managing a Group of Activities with a Scope Activity
	How to Create a Scope Activity
	How to Add Descriptive Notes and Images to a Scope Activity
	What Happens After You Create a Scope Activity
	What You May Need to Know About Scopes
	How to Use a Fault Handler Within a Scope
	What You May Need to Know About the idempotent Property and Fault Handling
	How to Create a Catch Activity in a Scope
	What Happens When You Create a Catch Activity in a Scope
	How to Insert No-Op Instructions into a Business Process with an Empty Activity
	What Happens When You Create an Empty Activity

	Re-executing Activities in a Scope Activity with the Replay Activity
	How to Create a Replay Activity
	What Happens When You Create a Replay Activity

	Using Compensation After Undoing a Series of Operations
	Using a Compensate Activity
	How to Create a Compensate Activity
	What Happens When You Create a Compensate Activity
	Using a compensateScope Activity in BPEL 2.0
	How to Create a compensateScope Activity
	What Happens When You Create a compensateScope Activity

	Stopping a Business Process Instance with a Terminate or Exit Activity
	Immediately Ending a Business Process Instance with the Exit Activity in BPEL 2.0
	How to Create an Exit Activity
	What Happens When You Create an Exit Activity

	Stopping a Business Process Instance with the Terminate Activity in BPEL 1.1
	How to Create a Terminate Activity
	What Happens When You Create a Terminate Activity

	Throwing Faults with Assertion Conditions
	How to Create Assertion Conditions
	To create assertion conditions in invoke activities, receive activities, reply activities, and OnMessage branches:
	To create an assertion condition in standalone assert activities:

	How to Disable Assertions
	What Happens When You Create Assertion Conditions
	What You May Need to Know About Assertion Conditions
	bpelx:postAssert and bpelx:preAssert Extensions
	Use of faultName and message Attributes
	Multiple Assertions
	Use of Built-in and Custom XPath Functions and $variable References
	Assertion Condition Evaluation Logging of Events to the Instance Audit Trail
	Expressions Not Evaluating to an XML Schema Boolean Type Throw a Fault
	Assertion Conditions in a Standalone Assert Activity

	What You May Need to Know About Postassertion and Preassertion Condition Schemas and Syntax

	Classifying SOAP Faults as Retriable

	13 Transaction and Fault Propagation Semantics in BPEL Processes
	Introduction to Transaction Semantics
	Oracle BPEL Process Manager Transaction Semantics
	BPELCaller Process Calls a BPELCallee Process That Has bpel.config.transaction Set to requiresNew
	BPELCaller Process Calls a BPELCallee Process That Has bpel.config.transaction Set to required

	Introduction to Execution of One-Way Invocations
	Executing a Business Process Without a Transaction
	When Should I Use a BPEL Process Without a Transaction?
	Guidelines for Executing Without a Transaction
	How to Create a Synchronous BPEL Process Without a Transaction
	How to Create an Asynchronous BPEL Process Without a Transaction

	Using In-Memory SOA to Improve System Performance
	Persistence Settings for In-Memory Flow Instances
	Steps to Enable In-Memory SOA
	Enabling the In-Memory SOA Flag
	Designing Your Business Process to Run In-Memory
	Setting an Existing Business Process to Be Non-Transactional
	Setting the Completion Persist Policy for an Existing BPEL Process

	14 Incorporating Java and Java EE Code in a BPEL Process
	Introduction to Java and Java EE Code in BPEL Processes
	Incorporating Java and Java EE Code in BPEL Processes
	How to Wrap Java Code as a SOAP Service
	What You May Need to Know About Wrapping Java Code as a SOAP Service
	How to Embed Java Code Snippets into a BPEL Process with the bpelx:exec Tag
	How to Embed Java Code Snippets in a BPEL 2.0 Process
	How to Use an XML Facade to Simplify DOM Manipulation
	How to Use bpelx:exec Built-in Methods
	How to Use Java Code Wrapped in a Service Interface

	Adding Custom Classes and JAR Files
	How to Add Custom Classes and JAR Files
	To Add JARs to BpelcClasspath:
	To Add Custom Classes:
	To Add Custom JARs:

	Using Java Embedding in a BPEL Process in Oracle JDeveloper
	How To Use Java Embedding in a BPEL Process in Oracle JDeveloper
	What You May Need to Know About Using thread.sleep() in a Java Embedding Activity

	Embedding Service Data Objects with bpelx:exec
	Sharing a Custom Implementation of a Class with Oracle BPEL Process Manager
	How to Configure the BPEL Connection Manager Class to Take Precedence

	15 Using Events and Timeouts in BPEL Processes
	Introduction to Event and Timeout Concepts
	Selecting Between Continuing or Waiting on a Process with a Pick Activity
	How To Create a Pick Activity
	What Happens When You Create a Pick Activity
	What You May Need to Know About Simultaneous onMessage Branches in BPEL 2.0

	Setting Timeouts for Request-Reply and In-Only Operations in Receive Activities
	How to Set Timeouts in Receive Activities
	What Happens When You Set Timeouts in Receive Activities
	What You May Need to Know About Setting Timeouts for Request-Reply and In-Only Operations
	Timeout Settings Relative from When the Activity is Invoked
	Timeout Settings as an Absolute Date Time
	Timeout Settings Computed Dynamically with an XPath Expression
	bpelx:timeout Fault Thrown During an Activity Timeout
	Event Added to the BPEL Instance Audit Trail During an Activity Timeout
	Recoverable Timeout Activities During a Server Restart (Refresh Expiration Alarm Table)

	Setting an Expiration Time with a Wait Activity
	How To Specify the Minimum Wait Time
	How to Create a Wait Activity
	What Happens When You Create a Wait Activity

	Specifying Events to Wait for Message Arrival with an OnEvent Branch in BPEL 2.0
	How to Create an onEvent Branch in a Scope Activity
	What Happens When You Create an OnEvent Branch

	Setting Timeouts for Durable Synchronous Processes
	Invoking an Oracle Enterprise Scheduler Job in a BPEL Process
	How to Create Oracle Database and SOA-MDS Connections
	How to Create a Schedule Job Activity
	How to Attach Security Policies to the Service and Reference Binding Components

	16 Coordinating Master and Detail Processes
	Introduction to Master and Detail Process Coordinations
	BPEL File Definition for the Master Process
	Correlating a Master Process with Multiple Detail Processes

	BPEL File Definition for Detail Processes

	Defining Master and Detail Process Coordination in Oracle JDeveloper
	How to Create a Master Process
	How to Create a Detail Process
	How to Create an Invoke Activity

	17 Using the Notification Service
	Introduction to the Notification Service
	Introduction to Notification Channel Setup
	Selecting Notification Channels During BPEL Process Design
	How To Configure the Email Notification Channel
	Setting Email Attachments
	Formatting the Body of an Email Message as HTML
	Using Dynamic HTML for Message Content Requires a CDATA Function

	How to Configure the IM Notification Channel
	How to Configure the SMS Notification Channel
	How to Select Email Addresses and Telephone Numbers Dynamically
	How to Select Notification Recipients by Browsing the User Directory

	Allowing the End User to Select Notification Channels
	How to Allow the End User to Select Notification Channels
	How to Create and Send Headers for Notifications

	18 Using Oracle BPEL Process Manager Sensors and Analytics
	Introduction to Oracle BPEL Process Manager Sensors
	Composite Sensors

	Configuring Sensors and Sensor Actions in Oracle JDeveloper
	How to Access Sensors and Sensor Actions
	How to Configure Activity, Variable, and Fault Sensors
	To Configure an Activity Sensor:
	To Configure a Variable Sensor:
	To Configure a Fault Sensor:

	How to Configure Sensor Actions
	How to Publish to Remote Topics and Queues
	How to Create a Custom Data Publisher
	How to Register the Sensors and Sensor Actions in the composite.xml File

	Viewing Sensors and Sensor Action Definitions in Oracle Enterprise Manager Fusion Middleware Control
	Configuring BPEL Process Analytics
	Introduction to Business Indicators
	Introduction to Standard Sampling Points
	Introduction to User-Defined Sampling Points
	How to Access Analytics View
	How to Define Business Indicators
	Defining Counters
	Defining Dimensions
	Defining Measures

	How to Define Measurements
	How to Define a Counter Mark
	How to Define an Interval Start
	How to Define an Interval Stop
	How to Define a Single Mark

	How to Configure Composite-Level Analytic Sampling Points
	How to Configure Process-Level Analytic Sampling Points

	How to Edit Business Indicators in the Business Indicator Overview Editor
	Deploying BPEL Analytics
	Viewing BPEL Analytics at Runtime

	Part III Using the Oracle Mediator Service Component
	19 Getting Started with Oracle Mediator
	Introduction to Oracle Mediator
	Mediator Functionality
	Content-Based and Header-Based Routing
	Synchronous and Asynchronous Interactions
	Sequential and Parallel Routing of Messages
	Message Resequencing
	Data Transformation
	Payload Validation
	Java Callouts
	Event Handling
	Dynamic Routing
	Error Handling
	Sending Messages Back to the Caller (Echo)
	Multiple Part Messages

	Creating a Mediator
	How to Create a Mediator
	To create a composite application with a Mediator:
	To create a Mediator in an existing composite application:
	To create a new project with a Mediator:
	To create a Mediator in an existing project:

	Introduction to the Mediator Editor Environment
	Configuring the Mediator Interface Definition
	How to Configure the Mediator Interface Definition
	What Happens When You Create a Mediator
	Without an Interface Definition
	With a WSDL-Based Interface
	With a One-Way Interface Definition
	With a Synchronous Interface Definition
	With an Asynchronous Interface Definition
	With an Event Subscription

	Defining an Interface for a Mediator
	How to Define an Interface for a Mediator
	To Subscribe to Events:
	To Define Services for a Mediator Using a Wire:
	To Define Services for a Mediator in the Mediator Editor:

	Generating a WSDL File
	How to Generate a WSDL File
	To generate a WSDL file for a one-way interface from an XSD file:
	To generate a WSDL file for a synchronous interface from an XSD file:
	To generate a WSDL file for an asynchronous interface from an XSD file:

	Specifying Validation and Priority Properties
	Modifying a Mediator Service Component
	How To Modify Mediator Operations
	How To Modify Mediator Event Subscriptions

	20 Creating Oracle Mediator Routing Rules
	Introduction to Routing Rules
	Static Routing Rules
	Types of Static Rules
	Static Routing Rule Components

	Dynamic Routing Rules
	Sequential and Parallel Execution
	Basic Principles of Sequential Routing Rules
	Basic Principles of Parallel Routing Rules
	Finer Control Over Thread Allocation in Parallel Routing

	Resequencing Rules
	Defining Routing Rules
	How To Access the Routing Rules Section
	From the SOA Composite Editor:
	From the Applications window:

	How to Create Static Routing Rules
	How to Specify Mediator Services or Events
	To invoke a service:
	To trigger an event:
	To echo a service:

	What You May Need to Know About Echoing a Service
	How to Specify Sequential or Parallel Execution
	How to Configure Response Messages
	How to Handle Premature Callbacks
	How to Handle Multiple Callbacks
	How to Handle Faults
	To define an additional fault routing:
	To remove a fault routing section:

	How to Specify an Expression for Filtering Messages
	To specify an expression for filtering messages:
	To specify a filter expression on a message payload:

	How to Translate Between Native XSD Formats and XML Formats
	How to Use Inbound Translation
	How to Use Outbound Translation
	How to Create XSLT Transformations
	To create a transformation:
	To add user-defined extension functions:

	How to Create XQuery Transformations
	To create an XQuery transformation:
	To edit an XQuery transformation:

	How to Assign Values
	To copy a source node to a target node:
	To assign complex expressions:
	To assign constant values and XML fragments:

	What You May Need to Know About the Assign Activity
	How to Access Headers for Filters and Assignments
	Manual Expression Building for Accessing Headers for Filters and Assignments
	Manual Expression Building for Accessing Properties for Filters and Assignments

	How to Use Semantic Validation
	How to Work with Attachments
	How to Use Java Callouts
	To make Java callout classes available:
	To enter the Java class for the callout:
	To set the payload root element (when using a filter expression):
	To enable domain value map and cross reference functions:
	Mediator Java Callout API
	Sample Java Callout Class

	How to Create Dynamic Routing Rules
	How to Dynamically Override a Static Routing Rule Using a DVM
	To override a static route using DVM:
	To add a new domain to the DVM:
	To add a new row to the DVM:
	To delete a domain from the DVM:
	To delete a row from the DVM:

	How to Dynamically Override a Static Routing Rule Using a Decision Component
	To override a static route using a Decision Component:
	To edit a decision component:

	How to Remove an Existing Dynamic Routing Rule

	What You May Need to Know About Using Dynamic Routing Rules
	How to Define Default Routing Rules
	Default Rule Scenarios
	Default Rule Target
	Default Rule: Validation, Transformation, and Assign Functionality
	Default Rule: Java Callouts
	Default Rule: Mediator .mplan File

	21 Working with Multiple Part Messages in Oracle Mediator
	Introduction to Mediator Multipart Message Support
	Working with Multipart Request Messages
	How to Specify Filter Expressions for Multipart Request Messages
	How to Add Validations for Multipart Request Messages
	How to Create Transformations for Multipart Request Messages
	How to Assign Values for Multipart Request Messages
	How to Work with Multipart Reply, Fault, and Callback Source Messages
	How to Work with Multipart Target Messages

	22 Using Oracle Mediator Error Handling
	Introduction to Mediator Error Handling
	Fault Policies
	Conditions
	Actions
	Retry Action
	Rethrow Action
	Human Intervention Action
	Abort Action
	Java Code Action

	Fault Bindings
	Error Groups in Mediator

	Using Error Handling with Mediator
	How to Use Error Handling for a Mediator Service Component
	What Happens at Runtime

	Fault Recovery Using Oracle Enterprise Manager Fusion Middleware Control
	Error Handling XML Schema Definition Files
	Schema Definition File for fault-policies.xml
	Schema Definition File for fault-bindings.xml

	23 Resequencing in Oracle Mediator
	Introduction to the Resequencer
	Groups and Sequence IDs
	Identification of Groups and Sequence IDs

	Resequencing Order
	Standard Resequencer
	Overview of the Standard Resequencer
	Information Required for Standard Resequencing
	Example of the Standard Resequencer

	FIFO Resequencer
	Overview of the FIFO Resequencer
	Information Required for FIFO Resequencing
	Example of the FIFO Resequencer

	Best Effort Resequencer
	Overview of the Best Effort Resequencer
	Best Effort Resequencer Message Selection Strategies
	Maximum Rows Selected
	Time Window

	Best Effort Resequencer Message Delivery
	Information Required for Best Effort Resequencing
	Example of Best Effort Resequencing Based on Maximum Rows
	Example of Best Effort Resequencing Based on a Time Window

	Configuring the Resequencer
	How to Specify the Resequencing Level
	How to Configure the Resequencing Strategy
	To configure a standard resequencer:
	To configure a FIFO resequencer:
	To configure a best effort resequencer:

	24 Understanding Message Exchange Patterns of an Oracle Mediator
	One-way Message Exchange Patterns
	The one.way.returns.fault Property
	To add the one.way.returns.fault property:

	Request-Reply Message Exchange Patterns
	Request-Reply-Fault Message Exchange Patterns
	Request-Callback Message Exchange Patterns
	Request-Reply-Callback Message Exchange Patterns
	Request-Reply-Fault-Callback Message Exchange Patterns

	Part IV Using the Business Rules Service Component
	25 Getting Started with Oracle Business Rules
	Introduction to the Business Rule Service Component
	Integrating BPEL Processes, Business Rules, and Human Tasks

	Overview of Rules Designer Editor Environment
	Applications Window
	Rules Designer Window
	Structure Window
	Business Rule Validation Log Window

	Introduction to Creating and Editing Business Rules
	How to Create Business Rules Components
	Working with Business Rules in Rules Designer

	Adding Business Rules to a BPEL Process
	How to Add Inputs for Business Rule
	How to Add Outputs for Business Rule
	How to Set Options and Create Decision Service and Business Rule Dictionary
	What Happens When You Add Business Rules to a BPEL Process
	What Happens When You Create a Business Rules Dictionary
	What You May Need to Know About Invoking Business Rules in a BPEL Process
	What You May Need to Know About Decision Component Stateful Operation

	Adding Business Rules to a SOA Composite Application
	How to Add Business Rules to a SOA Composite Application
	How to Add Inputs to a Business Rule
	How to Add Output to a Business Rule
	How to Set Options and Create Decision Service and Business Rules Dictionary

	How to Select and Modify a Decision Function in a Business Rule Component

	Running Business Rules in a Composite Application
	What You May Need to Know About Testing a Standalone Decision Service Component

	Using Business Rules with Oracle ADF Business Components Fact Types

	26 Using Declarative Components and Task Flows
	Introduction to Declarative Components and Task Flows
	Introduction to the Oracle Business Rules Editor Declarative Component
	Using the Oracle Business Rules Editor Component
	How to Create and Run a Sample Application by Using the Rules Editor Component
	How to Create the RuleSetModel Object
	How to Create the .jspx File
	How to Refer to the Oracle Rules Shared Libraries
	How to Run the Sample Application

	How to Deploy a Rules Editor Application to a Standalone WLS
	What You May Need to Know About the Custom Permissions for the Rules Editor Component
	What You May Need to Know About the Supported Tags of the Rules Editor Component

	Introduction to the Oracle Business Rules Dictionary Editor Declarative Component
	Using the Oracle Business Rules Dictionary Component
	How to Create and Run a Sample Application by Using the Rules Dictionary Editor Component
	How to Create the RuleDictionaryModel Object
	How to Create .jspx File for the Rules Dictionary Editor Component
	How to Refer the oracle.rules and the oracle.soa.rules_dict_dc.webapp Shared Libraries
	How to Run the Sample Rules Dictionary Editor Application

	How to Deploy a Rules Dictionary Application to a Standalone Oracle WebLogic Server
	What You May Need to Know About the Supported Attributes of the Rules Dictionary Editor Component

	Introduction to the Oracle Business Rules Dictionary Editor Task Flow
	Using the Oracle Business Rules Dictionary Task Flow
	How to Create and Run a Sample Application By Using the Rules Dictionary Editor Task Flow
	How to Add a Rule Dictionary Editor Task Flow
	How to Edit the pagedef.xml File
	How to Refer to oracle.rules and oracle.soa.rules_dict_dc.webapp Shared Libraries
	How to Run the Sample Task Flow Application

	How to Deploy a Rules Dictionary Editor Task Flow Application to a Standalone Oracle WebLogic Server

	Localizing the ADF-Based Web Application
	Working with Translations
	Enabling Translations for Consumer of Reusable Rules UI ADF Task Flow Component
	Sample Code to Pass an Implementation of IRelatedMetadataDetails

	Enabling Translations for Consumer of Rules Web UI Application
	Sample Code for Creating an Instance of resourceManager

	Part V Using the Human Workflow Service Component
	27 Getting Started with Human Workflow
	Introduction to Human Workflow
	Introduction to Human Workflow Concepts
	Introduction to Design and Runtime Concepts
	Task Assignment and Routing
	Participant
	Participant Type
	Participant Assignment
	Ad Hoc Routing
	Outcome-based Completion of Routing Flow

	Static, Dynamic, and Rule-Based Task Assignment
	Static Task Assignment
	Dynamic Task Assignment
	Assign tasks with Business Rules

	Task Stakeholders
	Task Deadlines
	Notifications
	Task Forms
	Advanced Concepts
	Reports and Audit Trails

	Introduction to the Stages of Human Workflow Design

	Introduction to Human Workflow Use Cases
	Task Assignment to a User or Role
	Use of the Various Participant Types
	Escalation, Expiration, and Delegation
	Automatic Assignment and Delegation
	Dynamic Assignment of Users Based on Task Content

	Introduction to Human Workflow Architecture
	Human Workflow Services
	Use of Human Task
	Service Engines

	Human Workflow and Business Rule Differences Between Oracle SOA Suite and Oracle BPM Suite

	28 Creating Human Tasks
	Introduction to Human Tasks
	Introduction to Creating a Human Task Definition
	Introduction to Associating the Human Task Definition with a BPEL Process
	Introduction to Generating the Task Form

	Creating Human Tasks
	How to Create a Human Task Using the SOA Composite Editor
	How to Create a Human Task Using Oracle BPEL Designer
	What Happens When You Create a Human Task

	Configuring Human Tasks
	Exiting the Human Task Editor and Saving Your Changes
	Associating Human Tasks with BPEL Processes
	How to Associate a Human Task with a BPEL Process
	What You May Need to Know About Deleting a Wire Between a Human Task and a BPEL Process
	How to Define the Human Task Activity Title, Initiator, Priority, and Parameter Variables
	Specifying the Task Title
	Specifying the Task Initiator and Task Priority
	Specifying Task Parameters

	How to Define the Human Task Activity Advanced Features
	Specifying a Scope Name and a Global Task Variable Name
	Specifying a Task Owner
	Specifying an Identification Key
	Specifying an Identity Context
	Specifying an Application Context
	Including the Task History of Other Human Tasks

	How to View the Generated Human Task Activity
	Invoking BPEL Callbacks

	What You May Need to Know About Changing the Generated Human Task Activity
	What You May Need to Know About Deleting a Partner Link Generated by a Human Task
	How to Define Outcome-Based Modeling
	Specifying Payload Updates
	Using Case Statements for Other Task Conclusions

	What You May Need to Know About Encoding an Attachment

	29 Configuring Human Tasks
	Accessing the Sections of the Human Task Editor
	Specifying the Title, Description, Outcome, Priority, Category, Owner, and Application Context
	How to Specify a Task Title
	How to Specify a Task Description
	How to Specify a Task Outcome
	How to Specify a Task Priority
	How to Specify a Task Category
	How to Specify a Task Owner
	Specifying a Task Owner Statically Through the User Directory or a List of Application Roles
	Specifying a Task Owner Dynamically Through an XPath Expression

	How To Specify an Application Context

	Specifying the Task Payload Data Structure
	How to Specify the Task Payload Data Structure

	Assigning Task Participants
	How to Specify a Stage Name and Add Parallel and Sequential Blocks
	How to Assign Task Participants
	How to Configure the Single Participant Type
	Creating a Single Task Participant List
	Creating Participant Lists Consisting of Value-Based Names and Expressions
	Creating Participant Lists Consisting of Value-Based Management Chains
	Creating Participant Lists Consisting of Rulesets
	Viewing the Rule Dictionary

	Specifying a Time Limit for Acting on a Task
	Inviting Additional Participants to a Task
	Bypassing a Task Participant

	How to Configure the Parallel Participant Type
	Specifying the Voting Outcome
	Creating a Parallel Task Participant List
	Specifying a Time Limit for Acting on a Task
	Inviting Additional Participants to a Task
	Bypassing a Task Participant

	How to Configure the Serial Participant Type
	Creating a Serial Task Participant List
	Specifying a Time Limit for Acting on a Task
	Inviting Additional Participants to a Task
	Bypassing a Task Participant

	How to Configure the FYI Participant Type
	Creating an FYI Task Participant List

	Selecting a Routing Policy
	How to Customize Tasks Routing
	Exclude Task Creator from Approval List
	Allow All Participants to Invite Other Participants or Edit New Participants
	Allow Initiator to Add Participants
	Stopping Routing of a Task to Further Participants
	Enabling Early Completion in Parallel Subtasks
	Completing Parent Subtasks of Early Completing Subtasks

	How to Specify Advanced Task Routing Using Business Rules
	Introduction to Advanced Task Routing Using Business Rules
	Facts
	Action Types
	Sample Ruleset
	Linked Dictionary Support
	Creating Advanced Routing Rules

	How to Use External Routing
	How to Configure the Error Assignee and Reviewers
	How to Change Server Settings

	Specifying Multilingual Settings and Style Sheets
	How to Specify WordML and Other Style Sheets for Attachments
	How to Specify Multilingual Settings

	Specifying What to Show in Task Details in the Worklist
	Escalating, Renewing, or Ending the Task
	Introduction to Escalation and Expiration Policy
	How to Specify a Policy to Never Expire
	How to Specify a Policy to Expire
	How to Extend an Expiration Policy Period
	How to Escalate a Task Policy
	How to Specify Escalation Rules
	How to Specify a Due Date

	Specifying Participant Notification Preferences
	How to Notify Recipients of Changes to Task Status
	How to Edit the Notification Message
	How to Set Up Reminders
	How to Change the Character Set Encoding
	How to Secure Notifications to Exclude Details
	How to Display the Oracle BPM Worklist URL in Notifications
	How to Make Email Messages Actionable
	How to Send Task Attachments with Email Notifications
	How to Send Email Notifications to Groups and Application Roles
	How to Customize Notification Headers

	Specifying Access Policies and Task Actions on Task Content
	Introduction to Access Rules
	Specifying User Privileges for Acting on Task Content
	Specifying Actions for Acting Upon Tasks
	How to Specify a Workflow Digital Signature Policy
	Specifying a Certificate Authority

	Specifying Restrictions on Task Assignments
	How to Specify Restrictions on Task Assignments

	Specifying Java or Business Event Callbacks
	Specifying Java Callbacks
	Specifying Business Event Callbacks
	How to Specify Task and Routing Customizations in BPEL Callbacks
	How to Disable BPEL Callbacks

	30 Designing Task Forms for Human Tasks
	Introduction to the Task Form
	What You May Need to Know About Task Forms: Time Zone Conversion

	Associating the Task Flow with the Task Service
	Creating an ADF Task Flow Based on a Human Task
	How To Create an ADF Task Flow from the Human Task Editor
	How To Create an ADF Task Flow Based on a Human Task
	What Happens When You Create an ADF Task Flow Based on a Human Task
	What You May Need to Know About Having Multiple ADF Task Flows That Contain the Same Element with Different Meta-attributes

	Creating a Task Form
	How To Create an Autogenerated Task Form
	How to Register the Library JAR File for Custom Page Templates
	How To Create a Task Form Using the Custom Task Form Wizard
	How To Create a Task Form Using the Complete Task with Payload Drop Handler
	Complete Task with Payload
	Complete Task without Payload
	Task Details for Email
	Task Header
	Task Actions
	Task History
	Task Comments and Attachments

	How To Create Task Form Regions Using Individual Drop Handlers
	How To Add the Payload to the Task Form
	What Happens When You Create a Task Form

	Refreshing Data Controls When the Task XSD Changes
	Securing the Task Flow Application
	Creating an Email Notification
	How To Create an Email Notification
	Creating a Task Flow with a Router
	Creating an Email Notification Page

	What Happens When You Create an Email Notification Page

	Deploying a Composite Application with a Task Flow
	How To Deploy a Composite Application with a Task Flow
	How To Redeploy the Task Form
	How To Deploy a Task Flow as a Separate Application
	How To Deploy a Task Form to a non-SOA Oracle WebLogic Server
	Before Deploying the Task Form: Port Changes
	Configuring Unique Cookie Context Paths for the Session Tracking Cookies
	Deploying oracle.soa.workflow.jar to a non-SOA Oracle WebLogic Server
	Defining the Foreign JNDI Provider on a non-SOA Oracle WebLogic Server
	Defining the Foreign JNDI Provider Links on a non-SOA Oracle WebLogic Server
	Including a Grant for bpm-services.jar
	Deploying the Application

	What Happens When You Deploy the Task Form
	What You May Need to Know About Undeploying a Task Flow

	Displaying a Task Form in the Worklist
	Displaying a Task in an Email Notification
	Changing the Text for the Worklist Application in Task Notifications
	Changing the URL of the Worklist Application in Task Notifications

	Reusing the Task Flow Application with Multiple Human Tasks
	How To Reuse the Task Flow Application with Multiple Human Tasks
	How to Reuse the Task Flow Application with Different Actions

	31 Human Workflow Tutorial
	Introduction to the Human Workflow Tutorial
	Prerequisites
	Creating an Application and a Project with a BPEL Process
	Creating the Human Task Service Component
	Designing the Human Task
	Associating the Human Task and BPEL Process Service Components
	Creating a Task Form Project
	Deploying the Task Form
	Creating an Application Server Connection
	Deploying the SOA Composite Application
	Initiating the Process Instance
	Acting on the Task in Oracle BPM Worklist

	32 Using Oracle BPM Worklist
	Introduction to Oracle BPM Worklist
	Logging In to Oracle BPM Worklist
	How to Log In to the Worklist
	Enabling the weblogic User for Logging in to the Worklist

	What Happens When You Log In to the Worklist
	What Happens When You Change a User's Privileges While They are Logged in to Oracle BPM Worklist

	Customizing the Task List Page
	How To Filter Tasks
	To Filter Tasks Based on Assignee or State
	To Filter Tasks Based on Keyword Search
	To Filter Tasks Based on an Advanced Search

	How To Create, Delete, and Customize Worklist Views
	To Customize a Worklist View

	How To Customize the Task Status Chart
	How To Create a ToDo Task
	How to Create Subtasks in the Worklist Application
	What You May Need to Know About Creating Subtasks

	Exporting Tasks to Microsoft Excel
	How to Export Tasks to Excel

	Acting on Tasks: The Task Details Page
	System Actions
	Task History
	How To Act on Tasks
	To Request Information
	To Route a Task
	To Add Comments or Attachments

	How To Act on Tasks That Require a Digital Signature

	Approving Tasks
	Setting a Vacation Period
	Setting Rules
	How To Create User Rules
	How To Create Group Rules
	Assignment Rules for Tasks with Multiple Assignees
	How to Avoid Circular Logic in Reassigned Vacation Rules

	Using the Worklist Administration Functions
	How To Manage Other Users' or Groups' Rules (as an Administrator)
	How to Specify the Login Page Realm Label
	How to Specify the Resource Bundle
	How to Specify the Language Locale Information
	How to Specify User Name Format
	How to Specify a Branding Logo
	How to Specify the Branding Title
	How to Choose a Skin
	To Choose A Skin
	To Create a JAR File Containing Customized Skins

	How to Enable Customized Applications and Links
	How to Specify an Image for a Task Action
	Specifying Additional Process Workspace Settings

	Specifying Notification Settings
	Configuring Alias for Notification Email ID
	Messaging Filter Rules
	Data Types
	Attributes

	Rule Actions
	Managing Messaging Channels
	Viewing Your Messaging Channels
	Creating, Editing, and Deleting a Messaging Channel

	Managing Messaging Filters
	Viewing Messaging Filters
	Creating Messaging Filters
	Editing a Messaging Filter
	Deleting a Messaging Filter

	Using Mapped Attributes (Flex Fields)
	How To Map Attributes
	To Create Labels
	To Browse All Mappings
	To Edit Mappings by Task Type

	Custom Mapped Attributes

	Creating Worklist Reports
	How To Create Reports
	What Happens When You Create Reports
	Unattended Tasks Report
	Tasks Priority Report
	Tasks Cycle Time Report
	Tasks Productivity Report

	Accessing Oracle BPM Worklist in Local Languages and Time Zones
	Strings in Oracle BPM Worklist
	How to Change the Preferred Language, Display Names of Users, and Time Zone Settings if the Identity Store is LDAP-Based
	How to Change the Language in Which Tasks Are Displayed
	How To Change the Language Preferences from a JAZN XML File
	What You May Need to Know Setting Display Languages in Worklist
	How To Change the Time Zone Used in the Worklist

	Creating Reusable Worklist Regions
	How to Create an Application With an Embedded Reusable Worklist Region
	How to Set Up the Deployment Profile
	How to Prepare Federated Mode Task Flows For Deployment
	What You May Need to Know About Task List Task Flow
	What You May Need to Know About Certificates Task Flow
	What You May Need to Know About the Reports Task Flow
	What You May Need to Know About Application Preferences Task Flow
	What You May Need to Know About Mapped Attributes Task Flow
	What You May Need to Know About Rules Task Flow
	What You May Need to Know About Approval Groups Task Flow
	What You May Need to Know About Task Configuration Task Flow

	Java Code for Enabling Customized Applications in Oracle BPM Worklist

	33 Building a Custom Worklist Client
	Introduction to Building Clients for Workflow Services
	Packages and Classes for Building Clients
	Workflow Service Clients
	The IWorkflowServiceClient Interface

	Class Paths for Clients Using SOAP
	Class Paths for Clients Using Remote EJBs
	Initiating a Task
	Creating a Task
	Creating a Payload Element in a Task
	Initiating a Task Programmatically

	Changing Workflow Standard View Definitions
	Writing a Worklist Application Using the HelpDeskUI Sample

	34 Understanding Human Workflow Services
	Introduction to Human Workflow Services
	SOAP, Enterprise JavaBeans, and Java Support for the Human Workflow Services
	Support for Foreign JNDI Names

	Security Model for Services
	Limitation on Propagating Identity to Workflow Services when Using SOAP Web Services
	Creating Human Workflow Context on Behalf of a User
	Obtaining the Workflow Context for a User Previously Authenticated by a JAAS Application

	Task Service
	Task Query Service
	Identity Service
	Identity Service Providers
	Custom User Repository Plug-ins

	Task Metadata Service
	User Metadata Service
	Task Report Service
	Runtime Config Service
	Internationalization of Attribute Labels

	Evidence Store Service and Digital Signatures
	Prerequisites
	Interfaces and Methods

	Task Instance Attributes

	Notifications from Human Workflow
	Contents of Notification
	Error Message Support
	Reliability Support
	Management of Oracle Human Workflow Notification Service
	How to Configure the Notification Channel Preferences
	How to Configure Notification Messages in Different Languages
	How to Send Actionable Messages
	How to Send Actionable Emails for Human Tasks

	How to Send Inbound and Outbound Attachments
	How to Send Inbound Comments
	How to Send Secure Notifications
	How to Set Channels Used for Notifications
	How to Send Reminders
	How to Set Automatic Replies to Unprocessed Messages
	How to Create Custom Notification Headers

	Assignment Service Configuration
	Dynamic Assignment and Task Escalation Patterns
	How to Implement a Dynamic Assignment Pattern
	How to Configure Dynamic Assignment Patterns
	How to Configure Display Names for Dynamic Assignment Patterns
	How to Implement a Task Escalation Pattern

	Dynamically Assigning Task Participants with the Assignment Service
	How to Implement an Assignment Service
	Example of Assignment Service Implementation
	How to Deploy a Custom Assignment Service

	Custom Escalation Function

	Class Loading for Callbacks and Resource Bundles
	Resource Bundles in Workflow Services
	Task Resource Bundles
	Global Resource Bundle – WorkflowLabels.properties
	Worklist Client Resource Bundles
	Task Detail ADF Task Flow Resource Bundles
	Specifying Stage and Participant Names in Resource Bundles
	Case Sensitivity in Group and Application Role Names

	Introduction to Human Workflow Client Integration with Oracle WebLogic Server Services
	Human Workflow Services Clients
	Task Query Service Client Code
	Configuration Option
	JAXB Object
	Workflow Client Configuration File - wf_client_config.xml
	Workflow Client Configuration in the Property Map

	Client Logging
	Configuration Migration Utility

	Identity Propagation
	Enterprise JavaBeans Identity Propagation
	Client Configuration
	Requirements for Client Applications For Identity Propagation

	SAML Token Identity Propagation for SOAP Client
	Client configuration
	Identity Propagation Mode Setting Through Properties
	Identity Propagation Mode Setting in Configuration File
	Identity Propagation Mode Setting Through the JAXB Object

	Public Key Alias

	Client JAR Files

	Task States in a Human Task
	Database Views for Oracle Workflow
	Unattended Tasks Report View
	Task Cycle Time Report View
	Task Productivity Report View
	Task Priority Report View

	35 Design Time at Runtime in Oracle Business Process Management
	Workflow
	Using Design Time at Runtime in Task Editor
	Expiration and Escalation Policy
	Notification Settings
	Task Access
	Rules Tab
	Reset, Save, and Commit Changes

	Part VI Using Binding Components
	36 Getting Started with Binding Components
	Introduction to Binding Components
	SOAP Web Services
	WS-AtomicTransaction Support
	Ensuring Participation of BPEL Processes in WS-AT
	WS-AT Transactions are Not Supported When Optimization is Enabled

	HTTP Binding Service
	Supported Interactions
	How to Configure the HTTP Binding Service
	How to Enable Basic Authentication for HTTP Binding

	JCA Adapters
	Database Adapter
	File Adapter
	FTP Adapter
	AQ Adapter
	JMS Adapter
	MQ Adapter
	Socket Adapter
	Third-Party Adapter
	Oracle User Messaging Service Adapter
	LDAP Adapter
	Coherence Adapter
	JCA Adapter Properties

	Oracle E-Business Suite Adapter
	Oracle BAM 11g Adapter
	Oracle B2B
	Oracle Healthcare Adapter
	Oracle MFT
	ADF-BC Services
	EJB Adapter
	Direct Binding Adapter
	REST Binding
	Cloud Adapters

	Introduction to Integrating a Binding Component in a SOA Composite Application
	How to Integrate a Binding Component in a SOA Composite Application
	How to Use ADF Binding to Invoke a Composite Application from a JSP/Java Class

	Creating Tokens for Use in the Binding URLs of External References
	How to Create Tokens for Use in the Binding URLs of External References

	37 Integrating REST Operations in SOA Composite Applications
	Introduction to REST Support
	Creating REST Support in Service and Reference Binding Components
	How to Configure the REST Binding Component in a SOA Composite Application
	REST Operation Binding Dialog
	REST Method Definition Dialog
	Example: REST Enable an Existing Service Component
	Example: Adding Resources and Operations from a WADL Service to a REST Reference

	How to Consume REST-Based Integrations Created in Oracle Integration from SOA Composite Applications
	Create an Oracle Integration Connection
	Create a REST Binding
	Configure OWSM Policies on the REST Reference
	Configure and Deploy the Application

	How to Invoke OAuth-Protected Oracle Integration REST Endpoints from SOA Composite Applications
	Get Oracle Integration Cloud Instance Details
	Create a Keystore
	Design a SOA Composite and Invoke a REST-Triggered Oracle Integration
	Import SSL Certificates of Oracle Identity Cloud Service and Oracle Integration

	How to Configure the REST Adapter Through Shortcuts
	To generate a REST service based on a web service deployed on an application server:
	To generate a REST reference based on a REST service deployed on an application server:
	To generate a REST service based on a SOA component's WSDL service:

	How to Generate Schemas Manually
	How to Generate Schemas from Samples
	How to Use Global Token Variables
	How to Set REST Header Properties
	Inbound and Outbound Headers
	Custom Header Support

	What You May Need to Know About REST Fault Binding
	What You May Need to Know About Converting a JSON Interchange Format to a REST Schema
	What You May Need to Know About REST References Calling REST Services in the Same Node

	Using JavaScript and JSON in BPEL Components
	Testing the REST Adapter with the HTTP Analyzer
	Testing and Configuring REST Reference Binding Components in Oracle Enterprise Manager Fusion Middleware Control
	Configure Proxy Host and Proxy Port for an External REST Endpoint
	Multipart Form Data Support for REST Binding

	38 Integrating Enterprise JavaBeans with Composite Applications
	Introduction to Enterprise JavaBeans Binding Integration with SOA Composite Applications
	Integration Through Java Interfaces
	Integration Through SDO-Based EJBs

	Designing an SDO-Based Enterprise JavaBeans Application
	How to Create SDO Objects Using the SDO Compiler
	How to Create a Session Bean and Import the SDO Objects
	How to Create a Profile and an EAR File
	How to Define the SDO Types with an Enterprise JavaBeans Bean
	How to Use Web Service Annotations
	How to Deploy the Enterprise JavaBeans EAR File

	Creating an Enterprise JavaBeans Service in Oracle JDeveloper
	How to Integrate Java Interface-based Enterprise JavaBeans with SOA Composite Applications
	How to Integrate SDO-based Enterprise JavaBeans with SOA Composite Applications

	Designing an Enterprise JavaBeans Client to Invoke Oracle SOA Suite
	How to Create a Java Interface-Based Client to Invoke Oracle SOA Suite
	How to Invoke an SDO-Enterprise JavaBeans Service

	Specifying Enterprise JavaBeans Roles
	Configuring Enterprise JavaBeans Binding Support in the Credential Store Framework
	How to Configure Enterprise JavaBeans Binding Support in the Credential Store Framework
	To configure Enterprise JavaBeans binding support in the credential store framework:
	To specify the oracle.jps.credstore.map and oracle.jps.credstore.key properties
	To grant SOA infrastructure runtime access to the CSF map store

	39 Using Direct Binding to Invoke Composite Services
	Introduction to Direct Binding
	Direct Service Binding Component
	Direct Reference Binding Component

	Introduction to the Direct Binding Invocation API
	Synchronous Direct Binding Invocation
	Asynchronous Direct Binding Invocation
	Required JAR Files for Compiling and Running the Direct Binding Java Client Code
	SOA Direct Address Syntax
	SOA Transaction Propagation

	Exception Handling with SOA Direct Transport
	Invoking a SOA Composite Application in Oracle JDeveloper with the Invocation API
	How to Create an Inbound Direct Binding Service
	How to Create an Outbound Direct Binding Reference
	How to Set an Identity for J2SE Clients Invoking Direct Binding
	What You May Need to Know About Invoking SOA Composites on Hosts with the Same Server and Domain Names

	Samples Using the Direct Binding Invocation API

	Part VII Sharing Functionality Across Service Components
	40 Oracle SOA Suite Templates and Reusable Subprocesses
	Introduction to Oracle SOA Suite Templates
	Introduction to Standalone and Inline BPEL Subprocess Invocations
	Introduction to a Standalone Subprocess
	Introduction to an Inline Subprocess

	Differences Between Oracle SOA Suite Templates and Reusable Subprocesses
	Creating Oracle SOA Suite Templates
	Creating and Using a SOA Project Template
	How To Create a SOA Project Template
	How to Use a Composite Template in Another SOA Composite

	Creating and Using a Service Component Template
	How to Create a Service Component Template
	How to Use a Service Component Template in Another SOA Composite

	Creating and Using a BPEL Scope Activity Template
	How to Create a BPEL Scope Activity Template
	How to Use a BPEL Scope Activity Template in Another BPEL Process

	Managing Templates

	Creating Standalone and Inline BPEL Subprocesses in a BPEL Process
	How to Create a Standalone BPEL Subprocess
	How to Create an Inline Subprocess
	How to Create a Standalone Subprocess that Takes a Partner Link as a Parameter
	What You May Need to Know About Renaming a Subprocess

	41 Creating Transformations with the XSLT Map Editor
	Introduction to the XSLT Map Editor
	Using the Map View
	Using the XSLT View
	Using the Components Window
	Using the Properties Window

	Creating an XSLT Map
	How to Create an XSLT Map
	How to Create an XSL Map File in Oracle BPEL Process Manager
	How to Create an XSL Map File from Imported Source and Target Schema Files in Oracle BPEL Process Manager
	How to Create an XSL Map File in Oracle Mediator
	What You May Need to Know About Creating an XSL Map File
	What Happens at Runtime If You Pass a Payload Through Oracle Mediator Without Creating an XSL Map File
	What Happens If You Receive an Empty Namespace Tag in an Output Message

	Editing an XSLT Map in Map View
	How to Perform a Value Copy by Linking Nodes
	How to Create an Empty Node in the Output Document
	How to Set a Literal Text Value for a Target Node
	How to Add an XSLT Statement
	To Add an XSLT Statement:
	To Add an xsl:text or xsl:variable Statement:
	To Drag and Drop an XSLT statement to a Target Node:
	How to Add Conditional Processing Using xsl:if
	To add an xsl:if statement using the context menu:
	To add an xsl:if statement using drag and drop:

	How to Add Conditional Processing Using xsl:choose
	To add an xsl:choose statement using the context menu:
	To add an xsl:choose statement using drag and drop:

	How to Add Loops Using xsl:for-each
	To add an xsl:for-each statement using the context menu:
	To add an xsl:for-each statement using drag and drop:

	How to Add xsl:sort for an xsl:for-each Statement
	To add an xsl:sort statement using the context menu:
	To add an xsl:sort statement using drag and drop:

	How to Duplicate XSLT Instructions
	Example: Modifying the Mapping by Changing the XPath Expression
	Example: Modifying the Mapping by Deleting and Re-Creating It

	How to Duplicate an Element
	How to Delete an Element or Attribute
	How to Remove Mappings from an Element or Attribute

	Editing an XSLT Map in XSLT View
	How to Add a Target Element or Attribute Before Mapping
	How to Add Elements and Attributes from the Target Schema
	To add elements and attributes when target schema is present:
	To drag and drop elements and attributes from the target schema tree:

	How to Add Literal Elements and Attributes When No Target Schema Is Present
	To add a literal element when there is no target schema:
	To add a literal attribute when there is no target schema:

	How to Create an Empty Node in the Output Document

	How to Perform a Value Copy by Linking Nodes
	How to Insert an xsl:valueof Statement
	How to Set a Literal Text Value for an XSLT Node
	How to Set a Literal Text Value Using an xsl:text Instruction
	How to Add XSLT Statements
	To add an XSLT element using the context menu:
	To add XSLT elements from the Components window:

	How to Set the Value of an XSLT Expression Attribute
	How to Duplicate an Element
	How to Delete an Element or Attribute
	How to Move an Element
	How to Remove Mappings from an Element or Attribute

	Using XPath Expressions
	How to Modify an Existing Source to Target Mapping
	To edit an XPath expression using the Edit XPath dialog
	To edit an existing XPath expression using the Properties window
	How to Add an XPath Function to an Existing XPath Expression

	How to Modify an Existing Function XPath Expression in the Canvas Pane
	To set a function parameter using drag and drop:
	To delete a function parameter:
	How to Edit a Function as a Full XPath Expression
	To edit a function as a textual XPath expression using the XPath Edit dialog:
	To edit a function as a textual XPath expression using the Properties Window:

	How to Edit Individual Function Parameters
	To edit the parameters of a function using the Edit Function dialog:
	To edit the parameters of a function using the Properties window:

	How to Create a New Function in the Canvas Pane
	To create an XPath Function using the canvas context menu
	To create an XPath function using the Components window
	To create an XPath function using the target tree context menu
	To create an XPath function by dragging it to the target tree

	How to Chain Functions Together
	How to Remove an XPath Expression
	How to Import User-Defined Functions

	Using Auto Map to Map Complex Nodes
	How to Set Auto Map Preferences
	How to Execute an Auto Map

	Checking the Completion Status of the Map
	Testing the Map
	How to Test the Transformation Mapping Logic
	How to Test XSLT Maps that Use DVM Lookup Functions
	How to Test XSLT Maps that Use XREF Functions
	Working with returnValue:
	Adding Additional Rows:

	How to Generate Reports
	How to Customize Sample XML Generation

	Importing an External XSLT Map
	Using Variables and Parameters
	How to Add Global Variables
	How to Add Local Variables in Map View
	How to Add Local Variables in XSLT View
	How to Add Global Parameters

	Substituting Elements and Types
	Using Named Templates
	How to Create a Named Template
	How to Edit a Named Template
	How to Add Parameters to an Existing Named Template
	How to Invoke a Named Template

	Using Template Rules
	How to Create a Template Rule
	Example: Creating a Template Rule
	Invoking the Template

	How to Refactor an Existing Map to Create a Template Rule

	Using the Execution View
	How to Use Execution View to Prevent or Troubleshoot Runtime Errors
	Searching for Nodes
	Setting Display Options

	Debugging the XSLT Map
	Setting Breakpoints in the XSLT Map Editor
	Running the Debugger on the XSLT Map
	Viewing Breakpoints
	Setting Conditions for XSLT Breakpoints

	Troubleshooting Memory Issues
	Setting XSL Map Preferences
	How to Set XSLT Map Preferences
	How to Set the XSL Editor Preferences
	How to Import a Customization File to Specify Display Preferences in the XSLT Map Editor

	42 Creating Transformations with the XQuery Mapper
	Introduction to the XQuery Mapper
	About the Source and Target Trees
	Using the XQuery Mapper Toolbar
	Using the Properties Window
	Using the Components Window
	Source Editor

	Creating an XQuery Map File
	How to Create an XQuery Main/Library Module

	Using the XQuery Mapper
	How to Use Value Mapping to Copy a Leaf Element Value to a Target Leaf Element
	How to Use Overwrite Mapping to Copy an Element Subtree to the Target Tree
	How to Use Append Mapping to Copy an Element Subtree to the Target Tree
	How to Perform Multiple Value Mappings with One Drag and Drop Action

	Using XQuery Functions
	How to Add an XQuery Function in the XQuery Mapper
	To add an XQuery function:
	To edit a function's parameters:

	Using Library Modules
	How to Import a Library Module

	Working with Zones and FLWOR Constructs
	How to Edit a FLWOR Construct

	Using Type Annotations to Improve XQuery Performance
	Testing Your XQuery Map
	How to Test an XQuery Map

	43 Using Business Events and the Event Delivery Network
	Introduction to Business Events
	EDN Integration with Oracle SOA Suite
	Business Event API Support for Remote Clients
	Guidelines for Manually Setting Event Delivery Network Properties When Invoking the BusinessEvent.setProperty API
	Properties That Cannot Be Manually Set
	Properties That Can Be Manually Set

	Local and Remote Event Connections

	Creating Business Events in Oracle JDeveloper
	How to Create a Business Event

	Subscribing to or Publishing a Business Event from an Oracle Mediator Service Component
	How to Subscribe to a Business Event
	How to Publish a Business Event
	What Happens When You Create and Subscribe to a Business Event
	What Happens When You Publish a Business Event
	What You May Need to Know About Subscribing to a Business Event
	What You May Need to Know About Publishing Events Across Domains Using SAF
	Workaround for Local Subscribers

	How to Configure a Foreign JNDI Provider to Enable Administration Server Applications to Publish Events to the SOA Server
	How to Configure the Connection Factory When the Oracle WebLogic Server JMS Runs in the Same Local JVM as the JMS Adapter

	Subscribing to or Publishing a Business Event from a BPEL Process Service Component
	How to Subscribe to a Business Event
	How to Publish a Business Event
	What Happens When You Subscribe to and Publish a Business Event

	How to Integrate Oracle ADF Business Component Business Events with Oracle Mediator

	44 Working with Cross References
	Introduction to Cross References
	Introduction to Cross Reference Tables
	Oracle Data Integrator Support for Cross Referencing
	Creating and Modifying Cross Reference Tables
	How to Create Cross Reference Metadata
	What Happens When You Create a Cross Reference
	How to Create Custom Database Tables
	How to Add an End System to a Cross Reference Table

	Populating Cross Reference Tables
	About the xref:populateXRefRow Function
	About the xref:populateLookupXRefRow Function
	About the xref:populateXRefRow1M Function
	How to Populate a Column of a Cross Reference Table

	Looking Up Cross Reference Tables
	About the xref:lookupXRef Function
	About the xref:lookupXRef1M Function
	About the xref:lookupPopulatedColumns Function
	How to Look Up a Cross Reference Table for a Value

	Deleting a Cross Reference Table Value
	How to Delete a Cross Reference Table Value

	Creating and Running the Cross Reference Use Case
	How to Create the Use Case
	Task 1: How to Configure the Oracle Database and Database Adapter
	Task 2: How to Create an Oracle JDeveloper Application and a Project
	Task 3: How to Create a Cross Reference
	Task 4: How to Create a Database Adapter Service
	Task 5: How to Create EBS and SBL External References
	Task 6: How to Create the Logger File Adapter External Reference
	Task 7: How to Create an Oracle Mediator Service Component
	Task 8: How to Specify Routing Rules for an Oracle Mediator Service Component
	To create routing rules for an insert operation:
	To create routing rules for an update operation:
	To create routing rules for an updateID operation:
	To create routing rules for a delete operation:

	Task 9: How to Specify Routing Rules for the Common Oracle Mediator
	To create routing rules for the insert operation:
	To create routing rules for a delete operation:
	To create routing rules for the update operation:
	To create routing rules for the UpdateID operation:

	Task 10: How to Configure an Application Server Connection
	Task 11: How to Deploy the Composite Application

	How to Run and Monitor the XrefCustApp Application

	Creating and Running Cross Reference for 1M Functions
	How to Create the Use Case
	Task 1: How to Configure the Oracle Database and Database Adapter
	Task 2: How to Create an Oracle JDeveloper Application and a Project
	Task 3: How to Create a Cross Reference
	Task 4: How to Create a Database Adapter Service
	Task 5: How to Create an EBS External Reference
	Task 6: How to Create a Logger File Adapter External Reference
	Task 7: How to Create an Oracle Mediator Service Component
	Task 8: How to Specify Routing Rules for an Oracle Mediator Component
	To create routing rules for the insert operation:
	To create routing rules for the update operation:

	Task 9: How to Specify Routing Rules for the Common Oracle Mediator
	To create routing rules for the insert operation:
	To create routing rules for the update operation:

	Task 10: How to Configure an Application Server Connection
	Task 11: How to Deploy the Composite Application

	45 Working with Domain Value Maps
	Introduction to Domain Value Maps
	Domain Value Map Features
	Qualifier Domains
	Qualifier Hierarchies
	One-to-Many Mappings

	Creating Domain Value Maps
	How to Create Domain Value Maps
	What Happens When You Create a Domain Value Map

	Editing a Domain Value Map
	How to Add Domains to a Domain Value Map
	How to Edit a Domain
	How to Add Domain Values to a Domain Value Map
	How to Edit Domain Values

	Using Domain Value Map Functions
	Understanding Domain Value Map Functions
	dvm:lookupValue
	dvm:lookupValue1M

	How to Use Domain Value Map Functions in Transformations
	How to Use Domain Value Map Functions in XPath Expressions
	What Happens at Runtime

	Creating a Domain Value Map Use Case for a Hierarchical Lookup
	How to Create the HierarchicalValue Use Case
	Task 1: How to Create an Oracle JDeveloper Application and a Project
	Task 2: How to Create a Domain Value Map
	Task 3: How to Create a File Adapter Service
	Task 4: How to Create ProcessOrders Mediator Component
	Task 5: How to Create a File Adapter Reference
	Task 6: How to Specify Routing Rules
	Task 7: How to Configure an Application Server Connection
	Task 8: How to Deploy the Composite Application

	How to Run and Monitor the HierarchicalValue Application

	Creating a Domain Value Map Use Case For Multiple Values
	How to Create the Multivalue Use Case
	Task 1: How to Create an Oracle JDeveloper Application and Project
	Task 2: How to Create a Domain Value Map
	Task 3: How to Create a File Adapter Service
	Task 4: How to Create the LookupMultiplevaluesMediator Mediator
	Task 5: How to Create a File Adapter Reference
	Task 6: How to Specify Routing Rules
	Task 7: How to Configure an Application Server Connection
	Task 8: How to Deploy the Composite Application

	How to Run and Monitor the Multivalue Application

	Preloading DVM Cache for Faster First-Use
	How to Preload DVM Cache at Server Startup

	46 Using Oracle SOA Composer with Domain Value Maps
	Introduction to Oracle SOA Composer
	How to Sign In to Oracle SOA Composer

	Viewing Domain Value Maps at Runtime
	How To View Domain Value Maps at Runtime

	Editing Domain Value Maps at Runtime
	How to Edit Domain Value Maps at Runtime
	Changing to Edit Mode
	Adding Rows
	Editing Rows
	Deleting Rows

	Exporting and Importing Customizations to Domain Value Maps at Runtime
	How to Export Customizations to a Domain Value Map at Runtime
	How to Import Customizations to a Domain Value Map at Runtime

	Publishing Changes at Runtime
	How to Publish Changes at Runtime
	How to Discard Changes at Runtime

	Detecting Conflicts

	Part VIII Completing Your Application
	47 Enabling Security with Policies and Message Encryption
	Introduction to Policies
	Attaching Policies to Binding Components and Service Components
	How to Attach Policies to Binding Components and Service Components
	To attach a policy to a service component:

	How to Override Policy Configuration Property Values
	Overriding Client Configuration Property Values
	Overriding Server Configuration Property Values

	Encrypting and Decrypting Specific Fields of Messages
	How to Encrypt and Decrypt Specific Fields of Messages

	48 Deploying SOA Composite Applications
	Introduction to Deployment
	Deployment Prerequisites
	Creating the Oracle SOA Suite Schema
	Creating a SOA Domain
	Configuring a SOA Cluster

	Understanding the Packaging Impact
	Anatomy of a Composite
	Preparing the Target Environment
	How to Create Data Sources and Queues
	Script for Creation of JMS Resource and Redeployment of JMS Adapter
	Script for Creation of the Database Resource and Redeployment of the Database Adapter

	How to Create Connection Factories and Connection Pooling
	How to Enable Security
	How to Set the Business Flow Instance Name or Composite Instance Name at Design Time
	Setting the Business Flow Instance Name in Oracle Mediator
	Setting the Business Flow Instance Name in a BPEL Process
	Setting the Composite Instance Name in a BPEL Process

	How to Deploy Trading Partner Agreements and Task Flows
	How to Create an Application Server Connection
	How to Create a SOA-MDS Connection
	What You May Need to Know About Opening the composite.xml File Through a SOA-MDS Connection

	Customizing Your Application for the Target Environment Before Deployment
	How to Use Configuration Plans to Customize SOA Composite Applications for the Target Environment
	Introduction to Configuration Plans
	Introduction to a Configuration Plan File
	Introduction to Use Cases for a Configuration Plan
	How to Use a Configuration Plan when Creating Environment-Independent Processes

	How to Create a Configuration Plan in Oracle JDeveloper
	How to Create a Configuration Plan with the WLST Utility
	How to Attach a Configuration Plan with ant Scripts
	How to Create Global Token Variables

	Deploying SOA Composite Applications or Projects in Oracle JDeveloper
	How to Deploy a Single SOA Composite in Oracle JDeveloper
	Creating an Application Server Connection
	Optionally Creating a Project Deployment Profile
	Deploying the Profile
	What You May Need to Know About Deploying Human Task Composites with Task Flows to Partitions

	How to Deploy Multiple SOA Composite Applications in Oracle JDeveloper
	How to Deploy and Use Shared Data Across Multiple SOA Composite Applications in Oracle JDeveloper
	Create a JAR Profile and Include the Artifacts to Share
	Create a SOA Bundle that Includes the JAR Profile
	Deploy the SOA Bundle with Oracle JDeveloper
	To deploy the SOA bundle with ant:

	Use Shared Data
	Creating a SOA-MDS Connection
	Creating a BPEL Process

	How to Deploy an Existing SOA Archive in Oracle JDeveloper

	Deploying and Managing SOA Composite Applications with the WLST Utility
	Deploying and Managing SOA Composite Applications with ant Scripts
	How to Use ant to Automate the Testing of a SOA Composite Application
	How to Use ant to Compile a SOA Composite Application
	How to Use ant to Package a SOA Composite Application into a Composite SAR File
	How to Use ant to Deploy a SOA Composite Application
	How to Use ant to Undeploy a SOA Composite Application
	How to Use ant to Export a Composite into a SAR File
	How to Use ant to Export Postdeployment Changes of a Composite into a JAR File
	How to Use ant to Import Postdeployment Changes of a Composite
	How to Use ant to Export Shared Data of a Given Pattern into a JAR File
	How to Use ant to Remove a Top-level Shared Data Folder
	How to Use ant to Start a SOA Composite Application
	How to Use ant to Stop a SOA Composite Application
	How to Use ant to Activate a SOA Composite Application
	How to Use ant to Retire a SOA Composite Application
	How to Use ant to Assign the Default Version to a SOA Composite Application
	How to Use ant to List the Deployed SOA Composite Applications
	How to Use ant to List All Available Partitions in the SOA Infrastructure
	How to Use ant to List All Composites in a Partition
	How to Use ant to Create a Partition in the SOA Infrastructure
	How to Use ant to Delete a Partition in the SOA Infrastructure
	How to Use ant to Start All Composites in the Partition
	How to Use ant to Stop All Composites in the Partition
	How to Use ant to Activate All Composites in the Partition
	How to Use ant to Retire All Composites in the Partition
	How to Use ant to Manage SOA Composite Applications

	Deploying SOA Composite Applications from Oracle Enterprise Manager Fusion Middleware Control
	Deploying SOA Composite Applications with No Servers Running
	Offline Deployment Configuration Files
	Offline Deployment Configuration List File
	Offline Deployment Configuration File
	Relative Configuration File Paths
	Order of Deployment

	How to Deploy SOA Composite Applications and Shared Data with No Server Running
	What You May Need to Know About Offline Composite Deployment in a Cluster Environment
	What You May Need to Know About Deploying SOA Composite Applications that Reference Shared Data That is Not in the MDS Repository

	Importing XSLT Customizations into a Deployed SOA Composite Application
	Postdeployment Configuration
	Security
	Updating Connections
	Updating Data Sources and Queues
	Attaching Policies

	Testing and Troubleshooting
	Verifying Deployment
	Initiating an Instance of a Deployed Composite
	Automating the Testing of Deployed Composites
	Recompiling a Project After Receiving a Deployment Error
	Reducing Java Code Size to Resolve Java Compilation Errors
	Troubleshooting Common Deployment Errors
	Common Oracle JDeveloper Deployment Issues
	Common Configuration Plan Issues
	Deploying to a Managed Oracle WebLogic Server
	Deploying to a Two-Way, SSL-Enabled Oracle WebLogic Server
	Deploying with an Unreachable Proxy Server
	Releasing Locks to Resolve ADF Task Form EAR File Deployment Errors
	Increasing Memory to Recover from Compilation Errors
	Oracle JDeveloper Compilation Error When Property Alias Definition is Missing for a Receive Activity with a Correlation Set
	ADF Binding Service Names Must Be Unique Across All Deployed SOA Composite Applications

	Patching Running Instances of a SOA Composite
	Using the SOA Patch Developer Mode in JDeveloper
	Generating the Patch XML File
	Creating a Sparse Deployment Profile

	Verifying and Deploying the Patch Using WLST
	Deleting the Patch File

	49 Using the Oracle SOA Suite Development Maven Plug-In
	Introduction to the Oracle SOA Suite Maven Plug-in
	POM Files and Archetypes
	Maven Plug-in Goals
	compile
	package
	deploy
	test
	undeploy

	Using Maven Online Help

	Installing the Oracle SOA Suite Maven Plug-in
	How to Configure the Oracle SOA Suite Maven Plug-In

	Using the Oracle SOA Suite Maven Archetype

	50 Debugging and Auditing SOA Composite Applications
	Introduction to the SOA Debugger
	Debugging a SOA Composite Application
	How to Start the SOA Debugger
	How to Set Breakpoints and Initiate Debugging
	How to Step Through a Debugging Session
	How to End or Detach from a Debugging Session
	How to Remove Breakpoints
	How to View Adapter Properties
	How to View Threads

	Testing SOA Composite Applications with the HTTP Analyzer
	Auditing SOA Composite Applications at the BPEL Activity Level
	How to Audit SOA Composite Applications at the BPEL Activity Level

	51 Automating Testing of SOA Composite Applications
	Introduction to the Composite Test Framework
	Test Cases Overview
	Overview of Test Suites
	Overview of Emulations
	Overview of Assertions

	Introduction to the Components of a Test Suite
	Process Initiation
	Emulations
	Assertions
	Message Files

	Creating Test Suites and Test Cases with the Create Composite Test Wizard
	Editing the Contents of Test Cases in Test Mode in the SOA Composite Editor
	How to Initiate Inbound Messages
	How to Emulate Outbound Messages
	How to Emulate Callback Messages
	How to Emulate Fault Messages
	How to Create Assertions
	Creating Assertions on a Part Section, Nonleaf Element, or Entire XML Document
	Creating Assertions on a Leaf Element

	What You May Need to Know About Assertions

	Testing BPEL Process Service Components
	Overview of Assertions on BPEL Process Activities
	Overview of a Fast Forward Action on a Wait Activity
	Overview of Assert Activity Execution
	How to Create BPEL Process Service Component Tests
	How to Create Assertions
	How to Bypass a Wait Activity
	How to Specify the Number of Times to Execute an Activity

	Deploying and Running a Test Suite
	How to Deploy and Run a Test Suite from Oracle JDeveloper
	How to Deploy and Run a Test Suite from Oracle Enterprise Manager Fusion Middleware Control
	How to Deploy and Run a Test Suite with a WLST Command
	How to Deploy and Run a Test Suite with an ant Script

	Part IX Advanced Topics
	52 Managing Large Documents and Large Numbers of Instances
	Best Practices for Handling Large Documents
	Use Cases for Handling Large Documents
	Passing Binary Objects as Base64-Encoded Text in XML Payloads
	SOAP Inline
	SOAP MTOM
	Opaque Passed by File/FTP Adapters
	Opaque Passed by Oracle B2B

	End-to-End Streaming with Attachments
	SOAP with Attachments
	Working with Streaming Attachments
	Creating Composites that Use MIME Attachments
	Performance Overhead and Pass Through Attachments
	Properties for Streaming Attachments
	Streaming Attachments from the SOA Web Service Binding Layer
	Reading and Encoding SOAP Attachment Content
	Sending Attachment Streams
	Overriding Pass Through Settings for Attachments in Oracle Mediator
	Sharing Attachments Using Synchronous Flows
	Attachment Options of File/FTP Adapters
	Oracle B2B Attachment

	Sending and Receiving MTOM-Optimized Messages to SOA Composite Applications
	Scenarios for Storing SwA and MTOM-Optimized Attachments to the Database

	Processing Large XML with Repeating Constructs
	Debatching with the File/FTP Adapter
	Chunking with the File/FTP Adapters

	Processing Large XML Documents with Complex Structures
	Streaming with the File/FTP Adapters
	Oracle B2B Streaming

	Limitations on Concurrent Processing of Large Documents
	Opaque Schema for Processing Large Payloads

	JVM Memory Sizing Recommendations for SOA Composite Applications
	General Tuning Recommendations
	General Recommendations
	Increasing the HTTP POST Timeout
	Increasing the Timeout Value

	Setting Audit Levels from Oracle Enterprise Manager for Large Payload Processing
	Using the Assign Activity in Oracle BPEL Process Manager and Oracle Mediator
	Using XSLT Transformations on Large Payloads (For Oracle BPEL Process Manager)
	Using XSLT Transformations on Large Payloads (For Oracle Mediator)
	Using XSLT Transformations for Repeating Structures
	Processing Large Documents in Oracle B2B
	MDSInstance Cache Size
	Protocol Message Size
	Number of Threads
	Stuck Thread Max Time Parameter
	Tablespace

	Setting a Size Restriction on Inbound Web Service Message Size
	Using XPath Functions to Write Large XSLT/XQuery Output to a File System

	Best Practices for Handling Large Metadata
	Boundary on the Processing of Large Numbers of Activities in a BPEL Process
	Using Large Numbers of Activities in BPEL Processes (Without FlowN)
	Using Large Numbers of Activities in BPEL Processes (With FlowN)
	Using a Flow With Multiple Sequences
	Using a Flow with One Sequence
	Using a Flow with No Sequence
	Large Numbers of Oracle Mediators in a Composite
	Importing Large Data Sets in Oracle B2B

	Best Practices for Handling Large Numbers of Instances
	Instance and Rejected Message Deletion with the Purge Script or Oracle Enterprise Manager Fusion Middleware Control

	53 Customizing SOA Composite Applications
	Introduction to Customizing SOA Composite Applications
	Creating the Customizable Composite
	How to Create Customization Classes
	How to Create the Customizable Composite
	How to Add an XSD or WSDL File
	How to Search for Customized Activities in a BPEL Process
	What You May Need to Know About Resolving Validation Errors in Oracle JDeveloper
	What You May Need to Know About Resolving a Sequence Conflict
	To resolve the conflict:

	What You May Need to Know About Compiling and Deploying a Customized Application

	Customizing the Vertical Application
	How to Customize the Vertical Application

	Customizing the Customer Version
	How to Customize the Customer Version

	Upgrading the Composite
	How to Upgrade the Core Application Team Composite
	How to Upgrade the Vertical Applications Team Composite
	How to Upgrade the Customer Composite

	54 Defining Composite Sensors
	Introduction to Composite Sensors
	Restrictions on Use of Composite Sensors

	Adding Composite Sensors
	How to Add Composite Sensors
	How to Add a Variable
	How to Add an Expression
	How to Add a Property

	What You May Need to Know About Duplicate Composite Sensor Names

	Monitoring Composite Sensor Data During Runtime
	Creating and Managing Composite Sensors During Runtime from Oracle SOA Composer
	What You May Need to Know About Viewing Composite Sensor Changes in Oracle SOA Composer

	55 Creating Dynamic Business Processes
	Introduction to Two-Layer Business Process Management
	Creating a Phase Activity
	How to Create a Phase Activity
	What Happens When You Create a Phase Activity
	What Happens at Runtime When You Create a Phase Activity
	What You May Need to Know About Creating a Phase Activity

	Creating the Dynamic Routing Decision Table
	How to Create the Dynamic Routing Decision Table
	What Happens When You Create the Dynamic Routing Decision Table

	56 Integrating the Spring Framework in SOA Composite Applications
	Introduction to the Spring Service Component
	Integration of Java and WSDL-Based Components in the Same SOA Composite Application
	Java and WSDL-Based Integration Example
	Using Callbacks with the Spring Framework

	Creating a Spring Service Component in Oracle JDeveloper
	How to Create a Spring Service Component in Oracle JDeveloper
	What You May Need to Know About Java Class Errors During Java-to-WSDL Conversions

	Defining Custom Spring Beans Through a Global Spring Context
	How to Define Custom Spring Beans Through a Global Spring Context

	Using the Predefined Spring Beans
	IHeaderHelperBean.java Interface for headerHelperBean
	IInstanceHelperBean.java Interface for instancerHelperBean
	ILoggerBean.java Interface for loggerBean
	How to Reference Predefined Spring Beans in the Spring Context File

	JAXB and OXM Support
	Extended Mapping Files

	Configuring Groovy and Aspectj Classes with the Spring Service Component
	Troubleshooting Spring Errors
	Spring Bean Interface to Invoke Cannot Be Found
	Unable to Add a Spring Service Component in the SOA Composite Editor

	Part X Appendices
	A BPEL Process Activities and Services
	Introduction to Activities and Components
	Introduction to BPEL 1.1 and 2.0 Activities
	Tabs Common to Many Activities
	Annotations Tab
	Assertions Tab
	Correlations Tab
	Documentation Tab
	Headers Tab
	Properties Tab
	Skip Condition Tab
	Sources and Targets Tabs
	Timeout Tab

	Using the Native Format Builder Wizard Outside of Adapter Configuration
	To create a native format schema from the Applications Window:
	To edit an existing native format schema from the Applications Window:

	Assign Activity
	Assert Activity
	Bind Entity Activity
	Call Activity
	Compensate Activity
	CompensateScope Activity
	Create Entity Activity
	Dehydrate Activity
	Dynamic Partner Link Activity
	Email Activity
	Empty Activity
	Exit Activity
	Flow Activity
	FlowN Activity
	forEach Activity
	If Activity
	IM Activity
	Invoke Activity
	Java Embedding Activity
	Partner Link Activity
	Phase Activity
	Pick Activity
	To put the correlation syntax before the assign activity:

	Receive Activity
	Receive Signal Activity
	Remove Entity Activity
	RepeatUntil Activity
	Replay Activity
	Reply Activity
	Rethrow Activity
	Schedule Job
	Scope Activity
	Sequence Activity
	Signal Activity
	SMS Activity
	Switch Activity
	Terminate Activity
	Throw Activity
	Translate Activity
	User Notification Activity
	Validate Activity
	Wait Activity
	While Activity
	XQuery Transform Activity
	XSLT Transform Activity

	Introduction to BPEL Services

	B XPath Extension Functions
	Advanced Functions
	batchProcessActive
	batchProcessCompleted
	copyList
	create-nodeset-from-delimited-string
	createDelimitedString
	createEssParameter
	doStreamingTranslate
	doTranslateFromNative
	doTranslateToNative
	format
	genEmptyElem
	generate-guid
	get-content-from-file-function
	getApplicationName
	getAttachmentContent
	getAttachmentProperty
	getChildElement
	getComponentInstanceID
	getComponentName
	getCompositeInstanceID
	getCompositeName
	getCompositeURL
	getECID
	getFaultAsString
	getFaultAsXML
	getFaultName
	getMilestoneName
	getOwnerDocument
	getParentComponentInstanceID
	getRevision
	getTaskReminderDuration
	instanceOf
	lookup-xml
	parseEscapedXML
	parseXML
	processScalableDocumentToNative
	processXSLTAttachmentFromNativeToNative
	processXSLTAttachmentFromNativeToStream
	processXSLTAttachmentToNativeStream
	processXSLTAttachmentToStream
	processXSLTForScalableDocument
	setCompositeInstanceTitle

	BPEL Extension Functions
	BPEL Extension Functions in BPEL 1.1 and BPEL 2.0
	getLinkStatus
	getVariableData
	selectionFailure Fault is Thrown if the Result Node Set is a Size Other Than One During Execution

	getVariableProperty (For BPEL 1.1)
	getVariableProperty (For BPEL 2.0)
	doXslTransform (For BPEL 2.0)

	BPEL XPath Extension Functions
	addQuotes
	authenticate
	countNodes
	doXSLTransform
	doXSLTransformForDoc
	doc
	formatDate
	generateGUID
	getConfigProperty
	getContentAsString
	getConversationId
	getCreator
	getCurrentDate
	getCurrentDateTime
	getCurrentTime
	getElement
	getInstanceId
	getNodeValue
	getNodes
	getPreference
	getProcessId
	getProcessOwnerId
	getProcessURL
	getProcessVersion
	integer
	listUsers
	lookupUser
	parseEscapedXML
	processXQuery
	processXQuery10
	processXQuery2004
	processXSLT
	readBinaryFromFile
	readBinaryFromFileWithMimeHeaders
	readFile
	search
	toCDATA
	tryToCastToBoolean
	writeBinaryToFile
	getGroupIdsFromGroupAlias
	getUserIdsFromGroupAlias

	Conversion Functions
	boolean
	number
	string

	DVM Functions
	lookupValue
	lookupValue1M

	Database Functions
	lookup-table
	query-database
	sequence-next-val

	Date Functions
	add-dayTimeDuration-to-dateTime
	current-date
	current-dateTime
	To display the datetime value in seconds:

	current-time
	day-from-dateTime
	format-dateTime
	hours-from-dateTime
	minutes-from-dateTime
	month-from-dateTime
	seconds-from-dateTime
	subtract-dayTimeDuration-from-dateTime
	timezone-from-dateTime
	year-from-dateTime

	Identity Service Functions
	getDefaultRealmName
	getGroupProperty
	getManager
	getManagerFromManagementChain
	getReportees
	getSupportedRealmNames
	getUserProperty
	getUserRoles
	getUsersInAppRole
	getUsersInGroup
	isUserInAppRole
	isUserInRole
	lookupGroup
	lookupUser

	Logical Functions
	and
	equals
	false
	greater
	greater equals
	less
	less equals
	not
	not equals
	or
	true

	Mathematical Functions
	abs
	add
	ceiling
	count
	divide
	floor
	max-value-among-nodeset
	min-value-among-nodeset
	mod
	multiply
	round
	square-root
	subtract
	sum
	unary

	Node Set Functions
	last
	local-name
	name
	namespace-uri
	position
	union

	String Functions
	compare
	compare-ignore-case
	concat
	contains
	create-delimited-string
	ends-with
	format-string
	get-content-as-string
	get-localized-string
	index-within-string
	last-index-within-string
	left-trim
	lower-case
	matches
	normalize-space
	right-trim
	starts-with
	string-length
	substring
	substring-after
	substring-before
	translate
	upper-case

	Workflow Service Functions
	clearTaskAssignees
	createWordMLDocument
	dynamicTaskAssign
	getNotificationProperty
	getNumberOfTaskApprovals
	getPreviousTaskApprover
	getTaskAttachmentByIndex
	getTaskAttachmentByName
	getTaskAttachmentContents
	getTaskAttachmentsCount
	getTaskResourceBundleString

	XREF Functions
	lookupPopulatedColumns
	lookupXRef
	lookupXRef1M
	markForDelete
	populateLookupXRefRow
	populateXRefRow
	populateXRefRow1M

	Building XPath Expressions in the Expression Builder in Oracle JDeveloper
	How to Use the Expression Builder
	Introduction to the XPath Building Assistant
	How to Use the XPath Building Assistant
	Using the XPath Building Assistant in the XSLT Mapper
	Function Parameter Tool Tips
	Syntactic and Semantic Validation
	Creating Expressions with Free Form Text and XPath Expressions
	Using Double Slashes for Directory Paths in XPath Functions on Windows Can Cause Errors

	Creating User-Defined XPath Extension Functions
	How to Implement User-Defined XPath Extension Functions
	How to Implement Functions for the XSLT Mapper
	How to Implement Functions for All Other Components

	How to Configure User-Defined XPath Extension Functions
	How to Deploy User-Defined Functions to Runtime

	C Deployment Descriptor Properties
	Introduction to Deployment Descriptor Properties
	How to Define Deployment Descriptor Properties in the Property Inspector
	How to Get the Value of a Preference within a BPEL Process

	D Understanding Sensor Public Views and the Sensor Actions XSD
	Introduction to Sensor Public Views and the Sensor Actions XSD File
	Sensor Public Views
	Schema
	BPEL_PROCESS_INSTANCES
	BPEL_ACTIVITY_SENSOR_VALUES
	BPEL_FAULT_SENSOR_VALUES
	BPEL_VARIABLE_SENSOR_VALUES

	Sensor Actions XSD File

	E Propagating Normalized Message Properties Through Message Headers
	Introduction to Normalized Messages
	Oracle Web Services Addressing Properties
	How to Set Normalized Message Properties in Message Headers

	Manipulating Normalized Message Properties with bpelx Extensions
	BPEL 2.0 bpelx Extensions Syntax
	BPEL 1.1 bpelx Extensions Syntax

	F Interfaces Implemented By Rules Dictionary Editor Task Flow
	The MetadataDetails Interface
	The getDocument Method
	The getRelatedDocument Method
	The setDocument Method

	The NLSPreferences Interface

	G Oracle SOA Suite Configuration Properties Road Map
	Oracle BPEL Process Manager Deployment Descriptor Properties
	Normalized Message Header Properties
	Oracle JCA Adapter Message Header Properties
	Oracle BPEL Process Manager and Oracle Web Services Addressing Message Header Properties
	Oracle B2B Message Header Properties

	SOA Composite Application Properties
	Fault Policy and Adapter Rejected Message Properties
	Oracle B2B System Properties
	Oracle Healthcare Properties
	Oracle Business Activity Monitoring Properties
	Oracle Enterprise Manager Fusion Middleware Control Property Pages
	SOA Infrastructure Properties
	Oracle BPEL Process Manager Properties
	Human Workflow Notification and Task Service Properties
	Oracle Mediator Properties
	Cross Reference Properties
	Oracle B2B Properties
	Service and Reference Binding Component Properties
	Global Token Variables and Automatic Database Purging Properties

	System MBean Browser Advanced Properties
	SOA Infrastructure Advanced Properties
	Oracle BPEL Process Manager Advanced Properties
	Oracle Mediator Advanced Properties
	Human Workflow Notification and Task Service Advanced Properties
	Oracle B2B Advanced Properties

	H Working with Large Schemas in the XSLT Editor
	Sparse Mappings
	Quick Start for XSLT View

	Non-Sparse Mappings
	Reducing Textual Clutter
	Searching Trees
	Copying and Modifying a Large Input Document
	Generating Test Files with Element and Type Substitutions

	Index

