Oracle® Fusion Middleware

Developing SOA Applications with Oracle
SOA Suite

14c¢ (14.1.2.0.0)
F80753-02
December 2024

ORACLE"

Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite, 14c (14.1.2.0.0)
F80753-02

Copyright © 2005, 2024, Oracle and/or its affiliates.

Primary Author: Oracle Corporation

This software and related documentation are provided under a license agreement containing restrictions on use and
disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or
allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit,
perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation
of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find
any errors, please report them to us in writing.

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or related
documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, then
the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software, any
programs embedded, installed, or activated on delivered hardware, and modifications of such programs) and Oracle
computer documentation or other Oracle data delivered to or accessed by U.S. Government end users are "commercial
computer software," "commercial computer software documentation,” or "limited rights data" pursuant to the applicable
Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, reproduction,
duplication, release, display, disclosure, modification, preparation of derivative works, and/or adaptation of i) Oracle
programs (including any operating system, integrated software, any programs embedded, installed, or activated on
delivered hardware, and modifications of such programs), ii) Oracle computer documentation and/or iii) other Oracle
data, is subject to the rights and limitations specified in the license contained in the applicable contract. The terms
governing the U.S. Government's use of Oracle cloud services are defined by the applicable contract for such services.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications that may create a risk of
personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all
appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its
affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle®, Java, MySQL, and NetSuite are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used
under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc, and the AMD logo
are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open
Group.

This software or hardware and documentation may provide access to or information about content, products, and
services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all
warranties of any kind with respect to third-party content, products, and services unless otherwise set forth in an
applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be responsible for any loss,
costs, or damages incurred due to your access to or use of third-party content, products, or services, except as set forth
in an applicable agreement between you and Oracle.

Contents

Preface
Audience IXi
Documentation Accessibility IXi
Diversity and Inclusion IXi
Related Documents IXi
Conventions Ixii

Part | Getting Started with Oracle SOA Suite
1 Introduction to Building Applications with Oracle SOA Suite

Introduction to Oracle SOA Suite 1-1
Service-Oriented Architecture 1-1
Services 1-2
Oracle SOA Suite 1-2
Standards Used by Oracle SOA Suite to Enable SOA 1-2
Service Component Architecture within SOA Composite Applications 1-4
Service Components 1-5
Binding Components 1-5
Wires 1-7
Runtime Behavior of a SOA Composite Application 1-7
Service Infrastructure 1-9
Service Engines 1-9
Deployed Service Archives 1-9
Approaches for Designing SOA Composite Applications 1-10
Getting Started with Oracle SOA Suite 1-10
Setting Accessibility Options 1-11
Setting Accessibility Options in Oracle JDeveloper 1-11
Setting Accessibility Options in Oracle SOA Composer and Oracle BPM Worklist 1-11
How to Set Accessibility Features Before Logging In 1-11
How to Set Accessibility Options After Logging In 1-12

ORACLE"

2 Getting Started with Developing SOA Composite Applications

Developing SOA Projects in Reference Configuration Mode
Creating a SOA Application
Create a SOA Application and Project
What Happens When You Create a SOA Application and Project
Adding Service Components
How to Add a Service Component
What You May Need to Know About Adding and Deleting a Service Component
How to Edit a Service Component
Adding Service Binding Components
How to Add a Service Binding Component
How to Define the Interface (WSDL) for a Web Service
Defining a New WSDL Using a Schema
Selecting an Existing WSDL
Automatically Defining a Service Interface WSDL from a Component
How to View Schemas
How to Edit a Service Binding Component
What You May Need to Know About Adding and Deleting Services

What You May Need to Know About Using the Same Namespace in Different WSDL
Files in the Same Composite

What You May Need to Know About Multiple Schema Elements in a WSDL Types
Section

What You May Need to Know About WSDL Browsing in the Resources Window When
the SOA Infrastructure Uses Both Internal and External Oracle HTTP Servers

Adding Reference Binding Components
How to Add a Reference Binding Component
What You May Need to Know About Adding and Deleting References
What You May Need to Know About WSDL References
What You May Need to Know About Mixed Message Types in a WSDL File
What You May Need to Know About Invoking the Default Revision of a Composite
Adding Wires
How to Wire a Service and a Service Component
How to Wire a Service Component and a Reference
What You May Need to Know About Adding and Deleting Wires
Adding Descriptions to SOA Composite Applications
How to Add Descriptions to SOA Composite Applications
Renaming, Deleting, and Moving Components and Artifacts
How to Rename and Delete Components in the SOA Composite Editor
How to Rename, Move, and Delete Artifacts in the Applications Window
Viewing Component Details in the Property Inspector
Adding Security Policies
Deploying a SOA Composite Application

ORACLE

2-1
2-2
2-2
2-5
2-8
2-8
2-10
2-10
2-11
2-11
2-13
2-15
2-15
2-16
2-16
2-17
2-18

2-18

2-18

2-19
2-19
2-19
2-21
2-22
2-22
2-23
2-23
2-24
2-25
2-27
2-28
2-28
2-28
2-29
2-29
2-30
2-31
2-31

How to Invoke Deployed SOA Composite Applications 2-31
Managing and Testing a SOA Composite Application 2-32
How to Manage Deployed SOA Composite Applications in Oracle JDeveloper 2-32
How to Test and Debug a Deployed SOA Composite Application 2-35
3 Managing Shared Data with the Design-Time MDS Repository
Introduction to SOA Design-Time MDS Repository Management 3-1
Introduction to the Default SOA Design-Time MDS Repository Connection 3-2
Changing the Default SOA-MDS Location 3-2
How to Change the Default SOA-MDS Location 3-3
Sharing Data with the SOA Design-Time MDS Repository 3-5
How to Share Data with the SOA Design-Time MDS Repository 3-5
Creating and Deleting Subfolders Under the /apps Folder 3-9
How to Create and Delete Subfolders Under the /apps Folder 3-9
Exporting the Selected Contents of the /apps Folder to a JAR File 3-9
How to Export the Selected Contents of the /apps Folder to a JAR File 3-10
Importing the Contents of the JAR File into the /apps Folder 3-11
How to Import the Contents of the JAR File into the /apps Folder 3-11
Transferring the Selected Contents of the /apps Folder to Another MDS Repository 3-13
How to Transfer the Selected Contents of the /apps Folder to Another MDS Repository 3-13
Exporting an Existing Release 11g MDS Repository to a JAR File 3-15
How to Export an Existing Release 11g MDS Repository to a JAR File 3-15
Browsing for Files in the SOA Design-Time MDS Repository 3-16
Part Il Using the BPEL Process Service Component
4 Getting Started with Oracle BPEL Process Manager
Introduction to the BPEL Process Service Component 4-1
How to Add a BPEL Process Service Component 4-1
How to Validate a BPEL Process Service Component 4-10
Introduction to Activities 4-11
How to Edit BPEL Activities in the Property Inspector 4-13
How to Copy and Paste Activities in BPEL Projects 4-14
How to Add a Description of Actions to BPEL Process Activities 4-15
Introduction to Partner Links 4-16
Creating a Partner Link 4-18
How to Create a Partner Link 4-18
Partner Links for an Outbound Adapter 4-18
Partner Links for an Inbound Adapter 4-19
Partner Links from an Abstract WSDL to Call a Service 4-19
ORACLE

Partner Links from an Abstract WSDL to Implement a Service 4-20
Partner Links and Human Tasks or Business Rules 4-20
Partner Links from an Existing Human Task, Business Rule, or Oracle Mediator 4-21
Introduction to Adapters 4-21
Introduction to BPEL Process Monitors 4-23
Introduction to Interaction Patterns in a BPEL Process
Introduction to One-Way Messages 5-1
BPEL Process Service Component as the Client 5-2
BPEL Process Service Component as the Service 5-2
Introduction to Synchronous Interactions 5-2
BPEL Process Service Component as the Client 5-3
BPEL Process Service Component as the Service 5-3
Synchronous BPEL Process Invoking an Asynchronous Process 5-3
Introduction to Asynchronous Interactions 5-3
BPEL Process Service Component as the Client 5-4
BPEL Process Service Component as the Service 5-4
Introduction to Asynchronous Interactions with a Timeout 5-4
BPEL Process Service Component as the Client 5-5
BPEL Process Service Component as the Service 5-5
Introduction to Asynchronous Interactions with a Notification Timer 5-5
BPEL Process Service Component as the Client 5-6
BPEL Process Service Component as the Service 5-6
Introduction to One Request, Multiple Responses 5-6
BPEL Process Service Component as the Client 5-7
BPEL Process Service Component as the Service 5-7
Introduction to One Request, One of Two Possible Responses 5-7
BPEL Process Service Component as the Client 5-8
BPEL Process Service Component as the Service 5-8
Introduction to One Request, a Mandatory Response, and an Optional Response 5-8
BPEL Process Service Component as the Client 5-9
BPEL Process Service Component as the Service 5-9
Introduction to Partial Processing 5-9
BPEL Process Service Component as the Client 5-10
BPEL Process Service Component as the Service 5-10
Introduction to Multiple Application Interactions 5-10
Manipulating XML Data in a BPEL Process
Introduction to Manipulating XML Data in BPEL Processes 6-2
XML Data in BPEL Processes 6-2

ORACLE

Vi

Data Manipulation and XPath Standards in Assign Activities
Delegating XML Data Operations to Data Provider Services
How to Create an Entity Variable
Understanding How SDO Works in the Inbound Direction
Understanding How SDO Works in the Outbound Direction
Creating an Entity Variable and Choosing a Partner Link
Creating a Binding Key
Translating Between Native Data and XML
How to Translate Native Data to XML Data
How to Translate XML Data to Native Data
How to Translate Inbound Native Data to XML Stored as an Attachment
Using Standalone SDO-based Variables
How to Declare SDO-based Variables
How to Convert from XML to SDO
Initializing a Variable with Expression Constants or Literal XML
How To Assign a Literal XML Element
Copying Between Variables
How to Copy Between Variables
How to Initialize Variables with an Inline from-spec in BPEL 2.0
Copy Between JSON and XML Variables in a BPEL Process
Create a JSON Variable
Render and Map Individual JSON Elements
Moving and Copying Variables in the Structure Window
To Move Variables in the Structure Window:
To Copy Variables in the Structure Window:
Accessing Fields in Element and Message Type Variables
How to Access Fields Within Element-Based and Message Type-Based Variables
Assigning Numeric Values
How to Assign Numeric Values
Using Mathematical Calculations with XPath Standards
How To Use Mathematical Calculations with XPath Standards
Assigning String Literals
How to Assign String Literals
Concatenating Strings
How to Concatenate Strings
Assigning Boolean Values
How to Assign Boolean Values
Assigning a Date or Time
How to Assign a Date or Time
Manipulating Attributes
How to Manipulate Attributes
Manipulating XML Data with bpelx Extensions

ORACLE

Vii

How to Use bpelx:append
bpelx:append in BPEL 1.1
bpelx:append in BPEL 2.0
How to Use bpelx:insertBefore
bpelx:insertBefore in BPEL 1.1
bpelx:insertBefore in BPEL 2.0
How to Use bpelx:insertAfter
bpelx:insertAfter in BPEL 1.1
bpelx:insertAfter in BPEL 2.0
How to Use bpelx:remove
bpelx:remove in BPEL 1.1
bpelx:remove in BPEL 2.0
How to Use bpelx:rename and XSD Type Casting
bpelx:rename in BPEL 1.1
bpelx:rename in BPEL 2.0
How to Use bpelx:copyList
bpelx:copyList in BPEL 1.1
bpelx:copyList in BPEL 2.0
How to Use Assign Extension Attributes
ignoreMissingFromData Attribute
insertMissingToData Attribute
keepSrcElementName Attribute
Validating XML Data
How to Validate XML Data in BPEL 2.0
Validate XML in an Assign Activity
Validate XML in a Standalone, Extended Validate Activity
How to Validate XML Data in BPEL 1.1
Validate XML in an Assign Activity
Validate XML in a Standalone, Extended Validate Activity
Using Element Variables in Message Exchange Activities in BPEL 2.0
Mapping WSDL Message Parts in BPEL 2.0
How to Map WSDL Message Parts
Importing Process Definitions in BPEL 2.0
Manipulating XML Data Sequences That Resemble Arrays
How to Statically Index into an XML Data Sequence That Uses Arrays
How to Use SOAP-Encoded Arrays
SOAP-Encoded Arrays in BPEL 2.0
Declaring a SOAP Array Using a wsdl:arrayType Attribute Inside a Schema
How to Determine Sequence Size
How to Dynamically Index by Applying a Trailing XPath to an Expression
Applying a Trailing XPath to the Result of getVariableData
Using the bpelx:append Extension to Append New Items to a Sequence

ORACLE

6-40
6-40
6-40
6-41
6-41
6-42
6-42
6-43
6-43
6-44
6-44
6-45
6-46
6-46
6-47
6-48
6-48
6-49
6-50
6-50
6-50
6-51
6-51
6-51
6-51
6-51
6-52
6-52
6-52
6-53
6-53
6-54
6-55
6-56
6-56
6-57
6-58
6-58
6-59
6-60
6-60
6-60

viii

Merging Data Sequences 6-61
Generating Functionality Equivalent to an Array of an Empty Element 6-61
What You May Need to Know About Using the Array Identifier 6-62
Converting from a String to an XML Element 6-62
How To Convert from a String to an XML Element 6-63
Understanding Document-Style and RPC-Style WSDL Differences 6-63
How To Use RPC-Style Files 6-63
Manipulating SOAP Headers in BPEL 6-64
How to Receive SOAP Headers in BPEL 6-64
How to Send SOAP Headers in BPEL 6-65
Declaring Extension Namespaces in BPEL 2.0 6-66
How to Declare Extension Namespaces 6-66
What Happens When You Create an Extension 6-66
7 Invoking a Synchronous Web Service from a BPEL Process

Introduction to Invoking a Synchronous Web Service 7-1
Invoking a Synchronous Web Service 7-1
How to Invoke a Synchronous Web Service 7-2
How Does the BPEL Process Work 7-2
What Happens When You Invoke a Synchronous Web Service 7-3
Partner Link in the BPEL Code 7-3
Partner Link Type and Port Type in the BPEL Code 7-4
Invoke Activity for Performing a Request 7-4
Synchronous Invocation in BPEL Code 7-5
Specifying Transaction Timeout Values in Durable Synchronous Processes 7-5
How To Specify Transaction Timeout Values 7-5

What You May Need to Know About SyncMaxWaitTime and Durable Synchronous
Requests Not Timing Out 7-6
Calling a One-Way Mediator with a Synchronous BPEL Process 7-7

8 Invoking an Asynchronous Web Service from a BPEL Process
Introduction to Invoking an Asynchronous Web Service 8-1
Invoking an Asynchronous Web Service 8-2
How to Invoke an Asynchronous Web Service 8-2
Adding a Partner Link for an Asynchronous Service 8-2
Adding an Invoke Activity 8-3
Adding a Receive Activity 8-4
Performing Additional Activities 8-5
What Happens When You Invoke an Asynchronous Web Service 8-5
portType Section of the WSDL File 8-5

ORACLE

partnerLinkType Section of the WSDL File 8-5

Partner Links Section in the BPEL File 8-6
Composite Application File 8-6
Invoke and Receive Activities 8-7
createlnstance Attribute for Starting a New Instance 8-8
Dehydration Points for Maintaining Long-Running Asynchronous Processes 8-8
Multiple Runtime Endpoint Locations 8-8
What You May Need to Know About Midprocess Receive Activities Consuming
Messages After Timing Out 8-8
What You May Need to Know About Multiple Client Components Invoking a Composite 8-9
What You May Need to Know About Limitations on BPEL 2.0 IMA Support 8-9
What Happens When You Specify a Conversation 1D 8-10
bpelx:conversationld in BPEL 1.1 8-10
bpelx:conversationld in BPEL 2.0 8-10
Routing Callback Messages to the Correct Endpoint when Multiple Receive or Pick Activities
Use the Same Partner Link 8-11
How to Route Callback Messages to the Correct Endpoint when Multiple Receive and
Pick Activities Use the Same Partner Link 8-11
Managing Idempotence at the Partner Link Operation Level 8-13
How to Manage Idempotence at the Partner Link Operation Level 8-13
Creating a Dynamic Partner Link at Design Time for Use at Runtime 8-14
How To Create a Dynamic Partner Link at Design Time for Use at Runtime 8-14
Overriding Security Certificates when Invoking Dynamic Partner Links 8-17
Overriding WSDL Files of Dynamic Partner Links 8-20
Using WS-Addressing in an Asynchronous Service 8-22
How to Use WS-Addressing in an Asynchronous Service 8-23
Using TCP Tunneling to View Messages Exchanged Between Programs 8-23
9 Using Correlation Sets and Message Aggregation
Introduction to Correlation Sets in an Asynchronous Service 9-1
Scenarios for Using Correlation Sets 9-1
Understanding Correlation Set Contents and Concepts 9-2
Overview of Correlation Set Creation 9-3
Creating Correlation Sets in Oracle JDeveloper 9-3
How to Create a Correlation Set with the Correlation Wizard 9-4
How to Manually Create Correlation Sets From the Correlations Tab 9-13
Step 1: Creating a Project 9-14
Step 2: Configuring Partner Links and File Adapter Services 9-14
Step 3: Creating Three Receive Activities 9-18
Step 4: Creating Correlation Sets 9-20
Step 5: Associating Correlation Sets with Receive Activities 9-21
Step 6: Creating Property Aliases 9-22
ORACLE

Step 7: Reviewing WSDL File Content 9-23
What You May Need to Know About Conversion IDs and Different Composite Revisions 9-24
What You May Need to Know About Setting Correlations for an IMA Using a fromParts
Element With Multiple Parts 9-25
Routing Messages to the Same Instance 9-25
How to Configure BPEL Process Instance Creation 9-26
How to Use the Same Operation in Entry and Midprocess Receive Activities 9-28
How to Route a Message to a New or Existing Instance when Using Correlation Sets 9-29
10 Using Parallel Flow in a BPEL Process
Introduction to Parallel Flows in BPEL Processes 10-1
What You May Need to Know About the Execution of Parallel Flow Branches in a Single
Thread 10-2
Creating a Parallel Flow 10-2
How to Create a Parallel Flow 10-3
What Happens When You Create a Parallel Flow 10-4
Synchronizing the Execution of Activities in a Flow Activity 10-5
How to Create Synchronization Between Activities Within a Flow Activity 10-7
What Happens When You Create Synchronization Between Activities Within a Flow
Activity 10-9
What You May Need to Know About Join Conditions in Target Activities 10-11
Customizing the Number of Parallel Branches 10-12
Processing Multiple Sets of Activities with the forEach Activity in BPEL 2.0 10-12
How to Create a forEach Activity 10-13
What Happens When You Create a forEach Activity 10-16
Customizing the Number of Flow Activities with the flowN Activity in BPEL 1.1 10-18
How to Create a flowN Activity 10-19
What Happens When You Create a FlowN Activity 10-21
11 Using Conditional Branching in a BPEL Process
Introduction to Conditional Branching 11-1
Defining Conditional Branching with the If or Switch Activity 11-2
Defining Conditional Branching with the If Activity in BPEL 2.0 11-2
How to Create an If Activity 11-2
What Happens When You Create an If Activity 11-4
Defining Conditional Branching with the Switch Activity in BPEL 1.1 11-5
How to Create a Switch Activity 11-6
What Happens When You Create a Switch Activity 11-7
Defining Conditional Branching with the While Activity 11-8
How To Create a While Activity 11-8
What Happens When You Create a While Activity 11-9

ORACLE

Xi

Defining Conditional Branching with the repeatUntil Activity 11-10

How to Create a repeatUntil Activity 11-10
What Happens When You Create a repeatUntil Activity 11-11
Specifying XPath Expressions to Bypass Activity Execution 11-12
How to Specify XPath Expressions to Bypass Activity Execution 11-12
What Happens When You Specify XPath Expressions to Bypass Activity Execution 11-12

12 Using Fault Handling in a BPEL Process

Introduction to a Fault Handler 12-1

Introduction to BPEL Standard Faults 12-3

BPEL 1.1 Standard Faults 12-3

BPEL 2.0 Standard Faults 12-4

Fault Handling Order of Precedence in BPEL 2.0 12-4

Introduction to the Business and Runtime Fault Categories of BPEL Faults 12-5

Business Faults 12-5

Runtime Faults 12-5

bindingFault 12-6

remoteFault 12-6

replayFault 12-6

How to Add and Propagate Fault Handling in a Synchronous BPEL Process 12-6

Edit the Schema and WSDL Files 12-7

Add a Fault Handler 12-7

Create a Fault Response Variable 12-9

Add an Assign Activity to the Catch Activity Branch 12-10

Add a Reply Activity to the Catch Activity Branch 12-11

Handling Faults with the Fault Management Framework 12-12

Understanding How the Fault Policy Binding Resolution Works 12-14
How to Design a Fault Policy for Automated Fault Recovery with the Fault Policy Wizard 12-14

Step 1: Defining Property Sets 12-15

Step 2: Defining Alerts 12-16

Step 3: Defining Actions 12-18

Step 4: Defining Fault Names and Policies 12-19

Step 5: Defining the Fault Policy Bindings for the Fault Policy 12-21

How to Manually Design a Fault Policy for Automated Fault Recovery 12-23

Manually Creating a Fault Policy File for Automated Fault Recovery 12-23

Associating a Fault Policy with Fault Policy Binding 12-27

Additional Fault Policy and Fault Policy Binding File Samples 12-28

Designing a Fault Policy with Multiple Rejection Handlers 12-31

How to Execute a Fault Policy 12-31

How to Use a Java Action Fault Policy 12-32

How to Design Fault Policies for Oracle BPM Suite 12-36

ORACLE

Xii

What You May Need to Know About Designing a Fault Policy in a Synchronous BPEL

Process 12-36
What You May Need to Know About Fault Management Behavior When the Number of
Instance Retries is Exceeded 12-36
What You May Need to Know About Binding Level Retry Execution Within Fault Policy
Retries 12-37
Catching BPEL Runtime Faults 12-38
How to Catch BPEL Runtime Faults 12-38
Getting Fault Details with the getFaultAsString XPath Extension Function 12-39
How to Get Fault Details with the getFaultAsString XPath Extension Function 12-39
Throwing Internal Faults with the Throw Activity 12-39
How to Create a Throw Activity 12-39
What Happens When You Create a Throw Activity 12-40
Rethrowing Faults with the Rethrow Activity 12-40
How to Create a Rethrow Activity 12-41
What Happens When You Rethrow Faults 12-42
Returning External Faults 12-42
How to Return a Fault in a Synchronous Interaction 12-42
How to Return a Fault in an Asynchronous Interaction 12-42
Managing a Group of Activities with a Scope Activity 12-43
How to Create a Scope Activity 12-43
How to Add Descriptive Notes and Images to a Scope Activity 12-44
What Happens After You Create a Scope Activity 12-45
What You May Need to Know About Scopes 12-47
How to Use a Fault Handler Within a Scope 12-47
What You May Need to Know About the idempotent Property and Fault Handling 12-48
How to Create a Catch Activity in a Scope 12-49
What Happens When You Create a Catch Activity in a Scope 12-51
How to Insert No-Op Instructions into a Business Process with an Empty Activity 12-52
What Happens When You Create an Empty Activity 12-52
Re-executing Activities in a Scope Activity with the Replay Activity 12-52
How to Create a Replay Activity 12-53
What Happens When You Create a Replay Activity 12-54
Using Compensation After Undoing a Series of Operations 12-55
Using a Compensate Activity 12-55
How to Create a Compensate Activity 12-56
What Happens When You Create a Compensate Activity 12-56
Using a compensateScope Activity in BPEL 2.0 12-57
How to Create a compensateScope Activity 12-57
What Happens When You Create a compensateScope Activity 12-57
Stopping a Business Process Instance with a Terminate or Exit Activity 12-58
Immediately Ending a Business Process Instance with the Exit Activity in BPEL 2.0 12-58
How to Create an Exit Activity 12-58
ORACLE

Xiii

What Happens When You Create an Exit Activity 12-59
Stopping a Business Process Instance with the Terminate Activity in BPEL 1.1 12-60
How to Create a Terminate Activity 12-60
What Happens When You Create a Terminate Activity 12-60
Throwing Faults with Assertion Conditions 12-60
How to Create Assertion Conditions 12-61
To create assertion conditions in invoke activities, receive activities, reply activities,
and OnMessage branches: 12-61
To create an assertion condition in standalone assert activities: 12-63
How to Disable Assertions 12-64
What Happens When You Create Assertion Conditions 12-64
What You May Need to Know About Assertion Conditions 12-65
bpelx:postAssert and bpelx:preAssert Extensions 12-65
Use of faultName and message Attributes 12-66
Multiple Assertions 12-66
Use of Built-in and Custom XPath Functions and $variable References 12-67
Assertion Condition Evaluation Logging of Events to the Instance Audit Trail 12-68
Expressions Not Evaluating to an XML Schema Boolean Type Throw a Fault 12-68
Assertion Conditions in a Standalone Assert Activity 12-68
What You May Need to Know About Postassertion and Preassertion Condition Schemas
and Syntax 12-68
Classifying SOAP Faults as Retriable 12-70
13 Transaction and Fault Propagation Semantics in BPEL Processes
Introduction to Transaction Semantics 13-1
Oracle BPEL Process Manager Transaction Semantics 13-1
BPELCaller Process Calls a BPELCallee Process That Has bpel.config.transaction
Set to requiresNew 13-2
BPELCaller Process Calls a BPELCallee Process That Has bpel.config.transaction
Set to required 13-3
Introduction to Execution of One-Way Invocations 13-4
Executing a Business Process Without a Transaction 13-5
When Should | Use a BPEL Process Without a Transaction? 13-5
Guidelines for Executing Without a Transaction 13-6
How to Create a Synchronous BPEL Process Without a Transaction 13-7
How to Create an Asynchronous BPEL Process Without a Transaction 13-8
Using In-Memory SOA to Improve System Performance 13-9
Persistence Settings for In-Memory Flow Instances 13-10
Steps to Enable In-Memory SOA 13-11
Enabling the In-Memory SOA Flag 13-11
Designing Your Business Process to Run In-Memory 13-13

ORACLE

Xiv

14 Incorporating Java and Java EE Code in a BPEL Process

Introduction to Java and Java EE Code in BPEL Processes 14-1
Incorporating Java and Java EE Code in BPEL Processes 14-1
How to Wrap Java Code as a SOAP Service 14-1
What You May Need to Know About Wrapping Java Code as a SOAP Service 14-2
How to Embed Java Code Snippets into a BPEL Process with the bpelx:exec Tag 14-2
How to Embed Java Code Snippets in a BPEL 2.0 Process 14-3
How to Use an XML Facade to Simplify DOM Manipulation 14-4
How to Use bpelx:exec Built-in Methods 14-4
How to Use Java Code Wrapped in a Service Interface 14-5
Adding Custom Classes and JAR Files 14-6
How to Add Custom Classes and JAR Files 14-6
To Add JARs to BpelcClasspath: 14-6
To Add Custom Classes: 14-7
To Add Custom JARs: 14-7
Using Java Embedding in a BPEL Process in Oracle JDeveloper 14-7
How To Use Java Embedding in a BPEL Process in Oracle JDeveloper 14-7
What You May Need to Know About Using thread.sleep() in a Java Embedding Activity 14-8
Embedding Service Data Objects with bpelx:exec 14-8
Sharing a Custom Implementation of a Class with Oracle BPEL Process Manager 14-10
How to Configure the BPEL Connection Manager Class to Take Precedence 14-10
15 Using Events and Timeouts in BPEL Processes
Introduction to Event and Timeout Concepts 15-1
Selecting Between Continuing or Waiting on a Process with a Pick Activity 15-1
How To Create a Pick Activity 15-3
What Happens When You Create a Pick Activity 15-5
What You May Need to Know About Simultaneous onMessage Branches in BPEL 2.0 15-6
Setting Timeouts for Request-Reply and In-Only Operations in Receive Activities 15-7
How to Set Timeouts in Receive Activities 15-8
What Happens When You Set Timeouts in Receive Activities 15-9
What You May Need to Know About Setting Timeouts for Request-Reply and In-Only
Operations 15-9
Timeout Settings Relative from When the Activity is Invoked 15-9
Timeout Settings as an Absolute Date Time 15-10
Timeout Settings Computed Dynamically with an XPath Expression 15-11
bpelx:timeout Fault Thrown During an Activity Timeout 15-11
Event Added to the BPEL Instance Audit Trail During an Activity Timeout 15-12
Recoverable Timeout Activities During a Server Restart (Refresh Expiration Alarm
Table) 15-12
Setting an Expiration Time with a Wait Activity 15-12

ORACLE

XV

How To Specify the Minimum Wait Time 15-13
How to Create a Wait Activity 15-13
What Happens When You Create a Wait Activity 15-14
Specifying Events to Wait for Message Arrival with an OnEvent Branch in BPEL 2.0 15-14
How to Create an onEvent Branch in a Scope Activity 15-14
What Happens When You Create an OnEvent Branch 15-16
Setting Timeouts for Durable Synchronous Processes 15-16
Invoking an Oracle Enterprise Scheduler Job in a BPEL Process 15-16
How to Create Oracle Database and SOA-MDS Connections 15-17
How to Create a Schedule Job Activity 15-18
How to Attach Security Policies to the Service and Reference Binding Components 15-23
16 Coordinating Master and Detail Processes

Introduction to Master and Detail Process Coordinations 16-1
BPEL File Definition for the Master Process 16-3
Correlating a Master Process with Multiple Detail Processes 16-5

BPEL File Definition for Detail Processes 16-6
Defining Master and Detail Process Coordination in Oracle JDeveloper 16-6
How to Create a Master Process 16-7
How to Create a Detail Process 16-9
How to Create an Invoke Activity 16-11

17 Using the Notification Service

Introduction to the Notification Service 17-1
Introduction to Notification Channel Setup 17-2
Selecting Notification Channels During BPEL Process Design 17-3
How To Configure the Email Notification Channel 17-4
Setting Email Attachments 17-6
Formatting the Body of an Email Message as HTML 17-8

Using Dynamic HTML for Message Content Requires a CDATA Function 17-8

How to Configure the IM Notification Channel 17-9
How to Configure the SMS Notification Channel 17-10
How to Select Email Addresses and Telephone Numbers Dynamically 17-11
How to Select Notification Recipients by Browsing the User Directory 17-12
Allowing the End User to Select Notification Channels 17-12
How to Allow the End User to Select Notification Channels 17-13
How to Create and Send Headers for Notifications 17-14

ORACLE

XVi

18 Using Oracle BPEL Process Manager Sensors and Analytics

Introduction to Oracle BPEL Process Manager Sensors 18-1

Composite Sensors 18-3

Configuring Sensors and Sensor Actions in Oracle JDeveloper 18-3

How to Access Sensors and Sensor Actions 18-3

How to Configure Activity, Variable, and Fault Sensors 18-4

To Configure an Activity Sensor: 18-4

To Configure a Variable Sensor: 18-6

To Configure a Fault Sensor: 18-7

How to Configure Sensor Actions 18-8

How to Publish to Remote Topics and Queues 18-12

How to Create a Custom Data Publisher 18-12

How to Register the Sensors and Sensor Actions in the composite.xml File 18-14
Viewing Sensors and Sensor Action Definitions in Oracle Enterprise Manager Fusion

Middleware Control 18-15

Configuring BPEL Process Analytics 18-15

Introduction to Business Indicators 18-16

Introduction to Standard Sampling Points 18-16

Introduction to User-Defined Sampling Points 18-16

How to Access Analytics View 18-17

How to Define Business Indicators 18-18

How to Define Measurements 18-21

How to Configure Composite-Level Analytic Sampling Points 18-29

How to Configure Process-Level Analytic Sampling Points 18-30

How to Edit Business Indicators in the Business Indicator Overview Editor 18-31

Deploying BPEL Analytics 18-32

Viewing BPEL Analytics at Runtime 18-33

Part Il Using the Oracle Mediator Service Component

19 Getting Started with Oracle Mediator

Introduction to Oracle Mediator 19-1
Mediator Functionality 19-1
Content-Based and Header-Based Routing 19-2
Synchronous and Asynchronous Interactions 19-2
Sequential and Parallel Routing of Messages 19-2
Message Resequencing 19-2
Data Transformation 19-2
Payload Validation 19-3
Java Callouts 19-3
ORACLE

XVii

Event Handling 19-3
Dynamic Routing 19-3
Error Handling 19-3
Sending Messages Back to the Caller (Echo) 19-3
Multiple Part Messages 19-4
Creating a Mediator 19-4
How to Create a Mediator 19-4

To create a composite application with a Mediator: 19-4

To create a Mediator in an existing composite application: 19-5

To create a new project with a Mediator: 19-6

To create a Mediator in an existing project: 19-7
Introduction to the Mediator Editor Environment 19-8
Configuring the Mediator Interface Definition 19-10
How to Configure the Mediator Interface Definition 19-11
What Happens When You Create a Mediator 19-15
Without an Interface Definition 19-16

With a WSDL-Based Interface 19-16

With a One-Way Interface Definition 19-16

With a Synchronous Interface Definition 19-17

With an Asynchronous Interface Definition 19-17

With an Event Subscription 19-18
Defining an Interface for a Mediator 19-19
How to Define an Interface for a Mediator 19-19

To Subscribe to Events: 19-19

To Define Services for a Mediator Using a Wire: 19-20

To Define Services for a Mediator in the Mediator Editor: 19-20
Generating a WSDL File 19-21
How to Generate a WSDL File 19-22

To generate a WSDL file for a one-way interface from an XSD file: 19-22

To generate a WSDL file for a synchronous interface from an XSD file: 19-24

To generate a WSDL file for an asynchronous interface from an XSD file: 19-25
Specifying Validation and Priority Properties 19-27
Modifying a Mediator Service Component 19-27
How To Modify Mediator Operations 19-27
How To Modify Mediator Event Subscriptions 19-28

20 Creating Oracle Mediator Routing Rules

Introduction to Routing Rules 20-1
Static Routing Rules 20-1
Types of Static Rules 20-2

Static Routing Rule Components 20-3

ORACLE

XVviil

Dynamic Routing Rules

Sequential and Parallel Execution

Basic Principles of Sequential Routing Rules
Basic Principles of Parallel Routing Rules
Finer Control Over Thread Allocation in Parallel Routing

Resequencing Rules

Defining Routing Rules

How To Access the Routing Rules Section

From the SOA Composite Editor:
From the Applications window:

How to Create Static Routing Rules

How to Specify Mediator Services or Events

What You May Need to Know About Echoing a Service
How to Specify Sequential or Parallel Execution

How to Configure Response Messages

How to Handle Premature Callbacks

How to Handle Multiple Callbacks

How to Handle Faults

How to Specify an Expression for Filtering Messages
How to Translate Between Native XSD Formats and XML Formats
How to Use Inbound Translation

How to Use Outbound Translation

How to Create XSLT Transformations

How to Create XQuery Transformations

How to Assign Values

What You May Need to Know About the Assign Activity
How to Access Headers for Filters and Assignments
How to Use Semantic Validation

How to Work with Attachments

How to Use Java Callouts

How to Create Dynamic Routing Rules

How to Dynamically Override a Static Routing Rule Using a DVM
How to Dynamically Override a Static Routing Rule Using a Decision Component
How to Remove an Existing Dynamic Routing Rule

What You May Need to Know About Using Dynamic Routing Rules

How to Define Default Routing Rules

ORACLE

Default Rule Scenarios

Default Rule Target

Default Rule: Validation, Transformation, and Assign Functionality
Default Rule: Java Callouts

Default Rule: Mediator .mplan File

20-3

20-3

20-4

20-4

20-5

20-5

20-5

20-5

20-6

20-7

20-7

20-7
20-11
20-12
20-12
20-13
20-14
20-14
20-16
20-21
20-22
20-25
20-27
20-29
20-32
20-36
20-39
20-41
20-43
20-43
20-52
20-52
20-57
20-60
20-60
20-61
20-61
20-62
20-62
20-62
20-63

XiX

271 Working with Multiple Part Messages in Oracle Mediator

Introduction to Mediator Multipart Message Support 21-1
Working with Multipart Request Messages 21-2
How to Specify Filter Expressions for Multipart Request Messages 21-2
How to Add Validations for Multipart Request Messages 21-2
How to Create Transformations for Multipart Request Messages 21-3
How to Assign Values for Multipart Request Messages 21-3
How to Work with Multipart Reply, Fault, and Callback Source Messages 21-3
How to Work with Multipart Target Messages 21-4
272 Using Oracle Mediator Error Handling

Introduction to Mediator Error Handling 22-1
Fault Policies 22-1
Conditions 22-2
Actions 22-4

Fault Bindings 22-8
Error Groups in Mediator 22-9
Using Error Handling with Mediator 22-10
How to Use Error Handling for a Mediator Service Component 22-10
What Happens at Runtime 22-10
Fault Recovery Using Oracle Enterprise Manager Fusion Middleware Control 22-11
Error Handling XML Schema Definition Files 22-11
Schema Definition File for fault-policies.xml 22-11
Schema Definition File for fault-bindings.xml 22-15

23 Resequencing in Oracle Mediator

Introduction to the Resequencer 23-1
Groups and Sequence IDs 23-1
Identification of Groups and Sequence IDs 23-2
Resequencing Order 23-2
Standard Resequencer 23-2
Overview of the Standard Resequencer 23-3
Information Required for Standard Resequencing 23-3
Example of the Standard Resequencer 23-3

FIFO Resequencer 23-4
Overview of the FIFO Resequencer 23-4
Information Required for FIFO Resequencing 23-4
Example of the FIFO Resequencer 23-4

Best Effort Resequencer 23-5

ORACLE

XX

Overview of the Best Effort Resequencer 23-5

Best Effort Resequencer Message Selection Strategies 23-5
Best Effort Resequencer Message Delivery 23-6
Information Required for Best Effort Resequencing 23-6
Example of Best Effort Resequencing Based on Maximum Rows 23-6
Example of Best Effort Resequencing Based on a Time Window 23-7
Configuring the Resequencer 23-8
How to Specify the Resequencing Level 23-8
How to Configure the Resequencing Strategy 23-9
To configure a standard resequencer: 23-9

To configure a FIFO resequencer: 23-10

To configure a best effort resequencer: 23-10

24 Understanding Message Exchange Patterns of an Oracle Mediator

One-way Message Exchange Patterns 24-1
The one.way.returns.fault Property 24-2

To add the one.way.returns.fault property: 24-3
Request-Reply Message Exchange Patterns 24-4
Request-Reply-Fault Message Exchange Patterns 24-5
Request-Callback Message Exchange Patterns 24-6
Request-Reply-Callback Message Exchange Patterns 24-7
Request-Reply-Fault-Callback Message Exchange Patterns 24-8

Part IV Using the Business Rules Service Component

25 Getting Started with Oracle Business Rules

Introduction to the Business Rule Service Component 25-1
Integrating BPEL Processes, Business Rules, and Human Tasks 25-1
Overview of Rules Designer Editor Environment 25-2
Applications Window 25-3
Rules Designer Window 25-3
Structure Window 25-4
Business Rule Validation Log Window 25-5
Introduction to Creating and Editing Business Rules 25-5
How to Create Business Rules Components 25-5
Working with Business Rules in Rules Designer 25-6
Adding Business Rules to a BPEL Process 25-7
How to Add Inputs for Business Rule 25-10
How to Add Outputs for Business Rule 25-12
How to Set Options and Create Decision Service and Business Rule Dictionary 25-13
ORACLE

XXi

What Happens When You Add Business Rules to a BPEL Process 25-13

What Happens When You Create a Business Rules Dictionary 25-14

What You May Need to Know About Invoking Business Rules in a BPEL Process 25-15

What You May Need to Know About Decision Component Stateful Operation 25-15

Adding Business Rules to a SOA Composite Application 25-15

How to Add Business Rules to a SOA Composite Application 25-16

How to Add Inputs to a Business Rule 25-17

How to Add Output to a Business Rule 25-18

How to Set Options and Create Decision Service and Business Rules Dictionary 25-19

How to Select and Modify a Decision Function in a Business Rule Component 25-21

Running Business Rules in a Composite Application 25-22
What You May Need to Know About Testing a Standalone Decision Service Component 25-23

Using Business Rules with Oracle ADF Business Components Fact Types 25-24

26 Using Declarative Components and Task Flows

Introduction to Declarative Components and Task Flows 26-1
Introduction to the Oracle Business Rules Editor Declarative Component 26-1
Using the Oracle Business Rules Editor Component 26-2
How to Create and Run a Sample Application by Using the Rules Editor Component 26-4
How to Create the RuleSetModel Object 26-7
How to Create the .jspx File 26-11
How to Refer to the Oracle Rules Shared Libraries 26-12
How to Run the Sample Application 26-14
How to Deploy a Rules Editor Application to a Standalone WLS 26-15
What You May Need to Know About the Custom Permissions for the Rules Editor
Component 26-16
What You May Need to Know About the Supported Tags of the Rules Editor Component 26-17
Introduction to the Oracle Business Rules Dictionary Editor Declarative Component 26-23
Using the Oracle Business Rules Dictionary Component 26-23
How to Create and Run a Sample Application by Using the Rules Dictionary Editor
Component 26-29
How to Create the RuleDictionaryModel Object 26-32
How to Create .jspx File for the Rules Dictionary Editor Component 26-36
How to Refer the oracle.rules and the oracle.soa.rules_dict_dc.webapp Shared
Libraries 26-38
How to Run the Sample Rules Dictionary Editor Application 26-40
How to Deploy a Rules Dictionary Application to a Standalone Oracle WebLogic Server 26-41
What You May Need to Know About the Supported Attributes of the Rules Dictionary
Editor Component 26-42
Introduction to the Oracle Business Rules Dictionary Editor Task Flow 26-46
Using the Oracle Business Rules Dictionary Task Flow 26-47
ORACLE

XX

How to Create and Run a Sample Application By Using the Rules Dictionary Editor Task

Flow 26-47
How to Add a Rule Dictionary Editor Task Flow 26-55
How to Edit the pagedef.xml File 26-58
How to Refer to oracle.rules and oracle.soa.rules_dict_dc.webapp Shared Libraries 26-59
How to Run the Sample Task Flow Application 26-59

How to Deploy a Rules Dictionary Editor Task Flow Application to a Standalone Oracle
WebLogic Server 26-60
Localizing the ADF-Based Web Application 26-60
Working with Translations 26-61
Enabling Translations for Consumer of Reusable Rules Ul ADF Task Flow Component 26-61
Sample Code to Pass an Implementation of IRelatedMetadataDetails 26-62
Enabling Translations for Consumer of Rules Web Ul Application 26-64
Sample Code for Creating an Instance of resourceManager 26-64

Part V. Using the Human Workflow Service Component
27 Getting Started with Human Workflow

Introduction to Human Workflow 27-1
Introduction to Human Workflow Concepts 27-3
Introduction to Design and Runtime Concepts 27-3
Task Assignment and Routing 27-3
Static, Dynamic, and Rule-Based Task Assignment 27-6
Task Stakeholders 27-7
Task Deadlines 27-8
Notifications 27-9
Task Forms 27-9
Advanced Concepts 27-10
Reports and Audit Trails 27-10
Introduction to the Stages of Human Workflow Design 27-11
Introduction to Human Workflow Use Cases 27-11
Task Assignment to a User or Role 27-11
Use of the Various Participant Types 27-12
Escalation, Expiration, and Delegation 27-12
Automatic Assignment and Delegation 27-13
Dynamic Assignment of Users Based on Task Content 27-13
Introduction to Human Workflow Architecture 27-13
Human Workflow Services 27-14
Use of Human Task 27-16
Service Engines 27-17

ORACLE

XXxiil

Human Workflow and Business Rule Differences Between Oracle SOA Suite and Oracle
BPM Suite 27-17

28 Creating Human Tasks

Introduction to Human Tasks 28-1
Introduction to Creating a Human Task Definition 28-2
Introduction to Associating the Human Task Definition with a BPEL Process 28-2
Introduction to Generating the Task Form 28-3

Creating Human Tasks 28-3
How to Create a Human Task Using the SOA Composite Editor 28-3
How to Create a Human Task Using Oracle BPEL Designer 28-4
What Happens When You Create a Human Task 28-5

Configuring Human Tasks 28-6

Exiting the Human Task Editor and Saving Your Changes 28-6

Associating Human Tasks with BPEL Processes 28-7
How to Associate a Human Task with a BPEL Process 28-7
What You May Need to Know About Deleting a Wire Between a Human Task and a
BPEL Process 28-8
How to Define the Human Task Activity Title, Initiator, Priority, and Parameter Variables 28-9

Specifying the Task Title 28-9
Specifying the Task Initiator and Task Priority 28-10
Specifying Task Parameters 28-10
How to Define the Human Task Activity Advanced Features 28-12
Specifying a Scope Name and a Global Task Variable Name 28-13
Specifying a Task Owner 28-13
Specifying an Identification Key 28-13
Specifying an Identity Context 28-14
Specifying an Application Context 28-14
Including the Task History of Other Human Tasks 28-14
How to View the Generated Human Task Activity 28-15
Invoking BPEL Callbacks 28-16
What You May Need to Know About Changing the Generated Human Task Activity 28-17
What You May Need to Know About Deleting a Partner Link Generated by a Human
Task 28-18
How to Define Outcome-Based Modeling 28-18
Specifying Payload Updates 28-18
Using Case Statements for Other Task Conclusions 28-18
What You May Need to Know About Encoding an Attachment 28-19
ORACLE

XXiV

29 Configuring Human Tasks

Accessing the Sections of the Human Task Editor

Specifying the Title, Description, Outcome, Priority, Category, Owner, and Application
Context

How to Specify a Task Title

How to Specify a Task Description
How to Specify a Task Outcome
How to Specify a Task Priority
How to Specify a Task Category
How to Specify a Task Owner

Specifying a Task Owner Statically Through the User Directory or a List of
Application Roles

Specifying a Task Owner Dynamically Through an XPath Expression
How To Specify an Application Context
Specifying the Task Payload Data Structure
How to Specify the Task Payload Data Structure
Assigning Task Participants
How to Specify a Stage Name and Add Parallel and Sequential Blocks
How to Assign Task Participants
How to Configure the Single Participant Type
Creating a Single Task Participant List
Specifying a Time Limit for Acting on a Task
Inviting Additional Participants to a Task
Bypassing a Task Participant
How to Configure the Parallel Participant Type
Specifying the Voting Outcome
Creating a Parallel Task Participant List
Specifying a Time Limit for Acting on a Task
Inviting Additional Participants to a Task
Bypassing a Task Participant
How to Configure the Serial Participant Type
Creating a Serial Task Participant List
Specifying a Time Limit for Acting on a Task
Inviting Additional Participants to a Task
Bypassing a Task Participant
How to Configure the FYI Participant Type
Creating an FY| Task Participant List
Selecting a Routing Policy
How to Customize Tasks Routing
Exclude Task Creator from Approval List
Allow All Participants to Invite Other Participants or Edit New Participants
Allow Initiator to Add Participants

ORACLE

29-1

29-3
29-4
29-4
29-5
29-7
29-7
29-7

29-8
29-12
29-13
29-14
29-14
29-16
29-17
29-19
29-19
29-22
29-32
29-32
29-33
29-33
29-35
29-36
29-36
29-36
29-37
29-37
29-40
29-40
29-41
29-41
29-41
29-42
29-42
29-44
29-44
29-45
29-45

XXV

Stopping Routing of a Task to Further Participants 29-45

How to Specify Advanced Task Routing Using Business Rules 29-47
Introduction to Advanced Task Routing Using Business Rules 29-48

Facts 29-48

Action Types 29-49
Sample Ruleset 29-50

Linked Dictionary Support 29-51
Creating Advanced Routing Rules 29-52

How to Use External Routing 29-52
How to Configure the Error Assignee and Reviewers 29-54
How to Change Server Settings 29-56
Specifying Multilingual Settings and Style Sheets 29-56
How to Specify WordML and Other Style Sheets for Attachments 29-56
How to Specify Multilingual Settings 29-57
Specifying What to Show in Task Details in the Worklist 29-58
Escalating, Renewing, or Ending the Task 29-58
Introduction to Escalation and Expiration Policy 29-59
How to Specify a Policy to Never Expire 29-60
How to Specify a Policy to Expire 29-60
How to Extend an Expiration Policy Period 29-61
How to Escalate a Task Policy 29-61
How to Specify Escalation Rules 29-62
How to Specify a Due Date 29-62
Specifying Participant Notification Preferences 29-63
How to Notify Recipients of Changes to Task Status 29-65
How to Edit the Notification Message 29-67
How to Set Up Reminders 29-68
How to Change the Character Set Encoding 29-68
How to Secure Notifications to Exclude Details 29-68
How to Display the Oracle BPM Worklist URL in Notifications 29-68
How to Make Email Messages Actionable 29-69
How to Send Task Attachments with Email Notifications 29-69
How to Send Email Notifications to Groups and Application Roles 29-69
How to Customize Notification Headers 29-70
Specifying Access Policies and Task Actions on Task Content 29-70
Introduction to Access Rules 29-71
Specifying User Privileges for Acting on Task Content 29-72
Specifying Actions for Acting Upon Tasks 29-73
How to Specify a Workflow Digital Signature Policy 29-74
Specifying a Certificate Authority 29-75
Specifying Restrictions on Task Assignments 29-76
How to Specify Restrictions on Task Assignments 29-76

ORACLE

XXVi

Specifying Java or Business Event Callbacks 29-76
Specifying Java Callbacks 29-78
Specifying Business Event Callbacks 29-78
How to Specify Task and Routing Customizations in BPEL Callbacks 29-80
How to Disable BPEL Callbacks 29-81

30 Designing Task Forms for Human Tasks

Introduction to the Task Form 30-1
What You May Need to Know About Task Forms: Time Zone Conversion 30-2

Associating the Task Flow with the Task Service 30-2

Creating an ADF Task Flow Based on a Human Task 30-3
How To Create an ADF Task Flow from the Human Task Editor 30-3
How To Create an ADF Task Flow Based on a Human Task 30-6
What Happens When You Create an ADF Task Flow Based on a Human Task 30-6
What You May Need to Know About Having Multiple ADF Task Flows That Contain the
Same Element with Different Meta-attributes 30-7

Creating a Task Form 30-8
How To Create an Autogenerated Task Form 30-8
How to Register the Library JAR File for Custom Page Templates 30-10
How To Create a Task Form Using the Custom Task Form Wizard 30-11
How To Create a Task Form Using the Complete Task with Payload Drop Handler 30-18

Complete Task with Payload 30-22
Complete Task without Payload 30-22
Task Details for Email 30-22
Task Header 30-23
Task Actions 30-24
Task History 30-25
Task Comments and Attachments 30-25
How To Create Task Form Regions Using Individual Drop Handlers 30-26
How To Add the Payload to the Task Form 30-27
What Happens When You Create a Task Form 30-29

Refreshing Data Controls When the Task XSD Changes 30-29

Securing the Task Flow Application 30-30

Creating an Email Notification 30-31
How To Create an Email Notification 30-31

Creating a Task Flow with a Router 30-31
Creating an Email Notification Page 30-34
What Happens When You Create an Email Notification Page 30-37

Deploying a Composite Application with a Task Flow 30-37
How To Deploy a Composite Application with a Task Flow 30-37
How To Redeploy the Task Form 30-38

ORACLE

XXVil

How To Deploy a Task Flow as a Separate Application 30-38

How To Deploy a Task Form to a non-SOA Oracle WebLogic Server 30-38
Before Deploying the Task Form: Port Changes 30-38
Configuring Unique Cookie Context Paths for the Session Tracking Cookies 30-39
Deploying oracle.soa.workflow.jar to a non-SOA Oracle WebLogic Server 30-39
Defining the Foreign JNDI Provider on a non-SOA Oracle WebLogic Server 30-41
Defining the Foreign JNDI Provider Links on a non-SOA Oracle WebLogic Server 30-43
Including a Grant for bpm-services.jar 30-45
Deploying the Application 30-45
What Happens When You Deploy the Task Form 30-46
What You May Need to Know About Undeploying a Task Flow 30-46
Displaying a Task Form in the Worklist 30-46
Displaying a Task in an Email Notification 30-47
Changing the Text for the Worklist Application in Task Notifications 30-48
Changing the URL of the Worklist Application in Task Notifications 30-49
Reusing the Task Flow Application with Multiple Human Tasks 30-49
How To Reuse the Task Flow Application with Multiple Human Tasks 30-49

How to Reuse the Task Flow Application with Different Actions 30-50

31 Human Workflow Tutorial

Introduction to the Human Workflow Tutorial 31-1
Prerequisites 31-2
Creating an Application and a Project with a BPEL Process 31-2
Creating the Human Task Service Component 31-5
Designing the Human Task 31-6
Associating the Human Task and BPEL Process Service Components 31-9
Creating a Task Form Project 31-13
Deploying the Task Form 31-13
Creating an Application Server Connection 31-14
Deploying the SOA Composite Application 31-15
Initiating the Process Instance 31-15
Acting on the Task in Oracle BPM Worklist 31-15

32 Using Oracle BPM Worklist

Introduction to Oracle BPM Worklist 32-1

Logging In to Oracle BPM Worklist 32-3

How to Log In to the Worklist 32-3

Enabling the weblogic User for Logging in to the Worklist 32-4

What Happens When You Log In to the Worklist 32-4
ORACLE

XXViii

What Happens When You Change a User's Privileges While They are Logged in to
Oracle BPM Worklist

Customizing the Task List Page
How To Filter Tasks
To Filter Tasks Based on Assignee or State
To Filter Tasks Based on Keyword Search
To Filter Tasks Based on an Advanced Search
How To Create, Delete, and Customize Worklist Views
To Customize a Worklist View
How To Customize the Task Status Chart
How To Create a ToDo Task
How to Create Subtasks in the Worklist Application
What You May Need to Know About Creating Subtasks
Exporting Tasks to Microsoft Excel
How to Export Tasks to Excel
Acting on Tasks: The Task Details Page
System Actions
Task History
How To Act on Tasks
To Request Information
To Route a Task
To Add Comments or Attachments
How To Act on Tasks That Require a Digital Signature
Approving Tasks
Setting a Vacation Period
Setting Rules
How To Create User Rules
How To Create Group Rules
Assignment Rules for Tasks with Multiple Assignees
How to Avoid Circular Logic in Reassigned Vacation Rules
Using the Worklist Administration Functions
How To Manage Other Users' or Groups' Rules (as an Administrator)
How to Specify the Login Page Realm Label
How to Specify the Resource Bundle
How to Specify the Language Locale Information
How to Specify User Name Format
How to Specify a Branding Logo
How to Specify the Branding Title
How to Choose a Skin
To Choose A Skin
To Create a JAR File Containing Customized Skins
How to Enable Customized Applications and Links

ORACLE

32-8

32-8

32-9

32-9
32-10
32-10
32-16
32-19
32-20
32-21
32-22
32-22
32-23
32-23
32-24
32-27
32-28
32-30
32-32
32-34
32-35
32-37
32-40
32-41
32-42
32-43
32-45
32-46
32-47
32-48
32-48
32-49
32-50
32-51
32-51
32-52
32-53
32-54
32-54
32-54
32-55

XXiX

How to Specify an Image for a Task Action 32-57

Specifying Additional Process Workspace Settings 32-57
Specifying Notification Settings 32-57
Configuring Alias for Notification Email ID 32-58
Messaging Filter Rules 32-59
Data Types 32-59
Attributes 32-59
Rule Actions 32-60
Managing Messaging Channels 32-61
Viewing Your Messaging Channels 32-61
Creating, Editing, and Deleting a Messaging Channel 32-62
Managing Messaging Filters 32-62
Viewing Messaging Filters 32-62
Creating Messaging Filters 32-63
Editing a Messaging Filter 32-64
Deleting a Messaging Filter 32-64
Using Mapped Attributes (Flex Fields) 32-64
How To Map Attributes 32-65
To Create Labels 32-66
To Browse All Mappings 32-67
To Edit Mappings by Task Type 32-68
Custom Mapped Attributes 32-71
Creating Worklist Reports 32-71
How To Create Reports 32-72
What Happens When You Create Reports 32-73
Unattended Tasks Report 32-74
Tasks Priority Report 32-75
Tasks Cycle Time Report 32-75
Tasks Productivity Report 32-76
Accessing Oracle BPM Worklist in Local Languages and Time Zones 32-77
Strings in Oracle BPM Worklist 32-77
How to Change the Preferred Language, Display Names of Users, and Time Zone
Settings if the Identity Store is LDAP-Based 32-78
How to Change the Language in Which Tasks Are Displayed 32-79
How To Change the Language Preferences from a JAZN XML File 32-80
What You May Need to Know Setting Display Languages in Worklist 32-81
How To Change the Time Zone Used in the Worklist 32-81
Creating Reusable Worklist Regions 32-81
How to Create an Application With an Embedded Reusable Worklist Region 32-81
How to Set Up the Deployment Profile 32-84
How to Prepare Federated Mode Task Flows For Deployment 32-84
What You May Need to Know About Task List Task Flow 32-85
ORACLE

XXX

What You May Need to Know About Certificates Task Flow 32-88

What You May Need to Know About the Reports Task Flow 32-89
What You May Need to Know About Application Preferences Task Flow 32-91
What You May Need to Know About Mapped Attributes Task Flow 32-92
What You May Need to Know About Rules Task Flow 32-93
What You May Need to Know About Approval Groups Task Flow 32-95
What You May Need to Know About Task Configuration Task Flow 32-95
Java Code for Enabling Customized Applications in Oracle BPM Worklist 32-95

33 Building a Custom Worklist Client

Introduction to Building Clients for Workflow Services 33-1
Packages and Classes for Building Clients 33-2
Workflow Service Clients 33-3
The IWorkflowServiceClient Interface 33-5
Class Paths for Clients Using SOAP 33-5
Class Paths for Clients Using Remote EJBs 33-7
Initiating a Task 33-7
Creating a Task 33-8
Creating a Payload Element in a Task 33-8
Initiating a Task Programmatically 33-8
Changing Workflow Standard View Definitions 33-9
Writing a Worklist Application Using the HelpDeskUI Sample 33-10

34 Understanding Human Workflow Services

Introduction to Human Workflow Services 34-1
SOAP, Enterprise JavaBeans, and Java Support for the Human Workflow Services 34-2
Support for Foreign JNDI Names 34-3
Security Model for Services 34-4
Limitation on Propagating ldentity to Workflow Services when Using SOAP Web
Services 34-5
Creating Human Workflow Context on Behalf of a User 34-5
Obtaining the Workflow Context for a User Previously Authenticated by a JAAS
Application 34-6
Task Service 34-6
Task Query Service 34-9
Identity Service 34-23
Identity Service Providers 34-24
Task Metadata Service 34-25
User Metadata Service 34-26
Task Report Service 34-27
Runtime Config Service 34-28

ORACLE XXXi

Internationalization of Attribute Labels
Evidence Store Service and Digital Signatures
Prerequisites
Interfaces and Methods
Task Instance Attributes
Notifications from Human Workflow
Contents of Notification
Error Message Support
Reliability Support
Management of Oracle Human Workflow Notification Service
How to Configure the Notification Channel Preferences
How to Configure Notification Messages in Different Languages
How to Send Actionable Messages
How to Send Actionable Emails for Human Tasks
How to Send Inbound and Outbound Attachments
How to Send Inbound Comments
How to Send Secure Notifications
How to Set Channels Used for Notifications
How to Send Reminders
How to Set Automatic Replies to Unprocessed Messages
How to Create Custom Notification Headers
Assignment Service Configuration
Dynamic Assignment and Task Escalation Patterns
How to Implement a Dynamic Assignment Pattern
How to Configure Dynamic Assignment Patterns
How to Configure Display Names for Dynamic Assignment Patterns
How to Implement a Task Escalation Pattern
Dynamically Assigning Task Participants with the Assignment Service
How to Implement an Assignment Service
Example of Assignment Service Implementation
How to Deploy a Custom Assignment Service
Custom Escalation Function
Class Loading for Callbacks and Resource Bundles
Resource Bundles in Workflow Services
Task Resource Bundles
Global Resource Bundle — WorkflowLabels.properties
Worklist Client Resource Bundles
Task Detail ADF Task Flow Resource Bundles
Specifying Stage and Participant Names in Resource Bundles
Case Sensitivity in Group and Application Role Names
Introduction to Human Workflow Client Integration with Oracle WebLogic Server Services
Human Workflow Services Clients

ORACLE

34-30
34-30
34-32
34-33
34-35
34-39
34-40
34-41
34-41
34-42
34-42
34-43
34-44
34-44
34-45
34-46
34-46
34-46
34-46
34-47
34-47
34-48
34-48
34-49
34-50
34-51
34-52
34-52
34-53
34-53
34-55
34-55
34-56
34-56
34-56
34-57
34-58
34-59
34-59
34-59
34-60
34-60

XXXil

Task Query Service Client Code 34-61

Configuration Option 34-63

Client Logging 34-67
Configuration Migration Utility 34-67
Identity Propagation 34-67
Enterprise JavaBeans Identity Propagation 34-67

SAML Token Identity Propagation for SOAP Client 34-68

Public Key Alias 34-69

Client JAR Files 34-70
Task States in a Human Task 34-70
Database Views for Oracle Workflow 34-71
Unattended Tasks Report View 34-71
Task Cycle Time Report View 34-72
Task Productivity Report View 34-73
Task Priority Report View 34-73

35 Design Time at Runtime in Oracle Business Process Management

Workflow 35-1
Using Design Time at Runtime in Task Editor 35-2
Expiration and Escalation Policy 35-2
Notification Settings 35-3
Task Access 35-3
Rules Tab 35-3
Reset, Save, and Commit Changes 35-4

Part VI Using Binding Components

36 Getting Started with Binding Components

Introduction to Binding Components 36-1
SOAP Web Services 36-2
WS-AtomicTransaction Support 36-2

HTTP Binding Service 36-5
Supported Interactions 36-5

How to Configure the HTTP Binding Service 36-6

How to Enable Basic Authentication for HTTP Binding 36-8

JCA Adapters 36-9
Database Adapter 36-9

File Adapter 36-9

FTP Adapter 36-10

AQ Adapter 36-10

ORACLE

XXXiii

JMS Adapter 36-10
MQ Adapter 36-10
Socket Adapter 36-10
Third-Party Adapter 36-11
Oracle User Messaging Service Adapter 36-11
LDAP Adapter 36-11
Coherence Adapter 36-11
JCA Adapter Properties 36-11
Oracle E-Business Suite Adapter 36-12
Oracle BAM 11g Adapter 36-12
Oracle B2B 36-12
Oracle Healthcare Adapter 36-12
Oracle MFT 36-13
ADF-BC Services 36-13
EJB Adapter 36-13
Direct Binding Adapter 36-14
REST Binding 36-14
Cloud Adapters 36-14
Introduction to Integrating a Binding Component in a SOA Composite Application 36-15
How to Integrate a Binding Component in a SOA Composite Application 36-15
How to Use ADF Binding to Invoke a Composite Application from a JSP/Java Class 36-16
Creating Tokens for Use in the Binding URLs of External References 36-16
How to Create Tokens for Use in the Binding URLs of External References 36-17
37 Integrating REST Operations in SOA Composite Applications
Introduction to REST Support 37-1
Creating REST Support in Service and Reference Binding Components 37-2
How to Configure the REST Binding Component in a SOA Composite Application 37-3
REST Operation Binding Dialog 37-6
REST Method Definition Dialog 37-8
Example: REST Enable an Existing Service Component 37-9
Example: Adding Resources and Operations from a WADL Service to a REST
Reference 37-12
How to Consume REST-Based Integrations Created in Oracle Integration from SOA
Composite Applications 37-17
Create an Oracle Integration Connection 37-17
Create a REST Binding 37-17
Configure OWSM Policies on the REST Reference 37-20
Configure and Deploy the Application 37-20
How to Invoke OAuth-Protected Oracle Integration REST Endpoints from SOA
Composite Applications 37-20
Get Oracle Integration Cloud Instance Details 37-20

ORACLE

XXXIV

Create a Keystore 37-21

Design a SOA Composite and Invoke a REST-Triggered Oracle Integration 37-22
Import SSL Certificates of Oracle Identity Cloud Service and Oracle Integration 37-24
How to Configure the REST Adapter Through Shortcuts 37-26
To generate a REST service based on a web service deployed on an application
server: 37-26
To generate a REST reference based on a REST service deployed on an application
server: 37-28
To generate a REST service based on a SOA component's WSDL service: 37-28
How to Generate Schemas Manually 37-29
How to Generate Schemas from Samples 37-29
How to Use Global Token Variables 37-30
How to Set REST Header Properties 37-31
Inbound and Outbound Headers 37-31
Custom Header Support 37-32
What You May Need to Know About REST Fault Binding 37-32
What You May Need to Know About Converting a JSON Interchange Format to a REST
Schema 37-33
What You May Need to Know About REST References Calling REST Services in the
Same Node 37-35
Using JavaScript and JSON in BPEL Components 37-36
Testing the REST Adapter with the HTTP Analyzer 37-42
Testing and Configuring REST Reference Binding Components in Oracle Enterprise
Manager Fusion Middleware Control 37-44
Configure Proxy Host and Proxy Port for an External REST Endpoint 37-44
Multipart Form Data Support for REST Binding 37-44

38 Integrating Enterprise JavaBeans with Composite Applications

Introduction to Enterprise JavaBeans Binding Integration with SOA Composite Applications 38-1
Integration Through Java Interfaces 38-1
Integration Through SDO-Based EJBs 38-2

Designing an SDO-Based Enterprise JavaBeans Application 38-3
How to Create SDO Objects Using the SDO Compiler 38-3
How to Create a Session Bean and Import the SDO Objects 38-4
How to Create a Profile and an EAR File 38-4
How to Define the SDO Types with an Enterprise JavaBeans Bean 38-4
How to Use Web Service Annotations 38-6
How to Deploy the Enterprise JavaBeans EAR File 38-8

Creating an Enterprise JavaBeans Service in Oracle JDeveloper 38-8
How to Integrate Java Interface-based Enterprise JavaBeans with SOA Composite
Applications 38-8
How to Integrate SDO-based Enterprise JavaBeans with SOA Composite Applications 38-10

Designing an Enterprise JavaBeans Client to Invoke Oracle SOA Suite 38-13

ORACLE

XXXV

How to Create a Java Interface-Based Client to Invoke Oracle SOA Suite 38-13
How to Invoke an SDO-Enterprise JavaBeans Service 38-13
Specifying Enterprise JavaBeans Roles 38-14
Configuring Enterprise JavaBeans Binding Support in the Credential Store Framework 38-15
How to Configure Enterprise JavaBeans Binding Support in the Credential Store
Framework 38-15
To configure Enterprise JavaBeans binding support in the credential store
framework: 38-15
To specify the oracle.jps.credstore.map and oracle.jps.credstore.key properties 38-15
To grant SOA infrastructure runtime access to the CSF map store 38-16
39 Using Direct Binding to Invoke Composite Services
Introduction to Direct Binding 39-1
Direct Service Binding Component 39-2
Direct Reference Binding Component 39-2
Introduction to the Direct Binding Invocation API 394
Synchronous Direct Binding Invocation 39-4
Asynchronous Direct Binding Invocation 39-4
Required JAR Files for Compiling and Running the Direct Binding Java Client Code 39-5
SOA Direct Address Syntax 39-6
SOA Transaction Propagation 39-6
Exception Handling with SOA Direct Transport 39-6
Invoking a SOA Composite Application in Oracle JDeveloper with the Invocation API 39-7
How to Create an Inbound Direct Binding Service 39-8
How to Create an Outbound Direct Binding Reference 39-10
How to Set an Identity for J2SE Clients Invoking Direct Binding 39-12
What You May Need to Know About Invoking SOA Composites on Hosts with the Same
Server and Domain Names 39-13
Samples Using the Direct Binding Invocation API 39-13
Part VIl sharing Functionality Across Service Components
A Oracle SOA Suite Templates and Reusable Subprocesses
Introduction to Oracle SOA Suite Templates 40-1
Introduction to Standalone and Inline BPEL Subprocess Invocations 40-2
Introduction to a Standalone Subprocess 40-3
Introduction to an Inline Subprocess 40-5
Differences Between Oracle SOA Suite Templates and Reusable Subprocesses 40-6
Creating Oracle SOA Suite Templates 40-6
Creating and Using a SOA Project Template 40-7

ORACLE

XXXV

41

How To Create a SOA Project Template 40-7
How to Use a Composite Template in Another SOA Composite 40-8
Creating and Using a Service Component Template 40-10
How to Create a Service Component Template 40-10
How to Use a Service Component Template in Another SOA Composite 40-11
Creating and Using a BPEL Scope Activity Template 40-14
How to Create a BPEL Scope Activity Template 40-14
How to Use a BPEL Scope Activity Template in Another BPEL Process 40-16
Managing Templates 40-19
Creating Standalone and Inline BPEL Subprocesses in a BPEL Process 40-20
How to Create a Standalone BPEL Subprocess 40-21
How to Create an Inline Subprocess 40-24
How to Create a Standalone Subprocess that Takes a Partner Link as a Parameter 40-28
What You May Need to Know About Renaming a Subprocess 40-34
Creating Transformations with the XSLT Map Editor
Introduction to the XSLT Map Editor 41-1
Using the Map View 41-3
Using the XSLT View 41-3
Using the Components Window 41-3
Using the Properties Window 41-4
Creating an XSLT Map 41-5
How to Create an XSLT Map 41-5
How to Create an XSL Map File in Oracle BPEL Process Manager 41-6
How to Create an XSL Map File from Imported Source and Target Schema Files in
Oracle BPEL Process Manager 41-8
How to Create an XSL Map File in Oracle Mediator 41-10
What You May Need to Know About Creating an XSL Map File 41-13
What Happens at Runtime If You Pass a Payload Through Oracle Mediator Without
Creating an XSL Map File 41-14
What Happens If You Receive an Empty Namespace Tag in an Output Message 41-14
Editing an XSLT Map in Map View 41-14
How to Perform a Value Copy by Linking Nodes 41-14
How to Create an Empty Node in the Output Document 41-15
How to Set a Literal Text Value for a Target Node 41-15
How to Add an XSLT Statement 41-15
To Add an XSLT Statement: 41-15
To Add an xsl:text or xsl:variable Statement: 41-16
To Drag and Drop an XSLT statement to a Target Node: 41-16
How to Add Conditional Processing Using xsl:if 41-16
How to Add Conditional Processing Using xsl:choose 41-18
How to Add Loops Using xsl:for-each 41-21

ORACLE

XXXVil

How to Add xsl:sort for an xsl:for-each Statement
How to Duplicate XSLT Instructions
How to Duplicate an Element
How to Delete an Element or Attribute
How to Remove Mappings from an Element or Attribute
Editing an XSLT Map in XSLT View
How to Add a Target Element or Attribute Before Mapping
How to Add Elements and Attributes from the Target Schema
How to Add Literal Elements and Attributes When No Target Schema Is Present
How to Create an Empty Node in the Output Document
How to Perform a Value Copy by Linking Nodes
How to Insert an xsl:valueof Statement
How to Set a Literal Text Value for an XSLT Node
How to Set a Literal Text Value Using an xsl:text Instruction
How to Add XSLT Statements
To add an XSLT element using the context menu:
To add XSLT elements from the Components window:
How to Set the Value of an XSLT Expression Attribute
How to Duplicate an Element
How to Delete an Element or Attribute
How to Move an Element
How to Remove Mappings from an Element or Attribute
Using XPath Expressions
How to Modify an Existing Source to Target Mapping
To edit an XPath expression using the Edit XPath dialog
To edit an existing XPath expression using the Properties window
How to Add an XPath Function to an Existing XPath Expression
How to Modify an Existing Function XPath Expression in the Canvas Pane
To set a function parameter using drag and drop:
To delete a function parameter:
How to Edit a Function as a Full XPath Expression
How to Edit Individual Function Parameters
How to Create a New Function in the Canvas Pane
To create an XPath Function using the canvas context menu
To create an XPath function using the Components window
To create an XPath function using the target tree context menu
To create an XPath function by dragging it to the target tree
How to Chain Functions Together
How to Remove an XPath Expression
How to Import User-Defined Functions
Using Auto Map to Map Complex Nodes
How to Set Auto Map Preferences

ORACLE

41-25
41-26
41-29
41-31
41-32
41-32
41-32
41-33
41-35
41-36
41-36
41-37
41-38
41-38
41-38
41-38
41-39
41-41
41-41
41-41
41-42
41-43
41-43
41-44
41-44
41-44
41-45
41-46
41-47
41-47
41-47
41-49
41-50
41-50
41-51
41-52
41-52
41-53
41-53
41-53
41-55
41-56

XXXVili

How to Execute an Auto Map 41-57

Checking the Completion Status of the Map 41-57
Testing the Map 41-58
How to Test the Transformation Mapping Logic 41-59
How to Test XSLT Maps that Use DVM Lookup Functions 41-61
How to Test XSLT Maps that Use XREF Functions 41-62
How to Generate Reports 41-65
How to Customize Sample XML Generation 41-65
Importing an External XSLT Map 41-66
Using Variables and Parameters 41-66
How to Add Global Variables 41-66
How to Add Local Variables in Map View 41-67
How to Add Local Variables in XSLT View 41-68
How to Add Global Parameters 41-68
Substituting Elements and Types 41-70
Using Named Templates 41-76
How to Create a Named Template 41-76
How to Edit a Named Template 41-77
How to Add Parameters to an Existing Named Template 41-77
How to Invoke a Named Template 41-78
Using Template Rules 41-78
How to Create a Template Rule 41-78
Example: Creating a Template Rule 41-81
How to Refactor an Existing Map to Create a Template Rule 41-85
Using the Execution View 41-88
How to Use Execution View to Prevent or Troubleshoot Runtime Errors 41-89
Searching for Nodes 41-90
Setting Display Options 41-90
Debugging the XSLT Map 41-90
Setting Breakpoints in the XSLT Map Editor 41-91
Running the Debugger on the XSLT Map 41-91
Viewing Breakpoints 41-93
Setting Conditions for XSLT Breakpoints 41-94
Troubleshooting Memory Issues 41-95
Setting XSL Map Preferences 41-95
How to Set XSLT Map Preferences 41-96
How to Set the XSL Editor Preferences 41-96
How to Import a Customization File to Specify Display Preferences in the XSLT Map
Editor 41-97
ORACLE

XXXIX

42

43

Creating Transformations with the XQuery Mapper

Introduction to the XQuery Mapper 42-1
About the Source and Target Trees 42-2
Using the XQuery Mapper Toolbar 42-3
Using the Properties Window 42-4
Using the Components Window 42-5
Source Editor 42-6

Creating an XQuery Map File 42-7
How to Create an XQuery Main/Library Module 42-7

Using the XQuery Mapper 42-10
How to Use Value Mapping to Copy a Leaf Element Value to a Target Leaf Element 42-11
How to Use Overwrite Mapping to Copy an Element Subtree to the Target Tree 42-11
How to Use Append Mapping to Copy an Element Subtree to the Target Tree 42-11
How to Perform Multiple Value Mappings with One Drag and Drop Action 42-12

Using XQuery Functions 42-12
How to Add an XQuery Function in the XQuery Mapper 42-12

To add an XQuery function: 42-12
To edit a function's parameters: 42-13

Using Library Modules 42-14
How to Import a Library Module 42-14

Working with Zones and FLWOR Constructs 42-14
How to Edit a FLWOR Construct 42-15

Using Type Annotations to Improve XQuery Performance 42-15

Testing Your XQuery Map 42-16
How to Test an XQuery Map 42-16

Using Business Events and the Event Delivery Network

Introduction to Business Events 43-1
EDN Integration with Oracle SOA Suite 43-3
Business Event API Support for Remote Clients 43-4

Guidelines for Manually Setting Event Delivery Network Properties When Invoking
the BusinessEvent.setProperty API 43-5
Local and Remote Event Connections 43-6

Creating Business Events in Oracle JDeveloper 43-6
How to Create a Business Event 43-6

Subscribing to or Publishing a Business Event from an Oracle Mediator Service Component 43-8
How to Subscribe to a Business Event 43-8
How to Publish a Business Event 43-10
What Happens When You Create and Subscribe to a Business Event 43-11
What Happens When You Publish a Business Event 43-11
What You May Need to Know About Subscribing to a Business Event 43-12

ORACLE

x|

What You May Need to Know About Publishing Events Across Domains Using SAF 43-12
Workaround for Local Subscribers 43-12
How to Configure a Foreign JNDI Provider to Enable Administration Server Applications
to Publish Events to the SOA Server 43-13
How to Configure the Connection Factory When the Oracle WebLogic Server JIMS Runs
in the Same Local JVM as the JMS Adapter 43-14
Subscribing to or Publishing a Business Event from a BPEL Process Service Component 43-15
How to Subscribe to a Business Event 43-15
How to Publish a Business Event 43-18
What Happens When You Subscribe to and Publish a Business Event 43-18
How to Integrate Oracle ADF Business Component Business Events with Oracle Mediator 43-20
A4 Working with Cross References
Introduction to Cross References 44-1
Introduction to Cross Reference Tables 44-2
Oracle Data Integrator Support for Cross Referencing 44-4
Creating and Modifying Cross Reference Tables 44-4
How to Create Cross Reference Metadata 44-5
What Happens When You Create a Cross Reference 44-6
How to Create Custom Database Tables 44-7
How to Add an End System to a Cross Reference Table 44-9
Populating Cross Reference Tables 44-10
About the xref:populateXRefRow Function 44-11
About the xref:populateLookupXRefRow Function 44-14
About the xref:populateXRefRowlM Function 44-15
How to Populate a Column of a Cross Reference Table 44-17
Looking Up Cross Reference Tables 44-18
About the xref:lookupXRef Function 44-19
About the xref:lookupXReflM Function 44-19
About the xref:lookupPopulatedColumns Function 44-20
How to Look Up a Cross Reference Table for a Value 44-21
Deleting a Cross Reference Table Value 44-22
How to Delete a Cross Reference Table Value 44-23
Creating and Running the Cross Reference Use Case 44-24
How to Create the Use Case 44-25
Task 1: How to Configure the Oracle Database and Database Adapter 44-25
Task 2: How to Create an Oracle JDeveloper Application and a Project 44-26
Task 3: How to Create a Cross Reference 44-27
Task 4: How to Create a Database Adapter Service 44-28
Task 5: How to Create EBS and SBL External References 44-30
Task 6: How to Create the Logger File Adapter External Reference 44-32
Task 7: How to Create an Oracle Mediator Service Component 44-34

ORACLE

xli

45

Task 8: How to Specify Routing Rules for an Oracle Mediator Service Component 44-35

Task 9: How to Specify Routing Rules for the Common Oracle Mediator 44-44

Task 10: How to Configure an Application Server Connection 44-55

Task 11: How to Deploy the Composite Application 44-55

How to Run and Monitor the XrefCustApp Application 44-55

Creating and Running Cross Reference for 1M Functions 44-56

How to Create the Use Case 44-56

Task 1: How to Configure the Oracle Database and Database Adapter 44-56

Task 2: How to Create an Oracle JDeveloper Application and a Project 44-57

Task 3: How to Create a Cross Reference 44-58

Task 4: How to Create a Database Adapter Service 44-59

Task 5: How to Create an EBS External Reference 44-60

Task 6: How to Create a Logger File Adapter External Reference 44-62

Task 7: How to Create an Oracle Mediator Service Component 44-64

Task 8: How to Specify Routing Rules for an Oracle Mediator Component 44-64

Task 9: How to Specify Routing Rules for the Common Oracle Mediator 44-69

Task 10: How to Configure an Application Server Connection 44-73

Task 11: How to Deploy the Composite Application 44-73
Working with Domain Value Maps

Introduction to Domain Value Maps 45-1

Domain Value Map Features 45-2

Qualifier Domains 45-2

Qualifier Hierarchies 45-3

One-to-Many Mappings 45-4

Creating Domain Value Maps 45-4

How to Create Domain Value Maps 45-4

What Happens When You Create a Domain Value Map 45-5

Editing a Domain Value Map 45-7

How to Add Domains to a Domain Value Map 45-7

How to Edit a Domain 45-8

How to Add Domain Values to a Domain Value Map 45-9

How to Edit Domain Values 45-9

Using Domain Value Map Functions 45-10

Understanding Domain Value Map Functions 45-10

dvm:lookupValue 45-10

dvm:lookupValuelM 45-11

How to Use Domain Value Map Functions in Transformations 45-11

How to Use Domain Value Map Functions in XPath Expressions 45-14

What Happens at Runtime 45-14

Creating a Domain Value Map Use Case for a Hierarchical Lookup 45-15

ORACLE

xlii

How to Create the HierarchicalValue Use Case 45-15

Task 1: How to Create an Oracle JDeveloper Application and a Project 45-15
Task 2: How to Create a Domain Value Map 45-15
Task 3: How to Create a File Adapter Service 45-17
Task 4: How to Create ProcessOrders Mediator Component 45-18
Task 5: How to Create a File Adapter Reference 45-19
Task 6: How to Specify Routing Rules 45-20
Task 7: How to Configure an Application Server Connection 45-23
Task 8: How to Deploy the Composite Application 45-24
How to Run and Monitor the HierarchicalValue Application 45-24
Creating a Domain Value Map Use Case For Multiple Values 45-24
How to Create the Multivalue Use Case 45-24
Task 1: How to Create an Oracle JDeveloper Application and Project 45-25
Task 2: How to Create a Domain Value Map 45-25
Task 3: How to Create a File Adapter Service 45-26
Task 4: How to Create the LookupMultiplevaluesMediator Mediator 45-28
Task 5: How to Create a File Adapter Reference 45-29
Task 6: How to Specify Routing Rules 45-30
Task 7: How to Configure an Application Server Connection 45-32
Task 8: How to Deploy the Composite Application 45-33
How to Run and Monitor the Multivalue Application 45-33
Preloading DVM Cache for Faster First-Use 45-33
How to Preload DVM Cache at Server Startup 45-33

A6 Using Oracle SOA Composer with Domain Value Maps

Introduction to Oracle SOA Composer 46-1
How to Sign In to Oracle SOA Composer 46-2
Viewing Domain Value Maps at Runtime 46-3
How To View Domain Value Maps at Runtime 46-3
Editing Domain Value Maps at Runtime 46-4
How to Edit Domain Value Maps at Runtime 46-4
Changing to Edit Mode 46-5

Adding Rows 46-5

Editing Rows 46-5
Deleting Rows 46-5
Exporting and Importing Customizations to Domain Value Maps at Runtime 46-5
How to Export Customizations to a Domain Value Map at Runtime 46-6
How to Import Customizations to a Domain Value Map at Runtime 46-6
Publishing Changes at Runtime 46-7
How to Publish Changes at Runtime 46-7
How to Discard Changes at Runtime 46-7

ORACLE

xliii

Detecting Conflicts 46-8
Part VIII Completing Your Application
A7 Enabling Security with Policies and Message Encryption
Introduction to Policies 47-1
Attaching Policies to Binding Components and Service Components 47-2
How to Attach Policies to Binding Components and Service Components 47-2
To attach a policy to a service component: 47-6
How to Override Policy Configuration Property Values 47-6
Overriding Client Configuration Property Values 47-6
Overriding Server Configuration Property Values 47-8
Encrypting and Decrypting Specific Fields of Messages 47-9
How to Encrypt and Decrypt Specific Fields of Messages 47-10
48 Deploying SOA Composite Applications
Introduction to Deployment 48-1
Deployment Prerequisites 48-2
Creating the Oracle SOA Suite Schema 48-2
Creating a SOA Domain 48-2
Configuring a SOA Cluster 48-2
Understanding the Packaging Impact 48-2
Anatomy of a Composite 48-3
Preparing the Target Environment 48-3
How to Create Data Sources and Queues 48-4
Script for Creation of JIMS Resource and Redeployment of JIMS Adapter 48-4
Script for Creation of the Database Resource and Redeployment of the Database
Adapter 48-5
How to Create Connection Factories and Connection Pooling 48-6
How to Enable Security 48-6
How to Set the Business Flow Instance Name or Composite Instance Name at Design
Time 48-7
Setting the Business Flow Instance Name in Oracle Mediator 48-7
Setting the Business Flow Instance Name in a BPEL Process 48-7
Setting the Composite Instance Name in a BPEL Process 48-8
How to Deploy Trading Partner Agreements and Task Flows 48-8
How to Create an Application Server Connection 48-8
How to Create a SOA-MDS Connection 48-8
What You May Need to Know About Opening the composite.xml File Through a
SOA-MDS Connection 48-8

ORACLE

xliv

Customizing Your Application for the Target Environment Before Deployment

How to Use Configuration Plans to Customize SOA Composite Applications for the
Target Environment

Introduction to Configuration Plans
Introduction to a Configuration Plan File
Introduction to Use Cases for a Configuration Plan
How to Create a Configuration Plan in Oracle JDeveloper
How to Create a Configuration Plan with the WLST Utility
How to Attach a Configuration Plan with ant Scripts
How to Create Global Token Variables
Deploying SOA Composite Applications or Projects in Oracle JDeveloper

How to Deploy a Single SOA Composite in Oracle JDeveloper
Creating an Application Server Connection
Optionally Creating a Project Deployment Profile
Deploying the Profile

What You May Need to Know About Deploying Human Task Composites with Task
Flows to Partitions

How to Deploy Multiple SOA Composite Applications in Oracle JDeveloper

How to Deploy and Use Shared Data Across Multiple SOA Composite Applications in
Oracle JDeveloper

Create a JAR Profile and Include the Artifacts to Share
Create a SOA Bundle that Includes the JAR Profile
Deploy the SOA Bundle with Oracle JDeveloper
Use Shared Data
How to Deploy an Existing SOA Archive in Oracle JDeveloper
Deploying and Managing SOA Composite Applications with the WLST Ultility
Deploying and Managing SOA Composite Applications with ant Scripts
How to Use ant to Automate the Testing of a SOA Composite Application
How to Use ant to Compile a SOA Composite Application
How to Use ant to Package a SOA Composite Application into a Composite SAR File
How to Use ant to Deploy a SOA Composite Application
How to Use ant to Undeploy a SOA Composite Application
How to Use ant to Export a Composite into a SAR File
How to Use ant to Export Postdeployment Changes of a Composite into a JAR File
How to Use ant to Import Postdeployment Changes of a Composite
How to Use ant to Export Shared Data of a Given Pattern into a JAR File
How to Use ant to Remove a Top-level Shared Data Folder
How to Use ant to Start a SOA Composite Application
How to Use ant to Stop a SOA Composite Application
How to Use ant to Activate a SOA Composite Application
How to Use ant to Retire a SOA Composite Application
How to Use ant to Assign the Default Version to a SOA Composite Application
How to Use ant to List the Deployed SOA Composite Applications

ORACLE

48-9

48-9

48-9
48-10
48-12
48-13
48-16
48-16
48-16
48-16
48-17
48-17
48-19
48-21

48-30
48-30

48-32
48-33
48-38
48-40
48-40
48-43
48-45
48-45
48-47
48-48
48-49
48-50
48-51
48-52
48-54
48-55
48-55
48-56
48-57
48-58
48-58
48-59
48-60
48-60

xIv

How to Use ant to List All Available Partitions in the SOA Infrastructure
How to Use ant to List All Composites in a Partition

How to Use ant to Create a Partition in the SOA Infrastructure

How to Use ant to Delete a Partition in the SOA Infrastructure

How to Use ant to Start All Composites in the Partition

How to Use ant to Stop All Composites in the Partition

How to Use ant to Activate All Composites in the Partition

How to Use ant to Retire All Composites in the Partition

How to Use ant to Manage SOA Composite Applications

Deploying SOA Composite Applications from Oracle Enterprise Manager Fusion Middleware
Control

Deploying SOA Composite Applications with No Servers Running
Offline Deployment Configuration Files
Offline Deployment Configuration List File
Offline Deployment Configuration File
Relative Configuration File Paths
Order of Deployment
How to Deploy SOA Composite Applications and Shared Data with No Server Running

What You May Need to Know About Offline Composite Deployment in a Cluster
Environment

What You May Need to Know About Deploying SOA Composite Applications that
Reference Shared Data That is Not in the MDS Repository

Importing XSLT Customizations into a Deployed SOA Composite Application
Postdeployment Configuration
Security
Updating Connections
Updating Data Sources and Queues
Attaching Policies
Testing and Troubleshooting
Verifying Deployment
Initiating an Instance of a Deployed Composite
Automating the Testing of Deployed Composites
Recompiling a Project After Receiving a Deployment Error
Reducing Java Code Size to Resolve Java Compilation Errors
Troubleshooting Common Deployment Errors
Common Oracle JDeveloper Deployment Issues
Common Configuration Plan Issues
Deploying to a Managed Oracle WebLogic Server
Deploying to a Two-Way, SSL-Enabled Oracle WebLogic Server
Deploying with an Unreachable Proxy Server
Releasing Locks to Resolve ADF Task Form EAR File Deployment Errors
Increasing Memory to Recover from Compilation Errors

ORACLE

48-61
48-61
48-62
48-63
48-63
48-64
48-64
48-65
48-66

48-66
48-67
48-68
48-68
48-68
48-70
48-70
48-71

48-71

48-71
48-72
48-73
48-73
48-73
48-73
48-73
48-73
48-73
48-73
48-73
48-74
48-74
48-75
48-75
48-77
48-77
48-77
48-77
48-78
48-79

XIvi

Oracle JDeveloper Compilation Error When Property Alias Definition is Missing for a

Receive Activity with a Correlation Set 48-79

ADF Binding Service Names Must Be Unique Across All Deployed SOA Composite
Applications 48-79
Patching Running Instances of a SOA Composite 48-80
Using the SOA Patch Developer Mode in JDeveloper 48-80
Generating the Patch XML File 48-83
Creating a Sparse Deployment Profile 48-84
Verifying and Deploying the Patch Using WLST 48-85
Deleting the Patch File 48-87

49 Using the Oracle SOA Suite Development Maven Plug-In
Introduction to the Oracle SOA Suite Maven Plug-in 49-1
POM Files and Archetypes 49-1
Maven Plug-in Goals 49-4
compile 49-4
package 49-4
deploy 49-5
test 49-5
undeploy 49-5
Using Maven Online Help 49-5
Installing the Oracle SOA Suite Maven Plug-in 49-6
How to Configure the Oracle SOA Suite Maven Plug-In 49-6
Using the Oracle SOA Suite Maven Archetype 49-7
50 Debugging and Auditing SOA Composite Applications

Introduction to the SOA Debugger 50-1
Debugging a SOA Composite Application 50-2
How to Start the SOA Debugger 50-2
How to Set Breakpoints and Initiate Debugging 50-5
How to Step Through a Debugging Session 50-9
How to End or Detach from a Debugging Session 50-14
How to Remove Breakpoints 50-14
How to View Adapter Properties 50-15
How to View Threads 50-16
Testing SOA Composite Applications with the HTTP Analyzer 50-17
Auditing SOA Composite Applications at the BPEL Activity Level 50-19
How to Audit SOA Composite Applications at the BPEL Activity Level 50-21

ORACLE

xIvii

51 Automating Testing of SOA Composite Applications

Introduction to the Composite Test Framework
Test Cases Overview
Overview of Test Suites
Overview of Emulations
Overview of Assertions
Introduction to the Components of a Test Suite
Process Initiation
Emulations
Assertions
Message Files
Creating Test Suites and Test Cases with the Create Composite Test Wizard
Editing the Contents of Test Cases in Test Mode in the SOA Composite Editor
How to Initiate Inbound Messages
How to Emulate Outbound Messages
How to Emulate Callback Messages
How to Emulate Fault Messages
How to Create Assertions
Creating Assertions on a Part Section, Nonleaf Element, or Entire XML Document
Creating Assertions on a Leaf Element
What You May Need to Know About Assertions
Testing BPEL Process Service Components
Overview of Assertions on BPEL Process Activities
Overview of a Fast Forward Action on a Wait Activity
Overview of Assert Activity Execution
How to Create BPEL Process Service Component Tests
How to Create Assertions
How to Bypass a Wait Activity
How to Specify the Number of Times to Execute an Activity
Deploying and Running a Test Suite
How to Deploy and Run a Test Suite from Oracle JDeveloper

How to Deploy and Run a Test Suite from Oracle Enterprise Manager Fusion
Middleware Control

How to Deploy and Run a Test Suite with a WLST Command
How to Deploy and Run a Test Suite with an ant Script

Part |X Advanced Topics

51-1
51-1
51-1
51-2
51-2
51-2
51-3
51-3
51-4
51-5
51-5
51-12
51-12
51-15
51-18
51-20
51-21
51-22
51-25
51-27
51-27
51-28
51-29
51-29
51-30
51-31
51-33
51-34
51-35
51-35

51-41
51-41
51-42

ORACLE

xIviii

52 Managing Large Documents and Large Numbers of Instances

Best Practices for Handling Large Documents 52-1
Use Cases for Handling Large Documents 52-1
Passing Binary Objects as Base64-Encoded Text in XML Payloads 52-1
End-to-End Streaming with Attachments 52-3
Sending and Receiving MTOM-Optimized Messages to SOA Composite Applications 52-11
Processing Large XML with Repeating Constructs 52-13
Processing Large XML Documents with Complex Structures 52-14
Limitations on Concurrent Processing of Large Documents 52-15
Opaqgue Schema for Processing Large Payloads 52-15
JVM Memory Sizing Recommendations for SOA Composite Applications 52-15
General Tuning Recommendations 52-15
General Recommendations 52-15
Setting Audit Levels from Oracle Enterprise Manager for Large Payload Processing 52-17
Using the Assign Activity in Oracle BPEL Process Manager and Oracle Mediator 52-17
Using XSLT Transformations on Large Payloads (For Oracle BPEL Process
Manager) 52-17
Using XSLT Transformations on Large Payloads (For Oracle Mediator) 52-18
Using XSLT Transformations for Repeating Structures 52-19
Processing Large Documents in Oracle B2B 52-19
Setting a Size Restriction on Inbound Web Service Message Size 52-21
Using XPath Functions to Write Large XSLT/XQuery Output to a File System 52-22
Best Practices for Handling Large Metadata 52-22
Boundary on the Processing of Large Numbers of Activities in a BPEL Process 52-23
Using Large Numbers of Activities in BPEL Processes (Without FlowN) 52-23
Using Large Numbers of Activities in BPEL Processes (With FlowN) 52-23
Using a Flow With Multiple Sequences 52-23
Using a Flow with One Sequence 52-24
Using a Flow with No Sequence 52-24
Large Numbers of Oracle Mediators in a Composite 52-24
Importing Large Data Sets in Oracle B2B 52-24
Best Practices for Handling Large Numbers of Instances 52-24
Instance and Rejected Message Deletion with the Purge Script or Oracle Enterprise
Manager Fusion Middleware Control 52-25
53 Customizing SOA Composite Applications
Introduction to Customizing SOA Composite Applications 53-1
Creating the Customizable Composite 53-1
How to Create Customization Classes 53-2
How to Create the Customizable Composite 53-3
How to Add an XSD or WSDL File 53-4

ORACLE

xlix

o4

55

How to Search for Customized Activities in a BPEL Process 53-5
What You May Need to Know About Resolving Validation Errors in Oracle JDeveloper 53-5
What You May Need to Know About Resolving a Sequence Conflict 53-6
To resolve the conflict: 53-6
What You May Need to Know About Compiling and Deploying a Customized Application 53-6
Customizing the Vertical Application 53-7
How to Customize the Vertical Application 53-7
Customizing the Customer Version 53-9
How to Customize the Customer Version 53-10
Upgrading the Composite 53-11
How to Upgrade the Core Application Team Composite 53-11
How to Upgrade the Vertical Applications Team Composite 53-11
How to Upgrade the Customer Composite 53-12
Defining Composite Sensors
Introduction to Composite Sensors 54-1
Restrictions on Use of Composite Sensors 54-2
Adding Composite Sensors 54-2
How to Add Composite Sensors 54-3
How to Add a Variable 54-8
How to Add an Expression 54-9
How to Add a Property 54-9
What You May Need to Know About Duplicate Composite Sensor Names 54-10
Monitoring Composite Sensor Data During Runtime 54-12
Creating and Managing Composite Sensors During Runtime from Oracle SOA Composer 54-12
What You May Need to Know About Viewing Composite Sensor Changes in Oracle SOA
Composer 54-16
Creating Dynamic Business Processes
Introduction to Two-Layer Business Process Management 55-1
Creating a Phase Activity 55-2
How to Create a Phase Activity 55-3
What Happens When You Create a Phase Activity 55-3
What Happens at Runtime When You Create a Phase Activity 55-4
What You May Need to Know About Creating a Phase Activity 55-4
Creating the Dynamic Routing Decision Table 55-5
How to Create the Dynamic Routing Decision Table 55-5
What Happens When You Create the Dynamic Routing Decision Table 55-6

ORACLE

56 Integrating the Spring Framework in SOA Composite Applications

Introduction to the Spring Service Component 56-1
Integration of Java and WSDL-Based Components in the Same SOA Composite Application 56-2
Java and WSDL-Based Integration Example 56-2
Using Callbacks with the Spring Framework 56-4
Creating a Spring Service Component in Oracle JDeveloper 56-4
How to Create a Spring Service Component in Oracle JDeveloper 56-5
What You May Need to Know About Java Class Errors During Java-to-WSDL
Conversions 56-16
Defining Custom Spring Beans Through a Global Spring Context 56-16
How to Define Custom Spring Beans Through a Global Spring Context 56-16
Using the Predefined Spring Beans 56-16
IHeaderHelperBean.java Interface for headerHelperBean 56-17
lInstanceHelperBean.java Interface for instancerHelperBean 56-17
ILoggerBean.java Interface for loggerBean 56-18
How to Reference Predefined Spring Beans in the Spring Context File 56-19
JAXB and OXM Support 56-20
Extended Mapping Files 56-20
Configuring Groovy and Aspectj Classes with the Spring Service Component 56-22
Troubleshooting Spring Errors 56-22
Spring Bean Interface to Invoke Cannot Be Found 56-22
Unable to Add a Spring Service Component in the SOA Composite Editor 56-23

Part X Appendices

A BPEL Process Activities and Services

Introduction to Activities and Components A-1
Introduction to BPEL 1.1 and 2.0 Activities A-2
Tabs Common to Many Activities A-4
Annotations Tab A-4
Assertions Tab A-4
Correlations Tab A-5
Documentation Tab A-5
Headers Tab A-5
Properties Tab A-5

Skip Condition Tab A-6
Sources and Targets Tabs A-6
Timeout Tab A-6

Using the Native Format Builder Wizard Outside of Adapter Configuration A-6

To create a native format schema from the Applications Window: A-6

ORACLE [

To edit an existing native format schema from the Applications Window:
Assign Activity
Assert Activity
Bind Entity Activity
Call Activity
Compensate Activity
CompensateScope Activity
Create Entity Activity
Dehydrate Activity
Dynamic Partner Link Activity
Email Activity
Empty Activity
Exit Activity
Flow Activity
FlowN Activity
forEach Activity
If Activity
IM Activity
Invoke Activity
Java Embedding Activity
Partner Link Activity
Phase Activity
Pick Activity

To put the correlation syntax before the assign activity:
Receive Activity
Receive Signal Activity
Remove Entity Activity
RepeatUntil Activity
Replay Activity
Reply Activity
Rethrow Activity
Schedule Job
Scope Activity
Sequence Activity
Signal Activity
SMS Activity
Switch Activity
Terminate Activity
Throw Activity
Translate Activity
User Notification Activity
Validate Activity

ORACLE

Wait Activity A-45

While Activity A-46
XQuery Transform Activity A-47
XSLT Transform Activity A-48
Introduction to BPEL Services A-49

B XPath Extension Functions

Advanced Functions B-1
batchProcessActive B-1
batchProcessCompleted B-2
copyList B-2
create-nodeset-from-delimited-string B-3
createDelimitedString B-3
createEssParameter B-3
doStreamingTranslate B-4
doTranslateFromNative B-4
doTranslateToNative B-5
format B-6
genEmptyElem B-6
generate-guid B-7
get-content-from-file-function B-7
getApplicationName B-7
getAttachmentContent B-8
getAttachmentProperty B-8
getChildElement B-8
getComponentinstancelD B-9
getComponentName B-9
getCompositelnstancelD B-9
getCompositeName B-10
getCompositeURL B-10
getECID B-10
getFaultAsString B-11
getFaultAsXML B-11
getFaultName B-11
getMilestoneName B-12
getOwnerDocument B-12
getParentComponentinstancelD B-12
getRevision B-12
getTaskReminderDuration B-13
instanceOf B-13
lookup-xml B-13

ORACLE liii

parseEscaped XML B-14

parseXML B-14
processScalableDocumentToNative B-15
processXSLTAttachmentFromNativeToNative B-15
processXSLTAttachmentFromNativeToStream B-15
processXSLTAttachmentToNativeStream B-16
processXSLTAttachmentToStream B-16
processXSLTForScalableDocument B-16
setCompositelnstanceTitle B-16
BPEL Extension Functions B-16
BPEL Extension Functions in BPEL 1.1 and BPEL 2.0 B-16
getLinkStatus B-17
getVariableData B-17
getVariableProperty (For BPEL 1.1) B-18
getVariableProperty (For BPEL 2.0) B-18
doXslITransform (For BPEL 2.0) B-19
BPEL XPath Extension Functions B-19
addQuotes B-19
authenticate B-19
countNodes B-21
doXSLTransform B-21
doXSLTransformForDoc B-22
doc B-22
formatDate B-23
generateGUID B-23
getConfigProperty B-23
getContentAsString B-24
getConversationlid B-24
getCreator B-24
getCurrentDate B-24
getCurrentDateTime B-25
getCurrentTime B-25
getElement B-25
getinstanceld B-26
getNodeValue B-26
getNodes B-26
getPreference B-27
getProcessld B-27
getProcessOwnerld B-27
getProcessURL B-28
getProcessVersion B-28
integer B-28
ORACLE

liv

listUsers B-29

lookupUser B-29
parseEscapedXML B-30
processXQuery B-30
processXQuery10 B-31
processXQuery2004 B-31
processXSLT B-31
readBinaryFromFile B-34
readBinaryFromFileWithMimeHeaders B-34
readFile B-35
search B-35
toCDATA B-36
tryToCastToBoolean B-37
writeBinaryToFile B-37
getGroupldsFromGroupAlias B-37
getUserldsFromGroupAlias B-37
Conversion Functions B-38
boolean B-38
number B-38
string B-39
DVM Functions B-39
lookupValue B-39
lookupValuelM B-40
Database Functions B-40
lookup-table B-40
query-database B-41
sequence-next-val B-41
Date Functions B-42
add-dayTimeDuration-to-dateTime B-42
current-date B-42
current-dateTime B-43

To display the datetime value in seconds: B-43
current-time B-44
day-from-dateTime B-44
format-dateTime B-44
hours-from-dateTime B-45
minutes-from-dateTime B-45
month-from-dateTime B-45
seconds-from-dateTime B-45
subtract-dayTimeDuration-from-dateTime B-46
timezone-from-dateTime B-46
year-from-dateTime B-47

ORACLE

Identity Service Functions B-47

getDefaultRealmName B-47
getGroupProperty B-47
getManager B-48
getManagerFromManagementChain B-48
getReportees B-48
getSupportedRealmNames B-49
getUserProperty B-49
getUserRoles B-49
getUsersInAppRole B-50
getUsersInGroup B-50
isUserIinAppRole B-50
isUserinRole B-51
lookupGroup B-51
lookupUser B-51
Logical Functions B-52
and B-52
equals B-52
false B-52
greater B-52
greater equals B-53
less B-53
less equals B-53
not B-53
not equals B-54
or B-54
true B-54
Mathematical Functions B-54
abs B-54
add B-55
ceiling B-55
count B-55
divide B-55
floor B-55
max-value-among-nodeset B-56
min-value-among-nodeset B-56
mod B-56
multiply B-56
round B-57
square-root B-57
subtract B-57
sum B-57
ORACLE

Ivi

unary B-58

Node Set Functions B-58
last B-58
local-name B-58
name B-58
namespace-uri B-58
position B-59
union B-59

String Functions B-59
compare B-59
compare-ignore-case B-59
concat B-60
contains B-60
create-delimited-string B-60
ends-with B-61
format-string B-61
get-content-as-string B-62
get-localized-string B-62
index-within-string B-63
last-index-within-string B-63
left-trim B-64
lower-case B-64
matches B-64
normalize-space B-65
right-trim B-65
starts-with B-65
string-length B-66
substring B-66
substring-after B-66
substring-before B-67
translate B-67
upper-case B-67

Workflow Service Functions B-68
clearTaskAssignees B-68
createWordMLDocument B-68
dynamicTaskAssign B-68
getNotificationProperty B-69
getNumberOfTaskApprovals B-70
getPreviousTaskApprover B-70
getTaskAttachmentBylndex B-70
getTaskAttachmentByName B-71
getTaskAttachmentContents B-71

ORACLE

vii

getTaskAttachmentsCount B-71
getTaskResourceBundleString B-72
XREF Functions B-72
lookupPopulatedColumns B-72
lookupXRef B-72
lookupXReflM B-73
markForDelete B-73
populateLookupXRefRow B-74
populateXRefRow B-74
populateXRefRow1M B-75
Building XPath Expressions in the Expression Builder in Oracle JDeveloper B-75
How to Use the Expression Builder B-75
Introduction to the XPath Building Assistant B-77
How to Use the XPath Building Assistant B-77
Using the XPath Building Assistant in the XSLT Mapper B-79
Function Parameter Tool Tips B-80
Syntactic and Semantic Validation B-81
Creating Expressions with Free Form Text and XPath Expressions B-81

Using Double Slashes for Directory Paths in XPath Functions on Windows Can Cause
Errors B-82
Creating User-Defined XPath Extension Functions B-83
How to Implement User-Defined XPath Extension Functions B-85
How to Implement Functions for the XSLT Mapper B-85
How to Implement Functions for All Other Components B-86
How to Configure User-Defined XPath Extension Functions B-86
How to Deploy User-Defined Functions to Runtime B-89

C Deployment Descriptor Properties
Introduction to Deployment Descriptor Properties C-1
How to Define Deployment Descriptor Properties in the Property Inspector C-4
How to Get the Value of a Preference within a BPEL Process C-5
D Understanding Sensor Public Views and the Sensor Actions XSD

Introduction to Sensor Public Views and the Sensor Actions XSD File D-1
Sensor Public Views D-1
Schema D-1
BPEL_PROCESS_INSTANCES D-1
BPEL_ACTIVITY_SENSOR_VALUES D-2
BPEL_FAULT_SENSOR_VALUES D-3
BPEL_VARIABLE_SENSOR_VALUES D-4

ORACLE

Iviii

Sensor Actions XSD File D-5

E Propagating Normalized Message Properties Through Message Headers

Introduction to Normalized Messages E-1
Oracle Web Services Addressing Properties E-1
How to Set Normalized Message Properties in Message Headers E-3

Manipulating Normalized Message Properties with bpelx Extensions E-4
BPEL 2.0 bpelx Extensions Syntax E-4
BPEL 1.1 bpelx Extensions Syntax E-5

F Interfaces Implemented By Rules Dictionary Editor Task Flow

The MetadataDetails Interface F-1
The getDocument Method F-1
The getRelatedDocument Method F-2
The setDocument Method F-3

The NLSPreferences Interface F-3

G Oracle SOA Suite Configuration Properties Road Map

Oracle BPEL Process Manager Deployment Descriptor Properties G-1
Normalized Message Header Properties G-1
Oracle JCA Adapter Message Header Properties G-2
Oracle BPEL Process Manager and Oracle Web Services Addressing Message Header
Properties G-2
Oracle B2B Message Header Properties G-2
SOA Composite Application Properties G-2
Fault Policy and Adapter Rejected Message Properties G-3
Oracle B2B System Properties G-4
Oracle Healthcare Properties G-4
Oracle Business Activity Monitoring Properties G-4
Oracle Enterprise Manager Fusion Middleware Control Property Pages G-4
SOA Infrastructure Properties G-5
Oracle BPEL Process Manager Properties G-5
Human Workflow Notification and Task Service Properties G-6
Oracle Mediator Properties G-6
Cross Reference Properties G-6
Oracle B2B Properties G-6
Service and Reference Binding Component Properties G-7
Global Token Variables and Automatic Database Purging Properties G-7
System MBean Browser Advanced Properties G-7
SOA Infrastructure Advanced Properties G-8
ORACLE

lix

Oracle BPEL Process Manager Advanced Properties G-8
Oracle Mediator Advanced Properties G-8
Human Workflow Notification and Task Service Advanced Properties G-9
Oracle B2B Advanced Properties G-9
H Working with Large Schemas in the XSLT Editor
Sparse Mappings H-1
Quick Start for XSLT View H-6
Non-Sparse Mappings H-8
Reducing Textual Clutter H-11
Searching Trees H-13
Copying and Modifying a Large Input Document H-13
Generating Test Files with Element and Type Substitutions H-16

Index

ORACLE"

Preface

Audience

Developing SOA Applications with Oracle SOA Suite describes how to design, secure, test,
and deploy Oracle Service-Oriented Architecture (SOA) composite applications consisting of
service and reference binding components and Oracle BPEL process, human task, business
rule, {Varref. mediator}Oracle Mediator, and spring service components. Also included is
information on designing transformations and business events and acting upon human tasks
during runtime in Oracle BPM Worklist.

This document is intended for administrators and developers who work with Oracle SOA Suite.

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle Accessibility
Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support through My
Oracle Support. For information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing impaired.

Diversity and Inclusion

Oracle is fully committed to diversity and inclusion. Oracle respects and values having a
diverse workforce that increases thought leadership and innovation. As part of our initiative to
build a more inclusive culture that positively impacts our employees, customers, and partners,
we are working to remove insensitive terms from our products and documentation. We are also
mindful of the necessity to maintain compatibility with our customers' existing technologies and
the need to ensure continuity of service as Oracle's offerings and industry standards evolve.
Because of these technical constraints, our effort to remove insensitive terms is ongoing and
will take time and external cooperation.

Related Documents

ORACLE

Refer to the Oracle Fusion Middleware library on the Oracle Help Center for additional
information.

* For Oracle SOA Suite information, see Oracle SOA Suite.
* For adapters information, see On-Premises and Cloud SOA Adapters.
* For Oracle BAM information, see Oracle Business Activity Monitoring.

e For Oracle B2B information, see Oracle B2B.

IXi

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
https://docs.oracle.com/en/middleware/fusion-middleware/index.html

Preface

For Oracle Business Process Management information, see Oracle Business Process

Management.

For Oracle Enterprise Scheduler information, see Oracle Enterprise Scheduler.

For Oracle Managed File Transfer information, see Oracle Managed File Transfer.

* For Oracle Service Bus information, see Oracle Service Bus.

» For Oracle SOA Suite for healthcare integration information, see Oracle SOA Suite for
Healthcare Integration.

* For versions of platforms and related software for which Oracle products are certified and
supported, review the Certification Matrix on OTN.

e For cloud adapters information, see :

Conventions

The following text conventions are used in this document:

ORACLE

Using Ariba Adapter

Using Oracle Eloqua Cloud Adapter
Using Oracle ERP Cloud Adapter
Using the NetSuite Adapter

Using Oracle RightNow Cloud Adapter
Using Salesforce Adapter

Using Oracle Sales Cloud Adapter
Using ServiceNow Adapter

Oracle Cloud Adapters Postinstallation Configuration Guide

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated with an

action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for which
you supply particular values.
monospace Monospace type indicates commands within a paragraph, URLs, code in

examples, text that appears on the screen, or text that you enter.

Iii

http://www.oracle.com/technetwork/middleware/ias/downloads/fusion-certification-100350.html

Getting Started with Oracle SOA Suite

ORACLE

This part provides an introduction to Oracle SOA Suite and developing SOA composite
applications.

This part contains the following chapters:

e Introduction to Building Applications with Oracle SOA Suite
e Getting Started with Developing SOA Composite Applications
e Managing Shared Data with the Design-Time

Introduction to Building Applications with
Oracle SOA Suite

This chapter describes service-oriented architecture (SOA) and Oracle SOA Suite, standards
used by Oracle SOA Suite to enable SOA, SOA composite application architecture and
runtime behavior, approaches to designing SOA composite applications, and where to go to
learn more about Oracle SOA Suite.

This chapter includes the following sections:

e Introduction to Oracle SOA Suite
e Getting Started with Oracle SOA Suite
e Setting Accessibility Options

Introduction to Oracle SOA Suite

This section provides an overview of service-oriented architecture and standards, Oracle SOA
Suite capabilities, service component architecture, runtime behavior, and design-time
approaches.

* Service-Oriented Architecture

* Services

* Oracle SOA Suite

e Standards Used by Oracle SOA Suite to Enable SOA

e Service Component Architecture within SOA Composite Applications
* Runtime Behavior of a SOA Composite Application

e Approaches for Designing SOA Composite Applications

For introductory information about Oracle SOA Suite, see Understanding Oracle SOA Suite.
For information about Oracle SOA Suite infrastructure and administration, see Administering
Oracle SOA Suite and Oracle Business Process Management Suite.

Service-Oriented Architecture

ORACLE

Changing markets, increasing competitive pressures, and evolving customer needs are placing
greater pressure on IT to deliver greater flexibility and speed. Today, every organization is
faced with predicting change in a global business environment, to rapidly respond to
competitors, and to best exploit organizational assets for growth. In response to these
challenges, leading companies are adopting service-oriented architecture (SOA) to deliver on
these requirements by overcoming the complexity of their application and IT environments.

SOA provides an enterprise architecture that supports building connected enterprise
applications to provide solutions to business problems. SOA facilitates the development of
enterprise applications as modular business web services that can be easily integrated and
reused, creating a truly flexible, adaptable IT infrastructure.

1-1

Services

Chapter 1
Introduction to Oracle SOA Suite

SOA separates business functions into distinct units, or services. A SOA application reuses
services to automate a business process.

A standard interface and message structure define services. The most widely used mechanism
are web services standards. These standards include the Web Service Description Language
(WSDL) file for service interface definition and XML Schema Documents (XSD) for message
structure definition. These XML standards are easily exchanged using standard protocols.
Because standards for web services use a standard document structure, they enable existing
systems to interoperate regardless of the choice of operating system and computer language
used for service implementation.

When designing a SOA approach, you create a service portfolio plan to identify common
functionality to use as a service within the business process. By creating and maintaining a
plan, you ensure that existing services and applications are reused or repurposed whenever
possible. This plan also reduces the time spent in creating needed functionality for the
application.

Oracle SOA Suite

Oracle SOA Suite provides a complete set of service infrastructure components for designing,
deploying, and managing composite applications. Oracle SOA Suite enables services to be
created, managed, and orchestrated into composite applications and business processes.
Composites enable you to easily assemble multiple technology components into one SOA
composite application. Oracle SOA Suite plugs into heterogeneous IT infrastructures and
enables enterprises to incrementally adopt SOA.

The components of Oracle SOA Suite benefit from common capabilities, including a single
deployment, management, and tooling model, end-to-end security, and unified metadata
management. Oracle SOA Suite is unique in that it provides the following set of integrated
capabilities:

e Messaging

e Service discovery

e Orchestration

* Web services management and security with Oracle Web Services Manager (OWSM)
e Business rules

* Human interaction

e Events framework

e Business activity monitoring

Standards Used by Oracle SOA Suite to Enable SOA

ORACLE

Oracle SOA Suite puts a strong emphasis on standards and interoperability. Among the
standards it leverages are:

* Service Component Architecture (SCA) assembly model

Provides the service details and their interdependencies to form composite applications.
SCA enables you to represent business logic as reusable service components that can be
easily integrated into any SCA-compliant application. The resulting application is known as

1-2

ORACLE

Chapter 1
Introduction to Oracle SOA Suite

a SOA composite application. The specification for the SCA standard is maintained by the
Organization for the Advancement of Structured Information Standards (OASIS) through
the Open Composite Services Architecture (CSA) Member Section:

http://www.oasis-opencsa.org
Service Data Objects (SDO)

Specifies a standard data method and can modify business data regardless of how it is
physically accessed. Knowledge is not required about how to access a particular back-end
data source to use SDO in a SOA composite application. Consequently, you can use static
or dynamic programming styles and obtain connected and disconnected access.

Business Process Execution Language (BPEL)

Provides enterprises with an industry standard for business-process orchestration and
execution. Using BPEL, you design a business process that integrates a series of discrete
services into an end-to-end process flow. This integration reduces process cost and
complexity. BPEL versions 1.1 and 2.0 are supported.

XSL Transformations (XSLT)

Processes XML documents and transforms document data from one XML schema to
another.

XQuery Transformations (XQuery)

Queries and transforms collections of structured and unstructured data, typically in the
form of XML.

Java Connector Architecture (JCA)

Provides a Java technology solution to the problem of connectivity between the many
application servers in Enterprise Information Systems (EIS).

Java Messaging Service (JMS)

Provides a messaging standard that allows application components based on the Java 2
Platform, Enterprise Edition (Java EE) to access business logic distributed among
heterogeneous systems.

Web Service Definition Language (WSDL) file

Provides the entry points into a SOA composite application. The WSDL file provides a
standard contract language and is central for understanding the capabilities of a service.

Simple Object Access Protocol (SOAP)
Provides the default network protocol for message delivery.
Representational State Transfer (REST)

Provides an architecture for designing network applications. RESTful applications use
HTTP requests to post data (create and update), get data (for example, make queries),
and delete data. REST provides an alternative to using web services.

JavaScript Object Notation (JSON)

Provides a language for representing simple data structures and associative arrays called
objects. JSON is a standard designed for human-readable data interchange. JSON is
derived from the JavaScript scripting language.

Web Application Description Language (WADL)

Provides a readable XML description of HTTP-based web applications (typically REST
web services). WADL simplifies the reuse of web services based on the existing HTTP
architecture of the web.

1-3

http://www.oasis-opencsa.org

Chapter 1
Introduction to Oracle SOA Suite

Service Component Architecture within SOA Composite Applications

Oracle SOA Suite uses the SCA standard as a way to assemble service components into a
SOA composite application. SCA provides a programming model for the following:

e Creating service components written with a wide range of technologies, including
programming languages such as Java, C++, and declarative languages such as XSLT. The
use of specific programming languages and technologies (including web services) is not
required with SCA.

e Assembling the service components into a SOA composite application. In the SCA
environment, service components are the building blocks of applications.

SCA provides a model for assembling distributed groups of service components into an
application, enabling you to describe the details of a service and how services and service
components interact. Composites are used to group service components and wires are used to
connect service components. SCA helps to remove middleware concerns from the
programming code by applying infrastructure declaratively to composites, including security
and transactions.

The key benefits of SCA include the following:

e Loose coupling

Service components integrate with other service components without needing to know how
other service components are implemented.

* Flexibility
Service components can easily be replaced by other service components.
e Services invocation
Services can be invoked either synchronously or asynchronously.
e Productivity
Service components are easily integrated to create a SOA composite application.
* Easy maintenance and debugging

Service components can be easily maintained and debugged when an issue is
encountered.

A SOA composite is an assembly of services, service components, and references designed
and deployed in a single application. Wiring between the services, service components, and
references enables message communication. The details for a composite are stored in the
composite.xml file.

Figure 1-1 provides an example of a composite that includes an inbound service binding
component, a BPEL process service component (named Account), a business rules service
component (named AccountRule), and two outbound reference binding components.

ORACLE 4

Chapter 1
Introduction to Oracle SOA Suite

Figure 1-1 Simple SOA Composite Architecture

Compaosite

Service Component

, Wi Wi
Service iy Composite BigBank i

Service Component

Account
ﬁ binding.ws
WebApp A 5 |_1_ ¥ —
b . | binding.ws - S —— . binding.rmi

creL ﬂ 1

Service Component
AccountRule

Service Component

Business Rules

5

Service Components

Service components are the building blocks that you use to construct a SOA composite
application.

The following service components are available. There is a corresponding service engine of
the same name for each service component. All service engines can interact in a single
composite.

* BPEL processes provide process orchestration and storage of a synchronous or an
asynchronous process. You design a business process that integrates a series of business
activities and services into an end-to-end process flow.

* Business rules enable you to design a business decision based on rules.

e Human tasks provide workflow modeling that describes the tasks for users or groups to
perform as part of an end-to-end business process flow.

* Mediators route events (messages) between different components.
e Spring enables you to integrate Java interfaces into SOA composite applications.

For more information about service components, see Adding Service Components.

Binding Components

Binding components establish a connection between a SOA composite and the external world.
There are two types of binding components:

* Services

Services provide the outside world with an entry point to the SOA composite application.
The WSDL file of the service advertises its capabilities to external applications. These

ORACLE e

ORACLE

Chapter 1
Introduction to Oracle SOA Suite

capabilities are used for contacting the SOA composite application components. The
binding connectivity of the service describes the protocols that can communicate with the
service, for example, SOAP/HTTP or a JCA adapter.

 References

References enable messages to be sent from the SOA composite application to external

services in the outside world.

Table 1-1 lists and describes the binding components provided by Oracle SOA Suite.

Table 1-1 Binding Components Provided by Oracle SOA Suite

Binding Components

Description

Web service (SOAP over HTTP)

Use for connecting to standards-based services using SOAP over
HTTP.

JCA adapters

Use for integrating services and references with technologies (for
example, databases, file systems, FTP servers, messaging, JMS,
IBM WebSphere MQ, Oracle User Messaging Service, LDAP
servers, Oracle Coherence cache, and so on) and applications
(Oracle E-Business Suite, PeopleSoft, and so on).

This includes the AQ adapter, database adapter, file adapter, FTP
adapter, JMS adapter, MQ adapter, socket adapter, Oracle User
Messaging Service adapter, LDAP adapter, Oracle Coherence
adapter, and third-party adapter.

Oracle B2B

Use for browsing B2B metadata in the Oracle Metadata Services
Repository (MDS Repository) and selecting document definitions.

Oracle Healthcare

Use for sending and receiving messages to and from a healthcare
system.

ADF-BC service

Use for connecting Oracle Application Development Framework
(ADF) applications using SDO with the SOA platform.

Oracle E-Business Suite

Use for integrating the Oracle E-Business Suite adapter with Oracle
applications.

BAM 11g adapter

Use for integrating Java EE applications with Oracle BAM 11g
server to send data, and also use as a reference binding component
in a SOA composite application.

Note: This adapter can only connect to an Oracle BAM 11g server.

EJB service

Use for integrating SDO parameters or Java interfaces with
Enterprise JavaBeans.

Direct binding service

Use to invoke a SOA composite application and exchange
messages over a remote method invocation (RMI) in the inbound
direction and to invoke an Oracle Service Bus (OSB) flow or another
SOA composite application in the outbound direction.

HTTP binding

Use to integrate SOA composite applications with HTTP binding.

REST service

Use to integrate REST services with SOA composite applications
and REST-enable SOA composite applications.

Oracle Managed File Transfer
(MFT)

Use to transfer files to and from many endpoint types, such as
remote and embedded FTP or sFTP servers; directories; and SOAP
web service, Oracle SOA Suite, Oracle Service Bus, Oracle B2B,
Oracle Healthcare, and Oracle Data Integrator endpoints.

1-6

Wires

Chapter 1
Introduction to Oracle SOA Suite

Table 1-1 (Cont.) Binding Components Provided by Oracle SOA Suite

. __|
Binding Components Description

Cloud adapters The cloud adapters enable you to send and receive messages from
a cloud server.

Oracle SOA Suite 12c supports the following cloud adapters:
e Ariba Adapter

e Oracle Eloqua Cloud Adapter

e Oracle ERP Cloud Adapter

e Oracle NetSuite Adapter

* Oracle RightNow Cloud Adapter

e Oracle Sales Cloud Adapter

* Salesforce Adapter

e ServiceNow Adapter

e SuccessFactors Adapter

For more information about binding components, see Adding Service Binding Components and
Adding Reference Binding Components.

Wires enable you to graphically connect the following components in a single SOA composite
application for message communication:

e Services to service components
e Service components to other service components
e Service components to references

For more information about wires, see Adding Wires.

Runtime Behavior of a SOA Composite Application

ORACLE

Figure 1-2 shows the operability of a SOA composite application using SCA technology. In this
example, an external application (a .NET payment calculator) initiates contact with the SOA
composite application.

For more information about descriptions of the tasks that services, references, service
components, and wires perform in an application, see Service Component Architecture within
SOA Composite Applications.

1-7

Chapter 1
Introduction to Oracle SOA Suite

Figure 1-2 Runtime Behavior of SOA Composite Application

! Service Archive: Composite (deployment unit)

Loan APR Manager EBS
! | Process Rule Review Customer !
Task View :

o

Business Human
Rules Mediator Task - Service Engines

(Containers that host the

— component business logic)

I~ Service Infrastructure

(Picks up SOAP message
—from binding component
and determines the
intended component
MDS B target)

| Mo B | e (d o Binding Components
[[=
\ | | SOAP \ ADF-BC | Adapter (Connect SOA applications

__.. _.. \ » _ _.. — 1o the outside world)
T

NET — Sends a SOAP message
Payment to the SOA application
Calculator

The .NET payment calculator is an external application that sends a SOAP message to the
SOA application to initiate contact. The Service Infrastructure picks up the SOAP message
from the binding component and determines the intended component target. The BPEL
process service engine receives the message from the Service Infrastructure for processing by
the BPEL Loan Process application and posts the message back to the Service Infrastructure
after completing the processing.

Table 1-2 describes the operability of the SOA composite application shown in Figure 1-2.

Table 1-2 Introduction to a SOA Composite Application Using SCA Technologies
|

Part Description Example of Use in Figure 1-2 See Section
Binding Establishes the connectivity The SOAP binding component service: Service
components between a SOA composite and . agvertises its capabilities in the WSDL file. | COmponents
the extern.al world. There are * Receives the SOAP message from the .NET
two types.. o application.
¢ Service binding « Sends the message through the policy
components provide an infrastructure for security checking.

entry point to the SOA

. L e Translates the message to a normalized
composite application.

message (an internal representation of the

¢ Reference binding service's WSDL contract in XML format).
components enable * Posts the message to the Service
messages to be sent from Infrastructure

the SOA composite
application to external
services.

An example of a reference binding component in
Figure 1-2 is the Loan Process application.

ORACLE 18

Chapter 1

Introduction to Oracle SOA Suite

Table 1-2 (Cont.) Introduction to a SOA Composite Application Using SCA Technologies

Part Description Example of Use in Figure 1-2 See Section
Service Provides internal message The Service Infrastructure: Service
Infrastructure transport Infrastructure

e Receives the message from the SOAP
service binding component.

e Posts the message for processing to the
BPEL process service engine first and the
human task service engine second.

Service engines
(containers
hosting service

Host the business logic or
processing rules of the service
components. Each service

The BPEL process service engine:

* Receives the message from the Service
Infrastructure for processing by the BPEL

Service Engines

components) component has its own service Loan Process application.
engine. » Posts the message to the Service

Infrastructure after completing the

processing.
Universal The MDS Repository stores The SOAP service used in this composite Managing Shared
Description, descriptions of available application is stored in the MDS repository and Date_l With_ the
Discovery, and services. The UDDI advertises | can also be published to UDDI. Design-Time
Integration these services, and enables

(UDDI) and MDS

discovery and dynamic binding
at runtime.

SOA archive
composite

(deployment unit)

The deployment unit that
describes the composite
application.

The SOA archive (SAR) of the composite
application is deployed to the Service
Infrastructure.

Deployed Service
Archives

Service Infrastructure

The Service Infrastructure provides the following internal message routing infrastructure
capabilities for connecting components and enabling data flow:

* Receives messages from the service providers or external partners through SOAP

services or adapters

¢ Sends the message to the appropriate service engine

* Receives the message back from the service engine and sends it to any additional service
engines in the composite or to a reference binding component based on the wiring

Service Engines

Service engines are containers that host the business logic or processing rules of the service
components. Service engines process the message information received from the Service

Infrastructure.

There is a corresponding service engine of the same name for each service component. All
service engines can interact in a single composite.

For more information, see Administering Oracle SOA Suite and Oracle Business Process

Management Suite.

Deployed Service Archives

The SOA archive (SAR) is a SOA archive deployment unit. A SAR file is a special JAR file that
requires a prefix of sca_ (for example, sca_OrderBookingComposite revl.0.jar). The SAR

ORACLE

1-9

Chapter 1
Getting Started with Oracle SOA Suite

file is deployed to the Service Infrastructure. The SAR packages service components (such as
BPEL processes, business rules, human tasks, and Oracle Mediator routing services) into a
single application. The SAR file is analogous to the BPEL suitcase archive of previous
releases, but at the higher composite level and with any additional service components that
your application includes (for example, human tasks, business rules, and Oracle Mediator
routing services).

For more information, see Deploying SOA Composite Applications .

Approaches for Designing SOA Composite Applications

When creating a SOA composite application, you have a choice of approaches for building it:

* Top-Down: You analyze your business processes and identify activities in support of your
process. When creating a composite, you define all the SOA components through the SOA
Composite Editor. You create all the services first, and then build the BPEL process,
referencing the created services.

* Bottom-Up: You analyze existing applications and assets to identify those that can be used
as services. As you create a BPEL process, you build the services on an as-needed basis.
This approach works well when IT must react to a change.

Getting Started with Oracle SOA Suite

This guide assists you with developing a SOA composite application.

Table 1-3 Getting Started with Oracle SOA Suite

To Get Started with... See...

The basic steps of composite, service Getting Started with Developing SOA Composite Applications
and reference binding component, and
service component creation in Oracle
JDeveloper

Using shared data with the SOA Design- | Managing Shared Data with the Design-Time MDS
Time Oracle Metadata Services Repository
Repository (MDS Repository)

Designing BPEL process service Using the BPEL Process Service Component
components in a composite

Designing Oracle Mediator service Using the Oracle Mediator Service Component
components in a composite

Designing business rule service Using the Business Rules Service Component
components in a composite

Designing human workflow service Using the Human Workflow Service Component
components in a composite

Designing service and reference binding | Using Binding Components
components in a composite

Functionality that can be shared across | Sharing Functionality Across Service Components
components, such as templates, XSLT
and XQuery transformations, business
events, cross references, and domain
value maps

ORACLE 110

Chapter 1
Setting Accessibility Options

Table 1-3 (Cont.) Getting Started with Oracle SOA Suite

|
To Get Started with... See...

Composite completion tasks such as Completing Your Application
security policy attachments, deployment,
debugging, and automating composite
testing

Advanced topics such as management | Advanced Topics
of large documents and large numbers
of instances, composite customizations,
composite sensors, and the spring
framework

Other resources:

* Understanding Oracle SOA Suite describes the business challenges faced by a company
and how the components of Oracle SOA Suite address these challenges from design time
through runtime.

Setting Accessibility Options

Oracle SOA Suite uses both Oracle JDeveloper and Oracle SOA Composer for application
development. This section describes accessibility options for both environments.

Setting Accessibility Options in Oracle JDeveloper

Oracle JDeveloper provides accessibility options, such as support for screen readers, screen
maghnifiers, and standard shortcut keys for keyboard navigation. You can also customize
Oracle JDeveloper for better readability, including the size and color of fonts and the color and
shape of objects. For information and instructions on configuring accessibility in Oracle
JDeveloper, see Oracle JDeveloper Accessibility Information in Developing Applications with
Oracle JDeveloper.

Setting Accessibility Options in Oracle SOA Composer and Oracle BPM
Worklist

Accessibility settings help you read all components of the application. You can set accessibility
options in either Oracle SOA Composer or Oracle BPM Worklist for the current instance or for
all instances.

How to Set Accessibility Features Before Logging In

Oracle SOA Composer or Oracle BPM Worklist presents the Accessibility menu on the login
page, so you can configure accessibility before you log in. These settings can be persisted for
only the current session or for all sessions.

To set accessibility options before logging in:
1. Launch Oracle SOA Composer or Oracle BPM Worklist.
2. On the login page, click Accessibility in the top right corner.

The Edit Accessibility Settings page appears, as shown in Figure 1-3.

ORACLE L1

Chapter 1
Setting Accessibility Options

Figure 1-3 Edit Accessibility Settings Page

Edit Accessibility Settings
Any setting here can be changed after sign in via Preferences.

[T Use screen reader.
[use high contrast colars.
[Use farge fonts.

Save as preference and use Use for this sassion Cancel

3. Select any of the following options:
e Use screen reader.
e Use high contrast colors.
e Use large fonts.

4. To save the new settings only for this session, click Use for this session. To save the
settings for all sessions, click Save as preference and use.

How to Set Accessibility Options After Logging In

Once you log in to Oracle SOA Composer or Oracle BPM Worklist, you can configure
accessibility options from any page. This changes the user preferences, which are retained
through all sessions until you change them again.

To set accessibility options after logging in:
1. Launch Oracle SOA Composer or Oracle BPM Worklist and log in.
2. From any page, select Preferences in the top right corner.
The Preferences dialog appears.
3. Inthe Preferences column, click Accessibility.

The Accessibility Preferences appear, as shown in Figure 1-4.

Figure 1-4 Preferences Dialog

Preferences

Preferences Accessibility Preferences

@ Mode Settings Enable screen reader mode E|
Language

Contrast Settings Use normal contrast E|

Accessibility Font Settings Use large fonts E|

hJ
Business Rules
C’) Apply OK Close

ORACLE 110

Chapter 1
Setting Accessibility Options

4. Inthe Mode Settings field, select Enable screen reader mode if you use a screen
reader. Select Disable screen reader mode if you do not use a screen reader.

5. Inthe Contrast Settings field, select Use high contrast to increase the contrast between
objects on the console; otherwise, select Use normal contrast.

6. Inthe Font Settings field, select Use large fonts to increase the font size; otherwise,
select Use normal fonts.

7. Click OK.

ORACLE 112

Getting Started with Developing SOA
Composite Applications

This chapter describes how to use Oracle JDeveloper to create a SOA composite application.
It guides you through the basic steps of composite, service and reference binding component,
and service component creation, security, deployment, and testing, along with describing key

issues to be aware of when designing a SOA composite application.
This chapter includes the following sections:

« Developing SOA Projects in Reference Configuration Mode
e Creating a SOA Application

e Adding Service Components

e Adding Service Binding Components

e Adding Reference Binding Components

e Adding Wires

e Adding Descriptions to SOA Composite Applications

e Renaming, Deleting, and Moving Components and Artifacts
e Viewing Component Details in the Property Inspector

e Adding Security Policies

e Deploying a SOA Composite Application

e Managing and Testing a SOA Composite Application

Developing SOA Projects in Reference Configuration Mode

ORACLE

Beginning with Release 12c¢ (12.2.1.4), you can create either a Reference Configuration
domain or a Classic domain on the Templates screen in the Configuration Wizard during
installation. A Reference Configuration domain guards servers from running into out-of-

memory, stuck threads, endpoint connectivity, and database issues. A Reference Configuration

domain supports SOA, OSB, and B2B topologies. The templates in these products include
Reference Configuration in their names, and are the default templates listed in the
Configuration Wizard for these products.

¢ Notes:

» There is no specific Reference Configuration template for ESS. However, ESS
can be added to both a Reference Configuration domain and to a Classic
domain.

» The Reference Configuration feature does not apply to MFT domains.

* A Reference Configuration domain does not support BPM or BAM components.

2-1

Chapter 2
Creating a SOA Application

Developing a SOA project in Reference Configuration mode means that you enable Reference
Configuration settings in JDeveloper so that new adapters that you create in the project will
have special JCA endpoint properties defined in their source files. You can modify these
properties directly in the Adapter Configuration Wizard for projects newly created in Release
12c¢ (12.2.1.4). See JCA Endpoint Properties in the Adapter Configuration Wizard in
Understanding Technology Adapters.

To create a Reference Configuration domain, see Selecting the Configuration Template for
Oracle SOA Suite in Installing and Configuring Oracle SOA Suite and Business Process
Management. To configure the domain, see Configuring a Reference Configuration Domain in
Administering Oracle SOA Suite and Oracle Business Process Management Suite.

Note:

If you develop SOA projects in Reference Configuration mode, Oracle recommends
that you deploy them to a server that is in a Reference Configuration domain. If a
SOA project is developed in Classic mode and the server to which it is deployed is in
a Reference Configuration domain, or vice versa, JDeveloper displays a Mismatch
notification in the Deploy Composite Wizard. For more information, see Deploying
SOA Composite Applications or Projects in Oracle JDeveloper.

How to Enable Reference Configuration Settings

By default, JDeveloper is in Classic mode. To develop SOA projects in Reference
Configuration mode, you must manually enable this feature in JDeveloper:

1. From the Tools menu, select Preferences.
2. Select Reference Configuration Settings.

3. Select Enable Reference Configuration settings in adapters.

Creating a SOA Application

The first steps in building a new application are to assign it a name and to specify the directory
in which to save source files. When you install the Oracle SOA Suite Quick Start, the Oracle
SOA Suite extensions are automatically installed in Oracle JDeveloper. This differs from
previous releases in which you manually imported the Oracle SOA Suite extensions into
Oracle JDeveloper. For information about the Oracle SOA Suite Quick Start installation, see
Installing SOA Suite and Business Process Management Suite Quick Start for Developers.

Create a SOA Application and Project

ORACLE

1. Start Oracle JDeveloper Studio Edition.

2. If Oracle JDeveloper is running for the first time, specify the location for the Java JDK and
the user role in which to run Oracle JDeveloper. The JDK version must be later than or
equal to 1.7.0_15.

3. Create a SOA application in any of the following ways:
e From the File main menu:
a. Select New > Application.

The New Gallery opens, where you can select different application components to
create.

2-2

ORACLE

Chapter 2
Creating a SOA Application

b. Inthe Categories tree, select General > Applications.

c. Inthe Items pane, select SOA Application, and click OK.
e From the Application main menu:

a. Select New.

The New Gallery opens, where you can select different application components to
create.

b. Inthe Categories tree, select General > Applications.
c. Inthe Items pane, select SOA Application, and click OK.
* From the Application menu in the Applications window:

a. Inthe Applications window in the upper left, select New Application from the
Applications dropdown list.

In the Name your application page, you can optionally change the name and location for
your application. If this is your first application, from Application Template, select SOA
Application. Accept the defaults for the package prefix, and click Next.

Note:

Note the following application naming conventions:
e Do not create an application name with spaces.

e Do not create applications and projects in directory paths that have spaces
(for example, c:\Program Files).

* On a UNIX operating system, it is highly recommended that you enable
Unicode support by setting the LANG and LC_All environment variables to a
locale with the UTF-8 character set. This action enables the operating
system to process any character in Unicode. SOA technologies are based on
Unicode. If the operating system is configured to use non-UTF-8 encoding,
SOA components may function in an unexpected way. For example, a non-
ASCII file name can make the file inaccessible and cause an error. Oracle
does not support problems caused by operating system constraints.

In a design-time environment, if you are using Oracle JDeveloper, select
Tools > Preferences > Environment > Encoding > UTF-8 to enable
Unicode support. This setting is also applicable for runtime environments.

In the Name your project page, you can optionally change the name and location for your
SOA project. By default, Oracle JDeveloper adds the SOA project technology, the
composite.xml file that describes the SOA composite application, and the necessary

libraries to your model project.
Click Next.

Note:

Composite and component names cannot exceed 500 characters.

A project deployed to the same infrastructure must have a unique name across SOA
composite applications. The uniqueness of a composite is determined by its project name.

2-3

Chapter 2
Creating a SOA Application

For example, do not perform the actions described in Table 2-1. During deployment, the
second deployed project (composite) overwrites the first deployed project (composite).

Table 2-1 Restrictions on Naming a SOA Project

Create an Application Named... With a SOA Project Named...
Applicationl Projectl
Application2 Projectl

The Project SOA Settings page of the Create SOA Application wizard appears.

7. Inthe Configure SOA Settings page, click Empty Composite for this example, and click
Finish. Table 2-2 describes all of the options on this page.

Table 2-2 Configure SOA Settings Page
|

Element

Description

Empty Composite

Creates an empty SOA composite application. This type is selected
by default.

Composite With BPEL
Process

Automatically opens the Create BPEL Process dialog to guide you
through creation of an initial BPEL process. A BPEL process
enables you to design a business process that integrates a series of
business activities and services into an end-to-end process flow.

Composite With Mediator

Automatically opens the Create Mediator dialog to guide you
through creation of an initial Oracle Mediator service component.
Oracle Mediator enables you to route events (messages) between
different components.

Composite With Human Task

Automatically opens the Create Human Task dialog to guide you
through creation of an initial human task service component. A
human task component enables you to model a workflow that
describes the tasks for users or groups to perform as part of an
end-to-end business process flow. The tasks are accessed through
Oracle BPM Worklist during process runtime.

Composite With Subprocess

Automatically creates a SOA composite application with a
subprocess. A subprocess is a fragment of BPEL code that can be
reused within a particular processor by separate processes.

Composite With Business
Rule

Automatically opens the Create Business Rules dialog to guide you
through creation of an initial business rule service component. A
business rule enables you to design a business decision based on
rules.

Composite With Spring

Automatically opens the Create Spring dialog to guide you through
creation of a spring context service component. A spring context
service component enables you to integrate components that use
Java interfaces instead of WSDL files into SOA composite
applications. You can also integrate components that use Java
interfaces with components that use WSDL files in the same SOA
composite application.

8. From the File main menu, select Save All.

ORACLE

2-4

Chapter 2
Creating a SOA Application

What Happens When You Create a SOA Application and Project

When you create a SOA application, Oracle JDeveloper creates a project that contains all the
source files related to your application. You can then use Oracle JDeveloper to create
additional projects needed for your application.

Figure 2-1 shows the SOA Composite Editor for a project named OrderBookingComposite.

Figure 2-1 New Workspace for a SOA Composite Application

File Edit Wiew Application Refactor Search Nawigate Build Run Team Tools Window Help
CEHg B 9K @~ R I -] A O search

Applications =] ...E|I§. BPELProcess2.bpel]n-it‘u‘ OrderBookingComposite ./ .. Compo.. - Resources
[&] WebLogicFusionOrderDemo = = | of gl [d 5 5 @@ 3¢) 8 @ c... orderBookingComj -

=l Projects v v g) -
— Sl @7 = Exposed Services Components External Rel soA
E|--- OrderBookingComposite
Elr:l Resources Service Components -~
@ pom.xml & Q -
BD SOA BPEL Business
-7 Events Frocess Rule
l_:l Schemas & <&
=[] testsuites J . . J . .
@ fileList.xml To begin creating a SOA composite application, Human Mediator
D Transformations drag-and-drop a Service Component or an Adapter Task
D WSDLs from the Component Palette, or select from the 5 ﬁ?B
ol orderBookingComposite right-click context menu Spring Subproce... :
+| Application Resources Composite - Orders... =
+ Data Controls
+ Recent Files Q Find @
= M : OrderBo
OrderBookingC... Thumbnail | ame |:
Bn{ﬁ OrderBookingComposite Revision: —
#-[7 Test Suites Label: 2013-03-
@ » Home:
Design Source History Repository Mode: active
BPEL - Log El State: on
¢ BPELProcess2 bpel Validate Schema: |Unspecif

W\fﬂlidatinn @ Search

Source | Design Messages | &4 BPEL - | Extensions = Fsoa - | A

Table 2-3 describes the SOA Composite Editor.

ORACLE" 9.5

Chapter 2
Creating a SOA Application

Table 2-3 SOA Composite Editor
]

Element

Description

Applications Window (Upper
left)

Displays the key directories and files for the specific service components
included in the SOA project. You can change the structure as necessary
for your environment. The only limitation is that all files must be located
under the SOA directory.
* Service_component_directory
Displays a directory for the artifacts of each service component you
add:
A BPEL directory is created for BPEL processes.
A Mediators directory is created for Oracle Mediators.
A HumanTasks directory is created for human tasks.
An oracle/rules directory is created for business rules.
. Events
Displays the business event files (.edn).
 Schemas
Displays the BPEL process schema files (.xsd).
* testsuites
Displays the test suite files.
* Transformations

Displays the transformation XSLT (.xsl) and XQuery (.xqy) mapper
files.

« WSDLs
Displays all WSDL files (.wsdl).
* composite_name

A composite_name file is automatically created when you create a
SOA project. This file describes the entire composite assembly of
services, service components, references, and wires.

Structure Window (Lower
left)

The Structure window provides a structural view of the data in the
document currently selected in the active window.

Designer (middle)

You drag service components, services, and references from the
Components window into the composite in the designer. When you drag
and drop a service component into the designer, a corresponding
property editor is invoked for performing configuration tasks related to that
service component. For example, when you drag and drop the Oracle
Mediator service component into the designer, the Mediator Editor is
displayed for configuring the Oracle Mediator service component.

For all subsequent editing sessions, you double-click these service
components to re-open their editors.

Project Name (Above the
designer)

Displays the project name of the SOA composite application.

Left Swimlane (Exposed
Services)

The left swimlane is for services (such as web services, REST adapters,
or JCA adapters) that provide an entry point to the SOA composite
application.

Right Swimlane (External
References)

The right swimlane is for references that send messages to external
services in the outside world, such as web services or JCA adapters.

ORACLE

2-6

ORACLE

Chapter 2
Creating a SOA Application

Table 2-3 (Cont.) SOA Composite Editor
]

Element

Description

Components Window (Upper
right - Components tab)

The Components window provides the various resources that you can
use in a SOA composite. It contains the following service components
and adapters:

e Components

Displays the BPEL process, business rule, human task, Oracle
Mediator, and spring components that can be dragged and dropped
into the designer.

e Technology

Displays the JCA adapters (such as AQ, file, FTP, database, JMS,
MQ, Oracle User Messaging Service, socket, LDAP server, and
Coherence cache), third-party adapter, cloud adapter, Oracle BAM
119 binding component, Oracle Healthcare binding component,
Oracle B2B binding component, EJB binding component, ADF-BC
binding component, application adapters (Oracle E-Business Suite,
JDE World, and SAP), direct binding component, HTTP binding
component, Oracle Managed File Transfer (MFT) adapter,
Representational State Transfer (REST) adapter, and web service
binding component that can be dragged into the left or right
swimlane.

Resources window (Upper
right - Resources tab)

The Resources window provides a single dialog from which you can
browse both local and remote resources. For example, you can access
the following resources:

* Shared data such as schemas and WSDLs from the MDS
Repository.

* WSIL browser functionality that uses remote resources that can be
accessed through an HTTP connection, file URL, or application
server connection.

* Remote resources that are registered in a Universal Description,
Discover, and Integration (UDDI) registry.

You select these resources for the SOA composite application through the

WSDL Chooser dialog. This dialog is accessible through a variety of

methods. For example, when you select the WSDL file to use with a

service binding component or an Oracle Mediator service component or

select the schema file to use in a BPEL process, the SOA Resource

Browser dialog appears. Click Resources at the top of this dialog to

access available resources.

Log Window (Lower middle)

The Log window displays messages about application compilation,
validation, and deployment.

Property Inspector (Lower
right)

The Property Inspector displays properties for the selected service
component, service, or reference.

You can also edit BPEL activity properties and define deployment
descriptor properties for a BPEL process service component.

For more information, see How to Edit BPEL Activities in the Property
Inspector. and How to Define Deployment Descriptor Properties in the
Property Inspector.

Application View

The Application View shows the artifacts for the SOA composite
application.

The composite_name file (also known as the composite.xml file) displays as a tab in the
designer and as a file in the Applications window. This file is automatically created when you
create a new SOA project. This file describes the entire composite assembly of services,
service components, and references. There is one composite.xml file for each SOA project.

2-7

Chapter 2
Adding Service Components

When you work with the composite.xml file, you mostly use the designer, the Structure
window, and the Property Inspector, as shown in Figure 2-1. The designer enables you to view
many of your files in a WYSIWYG environment, or you can view a file in an overview editor
where you can declaratively make changes, or you can view the source code for the file. The
Structure window shows the structure of the currently selected file. You can select objects in
this window, and then edit the properties for the selection in the Property Inspector.

Adding Service Components

Once you create your application, the next step is typically to add service components that
implement the business logic or processing rules of your application. You can use the
Components window in the SOA Composite Editor to drag and drop service components into
the composite.

How to Add a Service Component

To add a service component:

1. Atthe top of the Components window, click Components.
2. From the SOA section, drag a component into the designer.

Figure 2-2 shows a BPEL process being added to the designer.

Figure 2-2 Adding a BPEL Process to the SOA Composite Application

'::') Start Page D‘”E Prajectd . Companents
<« 't fd db 32 gl O] @ Projectl
SOA
Components
& .
BEPEL Business
.-:k Process Rule
- & “
Human Task Mediatar
® &
Spring Subprocess

A specific dialog for the selected service component is displayed. Table 2-4 describes the
available editors.

Table 2-4 Starting Service Component Editors

Dragging This Service Invokes The...
Component...
BPEL Process Create BPEL Process dialog to create a BPEL process that

integrates a series of business activities and services into an end-to-
end process flow.

Business Rule Create Business Rules dialog to create a business decision based on
rules.

ORACLE)8

ORACLE

Chapter 2
Adding Service Components

Table 2-4 (Cont.) Starting Service Component Editors
|

Dragging This Service Invokes The...
Component...
Human Task Create Human Task dialog to create a workflow that describes the

tasks for users or groups to perform as part of an end-to-end
business process flow.

Mediator Create Mediator dialog to define services that perform message and
event routing, filtering, and transformations.

Spring Component Create Spring dialog to create a spring context file for integrating
Java interfaces into SOA composite applications.

Configure the settings for the service component, and click OK. For help with a service
component dialog, click Help or press F1.

Figure 2-3 shows the BPEL Process dialog with data entered to create the
OrderProcessor BPEL process. The process is selected to be asynchronous. The
Expose as a SOAP Service check box directs Oracle JDeveloper to automatically create
this service component connected to an inbound SOAP web service.

Figure 2-3 Create BPEL Process Dialog

I Create BPEL Process x|

BFEL Process [

A BPEL process is a service orchestration, based on the BPEL specification, used to ﬁ /a
describe/execute a business process {or large grained service), which is implemented as a
stateful service.

») BPEL 2.0 Specification EPEL 1.1 Specification

Mame: OrderProcessod

Mamesgpace: |http://xmins.oracle.com /Applicationl? /Projectl/OrderProcessor

Directory: fhome/mlkenned/jdeveloper/mywork/Applicationl? /Projectl/SOA JEPEL Ck
Template: F#% Asynchronous BPEL Process - @

Service Mame: |orderprocessor_client

| Expose as a SOAP service
Delivery: |async.persist | g
Input: |{http://xmins.oracle.com /Applicationl? /Projectl/OrderProcessor}process Q@

Butput: mins.oracle.com/Application17/Projectl/OrderProcessoriprocessResponse Q@

Help 0K Cancel

4. Click OK.

Figure 2-4 shows the OrderProcessor BPEL process service component in the designer.
A SOAP service binding component called orderprocessor_client_ep in the left swimlane
provides the outside world with an entry point into the SOA composite application. If the
Expose as a SOAP Service option was not selected in the Create BPEL Process dialog,
the orderprocessor_client_ep service does not appear. You can add a service later by
following the steps in How to Add a Service Binding Component.

2-9

Chapter 2
Adding Service Components

Figure 2-4 BPEL Process in Composite

o compasitesml X | b
o F i R | o @D Composite: OrderBookingComposite
Exposed Services Components External References

Bl r‘é’) @ @) OrderProcessor
orderprocessor_cli...

Operations:

process
processResponse

You can more fully define the content of the service component now or at a later time. For
this top-down example, the content is defined now.

5. From the File main menu, select Save All.

What You May Need to Know About Adding and Deleting a Service
Component

Note the following details about adding service components:

e Create a service component from either the SOA Composite Editor or the designer of
another component. For example, you can create a human task component from the SOA
Composite Editor or the Oracle BPEL Designer.

e Use the Resources window to browse for service components defined in the SOA
Composite Editor, and those deployed.

Note the following details about deleting service components:

* You can delete a service component by right-clicking it and selecting Delete from the
context menu.

* When a service component is deleted, all references pointing to it are invalidated and all
wires are removed. The service component is also removed from the Applications window.

* A service component created from within another service component can be deleted. For
example, a human task created within the BPEL process service component of Oracle
JDeveloper can be deleted from the SOA Composite Editor. In addition, the partner link to
the task can be deleted. Deleting the partner link removes the reference interface and
removes the wire to the task.

How to Edit a Service Component

You edit a service component to define specific details about the service component.

To edit a service component:

1. Double-click the service component in the designer to display the appropriate editor or
designer, as described in Table 2-5.

ORACLE 510

Chapter 2
Adding Service Binding Components

Table 2-5 Starting SOA Service Component Wizards and Dialogs
|

Double-Clicking This Displays The...

Service Component...

BPEL Process Oracle BPEL Designer for further designing.
Business Rule Business Rules Designer for further designing.
Human Task Human Task Editor for further designing.
Mediator Oracle Mediator Editor for further designing.
Spring Component Spring Editor for further designing.

2. Modify the settings for the selected service component. For help with a service component
editor or designer, click Help or press F1. These editors are described in later chapters.

3. From the File main menu, select Save All.

4. In the Applications window, double-click composite_name or single-click
composite_name above the designer.

This action returns you to the SOA Composite Editor.

Adding Service Binding Components

You add a service binding component to act as the entry point to the SOA composite
application from the outside world.

How to Add a Service Binding Component

Note:

This section describes how to manually create a service binding component. You can
also automatically create a service binding component by selecting Expose as a
SOAP Service when you create a service component. This selection creates an
inbound web service binding component that is automatically connected to your
BPEL process, human task service, or Oracle Mediator service component.

You can use the Components window in the SOA Composite Editor to drag and drop service
binding components to the composite.

To add a service binding component:

1. Inthe Components window, drag a SOAP web service to the left Exposed Services
swimlane to define the service interface.

Figure 2-5 shows a SOAP web service being added to the designer.

ORACLE 11

Chapter 2
Adding Service Binding Components

Figure 2-5 Adding a SOAP Web Service to a Composite

SO
H =]
Healthcare HTTR
@ @
1 LDAP
@ @
O OrderProc MFT MQ
gt b !
(Lt o] RE:T
& ®
SOAP Socket
&

LIRS

A specific dialog for the selected service is displayed. Table 2-6 describes the available
editors.

Table 2-6 Service Editors

Dragging This Service... Invokes The...
SOAP Create Web Service dialog to create a web invocation service.
Adapters Adapter Configuration Wizard to guide you through integration of the

service with database tables, database queues, file systems, FTP
servers, Java Message Services (JMS), IBM WebSphere MQ, Oracle
User Messaging Service, Oracle BAM 11g servers, LDAP server,
Coherence cache, sockets, cloud adapters, or Oracle E-Business
Suite, JDE World, or SAP applications.

ADF-BC Create ADF-BC Service dialog to create a service data object (SDO)
invocation service.

B2B B2B Configuration Wizard to guide you through selection of a
document definition.

Healthcare Healthcare Configuration Wizard to guide you through integration with
a healthcare system.

EJB Create EJB Service to create an Enterprise JavaBeans service for
using SDO parameters or Java interfaces with Enterprise JavaBeans.

HTTP Create HTTP Binding Wizard to create HTTP binding. This wizard

enables you to invoke SOA composite applications through HTTP
POST and GET operations.

Direct Create Direct Binding Service dialog to invoke a SOA composite
application and exchange messages over a remote method invocation
(RMI) in the inbound direction.

REST Create REST Binding dialog to integrate REST operations as service
or reference binding components.

MFT MFT Configuration Wizard to create an MFT source or target.

2. Configure the settings for the service. For help with a service editor, click Help or press F1.
When you add a web service, you must select the WSDL file to use. For information, see
How to Define the Interface (WSDL) for a Web Service.

ORACLE 510

Chapter 2
Adding Service Binding Components

3. Click Finish.

Figure 2-6 shows the Web Service dialog with data entered to create the
orderprocessor_client_ep service for the OrderProcessor BPEL process.

Figure 2-6 Create Web Service Dialog

Web Service
Create a web service for services external bo the S0A composite, %
Name: |orderprocessor_client_ep |
Tvpe: |Service b
WSDL URL: |OrderBookingProcessor.wsdl | E]
Port Type: |OrderProcessor V|
Callback Part Type: |OrderProcessorCaIIback - |

[] copy wsdl and its dependent artifacts inta the project.

Mate: Keeping a copy of a W3aDL may result in synchronization issues if the remaote WSDL is updated, It is
recommended not make local copies - this should be reserved Far sikuations such as affline designing.

Transaction Participation: [NEVER b

4. Click OK.

The service binding component displays in the left swimlane. Figure 2-7 shows the
orderprocessor_client_ep service binding component added to the composite_name
file (for this example, named OrderBookingComposite).

Figure 2-7 Web Service in Composite

LI PLHERE BEDFO Composite: OrderBookingComposite

Exposed Services Components External References

[———— "

P
i

(= @
! | orderprocessor_cli...

i Operations:

'
'
:
'
:
process E
processResponse '

i

s

5. Select Save All from the File main menu.

How to Define the Interface (WSDL) for a Web Service

As described in How to Add a Service Binding Component, a web service is a type of binding
component that you can add to a SOA composite application. You must define the interface
(WSDL) file for the web service.

ORACLE 513

Chapter 2
Adding Service Binding Components

To define the interface (WSDL) for a web service:

1. From the Technology section, drag a SOAP web service to the left Exposed Services
swimlane.

This invokes the Create Web Service dialog shown in Figure 2-6.

2. Enter the details shown in Table 2-7:

Table 2-7 Create Web Service Dialog Fields and Values

Field Value
Name Enter a name for the service.
Type Select the type (message direction) for the web service. Since you

dragged the web service to the left swimlane, the Service type is
the correct selection, and displays by default:
e Service (default)
Creates a web service to provide an entry point to the SOA
composite application
* Reference
Creates a web service to provide access to an external service
in the outside world

Since this example describes how to create an entry point to the
SOA composite application, Service is selected.

3. Select the WSDL file for the service. There are three methods for selection:
e Defining a New WSDL Using a Schema
e Selecting an Existing WSDL
« Automatically Defining a Service Interface WSDL from a Component

4. Click the Add icon above the Input table to display the Add Message Part dialog to add a
new WSDL message part. If the WSDL file contains multiple messages, you can add a
message part for each one. You can select XML schema simple types, project schema
files, and project WSDL files for a message part.

For more information, click Help.
5. Click OK to return to the Create Web Service dialog.
6. Note the additional fields described in Table 2-8:

Table 2-8 Create Web Service Dialog Fields and Values
|

Field Value
Port Type Displays the port type.
Callback Port Type Disabled, since this WSDL file is for a synchronous service. This

field is enabled for asynchronous services.

7. Click OK.

8. From the File main menu, select Save All.

ORACLE 514

Chapter 2
Adding Service Binding Components

Note:

e Do not manually update the WSDL location in the WSDL file in Source View.
This action is not supported. Only updates made in Design View are
supported.

e« WSDL namespaces must be unique. Do not just copy and rename a WSDL.
Ensure that you also change the namespaces.

Defining a New WSDL Using a Schema

Define a new WSDL using an existing schema or define a new schema.

1.
2.
3.

To the right of the WSDL URL field, click the Find existing WSDLs (first) icon.
At the top, click File System.

Select an existing WSDL file from the local file system (for this example,
OrderProcessor.wsdl is selected). Figure 2-8 provides details.

Figure 2-8 WSDL File Selection

ﬁ

(@] W3DL Chooser

= ES
Er? o Lé]s
1
spplication Lig?:rcies SOA-MDS uooI WSIL
Server

Location: [D Fhomefmikennedfideveloper/ mywork A pplicationls fProjectl /5Ol ANS. .. '] QOB =8

OrderProceszorwsdl

EH S

o
T
=
m
o
jad

Application

B>

L

File Mame: | |

I
(=]
=
"

o

File Type: [Weh Service Definition Files (™wsdl) ']

B ection:file: ame/mikenned/jdeveloper,/mywar] pplcatlon rDJEEt =
Selection]file:fhame/mikennedyjdeveloper; fofApplication18/Praoject]/SOA fWSDLs/

Help (814 Cancel|

Selecting an Existing WSDL

Select a WSDL created when defining a component interface. The WSDL can be selected from
the project/application browser.

1.

ORACLE"

To the right of the WSDL URL field, click the Find existing WSDLs (first) icon.

2-15

2.

Chapter 2
Adding Service Binding Components

At the top, click SOA-MDS. This action enables you to use existing WSDL files from other
applications.

Automatically Defining a Service Interface WSDL from a Component

Automatically define a service interface WSDL from a component.

® To the right of the WSDL URL field, click the Generate WSDL from schemas (second)

icon to automatically generate a WSDL file from a schema.
Figure 2-9 shows the Create WSDL dialog. Default values for the WSDL file name,
directory location, namespace, port type, operation name, and interface type are displayed.
If the specified directory is not the subdirectory of the current project, a warning message
is displayed. If the specified directory does not exist, it is automatically created.
You can modify the default values.
Figure 2-9 Automatic Generation of WSDL File
& Create WSDL 3

File Marne: prderprocessor_client epwsdl |

Direckary: |C:'|,1run'l,Fod_E|6141D'l,CompositeServices'l,OrderBooHngComposite | Q

Namespace: |:0m,|'sca,l'soapservice,l’WehLogicFusionOrderDemo,l'OrderBookingComposite,l'orderprocessor_client_ep |

Port Type: |executejtt |

Cperation: |execute |

Interface Twpe: |=D Cne-ay Interface v| =]]

+ 7K

Input: Message Part Mame Elemnent ar Type Schema LRL

[] Generate partnerlinkType extension

| Help Cancel

How to View Schemas

You can view all schemas used by the interface's WSDL file and, if you want, choose a new
message schema for a selected message part in the Update Interface dialog.

To view schemas:

1.

ORACLE

Double-click the small arrow handle that appears on the specific binding component or
service component. Figure 2-10 provides details.

2-16

Chapter 2
Adding Service Binding Components

Figure 2-10 Selection of Inbound Interface Handle

B A
8 Ms adapter
=] 4% MO Adapte
UpdateOrderStatus... Service: LpdatetrderStatus_ep = I *
PO Interface:
execute

http:f fxmins. oracle. comfieblogicFusionOrderDemo)CrderBookingComposite /UpdateCrderStatus# wsdl.interface{execute _ptt

| N———— r% Web Service

The Update Interface dialog shown in Figure 2-11 displays all schemas currently used by
the WSDL file.

Figure 2-11 Update Interface Dialog

& Update Interface |

Service: UpdateCrderstatus_ep
WSDL URL: UpdatedrderStatus.wsdl

Port Type: execute_ptt /
Operation Type Message Part Type Cikarne Schema Location
execute input requestiMessage request element updaterderstatus OrderProcessor.xsd

[] shaw Details

2. If you want to select a new message schema, click Help or press F1 for instructions.

How to Edit a Service Binding Component

After initially creating a service, you can edit its contents at a later time. Double-click the
component icon to display its appropriate editor or wizard. Table 2-9 provides an overview.

Table 2-9 Starting Service Wizards and Dialogs

Double-Click This Service... To...

SOAP Display the Update Service dialog.

Adapters Re-enter the Adapter Configuration Wizard.
ADF-BC Display the Update Service dialog.

B2B Re-enter the B2B Configuration Wizard.
Healthcare Re-enter the Healthcare Configuration Wizard.
EJB Service Display the Update Service dialog.

HTTP Re-enter the HTTP Binding Wizard.

Direct Re-enter the Update Service dialog.

REST Re-enter the REST Binding dialog.

ORACLE 2-17

Chapter 2
Adding Service Binding Components

Table 2-9 (Cont.) Starting Service Wizards and Dialogs

|
Double-Click This Service... To...

MFT Re-enter the MFT Configuration Wizard.

What You May Need to Know About Adding and Deleting Services

Note the following detail about adding services:

* When a new service is added for a service component, the service component is notified
so that it can make appropriate metadata changes. For example, when a new service is
added to a BPEL service component, the BPEL service component is notified to create a
partner link that can be connected to a receive or an on-message activity.

Note the following detail about deleting services:

* When a service provided by a service component is deleted, all references to that service
component are invalidated and the wires are removed.

What You May Need to Know About Using the Same Namespace in
Different WSDL Files in the Same Composite

Having two different WSDL files with the same fully-qualified namespace in the same SOA
composite application is ambiguous and not supported. This causes the application to fail
during compilation with duplicate definition errors. Ensure that you use uniqgue namespaces for
every WSDL file.

What You May Need to Know About Multiple Schema Elements in a WSDL
Types Section

If there are multiple <schema> elements in a wsdl <types> section, getElement () method
takes only the first <schema> element in the following scenarios:
e If there are no targetNamespace elements.

e If <schema> elements under <wsdl:types> have the same targetNamespace.

To avoid this, ensure that each schema element contains:
e A targetNamespace element.

* Each targetNamespace element is different from the other in each schema.

The following is the example of <wsdl:types> section with different targetNamespace
elements.

<wsdl:types>
<schema xmlns="http://www.example.com/2001/XMLSchema"
targetNamespace="http://namespacel.name/">
<import namespace="http://xmlns.example.com/singleString"
schemaLocation="../Schemas/singleString.xsd" />
</schema>

<schema xmlns="http://www.example.com/2001/XMLSchema"
targetNamespace="http://namespace2.name/">
<import namespace="http://xmlns.example.com/pcbpel/samples/expense"

ORACLE 518

Chapter 2
Adding Reference Binding Components

schemaLocation="../Schemas/mgresponse.xsd" />
</schema>
</wsdl:types>

What You May Need to Know About WSDL Browsing in the Resources
Window When the SOA Infrastructure Uses Both Internal and External
Oracle HTTP Servers

When the SOA Infrastructure is configured in the Server URL field of the SOA Infrastructure
Common Properties page in Oracle Enterprise Manager Fusion Middleware Control to use
both internal and external Oracle HTTP servers, you cannot browse for WSDL URLs using the
Resources window. However, you can paste the correct WSDL URL in the WSDL URL field of
the Update Service dialog for the web service binding component. Figure 2-12 provides details.

Figure 2-12 WSDL URL Field

web Service %
Web service is a service external to the 504 composite.
Mame: |bpe|pr0cessl_client_ep |
WSDL URL: E2120-336?-4DQe-QcDa-S40Fb65F552d,|'bpeIpr0cess1_c|ient_ep?WSDL | '@ o
&

Adding Reference Binding Components

You add reference binding components that enable the SOA composite application to send
messages to external services in the outside world.

How to Add a Reference Binding Component

You can use the Components window from the SOA Composite Editor to drag and drop
reference binding components into the composite.

To add a reference binding component:

1. From the Components window, select SOA.
2. From the Technology list, drag a service to the right External References swimlane.

Figure 2-13 shows a web service being added to the designer.

ORACLE 2.19

ORACLE

Chapter 2
Adding Reference Binding Components

Figure 2-13 Adding a SOAP Web Service to the Composite

orderprocessor_cli...
Operations:
process

S0OA

g+ @
Healthcare HTTF
@ @
Iz LDAP
MFT L]
@ @
[/ [EE{ k1] REST
& ®
SOAP Socket
&

A specific dialog or wizard for the selected reference displays. Table 2-10 describes the

available editors.

Table 2-10 Reference Editors

Dragging This Service...

Invokes The...

SOAP
Adapters

ADF-BC

B2B

Healthcare

EJB

HTTP

Direct

REST

MFT

Create Web Service dialog to create a web invocation service.

Adapter Configuration Wizard to guide you through integration of the
service with database tables, database queues, file systems, FTP
servers, Java Message Services (JMS), IBM WebSphere MQ,
Oracle User Messaging Service, Oracle BAM 11g servers, LDAP
server, Coherence cache, sockets, cloud adapters, or Oracle E-
Business Suite, JDE World, or SAP applications.

Create ADF-BC Service dialog to create a service data object
(SDO) invocation service.

B2B Wizard to guide you through selection of a document definition.

Healthcare Configuration Wizard to guide you through integration
with a healthcare system.

Create EJB Service dialog to create an Enterprise JavaBeans
service for using SDO parameters with Enterprise JavaBeans.

Create HTTP Binding Wizard to create HTTP binding. This wizard
enables you to invoke SOA composite applications through HTTP
POST and GET operations, and invoke HTTP endpoints through
HTTP POST and GET operations.

Create Direct Binding Service Dialog to invoke an Oracle Service
Bus flow or another SOA composite application.

Create REST Binding dialog to integrate REST operations as
service or reference binding components.

MFT Configuration Wizard to create an MFT source or target.

Configure the settings for the reference binding component. For help with a reference
editor, click Help or press F1.

Click Finish.

Figure 2-14 shows the Create Web Service dialog with data entered to create a reference.

2-20

Chapter 2
Adding Reference Binding Components

Figure 2-14 Create Web Service Dialog

SOAP
Create aweb service for services external to the SOA camposite. %
Mame: |StoreFr0ntSer\fice |
DL URL: |Composite,fOrderProcessorfSOA;WSDLs,fStoreFrontSer\riceRef.wsdl|
Port Type: ’StoreFrontSer\rice ']
Callback Port Type: ’StoreFrontSeNiceCallback ']

copy wsdl and its dependent artifacts into the project.

Transaction Participation: WsDLDriven ™

Version: [pEFALLT =|

Help Ok Cancel

5. Click OK.
Figure 2-15 shows the StoreFrontService reference binding component added in the right

swimlane of the SOA composite application.
Figure 2-15 SOAP Web Service in the Composite

I PHERD BEHDIFD Composite: OrderBookingCom

Exposed Services Components External References

P ¥
StoreFrontService
% (?J D 7 -

orderprocessor_cli...

6. From the File main menu, select Save All.

What You May Need to Know About Adding and Deleting References

Note the following detail about adding references:

e The only way to add a new reference in the SOA Composite Editor is by wiring the service
component to the necessary target service component. When a new reference is added,
the service component is notified and makes appropriate changes. For example, when a

ORACLE" 2.91

Chapter 2
Adding Reference Binding Components

reference is added to a BPEL service component, the BPEL service component is notified
to add a partner link that can then be used in an invoke activity.

Note the following details about deleting references:

e When areference for a service component is deleted, the associated wire is also deleted
and the service component is naotified so that it can update its metadata. For example,
when a reference is deleted from a BPEL service component, the service component is
notified to delete the partner link in its BPEL metadata.

« Deleting a reference connected to a wire clears the reference and the wire.

What You May Need to Know About WSDL References

A WSDL file is added to the SOA composite application whenever you create a hew
component that has a WSDL (for example, a service binding component, service component
(for example, Oracle Mediator, BPEL process, and so on), or reference binding component).
When you delete a component, any WSDL imports used by that component are removed only
if not used by another component. The WSDL import is always removed when the last
component that uses it is deleted.

When a service or reference binding component is updated to use a new WSDL, it is handled
as if the interface was deleted and a new one was added. Therefore, the old WSDL import is
only removed if it is not used by another component.

If a service or reference binding component is updated to use the same WSDL (porttype
gname), but from a new location, the WSDL import and any other WSDL reference (for
example, the BPEL process WSDL that imports an external reference WSDL) are
automatically updated to reference the new location.

Simply changing the WSDL location in the source view of the composite_name
(composite.xml) file's import is not sufficient. Other WSDL references in the metadata are
required by the user interface (see the ui:wsdlLocation attribute in the composite services
and references). There can also be other WSDL references required by runtime (for example,
a WSDL that imports another WSDL, such as the BPEL process WSDL). Ensure that you
change the following places in this file where a WSDL URL is referenced:

e User interface location - used only in Oracle JDeveloper.
e Import: Used during deployment.
* WSDL location in the reference definition: Used at runtime.

Always modify the WSDL location though the dialogs of the SOA Composite Editor in which a
WSDL location is specified (for example, a web service, BPEL partner link, and so on).
Changing the URL's host address is the exact case in which the SOA Composite Editor
automatically updates all WSDL references.

What You May Need to Know About Mixed Message Types in a WSDL File

ORACLE

If a BPEL process has multiple WSDL messages declared in its WSDL file and one or more
messages have their parts defined to be of some type, whereas other messages have their
parts defined to be of some element, runtime behavior can become unpredictable. This is
because these WSDLs are considered to have mixed type messages. For example, assume
there are multiple copy actions within an assign activity. These copy actions attempt to
populate an output variable that has multiple parts:

e Part 1lis declared as an xsd:string type.

e Part 2 is declared as an xsd: int type.

2-22

Chapter 2
Adding Wires

Part 3 is declared as an element of a custom-designed complex type.

This behavior is not supported.

What You May Need to Know About Invoking the Default Revision of a

Composite

ORACLE

A WSDL URL that does not contain a revision humber is processed by the default composite
application. This action enables you to always call the default revision of the called service
without having to make other changes in the calling composite.

Select the default WSDL to use in the WSDL Chooser dialog in Oracle JDeveloper.

To invoke the default revision of a composite:

1.

In the Create Web Service dialog, click the icon to the right of the WSDL URL field to
invoke the WSDL Chooser dialog.

At the top, select Application Server or WSIL.

Expand the nodes to list all deployed composites and revisions. The default revision is
identified by the word Default in the title (for example, FaultFlow [Default 1.0]).

Figure 2-16 WSDL Chooser Dialog

WSDL Chooser

@ @ oW L e

Project
Application File i SOA-MDS uDDI wsIL
Server System

Qe Mame
[ConnectionAppEer\rer v]

=3 soa
EIE% soa_serverl
E}@ default
- offd FaultFlow[1.0]
o2 FaultFlow [Default 1.0]
n{t& SimpleApproval [1.0]
-offd Simpleapproval [Default 1.0]

4. Select the appropriate default endpoint and click OK.

Adding Wires

You wire (connect) services, service components, and references. For this example, you wire
the web service and service component. Note the following:

Since a web service is an inbound service, a reference handle displays on the right side.
Web services that are outbound references do not have a reference handle on the right
side.

You can drag a defined interface to an undefined interface in either direction (reference to
service or service to reference). The undefined interface then inherits the defined interface.
There are several exceptions to this rule:

2-23

Chapter 2
Adding Wires

— A component has the right to reject a new interface. For example, an Oracle Mediator
can only have one inbound service. Therefore, it rejects attempts to create a second
service.

— You cannot drag an outbound service (external reference) to a business rule, because
business rules do not support references. When dragging a wire, the user interface
highlights the interfaces that are valid targets.

e The port type and the namespace are used to uniquely identify an interface.

* You cannot wire services and composites that have different interfaces. For example, you
cannot connect a web service configured with a synchronous WSDL file to an
asynchronous BPEL process. Figure 2-17 provides details.

Figure 2-17 Limitations on Wiring Services and Composites with Different

Interfaces
______________ .
= G ot rences
Service1 = t%) mj=
Operations: I k BPELPrnI:ES...’ |
process I L2 LB
______________ 1

The service and reference must match, meaning the interface and the callback must be the
same. If you have two services that have different interfaces, you can place an Oracle
Mediator between the two services and perform a transformation between the interfaces.

How to Wire a Service and a Service Component

You can wire a service binding component to a service component from the SOA Composite
Editor.

To wire a service and a service component:

1. From a service reference handle, drag a wire to the service component interface, as shown
in Figure 2-18.

Figure 2-18 Wire Connection

I

o8

E orderprocessor_cli...
Operations:

process
processResponse

2. If the service component is a BPEL process, double-click the BPEL process to open
Oracle BPEL Designer. Note that the service displays as a partner link in the left swimlane,
as shown in Figure 2-19.

ORACLE 5on

Chapter 2
Adding Wires

Figure 2-19 Display of the Service as a Partner Link in the BPEL Process
Partner Links Partner Links

' O

. 4

recaivelnput

A

orderprocessor_cli...

@l

callbackClient

O

3. Select Save All from the File main menu.

How to Wire a Service Component and a Reference

You can wire a service component to a reference binding component from the SOA Composite
Editor.

To wire a service component and a reference:

1. Inthe Applications window, double-click composite_name or single-click
composite_name above the designer.

2. From the service component, drag a wire to the reference, as shown in Figure 2-20.

Figure 2-20 Wiring of a Service Component and Reference

R

r

o) @)
tore FrontService

2 55 » @

orderprocessor_cli...

e e

3. If the service component is a BPEL process, double-click the BPEL process to open
Oracle BPEL Designer. Note that the reference displays as a partner link in the right
swimlane, as shown in Figure 2-21.

ORACLE o

ORACLE

Chapter 2
Adding Wires

Figure 2-21 Display of the Reference as a Partner Link in the BPEL Process

of[§ compasite. xm! & DrderPracessor.bpel |
@[3 S-0W (@- [ﬁgaBPEL]MonitorJ['."]

Partner Links =
-@

receiyelnput

il
[orderprocessor_cli. .. l
&l

callbackCliznt

|
o

Select Save All from the File main menu.

Partner Links

uew [
+—

-

StoreFrontService

In the Applications window, select the composite_name file.
Click the Source tab to review what you have created.

The orderprocessor client ep service binding component provides the entry point to the
composite.

<service name="orderprocessor client ep"
ui:wsdlLocation="oramds:/apps/FusionOrderDemoShared

/services/orderbooking/OrderBookingProcessor.wsdl">

<interface.wsdl interface= "http://www.globalcompany.example.com/ns
/OrderBookingService#wsdl.interface (OrderProcessor)"

<binding.adf serviceName="OrderProcessorService" registryName=""/>

<callback>

<binding.ws port="http://www.globalcompany.example.com/ns

/OrderBookingService#wsdl.endpoint (orderprocessor clientep/OrderProcessorCallback
pt)"/>

</callback>

</service>

The orderProcessor BPEL process service component appears.

<component name="OrderProcessor">
<implementation.bpel src="OrderProcessor.bpel"/>
</component>

A reference binding component named StoreFrontService appears. The reference
provides access to the external service in the outside world.

<reference name="StoreFrontService"
ui:wsdlLocation="oramds:/apps/FusionOrderDemoShared
/services/oracle/fodemo/storefront/store/service/common/serviceinterface/StoreFron
tService.wsdl">
<interface.wsdl
interface="www.globalcompany.example.comffwsdl.interface (StoreFrontService)"/>
<binding.ws
port="www.globalcompany.example.com#wsdl.endpoint (StoreFrontService/StoreFrontServ
iceSoapHttpPort)"
location="oramds:/apps/FusionOrderDemoShared/services/oracle/fodemo/storefront/sto

2-26

Chapter 2
Adding Wires

re/service/common/serviceinterface/StoreFrontService.wsdl"/>
</reference>

The communication (or wiring) between service components is as follows:

* The source orderprocessor client ep service binding component is wired to the
target OrderProcessor BPEL process service component. Wiring enables web service
message communication with this specific BPEL process.

e The source OrderProcessor BPEL process is wired to the target StoreFrontService
reference binding component. This is the reference to the external service in the
outside world.

<wire>
<source.uri>orderprocessor client ep</source.uri>
<target.uri>OrderProcessor/orderprocessor client ep</target.uri>
</wire>

<wire>
<source.uri>OrderProcessor/StoreFrontService</source.uri>
<target.uri>StoreFrontService</target.uri>

</wire>

What You May Need to Know About Adding and Deleting Wires

Note the following details about adding wires:

ORACLE

A service component can be wired to another service component if its reference matches
the service of the target service component. Note that the match implies the same
interface and callback interface.

Adding the following wiring between two Oracle Mediator service components causes an
infinite loop:

— Create a business event.

— Create an Oracle Mediator service component and subscribe to the event.

— Create a second Oracle Mediator service component to publish the same event.
— Wire the first Oracle Mediator to the second Oracle Mediator component service.

If you remove the wire between the two Oracle Mediators, then for every message, the
second Oracle Mediator can publish the event and the first Oracle Mediator can subscribe
to it.

Note the following details about deleting wires:

When a wire is deleted, the component's outbound reference is automatically deleted and
the component is notified so that it can clean up (delete the partner link, clear routing rules,
and so on). However, the component's service interface is never deleted. All Oracle SOA
Suite services are defined by their WSDL interface. When a component's interface is
defined, there is no automatic deletion of the service interface in the SOA Composite
Editor.

If you want to change the service WSDL interface, there are several workarounds:

— In most cases, you just want to change the schema instead of the inbound service
definition. In the SOA Composite Editor, click any interface icon that uses the WSDL.
For example, you can click the web service interface icon or the Oracle Mediator
service icon. This invokes the Update Interface dialog, which enables you to change
the schema for any WSDL message.

2-27

Chapter 2
Adding Descriptions to SOA Composite Applications

— If you are using an Oracle Mediator service component, the Refresh operations from
WSDL icon of the Oracle Mediator Editor enables you to refresh (after adding new
operations) or replace the Oracle Mediator WSDL. However, you are warned if the
current operations are to be deleted. If you change the WSDL to the new inbound
service WSDL using this icon, the wire typically breaks because the interface has
changed. You can then wire Oracle Mediator to the new service.

— In many cases, a new service requires a completely new Oracle Mediator. Delete the
old Oracle Mediator, create a new one, and wire it to the new service.

— If you are using a BPEL process service component, select a new WSDL through the
Edit Partner Link dialog.

See How to View Schemas for details about the Update Interface dialog.

Adding Descriptions to SOA Composite Applications

You can add a description of the SOA composite application that is displayed when you place
your cursor over the TODO Tasks icon above the composite. The description can describe the
actions of the services, references, and service components in the SOA composite application.

How to Add Descriptions to SOA Composite Applications

To add descriptions to SOA composite applications:

1. Above the SOA Composite Editor, click the TODO Tasks icon. Figure 2-22 provides
details.

Figure 2-22 To Do Tasks Icon

& [[ﬁn 'ﬂfl %I aa % @[ﬂ #g ,ﬁl @ @k Composite
2. Double-click in the table row, and add the description.
3. When complete, click outside the table row, then click Close.

4. Place the cursor over the TODO Tasks icon above the SOA composite application to
display the description. Figure 2-23 provides details.

Figure 2-23 Description of SOA Composite Application

o g 88 3¢ W)l o Composite: Projectl
k O

TODO Tasks:

- This compozite submits a credit request to a credit agency and
receives an approval or disapproval in return

Renaming, Deleting, and Moving Components and Artifacts

You can rename, delete, and move some components (also known as refactoring) and artifacts
in the following sections of Oracle JDeveloper.

e SOA Composite Editor

ORACLE 508

Chapter 2
Renaming, Deleting, and Moving Components and Artifacts

Enables you to rename and delete components. These actions impact Oracle SOA Suite
metadata (and not necessarily specific artifacts).

* Applications window

Enables you to rename, delete, and move artifacts such as WSDLs, schemas, and so on.
These actions impact Oracle JDeveloper artifacts.

Note:

Do not perform refactoring tasks with Oracle BPEL Designer, Human Task Editor, and
other editors open. If you do, ensure that you then close and reopen the editors after
refactoring. For example, assume you have a BPEL process open, then rename the
BPEL process WSDL file in the Applications window. This changes the underlying
BPEL file, but Oracle BPEL Designer does not reflect this change and becomes
unsynchronized unless you completely exit it. Close and then reopen Oracle BPEL
Designer. The changes are then synchronized.

How to Rename and Delete Components in the SOA Composite Editor

Table 2-11 describes the refactoring tasks that you can perform in the SOA Composite Editor,
along with known limitations. Carefully review these restrictions before using this feature.

Table 2-11 Refactoring Components

|
Action SOA Composite Editor Steps

Rename a service 1
component or
binding component

Right-click a component and select Rename. Once renamed, all references to the component in
the composite are updated.

Note the following restrictions:
* You cannot rename human workflow, subprocess, or business rule components.

Delete a service 1
component, binding
component, or BPEL
subprocess

Right-click a component or subprocess and select Delete.

Move a service You cannot perform this task from the SOA Composite Editor.
component or

binding component

to another folder

How to Rename, Move, and Delete Artifacts in the Applications Window

Table 2-12 describes the refactoring tasks that you can perform in the Applications window,
along with known limitations. Carefully review these restrictions before using this feature.

ORACLE 559

Chapter 2
Viewing Component Details in the Property Inspector

Table 2-12 Refactoring Component Artifacts

- __|]
Action Applications Window Steps

Rename a service 1

component or

Right-click a component file, and select Refactor > Rename.

binding component Note the following restrictions:

artifact .

Delete a service
component, binding

Component implementation files (.bpel, .mplan, and so on) are not renamed when the
component is renamed in the SOA Composite Editor. This does not cause issues. If you want to
rename the implementation files to the same name, use the Applications window.

You cannot rename human workflow, subprocess, or business rule components.

Renaming or moving of business rule and human task artifacts is not supported. For example,
you can rename a human task schema file (for example, HumanTaskPayload.xsd), but
references to this XSD in the .task file are not updated.

You cannot rename port types, operations, and elements in the WSDL and XSD editors.

Do not rename a directory or artifact with blank spaces. Spaces in names lead to invalid
references.

You cannot rename SOA projects and composites.

Right-click a component file, and select Refactor > Delete.

component, or BPEL Note the following restrictions:

subprocess artifact .

Move a service 1

component or

When you delete an artifact in the Applications window, you are prompted with a message that
includes a Show Usages option. When Show Usages is selected, any usages or references to
the artifact from within files are displayed. When the Delete option is executed, only the
subprocess file is deleted and no references are removed. Ensure that you first select Show
Usages and manually remove references to the file to delete.

Right-click a component file, and select Refactor > Move.

binding component Note the following restrictions:

to another folder .

Moving a database adapter artifact causes problems because the database adapter has many
artifacts that are implicitly referenced by name and must be in the same directory.

You cannot move component implementation files ((mplan, .bpel, .sbpel, .task, .rules, .spring,
and so on) in the Applications window. However, these files can be renamed.

Do not move a directory or artifact name with blank spaces. Spaces in names lead to invalid
references.

If you move an XSLT file, you lose capabilities such as the current expansion/scrolled state and
which item was last selected in the XSLT Map Editor. This is because a NonDeployedFiles
directory is created in the same folder as the XSLT file. This folder is the default place for test
files, dictionary files, report files, DVM/XREF test support files, and so on. This directory is not
moved if an XSLT file is moved because the folder contains files used for multiple XSLT files and
there is no direct connection between the XSLT file and the file names that may be in the folder.

Viewing Component Details in the Property Inspector

The Property Inspector displays details about the selected service component or binding
component in the SOA Composite Editor.

To view properties in the Property Inspector:

® Select a service, service component, or reference. For this example, a BPEL process
service component is selected.

The Property Inspector is refreshed to display general component details, a section for
adding deployment descriptor properties, and attached security policies. Figure 2-24
provides details.

ORACLE

2-30

Chapter 2
Adding Security Policies

Figure 2-24 Property Inspector

Component - validatePaymentProcess - Properties

@
= '% g @ —| General
uahdal_epaymempr... Mame:
Operations:
validate Type:
—| Properties
+ X
Mame Walue
bpel.canfig.iransaction required
- Policies
LRI Categaory Status

You can also use the Property Inspector to edit BPEL activities in Oracle BPEL Designer.
For more information, see How to Edit BPEL Activities in the Property Inspector. and How
to Define Deployment Descriptor Properties in the Property Inspector.

Adding Security Policies

As you create your SOA composite application, you can secure web services by attaching
policies to service binding components, service components, and reference binding
components. For more information about implementing policies, see Enabling Security with
Policies and Message Encryption .

Deploying a SOA Composite Application

Deploying a SOA composite application involves creating a connection to an Oracle WebLogic
Server and deploying an archive of the SOA composite application to an Oracle WebLogic
Server managed server. For more information about deploying SOA composite applications,
see Deploying SOA Composite Applications .

How to Invoke Deployed SOA Composite Applications

You can invoke deployed SOA composite applications from your SOA composite application.

To invoke deployed SOA composite applications:

1. Create a web service or partner link through one of the following methods.

a. Inthe SOA Composite Editor, drag a SOAP icon from the Components window to the
External References swimlane.

b. In Oracle BPEL Designer, drag a Partner Link from the BPEL Constructs section of
the Components window to the right swimlane.

2. Access the SOA Resource Browser dialog based on the type of service you created.

a. From the Create Web Service dialog, click the Find existing WSDLs icon. The
Application Server section of the WSDL Chooser dialog is displayed.

ORACLE 531

Chapter 2
Managing and Testing a SOA Composite Application

b. From the Edit Partner Link dialog, click the SOA Resource Browser icon. The
Application Server section of the WSDL Chooser dialog is displayed.

Select Application Server if it is not selected.

Expand the tree to display the application server connection to the server on which the
SOA composite application is deployed.

Expand the application server connection.

Expand the SOA folder and partition. Figure 2-25 provides details.

Figure 2-25 Browse for a SOA Composite Application

AppCann s
+-[23 Service Bus
=7 s0A
+ Oracle Service Bus
= E% soa_serverl
= [fﬁ] default
-8 SimpleApproval [1.0]
+ D-{tg Simple&pproval [Default 1.0]
Selection:(file:fhome/mlkennedfjdeveloper/mywork/FUsionOrderDemao/OrderProccessor/SOA /WSDLs
Help Cancel

Select the composite service.
Click OK.

For information about creating an application server connection, see Creating an Application
Server Connection.

Managing and Testing a SOA Composite Application

As you build and deploy a SOA composite application, you manage and test it using a
combination of Oracle JDeveloper and Oracle Enterprise Manager Fusion Middleware Control.

How to Manage Deployed SOA Composite Applications in Oracle

JDeveloper

You can manage deployed SOA composite applications from the Application Server Navigator
in Oracle JDeveloper. Management tasks consist of undeploying, activating, retiring, turning
on, and turning off SOA composite application revisions.

ORACLE

2-32

Chapter 2
Managing and Testing a SOA Composite Application

Note:

These instructions assume you have created an application server connection to an
Oracle WebLogic Administration Server on which the SOA Infrastructure is deployed.
Creating a connection to an Oracle WebLogic Administration Server enables you to
browse for managed Oracle WebLogic Servers or clustered Oracle WebLogic
Servers in the same domain. From the File main menu, select New > Application >
Connections > Application Server Connection to create a connection.

1. From the Window main menu, select Application Servers.
2. Expand your connection name (for this example, named MyConnection).

The SOA folder appears, as shown in Figure 2-26. The SOA folder displays all deployed
SOA composite application revisions and services. You can browse all applications
deployed on all Oracle WebLogic Administration Servers, managed Oracle WebLogic
Servers, and clustered Oracle WebLogic Servers in the same domain. Figure 2-26
provides details.

Figure 2-26 Application Server Navigator

Applications Application Servers

WX

= _]J Application Servers
= .5;{ ConnectionAppServer
+-[7 Clusters
+-[7) Deplayments
#-[7 Log Files
+-[7] servers
+-[7 soa
+ r_-l Web Services
__]J IntegratedWebLogicServer (domain unconfigure:

3. Expand the SOA folder.
4. Expand the partition in which the composite application is deployed.

Deployed SOA composite applications and services appear, as shown in Figure 2-27.

Figure 2-27 Deployed SOA Composite Applications

2l typplication Mavigakor ||:|;|Applil:ation Server Mavigator
0 X

E‘_—l] Application Servers
l_—l] IntegratedieblogicServer {domain unconfigured)
B]_Eﬂ IyConnection
D Clusters
I_:I Deplovments
I_:I Servers
-7 504
Bg% sna_serverl
=[] default
[-offd Project1 [1.0]
w-offd Project1 [2.0]
-0 Project1 [Default 2.0]
D-{tg SimpleApprawval [1.0]
D-{tg SimpleApprowval [Default 1.0]
E]---r_—l Web Services

ORACLE 533

ORACLE

Chapter 2
Managing and Testing a SOA Composite Application

Right-click a deployed SOA composite application.

Select an option to perform. The options that display for selection are based upon the
current state of the application. Table 2-13 provides details.

Table 2-13 SOA Composite Application Options
. __|

Option Description

Stop Shuts down a running SOA composite application revision. Any request (initiating or a
callback) to the composite is rejected if the composite is shut down.

Note: The behavior differs based on which binding component is used. For example,
if it is a web service request, it is rejected back to the caller. A JCA adapter binding
component may do something else in this case (for example, put the request in a
rejected table).

This option displays when the composite application has been started.

Start Restarts a composite application revision that was shut down. This action enables
new requests to be processed (and not be rejected). No recovery of messages
occurs.

This option displays when the composite application has been stopped.

Retire Retires the selected composite revision. If the process life cycle is retired, you cannot
create a new instance. Existing instances are allowed to complete normally.

An initiating request to the composite application is rejected back to the client. The
behavior of different binding components during rejection is the same as with the shut
down option.

A callback to an initiated composite application instance is delivered properly.

This option displays when the composite application is active.

Activate Activates the retired composite application revision. Note the following behavior with

this option:

e All composite applications are automatically active when deployed.

e Other revisions of a newly deployed composite application remain active (that is,
they are not automatically retired). If you want, you must explicitly retire them.

This option displays when the application is retired.

Undeploy Undeploys the selected composite application revision. The consequences of this
action are as follows:

* You can no longer configure and monitor this revision of the composite
application.
* You can no longer process instances of this revision of the composite application.
* You cannot view previously completed processes.
« The state of currently running instances is changed to aborted and no new
messages sent to this composite are processed.
« If you undeploy the default revision of the composite application (for example,
2.0), the next available revision of the composite application becomes the default
(for example, 1.0).
Set Default Sets the selected composite application revision to be the default.
Revision

If you want to deploy a prebuilt SOA composite application archive that includes a
deployment profile, right-click the SOA folder and select Deploy SOA Archive. The
archive consists of a JAR file of a single application or a SOA bundle ZIP file containing
multiple applications.

You are prompted to select the following:

e The target SOA servers to which you want to deploy the SOA composite application

archive.

2-34

Chapter 2
Managing and Testing a SOA Composite Application

The archive to deploy.

The configuration plan to attach to the application. As you move projects from one
environment to another (for example, from testing to production), you typically must
modify several environment-specific values, such as JDBC connection strings,
hostnames of various servers, and so on. Configuration plans enable you to modify
these values using a single text (XML) file called a configuration plan. The
configuration plan is created in either Oracle JDeveloper or from the command line.
During process deployment, the configuration plan is used to search the SOA project
for values that must be replaced to adapt the project to the next target environment.
This is an optional selection.

Whether you want to overwrite an existing composite of the same revision ID. This

action enables you to redeploy an application revision.

Figure 2-28 provides details.

Figure 2-28 Deploy SOA Archive Dialog

& Deploy SOA Archive X

Chonse the target S04 server{s) and corresponding partitions ko which vou want to deplay this
archive,

S04 Server: Partition: Skatus: Server LRL:
E% soa_serverl |deFauIt v|RUI‘\INING http:fista

Specify S04 archive file name that vou wank to deploy. Optionally vou can also specify S04
configuration plan that you want to apply to the compositeds) in the archive, S04 archive can be a
SAR Archive {.jar) or 304 Bundle Archive {.zip) file.

SO Archive:

| || Browse.., |

Configuration Plan {Optional):

| || Browse., |

IMark composite revision as default,

|:| Owverwrite any existing composites with the same revision 10,

| Help | | Cancel

For more information, see the following documentation:

* Deploying SOA Composite Applications for details about creating a deployment profile and

a configuration plan and deploying an existing SOA archive

* Administering Oracle SOA Suite and Oracle Business Process Management Suite for
details about managing deployed SOA composite applications from Oracle Enterprise
Manager Fusion Middleware Control.

How to Test and Debug a Deployed SOA Composite Application

ORACLE

After you deploy a SOA composite application, you can initiate a test instance of it from the
Test Web Service page in Oracle Enterprise Manager Fusion Middleware Control to verify the
XML payload data. For more information about initiating a test instance, see the Administering

Oracle SOA Suite and Oracle Business Process Management Suite.

In addition to creating a test instance, you can also perform the following testing and
debugging tasks in Oracle JDeveloper:

« Simulate the interaction between a SOA composite application and its web service
partners before deployment in a production environment. This helps to ensure that a
process interacts with web service partners as expected by the time it is ready for

ORACLE

Chapter 2
Managing and Testing a SOA Composite Application

deployment to a production environment. For more information about creating a unit test,
see Automating Testing of SOA Composite Applications.

Test and debug SOA composite applications with the SOA debugger in Oracle JDeveloper.
The SOA debugger reduces the development cycle for a SOA composite application by
providing a troubleshooting environment within Oracle JDeveloper. This eliminates the
lengthy process of building a SOA composite application in Oracle JDeveloper, deploying it
to the SOA Infrastructure, starting Oracle Enterprise Manager Fusion Middleware Control
to test or view audit trails and flow traces, and then returning to Oracle JDeveloper to
repeat the exercise. For more information, see Debugging and Auditing SOA Composite
Applications .

2-36

Managing Shared Data with the Design-Time
MDS Repository

This chapter describes how to manage shared data with the SOA Design-Time Oracle
Metadata Services Repository (MDS Repository), including how to create and delete folders,
export and import the contents of the /apps folder to and from a JAR file, transfer the /apps
folder contents to another SOA Design-Time MDS Repository, export a Release 11g MDS
Repository to a JAR file, and use the SOA-MDS Transfer wizard to share data with the SOA
Design-Time MDS Repository.

This chapter includes the following sections:

e Introduction to SOA Design-Time MDS Repository Management

e Changing the Default SOA-MDS Location

e Sharing Data with the SOA Design-Time MDS Repository

e Creating and Deleting Subfolders Under the /apps Folder

* Exporting the Selected Contents of the /apps Folder to a JAR File

* Importing the Contents of the JAR File into the /apps Folder

e Transferring the Selected Contents of the /apps Folder to Another MDS Repository
* Exporting an Existing Release 11g MDS Repository to a JAR File

* Browsing for Files in the SOA Design-Time MDS Repository

Introduction to SOA Design-Time MDS Repository Management

ORACLE

A file-based, SOA Design-Time MDS Repository is automatically created when you create a
SOA composite application. You cannot modify the MDS Repository name, but you can modify

it to point to an existing, file-based repository. You typically point it to the version control system

(MDS) location. Sharing operations are done against the design-time repository. You cannot
perform these operations against a database-backed MDS Repository.

You can perform the following operations against the SOA Design-Time MDS Repository in
Oracle JDeveloper:

< Browse the following folder recognized by Oracle SOA Suite in the SOA Design-Time MDS

Repository:
— /apps: Contains shared data, including Oracle Service Bus artifacts.
* Create folders directly under the /apps folder or a subfolder of /apps.

* Delete files and subfolders under the /apps folder. The /apps folder itself cannot be
deleted.

* Export selected contents of the /apps folder to a JAR file. The /apps folder itself is not
included in the JAR file.

* Import the contents of a JAR file under the /apps folder. If the JAR file includes /apps as
the root folder, it is created below the /apps folder of the design-time MDS Repository,
which gives you a top-level directory structure of /apps/apps.

3-1

Chapter 3
Changing the Default SOA-MDS Location

e Transfer the contents of the /apps folder of one MDS Repository to another MDS
Repository.

« Export an existing MDS Repository (for example, a Release 11g database-based MDS
Repository) to a JAR file. This JAR file can then be imported into the Release 12c¢ design-
time MDS Repository.

Introduction to the Default SOA Design-Time MDS Repository Connection

A file-based, SOA Design-Time MDS Repository connection named
SOA_DesignTimeRepository is automatically included when you create a SOA composite
application. The default directory location is $JDEV_USER DIR/soamds.

This connection provides the following capabilities:

* Afile-based MDS Repository for use during design time. A database-based design-time
MDS Repository is not supported.

* Any MDS Repository can be browsed.

e The default repository location can be modified to point to another folder or version control
location.

e All SOA-MDS operations use this SOA Design-Time MDS Repository.

* A wizard enables you to share design-time artifacts from your SOA project with this MDS
Repository, such as WSDL and schema files.

Note:

» If you add shared data into the SOA Design-Time MDS Repository, and the
repository is backed by a version control system, Oracle SOA Suite does not
provide any operations to add this data to the version control system. You must
add this shared data to the version control system.

» If you have a Release 11g SOA composite application with a preconfigured SOA-
MDS repository (/apps namespace) in the adf-config.xnl file, all sharing and
consumption operations are performed against the existing repository defined in
adf-config.xml.

Changing the Default SOA-MDS Location

ORACLE

When you create a SOA composite application, the default SOA-MDS connection named
SOA_DesignTimeRepository is automatically included. The /apps folder in the SOA design-
time MDS Repository is automatically created.

Note:

When files from an Oracle JDeveloper project are shared using the
SOA_DesignTimeRepository, the original files are moved from the SOA project to the
default SOA-MDS repository.

3-2

Chapter 3
Changing the Default SOA-MDS Location

How to Change the Default SOA-MDS Location

To change the default SOA-MDS location:

ORACLE

1.
2.
3.
4.

Create a SOA composite application.

From the Window main menu, select Resources.

In the Components window, click Resources.

Expand SOA-MDS. The artifacts shown in Figure 3-1 are displayed.

e The SOA-MDS connection named SOA_DesignTimeRepository that was
automatically created during SOA composite application.

* The lapps folder in the MDS Repository. This folder is initially empty.

Figure 3-1 Resources Window in Oracle JDeveloper

Components Resources

8~ Q

| My Catalogs
= IDE Connections
=y Application Server
=88 50A-MDS
= ‘:’Qﬂ S04 DesignTimeRepository

3 apps

Right-click the SOA_DesignTimeRepository connection and select Properties to point it
to your version control location.

The Edit MDS-SOA Connection dialog is displayed.
In the MDS Root Folder field, click Browse.

Select the version control location for the lapps folder, and click Select. The SOA-MDS
browser only displays the lapps and Isoa folders. Therefore, if lapps is not present in the
selected version control location, then it is not rendered by the browser.

The specified location is displayed in the Edit MDS-SOA Connection dialog, as shown in
Figure 3-2.

3-3

Chapter 3
Changing the Default SOA-MDS Location

Figure 3-2 Edit SOA-MDS Connection Dialog

Edit the connection details of the existing SOA-MDS connection. @

Connection Exists in: (7 application Resources (&) IDE Connections

Caonnection Mame:

gnTimeR: /| |

Connection Type:

[File Based MDS -|

MDS Root Folder:

|J|:».=,r;'syste:mlz1.2.0.40.66.lf:'u.lftn.stuaml:ls.lll.l.tZI.l.'.'l.2¢*+.22;r Browse...

Test Connection

Status

Help | oK | Cancel

&

8. Click OK, and expand the SOA_DesignTimeRepository connection.
The lapps folder is populated with the location specified in Step 7, as shown in Figure 3-3.

Figure 3-3 Populated /apps folder

L Gampanerce PEFATTET

ﬂ- Owl Hams

ol My Catbags

= IPE Cannectiens
=y

210 sps
=] S¥erdumebumn-F55
= Bporovebealli
20 astmsre
1 dharres
[0 deples
23 recedei
-& - putsic.mml
i [Asprovebesld jpr

w T ApproveTermbd

T Eiftenicmly
i O30 depley
g T3 EmterGuaielt
4 :I FimalizeCamiracild
3 :| SalpaQuctaFrocann

i i

ORACLE’ 3

Chapter 3
Sharing Data with the SOA Design-Time MDS Repository

Sharing Data with the SOA Design-Time MDS Repository

The SOA-MDS Transfer wizard enables you to share WSDL, XSD, WADL, and XQuery files
with the SOA design-time MDS Repository. These files can then be shared with other SOA
composite applications.

The wizard first attempts to share files with any existing design-time MDS Repository defined
in the current application's adf-config.xml file. If no MDS Repository is defined in the adf-
config.xml file, then artifacts are shared using SOA_DesignTimeRepository.

Note:

e You can only share XSD, WSDL, WADL, and XQuery files. In addition, only these
file types can be transferred from a design-time MDS Repository to a runtime
MDS Repository.

e If you right-click an XSD file in the Applications window that was created with the
Native Format Builder wizard, the Share using SOA Design-Time MDS
Repository option is not available.

How to Share Data with the SOA Design-Time MDS Repository

ORACLE

To share data with the SOA design-time MDS Repository:

1.

In the Applications window, right-click the file to share (for this example, an XSD file) and
select Share using SOA Design-Time MDS Repository. Figure 3-4 provides details.

Figure 3-4 Data Sharing with the SOA Design-Time MDS Repository

=l Projects B B~ F-o=-

ﬁ"a Urblri e . upcl
5'35 packAndihipService bpel
& StoreFrontService.bpel
+-{_] Events
= D Schemas
&= BPELProcessl xsd
% packhAndship! Dpen
& storeFrontser 3€ Delete
=[] testsuites Exclude Project Content
fileList.xml
= Application Resources
Data Controls ¥ Explore Dependencies
Recent Files

Walidate XML

[Reformat Alt+Shift-F
BEPELProcessl.xsd - Structure Refactor '
aﬁ Compare With]
- % schema Replace With]

+-@@ element - process ?’E SAP Adapter Migration Toal
@@ element - processRes

Share using S0 Design-Time MDS Repository
Lenerate k]

The SOA-MDS Transfer wizard - Welcome page is displayed and indicates that the file you
selected is to be transferred to the SOA design-time MDS Repository.

3-5

Chapter 3
Sharing Data with the SOA Design-Time MDS Repository
2. Click Next.
The Choose Target dialog is displayed.

3. Browse the design-time MDS Repository and select the target folder in which to share the
selected artifact, and click Next. You can also create a subfolder in which to share the file
or search for an existing folder. Figure 3-5 provides details.

Figure 3-5 SOA-MDS Transfer Wizard - Choose Target Page

|E| S0A-MDS Transfer Wizard - Step 2 of 4 E

Choose Target

¥ welcome Transfer File: ﬁ% EPELProcessl.xsd

\i' Choose Target Select target SOA-MDS Folder: x EE}
T Dependencies Q Search S0AMDS

T References

Target Location:

fappsfSalesQuote/BPELProcessl. xsd

Help = Back | Mext = . Finish Cancel

The Dependencies dialog is displayed.

4. Review the files to transfer to the target oramds URL location in the design-time MDS
Repository, as shown in Figure 3-6.

Additional dependent files can also be displayed. For example, assume you select a
WSDL file. Because the WSDL file can have dependencies on schema files (potentially
more than one file), those XSD files are also displayed.

ORACLE" 3.6

Chapter 3
Sharing Data with the SOA Design-Time MDS Repository

Figure 3-6 SOA-MDS Transfer Wizard - Dependencies Page

Dependencies
Following files will be transferred to the target S0A-MDS connection.

i File Marme Target URL

W Lhoose TSrQet .

T Choose Target % BPELProcessl.xsd orarnds:fappsfSalesQuotefEPELProcess]. xsd o
& Dependencies

J; References

COwerwrite if document exits in the target MDS repository
Help < Back Next = Finish Cancel

The green checkmark indicates that the file path is correct and resolvable.

Note:

e If the URL is not accessible, an error icon is displayed. For example, assume
you are transferring a WSDL file that has dependencies on schemas that
traverse several parent levels (for example, ..I..1..1). If such references are
present in the WSDL and you do not select the correct target folder, the URL
may go beyond the Japps folder, which is not accessible to the SOA
Infrastructure. The error icon indicates the target URL is not accessible, and
you cannot proceed with the transfer. You must cancel or click Back to select
a different target folder. In summary, the destination for all URLs must begin
with the lapps folder.

* File transfers are in relation to the lapps folder in the target SOA design-time
MDS Repository. Dependent files are typically at the same parallel level. For
example, the WSDL file selected for transfer is located in the WSDLs folder
and the dependent XSD file is located in the Schemas folder. Both folders
are at the same parallel level under the SOA folder of the SOA composite
application in the Applications window. However, if the dependent files are at
different levels (higher levels than the file that is being shared), you must
determine the relative hierarchy of the files. For example, If foo.wsdl refers
to an XSD file in the location ..I..I..I.xsd, you must manually create three
subfolders under apps in the target design-time MDS Repository and share
foo.wsdl to the lowest folder level so that the XSD can be shared at the
apps level.

ORACLE .

Chapter 3
Sharing Data with the SOA Design-Time MDS Repository

5. If you want to overwrite files, select Overwrite if document exists in the target MDS
repository, then click Next. If you do not select this check box, and the files already exist
in the target location, no files are transferred and an error message is displayed. You
cannot selectively transfer specific files.

The References dialog is displayed.

6. View the files to be modified after the transfer with the appropriate oramds URL, and click
Finish, as shown in Figure 3-7. This list includes files that are dependent on the files being
moved. All dependent files are modified to reflect the oramds URL of the file being moved.

Figure 3-7 SOA-MDS Transfer Wizard - References Page

References
1
Following referenced files will be updated with the appropriate oramds URLs.
Show references to: |all A
I . File Mame Target URL -
w Dependencies
T BPELFrocessl.wsdl oramdsfappss/SalesQuote/BPELFrocessl.xsd
iw References
Help = Back Finish Cancel

7. Click OK when prompted with a message that the transfer completed successfully.
When complete, the following updates are made:

* The selected artifacts are displayed beneath the SOA-MDS connection in the
Resources window.

e The adf-config.xml file in the Applications window is modified with the /apps
namespace:

<namespace path="/apps" metadata-store-usage="mstore-usage 2"/>

The variable that internally points to the SOA design-time MDS Repository home is
set:

value="${soamds.apps.home}

» Areference in the artifact (for example, a WSDL file) is updated to point to the oramds
URL location.

ORACLE -

Chapter 3
Creating and Deleting Subfolders Under the /apps Folder

Creating and Deleting Subfolders Under the /apps Folder

You can create and delete subfolders under the /apps folder in the SOA Design-Time MDS
Repository. You cannot delete the /apps folder.

How to Create and Delete Subfolders Under the /apps Folder

To create and delete subfolders under the /apps folder:
Right-click the lapps folder or a subfolder of Japps, and select Create Folder to point it to
your version control location.

The Create Folder dialog is displayed.
Enter a name (for this example, Foo is entered) for the folder, and click OK.

1.

The folder is created under the lapps folder, as shown in Figure 3-8.

Figure 3-8 New Subfolder Under lapps Folder

Cormponents Resources

ﬁ - o
| My Catalogs
=l IDE Connections
+ ﬁ Application Server
=48 SoA-MDS
= “5 S04 _DesignTimmeRepository
503
+-[_7] Foo

Right-click the folder to delete (for this example, Foo), and select Delete.

3.
The folder is deleted, as shown in Figure 3-9.

Figure 3-9 Subfolder Deleted Under /apps Folder

Cormponents Resources

4] My Catalogs
=/ IDE Connections
£ ﬁ Application Server

=0 504-MDS
= “% 504 DesignTimeRepository

0

Exporting the Selected Contents of the /apps Folder to a JAR
File

You can export the selected contents of the /apps folder in the SOA design-time MDS
Repository to a JAR file. The /apps folder itself is not exported to the JAR.

ORACLE 29

Chapter 3
Exporting the Selected Contents of the /apps Folder to a JAR File

How to Export the Selected Contents of the /apps Folder to a JAR File

To export the selected contents of the /apps folder to a JAR file:

1. Right-click the SOA-MDS connection that includes the contents to export (for example, the
default SOA_DesignTimeRepository connection or another connection), and select
Export to Jar, as shown in Figure 3-10.

Figure 3-10 Export to Jar Command

4 - G
o Wy Caalags
= |GE Cannerticns
* ﬂ."—pp{lullnll Lerver
i (@ Dunabase
e L Oracie Acudia Sereer
-4 S0A-MDS
= ‘ﬂ Incal-dh-nds
L e
] Test
=] EmpryFodder
& BFTLProcessl usd
| Schemas
£ | S=meTest
F L] soa
=-4§ SO _Desigr—— =
= apps Efrer.
-] Suid

Adganced Search..

1 [M
31 [0 Tasl Balrath

Add 10 Agpicaion

Cacalag Egpan..

x

!5: Froperiizs

I punan Jar_.

Traniler.

The Export to jar dialog is displayed.

2. Provide values appropriate to your environment, and click OK, as described in Table 3-1.

Table 3-1 Export to jar Dialog

Field

Description

Select documents to export

Preview Documents Selected
JAR Name

Enter a file or folder name and click Search or manually expand
the /apps folder to identify and select folders and files to export
to a JAR file.

Select to preview the contents to export.

Click Browse to select the JAR file to which to export the
selected folders and files.

The Export to jar dialog looks as shown in Figure 3-11.

ORACLE

3-10

Importing the Contents of the JAR File into the /apps Folder

You can import the contents of a JAR file to the /apps folder of a SOA design-time or

How to Import the Contents of the JAR File into the /apps Folder

ORACLE"

3.

Figure 3-11 Export to jar Dialog

Fa Export to lar

Salect documemsE s A= per:
a
5 13 redna
=] L] =ed
W H Apzrovalfulee_fsprovaPube_Dwo
[|_.I A porovaltuleg_ApprossRube_Deci
cl u DecisienFURCHEnPrmEwsTyEeE x5d
[|_-.J Tl igr <l
= l'
-] (S !
[&l smkinvGuide.agal
O ;! ApprosaPube s Corm pan enTy ps

H Freviea (37 documemis selecisd

Faans PaierDuoe Den o - P55 e rQumeProcessfesipehe s fand i
Japps e S e Denos M5 aebSuateProced s Meslauiles fadd i
Saap s e e Qe o- PG VRl p Dy o e Pro ce s e st s e e
Japd e G e Den s PG SaeiSu et e Procedd fedd f pe rev ali,

Faaps PEaier D e Den o - P35 S erQu o eProcessfwrd il poroval,

Frir r 8 V0 e o) P i DT 1 e s 0 D A i o o I s O

Jur Kayme:

Jhome fpdichhfDeaksoE ey _shared jar '::"
B L8 Canie

%

Chapter 3

Importing the Contents of the JAR File into the /apps Folder

Click OK when prompted with a message indicating that the export was successful.

database-backed MDS Repository. If you import a JAR file that includes /apps as the root
folder, it is created below the /apps folder of the design-time MDS Repository, which gives you
a top-level directory structure of /apps/apps.

To import the contents of the JAR file into the /apps folder:

1.

Right-click the SOA-MDS connection in which to import the JAR file (for example, the
default SOA_DesignTimeRepository connection or another connection), and select

Import From JAR.

Click Browse to select the JAR to import.

The Import from jar dialog is displayed, as shown in Figure 3-12.

3-11

Chapter 3

Importing the Contents of the JAR File into the /apps Folder

Figure 3-12 Import from jar Dialog

T W ——

%
]

SFYREP P v Ay —--

This @il impor & jar imo the selecied S04-HD S cormection. Comerts of 1his o wdl be
Imporued under ' fapps'.

lar Kama:

|.lrrm|t.-pui.u:ilh_n'El-t:l.-.np.-nm:,_rrp-ajir “-'ln.

Preview (779 documems)
'15" Jappsffalesdumelen a-PE 8 pproweDeallf s poeey e D ealll o
o fappitlaleiluoielenc-PiG A pprove e sl EFEL Praceisl, s id
JappsfalesDumeleno-PEE A pproveDealllf i msre fApproveDeal) | Approvel
% fappsiSalesQumelens-PEE approvebealUifains e fAppraveDealli_approvel
W fappsiialerumeliens-PiSapprove el s mEre A pRrayeRe skl LA pprovel
JappsfFalesQumelen o-PRSFApprovebea Ul e nsre S ApprayeDeall LA pprovel
i fappidSaleiOuolelen S -PES A pproneDealUl Lol nire (A ppreyeDeald_a pproeel
Sappsfalesrlumelene-PS & pprove Dl acfmsre fhpproveDeal) LA pprosl
w* fappsifalesQumelena-Pi5 A pprovelealllfaornsre /8 pproveDeall|_a pprovel
W fappifialeilunielenc-PiS A pproveDeallif e nire (A pproveDealli_spprovel
I\f JappsftalezDurialen o-PESFApprovebed Ul s n s e AppraveDeall L A pproval
W fappsiSulesQuoteben s PG A pproseDea Ul pancr fApproveDeallI_Approvel
o Sapprflalexrfuniellene-PiLfApproveDeallllf e nzre (A ppravelieall _Appree=]
Jappsftalesdumeleno-PREFapproweD=alllf aafmsre fAppraveDeall|_Approsl
¥ fappafSulesDuoielena-PEG A pproweDealllifaanire (A ppreveDealli_pprovel

.l'!pp::n's-!l!:rmlmeileno F‘S.-."l-pprl:n--eDenlLll,n'l.-ﬁl'n srefApproyveDeall LA pproee]

5.

nnnnn Calachinen afiama MEEFinn sl 1 e Al nscsusPiasB 15 nnesal

3

Help Impan Cancel

A green checkmark indicates that the contents do not exist in the target repository. If the

content exists in the target repository, a warning icon is displayed. You can select to

overwrite the content by clicking Import or cancel the entire import operation by clicking
Cancel. You cannot selectively import specific files.

Click Import. Any artifacts with a warning icon are overwritten.

The contents of the imported JAR file are displayed under the Japps folder, as shown in
Figure 3-13.

Figure 3-13 Contents of Imported JAR File in Resources Window

& Iﬂ Appleaten Spreer
@ (@ Darabase

7Bl Cracle Scadia Server
=4 s0a-W0s

Fetourcad =

o~ i Hm:

a My Canalsgs
= DE Conneciiony

=4, Ipcw-db-mdz
=2 [
I_‘kq_-l Salestiupel em - PSS

F-[Approsebeall
#-[7] ApprovsTermui
-] aPReaiawlll
&[] Emerfumeui
Al] FinalizeCantracidl
- salestjuarsProcess
-7 sl
-3 s

m Sulet Quale Deme - Selus indtrugliand g =

ORACLE"

3-12

Chapter 3
Transferring the Selected Contents of the /apps Folder to Another MDS Repository

Transferring the Selected Contents of the /apps Folder to
Another MDS Repository

You can transfer the selected contents of the /apps folder of one MDS Repository to the /apps
folder of another MDS Repository. There are no limitations on the type of MDS Repository to
which to transfer. For example, you can transfer the selected contents of a file-based
repository to a database-based MDS Repository, and vice versa.

" Note:

Do not transfer the contents of the /apps folder to another MDS Repository with the
Oracle BPEL Designer, Human Task Editor, or other editors open. If you do, ensure
that you then close and reopen the editors after the transfer completes. An open
editor does not reflect the transfer changes and becomes unsynchronized unless you
completely exit it.

How to Transfer the Selected Contents of the /apps Folder to Another MDS
Repository

To transfer the selected contents of the /apps folder to another MDS Repository:

1. Right-click the SOA-MDS connection that includes the contents to transfer (for example,
the default SOA_DesignTimeRepository connection or another connection), and select
Transfer. Figure 3-14 provides details.

Figure 3-14 Transfer Menu Option

| Componenks Ragaurcas
i fullle TSI
= My Camalags
= |0 Connecisens
H _lﬂ."—pphullnll Lemvar
i [Curabase
& [Dracke Acadia Sereer
=4 50A-MD3
= -4 lacal-db-nds
B L3 appt
= -[0F Test
F] Schemas
- [SomeTes
e[aca
= "ﬂ S0&_Dedgn™

& | gt Eilier...
: _I Sales Acdveried hearch

[Tast | K Befresh [

Add e Applicaries
| & ==

Caralog x
B Propenies..

Espszat £ Jar...
Ingaet Migm Jir,

ORACLE 313

ORACLE

3.

Chapter 3

Transferring the Selected Contents of the /apps Folder to Another MDS Repository

The Transfer to SOA-MDS dialog is displayed.

Provide values appropriate to your environment, and click OK, as described in Table 3-2.

Table 3-2 Transfer to SOA-MDS Dialog

Field

Description

Select Documents to
Transfer

Preview Documents
Selected

Target Connection

Select the contents to transfer.
Select to preview the contents to transfer.

Select the SOA-MDS connection of the MDS Repository to which to
transfer contents.

The Transfer to SOA-MDS dialog looks as shown in Figure 3-15.

Figure 3-15 Transfer to SOA-MDS Dialog

Transfer to SOA-MDS

Feken dagumanmp 1o brangfen
O,
=8 e
-) SabrcCeaisDemo-FIS

[L2 Apprawstinailil
112 #pprawsTarnun
1 2] BPRewiewildl
L1 (0 e
1L Emrerizusneddl
1100 FirmsRzeCamranll
[salerdunieProcess
10 s

|] sre

BEEEEEEEEE

(] Sadesiu oneDern i pas
|&] 1eamDutanl

= Predira 7 decwrmencs telecied]

Twrgel Comnectian |WOSCannsctom?

=

| [Sades Quste Do - Setup insructiens. par

Saleg Quare L - Undersand and Aun pod

-

o DK Cantel
L]

Click OK when prompted with a message indicating that the transfer was successful.

The contents are displayed under the lapps folder of the SOA-MDS target connection you
selected in the Target Connection field in Step 2. Figure 3-16 provides details.

3-14

Chapter 3
Exporting an Existing Release 11g MDS Repository to a JAR File

Figure 3-16 Contents Display Under /apps Folder of Selected SOA-MDS
Connection

Campaneree FAECLATTAT

4 - Ol
o My Catabags
= IFE Cannectiens
B Apphcaton Sener
& [Canabse
ER - LR
&, WosCanneoionl
= 4 MiSCanneaion2
= [0 apps
m [saiestumebeme-Fs5
®] SalesQuetePracsss
u Suled Crsale Deres = Selup insirssans gdi
U Sikled Creale ODems = Underifand ind Rus pal
= ﬂ 205 _Design imeRepsaliary
= | mppa
WL sslergusisbamc-rs s

Exporting an Existing Release 11g MDS Repository to a JAR File

You can export a Release 11g MDS Repository to a JAR file that can then be imported into a
Release 12c design-time. The adf-config.xml file is updated with /apps and store
information. Release 12c repositories can also be exported if you have an adf-config.xml file
with /apps defined (meaning you have an existing shared repository).

How to Export an Existing Release 11g MDS Repository to a JAR File

To export an existing Release 11g MDS Repository to a JAR file:

1. Inthe Applications window, right-click adf-config.xml of the project to export, and select
Export SOA-MDS Contents. Figure 3-17 provides details.

Figure 3-17 Export of an 11g MDS Repository from the Applications Window

Applications =
DeployApp - -
4 Projects & @ FrE&E-

=l Application Resources

{7 Build Files

&3 Connections
E|F_“| Descriptars
w0 META-INF

- =[] ADF META-INF

o [e2] mdf-con

Open
{7 Libraries
Validate =ML
S8y Make Ctrl+5hift-Fa
£ Data Controls B Repuild AlteShift-Fa
4 Recent Files —
5 Reformat Rt Shift-F
adf-canfig.xml - struc Refactor 4
o @ i) Refresh Ctrl-R
=-4% adf-canfig Export SOA-MDS Contents. ..

---@» adf-properti

The Export to jar dialog is displayed.

ORACLE 3.15

Chapter 3
Browsing for Files in the SOA Design-Time MDS Repository

2. Select the Release 11g MDS Repository to export to a JAR file.

3. To import the JAR file into a Release 12¢ design-time MDS Repository, see section
Importing the Contents of the JAR File into the /apps Folder.

Browsing for Files in the SOA Design-Time MDS Repository

ORACLE"

You can browse for and select files in the SOA Design-Time MDS Repository. For example, the
WSDL Chooser dialog that you access from the Create Web Service dialog includes a
selection for the SOA Design-Time MDS Repository, as shown in Figure 3-18.

Figure 3-18 SOA-MDS Selection in the WSDL Chooser Dialog

% WSDL Chooser x
2 gl
{1 L
Project
Application File Lirarie WSIL
Server System

Q, search S0A-MDS

The Type Chooser dialog includes a Recent Files folder in which information is kept for the
duration of the Oracle JDeveloper session. For example, if you create a new BPEL process
and want to define the input variable from a schema in the SOA Design-Time MDS Repository,
you go there once. When you want to define the output variable from the same schema, the
schema remains visible in the Recent Files folder. Figure 3-19 shows the Recent Files folder.

3-16

Chapter 3
Browsing for Files in the SOA Design-Time MDS Repository

Figure 3-19 Type Chooser

i) Type Chooser,

B
q Type Explorer
-7 Project Schema Files
[Project WSDL Files
=R E] Recent Files

Type: |

"] Show Detailed Node Information

Help Cancel

ORACLE"

3-17

Using the BPEL Process Service Component

This part describes the BPEL process service component.
This part contains the following chapters:

* Getting Started with Oracle BPEL Process Manager

* Introduction to Interaction Patterns in a BPEL Process

e Manipulating XML Data in a BPEL Process

e Invoking a Synchronous Web Service from a BPEL Process

* Invoking an Asynchronous Web Service from a BPEL Process
* Using Correlation Sets and Message Aggregation

e Using Parallel Flow in a BPEL Process

» Using Conditional Branching in a BPEL Process

e Using Fault Handling in a BPEL Process

e Transaction and Fault Propagation Semantics in BPEL Processes
* Incorporating Java and Java EE Code in a BPEL Process

« Using Events and Timeouts in BPEL Processes

e Coordinating Master and Detail Processes

* Using the Notification Service

e Using Sensors and Analytics

ORACLE

Getting Started with Oracle BPEL Process
Manager

This chapter describes how to get started with Oracle BPEL Process Manager. BPEL process
creation and validation are described, along with key BPEL design features such as activities,
partner links, adapters, and monitors.

This chapter includes the following sections:

e Introduction to the BPEL Process Service Component
e Introduction to Activities

e Introduction to Partner Links

e Creating a Partner Link

e Introduction to Adapters

e Introduction to BPEL Process Monitors

Introduction to the BPEL Process Service Component

This section provides an introduction to the BPEL process service component in the design
environment.

How to Add a BPEL Process Service Component

You add BPEL process service components to SOA composite applications in the SOA
Composite Editor.

To add a BPEL process service component:

1. Follow the instructions in Table 4-1 to start Oracle JDeveloper.

Table 4-1 Starting Oracle JDeveloper

|
To Start... On Windows... On UNIX...

Oracle JDeveloper a. Click a. Goto SORACLE HOME/jdeveloper/jdev/bin/.

JDev_Oracle Home\jdeveloper\JD
ev\bin\jdev.exe or create a
shortcut. ./jdev

b. Execute the following command:

2. Add a BPEL process service component through one of the following methods:
As a service component in an existing SOA composite application:

From the Components section of the Components window, drag a BPEL Process service
component into the SOA Composite Editor. This invokes the Create BPEL Process dialog
shown in Figure 4-1.

In a new application:

ORACLE i1

Chapter 4
Introduction to the BPEL Process Service Component

a. From the Applications window, select File > New > Application.
b. Under General in the Categories list, select Applications.
c. Inthe Items list, select SOA Application, and click OK.

This starts the Create SOA Application wizard.

d. Inthe Application Name dialog, enter an application name in the Application Name
field.

e. Inthe Directory field, accept the default location or enter a new directory path in which
to create the SOA composite application.

f. Click Next.
In the Project Name dialog, enter a name in the Project Name field.

In the Directory field, accept the default location or enter a new directory path in which
to create the project.

i. Click Next.

j- Inthe Start from section, ensure that Standard Composite is selected. The other
selection, SOA Template, enables you to create a reusable part of a SOA project to
bootstrap new projects. For more information, see Oracle SOA Suite Templates and
Reusable Subprocesses .

k. Inthe Project SOA Settings dialog, select Composite With BPEL Process.
I. Click Finish.

This invokes the Create BPEL Process dialog shown in Figure 4-1.

Figure 4-1 Create BPEL Process Dialog

|'-f"o Create BPEL Process x

BPEL Process _'_[

A BPEL process is a service orchestration, based on the BPEL specification, used ta N
describefexecute a business process (or large grained service), which is implemented
as a stateful service.

(3) BPEL 2.0 Specification () BPEL 1.1 Specification

Name: |BPELProcess2 |

Namespace: |ht‘tp:ﬂxm|r‘|s. oracle.com/Applicationd/Projectl/BPELProcess2 |

Directory: |Iscratchfanirghosfjdeveloperfmywork.mpplicationMProjectlfSONBPEL | Ck

Template: [ﬁ Asynchronous BPEL Process '] @

Service Name: |bpe|process2_c|ient |

Expose as a SOAP service

Delivery: [async_persist '] @

Input: |{http:h"xm|r‘ls.oracle.comﬁ\pplication‘lfProjectlfBPELProcess2]—process| q

Output: |Ir15. oracle. commppIicationd!ProjectlfBPELProcessZ}processResponse| Q@.

Help | oK | Cancel

3. Provide the required details, as described in Table 4-2.

ORACLE 4-2

Chapter 4
Introduction to the BPEL Process Service Component

Note:

You cannot use BPEL 1.1 and BPEL 2.0 syntax in the same .bpel file. However,
you can include BPEL 1.1 and BPEL 2.0 projects in the same SOA composite
application.

Table 4-2 Create BPEL Process Dialog

|
Field Description

BPEL Specification Select the type of BPEL process to create.
° BPEL 2.0 Specification
Creates a BPEL project that supports the BPEL 2.0 specification. This is
the default selection.
e« BPEL 1.1 Specification
Creates a BPEL project that supports the BPEL 1.1 specification.
Name Enter a name for the BPEL process or accept the default name. The name

you enter becomes the file name for the BPEL process and Web Services
Description Language (WSDL) files in the Applications window.

Always use completely uniqgue names when creating BPEL processes. Do

not create the following:

* A process name that begins with a number (for example, 1SayHello)

e Aprocess name that includes a dash (for example, Say-Hello)

» Two processes with the same name, but with different capitalization (for
example, SayHello and sayhello).
This is particularly important for business intelligence (Bl) data object
names, which are generated on the Oracle BAM server in all upper case
format. For example, if you create a BPEL process named
BPELProcessl, a Bl name of BI DEFAULT PROJECT1 BPELPROCESS1
is generated for the Oracle BAM BI data object after deployment. If you
create two BPEL processes, BPELProcessl and BPELPRocess1, the
same Bl data object name is generated.

e A process name that exceeds 500 characters.

* A non-ASCIl process name. The BPEL process name is used in
directory and file names of the SOA project, which can cause problems.

Namespace Use the default namespace path or enter a custom path.

Directory Specify a directory in which to place BPEL process service component
artifacts or accept the default directory of project root directory/SOR/
BPEL.

You can change the directory path, but ensure that the directory is beneath
the SOA folder (that is, project root directory/SOR). If you specify a
directory outside of SOA, an error message is displayed and the BPEL
process is not created.

ORACLE 43

ORACLE

Chapter 4
Introduction to the BPEL Process Service Component

Table 4-2 (Cont.) Create BPEL Process Dialog

Field

Description

Template

Service Name

Expose as a SOAP
Service

Select a template based on the type of BPEL process service component
you want to design. A template provides a basic set of default files in the
Applications window (process name.wsdl and process name.bpel) with
which to begin designing your BPEL process service component.

e Asynchronous BPEL Process: Creates an asynchronous process with
a default receive activity to initiate the BPEL process service component
flow and an invoke activity to asynchronously call back the client. This
type is selected by default. For more information, see Invoking an
Asynchronous Web Service from a BPEL Process.

* Synchronous BPEL Process: Creates a synchronous process with a
default receive activity to initiate the BPEL process service component
flow and a reply activity to return the results. For more information, see
Invoking a Synchronous Web Service from a BPEL Process.

* One Way BPEL Process: Creates a process with a one-way call
interface definition.

» Define Service Later: Select to create an empty BPEL process service
component with no activities.

« Base on aWSDL: Creates a BPEL process with an interface defined by
an existing WSDL file. You must specify the WSDL Uniform Resource
Locator (URL), port type, and callback port type to use.

* Subscribe to Events: Creates a BPEL process in which you can
subscribe to a business event. After selecting this option, the dialog
refreshes to display an event table. Click the Add icon to select an event
to which to subscribe. Your selection is then displayed in the event table.
You can then select the consistency level and whether to publish this
event. You can also click the Filter icon to create a filter expression for
the selected event. This selection launches the Expression Builder
dialog. For more information, see Using Business Events and the Event
Delivery Network.

Accept the default value or enter the name of the service this process is
exposing. When you open an invoke, receive, OnMessage, or reply activity,
the service name appears by default in the Partner Link field. This name is
the same name as the partner link.

Select this check box to create a BPEL process service component that is
automatically connected (wired) to an inbound simple object access protocol
(SOAP) web service binding component. If you do not select this check box,
the BPEL process service component is created as a standalone component
in the SOA Composite Editor. You can explicitly associate the BPEL process
service component with a service at a later time. This check box is selected
by default.

4-4

ORACLE

Chapter 4
Introduction to the BPEL Process Service Component

Table 4-2 (Cont.) Create BPEL Process Dialog
|

Field

Description

Delivery

Note: This field is
displayed if you

selected one of these

templates in the
Template list:

Asynchronous
BPEL Process
One Way BPEL
Process
Subscribe to
Events

Set the persistence policy of the process in the delivery layer. This list
enables you to specify a value for the onellayDeliveryPolicy deployment
descriptor property. The possible values are:

async.persist: Messages are persisted in the database. With this
setting, reliability is obtained with some performance impact on the
database. In some cases, overall system performance can be impacted.
This is the default value.

async.cache: Incoming delivery messages are kept only in the in-
memory cache. If performance is preferred over reliability, consider this
setting. When set to async.cache, if the rate at which one-way
messages arrive is much higher than the rate at which they are
delivered, or if the server fails, messages can be lost. In addition, the
system can become overloaded (messages become backlogged in the
scheduled queue) and you can receive out-of-memory errors. Consult
your own use case scenarios to determine if this setting is appropriate.

When you set oneWayDeliveryPolicy to async.cache in high
availability environments, invoke and callback messages in the middle of
execution at the time of a server crash may be lost or duplicated. Server
failover is not supported for async.cache.

sync: Direct invocation occurs on the same thread. The scheduling of
messages in the invoke queue is bypassed, and the BPEL instance is
invoked synchronously. In some cases this setting can improve
database performance.

For information about transaction and fault propagation semantics for this
property, see Transaction and Fault Propagation Semantics in BPEL
Processes.

For information about changing the value of this property in the Property
Inspector, see How to Define Deployment Descriptor Properties in the
Property Inspector.

4-5

Chapter 4
Introduction to the BPEL Process Service Component

Table 4-2 (Cont.) Create BPEL Process Dialog
|

Field

Description

Transaction

Note: This field is
displayed if you
selected
Synchronous BPEL
Process in the
Template list.

Input

Output

Set the transaction behavior of the BPEL instance for initiating calls. This list
enables you to specify a value for the transaction deployment descriptor
property. The possible values are:

e required: In request/response (initiating) environments, this setting joins
a caller's transaction (if there is one) or creates a new transaction (if
there is no transaction). In one-way, initiating environments in which the
Delivery list value (oneWayDeliveryPolicy property) is set to sync,
the invoke message is processed using the same thread in the same
transaction. This is the default value.

* requiresNew: A new transaction is created for the execution, and the
existing transaction (if there is one) is suspended. This behavior is true
for both request/response (initiating) environments and one-way,
initiating environments in which the Delivery list value
(oneWayDeliveryPolicy property) is set to sync.

* notSupported: Enables activities of business processes to be executed
without a transaction.

Note: This property does not apply for midprocess receive activities. In those

cases, another thread in another transaction is used to process the

message. This is because a correlation is needed and it is always done

asynchronously.

For information about transaction and fault propagation semantics for this
property, see Transaction and Fault Propagation Semantics in BPEL
Processes.

For information about changing the value of this property in the Property
Inspector, see How to Define Deployment Descriptor Properties in the
Property Inspector.

Accept the default input XSD schema or click the Search icon to select a
different XSD. If you click the Search icon, the Type Chooser dialog appears.
Browse the imported schemas and select the input element (for example, a
purchase order). You can also import an existing schema or WSDL in the
Type Chooser dialog.

The Type Chooser dialog displays information based on the context of its
use. For example, if selecting a simple, message, or element type for a
variable, the dialog displays XML schema simple types, WSDL file message
types, or XML schema elements, respectively. If selecting a message part
type, the dialog displays project schema files, XML schema simple types,
and project WSDL files.

Accept the default output XSD schema or click the Search icon to select a
different XSD. If you click the Search icon, the Type Chooser dialog appears.
Browse the imported schemas and select the output element (for example, a
purchase order).

4. Click OK.

Oracle BPEL Designer displays the sections shown in Figure 4-2.

ORACLE

4-6

Chapter 4
Introduction to the BPEL Process Service Component

Figure 4-2 Oracle BPEL Designer Sections

File Edit Wiew Application

Refactor

Search MNavigate Build Run Team Tools

Window Help

Ol $H B9 @ - o e B @ BEA Qe{_Search

Applications =] ...anTnﬂE Projectl H@. BPELProcessl.bpel] £ BPELProcess2.bpel .. . Compo.. - Resources
[=] Applicationd S [59, Main Process V]W v 102 [[H-@- @ 5~ @ @ @ | Q-

=l Proje... @] 8@~ ¥~ &~ @ | o BREL 2.0

E|--- Projectl
#-{_7] Resources
=7 soa
-3 BPEL
I:I Events
I:I Schemas
I_:I testsuites
[Transformations
e[WSDLs

+| Application Resources
| Data Controls
=+ Recent Files

BPELPro... Thumbnail |

T @R W 4 7 R

&4 BPELProcess2. bpel
@[3 Partner Links
+-[7 variables

#-[3 Correlation Sets
-3 Extensions
I:I Imports

["] Show Detailed Node Inform...

Source BPEL

Bovad o

Partner Links
: @
v

@

receivelnput

bpelprocess2_client v

utew M

Partner Link _| 4

-
callbackClient
LS 3
T rocessfsequence[@name='m: Zoom: E (Et @ !‘
o Design Source History
BPEL - Leg =1
&4 BPELProcess2.bpel
V\r‘alida‘tinn @ Search
-

Messages | ﬁga BPEL ~ | Extensions @SOA 2

= BPEL Constructs

web Service

@

Invoke

@
Partner
+| Subprocesses T
+| Oracle Extensions
+| SOA Components
+| BPEL Services
| Custom Activity Templ...

Properties

Q, Find

o

=]

@

Each section of this view enables you to perform specific design and deployment tasks.
Table 4-3 identifies the sections listed in Figure 4-2.

ORACLE"

Chapter 4
Introduction to the BPEL Process Service Component

Table 4-3 Oracle JDeveloper Sections
|

Element Description
Applications window (Upper Displays the directories and files of a SOA project. Key directories and
left) files beneath the SOA folder include the following:
* BPEL
Displays the BPEL process service component file (.bpel).
e Events

Displays the business event files (.edn).

* Schemas
Displays the BPEL process schema files.

* testsuites
Displays the test suite files. For more information, see Automating
Testing of SOA Composite Applications.

e Transformations
Displays the transformation XSLT (.xsl) and XQuery (.xqy)
mapper files.

* WSDLs
Displays the BPEL process WSDL files.

e composite_name
Describes the entire SOA composite application (sometimes
referred to as the composite.xml file). For more information

about this file, see What Happens When You Create a SOA
Application and Project.

Oracle BPEL Designer Provides a graphical view of the BPEL process service component
(Design tab) that you design. This view displays when you perform one of the
following actions:

* Double-click the .bpel file name in the Applications window.

» Click the Design tab at the bottom of the designer with the .bpel
file selected.

* Double-click the BPEL process component in the SOA Composite
Editor.

As you design the BPEL process service component by dragging

activities, creating partner links, and so on, the Design window

changes.
Components window Displays the available activities to add to the BPEL process service
(Upper right) component. Activities are the building blocks. The BPEL Constructs,

Subprocesses (initially empty), and Oracle Extensions selections of
the Components window display a set of activities and subprocesses
that you drag into the designer of the BPEL process service
component. The Components window displays only those pages
relevant to the state of the designer. BPEL Constructs,
Subprocesses, and Oracle Extensions are nearly always visible.
However, if you are designing a transformation in a transform activity,
the Components window only displays selections relevant to that
activity, such as String Functions, Mathematical Functions, and
Node-set Functions.

ORACLE o

Chapter 4
Introduction to the BPEL Process Service Component

Table 4-3 (Cont.) Oracle JDeveloper Sections
|

Element

Description

Structure window (Lower
left)

Log window (Lower middle)

Source tab

History tab

Property Inspector

Provides a structural view of the data in the BPEL process service

component currently selected in the designer. You can perform a

variety of tasks from this section, including:

* Importing schemas.

» Defining message types.

* Managing (creating, editing, and deleting) elements such as
variables, aliases, correlation sets, and partner links.

« Editing activities in the BPEL process flow sequence that displays
in the designer.

Displays messages about the status of validation and compilation. To

ensure that a BPEL process service component validates correctly,

you must ensure that the following information is correct:

* The BPEL process service component must have an input
variable.

e A partner link must be selected.

* A partner role must be selected.

» The operation must not be empty.

e The input variable type must match the partner link operation
type.

If deployment is unsuccessful, messages appear that describe the

type and location of the error.

View the syntax inside the BPEL process service component files. As
you drag activities and partner links, and perform other tasks, the
syntax in these source files is immediately updated to reflect these
changes.

Displays the revision history of a file and read-only and editable
versions of a file side-by-side.

Displays details about an activity. Single-click an activity in the Design
window to open it for editing. For more information, see How to Edit
BPEL Activities in the Property Inspector.

¢ Note:

To learn more about these sections, you can also place the cursor in the
appropriate section and press F1 to display online Help.

5. Select Information from the Property Structure list above the Oracle BPEL Designer to
view the BPEL project version (either 1.1 or 2.0). Figure 4-3 provides details.

Figure 4-3 BPEL Project Version

& Main Process | galT

oS |- @R - W -

=1 "Jg ﬁge. Inline Subprocesszes...
Wl Partner Links..
(%) variables..

‘iﬁ“ﬁ Correlation Sets...

Extenzionsz...

Properties...

ém.lz‘ Property Aliases...

[} Information...

ORACLE

4-9

Chapter 4
Introduction to the BPEL Process Service Component

The Information dialog is displayed.

EFEL Wersion: E |

Customizable: |n0 |

Project Properties:
Mame Value

[v] Eit to Width

Help Cloze

How to Validate a BPEL Process Service Component

You can syntactically and semantically (for example, the partner links or variables are not
defined in an invoke activity) validate a BPEL process. If validation fails, information is

displayed in the Log window.

To validate a BPEL process service component:

1. In Oracle BPEL Designer, click the green checkmark icon above the BPEL process.
Figure 4-4 provides details.

Figure 4-4 Validation Icon in Oracle BPEL Designer

[@ Start Page]HE Projectl] a?a EPELProcessz1.bpel
’Ega Main Process ']W dav |02 |- @
dg Walidate

Partner Links

urrw [

L

@

receivelnput

bpelprocessl_client v

2. View the validation results in the Log window, as shown in Figure 4-5.

ORACLE" 4-10

Chapter 4
Introduction to Activities

Figure 4-5 BPEL Process Validation Results in Log Window

processfsequencefinvoke Zoom: 100 :J, @L Al ¥
Dezign| Source History

EFEL - Log Live Issues: BPELProcessl bpel - lssues

& BPELProcessl bpel

BPEL

ichema p
. @All\falidation Checks Passed!
Manitar

Analytics
o walidation 5% Search

Meszages ﬁgaBPEL Extenzions)

If validation errors occur, messages are displayed in the Log window, as shown in
Figure 4-6.

Figure 4-6 Log Window Validation Results

Design| Source History
EPEL - Log
s BPELProcess1Test.bpel

BPEL (1)
& Walidation Results

Schema S48 Inwoke - Imyokel
Monitor 2y Partner link iz not specified.
Analytics 2y OCperation is not specified.

1Y Input wariable is not zpecified.

Introduction to Activities

Activities are the building blocks of a BPEL process service component. Oracle BPEL Designer
includes a set of activities that you drag into a BPEL process service component. You then
double-click an activity to define its attributes (property values). Activities enable you to
perform specific tasks within a BPEL process service component. For example, here are
several key activities:

ORACLE

An assign activity enables you to manipulate data, such as copying the contents of one
variable to another. Figure 4-7 shows an assign activity.

Figure 4-7 Assign Activity

An invoke activity enables you to invoke a service (identified by its partner link) and specify
an operation for this service to perform. Figure 4-8 shows an invoke activity.

4-11

ORACLE"

Chapter 4
Introduction to Activities

Figure 4-8 Invoke Activity

A receive activity waits for an asynchronous callback response message from a service.
Figure 4-9 shows a receive activity. A receive activity is also used when a process is
started asynchronously through a partner link.

Figure 4-9 Receive Activity

Figure 4-10 shows an example of a property window (for this example, an invoke activity).

Figure 4-10 Invoke Activity Example

Edit Invoke

Headers Documentation Skip Condition Targets Sources

Ceneral Caorrelations Properties Assertions Annotations
MName: |cal|backCIient |
Conversation ID: | | Ef‘y
Detail Label: | |

[]Invoke as Detail

Interaction Type: |43 Partrer Link™>

Partner Link: |bpe|proce551_c|iem | Ck

PortType: | & BRELProcessiCallback -

Operation: E processResponse 'l

Input Sutput

() Arguments Mapping (#) Input Variable =0

Input: |output\fariable | % Q&
Help Apply . ok | Cancel

The invoke activity enables you to specify an operation you want to invoke for the service
(identified by its partner link). The operation can be one-way or request-response on a port
provided by the service. You can also automatically create variables in an invoke activity. An
invoke activity invokes a synchronous service or initiates an asynchronous web service.

4-12

Chapter 4
Introduction to Activities

The invoke activity opens a port in the process to send and receive data. It uses this port to
submit required data and receive a response. For synchronous callbacks, only one port is
needed for both the send and the receive functions.

For more information about activities, see BPEL Process Activities and Services.

For information about copying and pasting activities in the same project or between projects,
see How to Copy and Paste Activities in BPEL Projects .

For information about editing activities in the Property Inspector, see How to Edit BPEL
Activities in the Property Inspector.

How to Edit BPEL Activities in the Property Inspector

ORACLE

You can edit the property fields of activities in BPEL 1.1 and 2.0 processes in the Property
Inspector of Oracle BPEL Designer in Oracle JDeveloper. This action is the same as double-
clicking an activity or right-clicking an activity and selecting Edit, making changes, and clicking
Apply or OK.

To edit BPEL activities in the Property Inspector:

1. In Oracle BPEL Designer, single-click an activity. For this example, an XSLT transform
activity is selected in Figure 4-11.

2. The property fields of the activity are displayed for editing in the Property Inspector below
Oracle BPEL Designer.

Figure 4-11 Activity is Displayed for Editing in the Property Inspector

&% Main Process @ G192 - @ F-S-FFH e

L
L ERIENE
|
i i
! * 1
- :
I 1 -
]
| calculateTotaIO
O .
processfsequencefassign[2] Zoom:| 100 :Jl ':\Et A €
Design, Source History
Properties
ﬁ-ﬂ trans formation -é)
Ceneral
Transformation SOUFCE + /7 R
Annotations “ariable Part
Diacumentation arder
Skip Conditian
Targets
Sources Target Variable: Totalfmount =

Target Part:

Mapper File: [tions/calculateTotalOrderfmount.xsl| EF /

4-13

Figure 4-12

il ’

=
bpelprocsss]_dent

(S | - T Seiana n

Design Source Histony
Properties

a

|&] Scope

GEreral

Faitni Lirks
Vartables
Correlation Sels
ALt

Ui Diocurnienkaltion
DioumiEnkation
Targets

Soures

skl

Chapter 4
Introduction to Activities

3. Make changes and press the Apply key, or navigate away from the activity by clicking
another activity.

4. Return to the activity you edited and note that the changes have been applied.

You can also edit the actions within a scope activity, such as catch activities, variable, and
S0 on.

5. Expand a scope activity.
6. Inthe Property Inspector, click Variables.

The Property Inspector is refreshed to display the property fields for a variable, including
the Add, Edit, and Delete icons. Figure 4-12 provides details.

Variable Section of a Scope Activity is Displayed for Editing in the Property Inspector

Zoorn: | 100}2] ©

HMamne Typs Cane Partrer Link

How to Copy and Paste Activities in BPEL Projects

ORACLE

You can copy and paste activities in the same BPEL project or between BPEL projects. This
prevents you from having to create similar activities from start to finish multiple times. You can
design an activity once and use it in multiple places, editing it as necessary.

Note:

You can copy an individual OnAlarm activity from one scope activity and paste it into
another scope activity. You can also copy an individual OnAlarm activity from one
pick activity and paste it into another pick activity.

Note the following restrictions:

e You cannot copy activities from a BPEL 1.1 project to a BPEL 2.0 project or from a BPEL
2.0 project to a BPEL 1.1 project.

4-14

Chapter 4
Introduction to Activities

In BPEL 2.0 projects, you cannot copy an individual OnAlarm activity from a pick activity
into a scope activity, or vice versa. However, this type of copying and pasting is supported
in BPEL 1.1 projects.

When you copy and paste a scope activity, the variables referenced in the first scope
activity are not copied.

To copy and paste activities:

1.
2.
3.
4,

Right-click the activity to copy.

Select Copy.

Go to the project in which to paste the activity.

Perform one of the following tasks:

a. Right-click the activity closest to where you want to paste the activity.
b. Choose to either paste the activity before or after the selected activity.
or

a. Highlight the BPEL process, as shown in Figure 4-13.

Figure 4-13 Selected BPEL Process
Partner Links

)

receivelnput

helloworldprocess. ..

Assign_1

&

replyOukput

]
I
I
1
I
I
i
i
I
I
I
I
I
i
I
I
I
I
I
i
I
I
1
I
I
i
i
I
I
I
I
I
i
I
I
I
I

'{@ [E

b. Right-click and select Paste > Paste Into.

The activity is pasted at the top of the BPEL process.

How to Add a Description of Actions to BPEL Process Activities

You can add a description of actions to a BPEL process activity. This creates a TODO Tasks
icon on the activity. When you place your cursor over this icon, it displays the description of
actions. The description can describe the actions performed by the activity in the BPEL
process service component.

ORACLE

How to add a description of actions to BPEL process activities:

1.

Right-click an activity, and select Add TODO Task.
The Add TODO Task dialog is displayed.

4-15

Chapter 4
Introduction to Partner Links

2. Add a description of the actions performed by the activity, then click OK.

3. Place the cursor over the TODO Tasks icon to the right of the BPEL activity to display the
description. Figure 4-14 provides details.

Figure 4-14 Description of BPEL Activity

0
01" [G
Toda items
1 Thiz activity invokes a credit rating service partner link.

CetCreditRating

Introduction to Partner Links

ORACLE

A partner link enables you to define the external services with which the BPEL process service
component is to interact. You can define partner links as services or references (for example,
through a JCA adapter) in the SOA Composite Editor (the recommended method) or within a
BPEL process service component in Oracle BPEL Designer. Figure 4-15 shows the partner link
icon (for this example, named PartnerSupplierMediator).

Figure 4-15 Partner Link Icon

1 %ﬁ!

PartnersupplierMe, .,

A partner link type characterizes the conversational relationship between two services by
defining the roles played by each service in the conversation and specifying the port type
provided by each service to receive messages within the conversation.

Figure 4-16 shows an example of the attributes of a partner link for a service.

Figure 4-16 Partner Link Dialog

Mame: |Partner5upp|ierMediat0r |

Process: |OrderProcess-:r |

WSDL Setkings

QR W

WSDL URL: |Partner5u|:-pIierMediatorReF.wsdl |

Partner Link Type: |n$° PartnerSupplierMediator . Partnersupplieriedi. . "|

Partner Raole: |‘.a execute_ptt '|
My Role: |#3, callback_ptt -
Help Apply | | [a]4 _J | Cancel

4-16

ORACLE

Chapter 4
Introduction to Partner Links

Table 4-4 describes the fields of this dialog.

Table 4-4 Create Partner Link Dialog Fields
|

Field Description

Name A unique and recognizable name you provide for the partner link.

Process Displays the BPEL process service component name.

WSDL URL The name and location of the WSDL file or Java interface that you select for
the partner link. Click the SOA Service Explorer icon (second icon from the
left above the WSDL URL field) to access a window for selecting the WSDL
file or Java interface to use.

Java interfaces display for selection under the References folder with a name
of javaEJB. If the component with which you are wiring this partner link uses
WSDL files and you select a Java interface and click OK, a message displays
indicating that this component requires a WSDL interface. If you click Yes, a
compatible WSDL file is created based on the Java interface.

For more information about integrating components that use Java interfaces
into SOA composite applications, see Integrating the Spring Framework in
SOA Composite Applications.

Partner Link Type The partner link defined in the WSDL file.

Partner Role The role performed by the partner link.

My Role The role performed by the BPEL process service component. If this is a
synchronous process case, the BPEL process service component does not
have a role.

Note:
The Partner Link Type, Partner Role, and My Role fields in the Create Partner Link
dialog are defined and required by the BPEL standard.

Best Practice:

As a best practice, always create and wire Oracle Mediator and BPEL process
service components in the SOA Composite Editor, instead of in Oracle BPEL
Designer.

If you add an Oracle Mediator or BPEL process partner link to your BPEL process in
Oracle BPEL Designer and connect either partner link to your BPEL process through
an invoke activity, the wiring is not automatically reflected above in the SOA
Composite Editor. You must explicitly wire the Oracle Mediator or BPEL process
service component to your BPEL process again in the SOA Composite Editor.

This is not an issue with human task or business rule partner links in Oracle BPEL
Designer; both are also automatically wired in the SOA Composite Editor.

For information about editing partner links in the Property Inspector, see How to Edit BPEL
Activities in the Property Inspector.

4-17

Creating a Partner Link

Chapter 4
Creating a Partner Link

The method by which you create partner links within the BPEL process in Oracle BPEL
Designer impacts how the partner link displays in the SOA Composite Editor. This section
describes this impact. The WSDL file can be on the local operating system or hosted remotely
(in which case you need a URL for the WSDL).

Likewise, creating and wiring a service or reference binding component to a BPEL process
service component in the SOA Composite Editor causes a partner link to display in Oracle

BPEL Designer.

How to Create a Partner Link

To create a partner link:

1. Inthe SOA Composite Editor, double-click the BPEL process service component.

Oracle BPEL Designer is displayed.

2. In the Components window, expand BPEL Constructs.

3. Drag a Partner Link into the appropriate Partner Links swimlane, as shown in

Figure 4-17.

Figure 4-17 Partner Link Creation in Oracle BPEL Designer

L.l D‘irﬂ S0AAppTestProject

Wi Process

ol

oy

by

.]
bpelprocessl_client

u{tﬁ FindLaoan ﬁga EPELProcess1.bipel |1

W@ F-L-PPR

R %4 @

Frasy
(4]

Tae

receivelnput Partner Link

‘-.+J

&

callbackClient

The Create Partner Link dialog appears.

4. Complete the fields for this dialog, as described in Table 4-4.

Compao... Rezources
BPEL 2.0
=l BPEL Constructs
eb Service
@ Q
Invoke Partner Link
w5 E=2

#] Subprocesses

4l Oracle Extensions

4] 504 Camponents

] BPEL Serwices

A Cuztom Activity Templates

Properties

@

The following sections describe the impact of partner link creation on the SOA Composite

Editor.

Partner Links for an Outbound Adapter

Table 4-5 describes the impact on the SOA Composite Editor.

ORACLE

4-18

Chapter 4
Creating a Partner Link

Table 4-5 Impact of Partner Link Creation on the SOA Composite Editor
]

Creating the Following for a BPEL Process | Displays the Following in the SOA Composite

in Oracle BPEL Designer... Editor...
A partner link for an outbound adapter * Areference handle for the BPEL process service
component

» Areference representing the outbound adapter in
the composite

* A wire connecting the BPEL process service
component to the adapter reference

Figure 4-18 shows how this method of creation appears in the SOA Composite Editor.

Figure 4-18 SOA Composite Editor Impact

o
2) orderProcaasor > @ % ‘P
CreditCardAuthoriza...

Partner Links for an Inbound Adapter

Table 4-6 describes the impact on the SOA Composite Editor.

Table 4-6 Impact of Partner Link Creation on the SOA Composite Editor

Creating the Following for a BPEL Process [Displays the Following in the SOA Composite

in Oracle BPEL Designer... Editor...
A partner link for an inbound adapter e A service for the BPEL process service
component
* A service representing the inbound adapter in the
composite

e A wire connecting the inbound adapter service to
the BPEL process service component

Figure 4-19 shows how this method of creation appears in the SOA Composite Editor.

Figure 4-19 SOA Composite Editor Impact

Fa
{% . @
orderprocessor_cli...

Partner Links from an Abstract WSDL to Call a Service

Table 4-7 describes the impact on the SOA Composite Editor.

ORACLE 419

Chapter 4
Creating a Partner Link

Table 4-7 Impact of Partner Link Creation on the SOA Composite Editor

Creating the Following for a BPEL Process [Displays the Following in the SOA Composite

in Oracle BPEL Designer... Editor...

A partner link from an abstract WSDL to call a | A reference handle with an interface and callback

service interface defined for the BPEL process service
component

Partner Links from an Abstract WSDL to Implement a Service

Table 4-8 describes the impact on the SOA Composite Editor.

Table 4-8 Impact of Partner Link Creation on the SOA Composite Editor

Creating the Following for a BPEL Process [Displays the Following in the SOA Composite
in Oracle BPEL Designer... Editor...

A partner link is created from an abstract WSDL | A service with an interface and callback interface for
to implement a service the BPEL process service component is created.

Note: If an external SOAP reference with the specified
interface and callback interface exists in the SOA
Composite Editor, you can either create a new
external SOAP reference and wire to it or wire to the
existing external SOAP reference.

Figure 4-20 shows how this method of creation appears in the SOA Composite Editor.

Figure 4-20 SOA Composite Editor Impact

(q) L)

Partner Links and Human Tasks or Business Rules

Table 4-9 describes the impact on the SOA Composite Editor.

Table 4-9 Impact of Partner Link Creation on the SOA Composite Editor

|
Creating the Following for a BPEL Process [Displays the Following in the SOA Composite

in Oracle BPEL Designer... Editor...
A human task or business rule is created e A human task or business rule in the composite
« Areference for the BPEL process service
component

e A wire connecting the BPEL process service
component to the new human task or business
rule

Figure 4-21 shows how this method of creation appears in the SOA Composite Editor.

ORACLE 450

Chapter 4
Introduction to Adapters

Figure 4-21 SOA Composite Editor Impact

:’Eﬁt%daanusmr %> C%gq uiresApp m"a---l

Partner Links from an Existing Human Task, Business Rule, or Oracle Mediator

Table 4-10 describes the impact on the SOA Composite Editor.

Table 4-10 Impact of Partner Link Creation on the SOA Composite Editor
]

Creating the Following for a BPEL Process [Displays the Following in the SOA Composite
in Oracle BPEL Designet... Editor...

A partner link by dragging an existing human A reference for the BPEL process service

task, business rule, or mediator service component

component into the BPEL process « A wire connecting the BPEL process service
component to the existing human task, business
rule, or mediator

Figure 4-22 shows how this method of creation appears in the SOA Composite Editor.

Figure 4-22 SOA Composite Editor Impact

) @ ppprovalHumentl

Published:
OnTaskAssigned

Introduction to Adapters

ORACLE

The Partner Link dialog shown in Figure 4-16 also enables you to take advantage of another
key feature that Oracle BPEL Process Manager and Oracle Mediator and Oracle JDeveloper
provide. Click the Service Wizard icon shown in Figure 4-23 to access the Adapter
Configuration wizard.

Figure 4-23 Defining an Adapter

WSDL Settings
Q@R W
. i]
W3DL URL: | [Service Wizard
Partrier Link Type: [B° =]

Adapters enable you to integrate the BPEL process service component (and, therefore, the
SOA composite application as a whole) with access to file systems, FTP servers, database
tables, database queues, sockets, Java Message Services (JMS), Oracle User Messaging

4-21

Chapter 4
Introduction to Adapters

Service, and more. You can also integrate with services such as HTTP binding, direct binding,
EJB, and others. This wizard enables you to configure the types of services and adapters
shown in Figure 4-24 for use with the BPEL process service component:

Figure 4-24 Service and Adapter Types

G |

|rﬁ Configure Service or Adapter

& ADF-BC

b AQ

P21 B2E

4 BAM 11g

$ Coherence

{% Database

% Direct

{% E-Business Suite
i BB

File

Help [s]8 Cancel

For information about the service and adapter types, see Getting Started with Binding
Components.

When you select an adapter type (for this example, File was selected in Figure 4-24), the
dialog shown in Figure 4-25 prompts you to enter a name. When the wizard completes, a
WSDL file by this name appears in the Applications window under the WSDLs folder. The
service name must be unique within the project. This file includes the adapter configuration
settings you specify with this wizard. Other configuration files (such as header files and files
specific to the adapter) are also created and display in the Applications window.

Figure 4-25 Adapter Service Name

|E| FILE Adapter Configuration Wizard - Step 1 of 4

File Adapter Reference

Welcomme to the File Adapter Configuration Wizard

This wizard helps you create a File Adapter. vou will be asked to specify configuration parameters and
define an operation far the adapter.

Enter a Reference Mame.

Help = Back | Mext = | Einizh Cancel

ORACLE" 4-22

Chapter 4
Introduction to BPEL Process Monitors

The Adapter Configuration wizard dialogs that appear after the this dialog are based on the
adapter type you selected.

You can also add adapters to your SOA composite application as services or references in the
SOA Composite Editor.

For more information about technology adapters, see Understanding Technology Adapters.

Introduction to BPEL Process Monitors

ORACLE

You can configure BPEL process monitors in Oracle BPEL Designer by selecting Change to
Monitor view at the top of Oracle BPEL Designer. Figure 4-26 provides details. BPEL process
monitors can send data to Oracle BAM for analysis and graphical display through the Oracle
BAM adapter.

Figure 4-26 BPEL Process Monitors

CANFIREE - %@%ﬁ ©]

| Change to Monitor wiew

For information about business indicators, intervals, and counters, see the Oracle SOA Suite
11g documentation:

http://docs.oracle.com/cd/E28280 01/dev.1111/e10224/bam adapter.htm#BABIJBCC

4-23

http://docs.oracle.com/cd/E28280_01/dev.1111/e10224/bam_adapter.htm#BABIJBCC

Introduction to Interaction Patterns in a BPEL
Process

This chapter describes common interaction patterns between a BPEL process service
component and an external service, including one-way messages, synchronous and
asynchronous interactions, one request - multiple and single responses, one request -
mandatory and optional responses, partial processing, and multiple application interactions.
also describes the best use practices for each.

This chapter includes the following sections:

e Introduction to One-Way Messages

e Introduction to Synchronous Interactions

e Introduction to Asynchronous Interactions

e Introduction to Asynchronous Interactions with a Timeout

e Introduction to Asynchronous Interactions with a Notification Timer

e Introduction to One Request, Multiple Responses

e Introduction to One Request, One of Two Possible Responses

e Introduction to One Request, a Mandatory Response, and an Optional Response
e Introduction to Partial Processing

e Introduction to Multiple Application Interactions

Introduction to One-Way Messages

ORACLE

In a one-way message, or fire and forget, the client sends a message to the service (d1 in

It

Figure 5-1), and the service is not required to reply. The client sending the message does not

walit for a response, but continues executing immediately. The following example shows the
portType and operation part of the BPEL process WSDL file for this environment.

<wsdl:portType name="BPELProcessl">
<wsdl:operation name="process">
<wsdl:input message="client:BPELProcesslRequestMessage" />
</wsdl:operation>
</wsdl:portType>

Figure 5-1 provides an overview.

5-1

Chapter 5
Introduction to Synchronous Interactions

Figure 5-1 One-Way Message

Client BPEL Process WSDL Service BPEL Process
i PartnerLinlk |

| <invoke> — di

- » <receive>

BPEL Process Service Component as the Client

As the client, the BPEL process service component needs a valid partner link and an invoke
activity with the target service and the message. As with all partner activities, the Web Services
Description Language (WSDL) file defines the interaction.

BPEL Process Service Component as the Service

To accept a message from the client, the BPEL process service component needs a receive
activity.

Introduction to Synchronous Interactions

In a synchronous interaction, a client sends a request to a service (d1 in Figure 5-2), and
receives an immediate reply (d2 in Figure 5-2). A BPEL process service component can be at
either end of this interaction, and must be coded based on its role as either the client or the
service. For example, a user requests a subscription to an online newspaper and immediately
receives email confirmation that their request has been accepted. The following example
shows the portType and operation part of the BPEL process WSDL file for this environment.

<wsdl:portType name="BPELProcessl">
<wsdl:operation name="process">
<wsdl:input message="client:BPELProcesslRequestMessage" />
<wsdl:output message="client:BPELProcesslResponseMessage"/>
</wsdl:operation>
</wsdl:portType>

Figure 5-2 provides an overview.

Figure 5-2 Synchronous Interaction

f1

| BPEL Process ; | WSDL Client | | BPEL Process :
; + PartnerLink o :
: Call a1 5 4 <receive>
: service : ' b — ;
; <invoke= : b ;
: : b | Coa <reply= :
; : ; OR ! :

ORACLE -

Chapter 5
Introduction to Asynchronous Interactions

BPEL Process Service Component as the Client

When the BPEL process service component is on the client side of a synchronous transaction,
it needs an invoke activity. The port on the client side both sends the request and receives the
reply. As with all partner activities, the WSDL file defines the interaction.

BPEL Process Service Component as the Service

When the BPEL process service component is on the service side of a synchronous
transaction, it needs a receive activity to accept the incoming request, and a reply activity to
return either the requested information or an error message (a fault; f1 in Figure 5-2) defined in
the WSDL.

For more information about synchronous interactions, see Invoking a Synchronous Web
Service from a BPEL Process.

Synchronous BPEL Process Invoking an Asynchronous Process

If a synchronous BPEL process invokes an asynchronous process, the callback response
message is not acknowledged by the BPEL process and the process times out waiting for a
response. This type of interaction pattern is not supported.

Introduction to Asynchronous Interactions

ORACLE

In an asynchronous interaction, a client sends a request to a service and waits until the service
replies. The following example shows the portType and operation part of the BPEL process
WSDL file for this environment.

<wsdl:portType name="BPELProcessl">
<wsdl:operation name="process">
<wsdl:input message="client:BPELProcesslRequestMessage"/>
</wsdl:operation>
</wsdl:portType>

<wsdl:portType name="BPELProcesslCallback">
<wsdl:operation name="processResponse">
<wsdl:input message="client:BPELProcesslResponseMessage"/>
</wsdl:operation>
</wsdl:portType>

Figure 5-3 provides an overview.

5-3

Chapter 5
Introduction to Asynchronous Interactions with a Timeout

Figure 5-3 Asynchronous Interaction

WsDL
PartnerLink

Call — d1
service — !
<invoke= ‘

Get

response dz
<raceivas>

- = =receive=

BPEL Process Service Component as the Client

When the BPEL process service component is on the client side of an asynchronous
transaction, it needs an invoke activity to send the request and a receive activity to receive the
reply. As with all partner activities, the WSDL file defines the interaction.

BPEL Process Service Component as the Service

As with a synchronous transaction, when the BPEL process service component is on the
service side of an asynchronous transaction, it needs a receive activity to accept the incoming
request and an invoke activity to return either the requested information or a fault. Note the
difference between this and responding from a synchronous BPEL process: a synchronous
BPEL process uses a reply activity to respond to the client and an asynchronous service uses
an invoke activity.

For more information about asynchronous interactions, see Invoking an Asynchronous Web
Service from a BPEL Process.

Introduction to Asynchronous Interactions with a Timeout

ORACLE

In an asynchronous interaction with a timeout (which you perform in BPEL with a pick activity),
a client sends a request to a service and waits until it receives a reply, or until a certain time
limit is reached, whichever comes first. For example, a client requests a loan offer. If the client
does not receive a loan offer reply within a specified amount of time, the request is canceled.
Figure 5-4 provides an overview.

5-4

Chapter 5
Introduction to Asynchronous Interactions with a Notification Timer

Figure 5-4 Asynchronous Interaction with Timeout

| Client BPEL Process 1 WwsDL ' ! Service BPEL Process !
i l i Parnerlink i
! Cal | a1 - i | <recoive> |
service o v ;
! <invoke= i E - i
E <pick= l E ! Lo E
‘ - d2 — <invoke=
1l Waitfor Timeout | ! L E
i calloack in 1M v T T Tt
1| <onMessage> <onAlarm:s ;
LogicPost 1! LogicPost !
; Callback 11 Timeout !
I s s s s s s e e a4 !

BPEL Process Service Component as the Client

When the BPEL process service component is on the client side of an asynchronous
transaction with a timeout, it needs an invoke activity to send the request and a pick activity
with two branches: an onMessage branch and an onAlarm branch. If the reply comes after the
time limit has expired, the message goes to the dead letter queue. As with all partner activities,
the WSDL file defines the interaction.

For more information about asynchronous interactions with a timeout, see Selecting Between
Continuing or Waiting on a Process with a Pick Activity.

BPEL Process Service Component as the Service

The behavior of the BPEL process service component as a service matches the behavior with
the asynchronous interaction with the BPEL process service component as the service.

Introduction to Asynchronous Interactions with a Notification
Timer

In an asynchronous interaction with a notification time, a client sends a request to a service
and waits for a reply, although a notification is sent after a timer expires. The client continues to
wait for the reply from the service even after the timer has expired. Figure 5-5 provides an
overview.

ORACLE e

Chapter 5
Introduction to One Request, Multiple Responses

Figure 5-5 Asynchronous Interaction with a Notification Time

| BPEL Process . wsDL | |Service |
: i ! Partnerlink | BPEL
' | <scope> | | Process
! Call P b :
i sarvice \d_1 ro h—!- <receive> :
<invoke> po b :
E Wait for E E | E E
' Callback ! E : E E
! creceives «{ g +— | <invoke>
! | <onAlarm>
; Notify b P ;
; Someons Lo o

BPEL Process Service Component as the Client

When the BPEL process service component is on the client side of this transaction, it needs a
scope activity containing an invoke activity to send the request, and a receive activity to accept
the reply. The onAlarm handler of the scope activity has a time limit and instructions on what to
do when the timer expires. For example, wait 30 minutes, then send a warning indicating that
the process is taking longer than expected. As with all partner activities, the WSDL file defines
the interaction.

BPEL Process Service Component as the Service

The behavior for the BPEL process service component as the service matches the behavior
with the asynchronous interaction with the BPEL process service component as the service.

Introduction to One Request, Multiple Responses

In this interaction type, the client sends a single request to a service and receives multiple
responses in return. For example, the request can be to order a product online, and the first
response can be the estimated delivery time, the second response a payment confirmation,
and the third response a notification that the product has shipped. In this example, the number
and types of responses are expected. Figure 5-6 provides an overview.

ORACLE -

Chapter 5
Introduction to One Request, One of Two Possible Responses

Figure 5-6 One Request, Multiple Responses

' Client BPEL Process ‘1 WSDL | | Service BPEL i
' i 1 Client ' 1 Process
v Partnerlink | | '

Call . b i

service dl - <receive>
<invokes i P i
<sequences i1 | <sequence>
<receives « dz E E 1'—5 <imvoke= E
<receive> < | g3 i + cinvokes
<receive> « d4 .il_i <invokes E
</sequence> </sequence>

BPEL Process Service Component as the Client

When the BPEL process service component is on the client side of this transaction, it needs an
invoke activity to send the request, and a sequence activity with three receive activities, one for
each reply. As with all partner activities, the WSDL file defines the interaction.

BPEL Process Service Component as the Service

The BPEL service needs a receive activity to accept the message from the client, and a
sequence attribute with three invoke activities, one for each reply.

Introduction to One Request, One of Two Possible Responses

In an interaction using one request and one of two possible responses, the client sends a
single request to a service and receives one of two possible responses. For example, the
request can be to order a product online, and the first response can be either an in-stock
message or an out-of-stock message. Figure 5-7 provides an overview.

ORACLE .

Chapter 5

Introduction to One Request, a Mandatory Response, and an Optional Response

Figure 5-7 One Request, One of Two Possible Responses

! Client BPEL Process | wsDL | ! Service BPEL Process i
: l ' ¢ PartnerLink | l :
; Cal | d1 - — :
! sarvice v b =rageives
| <invoke=> Lo ol !
| <pick> 1 L |1 <switch= l

<onMessage A> | <onMessage B>) vl temin Stock? <otherwise=
PR R, S ! or (I TSR, S, S ——
P Logic A Logic B 1| MsgB T <invoke= Msg A 1| <invoke= Msg B | !

BPEL Process Service Component as the Client

When the BPEL process service component is on the client side of this transaction, it needs

the following:

e Aninvoke activity to send the request

e A pick activity with two branches: one onMessage for the in-stock response and

instructions on what to do if an in-stock message is received

e A second onMessage for the out-of-stock response and instructions on what to do if an

out-of-stock message is received

As with all partner activities, the WSDL file defines the interaction.

For more information about interactions using one request and one of two possible responses,
see Selecting Between Continuing or Waiting on a Process with a Pick Activity.

BPEL Process Service Component as the Service

The BPEL service needs a receive activity to accept the message from the client, and a switch
activity (in BPEL 1.1) or an if activity (in BPEL 2.0) with two branches, one with an invoke
activity sending the in-stock message if the item is available, and a second branch with an
invoke activity sending the out-of-stock message if the item is not available.

Introduction to One Request, a Mandatory Response, and an

Optional Response

In this type of interaction, the client sends a single request to a service and receives one or two
responses. Here, the request is to order a product online. If the product is delayed, the service

ORACLE

5-8

Chapter 5
Introduction to Partial Processing

sends a message letting the customer know. In any case, the service always sends a
notification when the item ships. Figure 5-8 provides an overview.

Figure 5-8 One Request, a Mandatory Response, and an Optional Response

' CllentBPEL Process | |

' | <scope>

Call service
<invoke:=

. Service BPEL Process

l

;1 PartnerLink

d1—5—i—l—:—ﬂ

Wait for Callback
<receive Msg B>

-

<onhMessage A>

Motify User of
Delay

-

<receive=
Msg A -~
(maybe) <if>

<glse=

BPEL Process Service Component as the Client

When the BPEL process service component is on the client side of this transaction, it needs a
scope activity containing the invoke activity to send the request, and a receive activity to
accept the mandatory reply. The onMessage handler of the scope activity is set to accept the
optional message and instructions on what to do if the optional message is received (for
example, notify you that the product has been delayed). The client BPEL process service
component waits to receive the mandatory reply. If the mandatory reply is received first, the
BPEL process service component continues without waiting for the optional reply. As with all
partner activities, the WSDL file defines the interaction.

BPEL Process Service Component as the Service

The BPEL service needs a scope activity containing the receive activity and an invoke activity
to send the mandatory shipping message, and the scope's onAlarm handler to send the
optional delayed message if a timer expires (for example, send the delayed message if the
item is not shipped in 24 hours).

Introduction to Partial Processing

ORACLE

In partial processing, the client sends a request to a service and receives an immediate
response, but processing continues on the service side. For example, the client sends a
request to purchase a vacation package, and the service sends an immediate reply confirming
the purchase, then continues on to book the hotel, the flight, the rental car, and so on. This
pattern can also include multiple shot callbacks, followed by longer-term processing. Figure 5-9
provides an overview.

5-9

Chapter 5
Introduction to Multiple Application Interactions

Figure 5-9 Partial Processing

Client BPEL Process

mWw
(-]
=
=
[x]
(-]
m
e
m
-

5 Call ; i ;
' sarvice d1 ' e <receive: '
=invoke= : Lo l
<recaive> |« dz , - <receives
: <invoke= d3 E ,_E_p: <invokes=
<receive> < g4 - <receive

H : E <[EBCeives

BPEL Process Service Component as the Client

In this case, the BPEL client is simple; it needs an invoke activity for each request and a
receive activity for each reply for asynchronous transactions, or just an invoke activity for each
synchronous transaction. Once those transactions are complete, the remaining work is
handled by the service. As with all partner activities, the WSDL file defines the interaction.

BPEL Process Service Component as the Service

The BPEL service needs a receive activity for each request from the client, and an invoke
activity for each response. Once the responses are finished, the BPEL process service
component as the service can continue with its processing, using the information gathered in
the interaction to perform the necessary tasks without any further input from the client.

Introduction to Multiple Application Interactions

In some cases, there are more than two applications involved in a transaction, for example, a

buyer, seller, and shipper. In this case, the buyer sends a request to the seller, the seller sends
a request to the shipper, and the shipper sends a notification to the buyer. This A-to-B-to-C-to-
A transaction pattern can handle many transactions at the same time. Therefore, a mechanism
is required for keeping track of which message goes where. Figure 5-10 provides an overview.

As with all partner activities, the WSDL file defines the interaction.

ORACLE =10

Chapter 5
Introduction to Multiple Application Interactions

Figure 5-10 Multiple Party Interactions

| BPEL ; wsbL | | BPEL ;
' Process A | ! PartnerLink | | Process B |
: Buyer E ' i ' Seller ;
i ! ! : | :
| <invokes i ! i i <raceives i
e i |
|| <receive> 1< || <invoke> ;
! . L | g3 a2 E i
‘wsbL | iwsDL | |
. Partnerlink ! | PartnerLink
L R Lo
| BPEL 5
| ProcessC |
! Shipper
i =recejves E
| BC
|| <invoke> !
— A -

This kind of coordination can be managed using WS-Addressing or correlation sets. For more
information about both, see Invoking an Asynchronous Web Service from a BPEL Process.

ORACLE" 5.11

Manipulating XML Data in a BPEL Process

This chapter describes how to manipulate XML data in a BPEL process service component.
This chapter provides a variety of examples. Topics include how to work with variables,
sequences, and arrays; use XPath expressions; and perform tasks such as mathematical
calculations. Supported specifications are also referenced.

This chapter includes the following sections:

e Introduction to Manipulating XML Data in BPEL Processes

e Delegating XML Data Operations to Data Provider Services

e Translating Between Native Data and XML

e Using Standalone SDO-based Variables

e Initializing a Variable with Expression Constants or Literal XML
e Copying Between Variables

e Moving and Copying Variables in the Structure Window

e Accessing Fields in Element and Message Type Variables

e Assigning Numeric Values

e Using Mathematical Calculations with XPath Standards

e Assigning String Literals

e Concatenating Strings

e Assigning Boolean Values

e Assigning a Date or Time

e Manipulating Attributes

e Manipulating XML Data with bpelx Extensions

e Validating XML Data

e Using Element Variables in Message Exchange Activities in BPEL 2.0
e Mapping WSDL Message Parts in BPEL 2.0

e Importing Process Definitions in BPEL 2.0

e Manipulating XML Data Sequences That Resemble Arrays

e Converting from a String to an XML Element

e Understanding Document-Style and RPC-Style WSDL Differences
e Manipulating SOAP Headers in BPEL

e Declaring Extension Namespaces in BPEL 2.0

ORACLE

Chapter 6
Introduction to Manipulating XML Data in BPEL Processes

Note:

Most of the examples in this chapter assume that the WSDL file defining the
associated message types is document-literal style rather than the remote procedure
call (RPC) style. There is a difference in how XPath query strings are formed for
RPC-style WSDL definitions. If you are working with a type defined in an RPC WSDL
file, see Understanding Document-Style and RPC-Style WSDL Differences.

Introduction to Manipulating XML Data in BPEL Processes

This section provides an introduction to using XML data in BPEL processes.

XML Data in BPEL Processes

In a BPEL process service component, most pieces of data are in XML format. This includes
the messages passed to and from the BPEL process service component, the messages
exchanged with external services, and the local variables used by the process. You define the
types for these messages and variables with the XML schema, usually in one of the following:

e Web Services Description Language (WSDL) file for the flow
» WSDL files for the services it invokes
e XSD file referenced by those WSDL files

Therefore, most variables in BPEL are XML data, and any BPEL process service component
uses much of its code to manipulate these XML variables. This typically includes performing
data transformation between representations required for different services, and local
manipulation of data (for example, to combine the results from several service invocations).

BPEL also supports service data object (SDO) variables, which are not in an XML format, but
rather in a memory structure format.

Data Manipulation and XPath Standards in Assign Activities

ORACLE

The starting point for data manipulation in BPEL is the assign activity, which builds on the
XPath standard. XPath queries, expressions, and functions play a large part in this type of
manipulation.

In addition, more advanced methods are available that involve using XQuery, XSLT, or Java,
usually to do more complex data transformation or manipulation.

This section provides a general overview of how to manipulate XML data in BPEL. It
summarizes the key building blocks used in various combinations and provides examples. The
remaining sections in this chapter discuss and illustrate how to apply these building blocks to
perform specific tasks.

You use the assign activity to copy data from one XML variable to another, or to calculate the
value of an expression and store it in a variable. A copy element within the activity specifies the
source and target of the assignment (what to copy from and to), which must be of compatible

types.

The following example shows the formal syntax for BPEL version 1.1, as described in the
Business Process Execution Language for Web Services Specification:

6-2

ORACLE

Chapter 6
Introduction to Manipulating XML Data in BPEL Processes

<assign standard-attributes>
standard-elements
<copy>
from-spec
to-spec
</copy>
</assign>

The next example shows the formal syntax for BPEL version 2.0, as described in the Web
Services Business Process Execution Language Specification Version 2.0. The
keepSrcElementName attribute specifies whether the element name of the destination (as
selected by the to-spec) is replaced by the element name of the source (as selected by the
from-spec) during the copy operation. When keepSrcElementName is set to no (the default
value), the name (that is, the namespace name and local name properties) of the original
destination element is used as the name of the resulting element. When keepSrcElementName
is set to yes, the source element name is used as the name of the resulting destination
element.

<assign validate="yes|no"? standard-attributes>
standard-elements
(
<copy keepSrcElementName="yes|no"? ignoreMissingFromData="yes|no"?>
from-spec
to-spec
</copy>

</assign>

This syntax is described in detail in both specifications. The from-spec and to-spec typically
specify a variable or variable part, as shown in the following example:

<assign>
<copy>
<from variable="cl1" part="address"/>
<to variable="c3"/>
</copy>
</assign>

When you use Oracle JDeveloper, you supply assign activity details in a Copy Rules dialog
that includes a From section and a To section. This reflects the preceding BPEL source code
syntax.

XPath standards play a key role in the assign activity. Brief examples are shown here as an
introduction. Examples with more context and explanation are provided in the sections that
follow.

e XPath queries

An XPath query selects a field within a source or target variable part. The from or to
clause can include a query attribute whose value is an XPath query string. The following
code provides an example:

<from variable="input" part="payload"
query="/p:CreditFlowRequest/p:ssn"/>

The value of the query attribute must be a location path that selects exactly one node. You
can find further details about the query attribute and XPath standards syntax in the
Business Process Execution Language for Web Services Specification (section 14.3) or
Web Services Business Process Execution Language Specification Version 2.0 (section
8.4), and the XML Path Language (XPath) Specification, respectively.

6-3

ORACLE

Chapter 6
Introduction to Manipulating XML Data in BPEL Processes

XPath expressions

You use an XPath expression (specified in an expression attribute in the from clause) to
indicate a value to be stored in a variable. For example:

<from expression="100"/>

The expression can be any general expression (that is, an XPath expression that
evaluates to any XPath value type). Similarly, the value of an expression attribute must
return exactly one node or one object only when it is used in the from clause within a copy
operation. For more information about XPath expressions, see section 9.1.4 of the XML
Path Language (XPath) Specification.

Within XPath expressions, you can call the following types of functions:

Core XPath functions

XPath supports a large number of built-in functions, including functions for string
manipulation (such as concat), numeric functions (such as sum), and others.

<from expression="concat('string one', 'string two')"/>

For a complete list of the functions built into XPath standards, see section 4 of the XML
Path Language (XPath) Specification.

BPEL XPath extension functions

BPEL adds several extension functions to the core XPath core functions, enabling XPath
expressions to access information from a process.

— For BPEL 1.1, the extensions are defined in the standard BPEL namespace http://
schemas.xmlsoap.org/ws/2003/03/business-process/ and indicated by the prefix
bpws:

<from expression= "bpws:getVariableData('input', 'payload', '/p:value') + 1"/>
For more information, see sections 9.1 and 14.1 of the Business Process Execution

Language for Web Services Specification. For more information about
getVariableData, see getVariableData.

— For BPEL 2.0, the extensions are also defined in the standard BPEL namespace
http://schemas.xmlsoap.orqg/ws/2003/03/business-process/. However, the prefix
iS bpel:

<from>bpel:getVariableProperty('input', 'propertyName')</from>
For more information, see section 8.3 of the Web Services Business Process

Execution Language Specification Version 2.0. For more information about
getVariableProperty, see getVariableProperty (For BPEL 2.0).

Oracle BPEL XPath extension functions

Oracle provides some additional XPath functions that use the capabilities built into BPEL
and XPath standards for adding new functions.

These functions are defined in the namespace http://schemas.oracle.com/xpath/
extension and indicated by the prefix ora:.

Custom functions

Oracle BPEL Process Manager functions are defined in the bpel-xpath-functions-
config.xml file and placed inside the orabpel.jar file. For more information, see Creating
User-Defined XPath Extension Functions.

6-4

http://schemas.xmlsoap.org/ws/2003/03/business-process/
http://schemas.xmlsoap.org/ws/2003/03/business-process/
http://schemas.xmlsoap.org/ws/2003/03/business-process/

Chapter 6
Delegating XML Data Operations to Data Provider Services

Sophisticated data manipulation can be difficult to perform with the BPEL assign activity and
the core XPath functions. However, you can perform complex data manipulation and
transformation by using XSLT, Java, or a bpelx operation under an assign activity (See
Manipulating XML Data with bpelx Extensions) or as a web service. For XSLT, Oracle BPEL
Process Manager and Oracle Mediator includes XPath functions that execute these
transformations.

For more information about XPath and XQuery transformation code examples, see Creating
Transformations with the XSLT Map Editor and Creating Transformations with the XQuery
Mapper.

For more information about the assign activity, see Assign Activity.

Note:

Passing large schemas through an assign activity can cause Oracle JDeveloper to
freeze up and run low on memory if you right-click the target or source payload node
in the Edit Assign dialog and select Expand All Child Nodes. As a workaround,
manually expand the payload elements.

Delegating XML Data Operations to Data Provider Services

ORACLE

You can specify BPEL data operations to be performed by an underlying data provider service
through use of the entity variable. The data provider service performs the data operations in a
data store behind the scenes and without use of other data store-related features provided by
Oracle SOA Suite (for example, the database adapter). This action enhances Oracle SOA
Suite runtime performance and incorporates native features of the underlying data provider
service during compilation and runtime.

The entity variable can be used with an Oracle Application Development Framework (ADF)
Business Component data provider service using SDO-based data.

Before Release 11g, variables and messages exchanged within a BPEL business process
were a disconnected payload (a snapshot of data returned by a web service) placed into an
XML structure. In some cases, the user required this type of fit. In other cases, this fit
presented challenges.

The entity variable addresses the following challenges of pre-11g releases:

» Extensive data conversion

If the underlying data was not in XML form, data conversion (for example, translating
delimited text to XML) was required. If the underlying size of the data was large, the
processing potentially impacted performance.

e Stale snapshot data

Variables (including WSDL messages) in BPEL processes were disconnected payload. In
some cases, this was required. In other cases, you wanted a variable to represent the
most recent data being modified by other applications outside Oracle BPEL Process
Manager. This meant the disconnected data model provided a stale data set that did not fit
all needs. The snapshot also duplicated data, which impacted performance when the data
size was large.

* Loss of native data behavior

6-5

Chapter 6
Delegating XML Data Operations to Data Provider Services

Some data conversion implementation required data structure enforcement or business
data logic beyond the XML schema. For example, the start date needed to be smaller than
the end date. When the variable was a disconnected payload, validation occurred only
during related web service invocation. Optionally performing the extra business data logic
after certain operations, but before web service invocation, was sometimes preferred.

To address these challenges starting with Release 11g and continuing with Release 12¢, you
create an entity variable during variable declaration. An entity variable acts as a data handle to
access and plug in different data provider service technologies behind the scenes. During
compilation and runtime, Oracle BPEL Process Manager delegates data operations to the
underlying data provider service.

Table 6-1 provides an example of how data conversion was performed in previous releases
(using the database adapter as an example) and in releases 11g and 12c¢ with the entity
variable.

Table 6-1 Data Manipulation Capabilities in Previous and Current Releases
]

10.1.x Releases 11g and 12c Releases When Using the Entity
Variable

Data operations such as explicitly loading and Data operations such as loading and saving data

saving data were performed by the database are performed automatically by the data provider

adapter in Oracle BPEL Process Manager. All data service (the Oracle ADF Business Component
(for example, of a purchase order) was saved in the application), without asking you to code any service
database dehydration store. invocation.

Oracle BPEL Process Manager stores a key (for
example, a purchase order ID (POID)) that points
to this data. Oracle BPEL Process Manager fetches
the key when access to data is requested (the bind
entity activity does this). You must explicitly request
the data to be bound using the key. Any data
changes are persisted by the data provider service
in a database that can be different from the
dehydration store database. This prevents data

duplication.
Data in variables was in document object model Data in variables is in SDO form, which provides for
(DOM) form a simpler conversion process than DOM, especially
when the data provider service understands SDO
forms.

< Note:

Only BPEL process service components currently allow the use of SDO-formed
variables. If your composite application has an Oracle Mediator service component
wired with an SDO-based Java binding component reference, the data form of the
variable defaults to DOM. In addition, the features described for 10.1.x releases in
Table 6-1 are still supported in Releases 11g and 12c.

How to Create an Entity Variable

This section describes how to create an entity variable and a binding key in Oracle JDeveloper.

In Release 10.1.x of Oracle BPEL Process Manager, all variable data was in DOM format.
Starting with Release 11g and continuing with Release 12c, variable data in SDO format is also

ORACLE 66

Chapter 6
Delegating XML Data Operations to Data Provider Services

supported. DOM and SDO variables in BPEL process service components are implicitly
converted to the required forms. For example, an Oracle BPEL process service component
using DOM-based variables can automatically convert these variables as required to SDO-
based variables in an assign activity, and vice versa. Both form types are defined in the XSD
schema file. No user intervention is required.

Entity variables also support SDO-formed data. However, unlike the DOM and SDO variables,
the entity variable with SDO-based data enables you to bind a unique key value to data (for
example, a purchase order). Only the key is stored in the dehydration store; the data requiring
conversion is stored with the service of the Oracle ADF Business Component application. The
key points to the data stored in the service. When the data is required, it is fetched from the
data provider service and placed into memory. The process occurs in two places: the bind
entity activity and the dehydration store. For example, when Oracle BPEL Process Manager
rehydrates, it stores only the key for the entity variable; when it wakes up, it does an implicit
bind to get the current data.

Understanding How SDO Works in the Inbound Direction

The SDO binding component service provides the outside world with an entry point to the
composite application, as shown in Figure 6-1.

Figure 6-1 Inbound Direction

S04 Composite Application

BPEL
Process Service
Component

L_,

=

ADF BC SDO Binding
Application Using Component
SDO-Formed Data i Service

Wire

You use the SOA Composite Editor and Oracle BPEL Designer to perform the following tasks:

» Define an SDO binding component service and a BPEL process service component in the
composite application.

* Connect (wire) the SDO service and BPEL process service component.
« Define the details of the BPEL process service component.

For more information about using the SOA Composite Editor, see Getting Started with
Developing SOA Composite Applications.

Understanding How SDO Works in the Outbound Direction

The SDO binding component reference enables messages to be sent from the composite
application to Oracle ADF Business Component application external partners in the outside
world, as shown in Figure 6-2.

ORACLE .

Chapter 6
Delegating XML Data Operations to Data Provider Services

Figure 6-2 Outbound Direction

S0A Composite Application

BPEL
Process Service
Component
{u sln? entity
variable)

L'_ Wire SD0O Binding —™ ADF BC
e e e Component Application Using
| Reference _| 8DO-Formed Data
B | L L

Pass key to fetch data

When the Oracle ADF Business Component application is the external partner link to the
outside world, there is no SDO binding component reference in the SOA Composite Editor that
you drag into the composite application to create outbound communication. Instead,
communication between the composite application and the Oracle ADF Business Component
application occurs as follows:

e The Oracle ADF Business Component application is deployed and automatically registered
as an SDO service in the Service Infrastructure

* Oracle JDeveloper is used to browse for and discover this application as an ADF-BC
service and create a partner link connection.

* The composite.xml file is automatically updated with reference details (the binding.adf
property) when the Oracle ADF Business Component application service is discovered.

Creating an Entity Variable and Choosing a Partner Link

ORACLE

You now create an entity variable and select a partner link for the Oracle ADF Business
Component application. The following example describes how the OrderProcessor BPEL
process service component receives an ID for an order by using a bind entity activity to point to
order data in an Oracle ADF Business Component data provider service.

Note:

Entity variables are supported on BPEL projects that use version 1.1 or 2.0 of the
BPEL specification.

To create an entity variable and choose a partner link:
1. Go to the Structure window of the BPEL process service component in Oracle JDeveloper.
2. Right-click the Variables folder and select Expand All Child Nodes.
3. Inthe second Variables folder, right-click and select Create Variable.
The Create Variable dialog appears.

4. In the Name field, enter a name.

6-8

Chapter 6
Delegating XML Data Operations to Data Provider Services

5. Click the Entity Variable check box and select the Search icon to the right of the Partner
Link field.

The Partner Link Chooser dialog appears with a list of available services, including the
SDO service called ADF-BC.

6. Browse for and select the service for the Oracle ADF Business Component application.
7. Click OK to close the Partner Link Chooser and Create Variable dialogs.

The dialog looks as shown in Figure 6-3.

Figure 6-3 Create Variable Dialog

& Edit Variable - gOrderinfo¥ariable

General |

Mame: |g0rderInFOUariabIe

Type

) Type %

() Message Type %

() Element |{,l'oracle,l'Fodemo,l'storeFront,l'store,l'queries,l'com| ‘:k
Entity Variable

|StoreFrontService | Ck

Creating a Binding Key

You now create a key to point to the order data in the Oracle ADF Business Component data
provider service.

To create a binding key:

1. Inthe Components window, expand Oracle Extensions.
2. Scroll down to the SDO section.

3. Drag a Bind Entity activity into your BPEL process service component. Figure 6-4
provides details.

Figure 6-4 Bind Entity Activity in the Components Window

=l BPEL Constructs

feh Service
Invake Partner Link
k] 2
Receive Reply

4 Subprocesses
=l Oracle Extensions

Fjele]

& &

Bind Entity Create
Entity

ORACLE 6.9

ORACLE

Chapter 6
Delegating XML Data Operations to Data Provider Services

The Bind Entity dialog appears.

In the Name field, enter a name.

To the right of the Entity Variable field, click the Search icon.
The Variable Chooser dialog appears.

Select the entity variable created in Creating an Entity Variable and Choosing a Partner
Link and click OK.

In the Unique Keys section, click the Add icon.

The Specify Key dialog appears. You use this dialog to create a key for retrieving the order
ID from the Oracle ADF Business Component data provider service.

Enter the details described in Table 6-2 to define the binding key:

Table 6-2 Specify Key Dialog Fields and Values

Field Value

Key Local Part Enter the local part of the key.

Key Namespace URI Enter the namespace URI for the key.

Key Value Enter the key value expression. This expression must match the

type of a key. The following examples show expression value keys

for a POID key:

e SinputMsg.payload/tns:poid

e Dbpws:getVariableData ('inputmsg', 'payload’', 'tns:po
id")

The POID key for an entity variable typically comes from another

message. If the type of POID key is an integer and the expression

result is a string of ABC, the string-to-integer fails and the bind entity

activity also fails at runtime.

Figure 6-5 shows the Specify Key dialog after completion.

Figure 6-5 Specify Key Dialog

& Specify Key §|

Key QName
ey Local Part: | Crderld | x)

Key Namespace IR |,l'oracIe,l'Fodemo,l'storefrontJ'store,l'queries;'common,l’ |

Key Yalue: |bpws:get\-'ariableData('input\-'ariable','payload',',I'client:process,l'client:orderld') |

| Help | | OF || Cancel |

Click OK to close the Specify Key dialog.

A name-pair value appears in the Unique Keys table, as shown in Figure 6-6. Design is
now complete.

6-10

Chapter 6
Translating Between Native Data and XML

Figure 6-6 Bind Entity Dialog

Bind Entity R®

| General rSkip Condition |

Mame: |Find0rderById |
Entity Wariable: |gOrderInF0\-'ariable | C%
Unique Keys: '* / 8@

key QMame Yalue Expression

{/oracleffodemoystor... bpuws:getariableDatalinputtariable’,'pavioad,'f..

| Help | | Apply || Ok || Cancel

10. Click OK to close the Bind Entity dialog.
After the Bind Entity activity is executed at runtime, the entity variable is ready to be used.

For more information about using SDOs, see Publishing Service-Enabled Application Modules
in Developing Fusion Web Applications with Oracle Application Development Framework. This
guide describes how to expose application modules as web services and publish rows of view
data objects as SDOs. The application module is the ADF framework component that
encapsulates business logic as a set of related business functions.

Translating Between Native Data and XML

ORACLE

The BPEL process translate activity enables you to translate messages between native XSD
format and XML format. The following types of translation are supported:

* Inbound translation:
— Native format to XML
— Opaque to XML
— Native to an attachment in a directory
* Outbound translation:
— XML to native format
— XML to an attachment in a directory
e Supported in both BPEL 1.1. and 2.0 projects.

Inbound message translation automatically uses the doTranslateFromNative function.
Outbound message translation automatically uses the doTranslateToNative function). You do
not need to create an assign activity and invoke the Expression Builder dialog to configure
these functions. The translate activity automatically generates the assign activity.

6-11

Chapter 6
Translating Between Native Data and XML

How to Translate Native Data to XML Data

This section describes how to configure the translate activity in a BPEL process to receive an
inbound message in native XSD format (for this example, string data) and translate it to XML
format. The Native Format Builder wizard is used to create a new schema file.

To translate native data to XML data:

1.

ORACLE

Right-click a BPEL process in the SOA Composite Editor, and select Edit.
Oracle BPEL Designer is displayed.

Expand the Oracle Extensions section of the Components window and drag a Translate
activity into the BPEL process. Figure 6-7 provides details.

Figure 6-7 Translate Activity in a BPEL Process

@

receivelnput

o
@]

bpelprocessl_clisnt

replyDutput

Right-click the translate activity and select Edit.

The Translate dialog is displayed for editing.

Select Native to XML to receive inbound native data (for this example, in a single string).
To the right of the Input field, click the Browse icon.

The Variable XPath Builder dialog is displayed.

Select the native string that is part of the inbound payload to translate into XML format, and
click OK. Figure 6-8 provides details.

6-12

ORACLE

Chapter 6
Translating Between Native Data and XML

Figure 6-8 Variable XPath Builder

i

= Wariables
= g Process

Variable XPath Builder %

=5 Variables
E-f) inputiariable
= E payload
=P clientprocess
e clientiinput string
() outputiariable

|| Ehows Detziled Made InTor i stion

KPath: }inpuvar able.payload/ clienlinput

Help % Cancel

To the right of the NXSD Schema field, select the schema to use:

If the schema already exists, select the Search (first) icon to invoke the Type Chooser
dialog.

If the schema does not exist, select the second icon to invoke the Native Format
Builder wizard to create the schema.

The following example describes how to use the Native Format Builder wizard to create a
new schema from a text file that uses a comma-separated delimiter.

a.

In the File Name field of the File Name and Directory dialog, enter a name, and click
Next.

In the Choose Type dialog, select Delimited (Contains records whose fields are
delimited by a special character), and click Next.

In the File Description dialog, click Browse to select the text file that uses the comma-
separated delimiter.

The Select sample file dialog is displayed.
Select the file to use, and click OK.

The file contents are displayed at the bottom of the File Description dialog. Figure 6-9
provides details.

6-13

Chapter 6
Translating Between Native Data and XML

Figure 6-9 Sample File Contents

Native Format Builder - Step 3 of &

File Description

Specily name of Til2 hat ¥ou waht 1o Sam ple

File name; |fscratchfsbandyop/tmpfaddr2 o Browge

Humber of rows ta skip: h =

Humber of rows to zample: |2DEI | [&N rovws
Humber of dats rows 10 process: I | |we] 0 Firas
Character set: us-sscn -|

Select zehema and paylowd validation Nag:
[D Validate Schema 1 Validate Payload at Top level [] Walidate Payload at Ficld lewel

Select Complex Lookthead Processing Flags
’r| | Bepart LoakAhead Errer Unique Meszage Separstor Adl

File: fscratchfshandyop ftmp faddrz txe

1 [c2 [c2 [c4 S
[Sujay 33rd Faln Ave Apt 24F New York Ny US|

Help = Back ﬁexl = T Cancel

e. Click Next.
f. Inthe Record Organization dialog, click Next.

g. Inthe Specify Elements dialog, enter a name for the element to represent the record
(for this example, addr is entered), and click Next.

h. In the Specify Delimiters dialog, accept the default value of a comma as the special
character that delimits the fields in the text file, and click Next.

i. Inthe Name column of the Field Properties dialog, enter the appropriate values in
place of C1, C2, C3, C4, C5, and C6, and click Next. Figure 6-10 provides detalils.

Figure 6-10 Name Column Default Values Replaced with Specific Values

Native Format Builder - Step 7 of &
Field Properties

Specity the feld names and Tield properties
[Use the first recard as the field names

Marne | Twoe | Delimiter |
string Comma ()
string Comma ()
string Caomma ()
string Comma ()
string Comma ()
string §{eal}

File: /zcratchy/sbandyop fimpfaddra txt

name | strastl | straet? | ciny | state | country
Sujay 33rd Palm Awe Apt 24F New York NY s

Help = Back HEXI: r Cancel

The new schema is displayed in the Generated Native Format Schema dialog.

ORACLE 6-14

ORACLE

Click Test to test the schema.

Chapter 6

Translating Between Native Data and XML

In the Result XML section, click the green arrow.

The native schema and resulting XML are displayed. Figure 6-11 provides details.

Figure 6-11 Output From Testing the Native Schema

= Test NXSD Schema %

Frovide anative file and click on Run to generate the runtime xml documens

<xsdischema xminsixsd="http./ /wewawd on
KmIns sl ="n1p:/xmins.oracle.com
nzins="http / [TargstHamespace ¢
i nespace="http://Targetiame
elementForm Defsult="rualified"
attribus eForm Defauli="ungualified"

nxsdversion="Hx50"
nxgd siream ="chars"
nxsd:encoding="Us=-A5CII"

<xsezelement name="addr" s
<xsdicormp lexTyje>
<usdsequence:
<xidielement name="name" rype="xid.

Help

<addr xmins="h
<mame > Sujay<

“street2=Apt 24F < fsireer 2
<ty =Mew York< /ciiy>
“state = NY < /slates
<CoUMmry> LS < fcourmry>

< [l =

Ok

i

Eile name: fscraichfsbhandyop fimpf2ddr2. o Braowse
1 ez [cz = [cs s |

Sujay 33rd PAln Awe ApT 24F New York NY . US
Schema Resull XML (-3
lf."-'\.ml version="10" encoding="UTF-&"' 7> <7xmlversion = "1.0" encoding = '"UTF-87>

JATargethlam espace. com /1

<§treetl>33rd Falm Ave < /street] -

Cancel

Click OK to return to the Generated Native Format Schema dialog.

m. Click Next, then Finish.

From the Output Type list, select DOM. Both DOM and SDOM supported if you select

The addr_schemal.xsd file is created and displayed in the NXSD Schema field of the

Translate dialog.

DOM.

To the right of the Output field, select the variable for the schema.

a.

When complete, the Translate dialog looks as shown in Figure 6-12.

If you have an output variable that adheres to the schema specified in Step 7, click the

Search (first) icon to select the existing variable.

If you do not have an existing variable, click the Add (second) icon to invoke the

Create Variable dialog. Accept the default values or rename the variable to create an
output variable, and click OK. The variable automatically points to the schema created

in Step 7.

6-15

ORACLE

Chapter 6
Translating Between Native Data and XML

10. Figure 6-12 Translate Dialog Configured for Native to XML Translation

11.

12.
13.
14.

15.

iy Edit Translate %
Ceneral Translation Annotations Skip Condition
¥ Native to XML [0 XML 1o Mative

Input: |$':nputkl’aria.hle.pa'r'lund,."cliem.inpm | \:{ m
MESE Schema: | /Schemas faddr_schemal. xsd | Q &
Element: |addr |

Gutput Type: | DOM ~|

Gutput: [$Translarel _Cutpurvar i | S &
Help Apply Gg Cancel

The output for the synchronous request must now be changed to point to the new schema.

In the Applications window, select the BPEL process WSDL file (for this example, named
BPELProcessl.wsdl).

At the bottom of Oracle BPEL Designer, click Source.
Scroll to the <wsdl:message> section of the WSDL file.

Click the response element (for this example, named processResponse) for the message
BPELProcess1ResponseMessage to invoke the Property Inspector in the lower right
corner. Figure 6-13 provides details.

Figure 6-13 Root Element Selection in the WSDL File

B1-07] restsuites schemalocation="../Schenas,BPELP rocessl, xsd®

_Jip) = e;::h::‘]amrra wIns: wsd="NtTp: /Aol W3 oro, 2001 MHLSchema®
I Transformations . B N S el e s S y i
; 9 o cxsd:import nanespace="hTop://Targethanespaca. con/nEsdsc
L= WsDLs < /s schemas
(@] BFELProcesslwedl < /wsdl: typess
L = <wsdl :message nane="BFELProcesslReguestHessags"s
ppllcation Resouroes <nsdl:part name="payload" element="client:process"/»
ista Controls < /wsdl nessage=
wecent Elles =] <msdl :message nane="BPELProcesslResponsedassage”>
- L awsdl :part nane="payload" element="client: pl'ul:essRespanse".-’:-

< W] NeESSaAges

In the Property Inspector, select the new root element (for this example, ns1:addr).
Figure 6-14 provides details.

6-16

Chapter 6
Translating Between Native Data and XML

Figure 6-14 Root Element Selected in Property Inspector

payload |

Br &5 O S
cligritpracessfes ponge
clientresult

m:!_:-:lt_.rE

N LiCountry
ESNET
nel.stane
nslistree1l

The nsl:addr root element is added to the WSDL file. Figure 6-15 provides details.

Figure 6-15 New Root Element

BRELProcessl wwedl - STFuC... = =)
@ ?|
nings (13 &
nitions =l
partnerLinkType
Types

message - BPELProce s 1Reque siMessa

mezzsage - BPELPracesz 1l Respancebles: Deesign

wadldefifitians -

Appears in WSDL File

2wl nessages

cnsdl nessage nane="BFELFrocesslResponseMessage” »
<ngdl ipart name="paylead” glament="nsl:addr" -

< /wsd] inessage:

<wsd] :portType nawe="BFELProcessl"s

cnsdl Joperation nang="process”s
cmsdl :input nmessage="client:BPELFrocasslReq
<wsdl zoutput message="client:BPELProcesslRe

wadlimessags = msdlpan
Schema | Source| History

Ill'l_"l part - il addr g

BPEL - Log

16. Drag an Assign activity into the BPEL process beneath the translate activity.
You now assign the translation output variable to the BPEL output variable.

17. In the Copy Rules tab of the assign activity, map the variables, and click OK. Figure 6-16

provides details.

Figure 6-16 Edit Assign Dialog

fi Edit Assign %
General | Copy Rules Annotations Documentation | Targets Sowrces | Skip Condition
[Insen Hew Rule After '] E & O &= =
winer Links Fartner Links ||
riables Varisble: [(3-2
y Process Process -l
= variables v
=) inpurvariable b, 2 inputiarisble) =
() owtputvariabie : outpuariable =
B ﬂ‘.‘] Translatel _Ouiputvar_1 nzladdr——"" payload] =
=-4¥ neladde mzl-addr L 3]
i Tranzlatel_Ousputyar_1 m a1l

ORACLE"

6-17

Chapter 6
Translating Between Native Data and XML

Design is now complete.

How to Translate XML Data to Native Data

This section describes how to translate an incoming XML message to native data format (such
as a comma delimited string). This example uses the schema file created in How to Translate
Native Data to XML Data as the outbound XML format to translate to native XSD format.

ORACLE

To translate XML format to native data:

1.
2.

Create a synchronous BPEL process.

In the Input field of the Create BPEL Process dialog, accept the default input XSD schema
or click the Search icon to select a different XSD. For this example, the schema created
with the Native Format Builder in How to Translate Native Data to XML Data is selected.
Figure 6-17 provides details.

Figure 6-17 Input Schema Selection

1] Type Chooser x

nE

"4, Type Explarer
=5 Praject Schema Files
=& addr_schemal.xsd
&
-3 Project WSDL Files

Type: {http/{Targetamespace com /nxsdschemajaddr

|| Ehaows Detziled Mode Inform ation

Help h_i(Cancel

Right-click the BPEL process in the SOA Composite Editor, and select Edit.
Oracle BPEL Designer is displayed.

Expand the Oracle Extensions section of the Components window and drag a Translate
activity into the BPEL process.

Right-click the translate activity, and select Edit.

The Translate dialog is displayed for editing.

Select XML to Native to translate outbound XML data into native XSD format.
To the right of the Input field, click the Browse (first) icon.

Select the input variable. Figure 6-18 provides details.

6-18

Chapter 6
Translating Between Native Data and XML

Figure 6-18 Input Variable Selection

i Variable XPath Builder *

I3 variables
B gs Process
=[5 Variables
=) inputiariable
=-[F payload
[ERCE iz Liaddr <anonymouss
[&1 outputlariable

|| Ehowr Detziled Maode Inform ation

XPath: | FinpuVariable payload

Help L8 Cancel

9. To the right of the NXSD Schema field, select the Search (first) icon to invoke the Type
Chooser dialog.

10. Select the schema file, and click OK. This example uses the same schema file as How to
Translate Native Data to XML Data. Figure 6-19 provides details.

Figure 6-19 Schema File Selection

[} Type Chooser x

®E

b, Type Explarer
=53 Project Schema Files
it & BFELProcessl.xsd
=22, addr_schemal x3d
@

- Project WSDL Files

Type: {http,/Targetlamespace com fnxsdschemajaddr

| | Ehows Derziled Made Infor i atian

Help k s Cancel

11. From the Output Type list, select STRING.

If you instead select ATTACHMENT, the dialog is refreshed to display the Location field
for specifying the directory location for the attachment. Selecting ATTACHMENT is useful
for scenarios in which XML data is very large.

12. To the right of the Output field, click the Search (first) icon or click the Create Variable
icon to automatically create a new output variable of type string.

13. Select the output variable, and click OK. Figure 6-20 provides details.

ORACLE 619

Chapter 6
Translating Between Native Data and XML

Figure 6-20 Output Variable Selection

5] Variable XPath Builder *

[Variables
= gs Process
=3 variables
[m inputiiariable
=) outputvariable
=t E payload
=4 clientprocessRespanse

LW client result string

| | Ehows Derziled Maode Inform ation

wPath: foutputvariable.paylead clientresuln

Help ﬂ(Cancel

The Translate dialog looks as shown in Figure 6-21.

Figure 6-21 Translate Dialog Configured for Outbound Translations

iy Edit Translate %
Ceneral | Translation Annotations Skip Condition
O Mative o XML (&) ML o Mative

Input: |3i:nputtl’ariahle.pa'r'lund | \:{ m
M50 Schema: | /Schemasyaddr_schemal. xsd | Q &
Element: |addr -

Gutput Type: [STRING ~|

it [$outputvariable.payload/clientresult | S &
Help Apply gh Cancel

Design is now complete.

How to Translate Inbound Native Data to XML Stored as an Attachment

This section describes how to translate an inbound message in native data format to an
attachment. Attachments are useful for scenarios in which incoming data is very large.

ORACLE 620

ORACLE

To translate inbound native XSD format to an attachment:

1. Create a BPEL process (for this example, a one-way BPEL process is created).

2. Right-click the BPEL process in the SOA Composite Editor, and select Edit.

Oracle BPEL Designer is displayed.

Chapter 6
Translating Between Native Data and XML

3. Expand the Oracle Extensions section of the Components window and drag a Translate

activity into the BPEL process.

4. Right-click the translate activity, and select Edit.

The Translate dialog is displayed for editing.

5. Select Native to XML to translate inbound native data into an attachment.
6. To the right of the Input field, click the Browse (first) icon.

7. Select the input variable (for this example, a very large string). Figure 6-22 provides

details.

Figure 6-22 Input Variable Selection

i Variable XPath Builder

I3 variables
B s Process
=[5 variables
=) inputViariable
=-[F payload
4P clientprocess
E¥ A client inpuit string

|| Ehaw Detziled Mode Infor i ation

¥Path: | $inputVariabilepayload/elisntinput

Help

oK

Cangel

8. To the right of the NXSD Schema field, select the Search (first) icon to invoke the Type

Chooser dialog.

9. Select the schema file, and click OK. This example uses the same schema file as How to

Translate Native Data to XML Data. Figure 6-23 provides details.

6-21

Figure 6-23 Schema File Selection

f

[, Trpe Explarer
=3 Project Schema Files
(- BPELProcessl.xzd
= g% addr_schemal csd
L
G- Project WSDL Files

Type Chooser x

®E

Type: {http:f fTargetNam ez pace cam fnxsdschem ajaddr

Help

|| Ehovs Detziled Mode INTormEtion

5&(Cancel

10. From the Output Type list, select ATTACHMENT.

The dialog is refreshed to display the Location field.

Chapter 6
Translating Between Native Data and XML

11. In the Location field, enter the directory path to the attachment. If this field is left blank, the
attachment is stored in the database.

12. To the right of the Output field, click the Add (second) icon to invoke the Create Variable

dialog.

13. Click OK to create the output variable. The output variable is of type attachment.

The Translate dialog looks as shown in Figure 6-24.

Figure 6-24 Translate Dialog for an Attachment

iy Edit Translate x
General Translation Anmotations Skip Conditien
=) Mative to XML () XMLt Mathe
Input; [$inpuriariable payload fclientinpu | &, B
M50 Schema: | fSchemas/addr_schemal xsd | Q &
Elemens: |addr -|
Cutput Type: | ATTACHMENT =
Location: i sbandtyoptmp/outfdhaa_addr_attami| S
Qutpu: |1Tran=|a:=L_Du1pul.ﬂr_:l | \:h ﬁi
Help Apply QK Cancel
14. Click OK.

ORACLE

6-22

Chapter 6
Using Standalone SDO-based Variables

15. In the Applications window, select the BPEL process file.
16. Click Source.

17. Note that the location you specified for the attachment is copied to an href attribute. The
href attribute is part of the variable of type attachment that was created in Step 12.

<copy>
<from> '/scratch/sbandyop/tmp/out/dhga addr att.xml'</from>
<to> $Translatel OutputVar 1/@href</to>

</copy>

18. In the Applications window, select the BPEL process WSDL file.
19. Click Source.

20. Note the attachment code added to the WSDL definitions section of the file and the href
attribute that is pointed to by the variable created in Step 12.

xmlns:attach="http://xmlns.oracle.com/DHQATranslateApp/DHQATranslateToAttach/
BPELProcessl/attachment"

<element name="attachmentElement">
<complexType>
<attribute name="href" type="string"/>
</complexType>
</element>

Design is now complete.

Using Standalone SDO-based Variables

Standalone SDO-based variables are similar to ordinary BPEL XML-DOM-based variables.
The major difference is that the underlying data form is SDO-based, instead of DOM-based.
Therefore, SDO-based variables can use some SDO features such as Java API access, an
easier-to-use update API, and the change summary. However, SDO usage is also subject to
some restrictions that do not exist with XML-DOM-based variables. The most noticeable
restriction is that SDO only supports a small subset of XPath expressions.

How to Declare SDO-based Variables

ORACLE

The syntax for declaring an SDO-based variable is similar to that for declaring BPEL variables.
The following example provides details.

<variable name="deptVar s" element="hrtypes:dept" />
<variable name="deptVar v" element="hrtypes:dept" bpelx:sdoCapable="false" />

If you want to override the automatic detection, use the bpelx:sdoCapable="true|false"
switch. For example, variable deptVar v described in the preceding sample is a regular DOM-
based variable. The following example shows an XSD sample:

<xsd:element name="dept" type="Dept"/>
<xsd:complexType name="Dept"
sdoJava:instanceClass="sdo.sample.service.types.Dept">

6-23

Chapter 6
Using Standalone SDO-based Variables

<xsd:annotation>
<xsd:appinfo source="Key"
xmlns="http://xmlns.oracle.com/bcdj/service/metadata/">
<key>
<attribute>Deptno</attribute>
</key>
<fetchMode>minimal</fetchMode>
</xsd:appinfo>
</xsd:annotation>
<xsd:sequence>
<xsd:element name="Deptno" type="xsd:integer" minOccurs="0"/>
<xsd:element name="Dname" type="xsd:string" minOccurs="0"
nillable="true"/>
<xsd:element name="Loc" type="xsd:string" minOccurs="0" nillable="true"/>
<xsd:element name="Emp" type="Emp" minOccurs="0" maxOccurs="unbounded"
nillable="true"/>
</xsd:sequence>
</xsd:complexType>

How to Convert from XML to SDO

ORACLE

Oracle BPEL Process Manager supports dual data forms: DOM and SDO. You can
interchange the usage of DOM-based and SDO-based variables within the same business
process, even within the same expression. The Oracle BPEL Process Manager data
framework automatically converts back and forth between DOM and SDO forms.

By using the entity variable XPath rewrite capabilities, Oracle BPEL Process Manager enables
some XPath features (for example, variable reference and function calls) that the basic SDO
specification does not support. However, there are other limitations on the XPath used with
SDO-based variables (for example, there is no support for and, or, and not).

The following example shows XML-to-SDO conversion:

<assign>
<copy>
<from>
<ns0:dept xmlns:ns0="http://sdo.sample.service/types/"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance">

<ns0:Deptno>10</ns0:Deptno>

<ns0:Dname>ACCOUNTING</ns0:Dname>

<ns0:Loc>NEW YORK</ns0:Loc>

<ns0:Emp>
<ns0:Empno>7782</ns0:Empno>
<ns0:Ename>CLARK</ns0:Ename>
<ns0:Job>MANAGER</ns0:Job>
<ns0:Mgr>7839</ns0:Mgr>
<ns0:Hiredate>1981-06-09</ns0:Hiredate>
<ns0:5a1>2450</ns0:5al>
<ns0:Deptno>10</ns0:Deptno>

</ns0:Emp>

<ns0:Emp>
<ns0:Empno>7839</ns0:Empno>
<ns0:Ename>KING</ns0:Ename>
<ns0:Job>PRESIDENT</ns0:Job>
<ns0:Hiredate>1981-11-17</ns0:Hiredate>
<ns0:5a1>5000</ns0:Sal>
<ns0:Deptno>10</ns0:Deptno>

</ns0:Emp>

<ns0:Emp>
<ns0:Empno>7934</ns0:Empno>
<ns0:Ename>MILLER</ns0:Ename>

6-24

ORACLE

Chapter 6

Using Standalone SDO-based Variables

<ns0:Job>CLERK</ns0:Job>
<ns0:Mgr>7782</ns0:Mgr>
<ns0:Hiredate>1982-01-23</ns0:Hiredate>
<ns0:5al1>1300</ns0:Sal>
<ns0:Deptno>10</ns0:Deptno>
</ns0:Emp>
</ns0:dept>

</from>

<to variable="deptVar s" />
</copy>

</assign>

The following example illustrates copying from an XPath expression of an SDO variable
DOM variable:

<assign>
<!-- copy from an XPath expression of an SDO variable to DOM variable -->
<copy>
<from expression="S$deptVar s/hrtypes:Emp[2]" />
<to variable="empVar v" />
</copy>
<!-- copy from an XPath expression of an DOM variable to SDO variable -->
<copy>
<from expression="S$deptVar v/hrtypes:Emp[2]" />
<to variable="empVar s" />
</copy>
<!-- insert a DOM based data into an SDO variable -->

<bpelx:insertAfter>
<bpelx:from variable="empVar v" />
<bpelx:to variable="deptVar s" query="hrtypes:Emp" />
</bpelx:insertAfter>
<!-- insert a SDO based data into an SDO variable at particular location,
no XML conversion is needed -->
<bpelx:insertBefore>
<bpelx:from expression="$deptVar s/hrtypes:Emp[hrtypes:Sal = 1300]" />
<bpelx:to variable="deptVar s" query="hrtypes:Emp[6]" />
</bpelx:insertBefore>
</assign>

The following example shows SDO Data Removal:

<assign>
<bpelx:remove>
<bpelx:target variable="deptVar s" query="hrtypes:Emp[2]" />
</bpelx:remove>
</assign>

Note:

The bpelx:append operation is not supported for SDO-based variables for the
following reasons:

toa

e The <copy> operation on an SDO-based variable has smart update capabilities
(for example, you do not have to perform a <bpelx:append> operation before the
<copy> operation).

e The SDO data object is metadata driven and does not generally support adding a
new property arbitrarily.

6-25

Chapter 6
Initializing a Variable with Expression Constants or Literal XML

Initializing a Variable with Expression Constants or Literal XML

It is often useful to assign literal XML to a variable in BPEL (for example, to initialize a variable
before copying dynamic data into a specific field within the XML data content for the variable).
This is also useful for testing purposes when you want to hard code XML data values into the
process. You assign literal XML by dragging a literal icon to a target node on the Copy Rules
tab of the assign activity.

For more information about assigning literal XML in an assign activity, see Assign Activity.

How To Assign a Literal XML Element

The following example assigns a literal result element to the payload part of the output

variable:
<assign>
<!-- copy from literal xml to the variable -->
<copy>
<from>
<result xmlns="http://samples.otn.com">
<name/>
<symbol/>
<price>12.3</price>
<quantity>0</quantity>
<approved/>
<message/>
</result>
</from>
<to variable="output" part="payload"/>
</copy>
</assign>

Copying Between Variables

When you copy between variables, you copy directly from one variable (or part) to another
variable of a compatible type, without needing to specify a particular field within either variable.
In other words, you do not need to specify an XPath query.

You perform variable copying in the Copy Rules tab of the Edit Assign dialog, as shown in
Figure 6-25.

ORACLE 606

Chapter 6
Copying Between Variables

Figure 6-25 Copy Rules Tab for Variable Assignment

Edit Assign

GCeneral Copy Rules Annotations Documentation Skip Condition Targets Sources
Insert New Rule After B w9 = &
BEPELProcesszl hpel ¢

iPELProcess1.bpel

7] Partner Links Partrer Links [J-¢

2 Variables Variables [23-¢

= g Process Process ga =
\ariables [£3-2

=3 variables
m inputvariable client:BPELProcess1Requestiezzage
m outputiariable client:BEPELProcess1Responzebessage

inputvariable client:BPELProcess1Requestiezzage h‘)
outputWariable clientEPELProcess1ResponseMessage m

+ X 4 4

Fram

For more information about the Copy Rules tab, see Manipulating XML Data with bpelx
Extensions and Assign Activity.

How to Copy Between Variables

The following example shows two assignments being performed, first copying between two
variables of the same type and then copying a variable part to another variable with the same

type as that part.

<assign>
<copy>
<from variable="c1"/>
<to variable="c2"/>
</copy>
<copy>
<from variable="cl" part = "address"/>

<to variable="c3"/>
</copy>
</assign>

The BPEL file defines the variables, as shown in the following example:

—_n

<variable name="cl" messageType="x:person"/>
<variable name="c2" messageType="x:person"/>
<variable name="c3" element="y:address"/>

The WSDL file defines the person message type, as shown in the following example:

<message name="person" xmlns:x="http://tempuri.org/bpws/example">
<part name="full-name" type="xsd:string"/>

ORACLE" 6-27

Chapter 6
Copying Between Variables

<part name="address" element="x:address"/>
</message>

For more information about this code example, see Section 9.3.2 of the Business Process
Execution Language for Web Services Specification. For BPEL 2.0, see Section 8.4.4 of Web
Services Business Process Execution Language Specification Version 2.0 for a similar
example.

For more information, see Assign Activity.

How to Initialize Variables with an Inline from-spec in BPEL 2.0

ORACLE

A variable can optionally be initialized by using an inline from-spec. Click the Initialize tab in

the Create Variable dialog in a BPEL 2.0 project to create this type of variable. Figure 6-26
provides details.

Figure 6-26 Initialize Tab of Create Variable Dialog
7 Create Variable x|
General Initialize Documentation
Data Source:
Wariable s
|7 variables
Help Cancel

Inline variable initializations are conceptually designed as a virtual sequence activity that
includes a series of virtual assign activities, one for each variable being initialized, in the order
in which they appear in the variable declarations. Each virtual assign activity contains a single
virtual copy operation whose from-spec is as given in the variable initialization. The to-spec
points to the variable being created. The following example provides details.

<variables>
<variable name="tmp" element="tns:output">
<from>
<literal>
<output xmlns="http://samples.otn.com/bpel2.0/ch8.1">
<value>1000</value>
</output>
</literal>
</from>
</variable>
</variables>

For more information, see section 8.1 of Web Services Business Process Execution Language
Specification Version 2.0.

6-28

Chapter 6
Copy Between JSON and XML Variables in a BPEL Process

Copy Between JSON and XML Variables in a BPEL Process

The Oracle JDeveloper BPEL designer includes a series of activities that can be added to a
BPEL process through drag-and-drop. One such activity is the BPEL assign activity, which
provides a method for data manipulation, and enables you to transfer information between
variables (XML or JSON), expressions, endpoints, and other elements.

In Oracle JDeveloper design time, while configuring a REST binding in a BPEL composite, you
must configure the input payload before you invoke the endpoint. You can manipulate the
payload variables through the BPEL Assign Activity. See Assign Activity.

From Oracle JDeveloper 14.1.2.0.0 and later versions, you can render a JSON variable as a
tree in design time and visually map the child elements before invoking an endpoint.

Create a JSON Variable

ORACLE

1. Go to the Structure window of the BPEL process service component in Oracle JDeveloper.
2. Right-click the Variables folder and select Expand All Child Nodes.
3. Inthe second Variables folder, right-click and choose Create Variable.
The Create Variable dialog appears.
4. In the Name field, enter the name of the variable.

5. Select JSON as the type of the variable and click the search icon.

Create Variable X

General Initialize Documentation

Name: |Variablel

Type
Type () Message Type () Element|(s) |SON

Namespace: | |

Local Part: | |

[] Entity Variable

Initial Value

Value: |

[]15DO Capable

Help Cancel

The Type Chooser dialog appears.

6-29

Chapter 6
Copy Between JSON and XML Variables in a BPEL Process

6. Select Project JSON Schemas, and then click Import JSON Schema.

Type Chooser x

»k Type Explorer

-] JSON Primitive Types

[=BBS) Project JSON Schemas
[+ Eﬂ' EchoMessage.json
[+ Eﬂ' samplel.json

Type: |
[] Show Detailed Node Information

Help Cancel

7. Select and upload the JSON schema file from your local drive.
8. The sample variable is uploaded to the project locally in the JSONs folder.

9. Inthe Create Variable dialog, click Apply and then click OK.

Render and Map Individual JSON Elements

The assign activity provides a method for data manipulation, such as copying the contents of
one variable to another. See Assign Activity.

When you create a copy rule between a JSON variable and a XML variable, the JSON
variables are rendered as a tree, enabling you to map each individual element of the JSON
variable.

ORACLE 630

Chapter 6
Moving and Copying Variables in the Structure Window

Edit Assign x
General | Copy Rules | Annotations — Documentation ~ Skip Condition ~ Targets = Sources
Insert New Rule After | Expression Language: - B & O Ba -
&4 BPELProcessl.bpel BFELProcessl.bpel gy
#[) Partner Links Partner Links [&
= variables Variables 3-&
= ¢h Process Process gy
= |2 variables Variables (53
@) inputvariable client BPELP inputvariable client BPELProcess1RequestMessage ()-8
@ (&) outputvariable client BPELF s1Resp outputVariable client BPELProcess1Rest eMessage ()@
#- (%) JSONvariablel bject JSONVariablel |« ect (0)-@
@ {x) BPELvariablel string BPELvariablel xsd:string () =
=) JSONvariable2 json object S 2 1SONVariable2 biect ()@
[§] Hello . :
] 9
18] Email
+R a3
From e
/), process JSONVariable2 Message ff; $BPELVariablel
Help Apply oK Cancel

Moving and Copying Variables in the Structure Window

You can move and copy variables to and from scope activities in the Structure Window of
Oracle JDeveloper.

To Move Variables in the Structure Window:

1. Inthe Structure window, select the variable to move to a scope activity. Figure 6-27
provides details.

Figure 6-27 Variable to Move in the Structure Window

T RW + 7R
=l wariables
(J,') inputvariable
(&) outputvariable
: h,') requestloa
B Scope - Scopel
[variables
D Correlation Sets

2. Drag the variable to the Variables folder of the scope activity.

The variable is displayed in the Variables folder of the scope activity, as shown in
Figure 6-28.

Figure 6-28 Variable Moved to the Scope Activity in the Structure Window

TR a7 R
2% BPELProcessl.bpel
D Partner Links
EIB Yariables
i E}ﬁga Process
E| Yariables
- @) inputvariable
 m-() outputvariable
E| Scope - Scopel
=23 variables
LX) requestloan

ORACLE" 6-31

Chapter 6
Accessing Fields in Element and Message Type Variables

3. Inthe BPEL process, click the Variables icon of the scope activity.

The variable you moved is displayed, as shown in Figure 6-29.

Figure 6-29 Moved Variable in Variables Dialog of the Scope Activity

Yariables: EF / b

Marne Tvpe QMame Partner Link
(X) requestloan Simple Type wxsd:string

Show Mamespace URIs

oK Cancel

Help

To Copy Variables in the Structure Window:

1. Inthe Structure window, select the variable to move to the scope activity.
2. Hold down the Ctrl key.
3. Drag the variable to the Variables folder of the scope activity.

The variable is displayed in both Variables folders, as shown in Figure 6-30.

Figure 6-30 Variable Copied to the Scope Activity in the Structure Window

T é @ + 7 K

=[5 wvariables
+-(X) inputvariable
+-(X) outputvariable
+ (x) requestloan
=-(&] Scope - Scopel
=23 wariables
+ (r) requestloan
+-7 Correlation Sets

Accessing Fields in Element and Message Type Variables

Given the types of definitions present in most WSDL and XSD files, you must go down to the
level of copying from or to a field within part of a variable based on the element and message
type. This in turn uses XML schema complex types. To perform this action, you specify an
XPath query in the from or to clause of the Copy Rules tab of the assign activity.

For more information about the Copy Rules tab, see Manipulating XML Data with bpelx
Extensions and Assign Activity.

How to Access Fields Within Element-Based and Message Type-Based
Variables

In the following example, the ssn field is copied from the CreditFlow process's input message
into the ssn field of the credit rating service's input message.

ORACLE 630

ORACLE

Chapter 6
Accessing Fields in Element and Message Type Variables

<assign>
<copy>
<from variable="input" part="payload"
query="/tns:CreditFlowRequest/tns:ssn"/>
<to variable="crInput" part="payload" query="/tns:ssn"/>
</copy>
</assign>

The following example shows how the BPEL file defines message type-based variables
involved in this assignment:

<variable name="input" messageType="tns:CreditFlowRequestMessage"/>

<variable name="crInput"
messageType="services:CreditRatingServiceRequestMessage" />

The crinput variable is used as an input message to a credit rating service. Its message type,
CreditFlowRequestMessage, is defined in the CreditFlowService.wsdl file, as shown in the
following example:

<message name="CreditFlowRequestMessage">
<part name="payload" element="tns:CreditFlowRequest"/>
</message>

CreditFlowRequest is defined with a field named ssn. The message type
CreditRatingServiceRequestMessage is defined in the CreditRatingService.wsdl file, as
shown in the following example:

<message name="CreditRatingServiceRequestMessage">
<part name="payload" element="tns:ssn"/>
</message>

The following example shows the BPEL 2.0 syntax for how the BPEL file defines message
type-based variables involved in the assignment in the first assignment example. Note that /
tns:CreditFlowRequest iS not required.

<copy>
<from>$input.payload/tns:ssn</from>
<to>$crInput.payload</to>

</copy>

A BPEL process can also use element-based variables. The following example shows how to
use element-based variables in BPEL 1.1. The autoloan field is copied from the loan
application process's input message into the customer field of a web service's input message.

<assign>
<copy>
<from variable="input" part="payload"
query="/tns:invalidLoanApplication/autoloan:
application/autoloan:customer"/>
<to variable="customer"/>
</copy>
</assign>

The following example shows how to use element-based variables in BPEL 2.0.

<assign>
<copy>
<from>$input.payload/autoloan:application/autoloan:customer</from>
<to>$customer</to>
</copy>
</assign>

6-33

Chapter 6
Assigning Numeric Values

The following example shows how the BPEL file defines element-based variables involved in
an assignment:

<variable name="customer" element="tns:customerProfile"/>

Assigning Numeric Values

You can assign numeric values in XPath expressions.

How to Assign Numeric Values

The following example shows how to assign an XPath expression with the integer value of 100.

<assign>
<!-- copy from integer expression to the variable -->
<copy>
<from expression="100"/>
<to variable="output" part="payload" query="/p:result/p:quantity"/>
</copy>
</assign>

Using Mathematical Calculations with XPath Standards

You can use simple mathematical expressions, such as the one in the following section, which
increment a numeric value.

How To Use Mathematical Calculations with XPath Standards

In the following example, the BPEL XPath function getvariableData retrieves the value being
incremented. The arguments to getVariableData are equivalent to the variable, part, and
query attributes of the from clause (including the last two arguments, which are optional).

<assign>
<copy>
<from expression="bpws:getVariableData('input', 'payload',
'/p:value') + 1"/>
<to variable="output" part="payload" query="/p:result"/>
</copy>
</assign>

You can also use $variable syntax in BPEL 1.1, as shown in the following example:

<assign>
<copy>
<from expression="$input.payload + 1"/>
<to variable="output" part="payload" query="/p:result"/>
</copy>
</assign>

The following example shows how to use $variable syntax in BPEL 2.0.

<assign>
<copy>
<from>$input.payload + 1</from>
<to>$Soutput.payload</to>
</copy>
</assign>

ORACLE 634

Chapter 6
Assigning String Literals

Assigning String Literals

You can assign string literals to a variable in the Copy Rules tab of the assign activity.

For more information about the assign activity, see Manipulating XML Data with bpelx
Extensions and Assign Activity.

How to Assign String Literals

The code in the following example copies a BPEL 1.1 expression evaluating from the string
literal 'GE' to the symbol field within the indicated variable part. (Note the use of the double
and single quotes.)

<assign>
<!-- copy from string expression to the variable -->
<copy>
<from expression="'GE'"/>
<to variable="output" part="payload" query="/p:result/p:symbol"/>
</copy>
</assign>

The following example shows how to perform this expression in BPEL 2.0.

<assign>
<copy>
<from>'GE'</from>
<to>S$output.payload/p:symbol</from>
</copy>
</assign>

For more information, see Assign Activity.

Concatenating Strings

Rather than copying the value of one string variable (or variable part or field) to another, you
can first perform string manipulation, such as concatenating several strings.

How to Concatenate Strings

ORACLE

The concatenation is accomplished with the core XPath function named concat. In addition,
the variable value involved in the concatenation is retrieved with the BPEL XPath function
getVariableData. In the following example, getvariableData fetches the value of the name
field from the input variable's payload part. The string literal 'Hello ' is then concatenated to
the beginning of this value.

<assign>
<!-- copy from XPath expression to the variable -->
<copy>
<from expression="concat('Hello ',
bpws:getVariableData ('input', 'payload', '/p:name'))"/>
<to variable="output" part="payload" query="/p:result/p:message"/>
</copy>
</assign>

Other string manipulation functions available in XPath are listed in section 4.2 of the XML Path
Language (XPath) Specification.

6-35

Chapter 6
Assigning Boolean Values

Assigning Boolean Values

You can assign boolean values with the XPath boolean function.

How to Assign Boolean Values

The following example provides an example of assigning boolean values in BPEL 1.1. The
XPath expression in the from clause is a call to XPath's boolean function true, and the
specified approved field is set to true. The function false is also available.

<assign>
<!-- copy from boolean expression function to the variable -->
<copy>
<from expression="true()"/>
<to variable="output" part="payload" query="/result/approved"/>
</copy>
</assign>

The following example provides an example of assigning boolean values in BPEL 2.0.

<assign>
<copy>
<from>true () </from>
<to>$output.payload/approved</to>
</copy>
</assign>

The XPath specification recommends that you use the "true () " and "false () " functions as a
method for returning boolean constant values.

If you instead use "boolean (true)" Or "boolean (false)", the true or false inside the
boolean function is interpreted as a relative element step, and not as any true or false
constant. It attempts to select a child node named true under the current XPath context node.
In most cases, the true node does not exist. Therefore, an empty result node set is returned
and the boolean () function in XPath 1.0 converts an empty node set into a false result. This
result can be potentially confusing.

Assigning a Date or Time

You can assign the current value of a date or time field by using the Oracle BPEL XPath
function getCurrentDate, getCurrentTime, Of getCurrentDateTime, respectively. In addition, if
you have a date-time value in the standard XSD format, you can convert it to characters more
suitable for output by calling the Oracle BPEL XPath function formatDate.

For related information, see section 9.1.2 of the Business Process Execution Language for
Web Services Specification and section 8.3.2 of the Web Services Business Process
Execution Language Specification Version 2.0.

For information about XPath functions and the Expression Builder, see XPath Extension
Functions.

How to Assign a Date or Time

The following example shows an example that uses the function getCurrentDate in BPEL 1.1.

ORACLE 636

Chapter 6
Manipulating Attributes

<!-- execute the XPath extension function getCurrentDate() -->
<assign>
<copy>
<from expression="xpath20:getCurrentDate()"/>
<to variable="output" part="payload"
query="nsl:invoice/invoiceDate"/>
</copy>
</assign>

The following example shows an example that uses the function getCurrentDate in BPEL 2.0.

<assign>
<copy>
<from>xpath20:getCurrentDate ()</from>
<to>$output.payload/invoiceDate</to>
</copy>
</assign>

In the following example, the formatDate function converts the date-time value provided in
XSD format to the string 'Jun 10, 2005' (and assigns it to the string field formattedDate).

<!-- execute the XPath extension function formatDate() -->
<assign>
<copy>
<from expression="ora:formatDate ('2005-06-10T15:56:00",
'"MMM dd, yyyy')"/>
<to variable="output" part="payload"
query="nsl:invoice/formattedDate"/>
</copy>
</assign>

The following example shows how the formatbate function works in BPEL 2.0.

<assign>
<copy>
<from>ora:formatDate ('2005-06-10T15:56:00', 'MMM dd, yyyy')</from>
<to>$output.payload/formattedDate</to>
</copy>
</assign>

Manipulating Attributes

You can copy to or from something defined as an XML attribute. An at sign (@) in XPath query
syntax refers to an attribute instead of a child element.

How to Manipulate Attributes

The code in the following example fetches and copies the cust1d attribute from this XML data:

<invalidLoanApplication xmlns="http://samples.otn.com">
<application xmlns = "http://samples.otn.com/XPath/autoloan">
<customer custId = "111" >
<name>
Mike Olive
</name>

</customer>

</application>
</invalidLoanApplication>

ORACLE 6-37

Chapter 6
Manipulating XML Data with bpelx Extensions

The BPEL 1.1 code in the following example selects the custId attribute of the customer field
and assigns it to the variable cust1d:

<assign>
<!-- get the custId attribute and assign to variable custId -->
<copy>
<from variable="input" part="payload"
query="/tns:invalidLoanApplication/autoloan:application
/autoloan:customer/@custId"/>
<to variable="custId"/>
</copy>
</assign>

The following example shows the equivalent syntax in BPEL 2.0 for selecting the custId
attribute of the customer field and assigning it to the variable custId:

<assign>

<copy>
<from>$input.payload/autoloan:application/autoloan:customer/@custId</from>
<to>$custId</to>

</copy>

</assign>

The namespace prefixes in this example are not integral to the example.The WSDL file defines
a customer to have a type in which cust1d is defined as an attribute, as shown in the following
example:

<complexType name="CustomerProfileType">
<sequence>
<element name="name" type="string"/>

</sequence>
<attribute name="custId" type="string"/>
</complexType>

Manipulating XML Data with bpelx Extensions

ORACLE

You can perform various operations on XML data in assign activities. The bpelx extension
types described in this section provide this functionality. In Oracle BPEL Designer, you can add
bpelx extension types at the bottom of the Copy Rules tab of an assign dialog. After creating
a copy rule, you select it and then choose a bpelx extension type from the dropdown list in
BPEL 1.1 or the context menu in BPEL 2.0. This changes the copy rule to the selected
extension type.

In BPEL 1.1, you select an extension type from the dropdown list, as shown in Figure 6-31.

6-38

Chapter 6
Manipulating XML Data with bpelx Extensions

Figure 6-31 Copy Rule Converted to bpelx Extension in BPEL 1.1

Insert Mew Rule After Ef‘!. ﬁ @ = cH
i+ v
s

A -] Partmer Links)
; X oukputiariable
- B[variables)
E}ﬁga ——— ApprovalHumanTask_1_globalvariable
] OrderInfovariabl
E}B . gOrderInfovariable
 E-fx) inputVariable
! &) i gwarehouseQuotes

(%) outputVariable

~{x) ApprovalHumanTask_1_glol:

EI; ggﬁderlnfovariabb n_sq_-gr gOrderProcessorFaulty ariable

-{x) gCustomerInFo\-‘ariablel . Scope - Scope_RetrigveCustomen
Wari

gPreferredsupplier

() gWwarehouseQuates =1 = =TT o i |
" Lo f,‘:: fDmmequin"m L '_J',. '_;',. '_;',."" 3:StoreFrontService_findCustomerInfoliO L CustomerInfobOCriteric
< : £ S < " >
B Ob F % o
Capy | From XPath: |,l'ns4:0rderInFOVOSDO,I'ns4:Customerld | To ¥Path: |,|'n56 | + “ @ 9

To

=41 CustomerId
() IFindCustomerInfo_Inputyariable) parameters) fnse: findCustarmerInfa, .
Ins6:findCustomerInfa. ..

() IFindCustomerInfo_InputYariable/parameters

f i
i {

(x) IFindCustarmerInfo_Inputtariableparameters) fns6: findCustormerInfa. ..
i {

(x) IFindCustomerInfo_InputYariable/parameters)ns6:findCustormerInfa. .

Ok, I [Cancel

=w]

In BPEL 2.0, you select an extension type by right-clicking the copy rule, selecting Change
rule type, and then selecting the extension type, as shown in Figure 6-32.

Figure 6-32 Copy Rule Converted to bpelx Extension in BPEL 2.0

Insert Mew Rule After = Ef‘! l';&' @ = =
BPELProcess3.bpel g

,‘\ﬁga BPELProcess3.bpel
-7 Partner Links Partrer Links D
Varisbles =

=l Wariables
E}ﬁga Process Process ﬁ?aEI
=[5 variables variables [£3-2
inputyariable {x)}-&

() inputvariable
| outputvariable client BPELProcess3ResponseMessage (X} &

- = pavioad

W -4 client:process

<\

+X &

Fram
[F $outputvariable , foutputyariable
i $inputtiariable e By, $outputiariable

Edit 'Fram' expression

Edit 'To' expression

ignoreMissingFramData
insertMissingToData
keepSrcElementhame

Change rule type

8 Delete rule @ Append Apphy H 2 ” Cancel
@ Move rie up o0 Insertafter

= Gl ey

FToae Trtarmation I P g InsertBefore I I e

For more information, see the online Help for this dialog and Assign Activity.

ORACLE" 6-39

Chapter 6
Manipulating XML Data with bpelx Extensions

How to Use bpelx:append

The bpelx:append extension in an assign activity enables a BPEL process service component
to append the contents of one variable, expression, or XML fragment to another variable's
contents. To use this extension, perform one of the following steps at the bottom of the Copy
Rules tab:

e For BPEL 1.1, select a copy rule, then select Append from the dropdown list, as shown in
Figure 6-31.

e For BPEL 2.0, right-click a copy rule, select Change rule type, and then select Append,
as shown in Figure 6-32.

Note:

The bpelx:append extension is not supported with SDO variables and causes an
error.

bpelx:append in BPEL 1.1

The following provides an example of bpelx:append in a BPEL project that supports BPEL
version 1.1.

<bpel:assign>
<bpelx:append>
<bpelx:from ... />
<bpelx:to ... />
</bpelx:append>
</bpel:assign>

The from-spec query within bpelx:append yields zero or more nodes. The node list is
appended as child nodes to the target node specified by the to-spec query.

The to-spec query must yield one single L-Value element node. Otherwise, a
bpel:selectionFailure fault is generated. The to-spec query cannot refer to a partner link.

The following example consolidates multiple bills of material into one single bill of material
(BOM) by appending multiple b:parts for one BOM to b:parts of the consolidated BOM.

<bpel:assign>
<bpelx:append>
<bpelx:from variable="billOfMaterialVar"
query="/b:bom/b:parts/b:part" />
<bpelx:to variable="consolidatedBillOfMaterialVar"
query="/b:bom/b:parts" />
</bpelx:append>
</bpel:assign>

bpelx:append in BPEL 2.0

The following provides an example of bpelx:append syntax in a BPEL project that supports
BPEL version 2.0. In BPEL 2.0, the functionality is the same as described in bpelx:append in
BPEL 1.1, but the syntax is slightly different.

ORACLE 620

Chapter 6
Manipulating XML Data with bpelx Extensions

<bpel:assign>
<bpelx:append>
<ppelx:from>$billOfMaterialVar/b:parts/b:part</bpelx:from>
<bpelx:to>$consolidatedBillOfMaterialVar/b:parts</bpelx:from>
</bpelx:append>
</bpel:assign>

How to Use bpelx:insertBefore

Note:

The bpelx:insertBefore extension works with SDO variables, but the target must
be the variable attribute into which the copied data must go.

The bpelx:insertBefore extension in an assign activity enables a BPEL process service
component to insert the contents of one variable, expression, or XML fragment before another
variable's contents. To use this extension, perform one of the following steps at the bottom of
the Copy Rules tab:

e For BPEL 1.1, select a copy rule, then select InsertBefore from the dropdown list, as
shown in Figure 6-31.

e For BPEL 2.0, right-click a copy rule, select Change rule type, and then select
InsertBefore, as shown in Figure 6-32.

bpelx:insertBefore in BPEL 1.1

ORACLE

The following provides an example of bpelx:insertBefore in a BPEL project that supports
BPEL version 1.1.

<bpel:assign>
<bpelx:insertBefore>
<bpelx:from ... />
<bpelx:to ... />
</bpelx:insertBefore>
</bpel:assign>

The from-spec query within bpelx:insertBefore Yyields zero or more nodes. The node list is
appended as child nodes to the target node specified by the to-spec query.

The to-spec query of the insertBefore operation points to one or more single L-Value nodes.
If multiple nodes are returned, the first node is used as the reference node. The reference
node must be an element node. The parent of the reference node must also be an element
node. Otherwise, a bpel:selectionFailure fault is generated. The node list generated by the
from-spec query selection is inserted before the reference node. The to-spec query cannot
refer to a partner link.

The following example shows the syntax before the execution of <insertBefore>. The value of
addrVar is:

<a:usAddress>
<a:state>CA</a:state>
<a:zipcode>94065</a:zipcode>
</a:usAddress>

The following example shows the syntax after the execution:

6-41

Chapter 6
Manipulating XML Data with bpelx Extensions

<bpel:assign>
<bpelx:insertBefore>
<bpelx:from>
<a:city>Redwood Shore></a:city>
</bpelx:from>
<bpelx:to "addrVar" query="/a:usAddress/a:state" />
</bpelx:insertBefore>
</bpel:assign>

The following example shows the value of addrVar:

<a:usAddress>
<a:city>Redwood Shore</a:city>
<a:state>CA</a:state>
<a:zipcode>94065</a:zipcode>
</a:usAddress>

bpelx:insertBefore in BPEL 2.0

The following provides an example of bpelx:insertBefore syntax in a BPEL project that
supports BPEL version 2.0. In BPEL 2.0, the functionality is the same as described in
bpelx:insertBefore in BPEL 1.1, but the syntax is slightly different. An
extensionAssignOperation element wraps the bpelx:insertBefore extension.

<assign>
<extensionAssignOperation>
<bpelx:insertBefore>
<bpelx:from>
<bpelx:literal>
<a:city>Redwood Shore></a:city>
</bpelx:literal>
</bpelx:from>
<bpelx:to>$addrVar/a:state</bpelx:to>
</bpelx:insertBefore>
</extensionAssignOperation>
</assign>

How to Use bpelx:insertAfter

ORACLE

Note:

The bpelx:insertAfter extension works with SDO variables, but the target must be
the variable attribute into which the copied data must go.

The bpelx:insertAfter extension in an assign activity enables a BPEL process service
component to insert the contents of one variable, expression, or XML fragment after another
variable's contents. To use this extension, perform one of the following steps at the bottom of
the Copy Rules tab:

» For BPEL 1.1, select a copy rule, then select InsertAfter from the dropdown list, as shown
in Figure 6-31.

* For BPEL 2.0, right-click a copy rule, select Change rule type, and then select
InsertAfter, as shown in Figure 6-32.

6-42

Chapter 6
Manipulating XML Data with bpelx Extensions

bpelx:insertAfter in BPEL 1.1

The following provides an example of bpelx:insertAfter in @ BPEL project that supports
BPEL version 1.1.

<bpel:assign>
<bpelx:insertAfter>
<bpelx:from ... />
<bpelx:to ... />
</bpelx:insertAfter>
</bpel:assign>

This operation is similar to the functionality described for How to Use bpelx:insertBefore,
except for the following:

e If multiple L-Value nodes are returned by the to-spec query, the last node is used as the
reference node.

* Instead of inserting nodes before the reference node, the source nodes are inserted after
the reference node.

This operation can also be considered a macro of conditional-switch + (append or
insertBefore).

The following example shows the syntax before the execution of <insertAfter>. The value of
addrVar is:

<a:usAddress>
<a:addressLine>500 Oracle Parkway</a:addressLine>
<a:state>CA</a:state>
<a:zipcode>94065</a:zipcode>

</a:usAddress>

The following example shows the syntax after the execution:

<bpel:assign>
<bpelx:insertAfter>
<bpelx:from>
<a:addressLine>Mailstop lop6</a:addressLine>
</bpelx:from>
<bpelx:to "addrVar" query="/a:usAddress/a:addressLine[l]" />
</bpelx:insertAfter>
</bpel:assign>

The following example shows the value of addrvar:

<a:usAddress>
<a:addressLine>500 Oracle Parkway</a:addressLine>
<a:addressLine>Mailstop lop6</a:addressLine>
<a:state>CA</a:state>
<a:zipcode>94065</a:zipcode>

</a:usAddress>

The from-spec query within bpelx:insertAfter yields zero or more nodes. The node list is
appended as child nodes to the target node specified by the to-spec query.

bpelx:insertAfter in BPEL 2.0

The following provides an example of bpelx:insertAfter syntax in a BPEL project that
supports BPEL version 2.0. In BPEL 2.0, the functionality is the same as described in

ORACLE 643

Chapter 6
Manipulating XML Data with bpelx Extensions

bpelx:insertAfter in BPEL 1.1, but the syntax is slightly different. An
extensionAssignOperation element wraps the bpelx:insertAfter extension.

<assign>
<extensionAssignOperation>
<bpelx:insertAfter>
<bpelx:from>
<bpelx:literal>
<a:addressLine>Mailstop lop6</a:addressLine>
</bpelx:literal>
</bpelx:from>
<bpelx:to>$addrVar/a:addressLine[1]</bpelx:to>
</bpelx:insertAfter>
</extensionAssignOperation>
</assign>

How to Use bpelx:remove

The bpelx:remove extension in an assign activity enables a BPEL process service component
to remove a variable. In Oracle BPEL Designer, you add the bpelx:remove extension by
dragging the remove icon in the upper right corner of the Copy Rules tab to the target variable
you want to remove, and releasing the cursor. You can also drag this icon to the center canvas
to invoke a dialog, specify the rule, save and close the dialog, and then drag the icon to the
target node. Figure 6-33 provides detalils.

Figure 6-33 Remove Icon in Copy Rules Tab of an Assign Activity

NSCPUCES

vice

& G?‘ é IJ:EI C'E ‘
Processf pemave (Drag to target node)

Variables BB =
inputvariable (x)-E
outputiariable (x)-#

After releasing the cursor, the bpelx:remove extension is applied to the target variable.
Figure 6-34 provides details.

Figure 6-34 bpelx:remove Extension Applied to a Target Variable

B m Q@ =2 c
Vatiables [55-2
Process 5'93{3
Variables BEI
inputtariable (2)}-& !

— oubpukiariable (e} G
Remove

4

14 Remove

bpelx:remove in BPEL 1.1

The following provides an example of bpelx:remove in @ BPEL project that supports BPEL
version 1.1.

<bpel:assign>
<bpelx:remove>

ORACLE 6an

Chapter 6
Manipulating XML Data with bpelx Extensions

<bpelx:target variable="ncname" part="ncname"? query="xpath str" />
</bpelx:remove>
</bpel:assign>

Node removal specified by the XPath expression is supported. Nodes specified by the XPath
expression can be multiple, but must be L-Values. Nodes being removed from this parent can
be text nodes, attribute nodes, and element nodes.

The XPath expression can return one or more nodes. If the XPath expression returns zero
nodes, then a bpel:selectionFailure fault is generated.

The syntax of bpelx:target is similar to and a subset of to-spec for the copy operation.

The following example shows addrvar with the following value:

<a:usAddress>
<a:addressLine>500 Oracle Parkway</a:addressLine>
<a:addressLine>Mailstop lop6</a:addressLine>
<a:state>CA</a:state>
<a:zipcode>94065</a:zipcode>

</a:usAddress>

After executing the syntax shown in the BPEL process service component file, the second
address line of Mailstop is removed:

<bpel:assign>
<bpelx:remove>
<target variable="addrVar"
query="/a:usAddress/a:addressLine[2]" />
</bpelx:remove>
</bpel:assign>

After executing the syntax shown in the BPEL process service component file, both address
lines are removed:

<bpel:assign>
<bpelx:remove>
<target variable="addrVar"
query="/a:usAddress/a:addressLine" />
</bpelx:remove>
</bpel:assign>

bpelx:remove in BPEL 2.0

The following provides an example of bpelx:remove syntax in a BPEL project that supports
BPEL version 2.0. In BPEL 2.0, the functionality is the same as described in bpelx:remove in
BPEL 1.1, but the syntax is slightly different. An extensionAssignOperation element wraps
the bpelx:remove.

<assign>
<extensionAssignOperation>
<bpelx:remove>
<bpelx:target>$ncname.ncname/xpath str</bpelx:target>
</bpelx:remove>
</extensionAssignOperation>
</assign>

ORACLE 6a5

Chapter 6
Manipulating XML Data with bpelx Extensions

How to Use bpelx:rename and XSD Type Casting

The bpelx:rename extension in an assign activity enables a BPEL process service component
to rename an element through use of XSD type casting. In Oracle BPEL Designer, you add the
bpelx:rename extension by dragging the rename icon in the upper right corner of the Copy
Rules tab to the target variable you want to rename, and releasing the cursor. The rename
icon displays to the right of the remove icon shown in Figure 6-33. After releasing the cursor,
the Rename dialog is displayed for renaming the target variable. You can also drag this icon to
the center canvas to invoke this dialog, specify the name, save and close the dialog, and then
drag the icon to the target node.

bpelx:rename in BPEL 1.1

ORACLE

The following provides an example of bpelx:rename in a BPEL project that supports BPEL
version 1.1.

<bpel:assign>
<bpelx:rename elementTo="QNamel"? typeCastTo="QName2"?>
<bpelx:target variable="ncname" part="ncname"? query="xpath str" />
</bpelx:rename>
</bpel:assign>

The syntax of bpelx:target is similar to and a subset of to-spec for the copy operation. The
target must return a list of element nodes. Otherwise, a bpel:selectionFailure fault is
generated. The element nodes specified in the from-spec are renamed to the QName specified
by the elementTo attribute. The xsi:type attribute is added to those element nodes to cast
those elements to the QName type specified by the typeCastTo attribute.

Assume you have the employee list shown in the following example:

<e:empList>
<e:emp>
<e:firstName>John</e:firstName><e:lastName>Dole</e:lastName>
<e:emp>
<e:emp xsi:type="e:ManagerType">
<e:firstName>Jane</e:firstName><e:lastName>Dole</e:lastName>
<e:approvalLimit>3000</e:approvallimit>
<e:managing />
<e:emp>
<e:emp>
<e:firstName>Peter</e:firstName><e:lastName>Smith</e:lastName>
<e:emp>
<e:emp>
<e:firstName>Mary</e:firstName><e:lastName>Smith</e:lastName>
<e:emp>
</e:empList>

Promotion changes are now applied to peter Smith in the employee list, as in the following
example:

<bpel:assign>
<bpelx:rename typeCastTo="e:ManagerType">
<bpelx:target variable="empListVar"
query="/e:empList/e:emp[./e:firstName="'Peter' and
./e:lastName='Smith'" />
</bpelx:rename>
</bpel:assign>

6-46

Chapter 6
Manipulating XML Data with bpelx Extensions

After executing the above casting (renaming), the data looks as shown in the following
example with xsi:type info added to Peter Smith:

<e:empList>
<e:emp>
<e:firstName>John</e:firstName><e:lastName>Dole</e:lastName>
<e:emp>
<e:emp xsi:type="e:ManagerType">
<e:firstName>Jane</e:firstName><e:lastName>Dole</e:lastName>
<e:approvalLimit>3000</e:approvallimit>
<e:managing />
<e:emp>
<e:emp xsi:type="e:ManagerType">
<e:firstName>Peter</e:firstName><e:lastName>Smith</e:lastName>
<e:emp>
<e:emp>
<e:firstName>Mary</e:firstName><e:lastName>Smith</e:lastName>
<e:emp>
</e:empList>

The employee data of Peter Smith is now invalid, because <approvallimit> and <managing>
are missing. Therefore, <append> is used to add that information. The following provides an
example.

<bpel:assign>
<bpelx:rename typeCastTo="e:ManagerType">
<bpelx:target variable="empListVar"
query="/e:emplList/e:emp[./e:firstName="'Peter' and
./e:lastName='Smith'" />
</bpelx:rename>
<bpelx:append>
<bpelx:from>
<e:approvallimit>2500</e:approvallimit>
<e:managing />
</bpelx:from>
<bpelx:to variable="empListVar"
query="/e:emplList/e:emp[./e:firstName="'Peter' and
./e:lastName='Smith'" />
</bpelx:append>
</bpel:assign>

With the execution of both rename and append, the corresponding data looks as shown in the
following example:

<e:emp xsi:type="e:ManagerType">
<e:firstName>Peter</e:firstName><e:lastName>Smith</e:lastName>
<e:approvallLimit>2500</e:approvalLimit>
<e:managing />

<e:emp>

bpelx:rename in BPEL 2.0

The following provides an example of bpelx:rename syntax in a BPEL project that supports
BPEL version 2.0. In BPEL 2.0, the functionality is the same as described in bpelx:rename in
BPEL 1.1, but the syntax is slightly different. An extensionAssignOperation element wraps
the bpelx:rename operation.

<bpel:assign>
<extensionAssignOperation>
<bpelx:rename elementTo="QNamel"? typeCastTo="QName2"?>
<bpelx:target>$ncname[.ncname] [/xpath str]</bpelx:target>

ORACLE 6-47

Chapter 6
Manipulating XML Data with bpelx Extensions

</bpelx:rename>
</extensionAssignOperation>
</bpel:assign>

How to Use bpelx:copyList

The bpelx:copyList extension in an assign activity enables a BPEL process service
component to perform a copyList operation of the contents of one variable, expression, or
XML fragment to another variable. To use this extension, perform one of the following steps at
the bottom of the Copy Rules tab:

e For BPEL 1.1, select a copy rule, then select CopyList from the dropdown list, as shown in
Figure 6-31.

» For BPEL 2.0, right-click a copy rule, select Change rule type, and then select CopyList,
as shown in Figure 6-32.

bpelx:copyList in BPEL 1.1

ORACLE

The following provides an example of bpelx:copyList in a BPEL project that supports BPEL
version 1.1.

<bpel:assign>
<bpelx:copyList>
<ppelx:from ... />
<bpelx:to ... />
</bpelx:copyList>
</bpel:assign>

The from-spec query can yield a list of either all attribute nodes or all element nodes. The to-
spec query can yield a list of L-value nodes: either all attribute nodes or all element nodes.

All the element nodes returned by the to-spec query must have the same parent element. If
the to-spec query returns a list of element nodes, all element nodes must be contiguous.

If the from-spec query returns attribute nodes, then the to-spec query must return attribute
nodes. Likewise, if the from-spec query returns element nodes, then the to-spec query must
return element nodes. Otherwise, a bpws :mismatchedAssignmentFailure fault is thrown.

The from-spec query can return zero nodes, while the to-spec query must return at least one
node. If the from-spec query returns zero nodes, the effect of the copyList operation is similar
to the remove operation.

The copyList operation provides the following features:

« Removes all the nodes pointed to by the to-spec query.

* If the to-spec query returns a list of element nodes and there are leftover child nodes after
removal of those nodes, the nodes returned by the from-spec query are inserted before
the next sibling of the last element specified by the to-spec query. If there are no leftover
child nodes, an append operation is performed.

e Ifthe to-spec query returns a list of attribute nodes, those attributes are removed from the
parent element. The attributes returned by the from-spec query are then appended to the
parent element.

For example, assume a schema is defined as shown below:

<schema attributeFormDefault="unqualified"
elementFormDefault="qualified"

6-48

Chapter 6
Manipulating XML Data with bpelx Extensions

targetNamespace="http://xmlns.oracle.com/Event jws/Event/EventTest"
xmlns="http://www.w3.0rg/2001/XMLSchema">
<element name="process">

<complexType>
<sequence>
<element name="payload" type="string"
maxOccurs="unbounded" />
</sequence>
</complexType>
</element>
<element name="processResponse">
<complexType>
<sequence>
<element name="payload" type="string"
maxOccurs="unbounded" />
</sequence>
</complexType>
</element>

</schema>

The from variable contains the content shown in the following example:

<nsl:process xmlns:nsl="http://xmlns.oracle.com/Event jws/Event/EventTest">
<nsl: payload >a</nsl: payload >
<nsl: payload >b</nsl: payload >

</nsl:process>

The to variable contains the content shown in the following example:

<nsl:processResponse xmlns:nsl="http://xmlns.oracle.com/Event
jws/Event/EventTest">
<nsl: payload >c</nsl: payload >
</nsl:process>

The bpelx:copyList operation looks as shown in the following example:

<assign>
<bpelx:copyList>
<bpelx:from variable="inputVariable" part="payload"
query="/client:process/client:payload"/>
<bpelx:to variable="outputVariable" part="payload"
query="/client:processResponse/client:payload"/>
</bpelx:copyList>
</assign>

This defines the to variable as shown in the following example:

<nsl:processResponse xmlns:nsl="http://xmlns.oracle.com/Event
jws/Event/EventTest">
<nsl: payload >a</nsl: payload >
<nsl: payload >b</nsl: payload >
</nsl:process>

bpelx:copyList in BPEL 2.0

ORACLE

The following provides an example of bpelx:copyList syntax in a BPEL project that supports
BPEL version 2.0. In BPEL 2.0, the functionality is the same as described in bpelx:copyList in
BPEL 1.1, but the syntax is slightly different. An extensionAssignOperation element wraps
the bpelx:copyList extension.

<assign>
<extensionAssignOperation>

6-49

Chapter 6
Manipulating XML Data with bpelx Extensions

<bpelx:copyList>
<pbpelx:from>$inputVariable.payload/client:payload</bpelx:from>
<bpelx:to>$SoutputVariable.payload/client:payload</bpelx:to>
</bpelx:copyList>
</extensionAssignOperation>
</assign>

How to Use Assign Extension Attributes

You can assign the following attributes to copy rules in an assign activity.
e ignoreMissingFromData

e insertMissingToData

* keepSrcElementName

At the bottom of the Copy Rules tab of an assign activity, you right-click a selected copy rule to
display a menu for choosing the appropriate attribute. Figure 6-35 provides details.

Figure 6-35 Assign Extension Attributes

Framm Ta

% $inputY ariable .pavload/client:input

g (0.3l client result

Edit 'To' excpression

ignareMissingFrombata
insertMissing TolData
Help keepsrcElementianne Apply || Ok Jl Cancel

hange rule type »

ook ngCompe:

= 3¢ Delete rule

ignoreMissingFromData Attribute

The ignoreMissingFromData attribute suppresses any bpel:selectionFailure standard
faults. Table 6-3 describes the syntax differences between BPEL versions 1.1 and 2.0.

Table 6-3 ignoreMissingFromData Attribute Syntax

L
BPEL 1.1 BPEL 2.0

<copy bpelx:ignoreMissingFromData="yes|no"/> <copy ignoreMissingFromData="yes|no"/>

insertMissingToData Attribute

The insertMissingToData attribute instructs runtime to complete the (XPath) L-value specified
by the to-spec, if no items were selected. Table 6-4 describes the syntax differences between
BPEL versions 1.1 and 2.0.

ORACLE" 6-50

Chapter 6
Validating XML Data

Table 6-4 insertMissingToData Attribute Syntax
|

BPEL 1.1 BPEL 2.0
<copy bpelx:insertMissingToData="yes| <copy bpelx:insertMissingToData="yes|no"/>
no"/>

keepSrcElementName Attribute

The keepSrcElementName attribute enables you to replace the element name of the destination
(as selected by the to-spec) with the element name of the source. This attribute was not
implemented in BPEL 1.1. Table 6-5 describes the syntax supported in BPEL version 2.0.

Table 6-5 keepSrcElementName Attribute Syntax

BPEL 1.1 BPEL 2.0

Not implemented <copy keepSrcElementName="yes|no"/>

Validating XML Data

You can verify code and identify invalid XML data in a BPEL project.

How to Validate XML Data in BPEL 2.0

This section discusses validating XML data in BPEL 2.0.

Validate XML in an Assign Activity

In an assign activity in Oracle BPEL Designer:

1. From the BPEL Constructs section of the Components window, drag an Assign activity
into the designer.

Double-click the Assign activity.
In the General tab, enter a name for the activity and select the Validate check box.
Click Apply, then OK.

Click the Source tab to view the syntax. The syntax for validating XML data with the assign
activity is slightly different between BPEL versions 1.1 and 2.0.

a & W Db

<assign name="Assignl" validate="yes">
<}aésign>
Validate XML in a Standalone, Extended Validate Activity

In a standalone, extended validate activity in Oracle BPEL Designer that can be used without
an assign activity:

1. From the BPEL Constructs section of the Components window, drag a Validate activity
into the designer.

ORACLE 61

N o g M w Dd

Chapter 6
Validating XML Data

Double-click the Validate icon.

Enter a name for the activity.

Click the Add icon to select the variable to validate.
Select the variable, then click OK.

Click Apply, then OK.

Click the Source tab to view the syntax. The syntax for validating XML data with the
validate activity is slightly different between BPEL versions 1.1 and 2.0.

<validate name="Validatel" variables="inputVariable"/>

How to Validate XML Data in BPEL 1.1

This section describes validating xml data in BPEL 1.1.

Validate XML in an Assign Activity

In an assign activity in Oracle BPEL Designer:

1.

o & w Db

From the BPEL Constructs section of the Components window, drag an Assign activity
into the designer.

Double-click the Assign activity.

In the General tab, enter a name for the activity and select the Validate check box.
Click Apply, then OK.

Click the Source tab to view the syntax.

<assign name=Assignl" bpelx:validate="yes"

</assign>

Validate XML in a Standalone, Extended Validate Activity

In a standalone, extended validate activity in Oracle BPEL Designer that can be used without
an assign activity:

1.

N o g » w DN

ORACLE

From the Oracle Extensions section of the Components window, drag a Validate activity
into the designer.

Double-click the Validate icon.

Enter a name for the activity.

Click the Add icon to select the variable to validate.
Select the variable, then click OK.

Click Apply, then OK.

Click the Source tab to view the syntax.

<bpelx:validate name=Validatel" variables="inputVariable"/>

6-52

Chapter 6
Using Element Variables in Message Exchange Activities in BPEL 2.0

Using Element Variables in Message Exchange Activities in

BPEL 2.0

You can specify variables in the following message exchange activities:

e The Input field (for an inputvariable attribute) and Output field (for an outputvariable
attribute) of an invoke dialog

e The Input field (for a variable attribute) of a receive activity
* The Output field (for a variable attribute) of a reply activity

The variables referenced by these fields typically must be message type variables in which the
QName matches the QName of the input and output message types used in the operation,
respectively.

The one exception is if the WSDL operation in the activity uses a message containing exactly
one part that is defined using an element. In this case, a variable of the same element type
used to define the part can be referenced by the inputvariable and outputVariable
attributes, respectively, in the invoke activity or the variable attribute of the receive or reply
activity.

Using a variable in this situation must be the same as declaring an anonymous, temporary
WSDL message variable based on the associated WSDL message type.

Copying element data between the anonymous, temporary WSDL message variable and the
element variable acts as a single virtual assign activity with one copy operation whose
keepSrcElementName attribute is set to yes. The virtual assign must follow the same rules and
use the same faults as a real assign activity. Table 6-6 provides details.

Table 6-6 Mapping WSDL Message Parts

|
For The... The...

inputVariable attribute Value of the variable referenced by the attribute sets the value of the
part in the anonymous temporary WSDL message variable.

outputVariable attribute Value of the received part in the temporary WSDL message variable
sets the value of the variable referenced by the attribute.

Receive activity Incoming part's value sets the value of the variable referenced by the
variable attribute.

Reply activity Value of the variable referenced by the variable attribute sets the value
of the part in the anonymous, temporary WSDL message variable that
is sent out. For a reply activity sending a fault, the same scenario
applies.

For more information about the keepSrcElementName attribute, see keepSrcElementName
Attribute.

Mapping WSDL Message Parts in BPEL 2.0

ORACLE

The Arguments Mapping section in invoke and reply activities provides an alternative to
explicitly creating multipart WSDL messages from the contents of BPEL variables.

When you use the Arguments Mapping section, an anonymous, temporary WSDL variable is
defined based on the type specified by the input message of the appropriate WSDL operation.

6-53

Chapter 6
Mapping WSDL Message Parts in BPEL 2.0

For more information about mapping WSDL message parts, see the BPEL 2.0 Specification
located at the following URL:

http://www.oasis-open.org

How to Map WSDL Message Parts

The Arguments Mapping table contains the parts for the selected operation. You can set the
value of each message part by editing the Value column of the table. Select the variable in

which to retrieve the value and store the message part.

To map WSDL message parts in BPEL 2.0:

1. Note that the receive activity in Figure 6-36 includes a standard inputVariable variable
from the client.

Figure 6-36 Receive Activity

)

0 Edit Receive
Documentation Skip Condition Targets Sources
Annotations Assertions Headers Timeout
Ceneral Correlations Properties
Name: |recei\re|nput |
Conversation D | | Ej‘y
Create [nstance
Interaction Type:
Partrner Link: |bpe|proce551_c|iem | Ck
Port Type: ['E. BPELFrocessl v]
Cperation: E process ']
() Arguments Mapping (2) Variable =)
Variable: |input\u"ariab|e | % ':k
Help Apply | 0K | Cancel
A

2. Note the Arguments Mapping button at the bottom of the reply activity in Figure 6-37. You
can set the value for each message part by clicking an entry in the table.

Figure 6-37 Arguments Mapping Section Defined at Bottom of a Reply Activity

(3) Arguments Mapping () Input Variable @

DOperation Parts:
Part Type Value

Element - processResponse
(X) inputVariable

outputVariable

ORACLE" 6-54

http://www.oasis-open.org

Chapter 6
Importing Process Definitions in BPEL 2.0

Importing Process Definitions in BPEL 2.0

ORACLE

You can use the import element to specify the definitions on which your BPEL process is
dependent. When you create a version 2.0 BPEL process, an import element is added to
the .bpel file, as shown in the following example:

<process name="Loan Flow"

<import namespace="http://xmlns.oracle.com/SOAApplication/SOAProject/LoanFlow"
location="LoanFlow.wsdl" importType="http://schemas.xmlsoap.org/wsdl/"/>

You can also use the import element to import a schema without a namespace, as shown in
the following example:

<process name="Loan Flow"

<import location="xsd/NoNamespaceSchema.xsd"
importType="http://www.w3.0rg/2001/XMLSchema" />

You can also use the import element to import a schema with a namespace, as shown in the
following example:

<process name="Loan Flow"

<import namespace="http://www.example.org" location="xsd/TestSchema.xsd"
importType="http://www.w3.0rg/2001/XMLSchema" />

The import element is provided to declare a dependency on external XML schema or WSDL
definitions. Any number of import elements can appear as children of the process element.
Each import element can contain the following attributes.

* namespace: ldentifies an absolute URI that specifies the imported definitions. This is an
optional attribute. If a namespace is specified, then the imported definitions must be in that
namespace. If a namespace is not specified, this indicates that external definitions are in
use that are not namespace-qualified. The imported definitions must not contain a
targetNamespace specification.

* location: Identifies a URI that specifies the location of a document containing important
definitions. This is an optional attribute. This can be a relative URI. If no location attribute
is specified, the process uses external definitions. However, there is no statement provided
indicating where to locate these definitions.

° importType: ldentifies the document type to import. This must be an absolute URI that
specifies the encoding language used in the document. This is a required attribute.

— Ifimporting XML schema 1.0 documents, this attribute's value must be set to "http://
www.w3.0rg/2001/XMLSchema".

— Ifimporting WSDL 1.1 documents, the value must be set to "http://
schemas.xmlsoap.org/wsdl/". You can also specify other values for this attribute.

For more information, see section 5.4 of the Web Services Business Process Execution
Language Specification Version 2.0.

6-55

Chapter 6
Manipulating XML Data Sequences That Resemble Arrays

Manipulating XML Data Sequences That Resemble Arrays

Data sequences are one of the most basic data models used in XML. However, manipulating
them can be nontrivial. One of the most common data sequence patterns used in BPEL
process service components are arrays. Based on the XML schema, the way you can identify
a data sequence definition is by its attribute maxOccurs being set to a value greater than one or
marked as unbounded. See the XML Schema Specification at http://www.w3.org/TR for more
information.

The examples in this section illustrate several basic ways of manipulating data sequences in
BPEL. However, there are other associated requirements, such as performing looping or
dynamic referencing of endpoints. The following sections describe a particular requirement for
data sequence manipulation.

How to Statically Index into an XML Data Sequence That Uses Arrays

ORACLE

The following two examples illustrate how to use XPath functionality to select a data sequence
element when the index of the element you want is known at design time. In these cases, it is
the first element.

In the following example, addresses[1] selects the first element of the addresses data
sequence:

<assign>
<!-- get the first address and assign to variable address -->
<copy>
<from variable="input" part="payload"
query="/tns:invalidLoanApplication/autoloan:application
/autoloan:customer/autoloan:addresses[1]"/>
<to variable="address"/>
</copy>
</assign>

In this query, addresses[1] is equivalent to addresses[position()=1], where position is one
of the core XPath functions (see sections 2.4 and 4.1 of the XML Path Language (XPath)
Specification). The query in the following example calls the position function explicitly to
select the first element of the address's data sequence. It then selects that address's street
element (which the activity assigns to the variable street1).

<assign>
<!-- get the first address's street and assign to streetl -->
<copy>
<from variable="input" part="payload"
query="/tns:invalidLoanApplication/autoloan:application
/autoloan:customer/autoloan:addresses[position()=1]
/autoloan:street"/>
<to variable="streetl"/>
</copy>
</assign>

If you review the definition of the input variable and its payload part in the WSDL file, you go
several levels down before coming to the definition of the addresses field. There you see the
maxOccurs="unbounded" attribute. The two XPath indexing methods are functionally identical;
you can use whichever method you prefer.

6-56

Chapter 6
Manipulating XML Data Sequences That Resemble Arrays

How to Use SOAP-Encoded Arrays

ORACLE

Oracle SOA Suite provides support for SOAP RPC-encoded arrays. This support enables
Oracle BPEL Process Manager to operate as a client calling a SOAP web service (RPC-
encoded) that uses a SOAP 1.1 array.

The following example provides an example of a SOAP array payload named
myFavoriteNumbers.

<myFavoriteNumbers SOAP-ENC:arrayType="xsd:int2">
<number>3</number>

<number>4</number>

</myFavoriteNumbers>

In addition, ensure that the schema element attributes attributeFormDefault and
elementFormDefault are setto "unqualified" in your schema. The following example
provides details:

attributeFormDefault="unqualified" elementFormDefault="unqualified"
targetNamespace="7java:services" xmlns:s0="http://schemas.xmlsoap.org/wsdl/"
xmlns:xs="http://www.w3.0rg/2001/XMLSchema">

The following features are not supported:

e A service published by BPEL that uses a SOAP array
e Partially-transmitted arrays
e Sparse arrays

e Multidimensional arrays

To use a SOAP-encoded array:

The following example shows how to prepare SOAP arrays with the bpelx:append tagin a
BPEL project.

1. Create a BPEL process in Oracle JDeveloper.

2. Prepare the payload for the invocation. Note that bpelx:append is used to add items into
the SOAP array.

<bpws:assign>
<bpws:copy>
<bpws:from variable="input" part="payload" query="/tns:value"/>
<bpws:to variable="request" part="strArray"
query="/strArray/Javalangstring"/>
</bpws:copy>
</bpws:assign>
<bpws:assign>
<bpelx:append>
<bpelx:from variable="request" part="strArray"
query="/strArray/Javalangstringl"/>
<bpelx:to variable="request" part="strArray" query="/strArray"/>
</bpelx:append>
</bpws:assign>

3. Import the following namespace in your WSDL file. Oracle JDeveloper does not
understand the SOAP-ENC tag if the import statement is missing in the WSDL schema
element.

<xs:import namespace="http://schemas.xmlsoap.org/soap/encoding/" />

6-57

Chapter 6
Manipulating XML Data Sequences That Resemble Arrays

SOAP-Encoded Arrays in BPEL 2.0

SOAP-encoded arrays are supported in BPEL projects that use version 2.0 of the BPEL
specification. The following example shows a sample assign activity with a SOAP-encoded
array in a BPEL 2.0 project.

<assign name="Assign 1">
<copy>
<from>$inputVariable.payload</from>
<to>$Invoke 1 echoArray InputVariable.strArray/Javalangstring[l]</to>
</copy>
<extensionAssignOperation>
<bpelx:append>
<bpelx:from variable="Invoke 1 echoArray InputVariable"
part="strArray">
<bpelx:query>
Javalangstring([1]
</bpelx:query>
</bpelx:from>
<bpelx:to variable="Invoke 1 echoArray InputVariable"
part="strArray">
</bpelx:to>
</bpelx:append>
</extensionAssignOperation>
</assign>

The following example shows a sample invoke activity with a SOAP-encoded array in a BPEL
2.0 project.

<invoke name="Invokel" partnerLink="FileOut"
portType="ns3:Write ptt" operation="Write"
bpelx:invokeAsDetail="no">
<toParts>
<toPart part="body" fromVariable="ArrayVariable"/>
</toParts>
</invoke>

Declaring a SOAP Array Using a wsdl:arrayType Attribute Inside a Schema

ORACLE

A SOAP-encoded array WSDL can declare a SOAP array using a wsdl:arrayType attribute
inside a schema. The following example provides details.

<xsd:complexType name="UserObject">
<xsd:sequence>
<xsd:element name="userInformation" nillable="true"
type="n5:ArrayOfKeyValuePair"/>
<xsd:element name="username" nillable="true" type="xsd:string"/>
</xsd:sequence>
</xsd:complexType>

<xsd:complexType name="ArrayOfKeyValuePair">
<xsd:complexContent>
<xsd:restriction base="soapenc:Array">
<xsd:attribute ref="soapenc:arrayType"
wsdl:arrayType="n5:KeyValuePair[]"/>
</xsd:restriction>
</xsd:complexContent>
</xsd:complexType>

<xsd:complexType name="KeyValuePair">

6-58

Chapter 6
Manipulating XML Data Sequences That Resemble Arrays

<xsd:sequence>
<xsd:element name="key" nillable="true" type="xsd:string"/>
<xsd:element name="value" nillable="true" type="xsd:string"/>
</xsd:sequence>
</xsd:complexType>

The following example shows how to create and access a SOAP-encoded array in BPEL 1.1.

<bpws:copy>
<bpws:from>
<nsl:userInformation soapenc:arrayType="coml:KeyValuePair[1]"
xmlns:nsl="http://www.schematargetnamespace.com/wsdl/Impl/"
xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/"/>
<nsl:KeyValuePair
xmlns:nsl="http://www.schematargetnamespace.com/wsdl/Impl/">
<key>testkey</key>
<value>testvall</value>
</nsl:KeyValuePair>
</nsl:userInformation>
</bpws: from>
<bpws:to variable="Inputvar" part="userObject"
query="/userObject/userInformation"/>

</bpws:copy>
<!--Update elements with SOAPENC Array-->
<bpws:copy>
<bpws:from variable="KeyValueVar" part="KeyValuePair"
query="/KeyValuePair/ns2:key"/>
<bpws:to variable="Inputvar" part="userObject'
query="//*[local-name () ='KeyValuePair'] [1]/*[local-name ()="key']"/>
</bpws:copy>

<bpws:copy>
<bpws:from variable="KeyValueVar" part="KeyValuePair"
query="/KeyValuePair/client:value"/>
<bpws:to variable="Inputvar" part="userObject"
query="//*[local-name () ='KeyValuePair'] [1]/*[local-name ()="value']"/>

</bpws:copy>
<!-- Append elements within SOAPENC Array -->
<bpelx:append>
<bpelx:from variable="Inputvar" part="userObject"
query="//*[local-name () ='KeyValuePair'] [1]"/>
<bpelx:to variable="Inputvar" part="userObject"
query="/userObject/userInformation"/>
</bpelx:append>

How to Determine Sequence Size

If you must know the runtime size of a data sequence (that is, the number of nodes or data
items in the sequence), you can get it by using the combination of the XPath built-in count ()
function and the BPEL built-in getVariableData () function.

The code in the following example calculates the number of elements in the item sequence
and assigns it to the integer variable 1ineItemSize.

<assign>
<copy>
<from expression="count (bpws:getVariableData ('outpoint', 'payload',
'/p:invoice/p:lineltems/p:item')"/>
<to variable="lineItemSize"/>

ORACLE 650

Chapter 6
Manipulating XML Data Sequences That Resemble Arrays

</copy>
</assign>

How to Dynamically Index by Applying a Trailing XPath to an Expression

Often a dynamic value is needed to index into a data sequence; that is, you must get the nth
node out of a sequence, where the value of n is defined at runtime. This section covers the
methods for dynamically indexing by applying a trailing XPath into expressions.

Applying a Trailing XPath to the Result of getVariableData

The dynamic indexing method shown in the following example applies a trailing XPath to the
result of bwps:getvariableData (), instead of using an XPath as the last argument of
bpws:getVariableData (). The trailing XPath makes reference to an integer-based index
variable within the position predicate (thatis, [...1).

<variable name="idx" type="xsd:integer"/>
<assign>
<copy>
<from expression="bpws:getVariableData('input', 'payload'’
) /p:line-item[bpws:getVariableData ('idx')]/p:line-total" />
<to variable="lineTotalVar" />

</copy>
</assign>

Assume at runtime that the idx integer variable holds 2 as its value. The expression in the
preceding example within the from is equivalent to that shown in the following example.

<from expression="bpws:getVariableData('input', 'payload'’
)/p:line-item[2]/p:line-total” />

There are some subtle XPath usage differences, when an XPath used trailing behind the
bwps:getVariableData () function is compared with the one used inside the function.Using the
same example (where payload is the message part of element "p:invoice"), if the XPath is
used within the getvariableData () function, the root element name ("/p:invoice") must be
specified at the beginning of the XPath.

The following example provides details.

bpws:getVariableData ('input', 'payload','/p:invoice/p:line-item[2]/p:line-total')

If the XPath is used trailing behind the bwps:getVariableData () function, the root element
name does not need to be specified in the XPath.

For example:

bpws:getVariableData ('input', 'payload')/p:line-item[2]/p:line-total

This is because the node returned by the getvariableData () function is the root element.
Specifying the root element name again in the XPath is redundant and is incorrect according to
standard XPath semantics.

Using the bpelx:append Extension to Append New Items to a Sequence

The bpelx:append extension in an assign activity enables BPEL process service components
to append new elements to an existing parent element. The following provides an example.

ORACLE 660

Chapter 6
Manipulating XML Data Sequences That Resemble Arrays

<assign name="assign-3">
<copy>
<from expression="bpws:getVariableData ('idx')+1" />
<to variable="idx"/>
</copy>
<bpelx:append>
<bpelx:from variable="partInfoResultVar" part="payload" />
<bpelx:to variable="output" part="payload" />
</bpelx:append>

</assign>

The bpelx:append logic in this example appends the payload element of the
partInfoResultVar variable as a child to the payload element of the output variable. In other
words, the payload element of the output variable is used as the parent element.

Merging Data Sequences

You can merge two sequences into a single data sequence. This pattern is common when the
data sequences are in an array (that is, the sequence of data items of compatible types).The
two append operations shown below under assign demonstrate how to merge data sequences:

<assign>
<!-- initialize "mergedLinelItems" variable
to an empty element -->
<copy>

<from> <p:lineltems /> </from>
<to variable="mergedLineItems" />
</copy>
<bpelx:append>
<bpelx:from variable="input" part="payload"
query="/p:invoice/p:lineltems/p:lineitem" />
<bpelx:to variable="mergedLineItems" />
</bpelx:append>
<bpelx:append>
<bpelx:from variable="literallLineItems"
query="/p:lineltems/p:lineitem" />
<bpelx:to variable="mergedLineItems" />
</bpelx:append>
</assign>

Generating Functionality Equivalent to an Array of an Empty Element

The genEmptyElem function generates functionality equivalent to an array of an empty element
to an XML structure. This function takes the following arguments:

genEmptyElem ('ElemQName',int?, 'TypeQName'?, boolean?)

Note the following issues:
e The first argument specifies the QName of the empty elements.

* The optional second integer argument specifies the number of empty elements. If missing,
the default size is 1.

e The third optional argument specifies the QName, which is the xsi:type of the generated
empty name. This xsi:type pattern matches the SOAPENC:Array. If it is missing or is an
empty string, the xsi:type attribute is not generated.

ORACLE 661

Chapter 6
Converting from a String to an XML Element

* The fourth optional boolean argument specifies whether the generated empty elements are
XSI - nil, provided the element is XSD-nillable. The default value is false. If missing or
false, xsi:nil is not generated.

The following example shows an append statement initializing a purchase order (PO) document
with 10 empty <lineItem> elements under po:

<bpelx:assign>
<bpelx:append>
<bpelx:from expression="ora:genEmptyElem('p:linelItem',10)" />
<bpelx:to variable="poVar" query="/p:po" />
</bpelx:append>
</bpelx:assign>

The genEmptyElem function in the previous example can be replaced with an embedded
XQuery expression, as shown in the following example:

ora:genEmptyElem('p:lineltem', 10)
== for $1 in (1 to 10) return <p:lineltem />

The empty elements generated by this function are typically invalid XML data. You perform
further data initialization after the empty elements are created. Using the same example above,
you can perform the following:

* Add attribute and child elements to those empty lineItem elements.

« Perform copy operations to replace the empty elements. For example, copy from a web
service result to an individual entry in this equivalent array under a flowN activity.

What You May Need to Know About Using the Array Identifier

For processing in Native Format Builder array identifier environments, information is required
about the parent node of a node. Because the reportSaxEvents APl is used, this information is
typically not available for outbound message scenarios. Setting nxsd:useArrayIdentifiers to
true in the native schema enables DOM-parsing to be used for outbound message scenarios.
Use this setting cautiously, as it can lead to slower performance for very large payloads. The
following example provides details.

<?xml version="1.0" ?>

<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema"
xmlns:nxsd="http://xmlns.oracle.com/pcbpel/nxsd"
targetNamespace="http://xmlns.oracle.com/pcbpel/demoSchema/csv"
xmlns:tns="http://xmlns.oracle.com/pcbpel/demoSchema/csv"
elementFormDefault="qualified"
attributeFormDefault="unqualified" nxsd:encoding="US-ASCII"
nxsd:stream="chars" nxsd:version="NXSD" nxsd:useArrayldentifiers="true">
<xsd:element name="Root-Element">

</xsd:element>
</xsd:schema>

Converting from a String to an XML Element

ORACLE

Sometimes a service is defined to return a string, but the content of the string is actually XML
data. The problem is that, although BPEL provides support for manipulating XML data (using
XPath queries, expressions, and so on), this functionality is not available if the variable or field
is a string type. With Java, you use DOM functions to convert the string to a structured XML
object type. You can use the BPEL XPath function parseEscapedxML to do the same thing.

6-62

Chapter 6
Understanding Document-Style and RPC-Style WSDL Differences

For information about parseEscapedXML, see parseEscapedXML.

How To Convert from a String to an XML Element

The parseEscapedxML function takes XML data, parses it through DOM, and returns structured
XML data that can be assigned to a typed BPEL variable. The following provides an example:

<!-- execute the XPath extension function
parseEscapedXML ('&1lt;item> ') and assign to a variable
-—>
<assign>
<copy>
<from expression="oratext:parseEscapedXML (
'glt;item xmlns="http://samples.otn.com"
sku=" 006" &qgt;
<description>sun ultra sparc VI server
&1t;/description>
<price>1000
< /pricesgt;
<quantityé>?2
&1t;/quantityé>
<lineTotalé> 2000
&1t;/lineTotalé>
</itemsgt; ') "/>
<to variable="escapedLineItem"/>
</copy>
</assign>

Understanding Document-Style and RPC-Style WSDL
Differences

The examples provided in previous sections of this chapter have been for document-style
WSDL files in which a message is defined with an XML schema element, as shown in he
following example:

<message name="LoanFlowRequestMessage">
<part name="payload" element="sl:loanBApplication"/>
</message>

This is in contrast to RPC-style WSDL files, in which the message is defined with an XML
schema type, as shown in the following example:

<message name="LoanFlowRequestMessage">
<part name="payload" type="sl:LoanApplicationType"/>
</message>

How To Use RPC-Style Files

ORACLE

This differs from the previous information in this chapter because there is a difference in how
XPath queries are constructed for the two WSDL message styles. For an RPC-style message,
the top-level element (and therefore the first node in an XPath query string) is the part name
(payload in the previous example). In document-style messages, the top-level node is the
element name (for example, loanApplication).

The following examples (WSDL file and BPEL file) show what an XPath query string looks like
if an application named LoanServices were in RPC style.

6-63

Chapter 6
Manipulating SOAP Headers in BPEL

<message name="LoanServiceResultMessage">
<part name="payload" type="sl:LoanOfferType"/>
</message>

<complexType name="LoanOfferType">
<sequence>
<element name="providerName" type="string"/>
<element name="selected" type="boolean"/>
<element name="approved" type="boolean"/>
<element name="APR" type="double"/>
</sequence>
</complexType>

<variable name="output"
messageType="tns:LoanServiceResultMessage"/>

<assign>
<copy>
<from expression="9.9"/>
<to variable="output" part="payload" query="/payload/APR"/>

</copy>
</assign>

Manipulating SOAP Headers in BPEL

BPEL's communication activities (invoke, receive, reply, and onMessage) receive and send
messages through specified message variables. These default activities permit one variable to
operate in each direction. For example, the invoke activity has inputvariable and
outputVariable attributes. You can specify one variable for each of the two attributes. This is
enough if the particular operation involved uses only one payload message in each direction.

However, WSDL supports multiple messages in an operation. In the case of SOAP, multiple
messages can be sent along the main payload message as SOAP headers. However, BPEL's
default communication activities cannot accommodate the additional header messages.

Oracle BPEL Process Manager solves this problem by extending the default BPEL
communication activities with the bpelx:headervVariable extension. The extension syntax is as
shown in the following example:

<invoke bpelx:inputHeaderVariable="inHeaderl inHeader2 ..."
bpelx:outputHeaderVariable="outHeaderl outHeader2 ..."
/>

<receive bpelx:headerVariable="inHeaderl inHeader2 ..." .../>
<onMessage bpelx:headerVariable="inHeaderl inHeader2 ..." .../>
<reply bpelx:headerVariable="inHeaderl inHeader2 ..." .../>

How to Receive SOAP Headers in BPEL

This section provides an example of how to create BPEL and WSDL files to receive SOAP
headers.

To receive SOAP headers in BPEL.:

1. Create a WSDL file that declares header messages and the SOAP binding that binds them
to the SOAP request. The following provides an example:

<!-- custom header -->
<message name="CustomHeaderMessage">
<part name="headerl" element="tns:headerl"/>

ORACLE 664

Chapter 6
Manipulating SOAP Headers in BPEL

<part name="header2" element="tns:header2"/>
</message>

<binding name="HeaderServiceBinding" type="tns:HeaderService">
<soap:binding style="document"
transport="http://schemas.xmlsoap.org/soap/http"/>
<operation name="initiate">
<soap:operation style="document" soapAction="initiate"/>
<input>
<soap:header message="tns:CustomHeaderMessage"
part="headerl" use="literal"/>
<soap:header message="tns:CustomHeaderMessage"
part="header2" use="literal"/>
<soap:body use="literal"/>
</input>
</operation>
</binding>

2. Create a BPEL source file that declares the header message variables and uses
bpelx:headerVariable to receive the headers, as shown in the following example:

<variables> <variable name="input"
messageType="tns:HeaderServiceRequestMessage" />
<variable name="event"
messageType="tns:HeaderServiceEventMessage"/>
<variable name="output"
messageType="tns:HeaderServiceResultMessage"/>
<variable name="customHeader"
messageType="tns:CustomHeaderMessage" />
</variables>

<sequence>
<!-- receive input from requester -->
<receive name="receiveInput" partnerLink="client"
portType="tns:HeaderService" operation="initiate"
variable="input"
bpelx:headerVariable="customHeader"
createInstance="yes"/>

How to Send SOAP Headers in BPEL

This section provides an example of how to send SOAP headers.

To send SOAP headers in BPEL.:
1. Define a reference in the composite.xml file to refer to the HeaderService.

2. Define the custom header variable, manipulate it, and send it using
bpelx:inputHeaderVariable, as shown in the following example:

<variables>
<variable name="input" messageType="tns:HeaderTestRequestMessage"/>
<variable name="output" messageType="tns:HeaderTestResultMessage"/>
<variable name="request" messageType="services:HeaderServiceRequestMessage"/>
<variable name="response" messageType="services:HeaderServiceResultMessage"/>
<variable name="customHeader'"messageType="services:CustomHeaderMessage"/>
</variables>

<!-- initiate the remote process -->
<invoke name="invokeAsyncService"
partnerLink="HeaderService"
portType="services:HeaderService"

ORACLE 665

Chapter 6
Declaring Extension Namespaces in BPEL 2.0

bpelx:inputHeaderVariable="customHeader"
operation="initiate"
inputVariable="request"/>

Declaring Extension Namespaces in BPEL 2.0

You can extend a BPEL version 2.0 process to add custom extension hamespace declarations.
With the mustUnderstand attribute, you can indicate whether the custom namespaces carry
semantics that must be understood by the BPEL process.

If a BPEL process does not support one or more of the extensions with mustUnderstand set to
yes, the process definition is rejected.

Extensions are defined in the extensions element. The following example provides details.
<process ...>
<extensions>?
<extension namespace="myURI" mustUnderstand="yes|no" />+
</extensions>
</process>
The contents of an extension element must be a single element qualified with a namespace

different from the standard BPEL namespace.

For more information about extension declarations, see the BPEL 2.0 Specification located at
the following URL:

http://www.oasis-open.org

How to Declare Extension Namespaces

To declare extension namespaces:

1. InaBPEL 2.0 process, click the Extensions icon above Oracle BPEL Designer.
The Extensions dialog is displayed.

2. Select the Extensions folder, then click the Add icon.
The Extension dialog is displayed.

3. Inthe Namespace field, enter the extension namespace to declare. This namespace must
be different from the standard BPEL namespace.

4. If you want the extensions to be recognized by the BPEL process, select the Must
Understand check box.

5. Click OK.
6. Click Close.

What Happens When You Create an Extension

ORACLE

After you complete your design, the .bpel process looks as shown in the following example:

<extensions>
<extension namespace="http://xmlns.mycompany.com/myNamespace"
mustUnderstand="yes"/>

</extensions>

6-66

http://www.oasis-open.org

Invoking a Synchronous Web Service from a
BPEL Process

This chapter describes how to invoke a synchronous web service from a BPEL process. It
demonstrates how to set up the components necessary to perform a synchronous invocation
and how these components are coded. It also describes how to specify a timeout value and
call a one-way Oracle Mediator with a synchronous BPEL process.

This chapter includes the following sections:

e Introduction to Invoking a Synchronous Web Service
e Invoking a Synchronous Web Service
e Specifying Transaction Timeout Values in Durable Synchronous Processes

e Calling a One-Way Mediator with a Synchronous BPEL Process

Introduction to Invoking a Synchronous Web Service

Synchronous web services provide an immediate response to an invocation. BPEL can
connect to synchronous web services through a partner link, send data, and receive the reply
in the same synchronous invocation.

A synchronous invocation requires the following components:

e Partner link

Defines the location and the role of the web services with which the BPEL process service
component connects to perform tasks, and the variables used to carry information between
the web service and the BPEL process service component. A partner link is required for
each web service that the BPEL process service component calls. You can create partner
links in several ways, including the following:

— Inthe SOA Composite Editor, when you drag a SOAP service from the Technology
section of the Components window into the Exposed Services or External
References swimlane. For more information, see Adding Service Binding Components
or Adding Reference Binding Components.

— In Oracle BPEL Designer, when you drag a Partner Link icon from the BPEL
Constructs section of the Components window into the Partner Links swimlane. This
second method is described in this chapter.

e Invoke activity

Opens a port in the BPEL process service component to send and receive data. For
example, this port is used to retrieve information verifying that a customer has acceptable
credit using a credit card authorization service. For synchronous callbacks, only one port is
needed for both the send and receive functions.

Invoking a Synchronous Web Service

ORACLE

This section examines a synchronous invocation operation using a file named
OrderProcessor.bpel.

7-1

Chapter 7
Invoking a Synchronous Web Service

How to Invoke a Synchronous Web Service

To invoke a synchronous web service:

1.
2.

In the Components window in Oracle BPEL Designer, expand BPEL Constructs.

Drag the necessary partner link, invoke activity, scope activity, and assign activity into the
designer.

Edit their dialogs.

Figure 7-1 shows the diagram for a scope activity named Scope_AuthorizeCreditCard of
a BPEL process named OrderProcessor, which defines a simple set of actions.

Figure 7-1 Diagram of OrderProcessor.bpel

>

Assign_CreditCheckInput

InvokeCheckCreditCard

30

Check if CC card was validated and amount approved

How Does the BPEL Process Work

The following actions take place:

ORACLE

1.

The Assign_CreditCardChecklnput assign activity packages the data from the client.
The assign activity provides a method for copying the contents of one variable to another.
In this case, it takes the credit card type, credit card number, and purchase amount and
assigns them to the input variable for the CreditCardAuthorizationService service.

The InvokeCheckCreditCard invoke activity calls the CreditCardAuthorizationService
service. Figure 7-2 shows the CreditCardAuthorizationService web service, which is
defined as a partner link.

Figure 7-2 CreditCardAuthorizationService Partner Link

Marme: |CreditCardﬂuthorizationService |

Process: | OrderProcessor |

WSDL Settings

Q@R W
WSDL URL: |CreditCard.ﬁ.uthorizatic-nServi-:e.wsdl |
Partner Link Type: |“('}W CreditCardfutharizationService - |
Partner Raole: |‘{3 CreditautharizationPork - |
My Role: &8, --— Mk Specified ---— -|

7-2

Chapter 7
Invoking a Synchronous Web Service

Figure 7-3 shows the InvokeCheckCreditCard invoke activity.

Figure 7-3 InvokeCheckCreditCard Invoke Activity

Headers Documentation Skip Condition Targets Sources

eneral Correlations Properties Assertions Annotations
Mame: |Inv0keCheckCreditCard |
Conwersation ID: | | Ef‘y
Detail Label: | |

[] Invoke as Detail

Interaction Type: [S23 Partner Link™

Partner Link: |CreditCardAuthorizatinnService | <k,
Port Type: ’3" VI
Operation: "% VI

Input output

() Arguments Mapping (3) Input Variable =)

Input: |CreditCardInput | EF Q@

3. Anif activity (for BPEL 2.0) or a switch activity (for BPEL 1.1) checks the results of the
credit card validation. For information about if and switch activities, see Defining
Conditional Branching with the If or Switch Activity.

¢ Note:
The BPEL 2.0 if activity replaces the BPEL 1.1 switch activity.

What Happens When You Invoke a Synchronous Web Service

When you create a partner link and invoke activity, the necessary BPEL code for invoking a
synchronous web service is added to the appropriate BPEL and Web Services Description
Language (WSDL) files.

Partner Link in the BPEL Code

In the OrderProcessor.bpel code, the partner link defines the link name and type, and the role
of the BPEL process service component in interacting with the partner service.

From the BPEL source code, the CreditCardAuthorizationService partner link definition is
shown below:
<partnerLink name="CreditCardAuthorizationService"

partnerRole="CreditAuthorizationPort"
partnerLinkType="ns2:CreditCardAuthorizationService"/>

Variable definitions that are accessible locally in the Scope AuthorizeCreditCard scope are
shown in the following example. The types for these variables are defined in the WSDL for the
process itself.

ORACLE 7-3

Chapter 7
Invoking a Synchronous Web Service

<variable name="1CreditCardInput"
messageType="ns2:CreditAuthorizationRequestMessage"/>

<variable name="1CreditCardOutput"
messageType="ns2:CreditAuthorizationResponseMessage"/>

The WSDL file defines the interface to your BPEL process service component:
e The messages that it accepts and returns
e The operations that are supported

e Other parameters

Partner Link Type and Port Type in the BPEL Code

The web service's CreditCardAuthorizationService.wsdl file contains two sections that
enable the web service to work with BPEL process service components:

* partnerLinkType:

Defines the following characteristics of the conversion between a BPEL process service
component and the credit card authorization web service:

— The role (operation) played by each
— The portType provided by each for receiving messages within the conversation
e portType:

A collection of related operations implemented by a participant in a conversation. A port
type defines which information is passed back and forth, the form of that information, and
S0 on. A synchronous invocation requires only one port type that both initiates the
synchronous process and calls back the client with the response. An asynchronous
callback (one in which the reply is not immediate) requires two port types:

— One to send the request
— Another to receive the reply when it arrives

In this example, the portType CreditAuthorizationPort receives the credit card type,
credit card number, and purchase amount, and returns the status results.

The following provides an example of partnerLinkType and portType.

<plnk:partnerLinkType name="CreditCardAuthorizationService">
<plnk:role name="CreditAuthorizationPort">
<plnk:portType name="tns:CreditAuthorizationPort"/>
</plnk:role>
</plnk:partnerLinkType>

Invoke Activity for Performing a Request

ORACLE

The invoke activity includes the 1CreditCardInput local input variable. The credit card
authorization web service uses the 1CreditCardInput input variable. This variable contains the
customer's credit card type, credit card number, and purchase amount. The
1CreditCardOutput variable returns status results from the CreditCardAuthorizationService
service. The following example provides details.

<invoke name="InvokeCheckCreditCard"
inputVariable="1CreditCardInput"
outputVariable="1CreditCardOutput"
partnerLink="CreditCardAuthorizationService"
portType="ns2:CreditAuthorizationPort"
operation="AuthorizeCredit"/>

7-4

Chapter 7
Specifying Transaction Timeout Values in Durable Synchronous Processes

Synchronous Invocation in BPEL Code

The BPEL code shown in the following example performs the synchronous invocation.

<assign name="Assign CreditCheckInput">
<copy>
<from variable="gOrderInfoVariable"
query="/ns4:orderInfov0OSDO/ns4:0rderTotal"/>
<to variable="1CreditCardInput" part="Authorization"
query="/ns8:AuthInformation/ns8:PurchaseAmount"/>
</copy>
<copy>
<from variable="gOrderInfoVariable"
query="/ns4:orderInfovOSDO/ns4:CardTypeCode" />
<to variable="1CreditCardInput" part="Authorization"
query="/ns8:AuthInformation/ns8:CCType" />
</copy>
<copy>
<from variable="gOrderInfoVariable"
query="/ns4:orderInfovOSDO/ns4:AccountNumber" />
<to variable="1CreditCardInput" part="Authorization"
query="/ns8:AuthInformation/ns8:CCNumber"/>
</copy>
</assign>
<invoke name="InvokeCheckCreditCard"
inputVariable="1CreditCardInput"
outputVariable="1CreditCardOutput"
partnerLink="CreditCardAuthorizationService"
portType="ns2:CreditAuthorizationPort"
operation="AuthorizeCredit"/>

Specifying Transaction Timeout Values in Durable Synchronous
Processes

You can specify transaction timeout values with the property SyncMaxWaitTime in the System
MBean Browser of Oracle Enterprise Manager Fusion Middleware Control. The
SyncMaxWaitTime property applies to durable synchronous processes that are called in an
asynchronous manner. If the BPEL process service component does not receive a reply within
the specified time, then the activity fails. For more information, see What You May Need to
Know About SyncMaxWaitTime and Durable Synchronous Requests Not Timing Out.

How To Specify Transaction Timeout Values

ORACLE

To specify transaction timeout values:
1. Loginto Oracle Enterprise Manager Fusion Middleware Control.
2. From the SOA Infrastructure menu, select SOA Administration > BPEL Properties.

3. At the bottom of the BPEL Service Engine Properties page, click More BPEL
Configuration Properties.

4. Click SyncMaxWaitTime.
5. Inthe Value field, specify a value in seconds.

6. Click Apply.

7-5

Chapter 7
Specifying Transaction Timeout Values in Durable Synchronous Processes

7. Click Return.

What You May Need to Know About SyncMaxWaitTime and Durable
Synchronous Requests Not Timing Out

The SyncMaxWaitTime property applies to durable synchronous processes that are called in
an asynchronous manner.

Assume you have a BPEL process with the definition shown in the following example. The
process is not durable because there are no breakpoint activities.

<receive name="receivelInput" partnerLink="client" variable="input"
createInstance="yes" />
<assign>

</assign>

<reply name="replyOutput" partnerLink="client" variable="output" />

If a Java client or another BPEL process calls this process, the assign activity is performed and
the reply activity sets the output message into a HashMap for the client (actually the delivery
service) to retrieve. Since the reply is the last activity, the thread returns to the client side and

tries to pick up the reply message. Since the reply message was previously inserted, the client
does not wait and returns with the reply.

Assume you have a BPEL process with a breakpoint activity, as shown in the following
example:

<receive name="receivelInput" partnerLink="client" variable="input"
createInstance="yes" />
<assign>

</assign>
<wait name="Waitl">
<for>'PT10S'</for>

</wait>
<reply name="replyOutput" partnerLink="client" variable="output" />

While it is not recommended to have asynchronous activities inside a synchronous process,
BPEL does not prevent this type of design.

When the client (or another BPEL process) calls the process, the wait (breakpoint) activity is
executed. However, since the wait is processed after some time by an asynchronous thread in
the background, the executing thread returns to the client side. The client (actually the delivery
service) tries to pick up the reply message, but it is not there since the reply activity in the
process has not yet executed. Therefore, the client thread waits for the SyncMaxWaitTime
seconds value. If this time is exceeded, then the client thread returns to the caller with a
timeout exception.If the wait is less than the SyncMaxWaitTime value, the asynchronous
background thread then resumes at the wait and executes the reply. The reply is placed in the
HashMap and the waiter (the client thread) is notified. The client thread picks up the reply
message and returns.

Therefore, SyncMaxWaitTime only applies to synchronous process invocations when the
process has a breakpoint in the middle. If there is no breakpoint, the entire process is executed
by the client thread and returns the reply message.

ORACLE .

Chapter 7
Calling a One-Way Mediator with a Synchronous BPEL Process

Calling a One-Way Mediator with a Synchronous BPEL Process

ORACLE

You can expose a synchronous interface in the front end while using an asynchronous callback
in the back end to simulate a synchronous reply. This is the default behavior in BPEL
processes with the automatic setting of the bpel.config.transaction property to requiresNew
in the composite.xml file. The following example provides details.

<component name="BPELProcessl">
<implementation.bpel src="BPELProcessl.bpel"/>
<property name="bpel.config.transaction" type="xs:string"
many="false">requiresNew</property>
</component>

The requiresNew value is recommended. If you want to participate in the client's transaction,
you must set the bpel.config.transaction property to required.

7-7

Invoking an Asynchronous Web Service from a
BPEL Process

This chapter describes how to configure and invoke an asynchronous web service from a
BPEL process. It also describes how to route callback messages to the correct endpoint when
multiple receive or pick activities use the same partner link, manage idempotence at the
partner link operation level, create a dynamic partner link at runtime, override security
certificates and WSDL files in dynamic partner link environments, and use WS-Addressing.
This chapter includes the following sections:

e Introduction to Invoking an Asynchronous Web Service
e Invoking an Asynchronous Web Service

¢ Routing Callback Messages to the Correct Endpoint when Multiple Receive or Pick
Activities Use the Same Partner Link

e Managing Idempotence at the Partner Link Operation Level

e Creating a Dynamic Partner Link at Design Time for Use at Runtime

e Overriding Security Certificates when Invoking Dynamic Partner Links
e Overriding WSDL Files of Dynamic Partner Links

e Using WS-Addressing in an Asynchronous Service

Introduction to Invoking an Asynchronous Web Service

Asynchronous messaging styles are useful for environments in which a service, such as a loan
processor, can take a long time to process a client request. Asynchronous services also
provide a more reliable fault-tolerant and scalable architecture than synchronous services.

This section introduces asynchronous web service invocation with a company called United
Loan. United Loan publishes an asynchronous web service that processes a client's loan
application request and then returns a loan offer. This use case discusses how to integrate a
BPEL process service component with this asynchronous loan application approver web
service.

This use case illustrates the key design concepts for requesting information from an
asynchronous service, and then receiving the response. The asynchronous United Loan
service in this example is another BPEL process service component. However, the same BPEL
call can interact with any properly designed web service. The target web service WSDL file
contains the information necessary to request and receive the necessary information.

For the asynchronous web service, the following actions take place (in order of priority):

1. An assign activity prepares the loan application.

2. Aninvoke activity initiates the loan request. The contents of this request are put into a
request variable. This request variable is sent to the asynchronous loan processor web
service.

When the loan request is initiated, a correlation ID unique to the client and partner link
initiating the request is also sent to the loan processor web service. The correlation ID

ORACLE -

4,

Chapter 8
Invoking an Asynchronous Web Service

ensures that the correct loan offer response is returned to the corresponding loan
application requester.

The loan processor web service then sends the correct response to the receive activity,
which has been tracked by the correlation ID.

An assign activity reads the loan application offer.

Subsequent sections in this chapter provide specific details about the asynchronous
functionality.

Invoking an Asynchronous Web Service

This section provides an overview of the tasks for adding asynchronous functionality to a BPEL
process service component.

How to Invoke an Asynchronous Web Service

You perform the following steps to asynchronously invoke a web service:

Add a partner link
Add an invoke activity
Add a receive activity

Create assign activities

Adding a Partner Link for an Asynchronous Service

ORACLE

These instructions describe how to create a partner link in a BPEL process (for this example,
named LoanService) for the loan application approver web service.

To add a partner link for an asynchronous service:

1.

In the SOA Composite Editor, drag a BPEL process from the Components section of the
Components window into the designer.

The Create BPEL Process dialog appears.

Follow the instructions in the dialog to create an asynchronous BPEL process service
component.

Click OK when complete.

In the SOA composite application in the SOA Composite Editor, double-click the BPEL
process service component (for this example, the component is named LoanBroker).

Oracle BPEL Designer appears.

In the Components window, expand BPEL Constructs.

Drag a Partner Link icon into the right Partner Links swimlane.
The Create Partner Link dialog appears.

Enter the following details to create a partner link and select the loan application approver
web service:

* Name
Enter a name for the partner link (for this example, LoanService is entered).

* Process

8-2

Chapter 8
Invoking an Asynchronous Web Service

Displays the BPEL process service component name (for this example, LoanBroker
appears).

« WSDL URL

Enter the name of the Web Services Description Language (WSDL) file to use. Click
the SOA Resource Browser icon above this field to locate the correct WSDL.

e Partner Link Type

Refers to the external service with which the BPEL process service component is to
interface. Select from the list (for this example, LoanService is selected).

 Partner Role

Refers to the role of the external source, for example, provider. Select from the list (for
this example, LoanServiceProvider is selected).

* My Role

Refers to the role of the BPEL process service component in this interaction. Select
from the list (for this example, LoanServiceRequester is selected).

8. Click OK.

A new partner link for the loan application approver web service (United Loan) appears in
the swimlane of the designer.

Adding an Invoke Activity

ORACLE

Follow these instructions to create an invoke activity and a global input variable named
request. This activity initiates the asynchronous BPEL process service component activity with
the loan application approver web service (United Loan). The loan application approver web
service uses the request input variable to receive the loan request from the client.

To add an invoke activity:

1. Inthe Components window, expand BPEL Constructs.
2. Drag an Invoke activity to beneath the Receive activity.

3. Go to the Structure window. While this example describes variable creation from the
Structure window, you can also create variables by clicking the Add icons to the right of
the Input and Output fields of the Invoke dialog.

4. Right-click Variables and select Expand All Child Nodes.
5. Inthe second Variables folder in the tree, right-click and select Create Variable.
The Create Variable dialog appears.
6. Enter the variable name and select Message Type from the options provided:
« Type
This option lets you select an XML schema simple type (for example, string, boolean,
and so on).
* Message Type

This option enables you to select a WSDL message file definition of a partner link or of
the project WSDL file of the current BPEL process service component (for example, a
response message or a request message). You can specify variables associated with
message types as input or output variables for invoke, receive, or reply activities.

To display the message type, select the Message Type option, and then select its
Browse icon to display the Type Chooser dialog. From here, expand the Message

8-3

Chapter 8
Invoking an Asynchronous Web Service

Types tree to make your selection. For this example, LoanServiceRequestMessage
is selected.

« Element

This option lets you select an XML schema element of the project schema file or
project WSDL file of the current BPEL process service component, or of a partner link.

7. Click OK.

8. Click the invoke activity to display its property fields in the Property Inspector or double-
click the invoke activity to display the Invoke dialog.
For information about editing activities in the Property Inspector, see How to Edit BPEL
Activities in the Property Inspector.

9. Inthe Invoke dialog, select the partner link from the Partner Link list (for this example,
LoanService is selected) and initiate from the Operation list.

10. To the right of the Input field, click the second icon and select the input variable you
created in Step 6.
The Variable Chooser dialog appears, where you can select the variable.
There is no output variable specified because the output variable is returned in the receive
operation. The invoke activity is created.
For more information about the invoke activity, see Invoke and Receive Activities.

11. Click OK.

Adding a Receive Activity

Follow these steps to create a receive activity and a global output variable named response.
This activity waits for the loan application approver web service's callback operation. The loan
application approver web service uses this output variable to send the loan offer result to the
client.

To add a receive activity:

1.

ORACLE

From the Components window, drag a Receive activity to the location right after the
Invoke activity you created in Adding an Invoke Activity.

Create a variable to hold the receive information by invoking the Create Variable dialog, as
you did in Step 3 through Step 7 of Adding an Invoke Activity.

Note:

In BPEL projects that support version 2.0 of the BPEL specification, the Create
Variable dialog includes an Initialize tab that enables you to initialize the variable
type inline (for example, as a variable, expression, literal, partner link, or
property). BPEL 2.0 is the default version when you create a BPEL process. For
more information, see How to Initialize Variables with an Inline from-spec in
BPEL 2.0.

Double-click the Receive activity and change its name to receive invoke.

From the Partner Link list, select the partner link (for this example, LoanService is
selected).

From the Operation list, select onResult. Do not select the Create Instance check box.

8-4

Chapter 8
Invoking an Asynchronous Web Service

6. Select the variable you created in Step 3 through Step 7 of Adding an Invoke Activity.
7. Click OK.

The receive activity and the output variable are created. Because the initial receive activity
in the BPEL file (for this example, LoanBroker.bpel) created the initial BPEL process
service component instance, a second instance does not need to be created.

Performing Additional Activities

In addition to the asynchronous-specific tasks, you must perform the following tasks.

e Create an initial assign activity for data manipulation in front of the invoke activity that
copies the client's input variable loan application request document payload into the loan
application approver web service's request variable payload.

e Create a second assign activity for data manipulation after the receive activity that copies
the loan application approver web service's response variable loan application results
payload into the output variable for the client to receive.

What Happens When You Invoke an Asynchronous Web Service

This section describes what happens when you invoke an asynchronous web service.

portType Section of the WSDL File

The portType section of the WSDL file (in this example, for LoanService) defines the ports to
be used for the asynchronous service.

Asynchronous services have two port types. Each port type performs a one-way operation. In
this example:

e One port type responds to the asynchronous process
e The other calls back the client with the asynchronous response

In the example shown below, the portType LoanServiceCallback receives the client's loan
application request and the portType LoanService asynchronously calls back the client with
the loan offer response.

<!-- portType implemented by the LoanService BPEL process -->
<portType name="LoanService">
<operation name="initiate">
<input message="tns:LoanServiceRequestMessage"/>
</operation>
</portType>
<!-- portType implemented by the requester of LoanService BPEL process
for asynchronous callback purposes
-—>
<portType name="LoanServiceCallback">
<operation name="onResult">
<input message="tns:LoanServiceResultMessage"/>
</operation>
</portType>

partnerLinkType Section of the WSDL File

The partnerLinkType section of the WSDL file (in this example, for LoanService) defines the
following characteristics of the BPEL process service component:

ORACLE oe

Chapter 8
Invoking an Asynchronous Web Service

e The role (operation) played
* The portType provided for receiving messages within the conversation

Partner link types in asynchronous services have two roles: one for the web service provider
and one for the client requester.

In the conversation shown in the following example, the LoanServiceProvider role and
LoanService portType are used for client request messages and the LoanServiceRequester
role and LoanServiceCallback portType are used for asynchronously returning (calling back)
response messages to the client.

<plnk:partnerLinkType name="LoanService">
<plnk:role name="LoanServiceProvider">
<plnk:portType name="client:LoanService"/>
</plnk:role>
<plnk:role name="LoanServiceRequester">
<plnk:portType name="client:LoanServiceCallback"/>
</plnk:role>
</plnk:partnerLinkType>

Two port types are combined into this single asynchronous BPEL process service component:
portType="services:LoanService" Of the invoke activity and
portType="services:LoanServiceCallback" of the receive activity. Port types are essentially
a collection of operations to be performed. For this BPEL process service component, there
are two operations to perform: initiate in the invoke activity and onResult in the receive
activity.

Partner Links Section in the BPEL File

To call the service from BPEL, you use the BPEL file to define how the process interfaces with
the web service. View the partnerLinks section. The services with which a process interacts
are designed as partner links. Each partner link is characterized by a partnerLinkType.

Each partner link is named. This name is used for all service interactions through that partner
link. This is critical in correlating responses to different partner links for simultaneous requests
of the same type.

Asynchronous processes use a second partner link for the callback to the client. In this
example, the second partner link, LoanService, is used by the loan application approver web
service. The following provides an example.

<!-- This process invokes the asynchronous LoanService. -->

<partnerLink name="LoanService"
partnerLinkType="services:LoanService"
myRole="LoanServiceRequester"
partnerRole="LoanServiceProvider"/>
</partnerLinks>

The attribute myRole indicates the role of the client. The attribute partnerRole role indicates
the role of the partner in this conversation. Each partnerLinkType has myRole and
partnerRole attributes in asynchronous processes.

Composite Application File

In the composite.xnl file, the loan application approver web service appears, as shown below.

ORACLE -

Chapter 8
Invoking an Asynchronous Web Service

<component name="LoanBroker">
<implementation.bpel process="LoanBroker.bpel"/>
</component>

For more information, see Adding a Partner Link for an Asynchronous Service for instructions
on creating a partner link.

Invoke and Receive Activities

View the variables and sequence sections. Two areas of particular interest concern the
invoke and receive activities:

* Aninvoke activity invokes a synchronous web service (as discussed in Invoking a
Synchronous Web Service from a BPEL Process) or initiates an asynchronous service.

The invoke activity includes the request global input variable defined in the variables
section. The request global input variable is used by the loan application approver web
service. This variable contains the contents of the initial loan application request document.

e Areceive activity that waits for the asynchronous callback from the loan application
approver web service. The receive activity includes the response global output variable
defined in the variables section. This variable contains the loan offer response. The
receive activity asynchronously waits for a callback message from a service. While the
BPEL process service component is waiting, it is dehydrated, or compressed and stored,
until the callback message arrives.

The following provides an example.

<variables>
<variable name="request"
messageType="services:LoanServiceRequestMessage"/>
<variable name="response"
messageType="services:LoanServiceResultMessage"/>
</variables>
<sequence>
<!-- initialize the input of LoanService -->
<assign>

</assign>

<!-- initiate the remote process -->

<invoke name="invoke" partnerLink="LoanService"
portType="services:LoanService"
operation="initiate" inputVariable="request"/>

<!-- receive the result of the remote process -->

<receive name="receive_ invoke" partnerLink="LoanService"
portType="services:LoanServiceCallback"
operation="onResult" variable="response"/>

When an asynchronous service is initiated with the invoke activity, a correlation ID unique to
the client request is also sent, using Web Services Addressing (WS-Addressing) (described in
Using WS-Addressing in an Asynchronous Service). Because multiple processes may be
waiting for service callbacks, the server must know which BPEL process service component
instance is waiting for a callback message from the loan application approver web service. The
correlation ID enables the server to correlate the response with the appropriate requesting
instance.

ORACLE .

Chapter 8
Invoking an Asynchronous Web Service

createlnstance Attribute for Starting a New Instance

You may notice a createlInstance attribute in the initial receive activity. In this initial receive
activity, the createInstance element is set to yes. This starts a new instance of the BPEL
process service component. At least one instance startup is required for a conversation. For
this reason, you set the createInstance variable to no in the second receive activity.

The following example shows the source code for the createInstance attribute:

<!-- receive input from requester -->

<receive name="receivelnput" partnerLink="client"
portType="tns:LoanBroker"
operation="initiate" variable="input"

createlInstance="yes" />

Dehydration Points for Maintaining Long-Running Asynchronous Processes

To automatically maintain long-running asynchronous processes and their current state
information in a database while they wait for asynchronous callbacks, you use a database as a
dehydration store. Storing the process in a database preserves the process and prevents any
loss of state or reliability if a system shuts down or a network problem occurs. This feature
increases both BPEL process service component reliability and scalability. You can also use it
to support clustering and failover.

You insert this point between the invoke activity and receive activity. You can also explicitly
specify a dehydration point with a dehydrate activity. For more information, see Dehydrate
Activity.

Multiple Runtime Endpoint Locations

Oracle SOA Suite provides support for specifying multiple partner link endpoint locations. This
capability is useful for failover purposes if the first endpoint is down. To provide an alternate
partner link endpoint location, add the location attribute to the composite.xml file. The
following provides an example.

<reference name="HeaderService ...>

<binding.ws port="http://services.otn.com/HelloWorldApp#wsdl.endpoint (client/
HelloWorldService pt)"

location="http://server:port/soa-infra/services/default/
HelloWorldService!l.0/client?WSDL">

<property name="endpointURI">http://jsmith.us.example.com:80/a.jsp

@http://myhost.us.example.com:8888/soa-infra/services/HelloWorldApp/HelloWorld!

1.0%2007-10-22_14-33-04 _195/client

</property>

</binding.ws>

</reference>

What You May Need to Know About Midprocess Receive Activities
Consuming Messages After Timing Out

ORACLE

A BPEL process can consume midprocess receive activity messages even after the expiration
of a configured timeout on the receive activity, if the exception resulting from the timeout goes
unhandled. In these scenarios, the callback message is consumed when it is delivered. This is
the expected behavior.

For example, assume you perform the following tasks:

8-8

Chapter 8
Invoking an Asynchronous Web Service

e Create a SOA composite application with a client BPEL process and service BPEL process
to exchange a message using asynchronous invoke and receive activities.

* Configure a timeout of 30 seconds in the Timeout tab of the receive activity of the client
BPEL process.

« Configure a wait activity to wait for five minutes in the service BPEL process.

You may expect that after the timeout occurs, the client BPEL process is marked as completed
in the faulted state instead of remaining in the running state, and the callback message from
the service BPEL process is ignored. However, when the timeout fault is thrown on the client
BPEL process, it remains in the running state. When the service BPEL process responds five
minutes after the completion of the wait activity, the response is sent back to the client BPEL
process and the response is consumed by the client BPEL process and reconciled with the
running process instance.

What You May Need to Know About Multiple Client Components Invoking a

Composite

If multiple client components invoke a SOA composite application by using its remote WSDL
file, the callback response can only be retrieved by the original client calling the remote
composite if it has a receive activity. When the original client does not have a receive activity
and any of the subsequent clients calling the composite has a receive activity, the response
message is lost. It goes into the recovery state of the original client process.

This is the expected behavior. This is because the composite being invoked cannot tell which
client has a receive activity or if the client is indeed a BPEL process service component.

What You May Need to Know About Limitations on BPEL 2.0 IMA Support

ORACLE

Receive activities are a type of inbound message activity (IMA). Other examples of IMAs are
as follows:

* onMessage branches of a scope activity (in BPEL 1.1) or a pick activity
e onEvent branches of a scope activity in BPEL 2.0

The BPEL 2.0 specification allows multiple IMAs to work with each other or with other IMAs
derived from extension activities. To provide for consistent runtime behavior, the BPEL 2.0
specification allows for correlation sets with the initiate attribute set to join.However, Oracle
BPEL Process Manager's implementation of the BPEL 2.0 specification does not support this
behavior. The only way to support multiple IMAs is by coding them as onMessage branches for
a pick activity (that is, setting createInstance to yes).Oracle BPEL Process Manager also
does not support other forms of multiple IMAs, such as a flow activity with two branches, each
with a receive activity and with createInstance set to yes and correlation sets with initiate
setto join.

As a workaround, you must design two different BPEL processes with the two receive activities
in alternating order, as follows:

* Processl with receivel followed by receive2, and only receivel having createInstance
set to yes.

e Process2 with receive2 followed by receivel, and only receive2 having createInstance
set to yes.

The same also applies for any other combination of IMAS, such as a receive activity and pick
activity, or two pick activities.

8-9

Chapter 8
Invoking an Asynchronous Web Service

What Happens When You Specify a Conversation ID

You can also enter an optional conversation ID value in the Conversation ID field of an invoke
activity (and other activities such as a receive activity and the onMessage branch of a pick or
scope activity).

The conversation ID identifies a process instance during an asynchronous conversation. By
default, the BPEL process service engine generates a unique ID for each conversation (which
can span multiple invoke and receive activities), as specified by WSA addressing. If you want,
you can specify your own value for the service engine to use. Conversation IDs are
implemented with the bpelx:conversationId extension.

Note:

You cannot explicitly set the Conversation ID (internal/hidden state) of a composite
while using AQ Adapter. The Database sets the Conversation ID in this case.

bpelx:conversationid in BPEL 1.1

The following provides an example of the bpelx:conversationId extension in a BPEL project
that supports BPEL version 1.1. The bpelx:conversationId extension takes an XPath
expression.

<invoke ... bpelx:conversationId="$convId2">
</invoke>

<receive ... bpelx:conversationId="$convId2">
</receive>

<onMessage... bpelx:conversationId="$convId2">
</onMessage>

bpelx:conversationld in BPEL 2.0

The following provides an example of the bpelx:conversationId extension in a BPEL project
that supports BPEL version 2.0. The bpelx:conversationld extension takes a BPEL 2.0
XPath expression.

<invoke ...>
<pbpelx:conversationId>$convIdl</bpelx:conversationId>
</invoke>

<receive ...>
<bpelx:conversationId>$convIdl</bpelx:conversationId>
</receive>

<onMessage ...>
<bpelx:conversationId>$convId2</bpelx:conversationId>
</onMessage>

ORACLE 810

Chapter 8
Routing Callback Messages to the Correct Endpoint when Multiple Receive or Pick Activities Use the Same Partner Link

Routing Callback Messages to the Correct Endpoint when
Multiple Receive or Pick Activities Use the Same Partner Link

The replyToAddress hormalized message property is required for resolving the routing of
callback messages to the correct endpoint address when multiple receive or pick activities are
associated with the same partner link.

This is because the BPEL process service engine only stores the replyToAddress property
once when receiving a request from a partner link at the initiating receive or pick activity. The
replyToAddress property routes the callback message and is not reset if a midprocess receive
or pick activity is used. The replyToAddress property uses the bpelx:inputProperty
extension.

How to Route Callback Messages to the Correct Endpoint when Multiple
Receive and Pick Activities Use the Same Partner Link

Set this property to the client's replyToAddress on the invoke activity (for the callback)
following the midprocess receive activity. This means that even if the client sends WS-
Addressing replyTo information for a midprocess receive activity, it is not set on the partner
link unless you use an assign activity to set it dynamically.

For example, assume your BPEL process is as shown below:

Caller Callee

<receive> <receive> Initiate CS1

<invoke>initiate CS1 -------- > <receive> Use CS1
<wait>

<receive>use CS1 <———————- <invoke>

<invoke>

To route callback messages to the correct endpoint when multiple receive and pick
activities use the same partner link:

1. Obtain the client's replyToAddress value from the midprocess receive activity.

<receive name="receiveMsgFromAccessor" partnerLink="midprocess client"
portType="client:mySingletonBPEL" operation="process"
variable="ReceiveMidProcess" createlnstance="no">
<bpelx:fromProperties>
<bpelx:fromProperty name="replyToAddress" variable="var replyToAddress"/>
</bpelx:fromProperties>
<correlations>
<correlation set="<YourCorrset>" initiate="no"/>
</correlations>
</receive>

2. On the invoke activity (for the callback), click the Properties tab.

3. Click the Add icon to select the property and its content (either a variable or an XPath
expression).

ORACLE 811

Chapter 8

Routing Callback Messages to the Correct Endpoint when Multiple Receive or Pick Activities Use the Same Partner Link

ORACLE

Note:

In BPEL 1.1 processes, the properties are automatically displayed in the
Properties column. Select the property in the Name column and double-click the
Value and Type columns to enter appropriate values.

In the Name column, scroll down and select the replyToAddress property. Do not select
wsa.replyToAddress or bpel.replyToAddress.

In the Value column, specify the variable name as the value (for this example,
var replyToAddress from Step 1 is entered), and click OK.

The Edit Invoke dialog appears as shown in Figure 8-1.

Figure 8-1 Properties Tab of Invoke Activity

[o] Edit Invoke

Headers Documentation Skip Conditian Targets Sources
Ceneral Correlations Properties Assertions Annotations
To
Erom FProperties: EF / b
Mame Value
replyToAddress fwar_ReplyTosddress payload/cli..
Help Apply o] Cance|

Click Apply, then OK.
In Oracle BPEL Designer, click Source.
The invoke activity in the BPEL process file looks as follows:

<invoke name="callbackAccessor" partnerLink="midprocess client"
portType="client:mySingletonBPELCallback"
operation="processResponse"
inputVariable="CallbackAccessorVar"
bpelx:invokeAsDetail="no">
<bpelx:inputProperty name="replyToAddress"
variable="var_ replyToAddtess"/>

8-12

Chapter 8
Managing Idempotence at the Partner Link Operation Level

Managing Idempotence at the Partner Link Operation Level

An idempotent activity is an activity that can be safely retried. Idempotent activities are
applicable to both durable and transient processes. You can manage idempotence at the
operation level of a partner link. For example, some partner links can expose multiple
operations (for example, getEmployee, depositPayCheck, and so on). You can define some
operations as idempotent (for example, getEmployee). This enables these operations to be
called multiple times. Other operations may not need to be idempotent (for example,
depositPayCheck), and do not require this setting. Dehydration does occur after a
nonidempotent operation.

By default, all partner link operations are idempotent. If you want, you can set an operation to
be nonidempotent. This setting provides the same functionality as the idempotent deployment
descriptor property, but at the more granular, operational level.

For more information about the idempotent deployment descriptor property, see What You
May Need to Know About the idempotent Property and Fault Handling and Introduction to
Deployment Descriptor Properties.

How to Manage Idempotence at the Partner Link Operation Level

ORACLE

To manage idempotence at the partner link operation level:

1. In Oracle BPEL Designer, double-click the partner link that includes the operations for
which to manage idempotence.

2. Click the Idempotence tab of the partner link.
By default, all operations are selected to be idempotent in the Idempotent column.

3. If you want to define an operation to be nonidempotent, deselect the Idempotent check
box for that operation. Figure 8-2 provides details.

Figure 8-2 Idempotence Tab of Partner Link Activity

& Edit Partner Link

rGeneraI rlmage rProperty rDocumentation rldempotence |

Operation Idempotent
O

getEmploves
depositPayCheck

| el | apply || ok || Cancel

4. Click Apply.

8-13

5.

Chapter 8
Creating a Dynamic Partner Link at Design Time for Use at Runtime

Click OK.

For more information about idempotence and the idempotent property, see Introduction to
Deployment Descriptor Properties.

Creating a Dynamic Partner Link at Design Time for Use at

Runtime

When you design a SOA composite application, you can face the following challenges:

Service endpoints (addresses) may not be known at design time.

Endpoint references may need to change while the application is running.

The dynamic partner link feature enables you to dynamically assign an endpoint reference to a
partner link for use at runtime in BPEL versions 1.1 and 2.0. The dynamic partner link provides
conditions, similar to a switch activity, that are evaluated at runtime.

How To Create a Dynamic Partner Link at Design Time for Use at Runtime

ORACLE

To create a dynamic partner link at design time for use at runtime:

1.

Create a WSDL file that contains multiple services that use the same portType.

<service name="AmericanLoan">

<port name="LoanServicePort" binding="tns:LoanServiceBinding">
<soap:address location="host:port/soa-infra/services/domain

name/AmericanLoan/client"/>

</port>

</service>

<service name="AlliedLoan">

<port name="LoanServicePort" binding="tns:LoanServiceBinding">
<soap:address location="host:port/soa-infra/services/domain

name/AlliedLoan/client"/>

</port>

</service>

<service name="AcmeLoan">

<port name="LoanServicePort" binding="tns:LoanServiceBinding">
<soap:address location="host:port/soa-infra/services/domain

name/Acmeloan/client"/>

</port>

</service>

Drag a SOAP binding component into the External References swim lane of the SOA
Composite Editor.

The Create Web Service dialog appears.
Define the web service, and click OK.

When complete, the reference binding component entry in the composite.xml file that uses
the WSDL looks as follows:

<reference name="loanService">
<interface.wsdl interface="http://services.otn.comfwsdl.interface (LoanService)"
callbackInterface="http://services.otn.comfwsdl.interface (LoanServiceCallback)"
/>
<binding.ws port=

8-14

ORACLE

"http://services.otn.com#wsdl.endpoint (AmericanLoan/LoanService pt)"/>

</reference>

Note:

4. Double-click the BPEL process to enter Oracle BPEL Designer.

5. Drag an Assign activity into the designer.

e Adding the binding.ws port setting is optional. This is because the port is
overridden at runtime by properties passed from Oracle BPEL Process
Manager.

* If there is no port setting, and there is no composite import of the concrete
WSDL associated with this reference, you must specify the location of the
concrete WSDL with a location attribute.

Chapter 8
Creating a Dynamic Partner Link at Design Time for Use at Runtime

6. Above the target partner link, select the XML Fragment icon, as shown in Figure 8-3. If

you are using BPEL 2.0, drag the Literal icon.

Figure 8-3 XML Fragment Icon

B &9 = =

EPELPForessl hnel o

F,]><I\'1L Fragment {Drag to target node or canvas)
- L | - T L |

7. Drag the icon to the target partner link.

The XML Fragment dialog for BPEL 1.1 appears. If you are using BPEL 2.0, the Literal

dialog appears.

8. Assign an XML fragment containing the endpoint reference to the partner link, and click

OK. Figure 8-4 provides details.

8-15

Chapter 8
Creating a Dynamic Partner Link at Design Time for Use at Runtime

Figure 8-4 XML Fragment Dialog in BPEL 1.1

XML Fragment IX|

AML Fragrent

<EndpointReference xuwlnz="http: / schenas.xulsoap. okyg/wa /2003 /03 /addressing™ >
<hddress:http: / /nyhost.us. oracle. con: 9700 /0rabpel /defaul t /Unitcedloan< /Address:
</EndpointReference:-

[0K ” Cancel]

—

When complete, the BPEL file contains one of the services defined in the WSDL.
The following provides a BPEL 1.1 sample:

<EndpointReference xmlns="http://schemas.xmlsoap.org/ws/2003/03/addressing">
<Address>http://host:port/soa-infra/services/domain name
/AlliedLoan/client</Address>
<ServiceName xmlns:nsl="http://services.otn.com"
PortName="LoanServicePort">nsl:AlliedLoan</ServiceName>
</EndpointReference>

The following provides a BPEL 2.0 sample:

<assign>
<copy>
<from>
<literal>
<sref:service-ref>
<services:EndpointReference>
<services:Address>http://host:port/soa-infra/services/domain
name/AlliedLoan/client</services:Address>
<services:ServiceName
xmlns:nsl="http://services.otn.com">nsl:AlliedLoan</services:
ServiceName>
</services:EndpointReference>
</sref:service-ref>
</literal>
</from>
<to partnerLink="LoanService"/>
</copy>
</assign>

ORACLE’ 816

Chapter 8
Overriding Security Certificates when Invoking Dynamic Partner Links

Overriding Security Certificates when Invoking Dynamic Partner
Links

You can interact with multiple web services using dynamic partner links. This interaction may
involve using message protection policies that require different security certificates for
encrypting the message. These certificates may be different for each web service. You can
specify a keystore recipient alias value to override the security certificate in the WSDL file of
the web service.

To override security certificates when invoking partner links:

1. Define a variable of type string (for example, KEYSTORE_RECIPIENT_ALIAS).
Figure 8-5 provides details.

Figure 8-5 Variable Definition of KEYSTORE_RECIPIENT_ALIAS

é' Edit Variable - KEYSTORE_RECIPIENT_ALIAS |
General

Mame: |KEYSTORE_RECIPIENT_ALIAS |

Tvpe

(3) Type |{htt|::,|',|'www.WS.0rg,|'2DDl,I'XMLSchema}string | Q
() Message Type 4,
() Element 4

[Entity Yatiable

| &

[] 5D Capable

| Help | | Cancel |

2. Inthe Copy Rules tab of an assign activity, assign orakey to the variable
KEYSTORE_RECIPIENT_ALIAS. Figure 8-6 provides details.

ORACLE 8-17

Chapter 8
Overriding Security Certificates when Invoking Dynamic Partner Links

Figure 8-6 Assignment of orakey to KEYSTORE_RECIPIENT_ALIAS

|Insert Mew Rule After 'l B ik O = cj
A ﬁgi ClientBPELProcess. bpel ETEES ljt'
B[Partner Links IFeEEEE ﬁsi'E‘
=3 varisbles i ariables (-
| E-gh Process inpukvariable (;).-.
- variables : : outputyariable {x)-&
G- () inputiariable Wisafddress (‘U'"
() autput¥ariable q 0 F Irwvoke_Inputyariable (.r)---
'"(‘-U Wsadddress = Receive_Oukputyariable {x)-&
=] b KEYSTORE_RECIPIENT_ALIAS xsdistring ()&
A
() copy | + X G 3

Frarm

YSTORE_RECIPIEMT _ALIAS!

Help | | apply | | [0]4 _J | Cancel |
3. Inthe invoke activity that invokes the partner link for the web service, click the Properties
tab.
4. Click the keystore.recipient.alias property.
Note:
In BPEL 2.0 processes, the properties are not automatically displayed in the
Properties column. You must click the Add icon to select the property and its
content (either a variable or an XPath expression).
5. Double-click the Value column to display the Browse (...) icon.
6. Click the Browse (...) icon to display the Adapter Property Value dialog.
7. Click the Browse icon to display the Variable XPath Builder dialog.
8. Select keystore_recipient_alias as the value, and click OK. Figure 8-7 provides details.
This property overrides the security certificates set in the WSDL file while invoking a web
service in a BPEL process.
Note:
In BPEL 2.0, there are only Name and Value columns in the Properties table.
The Type column is not included.
ORACLE

8-18

ORACLE

Chapter 8
Overriding Security Certificates when Invoking Dynamic Partner Links

Figure 8-7 keystore.recipient.alias Normalized Message Property of Invoke Activity

s ™y

Invoke b4
| Annotations r Assertions r Skip Condition r Headers |
r zeneral [Carrelations i Properties |

Properties:

fame Walue Type

o O wipo

jca.umns resenk-messag. ..

jca.ums. resent-sender inpuk

jca.ums resent-to

jca.ums return-path input

jca.ums. sender
jca.ums . subject
jca.ums ko

JRE_RECIPIENT ..,
mediator. messagePriority k
oracle.fabric, security.id. ..
oracle,soa.addressing.r...
oracle, soa,uddi service. ..
priority
replyToAddress
replyToReferencePara. ..

kestfuk, testCase
FackFil FackDynTd

Fit ko Width

| Help | Apply || a4 || Cancel

kS "y

Click Apply, then OK.

When complete, the BPEL file is defined as follows:

<variables>
<variable name="WsaAddress" element="ns6:EndpointReference"/>
<variable name="KEYSTORE RECIPIENT ALIAS" type="xsd:string"/>
</variables>

<assign name="AssignAddress">
<copy>
<from
expression=""'http://localhost:8001/soa-infra/services/default/ServiceWithNewCer
tificate!l.0*soa c94537fb-97a4-4b0f-900f-fefffc34f7fe/service ep'"/>
<to variable="WsaAddress"
query="/ns6:EndpointReference/ns6:Address"/>
</copy>
<copy>
<from variable="WsaAddress"/>
<to partnerLink="Service"/>
</copy>
</assign>

<assign name="AssignAlias">
<copy>
<from expression='"orakey"'/>
<to Variable="KEYSTORE_RECIPIENT_ALIAS"/>
</copy>
</assign>

<invoke name="Invoke"
inputVariable="Invoke InputVariable"
partnerLink="Service"
portType="nsl:ServiceBPELProcess"

8-19

Chapter 8
Overriding WSDL Files of Dynamic Partner Links

operation="process"
bpelx:invokeAsDetail="no">

<bpelx:inputProperty name="endpointURI"
variable="inputVariable"
part="payload"
query="/client:process/client:input"/>

<bpelx:inputProperty name="keystore.recipient.alias"
variable="KEYSTORE RECIPIENT ALIAS"/>
</invoke>

For more information about normalized message properties, see Propagating Normalized
Message Properties Through Message Headers.

Overriding WSDL Files of Dynamic Partner Links

ORACLE

You may need to override the default WSDL file used by dynamic partner links for the following
reasons:

e You must integrate with services that use message protection security policies.

« The WSDL may contain important information such as the certificate used for message
encryption.

The normalized message property endpointWSDL enables you to specify the WSDL file of the
dynamic partner link. You must specify the entire WSDL dynamically instead of just the
endpoint. This enables it to be passed to Oracle Web Services Manager (OWSM), which can
then retrieve the correct service certificate from the specified WSDL.

The certificate in the WSDL file is ignored in the following cases:

* The recipient.key.alias property name described in Overriding Security Certificates when
Invoking Dynamic Partner Links is present.

e The endpointWSDL property is not present.

Otherwise, the certificate is retrieved from the WSDL file.
To override WSDL files of dynamic partner links:
1. Define a variable of type string (for this example, the wsdl var is defined).

In the Copy Rules tab of an assign activity, assign the WSDL to the_wsdl_var.

In the invoke activity that invokes the partner link, click the Properties tab.

P 0O DN

Click the endpointWSDL property.

Note:

In BPEL 2.0 processes, the properties are not automatically displayed in the
Properties column. You must click the Add icon to select the property and its
content (either a variable or an XPath expression).

5. Double-click the Value column to display the Browse (...) icon.
6. Click the Browse (...) icon to display the Adapter Property Value dialog.
7. Click the Browse icon to display the Variable XPath Builder dialog.

8-20

ORACLE"

Chapter 8
Overriding WSDL Files of Dynamic Partner Links

8. Select the_wsdl_var as the variable, and click OK. This value specifies the WSDL of the

dynamic partner link.

Note:

In BPEL 2.0, there are only Name and Value columns in the Properties table.
The Type column is not included.

Figure 8-8 endpointWSDL Normalized Message Property of Invoke Activity

& Edit Invoke x|

Annotations I/.C\ssertions rSkip Condition rHeaders |

Correlations

F General r

Properties:

|/ Properties

Tare Yalue

bpel.unit TestLocation
bpel.unitTestRunld
bpel.unit TestRURMame
bpel.uritTestSuite
cm.caseld
cm.correlationId
cm.kaskId

endpointLIR

the_wsd|_varff

Fabric. enterprisellame
Fault ToAddress
fFaultToReferencePara..,
hic, documentDefinition. .,
hic, documentPratocall. .,
hc,documentProtocalye, .,

lhe. document Tyoekame:

Type

nput

[] Fit ta width

| el |

[[o

J | Cancel

When complete, the BPEL file is defined as follows:

<variables>

<variable name="the_wsdl_var" type="xsd:string"/>

</variables>

<assign name="myAssignWsdl">
<copy>
<from

expression=""http://localhost:8001/soa-infra/services/default/ServiceWithNewCer

tificate!l.0/service ep?WSDL"'/>

<to variable="the wsdl var"/>
</copy>
</assign>

<invoke name="Invoke"

inputVariable="Invoke InputVariable"

partnerLink="Service"

portType="nsl:ServiceBPELProcess"

operation="process"
bpelx:invokeAsDetail="no"

>

8-21

Chapter 8
Using WS-Addressing in an Asynchronous Service

<bpelx:inputProperty name="endpointWSDL"
variable="the wsdl var"/>

</invoke>

For more information about normalized message properties, see Propagating Normalized
Message Properties Through Message Headers.

Using WS-Addressing in an Asynchronous Service

ORACLE

Because there can be many active instances at any time, the server must be able to direct web
service responses to the correct BPEL process service component instance. You can use WS-
Addressing to identify asynchronous messages to ensure that asynchronous callbacks locate
the appropriate client.

Figure 8-9 provides an overview of WS-Addressing. WS-Addressing uses Simple Object
Access Protocol (SOAP) headers for asynchronous message correlation. Messages are
independent of the transport or application used.

Figure 8-9 Callback with WS-Addressing Headers

WS-Addressing Header:
. callback location
. correlation id {relatesTo)

 BPEL Process | WSDL
© HelloWorld.bpel i LoanService [2.05] receive
: ' PartnerLink)
| e | oo
zyariable= i ! . callbac
: |- | Initiate Part
Initiate 1 d3 [— = Async
(| service E— i ! Loan
Vo zinvokes i ! : Processor
loanOffer Service
<variable> ‘
' ; i Callback Port
i Wait for «— d3 ! E | dd
callback -_— ; i ;
<receive= oo T
‘ : WS-Addressing Header:
5 5 . correlation id (relatesTo)
' Mote 1: The correlation id

allows the BPEL service
engine to know which
instance of the process is
waliting for this callback
messages.

Mote 2 The alternative
approach is to use
content-based correlation
using =comelationSet=,

Figure 8-9 shows how messages are passed along with WS headers so that the response can
be sent to the correct destination.

The example in this chapter uses WS-Addressing for correlation. To view the messages, you
can use TCP tunneling, which is described in Using TCP Tunneling to View Messages
Exchanged Between Programs.

8-22

Chapter 8
Using WS-Addressing in an Asynchronous Service

WS-Addressing defines the following information typically provided by transport protocols and
messaging systems. This information is processed independently of the transport or
application:

e Endpoint location (reply-to address)

The reply-to address specifies the location at which a BPEL client is listening for a callback
message.

e Conversation ID

Use TCP tunneling to view SOAP messages exchanged between the BPEL process
service component flow and the web service (including those containing the correlation ID).
You can see the exact SOAP messages that are sent to, or received from, services with
which a BPEL process service component flow communicates.

You insert a software listener between your BPEL process service component flow and the
web service. Your BPEL process service component flow communicates with the listener
(called a TCP tunnel). The listener forwards your messages to the web service, and also
displays them. Responses from the web service are returned to the tunnel, which displays
and forwards them back to the BPEL process service component.

How to Use WS-Addressing in an Asynchronous Service

WS-Addressing is a public specification and is the default correlation method supported by
Oracle BPEL Process Manager and Oracle Mediator. You do not need to edit the .bpel
and .wsdl files to use WS-Addressing.

Using TCP Tunneling to View Messages Exchanged Between Programs

The messages that are exchanged between programs and services can be seen through TCP
tunneling. This is particularly useful when you want to see the exact SOAP messages
exchanged between the BPEL process service component flow and web services.

To monitor the SOAP messages, insert a software listener between your flow and the service.
Your flow communicates with the listener (called a TCP tunnel) and the listener forwards your
messages to the service, and displays them. Likewise, responses from the service are
returned to the tunnel, which displays them and then forwards them back to the flow.

To view all the messages exchanged between the server and a web service, you need only a
single TCP tunnel for synchronous services because all the pertinent messages are
communicated in a single request and reply interaction with the service. For asynchronous
services, you must set up two tunnels, one for the invocation of the service and another for the
callback port of the flow.

Setting Up a TCP Listener for Synchronous Services

ORACLE

Follow these steps to set up a TCP listener for synchronous services initiated by an Oracle
BPEL Process Manager and Oracle Mediator process:

1. Visit the following URL for instructions on how to download and install Axis TCP Monitor
(tcpmon)

http://ws.apache.org/commons/tcpmon/
2. Visit the following URL for instructions on how to use tcpmon:
http://ws.apache.org/axis/java/user-guide.html

3. Place axis.jar in your class path.

8-23

http://ws.apache.org/commons/tcpmon/
http://ws.apache.org/axis/java/user-guide.html

Chapter 8
Using WS-Addressing in an Asynchronous Service

Start tcpmon:

C:\...\> java org.apache.axis.utils.tcpmon localport remoteHost
port on which remote server 1s running

In the composite.xnl file, add the endpointURI property under binding.ws for your flow to
override the endpoint of the service.

From the operating system command prompt, compile and deploy the process with ant.

The same technique can see SOAP messages passed to invoke a BPEL process service
component as a web service from another tool kit such as Axis or .NET.

Setting Up a TCP Listener for Asynchronous Services

ORACLE

Follow these steps to set up a TCP listener to display the SOAP messages for callbacks from
asynchronous services:

1.

Start a TCP listener to listen on a port and send the Oracle BPEL Process Manager port.
a. Open Oracle Enterprise Manager Fusion Middleware Control.

b. From the SOA Infrastructure menu, select SOA Administration > Common
Properties.

c. Specify the value for Callback Server URL. This URL is sent by the server as part of
the asynchronous callback address to the invoker.

From the SOA Infrastructure menu, select Administration > System MBean Browser.

Expand Application Defined MBeans > oracle.soa.config > Server : soa_server >
SCAComposite.

where soa_server is the specific server instance name (for example, AdminServer).
All the SOA composite applications deployed on the server appear.

Follow these steps to set this property on a composite application. This action enables it to
apply to all bindings in the composite application.

a. Click your composite.

b. Ensure the Attributes tab is selected.

c. Inthe Name column, click Properties.

d. Click the Add icon.

e. Expand the newly added Element_number (appears at the end of the list).

where number is the next sequential number beyond the last property. For example, if
the property list contains twelve elements, adding a new property causes Element_13
to be displayed.

f. In the name field, enter oracle.webservices.local.optimization.
g. Inthe value field, enter false.

h. In the many field, enter false.

i. Click Apply, and then click Return.

j- Inthe Name column on the Operations tab, click save.

k. Click Invoke to execute the operation.

I. Click Return or click a node in the System MBean Browser pane.

8-24

ORACLE

Chapter 8
Using WS-Addressing in an Asynchronous Service

< Note:

After adding, deleting, or updating a property, you can click the Refresh
cached tree data icon in the upper right corner of the System MBean
Browser page to see the new data.

5. Follow these steps to set this property on a specific binding.

a. Expand your composite application. and navigate to the specific
SCAComposite.SCAReference.SCABinding folder.

b. Click WSBinding.
c. Perform steps 44.b through 44.1.

6. Initiate any flow that invokes asynchronous web services. You can combine this with the
synchronous TCP tunneling configuration to send a service initiation request through your
first TCP tunnel.

The callbacks from the asynchronous services are shown in the TCP listener.

If you are an Oracle JDeveloper user, you can also use the built-in Packet Monitor to see
SOAP messages for both synchronous and asynchronous services.

For information about using correlation sets for message correlation, see Using Correlation
Sets and Message Aggregation .

8-25

Using Correlation Sets and Message
Aggregation

This chapter describes how to use correlation sets to ensure that asynchronous callbacks
locate the appropriate client. It also describes how to use aggregation patterns to route
messages to the same instance.

This chapter includes the following sections:

e Introduction to Correlation Sets in an Asynchronous Service
e Creating Correlation Sets in Oracle JDeveloper

e Routing Messages to the Same Instance

Introduction to Correlation Sets in an Asynchronous Service

Correlation sets provide a method for directing web service responses to the correct BPEL
process service component instance. You can use correlation sets to identify asynchronous
messages to ensure that asynchronous callbacks locate the appropriate client. You define
correlation sets when interactions are not simple invoke-receive activities.

Correlation sets are a BPEL mechanism that provides for the correlation of asynchronous
messages based on message body contents. To use this method, define the correlation sets in
your BPEL process. This method is designed for services that do not support WS-Addressing
or for certain sophisticated conversation patterns, for example, when the conversation is in the
forma > B > C > Ainstead of& > B > A

Scenarios for Using Correlation Sets

ORACLE

Correlations enable you to associate asynchronous messages based on message body
contents. Note that not all business scenarios require correlations:

e Synchronous calls do not require correlations because the conversation context is
maintained in the stack or across a TCP connection.

e Consenting BPEL processes typically correlate messages using WS-Addressing headers
to pass tokens that act like session cookies in a web application. For more information, see
Using WS-Addressing in an Asynchronous Service.

Correlation is required in the following scenarios. In these cases, a BPEL process must be
configured to view some content of the message to select the correct process instance to
receive the message.

* When using an asynchronous service that does not support WS-Addressing.
* When receiving unsolicited messages from another system.

* When the message travels through several services and the response is solicited by the
initial service from the last service directly.

* When communicating through files.

9-1

Chapter 9
Introduction to Correlation Sets in an Asynchronous Service

Understanding Correlation Set Contents and Concepts

This section provides an overview of key correlation set concepts.

ORACLE

The correct BPEL instance using correlation sets is obtained as follows:

A BPEL process provides a construct called a correlation set to allow for custom
correlation.

A correlation set is a collection of properties used by the BPEL process service engine to
identify the correct process to receive a message.

Each property in the correlation set can be mapped to an element in one or more message
types through property aliases. Figure 9-1 provides an overview.

Figure 9-1 Correlation Sets

=— Property Alias
l Correlation Set
Message Property
Type
<— Property Alias
Message
Type

Note the following key correlation guidelines:

Only the process receiving the message is concerned about correlation. As long as the
sending service includes sufficient information in the message to correlate it with previous
activities, the sender does not need to be aware that correlation is occurring.

Correlation properties must be unique for the duration of the life of the BPEL process that
sets them.

Ensure that no two processes are working with the same correlation tokens. For example,
using social security numbers to correlate an expense claims process is not recommended
if you start two separate instances of the process.

Properties can be made up values or actual business identifiers such as purchase orders
or numbers. They do not need to be strings; they can be any reasonable XML type.

Key correlation concept attributes are as follows. You set these attributes in Oracle JDeveloper
when designing a correlation set with the Correlation wizard:

An initiate attribute is set as follows:

— yes: The correlation set is initiated with the values of the properties available in the
message being transferred.

— no: The correlation set validates the value of the property available in the message.
A pattern attribute is set as follows:

— in (for BPEL 1.1) or response (for BPEL 2.0): The correlation property is set and
validated on the incoming message.

— out (for BPEL 1.1) or request (for BPEL 2.0): The correlation property is set and
validated on the outgoing BPEL message.

9-2

Chapter 9
Creating Correlation Sets in Oracle JDeveloper

— out-in (for BPEL 1.1) or request-response (for BPEL 2.0): The correlation property is
set and validated on both incoming and outgoing messages.

* Property aliases map a global property to a field in a specific message part. This action
enables the property name to become an alias for the message part and location. The
alias can be used in XPath expressions.

Overview of Correlation Set Creation

Table 9-1 provides an overview of the steps for creating a correlation set. References to the
pages of the Correlation wizard on which you perform these steps and examples of values to
set are provided.

Table 9-1 Correlation Set Creation Overview

Step

Correlation Wizard Page

Example

Create a correlation set with
property names and types to
correlate the exchange.

Add the correlation to the invoke
or receive activity that begins
the conversation and set Initiate
to yes.

Create property alias mappings
to appropriate elements in each
message. They must have the
same value in both messages of
the conversation. The elements
can be different names and in
different structures in the two
messages, but they must
contain the same value for
correlation to work.

Add the same correlation set
with its property to additional
activities. Do not set them to
initiate. The BPEL process
uses this to select the correct
process instance. Set the
pattern accordingly.

Set this information on the Correlation
wizard - Define Correlation Set page.
See Figure 9-2.

Select the activity and set the Initiate
attribute on the Correlation wizard -
Initiate Settings page. See Figure 9-3.

Set this information on the Correlation
wizard - Property Aliases page. See
Figure 9-7. Two editors available on this
page enable you to create the property
alias mappings:
e Alias Editor (Figure 9-4)
* Alias Drag and Drop Editor

(Figure 9-5)

Set on the Activity Correlation Editor -
Initiate Tab. See Figure 9-10.

Create a phonenumber correlation set with
property names and types:

* username of type string

e userordernumber of type int

* IsGift of type boolean

Select the internalReceive receive activity and
set Initiate to yes.

Define the property aliases to populate the
correlation set property values at runtime:

* Map alias username to the name
message element

* Map alias userordernumber to the
poNumber message element

* Map alias IsGift to the gift message
element.

Select the internalCallback invoke activity:
* SetInitiate to no
* Set Pattern to request

Creating Correlation Sets in Oracle JDeveloper

You can create correlation sets on the following activities and branches.

* Receive activity

* Reply activity

e Invoke activity

e onMessage branch

e onEvent branch

There are two methods for creating correlations sets in Oracle JDeveloper:

ORACLE

9-3

Chapter 9
Creating Correlation Sets in Oracle JDeveloper

Automatically through the Correlation wizard in an activity

Manually through the Correlations tab in an activity

How to Create a Correlation Set with the Correlation Wizard

ORACLE

To create a correlation set with the Correlation wizard:

1.

Right-click an applicable activity (such as a receive activity), and select Setup Correlation.
The Correlation wizard - Define Correlation Set page is displayed.

Provide responses appropriate to your environment, then click Next. Table 9-2 provides
details.

Table 9-2 Correlation Wizard - Define Correlation Set Page

___|
Field Description

Create Correlation Set Select to create a new correlation set.

Choose Existing Select an existing correlation set in which to include the selected

Correlation Set activity.

Name Enter the name of the correlation set you want to create.

Scope Displays the scope or process in which to create the new correlation
set.

Properties

a. Click Add to create a new property in the Name column of the
Properties table or click Browse to select an existing property.

b. Click the Type column, then click the ellipses to invoke the Type
Chooser dialog for selecting the property type (for example,
integer, boolean, or some other type).

When complete, the Correlation wizard - Define Correlation Set page looks as shown in
Figure 9-2.

9-4

Chapter 9
Creating Correlation Sets in Oracle JDeveloper

Figure 9-2 Correlation Wizard - Define Correlation Set Page

Correlation Wizard

Define Correlation Set
- . Create or choose a correlation set to use in this correlation. Correlation sets are used
tf Correlation Set to tie together a partner conversation and are used to associate messages with
| . business processes.
T Initiate P
] Property Aliases @greate Correlation Set O Choose Existing Correlation Set
I Activities MName: |phoneorder |
U summar Scope: [ﬁga Process ']
Properties: '% q x
MName Type
EE username string
=2 userorderfumber int
EEE boolean |
[] ShowMamespace URIs
Help < Bacl Mext = Finish Cancel

The Correlation wizard - Initiate Settings page is displayed.

3. Provide responses appropriate to your environment, then click Next. Table 9-3 provides
details.

Table 9-3 Correlation Wizard - Initiate Settings Page

Field Description
Activity Displays the activity on which the correlation is set.
initiate Select whether this activity is the initiator in the correlation set.

When set to yes, the correlation set is initiated with the values of the
properties occurring in the message being sent or received.

When complete, the Correlation wizard - Initiate Settings page looks as shown in
Figure 9-3.

ORACLE" 9-5

Chapter 9
Creating Correlation Sets in Oracle JDeveloper

Figure 9-3 Correlation Wizard - Initiate Settings Page

Correlation Wizard

Initiate Settings
. Carrelation Set Specify whether this activity should be the initiator of the correlation. The values of an
T —— initiating activity will be used to populate the correlation set property values.
! Initiate T -
T Activity: ||mernaIRecewe |
Property Aliases
T Initiate: [ves V]
I & ctivities
b Summar
Help < Back ' Mext = ' Finish Cancel

The Correlation wizard - Property Aliases page is displayed for mapping properties to
values. The properties defined previously in the Define Correlation Set page of the wizard
are displayed in the Property Aliases table.

Property aliases enable you to map a property to a field in a specific message part of a
variable. This action enables the property to become an alias for the message part and
location.

4. Click a property in the table and select a method for mapping the message part of the
variable to the property. Table 9-4 provides details.

Table 9-4 Methods for Mapping the Variable Message Part to a Property
|

To Use The... Go to Step...
Alias Editor 5
Alias Drag and Drop Editor 6

5. Click the Edit (first) icon to invoke the Alias Editor dialog.
a. Expand the variable.

b. Select the message part to represent the property, and click OK. Figure 9-4 provides
details.

ORACLE" 9-6

Chapter 9
Creating Correlation Sets in Oracle JDeveloper

Figure 9-4 Alias Editor

i Allas Editor]

Sebect thie varisble element 1het will correspond to the walue for 1the property in1he correlstion sel
Property: fus:rm.rnr |
Type ARTp: e nd ara 2001 HLSC ham alsiring |

wariakde Srucure;
S variables
B ga Process
= 23 variables
=2 X)) InernalOrderReceiveariable
=[] payloed

H-4% nsd:Purchaseorder
L+ 3 m

@ nadpoblumber
&b nzd.gie
8% nsZaddrass
4P nsddrnsrnalinaoiure

[] Shew Dezailedl Nede Infarm aien

Helg o cancel

6. Click the Alias Drag and Drop Editor (second) icon to invoke the Alias Drag and Drop
Editor dialog.

a. Expand the variable.
b. Select the message part to represent the property.

c. Drag and drop the message part onto the property row in the Correlation wizard -
Property Aliases page. Figure 9-5 provides details.

Figure 9-5 Alias Drag and Drop Editor

Allas Drag and Drop Editor Correlation Wizard]

Cirag and drop the message par elemend oo the Alies table rowwhich
corresponds 1o ihe property aliss yow wand aszociated with ihe slemerm.

= variaplez |
=1 J—. Pragess Crafing 1he Propeny Aliases char will be used 10 populae the cormalatsan se1°5 propemy
563 Variabies valugs 1 puncima The diases are Baced on 1e message rpe of The sy vasiable
= (X} InternalCrderfiecsivelianabis The Allases table contalns a rowfor each propery allas. Select a row and click Edi to
= E paglaad map avalue in1he activicy variable m essage (o A propery.
= @ nes PurchaseOnder " :
A o
LA Activity! [InternilReceive |
" nisd:poiumber ing MEssage: |m|:|:.:am_n".‘.orr:lnmnnﬁpn!l_.'Pr\cutul,'HP‘!LHn:::sllﬂtmalhﬂw:m”:ssu:l
£ nod:gin
B neBaddoess Froperty Aliases: & B &
B redinernalfiruciure Froperty Mezzage Part Query
username IremzRequestMes... payloed nsdname
[userordertipmie MErmaiRe qUEsthES
SN E ImamaRequistMis

Existing property aliases are listed in the lower part of the Correlation wizard - Property
Aliases page, as shown in Figure 9-6. For this example, there are no existing property
aliases.

ORACLE 9-7

Chapter 9
Creating Correlation Sets in Oracle JDeveloper

8.

Figure 9-6 Correlation Wizard - Property Aliases Page - Lower Part

Fit to Width [_| Show Namespace URI

Existing Property Aliases:
Property Type Part Query

Eit to Width [_| ShowNamespace URIs

< Back | Hext > Finish Cancel

d. When complete, click Next.
Select additional properties to map to specific message parts of variables.

When complete, the Correlation wizard - Property Aliases page looks as shown in

Figure 9-7. The properties created in Figure 9-2 are displayed in the Property column. The
message elements to which the properties were mapped with either the Alias Editor
(Figure 9-4) or Alias Drag and Drop Editor (Figure 9-5) are displayed in the Query column.

Figure 9-7 Correlation Wizard - Property Aliases Page

Correlation Wizard

Property Aliases

Dafing this Propeaty Aliages thar will be uged 1o popul@e he carmelatian s61°s propeny
valuss a1 runtims The diases are Based on e message oype of The 2oty vasiaole

Initigte

T The Allazes table contalns a rowfor each progerty allas, Select a ros and click Edh o
e Property Aliases mMan & Walug in The aCthicy variable message [o d propery.
| g =
: F— ity [InternilRective |
Mezsage: |ra.l:l:.l:-umJ".'.-orr:Immnﬁpn!,'Prw:l:I:ZL.'!F'ELPruc::sllﬂimalﬂ.ew:m":nu:l
=
Froperey &liases: 'ﬁ? J ‘?
Froperty Message Part ey
USErname IriermaReguestbes... payloed nsdmams
userorderblumber ImernaPequesthes... payloed nsdpoMumber
HGin IFtarmaiRequistMes. , paylced nE4-gif
Click Next.

The Correlation wizard - Correlated Activities page is displayed. Figure 9-8 provides
details.

ORACLE

9-8

Chapter 9
Creating Correlation Sets in Oracle JDeveloper

Figure 9-8 Correlation Wizard - Property Aliases Page (Without Activity)

[®] Correlation Wizard

Correlated Activities

. Specify other activities that will be part of the correlation. Each activity will have a

I Correlation Set correlation corresponding to the wizard's correlation set. For each activity, you should
O Initiate select Edit and set the correlation properties far that activity.
¢ Property Aliszes Correlation Activities: '%' 7 R
I
el Activities
|
W Summary

Help < Back | Mext = | Finizh Cancel|

9. Click the Add icon to add more activities to this correlation set (multiple activities can
correlate on the correlation set).

The Activity Browser dialog is displayed.
10. Select the activity to add, and click OK. Figure 9-9 provides details.

Figure 9-9 Activity Browser for Selecting an Activity

Activity Browser

I3 Aevivitins
= g SEQUENCE ~ main

recefee - raceteelnpu
reCelwe = IMemyReeive
irtenke - lreakih mazon

raceive - Receivelimazon

irrroke - Irderm el allback]

Ireroke = callbackClignt

Help La] Close

The activity is added to the Correlation Activities field of the Correlation wizard -
Correlated Activities page.

ORACLE’ 0.9

Chapter 9
Creating Correlation Sets in Oracle JDeveloper

11. In the Correlation Activities field, select the activity and click Edit to invoke the Initiate
tab of the Activity Correlation Editor dialog. Figure 9-10 provides details.

Figure 9-10 Activity Correlation Editor - Initiate Tab

Activity Correlation Editor

Initiate Aliases

Specify whether this activity should be the initiator of the correlation. The values of an
initiating activity will be used to populate the correlation set property values.

Activity: |InternalCallback
Initiate: |nao -

Pattern: |request -

Help (818 Cancel

12. Select appropriate values in the Initiate and Pattern lists. For this example:

» Select no from the Initiate list (because the correlation set validates the value of the
property available in the message).

* Select request from the Pattern list (because the correlation property is set and
validated on the outgoing BPEL message).

For BPEL 2.0, you can select response if the correlation applies to an inbound message,
request if the correlation applies to an outbound message, or request-response if the
correlation applies to both outbound and inbound messages.

For BPEL 1.1, you can select in if the correlation applies to an inbound message
(response), out if the correlation applies to an outbound message (request), or out-in if the
correlation applies to both inbound and outbound messages. (response and request).

13. Click the Aliases tab.

14. Repeat Step 4 through Step 7 to select a property and map the message part of the
variable to the property.

When complete, the Alias dialog looks similar to that shown in Figure 9-11.

ORACLE 910

Chapter 9
Creating Correlation Sets in Oracle JDeveloper

Figure 9-11 Activity Correlation Editor - Alias Tab

s Activity Correlation Editor x

Initiate | Aliages

Sebect ThE activicy variabile message pans that should be used 10 populare the cormelaion 561
PrOpErTY Walles

aictivity. [InternalCallback |

Request

Meszage: [racle com (Correlaions po 3 Praject] BFELPracess 1 imermalRespansekiessage|

Property Alinges! j El é‘
Fraparty Meszage Parl Cuery

(LTS T IrarnalRespanieM peyload s Cnlinadrdar fn,
userordarifumber IrmermalfezponseM.. peyload nss:CnlineGrder ...
IsCHt IrmarnaltezponseM_ payload nsS:OnlineCrderfn...

[+ Eit 1e Wichh [ShawNamespete LRI -k

Halp QF Cancel

15. Click OK to return to the Correlation wizard - Correlated Activities page, which looks as
shown in Figure 9-12.

Figure 9-12 Correlation Wizard - Correlated Activities Page (With Selected Activity)

Correlation Wizard

Correlated Activities

Sprgify atker activhias 1ha Wil B pan of the correlation. Each activicy wil have a
correlation corresponding 10 1he wizard's comrelaion 561 For exch activity, you should
select Edir and sot the cormelation properics for that aciving.

Corralatian Astwiries: 4 7 K

Amiviies | 5 irake = IFnern sl alback

i

£

HElp = Back HeExr = Cancel

16. Click Next to review the correlation set details in the Activities, Correlation Set, and
Alias tabs.

* Activities: Displays the activities involved in the correlation and their roles (for
example, the receive activity is the initiator and the invoke activity is the responder).

e Correlation Set: Displays the name of the correlation set.

ORACLE

9-11

Chapter 9
Creating Correlation Sets in Oracle JDeveloper

» Aliases: Displays the property aliases defined for the activities in the correlation set.

Figure 9-13 provides details.

Figure 9-13 Correlation Wizard - Summary Page

Correlation Wizard

Summary

~ . . Please reviewthe setup data belowto verify that the correlation configuration is as
I Correlation Set expected. Hit the Finish button to proceed with updating the BPEL process and other
Initiate relevant files with the setup information.
L) ale
I . Activities Correlation Set Aliases
I Property Aliases
¥ receive - InternalRecei itiate:
o Activities _ - Initiate:
T {? invoke - InternalCallback WES
! Summary
4
r
Help < Back Hext = | Einish | Cancel

17. Click Finish.
The correlation set is created.

18. In the Structure window, view the correlation set, properties, and property aliases you
defined in the Correlation wizard.

19. In Oracle BPEL Designer, click the Correlations tab of one of the participating activities to
view the details you defined (for example, the receive activity). Figure 9-14 provides
details.

ORACLE"

9-12

20.

21

22
23
24

Chapter 9
Creating Correlation Sets in Oracle JDeveloper

Figure 9-14 Correlation Tab of Receive Activity

Edit Receive

Skip Condition Timeout Headers Sources Targets

Ceneral Correlations Properties Annotations Assertions

Correlations: 4 / b4
Carrelation Set Initiate

@ phonecrder Yes

Help Apply | 0K | Cancel

If you want to find out which activities are used in a correlation set, perform the following
steps.

a. Click the Search icon above Oracle BPEL Designer, and select Correlation Search.
The Correlation Set Chooser dialog is displayed.

b. Select the correlation set, and click OK.

c. Inthe Correlation Search dialog, click OK.
The activities using the correlation sets are displayed in the Log window.

If you want to add additional activities to an existing correlation set, right-click the activity,
and select Setup Correlation.

The Correlation wizard - Define Correlation Set page is displayed.
Select Choose Existing Correlation Set.
From the Correlation Sets list, select the correlation set, and click OK.

Define the activity by following the pages in the Correlation wizard.

How to Manually Create Correlation Sets From the Correlations Tab

This section describes the steps to manually create correlation sets in an asynchronous
service. This example illustrates how to use correlation sets for a process having three receive
activities with no associated invoke activities.

ORACLE

9-13

Chapter 9
Creating Correlation Sets in Oracle JDeveloper

Step 1: Creating a Project

To create a project:

1.
2.
3.

Start Oracle JDeveloper.

From the File main menu, select New > Applications.
Select SOA Application, and click OK.

The Create SOA Application Wizard appears.

In the Application Name field, enter a name (for this example, MyCorrelationSetApp is
entered).

Accept the default values for all remaining settings, and click Next.

In the Project Name field, enter a name (for this example, MyCorrelationSetComposite is
entered).

Accept the default values for all remaining settings, and click Next.

In the Composite Template section, select Composite With BPEL Process, and click
Finish.

The Create BPEL Process dialog appears.

Enter the values shown in Table 9-5.

Table 9-5 Create BPEL Process Dialog Fields and Values

Field Value
Name Enter a name (for this example, MyCorrelationSet is entered).
Template Select Asynchronous BPEL Process.

Expose as a SOAP Service Select the check box. After process creation, note the SOAP service
that appears in the Exposed Services swimlane. This service
provides the entry point to the composite application from the
outside world.

10. Accept the default values for all remaining settings, and click OK.

Step 2: Configuring Partner Links and File Adapter Services

You now create three partner links that use the SOAP service.

This section contains these topics:

You create an initial partner link with an adapter service for reading a loan application.

You create a second partner link with an adapter service for reading an application
response.

You create a third partner link with an adapter service for reading a customer response.

Creating an Initial Partner Link and File Adapter Service

To create an initial partner link and file adapter service:

1.

ORACLE

Double-click the MyCorrelationSet BPEL process.

9-14

ORACLE

10.

11.
12.
13.
14.
15.
16.
17.

18.

19.

20.
21.

Chapter 9
Creating Correlation Sets in Oracle JDeveloper

In the Components window, expand BPEL Constructs.
Drag an initial Partner Link activity into the right swimlane of the designer.

Click the third icon at the top (the Service Wizard icon). This starts the Adapter
Configuration Wizard, as shown in Figure 9-15.

Figure 9-15 Adapter Configuration Wizard Startup

WSDL Sethings
Q@R W
. Y]
W3DL URL: | [Service wizard
Partner Link Type: [B° =11

In the Configure Service or Adapter dialog, select File and click OK.

In the Name field of the File Adapter Reference dialog, enter a name (for this example,
FirstReceive is entered) and click Next.

In the Adapter Interface dialog, accept the default settings and click Next.

In the Operation dialog, select Read File as the Operation Type and click Next. The
Operation Name field is automatically filled in with Read.

Above the Directory for Incoming Files (physical path) field, click Browse.

Select a directory from which to read files (for this example,
C:\files\receiveprocess\FirstinputDir is selected).

Click Select.

Click Next.

In the File Filtering dialog, enter appropriate file filtering parameters.
Click Next.

In the File Polling dialog, enter appropriate file polling parameters.
Click Next.

In the Messages dialog, click Browse next to the URL field to display the Type Chooser
dialog.

Select an appropriate XSD schema file. For this example, Book1l_4.xsd is the schema and
LoanAppl is the schema element selected.

Click OK.

The URL field (Book1_4.xsd for this example) and the Schema Element field (LoanAppl
for this example) are filled in.

Click Next.
Click Finish.

You are returned to the Partner Link dialog. All other fields are automatically completed.
The dialog looks as shown in Table 9-6:

Table 9-6 Partner Link Dialog Fields and Values
|

Field Value
Name FirstReceive
WSDL URL directory_path/FirstReceive.wsdl

9-15

22.

Chapter 9
Creating Correlation Sets in Oracle JDeveloper

Table 9-6 (Cont.) Partner Link Dialog Fields and Values
|

Field Value

Partner Link Type Read_plt

Partner Role Leave unspecified.
My Role Read_role

Click OK.

Creating a Second Partner Link and File Adapter Service

ORACLE

To create a second partner link and file adapter service:

1.
2.
3.
4

10.
11.

12.
13.
14.
15.
16.
17.
18.

19.

20.

21.
22.

Drag a second Partner Link activity beneath the FirstReceive partner link activity.
At the top, click the third icon (the Service Wizard icon).
In the Configure Service or Adapter dialog, select File and click OK.

In the Name field of the File Adapter Reference dialog, enter a name (for this example,
SecondFileRead is entered) and click Next. This name must be unique from the one you
entered in Step 6 of Creating an Initial Partner Link and File Adapter Service.

In the Adapter Interface dialog, accept the default settings and click Next.

In the Operation dialog, select Read File as the Operation Type.

In the Operation Name field, change the name (for this example, Read1 is entered).
Click Next.

Select Directory Names are Specified as Physical Path.

Above the Directory for Incoming Files (physical path) field, click Browse.

Select a directory from which to read files (for this example,
C:\files\receiveprocess\SecondInputDir is entered).

Click Select.

Click Next.

Enter appropriate file filtering parameters in the File Filtering dialog.
Click Next.

Enter appropriate file polling parameters in the File Polling dialog.
Click Next.

Next to the URL field in the Messages dialog, click Browse to display the Type Chooser
dialog.

Select an appropriate XSD schema file. For this example, Book1_5.xsd is the schema and
LoanAppResponse is the schema element selected.

Click OK.

The URL field (Book1_5.xsd for this example) and the Schema Element field
(LoanAppResponse for this example) are filled in.

Click Next.
Click Finish.

9-16

23.

Chapter 9
Creating Correlation Sets in Oracle JDeveloper

You are returned to the Partner Link dialog. All other fields are automatically completed.
The dialog looks as shown in Table 9-7:

Table 9-7 Partner Link Dialog Fields and Values
|

Field Value

Name SecondReceive

WSDL URL directory_path/SecondFileRead.wsdl
Partner Link Type Readl_plt

Partner Role Leave unspecified.

My Role Readl role

Click OK.

Creating a Third Partner Link and File Adapter Service

ORACLE

To create a third partner link and file adapter service:

1
2
3.
4

10.
11.

12.
13.
14.
15.
16.
17.
18.

19.

Drag a third Partner Link activity beneath the SecondReceive partner link activity.
At the top, click the third icon (the Service Wizard icon).
In the Configure Service or Adapter dialog, select File and click OK.

In the Name field of the File Adapter Reference dialog, enter a name (for this example,
ThirdFileRead is entered) and click Next. This name must be unique from the one you
entered in Step 6 of Creating an Initial Partner Link and File Adapter Service and Step 4 of
Creating a Second Partner Link and File Adapter Service.

In the Adapter Interface dialog, accept the default settings and click Next.
In the Operation dialog, select Read File as the Operation Type.

In the Operation Name field, change the name (for this example, Read?2 is entered). This
name must be unique.

Click Next.
Select Directory Names are Specified as Physical Path.
Above the Directory for Incoming Files (physical path) field, click Browse.

Select a directory from which to read files (for this example,
C:\files\receiveprocess\ThirdInputDir is entered).

Click Select.

Click Next.

Enter appropriate file filtering parameters in the File Filtering dialog.
Click Next.

Enter appropriate file polling parameters in the File Polling dialog.
Click Next.

Next to the URL field in the Messages dialog, click Browse to display the Type Chooser
dialog.

Select an appropriate XSD schema file. For this example, Book1l_6.xsd is the schema and
CustResponse is the schema element selected.

9-17

20.

21.
22.

23.

Chapter 9
Creating Correlation Sets in Oracle JDeveloper

Click OK.

The URL field (Book1_6.xsd for this example) and the Schema Element field
(CustResponse for this example) are filled in.

Click Next.
Click Finish.

You are returned to the Partner Link dialog. All other fields are automatically completed.
The dialog looks as shown in Table 9-8:

Table 9-8 Partner Link Dialog Fields and Values
|

Field Value

Name ThirdReceive

WSDL URL directory_path/ThirdFileRead.wsdl
Partner Link Type Read2_plt

Partner Role Leave unspecified.

My Role Read?2_role

Click OK.

Step 3: Creating Three Receive Activities

You now create three receive activities; one for each partner link. The receive activities specify
the partner link from which to receive information.

Creating an Initial Receive Activity

ORACLE

To create an initial receive activity:

1.
2.
3.

In the Components window, expand BPEL Constructs.
Drag a Receive activity beneath the receivelnput receive activity in the designer.

Click the receive activity to display its property fields in the Property Inspector or double-
click the receive icon to display the Receive dialog.

For information about editing activities in the Property Inspector, see How to Edit BPEL
Activities in the Property Inspector.

Enter the details described in Table 9-9 to associate the first partner link (FirstReceive)
with the first receive activity:

Table 9-9 Receive Dialog Fields and Values
__|

Field Value

Name receiveFirst
Partner Link FirstReceive

Create Instance Select this check box.

The Operation (Read) field is automatically filled in.

To the right of the Variable field, click the first icon. This is the automatic variable creation
icon.

9-18

Chapter 9
Creating Correlation Sets in Oracle JDeveloper

In the Create Variable dialog, click OK.

A variable named receiveFirst_Read_InputVariable is automatically created in the
Variable field.

Ensure that you selected the Create Instance check box, as described in Step 4.
Click OK.

Creating a Second Receive Activity

To create a second receive activity:

1.

6.

From the Components window, drag a second Receive activity beneath the receiveFirst
receive activity.

Double-click the receive icon to display the Receive dialog.

Enter the details described in Table 9-10 to associate the second partner link
(SecondReceive) with the second receive activity:

Table 9-10 Receive Dialog Fields and Values
|

Field Value

Name receiveSecond

Partner Link SecondFileRead

Create Instance Do not select this check box.

The Operation (Read1) field is automatically filled in.
To the right of the Variable field, click the first icon.
In the Create Variable dialog, click OK.

A variable named receiveSecond_Readl_InputVariable is automatically created in the
Variable field.

Click OK.

Creating a Third Receive Activity

ORACLE

To create a third receive activity:

1.

From the Components window, drag a third Receive activity beneath the receiveSecond
receive activity.

Double-click the receive icon to display the Receive dialog.

Enter the details described in Table 9-11 to associate the third partner link (ThirdReceive)
with the third receive activity:

Table 9-11 Receive Dialog Fields and Values
__|

Field Value

Name receiveThird

Partner Link ThirdFileRead

Create Instance Do not select this check box.

9-19

Chapter 9
Creating Correlation Sets in Oracle JDeveloper

The Operation (Read2) field is automatically filled in.
To the right of the Variable field, click the first icon.
In the Create Variable dialog, click OK.

A variable named receiveThird_Read2_InputVariable is automatically created in the
Variable field.

Click OK.

Each receive activity is now associated with a specific partner link.

Step 4: Creating Correlation Sets

You now create correlation sets. A set of correlation tokens is a set of properties shared by all
messages in the correlated group.

Creating an Initial Correlation Set

To create an initial correlation set:

1.

o » W DN

© © N 9

In the Structure window of Oracle JDeveloper, right-click Correlation Sets and select
Expand All Child Nodes.

In the second Correlation Sets folder, right-click and select Create Correlation Set.
In the Name field of the Create Correlation Set dialog, enter CorrelationSetl.
In the Properties section, click the Add icon to display the Property Chooser dialog.

Select Properties, then click the Add icon (first icon at the top) to display the Create
Property dialog.

In the Name field, enter NameCorr.
To the right of the Type field, click the Browse icon.
In the Type Chooser dialog, select string and click OK.

Click OK in each dialog to close the Create Property dialog, the Property Chooser dialog,
and the Create Correlation Set dialog.

Creating a Second Correlation Set

ORACLE

To create a second correlation set:

1.
2.
3
4.
5
6

N

Return to the Correlation Sets section in the Structure window of Oracle JDeveloper.
Right-click the Correlation Sets folder and select Create Correlation Set.

In the Name field of the Create Correlation Set dialog, enter CorrelationSet2.

In the Properties section, click the Add icon to display the Property Chooser dialog.
Select Properties, then click the Add icon to display the Create Property dialog.

In the Name field, enter IDCorr.

To the right of the Type field, click the Browse icon.

In the Type Chooser dialog, select double and click OK.

Click OK in each dialog to close the Create Property dialog, the Property Chooser dialog,
and the Create Correlation Set dialog.

9-20

Chapter 9
Creating Correlation Sets in Oracle JDeveloper

Step 5: Associating Correlation Sets with Receive Activities

You now associate the correlation sets with the receive activities. You perform the following
correlation set tasks:

For the first correlated group, the first and second receive activities are correlated with the
CorrelationSet1 correlation set.

For the second correlated group, the second and third receive activities are correlated with
the CorrelationSet2 correlation set.

Associating the First Correlation Set with a Receive Activity

To associate the first correlation set with a receive activity:

1.
2.
3.
4.
5.

6.

Double-click the receiveFirst receive activity to display the Receive dialog.
Click the Correlations tab.

Click the Add icon to display the correlation set dropdown list.

Select CorrelationSet1.

Click the Initiate column to display a dropdown list, and select yes. When set to yes, the
set is initiated with the values of the properties occurring in the message being exchanged.

Click OK.

Associating the Second Correlation Set with a Receive Activity

To associate the second correlation set with a receive activity:

© ®& N o g & v Dd P

Double-click the receiveSecond receive activity to display the Receive dialog.

Click the Correlations tab.

Click the Add icon to display the correlation set dropdown list.

Select CorrelationSet2, then click OK.

Click the Initiate column to display a dropdown list, and select yes.

Click Add again and select CorrelationSet1.

Click OK.

Click the Initiate column to display a dropdown list, and select no for CorrelationSet1.
Click OK.

This groups the first and second receive activities into a correlated group.

Associating the Third Correlation Set with a Receive Activity

To associate the third correlation set with a receive activity:

1.
2.
3.

ORACLE

Double-click the receiveThird receive activity to display the Receive dialog.
Click the Correlations tab.
Click the Add icon.

9-21

Chapter 9
Creating Correlation Sets in Oracle JDeveloper

Select CorrelationSet2.
Set the Initiate column to no for CorrelationSet2.
Click OK.

This groups the second and third receive activities into a second correlated group.

Step 6: Creating Property Aliases

Property aliases enable you to map a global property to a field in a specific message part. This
action enables the property name to become an alias for the message part and location. The
alias can be used in XPath expressions.

Creating Property Aliases for NameCorr

You create the following two property aliases for the NameCorr correlation set:

Map NameCorr to the LoanAppl message type part of the receiveFirst receive activity.
This receive activity is associated with the FirstReceive partner link (defined by the
FirstReceive.wsdl file).

Map NameCorr to the incoming LoanAppResponse message type part of the
receiveSecond receive activity. This receive activity is associated with the
SecondReceive partner link (defined by the SecondFileRead.wsdl file).

To create property aliases for NameCorr:

1. Inthe Structure window of Oracle JDeveloper, right-click Property Aliases.

2. Select Create Property Alias.

3. From the Property list, select NameCorr.

4. Expand and select Message Types > Partner Link > FirstReceive > FirstReceive.wsdl
> Message Types > LoanAppl_msg > Part - LoanAppl.

5. In the Query field, press Ctrl+Space to define the following XPath expression:
/ns2:LoanAppl/ns2:Name

6. Click OK.

7. Repeat Step 1 through Step 3 to create a second property alias for NameCorr.

8. Expand and select Message Types > Project WSDL Files > SecondFileRead.wsdl >
Message Types > LoanAppResponse_msg > Part - LoanAppResponse.

9. Inthe Query field, press Ctrl+Space to define the following XPath expression:
/ns4d:LoanAppResponse/ns4: APR

10. Click OK.

Creating Property Aliases for IDCorr

You create the following two property aliases for the IDCorr correlation set:

ORACLE

Map IDCorr to the LoanAppResponse message type part of the receiveSecond receive
activity. This receive activity is associated with the SecondReceive partner link (defined by
the SecondFileRead.wsdlI file).

9-22

Chapter 9
Creating Correlation Sets in Oracle JDeveloper

Map IDCorr to the CustResponse message type part of the receiveThird receive activity.
This receive activity is associated with the ThirdReceive partner link (defined by the
ThirdFileRead.wsdl file).

To create property aliases for IDCorr:

1. Inthe Structure window, right-click Property Aliases.

2. Select Create Property Alias.

3. Inthe Property list, select IDCorr.

4. Expand and select Message Types > Project WSDL Files > SecondFileRead.wsdl >
Message Types > LoanAppResponse_msg > Part - LoanAppResponse.

5. In the Query field, press Ctrl+Space to define the following XPath expression:
/ns4:LoanAppResponse/ns4:APR

6. Click OK.

7. Repeat Step 1 through Step 3 to create a second property alias for IDCorr.

8. Expand and select Message Types > Project WSDL Files > ThirdFileRead.wsdl >
Message Types > CustResponse_msg > Part - CustResponse.

9. Inthe Query field, press Ctrl+Space to define the following XPath expression:
/ns6:CustResponse/ns6:APR
Design is now complete.

10. Click OK.

Step 7: Reviewing WSDL File Content

ORACLE

To review WSDL file content:

Refresh the Applications window.

The NameCorr and IDCorr correlation set properties are defined in the
MyCorrelationSet Properties.wsdl file in the Applications window.

<definitions
name="properties"
targetNamespace="http://xmlns.oracle.com/MyCorrelationSet/correlationset™"
xmlns="http://schemas.xmlsoap.org/wsdl/"
xmlns:bpws="http://schemas.xmlsoap.org/ws/2003/03/business-process/"
xmlns:plnk="http://schemas.xmlsoap.org/ws/2003/05/partner-link/"
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">
<bpws:property name="NameCorr" type="xsd:string"/>
<bpws:property name="IDCorr" type="xsd:double"/>

</definitions>

The property aliases are defined in the MyCorrelationSet.wsdl file.

<bpws:propertyAlias propertyName="nsl:NameCorr"
messageType="ns3:LoanAppl msg"
part="LoanAppl" query="/ns2:LoanAppl/ns2:Name"/>

<bpws:propertyAlias propertyName="nsl:NameCorr"
messageType="ns5:LoanAppResponse msg"

part="LoanAppResponse" query="/ns4:LoanAppResponse/ns4:APR"/>

<bpws:propertyAlias propertyName="nsl:IDCorr"

9-23

Chapter 9
Creating Correlation Sets in Oracle JDeveloper

messageType="ns5:LoanAppResponse msg"
part="LoanAppResponse" query="/ns4:LoanAppResponse/ns4:APR"/>

<bpws:propertyAlias propertyName="nsl:IDCorr"
messageType="ns7:CustResponse msg"
part="CustResponse" query="/ns6:CustResponse/ns6:APR"/>

Because the BPEL process service component is not created as a web services provider
in this example, the MyCorrelationSet.wsdl file is not referenced in the BPEL process
service component. Therefore, you must import the MyCorrelationSet.wsdl file inside the
FirstReceive.wsdl file to reference the correlation sets defined in the former WSDL.

<import namespace="http://xmlns.oracle.com/MyCorrelationSet"
location="MyCorrelationSet.wsdl"/>

What You May Need to Know About Conversion IDs and Different
Composite Revisions

ORACLE

Do not use the same conversion ID for different revisions of a SOA composite application.
When correlation sets are used in a BPEL process, you have explicit control over the
conversation ID value. Oracle SOA Suite does not interfere or add restrictions on conversation
ID value generation. This situation means that even though it appears that Oracle SOA Suite is
generating the same conversation ID for different revisions, you actually control this behavior.
Oracle SOA Suite does not restrict you from using the same conversation ID for different
instances of different revisions.

If you do not use correlation sets, the conversation ID generated is unique and this is not a
problem because Oracle SOA Suite decides which conversation ID to generate, and not you.

Oracle SOA Suite does not execute a revision check for callback routing. Routing of callback
messages is only based on the following:

e Conversation ID: This is calculated based on the input value and correlation set. If you use
the same correlation set for two revisions of processes and enter the same input when
creating an instance, both revisions subscribe using the same conversation ID. This
causes confusion when a callback for one revision is delivered to another revision.

e Operation name (is the same for both revisions).
e BPEL service component name (is also the same for both revisions).

The concept of a revision number is applicable to Oracle SOA composite applications, and is
not part of the BPEL specification. This is why it is not used as part of the routing decision.

There is another complication in which adding a revision as part of callback routing causes
problems. When sending a callback, you also specify the endpoint URL. If the endpoint URL
does not contain the composite revision (which is extremely likely), the message is assumed to
be routed to the default revision. If Oracle SOA Suite runtime adds a revision check as part of
callback routing, the callback for the nondefault revision instance is never possible.

For example, assume you have the following BPEL process:

e An entry receive activity named receive_1 (on which a correlation set is used)
e Aninvoke activity, which invokes a web service
e Areceive activity named receive_2

Assume you perform the following steps:

1. Deploy revision 1.0 of composite_A, which includes a BPEL component.

9-24

Chapter 9
Routing Messages to the Same Instance

2. Create an instance of revision 1.0, which is using a correlation set, and input a value of
123, which generates conv_id = "123".

This process now invokes a web service through a one-way invoke activity and then waits
on the receive_2 activity for a callback to arrive.

3. Deploy revision 2.0 of composite_A, which now becomes the default revision.

A web service sends a callback for the instance for revision 1.0. However, as a part of its
URL, it does not specify the revision nhumber. You typically create a callback so that the
URL does not use the revision number. This is because web services are external and you
cannot change web service settings to continue using a revision tag because it is internal
to Oracle SOA Suite and is a concept that the external world does not understand.

Since a revision number is not specified, the SOA server assumes that the revision
number must be 2.0 and, if the routing of the callback takes the revision number into
account, it cannot forward this callback intended for 1.0 to the correct revision 1.0. Instead,
it attempts to route it to the default revision of 2.0, which does not have any instance
waiting for the callback.

You cannot route callback messages based on revisions. You only receive the option to
route callback messages based on the conversion ID (if the correlation set is not used,
then even this is not under your control), operation name, and component name.

For these reasons, different instances must use different conversation IDs (which means
different input is used for creating a conversion ID) to avoid confusion, and routing should
be solely based on a conversation ID.

What You May Need to Know About Setting Correlations for an IMA Using a
fromParts Element With Multiple Parts

Assume you have the following scenario:

e« A BPEL 2.0 process with a WSDL message type that has multiple parts that are identical in
type.

e A property alias has been defined based on the element type of the above part.

For a process that has an inbound message activity (IMA) (for example, a receive activity,
onMessage branch of a scope or pick activity, or onEvent branch of a scope activity in BPEL
2.0) that uses the fromParts element with fromParts defined for each part, correlations cannot
be defined because the runtime environment cannot determine the part to which to apply the
property alias.

For more information about mapping WSDL message parts with the toParts and fromParts
elements, see Mapping WSDL Message Parts in BPEL 2.0.

Routing Messages to the Same Instance

ORACLE

Oracle BPEL Process Manager supports a message aggregation feature. When multiple
messages are routed to the same process/partner link/operation name, the first message is
routed to create a new instance and subsequent messages can be routed to continue the
created instance using a midprocess receive activity.

Message aggregation enables you to use the same operation (or event name) in an entry
receive activity and a midprocess receive activity.

9-25

Chapter 9
Routing Messages to the Same Instance

Note:

e This feature only performs aggregation, and not resequencing. This feature does
not resequence messages arriving out of order into an ordered format. Therefore,
the first message only means the first message processed. This may be different
from the first message in a time sequence order.

e You must use correlation sets to take advantage of the message aggregation
feature.

e Synchronous operations as ambiguous calls (at both beginning and midprocess
receive activities) are supported. However, this is not a recommended use of this
feature and should be avoided.

How to Configure BPEL Process Instance Creation

You can control the number of instances to create and use to route messages with the
reenableAggregationOnComplete property.

To configure BPEL process instance creation:

1. Inthe SOA Composite Editor, select the BPEL process service component, as shown in
Figure 9-16.

Figure 9-16 Selected BPEL Process Service Component

‘

= & @ éf:mgamn |

aggregation_client_... 4] [)]

Operations: k!

process
processResponse

2. Go to the Property Inspector in the lower right corner of Oracle JDeveloper. If the Property
Inspector is not displayed, select Property Inspector from the View main menu.

3. Inthe Properties section, click the Add icon, as shown in Figure 9-17.

Figure 9-17 Property Inspector

'@Component - dggregation - Pro,,, X E]

& AE S (6 ¢a)

= General

Marne: |F\ggregation |

Type: |BPEL Process 1.1 |

=l Properties
g 3
Narme Yalue [add|

The Create Property dialog is displayed.

ORACLE 096

ORACLE

4,

Chapter 9
Routing Messages to the Same Instance

In the Name field, enter the bpel.config.reenableAggregationOnComplete deployment
descriptor property. The prefix of bpel.config is required for this type of deployment
descriptor.

In the Value field, enter true, as described in Table 9-12.

Table 9-12 reenableAggregationOnComplete Property Settings

Value Description Example

true Creates a new instance to handle You invoke messages 1 through 4 for a client
messages. However, there is a window using the initiate operation. This results in
between messages coming in and the following actions:

instance completion. This can result in
messages remaining in the DLV _MESSAGE
table. This setting can result in the
occurrence of race conditions. For more
information, see Table 9-13.

» Two instances of the BPEL process are
created and completed.

* Messages 1 and 2 are routed to the first
instance and messages 3 and 4 are
routed to the second instance.

false This is the default behavior. This setting You invoke messages 1 through 4 for a client

causes the aggregation feature to be using the initiate operation. One instance
disabled. Only one instance is created. of the BPEL process is created and
Messages that are not handled by the completed.

instance remain in the DLV_MESSAGE Do not attempt to route multiple messages

table. This setting is recommended for using the same correlation set to one BPEL
most environments. instance.

Figure 9-18 shows the completed Create Property dialog.

Figure 9-18 Create Property Dialog

fe) "=
i]
= % @ oy gation i lf?‘(:nmponent - Agoregation - Property Inspectaor * [;
aggregation_client_... K{] :' ': Dj 53 & s (& w U) @-
Operations: o~ s - :
process = General
proce ssRe sponse

Marne: |Aggregation

Type: |BPEL Process 1.1

—| Properties

Mame: |bpe|.conFig.reenabIeAggregationOnComplete |V| K%
Mame Walue

Walue: |true |

| Help | | ok | | Cancel | ool

Click OK.

The reenableAggregationOnComplete property with the bpel.config prefix looks as
follows in the composite.xml file.

<composite name="Aggregation" revision="1.0" label="2011-07-10 13-52-24 174"
mode="active" state="on">

<component name="Aggregation" version="1.1">
<implementation.bpel src="Aggregation.bpel"/>
<property name="bpel.config.reenableAggregationOnComplete" type="xs:string"
many="false" override="may">true</property>
</component>

9-27

Chapter 9
Routing Messages to the Same Instance

</composite>

How to Use the Same Operation in Entry and Midprocess Receive Activities

ORACLE

Assume you create a correlation set as shown in the example that follows. All messages to
Oracle BPEL Process Manager are routed to the same operation name. The messages have
the same correlation ID. The interface WSDL does not differentiate between the entry activity
(receiveInput) and the midprocess receive activity (Continue Receive). All messages are
processed using the initiate operation. A single instance is created to which to route all
messages.

This differs from releases before 11g Release 1 11.1.1.6, in which you needed to define
different operation names on the same partner link. The process had to expose two operations
and the caller had to choose the correct operation name.

<receive name="receivelInput" partnerLink="client" portType="client:BPELProcessl"
operation="initiate" variable="inputVariable" createlnstance="yes">
<correlations>
<correlation initiate="yes" set="CorrelationSet 1"/>
</correlations>
</receive>

<!-- Asynchronous callback to the requester. (Note: the callback location and
correlation id is transparently handled using WS-addressing.) -->
<assign name="Assign 1">
<copy>
<from variable="inputVariable" part="payload"
query="/client:BPELProcesslProcessRequest/client:input"/>
<to variable="Invoke 1 initiate InputVariable" part="payload"
query="/nsl:BPELProcess2ProcessRequest/nsl:input"/>
</copy>
</assign>

<receive name="Continue Receive" partnerLink="client"
portType="client:BPELProcessl" operation="initiate" variable="inputVariable"
createInstance="no">
<correlations>
<correlation initiate="no" set="CorrelationSet_l"/>
</correlations>
</receive>

For event delivery network (EDN) business events, you substitute the operation attribute with

bpelx:eventName in both the entry and midprocess receive activities.

bpelx:eventName="ns3:initiateEvent"/>

Information is maintained in the DLV_AGGREGATION table:

e Conversation ID

e Domain name

e Component name and type

e Composite name, label, and revision
* State

* Received date

* Clkey

9-28

Chapter 9
Routing Messages to the Same Instance

* Primary key

This information can be deleted from this table with the purge scripts or from the Auto Purge
page in Oracle Enterprise Manager Fusion Middleware Control. For more information about
both of these options, see the Administering Oracle SOA Suite and Oracle Business Process
Management Suite.

How to Route a Message to a New or Existing Instance when Using
Correlation Sets

ORACLE

For a BPEL process using correlation sets, the correct routing is performed. The message can
be either of the following:

* Aninvoke message creating a new instance
e A callback message continuing an existing instance

Figure 9-19 shows entry and midprocess receive activities using the same operation (process).

Figure 9-19 Routing a New Message to a New or Existing Instance

receivelnput

Whilg_1

Continue_Receive

The following provides an example of the entry and midprocess receive activities using the
same operation (process).

<receive name="receivelInput" partnerLink="client" portType="client:BPELProcessl"
operation="process" variable="inputVariable" createlnstance="yes">

<correlations>
<correlation initiate="yes" set="CorrelationSet 1"/>
</correlations>
</receive>
<!-- some business logic -->

<while name="While 1" condition=*loop for 3 iterations*>
<sequence name="Sequence 1">
<receive name="Continue Receive" partnerLink="client"
portType="client:BPELProcessl" operation="process" variable="inputVariable"
createInstance="no">
<correlations>
<correlation initiate="no" set="CorrelationSet 1"/>
</correlations>
</receive>

9-29

Chapter 9
Routing Messages to the Same Instance

<!-- some business logic -->

</sequence>
</while>

In the initial scenario in the preceding example, the following actions occur in BPEL process
P1:

e A partner provides four messages (message 1, message 2, message 3, and message 4)
for the same partner (correlation ID 101).

e Message 1 creates a new instance of BPEL process P1. This message is marked as an
invoke message.

* Messages 2, 3, and 4 are received using the Continue Receive activity. These messages
are marked as callback messages.

* The instance closes because three iterations of the while loop are expected.

Assume now that additional messages are routed, which can potentially cause race conditions
to occur. Table 9-13 provides details.

Table 9-13 Message Delivery Scenarios

Scenario Description Marked as Marked as Callback
Invoke Message Message

1 Assume the partner now provides message 5 for the same ¢ Message 1 ¢ Message 2
correlation ID (101). Message 5 creates a new instance of BPEL + Message 5 + Message 3
process P1 and waits on the Continue Receive activity inside the + Message 4
while loop for three more messages (6, 7, and 8). « Message 6

e Message 7
e Message 8

2 If messages 4 and 5 are received within a small time window, it is e Message 1 e Message 2
possible that message 4 is closing the instance BPEL process P1 + Message 6 + Message 3
and message 5 is routed as a callback to that instance. This « Message 4

scenario can cause a race condition. For example: . Message 5

* When message 6 arrives, it is routed to the entry receive activity « Message 7
of the new instance.

* Messages 7 and 8 are routed to the Continue Receive
activity.

* Message 5 is routed to the Continue Receive activity only by
the recovery part of the BPEL process service engine. This is
because it initially was routed to a closed instance and could
not be handled.

e Message 8

ORACLE 9.30

Table 9-13 (Cont.) Message Delivery Scenarios

Scenario Description Marked as Marked as Callback
Invoke Message Message

Chapter 9
Routing Messages to the Same Instance

3 This is similar to scenario 2. However, in this case, messages 7, 8, Message 1 .
and 9 are not received. For example: + Message 6 .

* Message 5 becomes an unhandled callback message waiting .

for a subscriber. .

BPEL process service engine recovery tries to process
message 5 and fails because there is no subscriber available.

There are several options for message recovery.

Limit recovery of callback messages with the System MBean
Browser property maxRecoverAttempt in Oracle Enterprise
Manager Fusion Middleware Control. This count specifies the
number of attempts made by automatic recovery to recover an
invoke/callback message. Once the number of recover attempts
exceeds this count, the state of the message is changed to
exhausted. For more information, see Section "Configuring
Automatic Recovery Attempts for Invoke and Callback
Messages" in Administering Oracle SOA Suite and Oracle
Business Process Management Suite.

Write a custom SQL script to check that the
criteriaCallback has state setto 0. The correlation value
for this callback exists in CORRELATION GROUP in a closed state
(state = 0). This indicates that the callback message is
marked for a closed aggregation instance. You can cancel/
purge these instances based on business logic.

Note: BPEL is designed as a conversation-based system. At
any point in which unsolicited messages are not being handled,
the application is always aware of the messages coming as part
of correlation aggregation and chooses to subscribe and
process or ignore the message as required by business needs.

Message 2
Message 3
Message 4
Message 5

ORACLE

9-31

Using Parallel Flow in a BPEL Process

This chapter describes how to use parallel flow in a BPEL process service component. Parallel
flows enable a BPEL process service component to perform multiple tasks at the same time.
Parallel flows are especially useful when you must perform several time-consuming and
independent tasks. This chapter also describes how to customize the number of parallel
branches.

This chapter includes the following sections:

e Introduction to Parallel Flows in BPEL Processes
e Creating a Parallel Flow

e Customizing the Number of Parallel Branches

Introduction to Parallel Flows in BPEL Processes

ORACLE

A BPEL process service component must sometimes gather information from multiple
asynchronous sources. Because each callback can take an undefined amount of time (hours
or days), it may take too long to call each service one at a time. By breaking the calls into a
parallel flow, a BPEL process service component can invoke multiple web services at the same
time, and receive the responses as they come in. This method is much more time efficient.

Figure 10-1 shows a flow activity named Retrieve_QuotesFromSuppliers. The
Retrieve_QuotesFromSuppliers flow activity sends order information to two suppliers in
parallel:

e Aninternal warehouse (InternalWarehouseService)
* An external partner warehouse (PartnerSupplierMediator)

The two warehouses return their bids for the order to the flow activity. Here, two asynchronous
callbacks execute in parallel. One callback does not have to wait for the other to complete first.
Each response is stored in a different global variable.

10-1

Chapter 10
Creating a Parallel Flow

Figure 10-1 Parallel Flow Invocation

_________ .1 BPEL Process
; WSDL | " WSDL

o <dow | i
; |11 <sequence> |! <sequence> ! ;
i ii| mitete 00| initiate ii 5
' tii | service | service o ;
' . E <invokex : ' <invokes ' !

ParinerSupplierMediator ce P s - ! "| InternalWarehouseService

e [“r I
' ' Wait for ! Wait for v '
: P callback 1| callback | il |
V| <receive> || <receive> i1

What You May Need to Know About the Execution of Parallel Flow
Branches in a Single Thread

Branches in flow, flowN, and forEach activities are executed serially in a single thread (that is,
the Nth branch is executed only after N-1 execution has completed). Execution is not
completely parallel. This is because the branches do not execute in concurrent threads in this
mode. Instead, one thread starts executing a flow branch until it reaches a blocking activity (for
example, an synchronous invoke). At this point, a new thread is created that starts executing
the other branch, and the process continues. This creates the impression that the flow
branches are executing in parallel. In this mode, however, if the flow branches do not define a
blocking activity, the branches still execute serially.

This design is intended for several reasons:

« To prevent you from accidentally spawning too many threads and overloading the system,
single threading is the default method. However, you can tune threads in other places,
such as adapter polling threads, BPEL process service engine threads, and Oracle
WebLogic Server work managers.

* The BPEL process specification does not provide a mechanism to ensure the thread safety
of BPEL variables (that is, a lack of a synchronized qualifier such as in Java), which is
necessary for true multithreaded programming.

e The implication of transaction rollbacks in one of the branches is undefined.

To achieve pseudo-parallelism, you can configure invoke activities to be nonblocking with the
nonBlockingInvoke deployment descriptor property. When this property is set to true, the
process manager creates a new thread to perform each branch's invoke activity in parallel.

For more information about the nonBlockingInvoke property, see How to Define Deployment
Descriptor Properties in the Property Inspector.

Creating a Parallel Flow

You can create a parallel flow in a BPEL process service component with the flow activity. The
flow activity enables you to specify one or more activities to be performed concurrently. The

ORACLE 100

Chapter 10
Creating a Parallel Flow

flow activity also provides synchronization. The flow activity completes when all activities in the
flow have finished processing. Completion of this activity includes the possibility that it can be
skipped if its enabling condition is false.

Note:

Branches in a flow activity are executed serially in a single thread. For more
information, see What You May Need to Know About the Execution of Parallel Flow
Branches in a Single Thread.

How to Create a Parallel Flow

To create a parallel flow:

1. Inthe Components window, expand BPEL Constructs > Structured Activities.
2. Drag a Flow activity into the designer.

3. Click the + sign to expand the flow activity, as shown in Figure 10-2.

Figure 10-2 Flow Activity

+

The flow activity initially includes two branches, each with a box for functional elements.
Populate these boxes as you do a scope activity, either by building a function or dragging
activities into the boxes. You can add additional branches by highlighting the flow activity
and clicking the Add Sequence icon. Figure 10-3 provides details.

Figure 10-3 Add Sequence Icon

= Add Sequence

__

4. Drag and define additional activities on each side of the flow to invoke multiple services at
the same time. Figure 10-4 provides details.

ORACLE 102

Chapter 10
Creating a Parallel Flow

Figure 10-4 Expanded Flow Activity

+

10

Invaokel i

4

When complete, flow activity design can look as shown in Figure 10-5. This example
shows the Retrieve_QuotesFromSuppliers flow activity. Two branches are defined for
receiving bids: one for InternalWarehouseService and the other for
PartnerSupplierMediator.

Figure 10-5 Flow Activity After Design Completion

D

Assign_InternalwarehouseRequest Assign_ParknerRequest

=

Invoke_Internalwarehouse Invoke_PartnerSupplier

@)- &

Receive_Internalarehouse Receive_ParknerResponse

Assign_InkterWHResponse Assign_ParknerWHResponse

What Happens When You Create a Parallel Flow

ORACLE

A flow activity typically contains many sequence activities. Each sequence is performed in
parallel. The following example shows the syntax for two sequences of the

Retrieve QuotesFromSuppliers flow activity in the OrderProcessor.bpel file after design
completion. However, a flow activity can have many sequences. A flow activity can also

contain other activities. In the following example, each sequence in the flow contains assign,
invoke, and receive activities.

<flow name="Retrieve QuotesFromSuppliers">
<sequence name="Sequence 4">
<assign name="Assign_InternalWarehouseRequest'">
<copy>
<from>$inputVariable.gOrderInfoVariable/ns3:CardNum</from>
<to>lInternalWarehouseInputVariable/ns4:ccnb</to>

10-4

Chapter 10
Creating a Parallel Flow

</copy>
</assign>
<invoke name="Invoke InternalWarehouse"
inputVariable="1lInternalWarehouselInputVariable"
partnerLink="InternalWarehouseService"
portType="nsl:InternalWarehouseService"
operation="process"/>
<receive name="Receive_InternalWarehouse"
createInstance="no"
variable="lInternalWarehouseResponseVariable"
partnerLink="InternalWarehouseService"
portType="nsl:InternalWarehouseServiceCallback"
operation="processResponse"/>
<assign name="Assign InterWHResponse">
<bpelx:append>
<bpelx:from variable="lInternalWarehouseResponseVariable"
part="payload"
query="/nsl:WarehouseResponse" />
<bpelx:to variable="gWarehouseQuotes"
query="/nsl:WarehouseList"/>
</bpelx:append>
</assign>
</sequence>
<sequence name="Sequence 4">
<assign name="Assign PartnerRequest">
<copy>
<from variable="gOrderInfoVariable"
query="/ns4:orderInfovoSDO" />
<to variable="1lPartnerSupplierInputVariable"
part="request" query="/ns4:orderInfovOSDO"/>
</copy>
</assign>
<invoke name="Invoke PartnerSupplier"
partnerLink="PartnerSupplierMediator"
portType="nsl5:execute ptt" operation="execute"
inputVariable="1PartnerSupplierInputVariable"/>
<receive name="Receive_ PartnerResponse"
createInstance="no"
variable="1PartnerResponseVariable"
partnerLink="PartnerSupplierMediator"
portType="nsl5:callback ptt" operation="callback"/>
<assign name="Assign PartnerWHResponse">
<bpelx:append>
<bpelx:from variable="lPartnerResponseVariable"
part="callback"
query="/nsl:WarehouseResponse"/>
<bpelx:to variable="gWarehouseQuotes"
query="/nsl:WarehouseList"/>
</bpelx:append>
</assign>
</sequence>
</flow>

Synchronizing the Execution of Activities in a Flow Activity

You can synchronize the execution of activities within a flow activity to ensure that certain
activities only execute after other activities have completed. For example, assume you have an
invoke activity, verifyFlight, that is executed in parallel with other invoke activities
(verifyHotel, verifyCarRental, and scheduleFlight) when the flow activity begins. However,
scheduling a flight is necessary only after verifying that a flight is available. Therefore, you can
add a link between the verifyFlight and scheduleFlight invoke activities. Links provide a

ORACLE 105

ORACLE

Chapter 10
Creating a Parallel Flow

level of dependency indicating that the activity that is the target of the link (scheduleFlight) is
only executed if the activity that is the source of the link (verifyFlight) has completed.

The following example provides details. The link name verifyFlight-To-scheduleFlight isS
assigned to the source verifyFlight and target scheduleFlight invoke activities. If the
source verifyFlight completes execution, the target scheduleFlight is then executed.

<flow ...>
<links>
<link name="verifyFlight-To-scheduleFlight" />
</links>
<documentation>
Verify the availability of a flight, hotel, and rental car in parallel
</documentation>
<invoke name="verifyFlight" ...>
<sources>
<source linkName="verifyFlight-To-scheduleFlight" />
</sources>
</invoke>
<invoke name="verifyHotel" ... />
<invoke name="verifyCarRental" ... />
<invoke name="scheduleFlight" ...>
<targets>
<target linkName="verifyFlight-To-scheduleFlight" />
</targets>
</invoke>
</flow>

The preceding code provides an example of link syntax in BPEL version 2.0. The link syntax
between BPEL version 1.1 and BPEL version 2.0 is slightly different.

e BPEL version 1.1 uses <target> and <source>.
e BPEL version 2.0 uses <targets> and <sources>.

Table 10-1 provides details.

10-6

ORACLE

Chapter 10
Creating a Parallel Flow

Table 10-1 Links Syntax in BPEL Version 1.1 and BPEL Version 2.0

BPEL Version 1.1 Example

BPEL Version 2.0 Example

<flow>
<links>
<link name="XtoY"/>
<link name="CtoD"/>
</links>
<sequence name="X">
<source linkName="XtoY"/>

<invoke name="A" .../>
<invoke name="B" .../>
</sequence>

<sequence name"Y">
<target linkName="XtoY"/>
<receive name="C" ...>
<source linkName="CtoD"/>
</receive>
<invoke name="E" .../>
</sequence>
<invoke partnerLink="D" ...>
<target linkName="CtoD"/>
</invoke>
</flow>

<flow>

<links>
<link name="AtoB"/>
</links>
<assign name="B">
<targets>
<target linkName="AtoB"/>
</targets>
<copy>
<from>concat ($output.payload,
'B'")</from>
<to>$output.payload</to>
</copy>
</assign>
<assign name="A">
<sources>
<source linkName="AtoB"/>
</sources>
<copy>
<from>concat ($output.payload,
'A</ from>
<to>$output.payload</to>
</copy>
</assign>
</flow>

How to Create Synchronization Between Activities Within a Flow Activity

To create synchronization between activities within a flow activity:

< Note:

The Sources and Targets tabs are only available in BPEL 2.0 projects. For BPEL
1.1 projects, you must directly edit the BPEL file to use this functionality.

Create a flow activity. For information, see How to Create a Parallel Flow.
In the General tab of the Flow activity, click the Add icon.

Enter a name for the link, as shown in Figure 10-6.

10-7

Chapter 10
Creating a Parallel Flow

Figure 10-6 Link Name Creation

Documentation Skip Condition Targets Sources
Ceneral Annotations
Mame: |Flowl |
Links: Ei' x
Mame
[t 0E] |
Help Apply ' O 1 Cancel

4. Click Apply, then OK.

5. Drag appropriate activities into the flow activity to define as the source with the same link
name as defined in Step 3. The value of the link name of the source and target must be the
same as the link name declared in the flow activity. For this example, an assign activity
named 2 is defined as the source in Figure 10-7.

Figure 10-7 Source Activity

Ceneral Copy Rules Annotations Skip Condition Sources Targets

Sources: Ei

Link Mame Transition Condition

a))

Each source activity can specify an optional Transition Condition as a safe guard for
following the specified link. Click the row in this column to invoke the Browser icon for
accessing the Expression Builder dialog for creating a condition. If the Transition
Condition column is left blank, it is assumed to evaluate to true.

6. Define appropriate copy rules for the assign activity.
7. Click Apply, then OK.

8. Drag an additional activity into the flow activity to define as the target with the same link
name as defined in Step 3. For this example, another assign activity named B is defined as

the target in Figure 10-8.

ORACLE" 10-8

Chapter 10
Creating a Parallel Flow

Figure 10-8 Target Activity

Ceneral Copy Rules Annotations Skip Condition Sources Targets

Targets:

Link Mame
AtoB

9. Define appropriate copy rules for the assign activity.
10. Click Apply, then OK.
11. Continue design of your BPEL process.

When complete, design can appear similar to that shown in Figure 10-9.

Figure 10-9 Three Flow Activities Synchronized with Links

&

57 I

<-;->
®)

scopel B

@

scopel Sequence_1

What Happens When You Create Synchronization Between Activities Within
a Flow Activity

The following example shows the .bpel file after design is complete for three flow activities
with links for synchronizing activity execution.
* Flow 1 shows a link between simple activities.

Flow 1 includes a link named AtoB. The activity that is the target of the link, assign activity
B, is only executed if the activity that is the source of the link, assign activity A, has
completed.

* Flow_2 shows a link between simple activity and composite activity.

Flow 2 also includes the link named AtoB. The activity that is the target of the link, assign
activity B, is only executed if the activity that is the source of the link, scope activity scopel,
has completed.

ORACLE" 10-9

Chapter 10
Creating a Parallel Flow

* Flow 3 shows a link between composite activities.

Flow_ 3 also includes the link named AtoB. The activity that is the target of the link,
sequence activity Sequence 1, is only executed if the activity that is the source of the link,
scope activity scope2, has completed.

<!-- link between simple activities -->
<flow name=Flow_1>
<links>
<link name="AtoB"/>
</links>
<assign name="A">
<sources>
<source linkName="AtoB"/>
</sources>
<copy>
<from>concat ($output.payload, 'A')</from>
<to>Soutput.payload</to>
</copy>
</assign>
<assign name="B">
<targets>
<target linkName="AtoB"/>
</targets>
<copy>
<from>concat ($output.payload, 'B')</from>
<to>Soutput.payload</to>
</copy>
</assign>
</flow>

<!-- link between simple activity and composite activity -->
<flow name=Flow_2>
<links>
<link name="AtoB"/>
</links>
<scope name="scopel">
<sources>
<source linkName="AtoB"/>
</sources>
<assign name="A">
<copy>
<from>concat (Soutput.payload, 'A')</from>
<to>$Soutput.payload</to>
</copy>
</assign>
</scope>
<assign name="B">
<targets>
<target linkName="AtoB"/>
</targets>
<copy>
<from>concat ($output.payload, 'B')</from>
<to>Soutput.payload</to>
</copy>
</assign>
</flow>

<!-- link between composite activities -->
<flow name=Flow_3>
<links>
<link name="AtoB"/>

ORACLE 1010

Chapter 10
Creating a Parallel Flow

</links>
<scope name="scope2">
<sources>
<source linkName="AtoB"/>
</sources>
<assign name="A">
<copy>
<from>concat ($output.payload, 'A')</from>
<to>$output.payload</to>
</copy>
</assign>
</scope>
<sequence name="Sequence_l1>
<targets>
<target linkName="AtoB"/>
</targets>
<assign name="B">
<copy>
<from>concat ($output.payload, 'B')</from>
<to>$output.payload</to>
</copy>
</assign>
</sequence>
</flow>
</sequence>

What You May Need to Know About Join Conditions in Target Activities

You can specify an optional join condition in target activities. The value of the join condition is a
boolean expression. If a join condition is not specified, the join condition is the disjunction (that
is, a logical OR operation) of the link status of all incoming links of this activity.

Oracle BPEL Designer does not provide design support for adding join conditions. To add a
join condition, you must manually add the condition to the .bpel file in Source view in Oracle
BPEL Designer.

The following provides an example of a join condition.

<flow>
<links>
<link name="linkStatus2"/>
</links>
<empty name="E2">
<sources>
<source linkName="linkStatus2">
<transitionCondition>false()</transitionCondition>
</source>
</sources>
</empty>
<empty name="E2">
<targets>
<joinCondition>bpws:getLinkStatus ('linkStatus2')=true()</joinCondition>
<target linkName="linkStatus2"/>
</targets>
</empty>
</flow>

ORACLE 1011

Chapter 10
Customizing the Number of Parallel Branches

Customizing the Number of Parallel Branches

Processing

ORACLE

This section describes how to customize the number of parallel branches with the following
activities:

« AforEach activity in a BPEL version 2.0 project

e AflowN activity in a BPEL version 1.1 project

Note:

Branches in flowN and forEach activities are executed serially in a single thread. For
more information, see What You May Need to Know About the Execution of Parallel
Flow Branches in a Single Thread.

Multiple Sets of Activities with the forEach Activity in BPEL 2.0

You can use a forEach activity to process multiple sets of activities sequentially or in parallel.
The forEach activity executes a contained (child) scope activity exactly N+1 times, where N
equals a final counter value minus a starting counter value that you specify in the Counter
Values tab of the For Each dialog. While other structured activities such as a flow activity can
have any type of activity as its contained activity, the forEach activity can only include a scope
activity.

When the forEach activity is started, the expressions you specify for the starting counter and
final counter values are evaluated. Once the two values are returned, they remain constant for
the lifecycle of the activity. Both expressions must return a value containing at least one
character. If these expressions do not return valid values, a fault is thrown. If the starting
counter value is greater than the final counter value, the contained scope activity is not
performed and the forEach activity is considered complete.

During each iteration, the variable specified in the Counter Name field on the General tab is
implicitly declared in the forEach activity's contained scope. During the first iteration of the
scope, the counter variable is initialized with the starting counter value. The next iteration
causes the counter variable to be initialized with the starting counter value, plus one. Each
subsequent iteration increments the previously initialized counter variable value by one until
the final iteration, where the counter is set to the final counter value. The counter variable is
local to the enclosed scope activity. Although its value can be changed during an iteration, that
value is lost after each iteration. Therefore, the counter variable value does not impact the
value of the next iteration's counter.

The forEach activity supports the following looping iterations:

* Sequential (default)

The forEach activity performs looping iterations sequentially N times over a given set of
activities defined within a scope activity. As an example, the forEach activity iterates over
an incoming purchase order message where the purchase order message consists of N
order items. The enclosed scope activity must be executed N+1 times, with each instance
starting only after the previous iteration has completed.

* Parallel

All looping iterations are started at the same time and processed in parallel. Parallel
iterations are useful in environments in which sets of independent data are processed or

10-12

Chapter 10
Customizing the Number of Parallel Branches

independent interaction with different partners is performed in parallel. To enable parallel
looping, you select the Parallel Execution check box on the General tab. In these
scenarios, execution of the N+1 instances of the contained scope activity occurs in
parallel. Each copy of the scope activity has the same counter variable that you specify in
the Counter Name field of the General tab declared in the same way as specified for a
sequential forEach activity. Each instance's counter variable must be uniquely initialized in
parallel with one of the integer values beginning with the starting counter value and
proceeding up to and including the final counter value.

Unlike a flow activity, the number of parallel branches is not known at design time with the
forEach activity. The specified counter variable iterates through the number of parallel
branches, controlled by the starting counter value and final counter value.

You can also specify a completion condition on the Completion tab. This condition enables the
forEach activity to execute the condition and complete without executing or finishing all the
branches specified. As an example, you send out parallel requests and a sufficient subset of
the recipients have responded. A completion condition is optionally specified to prevent the
following:

e Some children from executing (in the sequential case)
e To force early termination of some of the children (in the parallel case)

If you do not specify a completion condition, the forEach activity completes when the contained
scope has completed.

If a premature termination occurs (due to a fault or the completion condition evaluating to
true), then the N+1 requirement does not apply.

The following example shows the forEach activity syntax.

<forEach counterName="MyVariableName" parallel="yes|no"
standard-attributes>
standard-elements
<startCounterValue expressionlLanguage="anyURI"?>
unsigned-integer-expression
</startCounterValue>
<finalCounterValue expressionlLanguage="anyURI"?>
unsigned-integer-expression
</finalCounterValue>
<completionCondition>?
<branches expressionLanguage="anyURI"?
successfulBranchesOnly="yes|no"?>?
unsigned-integer-expression
</branches>
</completionCondition>
<scope ..>...</scope>
</forEach>

Note:

The successfulBranchesOnly attribute is not supported for this release.

How to Create a forEach Activity

To create a forEach activity:

1. Inthe Components window, expand BPEL Constructs > Structured Activities.

ORACLE 1012

ORACLE

2.

5.
6.

Chapter 10
Customizing the Number of Parallel Branches

Drag a For Each activity into the designer, as shown in Figure 10-10.

Note the contained scope activity in the forEach activity.

Figure 10-10 Contained Scope Activity in a forEach Activity

@
ForEach_1

m[ﬁ

Scope_1

Double-click the ForEach activity.

In the Counter Name field of the General tab, enter a counter value name, as shown in
Figure 10-11.

If the Parallel Execution check box is selected, all looping iterations are started at the
same time and processed in parallel. The next branch starts even if the previous branch
has not completed. If not selected, the next branch does not start until the previous branch
has completed.

Figure 10-11 General Tab of the forEach Activity

Documentation Skip Condition Targets Sources

Ceneral Counter Values Completion

Mame: |ForEach1 |

Counter Mame: |i |

[]|Parallel Execution

Help Apply Ok Cancel

Click the Counter Values tab.

Click the Expression Builder icon to enter the starting counter value and final counter
value, as shown in Figure 10-12.

10-14

ORACLE"

9.

Chapter 10
Customizing the Number of Parallel Branches

Figure 10-12 Counter Values Tab of the forEach Activity

Documentation Skip Condition Targets Sources

Ceneral Counter Yalues Caompletion
Start Walue
Expreszion Language: |><PATH 1.0in BPEL 2.0 -

Expreszzion:

$input.pavload}tns:star‘tCoumeHll

Final Walue

Expreszion Language: |XPATH 1.0in EPEL 2.0 -

Expreszion:

Finput.payload/tns finalCounter+1

Help Apply | Ok . Cancel

Click the Completion tab.

If you want to specify a completion condition that enables the forEach activity to execute
the condition and complete without executing or finishing all the branches specified, click
the XPath Expression Builder icon above the Expression field to enter a condition.
Figure 10-13 provides details.

Figure 10-13 Completion Tab of the forEach Activity

Documentation Skip Condition Targets Sources

General Counter Walues Completian
Expreszion Language: |><PATH 1.0in BPEL 2.0 -
Expreszion:

Finput.payload/tnsbranches-1

Help Apply Ok Cance|

Click Apply, then OK.

10. Expand the contained Scope activity of the ForEach activity.

11. Design the enclosed Scope activity.

10-15

Chapter 10

Customizing the Number of Parallel Branches

When complete, the forEach and contained scope activity can appear similar in structure to

that shown in Figure 10-14.

Figure 10-14 forEach Activity with Contained and Expanded Scope Activity

— Ey y

B g

invokeDummy Service

@)-

I
]
]
]
]
]
]
I
I
]
I
I
]
]
I
]
I
I
]
]
]
I
]
:
]
I
]
I
]
I
]
I
I
]
I
]
]
I
. . I
receiveFromDurnnySeryice i
]
I
]
]
I
]
]
]
I
]
I
]
]
]
]
I
I

What Happens When You Create a forEach Activity

ORACLE

The following example shows the .bpel file after design is complete for a sequential forEach

activity.

<faultHandlers>
<catch faultName="bpel:invalidBranchCondition">
<sequence>
<assign>
<copy>
<from>'invalidBranchCondition happened'</from>
<to>$Soutput.payload</to>
</copy>
</assign>

<reply name="replyOutput" partnerLink="client"
portType="tns:Test" operation="process" variable="output"/>
</sequence>
</catch>
</faultHandlers>
<sequence>
<!-- pick input from requester -->
<receive name="receive" createlnstance="yes"
partnerLink="client" portType="tns:Test"
operation="process" variable="input"/>
<assign>
<copy>
<from>3</from>
<to>$request.payload</to>
</copy>

10-16

Chapter 10
Customizing the Number of Parallel Branches

<copy>
<from>''</from>
<to>S$output.payload</to>
</copy>
</assign>

<forEach counterName="i" parallel="no">
<startCounterValue>$input.payload/tns:startCounter+1</startCounterValue>
<finalCounterValue>$input.payload/tns:finalCounter+1</finalCounterValue>
<completionCondition>
<branches>S$input.payload/tns:branches+1</branches>
</completionCondition>
<scope name="scopel">
<partnerLinks>
<partnerLink name="DummyService" partnerLinkType="tns:DummyService"
myRole="DummyServiceClient" partnerRole="DummyServiceProvider"/>
</partnerLinks>
<sequence>
<assign>
<copy>
<from>concat ($output.payload, $i, 'A')</from>
<to>$output.payload</to>
</copy>
</assign>
<invoke name="invokeDummyService" partnerLink="DummyService"
portType="tns:DummyPortType"
operation="initiate" inputVariable="request"/>
<receive name="receiveFromDummyService" partnerLink="DummyService"
portType="tns:DummyCallbackPortType"
operation="onResult" variable="response"/> <assign>
<copy>
<from>concat ($output.payload, $i, 'B')</from>
<to>$output.payload</to>
</copy>
</assign>
</sequence>
</scope>
</forEach>

<!-- respond output to requester -->
<reply name="replyOutput" partnerLink="client"
portType="tns:Test" operation="process" variable="output"/>
</sequence>

The following example shows the .bpel file after design is complete for a parallel forEach

activity.
<sequence>
<!-- pick input from requester -->

<receive name="receive" createlnstance="yes"
partnerLink="client" portType="tns:Test"
operation="process" variable="input"/>
<assign>
<copy>
<from>$input.payload/tns:valuel</from>
<to>$request.payload</to>
</copy>
<copy>
<from>''</from>
<to>S$output.payload</to>
</copy>
</assign>

ORACLE 10-17

Chapter 10
Customizing the Number of Parallel Branches

<forEach counterName="i" parallel="yes">
<startCounterValue> ($input.payload/tns:valuel + 1)</startCounterValue>
<finalCounterValue> ($input.payload/tns:value2 + 2)</finalCounterValue>
<scope name="scopel">
<partnerLinks>
<partnerLink name="DummyService" partnerLinkType="tns:DummyService"
myRole="DummyServiceClient" partnerRole="DummyServiceProvider"/>
</partnerLinks>
<sequence>
<assign>
<copy>
<from>concat ($output.payload, 'A")</from>
<to>S$output.payload</to>
</copy>
</assign>
<invoke name="invokeDummyService" partnerLink="DummyService"
portType="tns:DummyPortType"
operation="initiate" inputVariable="request"/>
<receive name="receiveFromDummyService" partnerLink="DummyService"
portType="tns:DummyCallbackPortType"
operation="onResult" variable="response"/>
<assign>
<copy>
<from>concat ($output.payload, 'B')</from>
<to>S$output.payload</to>
</copy>
</assign>
</sequence>
</scope>
</forEach>
<!-- respond output to requester -->
<reply name="replyOutput" partnerLink="client"
portType="tns:Test" operation="process" variable="output"/>
</sequence>

Customizing the Number of Flow Activities with the flowN Activity in BPEL

1.1

ORACLE

In the flow activity, the BPEL code determines the number of parallel branches. However, often
the number of branches required is different depending on the available information. The flowN
activity creates multiple flows equal to the value of N, which is defined at runtime based on the
data available and logic within the process. An index variable increments each time a new
branch is created, until the index variable reaches the value of N.

The flowN activity performs activities on an arbitrary number of data elements. As the number
of elements changes, the BPEL process service component adjusts accordingly.

The branches created by flowN perform the same activities, but use different data. Each
branch uses the index variable to look up input variables. The index variable can be used in
the XPath expression to acquire the data specific for that branch.

For example, suppose there is an array of data. The BPEL process service component uses a
count function to determine the number of elements in the array. The process then sets N to be
the number of elements. The index variable starts at a preset value (zero is the default), and
flowN creates branches to retrieve each element of the array and perform activities using data
contained in that element. These branches are generated and performed in parallel, using all
the values between the initial index value and N. The flowN activity terminates when the index
variable reaches the value of N. For example, if the array contains 3 elements, N is set to 3.

10-18

Chapter 10
Customizing the Number of Parallel Branches

Assuming the index variable begins at 1, the flowN activity creates three parallel branches with
indexes 1, 2, and 3.

The flowN activity can use data from other sources as well, including data obtained from web
services.

Figure 10-15 shows the runtime flow of a flowN activity in Oracle Enterprise Manager Fusion
Middleware Control that looks up three hotels. This is different from the view, because instead
of showing the BPEL process service component, it shows how the process has actually
executed. In this case, there are three hotels, but the number of branches changes to match
the number of hotels available.

Figure 10-15 Oracle Enterprise Manager Fusion Middleware Control View of the
Execution of a flowN activity

receivelnput

| assign |

getHotelsM
7
| | i
= Index=1 = Index=2 =l Index=3
P o | e i
"1, (Y., fia &
| assign | \assign | | assign
setHotelId setHote|Id setHote|Id

-y " Y

InvokeHoteDe.., InvokeHotelDe. ., InvokeHotelDe. .,
| |

EF

callbackClient

How to Create a flowN Activity

ORACLE

To create a flowN activity:

1. Inthe Components window, expand Oracle Extensions.
2. Drag a FlowN activity into the designer.

3. Click the + sign to expand the FlowN activity.

4

Click the FlowN activity to display its property fields in the Property Inspector or double-
click the FlowN activity.

10-19

Chapter 10
Customizing the Number of Parallel Branches

For information about editing activities in the Property Inspector, see How to Edit BPEL
Activities in the Property Inspector.

Figure 10-16 shows the FlowN dialog.

Figure 10-16 FlowN Dialog

Ceneral Annotations Skip Condition Sources Targets
Hame: [Flowcrz |

2 B
Index Wariable: |FIDWNCR2_VariabIe | e Q
Help Apply oK Cancel

The flowN dialog enables you to:
e Name the activity

e Enter a value or an expression for calculating the value of N (the number of branches
to create)

* Define the index variable (the time to wait in each branch)
5. Drag and define additional activities in the flowN activity.

Figure 10-17 shows how a FlowN activity appears with additional activities.

Figure 10-17 FlowN Activity with Additional Activities

&«

Flovt_1

l

O]

Assignid

l

O]

Assignoukput

ORACLE 10-20

Chapter 10
Customizing the Number of Parallel Branches

What Happens When You Create a FlowN Activity

The following code shows the .bpel file that uses the flowN activity to look up information on
an arbitrary number of hotels.

The following example shows the sequence name.

<sequence name="main">

<!-- Received input from requester.
Note: This maps to operation defined in NflowHotels.wsdl
The requester sends a set of hotels names wrapped into the "inputVariable"
-—>

The following actions take place. A receive activity calls the client partner link to get the
information that the flowN activity must define N times and look up the hotel information. The
following provides an example:

<receive name="receivelnput" partnerLink="client"
portType="client:NflowHotels" operation="initiate" variable="inputVariable"
createInstance="yes"/>

<!--
The 'count()' Xpath function is used to get the number of hotelName
noded passed in.
An intermediate variable called "NbParallelFlow" is
used to store the number of N flows being executed
-—>
<assign name="getHotelsN">
<copy>
<from

expression="count ($InputVariable.payload/client:HotelName);"/>
<to variable="NbParallelFlow"/>
</copy>
</assign>
<!-- Initiating the FlowN activity
The N value is initialized with the value stored in the
"NbParallelFlow" variable
The variable call "Index" is defined as the index variable
NOTE: Both "NbParallelFlow" and "Index" variables have to be declared
-—>

The flowN activity begins next. After defining a name for the activity of flowN, N is defined as a
value from the inputVariable, which is the number of hotel entries. The activity also assigns
index as the index variable. The following provides an example:

<bpelx:flowN name="FlowN" N="bpws:getVariableData ('NbParallelFlow')
indexVariable="Index'>
<sequence name="Sequence 1">
<!-- Fetching each hotelName by indexing the "inputVariable" with the
"Index" variable.

Note the usage of the "concat()" Xpath function to create the
expression accessing the array element.
-—>

The copy rule shown in the following example then uses the index variable to concatenate the
hotel entries into a list:

<assign name="setHotelId">
<copy>
<from expression=
"bpws:getVariableData ('inputVariable', 'payload', concat ('/client:Nflo

ORACLE 10.91

ORACLE

Chapter 10
Customizing the Number of Parallel Branches

wHotelsProcessRequest/client:ListOfHotels/client:HotelName[',
bpws:getVariableData ('Index"),"']"))"/>
<to variable="InvokeHotelDetaillnputVariable" part="payload"
query="/ns2:hotelInfoRequest/ns2:id"/>
</copy>
</assign>

Using the hotel information, an invoke activity looks up detailed information for each hotel
through a web service. The following provides an example:

<!-- For each hotel, invoke the web service giving detailed information
on the hotel -->
<invoke name="InvokeHotelDetail" partnerLink="getHotelDetail"
portType="ns2:getHotelDetail" operation="process"
inputVariable="InvokeHotelDetaillnputVariable"
outputVariable="InvokeHotelDetailOutputVariable"/>
</sequence>
</bpelx:flowN>

Finally, the BPEL process sends detailed information on each hotel to the client partner link.
The following provides an example:

<invoke name="callbackClient" partnerLink="client"
portType="client:NflowHotelsCallback" operation="onResult"
inputVariable="outputVariable"/>
</sequence>
</sequence>

10-22

Using Conditional Branching in a BPEL
Process

This chapter describes how to use conditional branching in a BPEL process service
component. Conditional branching introduces decision points to control the flow of execution of
a BPEL process service component. This chapter also describes how to use the switch, if,
while, and repeatUntil activities to define conditional branching and specify XPath expressions
that enable you to bypass execution of activities.

This chapter includes the following sections:

e Introduction to Conditional Branching

« Defining Conditional Branching with the If or Switch Activity
« Defining Conditional Branching with the While Activity

« Defining Conditional Branching with the repeatUntil Activity
« Specifying XPath Expressions to Bypass Activity Execution

Introduction to Conditional Branching

ORACLE

BPEL applies logic to make choices through conditional branching. You can use the following
activities to design your code to select different actions based on conditional branching:

* If activity (in a BPEL version 2.0 project)

Enables you to use an if activity when conditional behavior is required for specific activities
to decide between two or more branches. The if activity replaces the switch activity that
appeared in BPEL 1.1 processes. For information about how to create if activities, see
Defining Conditional Branching with the If Activity in BPEL 2.0.

* Switch activity (in a BPEL version 1.1 project)

Enables you to set up two or more branches, with each branch in the form of an XPath
expression. If the expression is true, then the branch is executed. If the expression is false,
then the BPEL process service component moves to the next branch condition, until it
either finds a valid branch condition, encounters an otherwise branch, or runs out of
branches. If multiple branch conditions are true, then BPEL executes the first true branch.
For information about how to create switch activities, see Defining Conditional Branching
with the Switch Activity in BPEL 1.1 .

* While activity

Enables you to create a while loop to select between two actions. Defining Conditional
Branching with the While Activity describes while activities.

Many branches are set up, and each branch has a condition in the form of an XPath
expression.

You can program a conditional branch to have a timeout. That is, if a response cannot be
generated in a specified period, the BPEL flow can stop waiting and resume its activities. Using
Events and Timeouts in BPEL Processes explains this feature in detail.

11-1

Chapter 11
Defining Conditional Branching with the If or Switch Activity

Note:

You can also define conditional branching logic with business rules. See Designing
Business Rules with Oracle Business Process Management.

Defining Conditional Branching with the If or Switch Activity

This section describes how to define conditional branching with the following activities:

e If activity in a BPEL version 2.0 project

e Switch activity in a BPEL version 1.1 project

Defining Conditional Branching with the If Activity in BPEL 2.0

You can use an if activity when conditional behavior is required for specific activities to decide
between two or more branches. Only one activity is selected for execution from a set of
branches. The if activity consists of a list of one or more conditional branches that are
considered for execution in the following order:

e Theif branch
e Optional elseif branches
e An optional else branch

The first branch whose condition evaluates to true is taken, and its contained activity is
performed. If no branch with a condition is taken, then the else branch is taken (if present). The
if activity is complete when the contained activity of the selected branch completes, or
immediately when no condition evaluates to true and no else branch is specified.

The if activity is a BPEL version 2.0 feature that replaces the switch activity that was included
in BPEL version 1.1.

The following example shows the if activity syntax:

<if standard-attributes>
standard-elements
<condition>some conditon expression</condition>
activity
<elseif>*
<condition>some condition expression</condition>
some activity
</elseif>
<else>?
some activity
</else>
</if>

How to Create an If Activity

To create an If activity:

1. Inthe Components window, expand BPEL Constructs.
2. Drag an If activity into the designer.

The if and else conditions are displayed, as shown in Figure 11-1.

ORACLE 110

Chapter 11
Defining Conditional Branching with the If or Switch Activity

Figure 11-1 If Activity

P

if else
=label= <label=

3. Click the if branch.

4. In the Condition field, enter a condition, as shown in Figure 11-2. You can also click the
XPath Expression Builder icon to invoke the Expression Builder dialog.

Figure 11-2 if Branch of the If Activity

Label: 4’

finput.payload = 0

e e e e

Ok Cancel

5. Click OK.

6. Drag and define additional activities into the if condition, as needed. These activities are
executed if the if condition evaluates to true.

7. Click the elseif branch (if you added this branch).

8. Inthe Condition field, enter a condition, as shown in Figure 11-3.

Figure 11-3 elseif Branch of the If Activity

QA
_____________ "
|[else ! :
I I
i 1
I
I
| | Label é
: bpuws:getVariableDatalinput','payload® < D|
I
I
I
LT
o
ForE: QK Cancel
9. Click OK.

10. If you want to add elseif conditions, highlight the If activity, and select the Add icon to
invoke a menu.

ORACLE 113

Chapter 11
Defining Conditional Branching with the If or Switch Activity

11. Drag and define additional activities into the elseif condition, as needed. These activities
are executed if the if branch did not evaluate to true, and this elseif branch evaluates to
true.

12. Click the else label.

13. Enter a condition or drag and define additional activities into the else condition, as needed.
These activities are executed if the if and any elseif branches did not evaluate to true, and
this else branch evaluates to true.

Figure 11-4 shows a completed if activity in which each branch includes contained
activities.

Figure 11-4 Completed If Activity

QI
if elseif else
<label= <label= <label=

Java_Embedding

What Happens When You Create an If Activity

The following code provides an example of the .bpel file after design completion. The if activity
has if, elseif, and else branches defined. The first branch to evaluate to true is executed.

<sequence>
<!-- receive input from requester -->
<receive name="receivelnput" partnerLink="client" portType="tns:Test"
operation="process" variable="input" createInstance="yes"/>
<!-- assign default value -->
<assign>
<copy>
<from>'Value is greater than zero'</from>
<to>S$output.payload</to>
</copy>
<assign>
<copy>
<from>'Value is greater than zero'</from>
<to>S$output.payload</to>
</copy>
</assign>
<!-- switch depends on the input value field -->
<if>
<condition>$input.payload > 0</condition>
<extensionActivity>
<bpelx:exec name="Java Embedding" version="1.5" language="java">
System.out.println("if condition is true.\n");
</bpelx:exec>
</extensionActivity>
<elseif>
<condition>bpws:getVariableData ('input', 'payload') < 0</condition>
<assign>

ORACLE 11

Chapter 11
Defining Conditional Branching with the If or Switch Activity

<copy>
<from>'Value is less than zero'</from>
<to>$output.payload</to>
</copy>
</assign>
</elseif>
<else>
<assign>
<copy>
<from>'Value is equal to zero'</from>
<to>$output.payload</to>
</copy>
</assign>
</else>
</if>

<!-- respond output to requester -->
<reply name="replyOutput" partnerLink="client"
portType="tns:Test" operation="process" variable="output"/>
</sequence>

Defining Conditional Branching with the Switch Activity in BPEL 1.1

Assume you designed a flow activity in the BPEL process service component that gathered
loan offers from two companies at the same time, but did not compare either of the offers.
Each offer was stored in its own global variable. To compare the two bids and make decisions
based on that comparison, you can use a switch activity.

Figure 11-5 provides an overview of a BPEL conditional branching process that has been
defined in a switch activity.

Figure 11-5 Conditional Branching

condition 1 Boolean XPATH Expession

' BPEL Process

,=switch=
<GaSE v zotherwises
condition 1> 11
Select Select
unitedLoan b starLoan !
=assign= =assign=

ORACLE s

Chapter 11
Defining Conditional Branching with the If or Switch Activity

How to Create a Switch Activity

To create a switch activity:

1. Inthe Components window, expand BPEL Constructs.
2. Drag a Switch activity into the designer, as shown in Figure 11-6.

The Switch activity has two switch case branches by default, each with a box for functional
elements. If you want to add more branches, select the entire switch activity, right-click,
and select Add Switch Case from the menu.

Figure 11-6 Switch Activity

3. In the first branch, double-click the condition box.

A dialog for entering a condition is displayed, as shown in Figure 11-7.

Figure 11-7 Condition Dialog

Label:

Londition: Ef':'r 6//

(014 Cancel

4. Inthe Label field, enter a name for the condition branch. When complete, this name is
displayed in Oracle BPEL Designer.

5. In the Condition field, click the Expression Builder icon to access the Expression Builder
dialog.

6. Create your expression.

bpws:getVariableDate ('loanOfferl', 'payload','/loanOffer/APR") >
bpws:getVariableData ('loanOffer2', 'payload','/loanOffer/APR")

In this example, two loan offers from completing loan companies are stored in the global
variables loanOfferl and loanOffer2. Each loan offer variable contains the loan offer's

ORACLE 116

Chapter 11
Defining Conditional Branching with the If or Switch Activity

APR. The BPEL flow must choose the loan with the lower APR. One of the following switch
activities takes place:

e If loanOfferl has the higher APR, then the first branch selects 1oan0Offer2 by
assigning the loanOffer2 payload to the selectedLoanOffer payload.

e |f loanOfferl does not have the lower APR than loanOffer?2, the otherwise case
assigns the loanOfferl payload to the selectedLoanOffer payload.

7. Click OK.

The expression is displayed. The value you entered in the Label field of the dialog
becomes the name of the condition branch.

8. Click OK.

9. Add and configure additional activities as needed. Figure 11-8 provides details.
Figure 11-8 Switch Activity Design

3

Choose the Loan with the Lower APR

selectUnitedLoan selectSkarLoan

What Happens When You Create a Switch Activity

ORACLE

A switch activity, such as a flow activity, has multiple branches. In the example that follows,
there are only two branches shown in the .bpel file after design completion. The first branch,
which selects a loan offer from a company named United Loan, is executed if a case condition
containing an XPath boolean expression is met. Otherwise, the second branch, which selects
the offer from a company named Star Loan, is executed. By default, the switch activity provides
two switch cases, but you can add more, as needed.

<switch name="switch-1">
<case condition="bpws:getVariableData('loanOfferl', 'payload',
'/autoloan:loanOffer/autoloan:APR') >
bpws:getVariableData ('loanOffer2', 'payload', '/autoloan:loanOffer/autoloan:APR
')">
" name="Choose the Loan with the Lower APR">
<bpelx:annotation>
<bpelx:general>
<bpelx:property name="userLabel">Choose the Loan with
the Lower APR</bpelx:property>
</bpelx:general>
</bpelx:annotation>
<assign name="selectUnitedLoan">
<copy>
<from variable="loanOfferl" part="payload">
</from>
<to variable="selectedLoanOffer" part="payload"/>
</copy>
</assign>
</case>

11-7

Chapter 11
Defining Conditional Branching with the While Activity

<otherwise>
<assign name="selectStarLoan">
<copy>
<from variable="loanOffer2" part="payload">
</from>
<to variable="selectedLoanOffer" part="payload"/>
</copy>
</assign>
</otherwise>

</switch>

Defining Conditional Branching with the While Activity

Another way to design your BPEL code to select between multiple actions is to use a while
activity to create a while loop. The while loop repeats an activity until a specified success
criteria is met. For example, if a critical web service is returning a service busy message in
response to requests, you can use the while activity to keep polling the service until it becomes
available. The condition for the while activity is that the latest message received from the
service is busy, and the operation within the while activity is to check the service again. Once
the web service returns a message other than service busy, the while activity terminates and
the BPEL process service component continues, ideally with a valid response from the web
service.

How To Create a While Activity

ORACLE

To create a while activity:

1.
2.
3.

In the Components window, expand BPEL Constructs.
Drag a While activity into the designer.
Click the + sign to expand the while activity.

The while activity has icons to allow you to build condition expressions and to validate the
while definition. It also provides an area for you to drag an activity to define the while loop.

Drag and define additional activities for using the while condition into the Drop Activity
Here area of the While activity (for example, a Scope activity).

The activities can be existing or new activities.
Click the XPath Expression Builder icon to open the Expression Builder dialog.

Enter an expression to perform repeatedly, as shown in Figure 11-9. This action is
performed until the given boolean while condition is no longer true. In this example, this
activity is set to loop while less than 5.

11-8

Chapter 11
Defining Conditional Branching with the While Activity

Figure 11-9 While Activity with an Expression

Documentation Skip Condition Targets Sources

General Annotations
Mame: [Whilel
Condition
Condition: Gz é

bpws:getVariableData('dbstatus’) < 5

Help Apply | QK | Cancel

7. Click OK when complete.

What Happens When You Create a While Activity

The code that follows provides an example of the .bpel file after design completion. The while
activity includes a scope activity. The scope activity includes sequence and fault handlers at
the top level. The sequence includes invoke and assign activities and fault handlers that define
a catchAll containing assign and wait activities wrapped in a sequence.

The following code calls an external service. If the external service throws a fault, the fault
handler catches the fault and increments the dbStatus variable value.

Therefore, the exit condition of the while loop is either of the following:

* There is no exception, upon which the dbStatus value is set to a value of 10, which results
in the while condition evaluating to false.

» After throwing a fault five times, the dbStatus value is 5, and the while condition returns
false.

<while name="While 1" condition="bpws:getVariableData ('dbStatus') > 5">
<scope name="Scope 1">
<faultHandlers>
<catchAll>
<sequence name="Sequence 2">
<assign name="assign DB retry">
<copy>
<from expression="bpws:getVariableData ('dbStatus') + 1"/>
<to variable="dbStatus"/>
</copy>
</assign>
<wait name="Wait 30 sec" for="'PT31S'"/>
</sequence>
</catchAll>
</faultHandlers>
<sequence name="Sequence 1">
<invoke name="Write DBWrite" partnerLink="WriteDBRecord"
portType="ns2:WriteDBRecord ptt" operation="insert"
inputVariable="Invoke DBWrite merge InputVariable"/>

ORACLE 119

Chapter 11
Defining Conditional Branching with the repeatUntil Activity

<assign name="Assign dbComplete">
<copy>
<from expression="'10"'"/>
<to variable="dbStatus"/>
</copy>
</assign>
</sequence>
</scope>
</while>

Note:

The while activity code fragment in the preceding example uses a BPEL 1.1 construct
of bpws:getVariableData ('dbStatus'). For BPEL 2.0, variables are referenced
directly using $ sign and dot (.) notation. For example:

<while name="Whilel">
<condition>$inputVariable.payload/client:counter > 0
</condition>

Defining Conditional Branching with the repeatUntil Activity

If the body of an activity must be performed at least once, use a repeatUntil activity instead of a
while activity. The XPath expression condition in the repeatUntil activity is evaluated after the
body of the activity completes. The condition is evaluated repeatedly (and the body of the
activity processed) until the provided boolean condition is true.

< Note:

This activity is supported in BPEL version 2.0 projects.

How to Create a repeatUntil Activity

ORACLE

To create a repeatUntil activity:
1. Inthe Components window, expand BPEL Constructs.
2. Drag a Repeat Until activity into the designer.

3. Click the Repeat Until activity to display its property fields in the Property Inspector or
double-click the Repeat Until activity.

For information about editing activities in the Property Inspector, see How to Edit BPEL
Activities in the Property Inspector.

4. Enter a name or accept the default value.

5. In the Condition field, click the XPath Expression Builder icon to enter an XPath
expression condition.

The Expression Builder dialog is displayed.

6. Enter a boolean XPath expression condition, and click OK.

11-10

Chapter 11
Defining Conditional Branching with the repeatUntil Activity

The condition you entered is displayed in the Repeat Until dialog, as shown in
Figure 11-10.

Figure 11-10 Completed Repeat Until Dialog

Ceneral Documentation Skip Conditian Targets Sources

Mame: |[RepeatPurchaseOrderyalidation |

Condition

Expreszion Language: |XPATH 1.0in BPEL 2.0

Candition:

CetVariableProperty('PurchaseCrderStateResponse,ist
completionStatus < 5

Help Apply Ok Cancel

7. Click Apply, then OK.
8. Expand the Repeat Until activity, as shown in Figure 11-11.

Figure 11-11 repeatUntil Activity Being Expanded

Lo
ReSE---

JR—

9. Design the body of the activity by dragging in activities from the Components window and
defining their property values. These activities are evaluated until the XPath expression
condition is evaluated to true.

What Happens When You Create a repeatUntil Activity

The following provides an example of the .bpel file after design completion. In this scenario,
purchase order validation must be performed at least once, then repeatedly, based on
evaluating the completion status until the status is updated to 5.

<repeatUntil>
<sequence>
<invoke name="PurchaseOrderValidation" ... />
<receive name="receiveValidation"
partnerLink="PurchaseOrderValidation"
operation="returnPurchaseOrderValidation"
variable="PurchaseOrderStatusResponse" />
</sequence>

ORACLE 11

Chapter 11
Specifying XPath Expressions to Bypass Activity Execution

<condition>
bpel:getVariableProperty (
"PurchaseOrderStatusResponse", "tst:completionStatus") < 5
</condition>
</repeatUntil>

Specifying XPath Expressions to Bypass Activity Execution

Oracle provides an extension that enables you to specify an XPath expression in an activity in
BPEL versions 1.1 and 2.0 that, when evaluated to true, causes that activity to be skipped.
This functionality provides an alternative to using a switch activity for conditionally executing
activities. The skip condition for activities is specified as follows:

<activity bpelx:skipCondition="boolean-expr"/>

The bpelx:skipCondition attribute causes an XPath expression to be evaluated immediately
upon creation of the activity instance. If the skip expression returns a false boolean value, the
activity is executed. If the skip expression returns a true boolean value, the activity is
completed immediately and execution moves to the activity immediately following that one.

How to Specify XPath Expressions to Bypass Activity Execution

To specify XPath expressions to bypass activity execution:

1. Inthe Components window, expand BPEL Constructs.

2. Drag the activity into the designer in which to create the skip condition.
3. Click the Skip Condition tab.
4

Specify an XPath expression that, when evaluated to true, causes an activity to be
skipped. Figure 11-12 provides detalils.

Figure 11-12 Skip Condition XPath Expression

Skip Condition:

bpws:getVariableData('inputVariable','payload',' /clientinput') = 10

5. Click Apply, then OK.

What Happens When You Specify XPath Expressions to Bypass Activity

Execution

ORACLE

The code segment in the .bpel file defines the specific operation after design completion.

For example, the XPath expression shown in the following code, when evaluated to true (for
example, input is 20), causes the assign activity to be skipped.

<sequence name="main">

<assign name="Assign 1"

bpelx:skipCondition="number (bpws:getVariableData ('inputVariable', 'payload','/client:
process/client:input')) > 10">
<copy>
<from expression="'Assign Block is not Skipped'"/>

11-12

ORACLE

Chapter 11
Specifying XPath Expressions to Bypass Activity Execution

<to variable="inputVariable" part="payload"
query="/client:process/client:input"/>
</copy>
</assign>

</sequence>

The bpelx:skipCondition attribute is equivalent to a switch/case structured activity with a
single case element with a condition that is the opposite of the skip condition.

The following example shows the bpelx:skipCondition attribute in BPEL 1.1. If myvalue is 0,
the expression evaluates to true, and the assign activity is skipped. If myvalue is 10, the
expression evaluates to false, and the copy operation of the assign activity is executed.

<assign bpelx:skipCondition="bpws:getVariableData ('input',
'payload', '/tns:inputMsg/tns:myvalue') <= 0">
<copy>
<from expression="'Value is greater than zero'"/>
<to variable="output" part="payload"
query="/tns:resultMsg/tns:valueResult"/>
</copy>
</assign>

The equivalent functionality used with a switch activity is shown in the following example.

<switch>
<case condition="bpws:getVariableData ('input',
'payload', '/tns:inputMsg/tns:value') > 0">
<assign>
<copy>
<from expression="'Value is greater than zero'"/>
<to variable="output" part="payload"
query="/tns:resultMsg/tns:valueResult"/>
</copy>
</assign>
</case>
</switch>

In BPEL 2.0, the bpelx:skipCondition syntax appears as a child element of an activity. The
following code provides an example of an assign activity with this convention.

<assign name="Assign4">
<bpelx:skipCondition>ora:getNodeValue ($SinputVariable.payload/client:input) > 5
</bpelx:skipCondition><copy>
<from>"dummy result"</from>
<to>$outputVariable.payload/client:result</to>
</copy></assign>

You can also use built-in and custom XPath functions within the skip condition expression. The
following code provides several examples.

<assign bpelx:skipCondition="bpws:getVariableData('crOutput', 'payload',
'/tns:rating') > 0">

<assign bpelx:skipCondition="custom:validateRating()" ... />

<assign xmlns:fn="http://www.w3.0rg/2005/xpath-functions"
bpelx:skipCondition="fn:false()" ... />

If an error is thrown by the XPath expression evaluation, the error is wrapped with a BPEL fault
and thrown from the activity.

11-13

ORACLE

Chapter 11
Specifying XPath Expressions to Bypass Activity Execution

An event is added to the BPEL instance audit trail for activities that are bypassed due to the
skip condition expression evaluating to true. Even if the skip condition evaluates to false
(meaning the activity is performed), the fact that a skip condition expression was evaluated is
still logged to the audit trail for debugging purposes.

If the XPath engine fails to evaluate the boolean value, bpws: subLanguageFault is thrown. This
is the same fault thrown when a switch/case condition does not evaluate to a boolean value.
This is also logged to the audit trail for debugging purposes.

11-14

Using Fault Handling in a BPEL Process

This chapter describes how to use fault handling in a BPEL process. Fault handling allows a
BPEL process service component to handle error messages or other exceptions returned by
outside web services, and to generate error messages in response to business or runtime
faults. This chapter also describes how to use the fault management framework to catch faults
and perform user-specified actions defined in a fault policy file.

This chapter includes the following sections:

¢ Introduction to a Fault Handler

* Introduction to BPEL Standard Faults

e Introduction to the Business and Runtime Fault Categories of BPEL Faults
e Handling Faults with the Fault Management Framework

e Catching BPEL Runtime Faults

e Getting Fault Details with the getFaultAsString XPath Extension Function
e Throwing Internal Faults with the Throw Activity

e Rethrowing Faults with the Rethrow Activity

e Returning External Faults

e Managing a Group of Activities with a Scope Activity

e Re-executing Activities in a Scope Activity with the Replay Activity

e Using Compensation After Undoing a Series of Operations

e Stopping a Business Process Instance with a Terminate or Exit Activity

e Throwing Faults with Assertion Conditions

e Classifying SOAP Faults as Retriable

Introduction to a Fault Handler

ORACLE

Fault handlers define how the BPEL process service component responds when target
services return data other than what is normally expected (for example, returning an error
message instead of a number). An example of a fault handler is where the web service
normally returns a credit rating number, but instead returns a negative credit message.

Figure 12-1 provides an example of how a fault handler sets a credit rating variable to -1000.

12-1

Chapter 12
Introduction to a Fault Handler

Figure 12-1 Fault Handling

BPEL Process

—= dl »| =receives | sesssscsssssas

MNegative
Cradit

<SCope>
prepare
erin e — 7| Credit

<assign> Rating

- Service
- f1
call

service
<invokes

crlut
=assign=

<sCopes
credit to

-1000 '
=assign= |

Read
i

The code segment in the following example defines the fault handler for this operation in the
BPEL file:

<faultHandlers>
<catch faultName="services:NegativeCredit" faultVariable="crError">
<assign name="crin">
<copy>
<from expression="-1000">
</from>
<to variable="input" part="payload"
query="/autoloan:loanApplication/autoloan:creditRating"/>
</copy>
</assign>
</catch>
</faultHandlers>

The faultHandlers tag contains the fault handling code. Within the fault handler is a catch
activity, which defines the fault name and variable, and the copy instruction that sets the
creditRating variable to -1000.

When you select web services for the BPEL process service component, determine the
possible faults that may be returned and set up a fault handler for each one.

ORACLE 190

Chapter 12
Introduction to BPEL Standard Faults

Introduction to BPEL Standard Faults

This section identifies the standard faults for BPEL 1.1 and BPEL 2.0.

BPEL 1.1 Standard Faults

This section identifies the standard faults for BPEL 1.1. Unless otherwise noted below, the
Business Process Execution Language for Web Services Specification defines the following
standard faults in the namespace of http://schemas.xmlsoap.org/ws/2003/03/business-
process/:

ORACLE

bindingFault (BPEL extension fault defined in http://schemas.oracle.com/bpel/
extension)

conflictingReceive
conflictingRequest
correlationViolation
forcedTermination
invalidReply

joinFailure
mismatchedAssignmentFailure

remoteFault (BPEL extension fault defined in http://schemas.oracle.com/bpel/
extension)

repeatedCompensation
selectionFailure
uninitializedVariable
assertFailure
coordinationFault
entityInternalNestedError
maxLoopCountExceeded
owsmPolicyFault

rollback

timeout

Standard faults are defined as follows:

Typeless, meaning they do not have associated messageTypes
Not associated with any Web Services Description Language (WSDL) message
Caught without a fault variable:

<catch faultName="bpws:selectionFailure">

12-3

BPEL 2.0 Standard Faults

The following list specifies the standard faults defined within the WS-BPEL specification. All
standard fault names are qualified with the standard WS-BPEL namespace.

Fault Handling Order of Precedence in BPEL 2.0

ORACLE

ambiguousReceive
completionConditionFailure
conflictingReceive
conflictingRequest
correlationViolation
invalidBranchCondition
invalidExpressionValue
invalidvVariables
joinFailure
mismatchedAssignmentFailure
missingReply
missingRequest
scopelnitializationFailure
selectionFailure
subLanguageExecutionFault
uninitializedPartnerRole
uninitializedVariable
unsupportedReference
xsltInvalidSource

xsltStylesheetNotFound

Chapter 12
Introduction to BPEL Standard Faults

In BPEL 2.0, the order of precedence for catching faults thrown without associated data is as
follows:

If there is a catch activity with a matching faultName value that does not specify a
faultVariable attribute, the fault is sent to the identified catch activity.

Otherwise, if there is a catchAll activity, the fault is sent to the catchAll fault handler.

Otherwise, the fault is processed by the default fault handler.

In BPEL 2.0, the order of precedence for catching faults thrown with associated data is as
follows:

If there is a catch activity with a matching faultName value that does not specify a
faultVariable attribute, the fault is sent to the identified catch activity.

If the fault data is a WSDL message type in which the following exists:

— The message contains a single part defined by an element.

12-4

Chapter 12
Introduction to the Business and Runtime Fault Categories of BPEL Faults

— A catch activity with a matching faultName value that has a faultvariable whose
associated faultElement QName matches the QName of the runtime element data of
the single WSDL message part.

Then, the fault is sent to the identified catch activity with the faultvariable initialized to
the value in the single part's element.

e Otherwise, if there is a catch activity with a matching faultName value that does not specify
a faultvariable attribute, the fault is sent to the identified catch activity. In this case, the
fault value is not available from within the fault handler, but is available to the rethrow
activity.

* Otherwise, if there is a catch construct without a faultName attribute that has a
faultvariable whose type matches the type of the runtime fault data, then the fault is sent
to the identified catch activity.

« Otherwise, if the fault data is a WSDL message type in which the message contains a
single part defined by an element and there exists a catch activity without a faul tName
attribute that has a faultvariable whose associated faultElement QName matches the
QName of the runtime element data of the single WSDL message part, the fault is sent to
the identified catch activity with the faultvariable initialized to the value in the single
part's element.

* Otherwise, if there is a catchAll activity, the fault is sent to the catchAll fault handler.

e Otherwise, the fault is handled by the default fault handler.

Introduction to the Business and Runtime Fault Categories of
BPEL Faults

A BPEL fault has a fault name called a oname (name qualified with a namespace) and a
possible messageType. There are two categories of BPEL faults:

e Business faults

¢ Runtime faults

Business Faults

Business faults are application-specific faults that are generated when there is a problem with
the information being processed (for example, when a social security number is not found in
the database). A business fault occurs when an application executes a throw activity or when
an invoke activity receives a fault as a response. The fault name of a business fault is specified
by the BPEL process service component. The messageType, if applicable, is defined in the
WSDL file. A business fault can be caught with a faultHandler using the faultName and a
faultVariable.

<catch faultName="nsl:faultName" faultVariable="varName">

Runtime Faults

Runtime faults are the result of problems within the running of the BPEL process service
component or web service (for example, data cannot be copied properly because the variable
name is incorrect). These faults are not user-defined, and are thrown by the system. They are
generated for a variety of reasons, including the following:

e The process tries to use a value incorrectly.

ORACLE 1o

bindingFault

remoteFault

replayFault

Chapter 12
Introduction to the Business and Runtime Fault Categories of BPEL Faults

e Alogic error occurs (such as an endless loop).
e A Simple Object Access Protocol (SOAP) fault occurs in a SOAP call.
* An exception is thrown by the server.

Several runtime faults are automatically provided. These faults are included in the http://
schemas.oracle.com/bpel/extension hamespace. These faults are associated with the
messageType RuntimeFaultMessage. The WSDL file shown in the following example defines the
messageType:

<?xml version="1.0" encoding="UTF-8" ?>

<definitions name="RuntimeFault"
targetNamespace="http://schemas.oracle.com/bpel/extension"
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema"
xmlns="http://schemas.xmlsoap.org/wsdl/">

<message name="RuntimeFaultMessage">
<part name="code" type="xsd:string" />
<part name="summary" type="xsd:string" />
<part name="detail" type="xsd:string" />
</message>

</definitions>

If a faultvariable (Of messageType RuntimeFaultMessage) is used when catching the fault,
the fault code can be queried from the faultvariable, along with the fault summary and detail.

A bindingFault is thrown inside an activity if the preparation of the invocation fails. For
example, the WSDL of the process fails to load. A bindingFault is not retriable. This type of
fault usually must be fixed by human intervention.

A remoteFault is also thrown inside an activity. It is thrown because the invocation fails. For
example, a SOAP fault is returned by the remote service.

A replayFault replays the activity inside a scope. At any point inside a scope, this fault is
migrated up to the scope. These faults are not populated into a common fault, but are an
indication to BPEL to re-execute the scope. The server then re-executes the scope from the
beginning.

How to Add and Propagate Fault Handling in a Synchronous BPEL Process

ORACLE

This section describes how to add and propagate fault handling in a synchronous BPEL
process. During the design, you perform the following tasks:

e Modify the existing schema and WSDL files to include fault element, fault message, and
fault operation details.

e Add fault handling to the BPEL process (specifically, a catch activity).
e Create a fault variable with the fault message type you specified in the WSDL file.

e Add assign and reply activities with additional fault handling details.

12-6

Chapter 12
Introduction to the Business and Runtime Fault Categories of BPEL Faults

Edit the Schema and WSDL Files

To edit the schema and WSDL files:

1. Create a synchronous BPEL process (for this example, named TestProcess) using the
default settings in the Create BPEL Process dialog.
2. Inthe Schemas folder of the Applications window, double-click the TestProcess.xsd file.
3. Click Source view, and add a new element called processFault:
<element name="processFault">
<complexType>
<sequence>
<element name="result" type="string"/>
</sequence>
</complexType>
</element>
4. In the Applications window, expand the WSDLs folder.
5. Double-click the TestProcess.wsdl file.
6. Click Source view, and add a new message type called TestProcessFaultMessage.
<wsdl:message name="TestProcessFaultMessage">
<wsdl:part name="payload" element="client:processFault"/>
</wsdl :message>
7. Edit the operation element in the WSDL file to add a fault.
<wsdl:operation name="process">
<wsdl:input message="client:TestProcessRequestMessage" />
<wsdl:output message="client:TestProcessResponseMessage"/>
<wsdl:fault name="FaultResponse" message="
client:TestProcessFaultMessage"/>
</wsdl:operation>
8. From the File menu, select Save.
Add a Fault Handler
To add a fault handler:
1. Inthe Applications window, expand SOA > BPEL.
2. Double-click TestProcess.bpel.
3. Click the Add Catch icon in the BPEL process to add a catch activity as the fault handler

ORACLE

for the BPEL process. You can also use a CatchAll activity. Figure 12-2 provides details.

12-7

Chapter 12
Introduction to the Business and Runtime Fault Categories of BPEL Faults

Figure 12-2 Add Catch Icon

=

&,

receivelnput

"

replyQutput

4. Double-click the catch activity to specify the system fault. Figure 12-3 provides details.

Figure 12-3 Catch Activity
' @ ¢

G
._ CatelCateh]|

receivelnput

a

replyOutput

There is no assert activity to trigger this system fault. You can add one to assert an input
field.

5. Inthe Namespace URI field, click the Browse icon.
The Fault Chooser dialog is displayed.

6. Select a system fault (for this example, assertFailure), and click OK. There are many
other system faults that can be selected. Figure 12-4 provides details.

ORACLE 108

Chapter 12
Introduction to the Business and Runtime Fault Categories of BPEL Faults

Figure 12-4 Fault Chooser Dialog

-

O Edit Catch [Fault Chooser

General — Annotations Documentation =23 System Faults

----- /1l ambiguous Receive

----- o

Fault Mame ————| |1 £ bindingFault

----- & completionConditionFailure
----- £} conflictingReceive

Name: |

NamespaceURL| | | /) coordinationFault
Local Part: | ----- /) correlationViolation
----- & globalRetry
Variable ———————————| | / invalidBranch Condition

----- & invalidExpress ionYalue

----- £l invalidvariables

Data Type — | | 1 L £l joinFailure

----- £} maxLoop CoumExceeded

----- & mismatchedAss ignmentFailure
----- /b missingReply

----- /) missingRequest

----- & owsmPolicyFault

----- £ remoteFault

Fault Variable: |

Must specify fault variable to

Help Apply || | L £/ scopelnitialization Failure
----- £ selectionFailure

You are returned to the Edit Catch dialog.
7. Inthe Fault Variable field, click the Create Variable icon.
The Create Variable dialog is displayed.

A name of FaultVar and a variable of type RuntimeFaultMessage are created.
Figure 12-5 provides details.

Figure 12-5 Create Variable Dialog

 Create Variable

Mamne: |Fau|t\-'ar| |

Tvpe: |{http: J1schemas. oracle.comfbpelfextension RuntimeF aultMessage |

(%) dobal Variable
| Help | | QK || Cancel |

8. Copy the RuntimeFault.wsdl file into the SOA > WSDLs folder. This is the same location
as the BPEL process WSDL file.

9. Click OK, and then click OK in the Edit Catch dialog.

Create a Fault Response Variable

To create a fault response variable:

In the Structure window, right-click the Variables folder and select Create Variable.
In the Name field, enter Faultresponse.

Select Message Type.

For the Message Type field, click the Browse icon.

g » 0 N PR

Expand Message Types > Project WSDL Files > TestProcess.wsdl > Message Types >
TestProcessFaultMessage, and click OK. Figure 12-6 provides details.

ORACLE 150

6.

Chapter 12
Introduction to the Business and Runtime Fault Categories of BPEL Faults

Figure 12-6 Type Chooser Dialog

[X]

=3 Type Chooser
b

Ck Tvpe Explorer
=RES Message Types
-] Partner Links
=[5 Project WSDL Files
RuntimeFault,wsd|
EI TestProcess, wsd|
E}B Message Types
i TestProcessResponseMessage
i E‘I TestProcessRequestMessage
-] Imported wsbL

Tvpe: |:|m,l'.ﬁ.ppIicationTestProcess,l'ProjectTestProcess,l'TestProcess}TestProcessFauItMessage|
[] 5how Detailed Mode Information

| Help | | Ok || Cancel |

In the Create Variable dialog, click OK.

Add an Assign Activity to the Catch Activity Branch

ORACLE

To add an assign activity to the catch activity branch:

1.
2.
3.

Drag an assign activity into the catch activity block.
Double-click the assign activity.

Concatenate the code, summary, and detail fields of the FaultVar variable to the
FaultResponse variable, and click OK. Figure 12-7 provides details.

12-10

4,

Chapter 12
Introduction to the Business and Runtime Fault Categories of BPEL Faults

Figure 12-7 Edit Assign Dialog

B Q&= @
TestProcess.bpel
Partner Links D

|Insert Mew Rule After '| iy
o TestProcess,bpel

I:I Partner Links

23 Variables Wariables [(3-2
Elﬁga Process Process ﬁgaIE!
E}B Yariables Variables BEI
{2} inputvariable inputYariable {x)-&

---(Jr) outputYariable outputYariable (Jr)---

é}--(x} Faultyar Faultyar (Jr)---
code Faultresponse (X)B

payload [E]-2
client: pracessFault &8
{2} Faulresponse \—client:result string €%/
CIL
| Copy '| To XPath:|,l'client:processFauIt,l'cIient:result | 4‘ X+
Fram To
{x} Faultvarjcode {2} Faultresponse,/payload)fclient: processFault/client result
{2} Faultvarfsummary {2} Faultresponse/payload)jiclient :processFault/cient rresult
EE| =) Faultvar detailf Faultresponse/payload)fclient:processFault/client result

In the Name field of the General tab, enter a name (for this example,
FaultDataForClient).

Add a Reply Activity to the Catch Activity Branch

ORACLE

To add a reply activity to the catch activity branch:

1.
2.

Drag a Reply activity below the Assign activity in the catch activity block.
Double-click the Reply activity.

In the Namespace URI field, click the Browse icon.

The Fault Chooser dialog is displayed.

Expand Project WSDL Files > TestProcess.wsdl, and select the fault named
FaultResponse. Figure 12-8 provides detalils.

Figure 12-8 Fault Chooser Dialog

® Fault Chooser

Fault Explorer
D System Faulks
=[5 Project WSO Files
- RunkireFault. wsdl
TestProcess.wsdl
L’b FaultResponse TestProcessFaultMessage
-0 Partner Links %

In the Name field, enter a name (for this example, ReplyWithFault).
In the Partner Link field, click the Browse icon.
The Partner Link Chooser dialog is displayed.

Select the same partner link to which the replyOutput reply activity is connected, and click
OK.

12-11

Chapter 12
Handling Faults with the Fault Management Framework

8. For the Variable field, click the Browse icon.
The Variable Chooser dialog is displayed.

9. Select the FaultResponse variable, and click OK.

Figure 12-9 Variable Chooser Dialog

@ Variable Chooser @I
@ @ 7 K
3 Variables
E}ﬁga Process
253 variables

(%) inputvarishle

- (%) outputVariable

G- (x) Faultvar

---(.l:,l Faultresponse client: TestProcessFaultMessage

10. In the Edit Reply dialog, click OK.

The BPEL process looks as shown in Figure 12-10. Both reply activities are connected to
the same partner link.

Figure 12-10 BPEL Process Design

= O &«

Partner Links

bpelx: assertFailure

)

receivelnput =
(&=

FaultDataForClient

& L

GetRate

replyCutput

ReplyWithFaulk

o)

Handling Faults with the Fault Management Framework

ORACLE

Oracle SOA Suite provides a generic fault management framework for handling faults in BPEL
processes. If a fault occurs during runtime in an invoke activity in a process, the framework
catches the fault and performs a user-specified action defined in a fault policy file associated
with the composite or component. Fault policies are applicable to the faults that result from the
invoke activity. Faults can occur because of preassertion, postassertion, invocation, or actual
business failures in the target service.

If a fault results in a condition in which human intervention is the prescribed action, you
perform recovery actions from Oracle Enterprise Manager Fusion Middleware Control. The
fault management framework provides an alternative to designing a BPEL process with catch
activities in scope activities.

This section provides an overview of the components that comprise the fault management
framework.

12-12

ORACLE

Chapter 12
Handling Faults with the Fault Management Framework

The fault management framework catches all faults (business and runtime) for an invoke
activity.

A fault policy file defines fault conditions and their corresponding fault recovery actions.
Each fault condition specifies a particular fault or group of faults, which it attempts to
handle, and the corresponding action for it. A set of actions is identified by an ID in the fault
policy file.

A set of conditions invokes an action (known as a fault policy).
Email or IMS notify users of errors associated with a condition.

A fault policy bindings file associates the policies defined in the fault policy file with the
following:

— SOA composite applications
— BPEL process and Oracle Mediator service components

— Reference binding components for BPEL processes and Oracle Mediator service
components

The framework looks for fault policy bindings in the same directory as the composite.xml
file of the SOA composite application or in a remote location identified by two properties
that you set. The remote location is in the MDS Repository.

Note:

A fault policy configured with the fault management framework overrides any
fault handling defined in catch activities of scope activities in the BPEL process.
The fault management framework can be configured to rethrow the fault handling
back to the catch activities.

The fault policy file (fault-policies.xml) and fault policy bindings file (fault-
bindings.xml) are placed in either of the following locations:

— In the same directory as the composite.xml file of the SOA composite application.

— In adifferent location that is specified with two properties that you add to the
composite.xml file. This option is useful if a fault policy must be used by multiple SOA
composite applications. This option overrides any fault policy files that are included in
the same directory as the composite.xml file. The following example provides details
about these two properties. In this example, the fault policy files are placed into the
SOA part of the Oracle Metadata Services (MDS) Repository shared area.

<property
name="oracle.composite.faultPolicyFile">oramds:/apps/faultpolicyfiles/
fault-policies.xml

</property>

<property
name="oracle.composite.faultBindingFile">oramds:/apps/faultpolicyfiles/
fault-bindings.xml

</property>

For details about Oracle Mediator fault handling capabilities, see Using Error Handling .

For details about creating a fault policy with Oracle Business Process Management (BPM)
Suite, see Chapter "Using Fault Handling in BPM" of Developing Business Processes with
Oracle Business Process Management Studio.

12-13

Chapter 12
Handling Faults with the Fault Management Framework

Understanding How the Fault Policy Binding Resolution Works

A fault policy bindings file associates the policies defined in a fault policy file with the SOA
composite application or the component (service component or reference binding component).
The framework attempts to identify a fault policy binding in the following order:

« Reference binding component defined in the composite.xml file.
e BPEL process or Oracle Mediator service component defined in the composite.xml file.
* SOA composite application defined in the composite.xml file.

During the resolution process, if no action is found that matches the condition, the framework
assumes that resolution failed and moves to the next resolution level.

For example, assume an invoke activity faults with faultname="abc". There is a policy binding
specified in the fault-bindings.xml file:

* SOA composite application binds to policy-id-1

» BPEL process or Oracle Mediator service component or reference binding component
binds to policy-id-2

In the fault-bindings.xml file, the following bindings are also specified:

e SOA composite application binds to policy-id-3

» Reference binding component or service component binds to policy-id-4

The fault management framework behaves as follows:

« First match the resolve binding (in this case, policy-id-4).

e If the fault resolution fails, go to the next possible match (policy-id-2).

e If the fault resolution fails, go to the next possible match (policy-id-3).

* If the fault resolution fails, go to the next possible match (in this case, policy-id-1).

» If the fault resolution still fails, the fault is sent to the BPEL fault catch activity.

How to Design a Fault Policy for Automated Fault Recovery with the Fault
Policy Wizard

You can design a fault policy with the Fault Policy wizard and associate the fault policy with the
fault policy binding file.

To design a fault policy for automated fault recovery with the Fault Policy wizard:

1. From the Oracle JDeveloper main menu, select File > New > From Gallery.
2. Inthe Categories list, select SOA Tier > Faults.
3. Inthe Items list, select Fault Policy Document.

The Fault Policy Editor is displayed, as shown in Figure 12-11. A single fault policy with a
name of policyl is initially displayed for configuration.

ORACLE 1514

Chapter 12
Handling Faults with the Fault Management Framework

Figure 12-11 Fault Policy Editor When Initially Displayed

+ X

Fault Policy: |policyl
=] Fault Handlers Iii x

Fault Mame: -

Description:

Default Action |23 [abort] default-termination - (0 - L
Alerts Actions Properties

1o Type

The Fault Policy Editor consists of several sections and tabs. It is recommended that you
configure the Fault Policy Editor in the following order:

* Properties tab

* Alerts tab

* Actions tab

* Fault policy name and fault handlers

* Association with the fault policy binding file

Step 1: Defining Property Sets

You first define property sets to associate with JMS alerts, which are defined in Step 2:
Defining Alerts. You can associate property sets configuration details such as JMS destinations
and connection factories with multiple JMS alerts. For example, for a JMS alert, the destination
and queue information and connection factory can be referenced by additional JMS alerts
configured in the fault policy.

Note:

You cannot create property sets for email alerts in this release.

1. Click the Properties tab. Table 12-1 provides details about available fields.

Table 12-1 Property Set Selections

|
For... Then...

Email alerts Email alerts do not support property sets for this release.

ORACLE 1918

Chapter 12
Handling Faults with the Fault Management Framework

Table 12-1 (Cont.) Property Set Selections

|
For... Then...

JMS queue alerts a. Click Add to specify the properties and values for JMS alerts.

The following properties and associated values are required:

« jmsDestination: The JNDI name of the configured queue or
topic in which the alerts is queued/published.

e connectionFactory: JNDI name for the configured connection
factory to use.

Figure 12-12 shows a property set configured with JMS destination and connection factory
values.

Figure 12-12 JMS Property Set Configuration

Alerts Actions Properties

Sets EF Vi

Mame Walue
imsDestination imsfzoafsoabrrorTopic

connectionFactory ims/ehconnectionfactory|

For an example of a fully-defined fault policy file, including a defined JMS propertySet
section, see Step 4 of How to Manually Design a Fault Policy for Automated Fault
Recovery.

Step 2: Defining Alerts

1. Click the Alerts tab. Two types of notification alerts are supported:

« Email: Enables you to configure email recipients to receive alerts when a fault occurs.
You must also configure the same email recipients on the Mailer tab of the Workflow
Notification Properties page in Oracle Enterprise Manager Fusion Middleware Control.
For information, see Configuring Human Workflow Notification Properties in
Administering Oracle SOA Suite and Oracle Business Process Management Suite.

e JMS: Enables you to enqueue the fault to a JMS queue or publish it to a JMS topic.
JMS header values can also be specified. The JMS notification can be integrated with
a third-party resolution system to handle faults. The third-party resolution system
dequeue and subscribes to the targeted queue and topic. Further fine-graining is
achieved by consuming messages based on the header property values. The payload
type of the IMS message is a text message in XML format. You must also configure
JMS queues and topics and connection factories in Oracle WebLogic Remote
Console. For information, see Configuring Basic JMS System Resources in
Administering JMS Resources for Oracle WebLogic Server.

2. Click the Add icon. Table 12-2 provides details.

ORACLE 1916

ORACLE

Chapter 12
Handling Faults with the Fault Management Framework

Table 12-2 Alert Selections

|
If You Select... Then...

email You can specify recipients to receive an email alert when a fault occurs.
a. Inthe ID field, specify an ID or accept the default value.

b. Inthe To and CC fields, specify the email recipients.
Note: Do not select any property sets from the Property Set list. The email
alert does not support property sets for this release.

c. When complete, click OK.

JMS You can specify queues to receive a JMS alert when a fault occurs.
Two properties are required for configuring a JMS alert.
* jmsDestination: The JNDI name of the configured queue or topic on which
the alert is queued and published.

e connectionFactory: The JNDI Name for the configured connection factory
to use.

a. Inthe ID field, specify an ID or accept the default value.

b. Inthe Property Set list, select an existing property set created in Step 1:
Defining Property Sets or click Create Required Properties to create a new
property set with values defined for jmsDestination and
connectionFactory.

c. Inthe Headers table, optionally specify JMS header values to achieve finer-
grained fault consumption for a JMS alert. Both standard and custom
external systems can filter their subscriptions based on the configured
header properties.

d. When complete, click OK.

Figure 12-13 shows email alert configuration in the Email Properties dialog.

Figure 12-13 Email Alert Configuration

Email Properties

1™ emaill

To™ admin@us.example.com|

Co: myzelf@usz.example.com

Property Set: |[Choose.. =
Help Ok Cancel

Figure 12-14 shows JMS alert configuration in the JMS Properties dialog. For this
example, both property sets (defined by clicking Create Required Properties to invoke
the Property Set dialog) and headers are defined.

12-17

Chapter 12
Handling Faults with the Fault Management Framework

Figure 12-14 JMS Alert Configuration

[®] JMS Properties

1D |jmsl Mame™ |jm s-props |
Property Set: ’Choose...

AppServer Connection:’MvConnection '] l%- / x

Create Required Properties

M5 Destination |jm sfzoafsoakrrorTopic | Browse. ..
Headers 'ii ? Connection Factony |jms,.fehc0nnectic-nfactory | Browse..
Mame Walue
JMEType ims/soa/ReplyToQueue Help | Ok | Cancel
IMEReplyTa imsjzoafReplyToQueue
IMs Carrelation|D alert_z 4

@

Help | Ok [Cancel|
-

For an example of a fully-defined fault policy file, including a defined Alerts section, see
Step 4 of How to Manually Design a Fault Policy for Automated Fault Recovery.

Step 3: Defining Actions

® Click the Actions tab. By default, all types of actions are automatically selected.
Figure 12-15 provides details.

Figure 12-15 Actions Section of Fault Policy Editor

Alerts Actions Properties

-7 K
Type
default-termination
default-human a humanlntervention k
default-java javalsction
default-replay “ replayScope
default-rethrow &y rethrownFault
default-ws @ inw oket's
default-engqueue ﬁ BhquUeLIe
default-file fileAction
default-retey By retry

Table 12-3 describes the available action types.

Table 12-3 Supported Action Types

. __|
Action Description

Abort Terminates the entire business flow.

ORACLE" 12-18

Chapter 12
Handling Faults with the Fault Management Framework

Table 12-3 (Cont.) Supported Action Types
|

Action

Description

Human intervention

Java action:

Replay scope

Rethrow fault

Enqueue

Invoke WS:

File action

Retry

Causes the current activity to stop processing. Human intervention
from Oracle Enterprise Manager Fusion Middleware Control is
required to handle the fault. For information, see "Recovering from
Faults in a Business Flow Instance" of Administering Oracle SOA
Suite and Oracle Business Process Management Suite.

Enables you to execute an external Java class. For more
information, see How to Use a Java Action Fault Policy.

Raises a replay fault.

Sends the fault to the BPEL fault handlers (catch activities in scope
activities). If none are available, the fault is sent up.

Enqueues a rejected message to a JMS queue as a JMS message
with the appropriate context and payload. For additional
configuration information, see Section "JMS Queue" in
Understanding Technology Adapters.

Handles a rejected message by calling a web service. For additional
configuration information, see Section "Web Service Handler" in
Understanding Technology Adapters.

Creates an error handler for messages by storing a rejected
message in a file. For additional configuration information, see
Section "File" in Understanding Technology Adapters.

Provides the following options for retrying the activity:
* Retry a specified number of times.

* Provide a delay between retries (in seconds).

* Increase the interval with an exponential back off.
e Chain to a retry failure action if retry N times fails.
For more information about retries, see Table 12-6.

For an example of a fault policy file with a defined Actions section, see Step 4 of How to
Manually Design a Fault Policy for Automated Fault Recovery.

Step 4: Defining Fault Names and Policies

ORACLE

1.

Define the fault name, description, and default action of the fault policy in the upper section
of the Fault Policy Editor. Table 12-4 provides details.

Table 12-4 Fault Policy Editor - Upper Section

Element

Description

Add Fault Policy

icon (upper left
corner)

Delete Fault
Policy

Fault Policy

Add Fault icon
(upper right
corner)

You can also add additional fault policies for configuration to a single policy
document.

Click the Add icon in the upper left corner to add an additional fault policy. All
polices are then displayed in the column on the far left of the Fault Policy Editor.
You can click the policy that you want to define.

Delete a selected fault policy.

Enter a name for the fault policy or accept the default name of policynumber.
Click to add a fault.

12-19

ORACLE

Chapter 12
Handling Faults with the Fault Management Framework

Table 12-4 (Cont.) Fault Policy Editor - Upper Section
|

Element Description

Delete Fault Click to delete a fault.

Fault Name Select a standard type of fault to catch. This list shows the system faults
(binding, Oracle Mediator, or remote) or service (business) fault that you can
select.

Description Enter an optional description. The description is persisted into the audit trail

Default Action

during runtime.

Perform the following tasks in this section:

a.

or

From the list, select the default action to perform when this fault occurs (for
example, abort, rethrow, retry, and so on). The actions available for
selection are based on the actions you retained or deleted in Step 3:
Defining Actions.

Click the Add icon to add an if-then condition to the fault policy. This
selection displays the If, Then, and Default fields.

For example, if you specify a condition in the If field (the default is true), you
can select an action (for example, human intervention) to be invoked in the
Then field. If the condition is not true, you can select the default action to
occur (for example, abort) in the Default field.

In the If field, enter a condition or click the Expression Builder icon to build
an XPath expression condition.

In the Then field, specify the condition to invoke if the condition in the If field
evaluates to true.

In the Default field, specify the condition to invoke if the condition in the If
field evaluates to false.

Click the Alert icon to the left of the Add icon to select the type of alert to
send when this condition occurs. The alert types available for selection are
displayed in the Alerts tab in this dialog. You can specify multiple alerts on
a condition.

When complete, the Fault Policy Editor looks as shown in Figure 12-16.

12-20

Chapter 12
Handling Faults with the Fault Management Framework

Figure 12-16 Fault Policy Editor With Fault Name, Description, and Default Actions
Defined

Fault Policy: |policyl
-] Fault Handlers EF x
bpelxbindingFault
Fault Mame: £ bpelxbindingFault T =%
Description: Zatch binding fault|
If [true Ef', Then 2 [humanintervention] default-human = - = K
Default |3 [abort] default-termination - (- o4

Alerts Actions Properties

-7 XK
D Type
jmsl Ins

2. Above the SOA Composite Editor, close the fault policy file, and click Yes when prompted
to save your changes. Figure 12-17 provides details.

Figure 12-17 Save Fault Policy Changes

fault-policies. xm! l%

Policy configuration is now complete. You are now ready to associate the fault policy with
the fault policy bindings.

Step 5: Defining the Fault Policy Bindings for the Fault Policy

ORACLE

After creating a fault policy with the Fault Policy wizard, you associate the fault policy with a
fault policy bindings file. The fault policy bindings file associates the policies defined in the fault
policy file with service components, service binding components, or reference binding
components in the SOA composite application.

1. Open the SOA Composite Editor.

2. Click the icon above the SOA Composite Editor to define the fault policy bindings for this
fault policy. Figure 12-18 provides details.

Figure 12-18 Fault Policy Binding Icon

& P %e&x@m#@.@@l com

|Edit Composite Fault Policies... |

The Composite Fault Policies dialog is displayed.

12-21

Chapter 12
Handling Faults with the Fault Management Framework

3. If you want to specify a different fault policy file (for example, one created in the file
directory or MDS Repository), click the Browse icon to the right of the Fault Policy File
field.

4. In the Policy column for the SOA composite application, service binding component, or
reference binding component, select the fault policy to attach. Figure 12-19 provides
details.

Figure 12-19 Composite Fault Policies Dialog

|'-Fp Composite Fault Policies |

Browse for a policy set. Assign individual policies to composite
artifacts. Policies at the lowerlevels override those at higher
levels

Fault Policy File: ||94IProjectlfSONfauIt—policies.xml| Ck

Fault Binding File: |i4fProjectlfSON‘fauIt—bindings.):mI|

Artifact Policy

Composite

Components

&% BPELProcessl [-
References policyl

fileService

mgService k

jmsServiceZZ

Services
@, bpelprocessZ1_client_ep

Help | oK | Cancel

5. Inthe SOA folder in the Applications window, select the fault-bindings.xml file to view
its contents. Figure 12-20 provides details.

Figure 12-20 Selection of fault-bindings.xml File

=7 504

(7 BPEL
-7 Events
[Schemas
EJ---D testsUites
®-{7) Transformations
[wsDLs

|l Business Indicators
B raii-bindin

! gs.xml k
fault-palicies.zml

The file looks as shown in Figure 12-21.

ORACLE 1222

Chapter 12
Handling Faults with the Fault Management Framework

Figure 12-21 fault-bindings.xml file

n o[Projectl &% BPELProcess1.bpel fault-bindings.xml Bl
' &M =l

kzxml version="1.8" encoding="UTF-8"?=
= <faultPolicyBindings version="2,0,1" xmlns="http://schemas.cracle.com

= <conmponent faultPolicy="policyl"=
=name=BPELProcessl</name=
</component >

= <reference faultPolicy="policyl"=
=name=fileService</name=
</reference=

= =service faultPolicy="policyl"=
<name=bpelprocessZl_client_ep</name=
=/service=
</faultPolicyBindings=

How to Manually Design a Fault Policy for Automated Fault Recovery

This section describes how to manually design a fault policy. The recommended approach is to
design a fault policy with the Fault Policy wizard, as described in How to Design a Fault Policy
for Automated Fault Recovery with the Fault Policy Wizard.

Manually Creating a Fault Policy File for Automated Fault Recovery

ORACLE

To manually create a fault policy file for automated fault recovery:

1.

Create a fault policy file (for example, named fault-policies.xml). This file includes
condition and action sections for performing specific tasks.

Place the file in the same directory as the composite.xml file or place it in a different

location and define the oracle.composite.faultPolicyFile property.

<property
name="oracle.composite.faultPolicyFile">oramds:/apps/faultpolicyfiles/
fault-policies.xml

</property>

<property
name="oracle.composite.faultBindingFile">oramds:/apps/faultpolicyfiles/
fault-bindings.xml

</property>

If the fault policy file is located in a file system, use the following format.

<property
name="oracle.composite.faultPolicyFile">file:/project/apps/fault-policies.xml
</property>

Define the condition section of the fault policy file.

* Note the following details about the condition section:
— This section provides a condition based on faultName.
— Multiple conditions may be configured for a faultName.

— [Each condition has one test section (an XPath expression) and one action
section.

— The test section (XPath expression) is evaluated for the fault variable available in
the fault.

12-23

ORACLE

Chapter 12
Handling Faults with the Fault Management Framework

— The action section has a reference to the action defined in the same file.
— You can only query the fault variable available in the fault.

— The order of condition evaluation is determined by the sequential order in the
document.

— You can associate a single or multiple alerts with a condition to be delivered (by
email, IMS queue, or log file) when a specific error condition occurs.

Table 12-5 provides examples of the condition section in the fault policy file. All
actions defined in the condition section must be associated with an action in the
action section.

Table 12-5 Use of the condition Section in the Fault Policy File

Condition Example Fault Policy File Syntax

This condition is checking a fault <condition>

variable for code = "WSDLFailure" <test>$fault.code="WSDLReading Error"

An action of ora-terminate is </test> o . .

specified. <act}orll ref="ora-terminate"/>
</condition>

No test condition is provided. Thisis <condition>

a catchAll condition for a given <action ref="ora-rethrow"/>
faultName. </condition>

Two user notification alerts are <condition>

defined for the condition. Select the <alert ref = "ora-jms"/>
type of user notification alert to create <alert ref = "ora-email"/>
when a fault occurs (for example, an <action ref="ora-rethrow"/>
email alert, a JMS queue alert,ora </condition>

log file alert).

If the faultName name attribute is <faultName > . . . </faultName>

missing, this indicates a catchAll
activity for faults that have any QName.

Define the action section of the fault policy file. Validation of fault policy files is done
during deployment. If you change the fault policy, you must redeploy the SOA composite
application that includes the fault policy.

Table 12-6 provides several examples of the action section in the fault policy file. You can
provide automated recovery actions for some faults. In all recovery actions except retry
and human intervention, the framework performs the actions synchronously.

12-24

Chapter 12
Handling Faults with the Fault Management Framework

Table 12-6 Use of action Section in the Fault Policy File

|
Recovery Actions Fault Policy File Syntax

Retry: Provides the following actions for <Action id="ora-retry">

retrying the activity. <Retry>

+ Retry a specified number of times. <retryCount>3</retryCount>

. Provide a delay between retries (in <retryInterval>2</retryInterval>
seconds) <exponentialBackoff/>

<retryFailureAction ref="ora-java"/>

° gyxgsjﬁngdgg?gzlmnﬂlan <retrySuccessAction ref="ora-java"/>
p : </Retry>

* Chain to a retry failure action if retry /5 30,
N times fails.
¢+ Chainto aretry success action ifa Note the following details:
retry is successful.
Note: Exponential back off indicates that
the next retry attempt is scheduled at 2 x |
the delay, where delay is the current
retry interval. For example, if the current
retry interval is 2 seconds, the next retry
attempt is scheduled at 4, the next at 8,
and the next at 16 seconds until the
retryCount value is reached.

e The framework chains to the retry success action if the retry attempt is
successful.

If all retry attempts fail, the framework chains to the retry failure action.

Human Intervention: Causes the current <Action id="ora-human-intervention">
activity to stop processing. You can now <humanIntervention/></Action>

go to Oracle Enterprise Manager Fusion

Middleware Control and perform manual

recovery actions on this instance.

Terminate Process: Terminates the <Action id="ora-terminate"><abort/></Action>
process

Java Code: Enables you to execute an <Action id="ora-java">

external Java class. <!-- this is user provided custom java
returnvalue: The implemented Java ~ class=——>

class must implement a method that <javaAction className="mypackage.myClass"
returns a string. The policy can chainto ~ defaultAction="ora-terminate">

. —n n
a new action based on the returned <returnvalue value="REPLAY
string ref="ora-terminate"/>

<returnValue value="RETRHOW"
ref="ora-rethrow-fault"/>
<returnValue value="ABORT"
ref="ora-terminate"/>
<returnvValue value="RETRY" ref="ora-retry"/>
<returnValue value="MANUAL"
ref="ora-human-intervention"/>
</javaAction>
</Action>

For additional information, see How to
Use a Java Action Fault Policy.

Rethrow Fault: The framework sends the <Action id="ora-rethrow-fault"><rethrowFault/></Action>
fault to the BPEL fault handlers (catch

activities in scope activities). If none are

available, the fault is sent up.

Replay Scope: Raises a replay fault. <Action id="ora-replay-scope"><replayScope/></Action>

ORACLE 1908

Chapter 12
Handling Faults with the Fault Management Framework

Note:

The preseeded recovery action tag names (ora-retry, ora-human-intervention,
ora-terminate, and so on) are only samples. You can substitute these names with
ones appropriate to your environment.

A fault policy file with fully-defined condition, action, and alert sections looks as follows:

Note:

« Fault policy file names are not restricted to one specific name. However, they
must conform to the fault-policy.xsd schema file.

e This fault policy file provides an example of catching faults based on fault names.
You can also catch faults based on message types, or on both:

<faultName name="myfault" type="fault:faultType">

<?xml version="1.0" encoding="UTF-8"?2>
<faultPolicies xmlns="http://schemas.oracle.com/bpel/faultpolicy"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance">
<faultPolicy version="2.0.1" id="ModifyAndRecover"
xmlns:env="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xs="http://www.w3.0rg/2001/XMLSchema"
xmlns="http://schemas.oracle.com/bpel/faultpolicy"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance">
<Conditions>
<!-- Handle remoteFault system exceptions -->
<faultName xmlns:bpelx="http://schemas.oracle.com/bpel/extension"
name="bpelx:remoteFault">

<condition>
<!--<test>S$fault.code="1"</test>-->
<alert ref = "ora-jms"/>
<alert ref = "ora-email"/>
<action ref="default-human-intervention"/>
</condition>
</faultName>

<faultName xmlns:bpelx="http://schemas.oracle.com/bpel/extension"
name="bpelx:bindingFault">
<condition>
<action ref="default-human-intervention"/>
</condition>
</faultName> </Conditions>
<Alerts>
<Alert id="ora-email">
<email>
<To>joe.smith@example.com</To>
<CC>joe.smith@example.com</CC>
</email>
</Alert>
<Alert id="ora-jms">
<JMS propertySet="jms-props">
<Headers>
<property name="correlationId">myvalue</property>
<property name="correlationIdl">myvaluel</property>

ORACLE 1996

Chapter 12
Handling Faults with the Fault Management Framework

</Headers>
</JMS>
</Alert>
</Alerts>
<Actions>
<!-- Generics -->
<Action id="default-terminate">
<abort/>
</Action>
<Action id="default-replay-scope">
<replayScope/>
</Action>
<Action id="default-rethrow-fault">
<rethrowFault/>
</Action>
<Action id="default-human-intervention">
<humanIntervention/>
</Action>
<Action id="ora-retry-with-human-intervention">
<retry>
<retryCount>1</retryCount>
<retryInterval>2</retryInterval>
<exponentialBackoff/>
<retryFailureAction ref="default-terminate"/>
</retry>
</Action>
</Actions>
<Properties>
<propertySet name="jms-props">
<property name="jmsDestination">MyQueue</property>
<property
name="connectionFactory">jms/fabric/ehconnectionfactory</property>
</propertySet>
</Properties>
</faultPolicy>
</faultPolicies>

Associating a Fault Policy with Fault Policy Binding

¢ Note:

The fault policy binding file must be named fault-bindings.xml. This conforms to
the fault-bindings.xsd schema file.

To associate a fault policy with fault policy binding:

1. Create a fault policy binding file (fault-bindings.xml) that associates the policies defined
in the fault policy file with the level of fault policy binding you are using (either a SOA
composite application or a component (reference binding component or BPEL process or
Oracle Mediator service component).

2. Place the file in the same directory as the composite.xml file or place it in a remote
location and define the oracle.composite.faultBindingFile property as shown in Step 2
of Manually Creating a Fault Policy File for Automated Fault Recovery.

This fault policy bindings file associates the fault policies defined in the fault-
policies.xml file.

ORACLE 12-27

Chapter 12
Handling Faults with the Fault Management Framework

<?xml version="1.0" encoding="UTF-8" ?>

<faultPolicyBindings version="0.0.1"

xmlns="http://schemas.oracle.com/bpel/faultpolicy"

xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance">
<composite faultPolicy="FusionMidFaults"/>
<!--<composite faultPolicy="ServiceExceptionFaults"/>-->
<!--<composite faultPolicy="GenericSystemFaults"/>-->

</faultPolicyBindings>

Additional Fault Policy and Fault Policy Binding File Samples

This section provides additional samples of fault policy and fault policy binding files. The
following example shows the fault-policies.xml file contents.

<?xml version="1.0" encoding="UTF-8"?2>
<faultPolicies xmlns="http://schemas.oracle.com/bpel/faultpolicy">
<faultPolicy version="2.0.1"
id="CRM_ServiceFaults"
xmlns:env="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xs="http://www.w3.0rg/2001/XMLSchema"
xmlns="http://schemas.oracle.com/bpel/faultpolicy"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance">
<Conditions>
<!-- Fault if wsdlRuntimeLocation is not reachable -->
<faultName xmlns:bpelx="http://schemas.oracle.com/bpel/extension"
name="bpelx:remoteFault">
<condition>
<test>$fault.code="WSDLReadingError"</test>
<action ref="ora-terminate"/>
</condition>
<condition>
<action ref="ora-java"/>
</condition>
</faultName>
<!-- Fault if location port is not reachable-->
<faultName xmlns:bpelx="http://schemas.oracle.com/bpel/extension"
name="bpelx:bindingFault">
<!--0RA-00001: unique constraint violated on insert-->
<condition>
<test>$fault.code="1"</test>
<action ref="ora-java"/>
</condition>
<!--ORA-01400: cannot insert NULL -->
<condition>
<test xmlns:test="http://test">$fault.code="1400"</test>
<action ref="ora-terminate"/>
</condition>
<!--ORA-03220: required parameter is NULL or missing -->
<condition>
<test>$fault.code="3220"</test>
<action ref="ora-terminate"/>
</condition>
<condition>
<action ref="ora-retry-crm-endpoint"/>
</condition>
</faultName>
<!-- Business faults -->
<!-- Fault comes with a payload of error, make sure the name space is
provided here or at root level -->
<faultName xmlns:credit="http://services.otn.com"
name="credit:NegativeCredit">
<!-- you get this fault when SSN starts with 0-->

ORACLE 1998

Chapter 12
Handling Faults with the Fault Management Framework

<condition>
<test>$fault.payload="Bankruptcy Report"</test>
<alert ref = "ora-email"/>

<action ref="ora-human-intervention"/>
<!--action ref="ora-retry"/-->
</condition>
<!-- you get this fault when SSN starts with 1-->
<condition>
<test>$fault.payload="Bankruptcy Report-abort"</test>
<action ref="ora-terminate"/>
</condition>
<!-- you get this fault when SSN starts with 2-->
<condition>
<test>$fault.payload="Bankruptcy Report-rethrow"</test>
<action ref="ora-rethrow-fault"/>
</condition>
<!-- you get this fault when SSN starts with 3-->
<condition>
<test>$fault.payload="Bankruptcy Report-replay"</test>
<action ref="ora-replay-scope"/>
</condition>
<!-- you get this fault when SSN starts with 4-->
<condition>
<test

xmlns:myError="http://services.otn.com">$fault.payload="Bankruptcy
Report-human"</test>

<action ref="ora-human-intervention"/>
</condition>
<!-- you get this fault when SSN starts with 5-->
<condition>
<test>$fault.payload="Bankruptcy Report-java"</test>
<action ref="ora-java"/>
</condition>

</faultName>

</Conditions>
<Actions>
<Action id="ora-retry">
<retry>
<retryCount>3</retryCount>
<retryInterval>2</retryInterval>
<exponentialBackoff/>
<retryFailureAction ref="ora-java"/>
<retrySuccessAction ref="ora-java"/>
</retry>

</Action>
<Action id="ora-retry-crm-endpoint">

<retry>
<retryCount>5</retryCount>
<retryFailureAction ref="ora-java"/>
<retryInterval>5</retryInterval>
<retrySuccessAction ref="ora-java"/>

</retry>

</Action>

<Action id="ora-replay-scope">
<replayScope/>

</Action>

<Action id="ora-rethrow-fault">
<rethrowFault/>

</Action>

<Action id="ora-human-intervention">
<humanIntervention/>
</Action>

ORACLE

12-29

ORACLE

Chapter 12
Handling Faults with the Fault Management Framework

<Action id="ora-terminate">

<abort/>
</Action>
<Action id="ora-java">
<!-- this is user provided class-->

<javaAction
className="com.oracle.bpel.client.config.faultpolicy.TestJavaAction"
defaultAction="ora-terminate" propertySet="prop-for-billing">
<returnValue value="REPLAY" ref="ora-terminate"/>
<returnValue value="RETRHOW" ref="ora-rethrow-fault"/>
<returnValue value="ABORT" ref="ora-terminate"/>
<returnValue value="RETRY" ref="ora-retry"/>
<returnValue value="MANUAL" ref="ora-human-intervention"/>
</javaAction>
</Action>
</Actions>
<Properties>
<propertySet name="prop-for-billing">
<property name="user email recipient">bpeladmin</property>
<property name="email recipient">joelabc.com</property>
<property name="email recipient">mike@xyz.com</property>
<property name="email threshold">10</property>
<property name="sms_recipient">+429876547</property>
<property name="sms_recipient">+4212345</property>
<property name="sms_threshold">20</property>
<property name="user email recipient">john</property>
</propertySet>
<propertySet name="prop-for-order">
<property name="email recipient">john@abc.com</property>
<property name="email recipient">jill@xyz.com</property>
<property name="email threshold">10</property>
<property name="sms_recipient">+42222</property>
<property name="sms_recipient">+423335</property>
<property name="sms_threshold">20</property>
</propertySet>
</Properties>
</faultPolicy>
<faultPolicy version="2.0.1"
id="Billing ServiceFaults"
xmlns:env="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xs="http://www.w3.0rg/2001/XMLSchema"

xmlns="http://schemas.oracle.com/bpel/faultpolicy"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance">
<Conditions>
<faultName>
<condition>
<action ref="ora-manual"/>
</condition>
</faultName>
</Conditions>
<Actions>
<Action id="ora-manual">
<humanIntervention/>
</Action>
</Actions>
</faultPolicy>
</faultPolicies>

The following example shows the fault-bindings.xnl file that associates the fault policies
defined in fault-policies.xml.

12-30

Chapter 12
Handling Faults with the Fault Management Framework

<?xml version="1.0" encoding="UTF-8"?>
<faultPolicyBindings version="2.0.1"
xmlns="http://schemas.oracle.com/bpel/faultpolicy"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance">
<composite faultPolicy="ConnectionFaults"/>
<component faultPolicy="ServiceFaults">
<name>Componentl</name>
<name>Component2</name>
</component>
<!-- Below listed component names use polic CRM SeriveFaults -->
<component faultPolicy="CRM ServiceFaults">
<name>HelloWorld</name>
<name>ShippingComponent</name>
<name>AnotherComponent"</name>
</component>
<!-- Below listed reference names and port types use polic CRM ServiceFaults
-—>
<reference faultPolicy="CRM ServiceFaults">
<name>creditRatingService</name>
<name>anotherReference</name>
<portType
xmlns:credit="http://services.otn.com">credit:CreditRatingService</portType>
<portType
xmlns:db="http://xmlns.oracle.com/pcbpel/adapter/db/insert/">db:insert
plt</portType>
</reference>
<reference faultPolicy="testl">
<name>CreditRating3</name>
</reference>
</faultPolicyBindings>

Designing a Fault Policy with Multiple Rejection Handlers

If you design a fault policy that uses the action handler for rejected messages, note that only
one write action can be performed. Multiple write actions cannot be performed, even if you
define multiple rejection handlers, as shown in the following example. In this case, only the first
rejection handler defined (for this example, ora-queue) is executed.

<faultName xmlns:rjm="http://schemas.oracle.com/sca/rejectedmessages"
name="rjm:FileIn">
<condition>
<action ref="ora-queue"/>
</condition>
</faultName>
<faultName xmlns:rjm="http://schemas.oracle.com/sca/rejectedmessages"
name="rjm:FileIn">
<condition>
<action ref="ora-file"/>
</condition>
</faultName>

How to Execute a Fault Policy

You deploy a fault policy as part of a SOA composite application. After deployment, you can
perform the fault recovery actions from Oracle Enterprise Manager Fusion Middleware Control.
Actions such as terminate, retry, rethrow, and Java are retried as part of composite execution.
No explicit user execution is required. The human intervention action can be manually
executed in Oracle Enterprise Manager Fusion Middleware Control.

* Retry the activity

ORACLE 1531

Chapter 12
Handling Faults with the Fault Management Framework

Modify a variable (available to the faulted activity)
Continue the instance (mark the activity as a success)
Rethrow the exception

Abort the instance

Throw a replay scope exception

For additional information, see Administering Oracle SOA Suite and Oracle Business Process
Management Suite.

How to Use a Java Action Fault Policy

Note the following details when using the Java action fault policy:

The Java class provided follows a specific interface. This interface returns a string. Multiple
values can be provided for output and the fault policy to take after execution.

Additional fault policy can be executed by providing a mapping from the output value
(return value) of implemented methods to a fault policy.

If no ReturnValue is specified, the default fault policy is executed, as shown in the
following example.

<Action id="ora-java">

<javaAction className="mypackage.myclass"

defaultAction="ora-human-intervention" propertySet="prop-for-billing">
<!--defaultAction is a required attribute, but propertySet is optional-->
<!-- attribute-->

<ReturnValue value="RETRY" ref="ora-retry"/>

<!--value is not nilable attribute & cannot be empty-->

<ReturnValue value="RETRHOW" ref="ora-rethrow-fault"/>

</javaAction>

</Action>

Table 12-7 provides an example of Returnvalue use.

Table 12-7 System Interpretation of Java Action Fault Policy

Code Description

ORACLE

<ReturnValue value="RETRY"
ref="ora-retry"/>

Execute the ora-retry action if the method returns a
string of RETRY.

Fails in validation.

<ReturnValue value=""

ref="ora-rethrow"/>

Execute ora-human-intervention after Java code
execution. This attribute is used if the return value from
the method does not match any provided
ReturnValue.

<javaAction
className="mypackage.myclass"
defaultAction="ora-human-intervention">

Fails in validation.

<ReturnValue value="RETRY"
ref="ora-retry"/>
<ReturnValue value="" ref=""/>

12-32

ORACLE

Chapter 12
Handling Faults with the Fault Management Framework

Table 12-7 (Cont.) System Interpretation of Java Action Fault Policy

. ___|
Code Description

<javahAction Fails in validation.

className="mypackage.myclass"
defaultAction=" ora-human-
intervention">
<ReturnValue></ReturnValue>

To invoke a Java class, you can provide a class that implements the
IFaultRecoveryJavaClass interface. IFaultRecoveryJavaClass is included in the fabric-
runtime.jar file. The package name is oracle.integration.platform.faultpolicy.

The IFaultRecoveryJavaClass interface has two methods, as shown in the following example:

public interface IFaultRecoveryJavaClass

{

public void handleRetrySuccess(IFaultRecoveryContext ctx);
public String handleFault(IFaultRecoveryContext ctx);

}

Note the following details:

° handleRetrySuccess is invoked upon a successful retry attempt. The retry policy chains to
a Java action on retrySuccessAction.

° handleFault is invoked to execute a policy of type javaAction.
* The fault policy class is packaged and deployed in either of two ways:
— Package the Java class with the SOA composite application.

— If the Java class must be shared by multiple SOA composite applications, place it in
the shared location (for example, $MW _HOME/soa/soa/ modules/
oracle.soa.ext 11.1.1). The shared location includes a readme file that describes
how to place the Java class to make it available in the class path.

The following example shows the data available with IFaultRecoveryContext:
public interface IFaultRecoveryContext {

/**
* Gets implementation type of the fault.
* @return
*/

public String getType();

/x*
* @Qreturn Get property set of the fault policy action being executed.
*/

public Map getProperties();

/**

* @return Get fault policy id of the fault policy being executed.
*/
public String getPolicyId();

/**

* @return Name of the faulted partner link.

12-33

ORACLE

*/
public

/**

Chapter 12

Handling Faults with the Fault Management Framework

String getReferenceName () ;

* @return Port type of the faulted reference .

*/
public
}

QName getPortType();

The service engine implementation of this interface provides more information (for example,

Oracle BPEL Process Manager). The following example provides details:

public class BPELFaultRecoveryContextImpl extends BPELXExecLetUtil implements
IBPELFaultRecoveryContext,

IFaultRecoveryContext{

Oracle BPEL Process Manager-specific data is available with IBPELFaultRecoveryContext, as
shown in the following example:

public
public

public

public

interface IBPELFaultRecoveryContext {
void addAuditTrailEntry(String message);

void addAuditTrailEntry(String message, Object detail);

void addAuditTrailEntry(Throwable t);

/**

* @Qreturn Get action id of the fault policy action being executed.

*/
public String getActionId();

/%
* @return Type of the faulted activity.
*/

public String getActivityId();

/x
* @return Name of the faulted activity.
*/

public String getActivityName();

/%
* @return Type of the faulted activity.
*/

public String getActivityType();

/**

* @return Correleation id of the faulted activity.

*/
public String getCorrelationId();

/**

* (@return BPEL fault that caused the invoke to fault.

*/
public BPELFault getFault();

/**

* (@return Get index value of the instance

*/
public String getIndex (int 1i);

/**

12-34

ORACLE

Chapter 12
Handling Faults with the Fault Management Framework

* @return get Instance Id of the current process instance of the faulted

* activity.
*/
public long getInstanceId();
/**
* @return Get priority of the current process instance of the faulted
* activity.
*/
public int getPriority();
/**
* @return Process DN.
*/
public ComponentDN getProcessDN();
/**
* @return Get status of the current process instance of the faulted
* activity.
*/
public String getStatus();
/**
* @return Get title of the current process instance of the faulted
* activity.
*/

public String getTitle();
public Object getVariableData (String name) throws BPELFault;

public Object getVariableData (String name, String partOrQuery)
throws BPELFault;

public Object getVariableData (String name, String part, String query)
throws BPELFault;

/**
* @param priority
* Set priority of the current process instance of the faulted
* activity.
* @return
*/
public void setPriority(int priority);
/**
* @param status
* Set status of the current process instance of the faulted
* activity.
*/
public void setStatus(String status);
/**
* @param title
* Set title of the current process instance of the faulted
* activity.
* @return
*/

public String setTitle (String title);
public void setVariableData (String name, Object value) throws BPELFault;

public void setVariableData (String name, String partOrQuery, Object value)

12-35

Chapter 12
Handling Faults with the Fault Management Framework

throws BPELFault;

public void setVariableData (String name, String part, String query,
Object value) throws BPELFault;
}

The following example provides an example of javaAction implementation.

public class TestJavaAction implements IFaultRecoveryJavaClass {
public void handleRetrySuccess (IFaultRecoveryContext ctx) {
System.out.println("This is for retry success");

handleFault (ctx);

}
public String handleFault (IFaultRecoveryContext ctx) {
System.out.println ("----- Inside handleFault----- \n" + ctx.toString());

dumpProperties (ctx.getProperties());
/* Get BPEL specific context here */
BPELFaultRecoveryContextImpl bpelCtx = (BPELFaultRecoveryContextImpl) ctx;
bpelCtx.addAuditTrailEntry ("hi there");
System.out.println ("Policy Id" + ctx.getPolicyId());

}

How to Design Fault Policies for Oracle BPM Suite

You can design and execute fault policies for Oracle BPM Suite. For more information, see
Chapter "Using Fault Handling in BPM" of Developing Business Processes with Oracle
Business Process Management Studio.

What You May Need to Know About Designing a Fault Policy in a
Synchronous BPEL Process

When designing a fault policy in a synchronous process, do not specify the following actions.
These actions cause dehydration in a synchronous process and leads to timeouts.

* Retry
¢ Human intervention

e Terminate

What You May Need to Know About Fault Management Behavior When the
Number of Instance Retries is Exceeded

When you configure a fault policy to recover instances with the ora-retry action and the
number of specified instance retries is exceeded, the instance is marked as open. faulted (in-
flight state). The instance remains active.

Marking instances as open. faulted ensures that no instances are lost. You can then configure
another fault handling action following the ora-retry action in the fault policy file, such as the
following:

e Configure an ora-human-intervention action to manually perform instance recovery from
Oracle Enterprise Manager Fusion Middleware Control.

e Configure an ora-terminate action to close the instance (mark it as closed. faulted) and
never retry again.

ORACLE 1536

Chapter 12
Handling Faults with the Fault Management Framework

However, if you do not set an action to be performed after an ora-retry action in the fault
policy file and the number of instance retries is exceeded, the instance remains marked as
open. faulted, and recovery attempts to handle the instance.

For example, if no action is defined in the fault policy file shown in the following code after ora-
retry:

<Action id="ora-retry">
<retry>
<retryCount>2</retryCount>
<retryInterval>2</retryInterval>
<exponentialBackoff/>
</retry>
</Action>

The following actions are performed:

e The invoke activity is attempted (using the above-mentioned fault policy code to handle the
fault).

« Two retries are attempted at increasing intervals (after two seconds, then after four
seconds).

< If all retry attempts fail, the following actions are performed:
— A detailed fault error message is logged in the audit trail.
— The instance is marked as open. faulted (in-flight state).
— The instance is picked up and the invoke activity is re-attempted.

* Recovery may also fail. In that case, the invoke activity is re-executed. Additional audit
messages are logged.

What You May Need to Know About Binding Level Retry Execution Within
Fault Policy Retries

ORACLE

If you are testing retry actions on adapters with both JCA-level retries for the outbound
direction and a retry action in the fault policy file for outbound failures, the JCA-level (or binding
level) retries are executed within the fault policy retries. For example, assume you have
designed the application shown in Figure 12-22:

Figure 12-22 SOA Composite Application

é o
= & > Mediator FP 12— 20
Mediator_FP_ep EQ
Operations: Operations:
axecute Eng ueus

You specify the retry parameters, as shown below, in the composite.xml file:

<property name="jca.retry.count" type="xs:int" many="false"
override="may">2</property>

<property name="jca.retry.interval" type="xs:int" many="false"
override="may">2</property>

12-37

Chapter 12
Catching BPEL Runtime Faults

<property name="jca.retry.backoff" type="xs:int" many="false"
override="may">2</property>

In the fault policy file for the EQ reference binding component for the outbound direction, you
specify the actions shown in the following code:

<retryCount>3</retryCount>
<retryInterval>3</retryInterval>

If an outbound failure occurs, the expected behavior is for the JCA retries to occur within the
fault policy retries. When the first retry of the fault policy is executed, the JCA retry is called. In
this example, a JCA retry of 2 with an interval of 2 seconds and exponential back off of 2 is
executed for every retry of the fault policy:

e Fault policy retry 1:
— JCArretry 1 (with 2 seconds interval)
— JCA retry 2 (with 4 seconds interval)
e Fault policy retry 2:
— JCAr retry 1 (with 2 seconds interval)
— JCA retry 2 (with 4 seconds interval)
e Fault policy retry 3:
— JCArretry 1 (with 2 seconds interval)

— JCA retry 2 (with 4 seconds interval)

Catching BPEL Runtime Faults

BPEL runtime faults can be caught as a named BPEL fault. The bindingFault and
remoteFault can be associated with a message. This action enables the faultHandler to get
details about the faults.

How to Catch BPEL Runtime Faults

The following procedure shows how to use the provided examples to generate a fault and
define a fault handler to catch it. In this case, you modify a WSDL file to generate a fault, and
create a catch attribute to catch it.

To catch BPEL runtime faults:

1. Import RuntimeFault.wsdl into your process WSDL. RuntimeFault.wsdl is seeded into
the MDS Repository from soa.mar inside soa-infra-wls.ear during its deployment.

You may see a copy of soa.mar in the deployed SOA Infrastructure in the Oracle WebLogic
Server domain, which is a JAR/ZIP file containing RuntimeFault.wsdl.

2. Declare a variable with messageType bpelx:RuntimeFaultMessage.

3. Catch it using the following syntax:

<catch faultName="bpelx:remoteFault" | "bpelx:bindingFault" faultName="varName">

ORACLE 1538

Chapter 12
Getting Fault Details with the getFaultAsString XPath Extension Function

Getting Fault Details with the getFaultAsString XPath Extension

Function

The catchAll activity is provided to catch possible faults. However, BPEL does not provide a
method for obtaining additional information about the captured fault. Use the
getFaultAsString () XPath extension function to obtain additional information.

How to Get Fault Details with the getFaultAsString XPath Extension

Function

The following example shows how to use this function.

<catchAll>
<sequence>
<assign>
<from expression="bpelx:getFaultAsString()"/>
<to variable="faultVar" part="message"/>
</assign>
<reply faultName="nsl:myFault" variable="faultVar" .../>
</sequence>
</catchAll>

For more information, see getFaultAsString.

Throwing Internal Faults with the Throw Activity

A BPEL application can generate and receive fault messages. The throw activity has three
elements: its name, the name of the fault, and the fault variable. The fault thrown by a throw
activity is internal to BPEL. You cannot use a throw activity on an asynchronous process to
communicate with a client. Throw activity syntax includes the throw name, fault name, and fault
variable:

<throw name="delay" faultName="nsPrefix:fault-1" faultVariable="fvar"/>

How to Create a Throw Activity

ORACLE

To create a throw activity:

In the Components window, expand BPEL Constructs.
Drag a Throw activity into the designer.

1.

2

3. Double-click and define the Throw activity.

4. Optionally enter a name or accept the default value.
5

To the right of the Namespace URI field, click the Search icon to select the fault to
monitor.

6. Select the fault in the Fault Chooser dialog, and click OK.

The namespace URI for the selected fault displays in the Namespace URI field. Your fault
selection also automatically displays in the Local Part field.

Figure 12-23 provides an example of a completed Throw dialog.

12-39

Chapter 12
Rethrowing Faults with the Rethrow Activity

Figure 12-23 Throw Dialog

Edit Throw

Documentation Skip Condition Targets Sources
GCeneral Annotations

MName: Throw_Fault_CC_Denied |

Fault Qhame

Mamespace URL |http:,.',.'s-:hemas.oracle.com,.'bpel,.'extension |

Local Part: |remoteFauIt |
Fault Variable: |OrderProce550rFauIt | Q) ¢
Help Apply QK Cancel

7. Click Apply, then OK.

What Happens When You Create a Throw Activity

The following code shows the throw activity in the .bpel file after design completion. The
OrderProcessor process terminates after executing this throw activity.

<throw name="Throw Fault CC Denied"
faultName="client:0rderProcessorFault"/>

Rethrowing Faults with the Rethrow Activity

The rethrow activity rethrows faults originally captured by the immediately enclosing fault
handler. Only use the rethrow activity within a fault handler (for example, within catch and
catchAll activities). The rethrow activity is used in fault handlers to rethrow the captured fault
(that is, the fault name and the fault data (if present) of the original fault). The rethrow activity
must ignore modifications to fault data. For example:

< If the fault handler modifies fault data and then calls a rethrow activity, the original fault
data is rethrown, and not the modified fault data.

« If a fault is captured using the functionality that enables message type faults with one part
defined using an element to be caught by fault handlers looking for the same element type,
then the rethrow activity rethrows the original message type data.

Note:

This activity is supported in BPEL version 2.0 projects.

ORACLE 1540

How to Create a Rethrow Activity

ORACLE"

To create a rethrow activity:

1
2
3.
4

In the Components window, expand BPEL Constructs.

Drag a Rethrow activity into the designer.

Double-click and define the Rethrow activity.

Chapter 12
Rethrowing Faults with the Rethrow Activity

Optionally enter a name or accept the default value, as shown in Figure 12-24.

Figure 12-24

Dacum entation
General

Rethrow Dialog

Skip Conditian Targets

Sources
Annotations

Mame: |Rethrowd]|

Help

Apply

QK

Cancel

Click Apply, then OK.

When complete, design can look as shown in Figure 12-25.

Figure 12-25 Throw Activity in BPEL Process

«

tnsierror

i N

Rethrow_

12-41

Chapter 12
Returning External Faults

What Happens When You Rethrow Faults

The following example shows the .bpel file after design is complete for a rethrow activity. The
rethrow activity is inside a fault handler (catch activity).

<scope name="scopel">
<faultHandlers>
<catch faultName="tns:error" faultVariable="tmpVar"
faultElement="tns:fault">
<sequence>
<assign>
<copy>
<from>concat ('caught fault: ', S$tmpVar)</from>
<to>$Soutput.payload</to>
</copy>
</assign>
<rethrow name="Rethrow_1"/>
</sequence>
</catch>
</faultHandlers>
<throw faultName="tns:error" faultVariable="fault"/>
</scope>

Returning External Faults

A BPEL process service component can send a fault to another application to indicate a
problem, as opposed to throwing an internal fault. In a synchronous operation, the reply activity
can return the fault. In an asynchronous operation, the invoke activity performs this function.

How to Return a Fault in a Synchronous Interaction

The syntax of a reply activity that returns a fault in a synchronous interaction is shown in the
following example:

<reply partnerlinke="partner-link-name"
portType="port-type-name"
operation="operation-name"
variable="variable-name" (optional)
faultName="fault-name">

</reply>

Always returning a fault in response to a synchronous request is not very useful. It is better to
make the activity part of a conditional branch, in which the first branch is executed if the data
requested is available. If the requested data is not available, then the BPEL process service
component returns a fault with this information.

For more information, see the following chapters:

e Invoking a Synchronous Web Service from a BPEL Process for synchronous interactions

e Using Conditional Branching in a BPEL Process for setting up the conditional structure

How to Return a Fault in an Asynchronous Interaction

In an asynchronous interaction, the client does not wait for a reply. The reply activity is not
used to return a fault. Instead, the BPEL process service component returns a fault using a

ORACLE o

Chapter 12
Managing a Group of Activities with a Scope Activity

callback operation on the same port type that normally receives the requested information, with
an invoke activity.

For more information about asynchronous interactions, see Invoking an Asynchronous Web
Service from a BPEL Process.

Managing a Group of Activities with a Scope Activity

A scope activity provides a container and a context for other activities. A scope provides
handlers for faults, events, compensation, data variables, and correlation sets. Using a scope
activity simplifies a BPEL flow by grouping functional structures. This grouping enables you to
collapse them into what appears to be a single element in Oracle BPEL Designer.

The following example shows a scope named Scope FulfillOrder. This scope invokes the
FulfillOrder Oracle Mediator component, which determines the shipping method for the
order.

<scope name="Scope FulfillOrder">
<variables>
<variable name="1FulfillOrder InputVariable"
messageType="nsl7:requestMessage"/>
</variables>
<sequence>
<assign name="Assign OrderData">
<copy>
<from variable="gOrderInfoVariable"
query="/ns4:orderInfovosDO" />
<to variable="1FulfillOrder InputVariable"
part="request" query="/ns4:orderInfovOSDO"/>
</copy>
</assign>
<invoke name="Invoke FulfillOrder"
inputVariable="1FulfillOrder InputVariable"
partnerLink="FulfillOrder.FulfillOrder"
portType="nsl7:execute ptt" operation="execute"/>
</sequence>
</scope>

How to Create a Scope Activity

To create a scope activity:

1. Inthe Components window, expand BPEL Constructs.

2. Drag a Scope activity into the designer.

3. Open the Scope activity by double-clicking it or by single-clicking the Expand icon.
4

From the Components window, drag and define activities to build the functionality within
the scope. Figure 12-26 provides details.

ORACLE e

Chapter 12
Managing a Group of Activities with a Scope Activity

Figure 12-26 Expanded Scope Activity

",
=

5. Click OK.

When complete, scope activity design can look as shown in Figure 12-27. This example
shows a Scope_AuthorizeCreditCard scope activity.

Figure 12-27 Scope Activity After Desigh Completion

Assign_CreditCheckInput C C

bpwsiselectionFailure nsZ: InvalidCredic
InvokeCheckCreditCard
Assign_noCChumber Assign_InvalidCreditFaulk
)(\ .
bws: get¥ariable. . Throw_MoCreditCard Throw_OrderProcessingFault

Throw_Fault_cCC_Denied

How to Add Descriptive Notes and Images to a Scope Activity

You can add descriptive notes to scope activities that provide simple descriptions of the
functionality of the scope. You can also change the graphical image of scopes. The notes and
images display in Oracle BPEL Designer. This helps to make a scope easier to understand.

To add descriptive notes and images to a scope activity:

1. Perform one of the following steps:
¢ Right-click the scope and select User Documentation.
e Double-click the scope and select the User Documentation tab.

The Documentation dialog appears.

ORACLE 1oaa

Chapter 12
Managing a Group of Activities with a Scope Activity

2. Inthe Comment field, enter a brief description of the functionality of the scope.

3. Inthe Image field, click the Search icon to optionally change the graphical image for the
scope.

4. Click OK.

Your changes display in Oracle BPEL Designer, as shown in Figure 12-28.

Figure 12-28 Scope with Descriptive Note and Modified Image

]

%)

Scope_RetrieveCustomerForOrder

+ This scope calls the '
m CreditCardauthorizationService

service ko retrieve
Scope_futhorizeCreditCard | - ctamer information, T
assigns the order tatal,
credit card type, and the
account number From
global variablz
aCrderInfoiariable to
local variable
|CreditCardInput For the
SCOPE,

AN
W

Assign_DefaultMotRequiresApproval

5. To edit the note, double-click it.

What Happens After You Create a Scope Activity

The following example shows the scope activity in the .bpel file after design completion. The
Scope AuthorizeCreditCard scope activity consists of activities that perform the following
actions:

e A catch activity for catching faulted orders in which the credit card number is not provided
or the credit type is not valid.

< Athrow activity that throws a fault for orders that are not approved.

e An assign activity that takes the credit card type, credit card number, and purchase
amount, and assigns this information to the input variable for the
CreditCardAuthorizationService service.

e Aninvoke activity that calls a CreditCardAuthorizationService service to retrieve
customer information.

* A switch activity that checks the results of the credit card validation.

<scope name="Scope AuthorizeCreditCard">
<variables>
<variable name="1CreditCardInput"
messageType="ns2:CreditAuthorizationRequestMessage"/>
<variable name="1CreditCardOutput"
messageType="ns2:CreditAuthorizationResponseMessage" />

ORACLE 105

Chapter 12
Managing a Group of Activities with a Scope Activity

</variables>
<faultHandlers>
<catch faultName="bpws:selectionFailure">
<sequence>
<assign name="Assign noCCNumber">
<copy>
<from expression="string('CreditCardCheck - NO
CreditCard')"/>
<to variable="gOrderProcessorFaultVariable"
part="code"/>
</copy>
</assign>
<throw name ="Throw NoCreditCard"
faultVariable="gOrderProcessorFaultVariable"
faultName="ns9:0rderProcessingFault"/>
</sequence>
</catch>
<catch faultName="ns2:InvalidCredit">
<sequence>
<assign name="Assign InvalidCreditFault">
<copy>
<from expression="concat (bpws:getVariableData
('gOrderInfoVariable','/nsd:orderInfovOSDO/
ns4:CardTypeCode'), ' is not a valid
creditcard type')"/>
<to variable="gOrderProcessorFaultVariable"
part="summary"/>
</copy>
<copy>
<from expression="string('CreditCardCheck - NOT VALID')"/>
<to variable="gOrderProcessorFaultVariable"
part="code"/>
</copy>
</assign>
<throw name="Throw OrderProcessingFault"
faultName="ns9:0rderProcessingFault"
faultVariable="gOrderProcessorFaultVariable"/>
</sequence>
</catch>
</faultHandlers>
<sequence>
<assign name="Assign CreditCheckInput">
<copy>
<from variable="gOrderInfoVariable"
query="/ns4:orderInfovOSDO/ns4:0rderTotal"/>
<to variable="1CreditCardInput" part="Authorization"
query="/ns8:AuthInformation/ns8:PurchaseAmount"/>
</copy>
<copy>
<from variable="gOrderInfoVariable"
query="/ns4:orderInfovOSDO/ns4:CardTypeCode" />
<to variable="1CreditCardInput" part="Authorization"
query="/ns8:AuthInformation/ns8:CCType" />
</copy>
<copy>
<from variable="gOrderInfoVariable"
query="/ns4:orderInfov0OSDO/ns4:AccountNumber"/>
<to variable="1CreditCardInput" part="Authorization"
query="/ns8:AuthInformation/ns8:CCNumber"/>
</copy>
</assign>
<invoke name="InvokeCheckCreditCard"

ORACLE 12-46

Chapter 12
Managing a Group of Activities with a Scope Activity

inputVariable="1CreditCardInput"
outputVariable="1CreditCardOutput"
partnerLink="CreditCardAuthorizationService"
portType="ns2:CreditAuthorizationPort"
operation="AuthorizeCredit"/>
<switch name="Switch EvaluateCCResult">
<case condition="bpws:getVariableData ('lCreditCardOutput', 'status','
/ns8:status') != 'APPROVED'">
<bpelx:annotation>
<bpelx:pattern>status <> approved</bpelx:pattern>
</bpelx:annotation>
<throw name="Throw Fault CC Denied"
faultName="client:OrderProcessorFault"/>
</case>
/switch>
</sequence>
</scope>

What You May Need to Know About Scopes

Scopes can use a significant amount of CPU and memory and should not be overused.
Sequence activities use less CPU and memory and can make large BPEL flows more
readable.

How to Use a Fault Handler Within a Scope

If a fault is not handled, it creates a faulted state that migrates up through the application and
can throw the entire process into a faulted state. To prevent this from occurring, place the parts
of the process that have the potential to receive faults within a scope. The scope activity
includes the following fault handling capabilities:

e The catch activity works within a scope to catch faults and exceptions before they can
throw the entire process into a faulted state. You can use specific fault names in the catch
activity to respond in a specific way to an individual fault.

e The catchAll activity catches any faults that are not handled by name-specific catch
activities.

The following example shows the syntax for catch and catchAll activities. Assume that a fault
named x: foo is thrown. The first catch is selected if the fault carries no fault data. If there is
fault data associated with the fault, the third catch is selected if the type of the fault's data
matches the type of variable bar. Otherwise, the default catchAll handler is selected. Finally, a
fault with a fault variable whose type matches the type of bar and whose name is not x: foo is
processed by the second catch. All other faults are processed by the default catchAll handler.

<faulthandlers>
<catch faultName="x:foo">
<empty/>
</catch>
<catch faultVariable="bar">
<empty/>
</catch>
<catch faultName="x:foo" faultVariable="bar">
<empty/>
</catch>
<catchAll>
<empty/>
</catchAll>
</faulthandlers>

ORACLE 12-47

Chapter 12
Managing a Group of Activities with a Scope Activity

What You May Need to Know About the idempotent Property and Fault
Handling

If the idempotent deployment descriptor property is set to false in the composite.xml file and
the invocation of a partner link fails, recovery does not start from the invoke activity. Relying on
the idempotent property for retrying the invoke activity is not recommended. Instead, recovery
is attempted by fault handling you have designed into the BPEL process (such as with a
catchAll activity). As a best practice, Oracle recommends that you instead use a fault policy to
retry the invoke activity.

Table 12-8 describes the behavior when the idempotent property is set to false and partner
link invocation either succeeds or fails.

Table 12-8 Recovery Behavior When the idempotent Property Is Set to False

|
If Partner Link Invocation Is... Then...

Successful The invoke activity is dehydrated immediately after execution
and recorded in the dehydration store.

Unsuccessful, and your BPEL process Recovery is started from the catchAll activity and not from the
includes fault handling, such as a invoke activity.
catchAll activity

Unsuccessful, and your BPEL process The fault policy is used to attempt recovery of the invoke
includes a fault policy activity. This is the recommended approach.

For example, assume your BPEL process includes the following design:
e Aninvoke activity invokes a partner link (for this example, named myPartnerLink).
* The idempotent deployment descriptor property is set to false in the composite.xml file.

<property name="bpel.partnerLink.myPartnerLink.idempotent">false</property>

This setting causes the BPEL process to dehydrate immediately after execution of this
activity and be recorded in the dehydration store.

You can also set this property to false in the Edit Partner Link dialog. Figure 12-29
provides details.

ORACLE o

Chapter 12
Managing a Group of Activities with a Scope Activity

Figure 12-29 Idempotence Tab of Edit Partner Link Dialog

Ceneral Image Property Documentation Idempatence
Operation Idempotent
v
v
Help Apply QK Cancel

For more information, see Managing ldempotence at the Partner Link Operation Level.

* A catchAll activity error handler in a scope activity catches faults and throws a rollback
fault.

If the invocation by the invoke activity to the partner link fails, recovery starts from the catchAll
activity error handler, and not from the invoke activity. The recovery from the catchAll activity
can be observed in the flow activity for the BPEL process in Oracle Enterprise Manager Fusion
Middleware Control.

This is by design. The idempotent property setting is checked after execution of the invoke
activity. If the execution failed and an exception is raised, the idempotent property setting is
never reached. The BPEL process service engine saves the instance right after opening the
catchAll activity. The instance must be saved because the idempotent property is set to false.
This is why recovery resumes in the catchAll activity.

Oracle recommends that you instead recover the failed invoke activity with a fault policy. For
more information about creating fault polices, see Handling Faults with the Fault Management
Framework.

For more information about the idempotent property, see Introduction to Deployment
Descriptor Properties.

How to Create a Catch Activity in a Scope

To create a catch activity in a scope:

1. Inthe expanded Scope activity, click Add Catch. Figure 12-30 provides details.

ORACLE 1940

ORACLE

a » 0w DN

6.
7.

Chapter 12
Managing a Group of Activities with a Scope Activity

Figure 12-30 Add Catch

&,
“{Add Catch |

This creates a catch activity on the right side of the scope activity.

Double-click the Catch activity.

Optionally enter a name.

To the right of the Namespace URI field, click the Search icon to select the fault.
Select the fault in the Fault Chooser dialog, and click OK.

The namespace URI for the selected fault displays in the Namespace URI field. Your fault
selection also automatically displays in the Local Part field.

Figure 12-31 provides an example of a Catch dialog. This example shows the
selectionFailure catch activity of a Scope_AuthorizeCreditCard scope activity. This
catch activity catches orders in which the credit card number is not provided.

Figure 12-31 Catch Dialog

‘[#] Edit Catch

Leneral Annotations Documentation

Mame: |CatchfssertFault

Fault Mame
Mameszpace URL |http:/fschemas. oracle.com fbpelfextension
Local Part: aszertFailure

Wariable

Fault Variable: |catchfault

Data Type

Type: mas.oracle.comjfbpelfextensionjRuntimeFaultMessage

Help Apply [o]:8 Cancel

Design additional fault handling functionality.
Click OK.

Figure 12-32 provides an example of two catch activities for the
Scope_AuthorizeCreditCard scope activity. The second catch activity catches credit
types that are not valid.

12-50

Chapter 12
Managing a Group of Activities with a Scope Activity

Figure 12-32 Catch Activities in the Designer

Assign_CreditCheckInput C C

bpws:selectionFailure nsZ: InvalidCredit

What Happens When You Create a Catch Activity in a Scope

The following example shows the catch activity in the .bpel file after design completion. The
selectionFailure catch activity catches orders in which the credit card humber is not provided
and the InvalidCredit catch activity catches credit types that are not valid.

<faultHandlers>
<catch faultName="bpws:selectionFailure">
<sequence>
<assign name="Assign noCCNumber">
<copy>
<from expression="string('CreditCardCheck - NO CreditCard')"/>
<to variable="gOrderProcessorFaultVariable"
part="code"/>
</copy>
</assign>
<throw name ="Throw NoCreditCard"
faultVariable="gOrderProcessorFaultVariable"
faultName="ns9:0rderProcessingFault"/>

</sequence>
</catch>
<catch faultName="ns2:InvalidCredit">
<sequence>
<assign name="Assign InvalidCreditFault">
<copy>

<from expression="concat (bpws:getVariableData
('gOrderInfoVariable', '/ns4:orderInfovVOSDO/ns4:CardTypeCode'), '
is not a valid creditcard type')"/>
<to variable="gOrderProcessorFaultVariable"
part="summary"/>
</copy>
<copy>
<from expression="string('CreditCardCheck - NOT VALID')"/>
<to variable="gOrderProcessorFaultVariable"
part="code"/>
</copy>
</assign>
<throw name="Throw OrderProcessingFault"
faultName="ns9:0rderProcessingFault"
faultVariable="gOrderProcessorFaultVariable"/>
</sequence>
</catch>
</faultHandlers>

If no catch or catchAll activity is selected, the fault is not caught by the current scope and is
rethrown to the immediately enclosing scope. If the fault occurs in (or is rethrown to) the global
process scope, and there is no matching fault handler for the fault at the global level, the
process terminates abnormally. This is as though a terminate activity (described in Stopping a
Business Process Instance with the Terminate Activity in BPEL 1.1) had been performed.

ORACLE 1051

Chapter 12
Re-executing Activities in a Scope Activity with the Replay Activity

How to Insert No-Op Instructions into a Business Process with an Empty
Activity

There is often a need to use an activity that does nothing. An example is when a fault must be
caught and suppressed. In this case, you can use the empty activity to insert a no-op
instruction into a business process.

To create an empty activity:
1. Inthe Components window, expand BPEL Constructs.
2. Drag an Empty activity into the designer.
3. Double-click the Empty activity.
The Empty dialog appears, as shown in Figure 12-33.

Figure 12-33 Empty Activity

Edit Empty

Documentation Skip Condition Targets SOuUrces
General Annotations

Mame: |[Emptyl

Help Apply | Ok | Cancel

4. Optionally enter a name.
5. Click OK.

What Happens When You Create an Empty Activity

The syntax for an empty activity is shown in the following example:

<empty standard-attributes>
standard-elements
</empty>

Re-executing Activities in a Scope Activity with the Replay
Activity

You can create a replay activity inside a scope activity to re-execute all of the activities inside
the scope.

ORACLE 12-52

Chapter 12

Re-executing Activities in a Scope Activity with the Replay Activity

How to Create a Replay Activity

ORACLE"

To create a replay activity:

In the Components window, expand Oracle Extensions.
Drag a Replay activity into the designer.
Double-click the Replay activity.

Enter an optional name.

g » W NP

Select the scope to re-execute, as shown in Figure 12-34.

Figure 12-34 Replay Dialog

General Documentation Skip Conditian Targets Sources
Mame: |Replaysn:ope |
Srope: [Scope_Retrieve et ']
Help Apply | Ok | Cancel

6. Click Apply, then click OK.
7. Continue with the design of your scope activity.

When complete, design of the scope activity can look as shown in Figure 12-35.

12-53

Chapter 12
Re-executing Activities in a Scope Activity with the Replay Activity

Figure 12-35 Replay Activity in a Scope Activity

Pt

if else
<label= <label=

©]

ReplayScope

What Happens When You Create a Replay Activity

The following example shows the .bpel file after design is complete for a replay activity in a
BPEL project that supports BPEL version 2.0. In BPEL 2.0, the replay activity is wrapped in an
extensionActivity element.

<scope name="scope2">
<sequence>
<assign>
<copy>
<from>$counter?2 + 1</from>
<to>Scounter2</to>
</copy>
</assign>
<scope name="scope3">
<sequence>
<assign>
<copy>
<from>$counter + 1</from>
<to>$counter</to>
</copy>
</assign>
<if>
<condition>$counter = 3</condition>
<empty/>
<else>
<extensionActivity>
<bpelx:replay name="ReplayScope" scope="Scope RetrieveOrder"/>
</extensionActivity>
</else>
</if>
</sequence>
</scope>
</sequence>
</scope>

In BPEL 1.1, the replay activity is coded as a bpelx extension.

<bpelx:replay name="ReplayScope" scope="Scope2"/>

ORACLE 1oea

Chapter 12
Using Compensation After Undoing a Series of Operations

Using Compensation After Undoing a Series of Operations

Compensation occurs when the BPEL process service component cannot complete a series of
operations after some have completed, and the BPEL process service component must
backtrack and undo the previously completed transactions. For example, if a BPEL process
service component is designed to book a rental car, a hotel, and a flight, it may book the car
and the hotel and then be unable to book a flight for the right day. In this case, the BPEL flow
performs compensation by going back and unbooking the car and the hotel.

In a scope activity, the compensation handler can reverse previously completed process steps.
The compensation handler can be invoked after successful completion of its associated scope
with either of the following activities.

« Compensate activity (in BPEL version 1.1 and 2.0 projects)

This activity causes the compensation handler of all successfully completed and not yet
compensated child scopes to be executed in default order.

e compensateScope activity (in a BPEL version 2.0 project)

This activity causes the compensation handler of one specific successfully completed
scope to be executed.

Using a Compensate Activity

ORACLE

You can invoke a compensation handler by using the compensate activity, which names the
scope for which the compensation is to be performed (that is, the scope whose compensation
handler is to be invoked). A compensation handler for a scope is available for invocation only
when the scope completes normally. Invoking a compensation handler that has not been
installed is equivalent to using the empty activity (it is a no-op). This ensures that fault handlers
do not have to rely on state to determine which nested scopes have completed successfully.
The semantics of a process in which an installed compensation handler is invoked multiple
times are undefined.

The ability to explicitly invoke the compensate activity is the underpinning of the application-
controlled error-handling framework of the Business Process Execution Language for Web
Services Specification. You can use this activity only in the following parts of a business
process:

e In afault handler of the scope that immediately encloses the scope for which to perform
compensation.

« In the compensation handler of the scope that immediately encloses the scope for which to
perform compensation.

For example:

<compensate scope="RecordPayment"/>

If a scope being compensated by name was nested in a loop, the BPEL process service
component invokes the instances of the compensation handlers in the successive iterations in
reverse order.

If the compensation handler for a scope is absent, the default compensation handler invokes
the compensation handlers for the immediately enclosed scopes in the reverse order of the
completion of those scopes.

The compensate form, in which the scope name is omitted in a compensate activity, explicitly
invokes this default behavior. This is useful when an enclosing fault or compensation handler

12-55

Chapter 12
Using Compensation After Undoing a Series of Operations

must perform additional work, such as updating variables or sending external notifications, in
addition to performing default compensation for inner scopes. The compensate activity in a
fault or compensation handler attached to the outer scope invokes the default order of
compensation handlers for completed scopes directly nested within the outer scope. You can
mix this activity with any other user-specified behavior except for the explicit invocation of the
nested scope within the outer scope. Explicitly invoking compensation for such a scope nested
within the outer scope disables the availability of default-order compensation.

How to Create a Compensate Activity

To create a compensate activity:

1. Inthe Components window, expand BPEL Constructs.
2. Drag a Compensate activity into the designer.

3. Double-click the Compensate activity.
4

Select a scope activity in which to invoke the compensation handler, as shown in
Figure 12-36.

Figure 12-36 Compensate Activity

General Annotations Skip Condition

Mame: |[CompensateCR

scope: |[B] scopeCR -
Help Apply OF Cancel

5. Click Apply, then OK.

What Happens When You Create a Compensate Activity

If a scope activity has a compensation handler defined inline, then the name of the activity is
the name of the scope to be used in the compensate activity. The syntax is shown in the
following example:

<compensate scope="ncname"? standard-attributes>
standard-elements
</compensate>

ORACLE 1056

Chapter 12
Using Compensation After Undoing a Series of Operations

Using a compensateScope Activity in BPEL 2.0

The compensateScope activity is used to start compensation on a specified inner scope that
has already completed successfully. Use this activity only from within a fault handler, another
compensation handler, or a termination handler.

When you create a compensateScope activity, you select a target that must refer to the
immediately-enclosed scope. The scope must include a fault handler or compensation handler.

How to Create a compensateScope Activity

Note:

This activity is supported in BPEL 2.0 projects.

To create a compensateScope activity:

1. Inthe Components window, expand BPEL Constructs.
2. Drag a CompensateScope activity into the designer.

3. Double-click the CompensateScope activity.
4

In the Target list, select a specific scope activity in which to invoke the compensation
handler. Figure 12-37 provides details.

Figure 12-37 CompensateScope Activity

Ceneral Documentation Skip Condition Targets Sources
Mame: |[CompensateScopeCreditRating

Target: |E| ScopeAssignCreditRating -
Help Apply [o]8 Cancel

5. Click Apply, then OK.

What Happens When You Create a compensateScope Activity

The following example shows the .bpel file after design is complete for a compensateScope
activity. The compensateScope activity is defined in a catchall fault handler. The scope in
which to invoke the compensation handler is defined.

ORACLE 12-57

Chapter 12
Stopping a Business Process Instance with a Terminate or Exit Activity

<scope name="ScopeAssignCreditRating">
<faultHandlers>
<catchAll>
<compensateScope target="ScopeAssignScreditRating2" />
</catchAll>
</faultHandlers>
<sequence>
<scope name="ScopeAssignScreditRating2">
<compensationHandler>
<!-- undo work -->
</compensationHandler>
<!-- do some work -->
</scope>
<!-- do more work -->

<!-- a fault is thrown here; results of ScopeAssignScreditRating2 must be undone --
>

</sequence>
</scope>

Stopping a Business Process Instance with a Terminate or Exit
Activity
You can stop a business process instance with either of the following activities:

e Exit activity (in a BPEL version 2.0 project)

e Terminate activity (in a BPEL version 1.1 project)

Immediately Ending a Business Process Instance with the Exit Activity in
BPEL 2.0

You can use the exit activity to immediately end all currently running activities on all parallel
branches without involving any termination handling, fault handling, or compensation handling
mechanisms. This activity is useful for environments in which there may not be a reasonable
way for dealing with unexpected, severe failures.

¢ Note:

Any open conversations are also impacted by the exit activity. For example, other
partners interacting with the process may wait for a response that never arrives.

How to Create an Exit Activity

To create an exit activity:

1. Inthe Components window, expand BPEL Constructs.

2. Drag an Exit activity into the section of your BPEL process in which you want to execute
the exit activity.

3. Double-click the Exit activity, as shown in Figure 12-38.

ORACLE 1058

Chapter 12
Stopping a Business Process Instance with a Terminate or Exit Activity

Figure 12-38 Exit Activity

Documentation Skip Condition Targets Sources

Ceneral Annotations

Mame: |Exitl

Help Apply | o] | Cancel

4. Optionally enter a name.
5. Click Apply, then OK.

When complete, the exit activity in a BPEL process appears similar to that shown in
Figure 12-39.

Figure 12-39 Exit Activity in a BPEL Process

v

@)-

receivelnput

B @
| L

client

replyOukput
&

What Happens When You Create an Exit Activity

The following example shows the .bpel file after design is complete for an exit activity.

<sequence>
<!-- receive input from requester -->
<receive name="receivelnput" partnerLink="client" portType="tns:Test"
operation="process" variable="input" createInstance="yes"/>
<assign>
<copy>
<from>$input.payload</from>
<to>S$output.payload</to>
</copy>

ORACLE" 12-59

Chapter 12
Throwing Faults with Assertion Conditions

</assign>
<!-- respond output to requester -->
<reply name="replyOutput" partnerLink="client"
portType="tns:Test" operation="process" variable="output"/>
<exit/>
</sequence>

Stopping a Business Process Instance with the Terminate Activity in BPEL

1.1

The terminate activity immediately terminates the behavior of a business process instance
within which the terminate activity is performed. All currently running activities must be
terminated as soon as possible without any fault handling or compensation behavior. The
terminate activity does not send any notifications of the status of a BPEL process service
component. If you are going to use the terminate activity, first program notifications to the
interested parties.

How to Create a Terminate Activity

To create a terminate activity:

1. Inthe Components window in Oracle JDeveloper, expand BPEL Constructs.

2. Drag a Terminate activity into the designer. Figure 12-40 provides an example.

Figure 12-40 Terminate Activity

Terminate_2

3. Double-click the terminate activity.
4. Optionally enter a name.
5. Click OK.

What Happens When You Create a Terminate Activity

The syntax for the terminate activity is shown in the following example. This stops the
business process instance.

<terminate standard-attributes>
standard-elements
</terminate>

Throwing Faults with Assertion Conditions

ORACLE

You can specify an assertion condition in BPEL versions 1.1 and 2.0 that is executed upon
receipt of a callback message in request-response invoke activities, receive activities, reply
activities, and onMessage branches of pick and scope activities. The assertion specifies an
XPath expression that, when evaluated to false, causes a BPEL fault to be thrown from the

12-60

Chapter 12
Throwing Faults with Assertion Conditions

activity. This condition provides an alternative to creating a potentially large number of switch,
assign, and throw activities after a partner callback.

You can select when to execute a condition:

Preassert: This condition is executed before the invoke or reply activity send out the
outbound message.

Postassert: This condition is executed after an invoke activity, receive activity, or
onMessage branch receives the inbound message.

How to Create Assertion Conditions

You can create assertion conditions in the following activities:

In message exchange activities such as invoke activities, receive activities, reply activities,
and OnMessage branches

In standalone assert activities for specifying XPath expressions

To create assertion conditions in invoke activities, receive activities, reply activities,
and OnMessage branches:

@ a0 w N P

ORACLE

In the SOA Composite Editor, double-click the BPEL process service component.

In the Components window, expand BPEL Constructs.

Drag a Receive activity, Invoke activity, Pick activity, or Scope activity into the designer.
Expand the Receive, Invoke, or onMessage branch of the Pick or Scope activity.

Click the Assertions tab.

If you are creating an assertion for a BPEL 2.0 project, perform the following tasks.
Otherwise, go to Step 6.

a. Select when to execute the condition. Table 12-9 provides details.

Table 12-9 Assertion Condition Tabs
]

To Create A... Select The...
Preassertion condition Pre Asserts tab
Postassertion condition Post Asserts tab

b. Click the Add icon, as shown in Figure 12-41.

Figure 12-41 Add Icon of Assertions Tab in BPEL 2.0

Headers Documentation Skip Condition Targets Sources
Ceneral Carrelations Properties Azzertions Annotatiohs
Pre Azserts Post Aisserts
Assertions: s R
Message Expression Fault Name
< °

The Assert dialog is displayed.

12-61

Chapter 12
Throwing Faults with Assertion Conditions

7. If you are creating an assertion for a BPEL 1.1 project, perform the following tasks.

a. Click the Add icon, as shown in Figure 12-42.

Figure 12-42 Add Icon of Assertions Tab in BPEL 1.1

Azzertions Skip Condition Headers Sources Targets

Ceneral Correlations Properties Annotations
Azzertions: & 7 R
Mame Type Expression Fault Mame Pre Azsert...

k Post Aszert..

b. Select when to execute the condition. Table 12-10 provides details.

Table 12-10 Condition Execution Options

|
Element Description

Pre Assert If selected, the condition is executed before the invoke or reply activity send out
the outbound message.

Note: A fault policy does not handle faults thrown from a preassert condition.
Only faults thrown from a postassert condition are supported. For more
information about fault policies, see Handling Faults with the Fault Management
Framework.

Post Assert If selected, the condition is executed after an invoke activity, receive activity, or
onMessage branch receives the inbound message.

Based on your selection, the Pre Assert or Post Assert dialog is displayed.

8. Specify values for the assertion condition, as shown in Figure 12-43. For this example,
Post Assert was selected for an assertion condition on a receive activity in a BPEL 2.0
project.

a. Select the Fault QName to be thrown by clicking the Search icon and selecting an
existing fault from the Fault Chooser dialog. You can also provide your own values for
the Namespace URI and Local Part fields of the fault. If you do not specify anything
for the Fault QName, then a bpelx:assertFailure fault is thrown.

Figure 12-43 Assertion Condition Values

Message: ['asserttrue fajled’ Ef','r_
Expreszion: [truel Ef‘;'r_
Fault OMame
Mamezpace URL |http:fischemas.oracle.cam/bpelfextenzion
Lacal Part: assertFailure
Help Ok Cancel

ORACLE 1960

Chapter 12
Throwing Faults with Assertion Conditions

9. When complete, click OK to return to the Assertions tab of the activity. The completed
assertion condition is displayed, as shown in Figure 12-44.

Figure 12-44 Assertions Tab with Data

Documentation Skip Condition Targets Sources
Annotations Aszzertions Headers Timeout
Ceneral Carrelations Properties
Post Azserts
Azzertions: '% / x
Message Expression Fault Name
f.@ ‘assert true failed' trued 1httpef fachemas o
I
Help Apply ol Cancel
&

10. Click Apply, then OK.

To create an assertion condition in standalone assert activities:

1. Inthe SOA Composite Editor, double-click the BPEL process service component.
2. In the Components window, expand Oracle Extensions.

3. Drag an Assert activity into the designer, as shown in Figure 12-45.

Figure 12-45 Assert Activity in Components Window

R A= IR S-FFR s | o

BEPEL 2.0

i % Ld| (3 | # BPEL Constructs
=

+| Subprocesses

b@ =l Oracle Extensions
%o 48

receivelnput

uy

Assert Call
1
& >
Dehydrate Java
Embedding
® (3]

4. Expand the Assert activity.
5. To the right of the Expression field, click the XPath Expression Builder icon.

ORACLE 12-63

6.
7.

8.

[% Edit Assert

Create an expression.
When complete, click OK.

The Assert dialog looks as shown in Figure 12-46.

Figure 12-46 Assert Dialog

Ceneral Skip Condition Targets Sources

Name: assertTrue
Message: 'got assertion failure on true expression’
Expression: Ef;'r_

trueG[Jpws:getLinkStatusCl

Help Apply | 0K | Cancel

Click Apply, then OK.

How to Disable Assertions

You can disable assertions in either of two ways:

<component name="AsyncBPELClient">

<implementation.bpel src="AsyncBPELClient.bpel"/>

2 |

Chapter 12
Throwing Faults with Assertion Conditions

By setting the System MBean Browser property DisableAsserts to true in Oracle
Enterprise Manager Fusion Middleware Control.

By setting bpel.config.disableAsserts to true in the composite.xml file of the SOA
composite application, as shown in the following example:

<property name="bpel.config.disableAsserts">true</property>

</component>

For more information about setting System MBean Browser properties, see Administering
Oracle SOA Suite and Oracle Business Process Management Suite.

What Happens When You Create Assertion Conditions

The code segment in the .bpel file defines the specific operation after design completion.

For the following BPEL1.1 example, the bpelx:assert condition in the invoke activity, when
evaluated to false (for example, a credit rating of 0 is submitted), returns a Negative Credit
message. If the condition evaluates to true, no fault is thrown from the invoke activity and the
remaining activities in the BPEL process flow are executed normally.

<invoke name="callbackClient" partnerLink="internalwarehouseservice client"
portType="client:InternalWarehouseServiceCallback" operation="processResponse"
inputVariable="outputVariable">

ORACLE

<bpelx:assert name="negativeCredit"

12-64

Chapter 12
Throwing Faults with Assertion Conditions

expression="$crOutput.payload/tns:rating > 0"
message="Negative Credit"/>
</invoke>

In the BPEL 1.1 example that follows, the bpelx:assert condition in the standalone assert
activity, when evaluated to false, returns the following message:

got assertion failure on true expression

If the condition evaluates to true, no fault is thrown from the assert activity and the remaining
activities in the BPEL process flow are executed normally.

<bpelx:assert expression="true ()bpws:getLinkStatus()" message="'got assertion
failure on true expression'"

What You May Need to Know About Assertion Conditions

This section describes key assertion condition concepts.

bpelx:postAssert and bpelx:preAssert Extensions

ORACLE

Depending upon the activity, you can specify when to execute a condition by clicking the Add
icon in the Assertions tab of invoke, receive, reply, and onMessage branches of pick and
scope activities, and selecting either Pre Assert or Post Assert. Based on your selection, the
following bpelx extensions are used:

e Dbpelx:preAssert: If you select Pre Assert, the condition is executed before the invoke or
reply activity send out the outbound message.

e Dbpelx:postAssert: If you select Post Assert, the condition is executed after an invoke
activity, receive activity, or onMessage branch receives the inbound message.

The following example shows multiple bpelx:postAssert extensions in a receive activity in
BPEL 1.1:

<receive name="Receive 1" createlInstance="no"
variable="Receive 1 processResponse InputVariable"
partnerLink="AsyncBPELService"
portType="nsl:AsyncBPELServiceCallback"
bpelx:for=""'PT10S""
operation="processResponse">

<bpelx:postAssert name="assertl" expression="true ()" message="'assert
true failed'" faultName="client:faultl"/>
<bpelx:postAssert name="assert2" expression="false()" message="'assert
false failed'" faultName="client:fault2"/>
</receive>

The following example shows multiple bpelx:preAssert extensions in an invoke activity in
BPEL 1.1:

<invoke name="Invoke 1" inputVariable="Invoke 1 process InputVariable"
outputVariable="Receive 1 processResponse InputVariable"
partnerLink="SyncBPELService" portType="nsl:SyncBPELService"
operation="process">

<bpelx:preAssert name="assertl" expression="true()" message="'assert true
failed'"/>

<bpelx:preAssert name="assert2"
expression="bpws:getVariableData ('counter') = 3" message="concat ('The value of
counter is ', Scounter)"/>

For information on using the Assertions tab, see How to Create Assertion Conditions.

12-65

Chapter 12
Throwing Faults with Assertion Conditions

Use of faultName and message Attributes

You can specify the faultName and message attributes of the bpelx:postAssert element, as
shown in the schema definition in the following example for BPEL 1.1.

<invoke | receive | onMessage>

standard-elements

<bpelx:postAssert name="ncname"? expression="boolean-expr" faultName="QName"+
message="generic-expr"+/> *
</invoke | receive | onMessage>

The following example shows the syntax for the faultname and message attributes.

<bpelx:postAssert name="Assert 2"
message='multiple post assert Greater value fired'
faultName="ns2:GreaterValue"
expression="bpws:getVariableData ('invar', 'payload','/nsl:process/nsl:input') <
500"/>

If you do not specify the faultName attribute, the fault defaults to bpelx:postAssertFailure. If
the message attribute is not specified, the message value defaults to the name of the activity.

<bpelx:postAssert expression="boolean-expr" />

The specified fault is thrown whenever the assertion condition evaluates to false. Analysis is
performed on the faultName QName to ensure that it properly resolves to a fault that is defined
in the partner WSDL portType. The message expression is a general expression that can
evaluate to any XPath value type (string, number, or boolean). If a nonstring value is returned,
the string equivalent of the value is used.

Multiple Assertions

You can nest multiple assertions in receive activities, invoke activities, and the onMessage
branch of pick and scope activities, with evaluation of the assertions continuing in the order in
which they were declared until an expression evaluates to false. The following example
provides details:

<invoke name="invokeCR" partnerLink="creditRatingService"
portType="services:CreditRatingService" operation="process"
inputVariable="crInput" outputVariable="crOutput">
<bpelx:postAssert name="negativeCredit" expression="$crOutput.payload/tns:rating >
Oll
faultName="services:NegativeCredit" message=""'Negative Credit'"
/>
<bpelx:postAssert name="insufficientCredit"
expression="$crOutput.payload/tns:rating > 600"
faultName="services:InsufficientCredit" message=""'Insufficient
Credit'" />
</invoke>

In the preceding example, the assertion with the expression that checks that the response
credit rating is greater than zero is evaluated first. Table 12-11 describes the assertion
behavior.

ORACLE 1566

Chapter 12
Throwing Faults with Assertion Conditions

Table 12-11 Assertion Behavior

If The Credit Rating For The Then...
Returned Response Is...

Less than zero The services:NegativeCredit fault is thrown.

Greater than or equal to zero The assertion is correct and the second assertion is evaluated.

Less than 600 The services:InsufficientCredit fault is thrown.

Greater than or equal to 600 The assertion is correct and no fault is thrown from the invoke activity.

Any number of assertions can be nested. For no fault to be thrown from the activity, all
assertions specified must evaluate to true.

This construct enables you to apply multiple levels of validation on an incoming payload,
similarto if...else if...else Statements in Java.

To enable a fault to always be thrown regardless of validation logic, the assertion expression
can be specified as false (). This is similar to the else construct in Java.

Use of Built-in and Custom XPath Functions and $variable References

You can also use built-in and custom XPath functions and $variable references within the
assertion condition. The following code provides several examples.

<bpelx:postAssert expression="bpws:getVariableData('crOutput', 'payload',
'/tns:rating') > 0" ... />

<bpelx:postAssert expression="custom:validateRating()" ... />

<bpelx:postAssert xmlns:fn='http://www.w3.0rg/2005/xpath-functions’
expression="fn:false()" ... />

If an error is thrown by the XPath expression evaluation, the error is wrapped with a BPEL fault
and thrown from the activity.

Faults that are thrown from a request-response invoke activity, receive activity, or onMessage
branch of a pick or scope activity because of a failed assertion evaluation can be caught and
handled by BPEL's fault management framework. For information, see Handling Faults with the
Fault Management Framework.

Faults that are not caught and handled within a BPEL process flow are thrown from a BPEL
component if the component WSDL declares the fault on the operation. If the fault is not
declared on the operation, the fault is converted into a FabricInvocationException, which is a
runtime fault. This fault can be caught by any caller components (including BPEL components),
but the fault type is no longer the one originally thrown (however, the fault message string still
retains traces of the original fault message).

For more information about runtime faults, see Introduction to the Business and Runtime Fault
Categories of BPEL Faults.

For more information about fault policies, see Handling Faults with the Fault Management
Framework.

ORACLE 12-67

Chapter 12
Throwing Faults with Assertion Conditions

Assertion Condition Evaluation Logging of Events to the Instance Audit Trail

Each assertion condition that is evaluated causes an event to be logged to the instance audit
trail. The event indicates whether the assertion passed or failed (for failure, the fault name and
message are printed). The event also includes the name attribute specified in the assertion
element. If no name attribute is provided, the line number of the assertion element in the BPEL
process flow is used. The assertion condition printed in the audit event helps identify the
assertion and better enables debugging of the flow.

Expressions Not Evaluating to an XML Schema Boolean Type Throw a Fault

If the assertion condition XPath expression does not evaluate to an XML schema boolean type,
a bpelx:postAssertFailure fault is thrown from the activity. An event in the instance audit trail
is also logged indicating the error. The following example provides details:

<bpelx:postAssert expression="bpws:getVariableData('crOutput', 'payload',
'"/tns:rating') > 0" ... />

<bpelx:postAssert expression="custom:validateRating()" ... />

<bpelx:postAssert xmlns:fn='http://www.w3.0rg/2005/xpath-functions’
expression="fn:false()" ... />

Analysis of the assertion expression is performed by the BPEL compiler and errors are
reported if an expression does not evaluate to an XML schema boolean type. For custom
XPath functions, this type of analysis is not performed.

Assertion Conditions in a Standalone Assert Activity

You can also create assertion conditions in a standalone assert activity in a BPEL process
service component. The assertion specifies an XPath expression that, when evaluated to false,
causes a BPEL fault to be thrown from the activity.

The bpelx:assert extension implements assertions in the standalone assert activity:

<bpelx:assert name="Assertl" expression="string" message="string"/>

For information about using the standalone assert activity, see How to Create Assertion
Conditions.

What You May Need to Know About Postassertion and Preassertion
Condition Schemas and Syntax

ORACLE

The assertion condition is specified as a nested extension element. The following example
shows the postassertion condition schema definition in BPEL 2.0.

<invoke | receive | onMessage>
standard-elements
<bpelx:postAsserts>
<bpelx:postAssert faultName="QName">
<bpelx:expression expressionLanguage="anyURI"?>expression
</bpelx:expression>
<bpelx:message expressionlanguage="anyURI"?>expression</bpelx:message>
</bpelx:postAssert>
</bpelx:postAsserts>
</invoke | receive | onMessage>

12-68

ORACLE

Chapter 12
Throwing Faults with Assertion Conditions

The following example shows the postassertion condition syntax in BPEL 2.0.

<bpelx:postAsserts>
<bpelx:postAssert faultName="ns2:InvalidInput">
<bpelx:expression>number (concat (SinputVariable.payload/client:input, '2')) <
500</bpelx:expression>
<bpelx:message>"AssertXpathPostInvoke 20 assert fired"</bpelx:message>
</bpelx:postAssert>
</bpelx:postAsserts>

The following example shows the postassertion condition schema definition in BPEL 1.1. Note
the differences between BPEL 1.1 and BPEL 2.0.

<invoke | receive | onMessage>

standard-elements

<bpelx:postAssert name="ncname" expression="boolean-expr" faultName="QName"+
message="generic-expr"+/>
</invoke | receive | onMessage>

The following example shows the postassertion condition syntax in BPEL 1.1.

<bpelx:postAssert name="Assert 1"
message='Post Invoke Multiple assert value fired'
faultName="ns2:NegativeValue"
expression="bpws:getVariableData ('invar', 'payload','/nsl:process/nsl:input') >
o"/>

The following example shows the preassertion condition schema definition in BPEL 2.0.

<invoke | reply>
standard-elements
<bpelx:preAsserts>
<bpelx:preAssert faultName="QName">
<bpelx:expression expressionLanguage="anyURI"?>expression</bpelx:expression>
<bpelx:message expressionlLanguage="anyURI"?>expression</bpelx:message>
</bpelx:preAssert>
</bpelx:prehAsserts>
</invoke | reply>

The following example shows the preassertion condition syntax in BPEL 2.0.

<bpelx:preAsserts>
<bpelx:preAssert faultName="nsl:InvalidInput">
<bpelx:expression>concat ($inputVariable.payload/client:input,'2') >
$inputVariable.payload/client:input</bpelx:expression>
<bpelx:message>"AssertXpathPreInvoke 20 Assert test"</bpelx:message>
</bpelx:preAssert>
</bpelx:preAsserts>

The following example shows the preassertion condition schema definition in BPEL 1.1. Note
the differences between BPEL 1.1 and BPEL 2.0.

<invoke | reply>
standard-elements
<bpelx:preAssert name="NCName" expression="string" message="string"
faultName="QName"/>

</invoke | reply>

The following example shows the preassertion condition syntax in BPEL 1.1.

<bpelx:preAssert name="Assert 1"
expression="bpws:getVariableData ('invar', 'payload','/nsl:process/nsl:input') >
Oll

12-69

Chapter 12
Classifying SOAP Faults as Retriable

message='pre invoke assert NegativeInput fired'
faultName="ns4:NegativeInput"/>

The bpelx:postAssert extension specifies the XPath expression to evaluate upon receipt of a
callback message from a partner. If the assertion expression returns a false boolean value, the
specified fault is thrown from the activity. If the assertion expression returns a true boolean
value, no fault is thrown and the activities following the invoke activity, receive activity, or the
onMessage branch of pick and scope activities are executed as in a normal BPEL process
flow.

The bpelx:preAssert Or bpelx:postAssert extension is similar to the Java assert statement.
In Java, if the assert expression does not evaluate to true, an error is reported by the JVM.
Similarly, the expression in the bpelx:preAssert or bpelx:postAssert extension must
evaluate to true; otherwise, the specified fault is thrown.

For example, with the BPEL 1.1 invoke activity shown in the following example, if the XPath
expression specified in the assertion condition returns false, the NegativeCredit fault is
thrown.

<scope>
<faultHandlers>
<catch faultName="services:NegativeCredit" faultVariable="crError">
<empty/>
</catch>
</faultHandlers>
<sequence>
<invoke name="invokeCR" partnerLink="creditRatingService"
portType="services:CreditRatingService" operation="process"
inputVariable="crInput" outputVariable="crOutput">
<bpelx:postAssert name="negativeCredit"
expression="S$crOutput.payload/tns:rating > 0"
faultName="services:NegativeCredit" message="'Negative
Credit'" />
</invoke>
</sequence>
</scope>

The optional name attribute for bpelx:preAssert or bpelx:postAssert is used while creating
the audit trail event message. The name in this instance enables you to identify the assertion
element in case multiple assertions are specified. If no name attribute is specified, the line
number of the assertion element in the BPEL file may be used.

Classifying SOAP Faults as Retriable

ORACLE

Starting with 12c¢, all web service SOAP faults are not automatically retried based on the fault
code returned from the external service. SOAP faults are now retried only when the fault code
is classified as server-related (also known as receiver-related). Fault codes classified as client-
related do not result in retries. This differs from 11g Release 1 (11.1.1.x), in which Oracle SOA
Suite retried all SOAP faults regardless of their fault code (all faults returned were converted to
a bpelx:remoteFault in BPEL, which was retriable).

In 12c when a fault occurs in a reference binding component, the fault code is returned to a
BPEL process. The fault is retried based on the setting in the fault code. This is beneficial
because you may want to retry the fault only under specific circumstances (such as a system
downtime issue). For all other fault occurrences (such as incorrect input), you may not want a
retry to occur. In fact, retries on all SOAP faults can delay the processing of legitimate
messages.

12-70

ORACLE

Chapter 12
Classifying SOAP Faults as Retriable

As described in the Simple Object Access Protocol (SOAP) 1.1 specification at http://
www.w3.0org/TR/2000/NOTE-SOAP-20000508/# Toc478383510, a fault can have a code of server

(also known as receiver) or client. The classification of faults determines whether the faults are
retriable.

e Server

Server errors indicate that the message cannot be processed for reasons not directly
related to the message contents, but rather to the processing of the message. For
example, processing can include communicating with a server that did not respond. The
message may succeed at a later time. This is defined as a retriable fault.

¢ Client

Client errors indicate that the message was incorrectly formed or did not contain the
appropriate information to succeed. For example, the message may lack the proper
authentication or payment information. This typically indicates that the message must first
be changed before being resent. This is defined as a nonretriable fault.

This fault classification information is propagated into a FabricInvocationException error. For
fault codes classified as client-related, the retryType flag within this exception is set to
NO RETRY.

If necessary, you can still invoke a retry on every fault. Set the binding.ws property
oracle.soa.always.retry.on.fault to true in the composite.xnl file. This enables Oracle
SOA Suite to always retry on any SOAP faults regardless of the fault code.

<reference name="myreference"

<binding.ws port=". . . ."

location=". . ."

<property name="oracle.soa.always.retry.on.fault">true</property>
</binding.ws>

Use the following code snippet in composite.xml to enable custom headers defined at SOA to
reach the OSB webservice.

<reference name="RecHttpOSB" ...>

<binding.ws ... soapVersion="1.1">
<property name="oracle.webservices.http.headers">0SBCustomHttp</property>
</binding.ws>
</reference>

12-71

http://www.w3.org/TR/2000/NOTE-SOAP-20000508/#_Toc478383510
http://www.w3.org/TR/2000/NOTE-SOAP-20000508/#_Toc478383510

Transaction and Fault Propagation Semantics
In BPEL Processes

This chapter describes transaction and fault propagation semantics in Oracle BPEL Process
Manager. It describes how to configure the transaction behavior for BPEL instances with
initiating calls and the execution of one-way invocations. It also describes how to execute a
business process without a transaction.

This chapter includes the following sections:

* Introduction to Transaction Semantics
e Introduction to Execution of One-way Invocations
e Executing a Business Process Without a Transaction

e Using In-Memory SOA to Improve System Performance

Introduction to Transaction Semantics

Transaction semantics in Release 12c¢ enable you to use the underlying Java Transaction API
(JTA) infrastructure used in the execution of components. This section describes transaction
semantics for Oracle BPEL Process Manager.

Oracle BPEL Process Manager Transaction Semantics

ORACLE

As with previous releases, Oracle BPEL Process Manager by default creates a new
transaction on a request basis. That is, if a transaction exists, it is suspended, and a new
transaction is created. Upon completion of the child (new) transaction, the master (suspended)
transaction resumes.

However, if the request is asynchronous (that is, one-way), the transaction is either:
* Inherited for insertion into the dehydration store (table d1v_message).
< Enlisted transparently into the transaction (if one exists).

There is no message loss. Either the invocation message is inserted into the dehydration store
for processing or the consumer is notified through a fault.

In Release 10.1.3.x, there were several properties to set on the consuming process (that is, on
the partner link) and the providing process. This enabled you to chain an execution into a
single global transaction. On the consuming side, you set transaction=participate on the
partner link binding in the bpel.xml file. On the providing side, you set
transaction=participate in the <configurations> section of bpel.xml.

In Releases 11g and 12c¢, you only must set a new transaction property on the BPEL
component being called (known as the callee process). You add bpel.config.transaction as
follows:

e Inthe Create BPEL Process dialog for a new BPEL process.

* Inthe BPEL process service component section in the composite.xml file of an existing
BPEL process (note the required prefix of bpel.config.).

13-1

Chapter 13
Introduction to Transaction Semantics

This property configures the transaction behavior for BPEL instances with initiating calls. If you
must change this setting later, you can use the Property Inspector.

The following example provides details:

<component name="InternalWareHouseService" version="2.0">
<implementation.bpel src="BPEL/InternalWareHouseService.bpel"/>
<property name="bpel.config.transaction" type="xs:string"
many="false">required | requiresNew | notSupported " </property>
</component>

Table 13-1 describes the required (the default value) and requiresNew values and
summarizes the behavior of the BPEL instance based on the settings.

Table 13-1 bpel.config.transaction Property Behavior

For... With bpel.config.transaction Set With bpel.config.transaction Set
to required... to requiresNew...

Request/response (initiating) The caller's transaction is joined (if A new transaction is always

invocations there is one) or a new transaction created and an existing transaction
is created (if there is not one). (if there is one) is suspended.

One-way initiating invocations Invoked messages are processed A new transaction is always

in which using the same thread in the same created and an existing transaction

bpel.config.oneWayDelive transaction. (if there is one) is suspended.

ryPolicy is setto sync.

Note:

The bpel.config.transaction property does not apply for midprocess receive
activities. In those cases, another thread in another transaction is used to process the
message. This is because correlation is needed and it is always done
asynchronously.

For additional information about setting the bpel.config.transaction property, see How to
Add a BPEL Process Service Component and How to Define Deployment Descriptor
Properties in the Property Inspector.

The following sections describe the transaction and fault behavior of setting
bpel.config.transaction to either required or requiresNew.

BPELCaller Process Calls a BPELCallee Process That Has bpel.config.transaction
Set to requiresNew

In Table 13-2, the BPELCaller process calls the BPELCallee process. The BPELCallee
process has the property bpel.config.transaction Set to requiresNew. Table 13-2 describes
fault propagation and transaction behavior when bpel.config.transaction is set to this value.

ORACLE 130

Chapter 13
Introduction to Transaction Semantics

Table 13-2 BPELCaller Calls BPELCallee That Has bpel.config.transaction Set to
requiresNew

If The BPELCallee... Then The BPELCallee And The BPELCaller...
Transaction...

Replies with a fault (that is, it uses Is saved. Gets the fault and can catch it.
<reply>).
Throws a fault that is not handled (that is, Is rolled back. Gets the fault and can catch it.

it uses <throw>).

Replies back with a fault (FaultOne), and Is rolled back. Gets FaultTwo.
then throws a fault (FaultTwo).

Throws a bpelx:rollback fault (thatis, Is rolled back. Gets a remote fault.
it uses <throw>).

BPELCaller Process Calls a BPELCallee Process That Has bpel.config.transaction
Set to required

ORACLE

In Table 13-3, the BPELCaller process calls the BPELCallee process. The BPELCallee
process has the property bpel.config.transaction Setto required. Table 13-3 describes
fault propagation and transaction behavior when bpel.config.transaction is set to this value.

Table 13-3 BPELCaller Calls BPELCallee That Has bpel.config.transaction Set to
required

If The BPELCallee... Then The BPELCaller...
Replies with a fault (that is, it uses Gets the fault and can catch it. The BPELCaller owns the
<reply>). transaction. Therefore, if it catches it, the transaction is

committed. If the BPELCaller does not handle it, a global
rollback occurs.

Throws a fault (that is, it uses <throw>). Gets the fault and can catch it.

Replies back with a fault (FaultOne), and Gets FaultTwo.
then throws a fault (FaultTwo).

Throws (that is, it uses <throw>) a Gets its transaction rolled back; there is no way to catch it.
bpelx:rollback fault. This fault cannot be handled.

As an example, assume you create two synchronous processes (BPELMaster and BPELChild)
that each use the same database adapter reference to insert the same record (and therefore,
causes a permission key (PK) violation). The xADatasourceName is set for both.

Without bpel.config.transaction set, after the fault occurs, and it is not handled, BPELChild
is rolled back. If BPELMaster has a catch block, its transaction is committed. Therefore, you
end up with the record from BPELMaster in the database.

If you do not catch the fault in BPELMaster as well, you get a second rollback (however, in two
different transactions).

If bpel.config.transaction is setto required for the same test case and no fault handlers
are in place, the entire transaction is rolled back based on BPELMaster's unhandled fault.

If you add a fault handler in BPELMaster to catch the fault from BPELChild and throw a
rollback fault, the transaction is globally rolled back.

13-3

Chapter 13
Introduction to Execution of One-Way Invocations

This feature enables you to control transaction boundaries and model end-to-end transactional
flows (if your sources and targets are also transactional).

Introduction to Execution of One-Way Invocations

ORACLE

A one-way invocation (with a possible callback) is typically exposed in a WSDL file as shown in
the following example:

<wsdl:operation name="process">
<wsdl:input message="client:0OrderProcessorRequestMessage"/>
</wsdl:operation>

This causes the BPEL process service engine to split the execution into two parts:

* For the first part, and always inside the caller transaction, the insertion into the
dlv_message table of the dehydration store occurs (in release 10.1.3.x, it was inserted into
the inv_message table).

« For the second part, the transaction and the new thread execute the work items, and a
new instance is created.

This has several advantages in terms of scalability, because the service engine's thread pool
(invoker threads) executes when a thread is available. However, the disadvantage is that there
is no guarantee that it executes immediately.

If you require a synchronous-type call based on a one-way operation, then you can use the
onewayDeliveryPolicy property, which is similar to the deliveryPersistPolicy property of
release 10.1.3.x.

Specify bpel.config.oneWayDeliveryPolicy as follows:

e Inthe Create BPEL Process dialog for a new BPEL process.

e Inthe BPEL process service component section of the composite.xml file for an existing
BPEL process.

If this value is not set in composite.xml, the value for oneWayDeliveryPolicy in the System
MBean Browser in Oracle Enterprise Manager Fusion Middleware Control is used. The
following values are possible.

° async.persist: Messages are persisted in the database. With this setting, reliability is
obtained with some performance impact on the database. In some cases, overall system
performance can be impacted.

* async.cache: Incoming delivery messages are kept only in the in-memory cache. If
performance is preferred over reliability, consider this setting. When set to async.cache, if
the rate at which one-way messages arrive is much higher than the rate at which they are
delivered, or if the server fails, messages can be lost. In addition, the system can become
overloaded (messages become backlogged in the scheduled queue) and you can receive
out-of-memory errors. Consult your own use case scenarios to determine if this setting is
appropriate.

When you set oneWlayDeliveryPolicy to async.cache in high availability environments,
invoke and callback messages in the middle of execution at the time of a server crash may
be lost or duplicated. Server failover is not supported for async.cache.

* sync: Direct invocation occurs on the same thread. The scheduling of messages in the
invoke queue is bypassed, and the BPEL instance is invoked synchronously. In some
cases this setting can improve database performance.

13-4

Chapter 13

Executing a Business Process Without a Transaction

For more information about setting the bpel.config.oneWayDeliveryPolicy property, see
How to Add a BPEL Process Service Component and How to Define Deployment Descriptor

Properties in the Property Inspector.

Table 13-4 describes the behavior when the main process calls the subprocess
asynchronously. Table 13-4 is based on the use cases described in BPELCaller Process Calls
a BPELCallee Process That Has bpel.config.transaction Set to requiresNew and BPELCaller
Process Calls a BPELCallee Process That Has bpel.config.transaction Set to required.

Table 13-4 Main Process Calls the Subprocess Asynchronously

If...

If The Subprocess Throws
Any Fault...

If The Subprocess Throws a
bpelx:rollback...

onewayDeliveryPolicy=async.per
sist

(The BPELCallee process runs in a
separate thread/transaction.)

onewayDeliveryPolicy=sync
and
transaction=requiresNew

(The BPELCallee runs in the same
thread, but a different transaction.)

onewayDeliveryPolicy=sync
and
transaction=required

(The BPELCallee runs in the same
thread and the same transaction.)

onewayDeliveryPolicy=async.cac
he

and

transaction=requiresNew

or

transaction=required

The BPELCaller does not get a

response because the
message is saved in the
delivery service. The
BPELCallee transaction is
rolled back if the fault is not
handled.

The BPELCaller receives a
FabricInvocationExceptio
n. The BPELCallee transaction
rolls back if the fault is not
handled.

The BPELCallee faulted. The
BPELCaller receives a
FabricInvocationExceptio
n. The BPELCaller has a
chance to handle the fault.

The BPELCaller does not get a

response because the caller
thread returns before the
request is handled. The
BPELCallee transaction is
rolled back if the fault is not
handled. The message is lost
because it is not saved in the
database.

The BPELCaller does not get a
response because the
message is saved in the
delivery service. The
BPELCallee instance is rolled
back on the unhandled fault.

The BPELCaller receives a
FabricInvocationExceptio
n. The BPELCallee transaction
is rolled back.

The whole transaction is rolled
back.

The BPELCaller does not get a
response because the caller
thread returns before the
request is handled. The
BPELCallee transaction is
rolled back if the fault is not
handled. The message is lost
because it is not saved in the
database.

Executing a Business Process Without a Transaction

You can execute a business process without the need for a transaction. A transaction is only
used at the following points in the process execution:

e At the dehydration point when the internal processing state must be stored in the back end

data store.

e When storing the audit trail or instance tracking-related data during process execution.

When Should | Use a BPEL Process Without a Transaction?

Executing a business process without a transaction is beneficial in scenarios similar to the

following:

ORACLE

13-5

Chapter 13
Executing a Business Process Without a Transaction

Assume you have a BPEL process in which a flowN activity spawns 2000 branches. Each
branch invokes a remote synchronous web service that takes 500 ms to respond. Because
the BPEL process service engine executes flowN branches individually in a single thread,
processing all 2000 branches with each one invoking a synchronous web service takes
close to 1000 seconds and the instance does not have access to the dehydration point
during this processing. The transaction can extend for 1000 seconds and can time out (the
default transaction timeout setting is 300 seconds). Everything can be performed directly in
memory without the need for a transaction.

The duration of a transaction gets tied up with the life cycle of business process execution.
For example, assume an asynchronous BPEL process includes a receive activity followed
by an assign activity in which a complex XSL transformation performed on a large
document takes 30 seconds. This is followed by a callback to the client. If executed in a
transaction, the BPEL process service engine starts the transaction at the receive activity
and holds a lock inside the database on the instance while the instance is executing.

As an alternative, all activities can be performed in memory and discarded if an error
occurs. A transaction is not required because a database update does not occur during
instance execution. A transaction is only required once instance execution reaches the
dehydration point, where the BPEL process service engine updates the instance state, and
SO on.

Assume a BPEL process invokes another service or partner link that is synchronous and
participates in a BPEL process service engine's JTA transaction (for example, if a BPEL
process invokes the TaskServiceBean, which has TransactionAttribute=REQUIRED, and
there is a TaskServiceBean time out and the transaction is roll backed). Even the BPEL
process service engine's JTA transaction gets rolled back and the BPEL process is unable
to handle the error from the TaskServiceBean.

If a business process invokes a synchronous service and that service is performing
complex work that takes a considerable amount of time, the BPEL process service engine
transaction can time out. Even though the synchronous service is performing correctly, the
BPEL process service engine rolls back once the business process gets a response from a
remote service.

Guidelines for Executing Without a Transaction

To execute a business process without a transaction, select notSupported from the
Transaction list when creating a BPEL process in the Create BPEL Process dialog.

ORACLE

When set, the following behavior occurs:

All XA distributed transaction benefits are disabled.

When a business process is configured to run in non-transactional mode, the instance
execution is not wrapped in an XA transaction, resulting in potential duplicate instances,
but no loss of message(s). As there is no overhead of a transaction, the non-transactional
mode provides better performance. You can use the non-transactional option where
duplicate instances are acceptable.

The business process cannot invoke any partner that expects to participate in a transaction
(that is, the partner has the TransactionAttribute Set to MANDATORY).

The invoke from the business process is fire and forget (that is, once the invoke is finished,
it is delivered to the partner. Even if the invoker's transaction rolls back afterwards, the
invoke message is not rolled back).

Even with bpel.config.transaction setto notSupported, the dehydration point starts a
transaction to save the internal BPEL process engine state into the back end. This means the
dehydration concept still applies for the business process. This feature only guarantees that

13-6

Chapter 13

Executing a Business Process Without a Transaction

business process activities such as an assign, an invoke, and others are executed without a

transaction.

This property configures the transaction behavior of a BPEL instance in the case of initiating
calls. Table 13-5 describes the behavior of the BPEL instance based on the

bpel.config.transaction property setting.

Table 13-5 BPEL Process Instance Behavior Based on transaction Property Settings

Transaction Type transaction = requiresNew transaction = required transaction = notSupported
Request/response A new transaction is created The process joins a caller's Business process activities are
(initiating) for the execution. The existing transaction (if there is one) executed without a transaction. The
transaction (if there is one) is or creates a new transaction is only used to save
suspended. transaction (if there is not a internal service engine/instance
transaction). state and audit details. Any
bpelx:rollback fault is not
propagated back to the client
because the current instance does
not participate in the client's
transaction.
One-way (initiating, A new transaction is created The invoke message is Business process activities are
bpel.config.oneWay for the execution and the processed using the same executed without a transaction. A
DeliveryPolicy=syn existing transaction (if there is thread in the same transaction is only used to save
c) one) is suspended. transaction. internal service engine/instance
state and audit details. Any
bpelx:rollback fault is not
propagated back to the client.
One-way asynchronous Not applicable. Not applicable. Business process activities are

executed without a transaction. The
transaction is only used to save
internal service engine/instance
state and audit details.

How to Create a Synchronous BPEL Process Without a Transaction

You can create a synchronous BPEL process without a transaction in the Create BPEL

Process dialog.

To create a synchronous BPEL process without a transaction:

1. Create a BPEL process service component in the SOA composite application, as
described in How to Add a BPEL Process Service Component.

2. From the Template list, select Synchronous BPEL Process.

3. From the Transaction list, select notSupported. Figure 13-1 provides details.

ORACLE

13-7

4.

Chapter 13
Executing a Business Process Without a Transaction

Figure 13-1 Create BPEL Process Dialog

BPEL Process |:|

A BPEL process is a service orchestration, based on the BPEL specification, used to i\ﬁ
dezcribefexecute a business process {or large grained service), which iz implemented as a
stateful service.

() BPEL 2.0 Specification () BPEL 1.1 Specificatian

Mame: |BPELPrc-cessl |

Mamespace: |http:,ffxmIns.oracle.comprpIicati0n12fProjectl,fBPELProcessl |

Diirectary: |,fh-:me,fmIkenned,fjdeveIc-per,fm\,r'work,hl\pplicati-:nlszrnjectl,fSOA,fBPEL | Ck

Template: [g Synchranous BPEL Process 'l @

Service Mame: |bpe|pr0cessl_c|iem |

Expose az a SOAP service

Tranzaction: ’nmSuppDr‘ted 'l @

Input: |{http:,‘,fxmIns.oracle.com;AppIi-:atic-n12,fPrc-jectl,‘BPELProcessl}process | Ck

output: |:f,fxmlns.oracle.com,fAppIication12,fProject1,*BPELProcessl}processResponse| Ck

Help i (014 ' Cancel

Click OK.

How to Create an Asynchronous BPEL Process Without a Transaction

You can create an asynchronous BPEL process without a transaction in the Create BPEL
Process dialog.

ORACLE"

To create an asynchronous BPEL process without a transaction:

1.

Create a BPEL process service component in the SOA composite application, as
described in How to Add a BPEL Process Service Component.

From the Template list, select Asynchronous BPEL Process.
From the Delivery list, select sync.
The dialog is refreshed to display the Transaction list.

From the Transaction list, select notSupported. Figure 13-2 provides details.

13-8

Chapter 13
Using In-Memory SOA to Improve System Performance

Figure 13-2 Create BPEL Process Dialog

i Create BPEL Process .
BPEL Process |:|
A BPEL process is a service orchestration, based on the BPEL specification, used to ﬁ

describe/execute a business process (or large grained service), which is implemented as a
stateful service.

() BPEL 2.0 Specification (_) BPEL 1.1 Specification

MName: |BPELPro-:e552 |

MNamespace: |http:,.’,."xm Ins.oracle.com /Applicationd/Projectl JBPELProcess2 |

Directory: |,.’home,."mIkenned,.'jdeveIoper,.’m\r\mrk,.‘»\\pplication4,.’Projectl,.’SDA,.’EPEL | ':k

Template: [f-! Asynchronous BPEL Process '] 9

Service Name: |bpe|proce552_cliem |

Expose as a SOAP service

Delivery: [syne - @
Transaction: [notSuppor‘ted '] @
Input: |{http:,.f,|fxmIns.oracle.comImpplication4;Projectl,.fEPELProcess2}process | 'Ck

Dutput: |me Ins.oracle.com I.i‘»\'kpplicznianat,.fF’rajE!ctl,.fBF‘ELF‘r::cs:ssz}prccs:ssRespcnse| Ck

Help | oK | Cancel

5. Click OK.

Using In-Memory SOA to Improve System Performance

You can leverage the Coherence cache associated with WebLogic Server to run your non-
transactional business processes in memory. This improves performance and scalability for
these business processes, as read and write operations are performed out of the cache.
Database performance and management also improves, as the costs associated with
continuous disk reads and writes are significantly reduced.

< Note:

This SOA Suite feature is part of Oracle Integration Continuous Availability. See the
Oracle Fusion Middleware Licensing Information for more details on Oracle SOA
Suite for Middleware Options.

In-memory SOA enables short-running processes to live in memory. The process state gets
written to the database only when faulted, or at regular, deferred intervals using a write-behind
thread. The BPEL state information is dehydrated and rehydrated to/from the Coherence
cache.

Enable In-Memory SOA

Enable In-Memory SOA through: SOA Administration > common properties >
inMemoryEnvironment.

ORACLE" 13-9

Chapter 13
Using In-Memory SOA to Improve System Performance

The WLST Scriptis /net/slc07yxw/scratch/share/wlst/enableInMemory.py (it
assumes server is running at default port 7001. userid: weblogic password:weblogicl. Make a
copy and update it for your environment).

connect ('weblogic', 'weblogicl') custom() cd('oracle.as.soainfra.config/
oracle.as.soainfra.config:name=soa-infra, type=SoalnfraConfig,Application=soa-
infra')

set ('InMemoryEnvironment', true)

exit ()

Persistence Settings for In-Memory Flow Instances

ORACLE

The persistence settings for the components comprising a business flow determine when the
flow, state, and audit data is persisted to the cache, or the database. This also impacts the flow
instance data that appears in Enterprise Manager Fusion Middleware Control.

Table 13-6 lists the various persistence settings and their impact on flow, state, audit, and
sensor data.

Table 13-6 Persistence Settings for In-Memory Flow Instances

Completion | Description Businesss Flow

Persist Instances in Enterprise

Policy Manager

Immediate The flow trace, BPEL audit trace, and flow instance state The behavior is the same
data is always persisted to the database. as if in-memory SOA is not

enabled.

Deferred All flow, audit, and state data is initially persisted to the You should see all flow
Coherence cache. A separate write-behind thread instances in Enterprise
performs a deferred write of the cache to the database. Manager Fusion
The write-behind thread wakes up at periodic intervals, the | Middleware Control.
default being 5 minutes. However, as the write-

The number of database round-trips is reduced, and only | behind thread writes to the

coalesced data is written to the database every time the database at deferred

write-behind thread wakes up. intervals, the flow data
updates happen at
intervals determined by the
write-behind thread.
Enterprise Manager reads
its data from the database.

Faulted The flow trace, BPEL audit trace, and flow instance state For flows that use the

data is not persisted for successful executions. If the flow
encounters a fault, then all data is persisted to the
database. Once the flow has been recovered, all flow data
is purged.

If a component reaches dehydration point, then the state
data is persisted to the Coherence cache.

For long running flows that span write delay intervals, the
write-behind thread does temporarily persist the state of
running instances to the database. These are purged after
the instances complete execution.

faulted completion
persist policy, you should
not see flow instances in
Enterprise Manager Fusion
Middleware Control, except
for faulted flow instances.
Note that long-running flow
instances might transiently
show up in Enterprise
Manager, as and when
they are persisted to the
database by the write-
behind thread. However,
this data is purged after the
flow instance completes.

13-10

Chapter 13
Using In-Memory SOA to Improve System Performance

The string values immediate, deferred, and faulted are case-insensitive.

As business flows can span composites and components, persistence for a flow comprising
components with different persistence settings is determined by the components that persist.
So, even if one component is configured to persist to the database, then all components in the
flow will persist to the database.

For example, if you have a BPEL component with persistence set to deferred and another
BPEL component in the same flow has persistence set to immediate, then the immediate
setting overrides the deferred setting, and all flow instance state and flow audit trace data is
persisted immediately to the database. Similarly, if you have all components set to faulted,
but even one component is set to deferred, then the persistence setting defaults to deferred
and flow state and audit data is persisted.

< Note:

* The component state and component audit trace is persisted based on the
persistence policy applied to the component. The flow instance state and flow
audit trace is determined by the override rule. So, immediate overrides deferred
overrides faulted.

e Sensor data is persisted per the flow data. If flow is persisted to the database,
then sensor data is also persisted to the database.

Write Delay for In-Memory Flows

The default interval used by the write-delay thread is 5 minutes. This means that the data is
copied from the cache to the database every 5 minutes.

If you have a strong case to modify this, say, if most of your BPEL processes complete in 6
minutes, as opposed to 5 minutes, and you wish to tweak the write-delay in order to reduce
your database writes, you can set the following server start argument for your SOA server:

-Dsoa.cache.writebehindDelay=6m

The Oracle WebLogic Remote Console can be used to set server start arguments.

Steps to Enable In-Memory SOA

To enable In-Memory SOA, you need to set the in-memory SOA flag in Enterprise Manager. In
addition, you need to design your business processes to be non-transactional, and to use the
correct completion persist policy (faulted or deferred).

The following steps are required.
1. Enabling the In-Memory SOA Flag

2. Designing Your Business Process to Run In-Memory

Enabling the In-Memory SOA Flag

If you have one or more business flows designed to run in-memory, you need to set the
InMemoryEnvironment flag in Enterprise Manager Fusion Middleware Control. After you set

ORACLE 1311

Chapter 13
Using In-Memory SOA to Improve System Performance

the InMemoryEnvironment flag to true (default is false), SOA execution is performed in-
memory for components, composites, and flows that have been designed to use this feature.

Use the following steps to set the SOA in-memory environment in Enterprise Manager Fusion
Middleware Control.

1. From the SOA Infrastructure menu, select SOA Administration > Common Properties.

ORACLE Enterprise Manager Fusion Middleware Gontrol 12¢

— @ soa-infra @
N~ SOA Infrastructure v
Home 3
Dashk o mw Instances Error Hospital
Monitoring »
Logs 2 . .
Key #2 _ Business Transaction Faults
SOA Deployment 3 Common Properties
Manage Partitions BPEL Properties ast 24\ A » Hours v
Work Manager Groups Mediator Properties _
efresh region to show the |atest data.
Resequencing Groups Waorkflow Properties
Def Service Engines » B2B Server Properties Composites and Adapters Availal
Bindings . Cross References
Services and References Token Configurations F soa_severt v
S0i Business Events Auto Purge
No Composite Start-Up Errors
S0A Administration 3 Resiliency Configuration
No EIS Connectivity Errors
Security [
G " All Composites are UP
Administration [

b= &\ Adapter Downtime 27

Alternatively, you can also select SOA Infrastructure Common Properties from the SOA
Composite menu on a composite page.

The SOA Infrastructure Common Properties page appears.

2. Click the More SOA Infra Advanced Configuration Properties... link near the bottom of
the page.

The System MBean Browser page appears. The attributes for the soa-infra MBean,
under Application Defined MBeans, are displayed in alphabetical order.

3. Scroll down to the InMemoryEnvironment attribute. Set the Value field to true.

ORACLE 1310

Chapter 13

Using In-Memory SOA to Improve System Performance

22 SOA Infrastructure +

System MBean Browser

@@ 7 oracleassoainn] Application Defined MBeans: SoalnfraConfig:soa-infra

Aug 23, 2015 12:13:20 AMPOT ()

Apply Revert
4 [Application Defined MBeans @ Information
4 {3 oracle.as.soainfra.config ;[[I;e’"ctl;;ng:;:v‘\,:dgezllelpis mbean are not managed by the configuration session. The changes will be applied immediately. You cannot undo the changes
4 [z Server: soa_serverl
4 (3 SoalnfraConfig P Show MBean Information
“ Attributes ~ Operations Nofifications
Name Description Access Value
22 HitpsServerURL This HTTPS protocol URL is published as part of the SOAP ad RW -
23 InMemoryEnvironment Flag to indicate whether SOA execution should be in memory i RW true A
24 JIndiProviderURL The JNDI Provider URL. This URL should specify the scheme RW false @_

4. Click Apply near the top right of the page.

The SOA in-memory environment is now enabled.

Designing Your Business Process to Run In-Memory

ORACLE

To configure a business flow to run in-memory, you must design all the constituent BPEL
components to be non-transactional. In-memory SOA can only be used for non-transactional
business process as coherence cache does not support transnational behavior at this point.
Also, you must set the completion persist policy for all of your BPEL processes to deferred or

faulted.

Use the following settings, when adding a new BPEL process, in order to enable your BPEL

process to run in-memory.

1. On the General tab of the Create BPEL Process dialog, select notSupported for

Transaction.

13-13

Chapter 13
Using In-Memory SOA to Improve System Performance

2.

Fa Create BPEL Process X

BPEL Process |;|

A BPEL process is a service orchestration, based on the BPEL specification, used to describe/execute a ﬂ
business process (or large grained service), which is implemented as a stateful service.

() BPEL 2.0 Specification () BPEL 1.1 Specification

Ceneral In Memaory SOA

Name: |BPELProcessZ |
Mamespace: |http:f,fxmIns.oracle.com;eEe_lZUl_composites}ProcessDrder;BPELProcessZ |
Directory: |,.’home,.’sIabs,.’JdE\rAppIications,,‘eZe—lEUl—compositesfProcessDrder,‘SDA,‘EPEL | Ck

Template Type: (3) Web Service () REST Service () No Service

Template: [E!! Asynchronous BPEL Process '] L)

Serwice Name; |bpe|prnce552_cliem |

Expose as a SOAP service

Delivery: [async.persist '] @

Transaction: | v| 2

Qutput: |Lcle.comp‘e22_1201_com posites!ProcessDrderp‘BPELProcessZ}processResponse| Ck

Help | QK . Cancel

Select the In Memory SOA tab to specify the completion persist policy.

ORACLE"

13-14

Chapter 13
Using In-Memory SOA to Improve System Performance

L] Create BPEL Process x

BPEL Process ._']

A BPEL process is a service orchestration, based on the BPEL specification, used to describe/execute a ﬁ
business process (or large grained service), which is implemented as a stateful service.

(3) BPEL 2.0 Specification () BPEL 1.1 Specification

Ceneral In Memaory SOA

Completion Persist Policy: -

immediate
deferred

Help QK Cancel|

Setting an Existing Business Process to Be Non-Transactional

To ensure that your business process can use in-memory SOA, you must set up the process to
be non-transactional.

Use the following steps in JDeveloper to set your BPEL process to be non-transactional.
Ensure that the SOA composite, containing the BPEL process, is open in JDeveloper.
1. Select the BPEL component in the composite view.

The Properties for the selected BPEL component appear in the Properties window. If the
Properties window is not visible, select Properties from the JDeveloper Window menu.

2. Ifthe bpel.config.transaction property appears in the Properties window, select the
property and click Edit. Else, click the Add button to add the property.

The Edit Property or Create Property dialog appears.
3. If you are adding the property, typebpel.config.transaction for the Name.

4. Type notSupported under Value.

ORACLE 13-15

Chapter 13
Using In-Memory SOA to Improve System Performance

©» Create Property x

MName; |bpe|.config.transaction |v|

Value: |nut5uppur‘ted |

Help (0] .4 Cancel

5. Click OK.

The bpel.config.transaction property appears in the Properties window. Verify that the
Value column reads notSupported.

Setting the Completion Persist Policy for an Existing BPEL Process

To ensure that your business process can use in-memory SOA, you must set the completion
persist policy to deferred or faulted. When the BPEL process comes across dehydration
points, the state information is cached in memory, and not the database.

Use the following steps in JDeveloper to set the completion persist policy for your BPEL
process.

Ensure that the SOA composite, containing the BPEL process, is open in JDeveloper.
1. Select the BPEL component in the composite view.

The Properties for the selected BPEL component appear in the Properties window. If the
Properties window is not visible, select Properties from the JDeveloper Window menu.

2. Click the Add button to add the bpel.config.completionPersistPolicy property.
The Create Property dialog appears.
3. Typebpel.config.completionPersistPolicy for the Name.

4. Type deferred or faulted under Value.

x|

1 Create Property

MName: |bpe|.cunfig.cnm pletionPersistPolicy [v]

Value: |deferred |

Help Ok Cancel
5. Click OK.

The bpel.config.completionPersistPolicy property appears in the Properties window.
Verify that the Value column reads deferred or faulted.

ORACLE" 13-16

Incorporating Java and Java EE Code in a
BPEL Process

This chapter describes how to incorporate sections of Java code into BPEL process service
components of SOA composite applications. It describes how to add custom classes and JAR
files, use the Java embedding activity, embed service data objects (SDOs) with bpelx:exec,
and implement a custom Connection Manager class with a BPEL process.

This chapter includes the following sections:

* Introduction to Java and Java EE Code in BPEL Processes

* Incorporating Java and Java EE Code in BPEL Processes

e Adding Custom Classes and JAR Files

* Using Java Embedding in a BPEL Process in Oracle JDeveloper

* Embedding Service Data Objects with bpelx:exec

e Sharing a Custom Implementation of a Class with Oracle BPEL Process Manager

You can also invoke a spring component. For more information, see Integrating the Spring
Framework in SOA Composite Applications.

Introduction to Java and Java EE Code in BPEL Processes

This chapter explains how to incorporate sections of Java code into a BPEL process. This is
particularly useful when there is Enterprise JavaBeans code that can perform the necessary
function, and you want to use the existing code rather than start over with BPEL.

Incorporating Java and Java EE Code in BPEL Processes

There are several methods for incorporating Java and Java EE code in BPEL processes:
* Wrap as a Simple Object Access Protocol (SOAP) service

* Embed Java code snippets into a BPEL process with the bpelx:exec tag

e Use an XML facade to simplify DOM manipulation

e Use bpelx:exec built-in methods

e Use Java code wrapped in a service interface

How to Wrap Java Code as a SOAP Service

You can wrap the Java code as a SOAP service. This method requires that the Java
application have a BPEL-compatible interface. A Java application wrapped as a SOAP service
appears as any other web service, which can be used by many different kinds of applications.
There are also tools available for writing SOAP wrappers.

ORACLE v

Chapter 14
Incorporating Java and Java EE Code in BPEL Processes

What You May Need to Know About Wrapping Java Code as a SOAP
Service

A Java application wrapped as a SOAP service has the following drawbacks:

e There may be reduced performance due to the nature of converting between Java and
SOAP, and back and forth.

e Since SOAP inherently has no support for transactions, this method loses atomic
transactionality, that is, the ability to perform several operations in an all-or-none mode
(such as debiting one bank account while crediting another, where either both transactions
must be completed, or neither of them are completed).

How to Embed Java Code Snippets into a BPEL Process with the
bpelx:exec Tag

You can embed Java code snippets directly into the BPEL process using the Java BPEL exec
extension bpelx:exec. The benefits of this approach are speed and transactionality. It is
recommended that you incorporate only small segments of code. BPEL is about separation of
business logic from implementation. If you remove a lot of Java code in your process, you lose
that separation. Java embedding is recommended for short utility-like operations, rather than
business code. Place the business logic elsewhere and call it from BPEL.

The server executes any snippet of Java code contained within a bpelx:exec activity, within its
Java Transaction API (JTA) transaction context.The BPEL tag bpelx:exec converts Java
exceptions into BPEL faults and then adds them into the BPEL process.The Java snippet can
propagate its JTA transaction to session and entity beans that it calls.

For example, a SessionBeanSample.bpel file uses the bpelx:exec tag shown in the following
code to embed the invokeSessionBean Java bean:

<bpelx:exec name="invokeSessionBean" language="java" version="1.5">
<! [CDATA[
try {
Object homeObj = lookup("ejb/session/CreditRating");
Class cls = Class.forName (
"com.otn.samples.sessionbean.CreditRatingServiceHome") ;
CreditRatingServiceHome ratingHome = (CreditRatingServiceHome)
PortableRemoteObject.narrow (homeObj, cls);
if (ratingHome == null) {
addAuditTrailEntry("Failed to lookup 'ejb.session.CreditRating'"
+ ". Ensure that the bean has been"
+ " successfully deployed");
return;
}

CreditRatingService ratingService = ratingHome.create();

// Retrieve ssn from scope
Element ssn =
(Element)getVariableData ("input", "payload","/ssn");

int rating = ratingService.getRating(ssn.getNodeValue());
addAuditTrailEntry("Rating is: " + rating);

setVariableData ("output", "payload",

"/tns:rating", new Integer (rating));
} catch (NamingException ne) {

ORACLE 4o

Chapter 14
Incorporating Java and Java EE Code in BPEL Processes

addAuditTrailEntry (ne);
} catch (ClassNotFoundException cnfe) {
addAuditTrailEntry (cnfe);
} catch (CreateException ce) {
addAuditTrailEntry(ce);
} catch (RemoteException re) ({
addAuditTrailEntry(re);
}
11>
</bpelx:exec>

How to Embed Java Code Snippets in a BPEL 2.0 Process

The examples in this chapter focus primarily on how to embed Java code snippets with the
bpelx:exec extension. For BPEL projects that support version 2.0 of the BPEL specification,
the syntax is slightly different. The bpelx:exec extension and Java code are wrapped in an
<extensionActivity> element. The following example provides details.

<extensionActivity>
<bpelx:exec language="java">
<! [CDATA[
java code
11>
</bpelx:exec>
</extensionActivity>

When you drag a Java Embedding activity into a BPEL process in Oracle BPEL Designer, the
<extensionActivity> element and bpelx:exec tag are automatically added.

The following example shows the import syntax for BPEL 2.0:

<import location="class/package name"
importType="http://schemas.oracle.com/bpel/extension/java"/>

Note:
The BPEL 2.0 import syntax differs from BPEL 1.1, which uses the following syntax:

<bpelx:exec import="class/package name"/>

The following example shows a BPEL file with two Java embedding activities for a project that
supports BPEL version 2.0.

<process name="Test" targetNamespace="http://samples.otn.com/bpel2.0/ch10.9"

<import location="oracle.xml.parser.v2.XMLElement"
importType="http://schemas.oracle.com/bpel/extension/java"/>

<sequence>

<extensionActivity>
<bpelx:exec language="java">
XMLElement elem = (XMLElement) getVariableData ("output", "payload");
elem.setTextContent ("set by java exec");
</bpelx:exec>
</extensionActivity>

ORACLE e

Chapter 14
Incorporating Java and Java EE Code in BPEL Processes

<extensionActivity>
<bpelx:exec language="java">
<! [CDATA[XMLElement elem = (XMLElement) getVariableData ("output",
"payload");
String t = elem.getTextContent();
elem.setTextContent (t + ", set by java exec 2");]]>
</bpelx:exec>
</extensionActivity>

</sequence>
</process>

For information about using this activity, see Using Java Embedding in a BPEL Process in .

How to Use an XML Facade to Simplify DOM Manipulation

You can use an XML facade to simplify DOM manipulation. Oracle BPEL Process Manager
and Oracle Mediator provides a lightweight Java Architecture for XML Binding (JAXB)-like Java
object model on top of XML (called a facade). An XML facade provides a Java bean-like front
end for an XML document or element that has a schema. Facade classes can provide easy
manipulation of the XML document and element in Java programs.

You add the XML facade by using a createFacade method within the bpelx:exec statementin
the .bpel file. The following provides an example:

<bpelx:exec name= ...
<! [CDATA

Element element = ...
(Element)getVariableData ("input", "payload","/loanApplication/"):

//Create an XMLFacade for the Loan Application Document

LoanApplication xmlLoanApp=
LoanApplicationFactory.createFacade (element) ;

How to Use bpelx:exec Built-in Methods

ORACLE

Table 14-1 lists a set of bpelx:exec built-in methods that you can use to read and update
scope variables, instance metadata, and audit trails.

Table 14-1 Built in Methods for bpelx:exec
]

Method Name Description

Object lookup(String name) JNDI access

long getInstanceId() Unique ID associated with each instance
String setTitle(String title) / String Title of this instance

getTitle()

String setStatus(String status) / Status of this instance

String getStatus()

void setCompositelnstanceTitle(String Sets the composite instance title
title)

void setIndex(int i, String value) / Six indexes can be used for a search

String getIndex(int i)

14-4

Chapter 14
Incorporating Java and Java EE Code in BPEL Processes

Table 14-1 (Cont.) Built in Methods for bpelx:exec
]

Method Name

Description

void setCreator(String creator) /
String getCreator ()

void setCustomKey(String customKey) /
String getCustomKey ()

void setMetadata(String metadata) /
String getMetadata ()

String getPreference(String key)

void addAuditTrailEntry (String message,
Object detail)

void addAuditTrailEntry(Throwable t)

Object
throws

getVariableData (String name)
BPELFault

Object
String

getVariableData (String name,
partOrQuery) throws BPELFault

Object
String

getVariableData (String name,
part, String query)

void setVariableData (String name, Object
value)

void setVariableData (String name, String
part, Object value)

void setVariableData (String name, String
part, String query, Object value)

Who initiated this instance

Second primary key

Metadata for generating lists

Access preference

Add an entry to the audit trail

Access a file stored in the archive

Access and update variables stored in the scope

Access and update variables

Access and update variables

Set variable data

Set variable data

Set variable data

How to Use Java Code Wrapped in a Service Interface

Not all applications expose a service interface. You may have a scenario in which a business
process must use custom Java code. For this scenario, you can:

ORACLE

e Write custom Java code.

¢ Create a service interface in which to embe

d the code.

¢ Invoke the Java code as a web service over SOAP.

For example, assume you create a BPEL process service component in a SOA composite
application that invokes a service interface through a SOAP reference binding component. For
this example, the service interface used is an Oracle Application Development Framework

(ADF) Business Component.

The high-level instructions for this scenario are as follows.

To use Java code wrapped in a service interface:

1. Create an Oracle ADF Business Component service in Oracle JDeveloper.

This action generates a WSDL file and XSD file for the service.

2. Create a SOA composite application that includes a BPEL process service component.
Ensure that the BPEL process service component is exposed as a composite service. This
automatically connects the BPEL process to an inbound SOAP service binding component.

14-5

Chapter 14
Adding Custom Classes and JAR Files

Import the Oracle ADF Business Component service WSDL into the SOA composite
application.

Create a web service binding to the Oracle ADF Business Component service interface.
Design a BPEL process in which you perform the following tasks:
a. Create a partner link for the Oracle ADF Business Component service portType.

b. Create an assign activity. For this example, this step copies data (for example, a static
XML fragment) into a variable that is passed to the Oracle ADF Business Component
service.

c. Create an invoke activity and connect to the partner link you created in Step 55.a.

Connect (wire) the partner link reference to the composite reference binding component.
This reference uses a web service binding to enable the Oracle ADF Business Component
service to be remotely deployed.

Deploy the SOA composite application.

Invoke the SOA application from the Test Web Service page in Oracle Enterprise Manager
Fusion Middleware Control. For more information, see Initiating a Test Instance of a
Business Flow in Administering Oracle SOA Suite and Oracle Business Process
Management Suite.

For more information on creating Oracle ADF Business Components, see Developing Fusion
Web Applications with Oracle Application Development Framework.

Adding Custom Classes and JAR Files

You can add custom classes and JAR files to a SOA composite application. A SOA extension
library for adding extension classes and JARs to a SOA composite application is availabl