
Oracle® Fusion Middleware
Developing SOA Applications with Oracle
SOA Suite

12c (12.2.1.4.0)
E95678-18
May 2023

Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite, 12c (12.2.1.4.0)

E95678-18

Copyright © 2005, 2023, Oracle and/or its affiliates.

Primary Author: Oracle Corporation

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or related
documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S.
Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software,
any programs embedded, installed, or activated on delivered hardware, and modifications of such programs)
and Oracle computer documentation or other Oracle data delivered to or accessed by U.S. Government end
users are "commercial computer software," "commercial computer software documentation," or "limited rights
data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental
regulations. As such, the use, reproduction, duplication, release, display, disclosure, modification, preparation
of derivative works, and/or adaptation of i) Oracle programs (including any operating system, integrated
software, any programs embedded, installed, or activated on delivered hardware, and modifications of such
programs), ii) Oracle computer documentation and/or iii) other Oracle data, is subject to the rights and
limitations specified in the license contained in the applicable contract. The terms governing the U.S.
Government's use of Oracle cloud services are defined by the applicable contract for such services. No other
rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle®, Java, and MySQL are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc,
and the AMD logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered
trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be
responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

 Preface

Audience lxiii

Documentation Accessibility lxiii

Diversity and Inclusion lxiii

Related Documents lxiii

Conventions lxiv

 What's New in This Guide

Part I Getting Started with Oracle SOA Suite

1 Introduction to Building Applications with Oracle SOA Suite

1.1 Introduction to Oracle SOA Suite 1-1

1.1.1 Service-Oriented Architecture 1-1

1.1.2 Services 1-2

1.1.3 Oracle SOA Suite 1-2

1.1.4 Standards Used by Oracle SOA Suite to Enable SOA 1-2

1.1.5 Service Component Architecture within SOA Composite Applications 1-4

1.1.5.1 Service Components 1-5

1.1.5.2 Binding Components 1-5

1.1.5.3 Wires 1-7

1.1.6 Runtime Behavior of a SOA Composite Application 1-7

1.1.6.1 Service Infrastructure 1-9

1.1.6.2 Service Engines 1-9

1.1.6.3 Deployed Service Archives 1-10

1.1.7 Approaches for Designing SOA Composite Applications 1-10

1.2 Getting Started with Oracle SOA Suite 1-10

1.3 Setting Accessibility Options 1-11

1.3.1 Setting Accessibility Options in Oracle JDeveloper 1-11

iii

1.3.2 Setting Accessibility Options in Oracle SOA Composer and Oracle BPM
Worklist 1-11

1.3.2.1 How to Set Accessibility Features Before Logging In 1-12

1.3.2.2 How to Set Accessibility Options After Logging In 1-12

2 Getting Started with Developing SOA Composite Applications

2.1 Developing SOA Projects in Reference Configuration Mode 2-1

2.2 Creating a SOA Application 2-2

2.2.1 Create a SOA Application and Project 2-2

2.2.2 What Happens When You Create a SOA Application and Project 2-5

2.3 Adding Service Components 2-8

2.3.1 How to Add a Service Component 2-8

2.3.2 What You May Need to Know About Adding and Deleting a Service Component 2-10

2.3.3 How to Edit a Service Component 2-11

2.4 Adding Service Binding Components 2-11

2.4.1 How to Add a Service Binding Component 2-11

2.4.2 How to Define the Interface (WSDL) for a Web Service 2-14

2.4.2.1 Defining a New WSDL Using a Schema 2-15

2.4.2.2 Selecting an Existing WSDL 2-16

2.4.2.3 Automatically Defining a Service Interface WSDL from a Component 2-16

2.4.3 How to View Schemas 2-17

2.4.4 How to Edit a Service Binding Component 2-18

2.4.5 What You May Need to Know About Adding and Deleting Services 2-18

2.4.6 What You May Need to Know About Using the Same Namespace in Different
WSDL Files in the Same Composite 2-19

2.4.7 What You May Need to Know About Multiple Schema Elements in a WSDL
Types Section 2-19

2.4.8 What You May Need to Know About WSDL Browsing in the Resources
Window When the SOA Infrastructure Uses Both Internal and External Oracle
HTTP Servers 2-19

2.5 Adding Reference Binding Components 2-20

2.5.1 How to Add a Reference Binding Component 2-20

2.5.2 What You May Need to Know About Adding and Deleting References 2-22

2.5.3 What You May Need to Know About WSDL References 2-23

2.5.4 What You May Need to Know About Mixed Message Types in a WSDL File 2-23

2.5.5 What You May Need to Know About Invoking the Default Revision of a
Composite 2-24

2.6 Adding Wires 2-24

2.6.1 How to Wire a Service and a Service Component 2-25

2.6.2 How to Wire a Service Component and a Reference 2-26

2.6.3 What You May Need to Know About Adding and Deleting Wires 2-28

2.7 Adding Descriptions to SOA Composite Applications 2-29

iv

2.7.1 How to Add Descriptions to SOA Composite Applications 2-29

2.8 Renaming, Deleting, and Moving Components and Artifacts 2-30

2.8.1 How to Rename and Delete Components in the SOA Composite Editor 2-30

2.8.2 How to Rename, Move, and Delete Artifacts in the Applications Window 2-31

2.9 Viewing Component Details in the Property Inspector 2-32

2.10 Adding Security Policies 2-33

2.11 Deploying a SOA Composite Application 2-33

2.11.1 How to Invoke Deployed SOA Composite Applications 2-33

2.12 Managing and Testing a SOA Composite Application 2-34

2.12.1 How to Manage Deployed SOA Composite Applications in Oracle JDeveloper 2-34

2.12.2 How to Test and Debug a Deployed SOA Composite Application 2-37

3 Managing Shared Data with the Design-Time MDS Repository

3.1 Introduction to SOA Design-Time MDS Repository Management 3-1

3.1.1 Introduction to the Default SOA Design-Time MDS Repository Connection 3-2

3.2 Changing the Default SOA-MDS Location 3-2

3.2.1 How to Change the Default SOA-MDS Location 3-3

3.3 Sharing Data with the SOA Design-Time MDS Repository 3-5

3.3.1 How to Share Data with the SOA Design-Time MDS Repository 3-5

3.4 Creating and Deleting Subfolders Under the /apps Folder 3-9

3.4.1 How to Create and Delete Subfolders Under the /apps Folder 3-10

3.5 Exporting the Selected Contents of the /apps Folder to a JAR File 3-10

3.5.1 How to Export the Selected Contents of the /apps Folder to a JAR File 3-11

3.6 Importing the Contents of the JAR File into the /apps Folder 3-12

3.6.1 How to Import the Contents of the JAR File into the /apps Folder 3-12

3.7 Transferring the Selected Contents of the /apps Folder to Another MDS Repository 3-14

3.7.1 How to Transfer the Selected Contents of the /apps Folder to Another MDS
Repository 3-14

3.8 Exporting an Existing Release 11g MDS Repository to a JAR File 3-16

3.8.1 How to Export an Existing Release 11g MDS Repository to a JAR File 3-17

3.9 Browsing for Files in the SOA Design-Time MDS Repository 3-17

Part II Using the BPEL Process Service Component

4 Getting Started with Oracle BPEL Process Manager

4.1 Introduction to the BPEL Process Service Component 4-1

4.1.1 How to Add a BPEL Process Service Component 4-1

4.1.2 How to Validate a BPEL Process Service Component 4-10

4.2 Introduction to Activities 4-11

v

4.2.1 How to Edit BPEL Activities in the Property Inspector 4-13

4.2.2 How to Copy and Paste Activities in BPEL Projects 4-15

4.2.3 How to Add a Description of Actions to BPEL Process Activities 4-16

4.3 Introduction to Partner Links 4-17

4.4 Creating a Partner Link 4-19

4.4.1 How to Create a Partner Link 4-19

4.4.1.1 Partner Links for an Outbound Adapter 4-19

4.4.1.2 Partner Links for an Inbound Adapter 4-20

4.4.1.3 Partner Links from an Abstract WSDL to Call a Service 4-21

4.4.1.4 Partner Links from an Abstract WSDL to Implement a Service 4-21

4.4.1.5 Partner Links and Human Tasks or Business Rules 4-21

4.4.1.6 Partner Links from an Existing Human Task, Business Rule, or Oracle
Mediator 4-22

4.5 Introduction to Adapters 4-23

4.6 Introduction to BPEL Process Monitors 4-24

5 Introduction to Interaction Patterns in a BPEL Process

5.1 Introduction to One-Way Messages 5-1

5.1.1 BPEL Process Service Component as the Client 5-2

5.1.2 BPEL Process Service Component as the Service 5-2

5.2 Introduction to Synchronous Interactions 5-2

5.2.1 BPEL Process Service Component as the Client 5-3

5.2.2 BPEL Process Service Component as the Service 5-3

5.2.3 Synchronous BPEL Process Invoking an Asynchronous Process 5-3

5.3 Introduction to Asynchronous Interactions 5-3

5.3.1 BPEL Process Service Component as the Client 5-4

5.3.2 BPEL Process Service Component as the Service 5-4

5.4 Introduction to Asynchronous Interactions with a Timeout 5-4

5.4.1 BPEL Process Service Component as the Client 5-5

5.4.2 BPEL Process Service Component as the Service 5-5

5.5 Introduction to Asynchronous Interactions with a Notification Timer 5-5

5.5.1 BPEL Process Service Component as the Client 5-6

5.5.2 BPEL Process Service Component as the Service 5-6

5.6 Introduction to One Request, Multiple Responses 5-6

5.6.1 BPEL Process Service Component as the Client 5-7

5.6.2 BPEL Process Service Component as the Service 5-7

5.7 Introduction to One Request, One of Two Possible Responses 5-7

5.7.1 BPEL Process Service Component as the Client 5-8

5.7.2 BPEL Process Service Component as the Service 5-8

5.8 Introduction to One Request, a Mandatory Response, and an Optional Response 5-9

5.8.1 BPEL Process Service Component as the Client 5-9

vi

5.8.2 BPEL Process Service Component as the Service 5-9

5.9 Introduction to Partial Processing 5-10

5.9.1 BPEL Process Service Component as the Client 5-10

5.9.2 BPEL Process Service Component as the Service 5-10

5.10 Introduction to Multiple Application Interactions 5-11

6 Manipulating XML Data in a BPEL Process

6.1 Introduction to Manipulating XML Data in BPEL Processes 6-2

6.1.1 XML Data in BPEL Processes 6-2

6.1.2 Data Manipulation and XPath Standards in Assign Activities 6-2

6.2 Delegating XML Data Operations to Data Provider Services 6-5

6.2.1 How to Create an Entity Variable 6-7

6.2.1.1 Understanding How SDO Works in the Inbound Direction 6-7

6.2.1.2 Understanding How SDO Works in the Outbound Direction 6-8

6.2.1.3 Creating an Entity Variable and Choosing a Partner Link 6-8

6.2.1.4 Creating a Binding Key 6-9

6.3 Translating Between Native Data and XML 6-11

6.3.1 How to Translate Native Data to XML Data 6-12

6.3.2 How to Translate XML Data to Native Data 6-18

6.3.3 How to Translate Inbound Native Data to XML Stored as an Attachment 6-21

6.4 Using Standalone SDO-based Variables 6-23

6.4.1 How to Declare SDO-based Variables 6-23

6.4.2 How to Convert from XML to SDO 6-24

6.5 Initializing a Variable with Expression Constants or Literal XML 6-26

6.5.1 How To Assign a Literal XML Element 6-26

6.6 Copying Between Variables 6-26

6.6.1 How to Copy Between Variables 6-27

6.6.2 How to Initialize Variables with an Inline from-spec in BPEL 2.0 6-28

6.7 Moving and Copying Variables in the Structure Window 6-29

6.7.1 To Move Variables in the Structure Window: 6-29

6.7.2 To Copy Variables in the Structure Window: 6-30

6.8 Accessing Fields in Element and Message Type Variables 6-30

6.8.1 How to Access Fields Within Element-Based and Message Type-Based
Variables 6-30

6.9 Assigning Numeric Values 6-32

6.9.1 How to Assign Numeric Values 6-32

6.10 Using Mathematical Calculations with XPath Standards 6-32

6.10.1 How To Use Mathematical Calculations with XPath Standards 6-32

6.11 Assigning String Literals 6-33

6.11.1 How to Assign String Literals 6-33

6.12 Concatenating Strings 6-33

vii

6.12.1 How to Concatenate Strings 6-33

6.13 Assigning Boolean Values 6-34

6.13.1 How to Assign Boolean Values 6-34

6.14 Assigning a Date or Time 6-34

6.14.1 How to Assign a Date or Time 6-35

6.15 Manipulating Attributes 6-35

6.15.1 How to Manipulate Attributes 6-36

6.16 Manipulating XML Data with bpelx Extensions 6-36

6.16.1 How to Use bpelx:append 6-38

6.16.1.1 bpelx:append in BPEL 1.1 6-38

6.16.1.2 bpelx:append in BPEL 2.0 6-39

6.16.2 How to Use bpelx:insertBefore 6-39

6.16.2.1 bpelx:insertBefore in BPEL 1.1 6-40

6.16.2.2 bpelx:insertBefore in BPEL 2.0 6-40

6.16.3 How to Use bpelx:insertAfter 6-41

6.16.3.1 bpelx:insertAfter in BPEL 1.1 6-41

6.16.3.2 bpelx:insertAfter in BPEL 2.0 6-42

6.16.4 How to Use bpelx:remove 6-42

6.16.4.1 bpelx:remove in BPEL 1.1 6-43

6.16.4.2 bpelx:remove in BPEL 2.0 6-44

6.16.5 How to Use bpelx:rename and XSD Type Casting 6-44

6.16.5.1 bpelx:rename in BPEL 1.1 6-44

6.16.5.2 bpelx:rename in BPEL 2.0 6-46

6.16.6 How to Use bpelx:copyList 6-46

6.16.6.1 bpelx:copyList in BPEL 1.1 6-46

6.16.6.2 bpelx:copyList in BPEL 2.0 6-48

6.16.7 How to Use Assign Extension Attributes 6-48

6.16.7.1 ignoreMissingFromData Attribute 6-49

6.16.7.2 insertMissingToData Attribute 6-49

6.16.7.3 keepSrcElementName Attribute 6-49

6.17 Validating XML Data 6-50

6.17.1 How to Validate XML Data in BPEL 2.0 6-50

6.17.1.1 Validate XML in an Assign Activity 6-50

6.17.1.2 Validate XML in a Standalone, Extended Validate Activity 6-50

6.17.2 How to Validate XML Data in BPEL 1.1 6-50

6.17.2.1 Validate XML in an Assign Activity 6-50

6.17.2.2 Validate XML in a Standalone, Extended Validate Activity 6-51

6.18 Using Element Variables in Message Exchange Activities in BPEL 2.0 6-51

6.19 Mapping WSDL Message Parts in BPEL 2.0 6-52

6.19.1 How to Map WSDL Message Parts 6-52

6.20 Importing Process Definitions in BPEL 2.0 6-53

viii

6.21 Manipulating XML Data Sequences That Resemble Arrays 6-54

6.21.1 How to Statically Index into an XML Data Sequence That Uses Arrays 6-55

6.21.2 How to Use SOAP-Encoded Arrays 6-55

6.21.2.1 SOAP-Encoded Arrays in BPEL 2.0 6-56

6.21.2.2 Declaring a SOAP Array Using a wsdl:arrayType Attribute Inside a
Schema 6-57

6.21.3 How to Determine Sequence Size 6-58

6.21.4 How to Dynamically Index by Applying a Trailing XPath to an Expression 6-58

6.21.4.1 Applying a Trailing XPath to the Result of getVariableData 6-59

6.21.4.2 Using the bpelx:append Extension to Append New Items to a Sequence 6-59

6.21.4.3 Merging Data Sequences 6-60

6.21.4.4 Generating Functionality Equivalent to an Array of an Empty Element 6-60

6.21.5 What You May Need to Know About Using the Array Identifier 6-61

6.22 Converting from a String to an XML Element 6-61

6.22.1 How To Convert from a String to an XML Element 6-62

6.23 Understanding Document-Style and RPC-Style WSDL Differences 6-62

6.23.1 How To Use RPC-Style Files 6-62

6.24 Manipulating SOAP Headers in BPEL 6-63

6.24.1 How to Receive SOAP Headers in BPEL 6-63

6.24.2 How to Send SOAP Headers in BPEL 6-64

6.25 Declaring Extension Namespaces in BPEL 2.0 6-65

6.25.1 How to Declare Extension Namespaces 6-65

6.25.2 What Happens When You Create an Extension 6-66

7 Invoking a Synchronous Web Service from a BPEL Process

7.1 Introduction to Invoking a Synchronous Web Service 7-1

7.2 Invoking a Synchronous Web Service 7-2

7.2.1 How to Invoke a Synchronous Web Service 7-2

7.2.1.1 How Does the BPEL Process Work 7-2

7.2.2 What Happens When You Invoke a Synchronous Web Service 7-3

7.2.2.1 Partner Link in the BPEL Code 7-4

7.2.2.2 Partner Link Type and Port Type in the BPEL Code 7-4

7.2.2.3 Invoke Activity for Performing a Request 7-5

7.2.2.4 Synchronous Invocation in BPEL Code 7-5

7.3 Specifying Transaction Timeout Values in Durable Synchronous Processes 7-5

7.3.1 How To Specify Transaction Timeout Values 7-6

7.3.2 What You May Need to Know About SyncMaxWaitTime and Durable
Synchronous Requests Not Timing Out 7-6

7.4 Calling a One-Way Mediator with a Synchronous BPEL Process 7-7

ix

8 Invoking an Asynchronous Web Service from a BPEL Process

8.1 Introduction to Invoking an Asynchronous Web Service 8-1

8.2 Invoking an Asynchronous Web Service 8-2

8.2.1 How to Invoke an Asynchronous Web Service 8-2

8.2.1.1 Adding a Partner Link for an Asynchronous Service 8-2

8.2.1.2 Adding an Invoke Activity 8-3

8.2.1.3 Adding a Receive Activity 8-4

8.2.1.4 Performing Additional Activities 8-5

8.2.2 What Happens When You Invoke an Asynchronous Web Service 8-5

8.2.2.1 portType Section of the WSDL File 8-5

8.2.2.2 partnerLinkType Section of the WSDL File 8-6

8.2.2.3 Partner Links Section in the BPEL File 8-6

8.2.2.4 Composite Application File 8-7

8.2.2.5 Invoke and Receive Activities 8-7

8.2.2.6 createInstance Attribute for Starting a New Instance 8-8

8.2.2.7 Dehydration Points for Maintaining Long-Running Asynchronous
Processes 8-8

8.2.2.8 Multiple Runtime Endpoint Locations 8-8

8.2.3 What You May Need to Know About Midprocess Receive Activities Consuming
Messages After Timing Out 8-9

8.2.4 What You May Need to Know About Multiple Client Components Invoking a
Composite 8-9

8.2.5 What You May Need to Know About Limitations on BPEL 2.0 IMA Support 8-10

8.2.6 What Happens When You Specify a Conversation ID 8-10

8.2.6.1 bpelx:conversationId in BPEL 1.1 8-11

8.2.6.2 bpelx:conversationId in BPEL 2.0 8-11

8.3 Routing Callback Messages to the Correct Endpoint when Multiple Receive or Pick
Activities Use the Same Partner Link 8-11

8.3.1 How to Route Callback Messages to the Correct Endpoint when Multiple
Receive and Pick Activities Use the Same Partner Link 8-11

8.4 Managing Idempotence at the Partner Link Operation Level 8-13

8.4.1 How to Manage Idempotence at the Partner Link Operation Level 8-14

8.5 Creating a Dynamic Partner Link at Design Time for Use at Runtime 8-14

8.5.1 How To Create a Dynamic Partner Link at Design Time for Use at Runtime 8-15

8.6 Overriding Security Certificates when Invoking Dynamic Partner Links 8-17

8.7 Overriding WSDL Files of Dynamic Partner Links 8-20

8.8 Using WS-Addressing in an Asynchronous Service 8-23

8.8.1 How to Use WS-Addressing in an Asynchronous Service 8-24

8.8.1.1 Using TCP Tunneling to View Messages Exchanged Between Programs 8-24

x

9 Using Correlation Sets and Message Aggregation

9.1 Introduction to Correlation Sets in an Asynchronous Service 9-1

9.1.1 Scenarios for Using Correlation Sets 9-1

9.1.2 Understanding Correlation Set Contents and Concepts 9-2

9.1.3 Overview of Correlation Set Creation 9-3

9.2 Creating Correlation Sets in Oracle JDeveloper 9-3

9.2.1 How to Create a Correlation Set with the Correlation Wizard 9-4

9.2.2 How to Manually Create Correlation Sets From the Correlations Tab 9-13

9.2.2.1 Step 1: Creating a Project 9-14

9.2.2.2 Step 2: Configuring Partner Links and File Adapter Services 9-14

9.2.2.3 Step 3: Creating Three Receive Activities 9-18

9.2.2.4 Step 4: Creating Correlation Sets 9-20

9.2.2.5 Step 5: Associating Correlation Sets with Receive Activities 9-21

9.2.2.6 Step 6: Creating Property Aliases 9-22

9.2.2.7 Step 7: Reviewing WSDL File Content 9-24

9.2.3 What You May Need to Know About Conversion IDs and Different Composite
Revisions 9-24

9.2.4 What You May Need to Know About Setting Correlations for an IMA Using a
fromParts Element With Multiple Parts 9-26

9.3 Routing Messages to the Same Instance 9-26

9.3.1 How to Configure BPEL Process Instance Creation 9-26

9.3.2 How to Use the Same Operation in Entry and Midprocess Receive Activities 9-28

9.3.3 How to Route a Message to a New or Existing Instance when Using
Correlation Sets 9-30

10

Using Parallel Flow in a BPEL Process

10.1 Introduction to Parallel Flows in BPEL Processes 10-1

10.1.1 What You May Need to Know About the Execution of Parallel Flow Branches
in a Single Thread 10-2

10.2 Creating a Parallel Flow 10-3

10.2.1 How to Create a Parallel Flow 10-3

10.2.2 What Happens When You Create a Parallel Flow 10-5

10.2.3 Synchronizing the Execution of Activities in a Flow Activity 10-6

10.2.4 How to Create Synchronization Between Activities Within a Flow Activity 10-7

10.2.5 What Happens When You Create Synchronization Between Activities Within
a Flow Activity 10-9

10.2.6 What You May Need to Know About Join Conditions in Target Activities 10-11

10.3 Customizing the Number of Parallel Branches 10-12

10.3.1 Processing Multiple Sets of Activities with the forEach Activity in BPEL 2.0 10-12

10.3.1.1 How to Create a forEach Activity 10-14

10.3.1.2 What Happens When You Create a forEach Activity 10-16

xi

10.3.2 Customizing the Number of Flow Activities with the flowN Activity in BPEL 1.1 10-18

10.3.2.1 How to Create a flowN Activity 10-20

10.3.2.2 What Happens When You Create a FlowN Activity 10-21

11

Using Conditional Branching in a BPEL Process

11.1 Introduction to Conditional Branching 11-1

11.2 Defining Conditional Branching with the If or Switch Activity 11-2

11.2.1 Defining Conditional Branching with the If Activity in BPEL 2.0 11-2

11.2.1.1 How to Create an If Activity 11-3

11.2.1.2 What Happens When You Create an If Activity 11-4

11.2.2 Defining Conditional Branching with the Switch Activity in BPEL 1.1 11-5

11.2.2.1 How to Create a Switch Activity 11-6

11.2.2.2 What Happens When You Create a Switch Activity 11-8

11.3 Defining Conditional Branching with the While Activity 11-8

11.3.1 How To Create a While Activity 11-9

11.3.2 What Happens When You Create a While Activity 11-9

11.4 Defining Conditional Branching with the repeatUntil Activity 11-10

11.4.1 How to Create a repeatUntil Activity 11-11

11.4.2 What Happens When You Create a repeatUntil Activity 11-12

11.5 Specifying XPath Expressions to Bypass Activity Execution 11-12

11.5.1 How to Specify XPath Expressions to Bypass Activity Execution 11-12

11.5.2 What Happens When You Specify XPath Expressions to Bypass Activity
Execution 11-13

12

Using Fault Handling in a BPEL Process

12.1 Introduction to a Fault Handler 12-1

12.2 Introduction to BPEL Standard Faults 12-3

12.2.1 BPEL 1.1 Standard Faults 12-3

12.2.2 BPEL 2.0 Standard Faults 12-4

12.2.2.1 Fault Handling Order of Precedence in BPEL 2.0 12-4

12.3 Introduction to the Business and Runtime Fault Categories of BPEL Faults 12-5

12.3.1 Business Faults 12-5

12.3.2 Runtime Faults 12-5

12.3.2.1 bindingFault 12-6

12.3.2.2 remoteFault 12-6

12.3.2.3 replayFault 12-6

12.3.3 How to Add and Propagate Fault Handling in a Synchronous BPEL Process 12-6

12.3.3.1 Edit the Schema and WSDL Files 12-7

12.3.3.2 Add a Fault Handler 12-7

12.3.3.3 Create a Fault Response Variable 12-9

xii

12.3.3.4 Add an Assign Activity to the Catch Activity Branch 12-10

12.3.3.5 Add a Reply Activity to the Catch Activity Branch 12-11

12.4 Handling Faults with the Fault Management Framework 12-12

12.4.1 Understanding How the Fault Policy Binding Resolution Works 12-14

12.4.2 How to Design a Fault Policy for Automated Fault Recovery with the Fault
Policy Wizard 12-14

12.4.2.1 Step 1: Defining Property Sets 12-15

12.4.2.2 Step 2: Defining Alerts 12-16

12.4.2.3 Step 3: Defining Actions 12-18

12.4.2.4 Step 4: Defining Fault Names and Policies 12-19

12.4.2.5 Step 5: Defining the Fault Policy Bindings for the Fault Policy 12-21

12.4.3 How to Manually Design a Fault Policy for Automated Fault Recovery 12-23

12.4.3.1 Manually Creating a Fault Policy File for Automated Fault Recovery 12-23

12.4.3.2 Associating a Fault Policy with Fault Policy Binding 12-27

12.4.3.3 Additional Fault Policy and Fault Policy Binding File Samples 12-28

12.4.3.4 Designing a Fault Policy with Multiple Rejection Handlers 12-31

12.4.4 How to Execute a Fault Policy 12-32

12.4.5 How to Use a Java Action Fault Policy 12-32

12.4.6 How to Design Fault Policies for Oracle BPM Suite 12-36

12.4.7 What You May Need to Know About Designing a Fault Policy in a
Synchronous BPEL Process 12-36

12.4.8 What You May Need to Know About Fault Management Behavior When the
Number of Instance Retries is Exceeded 12-37

12.4.9 What You May Need to Know About Binding Level Retry Execution Within
Fault Policy Retries 12-38

12.5 Catching BPEL Runtime Faults 12-39

12.5.1 How to Catch BPEL Runtime Faults 12-39

12.6 Getting Fault Details with the getFaultAsString XPath Extension Function 12-39

12.6.1 How to Get Fault Details with the getFaultAsString XPath Extension Function 12-39

12.7 Throwing Internal Faults with the Throw Activity 12-40

12.7.1 How to Create a Throw Activity 12-40

12.7.2 What Happens When You Create a Throw Activity 12-41

12.8 Rethrowing Faults with the Rethrow Activity 12-41

12.8.1 How to Create a Rethrow Activity 12-41

12.8.2 What Happens When You Rethrow Faults 12-42

12.9 Returning External Faults 12-43

12.9.1 How to Return a Fault in a Synchronous Interaction 12-43

12.9.2 How to Return a Fault in an Asynchronous Interaction 12-43

12.10 Managing a Group of Activities with a Scope Activity 12-43

12.10.1 How to Create a Scope Activity 12-44

12.10.2 How to Add Descriptive Notes and Images to a Scope Activity 12-45

12.10.3 What Happens After You Create a Scope Activity 12-46

xiii

12.10.4 What You May Need to Know About Scopes 12-48

12.10.5 How to Use a Fault Handler Within a Scope 12-48

12.10.6 What You May Need to Know About the idempotent Property and Fault
Handling 12-49

12.10.7 How to Create a Catch Activity in a Scope 12-50

12.10.8 What Happens When You Create a Catch Activity in a Scope 12-52

12.10.9 How to Insert No-Op Instructions into a Business Process with an Empty
Activity 12-53

12.10.10 What Happens When You Create an Empty Activity 12-53

12.11 Re-executing Activities in a Scope Activity with the Replay Activity 12-54

12.11.1 How to Create a Replay Activity 12-54

12.11.2 What Happens When You Create a Replay Activity 12-55

12.12 Using Compensation After Undoing a Series of Operations 12-56

12.12.1 Using a Compensate Activity 12-56

12.12.2 How to Create a Compensate Activity 12-57

12.12.3 What Happens When You Create a Compensate Activity 12-57

12.12.4 Using a compensateScope Activity in BPEL 2.0 12-58

12.12.5 How to Create a compensateScope Activity 12-58

12.12.6 What Happens When You Create a compensateScope Activity 12-59

12.13 Stopping a Business Process Instance with a Terminate or Exit Activity 12-59

12.13.1 Immediately Ending a Business Process Instance with the Exit Activity in
BPEL 2.0 12-59

12.13.1.1 How to Create an Exit Activity 12-60

12.13.1.2 What Happens When You Create an Exit Activity 12-61

12.13.2 Stopping a Business Process Instance with the Terminate Activity in BPEL
1.1 12-61

12.13.2.1 How to Create a Terminate Activity 12-61

12.13.2.2 What Happens When You Create a Terminate Activity 12-62

12.14 Throwing Faults with Assertion Conditions 12-62

12.14.1 How to Create Assertion Conditions 12-62

12.14.1.1 To create assertion conditions in invoke activities, receive activities,
reply activities, and OnMessage branches: 12-62

12.14.1.2 To create an assertion condition in standalone assert activities: 12-65

12.14.2 How to Disable Assertions 12-66

12.14.3 What Happens When You Create Assertion Conditions 12-66

12.14.4 What You May Need to Know About Assertion Conditions 12-66

12.14.4.1 bpelx:postAssert and bpelx:preAssert Extensions 12-66

12.14.4.2 Use of faultName and message Attributes 12-67

12.14.4.3 Multiple Assertions 12-68

12.14.4.4 Use of Built-in and Custom XPath Functions and $variable References
12-69

12.14.4.5 Assertion Condition Evaluation Logging of Events to the Instance
Audit Trail 12-69

xiv

12.14.4.6 Expressions Not Evaluating to an XML Schema Boolean Type Throw
a Fault 12-69

12.14.4.7 Assertion Conditions in a Standalone Assert Activity 12-70

12.14.5 What You May Need to Know About Postassertion and Preassertion
Condition Schemas and Syntax 12-70

12.15 Classifying SOAP Faults as Retriable 12-72

13

Transaction and Fault Propagation Semantics in BPEL Processes

13.1 Introduction to Transaction Semantics 13-1

13.1.1 Oracle BPEL Process Manager Transaction Semantics 13-1

13.1.1.1 BPELCaller Process Calls a BPELCallee Process That Has
bpel.config.transaction Set to requiresNew 13-2

13.1.1.2 BPELCaller Process Calls a BPELCallee Process That Has
bpel.config.transaction Set to required 13-3

13.2 Introduction to Execution of One-Way Invocations 13-4

13.3 Executing a Business Process Without a Transaction 13-5

13.3.1 When Should I Use a BPEL Process Without a Transaction? 13-6

13.3.2 Guidelines for Executing Without a Transaction 13-6

13.3.3 How to Create a Synchronous BPEL Process Without a Transaction 13-7

13.3.4 How to Create an Asynchronous BPEL Process Without a Transaction 13-8

13.4 Using In-Memory SOA to Improve System Performance 13-9

13.4.1 Persistence Settings for In-Memory Flow Instances 13-10

13.4.2 Steps to Enable In-Memory SOA 13-12

13.4.2.1 Enabling the In-Memory SOA Flag 13-12

13.4.2.2 Designing Your Business Process to Run In-Memory 13-14

14

Incorporating Java and Java EE Code in a BPEL Process

14.1 Introduction to Java and Java EE Code in BPEL Processes 14-1

14.2 Incorporating Java and Java EE Code in BPEL Processes 14-1

14.2.1 How to Wrap Java Code as a SOAP Service 14-1

14.2.2 What You May Need to Know About Wrapping Java Code as a SOAP Service 14-2

14.2.3 How to Embed Java Code Snippets into a BPEL Process with the bpelx:exec
Tag 14-2

14.2.4 How to Embed Java Code Snippets in a BPEL 2.0 Process 14-3

14.2.5 How to Use an XML Facade to Simplify DOM Manipulation 14-4

14.2.6 How to Use bpelx:exec Built-in Methods 14-4

14.2.7 How to Use Java Code Wrapped in a Service Interface 14-5

14.3 Adding Custom Classes and JAR Files 14-6

14.3.1 How to Add Custom Classes and JAR Files 14-6

14.3.1.1 To Add JARs to BpelcClasspath: 14-7

14.3.1.2 To Add Custom Classes: 14-7

xv

14.3.1.3 To Add Custom JARs: 14-7

14.4 Using Java Embedding in a BPEL Process in Oracle JDeveloper 14-7

14.4.1 How To Use Java Embedding in a BPEL Process in Oracle JDeveloper 14-7

14.4.2 What You May Need to Know About Using thread.sleep() in a Java
Embedding Activity 14-8

14.5 Embedding Service Data Objects with bpelx:exec 14-9

14.6 Sharing a Custom Implementation of a Class with Oracle BPEL Process Manager 14-10

14.6.1 How to Configure the BPEL Connection Manager Class to Take Precedence 14-10

15

Using Events and Timeouts in BPEL Processes

15.1 Introduction to Event and Timeout Concepts 15-1

15.2 Selecting Between Continuing or Waiting on a Process with a Pick Activity 15-1

15.2.1 How To Create a Pick Activity 15-3

15.2.2 What Happens When You Create a Pick Activity 15-5

15.2.3 What You May Need to Know About Simultaneous onMessage Branches in
BPEL 2.0 15-6

15.3 Setting Timeouts for Request-Reply and In-Only Operations in Receive Activities 15-7

15.3.1 How to Set Timeouts in Receive Activities 15-8

15.3.2 What Happens When You Set Timeouts in Receive Activities 15-9

15.3.3 What You May Need to Know About Setting Timeouts for Request-Reply and
In-Only Operations 15-10

15.3.3.1 Timeout Settings Relative from When the Activity is Invoked 15-10

15.3.3.2 Timeout Settings as an Absolute Date Time 15-11

15.3.3.3 Timeout Settings Computed Dynamically with an XPath Expression 15-12

15.3.3.4 bpelx:timeout Fault Thrown During an Activity Timeout 15-12

15.3.3.5 Event Added to the BPEL Instance Audit Trail During an Activity
Timeout 15-13

15.3.3.6 Recoverable Timeout Activities During a Server Restart (Refresh
Expiration Alarm Table) 15-13

15.4 Setting an Expiration Time with a Wait Activity 15-13

15.4.1 How To Specify the Minimum Wait Time 15-14

15.4.2 How to Create a Wait Activity 15-14

15.4.3 What Happens When You Create a Wait Activity 15-15

15.5 Specifying Events to Wait for Message Arrival with an OnEvent Branch in BPEL 2.0 15-15

15.5.1 How to Create an onEvent Branch in a Scope Activity 15-16

15.5.2 What Happens When You Create an OnEvent Branch 15-17

15.6 Setting Timeouts for Durable Synchronous Processes 15-18

15.7 Invoking an Oracle Enterprise Scheduler Job in a BPEL Process 15-18

15.7.1 How to Create Oracle Database and SOA-MDS Connections 15-18

15.7.2 How to Create a Schedule Job Activity 15-19

xvi

15.7.3 How to Attach Security Policies to the Service and Reference Binding
Components 15-25

16

Coordinating Master and Detail Processes

16.1 Introduction to Master and Detail Process Coordinations 16-1

16.1.1 BPEL File Definition for the Master Process 16-3

16.1.1.1 Correlating a Master Process with Multiple Detail Processes 16-5

16.1.2 BPEL File Definition for Detail Processes 16-6

16.2 Defining Master and Detail Process Coordination in Oracle JDeveloper 16-7

16.2.1 How to Create a Master Process 16-7

16.2.2 How to Create a Detail Process 16-9

16.2.3 How to Create an Invoke Activity 16-11

17

Using the Notification Service

17.1 Introduction to the Notification Service 17-1

17.2 Introduction to Notification Channel Setup 17-2

17.3 Selecting Notification Channels During BPEL Process Design 17-3

17.3.1 How To Configure the Email Notification Channel 17-4

17.3.1.1 Setting Email Attachments 17-7

17.3.1.2 Formatting the Body of an Email Message as HTML 17-8

17.3.1.3 Using Dynamic HTML for Message Content Requires a CDATA
Function 17-9

17.3.2 How to Configure the IM Notification Channel 17-9

17.3.3 How to Configure the SMS Notification Channel 17-10

17.3.4 How to Select Email Addresses and Telephone Numbers Dynamically 17-12

17.3.5 How to Select Notification Recipients by Browsing the User Directory 17-13

17.4 Allowing the End User to Select Notification Channels 17-13

17.4.1 How to Allow the End User to Select Notification Channels 17-14

17.4.1.1 How to Create and Send Headers for Notifications 17-15

18

Using Oracle BPEL Process Manager Sensors and Analytics

18.1 Introduction to Oracle BPEL Process Manager Sensors 18-1

18.1.1 Composite Sensors 18-3

18.2 Configuring Sensors and Sensor Actions in Oracle JDeveloper 18-3

18.2.1 How to Access Sensors and Sensor Actions 18-3

18.2.2 How to Configure Activity, Variable, and Fault Sensors 18-5

18.2.2.1 To Configure an Activity Sensor: 18-5

18.2.2.2 To Configure a Variable Sensor: 18-7

18.2.2.3 To Configure a Fault Sensor: 18-7

xvii

18.2.3 How to Configure Sensor Actions 18-8

18.2.4 How to Publish to Remote Topics and Queues 18-12

18.2.5 How to Create a Custom Data Publisher 18-13

18.2.6 How to Register the Sensors and Sensor Actions in the composite.xml File 18-14

18.3 Viewing Sensors and Sensor Action Definitions in Oracle Enterprise Manager
Fusion Middleware Control 18-15

18.4 Configuring BPEL Process Analytics 18-15

18.4.1 Introduction to Business Indicators 18-16

18.4.2 Introduction to Standard Sampling Points 18-16

18.4.3 Introduction to User-Defined Sampling Points 18-16

18.4.4 How to Access Analytics View 18-17

18.4.4.1 How to Define Business Indicators 18-19

18.4.4.2 How to Define Measurements 18-22

18.4.4.3 How to Configure Composite-Level Analytic Sampling Points 18-30

18.4.4.4 How to Configure Process-Level Analytic Sampling Points 18-31

18.4.5 How to Edit Business Indicators in the Business Indicator Overview Editor 18-32

18.4.6 Deploying BPEL Analytics 18-33

18.4.7 Viewing BPEL Analytics at Runtime 18-34

Part III Using the Oracle Mediator Service Component

19

Getting Started with Oracle Mediator

19.1 Introduction to Oracle Mediator 19-1

19.2 Mediator Functionality 19-1

19.2.1 Content-Based and Header-Based Routing 19-2

19.2.2 Synchronous and Asynchronous Interactions 19-2

19.2.3 Sequential and Parallel Routing of Messages 19-2

19.2.4 Message Resequencing 19-2

19.2.5 Data Transformation 19-3

19.2.6 Payload Validation 19-3

19.2.7 Java Callouts 19-3

19.2.8 Event Handling 19-3

19.2.9 Dynamic Routing 19-3

19.2.10 Error Handling 19-3

19.2.11 Sending Messages Back to the Caller (Echo) 19-4

19.2.12 Multiple Part Messages 19-4

19.3 Creating a Mediator 19-4

19.3.1 How to Create a Mediator 19-4

19.3.1.1 To create a composite application with a Mediator: 19-4

19.3.1.2 To create a Mediator in an existing composite application: 19-5

xviii

19.3.1.3 To create a new project with a Mediator: 19-6

19.3.1.4 To create a Mediator in an existing project: 19-7

19.4 Introduction to the Mediator Editor Environment 19-8

19.5 Configuring the Mediator Interface Definition 19-10

19.5.1 How to Configure the Mediator Interface Definition 19-11

19.5.2 What Happens When You Create a Mediator 19-15

19.5.2.1 Without an Interface Definition 19-16

19.5.2.2 With a WSDL-Based Interface 19-16

19.5.2.3 With a One-Way Interface Definition 19-17

19.5.2.4 With a Synchronous Interface Definition 19-17

19.5.2.5 With an Asynchronous Interface Definition 19-17

19.5.2.6 With an Event Subscription 19-18

19.6 Defining an Interface for a Mediator 19-19

19.6.1 How to Define an Interface for a Mediator 19-19

19.6.1.1 To Subscribe to Events: 19-19

19.6.1.2 To Define Services for a Mediator Using a Wire: 19-20

19.6.1.3 To Define Services for a Mediator in the Mediator Editor: 19-21

19.7 Generating a WSDL File 19-21

19.7.1 How to Generate a WSDL File 19-22

19.7.1.1 To generate a WSDL file for a one-way interface from an XSD file: 19-22

19.7.1.2 To generate a WSDL file for a synchronous interface from an XSD file: 19-24

19.7.1.3 To generate a WSDL file for an asynchronous interface from an XSD
file: 19-25

19.8 Specifying Validation and Priority Properties 19-27

19.9 Modifying a Mediator Service Component 19-27

19.9.1 How To Modify Mediator Operations 19-27

19.9.2 How To Modify Mediator Event Subscriptions 19-28

20

Creating Oracle Mediator Routing Rules

20.1 Introduction to Routing Rules 20-1

20.1.1 Static Routing Rules 20-1

20.1.1.1 Types of Static Rules 20-2

20.1.1.2 Static Routing Rule Components 20-3

20.1.2 Dynamic Routing Rules 20-3

20.1.3 Sequential and Parallel Execution 20-3

20.1.3.1 Basic Principles of Sequential Routing Rules 20-4

20.1.3.2 Basic Principles of Parallel Routing Rules 20-4

20.1.3.3 Finer Control Over Thread Allocation in Parallel Routing 20-5

20.2 Resequencing Rules 20-5

20.3 Defining Routing Rules 20-6

20.3.1 How To Access the Routing Rules Section 20-6

xix

20.3.1.1 From the SOA Composite Editor: 20-7

20.3.1.2 From the Applications window: 20-7

20.3.2 How to Create Static Routing Rules 20-7

20.3.2.1 How to Specify Mediator Services or Events 20-7

20.3.2.2 What You May Need to Know About Echoing a Service 20-12

20.3.2.3 How to Specify Sequential or Parallel Execution 20-13

20.3.2.4 How to Configure Response Messages 20-13

20.3.2.5 How to Handle Premature Callbacks 20-14

20.3.2.6 How to Handle Multiple Callbacks 20-15

20.3.2.7 How to Handle Faults 20-15

20.3.2.8 How to Specify an Expression for Filtering Messages 20-18

20.3.2.9 How to Translate Between Native XSD Formats and XML Formats 20-23

20.3.2.10 How to Use Inbound Translation 20-24

20.3.2.11 How to Use Outbound Translation 20-27

20.3.2.12 How to Create XSLT Transformations 20-29

20.3.2.13 How to Create XQuery Transformations 20-31

20.3.2.14 How to Assign Values 20-34

20.3.2.15 What You May Need to Know About the Assign Activity 20-39

20.3.2.16 How to Access Headers for Filters and Assignments 20-41

20.3.2.17 How to Use Semantic Validation 20-44

20.3.2.18 How to Work with Attachments 20-45

20.3.2.19 How to Use Java Callouts 20-45

20.3.3 How to Create Dynamic Routing Rules 20-55

20.3.3.1 How to Dynamically Override a Static Routing Rule Using a DVM 20-55

20.3.3.2 How to Dynamically Override a Static Routing Rule Using a Decision
Component 20-60

20.3.3.3 How to Remove an Existing Dynamic Routing Rule 20-63

20.3.4 What You May Need to Know About Using Dynamic Routing Rules 20-63

20.3.5 How to Define Default Routing Rules 20-64

20.3.5.1 Default Rule Scenarios 20-64

20.3.5.2 Default Rule Target 20-65

20.3.5.3 Default Rule: Validation, Transformation, and Assign Functionality 20-66

20.3.5.4 Default Rule: Java Callouts 20-66

20.3.5.5 Default Rule: Mediator .mplan File 20-66

21

Working with Multiple Part Messages in Oracle Mediator

21.1 Introduction to Mediator Multipart Message Support 21-1

21.2 Working with Multipart Request Messages 21-2

21.2.1 How to Specify Filter Expressions for Multipart Request Messages 21-2

21.2.2 How to Add Validations for Multipart Request Messages 21-2

21.2.3 How to Create Transformations for Multipart Request Messages 21-3

xx

21.2.4 How to Assign Values for Multipart Request Messages 21-3

21.2.5 How to Work with Multipart Reply, Fault, and Callback Source Messages 21-3

21.2.6 How to Work with Multipart Target Messages 21-4

22

Using Oracle Mediator Error Handling

22.1 Introduction to Mediator Error Handling 22-1

22.1.1 Fault Policies 22-1

22.1.1.1 Conditions 22-2

22.1.1.2 Actions 22-4

22.1.2 Fault Bindings 22-8

22.1.3 Error Groups in Mediator 22-9

22.2 Using Error Handling with Mediator 22-10

22.2.1 How to Use Error Handling for a Mediator Service Component 22-11

22.2.2 What Happens at Runtime 22-11

22.3 Fault Recovery Using Oracle Enterprise Manager Fusion Middleware Control 22-11

22.4 Error Handling XML Schema Definition Files 22-12

22.4.1 Schema Definition File for fault-policies.xml 22-12

22.4.2 Schema Definition File for fault-bindings.xml 22-16

23

Resequencing in Oracle Mediator

23.1 Introduction to the Resequencer 23-1

23.1.1 Groups and Sequence IDs 23-1

23.1.2 Identification of Groups and Sequence IDs 23-2

23.2 Resequencing Order 23-2

23.2.1 Standard Resequencer 23-2

23.2.1.1 Overview of the Standard Resequencer 23-3

23.2.1.2 Information Required for Standard Resequencing 23-3

23.2.1.3 Example of the Standard Resequencer 23-3

23.2.2 FIFO Resequencer 23-4

23.2.2.1 Overview of the FIFO Resequencer 23-4

23.2.2.2 Information Required for FIFO Resequencing 23-4

23.2.2.3 Example of the FIFO Resequencer 23-4

23.2.3 Best Effort Resequencer 23-5

23.2.3.1 Overview of the Best Effort Resequencer 23-5

23.2.3.2 Best Effort Resequencer Message Selection Strategies 23-5

23.2.3.3 Best Effort Resequencer Message Delivery 23-6

23.2.3.4 Information Required for Best Effort Resequencing 23-6

23.2.3.5 Example of Best Effort Resequencing Based on Maximum Rows 23-7

23.2.3.6 Example of Best Effort Resequencing Based on a Time Window 23-7

xxi

23.3 Configuring the Resequencer 23-8

23.3.1 How to Specify the Resequencing Level 23-8

23.3.2 How to Configure the Resequencing Strategy 23-9

23.3.2.1 To configure a standard resequencer: 23-9

23.3.2.2 To configure a FIFO resequencer: 23-10

23.3.2.3 To configure a best effort resequencer: 23-11

24

Understanding Message Exchange Patterns of an Oracle Mediator

24.1 One-way Message Exchange Patterns 24-1

24.1.1 The one.way.returns.fault Property 24-2

24.1.1.1 To add the one.way.returns.fault property: 24-3

24.2 Request-Reply Message Exchange Patterns 24-4

24.3 Request-Reply-Fault Message Exchange Patterns 24-5

24.4 Request-Callback Message Exchange Patterns 24-6

24.5 Request-Reply-Callback Message Exchange Patterns 24-7

24.6 Request-Reply-Fault-Callback Message Exchange Patterns 24-8

Part IV Using the Business Rules Service Component

25

Getting Started with Oracle Business Rules

25.1 Introduction to the Business Rule Service Component 25-1

25.1.1 Integrating BPEL Processes, Business Rules, and Human Tasks 25-1

25.2 Overview of Rules Designer Editor Environment 25-2

25.2.1 Applications Window 25-3

25.2.2 Rules Designer Window 25-3

25.2.3 Structure Window 25-4

25.2.4 Business Rule Validation Log Window 25-5

25.3 Introduction to Creating and Editing Business Rules 25-5

25.3.1 How to Create Business Rules Components 25-5

25.3.2 Working with Business Rules in Rules Designer 25-7

25.4 Adding Business Rules to a BPEL Process 25-7

25.4.1 How to Add Inputs for Business Rule 25-10

25.4.2 How to Add Outputs for Business Rule 25-12

25.4.3 How to Set Options and Create Decision Service and Business Rule
Dictionary 25-13

25.4.4 What Happens When You Add Business Rules to a BPEL Process 25-14

25.4.5 What Happens When You Create a Business Rules Dictionary 25-14

25.4.6 What You May Need to Know About Invoking Business Rules in a BPEL
Process 25-15

xxii

25.4.7 What You May Need to Know About Decision Component Stateful Operation 25-15

25.5 Adding Business Rules to a SOA Composite Application 25-15

25.5.1 How to Add Business Rules to a SOA Composite Application 25-16

25.5.1.1 How to Add Inputs to a Business Rule 25-17

25.5.1.2 How to Add Output to a Business Rule 25-18

25.5.1.3 How to Set Options and Create Decision Service and Business Rules
Dictionary 25-19

25.5.2 How to Select and Modify a Decision Function in a Business Rule Component 25-21

25.6 Running Business Rules in a Composite Application 25-23

25.6.1 What You May Need to Know About Testing a Standalone Decision Service
Component 25-23

25.7 Using Business Rules with Oracle ADF Business Components Fact Types 25-24

26

Using Declarative Components and Task Flows

26.1 Introduction to Declarative Components and Task Flows 26-1

26.2 Introduction to the Oracle Business Rules Editor Declarative Component 26-1

26.2.1 Using the Oracle Business Rules Editor Component 26-2

26.2.2 How to Create and Run a Sample Application by Using the Rules Editor
Component 26-4

26.2.2.1 How to Create the RuleSetModel Object 26-7

26.2.2.2 How to Create the .jspx File 26-11

26.2.2.3 How to Refer to the Oracle Rules Shared Libraries 26-12

26.2.2.4 How to Run the Sample Application 26-15

26.2.3 How to Deploy a Rules Editor Application to a Standalone WLS 26-15

26.2.4 What You May Need to Know About the Custom Permissions for the Rules
Editor Component 26-16

26.2.5 What You May Need to Know About the Supported Tags of the Rules Editor
Component 26-18

26.3 Introduction to the Oracle Business Rules Dictionary Editor Declarative Component 26-23

26.3.1 Using the Oracle Business Rules Dictionary Component 26-24

26.3.2 How to Create and Run a Sample Application by Using the Rules Dictionary
Editor Component 26-30

26.3.2.1 How to Create the RuleDictionaryModel Object 26-33

26.3.2.2 How to Create .jspx File for the Rules Dictionary Editor Component 26-37

26.3.2.3 How to Refer the oracle.rules and the oracle.soa.rules_dict_dc.webapp
Shared Libraries 26-39

26.3.2.4 How to Run the Sample Rules Dictionary Editor Application 26-42

26.3.3 How to Deploy a Rules Dictionary Application to a Standalone Oracle
WebLogic Server 26-42

26.3.4 What You May Need to Know About the Supported Attributes of the Rules
Dictionary Editor Component 26-43

26.4 Introduction to the Oracle Business Rules Dictionary Editor Task Flow 26-48

26.4.1 Using the Oracle Business Rules Dictionary Task Flow 26-49

xxiii

26.4.2 How to Create and Run a Sample Application By Using the Rules Dictionary
Editor Task Flow 26-49

26.4.2.1 How to Add a Rule Dictionary Editor Task Flow 26-57

26.4.2.2 How to Edit the pagedef.xml File 26-60

26.4.2.3 How to Refer to oracle.rules and oracle.soa.rules_dict_dc.webapp
Shared Libraries 26-61

26.4.2.4 How to Run the Sample Task Flow Application 26-61

26.4.3 How to Deploy a Rules Dictionary Editor Task Flow Application to a
Standalone Oracle WebLogic Server 26-62

26.5 Localizing the ADF-Based Web Application 26-63

26.6 Working with Translations 26-64

26.6.1 Enabling Translations for Consumer of Reusable Rules UI ADF Task Flow
Component 26-64

26.6.1.1 Sample Code to Pass an Implementation of IRelatedMetadataDetails 26-64

26.6.2 Enabling Translations for Consumer of Rules Web UI Application 26-66

26.6.2.1 Sample Code for Creating an Instance of resourceManager 26-67

Part V Using the Human Workflow Service Component

27

Getting Started with Human Workflow

27.1 Introduction to Human Workflow 27-1

27.2 Introduction to Human Workflow Concepts 27-3

27.2.1 Introduction to Design and Runtime Concepts 27-3

27.2.1.1 Task Assignment and Routing 27-3

27.2.1.2 Static, Dynamic, and Rule-Based Task Assignment 27-6

27.2.1.3 Task Stakeholders 27-7

27.2.1.4 Task Deadlines 27-8

27.2.1.5 Notifications 27-9

27.2.1.6 Task Forms 27-9

27.2.1.7 Advanced Concepts 27-10

27.2.1.8 Reports and Audit Trails 27-10

27.2.2 Introduction to the Stages of Human Workflow Design 27-11

27.3 Introduction to Human Workflow Use Cases 27-12

27.3.1 Task Assignment to a User or Role 27-12

27.3.2 Use of the Various Participant Types 27-12

27.3.3 Escalation, Expiration, and Delegation 27-13

27.3.4 Automatic Assignment and Delegation 27-14

27.3.5 Dynamic Assignment of Users Based on Task Content 27-14

27.4 Introduction to Human Workflow Architecture 27-14

27.4.1 Human Workflow Services 27-14

27.4.2 Use of Human Task 27-17

xxiv

27.4.3 Service Engines 27-18

27.5 Human Workflow and Business Rule Differences Between Oracle SOA Suite and
Oracle BPM Suite 27-18

28

Creating Human Tasks

28.1 Introduction to Human Tasks 28-1

28.1.1 Introduction to Creating a Human Task Definition 28-2

28.1.2 Introduction to Associating the Human Task Definition with a BPEL Process 28-2

28.1.3 Introduction to Generating the Task Form 28-3

28.2 Creating Human Tasks 28-3

28.2.1 How to Create a Human Task Using the SOA Composite Editor 28-3

28.2.2 How to Create a Human Task Using Oracle BPEL Designer 28-4

28.2.3 What Happens When You Create a Human Task 28-5

28.3 Configuring Human Tasks 28-6

28.4 Exiting the Human Task Editor and Saving Your Changes 28-6

28.5 Associating Human Tasks with BPEL Processes 28-7

28.5.1 How to Associate a Human Task with a BPEL Process 28-7

28.5.2 What You May Need to Know About Deleting a Wire Between a Human Task
and a BPEL Process 28-8

28.5.3 How to Define the Human Task Activity Title, Initiator, Priority, and Parameter
Variables 28-9

28.5.3.1 Specifying the Task Title 28-9

28.5.3.2 Specifying the Task Initiator and Task Priority 28-10

28.5.3.3 Specifying Task Parameters 28-10

28.5.4 How to Define the Human Task Activity Advanced Features 28-12

28.5.4.1 Specifying a Scope Name and a Global Task Variable Name 28-13

28.5.4.2 Specifying a Task Owner 28-14

28.5.4.3 Specifying an Identification Key 28-14

28.5.4.4 Specifying an Identity Context 28-14

28.5.4.5 Specifying an Application Context 28-14

28.5.4.6 Including the Task History of Other Human Tasks 28-14

28.5.5 How to View the Generated Human Task Activity 28-15

28.5.5.1 Invoking BPEL Callbacks 28-16

28.5.6 What You May Need to Know About Changing the Generated Human Task
Activity 28-18

28.5.7 What You May Need to Know About Deleting a Partner Link Generated by a
Human Task 28-19

28.5.8 How to Define Outcome-Based Modeling 28-19

28.5.8.1 Specifying Payload Updates 28-19

28.5.8.2 Using Case Statements for Other Task Conclusions 28-19

xxv

28.5.9 What You May Need to Know About Encoding an Attachment 28-20

29

Configuring Human Tasks

29.1 Accessing the Sections of the Human Task Editor 29-1

29.2 Specifying the Title, Description, Outcome, Priority, Category, Owner, and
Application Context 29-3

29.2.1 How to Specify a Task Title 29-4

29.2.2 How to Specify a Task Description 29-4

29.2.3 How to Specify a Task Outcome 29-5

29.2.4 How to Specify a Task Priority 29-7

29.2.5 How to Specify a Task Category 29-7

29.2.6 How to Specify a Task Owner 29-7

29.2.6.1 Specifying a Task Owner Statically Through the User Directory or a List
of Application Roles 29-8

29.2.6.2 Specifying a Task Owner Dynamically Through an XPath Expression 29-13

29.2.7 How To Specify an Application Context 29-14

29.3 Specifying the Task Payload Data Structure 29-15

29.3.1 How to Specify the Task Payload Data Structure 29-15

29.4 Assigning Task Participants 29-17

29.4.1 How to Specify a Stage Name and Add Parallel and Sequential Blocks 29-19

29.4.2 How to Assign Task Participants 29-20

29.4.3 How to Configure the Single Participant Type 29-21

29.4.3.1 Creating a Single Task Participant List 29-23

29.4.3.2 Specifying a Time Limit for Acting on a Task 29-33

29.4.3.3 Inviting Additional Participants to a Task 29-34

29.4.3.4 Bypassing a Task Participant 29-34

29.4.4 How to Configure the Parallel Participant Type 29-34

29.4.4.1 Specifying the Voting Outcome 29-36

29.4.4.2 Creating a Parallel Task Participant List 29-37

29.4.4.3 Specifying a Time Limit for Acting on a Task 29-37

29.4.4.4 Inviting Additional Participants to a Task 29-38

29.4.4.5 Bypassing a Task Participant 29-38

29.4.5 How to Configure the Serial Participant Type 29-38

29.4.5.1 Creating a Serial Task Participant List 29-41

29.4.5.2 Specifying a Time Limit for Acting on a Task 29-41

29.4.5.3 Inviting Additional Participants to a Task 29-42

29.4.5.4 Bypassing a Task Participant 29-42

29.4.6 How to Configure the FYI Participant Type 29-42

29.4.6.1 Creating an FYI Task Participant List 29-43

29.5 Selecting a Routing Policy 29-43

29.5.1 How to Customize Tasks Routing 29-45

xxvi

29.5.1.1 Exclude Task Creator from Approval List 29-45

29.5.1.2 Allow All Participants to Invite Other Participants or Edit New
Participants 29-46

29.5.1.3 Allow Initiator to Add Participants 29-46

29.5.1.4 Stopping Routing of a Task to Further Participants 29-46

29.5.2 How to Specify Advanced Task Routing Using Business Rules 29-49

29.5.2.1 Introduction to Advanced Task Routing Using Business Rules 29-49

29.5.2.2 Facts 29-49

29.5.2.3 Action Types 29-50

29.5.2.4 Sample Ruleset 29-51

29.5.2.5 Linked Dictionary Support 29-53

29.5.2.6 Creating Advanced Routing Rules 29-53

29.5.3 How to Use External Routing 29-54

29.5.4 How to Configure the Error Assignee and Reviewers 29-55

29.5.4.1 How to Change Server Settings 29-58

29.6 Specifying Multilingual Settings and Style Sheets 29-58

29.6.1 How to Specify WordML and Other Style Sheets for Attachments 29-58

29.6.2 How to Specify Multilingual Settings 29-59

29.7 Specifying What to Show in Task Details in the Worklist 29-60

29.8 Escalating, Renewing, or Ending the Task 29-60

29.8.1 Introduction to Escalation and Expiration Policy 29-61

29.8.2 How to Specify a Policy to Never Expire 29-62

29.8.3 How to Specify a Policy to Expire 29-62

29.8.4 How to Extend an Expiration Policy Period 29-63

29.8.5 How to Escalate a Task Policy 29-63

29.8.6 How to Specify Escalation Rules 29-64

29.8.7 How to Specify a Due Date 29-65

29.9 Specifying Participant Notification Preferences 29-66

29.9.1 How to Notify Recipients of Changes to Task Status 29-67

29.9.2 How to Edit the Notification Message 29-69

29.9.3 How to Set Up Reminders 29-70

29.9.4 How to Change the Character Set Encoding 29-70

29.9.5 How to Secure Notifications to Exclude Details 29-71

29.9.6 How to Display the Oracle BPM Worklist URL in Notifications 29-71

29.9.7 How to Make Email Messages Actionable 29-71

29.9.8 How to Send Task Attachments with Email Notifications 29-71

29.9.9 How to Send Email Notifications to Groups and Application Roles 29-72

29.9.10 How to Customize Notification Headers 29-72

29.10 Specifying Access Policies and Task Actions on Task Content 29-73

29.10.1 Introduction to Access Rules 29-73

29.10.2 Specifying User Privileges for Acting on Task Content 29-74

xxvii

29.10.3 Specifying Actions for Acting Upon Tasks 29-76

29.10.4 How to Specify a Workflow Digital Signature Policy 29-77

29.10.4.1 Specifying a Certificate Authority 29-78

29.11 Specifying Restrictions on Task Assignments 29-78

29.11.1 How to Specify Restrictions on Task Assignments 29-79

29.12 Specifying Java or Business Event Callbacks 29-79

29.12.1 Specifying Java Callbacks 29-81

29.12.2 Specifying Business Event Callbacks 29-81

29.12.3 How to Specify Task and Routing Customizations in BPEL Callbacks 29-84

29.12.4 How to Disable BPEL Callbacks 29-84

30

Designing Task Forms for Human Tasks

30.1 Introduction to the Task Form 30-1

30.1.1 What You May Need to Know About Task Forms: Time Zone Conversion 30-2

30.2 Associating the Task Flow with the Task Service 30-2

30.3 Creating an ADF Task Flow Based on a Human Task 30-3

30.3.1 How To Create an ADF Task Flow from the Human Task Editor 30-3

30.3.2 How To Create an ADF Task Flow Based on a Human Task 30-6

30.3.3 What Happens When You Create an ADF Task Flow Based on a Human Task 30-6

30.3.4 What You May Need to Know About Having Multiple ADF Task Flows That
Contain the Same Element with Different Meta-attributes 30-7

30.4 Creating a Task Form 30-8

30.4.1 How To Create an Autogenerated Task Form 30-9

30.4.2 How to Register the Library JAR File for Custom Page Templates 30-10

30.4.3 How To Create a Task Form Using the Custom Task Form Wizard 30-11

30.4.4 How To Create a Task Form Using the Complete Task with Payload Drop
Handler 30-19

30.4.4.1 Complete Task with Payload 30-23

30.4.4.2 Complete Task without Payload 30-23

30.4.4.3 Task Details for Email 30-24

30.4.4.4 Task Header 30-24

30.4.4.5 Task Actions 30-25

30.4.4.6 Task History 30-26

30.4.4.7 Task Comments and Attachments 30-26

30.4.5 How To Create Task Form Regions Using Individual Drop Handlers 30-27

30.4.6 How To Add the Payload to the Task Form 30-28

30.4.7 What Happens When You Create a Task Form 30-30

30.5 Refreshing Data Controls When the Task XSD Changes 30-30

30.6 Securing the Task Flow Application 30-31

30.7 Creating an Email Notification 30-32

30.7.1 How To Create an Email Notification 30-32

xxviii

30.7.1.1 Creating a Task Flow with a Router 30-32

30.7.1.2 Creating an Email Notification Page 30-36

30.7.2 What Happens When You Create an Email Notification Page 30-39

30.8 Deploying a Composite Application with a Task Flow 30-39

30.8.1 How To Deploy a Composite Application with a Task Flow 30-39

30.8.2 How To Redeploy the Task Form 30-40

30.8.3 How To Deploy a Task Flow as a Separate Application 30-40

30.8.4 How To Deploy a Task Form to a non-SOA Oracle WebLogic Server 30-40

30.8.4.1 Before Deploying the Task Form: Port Changes 30-40

30.8.4.2 Configuring Unique Cookie Context Paths for the Session Tracking
Cookies 30-41

30.8.4.3 Deploying oracle.soa.workflow.jar to a non-SOA Oracle WebLogic
Server 30-41

30.8.4.4 Defining the Foreign JNDI Provider on a non-SOA Oracle WebLogic
Server 30-43

30.8.4.5 Defining the Foreign JNDI Provider Links on a non-SOA Oracle
WebLogic Server 30-45

30.8.4.6 Including a Grant for bpm-services.jar 30-47

30.8.4.7 Deploying the Application 30-47

30.8.5 What Happens When You Deploy the Task Form 30-48

30.8.6 What You May Need to Know About Undeploying a Task Flow 30-48

30.9 Displaying a Task Form in the Worklist 30-49

30.10 Displaying a Task in an Email Notification 30-49

30.10.1 Changing the Text for the Worklist Application in Task Notifications 30-50

30.10.2 Changing the URL of the Worklist Application in Task Notifications 30-51

30.11 Reusing the Task Flow Application with Multiple Human Tasks 30-51

30.11.1 How To Reuse the Task Flow Application with Multiple Human Tasks 30-51

30.11.2 How to Reuse the Task Flow Application with Different Actions 30-52

31

Human Workflow Tutorial

31.1 Introduction to the Human Workflow Tutorial 31-1

31.2 Prerequisites 31-2

31.3 Creating an Application and a Project with a BPEL Process 31-2

31.4 Creating the Human Task Service Component 31-6

31.5 Designing the Human Task 31-7

31.6 Associating the Human Task and BPEL Process Service Components 31-9

31.7 Creating a Task Form Project 31-13

31.8 Deploying the Task Form 31-13

31.9 Creating an Application Server Connection 31-14

31.10 Deploying the SOA Composite Application 31-15

31.11 Initiating the Process Instance 31-15

xxix

31.12 Acting on the Task in Oracle BPM Worklist 31-15

32

Using Oracle BPM Worklist

32.1 Introduction to Oracle BPM Worklist 32-1

32.2 Logging In to Oracle BPM Worklist 32-3

32.2.1 How to Log In to the Worklist 32-3

32.2.1.1 Enabling the weblogic User for Logging in to the Worklist 32-4

32.2.2 What Happens When You Log In to the Worklist 32-4

32.2.3 What Happens When You Change a User's Privileges While They are Logged
in to Oracle BPM Worklist 32-8

32.3 Customizing the Task List Page 32-8

32.3.1 How To Filter Tasks 32-9

32.3.1.1 To Filter Tasks Based on Assignee or State 32-9

32.3.1.2 To Filter Tasks Based on Keyword Search 32-10

32.3.1.3 To Filter Tasks Based on an Advanced Search 32-10

32.3.2 How To Create, Delete, and Customize Worklist Views 32-16

32.3.2.1 To Customize a Worklist View 32-19

32.3.3 How To Customize the Task Status Chart 32-20

32.3.4 How To Create a ToDo Task 32-21

32.3.5 How to Create Subtasks in the Worklist Application 32-22

32.3.5.1 What You May Need to Know About Creating Subtasks 32-22

32.4 Exporting Tasks to Microsoft Excel 32-23

32.4.1 How to Export Tasks to Excel 32-23

32.5 Acting on Tasks: The Task Details Page 32-24

32.5.1 System Actions 32-27

32.5.2 Task History 32-28

32.5.3 How To Act on Tasks 32-31

32.5.3.1 To Request Information 32-33

32.5.3.2 To Route a Task 32-35

32.5.3.3 To Add Comments or Attachments 32-36

32.5.4 How To Act on Tasks That Require a Digital Signature 32-38

32.6 Approving Tasks 32-41

32.7 Setting a Vacation Period 32-42

32.8 Setting Rules 32-43

32.8.1 How To Create User Rules 32-44

32.8.2 How To Create Group Rules 32-46

32.8.3 Assignment Rules for Tasks with Multiple Assignees 32-47

32.8.4 How to Avoid Circular Logic in Reassigned Vacation Rules 32-48

32.9 Using the Worklist Administration Functions 32-49

32.9.1 How To Manage Other Users' or Groups' Rules (as an Administrator) 32-50

32.9.2 How to Specify the Login Page Realm Label 32-50

xxx

32.9.3 How to Specify the Resource Bundle 32-51

32.9.4 How to Specify the Language Locale Information 32-52

32.9.5 How to Specify User Name Format 32-53

32.9.6 How to Specify a Branding Logo 32-53

32.9.7 How to Specify the Branding Title 32-54

32.9.8 How to Choose a Skin 32-55

32.9.8.1 To Choose A Skin 32-55

32.9.8.2 To Create a JAR File Containing Customized Skins 32-55

32.9.9 How to Enable Customized Applications and Links 32-56

32.9.10 How to Specify an Image for a Task Action 32-58

32.9.11 Specifying Additional Process Workspace Settings 32-58

32.10 Specifying Notification Settings 32-58

32.10.1 Configuring Alias for Notification Email ID 32-59

32.10.2 Messaging Filter Rules 32-60

32.10.2.1 Data Types 32-60

32.10.2.2 Attributes 32-60

32.10.3 Rule Actions 32-61

32.10.4 Managing Messaging Channels 32-62

32.10.4.1 Viewing Your Messaging Channels 32-62

32.10.4.2 Creating, Editing, and Deleting a Messaging Channel 32-63

32.10.5 Managing Messaging Filters 32-63

32.10.5.1 Viewing Messaging Filters 32-63

32.10.5.2 Creating Messaging Filters 32-64

32.10.5.3 Editing a Messaging Filter 32-65

32.10.5.4 Deleting a Messaging Filter 32-65

32.11 Using Mapped Attributes (Flex Fields) 32-66

32.11.1 How To Map Attributes 32-67

32.11.1.1 To Create Labels 32-68

32.11.1.2 To Browse All Mappings 32-68

32.11.1.3 To Edit Mappings by Task Type 32-69

32.11.2 Custom Mapped Attributes 32-72

32.12 Creating Worklist Reports 32-72

32.12.1 How To Create Reports 32-73

32.12.2 What Happens When You Create Reports 32-74

32.12.2.1 Unattended Tasks Report 32-75

32.12.2.2 Tasks Priority Report 32-76

32.12.2.3 Tasks Cycle Time Report 32-77

32.12.2.4 Tasks Productivity Report 32-78

32.13 Accessing Oracle BPM Worklist in Local Languages and Time Zones 32-78

32.13.1 Strings in Oracle BPM Worklist 32-79

xxxi

32.13.2 How to Change the Preferred Language, Display Names of Users, and Time
Zone Settings if the Identity Store is LDAP-Based 32-80

32.13.3 How to Change the Language in Which Tasks Are Displayed 32-81

32.13.4 How To Change the Language Preferences from a JAZN XML File 32-81

32.13.5 What You May Need to Know Setting Display Languages in Worklist 32-82

32.13.6 How To Change the Time Zone Used in the Worklist 32-83

32.14 Creating Reusable Worklist Regions 32-83

32.14.1 How to Create an Application With an Embedded Reusable Worklist Region 32-83

32.14.2 How to Set Up the Deployment Profile 32-87

32.14.3 How to Prepare Federated Mode Task Flows For Deployment 32-87

32.14.4 What You May Need to Know About Task List Task Flow 32-88

32.14.5 What You May Need to Know About Certificates Task Flow 32-91

32.14.6 What You May Need to Know About the Reports Task Flow 32-92

32.14.7 What You May Need to Know About Application Preferences Task Flow 32-94

32.14.8 What You May Need to Know About Mapped Attributes Task Flow 32-95

32.14.9 What You May Need to Know About Rules Task Flow 32-96

32.14.10 What You May Need to Know About Approval Groups Task Flow 32-98

32.14.11 What You May Need to Know About Task Configuration Task Flow 32-98

32.15 Java Code for Enabling Customized Applications in Oracle BPM Worklist 32-98

33

Building a Custom Worklist Client

33.1 Introduction to Building Clients for Workflow Services 33-1

33.2 Packages and Classes for Building Clients 33-2

33.3 Workflow Service Clients 33-3

33.3.1 The IWorkflowServiceClient Interface 33-5

33.4 Class Paths for Clients Using SOAP 33-6

33.5 Class Paths for Clients Using Remote EJBs 33-7

33.6 Initiating a Task 33-8

33.6.1 Creating a Task 33-8

33.6.2 Creating a Payload Element in a Task 33-8

33.6.3 Initiating a Task Programmatically 33-9

33.7 Changing Workflow Standard View Definitions 33-10

33.8 Writing a Worklist Application Using the HelpDeskUI Sample 33-10

34

Understanding Human Workflow Services

34.1 Introduction to Human Workflow Services 34-1

34.1.1 SOAP, Enterprise JavaBeans, and Java Support for the Human Workflow
Services 34-2

34.1.1.1 Support for Foreign JNDI Names 34-3

34.1.2 Security Model for Services 34-4

xxxii

34.1.2.1 Limitation on Propagating Identity to Workflow Services when Using
SOAP Web Services 34-5

34.1.2.2 Creating Human Workflow Context on Behalf of a User 34-5

34.1.2.3 Obtaining the Workflow Context for a User Previously Authenticated by
a JAAS Application 34-6

34.1.3 Task Service 34-6

34.1.4 Task Query Service 34-10

34.1.5 Identity Service 34-13

34.1.5.1 Identity Service Providers 34-14

34.1.6 Task Metadata Service 34-15

34.1.7 User Metadata Service 34-16

34.1.8 Task Report Service 34-18

34.1.9 Runtime Config Service 34-19

34.1.9.1 Internationalization of Attribute Labels 34-21

34.1.10 Evidence Store Service and Digital Signatures 34-21

34.1.10.1 Prerequisites 34-23

34.1.10.2 Interfaces and Methods 34-24

34.1.11 Task Instance Attributes 34-26

34.2 Notifications from Human Workflow 34-30

34.2.1 Contents of Notification 34-31

34.2.2 Error Message Support 34-32

34.2.3 Reliability Support 34-32

34.2.4 Management of Oracle Human Workflow Notification Service 34-33

34.2.5 How to Configure the Notification Channel Preferences 34-33

34.2.6 How to Configure Notification Messages in Different Languages 34-34

34.2.7 How to Send Actionable Messages 34-35

34.2.7.1 How to Send Actionable Emails for Human Tasks 34-35

34.2.8 How to Send Inbound and Outbound Attachments 34-37

34.2.9 How to Send Inbound Comments 34-37

34.2.10 How to Send Secure Notifications 34-37

34.2.11 How to Set Channels Used for Notifications 34-38

34.2.12 How to Send Reminders 34-38

34.2.13 How to Set Automatic Replies to Unprocessed Messages 34-38

34.2.14 How to Create Custom Notification Headers 34-39

34.3 Assignment Service Configuration 34-39

34.3.1 Dynamic Assignment and Task Escalation Patterns 34-40

34.3.1.1 How to Implement a Dynamic Assignment Pattern 34-41

34.3.1.2 How to Configure Dynamic Assignment Patterns 34-42

34.3.1.3 How to Configure Display Names for Dynamic Assignment Patterns 34-43

34.3.1.4 How to Implement a Task Escalation Pattern 34-44

34.3.2 Dynamically Assigning Task Participants with the Assignment Service 34-44

34.3.2.1 How to Implement an Assignment Service 34-45

xxxiii

34.3.2.2 Example of Assignment Service Implementation 34-45

34.3.2.3 How to Deploy a Custom Assignment Service 34-47

34.3.3 Custom Escalation Function 34-47

34.4 Class Loading for Callbacks and Resource Bundles 34-48

34.5 Resource Bundles in Workflow Services 34-48

34.5.1 Task Resource Bundles 34-48

34.5.2 Global Resource Bundle – WorkflowLabels.properties 34-49

34.5.3 Worklist Client Resource Bundles 34-51

34.5.4 Task Detail ADF Task Flow Resource Bundles 34-51

34.5.5 Specifying Stage and Participant Names in Resource Bundles 34-51

34.5.6 Case Sensitivity in Group and Application Role Names 34-51

34.6 Introduction to Human Workflow Client Integration with Oracle WebLogic Server
Services 34-52

34.6.1 Human Workflow Services Clients 34-52

34.6.1.1 Task Query Service Client Code 34-53

34.6.1.2 Configuration Option 34-55

34.6.1.3 Client Logging 34-59

34.6.1.4 Configuration Migration Utility 34-59

34.6.2 Identity Propagation 34-60

34.6.2.1 Enterprise JavaBeans Identity Propagation 34-60

34.6.2.2 SAML Token Identity Propagation for SOAP Client 34-61

34.6.2.3 Public Key Alias 34-62

34.6.3 Client JAR Files 34-63

34.7 Task States in a Human Task 34-63

34.8 Database Views for Oracle Workflow 34-64

34.8.1 Unattended Tasks Report View 34-64

34.8.2 Task Cycle Time Report View 34-65

34.8.3 Task Productivity Report View 34-65

34.8.4 Task Priority Report View 34-66

Part VI Using Binding Components

35

Getting Started with Binding Components

35.1 Introduction to Binding Components 35-1

35.1.1 SOAP Web Services 35-2

35.1.1.1 WS-AtomicTransaction Support 35-2

35.1.2 HTTP Binding Service 35-5

35.1.2.1 Supported Interactions 35-5

35.1.2.2 How to Configure the HTTP Binding Service 35-7

35.1.2.3 How to Enable Basic Authentication for HTTP Binding 35-9

xxxiv

35.1.3 JCA Adapters 35-9

35.1.3.1 Database Adapter 35-9

35.1.3.2 File Adapter 35-10

35.1.3.3 FTP Adapter 35-10

35.1.3.4 AQ Adapter 35-10

35.1.3.5 JMS Adapter 35-10

35.1.3.6 MQ Adapter 35-11

35.1.3.7 Socket Adapter 35-11

35.1.3.8 Third-Party Adapter 35-11

35.1.3.9 Oracle User Messaging Service Adapter 35-11

35.1.3.10 LDAP Adapter 35-11

35.1.3.11 Coherence Adapter 35-12

35.1.3.12 JCA Adapter Properties 35-12

35.1.4 Oracle E-Business Suite Adapter 35-12

35.1.5 Oracle BAM 11g Adapter 35-12

35.1.6 Oracle B2B 35-12

35.1.7 Oracle Healthcare Adapter 35-13

35.1.8 Oracle MFT 35-13

35.1.9 ADF-BC Services 35-13

35.1.10 EJB Adapter 35-14

35.1.11 Direct Binding Adapter 35-14

35.1.12 REST Binding 35-15

35.1.13 Cloud Adapters 35-15

35.2 Introduction to Integrating a Binding Component in a SOA Composite Application 35-15

35.2.1 How to Integrate a Binding Component in a SOA Composite Application 35-15

35.2.2 How to Use ADF Binding to Invoke a Composite Application from a JSP/Java
Class 35-16

35.2.3 Create an Oracle Integration Connection 35-17

35.3 Creating Tokens for Use in the Binding URLs of External References 35-17

35.3.1 How to Create Tokens for Use in the Binding URLs of External References 35-18

36

Integrating REST Operations in SOA Composite Applications

36.1 Introduction to REST Support 36-1

36.2 Creating REST Support in Service and Reference Binding Components 36-2

36.2.1 How to Configure the REST Binding Component in a SOA Composite
Application 36-3

36.2.1.1 REST Operation Binding Dialog 36-6

36.2.1.2 REST Method Definition Dialog 36-8

36.2.1.3 Example: REST Enable an Existing Service Component 36-9

36.2.1.4 Example: Adding Resources and Operations from a WADL Service to a
REST Reference 36-12

xxxv

36.2.2 How to Consume REST-Based Integrations Created in Oracle Integration in
SOA Composite Applications 36-17

36.2.2.1 Create an Oracle Integration Connection 36-17

36.2.2.2 Create a REST Binding 36-18

36.2.2.3 Configure OWSM Policies on the REST Reference 36-20

36.2.2.4 Configure and Deploy the Application 36-20

36.2.3 How to Configure the REST Adapter Through Shortcuts 36-20

36.2.3.1 To generate a REST service based on a web service deployed on an
application server: 36-20

36.2.3.2 To generate a REST reference based on a REST service deployed on
an application server: 36-22

36.2.3.3 To generate a REST service based on a SOA component's WSDL
service: 36-23

36.2.4 How to Generate Schemas Manually 36-23

36.2.5 How to Generate Schemas from Samples 36-24

36.2.6 How to Use Global Token Variables 36-24

36.2.7 How to Set REST Header Properties 36-25

36.2.7.1 Inbound and Outbound Headers 36-25

36.2.7.2 Custom Header Support 36-26

36.2.8 What You May Need to Know About REST Fault Binding 36-27

36.2.9 What You May Need to Know About Converting a JSON Interchange Format
to a REST Schema 36-27

36.2.10 What You May Need to Know About REST References Calling REST
Services in the Same Node 36-29

36.3 Using JavaScript and JSON in BPEL Components 36-30

36.4 Testing the REST Adapter with the HTTP Analyzer 36-36

36.5 Testing and Configuring REST Reference Binding Components in Oracle Enterprise
Manager Fusion Middleware Control 36-38

37

Integrating Enterprise JavaBeans with Composite Applications

37.1 Introduction to Enterprise JavaBeans Binding Integration with SOA Composite
Applications 37-1

37.1.1 Integration Through Java Interfaces 37-2

37.1.2 Integration Through SDO-Based EJBs 37-2

37.2 Designing an SDO-Based Enterprise JavaBeans Application 37-3

37.2.1 How to Create SDO Objects Using the SDO Compiler 37-3

37.2.2 How to Create a Session Bean and Import the SDO Objects 37-4

37.2.3 How to Create a Profile and an EAR File 37-4

37.2.4 How to Define the SDO Types with an Enterprise JavaBeans Bean 37-4

37.2.5 How to Use Web Service Annotations 37-6

37.2.6 How to Deploy the Enterprise JavaBeans EAR File 37-8

37.3 Creating an Enterprise JavaBeans Service in Oracle JDeveloper 37-8

xxxvi

37.3.1 How to Integrate Java Interface-based Enterprise JavaBeans with SOA
Composite Applications 37-8

37.3.2 How to Integrate SDO-based Enterprise JavaBeans with SOA Composite
Applications 37-10

37.4 Designing an Enterprise JavaBeans Client to Invoke Oracle SOA Suite 37-13

37.4.1 How to Create a Java Interface-Based Client to Invoke Oracle SOA Suite 37-13

37.4.2 How to Invoke an SDO-Enterprise JavaBeans Service 37-14

37.5 Specifying Enterprise JavaBeans Roles 37-15

37.6 Configuring Enterprise JavaBeans Binding Support in the Credential Store
Framework 37-15

37.6.1 How to Configure Enterprise JavaBeans Binding Support in the Credential
Store Framework 37-15

37.6.1.1 To configure Enterprise JavaBeans binding support in the credential
store framework: 37-16

37.6.1.2 To specify the oracle.jps.credstore.map and oracle.jps.credstore.key
properties 37-16

37.6.1.3 To grant SOA infrastructure runtime access to the CSF map store 37-16

38

Using Direct Binding to Invoke Composite Services

38.1 Introduction to Direct Binding 38-1

38.1.1 Direct Service Binding Component 38-2

38.1.2 Direct Reference Binding Component 38-2

38.2 Introduction to the Direct Binding Invocation API 38-4

38.2.1 Synchronous Direct Binding Invocation 38-5

38.2.2 Asynchronous Direct Binding Invocation 38-5

38.2.3 Required JAR Files for Compiling and Running the Direct Binding Java Client
Code 38-6

38.2.4 SOA Direct Address Syntax 38-6

38.2.5 SOA Transaction Propagation 38-6

38.3 Exception Handling with SOA Direct Transport 38-7

38.4 Invoking a SOA Composite Application in Oracle JDeveloper with the Invocation
API 38-8

38.4.1 How to Create an Inbound Direct Binding Service 38-9

38.4.2 How to Create an Outbound Direct Binding Reference 38-10

38.4.3 How to Set an Identity for J2SE Clients Invoking Direct Binding 38-13

38.4.4 What You May Need to Know About Invoking SOA Composites on Hosts with
the Same Server and Domain Names 38-13

38.5 Samples Using the Direct Binding Invocation API 38-14

Part VII Sharing Functionality Across Service Components

xxxvii

39

Oracle SOA Suite Templates and Reusable Subprocesses

39.1 Introduction to Oracle SOA Suite Templates 39-1

39.2 Introduction to Standalone and Inline BPEL Subprocess Invocations 39-2

39.2.1 Introduction to a Standalone Subprocess 39-3

39.2.2 Introduction to an Inline Subprocess 39-5

39.3 Differences Between Oracle SOA Suite Templates and Reusable Subprocesses 39-7

39.4 Creating Oracle SOA Suite Templates 39-7

39.4.1 Creating and Using a SOA Project Template 39-7

39.4.1.1 How To Create a SOA Project Template 39-7

39.4.1.2 How to Use a Composite Template in Another SOA Composite 39-9

39.4.2 Creating and Using a Service Component Template 39-11

39.4.2.1 How to Create a Service Component Template 39-11

39.4.2.2 How to Use a Service Component Template in Another SOA Composite 39-13

39.4.3 Creating and Using a BPEL Scope Activity Template 39-16

39.4.3.1 How to Create a BPEL Scope Activity Template 39-16

39.4.3.2 How to Use a BPEL Scope Activity Template in Another BPEL Process 39-18

39.4.4 Managing Templates 39-21

39.5 Creating Standalone and Inline BPEL Subprocesses in a BPEL Process 39-23

39.5.1 How to Create a Standalone BPEL Subprocess 39-23

39.5.2 How to Create an Inline Subprocess 39-26

39.5.3 How to Create a Standalone Subprocess that Takes a Partner Link as a
Parameter 39-31

39.5.4 What You May Need to Know About Renaming a Subprocess 39-37

40

Creating Transformations with the XSLT Map Editor

40.1 Introduction to the XSLT Map Editor 40-1

40.1.1 Using the Map View 40-3

40.1.2 Using the XSLT View 40-3

40.1.3 Using the Components Window 40-3

40.1.4 Using the Properties Window 40-4

40.2 Creating an XSLT Map 40-5

40.2.1 How to Create an XSLT Map 40-5

40.2.2 How to Create an XSL Map File in Oracle BPEL Process Manager 40-6

40.2.3 How to Create an XSL Map File from Imported Source and Target Schema
Files in Oracle BPEL Process Manager 40-8

40.2.4 How to Create an XSL Map File in Oracle Mediator 40-11

40.2.5 What You May Need to Know About Creating an XSL Map File 40-14

40.2.6 What Happens at Runtime If You Pass a Payload Through Oracle Mediator
Without Creating an XSL Map File 40-15

40.2.7 What Happens If You Receive an Empty Namespace Tag in an Output
Message 40-15

xxxviii

40.3 Editing an XSLT Map in Map View 40-15

40.3.1 How to Perform a Value Copy by Linking Nodes 40-15

40.3.2 How to Create an Empty Node in the Output Document 40-16

40.3.3 How to Set a Literal Text Value for a Target Node 40-16

40.3.4 How to Add an XSLT Statement 40-16

40.3.4.1 To Add an XSLT Statement: 40-16

40.3.4.2 To Add an xsl:text or xsl:variable Statement: 40-17

40.3.4.3 To Drag and Drop an XSLT statement to a Target Node: 40-17

40.3.4.4 How to Add Conditional Processing Using xsl:if 40-17

40.3.4.5 How to Add Conditional Processing Using xsl:choose 40-19

40.3.4.6 How to Add Loops Using xsl:for-each 40-22

40.3.4.7 How to Add xsl:sort for an xsl:for-each Statement 40-26

40.3.4.8 How to Duplicate XSLT Instructions 40-28

40.3.5 How to Duplicate an Element 40-31

40.3.6 How to Delete an Element or Attribute 40-32

40.3.7 How to Remove Mappings from an Element or Attribute 40-33

40.4 Editing an XSLT Map in XSLT View 40-33

40.4.1 How to Add a Target Element or Attribute Before Mapping 40-34

40.4.1.1 How to Add Elements and Attributes from the Target Schema 40-34

40.4.1.2 How to Add Literal Elements and Attributes When No Target Schema Is
Present 40-36

40.4.1.3 How to Create an Empty Node in the Output Document 40-37

40.4.2 How to Perform a Value Copy by Linking Nodes 40-38

40.4.3 How to Insert an xsl:valueof Statement 40-38

40.4.4 How to Set a Literal Text Value for an XSLT Node 40-39

40.4.5 How to Set a Literal Text Value Using an xsl:text Instruction 40-39

40.4.6 How to Add XSLT Statements 40-39

40.4.6.1 To add an XSLT element using the context menu: 40-39

40.4.6.2 To add XSLT elements from the Components window: 40-40

40.4.7 How to Set the Value of an XSLT Expression Attribute 40-42

40.4.8 How to Duplicate an Element 40-42

40.4.9 How to Delete an Element or Attribute 40-43

40.4.10 How to Move an Element 40-43

40.4.11 How to Remove Mappings from an Element or Attribute 40-44

40.5 Using XPath Expressions 40-44

40.5.1 How to Modify an Existing Source to Target Mapping 40-45

40.5.1.1 To edit an XPath expression using the Edit XPath dialog 40-45

40.5.1.2 To edit an existing XPath expression using the Properties window 40-46

40.5.1.3 How to Add an XPath Function to an Existing XPath Expression 40-47

40.5.2 How to Modify an Existing Function XPath Expression in the Canvas Pane 40-48

40.5.2.1 To set a function parameter using drag and drop: 40-48

xxxix

40.5.2.2 To delete a function parameter: 40-49

40.5.2.3 How to Edit a Function as a Full XPath Expression 40-49

40.5.2.4 How to Edit Individual Function Parameters 40-51

40.5.3 How to Create a New Function in the Canvas Pane 40-52

40.5.3.1 To create an XPath Function using the canvas context menu 40-52

40.5.3.2 To create an XPath function using the Components window 40-53

40.5.3.3 To create an XPath function using the target tree context menu 40-53

40.5.3.4 To create an XPath function by dragging it to the target tree 40-53

40.5.4 How to Chain Functions Together 40-54

40.5.5 How to Remove an XPath Expression 40-54

40.5.6 How to Import User-Defined Functions 40-55

40.6 Using Auto Map to Map Complex Nodes 40-57

40.6.1 How to Set Auto Map Preferences 40-57

40.6.2 How to Execute an Auto Map 40-59

40.7 Checking the Completion Status of the Map 40-59

40.8 Testing the Map 40-60

40.8.1 How to Test the Transformation Mapping Logic 40-61

40.8.1.1 How to Test XSLT Maps that Use DVM Lookup Functions 40-63

40.8.1.2 How to Test XSLT Maps that Use XREF Functions 40-63

40.8.2 How to Generate Reports 40-66

40.8.3 How to Customize Sample XML Generation 40-67

40.9 Importing an External XSLT Map 40-67

40.10 Using Variables and Parameters 40-67

40.10.1 How to Add Global Variables 40-68

40.10.2 How to Add Local Variables in Map View 40-68

40.10.3 How to Add Local Variables in XSLT View 40-69

40.10.4 How to Add Global Parameters 40-69

40.11 Substituting Elements and Types 40-71

40.12 Using Named Templates 40-78

40.12.1 How to Create a Named Template 40-78

40.12.2 How to Edit a Named Template 40-79

40.12.3 How to Add Parameters to an Existing Named Template 40-79

40.12.4 How to Invoke a Named Template 40-80

40.13 Using Template Rules 40-80

40.13.1 How to Create a Template Rule 40-80

40.13.1.1 Example: Creating a Template Rule 40-83

40.13.2 How to Refactor an Existing Map to Create a Template Rule 40-88

40.14 Using the Execution View 40-91

40.14.1 How to Use Execution View to Prevent or Troubleshoot Runtime Errors 40-91

40.14.1.1 Searching for Nodes 40-92

40.14.1.2 Setting Display Options 40-92

xl

40.15 Debugging the XSLT Map 40-93

40.15.1 Setting Breakpoints in the XSLT Map Editor 40-93

40.15.2 Running the Debugger on the XSLT Map 40-94

40.15.3 Viewing Breakpoints 40-96

40.15.4 Setting Conditions for XSLT Breakpoints 40-97

40.16 Troubleshooting Memory Issues 40-97

40.17 Setting XSL Map Preferences 40-98

40.17.1 How to Set XSLT Map Preferences 40-98

40.17.2 How to Set the XSL Editor Preferences 40-99

40.17.3 How to Import a Customization File to Specify Display Preferences in the
XSLT Map Editor 40-100

41

Creating Transformations with the XQuery Mapper

41.1 Introduction to the XQuery Mapper 41-1

41.1.1 About the Source and Target Trees 41-2

41.1.2 Using the XQuery Mapper Toolbar 41-3

41.1.3 Using the Properties Window 41-4

41.1.4 Using the Components Window 41-6

41.1.5 Source Editor 41-6

41.2 Creating an XQuery Map File 41-7

41.2.1 How to Create an XQuery Main/Library Module 41-7

41.3 Using the XQuery Mapper 41-11

41.3.1 How to Use Value Mapping to Copy a Leaf Element Value to a Target Leaf
Element 41-12

41.3.2 How to Use Overwrite Mapping to Copy an Element Subtree to the Target
Tree 41-12

41.3.3 How to Use Append Mapping to Copy an Element Subtree to the Target Tree 41-12

41.3.4 How to Perform Multiple Value Mappings with One Drag and Drop Action 41-13

41.4 Using XQuery Functions 41-13

41.4.1 How to Add an XQuery Function in the XQuery Mapper 41-13

41.4.1.1 To add an XQuery function: 41-13

41.4.1.2 To edit a function's parameters: 41-14

41.5 Using Library Modules 41-15

41.5.1 How to Import a Library Module 41-15

41.6 Working with Zones and FLWOR Constructs 41-15

41.6.1 How to Edit a FLWOR Construct 41-16

41.7 Using Type Annotations to Improve XQuery Performance 41-17

41.8 Testing Your XQuery Map 41-17

41.8.1 How to Test an XQuery Map 41-17

xli

42

Using Business Events and the Event Delivery Network

42.1 Introduction to Business Events 42-1

42.1.1 EDN Integration with Oracle SOA Suite 42-3

42.1.2 Business Event API Support for Remote Clients 42-4

42.1.2.1 Guidelines for Manually Setting Event Delivery Network Properties
When Invoking the BusinessEvent.setProperty API 42-5

42.1.3 Local and Remote Event Connections 42-6

42.2 Creating Business Events in Oracle JDeveloper 42-7

42.2.1 How to Create a Business Event 42-7

42.3 Subscribing to or Publishing a Business Event from an Oracle Mediator Service
Component 42-9

42.3.1 How to Subscribe to a Business Event 42-9

42.3.2 How to Publish a Business Event 42-11

42.3.3 What Happens When You Create and Subscribe to a Business Event 42-12

42.3.4 What Happens When You Publish a Business Event 42-12

42.3.5 What You May Need to Know About Subscribing to a Business Event 42-13

42.3.6 What You May Need to Know About Publishing Events Across Domains
Using SAF 42-13

42.3.6.1 Workaround for Local Subscribers 42-13

42.3.7 How to Configure a Foreign JNDI Provider to Enable Administration Server
Applications to Publish Events to the SOA Server 42-14

42.3.8 How to Configure the Connection Factory When the Oracle WebLogic Server
JMS Runs in the Same Local JVM as the JMS Adapter 42-15

42.4 Subscribing to or Publishing a Business Event from a BPEL Process Service
Component 42-15

42.4.1 How to Subscribe to a Business Event 42-16

42.4.2 How to Publish a Business Event 42-19

42.4.3 What Happens When You Subscribe to and Publish a Business Event 42-19

42.5 How to Integrate Oracle ADF Business Component Business Events with Oracle
Mediator 42-21

43

Working with Cross References

43.1 Introduction to Cross References 43-1

43.2 Introduction to Cross Reference Tables 43-2

43.3 Oracle Data Integrator Support for Cross Referencing 43-5

43.4 Creating and Modifying Cross Reference Tables 43-5

43.4.1 How to Create Cross Reference Metadata 43-5

43.4.2 What Happens When You Create a Cross Reference 43-7

43.4.3 How to Create Custom Database Tables 43-8

43.4.4 How to Add an End System to a Cross Reference Table 43-10

43.5 Populating Cross Reference Tables 43-11

xlii

43.5.1 About the xref:populateXRefRow Function 43-12

43.5.2 About the xref:populateLookupXRefRow Function 43-15

43.5.3 About the xref:populateXRefRow1M Function 43-16

43.5.4 How to Populate a Column of a Cross Reference Table 43-18

43.6 Looking Up Cross Reference Tables 43-20

43.6.1 About the xref:lookupXRef Function 43-20

43.6.2 About the xref:lookupXRef1M Function 43-21

43.6.3 About the xref:lookupPopulatedColumns Function 43-22

43.6.4 How to Look Up a Cross Reference Table for a Value 43-22

43.7 Deleting a Cross Reference Table Value 43-24

43.7.1 How to Delete a Cross Reference Table Value 43-25

43.8 Creating and Running the Cross Reference Use Case 43-26

43.8.1 How to Create the Use Case 43-27

43.8.1.1 Task 1: How to Configure the Oracle Database and Database Adapter 43-27

43.8.1.2 Task 2: How to Create an Oracle JDeveloper Application and a Project 43-28

43.8.1.3 Task 3: How to Create a Cross Reference 43-28

43.8.1.4 Task 4: How to Create a Database Adapter Service 43-29

43.8.1.5 Task 5: How to Create EBS and SBL External References 43-32

43.8.1.6 Task 6: How to Create the Logger File Adapter External Reference 43-34

43.8.1.7 Task 7: How to Create an Oracle Mediator Service Component 43-36

43.8.1.8 Task 8: How to Specify Routing Rules for an Oracle Mediator Service
Component 43-37

43.8.1.9 Task 9: How to Specify Routing Rules for the Common Oracle Mediator 43-47

43.8.1.10 Task 10: How to Configure an Application Server Connection 43-58

43.8.1.11 Task 11: How to Deploy the Composite Application 43-58

43.8.2 How to Run and Monitor the XrefCustApp Application 43-58

43.9 Creating and Running Cross Reference for 1M Functions 43-59

43.9.1 How to Create the Use Case 43-59

43.9.1.1 Task 1: How to Configure the Oracle Database and Database Adapter 43-59

43.9.1.2 Task 2: How to Create an Oracle JDeveloper Application and a Project 43-60

43.9.1.3 Task 3: How to Create a Cross Reference 43-61

43.9.1.4 Task 4: How to Create a Database Adapter Service 43-62

43.9.1.5 Task 5: How to Create an EBS External Reference 43-64

43.9.1.6 Task 6: How to Create a Logger File Adapter External Reference 43-66

43.9.1.7 Task 7: How to Create an Oracle Mediator Service Component 43-67

43.9.1.8 Task 8: How to Specify Routing Rules for an Oracle Mediator
Component 43-68

43.9.1.9 Task 9: How to Specify Routing Rules for the Common Oracle Mediator 43-72

43.9.1.10 Task 10: How to Configure an Application Server Connection 43-77

43.9.1.11 Task 11: How to Deploy the Composite Application 43-77

xliii

44

Working with Domain Value Maps

44.1 Introduction to Domain Value Maps 44-1

44.1.1 Domain Value Map Features 44-2

44.1.1.1 Qualifier Domains 44-2

44.1.1.2 Qualifier Hierarchies 44-3

44.1.1.3 One-to-Many Mappings 44-4

44.2 Creating Domain Value Maps 44-4

44.2.1 How to Create Domain Value Maps 44-4

44.2.2 What Happens When You Create a Domain Value Map 44-5

44.3 Editing a Domain Value Map 44-7

44.3.1 How to Add Domains to a Domain Value Map 44-7

44.3.2 How to Edit a Domain 44-8

44.3.3 How to Add Domain Values to a Domain Value Map 44-9

44.3.4 How to Edit Domain Values 44-9

44.4 Using Domain Value Map Functions 44-10

44.4.1 Understanding Domain Value Map Functions 44-10

44.4.1.1 dvm:lookupValue 44-10

44.4.1.2 dvm:lookupValue1M 44-11

44.4.2 How to Use Domain Value Map Functions in Transformations 44-11

44.4.3 How to Use Domain Value Map Functions in XPath Expressions 44-14

44.4.4 What Happens at Runtime 44-15

44.5 Creating a Domain Value Map Use Case for a Hierarchical Lookup 44-15

44.5.1 How to Create the HierarchicalValue Use Case 44-16

44.5.1.1 Task 1: How to Create an Oracle JDeveloper Application and a Project 44-16

44.5.1.2 Task 2: How to Create a Domain Value Map 44-16

44.5.1.3 Task 3: How to Create a File Adapter Service 44-18

44.5.1.4 Task 4: How to Create ProcessOrders Mediator Component 44-19

44.5.1.5 Task 5: How to Create a File Adapter Reference 44-20

44.5.1.6 Task 6: How to Specify Routing Rules 44-21

44.5.1.7 Task 7: How to Configure an Application Server Connection 44-25

44.5.1.8 Task 8: How to Deploy the Composite Application 44-25

44.5.2 How to Run and Monitor the HierarchicalValue Application 44-25

44.6 Creating a Domain Value Map Use Case For Multiple Values 44-25

44.6.1 How to Create the Multivalue Use Case 44-26

44.6.1.1 Task 1: How to Create an Oracle JDeveloper Application and Project 44-26

44.6.1.2 Task 2: How to Create a Domain Value Map 44-26

44.6.1.3 Task 3: How to Create a File Adapter Service 44-27

44.6.1.4 Task 4: How to Create the LookupMultiplevaluesMediator Mediator 44-29

44.6.1.5 Task 5: How to Create a File Adapter Reference 44-30

44.6.1.6 Task 6: How to Specify Routing Rules 44-31

xliv

44.6.1.7 Task 7: How to Configure an Application Server Connection 44-34

44.6.1.8 Task 8: How to Deploy the Composite Application 44-34

44.6.2 How to Run and Monitor the Multivalue Application 44-34

44.7 Preloading DVM Cache for Faster First-Use 44-35

44.7.1 How to Preload DVM Cache at Server Startup 44-35

45

Using Oracle SOA Composer with Domain Value Maps

45.1 Introduction to Oracle SOA Composer 45-1

45.1.1 How to Sign In to Oracle SOA Composer 45-2

45.2 Viewing Domain Value Maps at Runtime 45-3

45.2.1 How To View Domain Value Maps at Runtime 45-3

45.3 Editing Domain Value Maps at Runtime 45-4

45.3.1 How to Edit Domain Value Maps at Runtime 45-4

45.3.1.1 Changing to Edit Mode 45-5

45.3.1.2 Adding Rows 45-5

45.3.1.3 Editing Rows 45-5

45.3.1.4 Deleting Rows 45-5

45.4 Publishing Changes at Runtime 45-5

45.4.1 How to Publish Changes at Runtime 45-6

45.4.2 How to Discard Changes at Runtime 45-6

45.5 Detecting Conflicts 45-6

Part VIII Completing Your Application

46

Enabling Security with Policies and Message Encryption

46.1 Introduction to Policies 46-1

46.2 Attaching Policies to Binding Components and Service Components 46-2

46.2.1 How to Attach Policies to Binding Components and Service Components 46-2

46.2.1.1 To attach a policy to a service component: 46-6

46.2.2 How to Override Policy Configuration Property Values 46-7

46.2.2.1 Overriding Client Configuration Property Values 46-7

46.2.2.2 Overriding Server Configuration Property Values 46-8

46.3 Encrypting and Decrypting Specific Fields of Messages 46-9

46.3.1 How to Encrypt and Decrypt Specific Fields of Messages 46-11

47

Deploying SOA Composite Applications

47.1 Introduction to Deployment 47-1

47.2 Deployment Prerequisites 47-2

xlv

47.2.1 Creating the Oracle SOA Suite Schema 47-2

47.2.2 Creating a SOA Domain 47-2

47.2.3 Configuring a SOA Cluster 47-2

47.3 Understanding the Packaging Impact 47-2

47.4 Anatomy of a Composite 47-3

47.5 Preparing the Target Environment 47-3

47.5.1 How to Create Data Sources and Queues 47-4

47.5.1.1 Script for Creation of JMS Resource and Redeployment of JMS Adapter 47-4

47.5.1.2 Script for Creation of the Database Resource and Redeployment of the
Database Adapter 47-5

47.5.2 How to Create Connection Factories and Connection Pooling 47-6

47.5.3 How to Enable Security 47-7

47.5.4 How to Set the Business Flow Instance Name or Composite Instance Name
at Design Time 47-7

47.5.4.1 Setting the Business Flow Instance Name in Oracle Mediator 47-7

47.5.4.2 Setting the Business Flow Instance Name in a BPEL Process 47-8

47.5.4.3 Setting the Composite Instance Name in a BPEL Process 47-8

47.5.5 How to Deploy Trading Partner Agreements and Task Flows 47-8

47.5.6 How to Create an Application Server Connection 47-9

47.5.7 How to Create a SOA-MDS Connection 47-9

47.5.7.1 What You May Need to Know About Opening the composite.xml File
Through a SOA-MDS Connection 47-9

47.6 Customizing Your Application for the Target Environment Before Deployment 47-9

47.6.1 How to Use Configuration Plans to Customize SOA Composite Applications
for the Target Environment 47-9

47.6.1.1 Introduction to Configuration Plans 47-9

47.6.1.2 Introduction to a Configuration Plan File 47-10

47.6.1.3 Introduction to Use Cases for a Configuration Plan 47-12

47.6.1.4 How to Create a Configuration Plan in Oracle JDeveloper 47-13

47.6.1.5 How to Create a Configuration Plan with the WLST Utility 47-16

47.6.1.6 How to Attach a Configuration Plan with ant Scripts 47-17

47.6.1.7 How to Create Global Token Variables 47-17

47.7 Deploying SOA Composite Applications or Projects in Oracle JDeveloper 47-17

47.7.1 How to Deploy a Single SOA Composite in Oracle JDeveloper 47-18

47.7.1.1 Creating an Application Server Connection 47-18

47.7.1.2 Optionally Creating a Project Deployment Profile 47-21

47.7.1.3 Deploying the Profile 47-23

47.7.1.4 What You May Need to Know About Deploying Human Task
Composites with Task Flows to Partitions 47-31

47.7.2 How to Deploy Multiple SOA Composite Applications in Oracle JDeveloper 47-32

47.7.3 How to Deploy and Use Shared Data Across Multiple SOA Composite
Applications in Oracle JDeveloper 47-34

47.7.3.1 Create a JAR Profile and Include the Artifacts to Share 47-34

xlvi

47.7.3.2 Create a SOA Bundle that Includes the JAR Profile 47-39

47.7.3.3 Deploy the SOA Bundle with Oracle JDeveloper 47-41

47.7.3.4 Use Shared Data 47-41

47.7.4 How to Deploy an Existing SOA Archive in Oracle JDeveloper 47-44

47.8 Deploying and Managing SOA Composite Applications with the WLST Utility 47-46

47.9 Deploying and Managing SOA Composite Applications with ant Scripts 47-46

47.9.1 How to Use ant to Automate the Testing of a SOA Composite Application 47-48

47.9.2 How to Use ant to Compile a SOA Composite Application 47-49

47.9.3 How to Use ant to Package a SOA Composite Application into a Composite
SAR File 47-50

47.9.4 How to Use ant to Deploy a SOA Composite Application 47-51

47.9.5 How to Use ant to Undeploy a SOA Composite Application 47-52

47.9.6 How to Use ant to Export a Composite into a SAR File 47-53

47.9.7 How to Use ant to Export Postdeployment Changes of a Composite into a
JAR File 47-55

47.9.8 How to Use ant to Import Postdeployment Changes of a Composite 47-56

47.9.9 How to Use ant to Export Shared Data of a Given Pattern into a JAR File 47-56

47.9.10 How to Use ant to Remove a Top-level Shared Data Folder 47-57

47.9.11 How to Use ant to Start a SOA Composite Application 47-58

47.9.12 How to Use ant to Stop a SOA Composite Application 47-59

47.9.13 How to Use ant to Activate a SOA Composite Application 47-59

47.9.14 How to Use ant to Retire a SOA Composite Application 47-60

47.9.15 How to Use ant to Assign the Default Version to a SOA Composite
Application 47-61

47.9.16 How to Use ant to List the Deployed SOA Composite Applications 47-61

47.9.17 How to Use ant to List All Available Partitions in the SOA Infrastructure 47-62

47.9.18 How to Use ant to List All Composites in a Partition 47-63

47.9.19 How to Use ant to Create a Partition in the SOA Infrastructure 47-63

47.9.20 How to Use ant to Delete a Partition in the SOA Infrastructure 47-64

47.9.21 How to Use ant to Start All Composites in the Partition 47-65

47.9.22 How to Use ant to Stop All Composites in the Partition 47-65

47.9.23 How to Use ant to Activate All Composites in the Partition 47-66

47.9.24 How to Use ant to Retire All Composites in the Partition 47-67

47.9.25 How to Use ant to Manage SOA Composite Applications 47-67

47.10 Deploying SOA Composite Applications from Oracle Enterprise Manager Fusion
Middleware Control 47-68

47.11 Deploying SOA Composite Applications with No Servers Running 47-68

47.11.1 Offline Deployment Configuration Files 47-69

47.11.1.1 Offline Deployment Configuration List File 47-69

47.11.1.2 Offline Deployment Configuration File 47-70

47.11.1.3 Relative Configuration File Paths 47-72

47.11.1.4 Order of Deployment 47-72

xlvii

47.11.2 How to Deploy SOA Composite Applications and Shared Data with No
Server Running 47-72

47.11.3 What You May Need to Know About Offline Composite Deployment in a
Cluster Environment 47-73

47.11.4 What You May Need to Know About Deploying SOA Composite Applications
that Reference Shared Data That is Not in the MDS Repository 47-73

47.12 Importing XSLT Customizations into a Deployed SOA Composite Application 47-73

47.13 Postdeployment Configuration 47-74

47.13.1 Security 47-74

47.13.2 Updating Connections 47-75

47.13.3 Updating Data Sources and Queues 47-75

47.13.4 Attaching Policies 47-75

47.14 Testing and Troubleshooting 47-75

47.14.1 Verifying Deployment 47-75

47.14.2 Initiating an Instance of a Deployed Composite 47-75

47.14.3 Automating the Testing of Deployed Composites 47-75

47.14.4 Recompiling a Project After Receiving a Deployment Error 47-76

47.14.5 Reducing Java Code Size to Resolve Java Compilation Errors 47-76

47.14.6 Troubleshooting Common Deployment Errors 47-77

47.14.6.1 Common Oracle JDeveloper Deployment Issues 47-77

47.14.6.2 Common Configuration Plan Issues 47-79

47.14.6.3 Deploying to a Managed Oracle WebLogic Server 47-79

47.14.6.4 Deploying to a Two-Way, SSL-Enabled Oracle WebLogic Server 47-79

47.14.6.5 Deploying with an Unreachable Proxy Server 47-79

47.14.6.6 Releasing Locks to Resolve ADF Task Form EAR File Deployment
Errors 47-80

47.14.6.7 Increasing Memory to Recover from Compilation Errors 47-81

47.14.6.8 Oracle JDeveloper Compilation Error When Property Alias Definition is
Missing for a Receive Activity with a Correlation Set 47-81

47.14.6.9 ADF Binding Service Names Must Be Unique Across All Deployed
SOA Composite Applications 47-81

47.15 Patching Running Instances of a SOA Composite 47-82

47.15.1 Using the SOA Patch Developer Mode in JDeveloper 47-83

47.15.1.1 Generating the Patch XML File 47-85

47.15.1.2 Creating a Sparse Deployment Profile 47-86

47.15.2 Verifying and Deploying the Patch Using WLST 47-87

47.15.3 Deleting the Patch File 47-88

48

Using the Oracle SOA Suite Development Maven Plug-In

48.1 Introduction to the Oracle SOA Suite Maven Plug-in 48-1

48.1.1 POM Files and Archetypes 48-1

48.1.2 Maven Plug-in Goals 48-4

xlviii

48.1.2.1 compile 48-5

48.1.2.2 package 48-5

48.1.2.3 deploy 48-5

48.1.2.4 test 48-5

48.1.2.5 undeploy 48-6

48.1.3 Using Maven Online Help 48-6

48.2 Installing the Oracle SOA Suite Maven Plug-in 48-7

48.2.1 How to Configure the Oracle SOA Suite Maven Plug-In 48-7

48.3 Using the Oracle SOA Suite Maven Archetype 48-8

49

Debugging and Auditing SOA Composite Applications

49.1 Introduction to the SOA Debugger 49-1

49.2 Debugging a SOA Composite Application 49-2

49.2.1 How to Start the SOA Debugger 49-2

49.2.2 How to Set Breakpoints and Initiate Debugging 49-5

49.2.3 How to Step Through a Debugging Session 49-10

49.2.4 How to End or Detach from a Debugging Session 49-14

49.2.5 How to Remove Breakpoints 49-15

49.2.6 How to View Adapter Properties 49-16

49.2.7 How to View Threads 49-17

49.3 Testing SOA Composite Applications with the HTTP Analyzer 49-18

49.4 Auditing SOA Composite Applications at the BPEL Activity Level 49-20

49.4.1 How to Audit SOA Composite Applications at the BPEL Activity Level 49-23

50

Automating Testing of SOA Composite Applications

50.1 Introduction to the Composite Test Framework 50-1

50.1.1 Test Cases Overview 50-1

50.1.2 Overview of Test Suites 50-1

50.1.3 Overview of Emulations 50-2

50.1.4 Overview of Assertions 50-2

50.2 Introduction to the Components of a Test Suite 50-3

50.2.1 Process Initiation 50-3

50.2.2 Emulations 50-3

50.2.3 Assertions 50-4

50.2.4 Message Files 50-5

50.3 Creating Test Suites and Test Cases with the Create Composite Test Wizard 50-5

50.4 Editing the Contents of Test Cases in Test Mode in the SOA Composite Editor 50-12

50.4.1 How to Initiate Inbound Messages 50-13

50.4.2 How to Emulate Outbound Messages 50-15

xlix

50.4.3 How to Emulate Callback Messages 50-18

50.4.4 How to Emulate Fault Messages 50-20

50.4.5 How to Create Assertions 50-21

50.4.5.1 Creating Assertions on a Part Section, Nonleaf Element, or Entire XML
Document 50-22

50.4.5.2 Creating Assertions on a Leaf Element 50-25

50.4.6 What You May Need to Know About Assertions 50-27

50.5 Testing BPEL Process Service Components 50-27

50.5.1 Overview of Assertions on BPEL Process Activities 50-28

50.5.2 Overview of a Fast Forward Action on a Wait Activity 50-29

50.5.3 Overview of Assert Activity Execution 50-29

50.5.4 How to Create BPEL Process Service Component Tests 50-30

50.5.5 How to Create Assertions 50-31

50.5.6 How to Bypass a Wait Activity 50-33

50.5.7 How to Specify the Number of Times to Execute an Activity 50-34

50.6 Deploying and Running a Test Suite 50-35

50.6.1 How to Deploy and Run a Test Suite from Oracle JDeveloper 50-36

50.6.2 How to Deploy and Run a Test Suite from Oracle Enterprise Manager Fusion
Middleware Control 50-41

50.6.3 How to Deploy and Run a Test Suite with a WLST Command 50-41

50.6.4 How to Deploy and Run a Test Suite with an ant Script 50-42

Part IX Advanced Topics

51

Managing Large Documents and Large Numbers of Instances

51.1 Best Practices for Handling Large Documents 51-1

51.1.1 Use Cases for Handling Large Documents 51-1

51.1.1.1 Passing Binary Objects as Base64-Encoded Text in XML Payloads 51-1

51.1.1.2 End-to-End Streaming with Attachments 51-3

51.1.1.3 Sending and Receiving MTOM-Optimized Messages to SOA
Composite Applications 51-11

51.1.1.4 Processing Large XML with Repeating Constructs 51-13

51.1.1.5 Processing Large XML Documents with Complex Structures 51-14

51.1.2 Limitations on Concurrent Processing of Large Documents 51-15

51.1.2.1 Opaque Schema for Processing Large Payloads 51-15

51.1.3 JVM Memory Sizing Recommendations for SOA Composite Applications 51-15

51.1.4 General Tuning Recommendations 51-15

51.1.4.1 General Recommendations 51-15

51.1.4.2 Setting Audit Levels from Oracle Enterprise Manager for Large Payload
Processing 51-17

l

51.1.4.3 Using the Assign Activity in Oracle BPEL Process Manager and Oracle
Mediator 51-17

51.1.4.4 Using XSLT Transformations on Large Payloads (For Oracle BPEL
Process Manager) 51-17

51.1.4.5 Using XSLT Transformations on Large Payloads (For Oracle Mediator) 51-19

51.1.4.6 Using XSLT Transformations for Repeating Structures 51-19

51.1.4.7 Processing Large Documents in Oracle B2B 51-20

51.1.4.8 Setting a Size Restriction on Inbound Web Service Message Size 51-21

51.1.4.9 Using XPath Functions to Write Large XSLT/XQuery Output to a File
System 51-22

51.2 Best Practices for Handling Large Metadata 51-23

51.2.1 Boundary on the Processing of Large Numbers of Activities in a BPEL
Process 51-23

51.2.2 Using Large Numbers of Activities in BPEL Processes (Without FlowN) 51-23

51.2.3 Using Large Numbers of Activities in BPEL Processes (With FlowN) 51-23

51.2.4 Using a Flow With Multiple Sequences 51-24

51.2.5 Using a Flow with One Sequence 51-24

51.2.6 Using a Flow with No Sequence 51-24

51.2.7 Large Numbers of Oracle Mediators in a Composite 51-24

51.2.8 Importing Large Data Sets in Oracle B2B 51-25

51.3 Best Practices for Handling Large Numbers of Instances 51-25

51.3.1 Instance and Rejected Message Deletion with the Purge Script or Oracle
Enterprise Manager Fusion Middleware Control 51-25

52

Customizing SOA Composite Applications

52.1 Introduction to Customizing SOA Composite Applications 52-1

52.2 Creating the Customizable Composite 52-2

52.2.1 How to Create Customization Classes 52-2

52.2.2 How to Create the Customizable Composite 52-3

52.2.3 How to Add an XSD or WSDL File 52-4

52.2.4 How to Search for Customized Activities in a BPEL Process 52-5

52.2.5 What You May Need to Know About Resolving Validation Errors in Oracle
JDeveloper 52-5

52.2.6 What You May Need to Know About Resolving a Sequence Conflict 52-6

52.2.6.1 To resolve the conflict: 52-7

52.2.7 What You May Need to Know About Compiling and Deploying a Customized
Application 52-7

52.3 Customizing the Vertical Application 52-7

52.3.1 How to Customize the Vertical Application 52-8

52.4 Customizing the Customer Version 52-10

52.4.1 How to Customize the Customer Version 52-11

52.5 Upgrading the Composite 52-12

li

52.5.1 How to Upgrade the Core Application Team Composite 52-12

52.5.2 How to Upgrade the Vertical Applications Team Composite 52-12

52.5.3 How to Upgrade the Customer Composite 52-13

53

Defining Composite Sensors

53.1 Introduction to Composite Sensors 53-1

53.1.1 Restrictions on Use of Composite Sensors 53-2

53.2 Adding Composite Sensors 53-3

53.2.1 How to Add Composite Sensors 53-3

53.2.1.1 How to Add a Variable 53-9

53.2.1.2 How to Add an Expression 53-9

53.2.1.3 How to Add a Property 53-10

53.2.2 What You May Need to Know About Duplicate Composite Sensor Names 53-11

53.3 Monitoring Composite Sensor Data During Runtime 53-13

53.4 Creating and Managing Composite Sensors During Runtime from Oracle SOA
Composer 53-13

53.4.1 What You May Need to Know About Viewing Composite Sensor Changes in
Oracle SOA Composer 53-18

54

Creating Dynamic Business Processes

54.1 Introduction to Two-Layer Business Process Management 54-1

54.2 Creating a Phase Activity 54-2

54.2.1 How to Create a Phase Activity 54-3

54.2.2 What Happens When You Create a Phase Activity 54-3

54.2.3 What Happens at Runtime When You Create a Phase Activity 54-4

54.2.4 What You May Need to Know About Creating a Phase Activity 54-5

54.3 Creating the Dynamic Routing Decision Table 54-5

54.3.1 How to Create the Dynamic Routing Decision Table 54-5

54.3.2 What Happens When You Create the Dynamic Routing Decision Table 54-6

55

Integrating the Spring Framework in SOA Composite Applications

55.1 Introduction to the Spring Service Component 55-1

55.2 Integration of Java and WSDL-Based Components in the Same SOA Composite
Application 55-2

55.2.1 Java and WSDL-Based Integration Example 55-2

55.2.2 Using Callbacks with the Spring Framework 55-4

55.3 Creating a Spring Service Component in Oracle JDeveloper 55-5

55.3.1 How to Create a Spring Service Component in Oracle JDeveloper 55-5

55.3.2 What You May Need to Know About Java Class Errors During Java-to-WSDL
Conversions 55-17

lii

55.4 Defining Custom Spring Beans Through a Global Spring Context 55-17

55.4.1 How to Define Custom Spring Beans Through a Global Spring Context 55-17

55.5 Using the Predefined Spring Beans 55-17

55.5.1 IHeaderHelperBean.java Interface for headerHelperBean 55-18

55.5.2 IInstanceHelperBean.java Interface for instancerHelperBean 55-18

55.5.3 ILoggerBean.java Interface for loggerBean 55-19

55.5.4 How to Reference Predefined Spring Beans in the Spring Context File 55-20

55.6 JAXB and OXM Support 55-21

55.6.1 Extended Mapping Files 55-21

55.7 Configuring Groovy and Aspectj Classes with the Spring Service Component 55-23

55.8 Troubleshooting Spring Errors 55-24

55.8.1 Spring Bean Interface to Invoke Cannot Be Found 55-24

55.8.2 Unable to Add a Spring Service Component in the SOA Composite Editor 55-24

Part X Appendices

A BPEL Process Activities and Services

A.1 Introduction to Activities and Components A-1

A.2 Introduction to BPEL 1.1 and 2.0 Activities A-2

A.2.1 Tabs Common to Many Activities A-4

A.2.1.1 Annotations Tab A-4

A.2.1.2 Assertions Tab A-4

A.2.1.3 Correlations Tab A-5

A.2.1.4 Documentation Tab A-5

A.2.1.5 Headers Tab A-5

A.2.1.6 Properties Tab A-6

A.2.1.7 Skip Condition Tab A-6

A.2.1.8 Sources and Targets Tabs A-6

A.2.1.9 Timeout Tab A-6

A.2.2 Using the Native Format Builder Wizard Outside of Adapter Configuration A-6

A.2.2.1 To create a native format schema from the Applications Window: A-6

A.2.2.2 To edit an existing native format schema from the Applications Window: A-7

A.2.3 Assign Activity A-7

A.2.4 Assert Activity A-11

A.2.5 Bind Entity Activity A-12

A.2.6 Call Activity A-12

A.2.7 Compensate Activity A-13

A.2.8 CompensateScope Activity A-14

A.2.9 Create Entity Activity A-15

A.2.10 Dehydrate Activity A-16

liii

A.2.11 Dynamic Partner Link Activity A-16

A.2.12 Email Activity A-17

A.2.13 Empty Activity A-18

A.2.14 Exit Activity A-19

A.2.15 Flow Activity A-19

A.2.16 FlowN Activity A-21

A.2.17 forEach Activity A-21

A.2.18 If Activity A-22

A.2.19 IM Activity A-23

A.2.20 Invoke Activity A-23

A.2.21 Java Embedding Activity A-25

A.2.22 Partner Link Activity A-25

A.2.23 Phase Activity A-26

A.2.24 Pick Activity A-27

A.2.24.1 To put the correlation syntax before the assign activity: A-29

A.2.25 Receive Activity A-30

A.2.26 Receive Signal Activity A-31

A.2.27 Remove Entity Activity A-31

A.2.28 RepeatUntil Activity A-32

A.2.29 Replay Activity A-33

A.2.30 Reply Activity A-34

A.2.31 Rethrow Activity A-34

A.2.32 Schedule Job A-35

A.2.33 Scope Activity A-36

A.2.34 Sequence Activity A-38

A.2.35 Signal Activity A-39

A.2.36 SMS Activity A-39

A.2.37 Switch Activity A-40

A.2.38 Terminate Activity A-41

A.2.39 Throw Activity A-42

A.2.40 Translate Activity A-42

A.2.41 User Notification Activity A-43

A.2.42 Validate Activity A-44

A.2.43 Wait Activity A-45

A.2.44 While Activity A-46

A.2.45 XQuery Transform Activity A-47

A.2.46 XSLT Transform Activity A-48

A.3 Introduction to BPEL Services A-49

liv

B XPath Extension Functions

B.1 Advanced Functions B-1

B.1.1 batchProcessActive B-1

B.1.2 batchProcessCompleted B-2

B.1.3 copyList B-2

B.1.4 create-nodeset-from-delimited-string B-3

B.1.5 createDelimitedString B-3

B.1.6 createEssParameter B-4

B.1.7 doStreamingTranslate B-4

B.1.8 doTranslateFromNative B-5

B.1.9 doTranslateToNative B-5

B.1.10 format B-6

B.1.11 genEmptyElem B-6

B.1.12 generate-guid B-7

B.1.13 get-content-from-file-function B-7

B.1.14 getApplicationName B-8

B.1.15 getAttachmentContent B-8

B.1.16 getAttachmentProperty B-9

B.1.17 getChildElement B-9

B.1.18 getComponentInstanceID B-9

B.1.19 getComponentName B-10

B.1.20 getCompositeInstanceID B-10

B.1.21 getCompositeName B-10

B.1.22 getCompositeURL B-11

B.1.23 getECID B-11

B.1.24 getFaultAsString B-11

B.1.25 getFaultAsXML B-12

B.1.26 getFaultName B-12

B.1.27 getMilestoneName B-12

B.1.28 getOwnerDocument B-12

B.1.29 getParentComponentInstanceID B-13

B.1.30 getRevision B-13

B.1.31 getTaskReminderDuration B-13

B.1.32 instanceOf B-14

B.1.33 lookup-xml B-14

B.1.34 parseEscapedXML B-15

B.1.35 parseXML B-15

B.1.36 processScalableDocumentToNative B-15

B.1.37 processXSLTAttachmentFromNativeToNative B-16

B.1.38 processXSLTAttachmentFromNativeToStream B-16

lv

B.1.39 processXSLTAttachmentToNativeStream B-16

B.1.40 processXSLTAttachmentToStream B-17

B.1.41 processXSLTForScalableDocument B-17

B.1.42 setCompositeInstanceTitle B-17

B.2 BPEL Extension Functions B-17

B.2.1 BPEL Extension Functions in BPEL 1.1 and BPEL 2.0 B-17

B.2.1.1 getLinkStatus B-18

B.2.1.2 getVariableData B-18

B.2.1.3 getVariableProperty (For BPEL 1.1) B-19

B.2.1.4 getVariableProperty (For BPEL 2.0) B-19

B.2.1.5 doXslTransform (For BPEL 2.0) B-20

B.3 BPEL XPath Extension Functions B-20

B.3.1 addQuotes B-20

B.3.2 authenticate B-20

B.3.3 countNodes B-22

B.3.4 doXSLTransform B-22

B.3.5 doXSLTransformForDoc B-23

B.3.6 doc B-23

B.3.7 formatDate B-24

B.3.8 generateGUID B-24

B.3.9 getConfigProperty B-25

B.3.10 getContentAsString B-25

B.3.11 getConversationId B-25

B.3.12 getCreator B-25

B.3.13 getCurrentDate B-26

B.3.14 getCurrentDateTime B-26

B.3.15 getCurrentTime B-26

B.3.16 getElement B-27

B.3.17 getInstanceId B-27

B.3.18 getNodeValue B-27

B.3.19 getNodes B-28

B.3.20 getPreference B-28

B.3.21 getProcessId B-28

B.3.22 getProcessOwnerId B-29

B.3.23 getProcessURL B-29

B.3.24 getProcessVersion B-29

B.3.25 integer B-30

B.3.26 listUsers B-30

B.3.27 lookupUser B-31

B.3.28 parseEscapedXML B-31

B.3.29 processXQuery B-32

lvi

B.3.30 processXQuery10 B-32

B.3.31 processXQuery2004 B-32

B.3.32 processXSLT B-32

B.3.33 readBinaryFromFile B-36

B.3.34 readBinaryFromFileWithMimeHeaders B-36

B.3.35 readFile B-36

B.3.36 search B-37

B.3.37 toCDATA B-38

B.3.38 tryToCastToBoolean B-38

B.3.39 writeBinaryToFile B-38

B.3.40 getGroupIdsFromGroupAlias B-39

B.3.41 getUserIdsFromGroupAlias B-39

B.4 Conversion Functions B-39

B.4.1 boolean B-39

B.4.2 number B-40

B.4.3 string B-40

B.5 DVM Functions B-40

B.5.1 lookupValue B-41

B.5.2 lookupValue1M B-41

B.6 Database Functions B-42

B.6.1 lookup-table B-42

B.6.2 query-database B-42

B.6.3 sequence-next-val B-43

B.7 Date Functions B-43

B.7.1 add-dayTimeDuration-to-dateTime B-43

B.7.2 current-date B-44

B.7.3 current-dateTime B-44

B.7.3.1 To display the datetime value in seconds: B-45

B.7.4 current-time B-45

B.7.5 day-from-dateTime B-45

B.7.6 format-dateTime B-46

B.7.7 hours-from-dateTime B-46

B.7.8 minutes-from-dateTime B-46

B.7.9 month-from-dateTime B-47

B.7.10 seconds-from-dateTime B-47

B.7.11 subtract-dayTimeDuration-from-dateTime B-47

B.7.12 timezone-from-dateTime B-48

B.7.13 year-from-dateTime B-48

B.8 Identity Service Functions B-48

B.8.1 getDefaultRealmName B-49

B.8.2 getGroupProperty B-49

lvii

B.8.3 getManager B-49

B.8.4 getManagerFromManagementChain B-50

B.8.5 getReportees B-50

B.8.6 getSupportedRealmNames B-50

B.8.7 getUserProperty B-51

B.8.8 getUserRoles B-51

B.8.9 getUsersInAppRole B-51

B.8.10 getUsersInGroup B-52

B.8.11 isUserInAppRole B-52

B.8.12 isUserInRole B-53

B.8.13 lookupGroup B-53

B.8.14 lookupUser B-53

B.9 Logical Functions B-54

B.9.1 and B-54

B.9.2 equals B-54

B.9.3 false B-54

B.9.4 greater B-54

B.9.5 greater equals B-55

B.9.6 less B-55

B.9.7 less equals B-55

B.9.8 not B-55

B.9.9 not equals B-55

B.9.10 or B-56

B.9.11 true B-56

B.10 Mathematical Functions B-56

B.10.1 abs B-56

B.10.2 add B-57

B.10.3 ceiling B-57

B.10.4 count B-57

B.10.5 divide B-57

B.10.6 floor B-57

B.10.7 max-value-among-nodeset B-58

B.10.8 min-value-among-nodeset B-58

B.10.9 mod B-58

B.10.10 multiply B-58

B.10.11 round B-59

B.10.12 square-root B-59

B.10.13 subtract B-59

B.10.14 sum B-59

B.10.15 unary B-60

B.11 Node Set Functions B-60

lviii

B.11.1 last B-60

B.11.2 local-name B-60

B.11.3 name B-60

B.11.4 namespace-uri B-60

B.11.5 position B-61

B.11.6 union B-61

B.12 String Functions B-61

B.12.1 compare B-61

B.12.2 compare-ignore-case B-61

B.12.3 concat B-62

B.12.4 contains B-62

B.12.5 create-delimited-string B-63

B.12.6 ends-with B-63

B.12.7 format-string B-63

B.12.8 get-content-as-string B-64

B.12.9 get-localized-string B-64

B.12.10 index-within-string B-65

B.12.11 last-index-within-string B-65

B.12.12 left-trim B-66

B.12.13 lower-case B-66

B.12.14 matches B-66

B.12.15 normalize-space B-67

B.12.16 right-trim B-67

B.12.17 starts-with B-68

B.12.18 string-length B-68

B.12.19 substring B-68

B.12.20 substring-after B-69

B.12.21 substring-before B-69

B.12.22 translate B-69

B.12.23 upper-case B-69

B.13 Workflow Service Functions B-70

B.13.1 clearTaskAssignees B-70

B.13.2 createWordMLDocument B-70

B.13.3 dynamicTaskAssign B-71

B.13.4 getNotificationProperty B-72

B.13.5 getNumberOfTaskApprovals B-72

B.13.6 getPreviousTaskApprover B-72

B.13.7 getTaskAttachmentByIndex B-73

B.13.8 getTaskAttachmentByName B-73

B.13.9 getTaskAttachmentContents B-73

B.13.10 getTaskAttachmentsCount B-74

lix

B.13.11 getTaskResourceBundleString B-74

B.14 XREF Functions B-74

B.14.1 lookupPopulatedColumns B-75

B.14.2 lookupXRef B-75

B.14.3 lookupXRef1M B-76

B.14.4 markForDelete B-76

B.14.5 populateLookupXRefRow B-77

B.14.6 populateXRefRow B-77

B.14.7 populateXRefRow1M B-77

B.15 Building XPath Expressions in the Expression Builder in Oracle JDeveloper B-78

B.15.1 How to Use the Expression Builder B-78

B.15.2 Introduction to the XPath Building Assistant B-80

B.15.3 How to Use the XPath Building Assistant B-80

B.15.4 Using the XPath Building Assistant in the XSLT Mapper B-82

B.15.5 Function Parameter Tool Tips B-83

B.15.6 Syntactic and Semantic Validation B-84

B.15.7 Creating Expressions with Free Form Text and XPath Expressions B-84

B.15.8 Using Double Slashes for Directory Paths in XPath Functions on Windows
Can Cause Errors B-86

B.16 Creating User-Defined XPath Extension Functions B-86

B.16.1 How to Implement User-Defined XPath Extension Functions B-89

B.16.1.1 How to Implement Functions for the XSLT Mapper B-89

B.16.1.2 How to Implement Functions for All Other Components B-89

B.16.2 How to Configure User-Defined XPath Extension Functions B-90

B.16.3 How to Deploy User-Defined Functions to Runtime B-92

C Deployment Descriptor Properties

C.1 Introduction to Deployment Descriptor Properties C-1

C.1.1 How to Define Deployment Descriptor Properties in the Property Inspector C-4

C.1.2 How to Get the Value of a Preference within a BPEL Process C-6

D Understanding Sensor Public Views and the Sensor Actions XSD

D.1 Introduction to Sensor Public Views and the Sensor Actions XSD File D-1

D.2 Sensor Public Views D-1

D.2.1 Schema D-1

D.2.1.1 BPEL_PROCESS_INSTANCES D-2

D.2.1.2 BPEL_ACTIVITY_SENSOR_VALUES D-2

D.2.1.3 BPEL_FAULT_SENSOR_VALUES D-3

D.2.1.4 BPEL_VARIABLE_SENSOR_VALUES D-4

lx

D.3 Sensor Actions XSD File D-6

E Propagating Normalized Message Properties Through Message
Headers

E.1 Introduction to Normalized Messages E-1

E.1.1 Oracle Web Services Addressing Properties E-1

E.1.2 How to Set Normalized Message Properties in Message Headers E-3

E.2 Manipulating Normalized Message Properties with bpelx Extensions E-4

E.2.1 BPEL 2.0 bpelx Extensions Syntax E-4

E.2.2 BPEL 1.1 bpelx Extensions Syntax E-5

F Interfaces Implemented By Rules Dictionary Editor Task Flow

F.1 The MetadataDetails Interface F-1

F.1.1 The getDocument Method F-1

F.1.2 The getRelatedDocument Method F-2

F.1.3 The setDocument Method F-3

F.2 The NLSPreferences Interface F-3

G Oracle SOA Suite Configuration Properties Road Map

G.1 Oracle BPEL Process Manager Deployment Descriptor Properties G-1

G.2 Normalized Message Header Properties G-1

G.2.1 Oracle JCA Adapter Message Header Properties G-2

G.2.2 Oracle BPEL Process Manager and Oracle Web Services Addressing
Message Header Properties G-2

G.2.3 Oracle B2B Message Header Properties G-2

G.3 SOA Composite Application Properties G-2

G.4 Fault Policy and Adapter Rejected Message Properties G-3

G.5 Oracle B2B System Properties G-4

G.6 Oracle Healthcare Properties G-4

G.7 Oracle Business Activity Monitoring Properties G-4

G.8 Oracle Enterprise Manager Fusion Middleware Control Property Pages G-5

G.8.1 SOA Infrastructure Properties G-5

G.8.2 Oracle BPEL Process Manager Properties G-5

G.8.3 Human Workflow Notification and Task Service Properties G-6

G.8.4 Oracle Mediator Properties G-6

G.8.5 Cross Reference Properties G-6

G.8.6 Oracle B2B Properties G-7

G.8.7 Service and Reference Binding Component Properties G-7

G.8.8 Global Token Variables and Automatic Database Purging Properties G-7

lxi

G.9 System MBean Browser Advanced Properties G-7

G.9.1 SOA Infrastructure Advanced Properties G-8

G.9.2 Oracle BPEL Process Manager Advanced Properties G-8

G.9.3 Oracle Mediator Advanced Properties G-9

G.9.4 Human Workflow Notification and Task Service Advanced Properties G-9

G.9.5 Oracle B2B Advanced Properties G-9

H Working with Large Schemas in the XSLT Editor

H.1 Sparse Mappings H-1

H.1.1 Quick Start for XSLT View H-6

H.2 Non-Sparse Mappings H-8

H.3 Reducing Textual Clutter H-11

H.4 Searching Trees H-13

H.5 Copying and Modifying a Large Input Document H-13

H.6 Generating Test Files with Element and Type Substitutions H-16

Index

lxii

Preface

Developing SOA Applications with Oracle SOA Suite describes how to design, secure, test,
and deploy Oracle Service-Oriented Architecture (SOA) composite applications consisting of
service and reference binding components and Oracle BPEL process, human task, business
rule, {Varref: mediator}Oracle Mediator, and spring service components. Also included is
information on designing transformations and business events and acting upon human tasks
during runtime in Oracle BPM Worklist.

Audience
This document is intended for administrators and developers who work with Oracle SOA
Suite.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle Accessibility
Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support through My
Oracle Support. For information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing impaired.

Diversity and Inclusion
Oracle is fully committed to diversity and inclusion. Oracle respects and values having a
diverse workforce that increases thought leadership and innovation. As part of our initiative to
build a more inclusive culture that positively impacts our employees, customers, and
partners, we are working to remove insensitive terms from our products and documentation.
We are also mindful of the necessity to maintain compatibility with our customers' existing
technologies and the need to ensure continuity of service as Oracle's offerings and industry
standards evolve. Because of these technical constraints, our effort to remove insensitive
terms is ongoing and will take time and external cooperation.

Related Documents
Refer to the Oracle Fusion Middleware library on the Oracle Help Center for additional
information.

• For Oracle SOA Suite information, see Oracle SOA Suite.

• For adapters information, see On-Premises and Cloud SOA Adapters.

lxiii

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
https://docs.oracle.com/en/middleware/fusion-middleware/index.html

• For Oracle BAM information, see Oracle Business Activity Monitoring.

• For Oracle B2B information, see Oracle B2B.

• For Oracle Business Process Management information, see Oracle Business
Process Management.

• For Oracle Enterprise Scheduler information, see Oracle Enterprise Scheduler.

• For Oracle Managed File Transfer information, see Oracle Managed File Transfer.

• For Oracle Service Bus information, see Oracle Service Bus.

• For Oracle SOA Suite for healthcare integration information, see Oracle SOA Suite
for Healthcare Integration.

• For versions of platforms and related software for which Oracle products are
certified and supported, review the Certification Matrix on OTN.

• For cloud adapters information, see:

– Using Ariba Adapter

– Using Oracle Eloqua Cloud Adapter

– Using Oracle ERP Cloud Adapter

– Using the NetSuite Adapter

– Using Oracle RightNow Cloud Adapter

– Using Salesforce Adapter

– Using Oracle Sales Cloud Adapter

– Using ServiceNow Adapter

– Using SuccessFactors Adapter

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

Preface

lxiv

http://www.oracle.com/technetwork/middleware/ias/downloads/fusion-certification-100350.html

What's New in This Guide

For Oracle SOA Suite 12c (12.2.1.x), this guide has been updated to include the following
new and changed development features:

• New topic about importing XSLT customizations using WLST commands. See Importing
XSLT Customizations into a Deployed SOA Composite Application.

• In 12c (12.2.1.4): Support for developing SOA projects in Reference Configuration mode
so that new adapters that you create will have special JCA endpoint properties defined in
their source files. See Developing SOA Projects in Reference Configuration Mode,
Deploying SOA Composite Applications or Projects in Oracle JDeveloper, and JCA
Adapter Properties.

• In 12c (12.2.1.4): Support for consuming hybrid integrations created in Oracle Integration
(in Oracle Cloud) in on-premises SOA composite applications. See How to Consume
REST-Based Integrations Created in Oracle Integration in SOA Composite Applications.

• In 12c (12.2.1.4): Support for customer-defined media types for SOA REST binding. See
Request and Response rows in REST Binding Operation Dialog.

• Support for patching running composite instances. See Patching Running Instances of a
SOA Composite.

• Support for In-Memory SOA. See Using In-Memory SOA to Improve System
Performance.

• Support for debugging XSLT maps and support for conditional debugging. See
Debugging the XSLT Map.

• Support for End-to-End JSON and JavaScript. See Integrating REST Operations in SOA
Composite Applications.

• Support for Cloud Adapters. See the following guides for more information:

– Using Ariba Adapter

– Using Oracle Eloqua Cloud Adapter

– Using Oracle ERP Cloud Adapter

– Using the NetSuite Adapter

– Using Oracle RightNow Cloud Adapter

– Using Salesforce Adapter

– Using Oracle Sales Cloud Adapter

– Using ServiceNow Adapter

– Using SuccessFactors Adapter

More Information

For other Oracle SOA Suite new features and known issues in this release, see Release
Notes for Oracle SOA Suite.

lxv

Note:

Screens shown in this guide may differ slightly from your implementation.
Any differences are cosmetic.

What's New in This Guide

lxvi

Part I
Getting Started with Oracle SOA Suite

This part provides an introduction to Oracle SOA Suite and developing SOA composite
applications.

This part contains the following chapters:

• Introduction to Building Applications with Oracle SOA Suite

• Getting Started with Developing SOA Composite Applications

• Managing Shared Data with the Design-Time

1
Introduction to Building Applications with
Oracle SOA Suite

This chapter describes service-oriented architecture (SOA) and Oracle SOA Suite, standards
used by Oracle SOA Suite to enable SOA, SOA composite application architecture and
runtime behavior, approaches to designing SOA composite applications, and where to go to
learn more about Oracle SOA Suite.
This chapter includes the following sections:

• Introduction to Oracle SOA Suite

• Getting Started with Oracle SOA Suite

• Setting Accessibility Options

1.1 Introduction to Oracle SOA Suite
This section provides an overview of service-oriented architecture and standards, Oracle
SOA Suite capabilities, service component architecture, runtime behavior, and design-time
approaches.

• Service-Oriented Architecture

• Services

• Oracle SOA Suite

• Standards Used by Oracle SOA Suite to Enable SOA

• Service Component Architecture within SOA Composite Applications

• Runtime Behavior of a SOA Composite Application

• Approaches for Designing SOA Composite Applications

For introductory information about Oracle SOA Suite, see Understanding Oracle SOA Suite.
For information about Oracle SOA Suite infrastructure and administration, see Administering
Oracle SOA Suite and Oracle Business Process Management Suite.

1.1.1 Service-Oriented Architecture
Changing markets, increasing competitive pressures, and evolving customer needs are
placing greater pressure on IT to deliver greater flexibility and speed. Today, every
organization is faced with predicting change in a global business environment, to rapidly
respond to competitors, and to best exploit organizational assets for growth. In response to
these challenges, leading companies are adopting service-oriented architecture (SOA) to
deliver on these requirements by overcoming the complexity of their application and IT
environments.

SOA provides an enterprise architecture that supports building connected enterprise
applications to provide solutions to business problems. SOA facilitates the development of
enterprise applications as modular business web services that can be easily integrated and
reused, creating a truly flexible, adaptable IT infrastructure.

1-1

1.1.2 Services
SOA separates business functions into distinct units, or services. A SOA application
reuses services to automate a business process.

A standard interface and message structure define services. The most widely used
mechanism are web services standards. These standards include the Web Service
Description Language (WSDL) file for service interface definition and XML Schema
Documents (XSD) for message structure definition. These XML standards are easily
exchanged using standard protocols. Because standards for web services use a
standard document structure, they enable existing systems to interoperate regardless
of the choice of operating system and computer language used for service
implementation.

When designing a SOA approach, you create a service portfolio plan to identify
common functionality to use as a service within the business process. By creating and
maintaining a plan, you ensure that existing services and applications are reused or
repurposed whenever possible. This plan also reduces the time spent in creating
needed functionality for the application.

1.1.3 Oracle SOA Suite
Oracle SOA Suite provides a complete set of service infrastructure components for
designing, deploying, and managing composite applications. Oracle SOA Suite
enables services to be created, managed, and orchestrated into composite
applications and business processes. Composites enable you to easily assemble
multiple technology components into one SOA composite application. Oracle SOA
Suite plugs into heterogeneous IT infrastructures and enables enterprises to
incrementally adopt SOA.

The components of Oracle SOA Suite benefit from common capabilities, including a
single deployment, management, and tooling model, end-to-end security, and unified
metadata management. Oracle SOA Suite is unique in that it provides the following set
of integrated capabilities:

• Messaging

• Service discovery

• Orchestration

• Web services management and security with Oracle Web Services Manager
(OWSM)

• Business rules

• Human interaction

• Events framework

• Business activity monitoring

1.1.4 Standards Used by Oracle SOA Suite to Enable SOA
Oracle SOA Suite puts a strong emphasis on standards and interoperability. Among
the standards it leverages are:

• Service Component Architecture (SCA) assembly model

Chapter 1
Introduction to Oracle SOA Suite

1-2

Provides the service details and their interdependencies to form composite applications.
SCA enables you to represent business logic as reusable service components that can
be easily integrated into any SCA-compliant application. The resulting application is
known as a SOA composite application. The specification for the SCA standard is
maintained by the Organization for the Advancement of Structured Information Standards
(OASIS) through the Open Composite Services Architecture (CSA) Member Section:

http://www.oasis-opencsa.org
• Service Data Objects (SDO)

Specifies a standard data method and can modify business data regardless of how it is
physically accessed. Knowledge is not required about how to access a particular back-
end data source to use SDO in a SOA composite application. Consequently, you can use
static or dynamic programming styles and obtain connected and disconnected access.

• Business Process Execution Language (BPEL)

Provides enterprises with an industry standard for business-process orchestration and
execution. Using BPEL, you design a business process that integrates a series of
discrete services into an end-to-end process flow. This integration reduces process cost
and complexity. BPEL versions 1.1 and 2.0 are supported.

• XSL Transformations (XSLT)

Processes XML documents and transforms document data from one XML schema to
another.

• XQuery Transformations (XQuery)

Queries and transforms collections of structured and unstructured data, typically in the
form of XML.

• Java Connector Architecture (JCA)

Provides a Java technology solution to the problem of connectivity between the many
application servers in Enterprise Information Systems (EIS).

• Java Messaging Service (JMS)

Provides a messaging standard that allows application components based on the Java 2
Platform, Enterprise Edition (Java EE) to access business logic distributed among
heterogeneous systems.

• Web Service Definition Language (WSDL) file

Provides the entry points into a SOA composite application. The WSDL file provides a
standard contract language and is central for understanding the capabilities of a service.

• Simple Object Access Protocol (SOAP)

Provides the default network protocol for message delivery.

• Representational State Transfer (REST)

Provides an architecture for designing network applications. RESTful applications use
HTTP requests to post data (create and update), get data (for example, make queries),
and delete data. REST provides an alternative to using web services.

• JavaScript Object Notation (JSON)

Provides a language for representing simple data structures and associative arrays called
objects. JSON is a standard designed for human-readable data interchange. JSON is
derived from the JavaScript scripting language.

• Web Application Description Language (WADL)

Chapter 1
Introduction to Oracle SOA Suite

1-3

http://www.oasis-opencsa.org

Provides a readable XML description of HTTP-based web applications (typically
REST web services). WADL simplifies the reuse of web services based on the
existing HTTP architecture of the web.

1.1.5 Service Component Architecture within SOA Composite
Applications

Oracle SOA Suite uses the SCA standard as a way to assemble service components
into a SOA composite application. SCA provides a programming model for the
following:

• Creating service components written with a wide range of technologies, including
programming languages such as Java, C++, and declarative languages such as
XSLT. The use of specific programming languages and technologies (including
web services) is not required with SCA.

• Assembling the service components into a SOA composite application. In the SCA
environment, service components are the building blocks of applications.

SCA provides a model for assembling distributed groups of service components into
an application, enabling you to describe the details of a service and how services and
service components interact. Composites are used to group service components and
wires are used to connect service components. SCA helps to remove middleware
concerns from the programming code by applying infrastructure declaratively to
composites, including security and transactions.

The key benefits of SCA include the following:

• Loose coupling

Service components integrate with other service components without needing to
know how other service components are implemented.

• Flexibility

Service components can easily be replaced by other service components.

• Services invocation

Services can be invoked either synchronously or asynchronously.

• Productivity

Service components are easily integrated to create a SOA composite application.

• Easy maintenance and debugging

Service components can be easily maintained and debugged when an issue is
encountered.

A SOA composite is an assembly of services, service components, and references
designed and deployed in a single application. Wiring between the services, service
components, and references enables message communication. The details for a
composite are stored in the composite.xml file.

Figure 1-1 provides an example of a composite that includes an inbound service
binding component, a BPEL process service component (named Account), a business
rules service component (named AccountRule), and two outbound reference binding
components.

Chapter 1
Introduction to Oracle SOA Suite

1-4

Figure 1-1 Simple SOA Composite Architecture

1.1.5.1 Service Components
Service components are the building blocks that you use to construct a SOA composite
application.

The following service components are available. There is a corresponding service engine of
the same name for each service component. All service engines can interact in a single
composite.

• BPEL processes provide process orchestration and storage of a synchronous or an
asynchronous process. You design a business process that integrates a series of
business activities and services into an end-to-end process flow.

• Business rules enable you to design a business decision based on rules.

• Human tasks provide workflow modeling that describes the tasks for users or groups to
perform as part of an end-to-end business process flow.

• Mediators route events (messages) between different components.

• Spring enables you to integrate Java interfaces into SOA composite applications.

For more information about service components, see Adding Service Components.

1.1.5.2 Binding Components
Binding components establish a connection between a SOA composite and the external
world. There are two types of binding components:

• Services

Chapter 1
Introduction to Oracle SOA Suite

1-5

Services provide the outside world with an entry point to the SOA composite
application. The WSDL file of the service advertises its capabilities to external
applications. These capabilities are used for contacting the SOA composite
application components. The binding connectivity of the service describes the
protocols that can communicate with the service, for example, SOAP/HTTP or a
JCA adapter.

• References

References enable messages to be sent from the SOA composite application to
external services in the outside world.

Table 1-1 lists and describes the binding components provided by Oracle SOA Suite.

Table 1-1 Binding Components Provided by Oracle SOA Suite

Binding Components Description

Web service (SOAP over
HTTP)

Use for connecting to standards-based services using SOAP
over HTTP.

JCA adapters Use for integrating services and references with technologies
(for example, databases, file systems, FTP servers,
messaging, JMS, IBM WebSphere MQ, Oracle User
Messaging Service, LDAP servers, Oracle Coherence cache,
and so on) and applications (Oracle E-Business Suite,
PeopleSoft, and so on).

This includes the AQ adapter, database adapter, file adapter,
FTP adapter, JMS adapter, MQ adapter, socket adapter,
Oracle User Messaging Service adapter, LDAP adapter,
Oracle Coherence adapter, and third-party adapter.

Oracle B2B Use for browsing B2B metadata in the Oracle Metadata
Services Repository (MDS Repository) and selecting
document definitions.

Oracle Healthcare Use for sending and receiving messages to and from a
healthcare system.

ADF-BC service Use for connecting Oracle Application Development
Framework (ADF) applications using SDO with the SOA
platform.

Oracle E-Business Suite Use for integrating the Oracle E-Business Suite adapter with
Oracle applications.

BAM 11g adapter Use for integrating Java EE applications with Oracle BAM 11g
server to send data, and also use as a reference binding
component in a SOA composite application.

Note: This adapter can only connect to an Oracle BAM 11g
server.

EJB service Use for integrating SDO parameters or Java interfaces with
Enterprise JavaBeans.

Direct binding service Use to invoke a SOA composite application and exchange
messages over a remote method invocation (RMI) in the
inbound direction and to invoke an Oracle Service Bus (OSB)
flow or another SOA composite application in the outbound
direction.

HTTP binding Use to integrate SOA composite applications with HTTP
binding.

Chapter 1
Introduction to Oracle SOA Suite

1-6

Table 1-1 (Cont.) Binding Components Provided by Oracle SOA Suite

Binding Components Description

REST service Use to integrate REST services with SOA composite
applications and REST-enable SOA composite applications.

Oracle Managed File Transfer
(MFT)

Use to transfer files to and from many endpoint types, such as
remote and embedded FTP or sFTP servers; directories; and
SOAP web service, Oracle SOA Suite, Oracle Service Bus,
Oracle B2B, Oracle Healthcare, and Oracle Data Integrator
endpoints.

Cloud adapters The cloud adapters enable you to send and receive messages
from a cloud server.

Oracle SOA Suite 12c supports the following cloud adapters:

• Ariba Adapter
• Oracle Eloqua Cloud Adapter
• Oracle ERP Cloud Adapter
• Oracle NetSuite Adapter
• Oracle RightNow Cloud Adapter
• Oracle Sales Cloud Adapter
• Salesforce Adapter
• ServiceNow Adapter
• SuccessFactors Adapter

For more information about binding components, see Adding Service Binding Components
and Adding Reference Binding Components.

1.1.5.3 Wires
Wires enable you to graphically connect the following components in a single SOA composite
application for message communication:

• Services to service components

• Service components to other service components

• Service components to references

For more information about wires, see Adding Wires.

1.1.6 Runtime Behavior of a SOA Composite Application
Figure 1-2 shows the operability of a SOA composite application using SCA technology. In
this example, an external application (a .NET payment calculator) initiates contact with the
SOA composite application.

For more information about descriptions of the tasks that services, references, service
components, and wires perform in an application, see Service Component Architecture within
SOA Composite Applications.

Chapter 1
Introduction to Oracle SOA Suite

1-7

Figure 1-2 Runtime Behavior of SOA Composite Application

The .NET payment calculator is an external application that sends a SOAP message
to the SOA application to initiate contact. The Service Infrastructure picks up the
SOAP message from the binding component and determines the intended component
target. The BPEL process service engine receives the message from the Service
Infrastructure for processing by the BPEL Loan Process application and posts the
message back to the Service Infrastructure after completing the processing.

Table 1-2 describes the operability of the SOA composite application shown in
Figure 1-2.

Table 1-2 Introduction to a SOA Composite Application Using SCA Technologies

Part Description Example of Use in Figure 1-2 See Section

Binding
components

Establishes the connectivity
between a SOA composite
and the external world. There
are two types:

• Service binding
components provide an
entry point to the SOA
composite application.

• Reference binding
components enable
messages to be sent
from the SOA composite
application to external
services.

The SOAP binding component service:

• Advertises its capabilities in the WSDL
file.

• Receives the SOAP message from
the .NET application.

• Sends the message through the policy
infrastructure for security checking.

• Translates the message to a normalized
message (an internal representation of
the service's WSDL contract in XML
format).

• Posts the message to the Service
Infrastructure.

An example of a reference binding component
in Figure 1-2 is the Loan Process application.

Service
Components

Chapter 1
Introduction to Oracle SOA Suite

1-8

Table 1-2 (Cont.) Introduction to a SOA Composite Application Using SCA Technologies

Part Description Example of Use in Figure 1-2 See Section

Service
Infrastructure

Provides internal message
transport

The Service Infrastructure:

• Receives the message from the SOAP
service binding component.

• Posts the message for processing to the
BPEL process service engine first and
the human task service engine second.

Service
Infrastructure

Service engines
(containers
hosting service
components)

Host the business logic or
processing rules of the
service components. Each
service component has its
own service engine.

The BPEL process service engine:

• Receives the message from the Service
Infrastructure for processing by the BPEL
Loan Process application.

• Posts the message to the Service
Infrastructure after completing the
processing.

Service Engines

Universal
Description,
Discovery, and
Integration
(UDDI) and
MDS

The MDS Repository stores
descriptions of available
services. The UDDI
advertises these services,
and enables discovery and
dynamic binding at runtime.

The SOAP service used in this composite
application is stored in the MDS repository
and can also be published to UDDI.

Managing
Shared Data with
the Design-Time

SOA archive
composite

(deployment
unit)

The deployment unit that
describes the composite
application.

The SOA archive (SAR) of the composite
application is deployed to the Service
Infrastructure.

Deployed
Service Archives

1.1.6.1 Service Infrastructure
The Service Infrastructure provides the following internal message routing infrastructure
capabilities for connecting components and enabling data flow:

• Receives messages from the service providers or external partners through SOAP
services or adapters

• Sends the message to the appropriate service engine

• Receives the message back from the service engine and sends it to any additional
service engines in the composite or to a reference binding component based on the
wiring

1.1.6.2 Service Engines
Service engines are containers that host the business logic or processing rules of the service
components. Service engines process the message information received from the Service
Infrastructure.

There is a corresponding service engine of the same name for each service component. All
service engines can interact in a single composite.

For more information, see Administering Oracle SOA Suite and Oracle Business Process
Management Suite.

Chapter 1
Introduction to Oracle SOA Suite

1-9

1.1.6.3 Deployed Service Archives
The SOA archive (SAR) is a SOA archive deployment unit. A SAR file is a special JAR
file that requires a prefix of sca_ (for example,
sca_OrderBookingComposite_rev1.0.jar). The SAR file is deployed to the Service
Infrastructure. The SAR packages service components (such as BPEL processes,
business rules, human tasks, and Oracle Mediator routing services) into a single
application. The SAR file is analogous to the BPEL suitcase archive of previous
releases, but at the higher composite level and with any additional service components
that your application includes (for example, human tasks, business rules, and Oracle
Mediator routing services).

For more information, see Deploying SOA Composite Applications .

1.1.7 Approaches for Designing SOA Composite Applications
When creating a SOA composite application, you have a choice of approaches for
building it:

• Top-Down: You analyze your business processes and identify activities in support
of your process. When creating a composite, you define all the SOA components
through the SOA Composite Editor. You create all the services first, and then build
the BPEL process, referencing the created services.

• Bottom-Up: You analyze existing applications and assets to identify those that can
be used as services. As you create a BPEL process, you build the services on an
as-needed basis. This approach works well when IT must react to a change.

1.2 Getting Started with Oracle SOA Suite
This guide assists you with developing a SOA composite application.

Table 1-3 Getting Started with Oracle SOA Suite

To Get Started with... See...

The basic steps of composite,
service and reference binding
component, and service component
creation in Oracle JDeveloper

Getting Started with Developing SOA Composite
Applications

Using shared data with the SOA
Design-Time Oracle Metadata
Services Repository (MDS
Repository)

Managing Shared Data with the Design-Time MDS
Repository

Designing BPEL process service
components in a composite

Using the BPEL Process Service Component

Designing Oracle Mediator service
components in a composite

Using the Oracle Mediator Service Component

Designing business rule service
components in a composite

Using the Business Rules Service Component

Designing human workflow service
components in a composite

Using the Human Workflow Service Component

Chapter 1
Getting Started with Oracle SOA Suite

1-10

Table 1-3 (Cont.) Getting Started with Oracle SOA Suite

To Get Started with... See...

Designing service and reference
binding components in a composite

Using Binding Components

Functionality that can be shared
across components, such as
templates, XSLT and XQuery
transformations, business events,
cross references, and domain value
maps

Sharing Functionality Across Service Components

Composite completion tasks such as
security policy attachments,
deployment, debugging, and
automating composite testing

Completing Your Application

Advanced topics such as
management of large documents
and large numbers of instances,
composite customizations,
composite sensors, and the spring
framework

Advanced Topics

Other resources:

• Understanding Oracle SOA Suite describes the business challenges faced by a company
and how the components of Oracle SOA Suite address these challenges from design
time through runtime.

1.3 Setting Accessibility Options
Oracle SOA Suite uses both Oracle JDeveloper and Oracle SOA Composer for application
development. This section describes accessibility options for both environments.

1.3.1 Setting Accessibility Options in Oracle JDeveloper
Oracle JDeveloper provides accessibility options, such as support for screen readers, screen
magnifiers, and standard shortcut keys for keyboard navigation. You can also customize
Oracle JDeveloper for better readability, including the size and color of fonts and the color
and shape of objects. For information and instructions on configuring accessibility in Oracle
JDeveloper, see Oracle JDeveloper Accessibility Information in Developing Applications with
Oracle JDeveloper.

1.3.2 Setting Accessibility Options in Oracle SOA Composer and Oracle
BPM Worklist

Accessibility settings help you read all components of the application. You can set
accessibility options in either Oracle SOA Composer or Oracle BPM Worklist for the current
instance or for all instances.

Chapter 1
Setting Accessibility Options

1-11

1.3.2.1 How to Set Accessibility Features Before Logging In
Oracle SOA Composer or Oracle BPM Worklist presents the Accessibility menu on the
login page, so you can configure accessibility before you log in. These settings can be
persisted for only the current session or for all sessions.

To set accessibility options before logging in:

1. Launch Oracle SOA Composer or Oracle BPM Worklist.

2. On the login page, click Accessibility in the top right corner.

The Edit Accessibility Settings page appears, as shown in Figure 1-3.

Figure 1-3 Edit Accessibility Settings Page

3. Select any of the following options:

• Use screen reader.

• Use high contrast colors.

• Use large fonts.

4. To save the new settings only for this session, click Use for this session. To save
the settings for all sessions, click Save as preference and use.

1.3.2.2 How to Set Accessibility Options After Logging In
Once you log in to Oracle SOA Composer or Oracle BPM Worklist, you can configure
accessibility options from any page. This changes the user preferences, which are
retained through all sessions until you change them again.

To set accessibility options after logging in:

1. Launch Oracle SOA Composer or Oracle BPM Worklist and log in.

2. From any page, select Preferences in the top right corner.

The Preferences dialog appears.

3. In the Preferences column, click Accessibility.

The Accessibility Preferences appear, as shown in Figure 1-4.

Chapter 1
Setting Accessibility Options

1-12

Figure 1-4 Preferences Dialog

4. In the Mode Settings field, select Enable screen reader mode if you use a screen
reader. Select Disable screen reader mode if you do not use a screen reader.

5. In the Contrast Settings field, select Use high contrast to increase the contrast
between objects on the console; otherwise, select Use normal contrast.

6. In the Font Settings field, select Use large fonts to increase the font size; otherwise,
select Use normal fonts.

7. Click OK.

Chapter 1
Setting Accessibility Options

1-13

2
Getting Started with Developing SOA
Composite Applications

This chapter describes how to use Oracle JDeveloper to create a SOA composite application.
It guides you through the basic steps of composite, service and reference binding
component, and service component creation, security, deployment, and testing, along with
describing key issues to be aware of when designing a SOA composite application.
This chapter includes the following sections:

• Developing SOA Projects in Reference Configuration Mode

• Creating a SOA Application

• Adding Service Components

• Adding Service Binding Components

• Adding Reference Binding Components

• Adding Wires

• Adding Descriptions to SOA Composite Applications

• Renaming, Deleting, and Moving Components and Artifacts

• Viewing Component Details in the Property Inspector

• Adding Security Policies

• Deploying a SOA Composite Application

• Managing and Testing a SOA Composite Application

2.1 Developing SOA Projects in Reference Configuration Mode
Beginning with Release 12c (12.2.1.4), you can create either a Reference Configuration
domain or a Classic domain on the Templates screen in the Configuration Wizard during
installation. A Reference Configuration domain guards servers from running into out-of-
memory, stuck threads, endpoint connectivity, and database issues. A Reference
Configuration domain supports SOA, OSB, and B2B topologies. The templates in these
products include Reference Configuration in their names, and are the default templates listed
in the Configuration Wizard for these products.

Notes:

• A Reference Configuration domain does not support BPM or BAM components.

• There is no specific Reference Configuration template for ESS. However, ESS
can be added to both a Reference Configuration domain and to a Classic
domain.

• The Reference Configuration feature does not apply to MFT domains.

2-1

Developing a SOA project in Reference Configuration mode means that you enable
Reference Configuration settings in JDeveloper so that new adapters that you create
in the project will have special JCA endpoint properties defined in their source files.
You can modify these properties directly in the Adapter Configuration Wizard for
projects newly created in Release 12c (12.2.1.4). See JCA Endpoint Properties in the
Adapter Configuration Wizard in Understanding Technology Adapters.

To create a Reference Configuration domain, see Selecting the Configuration
Template for Oracle SOA Suite in Installing and Configuring Oracle SOA Suite and
Business Process Management. To configure the domain, see Configuring a
Reference Configuration Domain in Administering Oracle SOA Suite and Oracle
Business Process Management Suite.

Note:

If you develop SOA projects in Reference Configuration mode, Oracle
recommends that you deploy them to a server that is in a Reference
Configuration domain. If a SOA project is developed in Classic mode and the
server to which it is deployed is in a Reference Configuration domain, or vice
versa, JDeveloper displays a Mismatch notification in the Deploy Composite
Wizard. For more information, see Deploying SOA Composite Applications or
Projects in Oracle JDeveloper.

How to Enable Reference Configuration Settings

By default, JDeveloper is in Classic mode. To develop SOA projects in Reference
Configuration mode, you must manually enable this feature in JDeveloper:

1. From the Tools menu, select Preferences.

2. Select Reference Configuration Settings.

3. Select Enable Reference Configuration settings in adapters.

2.2 Creating a SOA Application
The first steps in building a new application are to assign it a name and to specify the
directory in which to save source files. When you install the Oracle SOA Suite Quick
Start, the Oracle SOA Suite extensions are automatically installed in Oracle
JDeveloper. This differs from previous releases in which you manually imported the
Oracle SOA Suite extensions into Oracle JDeveloper. For information about the Oracle
SOA Suite Quick Start installation, see Installing SOA Suite and Business Process
Management Suite Quick Start for Developers.

2.2.1 Create a SOA Application and Project
1. Start Oracle JDeveloper Studio Edition.

2. If Oracle JDeveloper is running for the first time, specify the location for the Java
JDK and the user role in which to run Oracle JDeveloper. The JDK version must
be later than or equal to 1.7.0_15.

3. Create a SOA application in any of the following ways:

• From the File main menu:

Chapter 2
Creating a SOA Application

2-2

a. Select New > Application.

The New Gallery opens, where you can select different application components
to create.

b. In the Categories tree, select General > Applications.

c. In the Items pane, select SOA Application, and click OK.

• From the Application main menu:

a. Select New.

The New Gallery opens, where you can select different application components
to create.

b. In the Categories tree, select General > Applications.

c. In the Items pane, select SOA Application, and click OK.

• From the Application menu in the Applications window:

a. In the Applications window in the upper left, select New Application from the
Applications dropdown list.

4. In the Name your application page, you can optionally change the name and location for
your application. If this is your first application, from Application Template, select SOA
Application. Accept the defaults for the package prefix, and click Next.

Note:

Note the following application naming conventions:

• Do not create an application name with spaces.

• Do not create applications and projects in directory paths that have spaces
(for example, c:\Program Files).

• On a UNIX operating system, it is highly recommended that you enable
Unicode support by setting the LANG and LC_All environment variables to a
locale with the UTF-8 character set. This action enables the operating
system to process any character in Unicode. SOA technologies are based
on Unicode. If the operating system is configured to use non-UTF-8
encoding, SOA components may function in an unexpected way. For
example, a non-ASCII file name can make the file inaccessible and cause
an error. Oracle does not support problems caused by operating system
constraints.

In a design-time environment, if you are using Oracle JDeveloper, select
Tools > Preferences > Environment > Encoding > UTF-8 to enable
Unicode support. This setting is also applicable for runtime environments.

5. In the Name your project page, you can optionally change the name and location for your
SOA project. By default, Oracle JDeveloper adds the SOA project technology, the
composite.xml file that describes the SOA composite application, and the necessary
libraries to your model project.

6. Click Next.

Chapter 2
Creating a SOA Application

2-3

Note:

Composite and component names cannot exceed 500 characters.

A project deployed to the same infrastructure must have a unique name across
SOA composite applications. The uniqueness of a composite is determined by its
project name. For example, do not perform the actions described in Table 2-1.
During deployment, the second deployed project (composite) overwrites the first
deployed project (composite).

Table 2-1 Restrictions on Naming a SOA Project

Create an Application Named... With a SOA Project Named...

Application1 Project1
Application2 Project1

The Project SOA Settings page of the Create SOA Application wizard appears.

7. In the Configure SOA Settings page, click Empty Composite for this example,
and click Finish. Table 2-2 describes all of the options on this page.

Table 2-2 Configure SOA Settings Page

Element Description

Empty Composite Creates an empty SOA composite application. This type is
selected by default.

Composite With BPEL
Process

Automatically opens the Create BPEL Process dialog to
guide you through creation of an initial BPEL process. A
BPEL process enables you to design a business process that
integrates a series of business activities and services into an
end-to-end process flow.

Composite With Mediator Automatically opens the Create Mediator dialog to guide you
through creation of an initial Oracle Mediator service
component. Oracle Mediator enables you to route events
(messages) between different components.

Composite With Human
Task

Automatically opens the Create Human Task dialog to guide
you through creation of an initial human task service
component. A human task component enables you to model
a workflow that describes the tasks for users or groups to
perform as part of an end-to-end business process flow. The
tasks are accessed through Oracle BPM Worklist during
process runtime.

Composite With
Subprocess

Automatically creates a SOA composite application with a
subprocess. A subprocess is a fragment of BPEL code that
can be reused within a particular processor by separate
processes.

Composite With Business
Rule

Automatically opens the Create Business Rules dialog to
guide you through creation of an initial business rule service
component. A business rule enables you to design a business
decision based on rules.

Chapter 2
Creating a SOA Application

2-4

Table 2-2 (Cont.) Configure SOA Settings Page

Element Description

Composite With Spring Automatically opens the Create Spring dialog to guide you
through creation of a spring context service component. A
spring context service component enables you to integrate
components that use Java interfaces instead of WSDL files
into SOA composite applications. You can also integrate
components that use Java interfaces with components that
use WSDL files in the same SOA composite application.

8. From the File main menu, select Save All.

2.2.2 What Happens When You Create a SOA Application and Project
When you create a SOA application, Oracle JDeveloper creates a project that contains all the
source files related to your application. You can then use Oracle JDeveloper to create
additional projects needed for your application.

Figure 2-1 shows the SOA Composite Editor for a project named OrderBookingComposite.

Figure 2-1 New Workspace for a SOA Composite Application

Table 2-3 describes the SOA Composite Editor.

Chapter 2
Creating a SOA Application

2-5

Table 2-3 SOA Composite Editor

Element Description

Applications Window
(Upper left)

Displays the key directories and files for the specific service
components included in the SOA project. You can change the
structure as necessary for your environment. The only limitation is
that all files must be located under the SOA directory.

• Service_component_directory
Displays a directory for the artifacts of each service
component you add:

A BPEL directory is created for BPEL processes.

A Mediators directory is created for Oracle Mediators.

A HumanTasks directory is created for human tasks.

An oracle/rules directory is created for business rules.
• Events

Displays the business event files (.edn).
• Schemas

Displays the BPEL process schema files (.xsd).
• testsuites

Displays the test suite files.
• Transformations

Displays the transformation XSLT (.xsl) and XQuery (.xqy)
mapper files.

• WSDLs
Displays all WSDL files (.wsdl).

• composite_name
A composite_name file is automatically created when you
create a SOA project. This file describes the entire composite
assembly of services, service components, references, and
wires.

Structure Window (Lower
left)

The Structure window provides a structural view of the data in the
document currently selected in the active window.

Designer (middle) You drag service components, services, and references from the
Components window into the composite in the designer. When you
drag and drop a service component into the designer, a
corresponding property editor is invoked for performing
configuration tasks related to that service component. For
example, when you drag and drop the Oracle Mediator service
component into the designer, the Mediator Editor is displayed for
configuring the Oracle Mediator service component.

For all subsequent editing sessions, you double-click these service
components to re-open their editors.

Project Name (Above the
designer)

Displays the project name of the SOA composite application.

Left Swimlane (Exposed
Services)

The left swimlane is for services (such as web services, REST
adapters, or JCA adapters) that provide an entry point to the SOA
composite application.

Right Swimlane (External
References)

The right swimlane is for references that send messages to
external services in the outside world, such as web services or
JCA adapters.

Chapter 2
Creating a SOA Application

2-6

Table 2-3 (Cont.) SOA Composite Editor

Element Description

Components Window
(Upper right -
Components tab)

The Components window provides the various resources that you
can use in a SOA composite. It contains the following service
components and adapters:

• Components

Displays the BPEL process, business rule, human task, Oracle
Mediator, and spring components that can be dragged and
dropped into the designer.

• Technology

Displays the JCA adapters (such as AQ, file, FTP, database,
JMS, MQ, Oracle User Messaging Service, socket, LDAP
server, and Coherence cache), third-party adapter, cloud
adapter, Oracle BAM 11g binding component, Oracle
Healthcare binding component, Oracle B2B binding
component, EJB binding component, ADF-BC binding
component, application adapters (Oracle E-Business Suite,
JDE World, and SAP), direct binding component, HTTP
binding component, Oracle Managed File Transfer (MFT)
adapter, Representational State Transfer (REST) adapter, and
web service binding component that can be dragged into the
left or right swimlane.

Resources window (Upper
right - Resources tab)

The Resources window provides a single dialog from which you
can browse both local and remote resources. For example, you can
access the following resources:

• Shared data such as schemas and WSDLs from the MDS
Repository.

• WSIL browser functionality that uses remote resources that
can be accessed through an HTTP connection, file URL, or
application server connection.

• Remote resources that are registered in a Universal
Description, Discover, and Integration (UDDI) registry.

You select these resources for the SOA composite application
through the WSDL Chooser dialog. This dialog is accessible
through a variety of methods. For example, when you select the
WSDL file to use with a service binding component or an Oracle
Mediator service component or select the schema file to use in a
BPEL process, the SOA Resource Browser dialog appears. Click
Resources at the top of this dialog to access available resources.

Log Window (Lower
middle)

The Log window displays messages about application compilation,
validation, and deployment.

Property Inspector (Lower
right)

The Property Inspector displays properties for the selected service
component, service, or reference.

You can also edit BPEL activity properties and define deployment
descriptor properties for a BPEL process service component.

For more information, see How to Edit BPEL Activities in the
Property Inspector. and How to Define Deployment Descriptor
Properties in the Property Inspector.

Application View The Application View shows the artifacts for the SOA composite
application.

The composite_name file (also known as the composite.xml file) displays as a tab in the
designer and as a file in the Applications window. This file is automatically created when you

Chapter 2
Creating a SOA Application

2-7

create a new SOA project. This file describes the entire composite assembly of
services, service components, and references. There is one composite.xml file for
each SOA project.

When you work with the composite.xml file, you mostly use the designer, the
Structure window, and the Property Inspector, as shown in Figure 2-1. The designer
enables you to view many of your files in a WYSIWYG environment, or you can view a
file in an overview editor where you can declaratively make changes, or you can view
the source code for the file. The Structure window shows the structure of the currently
selected file. You can select objects in this window, and then edit the properties for the
selection in the Property Inspector.

2.3 Adding Service Components
Once you create your application, the next step is typically to add service components
that implement the business logic or processing rules of your application. You can use
the Components window in the SOA Composite Editor to drag and drop service
components into the composite.

2.3.1 How to Add a Service Component
To add a service component:

1. At the top of the Components window, click Components.

2. From the SOA section, drag a component into the designer.

Figure 2-2 shows a BPEL process being added to the designer.

Figure 2-2 Adding a BPEL Process to the SOA Composite Application

A specific dialog for the selected service component is displayed. Table 2-4
describes the available editors.

Chapter 2
Adding Service Components

2-8

Table 2-4 Starting Service Component Editors

Dragging This Service
Component...

Invokes The...

BPEL Process Create BPEL Process dialog to create a BPEL process that
integrates a series of business activities and services into an end-to-
end process flow.

Business Rule Create Business Rules dialog to create a business decision based
on rules.

Human Task Create Human Task dialog to create a workflow that describes the
tasks for users or groups to perform as part of an end-to-end
business process flow.

Mediator Create Mediator dialog to define services that perform message and
event routing, filtering, and transformations.

Spring Component Create Spring dialog to create a spring context file for integrating
Java interfaces into SOA composite applications.

3. Configure the settings for the service component, and click OK. For help with a service
component dialog, click Help or press F1.

Figure 2-3 shows the BPEL Process dialog with data entered to create the
OrderProcessor BPEL process. The process is selected to be asynchronous. The
Expose as a SOAP Service check box directs Oracle JDeveloper to automatically create
this service component connected to an inbound SOAP web service.

Figure 2-3 Create BPEL Process Dialog

4. Click OK.

Figure 2-4 shows the OrderProcessor BPEL process service component in the designer.
A SOAP service binding component called orderprocessor_client_ep in the left

Chapter 2
Adding Service Components

2-9

swimlane provides the outside world with an entry point into the SOA composite
application. If the Expose as a SOAP Service option was not selected in the
Create BPEL Process dialog, the orderprocessor_client_ep service does not
appear. You can add a service later by following the steps in How to Add a Service
Binding Component.

Figure 2-4 BPEL Process in Composite

You can more fully define the content of the service component now or at a later
time. For this top-down example, the content is defined now.

5. From the File main menu, select Save All.

2.3.2 What You May Need to Know About Adding and Deleting a
Service Component

Note the following details about adding service components:

• Create a service component from either the SOA Composite Editor or the designer
of another component. For example, you can create a human task component
from the SOA Composite Editor or the Oracle BPEL Designer.

• Use the Resources window to browse for service components defined in the SOA
Composite Editor, and those deployed.

Note the following details about deleting service components:

• You can delete a service component by right-clicking it and selecting Delete from
the context menu.

• When a service component is deleted, all references pointing to it are invalidated
and all wires are removed. The service component is also removed from the
Applications window.

• A service component created from within another service component can be
deleted. For example, a human task created within the BPEL process service
component of Oracle JDeveloper can be deleted from the SOA Composite Editor.
In addition, the partner link to the task can be deleted. Deleting the partner link
removes the reference interface and removes the wire to the task.

Chapter 2
Adding Service Components

2-10

2.3.3 How to Edit a Service Component
You edit a service component to define specific details about the service component.

To edit a service component:

1. Double-click the service component in the designer to display the appropriate editor or
designer, as described in Table 2-5.

Table 2-5 Starting SOA Service Component Wizards and Dialogs

Double-Clicking This
Service Component...

Displays The...

BPEL Process Oracle BPEL Designer for further designing.

Business Rule Business Rules Designer for further designing.

Human Task Human Task Editor for further designing.

Mediator Oracle Mediator Editor for further designing.

Spring Component Spring Editor for further designing.

2. Modify the settings for the selected service component. For help with a service
component editor or designer, click Help or press F1. These editors are described in later
chapters.

3. From the File main menu, select Save All.

4. In the Applications window, double-click composite_name or single-click
composite_name above the designer.

This action returns you to the SOA Composite Editor.

2.4 Adding Service Binding Components
You add a service binding component to act as the entry point to the SOA composite
application from the outside world.

2.4.1 How to Add a Service Binding Component

Note:

This section describes how to manually create a service binding component. You
can also automatically create a service binding component by selecting Expose as
a SOAP Service when you create a service component. This selection creates an
inbound web service binding component that is automatically connected to your
BPEL process, human task service, or Oracle Mediator service component.

You can use the Components window in the SOA Composite Editor to drag and drop service
binding components to the composite.

Chapter 2
Adding Service Binding Components

2-11

To add a service binding component:

1. In the Components window, drag a SOAP web service to the left Exposed
Services swimlane to define the service interface.

Figure 2-5 shows a SOAP web service being added to the designer.

Figure 2-5 Adding a SOAP Web Service to a Composite

A specific dialog for the selected service is displayed. Table 2-6 describes the
available editors.

Table 2-6 Service Editors

Dragging This
Service...

Invokes The...

SOAP Create Web Service dialog to create a web invocation service.

Adapters Adapter Configuration Wizard to guide you through integration of
the service with database tables, database queues, file systems,
FTP servers, Java Message Services (JMS), IBM WebSphere
MQ, Oracle User Messaging Service, Oracle BAM 11g servers,
LDAP server, Coherence cache, sockets, cloud adapters, or
Oracle E-Business Suite, JDE World, or SAP applications.

ADF-BC Create ADF-BC Service dialog to create a service data object
(SDO) invocation service.

B2B B2B Configuration Wizard to guide you through selection of a
document definition.

Healthcare Healthcare Configuration Wizard to guide you through
integration with a healthcare system.

EJB Create EJB Service to create an Enterprise JavaBeans service
for using SDO parameters or Java interfaces with Enterprise
JavaBeans.

HTTP Create HTTP Binding Wizard to create HTTP binding. This
wizard enables you to invoke SOA composite applications
through HTTP POST and GET operations.

Chapter 2
Adding Service Binding Components

2-12

Table 2-6 (Cont.) Service Editors

Dragging This
Service...

Invokes The...

Direct Create Direct Binding Service dialog to invoke a SOA composite
application and exchange messages over a remote method
invocation (RMI) in the inbound direction.

REST Create REST Binding dialog to integrate REST operations as
service or reference binding components.

MFT MFT Configuration Wizard to create an MFT source or target.

2. Configure the settings for the service. For help with a service editor, click Help or press
F1. When you add a web service, you must select the WSDL file to use. For information,
see How to Define the Interface (WSDL) for a Web Service.

3. Click Finish.

Figure 2-6 shows the Web Service dialog with data entered to create the
orderprocessor_client_ep service for the OrderProcessor BPEL process.

Figure 2-6 Create Web Service Dialog

4. Click OK.

The service binding component displays in the left swimlane. Figure 2-7 shows the
orderprocessor_client_ep service binding component added to the composite_name
file (for this example, named OrderBookingComposite).

Chapter 2
Adding Service Binding Components

2-13

Figure 2-7 Web Service in Composite

5. Select Save All from the File main menu.

2.4.2 How to Define the Interface (WSDL) for a Web Service
As described in How to Add a Service Binding Component, a web service is a type of
binding component that you can add to a SOA composite application. You must define
the interface (WSDL) file for the web service.

To define the interface (WSDL) for a web service:

1. From the Technology section, drag a SOAP web service to the left Exposed
Services swimlane.

This invokes the Create Web Service dialog shown in Figure 2-6.

2. Enter the details shown in Table 2-7:

Table 2-7 Create Web Service Dialog Fields and Values

Field Value

Name Enter a name for the service.

Type Select the type (message direction) for the web service. Since
you dragged the web service to the left swimlane, the Service
type is the correct selection, and displays by default:

• Service (default)

Creates a web service to provide an entry point to the
SOA composite application

• Reference
Creates a web service to provide access to an external
service in the outside world

Since this example describes how to create an entry point to
the SOA composite application, Service is selected.

3. Select the WSDL file for the service. There are three methods for selection:

• Defining a New WSDL Using a Schema

• Selecting an Existing WSDL

• Automatically Defining a Service Interface WSDL from a Component

Chapter 2
Adding Service Binding Components

2-14

4. Click the Add icon above the Input table to display the Add Message Part dialog to add a
new WSDL message part. If the WSDL file contains multiple messages, you can add a
message part for each one. You can select XML schema simple types, project schema
files, and project WSDL files for a message part.

For more information, click Help.

5. Click OK to return to the Create Web Service dialog.

6. Note the additional fields described in Table 2-8:

Table 2-8 Create Web Service Dialog Fields and Values

Field Value

Port Type Displays the port type.

Callback Port Type Disabled, since this WSDL file is for a synchronous service. This
field is enabled for asynchronous services.

7. Click OK.

8. From the File main menu, select Save All.

Note:

• Do not manually update the WSDL location in the WSDL file in Source
View. This action is not supported. Only updates made in Design View are
supported.

• WSDL namespaces must be unique. Do not just copy and rename a
WSDL. Ensure that you also change the namespaces.

2.4.2.1 Defining a New WSDL Using a Schema
Define a new WSDL using an existing schema or define a new schema.

1. To the right of the WSDL URL field, click the Find existing WSDLs (first) icon.

2. At the top, click File System.

3. Select an existing WSDL file from the local file system (for this example,
OrderProcessor.wsdl is selected). Figure 2-8 provides details.

Chapter 2
Adding Service Binding Components

2-15

Figure 2-8 WSDL File Selection

2.4.2.2 Selecting an Existing WSDL
Select a WSDL created when defining a component interface. The WSDL can be
selected from the project/application browser.

1. To the right of the WSDL URL field, click the Find existing WSDLs (first) icon.

2. At the top, click SOA-MDS. This action enables you to use existing WSDL files
from other applications.

2.4.2.3 Automatically Defining a Service Interface WSDL from a Component
Automatically define a service interface WSDL from a component.

• To the right of the WSDL URL field, click the Generate WSDL from schemas
(second) icon to automatically generate a WSDL file from a schema.

Figure 2-9 shows the Create WSDL dialog. Default values for the WSDL file name,
directory location, namespace, port type, operation name, and interface type are
displayed. If the specified directory is not the subdirectory of the current project, a
warning message is displayed. If the specified directory does not exist, it is
automatically created.

You can modify the default values.

Chapter 2
Adding Service Binding Components

2-16

Figure 2-9 Automatic Generation of WSDL File

2.4.3 How to View Schemas
You can view all schemas used by the interface's WSDL file and, if you want, choose a new
message schema for a selected message part in the Update Interface dialog.

To view schemas:

1. Double-click the small arrow handle that appears on the specific binding component or
service component. Figure 2-10 provides details.

Figure 2-10 Selection of Inbound Interface Handle

The Update Interface dialog shown in Figure 2-11 displays all schemas currently used by
the WSDL file.

Chapter 2
Adding Service Binding Components

2-17

Figure 2-11 Update Interface Dialog

2. If you want to select a new message schema, click Help or press F1 for
instructions.

2.4.4 How to Edit a Service Binding Component
After initially creating a service, you can edit its contents at a later time. Double-click
the component icon to display its appropriate editor or wizard. Table 2-9 provides an
overview.

Table 2-9 Starting Service Wizards and Dialogs

Double-Click This Service... To...

SOAP Display the Update Service dialog.

Adapters Re-enter the Adapter Configuration Wizard.

ADF-BC Display the Update Service dialog.

B2B Re-enter the B2B Configuration Wizard.

Healthcare Re-enter the Healthcare Configuration Wizard.

EJB Service Display the Update Service dialog.

HTTP Re-enter the HTTP Binding Wizard.

Direct Re-enter the Update Service dialog.

REST Re-enter the REST Binding dialog.

MFT Re-enter the MFT Configuration Wizard.

2.4.5 What You May Need to Know About Adding and Deleting
Services

Note the following detail about adding services:

• When a new service is added for a service component, the service component is
notified so that it can make appropriate metadata changes. For example, when a
new service is added to a BPEL service component, the BPEL service component

Chapter 2
Adding Service Binding Components

2-18

is notified to create a partner link that can be connected to a receive or an on-message
activity.

Note the following detail about deleting services:

• When a service provided by a service component is deleted, all references to that service
component are invalidated and the wires are removed.

2.4.6 What You May Need to Know About Using the Same Namespace in
Different WSDL Files in the Same Composite

Having two different WSDL files with the same fully-qualified namespace in the same SOA
composite application is ambiguous and not supported. This causes the application to fail
during compilation with duplicate definition errors. Ensure that you use unique namespaces
for every WSDL file.

2.4.7 What You May Need to Know About Multiple Schema Elements in a
WSDL Types Section

If there are multiple <schema> elements in a wsdl <types> section, getElement() method
takes only the first <schema> element in the following scenarios:

• If there are no targetNamespace elements.

• If <schema> elements under <wsdl:types> have the same targetNamespace.

To avoid this, ensure that each schema element contains:

• A targetNamespace element.

• Each targetNamespace element is different from the other in each schema.

The following is the example of <wsdl:types> section with different targetNamespace
elements.

<wsdl:types>
 <schema xmlns="http://www.example.com/2001/XMLSchema"
 targetNamespace="http://namespace1.name/">
 <import namespace="http://xmlns.example.com/singleString"
 schemaLocation="../Schemas/singleString.xsd" />
 </schema>

 <schema xmlns="http://www.example.com/2001/XMLSchema"
 targetNamespace="http://namespace2.name/">
 <import namespace="http://xmlns.example.com/pcbpel/samples/expense"
 schemaLocation="../Schemas/mqresponse.xsd" />
 </schema>
</wsdl:types>

2.4.8 What You May Need to Know About WSDL Browsing in the
Resources Window When the SOA Infrastructure Uses Both Internal and
External Oracle HTTP Servers

When the SOA Infrastructure is configured in the Server URL field of the SOA Infrastructure
Common Properties page in Oracle Enterprise Manager Fusion Middleware Control to use

Chapter 2
Adding Service Binding Components

2-19

both internal and external Oracle HTTP servers, you cannot browse for WSDL URLs
using the Resources window. However, you can paste the correct WSDL URL in the
WSDL URL field of the Update Service dialog for the web service binding component.
Figure 2-12 provides details.

Figure 2-12 WSDL URL Field

2.5 Adding Reference Binding Components
You add reference binding components that enable the SOA composite application to
send messages to external services in the outside world.

2.5.1 How to Add a Reference Binding Component
You can use the Components window from the SOA Composite Editor to drag and
drop reference binding components into the composite.

To add a reference binding component:

1. From the Components window, select SOA.

2. From the Technology list, drag a service to the right External References
swimlane.

Figure 2-13 shows a web service being added to the designer.

Figure 2-13 Adding a SOAP Web Service to the Composite

A specific dialog or wizard for the selected reference displays. Table 2-10
describes the available editors.

Chapter 2
Adding Reference Binding Components

2-20

Table 2-10 Reference Editors

Dragging This Service... Invokes The...

SOAP Create Web Service dialog to create a web invocation service.

Adapters Adapter Configuration Wizard to guide you through integration of
the service with database tables, database queues, file systems,
FTP servers, Java Message Services (JMS), IBM WebSphere MQ,
Oracle User Messaging Service, Oracle BAM 11g servers, LDAP
server, Coherence cache, sockets, cloud adapters, or Oracle E-
Business Suite, JDE World, or SAP applications.

ADF-BC Create ADF-BC Service dialog to create a service data object
(SDO) invocation service.

B2B B2B Wizard to guide you through selection of a document
definition.

Healthcare Healthcare Configuration Wizard to guide you through integration
with a healthcare system.

EJB Create EJB Service dialog to create an Enterprise JavaBeans
service for using SDO parameters with Enterprise JavaBeans.

HTTP Create HTTP Binding Wizard to create HTTP binding. This wizard
enables you to invoke SOA composite applications through HTTP
POST and GET operations, and invoke HTTP endpoints through
HTTP POST and GET operations.

Direct Create Direct Binding Service Dialog to invoke an Oracle Service
Bus flow or another SOA composite application.

REST Create REST Binding dialog to integrate REST operations as
service or reference binding components.

MFT MFT Configuration Wizard to create an MFT source or target.

3. Configure the settings for the reference binding component. For help with a reference
editor, click Help or press F1.

4. Click Finish.

Figure 2-14 shows the Create Web Service dialog with data entered to create a
reference.

Chapter 2
Adding Reference Binding Components

2-21

Figure 2-14 Create Web Service Dialog

5. Click OK.

Figure 2-15 shows the StoreFrontService reference binding component added in
the right swimlane of the SOA composite application.

Figure 2-15 SOAP Web Service in the Composite

6. From the File main menu, select Save All.

2.5.2 What You May Need to Know About Adding and Deleting
References

Note the following detail about adding references:

• The only way to add a new reference in the SOA Composite Editor is by wiring the
service component to the necessary target service component. When a new
reference is added, the service component is notified and makes appropriate

Chapter 2
Adding Reference Binding Components

2-22

changes. For example, when a reference is added to a BPEL service component, the
BPEL service component is notified to add a partner link that can then be used in an
invoke activity.

Note the following details about deleting references:

• When a reference for a service component is deleted, the associated wire is also deleted
and the service component is notified so that it can update its metadata. For example,
when a reference is deleted from a BPEL service component, the service component is
notified to delete the partner link in its BPEL metadata.

• Deleting a reference connected to a wire clears the reference and the wire.

2.5.3 What You May Need to Know About WSDL References
A WSDL file is added to the SOA composite application whenever you create a new
component that has a WSDL (for example, a service binding component, service component
(for example, Oracle Mediator, BPEL process, and so on), or reference binding component).
When you delete a component, any WSDL imports used by that component are removed
only if not used by another component. The WSDL import is always removed when the last
component that uses it is deleted.

When a service or reference binding component is updated to use a new WSDL, it is handled
as if the interface was deleted and a new one was added. Therefore, the old WSDL import is
only removed if it is not used by another component.

If a service or reference binding component is updated to use the same WSDL (porttype
qname), but from a new location, the WSDL import and any other WSDL reference (for
example, the BPEL process WSDL that imports an external reference WSDL) are
automatically updated to reference the new location.

Simply changing the WSDL location in the source view of the composite_name
(composite.xml) file's import is not sufficient. Other WSDL references in the metadata are
required by the user interface (see the ui:wsdlLocation attribute in the composite services
and references). There can also be other WSDL references required by runtime (for example,
a WSDL that imports another WSDL, such as the BPEL process WSDL). Ensure that you
change the following places in this file where a WSDL URL is referenced:

• User interface location - used only in Oracle JDeveloper.

• Import: Used during deployment.

• WSDL location in the reference definition: Used at runtime.

Always modify the WSDL location though the dialogs of the SOA Composite Editor in which a
WSDL location is specified (for example, a web service, BPEL partner link, and so on).
Changing the URL's host address is the exact case in which the SOA Composite Editor
automatically updates all WSDL references.

2.5.4 What You May Need to Know About Mixed Message Types in a
WSDL File

If a BPEL process has multiple WSDL messages declared in its WSDL file and one or more
messages have their parts defined to be of some type, whereas other messages have their
parts defined to be of some element, runtime behavior can become unpredictable. This is
because these WSDLs are considered to have mixed type messages. For example, assume

Chapter 2
Adding Reference Binding Components

2-23

there are multiple copy actions within an assign activity. These copy actions attempt to
populate an output variable that has multiple parts:

• Part 1 is declared as an xsd:string type.

• Part 2 is declared as an xsd:int type.

• Part 3 is declared as an element of a custom-designed complex type.

This behavior is not supported.

2.5.5 What You May Need to Know About Invoking the Default
Revision of a Composite

A WSDL URL that does not contain a revision number is processed by the default
composite application. This action enables you to always call the default revision of the
called service without having to make other changes in the calling composite.

Select the default WSDL to use in the WSDL Chooser dialog in Oracle JDeveloper.

To invoke the default revision of a composite:

1. In the Create Web Service dialog, click the icon to the right of the WSDL URL field
to invoke the WSDL Chooser dialog.

2. At the top, select Application Server or WSIL.

3. Expand the nodes to list all deployed composites and revisions. The default
revision is identified by the word Default in the title (for example, FaultFlow
[Default 1.0]).

Figure 2-16 WSDL Chooser Dialog

4. Select the appropriate default endpoint and click OK.

2.6 Adding Wires
You wire (connect) services, service components, and references. For this example,
you wire the web service and service component. Note the following:

Chapter 2
Adding Wires

2-24

• Since a web service is an inbound service, a reference handle displays on the right side.
Web services that are outbound references do not have a reference handle on the right
side.

• You can drag a defined interface to an undefined interface in either direction (reference to
service or service to reference). The undefined interface then inherits the defined
interface. There are several exceptions to this rule:

– A component has the right to reject a new interface. For example, an Oracle Mediator
can only have one inbound service. Therefore, it rejects attempts to create a second
service.

– You cannot drag an outbound service (external reference) to a business rule,
because business rules do not support references. When dragging a wire, the user
interface highlights the interfaces that are valid targets.

• The port type and the namespace are used to uniquely identify an interface.

• You cannot wire services and composites that have different interfaces. For example, you
cannot connect a web service configured with a synchronous WSDL file to an
asynchronous BPEL process. Figure 2-17 provides details.

Figure 2-17 Limitations on Wiring Services and Composites with Different
Interfaces

The service and reference must match, meaning the interface and the callback must be
the same. If you have two services that have different interfaces, you can place an Oracle
Mediator between the two services and perform a transformation between the interfaces.

2.6.1 How to Wire a Service and a Service Component
You can wire a service binding component to a service component from the SOA Composite
Editor.

To wire a service and a service component:

1. From a service reference handle, drag a wire to the service component interface, as
shown in Figure 2-18.

Figure 2-18 Wire Connection

Chapter 2
Adding Wires

2-25

2. If the service component is a BPEL process, double-click the BPEL process to
open Oracle BPEL Designer. Note that the service displays as a partner link in the
left swimlane, as shown in Figure 2-19.

Figure 2-19 Display of the Service as a Partner Link in the BPEL Process

3. Select Save All from the File main menu.

2.6.2 How to Wire a Service Component and a Reference
You can wire a service component to a reference binding component from the SOA
Composite Editor.

To wire a service component and a reference:

1. In the Applications window, double-click composite_name or single-click
composite_name above the designer.

2. From the service component, drag a wire to the reference, as shown in
Figure 2-20.

Figure 2-20 Wiring of a Service Component and Reference

3. If the service component is a BPEL process, double-click the BPEL process to
open Oracle BPEL Designer. Note that the reference displays as a partner link in
the right swimlane, as shown in Figure 2-21.

Chapter 2
Adding Wires

2-26

Figure 2-21 Display of the Reference as a Partner Link in the BPEL Process

4. Select Save All from the File main menu.

5. In the Applications window, select the composite_name file.

6. Click the Source tab to review what you have created.

The orderprocessor_client_ep service binding component provides the entry point to
the composite.

<service name="orderprocessor_client_ep"
 ui:wsdlLocation="oramds:/apps/FusionOrderDemoShared
/services/orderbooking/OrderBookingProcessor.wsdl">
 <interface.wsdl interface= "http://www.globalcompany.example.com/ns
/OrderBookingService#wsdl.interface(OrderProcessor)"
 <binding.adf serviceName="OrderProcessorService" registryName=""/>
 <callback>
 <binding.ws port="http://www.globalcompany.example.com/ns
/OrderBookingService#wsdl.endpoint(orderprocessor_clientep/OrderProcessorCallback_
pt)"/>
 </callback>
 </service>

The OrderProcessor BPEL process service component appears.

<component name="OrderProcessor">
 <implementation.bpel src="OrderProcessor.bpel"/>
</component>

A reference binding component named StoreFrontService appears. The reference
provides access to the external service in the outside world.

<reference name="StoreFrontService"
 ui:wsdlLocation="oramds:/apps/FusionOrderDemoShared
/services/oracle/fodemo/storefront/store/service/common/serviceinterface/StoreFron
tService.wsdl">
 <interface.wsdl
 interface="www.globalcompany.example.com#wsdl.interface(StoreFrontService)"/>
 <binding.ws
port="www.globalcompany.example.com#wsdl.endpoint(StoreFrontService/StoreFrontServ
iceSoapHttpPort)"

Chapter 2
Adding Wires

2-27

location="oramds:/apps/FusionOrderDemoShared/services/oracle/fodemo/
storefront/sto
re/service/common/serviceinterface/StoreFrontService.wsdl"/>
</reference>

The communication (or wiring) between service components is as follows:

• The source orderprocessor_client_ep service binding component is wired to
the target OrderProcessor BPEL process service component. Wiring enables
web service message communication with this specific BPEL process.

• The source OrderProcessor BPEL process is wired to the target
StoreFrontService reference binding component. This is the reference to the
external service in the outside world.

 <wire>
 <source.uri>orderprocessor_client_ep</source.uri>
 <target.uri>OrderProcessor/orderprocessor_client_ep</target.uri>
 </wire>

 <wire>
 <source.uri>OrderProcessor/StoreFrontService</source.uri>
 <target.uri>StoreFrontService</target.uri>
 </wire>

2.6.3 What You May Need to Know About Adding and Deleting Wires
Note the following details about adding wires:

• A service component can be wired to another service component if its reference
matches the service of the target service component. Note that the match implies
the same interface and callback interface.

• Adding the following wiring between two Oracle Mediator service components
causes an infinite loop:

– Create a business event.

– Create an Oracle Mediator service component and subscribe to the event.

– Create a second Oracle Mediator service component to publish the same
event.

– Wire the first Oracle Mediator to the second Oracle Mediator component
service.

If you remove the wire between the two Oracle Mediators, then for every message,
the second Oracle Mediator can publish the event and the first Oracle Mediator
can subscribe to it.

Note the following details about deleting wires:

• When a wire is deleted, the component's outbound reference is automatically
deleted and the component is notified so that it can clean up (delete the partner
link, clear routing rules, and so on). However, the component's service interface is
never deleted. All Oracle SOA Suite services are defined by their WSDL interface.
When a component's interface is defined, there is no automatic deletion of the
service interface in the SOA Composite Editor.

If you want to change the service WSDL interface, there are several workarounds:

Chapter 2
Adding Wires

2-28

– In most cases, you just want to change the schema instead of the inbound service
definition. In the SOA Composite Editor, click any interface icon that uses the WSDL.
For example, you can click the web service interface icon or the Oracle Mediator
service icon. This invokes the Update Interface dialog, which enables you to change
the schema for any WSDL message.

– If you are using an Oracle Mediator service component, the Refresh operations
from WSDL icon of the Oracle Mediator Editor enables you to refresh (after adding
new operations) or replace the Oracle Mediator WSDL. However, you are warned if
the current operations are to be deleted. If you change the WSDL to the new inbound
service WSDL using this icon, the wire typically breaks because the interface has
changed. You can then wire Oracle Mediator to the new service.

– In many cases, a new service requires a completely new Oracle Mediator. Delete the
old Oracle Mediator, create a new one, and wire it to the new service.

– If you are using a BPEL process service component, select a new WSDL through the
Edit Partner Link dialog.

See How to View Schemas for details about the Update Interface dialog.

2.7 Adding Descriptions to SOA Composite Applications
You can add a description of the SOA composite application that is displayed when you place
your cursor over the TODO Tasks icon above the composite. The description can describe
the actions of the services, references, and service components in the SOA composite
application.

2.7.1 How to Add Descriptions to SOA Composite Applications
To add descriptions to SOA composite applications:

1. Above the SOA Composite Editor, click the TODO Tasks icon. Figure 2-22 provides
details.

Figure 2-22 To Do Tasks Icon

2. Double-click in the table row, and add the description.

3. When complete, click outside the table row, then click Close.

4. Place the cursor over the TODO Tasks icon above the SOA composite application to
display the description. Figure 2-23 provides details.

Figure 2-23 Description of SOA Composite Application

Chapter 2
Adding Descriptions to SOA Composite Applications

2-29

2.8 Renaming, Deleting, and Moving Components and
Artifacts

You can rename, delete, and move some components (also known as refactoring) and
artifacts in the following sections of Oracle JDeveloper.

• SOA Composite Editor

Enables you to rename and delete components. These actions impact Oracle SOA
Suite metadata (and not necessarily specific artifacts).

• Applications window

Enables you to rename, delete, and move artifacts such as WSDLs, schemas, and
so on. These actions impact Oracle JDeveloper artifacts.

Note:

Do not perform refactoring tasks with Oracle BPEL Designer, Human Task
Editor, and other editors open. If you do, ensure that you then close and
reopen the editors after refactoring. For example, assume you have a BPEL
process open, then rename the BPEL process WSDL file in the Applications
window. This changes the underlying BPEL file, but Oracle BPEL Designer
does not reflect this change and becomes unsynchronized unless you
completely exit it. Close and then reopen Oracle BPEL Designer. The
changes are then synchronized.

2.8.1 How to Rename and Delete Components in the SOA Composite
Editor

Table 2-11 describes the refactoring tasks that you can perform in the SOA Composite
Editor, along with known limitations. Carefully review these restrictions before using
this feature.

Table 2-11 Refactoring Components

Action SOA Composite Editor Steps

Rename a service
component or
binding component

1. Right-click a component and select Rename. Once renamed, all references to the
component in the composite are updated.

Note the following restrictions:

• You cannot rename human workflow, subprocess, or business rule components.

Delete a service
component, binding
component, or
BPEL subprocess

1. Right-click a component or subprocess and select Delete.

Chapter 2
Renaming, Deleting, and Moving Components and Artifacts

2-30

Table 2-11 (Cont.) Refactoring Components

Action SOA Composite Editor Steps

Move a service
component or
binding component
to another folder

You cannot perform this task from the SOA Composite Editor.

2.8.2 How to Rename, Move, and Delete Artifacts in the Applications
Window

Table 2-12 describes the refactoring tasks that you can perform in the Applications window,
along with known limitations. Carefully review these restrictions before using this feature.

Table 2-12 Refactoring Component Artifacts

Action Applications Window Steps

Rename a service
component or
binding component
artifact

1. Right-click a component file, and select Refactor > Rename.

Note the following restrictions:

• Component implementation files (.bpel, .mplan, and so on) are not renamed when the
component is renamed in the SOA Composite Editor. This does not cause issues. If you
want to rename the implementation files to the same name, use the Applications window.

• You cannot rename human workflow, subprocess, or business rule components.
• Renaming or moving of business rule and human task artifacts is not supported. For

example, you can rename a human task schema file (for example,
HumanTaskPayload.xsd), but references to this XSD in the .task file are not updated.

• You cannot rename port types, operations, and elements in the WSDL and XSD editors.
• Do not rename a directory or artifact with blank spaces. Spaces in names lead to invalid

references.
• You cannot rename SOA projects and composites.

Delete a service
component, binding
component, or
BPEL subprocess
artifact

1. Right-click a component file, and select Refactor > Delete.

Note the following restrictions:

• When you delete an artifact in the Applications window, you are prompted with a
message that includes a Show Usages option. When Show Usages is selected, any
usages or references to the artifact from within files are displayed. When the Delete
option is executed, only the subprocess file is deleted and no references are removed.
Ensure that you first select Show Usages and manually remove references to the file to
delete.

Chapter 2
Renaming, Deleting, and Moving Components and Artifacts

2-31

Table 2-12 (Cont.) Refactoring Component Artifacts

Action Applications Window Steps

Move a service
component or
binding component
to another folder

1. Right-click a component file, and select Refactor > Move.

Note the following restrictions:

• Moving a database adapter artifact causes problems because the database adapter has
many artifacts that are implicitly referenced by name and must be in the same directory.

• You cannot move component implementation files
(.mplan, .bpel, .sbpel, .task, .rules, .spring, and so on) in the Applications window.
However, these files can be renamed.

• Do not move a directory or artifact name with blank spaces. Spaces in names lead to
invalid references.

• If you move an XSLT file, you lose capabilities such as the current expansion/scrolled
state and which item was last selected in the XSLT Map Editor. This is because a
NonDeployedFiles directory is created in the same folder as the XSLT file. This folder is
the default place for test files, dictionary files, report files, DVM/XREF test support files,
and so on. This directory is not moved if an XSLT file is moved because the folder
contains files used for multiple XSLT files and there is no direct connection between the
XSLT file and the file names that may be in the folder.

2.9 Viewing Component Details in the Property Inspector
The Property Inspector displays details about the selected service component or
binding component in the SOA Composite Editor.

To view properties in the Property Inspector:

• Select a service, service component, or reference. For this example, a BPEL
process service component is selected.

The Property Inspector is refreshed to display general component details, a
section for adding deployment descriptor properties, and attached security
policies. Figure 2-24 provides details.

Figure 2-24 Property Inspector

Chapter 2
Viewing Component Details in the Property Inspector

2-32

You can also use the Property Inspector to edit BPEL activities in Oracle BPEL Designer.
For more information, see How to Edit BPEL Activities in the Property Inspector. and How
to Define Deployment Descriptor Properties in the Property Inspector.

2.10 Adding Security Policies
As you create your SOA composite application, you can secure web services by attaching
policies to service binding components, service components, and reference binding
components. For more information about implementing policies, see Enabling Security with
Policies and Message Encryption .

2.11 Deploying a SOA Composite Application
Deploying a SOA composite application involves creating a connection to an Oracle
WebLogic Server and deploying an archive of the SOA composite application to an Oracle
WebLogic Server managed server. For more information about deploying SOA composite
applications, see Deploying SOA Composite Applications .

2.11.1 How to Invoke Deployed SOA Composite Applications
You can invoke deployed SOA composite applications from your SOA composite application.

To invoke deployed SOA composite applications:

1. Create a web service or partner link through one of the following methods.

a. In the SOA Composite Editor, drag a SOAP icon from the Components window to the
External References swimlane.

b. In Oracle BPEL Designer, drag a Partner Link from the BPEL Constructs section of
the Components window to the right swimlane.

2. Access the SOA Resource Browser dialog based on the type of service you created.

a. From the Create Web Service dialog, click the Find existing WSDLs icon. The
Application Server section of the WSDL Chooser dialog is displayed.

b. From the Edit Partner Link dialog, click the SOA Resource Browser icon. The
Application Server section of the WSDL Chooser dialog is displayed.

3. Select Application Server if it is not selected.

4. Expand the tree to display the application server connection to the server on which the
SOA composite application is deployed.

5. Expand the application server connection.

6. Expand the SOA folder and partition. Figure 2-25 provides details.

Chapter 2
Adding Security Policies

2-33

Figure 2-25 Browse for a SOA Composite Application

7. Select the composite service.

8. Click OK.

For information about creating an application server connection, see Creating an
Application Server Connection.

2.12 Managing and Testing a SOA Composite Application
As you build and deploy a SOA composite application, you manage and test it using a
combination of Oracle JDeveloper and Oracle Enterprise Manager Fusion Middleware
Control.

2.12.1 How to Manage Deployed SOA Composite Applications in
Oracle JDeveloper

You can manage deployed SOA composite applications from the Application Server
Navigator in Oracle JDeveloper. Management tasks consist of undeploying, activating,
retiring, turning on, and turning off SOA composite application revisions.

Note:

These instructions assume you have created an application server
connection to an Oracle WebLogic Administration Server on which the SOA
Infrastructure is deployed. Creating a connection to an Oracle WebLogic
Administration Server enables you to browse for managed Oracle WebLogic
Servers or clustered Oracle WebLogic Servers in the same domain. From
the File main menu, select New > Application > Connections >
Application Server Connection to create a connection.

1. From the Window main menu, select Application Servers.

2. Expand your connection name (for this example, named MyConnection).

Chapter 2
Managing and Testing a SOA Composite Application

2-34

The SOA folder appears, as shown in Figure 2-26. The SOA folder displays all deployed
SOA composite application revisions and services. You can browse all applications
deployed on all Oracle WebLogic Administration Servers, managed Oracle WebLogic
Servers, and clustered Oracle WebLogic Servers in the same domain. Figure 2-26
provides details.

Figure 2-26 Application Server Navigator

3. Expand the SOA folder.

4. Expand the partition in which the composite application is deployed.

Deployed SOA composite applications and services appear, as shown in Figure 2-27.

Figure 2-27 Deployed SOA Composite Applications

5. Right-click a deployed SOA composite application.

6. Select an option to perform. The options that display for selection are based upon the
current state of the application. Table 2-13 provides details.

Chapter 2
Managing and Testing a SOA Composite Application

2-35

Table 2-13 SOA Composite Application Options

Option Description

Stop Shuts down a running SOA composite application revision. Any request
(initiating or a callback) to the composite is rejected if the composite is shut
down.

Note: The behavior differs based on which binding component is used. For
example, if it is a web service request, it is rejected back to the caller. A JCA
adapter binding component may do something else in this case (for example,
put the request in a rejected table).

This option displays when the composite application has been started.

Start Restarts a composite application revision that was shut down. This action
enables new requests to be processed (and not be rejected). No recovery of
messages occurs.

This option displays when the composite application has been stopped.

Retire Retires the selected composite revision. If the process life cycle is retired, you
cannot create a new instance. Existing instances are allowed to complete
normally.

An initiating request to the composite application is rejected back to the client.
The behavior of different binding components during rejection is the same as
with the shut down option.

A callback to an initiated composite application instance is delivered properly.

This option displays when the composite application is active.

Activate Activates the retired composite application revision. Note the following
behavior with this option:

• All composite applications are automatically active when deployed.
• Other revisions of a newly deployed composite application remain active

(that is, they are not automatically retired). If you want, you must explicitly
retire them.

This option displays when the application is retired.

Undeploy Undeploys the selected composite application revision. The consequences of
this action are as follows:

• You can no longer configure and monitor this revision of the composite
application.

• You can no longer process instances of this revision of the composite
application.

• You cannot view previously completed processes.
• The state of currently running instances is changed to aborted and no

new messages sent to this composite are processed.
• If you undeploy the default revision of the composite application (for

example, 2.0), the next available revision of the composite application
becomes the default (for example, 1.0).

Set
Default
Revision

Sets the selected composite application revision to be the default.

7. If you want to deploy a prebuilt SOA composite application archive that includes a
deployment profile, right-click the SOA folder and select Deploy SOA Archive.
The archive consists of a JAR file of a single application or a SOA bundle ZIP file
containing multiple applications.

You are prompted to select the following:

• The target SOA servers to which you want to deploy the SOA composite
application archive.

Chapter 2
Managing and Testing a SOA Composite Application

2-36

• The archive to deploy.

• The configuration plan to attach to the application. As you move projects from one
environment to another (for example, from testing to production), you typically must
modify several environment-specific values, such as JDBC connection strings,
hostnames of various servers, and so on. Configuration plans enable you to modify
these values using a single text (XML) file called a configuration plan. The
configuration plan is created in either Oracle JDeveloper or from the command line.
During process deployment, the configuration plan is used to search the SOA project
for values that must be replaced to adapt the project to the next target environment.
This is an optional selection.

• Whether you want to overwrite an existing composite of the same revision ID. This
action enables you to redeploy an application revision.

Figure 2-28 provides details.

Figure 2-28 Deploy SOA Archive Dialog

For more information, see the following documentation:

• Deploying SOA Composite Applications for details about creating a deployment profile
and a configuration plan and deploying an existing SOA archive

• Administering Oracle SOA Suite and Oracle Business Process Management Suite for
details about managing deployed SOA composite applications from Oracle Enterprise
Manager Fusion Middleware Control.

2.12.2 How to Test and Debug a Deployed SOA Composite Application
After you deploy a SOA composite application, you can initiate a test instance of it from the
Test Web Service page in Oracle Enterprise Manager Fusion Middleware Control to verify the
XML payload data. For more information about initiating a test instance, see the
Administering Oracle SOA Suite and Oracle Business Process Management Suite.

In addition to creating a test instance, you can also perform the following testing and
debugging tasks in Oracle JDeveloper:

• Simulate the interaction between a SOA composite application and its web service
partners before deployment in a production environment. This helps to ensure that a

Chapter 2
Managing and Testing a SOA Composite Application

2-37

process interacts with web service partners as expected by the time it is ready for
deployment to a production environment. For more information about creating a
unit test, see Automating Testing of SOA Composite Applications.

• Test and debug SOA composite applications with the SOA debugger in Oracle
JDeveloper. The SOA debugger reduces the development cycle for a SOA
composite application by providing a troubleshooting environment within Oracle
JDeveloper. This eliminates the lengthy process of building a SOA composite
application in Oracle JDeveloper, deploying it to the SOA Infrastructure, starting
Oracle Enterprise Manager Fusion Middleware Control to test or view audit trails
and flow traces, and then returning to Oracle JDeveloper to repeat the exercise.
For more information, see Debugging and Auditing SOA Composite Applications .

Chapter 2
Managing and Testing a SOA Composite Application

2-38

3
Managing Shared Data with the Design-Time
MDS Repository

This chapter describes how to manage shared data with the SOA Design-Time Oracle
Metadata Services Repository (MDS Repository), including how to create and delete folders,
export and import the contents of the /apps folder to and from a JAR file, transfer the /apps
folder contents to another SOA Design-Time MDS Repository, export a Release 11g MDS
Repository to a JAR file, and use the SOA-MDS Transfer wizard to share data with the SOA
Design-Time MDS Repository.
This chapter includes the following sections:

• Introduction to SOA Design-Time MDS Repository Management

• Changing the Default SOA-MDS Location

• Sharing Data with the SOA Design-Time MDS Repository

• Creating and Deleting Subfolders Under the /apps Folder

• Exporting the Selected Contents of the /apps Folder to a JAR File

• Importing the Contents of the JAR File into the /apps Folder

• Transferring the Selected Contents of the /apps Folder to Another MDS Repository

• Exporting an Existing Release 11g MDS Repository to a JAR File

• Browsing for Files in the SOA Design-Time MDS Repository

3.1 Introduction to SOA Design-Time MDS Repository
Management

A file-based, SOA Design-Time MDS Repository is automatically created when you create a
SOA composite application. You cannot modify the MDS Repository name, but you can
modify it to point to an existing, file-based repository. You typically point it to the version
control system (MDS) location. Sharing operations are done against the design-time
repository. You cannot perform these operations against a database-backed MDS Repository.

You can perform the following operations against the SOA Design-Time MDS Repository in
Oracle JDeveloper:

• Browse the following folder recognized by Oracle SOA Suite in the SOA Design-Time
MDS Repository:

– /apps: Contains shared data, including Oracle Service Bus artifacts.

• Create folders directly under the /apps folder or a subfolder of /apps.

• Delete files and subfolders under the /apps folder. The /apps folder itself cannot be
deleted.

• Export selected contents of the /apps folder to a JAR file. The /apps folder itself is not
included in the JAR file.

3-1

• Import the contents of a JAR file under the /apps folder. If the JAR file includes /
apps as the root folder, it is created below the /apps folder of the design-time MDS
Repository, which gives you a top-level directory structure of /apps/apps.

• Transfer the contents of the /apps folder of one MDS Repository to another MDS
Repository.

• Export an existing MDS Repository (for example, a Release 11g database-based
MDS Repository) to a JAR file. This JAR file can then be imported into the
Release 12c design-time MDS Repository.

3.1.1 Introduction to the Default SOA Design-Time MDS Repository
Connection

A file-based, SOA Design-Time MDS Repository connection named
SOA_DesignTimeRepository is automatically included when you create a SOA
composite application. The default directory location is $JDEV_USER_DIR/soamds.

This connection provides the following capabilities:

• A file-based MDS Repository for use during design time. A database-based
design-time MDS Repository is not supported.

• Any MDS Repository can be browsed.

• The default repository location can be modified to point to another folder or version
control location.

• All SOA-MDS operations use this SOA Design-Time MDS Repository.

• A wizard enables you to share design-time artifacts from your SOA project with
this MDS Repository, such as WSDL and schema files.

Note:

• If you add shared data into the SOA Design-Time MDS Repository, and
the repository is backed by a version control system, Oracle SOA Suite
does not provide any operations to add this data to the version control
system. You must add this shared data to the version control system.

• If you have a Release 11g SOA composite application with a
preconfigured SOA-MDS repository (/apps namespace) in the adf-
config.xml file, all sharing and consumption operations are performed
against the existing repository defined in adf-config.xml.

3.2 Changing the Default SOA-MDS Location
When you create a SOA composite application, the default SOA-MDS connection
named SOA_DesignTimeRepository is automatically included. The /apps folder in the
SOA design-time MDS Repository is automatically created.

Chapter 3
Changing the Default SOA-MDS Location

3-2

Note:

When files from an Oracle JDeveloper project are shared using the
SOA_DesignTimeRepository, the original files are moved from the SOA project to
the default SOA-MDS repository.

3.2.1 How to Change the Default SOA-MDS Location
To change the default SOA-MDS location:

1. Create a SOA composite application.

2. From the Window main menu, select Resources.

3. In the Components window, click Resources.

4. Expand SOA-MDS. The artifacts shown in Figure 3-1 are displayed.

• The SOA-MDS connection named SOA_DesignTimeRepository that was
automatically created during SOA composite application.

• The /apps folder in the MDS Repository. This folder is initially empty.

Figure 3-1 Resources Window in Oracle JDeveloper

5. Right-click the SOA_DesignTimeRepository connection and select Properties to point
it to your version control location.

The Edit MDS-SOA Connection dialog is displayed.

6. In the MDS Root Folder field, click Browse.

7. Select the version control location for the /apps folder, and click Select. The SOA-MDS
browser only displays the /apps and /soa folders. Therefore, if /apps is not present in the
selected version control location, then it is not rendered by the browser.

The specified location is displayed in the Edit MDS-SOA Connection dialog, as shown in
Figure 3-2.

Chapter 3
Changing the Default SOA-MDS Location

3-3

Figure 3-2 Edit SOA-MDS Connection Dialog

8. Click OK, and expand the SOA_DesignTimeRepository connection.

The /apps folder is populated with the location specified in Step 7, as shown in
Figure 3-3.

Figure 3-3 Populated /apps folder

Chapter 3
Changing the Default SOA-MDS Location

3-4

3.3 Sharing Data with the SOA Design-Time MDS Repository
The SOA-MDS Transfer wizard enables you to share WSDL, XSD, WADL, and XQuery files
with the SOA design-time MDS Repository. These files can then be shared with other SOA
composite applications.

The wizard first attempts to share files with any existing design-time MDS Repository defined
in the current application's adf-config.xml file. If no MDS Repository is defined in the adf-
config.xml file, then artifacts are shared using SOA_DesignTimeRepository.

Note:

• You can only share XSD, WSDL, WADL, and XQuery files. In addition, only
these file types can be transferred from a design-time MDS Repository to a
runtime MDS Repository.

• If you right-click an XSD file in the Applications window that was created with
the Native Format Builder wizard, the Share using SOA Design-Time MDS
Repository option is not available.

3.3.1 How to Share Data with the SOA Design-Time MDS Repository
To share data with the SOA design-time MDS Repository:

1. In the Applications window, right-click the file to share (for this example, an XSD file) and
select Share using SOA Design-Time MDS Repository. Figure 3-4 provides details.

Figure 3-4 Data Sharing with the SOA Design-Time MDS Repository

Chapter 3
Sharing Data with the SOA Design-Time MDS Repository

3-5

The SOA-MDS Transfer wizard - Welcome page is displayed and indicates that
the file you selected is to be transferred to the SOA design-time MDS Repository.

2. Click Next.

The Choose Target dialog is displayed.

3. Browse the design-time MDS Repository and select the target folder in which to
share the selected artifact, and click Next. You can also create a subfolder in
which to share the file or search for an existing folder. Figure 3-5 provides details.

Figure 3-5 SOA-MDS Transfer Wizard - Choose Target Page

The Dependencies dialog is displayed.

4. Review the files to transfer to the target oramds URL location in the design-time
MDS Repository, as shown in Figure 3-6.

Additional dependent files can also be displayed. For example, assume you select
a WSDL file. Because the WSDL file can have dependencies on schema files
(potentially more than one file), those XSD files are also displayed.

Chapter 3
Sharing Data with the SOA Design-Time MDS Repository

3-6

Figure 3-6 SOA-MDS Transfer Wizard - Dependencies Page

The green checkmark indicates that the file path is correct and resolvable.

Chapter 3
Sharing Data with the SOA Design-Time MDS Repository

3-7

Note:

• If the URL is not accessible, an error icon is displayed. For example,
assume you are transferring a WSDL file that has dependencies on
schemas that traverse several parent levels (for example, ../../../). If
such references are present in the WSDL and you do not select the
correct target folder, the URL may go beyond the /apps folder, which
is not accessible to the SOA Infrastructure. The error icon indicates
the target URL is not accessible, and you cannot proceed with the
transfer. You must cancel or click Back to select a different target
folder. In summary, the destination for all URLs must begin with the /
apps folder.

• File transfers are in relation to the /apps folder in the target SOA
design-time MDS Repository. Dependent files are typically at the
same parallel level. For example, the WSDL file selected for transfer
is located in the WSDLs folder and the dependent XSD file is located
in the Schemas folder. Both folders are at the same parallel level
under the SOA folder of the SOA composite application in the
Applications window. However, if the dependent files are at different
levels (higher levels than the file that is being shared), you must
determine the relative hierarchy of the files. For example, If foo.wsdl
refers to an XSD file in the location ../../../.xsd, you must manually
create three subfolders under apps in the target design-time MDS
Repository and share foo.wsdl to the lowest folder level so that the
XSD can be shared at the apps level.

5. If you want to overwrite files, select Overwrite if document exists in the target
MDS repository, then click Next. If you do not select this check box, and the files
already exist in the target location, no files are transferred and an error message is
displayed. You cannot selectively transfer specific files.

The References dialog is displayed.

6. View the files to be modified after the transfer with the appropriate oramds URL,
and click Finish, as shown in Figure 3-7. This list includes files that are dependent
on the files being moved. All dependent files are modified to reflect the oramds
URL of the file being moved.

Chapter 3
Sharing Data with the SOA Design-Time MDS Repository

3-8

Figure 3-7 SOA-MDS Transfer Wizard - References Page

7. Click OK when prompted with a message that the transfer completed successfully.

When complete, the following updates are made:

• The selected artifacts are displayed beneath the SOA-MDS connection in the
Resources window.

• The adf-config.xml file in the Applications window is modified with the /apps
namespace:

<namespace path="/apps" metadata-store-usage="mstore-usage_2"/>

The variable that internally points to the SOA design-time MDS Repository home is
set:

value="${soamds.apps.home}
• A reference in the artifact (for example, a WSDL file) is updated to point to the

oramds URL location.

3.4 Creating and Deleting Subfolders Under the /apps Folder
You can create and delete subfolders under the /apps folder in the SOA Design-Time MDS
Repository. You cannot delete the /apps folder.

Chapter 3
Creating and Deleting Subfolders Under the /apps Folder

3-9

3.4.1 How to Create and Delete Subfolders Under the /apps Folder
To create and delete subfolders under the /apps folder:

1. Right-click the /apps folder or a subfolder of /apps, and select Create Folder to
point it to your version control location.

The Create Folder dialog is displayed.

2. Enter a name (for this example, Foo is entered) for the folder, and click OK.

The folder is created under the /apps folder, as shown in Figure 3-8.

Figure 3-8 New Subfolder Under /apps Folder

3. Right-click the folder to delete (for this example, Foo), and select Delete.

The folder is deleted, as shown in Figure 3-9.

Figure 3-9 Subfolder Deleted Under /apps Folder

3.5 Exporting the Selected Contents of the /apps Folder to a
JAR File

You can export the selected contents of the /apps folder in the SOA design-time MDS
Repository to a JAR file. The /apps folder itself is not exported to the JAR.

Chapter 3
Exporting the Selected Contents of the /apps Folder to a JAR File

3-10

3.5.1 How to Export the Selected Contents of the /apps Folder to a JAR
File

To export the selected contents of the /apps folder to a JAR file:

1. Right-click the SOA-MDS connection that includes the contents to export (for example,
the default SOA_DesignTimeRepository connection or another connection), and select
Export to Jar, as shown in Figure 3-10.

Figure 3-10 Export to Jar Command

The Export to jar dialog is displayed.

2. Provide values appropriate to your environment, and click OK, as described in Table 3-1.

Table 3-1 Export to jar Dialog

Field Description

Select documents to export Enter a file or folder name and click Search or manually
expand the /apps folder to identify and select folders and files
to export to a JAR file.

Preview Documents Selected Select to preview the contents to export.

JAR Name Click Browse to select the JAR file to which to export the
selected folders and files.

The Export to jar dialog looks as shown in Figure 3-11.

Chapter 3
Exporting the Selected Contents of the /apps Folder to a JAR File

3-11

Figure 3-11 Export to jar Dialog

3. Click OK when prompted with a message indicating that the export was
successful.

3.6 Importing the Contents of the JAR File into the /apps
Folder

You can import the contents of a JAR file to the /apps folder of a SOA design-time or
database-backed MDS Repository. If you import a JAR file that includes /apps as the
root folder, it is created below the /apps folder of the design-time MDS Repository,
which gives you a top-level directory structure of /apps/apps.

3.6.1 How to Import the Contents of the JAR File into the /apps Folder
To import the contents of the JAR file into the /apps folder:

1. Right-click the SOA-MDS connection in which to import the JAR file (for example,
the default SOA_DesignTimeRepository connection or another connection), and
select Import From JAR.

2. Click Browse to select the JAR to import.

The Import from jar dialog is displayed, as shown in Figure 3-12.

Chapter 3
Importing the Contents of the JAR File into the /apps Folder

3-12

Figure 3-12 Import from jar Dialog

A green checkmark indicates that the contents do not exist in the target repository. If the
content exists in the target repository, a warning icon is displayed. You can select to
overwrite the content by clicking Import or cancel the entire import operation by clicking
Cancel. You cannot selectively import specific files.

3. Click Import. Any artifacts with a warning icon are overwritten.

The contents of the imported JAR file are displayed under the /apps folder, as shown in
Figure 3-13.

Figure 3-13 Contents of Imported JAR File in Resources Window

Chapter 3
Importing the Contents of the JAR File into the /apps Folder

3-13

3.7 Transferring the Selected Contents of the /apps Folder
to Another MDS Repository

You can transfer the selected contents of the /apps folder of one MDS Repository to
the /apps folder of another MDS Repository. There are no limitations on the type of
MDS Repository to which to transfer. For example, you can transfer the selected
contents of a file-based repository to a database-based MDS Repository, and vice
versa.

Note:

Do not transfer the contents of the /apps folder to another MDS Repository
with the Oracle BPEL Designer, Human Task Editor, or other editors open. If
you do, ensure that you then close and reopen the editors after the transfer
completes. An open editor does not reflect the transfer changes and
becomes unsynchronized unless you completely exit it.

3.7.1 How to Transfer the Selected Contents of the /apps Folder to
Another MDS Repository

To transfer the selected contents of the /apps folder to another MDS Repository:

1. Right-click the SOA-MDS connection that includes the contents to transfer (for
example, the default SOA_DesignTimeRepository connection or another
connection), and select Transfer. Figure 3-14 provides details.

Chapter 3
Transferring the Selected Contents of the /apps Folder to Another MDS Repository

3-14

Figure 3-14 Transfer Menu Option

The Transfer to SOA-MDS dialog is displayed.

2. Provide values appropriate to your environment, and click OK, as described in Table 3-2.

Table 3-2 Transfer to SOA-MDS Dialog

Field Description

Select Documents to
Transfer

Select the contents to transfer.

Preview Documents
Selected

Select to preview the contents to transfer.

Target Connection Select the SOA-MDS connection of the MDS Repository to which
to transfer contents.

The Transfer to SOA-MDS dialog looks as shown in Figure 3-15.

Chapter 3
Transferring the Selected Contents of the /apps Folder to Another MDS Repository

3-15

Figure 3-15 Transfer to SOA-MDS Dialog

3. Click OK when prompted with a message indicating that the transfer was
successful.

The contents are displayed under the /apps folder of the SOA-MDS target
connection you selected in the Target Connection field in Step 2. Figure 3-16
provides details.

Figure 3-16 Contents Display Under /apps Folder of Selected SOA-MDS
Connection

3.8 Exporting an Existing Release 11g MDS Repository to a
JAR File

You can export a Release 11g MDS Repository to a JAR file that can then be imported
into a Release 12c design-time. The adf-config.xml file is updated with /apps and
store information. Release 12c repositories can also be exported if you have an adf-
config.xml file with /apps defined (meaning you have an existing shared repository).

Chapter 3
Exporting an Existing Release 11g MDS Repository to a JAR File

3-16

3.8.1 How to Export an Existing Release 11g MDS Repository to a JAR
File

To export an existing Release 11g MDS Repository to a JAR file:

1. In the Applications window, right-click adf-config.xml of the project to export, and select
Export SOA-MDS Contents. Figure 3-17 provides details.

Figure 3-17 Export of an 11g MDS Repository from the Applications Window

The Export to jar dialog is displayed.

2. Select the Release 11g MDS Repository to export to a JAR file.

3. To import the JAR file into a Release 12c design-time MDS Repository, see section
Importing the Contents of the JAR File into the /apps Folder.

3.9 Browsing for Files in the SOA Design-Time MDS Repository
You can browse for and select files in the SOA Design-Time MDS Repository. For example,
the WSDL Chooser dialog that you access from the Create Web Service dialog includes a
selection for the SOA Design-Time MDS Repository, as shown in Figure 3-18.

Chapter 3
Browsing for Files in the SOA Design-Time MDS Repository

3-17

Figure 3-18 SOA-MDS Selection in the WSDL Chooser Dialog

The Type Chooser dialog includes a Recent Files folder in which information is kept
for the duration of the Oracle JDeveloper session. For example, if you create a new
BPEL process and want to define the input variable from a schema in the SOA
Design-Time MDS Repository, you go there once. When you want to define the output
variable from the same schema, the schema remains visible in the Recent Files
folder. Figure 3-19 shows the Recent Files folder.

Figure 3-19 Type Chooser

Chapter 3
Browsing for Files in the SOA Design-Time MDS Repository

3-18

Part II
Using the BPEL Process Service Component

This part describes the BPEL process service component.

This part contains the following chapters:

• Getting Started with Oracle BPEL Process Manager

• Introduction to Interaction Patterns in a BPEL Process

• Manipulating XML Data in a BPEL Process

• Invoking a Synchronous Web Service from a BPEL Process

• Invoking an Asynchronous Web Service from a BPEL Process

• Using Correlation Sets and Message Aggregation

• Using Parallel Flow in a BPEL Process

• Using Conditional Branching in a BPEL Process

• Using Fault Handling in a BPEL Process

• Transaction and Fault Propagation Semantics in BPEL Processes

• Incorporating Java and Java EE Code in a BPEL Process

• Using Events and Timeouts in BPEL Processes

• Coordinating Master and Detail Processes

• Using the Notification Service

• Using Sensors and Analytics

4
Getting Started with Oracle BPEL Process
Manager

This chapter describes how to get started with Oracle BPEL Process Manager. BPEL
process creation and validation are described, along with key BPEL design features such as
activities, partner links, adapters, and monitors.
This chapter includes the following sections:

• Introduction to the BPEL Process Service Component

• Introduction to Activities

• Introduction to Partner Links

• Creating a Partner Link

• Introduction to Adapters

• Introduction to BPEL Process Monitors

4.1 Introduction to the BPEL Process Service Component
This section provides an introduction to the BPEL process service component in the design
environment.

4.1.1 How to Add a BPEL Process Service Component
You add BPEL process service components to SOA composite applications in the SOA
Composite Editor.

To add a BPEL process service component:

1. Follow the instructions in Table 4-1 to start Oracle JDeveloper.

Table 4-1 Starting Oracle JDeveloper

To Start... On Windows... On UNIX...

Oracle JDeveloper a. Click
JDev_Oracle_Home\jdeveloper
\JDev\bin\jdev.exe or create a
shortcut.

a. Go to $ORACLE_HOME/jdeveloper/
jdev/bin/.

b. Execute the following command:

./jdev

2. Add a BPEL process service component through one of the following methods:

As a service component in an existing SOA composite application:

From the Components section of the Components window, drag a BPEL Process
service component into the SOA Composite Editor. This invokes the Create BPEL
Process dialog shown in Figure 4-1.

4-1

In a new application:

a. From the Applications window, select File > New > Application.

b. Under General in the Categories list, select Applications.

c. In the Items list, select SOA Application, and click OK.

This starts the Create SOA Application wizard.

d. In the Application Name dialog, enter an application name in the Application
Name field.

e. In the Directory field, accept the default location or enter a new directory path
in which to create the SOA composite application.

f. Click Next.

g. In the Project Name dialog, enter a name in the Project Name field.

h. In the Directory field, accept the default location or enter a new directory path
in which to create the project.

i. Click Next.

j. In the Start from section, ensure that Standard Composite is selected. The
other selection, SOA Template, enables you to create a reusable part of a
SOA project to bootstrap new projects. For more information, see Oracle SOA
Suite Templates and Reusable Subprocesses .

k. In the Project SOA Settings dialog, select Composite With BPEL Process.

l. Click Finish.

This invokes the Create BPEL Process dialog shown in Figure 4-1.

Figure 4-1 Create BPEL Process Dialog

3. Provide the required details, as described in Table 4-2.

Chapter 4
Introduction to the BPEL Process Service Component

4-2

Note:

You cannot use BPEL 1.1 and BPEL 2.0 syntax in the same .bpel file.
However, you can include BPEL 1.1 and BPEL 2.0 projects in the same SOA
composite application.

Table 4-2 Create BPEL Process Dialog

Field Description

BPEL Specification Select the type of BPEL process to create.

• BPEL 2.0 Specification
Creates a BPEL project that supports the BPEL 2.0 specification. This
is the default selection.

• BPEL 1.1 Specification
Creates a BPEL project that supports the BPEL 1.1 specification.

Name Enter a name for the BPEL process or accept the default name. The name
you enter becomes the file name for the BPEL process and Web Services
Description Language (WSDL) files in the Applications window.

Always use completely unique names when creating BPEL processes. Do
not create the following:

• A process name that begins with a number (for example, 1SayHello)

• A process name that includes a dash (for example, Say-Hello)

• Two processes with the same name, but with different capitalization (for
example, SayHello and sayhello).

This is particularly important for business intelligence (BI) data object
names, which are generated on the Oracle BAM server in all upper
case format. For example, if you create a BPEL process named
BPELProcess1, a BI name of
BI_DEFAULT_PROJECT1_BPELPROCESS1 is generated for the Oracle
BAM BI data object after deployment. If you create two BPEL
processes, BPELProcess1 and BPELPRocess1, the same BI data
object name is generated.

• A process name that exceeds 500 characters.
• A non-ASCII process name. The BPEL process name is used in

directory and file names of the SOA project, which can cause
problems.

Namespace Use the default namespace path or enter a custom path.

Directory Specify a directory in which to place BPEL process service component
artifacts or accept the default directory of
project_root_directory/SOA/BPEL.

You can change the directory path, but ensure that the directory is beneath
the SOA folder (that is, project_root_directory/SOA). If you specify a
directory outside of SOA, an error message is displayed and the BPEL
process is not created.

Chapter 4
Introduction to the BPEL Process Service Component

4-3

Table 4-2 (Cont.) Create BPEL Process Dialog

Field Description

Template Select a template based on the type of BPEL process service component
you want to design. A template provides a basic set of default files in the
Applications window (process_name.wsdl and process_name.bpel)
with which to begin designing your BPEL process service component.

• Asynchronous BPEL Process: Creates an asynchronous process
with a default receive activity to initiate the BPEL process service
component flow and an invoke activity to asynchronously call back the
client. This type is selected by default. For more information, see
Invoking an Asynchronous Web Service from a BPEL Process.

• Synchronous BPEL Process: Creates a synchronous process with a
default receive activity to initiate the BPEL process service component
flow and a reply activity to return the results. For more information, see
Invoking a Synchronous Web Service from a BPEL Process.

• One Way BPEL Process: Creates a process with a one-way call
interface definition.

• Define Service Later: Select to create an empty BPEL process
service component with no activities.

• Base on a WSDL: Creates a BPEL process with an interface defined
by an existing WSDL file. You must specify the WSDL Uniform
Resource Locator (URL), port type, and callback port type to use.

• Subscribe to Events: Creates a BPEL process in which you can
subscribe to a business event. After selecting this option, the dialog
refreshes to display an event table. Click the Add icon to select an
event to which to subscribe. Your selection is then displayed in the
event table. You can then select the consistency level and whether to
publish this event. You can also click the Filter icon to create a filter
expression for the selected event. This selection launches the
Expression Builder dialog. For more information, see Using Business
Events and the Event Delivery Network.

Service Name Accept the default value or enter the name of the service this process is
exposing. When you open an invoke, receive, OnMessage, or reply activity,
the service name appears by default in the Partner Link field. This name is
the same name as the partner link.

Expose as a SOAP
Service

Select this check box to create a BPEL process service component that is
automatically connected (wired) to an inbound simple object access
protocol (SOAP) web service binding component. If you do not select this
check box, the BPEL process service component is created as a
standalone component in the SOA Composite Editor. You can explicitly
associate the BPEL process service component with a service at a later
time. This check box is selected by default.

Chapter 4
Introduction to the BPEL Process Service Component

4-4

Table 4-2 (Cont.) Create BPEL Process Dialog

Field Description

Delivery
Note: This field is
displayed if you
selected one of
these templates in
the Template list:

• Asynchronous
BPEL Process

• One Way BPEL
Process

• Subscribe to
Events

Set the persistence policy of the process in the delivery layer. This list
enables you to specify a value for the oneWayDeliveryPolicy
deployment descriptor property. The possible values are:

• async.persist: Messages are persisted in the database. With this
setting, reliability is obtained with some performance impact on the
database. In some cases, overall system performance can be
impacted. This is the default value.

• async.cache: Incoming delivery messages are kept only in the in-
memory cache. If performance is preferred over reliability, consider this
setting. When set to async.cache, if the rate at which one-way
messages arrive is much higher than the rate at which they are
delivered, or if the server fails, messages can be lost. In addition, the
system can become overloaded (messages become backlogged in the
scheduled queue) and you can receive out-of-memory errors. Consult
your own use case scenarios to determine if this setting is appropriate.

When you set oneWayDeliveryPolicy to async.cache in high
availability environments, invoke and callback messages in the middle
of execution at the time of a server crash may be lost or duplicated.
Server failover is not supported for async.cache.

• sync: Direct invocation occurs on the same thread. The scheduling of
messages in the invoke queue is bypassed, and the BPEL instance is
invoked synchronously. In some cases this setting can improve
database performance.

For information about transaction and fault propagation semantics for this
property, see Transaction and Fault Propagation Semantics in BPEL
Processes.

For information about changing the value of this property in the Property
Inspector, see How to Define Deployment Descriptor Properties in the
Property Inspector.

Chapter 4
Introduction to the BPEL Process Service Component

4-5

Table 4-2 (Cont.) Create BPEL Process Dialog

Field Description

Transaction
Note: This field is
displayed if you
selected
Synchronous BPEL
Process in the
Template list.

Set the transaction behavior of the BPEL instance for initiating calls. This
list enables you to specify a value for the transaction deployment
descriptor property. The possible values are:

• required: In request/response (initiating) environments, this setting
joins a caller's transaction (if there is one) or creates a new transaction
(if there is no transaction). In one-way, initiating environments in which
the Delivery list value (oneWayDeliveryPolicy property) is set to
sync, the invoke message is processed using the same thread in the
same transaction. This is the default value.

• requiresNew: A new transaction is created for the execution, and the
existing transaction (if there is one) is suspended. This behavior is true
for both request/response (initiating) environments and one-way,
initiating environments in which the Delivery list value
(oneWayDeliveryPolicy property) is set to sync.

• notSupported: Enables activities of business processes to be
executed without a transaction.

Note: This property does not apply for midprocess receive activities. In
those cases, another thread in another transaction is used to process the
message. This is because a correlation is needed and it is always done
asynchronously.

For information about transaction and fault propagation semantics for this
property, see Transaction and Fault Propagation Semantics in BPEL
Processes.

For information about changing the value of this property in the Property
Inspector, see How to Define Deployment Descriptor Properties in the
Property Inspector.

Input Accept the default input XSD schema or click the Search icon to select a
different XSD. If you click the Search icon, the Type Chooser dialog
appears. Browse the imported schemas and select the input element (for
example, a purchase order). You can also import an existing schema or
WSDL in the Type Chooser dialog.

The Type Chooser dialog displays information based on the context of its
use. For example, if selecting a simple, message, or element type for a
variable, the dialog displays XML schema simple types, WSDL file message
types, or XML schema elements, respectively. If selecting a message part
type, the dialog displays project schema files, XML schema simple types,
and project WSDL files.

Output Accept the default output XSD schema or click the Search icon to select a
different XSD. If you click the Search icon, the Type Chooser dialog
appears. Browse the imported schemas and select the output element (for
example, a purchase order).

4. Click OK.

Oracle BPEL Designer displays the sections shown in Figure 4-2.

Chapter 4
Introduction to the BPEL Process Service Component

4-6

Figure 4-2 Oracle BPEL Designer Sections

Each section of this view enables you to perform specific design and deployment tasks.
Table 4-3 identifies the sections listed in Figure 4-2.

Chapter 4
Introduction to the BPEL Process Service Component

4-7

Table 4-3 Oracle JDeveloper Sections

Element Description

Applications window
(Upper left)

Displays the directories and files of a SOA project. Key
directories and files beneath the SOA folder include the
following:

• BPEL
Displays the BPEL process service component file (.bpel).

• Events
Displays the business event files (.edn).

• Schemas
Displays the BPEL process schema files.

• testsuites
Displays the test suite files. For more information, see
Automating Testing of SOA Composite Applications.

• Transformations
Displays the transformation XSLT (.xsl) and XQuery (.xqy)
mapper files.

• WSDLs
Displays the BPEL process WSDL files.

• composite_name
Describes the entire SOA composite application
(sometimes referred to as the composite.xml file). For
more information about this file, see What Happens When
You Create a SOA Application and Project.

Oracle BPEL Designer
(Design tab)

Provides a graphical view of the BPEL process service
component that you design. This view displays when you
perform one of the following actions:

• Double-click the .bpel file name in the Applications window.
• Click the Design tab at the bottom of the designer with

the .bpel file selected.
• Double-click the BPEL process component in the SOA

Composite Editor.
As you design the BPEL process service component by
dragging activities, creating partner links, and so on, the Design
window changes.

Components window
(Upper right)

Displays the available activities to add to the BPEL process
service component. Activities are the building blocks. The BPEL
Constructs, Subprocesses (initially empty), and Oracle
Extensions selections of the Components window display a set
of activities and subprocesses that you drag into the designer of
the BPEL process service component. The Components
window displays only those pages relevant to the state of the
designer. BPEL Constructs, Subprocesses, and Oracle
Extensions are nearly always visible. However, if you are
designing a transformation in a transform activity, the
Components window only displays selections relevant to that
activity, such as String Functions, Mathematical Functions,
and Node-set Functions.

Chapter 4
Introduction to the BPEL Process Service Component

4-8

Table 4-3 (Cont.) Oracle JDeveloper Sections

Element Description

Structure window (Lower
left)

Provides a structural view of the data in the BPEL process
service component currently selected in the designer. You can
perform a variety of tasks from this section, including:

• Importing schemas.
• Defining message types.
• Managing (creating, editing, and deleting) elements such

as variables, aliases, correlation sets, and partner links.
• Editing activities in the BPEL process flow sequence that

displays in the designer.

Log window (Lower
middle)

Displays messages about the status of validation and
compilation. To ensure that a BPEL process service component
validates correctly, you must ensure that the following
information is correct:

• The BPEL process service component must have an input
variable.

• A partner link must be selected.
• A partner role must be selected.
• The operation must not be empty.
• The input variable type must match the partner link

operation type.
If deployment is unsuccessful, messages appear that describe
the type and location of the error.

Source tab View the syntax inside the BPEL process service component
files. As you drag activities and partner links, and perform other
tasks, the syntax in these source files is immediately updated to
reflect these changes.

History tab Displays the revision history of a file and read-only and editable
versions of a file side-by-side.

Property Inspector Displays details about an activity. Single-click an activity in the
Design window to open it for editing. For more information, see
How to Edit BPEL Activities in the Property Inspector.

Note:

To learn more about these sections, you can also place the cursor in the
appropriate section and press F1 to display online Help.

5. Select Information from the Property Structure list above the Oracle BPEL Designer to
view the BPEL project version (either 1.1 or 2.0). Figure 4-3 provides details.

Chapter 4
Introduction to the BPEL Process Service Component

4-9

Figure 4-3 BPEL Project Version

The Information dialog is displayed.

4.1.2 How to Validate a BPEL Process Service Component
You can syntactically and semantically (for example, the partner links or variables are
not defined in an invoke activity) validate a BPEL process. If validation fails,
information is displayed in the Log window.

To validate a BPEL process service component:

1. In Oracle BPEL Designer, click the green checkmark icon above the BPEL
process. Figure 4-4 provides details.

Chapter 4
Introduction to the BPEL Process Service Component

4-10

Figure 4-4 Validation Icon in Oracle BPEL Designer

2. View the validation results in the Log window, as shown in Figure 4-5.

Figure 4-5 BPEL Process Validation Results in Log Window

If validation errors occur, messages are displayed in the Log window, as shown in
Figure 4-6.

Figure 4-6 Log Window Validation Results

4.2 Introduction to Activities
Activities are the building blocks of a BPEL process service component. Oracle BPEL
Designer includes a set of activities that you drag into a BPEL process service component.

Chapter 4
Introduction to Activities

4-11

You then double-click an activity to define its attributes (property values). Activities
enable you to perform specific tasks within a BPEL process service component. For
example, here are several key activities:

• An assign activity enables you to manipulate data, such as copying the contents of
one variable to another. Figure 4-7 shows an assign activity.

Figure 4-7 Assign Activity

• An invoke activity enables you to invoke a service (identified by its partner link)
and specify an operation for this service to perform. Figure 4-8 shows an invoke
activity.

Figure 4-8 Invoke Activity

• A receive activity waits for an asynchronous callback response message from a
service. Figure 4-9 shows a receive activity. A receive activity is also used when a
process is started asynchronously through a partner link.

Figure 4-9 Receive Activity

Figure 4-10 shows an example of a property window (for this example, an invoke
activity).

Chapter 4
Introduction to Activities

4-12

Figure 4-10 Invoke Activity Example

The invoke activity enables you to specify an operation you want to invoke for the service
(identified by its partner link). The operation can be one-way or request-response on a port
provided by the service. You can also automatically create variables in an invoke activity. An
invoke activity invokes a synchronous service or initiates an asynchronous web service.

The invoke activity opens a port in the process to send and receive data. It uses this port to
submit required data and receive a response. For synchronous callbacks, only one port is
needed for both the send and the receive functions.

For more information about activities, see BPEL Process Activities and Services.

For information about copying and pasting activities in the same project or between projects,
see How to Copy and Paste Activities in BPEL Projects .

For information about editing activities in the Property Inspector, see How to Edit BPEL
Activities in the Property Inspector.

4.2.1 How to Edit BPEL Activities in the Property Inspector
You can edit the property fields of activities in BPEL 1.1 and 2.0 processes in the Property
Inspector of Oracle BPEL Designer in Oracle JDeveloper. This action is the same as double-
clicking an activity or right-clicking an activity and selecting Edit, making changes, and
clicking Apply or OK.

Chapter 4
Introduction to Activities

4-13

To edit BPEL activities in the Property Inspector:

1. In Oracle BPEL Designer, single-click an activity. For this example, an XSLT
transform activity is selected in Figure 4-11.

2. The property fields of the activity are displayed for editing in the Property Inspector
below Oracle BPEL Designer.

Figure 4-11 Activity is Displayed for Editing in the Property Inspector

3. Make changes and press the Apply key, or navigate away from the activity by
clicking another activity.

4. Return to the activity you edited and note that the changes have been applied.

You can also edit the actions within a scope activity, such as catch activities,
variable, and so on.

5. Expand a scope activity.

6. In the Property Inspector, click Variables.

The Property Inspector is refreshed to display the property fields for a variable,
including the Add, Edit, and Delete icons. Figure 4-12 provides details.

Chapter 4
Introduction to Activities

4-14

Figure 4-12 Variable Section of a Scope Activity is Displayed for Editing in the Property Inspector

4.2.2 How to Copy and Paste Activities in BPEL Projects
You can copy and paste activities in the same BPEL project or between BPEL projects. This
prevents you from having to create similar activities from start to finish multiple times. You
can design an activity once and use it in multiple places, editing it as necessary.

Note:

You can copy an individual OnAlarm activity from one scope activity and paste it
into another scope activity. You can also copy an individual OnAlarm activity from
one pick activity and paste it into another pick activity.

Note the following restrictions:

• You cannot copy activities from a BPEL 1.1 project to a BPEL 2.0 project or from a BPEL
2.0 project to a BPEL 1.1 project.

• In BPEL 2.0 projects, you cannot copy an individual OnAlarm activity from a pick activity
into a scope activity, or vice versa. However, this type of copying and pasting is
supported in BPEL 1.1 projects.

• When you copy and paste a scope activity, the variables referenced in the first scope
activity are not copied.

To copy and paste activities:

1. Right-click the activity to copy.

2. Select Copy.

Chapter 4
Introduction to Activities

4-15

3. Go to the project in which to paste the activity.

4. Perform one of the following tasks:

a. Right-click the activity closest to where you want to paste the activity.

b. Choose to either paste the activity before or after the selected activity.

or

a. Highlight the BPEL process, as shown in Figure 4-13.

Figure 4-13 Selected BPEL Process

b. Right-click and select Paste > Paste Into.

The activity is pasted at the top of the BPEL process.

4.2.3 How to Add a Description of Actions to BPEL Process Activities
You can add a description of actions to a BPEL process activity. This creates a TODO
Tasks icon on the activity. When you place your cursor over this icon, it displays the
description of actions. The description can describe the actions performed by the
activity in the BPEL process service component.

How to add a description of actions to BPEL process activities:

1. Right-click an activity, and select Add TODO Task.

The Add TODO Task dialog is displayed.

2. Add a description of the actions performed by the activity, then click OK.

3. Place the cursor over the TODO Tasks icon to the right of the BPEL activity to
display the description. Figure 4-14 provides details.

Figure 4-14 Description of BPEL Activity

Chapter 4
Introduction to Activities

4-16

4.3 Introduction to Partner Links
A partner link enables you to define the external services with which the BPEL process
service component is to interact. You can define partner links as services or references (for
example, through a JCA adapter) in the SOA Composite Editor (the recommended method)
or within a BPEL process service component in Oracle BPEL Designer. Figure 4-15 shows
the partner link icon (for this example, named PartnerSupplierMediator).

Figure 4-15 Partner Link Icon

A partner link type characterizes the conversational relationship between two services by
defining the roles played by each service in the conversation and specifying the port type
provided by each service to receive messages within the conversation.

Figure 4-16 shows an example of the attributes of a partner link for a service.

Figure 4-16 Partner Link Dialog

Table 4-4 describes the fields of this dialog.

Table 4-4 Create Partner Link Dialog Fields

Field Description

Name A unique and recognizable name you provide for the partner link.

Process Displays the BPEL process service component name.

Chapter 4
Introduction to Partner Links

4-17

Table 4-4 (Cont.) Create Partner Link Dialog Fields

Field Description

WSDL URL The name and location of the WSDL file or Java interface that you select for
the partner link. Click the SOA Service Explorer icon (second icon from the
left above the WSDL URL field) to access a window for selecting the WSDL
file or Java interface to use.

Java interfaces display for selection under the References folder with a
name of javaEJB. If the component with which you are wiring this partner
link uses WSDL files and you select a Java interface and click OK, a
message displays indicating that this component requires a WSDL interface.
If you click Yes, a compatible WSDL file is created based on the Java
interface.

For more information about integrating components that use Java interfaces
into SOA composite applications, see Integrating the Spring Framework in
SOA Composite Applications.

Partner Link Type The partner link defined in the WSDL file.

Partner Role The role performed by the partner link.

My Role The role performed by the BPEL process service component. If this is a
synchronous process case, the BPEL process service component does not
have a role.

Note:

The Partner Link Type, Partner Role, and My Role fields in the Create
Partner Link dialog are defined and required by the BPEL standard.

Best Practice:

As a best practice, always create and wire Oracle Mediator and BPEL
process service components in the SOA Composite Editor, instead of in
Oracle BPEL Designer.

If you add an Oracle Mediator or BPEL process partner link to your BPEL
process in Oracle BPEL Designer and connect either partner link to your
BPEL process through an invoke activity, the wiring is not automatically
reflected above in the SOA Composite Editor. You must explicitly wire the
Oracle Mediator or BPEL process service component to your BPEL process
again in the SOA Composite Editor.

This is not an issue with human task or business rule partner links in Oracle
BPEL Designer; both are also automatically wired in the SOA Composite
Editor.

For information about editing partner links in the Property Inspector, see How to Edit
BPEL Activities in the Property Inspector.

Chapter 4
Introduction to Partner Links

4-18

4.4 Creating a Partner Link
The method by which you create partner links within the BPEL process in Oracle BPEL
Designer impacts how the partner link displays in the SOA Composite Editor. This section
describes this impact. The WSDL file can be on the local operating system or hosted
remotely (in which case you need a URL for the WSDL).

Likewise, creating and wiring a service or reference binding component to a BPEL process
service component in the SOA Composite Editor causes a partner link to display in Oracle
BPEL Designer.

4.4.1 How to Create a Partner Link
To create a partner link:

1. In the SOA Composite Editor, double-click the BPEL process service component.

Oracle BPEL Designer is displayed.

2. In the Components window, expand BPEL Constructs.

3. Drag a Partner Link into the appropriate Partner Links swimlane, as shown in
Figure 4-17.

Figure 4-17 Partner Link Creation in Oracle BPEL Designer

The Create Partner Link dialog appears.

4. Complete the fields for this dialog, as described in Table 4-4.

The following sections describe the impact of partner link creation on the SOA Composite
Editor.

4.4.1.1 Partner Links for an Outbound Adapter
Table 4-5 describes the impact on the SOA Composite Editor.

Chapter 4
Creating a Partner Link

4-19

Table 4-5 Impact of Partner Link Creation on the SOA Composite Editor

Creating the Following for a BPEL
Process in Oracle BPEL Designer...

Displays the Following in the SOA Composite
Editor...

A partner link for an outbound adapter • A reference handle for the BPEL process
service component

• A reference representing the outbound
adapter in the composite

• A wire connecting the BPEL process service
component to the adapter reference

Figure 4-18 shows how this method of creation appears in the SOA Composite Editor.

Figure 4-18 SOA Composite Editor Impact

4.4.1.2 Partner Links for an Inbound Adapter
Table 4-6 describes the impact on the SOA Composite Editor.

Table 4-6 Impact of Partner Link Creation on the SOA Composite Editor

Creating the Following for a BPEL
Process in Oracle BPEL Designer...

Displays the Following in the SOA Composite
Editor...

A partner link for an inbound adapter • A service for the BPEL process service
component

• A service representing the inbound adapter
in the composite

• A wire connecting the inbound adapter
service to the BPEL process service
component

Figure 4-19 shows how this method of creation appears in the SOA Composite Editor.

Figure 4-19 SOA Composite Editor Impact

Chapter 4
Creating a Partner Link

4-20

4.4.1.3 Partner Links from an Abstract WSDL to Call a Service
Table 4-7 describes the impact on the SOA Composite Editor.

Table 4-7 Impact of Partner Link Creation on the SOA Composite Editor

Creating the Following for a BPEL Process
in Oracle BPEL Designer...

Displays the Following in the SOA Composite
Editor...

A partner link from an abstract WSDL to call a
service

A reference handle with an interface and callback
interface defined for the BPEL process service
component

4.4.1.4 Partner Links from an Abstract WSDL to Implement a Service
Table 4-8 describes the impact on the SOA Composite Editor.

Table 4-8 Impact of Partner Link Creation on the SOA Composite Editor

Creating the Following for a BPEL Process
in Oracle BPEL Designer...

Displays the Following in the SOA Composite
Editor...

A partner link is created from an abstract
WSDL to implement a service

A service with an interface and callback interface for
the BPEL process service component is created.

Note: If an external SOAP reference with the
specified interface and callback interface exists in the
SOA Composite Editor, you can either create a new
external SOAP reference and wire to it or wire to the
existing external SOAP reference.

Figure 4-20 shows how this method of creation appears in the SOA Composite Editor.

Figure 4-20 SOA Composite Editor Impact

4.4.1.5 Partner Links and Human Tasks or Business Rules
Table 4-9 describes the impact on the SOA Composite Editor.

Chapter 4
Creating a Partner Link

4-21

Table 4-9 Impact of Partner Link Creation on the SOA Composite Editor

Creating the Following for a BPEL
Process in Oracle BPEL Designer...

Displays the Following in the SOA Composite
Editor...

A human task or business rule is created • A human task or business rule in the
composite

• A reference for the BPEL process service
component

• A wire connecting the BPEL process service
component to the new human task or
business rule

Figure 4-21 shows how this method of creation appears in the SOA Composite Editor.

Figure 4-21 SOA Composite Editor Impact

4.4.1.6 Partner Links from an Existing Human Task, Business Rule, or Oracle
Mediator

Table 4-10 describes the impact on the SOA Composite Editor.

Table 4-10 Impact of Partner Link Creation on the SOA Composite Editor

Creating the Following for a BPEL
Process in Oracle BPEL Designer...

Displays the Following in the SOA Composite
Editor...

A partner link by dragging an existing
human task, business rule, or mediator
service component into the BPEL process

• A reference for the BPEL process service
component

• A wire connecting the BPEL process service
component to the existing human task,
business rule, or mediator

Figure 4-22 shows how this method of creation appears in the SOA Composite Editor.

Figure 4-22 SOA Composite Editor Impact

Chapter 4
Creating a Partner Link

4-22

4.5 Introduction to Adapters
The Partner Link dialog shown in Figure 4-16 also enables you to take advantage of another
key feature that Oracle BPEL Process Manager and Oracle Mediator and Oracle JDeveloper
provide. Click the Service Wizard icon shown in Figure 4-23 to access the Adapter
Configuration wizard.

Figure 4-23 Defining an Adapter

Adapters enable you to integrate the BPEL process service component (and, therefore, the
SOA composite application as a whole) with access to file systems, FTP servers, database
tables, database queues, sockets, Java Message Services (JMS), Oracle User Messaging
Service, and more. You can also integrate with services such as HTTP binding, direct
binding, EJB, and others. This wizard enables you to configure the types of services and
adapters shown in Figure 4-24 for use with the BPEL process service component:

Figure 4-24 Service and Adapter Types

For information about the service and adapter types, see Getting Started with Binding
Components.

When you select an adapter type (for this example, File was selected in Figure 4-24), the
dialog shown in Figure 4-25 prompts you to enter a name. When the wizard completes, a
WSDL file by this name appears in the Applications window under the WSDLs folder. The
service name must be unique within the project. This file includes the adapter configuration
settings you specify with this wizard. Other configuration files (such as header files and files
specific to the adapter) are also created and display in the Applications window.

Chapter 4
Introduction to Adapters

4-23

Figure 4-25 Adapter Service Name

The Adapter Configuration wizard dialogs that appear after the this dialog are based
on the adapter type you selected.

You can also add adapters to your SOA composite application as services or
references in the SOA Composite Editor.

For more information about technology adapters, see Understanding Technology
Adapters.

4.6 Introduction to BPEL Process Monitors
You can configure BPEL process monitors in Oracle BPEL Designer by selecting
Change to Monitor view at the top of Oracle BPEL Designer. Figure 4-26 provides
details. BPEL process monitors can send data to Oracle BAM for analysis and
graphical display through the Oracle BAM adapter.

Figure 4-26 BPEL Process Monitors

For information about business indicators, intervals, and counters, see the Oracle SOA
Suite 11g documentation:

http://docs.oracle.com/cd/E28280_01/dev.1111/e10224/
bam_adapter.htm#BABIJBCC

Chapter 4
Introduction to BPEL Process Monitors

4-24

http://docs.oracle.com/cd/E28280_01/dev.1111/e10224/bam_adapter.htm#BABIJBCC
http://docs.oracle.com/cd/E28280_01/dev.1111/e10224/bam_adapter.htm#BABIJBCC

5
Introduction to Interaction Patterns in a BPEL
Process

This chapter describes common interaction patterns between a BPEL process service
component and an external service, including one-way messages, synchronous and
asynchronous interactions, one request - multiple and single responses, one request -
mandatory and optional responses, partial processing, and multiple application interactions. It
also describes the best use practices for each.
This chapter includes the following sections:

• Introduction to One-Way Messages

• Introduction to Synchronous Interactions

• Introduction to Asynchronous Interactions

• Introduction to Asynchronous Interactions with a Timeout

• Introduction to Asynchronous Interactions with a Notification Timer

• Introduction to One Request, Multiple Responses

• Introduction to One Request, One of Two Possible Responses

• Introduction to One Request, a Mandatory Response, and an Optional Response

• Introduction to Partial Processing

• Introduction to Multiple Application Interactions

5.1 Introduction to One-Way Messages
In a one-way message, or fire and forget, the client sends a message to the service (d1 in
Figure 5-1), and the service is not required to reply. The client sending the message does not
wait for a response, but continues executing immediately. The following example shows the
portType and operation part of the BPEL process WSDL file for this environment.

. . .
<wsdl:portType name="BPELProcess1">
 <wsdl:operation name="process">
 <wsdl:input message="client:BPELProcess1RequestMessage" />
 </wsdl:operation>
</wsdl:portType>
. . .

Figure 5-1 provides an overview.

5-1

Figure 5-1 One-Way Message

5.1.1 BPEL Process Service Component as the Client
As the client, the BPEL process service component needs a valid partner link and an
invoke activity with the target service and the message. As with all partner activities,
the Web Services Description Language (WSDL) file defines the interaction.

5.1.2 BPEL Process Service Component as the Service
To accept a message from the client, the BPEL process service component needs a
receive activity.

5.2 Introduction to Synchronous Interactions
In a synchronous interaction, a client sends a request to a service (d1 in Figure 5-2),
and receives an immediate reply (d2 in Figure 5-2). A BPEL process service
component can be at either end of this interaction, and must be coded based on its
role as either the client or the service. For example, a user requests a subscription to
an online newspaper and immediately receives email confirmation that their request
has been accepted. The following example shows the portType and operation part of
the BPEL process WSDL file for this environment.

. . .
<wsdl:portType name="BPELProcess1">
 <wsdl:operation name="process">
 <wsdl:input message="client:BPELProcess1RequestMessage" />
 <wsdl:output message="client:BPELProcess1ResponseMessage"/>
 </wsdl:operation>
</wsdl:portType>

Figure 5-2 provides an overview.

Chapter 5
Introduction to Synchronous Interactions

5-2

Figure 5-2 Synchronous Interaction

5.2.1 BPEL Process Service Component as the Client
When the BPEL process service component is on the client side of a synchronous
transaction, it needs an invoke activity. The port on the client side both sends the request and
receives the reply. As with all partner activities, the WSDL file defines the interaction.

5.2.2 BPEL Process Service Component as the Service
When the BPEL process service component is on the service side of a synchronous
transaction, it needs a receive activity to accept the incoming request, and a reply activity to
return either the requested information or an error message (a fault; f1 in Figure 5-2) defined
in the WSDL.

For more information about synchronous interactions, see Invoking a Synchronous Web
Service from a BPEL Process.

5.2.3 Synchronous BPEL Process Invoking an Asynchronous Process
If a synchronous BPEL process invokes an asynchronous process, the callback response
message is not acknowledged by the BPEL process and the process times out waiting for a
response. This type of interaction pattern is not supported.

5.3 Introduction to Asynchronous Interactions
In an asynchronous interaction, a client sends a request to a service and waits until the
service replies. The following example shows the portType and operation part of the BPEL
process WSDL file for this environment.

. . .
<wsdl:portType name="BPELProcess1">
 <wsdl:operation name="process">
 <wsdl:input message="client:BPELProcess1RequestMessage"/>
 </wsdl:operation>
</wsdl:portType>

. . .
<wsdl:portType name="BPELProcess1Callback">
 <wsdl:operation name="processResponse">
 <wsdl:input message="client:BPELProcess1ResponseMessage"/>

Chapter 5
Introduction to Asynchronous Interactions

5-3

 </wsdl:operation>
</wsdl:portType>

Figure 5-3 provides an overview.

Figure 5-3 Asynchronous Interaction

5.3.1 BPEL Process Service Component as the Client
When the BPEL process service component is on the client side of an asynchronous
transaction, it needs an invoke activity to send the request and a receive activity to
receive the reply. As with all partner activities, the WSDL file defines the interaction.

5.3.2 BPEL Process Service Component as the Service
As with a synchronous transaction, when the BPEL process service component is on
the service side of an asynchronous transaction, it needs a receive activity to accept
the incoming request and an invoke activity to return either the requested information
or a fault. Note the difference between this and responding from a synchronous BPEL
process: a synchronous BPEL process uses a reply activity to respond to the client
and an asynchronous service uses an invoke activity.

For more information about asynchronous interactions, see Invoking an Asynchronous
Web Service from a BPEL Process.

5.4 Introduction to Asynchronous Interactions with a
Timeout

In an asynchronous interaction with a timeout (which you perform in BPEL with a pick
activity), a client sends a request to a service and waits until it receives a reply, or until
a certain time limit is reached, whichever comes first. For example, a client requests a
loan offer. If the client does not receive a loan offer reply within a specified amount of
time, the request is canceled. Figure 5-4 provides an overview.

Chapter 5
Introduction to Asynchronous Interactions with a Timeout

5-4

Figure 5-4 Asynchronous Interaction with Timeout

5.4.1 BPEL Process Service Component as the Client
When the BPEL process service component is on the client side of an asynchronous
transaction with a timeout, it needs an invoke activity to send the request and a pick activity
with two branches: an onMessage branch and an onAlarm branch. If the reply comes after
the time limit has expired, the message goes to the dead letter queue. As with all partner
activities, the WSDL file defines the interaction.

For more information about asynchronous interactions with a timeout, see Selecting Between
Continuing or Waiting on a Process with a Pick Activity.

5.4.2 BPEL Process Service Component as the Service
The behavior of the BPEL process service component as a service matches the behavior
with the asynchronous interaction with the BPEL process service component as the service.

5.5 Introduction to Asynchronous Interactions with a Notification
Timer

In an asynchronous interaction with a notification time, a client sends a request to a service
and waits for a reply, although a notification is sent after a timer expires. The client continues
to wait for the reply from the service even after the timer has expired. Figure 5-5 provides an
overview.

Chapter 5
Introduction to Asynchronous Interactions with a Notification Timer

5-5

Figure 5-5 Asynchronous Interaction with a Notification Time

5.5.1 BPEL Process Service Component as the Client
When the BPEL process service component is on the client side of this transaction, it
needs a scope activity containing an invoke activity to send the request, and a receive
activity to accept the reply. The onAlarm handler of the scope activity has a time limit
and instructions on what to do when the timer expires. For example, wait 30 minutes,
then send a warning indicating that the process is taking longer than expected. As with
all partner activities, the WSDL file defines the interaction.

5.5.2 BPEL Process Service Component as the Service
The behavior for the BPEL process service component as the service matches the
behavior with the asynchronous interaction with the BPEL process service component
as the service.

5.6 Introduction to One Request, Multiple Responses
In this interaction type, the client sends a single request to a service and receives
multiple responses in return. For example, the request can be to order a product
online, and the first response can be the estimated delivery time, the second response
a payment confirmation, and the third response a notification that the product has
shipped. In this example, the number and types of responses are expected. Figure 5-6
provides an overview.

Chapter 5
Introduction to One Request, Multiple Responses

5-6

Figure 5-6 One Request, Multiple Responses

5.6.1 BPEL Process Service Component as the Client
When the BPEL process service component is on the client side of this transaction, it needs
an invoke activity to send the request, and a sequence activity with three receive activities,
one for each reply. As with all partner activities, the WSDL file defines the interaction.

5.6.2 BPEL Process Service Component as the Service
The BPEL service needs a receive activity to accept the message from the client, and a
sequence attribute with three invoke activities, one for each reply.

5.7 Introduction to One Request, One of Two Possible
Responses

In an interaction using one request and one of two possible responses, the client sends a
single request to a service and receives one of two possible responses. For example, the
request can be to order a product online, and the first response can be either an in-stock
message or an out-of-stock message. Figure 5-7 provides an overview.

Chapter 5
Introduction to One Request, One of Two Possible Responses

5-7

Figure 5-7 One Request, One of Two Possible Responses

5.7.1 BPEL Process Service Component as the Client
When the BPEL process service component is on the client side of this transaction, it
needs the following:

• An invoke activity to send the request

• A pick activity with two branches: one onMessage for the in-stock response and
instructions on what to do if an in-stock message is received

• A second onMessage for the out-of-stock response and instructions on what to do
if an out-of-stock message is received

As with all partner activities, the WSDL file defines the interaction.

For more information about interactions using one request and one of two possible
responses, see Selecting Between Continuing or Waiting on a Process with a Pick
Activity.

5.7.2 BPEL Process Service Component as the Service
The BPEL service needs a receive activity to accept the message from the client, and
a switch activity (in BPEL 1.1) or an if activity (in BPEL 2.0) with two branches, one
with an invoke activity sending the in-stock message if the item is available, and a
second branch with an invoke activity sending the out-of-stock message if the item is
not available.

Chapter 5
Introduction to One Request, One of Two Possible Responses

5-8

5.8 Introduction to One Request, a Mandatory Response, and
an Optional Response

In this type of interaction, the client sends a single request to a service and receives one or
two responses. Here, the request is to order a product online. If the product is delayed, the
service sends a message letting the customer know. In any case, the service always sends a
notification when the item ships. Figure 5-8 provides an overview.

Figure 5-8 One Request, a Mandatory Response, and an Optional Response

5.8.1 BPEL Process Service Component as the Client
When the BPEL process service component is on the client side of this transaction, it needs a
scope activity containing the invoke activity to send the request, and a receive activity to
accept the mandatory reply. The onMessage handler of the scope activity is set to accept the
optional message and instructions on what to do if the optional message is received (for
example, notify you that the product has been delayed). The client BPEL process service
component waits to receive the mandatory reply. If the mandatory reply is received first, the
BPEL process service component continues without waiting for the optional reply. As with all
partner activities, the WSDL file defines the interaction.

5.8.2 BPEL Process Service Component as the Service
The BPEL service needs a scope activity containing the receive activity and an invoke activity
to send the mandatory shipping message, and the scope's onAlarm handler to send the
optional delayed message if a timer expires (for example, send the delayed message if the
item is not shipped in 24 hours).

Chapter 5
Introduction to One Request, a Mandatory Response, and an Optional Response

5-9

5.9 Introduction to Partial Processing
In partial processing, the client sends a request to a service and receives an
immediate response, but processing continues on the service side. For example, the
client sends a request to purchase a vacation package, and the service sends an
immediate reply confirming the purchase, then continues on to book the hotel, the
flight, the rental car, and so on. This pattern can also include multiple shot callbacks,
followed by longer-term processing. Figure 5-9 provides an overview.

Figure 5-9 Partial Processing

5.9.1 BPEL Process Service Component as the Client
In this case, the BPEL client is simple; it needs an invoke activity for each request and
a receive activity for each reply for asynchronous transactions, or just an invoke
activity for each synchronous transaction. Once those transactions are complete, the
remaining work is handled by the service. As with all partner activities, the WSDL file
defines the interaction.

5.9.2 BPEL Process Service Component as the Service
The BPEL service needs a receive activity for each request from the client, and an
invoke activity for each response. Once the responses are finished, the BPEL process
service component as the service can continue with its processing, using the
information gathered in the interaction to perform the necessary tasks without any
further input from the client.

Chapter 5
Introduction to Partial Processing

5-10

5.10 Introduction to Multiple Application Interactions
In some cases, there are more than two applications involved in a transaction, for example, a
buyer, seller, and shipper. In this case, the buyer sends a request to the seller, the seller
sends a request to the shipper, and the shipper sends a notification to the buyer. This A-to-B-
to-C-to-A transaction pattern can handle many transactions at the same time. Therefore, a
mechanism is required for keeping track of which message goes where. Figure 5-10 provides
an overview.

As with all partner activities, the WSDL file defines the interaction.

Figure 5-10 Multiple Party Interactions

This kind of coordination can be managed using WS-Addressing or correlation sets. For more
information about both, see Invoking an Asynchronous Web Service from a BPEL Process.

Chapter 5
Introduction to Multiple Application Interactions

5-11

6
Manipulating XML Data in a BPEL Process

This chapter describes how to manipulate XML data in a BPEL process service component.
This chapter provides a variety of examples. Topics include how to work with variables,
sequences, and arrays; use XPath expressions; and perform tasks such as mathematical
calculations. Supported specifications are also referenced.
This chapter includes the following sections:

• Introduction to Manipulating XML Data in BPEL Processes

• Delegating XML Data Operations to Data Provider Services

• Translating Between Native Data and XML

• Using Standalone SDO-based Variables

• Initializing a Variable with Expression Constants or Literal XML

• Copying Between Variables

• Moving and Copying Variables in the Structure Window

• Accessing Fields in Element and Message Type Variables

• Assigning Numeric Values

• Using Mathematical Calculations with XPath Standards

• Assigning String Literals

• Concatenating Strings

• Assigning Boolean Values

• Assigning a Date or Time

• Manipulating Attributes

• Manipulating XML Data with bpelx Extensions

• Validating XML Data

• Using Element Variables in Message Exchange Activities in BPEL 2.0

• Mapping WSDL Message Parts in BPEL 2.0

• Importing Process Definitions in BPEL 2.0

• Manipulating XML Data Sequences That Resemble Arrays

• Converting from a String to an XML Element

• Understanding Document-Style and RPC-Style WSDL Differences

• Manipulating SOAP Headers in BPEL

• Declaring Extension Namespaces in BPEL 2.0

6-1

Note:

Most of the examples in this chapter assume that the WSDL file defining the
associated message types is document-literal style rather than the remote
procedure call (RPC) style. There is a difference in how XPath query strings
are formed for RPC-style WSDL definitions. If you are working with a type
defined in an RPC WSDL file, see Understanding Document-Style and RPC-
Style WSDL Differences.

6.1 Introduction to Manipulating XML Data in BPEL
Processes

This section provides an introduction to using XML data in BPEL processes.

6.1.1 XML Data in BPEL Processes
In a BPEL process service component, most pieces of data are in XML format. This
includes the messages passed to and from the BPEL process service component, the
messages exchanged with external services, and the local variables used by the
process. You define the types for these messages and variables with the XML
schema, usually in one of the following:

• Web Services Description Language (WSDL) file for the flow

• WSDL files for the services it invokes

• XSD file referenced by those WSDL files

Therefore, most variables in BPEL are XML data, and any BPEL process service
component uses much of its code to manipulate these XML variables. This typically
includes performing data transformation between representations required for different
services, and local manipulation of data (for example, to combine the results from
several service invocations).

BPEL also supports service data object (SDO) variables, which are not in an XML
format, but rather in a memory structure format.

6.1.2 Data Manipulation and XPath Standards in Assign Activities
The starting point for data manipulation in BPEL is the assign activity, which builds on
the XPath standard. XPath queries, expressions, and functions play a large part in this
type of manipulation.

In addition, more advanced methods are available that involve using XQuery, XSLT, or
Java, usually to do more complex data transformation or manipulation.

This section provides a general overview of how to manipulate XML data in BPEL. It
summarizes the key building blocks used in various combinations and provides
examples. The remaining sections in this chapter discuss and illustrate how to apply
these building blocks to perform specific tasks.

You use the assign activity to copy data from one XML variable to another, or to
calculate the value of an expression and store it in a variable. A copy element within

Chapter 6
Introduction to Manipulating XML Data in BPEL Processes

6-2

the activity specifies the source and target of the assignment (what to copy from and to),
which must be of compatible types.

The following example shows the formal syntax for BPEL version 1.1, as described in the
Business Process Execution Language for Web Services Specification:

<assign standard-attributes>
 standard-elements
 <copy>
 from-spec
 to-spec
 </copy>
</assign>

The next example shows the formal syntax for BPEL version 2.0, as described in the Web
Services Business Process Execution Language Specification Version 2.0. The
keepSrcElementName attribute specifies whether the element name of the destination (as
selected by the to-spec) is replaced by the element name of the source (as selected by the
from-spec) during the copy operation. When keepSrcElementName is set to no (the default
value), the name (that is, the namespace name and local name properties) of the original
destination element is used as the name of the resulting element. When keepSrcElementName
is set to yes, the source element name is used as the name of the resulting destination
element.

<assign validate="yes|no"? standard-attributes>
 standard-elements
 (
 <copy keepSrcElementName="yes|no"? ignoreMissingFromData="yes|no"?>
 from-spec
 to-spec
 </copy>
 . . .
 . . .
</assign>

This syntax is described in detail in both specifications. The from-spec and to-spec typically
specify a variable or variable part, as shown in the following example:

<assign>
 <copy>
 <from variable="c1" part="address"/>
 <to variable="c3"/>
 </copy>
</assign>

When you use Oracle JDeveloper, you supply assign activity details in a Copy Rules dialog
that includes a From section and a To section. This reflects the preceding BPEL source code
syntax.

XPath standards play a key role in the assign activity. Brief examples are shown here as an
introduction. Examples with more context and explanation are provided in the sections that
follow.

• XPath queries

An XPath query selects a field within a source or target variable part. The from or to
clause can include a query attribute whose value is an XPath query string. The following
code provides an example:

Chapter 6
Introduction to Manipulating XML Data in BPEL Processes

6-3

<from variable="input" part="payload"
 query="/p:CreditFlowRequest/p:ssn"/>

The value of the query attribute must be a location path that selects exactly one
node. You can find further details about the query attribute and XPath standards
syntax in the Business Process Execution Language for Web Services
Specification (section 14.3) or Web Services Business Process Execution
Language Specification Version 2.0 (section 8.4), and the XML Path Language
(XPath) Specification, respectively.

• XPath expressions

You use an XPath expression (specified in an expression attribute in the from
clause) to indicate a value to be stored in a variable. For example:

<from expression="100"/>

The expression can be any general expression (that is, an XPath expression that
evaluates to any XPath value type). Similarly, the value of an expression attribute
must return exactly one node or one object only when it is used in the from clause
within a copy operation. For more information about XPath expressions, see
section 9.1.4 of the XML Path Language (XPath) Specification.

Within XPath expressions, you can call the following types of functions:

• Core XPath functions

XPath supports a large number of built-in functions, including functions for string
manipulation (such as concat), numeric functions (such as sum), and others.

<from expression="concat('string one', 'string two')"/>

For a complete list of the functions built into XPath standards, see section 4 of the
XML Path Language (XPath) Specification.

• BPEL XPath extension functions

BPEL adds several extension functions to the core XPath core functions, enabling
XPath expressions to access information from a process.

– For BPEL 1.1, the extensions are defined in the standard BPEL namespace
http://schemas.xmlsoap.org/ws/2003/03/business-process/ and indicated
by the prefix bpws:

<from expression= "bpws:getVariableData('input', 'payload', '/p:value')
+ 1"/>

For more information, see sections 9.1 and 14.1 of the Business Process
Execution Language for Web Services Specification. For more information
about getVariableData, see getVariableData.

– For BPEL 2.0, the extensions are also defined in the standard BPEL
namespace http://schemas.xmlsoap.org/ws/2003/03/business-process/.
However, the prefix is bpel:

<from>bpel:getVariableProperty('input', 'propertyName')</from>

For more information, see section 8.3 of the Web Services Business Process
Execution Language Specification Version 2.0. For more information about
getVariableProperty, see getVariableProperty (For BPEL 2.0).

• Oracle BPEL XPath extension functions

Chapter 6
Introduction to Manipulating XML Data in BPEL Processes

6-4

http://schemas.xmlsoap.org/ws/2003/03/business-process/
http://schemas.xmlsoap.org/ws/2003/03/business-process/

Oracle provides some additional XPath functions that use the capabilities built into BPEL
and XPath standards for adding new functions.

These functions are defined in the namespace http://schemas.oracle.com/xpath/
extension and indicated by the prefix ora:.

• Custom functions

Oracle BPEL Process Manager functions are defined in the bpel-xpath-functions-
config.xml file and placed inside the orabpel.jar file. For more information, see
Creating User-Defined XPath Extension Functions.

Sophisticated data manipulation can be difficult to perform with the BPEL assign activity and
the core XPath functions. However, you can perform complex data manipulation and
transformation by using XSLT, Java, or a bpelx operation under an assign activity (See
Manipulating XML Data with bpelx Extensions) or as a web service. For XSLT, Oracle BPEL
Process Manager and Oracle Mediator includes XPath functions that execute these
transformations.

For more information about XPath and XQuery transformation code examples, see Creating
Transformations with the XSLT Map Editor and Creating Transformations with the XQuery
Mapper.

For more information about the assign activity, see Assign Activity.

Note:

Passing large schemas through an assign activity can cause Oracle JDeveloper to
freeze up and run low on memory if you right-click the target or source payload
node in the Edit Assign dialog and select Expand All Child Nodes. As a
workaround, manually expand the payload elements.

6.2 Delegating XML Data Operations to Data Provider Services
You can specify BPEL data operations to be performed by an underlying data provider
service through use of the entity variable. The data provider service performs the data
operations in a data store behind the scenes and without use of other data store-related
features provided by Oracle SOA Suite (for example, the database adapter). This action
enhances Oracle SOA Suite runtime performance and incorporates native features of the
underlying data provider service during compilation and runtime.

The entity variable can be used with an Oracle Application Development Framework (ADF)
Business Component data provider service using SDO-based data.

Before Release 11g, variables and messages exchanged within a BPEL business process
were a disconnected payload (a snapshot of data returned by a web service) placed into an
XML structure. In some cases, the user required this type of fit. In other cases, this fit
presented challenges.

The entity variable addresses the following challenges of pre-11g releases:

• Extensive data conversion

If the underlying data was not in XML form, data conversion (for example, translating
delimited text to XML) was required. If the underlying size of the data was large, the
processing potentially impacted performance.

Chapter 6
Delegating XML Data Operations to Data Provider Services

6-5

• Stale snapshot data

Variables (including WSDL messages) in BPEL processes were disconnected
payload. In some cases, this was required. In other cases, you wanted a variable
to represent the most recent data being modified by other applications outside
Oracle BPEL Process Manager. This meant the disconnected data model provided
a stale data set that did not fit all needs. The snapshot also duplicated data, which
impacted performance when the data size was large.

• Loss of native data behavior

Some data conversion implementation required data structure enforcement or
business data logic beyond the XML schema. For example, the start date needed
to be smaller than the end date. When the variable was a disconnected payload,
validation occurred only during related web service invocation. Optionally
performing the extra business data logic after certain operations, but before web
service invocation, was sometimes preferred.

To address these challenges starting with Release 11g and continuing with Release
12c, you create an entity variable during variable declaration. An entity variable acts as
a data handle to access and plug in different data provider service technologies behind
the scenes. During compilation and runtime, Oracle BPEL Process Manager delegates
data operations to the underlying data provider service.

Table 6-1 provides an example of how data conversion was performed in previous
releases (using the database adapter as an example) and in releases 11g and 12c
with the entity variable.

Table 6-1 Data Manipulation Capabilities in Previous and Current Releases

10.1.x Releases 11g and 12c Releases When Using the
Entity Variable

Data operations such as explicitly loading and
saving data were performed by the database
adapter in Oracle BPEL Process Manager. All
data (for example, of a purchase order) was
saved in the database dehydration store.

Data operations such as loading and saving
data are performed automatically by the data
provider service (the Oracle ADF Business
Component application), without asking you to
code any service invocation.

Oracle BPEL Process Manager stores a key
(for example, a purchase order ID (POID)) that
points to this data. Oracle BPEL Process
Manager fetches the key when access to data
is requested (the bind entity activity does this).
You must explicitly request the data to be
bound using the key. Any data changes are
persisted by the data provider service in a
database that can be different from the
dehydration store database. This prevents
data duplication.

Data in variables was in document object
model (DOM) form

Data in variables is in SDO form, which
provides for a simpler conversion process than
DOM, especially when the data provider
service understands SDO forms.

Chapter 6
Delegating XML Data Operations to Data Provider Services

6-6

Note:

Only BPEL process service components currently allow the use of SDO-formed
variables. If your composite application has an Oracle Mediator service component
wired with an SDO-based Java binding component reference, the data form of the
variable defaults to DOM. In addition, the features described for 10.1.x releases in
Table 6-1 are still supported in Releases 11g and 12c.

6.2.1 How to Create an Entity Variable
This section describes how to create an entity variable and a binding key in Oracle
JDeveloper.

In Release 10.1.x of Oracle BPEL Process Manager, all variable data was in DOM format.
Starting with Release 11g and continuing with Release 12c, variable data in SDO format is
also supported. DOM and SDO variables in BPEL process service components are implicitly
converted to the required forms. For example, an Oracle BPEL process service component
using DOM-based variables can automatically convert these variables as required to SDO-
based variables in an assign activity, and vice versa. Both form types are defined in the XSD
schema file. No user intervention is required.

Entity variables also support SDO-formed data. However, unlike the DOM and SDO
variables, the entity variable with SDO-based data enables you to bind a unique key value to
data (for example, a purchase order). Only the key is stored in the dehydration store; the data
requiring conversion is stored with the service of the Oracle ADF Business Component
application. The key points to the data stored in the service. When the data is required, it is
fetched from the data provider service and placed into memory. The process occurs in two
places: the bind entity activity and the dehydration store. For example, when Oracle BPEL
Process Manager rehydrates, it stores only the key for the entity variable; when it wakes up, it
does an implicit bind to get the current data.

6.2.1.1 Understanding How SDO Works in the Inbound Direction
The SDO binding component service provides the outside world with an entry point to the
composite application, as shown in Figure 6-1.

Figure 6-1 Inbound Direction

You use the SOA Composite Editor and Oracle BPEL Designer to perform the following
tasks:

Chapter 6
Delegating XML Data Operations to Data Provider Services

6-7

• Define an SDO binding component service and a BPEL process service
component in the composite application.

• Connect (wire) the SDO service and BPEL process service component.

• Define the details of the BPEL process service component.

For more information about using the SOA Composite Editor, see Getting Started with
Developing SOA Composite Applications.

6.2.1.2 Understanding How SDO Works in the Outbound Direction
The SDO binding component reference enables messages to be sent from the
composite application to Oracle ADF Business Component application external
partners in the outside world, as shown in Figure 6-2.

Figure 6-2 Outbound Direction

When the Oracle ADF Business Component application is the external partner link to
the outside world, there is no SDO binding component reference in the SOA
Composite Editor that you drag into the composite application to create outbound
communication. Instead, communication between the composite application and the
Oracle ADF Business Component application occurs as follows:

• The Oracle ADF Business Component application is deployed and automatically
registered as an SDO service in the Service Infrastructure

• Oracle JDeveloper is used to browse for and discover this application as an ADF-
BC service and create a partner link connection.

• The composite.xml file is automatically updated with reference details (the
binding.adf property) when the Oracle ADF Business Component application
service is discovered.

6.2.1.3 Creating an Entity Variable and Choosing a Partner Link
You now create an entity variable and select a partner link for the Oracle ADF
Business Component application. The following example describes how the
OrderProcessor BPEL process service component receives an ID for an order by
using a bind entity activity to point to order data in an Oracle ADF Business
Component data provider service.

Chapter 6
Delegating XML Data Operations to Data Provider Services

6-8

Note:

Entity variables are supported on BPEL projects that use version 1.1 or 2.0 of the
BPEL specification.

To create an entity variable and choose a partner link:

1. Go to the Structure window of the BPEL process service component in Oracle
JDeveloper.

2. Right-click the Variables folder and select Expand All Child Nodes.

3. In the second Variables folder, right-click and select Create Variable.

The Create Variable dialog appears.

4. In the Name field, enter a name.

5. Click the Entity Variable check box and select the Search icon to the right of the Partner
Link field.

The Partner Link Chooser dialog appears with a list of available services, including the
SDO service called ADF-BC.

6. Browse for and select the service for the Oracle ADF Business Component application.

7. Click OK to close the Partner Link Chooser and Create Variable dialogs.

The dialog looks as shown in Figure 6-3.

Figure 6-3 Create Variable Dialog

6.2.1.4 Creating a Binding Key
You now create a key to point to the order data in the Oracle ADF Business Component data
provider service.

To create a binding key:

1. In the Components window, expand Oracle Extensions.

2. Scroll down to the SDO section.

Chapter 6
Delegating XML Data Operations to Data Provider Services

6-9

3. Drag a Bind Entity activity into your BPEL process service component. Figure 6-4
provides details.

Figure 6-4 Bind Entity Activity in the Components Window

The Bind Entity dialog appears.

4. In the Name field, enter a name.

5. To the right of the Entity Variable field, click the Search icon.

The Variable Chooser dialog appears.

6. Select the entity variable created in Creating an Entity Variable and Choosing a
Partner Link and click OK.

7. In the Unique Keys section, click the Add icon.

The Specify Key dialog appears. You use this dialog to create a key for retrieving
the order ID from the Oracle ADF Business Component data provider service.

8. Enter the details described in Table 6-2 to define the binding key:

Table 6-2 Specify Key Dialog Fields and Values

Field Value

Key Local Part Enter the local part of the key.

Key Namespace URI Enter the namespace URI for the key.

Key Value Enter the key value expression. This expression must match
the type of a key. The following examples show expression
value keys for a POID key:

• $inputMsg.payload/tns:poid
• bpws:getVariableData('inputmsg','payload','t

ns:poid')
The POID key for an entity variable typically comes from
another message. If the type of POID key is an integer and
the expression result is a string of ABC, the string-to-integer
fails and the bind entity activity also fails at runtime.

Figure 6-5 shows the Specify Key dialog after completion.

Chapter 6
Delegating XML Data Operations to Data Provider Services

6-10

Figure 6-5 Specify Key Dialog

9. Click OK to close the Specify Key dialog.

A name-pair value appears in the Unique Keys table, as shown in Figure 6-6. Design is
now complete.

Figure 6-6 Bind Entity Dialog

10. Click OK to close the Bind Entity dialog.

After the Bind Entity activity is executed at runtime, the entity variable is ready to be
used.

For more information about using SDOs, see Publishing Service-Enabled Application
Modules in Developing Fusion Web Applications with Oracle Application Development
Framework. This guide describes how to expose application modules as web services and
publish rows of view data objects as SDOs. The application module is the ADF framework
component that encapsulates business logic as a set of related business functions.

6.3 Translating Between Native Data and XML
The BPEL process translate activity enables you to translate messages between native XSD
format and XML format. The following types of translation are supported:

• Inbound translation:

Chapter 6
Translating Between Native Data and XML

6-11

– Native format to XML

– Opaque to XML

– Native to an attachment in a directory

• Outbound translation:

– XML to native format

– XML to an attachment in a directory

• Supported in both BPEL 1.1. and 2.0 projects.

Inbound message translation automatically uses the doTranslateFromNative function.
Outbound message translation automatically uses the doTranslateToNative function).
You do not need to create an assign activity and invoke the Expression Builder dialog
to configure these functions. The translate activity automatically generates the assign
activity.

6.3.1 How to Translate Native Data to XML Data
This section describes how to configure the translate activity in a BPEL process to
receive an inbound message in native XSD format (for this example, string data) and
translate it to XML format. The Native Format Builder wizard is used to create a new
schema file.

To translate native data to XML data:

1. Right-click a BPEL process in the SOA Composite Editor, and select Edit.

Oracle BPEL Designer is displayed.

2. Expand the Oracle Extensions section of the Components window and drag a
Translate activity into the BPEL process. Figure 6-7 provides details.

Figure 6-7 Translate Activity in a BPEL Process

3. Right-click the translate activity and select Edit.

The Translate dialog is displayed for editing.

4. Select Native to XML to receive inbound native data (for this example, in a single
string).

Chapter 6
Translating Between Native Data and XML

6-12

5. To the right of the Input field, click the Browse icon.

The Variable XPath Builder dialog is displayed.

6. Select the native string that is part of the inbound payload to translate into XML format,
and click OK. Figure 6-8 provides details.

Figure 6-8 Variable XPath Builder

7. To the right of the NXSD Schema field, select the schema to use:

• If the schema already exists, select the Search (first) icon to invoke the Type
Chooser dialog.

• If the schema does not exist, select the second icon to invoke the Native Format
Builder wizard to create the schema.

The following example describes how to use the Native Format Builder wizard to create a
new schema from a text file that uses a comma-separated delimiter.

a. In the File Name field of the File Name and Directory dialog, enter a name, and click
Next.

b. In the Choose Type dialog, select Delimited (Contains records whose fields are
delimited by a special character), and click Next.

c. In the File Description dialog, click Browse to select the text file that uses the
comma-separated delimiter.

The Select sample file dialog is displayed.

d. Select the file to use, and click OK.

The file contents are displayed at the bottom of the File Description dialog. Figure 6-9
provides details.

Chapter 6
Translating Between Native Data and XML

6-13

Figure 6-9 Sample File Contents

e. Click Next.

f. In the Record Organization dialog, click Next.

g. In the Specify Elements dialog, enter a name for the element to represent the
record (for this example, addr is entered), and click Next.

h. In the Specify Delimiters dialog, accept the default value of a comma as the
special character that delimits the fields in the text file, and click Next.

i. In the Name column of the Field Properties dialog, enter the appropriate
values in place of C1, C2, C3, C4, C5, and C6, and click Next. Figure 6-10
provides details.

Figure 6-10 Name Column Default Values Replaced with Specific
Values

Chapter 6
Translating Between Native Data and XML

6-14

The new schema is displayed in the Generated Native Format Schema dialog.

j. Click Test to test the schema.

k. In the Result XML section, click the green arrow.

The native schema and resulting XML are displayed. Figure 6-11 provides details.

Figure 6-11 Output From Testing the Native Schema

l. Click OK to return to the Generated Native Format Schema dialog.

m. Click Next, then Finish.

The addr_schema1.xsd file is created and displayed in the NXSD Schema field of
the Translate dialog.

8. From the Output Type list, select DOM. Both DOM and SDOM supported if you select
DOM.

9. To the right of the Output field, select the variable for the schema.

a. If you have an output variable that adheres to the schema specified in Step 7, click
the Search (first) icon to select the existing variable.

b. If you do not have an existing variable, click the Add (second) icon to invoke the
Create Variable dialog. Accept the default values or rename the variable to create an
output variable, and click OK. The variable automatically points to the schema
created in Step 7.

When complete, the Translate dialog looks as shown in Figure 6-12.

Chapter 6
Translating Between Native Data and XML

6-15

10. Figure 6-12 Translate Dialog Configured for Native to XML Translation

The output for the synchronous request must now be changed to point to the new
schema.

11. In the Applications window, select the BPEL process WSDL file (for this example,
named BPELProcess1.wsdl).

12. At the bottom of Oracle BPEL Designer, click Source.

13. Scroll to the <wsdl:message> section of the WSDL file.

14. Click the response element (for this example, named processResponse) for the
message BPELProcess1ResponseMessage to invoke the Property Inspector in
the lower right corner. Figure 6-13 provides details.

Figure 6-13 Root Element Selection in the WSDL File

15. In the Property Inspector, select the new root element (for this example,
ns1:addr). Figure 6-14 provides details.

Chapter 6
Translating Between Native Data and XML

6-16

Figure 6-14 Root Element Selected in Property Inspector

The ns1:addr root element is added to the WSDL file. Figure 6-15 provides details.

Figure 6-15 New Root Element Appears in WSDL File

16. Drag an Assign activity into the BPEL process beneath the translate activity.

You now assign the translation output variable to the BPEL output variable.

17. In the Copy Rules tab of the assign activity, map the variables, and click OK. Figure 6-16
provides details.

Figure 6-16 Edit Assign Dialog

Chapter 6
Translating Between Native Data and XML

6-17

Design is now complete.

6.3.2 How to Translate XML Data to Native Data
This section describes how to translate an incoming XML message to native data
format (such as a comma delimited string). This example uses the schema file created
in How to Translate Native Data to XML Data as the outbound XML format to translate
to native XSD format.

To translate XML format to native data:

1. Create a synchronous BPEL process.

2. In the Input field of the Create BPEL Process dialog, accept the default input XSD
schema or click the Search icon to select a different XSD. For this example, the
schema created with the Native Format Builder in How to Translate Native Data to
XML Data is selected. Figure 6-17 provides details.

Figure 6-17 Input Schema Selection

3. Right-click the BPEL process in the SOA Composite Editor, and select Edit.

Oracle BPEL Designer is displayed.

4. Expand the Oracle Extensions section of the Components window and drag a
Translate activity into the BPEL process.

5. Right-click the translate activity, and select Edit.

The Translate dialog is displayed for editing.

6. Select XML to Native to translate outbound XML data into native XSD format.

7. To the right of the Input field, click the Browse (first) icon.

8. Select the input variable. Figure 6-18 provides details.

Chapter 6
Translating Between Native Data and XML

6-18

Figure 6-18 Input Variable Selection

9. To the right of the NXSD Schema field, select the Search (first) icon to invoke the Type
Chooser dialog.

10. Select the schema file, and click OK. This example uses the same schema file as How to
Translate Native Data to XML Data. Figure 6-19 provides details.

Figure 6-19 Schema File Selection

11. From the Output Type list, select STRING.

If you instead select ATTACHMENT, the dialog is refreshed to display the Location field
for specifying the directory location for the attachment. Selecting ATTACHMENT is useful
for scenarios in which XML data is very large.

12. To the right of the Output field, click the Search (first) icon or click the Create Variable
icon to automatically create a new output variable of type string.

Chapter 6
Translating Between Native Data and XML

6-19

13. Select the output variable, and click OK. Figure 6-20 provides details.

Figure 6-20 Output Variable Selection

The Translate dialog looks as shown in Figure 6-21.

Figure 6-21 Translate Dialog Configured for Outbound Translations

Design is now complete.

Chapter 6
Translating Between Native Data and XML

6-20

6.3.3 How to Translate Inbound Native Data to XML Stored as an
Attachment

This section describes how to translate an inbound message in native data format to an
attachment. Attachments are useful for scenarios in which incoming data is very large.

To translate inbound native XSD format to an attachment:

1. Create a BPEL process (for this example, a one-way BPEL process is created).

2. Right-click the BPEL process in the SOA Composite Editor, and select Edit.

Oracle BPEL Designer is displayed.

3. Expand the Oracle Extensions section of the Components window and drag a Translate
activity into the BPEL process.

4. Right-click the translate activity, and select Edit.

The Translate dialog is displayed for editing.

5. Select Native to XML to translate inbound native data into an attachment.

6. To the right of the Input field, click the Browse (first) icon.

7. Select the input variable (for this example, a very large string). Figure 6-22 provides
details.

Figure 6-22 Input Variable Selection

8. To the right of the NXSD Schema field, select the Search (first) icon to invoke the Type
Chooser dialog.

9. Select the schema file, and click OK. This example uses the same schema file as How to
Translate Native Data to XML Data. Figure 6-23 provides details.

Chapter 6
Translating Between Native Data and XML

6-21

Figure 6-23 Schema File Selection

10. From the Output Type list, select ATTACHMENT.

The dialog is refreshed to display the Location field.

11. In the Location field, enter the directory path to the attachment. If this field is left
blank, the attachment is stored in the database.

12. To the right of the Output field, click the Add (second) icon to invoke the Create
Variable dialog.

13. Click OK to create the output variable. The output variable is of type attachment.

The Translate dialog looks as shown in Figure 6-24.

Figure 6-24 Translate Dialog for an Attachment

14. Click OK.

Chapter 6
Translating Between Native Data and XML

6-22

15. In the Applications window, select the BPEL process file.

16. Click Source.

17. Note that the location you specified for the attachment is copied to an href attribute. The
href attribute is part of the variable of type attachment that was created in Step 12.

. . .
<copy>
 <from> '/scratch/sbandyop/tmp/out/dhqa_addr_att.xml'</from>
 <to> $Translate1_OutputVar_1/@href</to>
</copy>
. . .

18. In the Applications window, select the BPEL process WSDL file.

19. Click Source.

20. Note the attachment code added to the WSDL definitions section of the file and the href
attribute that is pointed to by the variable created in Step 12.

. . .
xmlns:attach="http://xmlns.oracle.com/DHQATranslateApp/DHQATranslateToAttach/
BPELProcess1/attachment"
. . .
. . .
. . .
 <element name="attachmentElement">
 <complexType>
 <attribute name="href" type="string"/>
 </complexType>
 </element>
. . .
. . .

Design is now complete.

6.4 Using Standalone SDO-based Variables
Standalone SDO-based variables are similar to ordinary BPEL XML-DOM-based variables.
The major difference is that the underlying data form is SDO-based, instead of DOM-based.
Therefore, SDO-based variables can use some SDO features such as Java API access, an
easier-to-use update API, and the change summary. However, SDO usage is also subject to
some restrictions that do not exist with XML-DOM-based variables. The most noticeable
restriction is that SDO only supports a small subset of XPath expressions.

6.4.1 How to Declare SDO-based Variables
The syntax for declaring an SDO-based variable is similar to that for declaring BPEL
variables. The following example provides details.

<variable name="deptVar_s" element="hrtypes:dept" />
<variable name="deptVar_v" element="hrtypes:dept" bpelx:sdoCapable="false" />

If you want to override the automatic detection, use the bpelx:sdoCapable="true|false"
switch. For example, variable deptVar_v described in the preceding sample is a regular
DOM-based variable. The following example shows an XSD sample:

<xsd:element name="dept" type="Dept"/>
 <xsd:complexType name="Dept"

Chapter 6
Using Standalone SDO-based Variables

6-23

 sdoJava:instanceClass="sdo.sample.service.types.Dept">
 <xsd:annotation>
 <xsd:appinfo source="Key"
 xmlns="http://xmlns.oracle.com/bc4j/service/metadata/">
 <key>
 <attribute>Deptno</attribute>
 </key>
 <fetchMode>minimal</fetchMode>
 </xsd:appinfo>
 </xsd:annotation>
 <xsd:sequence>
 <xsd:element name="Deptno" type="xsd:integer" minOccurs="0"/>
 <xsd:element name="Dname" type="xsd:string" minOccurs="0"
 nillable="true"/>
 <xsd:element name="Loc" type="xsd:string" minOccurs="0"
nillable="true"/>
 <xsd:element name="Emp" type="Emp" minOccurs="0" maxOccurs="unbounded"
 nillable="true"/>
 </xsd:sequence>
 </xsd:complexType>

6.4.2 How to Convert from XML to SDO
Oracle BPEL Process Manager supports dual data forms: DOM and SDO. You can
interchange the usage of DOM-based and SDO-based variables within the same
business process, even within the same expression. The Oracle BPEL Process
Manager data framework automatically converts back and forth between DOM and
SDO forms.

By using the entity variable XPath rewrite capabilities, Oracle BPEL Process Manager
enables some XPath features (for example, variable reference and function calls) that
the basic SDO specification does not support. However, there are other limitations on
the XPath used with SDO-based variables (for example, there is no support for and,
or, and not).

The following example shows XML-to-SDO conversion:

<assign>
 <copy>
 <from>
 <ns0:dept xmlns:ns0="http://sdo.sample.service/types/"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <ns0:Deptno>10</ns0:Deptno>
 <ns0:Dname>ACCOUNTING</ns0:Dname>
 <ns0:Loc>NEW YORK</ns0:Loc>
 <ns0:Emp>
 <ns0:Empno>7782</ns0:Empno>
 <ns0:Ename>CLARK</ns0:Ename>
 <ns0:Job>MANAGER</ns0:Job>
 <ns0:Mgr>7839</ns0:Mgr>
 <ns0:Hiredate>1981-06-09</ns0:Hiredate>
 <ns0:Sal>2450</ns0:Sal>
 <ns0:Deptno>10</ns0:Deptno>
 </ns0:Emp>
 <ns0:Emp>
 <ns0:Empno>7839</ns0:Empno>
 <ns0:Ename>KING</ns0:Ename>
 <ns0:Job>PRESIDENT</ns0:Job>
 <ns0:Hiredate>1981-11-17</ns0:Hiredate>
 <ns0:Sal>5000</ns0:Sal>

Chapter 6
Using Standalone SDO-based Variables

6-24

 <ns0:Deptno>10</ns0:Deptno>
 </ns0:Emp>
 <ns0:Emp>
 <ns0:Empno>7934</ns0:Empno>
 <ns0:Ename>MILLER</ns0:Ename>
 <ns0:Job>CLERK</ns0:Job>
 <ns0:Mgr>7782</ns0:Mgr>
 <ns0:Hiredate>1982-01-23</ns0:Hiredate>
 <ns0:Sal>1300</ns0:Sal>
 <ns0:Deptno>10</ns0:Deptno>
 </ns0:Emp>
 </ns0:dept>
 </from>
 <to variable="deptVar_s" />
 </copy>
</assign>

The following example illustrates copying from an XPath expression of an SDO variable to a
DOM variable:

<assign>
 <!-- copy from an XPath expression of an SDO variable to DOM variable -->
 <copy>
 <from expression="$deptVar_s/hrtypes:Emp[2]" />
 <to variable="empVar_v" />
 </copy>
 <!-- copy from an XPath expression of an DOM variable to SDO variable -->
 <copy>
 <from expression="$deptVar_v/hrtypes:Emp[2]" />
 <to variable="empVar_s" />
 </copy>
 <!-- insert a DOM based data into an SDO variable -->
 <bpelx:insertAfter>
 <bpelx:from variable="empVar_v" />
 <bpelx:to variable="deptVar_s" query="hrtypes:Emp" />
 </bpelx:insertAfter>
 <!-- insert a SDO based data into an SDO variable at particular location,
 no XML conversion is needed -->
 <bpelx:insertBefore>
 <bpelx:from expression="$deptVar_s/hrtypes:Emp[hrtypes:Sal = 1300]" />
 <bpelx:to variable="deptVar_s" query="hrtypes:Emp[6]" />
 </bpelx:insertBefore>
</assign>

The following example shows SDO Data Removal:

<assign>
 <bpelx:remove>
 <bpelx:target variable="deptVar_s" query="hrtypes:Emp[2]" />
 </bpelx:remove>
</assign>

Chapter 6
Using Standalone SDO-based Variables

6-25

Note:

The bpelx:append operation is not supported for SDO-based variables for
the following reasons:

• The <copy> operation on an SDO-based variable has smart update
capabilities (for example, you do not have to perform a <bpelx:append>
operation before the <copy> operation).

• The SDO data object is metadata driven and does not generally support
adding a new property arbitrarily.

6.5 Initializing a Variable with Expression Constants or
Literal XML

It is often useful to assign literal XML to a variable in BPEL (for example, to initialize a
variable before copying dynamic data into a specific field within the XML data content
for the variable). This is also useful for testing purposes when you want to hard code
XML data values into the process. You assign literal XML by dragging a literal icon to a
target node on the Copy Rules tab of the assign activity.

For more information about assigning literal XML in an assign activity, see Assign
Activity.

6.5.1 How To Assign a Literal XML Element
The following example assigns a literal result element to the payload part of the
output variable:

<assign>
 <!-- copy from literal xml to the variable -->
 <copy>
 <from>
 <result xmlns="http://samples.otn.com">
 <name/>
 <symbol/>
 <price>12.3</price>
 <quantity>0</quantity>
 <approved/>
 <message/>
 </result>
 </from>
 <to variable="output" part="payload"/>
 </copy>
</assign>

6.6 Copying Between Variables
When you copy between variables, you copy directly from one variable (or part) to
another variable of a compatible type, without needing to specify a particular field
within either variable. In other words, you do not need to specify an XPath query.

Chapter 6
Initializing a Variable with Expression Constants or Literal XML

6-26

You perform variable copying in the Copy Rules tab of the Edit Assign dialog, as shown in
Figure 6-25.

Figure 6-25 Copy Rules Tab for Variable Assignment

For more information about the Copy Rules tab, see Manipulating XML Data with bpelx
Extensions and Assign Activity.

6.6.1 How to Copy Between Variables
The following example shows two assignments being performed, first copying between two
variables of the same type and then copying a variable part to another variable with the same
type as that part.

<assign>
 <copy>
 <from variable="c1"/>
 <to variable="c2"/>
 </copy>
 <copy>
 <from variable="c1" part = "address"/>
 <to variable="c3"/>
 </copy>
</assign>

The BPEL file defines the variables, as shown in the following example:

<variable name="c1" messageType="x:person"/>
<variable name="c2" messageType="x:person"/>
<variable name="c3" element="y:address"/>

The WSDL file defines the person message type, as shown in the following example:

Chapter 6
Copying Between Variables

6-27

<message name="person" xmlns:x="http://tempuri.org/bpws/example">
 <part name="full-name" type="xsd:string"/>
 <part name="address" element="x:address"/>
</message>

For more information about this code example, see Section 9.3.2 of the Business
Process Execution Language for Web Services Specification. For BPEL 2.0, see
Section 8.4.4 of Web Services Business Process Execution Language Specification
Version 2.0 for a similar example.

For more information, see Assign Activity.

6.6.2 How to Initialize Variables with an Inline from-spec in BPEL 2.0
A variable can optionally be initialized by using an inline from-spec. Click the Initialize
tab in the Create Variable dialog in a BPEL 2.0 project to create this type of variable.
Figure 6-26 provides details.

Figure 6-26 Initialize Tab of Create Variable Dialog

Inline variable initializations are conceptually designed as a virtual sequence activity
that includes a series of virtual assign activities, one for each variable being initialized,
in the order in which they appear in the variable declarations. Each virtual assign
activity contains a single virtual copy operation whose from-spec is as given in the
variable initialization. The to-spec points to the variable being created. The following
example provides details.

<variables>
 <variable name="tmp" element="tns:output">
 <from>
 <literal>
 <output xmlns="http://samples.otn.com/bpel2.0/ch8.1">
 <value>1000</value>
 </output>
 </literal>
 </from>

Chapter 6
Copying Between Variables

6-28

 </variable>
</variables>

For more information, see section 8.1 of Web Services Business Process Execution
Language Specification Version 2.0.

6.7 Moving and Copying Variables in the Structure Window
You can move and copy variables to and from scope activities in the Structure Window of
Oracle JDeveloper.

6.7.1 To Move Variables in the Structure Window:
1. In the Structure window, select the variable to move to a scope activity. Figure 6-27

provides details.

Figure 6-27 Variable to Move in the Structure Window

2. Drag the variable to the Variables folder of the scope activity.

The variable is displayed in the Variables folder of the scope activity, as shown in
Figure 6-28.

Figure 6-28 Variable Moved to the Scope Activity in the Structure Window

3. In the BPEL process, click the Variables icon of the scope activity.

The variable you moved is displayed, as shown in Figure 6-29.

Chapter 6
Moving and Copying Variables in the Structure Window

6-29

Figure 6-29 Moved Variable in Variables Dialog of the Scope Activity

6.7.2 To Copy Variables in the Structure Window:
1. In the Structure window, select the variable to move to the scope activity.

2. Hold down the Ctrl key.

3. Drag the variable to the Variables folder of the scope activity.

The variable is displayed in both Variables folders, as shown in Figure 6-30.

Figure 6-30 Variable Copied to the Scope Activity in the Structure Window

6.8 Accessing Fields in Element and Message Type
Variables

Given the types of definitions present in most WSDL and XSD files, you must go down
to the level of copying from or to a field within part of a variable based on the element
and message type. This in turn uses XML schema complex types. To perform this
action, you specify an XPath query in the from or to clause of the Copy Rules tab of
the assign activity.

For more information about the Copy Rules tab, see Manipulating XML Data with
bpelx Extensions and Assign Activity.

6.8.1 How to Access Fields Within Element-Based and Message Type-
Based Variables

In the following example, the ssn field is copied from the CreditFlow process's input
message into the ssn field of the credit rating service's input message.

Chapter 6
Accessing Fields in Element and Message Type Variables

6-30

<assign>
 <copy>
 <from variable="input" part="payload"
 query="/tns:CreditFlowRequest/tns:ssn"/>
 <to variable="crInput" part="payload" query="/tns:ssn"/>
 </copy>
</assign>

The following example shows how the BPEL file defines message type-based variables
involved in this assignment:

<variable name="input" messageType="tns:CreditFlowRequestMessage"/>
<variable name="crInput"
 messageType="services:CreditRatingServiceRequestMessage"/>

The crInput variable is used as an input message to a credit rating service. Its message
type, CreditFlowRequestMessage, is defined in the CreditFlowService.wsdl file, as shown
in the following example:

<message name="CreditFlowRequestMessage">
<part name="payload" element="tns:CreditFlowRequest"/>
</message>

CreditFlowRequest is defined with a field named ssn. The message type
CreditRatingServiceRequestMessage is defined in the CreditRatingService.wsdl file, as
shown in the following example:

<message name="CreditRatingServiceRequestMessage">
 <part name="payload" element="tns:ssn"/>
</message>

The following example shows the BPEL 2.0 syntax for how the BPEL file defines message
type-based variables involved in the assignment in the first assignment example. Note that /
tns:CreditFlowRequest is not required.

<copy>
 <from>$input.payload/tns:ssn</from>
 <to>$crInput.payload</to>
</copy>

A BPEL process can also use element-based variables. The following example shows how to
use element-based variables in BPEL 1.1. The autoloan field is copied from the loan
application process's input message into the customer field of a web service's input message.

 <assign>
 <copy>
 <from variable="input" part="payload"
 query="/tns:invalidLoanApplication/autoloan:
 application/autoloan:customer"/>
 <to variable="customer"/>
 </copy>
</assign>

The following example shows how to use element-based variables in BPEL 2.0.

<assign>
 <copy>
 <from>$input.payload/autoloan:application/autoloan:customer</from>
 <to>$customer</to>

Chapter 6
Accessing Fields in Element and Message Type Variables

6-31

 </copy>
</assign>

The following example shows how the BPEL file defines element-based variables
involved in an assignment:

 <variable name="customer" element="tns:customerProfile"/>

6.9 Assigning Numeric Values
You can assign numeric values in XPath expressions.

6.9.1 How to Assign Numeric Values
The following example shows how to assign an XPath expression with the integer
value of 100.

<assign>
 <!-- copy from integer expression to the variable -->
 <copy>
 <from expression="100"/>
 <to variable="output" part="payload" query="/p:result/p:quantity"/>
 </copy>
</assign>

6.10 Using Mathematical Calculations with XPath Standards
You can use simple mathematical expressions, such as the one in the following
section, which increment a numeric value.

6.10.1 How To Use Mathematical Calculations with XPath Standards
In the following example, the BPEL XPath function getVariableData retrieves the
value being incremented. The arguments to getVariableData are equivalent to the
variable, part, and query attributes of the from clause (including the last two
arguments, which are optional).

<assign>
 <copy>
 <from expression="bpws:getVariableData('input', 'payload',
 '/p:value') + 1"/>
 <to variable="output" part="payload" query="/p:result"/>
 </copy>
</assign>

You can also use $variable syntax in BPEL 1.1, as shown in the following example:

<assign>
 <copy>
 <from expression="$input.payload + 1"/>
 <to variable="output" part="payload" query="/p:result"/>
 </copy>
</assign>

The following example shows how to use $variable syntax in BPEL 2.0.

Chapter 6
Assigning Numeric Values

6-32

<assign>
 <copy>
 <from>$input.payload + 1</from>
 <to>$output.payload</to>
 </copy>
</assign>

6.11 Assigning String Literals
You can assign string literals to a variable in the Copy Rules tab of the assign activity.

For more information about the assign activity, see Manipulating XML Data with bpelx
Extensions and Assign Activity.

6.11.1 How to Assign String Literals
The code in the following example copies a BPEL 1.1 expression evaluating from the string
literal 'GE' to the symbol field within the indicated variable part. (Note the use of the double
and single quotes.)

<assign>
 <!-- copy from string expression to the variable -->
 <copy>
 <from expression="'GE'"/>
 <to variable="output" part="payload" query="/p:result/p:symbol"/>
 </copy>
</assign>

The following example shows how to perform this expression in BPEL 2.0.

<assign>
 <copy>
 <from>'GE'</from>
 <to>$output.payload/p:symbol</from>
 </copy>
</assign>

For more information, see Assign Activity.

6.12 Concatenating Strings
Rather than copying the value of one string variable (or variable part or field) to another, you
can first perform string manipulation, such as concatenating several strings.

6.12.1 How to Concatenate Strings
The concatenation is accomplished with the core XPath function named concat. In addition,
the variable value involved in the concatenation is retrieved with the BPEL XPath function
getVariableData. In the following example, getVariableData fetches the value of the name
field from the input variable's payload part. The string literal 'Hello ' is then concatenated
to the beginning of this value.

<assign>
 <!-- copy from XPath expression to the variable -->
 <copy>
 <from expression="concat('Hello ',

Chapter 6
Assigning String Literals

6-33

 bpws:getVariableData('input', 'payload', '/p:name'))"/>
 <to variable="output" part="payload" query="/p:result/p:message"/>
 </copy>
</assign>

Other string manipulation functions available in XPath are listed in section 4.2 of the
XML Path Language (XPath) Specification.

6.13 Assigning Boolean Values
You can assign boolean values with the XPath boolean function.

6.13.1 How to Assign Boolean Values
The following example provides an example of assigning boolean values in BPEL 1.1.
The XPath expression in the from clause is a call to XPath's boolean function true,
and the specified approved field is set to true. The function false is also available.

<assign>
 <!-- copy from boolean expression function to the variable -->
 <copy>
 <from expression="true()"/>
 <to variable="output" part="payload" query="/result/approved"/>
 </copy>
</assign>

The following example provides an example of assigning boolean values in BPEL 2.0.

<assign>
 <copy>
 <from>true()</from>
 <to>$output.payload/approved</to>
 </copy>
</assign>

The XPath specification recommends that you use the "true()" and "false()"
functions as a method for returning boolean constant values.

If you instead use "boolean(true)" or "boolean(false)", the true or false inside
the boolean function is interpreted as a relative element step, and not as any true or
false constant. It attempts to select a child node named true under the current XPath
context node. In most cases, the true node does not exist. Therefore, an empty result
node set is returned and the boolean() function in XPath 1.0 converts an empty node
set into a false result. This result can be potentially confusing.

6.14 Assigning a Date or Time
You can assign the current value of a date or time field by using the Oracle BPEL
XPath function getCurrentDate, getCurrentTime, or getCurrentDateTime,
respectively. In addition, if you have a date-time value in the standard XSD format, you
can convert it to characters more suitable for output by calling the Oracle BPEL XPath
function formatDate.

For related information, see section 9.1.2 of the Business Process Execution
Language for Web Services Specification and section 8.3.2 of the Web Services
Business Process Execution Language Specification Version 2.0.

Chapter 6
Assigning Boolean Values

6-34

For information about XPath functions and the Expression Builder, see XPath Extension
Functions.

6.14.1 How to Assign a Date or Time
The following example shows an example that uses the function getCurrentDate in BPEL
1.1.

<!-- execute the XPath extension function getCurrentDate() -->
<assign>
 <copy>
 <from expression="xpath20:getCurrentDate()"/>
 <to variable="output" part="payload"
 query="ns1:invoice/invoiceDate"/>
 </copy>
</assign>

The following example shows an example that uses the function getCurrentDate in BPEL
2.0.

<assign>
 <copy>
 <from>xpath20:getCurrentDate()</from>
 <to>$output.payload/invoiceDate</to>
 </copy>
</assign>

In the following example, the formatDate function converts the date-time value provided in
XSD format to the string 'Jun 10, 2005' (and assigns it to the string field formattedDate).

<!-- execute the XPath extension function formatDate() -->
<assign>
 <copy>
 <from expression="ora:formatDate('2005-06-10T15:56:00',
 'MMM dd, yyyy')"/>
 <to variable="output" part="payload"
 query="ns1:invoice/formattedDate"/>
 </copy>
</assign>

The following example shows how the formatDate function works in BPEL 2.0.

<assign>
 <copy>
 <from>ora:formatDate('2005-06-10T15:56:00','MMM dd, yyyy')</from>
 <to>$output.payload/formattedDate</to>
 </copy>
</assign>

6.15 Manipulating Attributes
You can copy to or from something defined as an XML attribute. An at sign (@) in XPath query
syntax refers to an attribute instead of a child element.

Chapter 6
Manipulating Attributes

6-35

6.15.1 How to Manipulate Attributes
The code in the following example fetches and copies the custId attribute from this
XML data:

 <invalidLoanApplication xmlns="http://samples.otn.com">
 <application xmlns = "http://samples.otn.com/XPath/autoloan">
 <customer custId = "111" >
 <name>
 Mike Olive
 </name>
 ...
 </customer>
 ...
 </application>
 </invalidLoanApplication>

The BPEL 1.1 code in the following example selects the custId attribute of the
customer field and assigns it to the variable custId:

<assign>
 <!-- get the custId attribute and assign to variable custId -->
 <copy>
 <from variable="input" part="payload"
 query="/tns:invalidLoanApplication/autoloan:application
 /autoloan:customer/@custId"/>
 <to variable="custId"/>
 </copy>
</assign>

The following example shows the equivalent syntax in BPEL 2.0 for selecting the
custId attribute of the customer field and assigning it to the variable custId:

<assign>
<copy>
<from>$input.payload/autoloan:application/autoloan:customer/@custId</from>
<to>$custId</to>
</copy>
</assign>

The namespace prefixes in this example are not integral to the example.The WSDL
file defines a customer to have a type in which custId is defined as an attribute, as
shown in the following example:

<complexType name="CustomerProfileType">
 <sequence>
 <element name="name" type="string"/>
 ...
 </sequence>
 <attribute name="custId" type="string"/>
</complexType>

6.16 Manipulating XML Data with bpelx Extensions
You can perform various operations on XML data in assign activities. The bpelx
extension types described in this section provide this functionality. In Oracle BPEL
Designer, you can add bpelx extension types at the bottom of the Copy Rules tab of

Chapter 6
Manipulating XML Data with bpelx Extensions

6-36

an assign dialog. After creating a copy rule, you select it and then choose a bpelx extension
type from the dropdown list in BPEL 1.1 or the context menu in BPEL 2.0. This changes the
copy rule to the selected extension type.

In BPEL 1.1, you select an extension type from the dropdown list, as shown in Figure 6-31.

Figure 6-31 Copy Rule Converted to bpelx Extension in BPEL 1.1

In BPEL 2.0, you select an extension type by right-clicking the copy rule, selecting Change
rule type, and then selecting the extension type, as shown in Figure 6-32.

Chapter 6
Manipulating XML Data with bpelx Extensions

6-37

Figure 6-32 Copy Rule Converted to bpelx Extension in BPEL 2.0

For more information, see the online Help for this dialog and Assign Activity.

6.16.1 How to Use bpelx:append
The bpelx:append extension in an assign activity enables a BPEL process service
component to append the contents of one variable, expression, or XML fragment to
another variable's contents. To use this extension, perform one of the following steps
at the bottom of the Copy Rules tab:

• For BPEL 1.1, select a copy rule, then select Append from the dropdown list, as
shown in Figure 6-31.

• For BPEL 2.0, right-click a copy rule, select Change rule type, and then select
Append, as shown in Figure 6-32.

Note:

The bpelx:append extension is not supported with SDO variables and
causes an error.

6.16.1.1 bpelx:append in BPEL 1.1
The following provides an example of bpelx:append in a BPEL project that supports
BPEL version 1.1.

<bpel:assign>
 <bpelx:append>
 <bpelx:from ... />
 <bpelx:to ... />

Chapter 6
Manipulating XML Data with bpelx Extensions

6-38

 </bpelx:append>
</bpel:assign>

The from-spec query within bpelx:append yields zero or more nodes. The node list is
appended as child nodes to the target node specified by the to-spec query.

The to-spec query must yield one single L-Value element node. Otherwise, a
bpel:selectionFailure fault is generated. The to-spec query cannot refer to a partner link.

The following example consolidates multiple bills of material into one single bill of material
(BOM) by appending multiple b:parts for one BOM to b:parts of the consolidated BOM.

<bpel:assign>
 <bpelx:append>
 <bpelx:from variable="billOfMaterialVar"
 query="/b:bom/b:parts/b:part" />
 <bpelx:to variable="consolidatedBillOfMaterialVar"
 query="/b:bom/b:parts" />
 </bpelx:append>
</bpel:assign>

6.16.1.2 bpelx:append in BPEL 2.0
The following provides an example of bpelx:append syntax in a BPEL project that supports
BPEL version 2.0. In BPEL 2.0, the functionality is the same as described in bpelx:append in
BPEL 1.1, but the syntax is slightly different.

<bpel:assign>
 <bpelx:append>
 <bpelx:from>$billOfMaterialVar/b:parts/b:part</bpelx:from>
 <bpelx:to>$consolidatedBillOfMaterialVar/b:parts</bpelx:from>
 </bpelx:append>
</bpel:assign>

6.16.2 How to Use bpelx:insertBefore

Note:

The bpelx:insertBefore extension works with SDO variables, but the target must
be the variable attribute into which the copied data must go.

The bpelx:insertBefore extension in an assign activity enables a BPEL process service
component to insert the contents of one variable, expression, or XML fragment before
another variable's contents. To use this extension, perform one of the following steps at the
bottom of the Copy Rules tab:

• For BPEL 1.1, select a copy rule, then select InsertBefore from the dropdown list, as
shown in Figure 6-31.

• For BPEL 2.0, right-click a copy rule, select Change rule type, and then select
InsertBefore, as shown in Figure 6-32.

Chapter 6
Manipulating XML Data with bpelx Extensions

6-39

6.16.2.1 bpelx:insertBefore in BPEL 1.1
The following provides an example of bpelx:insertBefore in a BPEL project that
supports BPEL version 1.1.

<bpel:assign>
 <bpelx:insertBefore>
 <bpelx:from ... />
 <bpelx:to ... />
 </bpelx:insertBefore>
</bpel:assign>

The from-spec query within bpelx:insertBefore yields zero or more nodes. The node
list is appended as child nodes to the target node specified by the to-spec query.

The to-spec query of the insertBefore operation points to one or more single L-Value
nodes. If multiple nodes are returned, the first node is used as the reference node. The
reference node must be an element node. The parent of the reference node must also
be an element node. Otherwise, a bpel:selectionFailure fault is generated. The
node list generated by the from-spec query selection is inserted before the reference
node. The to-spec query cannot refer to a partner link.

The following example shows the syntax before the execution of <insertBefore>. The
value of addrVar is:

<a:usAddress>
 <a:state>CA</a:state>
 <a:zipcode>94065</a:zipcode>
</a:usAddress>

The following example shows the syntax after the execution:

<bpel:assign>
 <bpelx:insertBefore>
 <bpelx:from>
 <a:city>Redwood Shore></a:city>
 </bpelx:from>
 <bpelx:to "addrVar" query="/a:usAddress/a:state" />
 </bpelx:insertBefore>
</bpel:assign>

The following example shows the value of addrVar:

<a:usAddress>
 <a:city>Redwood Shore</a:city>
 <a:state>CA</a:state>
 <a:zipcode>94065</a:zipcode>
</a:usAddress>

6.16.2.2 bpelx:insertBefore in BPEL 2.0
The following provides an example of bpelx:insertBefore syntax in a BPEL project
that supports BPEL version 2.0. In BPEL 2.0, the functionality is the same as
described in bpelx:insertBefore in BPEL 1.1, but the syntax is slightly different. An
extensionAssignOperation element wraps the bpelx:insertBefore extension.

<assign>
 <extensionAssignOperation>

Chapter 6
Manipulating XML Data with bpelx Extensions

6-40

 <bpelx:insertBefore>
 <bpelx:from>
 <bpelx:literal>
 <a:city>Redwood Shore></a:city>
 </bpelx:literal>
 </bpelx:from>
 <bpelx:to>$addrVar/a:state</bpelx:to>
 </bpelx:insertBefore>
 </extensionAssignOperation>
</assign>

6.16.3 How to Use bpelx:insertAfter

Note:

The bpelx:insertAfter extension works with SDO variables, but the target must
be the variable attribute into which the copied data must go.

The bpelx:insertAfter extension in an assign activity enables a BPEL process service
component to insert the contents of one variable, expression, or XML fragment after another
variable's contents. To use this extension, perform one of the following steps at the bottom of
the Copy Rules tab:

• For BPEL 1.1, select a copy rule, then select InsertAfter from the dropdown list, as
shown in Figure 6-31.

• For BPEL 2.0, right-click a copy rule, select Change rule type, and then select
InsertAfter, as shown in Figure 6-32.

6.16.3.1 bpelx:insertAfter in BPEL 1.1
The following provides an example of bpelx:insertAfter in a BPEL project that supports
BPEL version 1.1.

<bpel:assign>
 <bpelx:insertAfter>
 <bpelx:from ... />
 <bpelx:to ... />
 </bpelx:insertAfter>
</bpel:assign>

This operation is similar to the functionality described for How to Use bpelx:insertBefore,
except for the following:

• If multiple L-Value nodes are returned by the to-spec query, the last node is used as the
reference node.

• Instead of inserting nodes before the reference node, the source nodes are inserted after
the reference node.

This operation can also be considered a macro of conditional-switch + (append or
insertBefore).

The following example shows the syntax before the execution of <insertAfter>. The value of
addrVar is:

Chapter 6
Manipulating XML Data with bpelx Extensions

6-41

<a:usAddress>
 <a:addressLine>500 Oracle Parkway</a:addressLine>
 <a:state>CA</a:state>
 <a:zipcode>94065</a:zipcode>
</a:usAddress>

The following example shows the syntax after the execution:

<bpel:assign>
 <bpelx:insertAfter>
 <bpelx:from>
 <a:addressLine>Mailstop 1op6</a:addressLine>
 </bpelx:from>
 <bpelx:to "addrVar" query="/a:usAddress/a:addressLine[1]" />
 </bpelx:insertAfter>
</bpel:assign>

The following example shows the value of addrVar:

<a:usAddress>
 <a:addressLine>500 Oracle Parkway</a:addressLine>
 <a:addressLine>Mailstop 1op6</a:addressLine>
 <a:state>CA</a:state>
 <a:zipcode>94065</a:zipcode>
</a:usAddress>

The from-spec query within bpelx:insertAfter yields zero or more nodes. The node
list is appended as child nodes to the target node specified by the to-spec query.

6.16.3.2 bpelx:insertAfter in BPEL 2.0
The following provides an example of bpelx:insertAfter syntax in a BPEL project
that supports BPEL version 2.0. In BPEL 2.0, the functionality is the same as
described in bpelx:insertAfter in BPEL 1.1, but the syntax is slightly different. An
extensionAssignOperation element wraps the bpelx:insertAfter extension.

<assign>
 <extensionAssignOperation>
 <bpelx:insertAfter>
 <bpelx:from>
 <bpelx:literal>
 <a:addressLine>Mailstop 1op6</a:addressLine>
 </bpelx:literal>
 </bpelx:from>
<bpelx:to>$addrVar/a:addressLine[1]</bpelx:to>
 </bpelx:insertAfter>
 </extensionAssignOperation>
</assign>

6.16.4 How to Use bpelx:remove
The bpelx:remove extension in an assign activity enables a BPEL process service
component to remove a variable. In Oracle BPEL Designer, you add the bpelx:remove
extension by dragging the remove icon in the upper right corner of the Copy Rules
tab to the target variable you want to remove, and releasing the cursor. You can also
drag this icon to the center canvas to invoke a dialog, specify the rule, save and close
the dialog, and then drag the icon to the target node. Figure 6-33 provides details.

Chapter 6
Manipulating XML Data with bpelx Extensions

6-42

Figure 6-33 Remove Icon in Copy Rules Tab of an Assign Activity

After releasing the cursor, the bpelx:remove extension is applied to the target variable.
Figure 6-34 provides details.

Figure 6-34 bpelx:remove Extension Applied to a Target Variable

6.16.4.1 bpelx:remove in BPEL 1.1
The following provides an example of bpelx:remove in a BPEL project that supports BPEL
version 1.1.

<bpel:assign>
 <bpelx:remove>
 <bpelx:target variable="ncname" part="ncname"? query="xpath_str" />
 </bpelx:remove>
</bpel:assign>

Node removal specified by the XPath expression is supported. Nodes specified by the XPath
expression can be multiple, but must be L-Values. Nodes being removed from this parent can
be text nodes, attribute nodes, and element nodes.

The XPath expression can return one or more nodes. If the XPath expression returns zero
nodes, then a bpel:selectionFailure fault is generated.

The syntax of bpelx:target is similar to and a subset of to-spec for the copy operation.

The following example shows addrVar with the following value:

<a:usAddress>
 <a:addressLine>500 Oracle Parkway</a:addressLine>
 <a:addressLine>Mailstop 1op6</a:addressLine>
 <a:state>CA</a:state>
 <a:zipcode>94065</a:zipcode>
</a:usAddress>

After executing the syntax shown in the BPEL process service component file, the second
address line of Mailstop is removed:

<bpel:assign>
 <bpelx:remove>

Chapter 6
Manipulating XML Data with bpelx Extensions

6-43

 <target variable="addrVar"
 query="/a:usAddress/a:addressLine[2]" />
 </bpelx:remove>
</bpel:assign>

After executing the syntax shown in the BPEL process service component file, both
address lines are removed:

<bpel:assign>
 <bpelx:remove>
 <target variable="addrVar"
 query="/a:usAddress/a:addressLine" />
 </bpelx:remove>
</bpel:assign>

6.16.4.2 bpelx:remove in BPEL 2.0
The following provides an example of bpelx:remove syntax in a BPEL project that
supports BPEL version 2.0. In BPEL 2.0, the functionality is the same as described in
bpelx:remove in BPEL 1.1, but the syntax is slightly different. An
extensionAssignOperation element wraps the bpelx:remove.

<assign>
 <extensionAssignOperation>
 <bpelx:remove>
 <bpelx:target>$ncname.ncname/xpath_str</bpelx:target>
 </bpelx:remove>
 </extensionAssignOperation>
</assign>

6.16.5 How to Use bpelx:rename and XSD Type Casting
The bpelx:rename extension in an assign activity enables a BPEL process service
component to rename an element through use of XSD type casting. In Oracle BPEL
Designer, you add the bpelx:rename extension by dragging the rename icon in the
upper right corner of the Copy Rules tab to the target variable you want to rename,
and releasing the cursor. The rename icon displays to the right of the remove icon
shown in Figure 6-33. After releasing the cursor, the Rename dialog is displayed for
renaming the target variable. You can also drag this icon to the center canvas to
invoke this dialog, specify the name, save and close the dialog, and then drag the icon
to the target node.

6.16.5.1 bpelx:rename in BPEL 1.1
The following provides an example of bpelx:rename in a BPEL project that supports
BPEL version 1.1.

<bpel:assign>
 <bpelx:rename elementTo="QName1"? typeCastTo="QName2"?>
 <bpelx:target variable="ncname" part="ncname"? query="xpath_str" />
 </bpelx:rename>
</bpel:assign>

The syntax of bpelx:target is similar to and a subset of to-spec for the copy
operation. The target must return a list of element nodes. Otherwise, a
bpel:selectionFailure fault is generated. The element nodes specified in the from-
spec are renamed to the QName specified by the elementTo attribute. The xsi:type

Chapter 6
Manipulating XML Data with bpelx Extensions

6-44

attribute is added to those element nodes to cast those elements to the QName type specified
by the typeCastTo attribute.

Assume you have the employee list shown in the following example:

<e:empList>
 <e:emp>
 <e:firstName>John</e:firstName><e:lastName>Dole</e:lastName>
 <e:emp>
 <e:emp xsi:type="e:ManagerType">
 <e:firstName>Jane</e:firstName><e:lastName>Dole</e:lastName>
 <e:approvalLimit>3000</e:approvalLimit>
 <e:managing />
 <e:emp>
 <e:emp>
 <e:firstName>Peter</e:firstName><e:lastName>Smith</e:lastName>
 <e:emp>
 <e:emp>
 <e:firstName>Mary</e:firstName><e:lastName>Smith</e:lastName>
 <e:emp>
</e:empList>

Promotion changes are now applied to Peter Smith in the employee list, as in the following
example:

<bpel:assign>
 <bpelx:rename typeCastTo="e:ManagerType">
 <bpelx:target variable="empListVar"
 query="/e:empList/e:emp[./e:firstName='Peter' and
 ./e:lastName='Smith'" />
 </bpelx:rename>
</bpel:assign>

After executing the above casting (renaming), the data looks as shown in the following
example with xsi:type info added to Peter Smith:

<e:empList>
 <e:emp>
 <e:firstName>John</e:firstName><e:lastName>Dole</e:lastName>
 <e:emp>
 <e:emp xsi:type="e:ManagerType">
 <e:firstName>Jane</e:firstName><e:lastName>Dole</e:lastName>
 <e:approvalLimit>3000</e:approvalLimit>
 <e:managing />
 <e:emp>
 <e:emp xsi:type="e:ManagerType">
 <e:firstName>Peter</e:firstName><e:lastName>Smith</e:lastName>
 <e:emp>
 <e:emp>
 <e:firstName>Mary</e:firstName><e:lastName>Smith</e:lastName>
 <e:emp>
</e:empList>

The employee data of Peter Smith is now invalid, because <approvalLimit> and <managing>
are missing. Therefore, <append> is used to add that information. The following provides an
example.

<bpel:assign>
 <bpelx:rename typeCastTo="e:ManagerType">
 <bpelx:target variable="empListVar"
 query="/e:empList/e:emp[./e:firstName='Peter' and

Chapter 6
Manipulating XML Data with bpelx Extensions

6-45

 ./e:lastName='Smith'" />
 </bpelx:rename>
 <bpelx:append>
 <bpelx:from>
 <e:approvalLimit>2500</e:approvalLimit>
 <e:managing />
 </bpelx:from>
 <bpelx:to variable="empListVar"
 query="/e:empList/e:emp[./e:firstName='Peter' and
 ./e:lastName='Smith'" />
 </bpelx:append>
</bpel:assign>

With the execution of both rename and append, the corresponding data looks as shown
in the following example:

<e:emp xsi:type="e:ManagerType">
 <e:firstName>Peter</e:firstName><e:lastName>Smith</e:lastName>
 <e:approvalLimit>2500</e:approvalLimit>
 <e:managing />
<e:emp>

6.16.5.2 bpelx:rename in BPEL 2.0
The following provides an example of bpelx:rename syntax in a BPEL project that
supports BPEL version 2.0. In BPEL 2.0, the functionality is the same as described in
bpelx:rename in BPEL 1.1, but the syntax is slightly different. An
extensionAssignOperation element wraps the bpelx:rename operation.

 <bpel:assign>
 <extensionAssignOperation>
 <bpelx:rename elementTo="QName1"? typeCastTo="QName2"?>
 <bpelx:target>$ncname[.ncname][/xpath_str]</bpelx:target>
 </bpelx:rename>
 </extensionAssignOperation>
</bpel:assign>

6.16.6 How to Use bpelx:copyList
The bpelx:copyList extension in an assign activity enables a BPEL process service
component to perform a copyList operation of the contents of one variable,
expression, or XML fragment to another variable. To use this extension, perform one of
the following steps at the bottom of the Copy Rules tab:

• For BPEL 1.1, select a copy rule, then select CopyList from the dropdown list, as
shown in Figure 6-31.

• For BPEL 2.0, right-click a copy rule, select Change rule type, and then select
CopyList, as shown in Figure 6-32.

6.16.6.1 bpelx:copyList in BPEL 1.1
The following provides an example of bpelx:copyList in a BPEL project that supports
BPEL version 1.1.

<bpel:assign>
 <bpelx:copyList>
 <bpelx:from ... />

Chapter 6
Manipulating XML Data with bpelx Extensions

6-46

 <bpelx:to ... />
 </bpelx:copyList>
</bpel:assign>

The from-spec query can yield a list of either all attribute nodes or all element nodes. The
to-spec query can yield a list of L-value nodes: either all attribute nodes or all element
nodes.

All the element nodes returned by the to-spec query must have the same parent element. If
the to-spec query returns a list of element nodes, all element nodes must be contiguous.

If the from-spec query returns attribute nodes, then the to-spec query must return attribute
nodes. Likewise, if the from-spec query returns element nodes, then the to-spec query must
return element nodes. Otherwise, a bpws:mismatchedAssignmentFailure fault is thrown.

The from-spec query can return zero nodes, while the to-spec query must return at least one
node. If the from-spec query returns zero nodes, the effect of the copyList operation is
similar to the remove operation.

The copyList operation provides the following features:

• Removes all the nodes pointed to by the to-spec query.

• If the to-spec query returns a list of element nodes and there are leftover child nodes
after removal of those nodes, the nodes returned by the from-spec query are inserted
before the next sibling of the last element specified by the to-spec query. If there are no
leftover child nodes, an append operation is performed.

• If the to-spec query returns a list of attribute nodes, those attributes are removed from
the parent element. The attributes returned by the from-spec query are then appended to
the parent element.

For example, assume a schema is defined as shown below:

<schema attributeFormDefault="unqualified"
 elementFormDefault="qualified"
 targetNamespace="http://xmlns.oracle.com/Event_jws/Event/EventTest"
 xmlns="http://www.w3.org/2001/XMLSchema">
 <element name="process">
 <complexType>
 <sequence>
 <element name="payload" type="string"
 maxOccurs="unbounded"/>
 </sequence>
 </complexType>
 </element>
 <element name="processResponse">
 <complexType>
 <sequence>
 <element name="payload" type="string"
 maxOccurs="unbounded"/>
 </sequence>
 </complexType>
 </element>
</schema>

The from variable contains the content shown in the following example:

<ns1:process xmlns:ns1="http://xmlns.oracle.com/Event_jws/Event/EventTest">
 <ns1: payload >a</ns1: payload >

Chapter 6
Manipulating XML Data with bpelx Extensions

6-47

 <ns1: payload >b</ns1: payload >
</ns1:process>

The to variable contains the content shown in the following example:

<ns1:processResponse xmlns:ns1="http://xmlns.oracle.com/Event_
 jws/Event/EventTest">
 <ns1: payload >c</ns1: payload >
</ns1:process>

The bpelx:copyList operation looks as shown in the following example:

<assign>
 <bpelx:copyList>
 <bpelx:from variable="inputVariable" part="payload"
 query="/client:process/client:payload"/>
 <bpelx:to variable="outputVariable" part="payload"
 query="/client:processResponse/client:payload"/>
 </bpelx:copyList>
</assign>

This defines the to variable as shown in the following example:

<ns1:processResponse xmlns:ns1="http://xmlns.oracle.com/Event_
 jws/Event/EventTest">
 <ns1: payload >a</ns1: payload >
 <ns1: payload >b</ns1: payload >
</ns1:process>

6.16.6.2 bpelx:copyList in BPEL 2.0
The following provides an example of bpelx:copyList syntax in a BPEL project that
supports BPEL version 2.0. In BPEL 2.0, the functionality is the same as described in
bpelx:copyList in BPEL 1.1, but the syntax is slightly different. An
extensionAssignOperation element wraps the bpelx:copyList extension.

<assign>
 <extensionAssignOperation>
 <bpelx:copyList>
 <bpelx:from>$inputVariable.payload/client:payload</bpelx:from>
 <bpelx:to>$outputVariable.payload/client:payload</bpelx:to>
 </bpelx:copyList>
 </extensionAssignOperation>
</assign>

6.16.7 How to Use Assign Extension Attributes
You can assign the following attributes to copy rules in an assign activity.

• ignoreMissingFromData
• insertMissingToData
• keepSrcElementName
At the bottom of the Copy Rules tab of an assign activity, you right-click a selected
copy rule to display a menu for choosing the appropriate attribute. Figure 6-35
provides details.

Chapter 6
Manipulating XML Data with bpelx Extensions

6-48

Figure 6-35 Assign Extension Attributes

6.16.7.1 ignoreMissingFromData Attribute
The ignoreMissingFromData attribute suppresses any bpel:selectionFailure standard
faults. Table 6-3 describes the syntax differences between BPEL versions 1.1 and 2.0.

Table 6-3 ignoreMissingFromData Attribute Syntax

BPEL 1.1 BPEL 2.0

<copy bpelx:ignoreMissingFromData="yes|no"/> <copy ignoreMissingFromData="yes|no"/>

6.16.7.2 insertMissingToData Attribute
The insertMissingToData attribute instructs runtime to complete the (XPath) L-value
specified by the to-spec, if no items were selected. Table 6-4 describes the syntax
differences between BPEL versions 1.1 and 2.0.

Table 6-4 insertMissingToData Attribute Syntax

BPEL 1.1 BPEL 2.0

<copy bpelx:insertMissingToData="yes|
no"/>

<copy bpelx:insertMissingToData="yes|no"/>

6.16.7.3 keepSrcElementName Attribute
The keepSrcElementName attribute enables you to replace the element name of the
destination (as selected by the to-spec) with the element name of the source. This attribute
was not implemented in BPEL 1.1. Table 6-5 describes the syntax supported in BPEL version
2.0.

Table 6-5 keepSrcElementName Attribute Syntax

BPEL 1.1 BPEL 2.0

Not implemented <copy keepSrcElementName="yes|no"/>

Chapter 6
Manipulating XML Data with bpelx Extensions

6-49

6.17 Validating XML Data
You can verify code and identify invalid XML data in a BPEL project.

6.17.1 How to Validate XML Data in BPEL 2.0
This section discusses validating XML data in BPEL 2.0.

6.17.1.1 Validate XML in an Assign Activity
In an assign activity in Oracle BPEL Designer:

1. From the BPEL Constructs section of the Components window, drag an Assign
activity into the designer.

2. Double-click the Assign activity.

3. In the General tab, enter a name for the activity and select the Validate check
box.

4. Click Apply, then OK.

5. Click the Source tab to view the syntax. The syntax for validating XML data with
the assign activity is slightly different between BPEL versions 1.1 and 2.0.

<assign name="Assign1" validate="yes">
 . . .
</assign>

6.17.1.2 Validate XML in a Standalone, Extended Validate Activity
In a standalone, extended validate activity in Oracle BPEL Designer that can be used
without an assign activity:

1. From the BPEL Constructs section of the Components window, drag a Validate
activity into the designer.

2. Double-click the Validate icon.

3. Enter a name for the activity.

4. Click the Add icon to select the variable to validate.

5. Select the variable, then click OK.

6. Click Apply, then OK.

7. Click the Source tab to view the syntax. The syntax for validating XML data with
the validate activity is slightly different between BPEL versions 1.1 and 2.0.

<validate name="Validate1" variables="inputVariable"/>

6.17.2 How to Validate XML Data in BPEL 1.1
This section describes validating xml data in BPEL 1.1.

6.17.2.1 Validate XML in an Assign Activity
In an assign activity in Oracle BPEL Designer:

Chapter 6
Validating XML Data

6-50

1. From the BPEL Constructs section of the Components window, drag an Assign activity
into the designer.

2. Double-click the Assign activity.

3. In the General tab, enter a name for the activity and select the Validate check box.

4. Click Apply, then OK.

5. Click the Source tab to view the syntax.

<assign name=Assign1" bpelx:validate="yes"
 . . .
</assign>

6.17.2.2 Validate XML in a Standalone, Extended Validate Activity
In a standalone, extended validate activity in Oracle BPEL Designer that can be used without
an assign activity:

1. From the Oracle Extensions section of the Components window, drag a Validate activity
into the designer.

2. Double-click the Validate icon.

3. Enter a name for the activity.

4. Click the Add icon to select the variable to validate.

5. Select the variable, then click OK.

6. Click Apply, then OK.

7. Click the Source tab to view the syntax.

<bpelx:validate name=Validate1" variables="inputVariable"/>

6.18 Using Element Variables in Message Exchange Activities in
BPEL 2.0

You can specify variables in the following message exchange activities:

• The Input field (for an inputVariable attribute) and Output field (for an outputVariable
attribute) of an invoke dialog

• The Input field (for a variable attribute) of a receive activity

• The Output field (for a variable attribute) of a reply activity

The variables referenced by these fields typically must be message type variables in which
the QName matches the QName of the input and output message types used in the
operation, respectively.

The one exception is if the WSDL operation in the activity uses a message containing exactly
one part that is defined using an element. In this case, a variable of the same element type
used to define the part can be referenced by the inputVariable and outputVariable
attributes, respectively, in the invoke activity or the variable attribute of the receive or reply
activity.

Using a variable in this situation must be the same as declaring an anonymous, temporary
WSDL message variable based on the associated WSDL message type.

Chapter 6
Using Element Variables in Message Exchange Activities in BPEL 2.0

6-51

Copying element data between the anonymous, temporary WSDL message variable
and the element variable acts as a single virtual assign activity with one copy
operation whose keepSrcElementName attribute is set to yes. The virtual assign must
follow the same rules and use the same faults as a real assign activity. Table 6-6
provides details.

Table 6-6 Mapping WSDL Message Parts

For The... The...

inputVariable attribute Value of the variable referenced by the attribute sets the value of
the part in the anonymous temporary WSDL message variable.

outputVariable attribute Value of the received part in the temporary WSDL message
variable sets the value of the variable referenced by the attribute.

Receive activity Incoming part's value sets the value of the variable referenced by
the variable attribute.

Reply activity Value of the variable referenced by the variable attribute sets the
value of the part in the anonymous, temporary WSDL message
variable that is sent out. For a reply activity sending a fault, the
same scenario applies.

For more information about the keepSrcElementName attribute, see
keepSrcElementName Attribute.

6.19 Mapping WSDL Message Parts in BPEL 2.0
The Arguments Mapping section in invoke and reply activities provides an alternative
to explicitly creating multipart WSDL messages from the contents of BPEL variables.

When you use the Arguments Mapping section, an anonymous, temporary WSDL
variable is defined based on the type specified by the input message of the
appropriate WSDL operation.

For more information about mapping WSDL message parts, see the BPEL 2.0
Specification located at the following URL:

http://www.oasis-open.org

6.19.1 How to Map WSDL Message Parts
The Arguments Mapping table contains the parts for the selected operation. You can
set the value of each message part by editing the Value column of the table. Select
the variable in which to retrieve the value and store the message part.

To map WSDL message parts in BPEL 2.0:

1. Note that the receive activity in Figure 6-36 includes a standard inputVariable
variable from the client.

Chapter 6
Mapping WSDL Message Parts in BPEL 2.0

6-52

http://www.oasis-open.org

Figure 6-36 Receive Activity

2. Note the Arguments Mapping button at the bottom of the reply activity in Figure 6-37.
You can set the value for each message part by clicking an entry in the table.

Figure 6-37 Arguments Mapping Section Defined at Bottom of a Reply Activity

6.20 Importing Process Definitions in BPEL 2.0
You can use the import element to specify the definitions on which your BPEL process is
dependent. When you create a version 2.0 BPEL process, an import element is added to
the .bpel file, as shown in the following example:

<process name="Loan Flow"
 . . .
 . . .
 <import namespace="http://xmlns.oracle.com/SOAApplication/SOAProject/LoanFlow"
 location="LoanFlow.wsdl" importType="http://schemas.xmlsoap.org/wsdl/"/>

You can also use the import element to import a schema without a namespace, as shown in
the following example:

<process name="Loan Flow"
 . . .

Chapter 6
Importing Process Definitions in BPEL 2.0

6-53

 . . .
<import location="xsd/NoNamespaceSchema.xsd"
 importType="http://www.w3.org/2001/XMLSchema"/>

You can also use the import element to import a schema with a namespace, as shown
in the following example:

<process name="Loan Flow"
 . . .
 . . .
<import namespace="http://www.example.org" location="xsd/TestSchema.xsd"
 importType="http://www.w3.org/2001/XMLSchema"/>

The import element is provided to declare a dependency on external XML schema or
WSDL definitions. Any number of import elements can appear as children of the
process element. Each import element can contain the following attributes.

• namespace: Identifies an absolute URI that specifies the imported definitions. This
is an optional attribute. If a namespace is specified, then the imported definitions
must be in that namespace. If a namespace is not specified, this indicates that
external definitions are in use that are not namespace-qualified. The imported
definitions must not contain a targetNamespace specification.

• location: Identifies a URI that specifies the location of a document containing
important definitions. This is an optional attribute. This can be a relative URI. If no
location attribute is specified, the process uses external definitions. However,
there is no statement provided indicating where to locate these definitions.

• importType: Identifies the document type to import. This must be an absolute URI
that specifies the encoding language used in the document. This is a required
attribute.

– If importing XML schema 1.0 documents, this attribute's value must be set to
"http://www.w3.org/2001/XMLSchema".

– If importing WSDL 1.1 documents, the value must be set to "http://
schemas.xmlsoap.org/wsdl/". You can also specify other values for this
attribute.

For more information, see section 5.4 of the Web Services Business Process
Execution Language Specification Version 2.0.

6.21 Manipulating XML Data Sequences That Resemble
Arrays

Data sequences are one of the most basic data models used in XML. However,
manipulating them can be nontrivial. One of the most common data sequence patterns
used in BPEL process service components are arrays. Based on the XML schema, the
way you can identify a data sequence definition is by its attribute maxOccurs being set
to a value greater than one or marked as unbounded. See the XML Schema
Specification at http://www.w3.org/TR for more information.

The examples in this section illustrate several basic ways of manipulating data
sequences in BPEL. However, there are other associated requirements, such as
performing looping or dynamic referencing of endpoints. The following sections
describe a particular requirement for data sequence manipulation.

Chapter 6
Manipulating XML Data Sequences That Resemble Arrays

6-54

6.21.1 How to Statically Index into an XML Data Sequence That Uses
Arrays

The following two examples illustrate how to use XPath functionality to select a data
sequence element when the index of the element you want is known at design time. In these
cases, it is the first element.

In the following example, addresses[1] selects the first element of the addresses data
sequence:

<assign>
 <!-- get the first address and assign to variable address -->
 <copy>
 <from variable="input" part="payload"
 query="/tns:invalidLoanApplication/autoloan:application
 /autoloan:customer/autoloan:addresses[1]"/>
 <to variable="address"/>
 </copy>
</assign>

In this query, addresses[1] is equivalent to addresses[position()=1], where position is
one of the core XPath functions (see sections 2.4 and 4.1 of the XML Path Language (XPath)
Specification). The query in the following example calls the position function explicitly to
select the first element of the address's data sequence. It then selects that address's street
element (which the activity assigns to the variable street1).

<assign>
 <!-- get the first address's street and assign to street1 -->
 <copy>
 <from variable="input" part="payload"
 query="/tns:invalidLoanApplication/autoloan:application
 /autoloan:customer/autoloan:addresses[position()=1]
 /autoloan:street"/>
 <to variable="street1"/>
 </copy>
</assign>

If you review the definition of the input variable and its payload part in the WSDL file, you go
several levels down before coming to the definition of the addresses field. There you see the
maxOccurs="unbounded" attribute. The two XPath indexing methods are functionally identical;
you can use whichever method you prefer.

6.21.2 How to Use SOAP-Encoded Arrays
Oracle SOA Suite provides support for SOAP RPC-encoded arrays. This support enables
Oracle BPEL Process Manager to operate as a client calling a SOAP web service (RPC-
encoded) that uses a SOAP 1.1 array.

The following example provides an example of a SOAP array payload named
myFavoriteNumbers.

<myFavoriteNumbers SOAP-ENC:arrayType="xsd:int2">
<number>3</number>
<number>4</number>
</myFavoriteNumbers>

Chapter 6
Manipulating XML Data Sequences That Resemble Arrays

6-55

In addition, ensure that the schema element attributes attributeFormDefault and
elementFormDefault are set to "unqualified" in your schema. The following example
provides details:

attributeFormDefault="unqualified" elementFormDefault="unqualified"
targetNamespace="java:services" xmlns:s0="http://schemas.xmlsoap.org/wsdl/"
xmlns:xs="http://www.w3.org/2001/XMLSchema">

The following features are not supported:

• A service published by BPEL that uses a SOAP array

• Partially-transmitted arrays

• Sparse arrays

• Multidimensional arrays

To use a SOAP-encoded array:

The following example shows how to prepare SOAP arrays with the bpelx:append tag
in a BPEL project.

1. Create a BPEL process in Oracle JDeveloper.

2. Prepare the payload for the invocation. Note that bpelx:append is used to add
items into the SOAP array.

<bpws:assign>
 <bpws:copy>
 <bpws:from variable="input" part="payload" query="/tns:value"/>
 <bpws:to variable="request" part="strArray"
 query="/strArray/JavaLangstring"/>
 </bpws:copy>
</bpws:assign>
<bpws:assign>
 <bpelx:append>
 <bpelx:from variable="request" part="strArray"
 query="/strArray/JavaLangstring1"/>
 <bpelx:to variable="request" part="strArray" query="/strArray"/>
 </bpelx:append>
</bpws:assign>

3. Import the following namespace in your WSDL file. Oracle JDeveloper does not
understand the SOAP-ENC tag if the import statement is missing in the WSDL
schema element.

<xs:import namespace="http://schemas.xmlsoap.org/soap/encoding/" />

6.21.2.1 SOAP-Encoded Arrays in BPEL 2.0
SOAP-encoded arrays are supported in BPEL projects that use version 2.0 of the
BPEL specification. The following example shows a sample assign activity with a
SOAP-encoded array in a BPEL 2.0 project.

<assign name="Assign_1">
 <copy>
 <from>$inputVariable.payload</from>
 <to>$Invoke_1_echoArray_InputVariable.strArray/JavaLangstring[1]</to>
 </copy>
 <extensionAssignOperation>
 <bpelx:append>

Chapter 6
Manipulating XML Data Sequences That Resemble Arrays

6-56

 <bpelx:from variable="Invoke_1_echoArray_InputVariable"
 part="strArray">
 <bpelx:query>
 JavaLangstring[1]
 </bpelx:query>
 </bpelx:from>
 <bpelx:to variable="Invoke_1_echoArray_InputVariable"
 part="strArray">
 </bpelx:to>
 </bpelx:append>
 </extensionAssignOperation>
 </assign>

The following example shows a sample invoke activity with a SOAP-encoded array in a BPEL
2.0 project.

<invoke name="Invoke1" partnerLink="FileOut"
 portType="ns3:Write_ptt" operation="Write"
 bpelx:invokeAsDetail="no">
 <toParts>
 <toPart part="body" fromVariable="ArrayVariable"/>
 </toParts>
</invoke>

6.21.2.2 Declaring a SOAP Array Using a wsdl:arrayType Attribute Inside a Schema
A SOAP-encoded array WSDL can declare a SOAP array using a wsdl:arrayType attribute
inside a schema. The following example provides details.

<xsd:complexType name="UserObject">
 <xsd:sequence>
 <xsd:element name="userInformation" nillable="true"
 type="n5:ArrayOfKeyValuePair"/>
 <xsd:element name="username" nillable="true" type="xsd:string"/>
 </xsd:sequence>
</xsd:complexType>

<xsd:complexType name="ArrayOfKeyValuePair">
 <xsd:complexContent>
 <xsd:restriction base="soapenc:Array">
 <xsd:attribute ref="soapenc:arrayType"
 wsdl:arrayType="n5:KeyValuePair[]"/>
 </xsd:restriction>
 </xsd:complexContent>
</xsd:complexType>

<xsd:complexType name="KeyValuePair">
 <xsd:sequence>
 <xsd:element name="key" nillable="true" type="xsd:string"/>
 <xsd:element name="value" nillable="true" type="xsd:string"/>
 </xsd:sequence>
</xsd:complexType>

The following example shows how to create and access a SOAP-encoded array in BPEL 1.1.

<bpws:copy>
 <bpws:from>
 <ns1:userInformation soapenc:arrayType="com1:KeyValuePair[1]"
 xmlns:ns1="http://www.schematargetnamespace.com/wsdl/Impl/"
 xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/"/>
 <ns1:KeyValuePair

Chapter 6
Manipulating XML Data Sequences That Resemble Arrays

6-57

 xmlns:ns1="http://www.schematargetnamespace.com/wsdl/Impl/">
 <key>testkey</key>
 <value>testval1</value>
 </ns1:KeyValuePair>
 </ns1:userInformation>
 </bpws:from>
 <bpws:to variable="Inputvar" part="userObject"
 query="/userObject/userInformation"/>

</bpws:copy>
<!--Update elements with SOAPENC Array-->
<bpws:copy>
 <bpws:from variable="KeyValueVar" part="KeyValuePair"
 query="/KeyValuePair/ns2:key"/>
 <bpws:to variable="Inputvar" part="userObject'
 query="//*[local-name()='KeyValuePair'][1]/*[local-name()='key']"/>
</bpws:copy>

<bpws:copy>
 <bpws:from variable="KeyValueVar" part="KeyValuePair"
 query="/KeyValuePair/client:value"/>
 <bpws:to variable="Inputvar" part="userObject"
 query="//*[local-name()='KeyValuePair'][1]/*[local-name()='value']"/>

</bpws:copy>
<!-- Append elements within SOAPENC Array -->
<bpelx:append>
 <bpelx:from variable="Inputvar" part="userObject"
 query="//*[local-name()='KeyValuePair'][1]"/>
 <bpelx:to variable="Inputvar" part="userObject"
 query="/userObject/userInformation"/>
</bpelx:append>

6.21.3 How to Determine Sequence Size
If you must know the runtime size of a data sequence (that is, the number of nodes or
data items in the sequence), you can get it by using the combination of the XPath built-
in count() function and the BPEL built-in getVariableData() function.

The code in the following example calculates the number of elements in the item
sequence and assigns it to the integer variable lineItemSize.

<assign>
 <copy>
 <from expression="count(bpws:getVariableData('outpoint', 'payload',
 '/p:invoice/p:lineItems/p:item')"/>
 <to variable="lineItemSize"/>
 </copy>
</assign>

6.21.4 How to Dynamically Index by Applying a Trailing XPath to an
Expression

Often a dynamic value is needed to index into a data sequence; that is, you must get
the nth node out of a sequence, where the value of n is defined at runtime. This
section covers the methods for dynamically indexing by applying a trailing XPath into
expressions.

Chapter 6
Manipulating XML Data Sequences That Resemble Arrays

6-58

6.21.4.1 Applying a Trailing XPath to the Result of getVariableData
The dynamic indexing method shown in the following example applies a trailing XPath to the
result of bwps:getVariableData(), instead of using an XPath as the last argument of
bpws:getVariableData(). The trailing XPath makes reference to an integer-based index
variable within the position predicate (that is, [...]).

<variable name="idx" type="xsd:integer"/>
...
<assign>
 <copy>
 <from expression="bpws:getVariableData('input','payload'
)/p:line-item[bpws:getVariableData('idx')]/p:line-total" />
 <to variable="lineTotalVar" />
 </copy>
</assign>

Assume at runtime that the idx integer variable holds 2 as its value. The expression in the
preceding example within the from is equivalent to that shown in the following example.

<from expression="bpws:getVariableData('input','payload'
)/p:line-item[2]/p:line-total" />

There are some subtle XPath usage differences, when an XPath used trailing behind the
bwps:getVariableData() function is compared with the one used inside the function.Using
the same example (where payload is the message part of element "p:invoice"), if the XPath
is used within the getVariableData() function, the root element name ("/p:invoice") must
be specified at the beginning of the XPath.

The following example provides details.

bpws:getVariableData('input', 'payload','/p:invoice/p:line-item[2]/p:line-total')

If the XPath is used trailing behind the bwps:getVariableData()function, the root element
name does not need to be specified in the XPath.

For example:

bpws:getVariableData('input', 'payload')/p:line-item[2]/p:line-total

This is because the node returned by the getVariableData() function is the root element.
Specifying the root element name again in the XPath is redundant and is incorrect according
to standard XPath semantics.

6.21.4.2 Using the bpelx:append Extension to Append New Items to a Sequence
The bpelx:append extension in an assign activity enables BPEL process service components
to append new elements to an existing parent element. The following provides an example.

 <assign name="assign-3">
 <copy>
 <from expression="bpws:getVariableData('idx')+1" />
 <to variable="idx"/>
 </copy>
 <bpelx:append>
 <bpelx:from variable="partInfoResultVar" part="payload" />
 <bpelx:to variable="output" part="payload" />
 </bpelx:append>

Chapter 6
Manipulating XML Data Sequences That Resemble Arrays

6-59

 ...
 </assign>

The bpelx:append logic in this example appends the payload element of the
partInfoResultVar variable as a child to the payload element of the output variable.
In other words, the payload element of the output variable is used as the parent
element.

6.21.4.3 Merging Data Sequences
You can merge two sequences into a single data sequence. This pattern is common
when the data sequences are in an array (that is, the sequence of data items of
compatible types).The two append operations shown below under assign demonstrate
how to merge data sequences:

<assign>
 <!-- initialize "mergedLineItems" variable
 to an empty element -->
 <copy>
 <from> <p:lineItems /> </from>
 <to variable="mergedLineItems" />
 </copy>
 <bpelx:append>
 <bpelx:from variable="input" part="payload"
 query="/p:invoice/p:lineItems/p:lineitem" />
 <bpelx:to variable="mergedLineItems" />
 </bpelx:append>
 <bpelx:append>
 <bpelx:from variable="literalLineItems"
 query="/p:lineItems/p:lineitem" />
 <bpelx:to variable="mergedLineItems" />
 </bpelx:append>
</assign>

6.21.4.4 Generating Functionality Equivalent to an Array of an Empty Element
The genEmptyElem function generates functionality equivalent to an array of an empty
element to an XML structure. This function takes the following arguments:

genEmptyElem('ElemQName',int?, 'TypeQName'?, boolean?)

Note the following issues:

• The first argument specifies the QName of the empty elements.

• The optional second integer argument specifies the number of empty elements. If
missing, the default size is 1.

• The third optional argument specifies the QName, which is the xsi:type of the
generated empty name. This xsi:type pattern matches the SOAPENC:Array. If it is
missing or is an empty string, the xsi:type attribute is not generated.

• The fourth optional boolean argument specifies whether the generated empty
elements are XSI - nil, provided the element is XSD-nillable. The default value
is false. If missing or false, xsi:nil is not generated.

The following example shows an append statement initializing a purchase order (PO)
document with 10 empty <lineItem> elements under po:

Chapter 6
Manipulating XML Data Sequences That Resemble Arrays

6-60

<bpelx:assign>
 <bpelx:append>
 <bpelx:from expression="ora:genEmptyElem('p:lineItem',10)" />
 <bpelx:to variable="poVar" query="/p:po" />
 </bpelx:append>
</bpelx:assign>

The genEmptyElem function in the previous example can be replaced with an embedded
XQuery expression, as shown in the following example:

ora:genEmptyElem('p:lineItem',10)
== for $i in (1 to 10) return <p:lineItem />

The empty elements generated by this function are typically invalid XML data. You perform
further data initialization after the empty elements are created. Using the same example
above, you can perform the following:

• Add attribute and child elements to those empty lineItem elements.

• Perform copy operations to replace the empty elements. For example, copy from a web
service result to an individual entry in this equivalent array under a flowN activity.

6.21.5 What You May Need to Know About Using the Array Identifier
For processing in Native Format Builder array identifier environments, information is required
about the parent node of a node. Because the reportSAXEvents API is used, this information
is typically not available for outbound message scenarios. Setting
nxsd:useArrayIdentifiers to true in the native schema enables DOM-parsing to be used
for outbound message scenarios. Use this setting cautiously, as it can lead to slower
performance for very large payloads. The following example provides details.

<?xml version="1.0" ?>

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:nxsd="http://xmlns.oracle.com/pcbpel/nxsd"
 targetNamespace="http://xmlns.oracle.com/pcbpel/demoSchema/csv"
 xmlns:tns="http://xmlns.oracle.com/pcbpel/demoSchema/csv"
 elementFormDefault="qualified"
 attributeFormDefault="unqualified" nxsd:encoding="US-ASCII"
nxsd:stream="chars" nxsd:version="NXSD" nxsd:useArrayIdentifiers="true">
 <xsd:element name="Root-Element">

 </xsd:element>
</xsd:schema>

6.22 Converting from a String to an XML Element
Sometimes a service is defined to return a string, but the content of the string is actually XML
data. The problem is that, although BPEL provides support for manipulating XML data (using
XPath queries, expressions, and so on), this functionality is not available if the variable or
field is a string type. With Java, you use DOM functions to convert the string to a structured
XML object type. You can use the BPEL XPath function parseEscapedXML to do the same
thing.

For information about parseEscapedXML, see parseEscapedXML.

Chapter 6
Converting from a String to an XML Element

6-61

6.22.1 How To Convert from a String to an XML Element
The parseEscapedXML function takes XML data, parses it through DOM, and returns
structured XML data that can be assigned to a typed BPEL variable. The following
provides an example:

<!-- execute the XPath extension function
parseEscapedXML('<item>') and assign to a variable
-->
<assign>
 <copy>
 <from expression="oratext:parseEscapedXML(
 '<item xmlns="http://samples.otn.com"
 sku="006">
 <description>sun ultra sparc VI server
 </description>
 <price>1000
 </price>
 <quantity>2
 </quantity>
 <lineTotal>2000
 </lineTotal>
 </item>')"/>
 <to variable="escapedLineItem"/>
 </copy>
</assign>

6.23 Understanding Document-Style and RPC-Style WSDL
Differences

The examples provided in previous sections of this chapter have been for document-
style WSDL files in which a message is defined with an XML schema element, as
shown in he following example:

<message name="LoanFlowRequestMessage">
<part name="payload" element="s1:loanApplication"/>
</message>

This is in contrast to RPC-style WSDL files, in which the message is defined with an
XML schema type, as shown in the following example:

<message name="LoanFlowRequestMessage">
<part name="payload" type="s1:LoanApplicationType"/>
</message>

6.23.1 How To Use RPC-Style Files
This differs from the previous information in this chapter because there is a difference
in how XPath queries are constructed for the two WSDL message styles. For an RPC-
style message, the top-level element (and therefore the first node in an XPath query
string) is the part name (payload in the previous example). In document-style
messages, the top-level node is the element name (for example, loanApplication).

The following examples (WSDL file and BPEL file) show what an XPath query string
looks like if an application named LoanServices were in RPC style.

Chapter 6
Understanding Document-Style and RPC-Style WSDL Differences

6-62

<message name="LoanServiceResultMessage">
 <part name="payload" type="s1:LoanOfferType"/>
</message>

<complexType name="LoanOfferType">
 <sequence>
 <element name="providerName" type="string"/>
 <element name="selected" type="boolean"/>
 <element name="approved" type="boolean"/>
 <element name="APR" type="double"/>
 </sequence>
</complexType>

<variable name="output"
 messageType="tns:LoanServiceResultMessage"/>
...
<assign>
 <copy>
 <from expression="9.9"/>
 <to variable="output" part="payload" query="/payload/APR"/>
 </copy>
</assign>

6.24 Manipulating SOAP Headers in BPEL
BPEL's communication activities (invoke, receive, reply, and onMessage) receive and send
messages through specified message variables. These default activities permit one variable
to operate in each direction. For example, the invoke activity has inputVariable and
outputVariable attributes. You can specify one variable for each of the two attributes. This is
enough if the particular operation involved uses only one payload message in each direction.

However, WSDL supports multiple messages in an operation. In the case of SOAP, multiple
messages can be sent along the main payload message as SOAP headers. However,
BPEL's default communication activities cannot accommodate the additional header
messages.

Oracle BPEL Process Manager solves this problem by extending the default BPEL
communication activities with the bpelx:headerVariable extension. The extension syntax is
as shown in the following example:

<invoke bpelx:inputHeaderVariable="inHeader1 inHeader2 ..."
 bpelx:outputHeaderVariable="outHeader1 outHeader2 ..."
 .../>

<receive bpelx:headerVariable="inHeader1 inHeader2 ..." .../>
<onMessage bpelx:headerVariable="inHeader1 inHeader2 ..." .../>
<reply bpelx:headerVariable="inHeader1 inHeader2 ..." .../>

6.24.1 How to Receive SOAP Headers in BPEL
This section provides an example of how to create BPEL and WSDL files to receive SOAP
headers.

To receive SOAP headers in BPEL:

1. Create a WSDL file that declares header messages and the SOAP binding that binds
them to the SOAP request. The following provides an example:

Chapter 6
Manipulating SOAP Headers in BPEL

6-63

 <!-- custom header -->
 <message name="CustomHeaderMessage">
 <part name="header1" element="tns:header1"/>
 <part name="header2" element="tns:header2"/>
 </message>

 <binding name="HeaderServiceBinding" type="tns:HeaderService">
 <soap:binding style="document"
 transport="http://schemas.xmlsoap.org/soap/http"/>
 <operation name="initiate">
 <soap:operation style="document" soapAction="initiate"/>
 <input>
 <soap:header message="tns:CustomHeaderMessage"
 part="header1" use="literal"/>
 <soap:header message="tns:CustomHeaderMessage"
 part="header2" use="literal"/>
 <soap:body use="literal"/>
 </input>
 </operation>
 </binding>

2. Create a BPEL source file that declares the header message variables and uses
bpelx:headerVariable to receive the headers, as shown in the following example:

<variables> <variable name="input"
 messageType="tns:HeaderServiceRequestMessage"/>
 <variable name="event"
 messageType="tns:HeaderServiceEventMessage"/>
 <variable name="output"
 messageType="tns:HeaderServiceResultMessage"/>
 <variable name="customHeader"
 messageType="tns:CustomHeaderMessage"/>
</variables>

<sequence>
 <!-- receive input from requester -->
 <receive name="receiveInput" partnerLink="client"
 portType="tns:HeaderService" operation="initiate"
 variable="input"
 bpelx:headerVariable="customHeader"
 createInstance="yes"/>

6.24.2 How to Send SOAP Headers in BPEL
This section provides an example of how to send SOAP headers.

To send SOAP headers in BPEL:

1. Define a reference in the composite.xml file to refer to the HeaderService.

2. Define the custom header variable, manipulate it, and send it using
bpelx:inputHeaderVariable, as shown in the following example:

<variables>
 <variable name="input" messageType="tns:HeaderTestRequestMessage"/>
 <variable name="output" messageType="tns:HeaderTestResultMessage"/>
 <variable name="request"
messageType="services:HeaderServiceRequestMessage"/>
 <variable name="response"
messageType="services:HeaderServiceResultMessage"/>
 <variable name="customHeader"messageType="services:CustomHeaderMessage"/>

Chapter 6
Manipulating SOAP Headers in BPEL

6-64

 </variables>
...
<!-- initiate the remote process -->
 <invoke name="invokeAsyncService"
 partnerLink="HeaderService"
 portType="services:HeaderService"
 bpelx:inputHeaderVariable="customHeader"
 operation="initiate"
 inputVariable="request"/>

6.25 Declaring Extension Namespaces in BPEL 2.0
You can extend a BPEL version 2.0 process to add custom extension namespace
declarations. With the mustUnderstand attribute, you can indicate whether the custom
namespaces carry semantics that must be understood by the BPEL process.

If a BPEL process does not support one or more of the extensions with mustUnderstand set
to yes, the process definition is rejected.

Extensions are defined in the extensions element. The following example provides details.

<process ...>
 ...
 <extensions>?
 <extension namespace="myURI" mustUnderstand="yes|no" />+
 </extensions>
...
</process>

The contents of an extension element must be a single element qualified with a namespace
different from the standard BPEL namespace.

For more information about extension declarations, see the BPEL 2.0 Specification located at
the following URL:

http://www.oasis-open.org

6.25.1 How to Declare Extension Namespaces
To declare extension namespaces:

1. In a BPEL 2.0 process, click the Extensions icon above Oracle BPEL Designer.

The Extensions dialog is displayed.

2. Select the Extensions folder, then click the Add icon.

The Extension dialog is displayed.

3. In the Namespace field, enter the extension namespace to declare. This namespace
must be different from the standard BPEL namespace.

4. If you want the extensions to be recognized by the BPEL process, select the Must
Understand check box.

5. Click OK.

6. Click Close.

Chapter 6
Declaring Extension Namespaces in BPEL 2.0

6-65

http://www.oasis-open.org

6.25.2 What Happens When You Create an Extension
After you complete your design, the .bpel process looks as shown in the following
example:

<extensions>
 <extension namespace="http://xmlns.mycompany.com/myNamespace"
 mustUnderstand="yes"/>
</extensions>

Chapter 6
Declaring Extension Namespaces in BPEL 2.0

6-66

7
Invoking a Synchronous Web Service from a
BPEL Process

This chapter describes how to invoke a synchronous web service from a BPEL process. It
demonstrates how to set up the components necessary to perform a synchronous invocation
and how these components are coded. It also describes how to specify a timeout value and
call a one-way Oracle Mediator with a synchronous BPEL process.
This chapter includes the following sections:

• Introduction to Invoking a Synchronous Web Service

• Invoking a Synchronous Web Service

• Specifying Transaction Timeout Values in Durable Synchronous Processes

• Calling a One-Way Mediator with a Synchronous BPEL Process

7.1 Introduction to Invoking a Synchronous Web Service
Synchronous web services provide an immediate response to an invocation. BPEL can
connect to synchronous web services through a partner link, send data, and receive the reply
in the same synchronous invocation.

A synchronous invocation requires the following components:

• Partner link

Defines the location and the role of the web services with which the BPEL process
service component connects to perform tasks, and the variables used to carry information
between the web service and the BPEL process service component. A partner link is
required for each web service that the BPEL process service component calls. You can
create partner links in several ways, including the following:

– In the SOA Composite Editor, when you drag a SOAP service from the Technology
section of the Components window into the Exposed Services or External
References swimlane. For more information, see Adding Service Binding
Components or Adding Reference Binding Components.

– In Oracle BPEL Designer, when you drag a Partner Link icon from the BPEL
Constructs section of the Components window into the Partner Links swimlane.
This second method is described in this chapter.

• Invoke activity

Opens a port in the BPEL process service component to send and receive data. For
example, this port is used to retrieve information verifying that a customer has acceptable
credit using a credit card authorization service. For synchronous callbacks, only one port
is needed for both the send and receive functions.

7-1

7.2 Invoking a Synchronous Web Service
This section examines a synchronous invocation operation using a file named
OrderProcessor.bpel.

7.2.1 How to Invoke a Synchronous Web Service
To invoke a synchronous web service:

1. In the Components window in Oracle BPEL Designer, expand BPEL Constructs.

2. Drag the necessary partner link, invoke activity, scope activity, and assign activity
into the designer.

3. Edit their dialogs.

Figure 7-1 shows the diagram for a scope activity named
Scope_AuthorizeCreditCard of a BPEL process named OrderProcessor, which
defines a simple set of actions.

Figure 7-1 Diagram of OrderProcessor.bpel

7.2.1.1 How Does the BPEL Process Work
The following actions take place:

1. The Assign_CreditCardCheckInput assign activity packages the data from the
client. The assign activity provides a method for copying the contents of one
variable to another. In this case, it takes the credit card type, credit card number,
and purchase amount and assigns them to the input variable for the
CreditCardAuthorizationService service.

2. The InvokeCheckCreditCard invoke activity calls the
CreditCardAuthorizationService service. Figure 7-2 shows the
CreditCardAuthorizationService web service, which is defined as a partner link.

Chapter 7
Invoking a Synchronous Web Service

7-2

Figure 7-2 CreditCardAuthorizationService Partner Link

Figure 7-3 shows the InvokeCheckCreditCard invoke activity.

Figure 7-3 InvokeCheckCreditCard Invoke Activity

3. An if activity (for BPEL 2.0) or a switch activity (for BPEL 1.1) checks the results of the
credit card validation. For information about if and switch activities, see Defining
Conditional Branching with the If or Switch Activity.

Note:

The BPEL 2.0 if activity replaces the BPEL 1.1 switch activity.

7.2.2 What Happens When You Invoke a Synchronous Web Service
When you create a partner link and invoke activity, the necessary BPEL code for invoking a
synchronous web service is added to the appropriate BPEL and Web Services Description
Language (WSDL) files.

Chapter 7
Invoking a Synchronous Web Service

7-3

7.2.2.1 Partner Link in the BPEL Code
In the OrderProcessor.bpel code, the partner link defines the link name and type, and
the role of the BPEL process service component in interacting with the partner service.

From the BPEL source code, the CreditCardAuthorizationService partner link
definition is shown below:

<partnerLink name="CreditCardAuthorizationService"
 partnerRole="CreditAuthorizationPort"
 partnerLinkType="ns2:CreditCardAuthorizationService"/>

Variable definitions that are accessible locally in the Scope_AuthorizeCreditCard
scope are shown in the following example. The types for these variables are defined in
the WSDL for the process itself.

<variable name="lCreditCardInput"
 messageType="ns2:CreditAuthorizationRequestMessage"/>
<variable name="lCreditCardOutput"
 messageType="ns2:CreditAuthorizationResponseMessage"/>

The WSDL file defines the interface to your BPEL process service component:

• The messages that it accepts and returns

• The operations that are supported

• Other parameters

7.2.2.2 Partner Link Type and Port Type in the BPEL Code
The web service's CreditCardAuthorizationService.wsdl file contains two sections
that enable the web service to work with BPEL process service components:

• partnerLinkType:

Defines the following characteristics of the conversion between a BPEL process
service component and the credit card authorization web service:

– The role (operation) played by each

– The portType provided by each for receiving messages within the
conversation

• portType:

A collection of related operations implemented by a participant in a conversation.
A port type defines which information is passed back and forth, the form of that
information, and so on. A synchronous invocation requires only one port type that
both initiates the synchronous process and calls back the client with the response.
An asynchronous callback (one in which the reply is not immediate) requires two
port types:

– One to send the request

– Another to receive the reply when it arrives

In this example, the portType CreditAuthorizationPort receives the credit card
type, credit card number, and purchase amount, and returns the status results.

The following provides an example of partnerLinkType and portType.

Chapter 7
Invoking a Synchronous Web Service

7-4

<plnk:partnerLinkType name="CreditCardAuthorizationService">
 <plnk:role name="CreditAuthorizationPort">
 <plnk:portType name="tns:CreditAuthorizationPort"/>
 </plnk:role>
</plnk:partnerLinkType>

7.2.2.3 Invoke Activity for Performing a Request
The invoke activity includes the lCreditCardInput local input variable. The credit card
authorization web service uses the lCreditCardInput input variable. This variable contains
the customer's credit card type, credit card number, and purchase amount. The
lCreditCardOutput variable returns status results from the
CreditCardAuthorizationService service. The following example provides details.

<invoke name="InvokeCheckCreditCard"
 inputVariable="lCreditCardInput"
 outputVariable="lCreditCardOutput"
 partnerLink="CreditCardAuthorizationService"
 portType="ns2:CreditAuthorizationPort"
 operation="AuthorizeCredit"/>

7.2.2.4 Synchronous Invocation in BPEL Code
The BPEL code shown in the following example performs the synchronous invocation.

<assign name="Assign_CreditCheckInput">
 <copy>
 <from variable="gOrderInfoVariable"
 query="/ns4:orderInfoVOSDO/ns4:OrderTotal"/>
 <to variable="lCreditCardInput" part="Authorization"
 query="/ns8:AuthInformation/ns8:PurchaseAmount"/>
 </copy>
 <copy>
 <from variable="gOrderInfoVariable"
 query="/ns4:orderInfoVOSDO/ns4:CardTypeCode"/>
 <to variable="lCreditCardInput" part="Authorization"
 query="/ns8:AuthInformation/ns8:CCType"/>
 </copy>
 <copy>
 <from variable="gOrderInfoVariable"
 query="/ns4:orderInfoVOSDO/ns4:AccountNumber"/>
 <to variable="lCreditCardInput" part="Authorization"
 query="/ns8:AuthInformation/ns8:CCNumber"/>
 </copy>
</assign>
<invoke name="InvokeCheckCreditCard"
 inputVariable="lCreditCardInput"
 outputVariable="lCreditCardOutput"
 partnerLink="CreditCardAuthorizationService"
 portType="ns2:CreditAuthorizationPort"
 operation="AuthorizeCredit"/>

7.3 Specifying Transaction Timeout Values in Durable
Synchronous Processes

You can specify transaction timeout values with the property SyncMaxWaitTime in the
System MBean Browser of Oracle Enterprise Manager Fusion Middleware Control. The

Chapter 7
Specifying Transaction Timeout Values in Durable Synchronous Processes

7-5

SyncMaxWaitTime property applies to durable synchronous processes that are called
in an asynchronous manner. If the BPEL process service component does not receive
a reply within the specified time, then the activity fails. For more information, see What
You May Need to Know About SyncMaxWaitTime and Durable Synchronous Requests
Not Timing Out.

7.3.1 How To Specify Transaction Timeout Values
To specify transaction timeout values:

1. Log in to Oracle Enterprise Manager Fusion Middleware Control.

2. From the SOA Infrastructure menu, select SOA Administration > BPEL
Properties.

3. At the bottom of the BPEL Service Engine Properties page, click More BPEL
Configuration Properties.

4. Click SyncMaxWaitTime.

5. In the Value field, specify a value in seconds.

6. Click Apply.

7. Click Return.

7.3.2 What You May Need to Know About SyncMaxWaitTime and
Durable Synchronous Requests Not Timing Out

The SyncMaxWaitTime property applies to durable synchronous processes that are
called in an asynchronous manner.

Assume you have a BPEL process with the definition shown in the following example.
The process is not durable because there are no breakpoint activities.

<receive name="receiveInput" partnerLink="client" variable="input"
createInstance="yes" />
<assign>
...
</assign>
<reply name="replyOutput" partnerLink="client" variable="output" />

If a Java client or another BPEL process calls this process, the assign activity is
performed and the reply activity sets the output message into a HashMap for the client
(actually the delivery service) to retrieve. Since the reply is the last activity, the thread
returns to the client side and tries to pick up the reply message. Since the reply
message was previously inserted, the client does not wait and returns with the reply.

Assume you have a BPEL process with a breakpoint activity, as shown in the following
example:

<receive name="receiveInput" partnerLink="client" variable="input"
createInstance="yes" />
<assign>
...
</assign>
<wait name="Wait1">
 <for>'PT10S'</for>

Chapter 7
Specifying Transaction Timeout Values in Durable Synchronous Processes

7-6

</wait>
<reply name="replyOutput" partnerLink="client" variable="output" />

While it is not recommended to have asynchronous activities inside a synchronous process,
BPEL does not prevent this type of design.

When the client (or another BPEL process) calls the process, the wait (breakpoint) activity is
executed. However, since the wait is processed after some time by an asynchronous thread
in the background, the executing thread returns to the client side. The client (actually the
delivery service) tries to pick up the reply message, but it is not there since the reply activity
in the process has not yet executed. Therefore, the client thread waits for the
SyncMaxWaitTime seconds value. If this time is exceeded, then the client thread returns to
the caller with a timeout exception.If the wait is less than the SyncMaxWaitTime value, the
asynchronous background thread then resumes at the wait and executes the reply. The reply
is placed in the HashMap and the waiter (the client thread) is notified. The client thread picks
up the reply message and returns.

Therefore, SyncMaxWaitTime only applies to synchronous process invocations when the
process has a breakpoint in the middle. If there is no breakpoint, the entire process is
executed by the client thread and returns the reply message.

7.4 Calling a One-Way Mediator with a Synchronous BPEL
Process

You can expose a synchronous interface in the front end while using an asynchronous
callback in the back end to simulate a synchronous reply. This is the default behavior in BPEL
processes with the automatic setting of the bpel.config.transaction property to
requiresNew in the composite.xml file. The following example provides details.

<component name="BPELProcess1">
 <implementation.bpel src="BPELProcess1.bpel"/>
 <property name="bpel.config.transaction" type="xs:string"
 many="false">requiresNew</property>
 </component>

The requiresNew value is recommended. If you want to participate in the client's transaction,
you must set the bpel.config.transaction property to required.

Chapter 7
Calling a One-Way Mediator with a Synchronous BPEL Process

7-7

8
Invoking an Asynchronous Web Service from
a BPEL Process

This chapter describes how to configure and invoke an asynchronous web service from a
BPEL process. It also describes how to route callback messages to the correct endpoint
when multiple receive or pick activities use the same partner link, manage idempotence at
the partner link operation level, create a dynamic partner link at runtime, override security
certificates and WSDL files in dynamic partner link environments, and use WS-Addressing.
This chapter includes the following sections:

• Introduction to Invoking an Asynchronous Web Service

• Invoking an Asynchronous Web Service

• Routing Callback Messages to the Correct Endpoint when Multiple Receive or Pick
Activities Use the Same Partner Link

• Managing Idempotence at the Partner Link Operation Level

• Creating a Dynamic Partner Link at Design Time for Use at Runtime

• Overriding Security Certificates when Invoking Dynamic Partner Links

• Overriding WSDL Files of Dynamic Partner Links

• Using WS-Addressing in an Asynchronous Service

8.1 Introduction to Invoking an Asynchronous Web Service
Asynchronous messaging styles are useful for environments in which a service, such as a
loan processor, can take a long time to process a client request. Asynchronous services also
provide a more reliable fault-tolerant and scalable architecture than synchronous services.

This section introduces asynchronous web service invocation with a company called United
Loan. United Loan publishes an asynchronous web service that processes a client's loan
application request and then returns a loan offer. This use case discusses how to integrate a
BPEL process service component with this asynchronous loan application approver web
service.

This use case illustrates the key design concepts for requesting information from an
asynchronous service, and then receiving the response. The asynchronous United Loan
service in this example is another BPEL process service component. However, the same
BPEL call can interact with any properly designed web service. The target web service WSDL
file contains the information necessary to request and receive the necessary information.

For the asynchronous web service, the following actions take place (in order of priority):

1. An assign activity prepares the loan application.

2. An invoke activity initiates the loan request. The contents of this request are put into a
request variable. This request variable is sent to the asynchronous loan processor web
service.

8-1

When the loan request is initiated, a correlation ID unique to the client and partner
link initiating the request is also sent to the loan processor web service. The
correlation ID ensures that the correct loan offer response is returned to the
corresponding loan application requester.

3. The loan processor web service then sends the correct response to the receive
activity, which has been tracked by the correlation ID.

4. An assign activity reads the loan application offer.

Subsequent sections in this chapter provide specific details about the asynchronous
functionality.

8.2 Invoking an Asynchronous Web Service
This section provides an overview of the tasks for adding asynchronous functionality to
a BPEL process service component.

8.2.1 How to Invoke an Asynchronous Web Service
You perform the following steps to asynchronously invoke a web service:

• Add a partner link

• Add an invoke activity

• Add a receive activity

• Create assign activities

8.2.1.1 Adding a Partner Link for an Asynchronous Service
These instructions describe how to create a partner link in a BPEL process (for this
example, named LoanService) for the loan application approver web service.

To add a partner link for an asynchronous service:

1. In the SOA Composite Editor, drag a BPEL process from the Components section
of the Components window into the designer.

The Create BPEL Process dialog appears.

2. Follow the instructions in the dialog to create an asynchronous BPEL process
service component.

3. Click OK when complete.

4. In the SOA composite application in the SOA Composite Editor, double-click the
BPEL process service component (for this example, the component is named
LoanBroker).

Oracle BPEL Designer appears.

5. In the Components window, expand BPEL Constructs.

6. Drag a Partner Link icon into the right Partner Links swimlane.

The Create Partner Link dialog appears.

7. Enter the following details to create a partner link and select the loan application
approver web service:

Chapter 8
Invoking an Asynchronous Web Service

8-2

• Name

Enter a name for the partner link (for this example, LoanService is entered).

• Process

Displays the BPEL process service component name (for this example, LoanBroker
appears).

• WSDL URL

Enter the name of the Web Services Description Language (WSDL) file to use. Click
the SOA Resource Browser icon above this field to locate the correct WSDL.

• Partner Link Type

Refers to the external service with which the BPEL process service component is to
interface. Select from the list (for this example, LoanService is selected).

• Partner Role

Refers to the role of the external source, for example, provider. Select from the list
(for this example, LoanServiceProvider is selected).

• My Role

Refers to the role of the BPEL process service component in this interaction. Select
from the list (for this example, LoanServiceRequester is selected).

8. Click OK.

A new partner link for the loan application approver web service (United Loan) appears in
the swimlane of the designer.

8.2.1.2 Adding an Invoke Activity
Follow these instructions to create an invoke activity and a global input variable named
request. This activity initiates the asynchronous BPEL process service component activity
with the loan application approver web service (United Loan). The loan application approver
web service uses the request input variable to receive the loan request from the client.

To add an invoke activity:

1. In the Components window, expand BPEL Constructs.

2. Drag an Invoke activity to beneath the Receive activity.

3. Go to the Structure window. While this example describes variable creation from the
Structure window, you can also create variables by clicking the Add icons to the right of
the Input and Output fields of the Invoke dialog.

4. Right-click Variables and select Expand All Child Nodes.

5. In the second Variables folder in the tree, right-click and select Create Variable.

The Create Variable dialog appears.

6. Enter the variable name and select Message Type from the options provided:

• Type

This option lets you select an XML schema simple type (for example, string, boolean,
and so on).

• Message Type

Chapter 8
Invoking an Asynchronous Web Service

8-3

This option enables you to select a WSDL message file definition of a partner
link or of the project WSDL file of the current BPEL process service
component (for example, a response message or a request message). You
can specify variables associated with message types as input or output
variables for invoke, receive, or reply activities.

To display the message type, select the Message Type option, and then
select its Browse icon to display the Type Chooser dialog. From here, expand
the Message Types tree to make your selection. For this example,
LoanServiceRequestMessage is selected.

• Element

This option lets you select an XML schema element of the project schema file
or project WSDL file of the current BPEL process service component, or of a
partner link.

7. Click OK.

8. Click the invoke activity to display its property fields in the Property Inspector or
double-click the invoke activity to display the Invoke dialog.

For information about editing activities in the Property Inspector, see How to Edit
BPEL Activities in the Property Inspector.

9. In the Invoke dialog, select the partner link from the Partner Link list (for this
example, LoanService is selected) and initiate from the Operation list.

10. To the right of the Input field, click the second icon and select the input variable
you created in Step 6.

The Variable Chooser dialog appears, where you can select the variable.

There is no output variable specified because the output variable is returned in the
receive operation. The invoke activity is created.

For more information about the invoke activity, see Invoke and Receive Activities.

11. Click OK.

8.2.1.3 Adding a Receive Activity
Follow these steps to create a receive activity and a global output variable named
response. This activity waits for the loan application approver web service's callback
operation. The loan application approver web service uses this output variable to send
the loan offer result to the client.

To add a receive activity:

1. From the Components window, drag a Receive activity to the location right after
the Invoke activity you created in Adding an Invoke Activity.

2. Create a variable to hold the receive information by invoking the Create Variable
dialog, as you did in Step 3 through Step 7 of Adding an Invoke Activity.

Chapter 8
Invoking an Asynchronous Web Service

8-4

Note:

In BPEL projects that support version 2.0 of the BPEL specification, the Create
Variable dialog includes an Initialize tab that enables you to initialize the
variable type inline (for example, as a variable, expression, literal, partner link,
or property). BPEL 2.0 is the default version when you create a BPEL process.
For more information, see How to Initialize Variables with an Inline from-spec in
BPEL 2.0.

3. Double-click the Receive activity and change its name to receive_invoke.

4. From the Partner Link list, select the partner link (for this example, LoanService is
selected).

5. From the Operation list, select onResult. Do not select the Create Instance check box.

6. Select the variable you created in Step 3 through Step 7 of Adding an Invoke Activity.

7. Click OK.

The receive activity and the output variable are created. Because the initial receive
activity in the BPEL file (for this example, LoanBroker.bpel) created the initial BPEL
process service component instance, a second instance does not need to be created.

8.2.1.4 Performing Additional Activities
In addition to the asynchronous-specific tasks, you must perform the following tasks.

• Create an initial assign activity for data manipulation in front of the invoke activity that
copies the client's input variable loan application request document payload into the loan
application approver web service's request variable payload.

• Create a second assign activity for data manipulation after the receive activity that copies
the loan application approver web service's response variable loan application results
payload into the output variable for the client to receive.

8.2.2 What Happens When You Invoke an Asynchronous Web Service
This section describes what happens when you invoke an asynchronous web service.

8.2.2.1 portType Section of the WSDL File
The portType section of the WSDL file (in this example, for LoanService) defines the ports to
be used for the asynchronous service.

Asynchronous services have two port types. Each port type performs a one-way operation. In
this example:

• One port type responds to the asynchronous process

• The other calls back the client with the asynchronous response

In the example shown below, the portType LoanServiceCallback receives the client's loan
application request and the portType LoanService asynchronously calls back the client with
the loan offer response.

<!-- portType implemented by the LoanService BPEL process -->
 <portType name="LoanService">

Chapter 8
Invoking an Asynchronous Web Service

8-5

 <operation name="initiate">
 <input message="tns:LoanServiceRequestMessage"/>
 </operation>
 </portType>
<!-- portType implemented by the requester of LoanService BPEL process
for asynchronous callback purposes
-->
 <portType name="LoanServiceCallback">
 <operation name="onResult">
 <input message="tns:LoanServiceResultMessage"/>
 </operation>
 </portType>

8.2.2.2 partnerLinkType Section of the WSDL File
The partnerLinkType section of the WSDL file (in this example, for LoanService)
defines the following characteristics of the BPEL process service component:

• The role (operation) played

• The portType provided for receiving messages within the conversation

Partner link types in asynchronous services have two roles: one for the web service
provider and one for the client requester.

In the conversation shown in the following example, the LoanServiceProvider role
and LoanService portType are used for client request messages and the
LoanServiceRequester role and LoanServiceCallback portType are used for
asynchronously returning (calling back) response messages to the client.

<plnk:partnerLinkType name="LoanService">
 <plnk:role name="LoanServiceProvider">
 <plnk:portType name="client:LoanService"/>
 </plnk:role>
 <plnk:role name="LoanServiceRequester">
 <plnk:portType name="client:LoanServiceCallback"/>
 </plnk:role>
 </plnk:partnerLinkType>

Two port types are combined into this single asynchronous BPEL process service
component: portType="services:LoanService" of the invoke activity and
portType="services:LoanServiceCallback" of the receive activity. Port types are
essentially a collection of operations to be performed. For this BPEL process service
component, there are two operations to perform: initiate in the invoke activity and
onResult in the receive activity.

8.2.2.3 Partner Links Section in the BPEL File
To call the service from BPEL, you use the BPEL file to define how the process
interfaces with the web service. View the partnerLinks section. The services with
which a process interacts are designed as partner links. Each partner link is
characterized by a partnerLinkType.

Each partner link is named. This name is used for all service interactions through that
partner link. This is critical in correlating responses to different partner links for
simultaneous requests of the same type.

Chapter 8
Invoking an Asynchronous Web Service

8-6

Asynchronous processes use a second partner link for the callback to the client. In this
example, the second partner link, LoanService, is used by the loan application approver web
service. The following provides an example.

 <!-- This process invokes the asynchronous LoanService. -->

 <partnerLink name="LoanService"
 partnerLinkType="services:LoanService"
 myRole="LoanServiceRequester"
 partnerRole="LoanServiceProvider"/>
 </partnerLinks>

The attribute myRole indicates the role of the client. The attribute partnerRole role indicates
the role of the partner in this conversation. Each partnerLinkType has myRole and
partnerRole attributes in asynchronous processes.

8.2.2.4 Composite Application File
In the composite.xml file, the loan application approver web service appears, as shown
below.

<component name="LoanBroker">
 <implementation.bpel process="LoanBroker.bpel"/>
</component>

For more information, see Adding a Partner Link for an Asynchronous Service for instructions
on creating a partner link.

8.2.2.5 Invoke and Receive Activities
View the variables and sequence sections. Two areas of particular interest concern the
invoke and receive activities:

• An invoke activity invokes a synchronous web service (as discussed in Invoking a
Synchronous Web Service from a BPEL Process) or initiates an asynchronous service.

The invoke activity includes the request global input variable defined in the variables
section. The request global input variable is used by the loan application approver web
service. This variable contains the contents of the initial loan application request
document.

• A receive activity that waits for the asynchronous callback from the loan application
approver web service. The receive activity includes the response global output variable
defined in the variables section. This variable contains the loan offer response. The
receive activity asynchronously waits for a callback message from a service. While the
BPEL process service component is waiting, it is dehydrated, or compressed and stored,
until the callback message arrives.

The following provides an example.

 <variables>
 <variable name="request"
 messageType="services:LoanServiceRequestMessage"/>
 <variable name="response"
 messageType="services:LoanServiceResultMessage"/>
 </variables>
<sequence>
 <!-- initialize the input of LoanService -->
 <assign>

Chapter 8
Invoking an Asynchronous Web Service

8-7

 . . .
 . . .
 </assign>
 <!-- initiate the remote process -->
 <invoke name="invoke" partnerLink="LoanService"
 portType="services:LoanService"
 operation="initiate" inputVariable="request"/>
 <!-- receive the result of the remote process -->
 <receive name="receive_invoke" partnerLink="LoanService"
 portType="services:LoanServiceCallback"
 operation="onResult" variable="response"/>

When an asynchronous service is initiated with the invoke activity, a correlation ID
unique to the client request is also sent, using Web Services Addressing (WS-
Addressing) (described in Using WS-Addressing in an Asynchronous Service).
Because multiple processes may be waiting for service callbacks, the server must
know which BPEL process service component instance is waiting for a callback
message from the loan application approver web service. The correlation ID enables
the server to correlate the response with the appropriate requesting instance.

8.2.2.6 createInstance Attribute for Starting a New Instance
You may notice a createInstance attribute in the initial receive activity. In this initial
receive activity, the createInstance element is set to yes. This starts a new instance
of the BPEL process service component. At least one instance startup is required for a
conversation. For this reason, you set the createInstance variable to no in the second
receive activity.

The following example shows the source code for the createInstance attribute:

 <!-- receive input from requester -->
 <receive name="receiveInput" partnerLink="client"
 portType="tns:LoanBroker"
 operation="initiate" variable="input"
 createInstance="yes"/>

8.2.2.7 Dehydration Points for Maintaining Long-Running Asynchronous
Processes

To automatically maintain long-running asynchronous processes and their current
state information in a database while they wait for asynchronous callbacks, you use a
database as a dehydration store. Storing the process in a database preserves the
process and prevents any loss of state or reliability if a system shuts down or a
network problem occurs. This feature increases both BPEL process service
component reliability and scalability. You can also use it to support clustering and
failover.

You insert this point between the invoke activity and receive activity. You can also
explicitly specify a dehydration point with a dehydrate activity. For more information,
see Dehydrate Activity.

8.2.2.8 Multiple Runtime Endpoint Locations
Oracle SOA Suite provides support for specifying multiple partner link endpoint
locations. This capability is useful for failover purposes if the first endpoint is down. To

Chapter 8
Invoking an Asynchronous Web Service

8-8

provide an alternate partner link endpoint location, add the location attribute to the
composite.xml file. The following provides an example.

<reference name="HeaderService ...>
<binding.ws port="http://services.otn.com/HelloWorldApp#wsdl.endpoint(client/
 HelloWorldService_pt)"
location="http://server:port/soa-infra/services/default/
 HelloWorldService!1.0/client?WSDL">
<property name="endpointURI">http://jsmith.us.example.com:80/a.jsp
@http://myhost.us.example.com:8888/soa-infra/services/HelloWorldApp/HelloWorld!
1.0*2007-10-22_14-33-04_195/client
 </property>
</binding.ws>
</reference>

8.2.3 What You May Need to Know About Midprocess Receive Activities
Consuming Messages After Timing Out

A BPEL process can consume midprocess receive activity messages even after the
expiration of a configured timeout on the receive activity, if the exception resulting from the
timeout goes unhandled. In these scenarios, the callback message is consumed when it is
delivered. This is the expected behavior.

For example, assume you perform the following tasks:

• Create a SOA composite application with a client BPEL process and service BPEL
process to exchange a message using asynchronous invoke and receive activities.

• Configure a timeout of 30 seconds in the Timeout tab of the receive activity of the client
BPEL process.

• Configure a wait activity to wait for five minutes in the service BPEL process.

You may expect that after the timeout occurs, the client BPEL process is marked as
completed in the faulted state instead of remaining in the running state, and the callback
message from the service BPEL process is ignored. However, when the timeout fault is
thrown on the client BPEL process, it remains in the running state. When the service BPEL
process responds five minutes after the completion of the wait activity, the response is sent
back to the client BPEL process and the response is consumed by the client BPEL process
and reconciled with the running process instance.

8.2.4 What You May Need to Know About Multiple Client Components
Invoking a Composite

If multiple client components invoke a SOA composite application by using its remote WSDL
file, the callback response can only be retrieved by the original client calling the remote
composite if it has a receive activity. When the original client does not have a receive activity
and any of the subsequent clients calling the composite has a receive activity, the response
message is lost. It goes into the recovery state of the original client process.

This is the expected behavior. This is because the composite being invoked cannot tell which
client has a receive activity or if the client is indeed a BPEL process service component.

Chapter 8
Invoking an Asynchronous Web Service

8-9

8.2.5 What You May Need to Know About Limitations on BPEL 2.0
IMA Support

Receive activities are a type of inbound message activity (IMA). Other examples of
IMAs are as follows:

• onMessage branches of a scope activity (in BPEL 1.1) or a pick activity

• onEvent branches of a scope activity in BPEL 2.0

The BPEL 2.0 specification allows multiple IMAs to work with each other or with other
IMAs derived from extension activities. To provide for consistent runtime behavior, the
BPEL 2.0 specification allows for correlation sets with the initiate attribute set to
join.However, Oracle BPEL Process Manager's implementation of the BPEL 2.0
specification does not support this behavior. The only way to support multiple IMAs is
by coding them as onMessage branches for a pick activity (that is, setting
createInstance to yes).Oracle BPEL Process Manager also does not support other
forms of multiple IMAs, such as a flow activity with two branches, each with a receive
activity and with createInstance set to yes and correlation sets with initiate set to
join.

As a workaround, you must design two different BPEL processes with the two receive
activities in alternating order, as follows:

• Process1 with receive1 followed by receive2, and only receive1 having
createInstance set to yes.

• Process2 with receive2 followed by receive1, and only receive2 having
createInstance set to yes.

The same also applies for any other combination of IMAs, such as a receive activity
and pick activity, or two pick activities.

8.2.6 What Happens When You Specify a Conversation ID
You can also enter an optional conversation ID value in the Conversation ID field of
an invoke activity (and other activities such as a receive activity and the onMessage
branch of a pick or scope activity).

The conversation ID identifies a process instance during an asynchronous
conversation. By default, the BPEL process service engine generates a unique ID for
each conversation (which can span multiple invoke and receive activities), as specified
by WSA addressing. If you want, you can specify your own value for the service
engine to use. Conversation IDs are implemented with the bpelx:conversationId
extension.

Note:

You cannot explicitly set the Conversation ID (internal/hidden state) of a
composite while using AQ Adapter. The Database sets the Conversation ID
in this case.

Chapter 8
Invoking an Asynchronous Web Service

8-10

8.2.6.1 bpelx:conversationId in BPEL 1.1
The following provides an example of the bpelx:conversationId extension in a BPEL project
that supports BPEL version 1.1. The bpelx:conversationId extension takes an XPath
expression.

<invoke ... bpelx:conversationId="$convId2">
</invoke>

<receive ... bpelx:conversationId="$convId2">
</receive>

<onMessage... bpelx:conversationId="$convId2">
</onMessage>

8.2.6.2 bpelx:conversationId in BPEL 2.0
The following provides an example of the bpelx:conversationId extension in a BPEL project
that supports BPEL version 2.0. The bpelx:conversationId extension takes a BPEL 2.0
XPath expression.

<invoke ...>
 <bpelx:conversationId>$convId1</bpelx:conversationId>
</invoke>

<receive ...>
 <bpelx:conversationId>$convId1</bpelx:conversationId>
</receive>

<onMessage ...>
 <bpelx:conversationId>$convId2</bpelx:conversationId>
</onMessage>

8.3 Routing Callback Messages to the Correct Endpoint when
Multiple Receive or Pick Activities Use the Same Partner Link

The replyToAddress normalized message property is required for resolving the routing of
callback messages to the correct endpoint address when multiple receive or pick activities
are associated with the same partner link.

This is because the BPEL process service engine only stores the replyToAddress property
once when receiving a request from a partner link at the initiating receive or pick activity. The
replyToAddress property routes the callback message and is not reset if a midprocess
receive or pick activity is used. The replyToAddress property uses the bpelx:inputProperty
extension.

8.3.1 How to Route Callback Messages to the Correct Endpoint when
Multiple Receive and Pick Activities Use the Same Partner Link

Set this property to the client's replyToAddress on the invoke activity (for the callback)
following the midprocess receive activity. This means that even if the client sends WS-
Addressing replyTo information for a midprocess receive activity, it is not set on the partner
link unless you use an assign activity to set it dynamically.

Chapter 8
Routing Callback Messages to the Correct Endpoint when Multiple Receive or Pick Activities Use the Same Partner Link

8-11

For example, assume your BPEL process is as shown below:

Caller Callee

<receive> <receive> Initiate CS1
<invoke>initiate CS1 --------> <receive> Use CS1
 <wait>
<receive>use CS1 <-------- <invoke>
<invoke>

To route callback messages to the correct endpoint when multiple receive and
pick activities use the same partner link:

1. Obtain the client's replyToAddress value from the midprocess receive activity.

<receive name="receiveMsgFromAccessor" partnerLink="midprocess_client"
 portType="client:mySingletonBPEL" operation="process"
 variable="ReceiveMidProcess" createInstance="no">
<bpelx:fromProperties>
 <bpelx:fromProperty name="replyToAddress" variable="var_replyToAddress"/>
</bpelx:fromProperties>
 <correlations>
 <correlation set="<YourCorrset>" initiate="no"/>
 </correlations>
</receive>

2. On the invoke activity (for the callback), click the Properties tab.

3. Click the Add icon to select the property and its content (either a variable or an
XPath expression).

Note:

In BPEL 1.1 processes, the properties are automatically displayed in the
Properties column. Select the property in the Name column and double-
click the Value and Type columns to enter appropriate values.

4. In the Name column, scroll down and select the replyToAddress property. Do not
select wsa.replyToAddress or bpel.replyToAddress.

5. In the Value column, specify the variable name as the value (for this example,
var_replyToAddress from Step 1 is entered), and click OK.

The Edit Invoke dialog appears as shown in Figure 8-1.

Chapter 8
Routing Callback Messages to the Correct Endpoint when Multiple Receive or Pick Activities Use the Same Partner Link

8-12

Figure 8-1 Properties Tab of Invoke Activity

6. Click Apply, then OK.

7. In Oracle BPEL Designer, click Source.

The invoke activity in the BPEL process file looks as follows:

<invoke name="callbackAccessor" partnerLink="midprocess_client"
 portType="client:mySingletonBPELCallback"
 operation="processResponse"
inputVariable="CallbackAccessorVar"
 bpelx:invokeAsDetail="no">
 <bpelx:inputProperty name="replyToAddress"
variable="var_replyToAddtess"/>

8.4 Managing Idempotence at the Partner Link Operation Level
An idempotent activity is an activity that can be safely retried. Idempotent activities are
applicable to both durable and transient processes. You can manage idempotence at the
operation level of a partner link. For example, some partner links can expose multiple
operations (for example, getEmployee, depositPayCheck, and so on). You can define some
operations as idempotent (for example, getEmployee). This enables these operations to be
called multiple times. Other operations may not need to be idempotent (for example,
depositPayCheck), and do not require this setting. Dehydration does occur after a
nonidempotent operation.

By default, all partner link operations are idempotent. If you want, you can set an operation to
be nonidempotent. This setting provides the same functionality as the idempotent
deployment descriptor property, but at the more granular, operational level.

Chapter 8
Managing Idempotence at the Partner Link Operation Level

8-13

For more information about the idempotent deployment descriptor property, see What
You May Need to Know About the idempotent Property and Fault Handling and
Introduction to Deployment Descriptor Properties.

8.4.1 How to Manage Idempotence at the Partner Link Operation
Level

To manage idempotence at the partner link operation level:

1. In Oracle BPEL Designer, double-click the partner link that includes the operations
for which to manage idempotence.

2. Click the Idempotence tab of the partner link.

By default, all operations are selected to be idempotent in the Idempotent column.

3. If you want to define an operation to be nonidempotent, deselect the Idempotent
check box for that operation. Figure 8-2 provides details.

Figure 8-2 Idempotence Tab of Partner Link Activity

4. Click Apply.

5. Click OK.

For more information about idempotence and the idempotent property, see
Introduction to Deployment Descriptor Properties.

8.5 Creating a Dynamic Partner Link at Design Time for Use
at Runtime

When you design a SOA composite application, you can face the following challenges:

• Service endpoints (addresses) may not be known at design time.

• Endpoint references may need to change while the application is running.

Chapter 8
Creating a Dynamic Partner Link at Design Time for Use at Runtime

8-14

The dynamic partner link feature enables you to dynamically assign an endpoint reference to
a partner link for use at runtime in BPEL versions 1.1 and 2.0. The dynamic partner link
provides conditions, similar to a switch activity, that are evaluated at runtime.

8.5.1 How To Create a Dynamic Partner Link at Design Time for Use at
Runtime

To create a dynamic partner link at design time for use at runtime:

1. Create a WSDL file that contains multiple services that use the same portType.

<service name="AmericanLoan">
 <port name="LoanServicePort" binding="tns:LoanServiceBinding">
 <soap:address location="host:port/soa-infra/services/domain_
name/AmericanLoan/client"/>
 </port>
</service>

<service name="AlliedLoan">
 <port name="LoanServicePort" binding="tns:LoanServiceBinding">
 <soap:address location="host:port/soa-infra/services/domain_
name/AlliedLoan/client"/>
 </port>
</service>

<service name="AcmeLoan">
 <port name="LoanServicePort" binding="tns:LoanServiceBinding">
 <soap:address location="host:port/soa-infra/services/domain_
name/AcmeLoan/client"/>
 </port>
</service>

2. Drag a SOAP binding component into the External References swim lane of the SOA
Composite Editor.

The Create Web Service dialog appears.

3. Define the web service, and click OK.

When complete, the reference binding component entry in the composite.xml file that
uses the WSDL looks as follows:

<reference name="loanService">
 <interface.wsdl interface="http://services.otn.com#wsdl.interface(LoanService)"
callbackInterface="http://services.otn.com#wsdl.interface(LoanServiceCallback)"
/>
 <binding.ws port=
 "http://services.otn.com#wsdl.endpoint(AmericanLoan/LoanService_pt)"/>
 </reference>

Chapter 8
Creating a Dynamic Partner Link at Design Time for Use at Runtime

8-15

Note:

• Adding the binding.ws port setting is optional. This is because the
port is overridden at runtime by properties passed from Oracle BPEL
Process Manager.

• If there is no port setting, and there is no composite import of the
concrete WSDL associated with this reference, you must specify the
location of the concrete WSDL with a location attribute.

4. Double-click the BPEL process to enter Oracle BPEL Designer.

5. Drag an Assign activity into the designer.

6. Above the target partner link, select the XML Fragment icon, as shown in
Figure 8-3. If you are using BPEL 2.0, drag the Literal icon.

Figure 8-3 XML Fragment Icon

7. Drag the icon to the target partner link.

The XML Fragment dialog for BPEL 1.1 appears. If you are using BPEL 2.0, the
Literal dialog appears.

8. Assign an XML fragment containing the endpoint reference to the partner link, and
click OK. Figure 8-4 provides details.

Figure 8-4 XML Fragment Dialog in BPEL 1.1

Chapter 8
Creating a Dynamic Partner Link at Design Time for Use at Runtime

8-16

When complete, the BPEL file contains one of the services defined in the WSDL.

The following provides a BPEL 1.1 sample:

<EndpointReference xmlns="http://schemas.xmlsoap.org/ws/2003/03/addressing">
 <Address>http://host:port/soa-infra/services/domain_name
 /AlliedLoan/client</Address>
<ServiceName xmlns:ns1="http://services.otn.com"
 PortName="LoanServicePort">ns1:AlliedLoan</ServiceName>
</EndpointReference>

The following provides a BPEL 2.0 sample:

<assign>
 <copy>
 <from>
 <literal>
 <sref:service-ref>
 <services:EndpointReference>
 <services:Address>http://host:port/soa-infra/services/domain_
 name/AlliedLoan/client</services:Address>
 <services:ServiceName
 xmlns:ns1="http://services.otn.com">ns1:AlliedLoan</services:
 ServiceName>
 </services:EndpointReference>
 </sref:service-ref>
 </literal>
 </from>
 <to partnerLink="LoanService"/>
 </copy>
</assign>

8.6 Overriding Security Certificates when Invoking Dynamic
Partner Links

You can interact with multiple web services using dynamic partner links. This interaction may
involve using message protection policies that require different security certificates for
encrypting the message. These certificates may be different for each web service. You can
specify a keystore recipient alias value to override the security certificate in the WSDL file of
the web service.

To override security certificates when invoking partner links:

1. Define a variable of type string (for example, KEYSTORE_RECIPIENT_ALIAS).
Figure 8-5 provides details.

Chapter 8
Overriding Security Certificates when Invoking Dynamic Partner Links

8-17

Figure 8-5 Variable Definition of KEYSTORE_RECIPIENT_ALIAS

2. In the Copy Rules tab of an assign activity, assign orakey to the variable
KEYSTORE_RECIPIENT_ALIAS. Figure 8-6 provides details.

Figure 8-6 Assignment of orakey to KEYSTORE_RECIPIENT_ALIAS

3. In the invoke activity that invokes the partner link for the web service, click the
Properties tab.

4. Click the keystore.recipient.alias property.

Chapter 8
Overriding Security Certificates when Invoking Dynamic Partner Links

8-18

Note:

In BPEL 2.0 processes, the properties are not automatically displayed in the
Properties column. You must click the Add icon to select the property and its
content (either a variable or an XPath expression).

5. Double-click the Value column to display the Browse (...) icon.

6. Click the Browse (...) icon to display the Adapter Property Value dialog.

7. Click the Browse icon to display the Variable XPath Builder dialog.

8. Select keystore_recipient_alias as the value, and click OK. Figure 8-7 provides details.
This property overrides the security certificates set in the WSDL file while invoking a web
service in a BPEL process.

Note:

In BPEL 2.0, there are only Name and Value columns in the Properties table.
The Type column is not included.

Figure 8-7 keystore.recipient.alias Normalized Message Property of Invoke
Activity

9. Click Apply, then OK.

When complete, the BPEL file is defined as follows:

. . .

. . .
<variables>

Chapter 8
Overriding Security Certificates when Invoking Dynamic Partner Links

8-19

 <variable name="WsaAddress" element="ns6:EndpointReference"/>
 <variable name="KEYSTORE_RECIPIENT_ALIAS" type="xsd:string"/>
</variables>

<assign name="AssignAddress">
 <copy>
 <from
expression="'http://localhost:8001/soa-infra/services/default/
ServiceWithNewCer
tificate!1.0*soa_c94537fb-97a4-4b0f-900f-fefffc34f7fe/service_ep'"/>
 <to variable="WsaAddress"
 query="/ns6:EndpointReference/ns6:Address"/>
 </copy>
 <copy>
 <from variable="WsaAddress"/>
 <to partnerLink="Service"/>
 </copy>
</assign>

<assign name="AssignAlias">
 <copy>
 <from expression='"orakey"'/>
 <to variable="KEYSTORE_RECIPIENT_ALIAS"/>
 </copy>
</assign>

<invoke name="Invoke"
 inputVariable="Invoke_InputVariable"
 partnerLink="Service"
 portType="ns1:ServiceBPELProcess"
 operation="process"
 bpelx:invokeAsDetail="no">

 <bpelx:inputProperty name="endpointURI"
 variable="inputVariable"
 part="payload"
 query="/client:process/client:input"/>

 <bpelx:inputProperty name="keystore.recipient.alias"
 variable="KEYSTORE_RECIPIENT_ALIAS"/>
</invoke>

For more information about normalized message properties, see Propagating
Normalized Message Properties Through Message Headers.

8.7 Overriding WSDL Files of Dynamic Partner Links
You may need to override the default WSDL file used by dynamic partner links for the
following reasons:

• You must integrate with services that use message protection security policies.

• The WSDL may contain important information such as the certificate used for
message encryption.

The normalized message property endpointWSDL enables you to specify the WSDL
file of the dynamic partner link. You must specify the entire WSDL dynamically instead
of just the endpoint. This enables it to be passed to Oracle Web Services Manager
(OWSM), which can then retrieve the correct service certificate from the specified
WSDL.

Chapter 8
Overriding WSDL Files of Dynamic Partner Links

8-20

The certificate in the WSDL file is ignored in the following cases:

• The recipient.key.alias property name described in Overriding Security Certificates
when Invoking Dynamic Partner Links is present.

• The endpointWSDL property is not present.

Otherwise, the certificate is retrieved from the WSDL file.

To override WSDL files of dynamic partner links:

1. Define a variable of type string (for this example, the_wsdl_var is defined).

2. In the Copy Rules tab of an assign activity, assign the WSDL to the_wsdl_var.

3. In the invoke activity that invokes the partner link, click the Properties tab.

4. Click the endpointWSDL property.

Note:

In BPEL 2.0 processes, the properties are not automatically displayed in the
Properties column. You must click the Add icon to select the property and its
content (either a variable or an XPath expression).

5. Double-click the Value column to display the Browse (...) icon.

6. Click the Browse (...) icon to display the Adapter Property Value dialog.

7. Click the Browse icon to display the Variable XPath Builder dialog.

8. Select the_wsdl_var as the variable, and click OK. This value specifies the WSDL of the
dynamic partner link.

Note:

In BPEL 2.0, there are only Name and Value columns in the Properties table.
The Type column is not included.

Chapter 8
Overriding WSDL Files of Dynamic Partner Links

8-21

Figure 8-8 endpointWSDL Normalized Message Property of Invoke Activity

When complete, the BPEL file is defined as follows:

<variables>
 <variable name="the_wsdl_var" type="xsd:string"/>
</variables>

<assign name="myAssignWsdl">
 <copy>
 <from
expression='"http://localhost:8001/soa-infra/services/default/
ServiceWithNewCer
tificate!1.0/service_ep?WSDL"'/>
 <to variable="the_wsdl_var"/>
 </copy>
</assign>

<invoke name="Invoke"
 inputVariable="Invoke_InputVariable"
 partnerLink="Service"
 portType="ns1:ServiceBPELProcess"
 operation="process"
 bpelx:invokeAsDetail="no">

 <bpelx:inputProperty name="endpointWSDL"
 variable="the_wsdl_var"/>

</invoke>

For more information about normalized message properties, see Propagating
Normalized Message Properties Through Message Headers.

Chapter 8
Overriding WSDL Files of Dynamic Partner Links

8-22

8.8 Using WS-Addressing in an Asynchronous Service
Because there can be many active instances at any time, the server must be able to direct
web service responses to the correct BPEL process service component instance. You can
use WS-Addressing to identify asynchronous messages to ensure that asynchronous
callbacks locate the appropriate client.

Figure 8-9 provides an overview of WS-Addressing. WS-Addressing uses Simple Object
Access Protocol (SOAP) headers for asynchronous message correlation. Messages are
independent of the transport or application used.

Figure 8-9 Callback with WS-Addressing Headers

Figure 8-9 shows how messages are passed along with WS headers so that the response
can be sent to the correct destination.

The example in this chapter uses WS-Addressing for correlation. To view the messages, you
can use TCP tunneling, which is described in Using TCP Tunneling to View Messages
Exchanged Between Programs.

WS-Addressing defines the following information typically provided by transport protocols and
messaging systems. This information is processed independently of the transport or
application:

• Endpoint location (reply-to address)

Chapter 8
Using WS-Addressing in an Asynchronous Service

8-23

The reply-to address specifies the location at which a BPEL client is listening for a
callback message.

• Conversation ID

Use TCP tunneling to view SOAP messages exchanged between the BPEL
process service component flow and the web service (including those containing
the correlation ID). You can see the exact SOAP messages that are sent to, or
received from, services with which a BPEL process service component flow
communicates.

You insert a software listener between your BPEL process service component flow
and the web service. Your BPEL process service component flow communicates
with the listener (called a TCP tunnel). The listener forwards your messages to the
web service, and also displays them. Responses from the web service are
returned to the tunnel, which displays and forwards them back to the BPEL
process service component.

8.8.1 How to Use WS-Addressing in an Asynchronous Service
WS-Addressing is a public specification and is the default correlation method
supported by Oracle BPEL Process Manager and Oracle Mediator. You do not need to
edit the .bpel and .wsdl files to use WS-Addressing.

8.8.1.1 Using TCP Tunneling to View Messages Exchanged Between
Programs

The messages that are exchanged between programs and services can be seen
through TCP tunneling. This is particularly useful when you want to see the exact
SOAP messages exchanged between the BPEL process service component flow and
web services.

To monitor the SOAP messages, insert a software listener between your flow and the
service. Your flow communicates with the listener (called a TCP tunnel) and the
listener forwards your messages to the service, and displays them. Likewise,
responses from the service are returned to the tunnel, which displays them and then
forwards them back to the flow.

To view all the messages exchanged between the server and a web service, you need
only a single TCP tunnel for synchronous services because all the pertinent messages
are communicated in a single request and reply interaction with the service. For
asynchronous services, you must set up two tunnels, one for the invocation of the
service and another for the callback port of the flow.

8.8.1.1.1 Setting Up a TCP Listener for Synchronous Services
Follow these steps to set up a TCP listener for synchronous services initiated by an
Oracle BPEL Process Manager and Oracle Mediator process:

1. Visit the following URL for instructions on how to download and install Axis TCP
Monitor (tcpmon)

http://ws.apache.org/commons/tcpmon/
2. Visit the following URL for instructions on how to use tcpmon:

http://ws.apache.org/axis/java/user-guide.html

Chapter 8
Using WS-Addressing in an Asynchronous Service

8-24

http://ws.apache.org/commons/tcpmon/
http://ws.apache.org/axis/java/user-guide.html

3. Place axis.jar in your class path.

4. Start tcpmon:

C:\...\> java org.apache.axis.utils.tcpmon localport remoteHost
port_on_which_remote_server_is_running

5. In the composite.xml file, add the endpointURI property under binding.ws for your flow
to override the endpoint of the service.

6. From the operating system command prompt, compile and deploy the process with ant.

The same technique can see SOAP messages passed to invoke a BPEL process service
component as a web service from another tool kit such as Axis or .NET.

8.8.1.1.2 Setting Up a TCP Listener for Asynchronous Services
Follow these steps to set up a TCP listener to display the SOAP messages for callbacks from
asynchronous services:

1. Start a TCP listener to listen on a port and send the Oracle BPEL Process Manager port.

a. Open Oracle Enterprise Manager Fusion Middleware Control.

b. From the SOA Infrastructure menu, select SOA Administration > Common
Properties.

c. Specify the value for Callback Server URL. This URL is sent by the server as part of
the asynchronous callback address to the invoker.

2. From the SOA Infrastructure menu, select Administration > System MBean Browser.

3. Expand Application Defined MBeans > oracle.soa.config > Server : soa_server >
SCAComposite.

where soa_server is the specific server instance name (for example, AdminServer).

All the SOA composite applications deployed on the server appear.

4. Follow these steps to set this property on a composite application. This action enables it
to apply to all bindings in the composite application.

a. Click your composite.

b. Ensure the Attributes tab is selected.

c. In the Name column, click Properties.

d. Click the Add icon.

e. Expand the newly added Element_number (appears at the end of the list).

where number is the next sequential number beyond the last property. For example,
if the property list contains twelve elements, adding a new property causes
Element_13 to be displayed.

f. In the name field, enter oracle.webservices.local.optimization.

g. In the value field, enter false.

h. In the many field, enter false.

i. Click Apply, and then click Return.

j. In the Name column on the Operations tab, click save.

k. Click Invoke to execute the operation.

Chapter 8
Using WS-Addressing in an Asynchronous Service

8-25

l. Click Return or click a node in the System MBean Browser pane.

Note:

After adding, deleting, or updating a property, you can click the
Refresh cached tree data icon in the upper right corner of the
System MBean Browser page to see the new data.

5. Follow these steps to set this property on a specific binding.

a. Expand your composite application. and navigate to the specific
SCAComposite.SCAReference.SCABinding folder.

b. Click WSBinding.

c. Perform steps 44.b through 44.l.

6. Initiate any flow that invokes asynchronous web services. You can combine this
with the synchronous TCP tunneling configuration to send a service initiation
request through your first TCP tunnel.

The callbacks from the asynchronous services are shown in the TCP listener.

If you are an Oracle JDeveloper user, you can also use the built-in Packet Monitor to
see SOAP messages for both synchronous and asynchronous services.

For information about using correlation sets for message correlation, see Using
Correlation Sets and Message Aggregation .

Chapter 8
Using WS-Addressing in an Asynchronous Service

8-26

9
Using Correlation Sets and Message
Aggregation

This chapter describes how to use correlation sets to ensure that asynchronous callbacks
locate the appropriate client. It also describes how to use aggregation patterns to route
messages to the same instance.
This chapter includes the following sections:

• Introduction to Correlation Sets in an Asynchronous Service

• Creating Correlation Sets in Oracle JDeveloper

• Routing Messages to the Same Instance

9.1 Introduction to Correlation Sets in an Asynchronous Service
Correlation sets provide a method for directing web service responses to the correct BPEL
process service component instance. You can use correlation sets to identify asynchronous
messages to ensure that asynchronous callbacks locate the appropriate client. You define
correlation sets when interactions are not simple invoke-receive activities.

Correlation sets are a BPEL mechanism that provides for the correlation of asynchronous
messages based on message body contents. To use this method, define the correlation sets
in your BPEL process. This method is designed for services that do not support WS-
Addressing or for certain sophisticated conversation patterns, for example, when the
conversation is in the form A > B > C > A instead of A > B > A.

9.1.1 Scenarios for Using Correlation Sets
Correlations enable you to associate asynchronous messages based on message body
contents. Note that not all business scenarios require correlations:

• Synchronous calls do not require correlations because the conversation context is
maintained in the stack or across a TCP connection.

• Consenting BPEL processes typically correlate messages using WS-Addressing headers
to pass tokens that act like session cookies in a web application. For more information,
see Using WS-Addressing in an Asynchronous Service.

Correlation is required in the following scenarios. In these cases, a BPEL process must be
configured to view some content of the message to select the correct process instance to
receive the message.

• When using an asynchronous service that does not support WS-Addressing.

• When receiving unsolicited messages from another system.

• When the message travels through several services and the response is solicited by the
initial service from the last service directly.

• When communicating through files.

9-1

9.1.2 Understanding Correlation Set Contents and Concepts
This section provides an overview of key correlation set concepts.

The correct BPEL instance using correlation sets is obtained as follows:

• A BPEL process provides a construct called a correlation set to allow for custom
correlation.

• A correlation set is a collection of properties used by the BPEL process service
engine to identify the correct process to receive a message.

• Each property in the correlation set can be mapped to an element in one or more
message types through property aliases. Figure 9-1 provides an overview.

Figure 9-1 Correlation Sets

Note the following key correlation guidelines:

• Only the process receiving the message is concerned about correlation. As long
as the sending service includes sufficient information in the message to correlate it
with previous activities, the sender does not need to be aware that correlation is
occurring.

• Correlation properties must be unique for the duration of the life of the BPEL
process that sets them.

• Ensure that no two processes are working with the same correlation tokens. For
example, using social security numbers to correlate an expense claims process is
not recommended if you start two separate instances of the process.

• Properties can be made up values or actual business identifiers such as purchase
orders or numbers. They do not need to be strings; they can be any reasonable
XML type.

Key correlation concept attributes are as follows. You set these attributes in Oracle
JDeveloper when designing a correlation set with the Correlation wizard:

• An initiate attribute is set as follows:

– yes: The correlation set is initiated with the values of the properties available
in the message being transferred.

– no: The correlation set validates the value of the property available in the
message.

• A pattern attribute is set as follows:

– in (for BPEL 1.1) or response (for BPEL 2.0): The correlation property is set
and validated on the incoming message.

Chapter 9
Introduction to Correlation Sets in an Asynchronous Service

9-2

– out (for BPEL 1.1) or request (for BPEL 2.0): The correlation property is set and
validated on the outgoing BPEL message.

– out-in (for BPEL 1.1) or request-response (for BPEL 2.0): The correlation property
is set and validated on both incoming and outgoing messages.

• Property aliases map a global property to a field in a specific message part. This action
enables the property name to become an alias for the message part and location. The
alias can be used in XPath expressions.

9.1.3 Overview of Correlation Set Creation
Table 9-1 provides an overview of the steps for creating a correlation set. References to the
pages of the Correlation wizard on which you perform these steps and examples of values to
set are provided.

Table 9-1 Correlation Set Creation Overview

Step Correlation Wizard Page Example

Create a correlation set with
property names and types to
correlate the exchange.

Set this information on the Correlation
wizard - Define Correlation Set page.
See Figure 9-2.

Create a phonenumber correlation set with
property names and types:

• username of type string
• userordernumber of type int
• IsGift of type boolean

Add the correlation to the
invoke or receive activity that
begins the conversation and
set Initiate to yes.

Select the activity and set the Initiate
attribute on the Correlation wizard -
Initiate Settings page. See Figure 9-3.

Select the internalReceive receive activity
and set Initiate to yes.

Create property alias
mappings to appropriate
elements in each message.
They must have the same
value in both messages of the
conversation. The elements
can be different names and in
different structures in the two
messages, but they must
contain the same value for
correlation to work.

Set this information on the Correlation
wizard - Property Aliases page. See
Figure 9-7. Two editors available on
this page enable you to create the
property alias mappings:

• Alias Editor (Figure 9-4)
• Alias Drag and Drop Editor

(Figure 9-5)

Define the property aliases to populate the
correlation set property values at runtime:

• Map alias username to the name
message element

• Map alias userordernumber to the
poNumber message element

• Map alias IsGift to the gift message
element.

Add the same correlation set
with its property to additional
activities. Do not set them to
initiate. The BPEL process
uses this to select the correct
process instance. Set the
pattern accordingly.

Set on the Activity Correlation Editor -
Initiate Tab. See Figure 9-10.

Select the internalCallback invoke activity:

• Set Initiate to no
• Set Pattern to request

9.2 Creating Correlation Sets in Oracle JDeveloper
You can create correlation sets on the following activities and branches.

• Receive activity

• Reply activity

• Invoke activity

Chapter 9
Creating Correlation Sets in Oracle JDeveloper

9-3

• onMessage branch

• onEvent branch

There are two methods for creating correlations sets in Oracle JDeveloper:

• Automatically through the Correlation wizard in an activity

• Manually through the Correlations tab in an activity

9.2.1 How to Create a Correlation Set with the Correlation Wizard
To create a correlation set with the Correlation wizard:

1. Right-click an applicable activity (such as a receive activity), and select Setup
Correlation.

The Correlation wizard - Define Correlation Set page is displayed.

2. Provide responses appropriate to your environment, then click Next. Table 9-2
provides details.

Table 9-2 Correlation Wizard - Define Correlation Set Page

Field Description

Create Correlation Set Select to create a new correlation set.

Choose Existing
Correlation Set

Select an existing correlation set in which to include the selected
activity.

Name Enter the name of the correlation set you want to create.

Scope Displays the scope or process in which to create the new
correlation set.

Properties a. Click Add to create a new property in the Name column of
the Properties table or click Browse to select an existing
property.

b. Click the Type column, then click the ellipses to invoke the
Type Chooser dialog for selecting the property type (for
example, integer, boolean, or some other type).

When complete, the Correlation wizard - Define Correlation Set page looks as
shown in Figure 9-2.

Chapter 9
Creating Correlation Sets in Oracle JDeveloper

9-4

Figure 9-2 Correlation Wizard - Define Correlation Set Page

The Correlation wizard - Initiate Settings page is displayed.

3. Provide responses appropriate to your environment, then click Next. Table 9-3 provides
details.

Table 9-3 Correlation Wizard - Initiate Settings Page

Field Description

Activity Displays the activity on which the correlation is set.

initiate Select whether this activity is the initiator in the correlation set.

When set to yes, the correlation set is initiated with the values of the
properties occurring in the message being sent or received.

When complete, the Correlation wizard - Initiate Settings page looks as shown in
Figure 9-3.

Chapter 9
Creating Correlation Sets in Oracle JDeveloper

9-5

Figure 9-3 Correlation Wizard - Initiate Settings Page

The Correlation wizard - Property Aliases page is displayed for mapping properties
to values. The properties defined previously in the Define Correlation Set page of
the wizard are displayed in the Property Aliases table.

Property aliases enable you to map a property to a field in a specific message part
of a variable. This action enables the property to become an alias for the message
part and location.

4. Click a property in the table and select a method for mapping the message part of
the variable to the property. Table 9-4 provides details.

Table 9-4 Methods for Mapping the Variable Message Part to a Property

To Use The... Go to Step...

Alias Editor 5

Alias Drag and Drop Editor 6

5. Click the Edit (first) icon to invoke the Alias Editor dialog.

a. Expand the variable.

b. Select the message part to represent the property, and click OK. Figure 9-4
provides details.

Chapter 9
Creating Correlation Sets in Oracle JDeveloper

9-6

Figure 9-4 Alias Editor

6. Click the Alias Drag and Drop Editor (second) icon to invoke the Alias Drag and Drop
Editor dialog.

a. Expand the variable.

b. Select the message part to represent the property.

c. Drag and drop the message part onto the property row in the Correlation wizard -
Property Aliases page. Figure 9-5 provides details.

Figure 9-5 Alias Drag and Drop Editor

Existing property aliases are listed in the lower part of the Correlation wizard -
Property Aliases page, as shown in Figure 9-6. For this example, there are no
existing property aliases.

Chapter 9
Creating Correlation Sets in Oracle JDeveloper

9-7

Figure 9-6 Correlation Wizard - Property Aliases Page - Lower Part

d. When complete, click Next.

7. Select additional properties to map to specific message parts of variables.

When complete, the Correlation wizard - Property Aliases page looks as shown in
Figure 9-7. The properties created in Figure 9-2 are displayed in the Property
column. The message elements to which the properties were mapped with either
the Alias Editor (Figure 9-4) or Alias Drag and Drop Editor (Figure 9-5) are
displayed in the Query column.

Figure 9-7 Correlation Wizard - Property Aliases Page

8. Click Next.

The Correlation wizard - Correlated Activities page is displayed. Figure 9-8
provides details.

Chapter 9
Creating Correlation Sets in Oracle JDeveloper

9-8

Figure 9-8 Correlation Wizard - Property Aliases Page (Without Activity)

9. Click the Add icon to add more activities to this correlation set (multiple activities can
correlate on the correlation set).

The Activity Browser dialog is displayed.

10. Select the activity to add, and click OK. Figure 9-9 provides details.

Figure 9-9 Activity Browser for Selecting an Activity

Chapter 9
Creating Correlation Sets in Oracle JDeveloper

9-9

The activity is added to the Correlation Activities field of the Correlation wizard -
Correlated Activities page.

11. In the Correlation Activities field, select the activity and click Edit to invoke the
Initiate tab of the Activity Correlation Editor dialog. Figure 9-10 provides details.

Figure 9-10 Activity Correlation Editor - Initiate Tab

12. Select appropriate values in the Initiate and Pattern lists. For this example:

• Select no from the Initiate list (because the correlation set validates the value
of the property available in the message).

• Select request from the Pattern list (because the correlation property is set
and validated on the outgoing BPEL message).

For BPEL 2.0, you can select response if the correlation applies to an inbound
message, request if the correlation applies to an outbound message, or request-
response if the correlation applies to both outbound and inbound messages.

For BPEL 1.1, you can select in if the correlation applies to an inbound message
(response), out if the correlation applies to an outbound message (request), or
out-in if the correlation applies to both inbound and outbound messages.
(response and request).

13. Click the Aliases tab.

14. Repeat Step 4 through Step 7 to select a property and map the message part of
the variable to the property.

When complete, the Alias dialog looks similar to that shown in Figure 9-11.

Chapter 9
Creating Correlation Sets in Oracle JDeveloper

9-10

Figure 9-11 Activity Correlation Editor - Alias Tab

15. Click OK to return to the Correlation wizard - Correlated Activities page, which looks as
shown in Figure 9-12.

Figure 9-12 Correlation Wizard - Correlated Activities Page (With Selected
Activity)

16. Click Next to review the correlation set details in the Activities, Correlation Set, and
Alias tabs.

• Activities: Displays the activities involved in the correlation and their roles (for
example, the receive activity is the initiator and the invoke activity is the responder).

Chapter 9
Creating Correlation Sets in Oracle JDeveloper

9-11

• Correlation Set: Displays the name of the correlation set.

• Aliases: Displays the property aliases defined for the activities in the
correlation set.

Figure 9-13 provides details.

Figure 9-13 Correlation Wizard - Summary Page

17. Click Finish.

The correlation set is created.

18. In the Structure window, view the correlation set, properties, and property aliases
you defined in the Correlation wizard.

19. In Oracle BPEL Designer, click the Correlations tab of one of the participating
activities to view the details you defined (for example, the receive activity).
Figure 9-14 provides details.

Chapter 9
Creating Correlation Sets in Oracle JDeveloper

9-12

Figure 9-14 Correlation Tab of Receive Activity

20. If you want to find out which activities are used in a correlation set, perform the following
steps.

a. Click the Search icon above Oracle BPEL Designer, and select Correlation Search.

The Correlation Set Chooser dialog is displayed.

b. Select the correlation set, and click OK.

c. In the Correlation Search dialog, click OK.

The activities using the correlation sets are displayed in the Log window.

21. If you want to add additional activities to an existing correlation set, right-click the activity,
and select Setup Correlation.

The Correlation wizard - Define Correlation Set page is displayed.

22. Select Choose Existing Correlation Set.

23. From the Correlation Sets list, select the correlation set, and click OK.

24. Define the activity by following the pages in the Correlation wizard.

9.2.2 How to Manually Create Correlation Sets From the Correlations Tab
This section describes the steps to manually create correlation sets in an asynchronous
service. This example illustrates how to use correlation sets for a process having three
receive activities with no associated invoke activities.

Chapter 9
Creating Correlation Sets in Oracle JDeveloper

9-13

9.2.2.1 Step 1: Creating a Project

To create a project:

1. Start Oracle JDeveloper.

2. From the File main menu, select New > Applications.

3. Select SOA Application, and click OK.

The Create SOA Application Wizard appears.

4. In the Application Name field, enter a name (for this example,
MyCorrelationSetApp is entered).

5. Accept the default values for all remaining settings, and click Next.

6. In the Project Name field, enter a name (for this example,
MyCorrelationSetComposite is entered).

7. Accept the default values for all remaining settings, and click Next.

8. In the Composite Template section, select Composite With BPEL Process, and
click Finish.

The Create BPEL Process dialog appears.

9. Enter the values shown in Table 9-5.

Table 9-5 Create BPEL Process Dialog Fields and Values

Field Value

Name Enter a name (for this example, MyCorrelationSet is
entered).

Template Select Asynchronous BPEL Process.

Expose as a SOAP
Service

Select the check box. After process creation, note the SOAP
service that appears in the Exposed Services swimlane.
This service provides the entry point to the composite
application from the outside world.

10. Accept the default values for all remaining settings, and click OK.

9.2.2.2 Step 2: Configuring Partner Links and File Adapter Services
You now create three partner links that use the SOAP service.

This section contains these topics:

• You create an initial partner link with an adapter service for reading a loan
application.

• You create a second partner link with an adapter service for reading an application
response.

• You create a third partner link with an adapter service for reading a customer
response.

9.2.2.2.1 Creating an Initial Partner Link and File Adapter Service

Chapter 9
Creating Correlation Sets in Oracle JDeveloper

9-14

To create an initial partner link and file adapter service:

1. Double-click the MyCorrelationSet BPEL process.

2. In the Components window, expand BPEL Constructs.

3. Drag an initial Partner Link activity into the right swimlane of the designer.

4. Click the third icon at the top (the Service Wizard icon). This starts the Adapter
Configuration Wizard, as shown in Figure 9-15.

Figure 9-15 Adapter Configuration Wizard Startup

5. In the Configure Service or Adapter dialog, select File and click OK.

6. In the Name field of the File Adapter Reference dialog, enter a name (for this example,
FirstReceive is entered) and click Next.

7. In the Adapter Interface dialog, accept the default settings and click Next.

8. In the Operation dialog, select Read File as the Operation Type and click Next. The
Operation Name field is automatically filled in with Read.

9. Above the Directory for Incoming Files (physical path) field, click Browse.

10. Select a directory from which to read files (for this example,
C:\files\receiveprocess\FirstInputDir is selected).

11. Click Select.

12. Click Next.

13. In the File Filtering dialog, enter appropriate file filtering parameters.

14. Click Next.

15. In the File Polling dialog, enter appropriate file polling parameters.

16. Click Next.

17. In the Messages dialog, click Browse next to the URL field to display the Type Chooser
dialog.

18. Select an appropriate XSD schema file. For this example, Book1_4.xsd is the schema
and LoanAppl is the schema element selected.

19. Click OK.

The URL field (Book1_4.xsd for this example) and the Schema Element field
(LoanAppl for this example) are filled in.

20. Click Next.

21. Click Finish.

You are returned to the Partner Link dialog. All other fields are automatically completed.
The dialog looks as shown in Table 9-6:

Chapter 9
Creating Correlation Sets in Oracle JDeveloper

9-15

Table 9-6 Partner Link Dialog Fields and Values

Field Value

Name FirstReceive

WSDL URL directory_path/FirstReceive.wsdl

Partner Link Type Read_plt

Partner Role Leave unspecified.

My Role Read_role

22. Click OK.

9.2.2.2.2 Creating a Second Partner Link and File Adapter Service

To create a second partner link and file adapter service:

1. Drag a second Partner Link activity beneath the FirstReceive partner link
activity.

2. At the top, click the third icon (the Service Wizard icon).

3. In the Configure Service or Adapter dialog, select File and click OK.

4. In the Name field of the File Adapter Reference dialog, enter a name (for this
example, SecondFileRead is entered) and click Next. This name must be unique
from the one you entered in Step 6 of Creating an Initial Partner Link and File
Adapter Service.

5. In the Adapter Interface dialog, accept the default settings and click Next.

6. In the Operation dialog, select Read File as the Operation Type.

7. In the Operation Name field, change the name (for this example, Read1 is
entered).

8. Click Next.

9. Select Directory Names are Specified as Physical Path.

10. Above the Directory for Incoming Files (physical path) field, click Browse.

11. Select a directory from which to read files (for this example,
C:\files\receiveprocess\SecondInputDir is entered).

12. Click Select.

13. Click Next.

14. Enter appropriate file filtering parameters in the File Filtering dialog.

15. Click Next.

16. Enter appropriate file polling parameters in the File Polling dialog.

17. Click Next.

18. Next to the URL field in the Messages dialog, click Browse to display the Type
Chooser dialog.

19. Select an appropriate XSD schema file. For this example, Book1_5.xsd is the
schema and LoanAppResponse is the schema element selected.

20. Click OK.

Chapter 9
Creating Correlation Sets in Oracle JDeveloper

9-16

The URL field (Book1_5.xsd for this example) and the Schema Element field
(LoanAppResponse for this example) are filled in.

21. Click Next.

22. Click Finish.

You are returned to the Partner Link dialog. All other fields are automatically completed.
The dialog looks as shown in Table 9-7:

Table 9-7 Partner Link Dialog Fields and Values

Field Value

Name SecondReceive

WSDL URL directory_path/SecondFileRead.wsdl

Partner Link Type Read1_plt

Partner Role Leave unspecified.

My Role Read1_role

23. Click OK.

9.2.2.2.2.1 Creating a Third Partner Link and File Adapter Service

To create a third partner link and file adapter service:

1. Drag a third Partner Link activity beneath the SecondReceive partner link activity.

2. At the top, click the third icon (the Service Wizard icon).

3. In the Configure Service or Adapter dialog, select File and click OK.

4. In the Name field of the File Adapter Reference dialog, enter a name (for this example,
ThirdFileRead is entered) and click Next. This name must be unique from the one you
entered in Step 6 of Creating an Initial Partner Link and File Adapter Service and Step 4
of Creating a Second Partner Link and File Adapter Service.

5. In the Adapter Interface dialog, accept the default settings and click Next.

6. In the Operation dialog, select Read File as the Operation Type.

7. In the Operation Name field, change the name (for this example, Read2 is entered). This
name must be unique.

8. Click Next.

9. Select Directory Names are Specified as Physical Path.

10. Above the Directory for Incoming Files (physical path) field, click Browse.

11. Select a directory from which to read files (for this example,
C:\files\receiveprocess\ThirdInputDir is entered).

12. Click Select.

13. Click Next.

14. Enter appropriate file filtering parameters in the File Filtering dialog.

15. Click Next.

16. Enter appropriate file polling parameters in the File Polling dialog.

Chapter 9
Creating Correlation Sets in Oracle JDeveloper

9-17

17. Click Next.

18. Next to the URL field in the Messages dialog, click Browse to display the Type
Chooser dialog.

19. Select an appropriate XSD schema file. For this example, Book1_6.xsd is the
schema and CustResponse is the schema element selected.

20. Click OK.

The URL field (Book1_6.xsd for this example) and the Schema Element field
(CustResponse for this example) are filled in.

21. Click Next.

22. Click Finish.

You are returned to the Partner Link dialog. All other fields are automatically
completed. The dialog looks as shown in Table 9-8:

Table 9-8 Partner Link Dialog Fields and Values

Field Value

Name ThirdReceive

WSDL URL directory_path/ThirdFileRead.wsdl

Partner Link Type Read2_plt

Partner Role Leave unspecified.

My Role Read2_role

23. Click OK.

9.2.2.3 Step 3: Creating Three Receive Activities
You now create three receive activities; one for each partner link. The receive activities
specify the partner link from which to receive information.

9.2.2.3.1 Creating an Initial Receive Activity

To create an initial receive activity:

1. In the Components window, expand BPEL Constructs.

2. Drag a Receive activity beneath the receiveInput receive activity in the designer.

3. Click the receive activity to display its property fields in the Property Inspector or
double-click the receive icon to display the Receive dialog.

For information about editing activities in the Property Inspector, see How to Edit
BPEL Activities in the Property Inspector.

4. Enter the details described in Table 9-9 to associate the first partner link
(FirstReceive) with the first receive activity:

Chapter 9
Creating Correlation Sets in Oracle JDeveloper

9-18

Table 9-9 Receive Dialog Fields and Values

Field Value

Name receiveFirst
Partner Link FirstReceive

Create Instance Select this check box.

The Operation (Read) field is automatically filled in.

5. To the right of the Variable field, click the first icon. This is the automatic variable creation
icon.

6. In the Create Variable dialog, click OK.

A variable named receiveFirst_Read_InputVariable is automatically created in the
Variable field.

7. Ensure that you selected the Create Instance check box, as described in Step 4.

8. Click OK.

9.2.2.3.2 Creating a Second Receive Activity

To create a second receive activity:

1. From the Components window, drag a second Receive activity beneath the receiveFirst
receive activity.

2. Double-click the receive icon to display the Receive dialog.

3. Enter the details described in Table 9-10 to associate the second partner link
(SecondReceive) with the second receive activity:

Table 9-10 Receive Dialog Fields and Values

Field Value

Name receiveSecond
Partner Link SecondFileRead

Create Instance Do not select this check box.

The Operation (Read1) field is automatically filled in.

4. To the right of the Variable field, click the first icon.

5. In the Create Variable dialog, click OK.

A variable named receiveSecond_Read1_InputVariable is automatically created in the
Variable field.

6. Click OK.

9.2.2.3.2.1 Creating a Third Receive Activity

Chapter 9
Creating Correlation Sets in Oracle JDeveloper

9-19

To create a third receive activity:

1. From the Components window, drag a third Receive activity beneath the
receiveSecond receive activity.

2. Double-click the receive icon to display the Receive dialog.

3. Enter the details described in Table 9-11 to associate the third partner link
(ThirdReceive) with the third receive activity:

Table 9-11 Receive Dialog Fields and Values

Field Value

Name receiveThird
Partner Link ThirdFileRead

Create Instance Do not select this check box.

The Operation (Read2) field is automatically filled in.

4. To the right of the Variable field, click the first icon.

5. In the Create Variable dialog, click OK.

A variable named receiveThird_Read2_InputVariable is automatically created in
the Variable field.

6. Click OK.

Each receive activity is now associated with a specific partner link.

9.2.2.4 Step 4: Creating Correlation Sets
You now create correlation sets. A set of correlation tokens is a set of properties
shared by all messages in the correlated group.

9.2.2.4.1 Creating an Initial Correlation Set

To create an initial correlation set:

1. In the Structure window of Oracle JDeveloper, right-click Correlation Sets and
select Expand All Child Nodes.

2. In the second Correlation Sets folder, right-click and select Create Correlation
Set.

3. In the Name field of the Create Correlation Set dialog, enter CorrelationSet1.

4. In the Properties section, click the Add icon to display the Property Chooser
dialog.

5. Select Properties, then click the Add icon (first icon at the top) to display the
Create Property dialog.

6. In the Name field, enter NameCorr.

7. To the right of the Type field, click the Browse icon.

8. In the Type Chooser dialog, select string and click OK.

Chapter 9
Creating Correlation Sets in Oracle JDeveloper

9-20

9. Click OK in each dialog to close the Create Property dialog, the Property Chooser dialog,
and the Create Correlation Set dialog.

9.2.2.4.2 Creating a Second Correlation Set

To create a second correlation set:

1. Return to the Correlation Sets section in the Structure window of Oracle JDeveloper.

2. Right-click the Correlation Sets folder and select Create Correlation Set.

3. In the Name field of the Create Correlation Set dialog, enter CorrelationSet2.

4. In the Properties section, click the Add icon to display the Property Chooser dialog.

5. Select Properties, then click the Add icon to display the Create Property dialog.

6. In the Name field, enter IDCorr.

7. To the right of the Type field, click the Browse icon.

8. In the Type Chooser dialog, select double and click OK.

9. Click OK in each dialog to close the Create Property dialog, the Property Chooser dialog,
and the Create Correlation Set dialog.

9.2.2.5 Step 5: Associating Correlation Sets with Receive Activities
You now associate the correlation sets with the receive activities. You perform the following
correlation set tasks:

• For the first correlated group, the first and second receive activities are correlated with
the CorrelationSet1 correlation set.

• For the second correlated group, the second and third receive activities are correlated
with the CorrelationSet2 correlation set.

9.2.2.5.1 Associating the First Correlation Set with a Receive Activity

To associate the first correlation set with a receive activity:

1. Double-click the receiveFirst receive activity to display the Receive dialog.

2. Click the Correlations tab.

3. Click the Add icon to display the correlation set dropdown list.

4. Select CorrelationSet1.

5. Click the Initiate column to display a dropdown list, and select yes. When set to yes, the
set is initiated with the values of the properties occurring in the message being
exchanged.

6. Click OK.

9.2.2.5.2 Associating the Second Correlation Set with a Receive Activity

To associate the second correlation set with a receive activity:

1. Double-click the receiveSecond receive activity to display the Receive dialog.

Chapter 9
Creating Correlation Sets in Oracle JDeveloper

9-21

2. Click the Correlations tab.

3. Click the Add icon to display the correlation set dropdown list.

4. Select CorrelationSet2, then click OK.

5. Click the Initiate column to display a dropdown list, and select yes.

6. Click Add again and select CorrelationSet1.

7. Click OK.

8. Click the Initiate column to display a dropdown list, and select no for
CorrelationSet1.

9. Click OK.

This groups the first and second receive activities into a correlated group.

9.2.2.5.3 Associating the Third Correlation Set with a Receive Activity

To associate the third correlation set with a receive activity:

1. Double-click the receiveThird receive activity to display the Receive dialog.

2. Click the Correlations tab.

3. Click the Add icon.

4. Select CorrelationSet2.

5. Set the Initiate column to no for CorrelationSet2.

6. Click OK.

This groups the second and third receive activities into a second correlated group.

9.2.2.6 Step 6: Creating Property Aliases
Property aliases enable you to map a global property to a field in a specific message
part. This action enables the property name to become an alias for the message part
and location. The alias can be used in XPath expressions.

9.2.2.6.1 Creating Property Aliases for NameCorr

You create the following two property aliases for the NameCorr correlation set:

• Map NameCorr to the LoanAppl message type part of the receiveFirst receive
activity. This receive activity is associated with the FirstReceive partner link
(defined by the FirstReceive.wsdl file).

• Map NameCorr to the incoming LoanAppResponse message type part of the
receiveSecond receive activity. This receive activity is associated with the
SecondReceive partner link (defined by the SecondFileRead.wsdl file).

To create property aliases for NameCorr:

1. In the Structure window of Oracle JDeveloper, right-click Property Aliases.

2. Select Create Property Alias.

3. From the Property list, select NameCorr.

Chapter 9
Creating Correlation Sets in Oracle JDeveloper

9-22

4. Expand and select Message Types > Partner Link > FirstReceive > FirstReceive.wsdl
> Message Types > LoanAppl_msg > Part - LoanAppl.

5. In the Query field, press Ctrl+Space to define the following XPath expression:

/ns2:LoanAppl/ns2:Name
6. Click OK.

7. Repeat Step 1 through Step 3 to create a second property alias for NameCorr.

8. Expand and select Message Types > Project WSDL Files > SecondFileRead.wsdl >
Message Types > LoanAppResponse_msg > Part - LoanAppResponse.

9. In the Query field, press Ctrl+Space to define the following XPath expression:

/ns4:LoanAppResponse/ns4:APR
10. Click OK.

9.2.2.6.2 Creating Property Aliases for IDCorr

You create the following two property aliases for the IDCorr correlation set:

• Map IDCorr to the LoanAppResponse message type part of the receiveSecond
receive activity. This receive activity is associated with the SecondReceive partner link
(defined by the SecondFileRead.wsdl file).

• Map IDCorr to the CustResponse message type part of the receiveThird receive
activity. This receive activity is associated with the ThirdReceive partner link (defined by
the ThirdFileRead.wsdl file).

To create property aliases for IDCorr:

1. In the Structure window, right-click Property Aliases.

2. Select Create Property Alias.

3. In the Property list, select IDCorr.

4. Expand and select Message Types > Project WSDL Files > SecondFileRead.wsdl >
Message Types > LoanAppResponse_msg > Part - LoanAppResponse.

5. In the Query field, press Ctrl+Space to define the following XPath expression:

/ns4:LoanAppResponse/ns4:APR
6. Click OK.

7. Repeat Step 1 through Step 3 to create a second property alias for IDCorr.

8. Expand and select Message Types > Project WSDL Files > ThirdFileRead.wsdl >
Message Types > CustResponse_msg > Part - CustResponse.

9. In the Query field, press Ctrl+Space to define the following XPath expression:

/ns6:CustResponse/ns6:APR

Design is now complete.

10. Click OK.

Chapter 9
Creating Correlation Sets in Oracle JDeveloper

9-23

9.2.2.7 Step 7: Reviewing WSDL File Content

To review WSDL file content:

• Refresh the Applications window.

The NameCorr and IDCorr correlation set properties are defined in the
MyCorrelationSet_Properties.wsdl file in the Applications window.

<definitions
 name="properties"
 targetNamespace="http://xmlns.oracle.com/MyCorrelationSet/
correlationset"
 xmlns="http://schemas.xmlsoap.org/wsdl/"
 xmlns:bpws="http://schemas.xmlsoap.org/ws/2003/03/business-process/"
 xmlns:plnk="http://schemas.xmlsoap.org/ws/2003/05/partner-link/"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema">
 <bpws:property name="NameCorr" type="xsd:string"/>
 <bpws:property name="IDCorr" type="xsd:double"/>
</definitions>

The property aliases are defined in the MyCorrelationSet.wsdl file.

<bpws:propertyAlias propertyName="ns1:NameCorr"
 messageType="ns3:LoanAppl_msg"
 part="LoanAppl" query="/ns2:LoanAppl/ns2:Name"/>

<bpws:propertyAlias propertyName="ns1:NameCorr"
 messageType="ns5:LoanAppResponse_msg"
 part="LoanAppResponse" query="/ns4:LoanAppResponse/ns4:APR"/>

<bpws:propertyAlias propertyName="ns1:IDCorr"
 messageType="ns5:LoanAppResponse_msg"
 part="LoanAppResponse" query="/ns4:LoanAppResponse/ns4:APR"/>

<bpws:propertyAlias propertyName="ns1:IDCorr"
 messageType="ns7:CustResponse_msg"
 part="CustResponse" query="/ns6:CustResponse/ns6:APR"/>

Because the BPEL process service component is not created as a web services
provider in this example, the MyCorrelationSet.wsdl file is not referenced in the
BPEL process service component. Therefore, you must import the
MyCorrelationSet.wsdl file inside the FirstReceive.wsdl file to reference the
correlation sets defined in the former WSDL.

<import namespace="http://xmlns.oracle.com/MyCorrelationSet"
 location="MyCorrelationSet.wsdl"/>

9.2.3 What You May Need to Know About Conversion IDs and
Different Composite Revisions

Do not use the same conversion ID for different revisions of a SOA composite
application. When correlation sets are used in a BPEL process, you have explicit
control over the conversation ID value. Oracle SOA Suite does not interfere or add
restrictions on conversation ID value generation. This situation means that even
though it appears that Oracle SOA Suite is generating the same conversation ID for
different revisions, you actually control this behavior. Oracle SOA Suite does not

Chapter 9
Creating Correlation Sets in Oracle JDeveloper

9-24

restrict you from using the same conversation ID for different instances of different revisions.

If you do not use correlation sets, the conversation ID generated is unique and this is not a
problem because Oracle SOA Suite decides which conversation ID to generate, and not you.

Oracle SOA Suite does not execute a revision check for callback routing. Routing of callback
messages is only based on the following:

• Conversation ID: This is calculated based on the input value and correlation set. If you
use the same correlation set for two revisions of processes and enter the same input
when creating an instance, both revisions subscribe using the same conversation ID.
This causes confusion when a callback for one revision is delivered to another revision.

• Operation name (is the same for both revisions).

• BPEL service component name (is also the same for both revisions).

The concept of a revision number is applicable to Oracle SOA composite applications, and is
not part of the BPEL specification. This is why it is not used as part of the routing decision.

There is another complication in which adding a revision as part of callback routing causes
problems. When sending a callback, you also specify the endpoint URL. If the endpoint URL
does not contain the composite revision (which is extremely likely), the message is assumed
to be routed to the default revision. If Oracle SOA Suite runtime adds a revision check as part
of callback routing, the callback for the nondefault revision instance is never possible.

For example, assume you have the following BPEL process:

• An entry receive activity named receive_1 (on which a correlation set is used)

• An invoke activity, which invokes a web service

• A receive activity named receive_2

Assume you perform the following steps:

1. Deploy revision 1.0 of composite_A, which includes a BPEL component.

2. Create an instance of revision 1.0, which is using a correlation set, and input a value of
123, which generates conv_id = "123".

This process now invokes a web service through a one-way invoke activity and then
waits on the receive_2 activity for a callback to arrive.

3. Deploy revision 2.0 of composite_A, which now becomes the default revision.

A web service sends a callback for the instance for revision 1.0. However, as a part of its
URL, it does not specify the revision number. You typically create a callback so that the
URL does not use the revision number. This is because web services are external and
you cannot change web service settings to continue using a revision tag because it is
internal to Oracle SOA Suite and is a concept that the external world does not
understand.

Since a revision number is not specified, the SOA server assumes that the revision
number must be 2.0 and, if the routing of the callback takes the revision number into
account, it cannot forward this callback intended for 1.0 to the correct revision 1.0.
Instead, it attempts to route it to the default revision of 2.0, which does not have any
instance waiting for the callback.

You cannot route callback messages based on revisions. You only receive the option to
route callback messages based on the conversion ID (if the correlation set is not used,
then even this is not under your control), operation name, and component name.

Chapter 9
Creating Correlation Sets in Oracle JDeveloper

9-25

For these reasons, different instances must use different conversation IDs (which
means different input is used for creating a conversion ID) to avoid confusion, and
routing should be solely based on a conversation ID.

9.2.4 What You May Need to Know About Setting Correlations for an
IMA Using a fromParts Element With Multiple Parts

Assume you have the following scenario:

• A BPEL 2.0 process with a WSDL message type that has multiple parts that are
identical in type.

• A property alias has been defined based on the element type of the above part.

For a process that has an inbound message activity (IMA) (for example, a receive
activity, onMessage branch of a scope or pick activity, or onEvent branch of a scope
activity in BPEL 2.0) that uses the fromParts element with fromParts defined for each
part, correlations cannot be defined because the runtime environment cannot
determine the part to which to apply the property alias.

For more information about mapping WSDL message parts with the toParts and
fromParts elements, see Mapping WSDL Message Parts in BPEL 2.0.

9.3 Routing Messages to the Same Instance
Oracle BPEL Process Manager supports a message aggregation feature. When
multiple messages are routed to the same process/partner link/operation name, the
first message is routed to create a new instance and subsequent messages can be
routed to continue the created instance using a midprocess receive activity.

Message aggregation enables you to use the same operation (or event name) in an
entry receive activity and a midprocess receive activity.

Note:

• This feature only performs aggregation, and not resequencing. This
feature does not resequence messages arriving out of order into an
ordered format. Therefore, the first message only means the first
message processed. This may be different from the first message in a
time sequence order.

• You must use correlation sets to take advantage of the message
aggregation feature.

• Synchronous operations as ambiguous calls (at both beginning and
midprocess receive activities) are supported. However, this is not a
recommended use of this feature and should be avoided.

9.3.1 How to Configure BPEL Process Instance Creation
You can control the number of instances to create and use to route messages with the
reenableAggregationOnComplete property.

Chapter 9
Routing Messages to the Same Instance

9-26

To configure BPEL process instance creation:

1. In the SOA Composite Editor, select the BPEL process service component, as shown in
Figure 9-16.

Figure 9-16 Selected BPEL Process Service Component

2. Go to the Property Inspector in the lower right corner of Oracle JDeveloper. If the
Property Inspector is not displayed, select Property Inspector from the View main
menu.

3. In the Properties section, click the Add icon, as shown in Figure 9-17.

Figure 9-17 Property Inspector

The Create Property dialog is displayed.

4. In the Name field, enter the bpel.config.reenableAggregationOnComplete deployment
descriptor property. The prefix of bpel.config is required for this type of deployment
descriptor.

5. In the Value field, enter true, as described in Table 9-12.

Table 9-12 reenableAggregationOnComplete Property Settings

Value Description Example

true Creates a new instance to handle
messages. However, there is a window
between messages coming in and
instance completion. This can result in
messages remaining in the
DLV_MESSAGE table. This setting can
result in the occurrence of race
conditions. For more information, see
Table 9-13.

You invoke messages 1 through 4 for a client
using the initiate operation. This results
in the following actions:

• Two instances of the BPEL process are
created and completed.

• Messages 1 and 2 are routed to the first
instance and messages 3 and 4 are
routed to the second instance.

Chapter 9
Routing Messages to the Same Instance

9-27

Table 9-12 (Cont.) reenableAggregationOnComplete Property Settings

Value Description Example

false This is the default behavior. This setting
causes the aggregation feature to be
disabled. Only one instance is created.
Messages that are not handled by the
instance remain in the DLV_MESSAGE
table. This setting is recommended for
most environments.

You invoke messages 1 through 4 for a client
using the initiate operation. One instance
of the BPEL process is created and
completed.

Do not attempt to route multiple messages
using the same correlation set to one BPEL
instance.

Figure 9-18 shows the completed Create Property dialog.

Figure 9-18 Create Property Dialog

6. Click OK.

The reenableAggregationOnComplete property with the bpel.config prefix looks
as follows in the composite.xml file.

<composite name="Aggregation" revision="1.0" label="2011-07-10_13-52-24_174"
 mode="active" state="on">
. . .
. . .
<component name="Aggregation" version="1.1">
 <implementation.bpel src="Aggregation.bpel"/>
 <property name="bpel.config.reenableAggregationOnComplete"
type="xs:string"
 many="false" override="may">true</property>
 </component>
. . .
. . .
</composite>

9.3.2 How to Use the Same Operation in Entry and Midprocess
Receive Activities

Assume you create a correlation set as shown in the example that follows. All
messages to Oracle BPEL Process Manager are routed to the same operation name.
The messages have the same correlation ID. The interface WSDL does not
differentiate between the entry activity (receiveInput) and the midprocess receive

Chapter 9
Routing Messages to the Same Instance

9-28

activity (Continue_Receive). All messages are processed using the initiate operation. A
single instance is created to which to route all messages.

This differs from releases before 11g Release 1 11.1.1.6, in which you needed to define
different operation names on the same partner link. The process had to expose two
operations and the caller had to choose the correct operation name.

<receive name="receiveInput" partnerLink="client" portType="client:BPELProcess1"
 operation="initiate" variable="inputVariable" createInstance="yes">
 <correlations>
 <correlation initiate="yes" set="CorrelationSet_1"/>
 </correlations>
</receive>

<!-- Asynchronous callback to the requester. (Note: the callback location and
 correlation id is transparently handled using WS-addressing.) -->
<assign name="Assign_1">
 <copy>
 <from variable="inputVariable" part="payload"
 query="/client:BPELProcess1ProcessRequest/client:input"/>
 <to variable="Invoke_1_initiate_InputVariable" part="payload"
 query="/ns1:BPELProcess2ProcessRequest/ns1:input"/>
 </copy>
</assign>

<receive name="Continue_Receive" partnerLink="client"
 portType="client:BPELProcess1" operation="initiate" variable="inputVariable"
 createInstance="no">
 <correlations>
 <correlation initiate="no" set="CorrelationSet_1"/>
 </correlations>
</receive>

For event delivery network (EDN) business events, you substitute the operation attribute
with bpelx:eventName in both the entry and midprocess receive activities.

bpelx:eventName="ns3:initiateEvent"/>

Information is maintained in the DLV_AGGREGATION table:

• Conversation ID

• Domain name

• Component name and type

• Composite name, label, and revision

• State

• Received date

• CI key

• Primary key

This information can be deleted from this table with the purge scripts or from the Auto Purge
page in Oracle Enterprise Manager Fusion Middleware Control. For more information about
both of these options, see the Administering Oracle SOA Suite and Oracle Business Process
Management Suite.

Chapter 9
Routing Messages to the Same Instance

9-29

9.3.3 How to Route a Message to a New or Existing Instance when
Using Correlation Sets

For a BPEL process using correlation sets, the correct routing is performed. The
message can be either of the following:

• An invoke message creating a new instance

• A callback message continuing an existing instance

Figure 9-19 shows entry and midprocess receive activities using the same operation
(process).

Figure 9-19 Routing a New Message to a New or Existing Instance

The following provides an example of the entry and midprocess receive activities using
the same operation (process).

<receive name="receiveInput" partnerLink="client" portType="client:BPELProcess1"
 operation="process" variable="inputVariable" createInstance="yes">
 <correlations>
 <correlation initiate="yes" set="CorrelationSet_1"/>
 </correlations>
</receive>

<!-- some business logic -->

<while name="While_1" condition=*loop for 3 iterations*>
 <sequence name="Sequence_1">
 <receive name="Continue_Receive" partnerLink="client"
 portType="client:BPELProcess1" operation="process" variable="inputVariable"
 createInstance="no">
 <correlations>
 <correlation initiate="no" set="CorrelationSet_1"/>
 </correlations>
 </receive>

<!-- some business logic -->

Chapter 9
Routing Messages to the Same Instance

9-30

 </sequence>
</while>

In the initial scenario in the preceding example, the following actions occur in BPEL process
P1:

• A partner provides four messages (message 1, message 2, message 3, and message 4)
for the same partner (correlation ID 101).

• Message 1 creates a new instance of BPEL process P1. This message is marked as an
invoke message.

• Messages 2, 3, and 4 are received using the Continue_Receive activity. These
messages are marked as callback messages.

• The instance closes because three iterations of the while loop are expected.

Assume now that additional messages are routed, which can potentially cause race
conditions to occur. Table 9-13 provides details.

Table 9-13 Message Delivery Scenarios

Scenario Description Marked as
Invoke
Message

Marked as
Callback Message

1 Assume the partner now provides message 5 for the same
correlation ID (101). Message 5 creates a new instance of
BPEL process P1 and waits on the Continue_Receive
activity inside the while loop for three more messages (6, 7,
and 8).

• Message 1
• Message 5

• Message 2
• Message 3
• Message 4
• Message 6
• Message 7
• Message 8

2 If messages 4 and 5 are received within a small time window, it
is possible that message 4 is closing the instance BPEL
process P1 and message 5 is routed as a callback to that
instance. This scenario can cause a race condition. For
example:

• When message 6 arrives, it is routed to the entry receive
activity of the new instance.

• Messages 7 and 8 are routed to the Continue_Receive
activity.

• Message 5 is routed to the Continue_Receive activity
only by the recovery part of the BPEL process service
engine. This is because it initially was routed to a closed
instance and could not be handled.

• Message 1
• Message 6

• Message 2
• Message 3
• Message 4
• Message 5
• Message 7
• Message 8

Chapter 9
Routing Messages to the Same Instance

9-31

Table 9-13 (Cont.) Message Delivery Scenarios

Scenario Description Marked as
Invoke
Message

Marked as
Callback Message

3 This is similar to scenario 2. However, in this case, messages
7, 8, and 9 are not received. For example:

• Message 5 becomes an unhandled callback message
waiting for a subscriber.

• BPEL process service engine recovery tries to process
message 5 and fails because there is no subscriber
available.

There are several options for message recovery.

• Limit recovery of callback messages with the System
MBean Browser property maxRecoverAttempt in Oracle
Enterprise Manager Fusion Middleware Control. This
count specifies the number of attempts made by automatic
recovery to recover an invoke/callback message. Once the
number of recover attempts exceeds this count, the state
of the message is changed to exhausted. For more
information, see Section "Configuring Automatic Recovery
Attempts for Invoke and Callback Messages" in
Administering Oracle SOA Suite and Oracle Business
Process Management Suite.

• Write a custom SQL script to check that the
criteriaCallback has state set to 0. The correlation
value for this callback exists in CORRELATION_GROUP in a
closed state (state = 0). This indicates that the callback
message is marked for a closed aggregation instance. You
can cancel/purge these instances based on business logic.

Note: BPEL is designed as a conversation-based system.
At any point in which unsolicited messages are not being
handled, the application is always aware of the messages
coming as part of correlation aggregation and chooses to
subscribe and process or ignore the message as required
by business needs.

• Message 1
• Message 6

• Message 2
• Message 3
• Message 4
• Message 5

Chapter 9
Routing Messages to the Same Instance

9-32

10
Using Parallel Flow in a BPEL Process

This chapter describes how to use parallel flow in a BPEL process service component.
Parallel flows enable a BPEL process service component to perform multiple tasks at the
same time. Parallel flows are especially useful when you must perform several time-
consuming and independent tasks. This chapter also describes how to customize the number
of parallel branches.
This chapter includes the following sections:

• Introduction to Parallel Flows in BPEL Processes

• Creating a Parallel Flow

• Customizing the Number of Parallel Branches

10.1 Introduction to Parallel Flows in BPEL Processes
A BPEL process service component must sometimes gather information from multiple
asynchronous sources. Because each callback can take an undefined amount of time (hours
or days), it may take too long to call each service one at a time. By breaking the calls into a
parallel flow, a BPEL process service component can invoke multiple web services at the
same time, and receive the responses as they come in. This method is much more time
efficient.

Figure 10-1 shows a flow activity named Retrieve_QuotesFromSuppliers. The
Retrieve_QuotesFromSuppliers flow activity sends order information to two suppliers in
parallel:

• An internal warehouse (InternalWarehouseService)

• An external partner warehouse (PartnerSupplierMediator)

The two warehouses return their bids for the order to the flow activity. Here, two
asynchronous callbacks execute in parallel. One callback does not have to wait for the other
to complete first. Each response is stored in a different global variable.

10-1

Figure 10-1 Parallel Flow Invocation

10.1.1 What You May Need to Know About the Execution of Parallel
Flow Branches in a Single Thread

Branches in flow, flowN, and forEach activities are executed serially in a single thread
(that is, the Nth branch is executed only after N-1 execution has completed). Execution
is not completely parallel. This is because the branches do not execute in concurrent
threads in this mode. Instead, one thread starts executing a flow branch until it
reaches a blocking activity (for example, an synchronous invoke). At this point, a new
thread is created that starts executing the other branch, and the process continues.
This creates the impression that the flow branches are executing in parallel. In this
mode, however, if the flow branches do not define a blocking activity, the branches still
execute serially.

This design is intended for several reasons:

• To prevent you from accidentally spawning too many threads and overloading the
system, single threading is the default method. However, you can tune threads in
other places, such as adapter polling threads, BPEL process service engine
threads, and Oracle WebLogic Server work managers.

• The BPEL process specification does not provide a mechanism to ensure the
thread safety of BPEL variables (that is, a lack of a synchronized qualifier such as
in Java), which is necessary for true multithreaded programming.

• The implication of transaction rollbacks in one of the branches is undefined.

To achieve pseudo-parallelism, you can configure invoke activities to be nonblocking
with the nonBlockingInvoke deployment descriptor property. When this property is set
to true, the process manager creates a new thread to perform each branch's invoke
activity in parallel.

For more information about the nonBlockingInvoke property, see How to Define
Deployment Descriptor Properties in the Property Inspector.

Chapter 10
Introduction to Parallel Flows in BPEL Processes

10-2

10.2 Creating a Parallel Flow
You can create a parallel flow in a BPEL process service component with the flow activity.
The flow activity enables you to specify one or more activities to be performed concurrently.
The flow activity also provides synchronization. The flow activity completes when all activities
in the flow have finished processing. Completion of this activity includes the possibility that it
can be skipped if its enabling condition is false.

Note:

Branches in a flow activity are executed serially in a single thread. For more
information, see What You May Need to Know About the Execution of Parallel Flow
Branches in a Single Thread.

10.2.1 How to Create a Parallel Flow
To create a parallel flow:

1. In the Components window, expand BPEL Constructs > Structured Activities.

2. Drag a Flow activity into the designer.

3. Click the + sign to expand the flow activity, as shown in Figure 10-2.

Figure 10-2 Flow Activity

The flow activity initially includes two branches, each with a box for functional elements.
Populate these boxes as you do a scope activity, either by building a function or dragging
activities into the boxes. You can add additional branches by highlighting the flow activity
and clicking the Add Sequence icon. Figure 10-3 provides details.

Chapter 10
Creating a Parallel Flow

10-3

Figure 10-3 Add Sequence Icon

4. Drag and define additional activities on each side of the flow to invoke multiple
services at the same time. Figure 10-4 provides details.

Figure 10-4 Expanded Flow Activity

When complete, flow activity design can look as shown in Figure 10-5. This
example shows the Retrieve_QuotesFromSuppliers flow activity. Two branches
are defined for receiving bids: one for InternalWarehouseService and the other
for PartnerSupplierMediator.

Figure 10-5 Flow Activity After Design Completion

Chapter 10
Creating a Parallel Flow

10-4

10.2.2 What Happens When You Create a Parallel Flow
A flow activity typically contains many sequence activities. Each sequence is performed in
parallel. The following example shows the syntax for two sequences of the
Retrieve_QuotesFromSuppliers flow activity in the OrderProcessor.bpel file after design
completion. However, a flow activity can have many sequences. A flow activity can also
contain other activities. In the following example, each sequence in the flow contains assign,
invoke, and receive activities.

<flow name="Retrieve_QuotesFromSuppliers">
 <sequence name="Sequence_4">
 <assign name="Assign_InternalWarehouseRequest">
 <copy>
 <from>$inputVariable.gOrderInfoVariable/ns3:CardNum</from>
 <to>lInternalWarehouseInputVariable/ns4:ccnb</to>
 </copy>
 </assign>
 <invoke name="Invoke_InternalWarehouse"
 inputVariable="lInternalWarehouseInputVariable"
 partnerLink="InternalWarehouseService"
 portType="ns1:InternalWarehouseService"
 operation="process"/>
 <receive name="Receive_InternalWarehouse"
 createInstance="no"
 variable="lInternalWarehouseResponseVariable"
 partnerLink="InternalWarehouseService"
 portType="ns1:InternalWarehouseServiceCallback"
 operation="processResponse"/>
 <assign name="Assign_InterWHResponse">
 <bpelx:append>
 <bpelx:from variable="lInternalWarehouseResponseVariable"
 part="payload"
 query="/ns1:WarehouseResponse"/>
 <bpelx:to variable="gWarehouseQuotes"
 query="/ns1:WarehouseList"/>
 </bpelx:append>
 </assign>
 </sequence>
 <sequence name="Sequence_4">
 <assign name="Assign_PartnerRequest">
 <copy>
 <from variable="gOrderInfoVariable"
 query="/ns4:orderInfoVOSDO"/>
 <to variable="lPartnerSupplierInputVariable"
 part="request" query="/ns4:orderInfoVOSDO"/>
 </copy>
 </assign>
 <invoke name="Invoke_PartnerSupplier"
 partnerLink="PartnerSupplierMediator"
 portType="ns15:execute_ptt" operation="execute"
 inputVariable="lPartnerSupplierInputVariable"/>
 <receive name="Receive_PartnerResponse"
 createInstance="no"
 variable="lPartnerResponseVariable"
 partnerLink="PartnerSupplierMediator"
 portType="ns15:callback_ptt" operation="callback"/>
 <assign name="Assign_PartnerWHResponse">
 <bpelx:append>
 <bpelx:from variable="lPartnerResponseVariable"

Chapter 10
Creating a Parallel Flow

10-5

 part="callback"
 query="/ns1:WarehouseResponse"/>
 <bpelx:to variable="gWarehouseQuotes"
 query="/ns1:WarehouseList"/>
 </bpelx:append>
 </assign>
 </sequence>
</flow>

10.2.3 Synchronizing the Execution of Activities in a Flow Activity
You can synchronize the execution of activities within a flow activity to ensure that
certain activities only execute after other activities have completed. For example,
assume you have an invoke activity, verifyFlight, that is executed in parallel with
other invoke activities (verifyHotel, verifyCarRental, and scheduleFlight) when
the flow activity begins. However, scheduling a flight is necessary only after verifying
that a flight is available. Therefore, you can add a link between the verifyFlight and
scheduleFlight invoke activities. Links provide a level of dependency indicating that
the activity that is the target of the link (scheduleFlight) is only executed if the activity
that is the source of the link (verifyFlight) has completed.

The following example provides details. The link name verifyFlight-To-
scheduleFlight is assigned to the source verifyFlight and target scheduleFlight
invoke activities. If the source verifyFlight completes execution, the target
scheduleFlight is then executed.

<flow ...>
 <links>
 <link name="verifyFlight-To-scheduleFlight" />
 </links>
 <documentation>
 Verify the availability of a flight, hotel, and rental car in parallel
 </documentation>
 <invoke name="verifyFlight" ...>
 <sources>
 <source linkName="verifyFlight-To-scheduleFlight" />
 </sources>
 </invoke>
 <invoke name="verifyHotel" ... />
 <invoke name="verifyCarRental" ... />
 <invoke name="scheduleFlight" ...>
 <targets>
 <target linkName="verifyFlight-To-scheduleFlight" />
 </targets>
 </invoke>
</flow>

The preceding code provides an example of link syntax in BPEL version 2.0. The link
syntax between BPEL version 1.1 and BPEL version 2.0 is slightly different.

• BPEL version 1.1 uses <target> and <source>.

• BPEL version 2.0 uses <targets> and <sources>.

Table 10-1 provides details.

Chapter 10
Creating a Parallel Flow

10-6

Table 10-1 Links Syntax in BPEL Version 1.1 and BPEL Version 2.0

BPEL Version 1.1 Example BPEL Version 2.0 Example

<flow>
 <links>
 <link name="XtoY"/>
 <link name="CtoD"/>
 </links>
 <sequence name="X">
 <source linkName="XtoY"/>
 <invoke name="A" .../>
 <invoke name="B" .../>
 </sequence>
 <sequence name"Y">
 <target linkName="XtoY"/>
 <receive name="C" ...>
 <source linkName="CtoD"/>
 </receive>
 <invoke name="E" .../>
 </sequence>
 <invoke partnerLink="D" ...>
 <target linkName="CtoD"/>
 </invoke>
 </flow>

<flow>
 <links>
 <link name="AtoB"/>
 </links>
 <assign name="B">
 <targets>
 <target linkName="AtoB"/>
 </targets>
 <copy>
 <from>concat($output.payload,
 'B')</from>
 <to>$output.payload</to>
 </copy>
 </assign>
 <assign name="A">
 <sources>
 <source linkName="AtoB"/>
 </sources>
 <copy>
 <from>concat($output.payload,
 'A')</from>
 <to>$output.payload</to>
 </copy>
 </assign>
 </flow>

10.2.4 How to Create Synchronization Between Activities Within a Flow
Activity

To create synchronization between activities within a flow activity:

Note:

The Sources and Targets tabs are only available in BPEL 2.0 projects. For BPEL
1.1 projects, you must directly edit the BPEL file to use this functionality.

1. Create a flow activity. For information, see How to Create a Parallel Flow.

2. In the General tab of the Flow activity, click the Add icon.

3. Enter a name for the link, as shown in Figure 10-6.

Chapter 10
Creating a Parallel Flow

10-7

Figure 10-6 Link Name Creation

4. Click Apply, then OK.

5. Drag appropriate activities into the flow activity to define as the source with the
same link name as defined in Step 3. The value of the link name of the source and
target must be the same as the link name declared in the flow activity. For this
example, an assign activity named A is defined as the source in Figure 10-7.

Figure 10-7 Source Activity

Each source activity can specify an optional Transition Condition as a safe guard
for following the specified link. Click the row in this column to invoke the Browser
icon for accessing the Expression Builder dialog for creating a condition. If the
Transition Condition column is left blank, it is assumed to evaluate to true.

6. Define appropriate copy rules for the assign activity.

7. Click Apply, then OK.

8. Drag an additional activity into the flow activity to define as the target with the
same link name as defined in Step 3. For this example, another assign activity
named B is defined as the target in Figure 10-8.

Chapter 10
Creating a Parallel Flow

10-8

Figure 10-8 Target Activity

9. Define appropriate copy rules for the assign activity.

10. Click Apply, then OK.

11. Continue design of your BPEL process.

When complete, design can appear similar to that shown in Figure 10-9.

Figure 10-9 Three Flow Activities Synchronized with Links

10.2.5 What Happens When You Create Synchronization Between
Activities Within a Flow Activity

The following example shows the .bpel file after design is complete for three flow activities
with links for synchronizing activity execution.

• Flow_1 shows a link between simple activities.

Flow_1 includes a link named AtoB. The activity that is the target of the link, assign
activity B, is only executed if the activity that is the source of the link, assign activity A, has
completed.

• Flow_2 shows a link between simple activity and composite activity.

Flow_2 also includes the link named AtoB. The activity that is the target of the link, assign
activity B, is only executed if the activity that is the source of the link, scope activity
scope1, has completed.

Chapter 10
Creating a Parallel Flow

10-9

• Flow_3 shows a link between composite activities.

Flow_3 also includes the link named AtoB. The activity that is the target of the link,
sequence activity Sequence_1, is only executed if the activity that is the source of
the link, scope activity scope2, has completed.

<!-- link between simple activities -->
<flow name=Flow_1>
 <links>
 <link name="AtoB"/>
 </links>
 <assign name="A">
 <sources>
 <source linkName="AtoB"/>
 </sources>
 <copy>
 <from>concat($output.payload, 'A')</from>
 <to>$output.payload</to>
 </copy>
 </assign>
 <assign name="B">
 <targets>
 <target linkName="AtoB"/>
 </targets>
 <copy>
 <from>concat($output.payload, 'B')</from>
 <to>$output.payload</to>
 </copy>
 </assign>
 </flow>

 <!-- link between simple activity and composite activity -->
 <flow name=Flow_2>
 <links>
 <link name="AtoB"/>
 </links>
 <scope name="scope1">
 <sources>
 <source linkName="AtoB"/>
 </sources>
 <assign name="A">
 <copy>
 <from>concat($output.payload, 'A')</from>
 <to>$output.payload</to>
 </copy>
 </assign>
 </scope>
 <assign name="B">
 <targets>
 <target linkName="AtoB"/>
 </targets>
 <copy>
 <from>concat($output.payload, 'B')</from>
 <to>$output.payload</to>
 </copy>
 </assign>
 </flow>

 <!-- link between composite activities -->
 <flow name=Flow_3>
 <links>

Chapter 10
Creating a Parallel Flow

10-10

 <link name="AtoB"/>
 </links>
 <scope name="scope2">
 <sources>
 <source linkName="AtoB"/>
 </sources>
 <assign name="A">
 <copy>
 <from>concat($output.payload, 'A')</from>
 <to>$output.payload</to>
 </copy>
 </assign>
 </scope>
 <sequence name="Sequence_1>
 <targets>
 <target linkName="AtoB"/>
 </targets>
 <assign name="B">
 <copy>
 <from>concat($output.payload, 'B')</from>
 <to>$output.payload</to>
 </copy>
 </assign>
 </sequence>
 </flow>
 </sequence>

10.2.6 What You May Need to Know About Join Conditions in Target
Activities

You can specify an optional join condition in target activities. The value of the join condition is
a boolean expression. If a join condition is not specified, the join condition is the disjunction
(that is, a logical OR operation) of the link status of all incoming links of this activity.

Oracle BPEL Designer does not provide design support for adding join conditions. To add a
join condition, you must manually add the condition to the .bpel file in Source view in Oracle
BPEL Designer.

The following provides an example of a join condition.

<flow>
 <links>
 <link name="linkStatus2"/>
 </links>
 <empty name="E2">
 <sources>
 <source linkName="linkStatus2">
 <transitionCondition>false()</transitionCondition>
 </source>
 </sources>
 </empty>
 <empty name="E2">
 <targets>
 <joinCondition>bpws:getLinkStatus('linkStatus2')=true()</joinCondition>
 <target linkName="linkStatus2"/>
 </targets>
 </empty>
</flow>

Chapter 10
Creating a Parallel Flow

10-11

10.3 Customizing the Number of Parallel Branches
This section describes how to customize the number of parallel branches with the
following activities:

• A forEach activity in a BPEL version 2.0 project

• A flowN activity in a BPEL version 1.1 project

Note:

Branches in flowN and forEach activities are executed serially in a single
thread. For more information, see What You May Need to Know About the
Execution of Parallel Flow Branches in a Single Thread.

10.3.1 Processing Multiple Sets of Activities with the forEach Activity in
BPEL 2.0

You can use a forEach activity to process multiple sets of activities sequentially or in
parallel. The forEach activity executes a contained (child) scope activity exactly N+1
times, where N equals a final counter value minus a starting counter value that you
specify in the Counter Values tab of the For Each dialog. While other structured
activities such as a flow activity can have any type of activity as its contained activity,
the forEach activity can only include a scope activity.

When the forEach activity is started, the expressions you specify for the starting
counter and final counter values are evaluated. Once the two values are returned, they
remain constant for the lifecycle of the activity. Both expressions must return a value
containing at least one character. If these expressions do not return valid values, a
fault is thrown. If the starting counter value is greater than the final counter value, the
contained scope activity is not performed and the forEach activity is considered
complete.

During each iteration, the variable specified in the Counter Name field on the General
tab is implicitly declared in the forEach activity's contained scope. During the first
iteration of the scope, the counter variable is initialized with the starting counter value.
The next iteration causes the counter variable to be initialized with the starting counter
value, plus one. Each subsequent iteration increments the previously initialized
counter variable value by one until the final iteration, where the counter is set to the
final counter value. The counter variable is local to the enclosed scope activity.
Although its value can be changed during an iteration, that value is lost after each
iteration. Therefore, the counter variable value does not impact the value of the next
iteration's counter.

The forEach activity supports the following looping iterations:

• Sequential (default)

The forEach activity performs looping iterations sequentially N times over a given
set of activities defined within a scope activity. As an example, the forEach activity
iterates over an incoming purchase order message where the purchase order
message consists of N order items. The enclosed scope activity must be executed

Chapter 10
Customizing the Number of Parallel Branches

10-12

N+1 times, with each instance starting only after the previous iteration has completed.

• Parallel

All looping iterations are started at the same time and processed in parallel. Parallel
iterations are useful in environments in which sets of independent data are processed or
independent interaction with different partners is performed in parallel. To enable parallel
looping, you select the Parallel Execution check box on the General tab. In these
scenarios, execution of the N+1 instances of the contained scope activity occurs in
parallel. Each copy of the scope activity has the same counter variable that you specify in
the Counter Name field of the General tab declared in the same way as specified for a
sequential forEach activity. Each instance's counter variable must be uniquely initialized
in parallel with one of the integer values beginning with the starting counter value and
proceeding up to and including the final counter value.

Unlike a flow activity, the number of parallel branches is not known at design time with
the forEach activity. The specified counter variable iterates through the number of parallel
branches, controlled by the starting counter value and final counter value.

You can also specify a completion condition on the Completion tab. This condition enables
the forEach activity to execute the condition and complete without executing or finishing all
the branches specified. As an example, you send out parallel requests and a sufficient subset
of the recipients have responded. A completion condition is optionally specified to prevent the
following:

• Some children from executing (in the sequential case)

• To force early termination of some of the children (in the parallel case)

If you do not specify a completion condition, the forEach activity completes when the
contained scope has completed.

If a premature termination occurs (due to a fault or the completion condition evaluating to
true), then the N+1 requirement does not apply.

The following example shows the forEach activity syntax.

<forEach counterName="MyVariableName" parallel="yes|no"
 standard-attributes>
 standard-elements
 <startCounterValue expressionLanguage="anyURI"?>
 unsigned-integer-expression
 </startCounterValue>
 <finalCounterValue expressionLanguage="anyURI"?>
 unsigned-integer-expression
 </finalCounterValue>
 <completionCondition>?
 <branches expressionLanguage="anyURI"?
 successfulBranchesOnly="yes|no"?>?
 unsigned-integer-expression
 </branches>
 </completionCondition>
 <scope ..>...</scope>
</forEach>

Note:

The successfulBranchesOnly attribute is not supported for this release.

Chapter 10
Customizing the Number of Parallel Branches

10-13

10.3.1.1 How to Create a forEach Activity

To create a forEach activity:

1. In the Components window, expand BPEL Constructs > Structured Activities.

2. Drag a For Each activity into the designer, as shown in Figure 10-10.

Note the contained scope activity in the forEach activity.

Figure 10-10 Contained Scope Activity in a forEach Activity

3. Double-click the ForEach activity.

4. In the Counter Name field of the General tab, enter a counter value name, as
shown in Figure 10-11.

If the Parallel Execution check box is selected, all looping iterations are started at
the same time and processed in parallel. The next branch starts even if the
previous branch has not completed. If not selected, the next branch does not start
until the previous branch has completed.

Figure 10-11 General Tab of the forEach Activity

5. Click the Counter Values tab.

6. Click the Expression Builder icon to enter the starting counter value and final
counter value, as shown in Figure 10-12.

Chapter 10
Customizing the Number of Parallel Branches

10-14

Figure 10-12 Counter Values Tab of the forEach Activity

7. Click the Completion tab.

8. If you want to specify a completion condition that enables the forEach activity to execute
the condition and complete without executing or finishing all the branches specified, click
the XPath Expression Builder icon above the Expression field to enter a condition.
Figure 10-13 provides details.

Figure 10-13 Completion Tab of the forEach Activity

9. Click Apply, then OK.

10. Expand the contained Scope activity of the ForEach activity.

Chapter 10
Customizing the Number of Parallel Branches

10-15

11. Design the enclosed Scope activity.

When complete, the forEach and contained scope activity can appear similar in
structure to that shown in Figure 10-14.

Figure 10-14 forEach Activity with Contained and Expanded Scope Activity

10.3.1.2 What Happens When You Create a forEach Activity
The following example shows the .bpel file after design is complete for a sequential
forEach activity.

<faultHandlers>
 <catch faultName="bpel:invalidBranchCondition">
<sequence>
 <assign>
 <copy>
 <from>'invalidBranchCondition happened'</from>
 <to>$output.payload</to>
 </copy>
 </assign>

 <reply name="replyOutput" partnerLink="client"
 portType="tns:Test" operation="process" variable="output"/>
</sequence>
 </catch>
 </faultHandlers>
 <sequence>
 <!-- pick input from requester -->
 <receive name="receive" createInstance="yes"
 partnerLink="client" portType="tns:Test"
 operation="process" variable="input"/>
 <assign>
 <copy>

Chapter 10
Customizing the Number of Parallel Branches

10-16

 <from>3</from>
 <to>$request.payload</to>
 </copy>
 <copy>
 <from>''</from>
 <to>$output.payload</to>
 </copy>
 </assign>

 <forEach counterName="i" parallel="no">
 <startCounterValue>$input.payload/tns:startCounter+1</startCounterValue>
 <finalCounterValue>$input.payload/tns:finalCounter+1</finalCounterValue>
 <completionCondition>
 <branches>$input.payload/tns:branches+1</branches>
 </completionCondition>
 <scope name="scope1">
 <partnerLinks>
 <partnerLink name="DummyService" partnerLinkType="tns:DummyService"
 myRole="DummyServiceClient" partnerRole="DummyServiceProvider"/>
 </partnerLinks>
 <sequence>
 <assign>
 <copy>
 <from>concat($output.payload, $i, 'A')</from>
 <to>$output.payload</to>
 </copy>
 </assign>
 <invoke name="invokeDummyService" partnerLink="DummyService"
 portType="tns:DummyPortType"
 operation="initiate" inputVariable="request"/>
 <receive name="receiveFromDummyService" partnerLink="DummyService"
 portType="tns:DummyCallbackPortType"
 operation="onResult" variable="response"/> <assign>
 <copy>
 <from>concat($output.payload, $i, 'B')</from>
 <to>$output.payload</to>
 </copy>
 </assign>
 </sequence>
 </scope>
 </forEach>

 <!-- respond output to requester -->
 <reply name="replyOutput" partnerLink="client"
 portType="tns:Test" operation="process" variable="output"/>
 </sequence>

The following example shows the .bpel file after design is complete for a parallel forEach
activity.

<sequence>
 <!-- pick input from requester -->
 <receive name="receive" createInstance="yes"
 partnerLink="client" portType="tns:Test"
 operation="process" variable="input"/>
 <assign>
 <copy>
 <from>$input.payload/tns:value1</from>
 <to>$request.payload</to>
 </copy>
 <copy>

Chapter 10
Customizing the Number of Parallel Branches

10-17

 <from>''</from>
 <to>$output.payload</to>
 </copy>
 </assign>
 <forEach counterName="i" parallel="yes">
 <startCounterValue>($input.payload/tns:value1 + 1)</startCounterValue>
 <finalCounterValue>($input.payload/tns:value2 + 2)</finalCounterValue>
 <scope name="scope1">
 <partnerLinks>
 <partnerLink name="DummyService" partnerLinkType="tns:DummyService"
 myRole="DummyServiceClient" partnerRole="DummyServiceProvider"/>
 </partnerLinks>
 <sequence>
 <assign>
 <copy>
 <from>concat($output.payload, 'A')</from>
 <to>$output.payload</to>
 </copy>
 </assign>
 <invoke name="invokeDummyService" partnerLink="DummyService"
 portType="tns:DummyPortType"
 operation="initiate" inputVariable="request"/>
 <receive name="receiveFromDummyService" partnerLink="DummyService"
 portType="tns:DummyCallbackPortType"
 operation="onResult" variable="response"/>
 <assign>
 <copy>
 <from>concat($output.payload, 'B')</from>
 <to>$output.payload</to>
 </copy>
 </assign>
 </sequence>
 </scope>
 </forEach>
 <!-- respond output to requester -->
 <reply name="replyOutput" partnerLink="client"
 portType="tns:Test" operation="process" variable="output"/>
 </sequence>

10.3.2 Customizing the Number of Flow Activities with the flowN
Activity in BPEL 1.1

In the flow activity, the BPEL code determines the number of parallel branches.
However, often the number of branches required is different depending on the
available information. The flowN activity creates multiple flows equal to the value of N,
which is defined at runtime based on the data available and logic within the process.
An index variable increments each time a new branch is created, until the index
variable reaches the value of N.

The flowN activity performs activities on an arbitrary number of data elements. As the
number of elements changes, the BPEL process service component adjusts
accordingly.

The branches created by flowN perform the same activities, but use different data.
Each branch uses the index variable to look up input variables. The index variable can
be used in the XPath expression to acquire the data specific for that branch.

Chapter 10
Customizing the Number of Parallel Branches

10-18

For example, suppose there is an array of data. The BPEL process service component uses
a count function to determine the number of elements in the array. The process then sets N to
be the number of elements. The index variable starts at a preset value (zero is the default),
and flowN creates branches to retrieve each element of the array and perform activities using
data contained in that element. These branches are generated and performed in parallel,
using all the values between the initial index value and N. The flowN activity terminates when
the index variable reaches the value of N. For example, if the array contains 3 elements, N is
set to 3. Assuming the index variable begins at 1, the flowN activity creates three parallel
branches with indexes 1, 2, and 3.

The flowN activity can use data from other sources as well, including data obtained from web
services.

Figure 10-15 shows the runtime flow of a flowN activity in Oracle Enterprise Manager Fusion
Middleware Control that looks up three hotels. This is different from the view, because instead
of showing the BPEL process service component, it shows how the process has actually
executed. In this case, there are three hotels, but the number of branches changes to match
the number of hotels available.

Figure 10-15 Oracle Enterprise Manager Fusion Middleware Control View of the
Execution of a flowN activity

Chapter 10
Customizing the Number of Parallel Branches

10-19

10.3.2.1 How to Create a flowN Activity

To create a flowN activity:

1. In the Components window, expand Oracle Extensions.

2. Drag a FlowN activity into the designer.

3. Click the + sign to expand the FlowN activity.

4. Click the FlowN activity to display its property fields in the Property Inspector or
double-click the FlowN activity.

For information about editing activities in the Property Inspector, see How to Edit
BPEL Activities in the Property Inspector.

Figure 10-16 shows the FlowN dialog.

Figure 10-16 FlowN Dialog

The flowN dialog enables you to:

• Name the activity

• Enter a value or an expression for calculating the value of N (the number of
branches to create)

• Define the index variable (the time to wait in each branch)

5. Drag and define additional activities in the flowN activity.

Figure 10-17 shows how a FlowN activity appears with additional activities.

Chapter 10
Customizing the Number of Parallel Branches

10-20

Figure 10-17 FlowN Activity with Additional Activities

10.3.2.2 What Happens When You Create a FlowN Activity
The following code shows the .bpel file that uses the flowN activity to look up information on
an arbitrary number of hotels.

The following example shows the sequence name.

 <sequence name="main">
 <!-- Received input from requester.
 Note: This maps to operation defined in NflowHotels.wsdl
 The requester sends a set of hotels names wrapped into the "inputVariable"
 -->

The following actions take place. A receive activity calls the client partner link to get the
information that the flowN activity must define N times and look up the hotel information. The
following provides an example:

 <receive name="receiveInput" partnerLink="client"
 portType="client:NflowHotels" operation="initiate" variable="inputVariable"
 createInstance="yes"/>
 <!--
 The 'count()' Xpath function is used to get the number of hotelName
 noded passed in.
 An intermediate variable called "NbParallelFlow" is
 used to store the number of N flows being executed
 -->
 <assign name="getHotelsN">
 <copy>
 <from
expression="count($InputVariable.payload/client:HotelName);"/>
 <to variable="NbParallelFlow"/>
 </copy>
 </assign>
 <!-- Initiating the FlowN activity
 The N value is initialized with the value stored in the
 "NbParallelFlow" variable
 The variable call "Index" is defined as the index variable
 NOTE: Both "NbParallelFlow" and "Index" variables have to be declared
 -->

The flowN activity begins next. After defining a name for the activity of flowN, N is defined as
a value from the inputVariable, which is the number of hotel entries. The activity also
assigns index as the index variable. The following provides an example:

Chapter 10
Customizing the Number of Parallel Branches

10-21

<bpelx:flowN name="FlowN" N="bpws:getVariableData('NbParallelFlow')
indexVariable="Index'>
 <sequence name="Sequence_1">
 <!-- Fetching each hotelName by indexing the "inputVariable" with the
 "Index" variable.
 Note the usage of the "concat()" Xpath function to create the
 expression accessing the array element.
 -->

The copy rule shown in the following example then uses the index variable to
concatenate the hotel entries into a list:

<assign name="setHotelId">
 <copy>
 <from expression=
"bpws:getVariableData('inputVariable','payload',concat('/client:Nflo
wHotelsProcessRequest/client:ListOfHotels/client:HotelName[',
bpws:getVariableData('Index'),']'))"/>
 <to variable="InvokeHotelDetailInputVariable" part="payload"
 query="/ns2:hotelInfoRequest/ns2:id"/>
 </copy>
 </assign>

Using the hotel information, an invoke activity looks up detailed information for each
hotel through a web service. The following provides an example:

 <!-- For each hotel, invoke the web service giving detailed information
 on the hotel -->
 <invoke name="InvokeHotelDetail" partnerLink="getHotelDetail"
 portType="ns2:getHotelDetail" operation="process"
 inputVariable="InvokeHotelDetailInputVariable"
 outputVariable="InvokeHotelDetailOutputVariable"/>
 </sequence>
 </bpelx:flowN>

Finally, the BPEL process sends detailed information on each hotel to the client
partner link. The following provides an example:

 <invoke name="callbackClient" partnerLink="client"
 portType="client:NflowHotelsCallback" operation="onResult"
 inputVariable="outputVariable"/>
 </sequence>
 </sequence>

Chapter 10
Customizing the Number of Parallel Branches

10-22

11
Using Conditional Branching in a BPEL
Process

This chapter describes how to use conditional branching in a BPEL process service
component. Conditional branching introduces decision points to control the flow of execution
of a BPEL process service component. This chapter also describes how to use the switch, if,
while, and repeatUntil activities to define conditional branching and specify XPath
expressions that enable you to bypass execution of activities.
This chapter includes the following sections:

• Introduction to Conditional Branching

• Defining Conditional Branching with the If or Switch Activity

• Defining Conditional Branching with the While Activity

• Defining Conditional Branching with the repeatUntil Activity

• Specifying XPath Expressions to Bypass Activity Execution

11.1 Introduction to Conditional Branching
BPEL applies logic to make choices through conditional branching. You can use the following
activities to design your code to select different actions based on conditional branching:

• If activity (in a BPEL version 2.0 project)

Enables you to use an if activity when conditional behavior is required for specific
activities to decide between two or more branches. The if activity replaces the switch
activity that appeared in BPEL 1.1 processes. For information about how to create if
activities, see Defining Conditional Branching with the If Activity in BPEL 2.0.

• Switch activity (in a BPEL version 1.1 project)

Enables you to set up two or more branches, with each branch in the form of an XPath
expression. If the expression is true, then the branch is executed. If the expression is
false, then the BPEL process service component moves to the next branch condition,
until it either finds a valid branch condition, encounters an otherwise branch, or runs out
of branches. If multiple branch conditions are true, then BPEL executes the first true
branch. For information about how to create switch activities, see Defining Conditional
Branching with the Switch Activity in BPEL 1.1 .

• While activity

Enables you to create a while loop to select between two actions. Defining Conditional
Branching with the While Activity describes while activities.

Many branches are set up, and each branch has a condition in the form of an XPath
expression.

You can program a conditional branch to have a timeout. That is, if a response cannot be
generated in a specified period, the BPEL flow can stop waiting and resume its activities.
Using Events and Timeouts in BPEL Processes explains this feature in detail.

11-1

Note:

You can also define conditional branching logic with business rules. See
Designing Business Rules with Oracle Business Process Management.

11.2 Defining Conditional Branching with the If or Switch
Activity

This section describes how to define conditional branching with the following activities:

• If activity in a BPEL version 2.0 project

• Switch activity in a BPEL version 1.1 project

11.2.1 Defining Conditional Branching with the If Activity in BPEL 2.0
You can use an if activity when conditional behavior is required for specific activities to
decide between two or more branches. Only one activity is selected for execution from
a set of branches. The if activity consists of a list of one or more conditional branches
that are considered for execution in the following order:

• The if branch

• Optional elseif branches

• An optional else branch

The first branch whose condition evaluates to true is taken, and its contained activity is
performed. If no branch with a condition is taken, then the else branch is taken (if
present). The if activity is complete when the contained activity of the selected branch
completes, or immediately when no condition evaluates to true and no else branch is
specified.

The if activity is a BPEL version 2.0 feature that replaces the switch activity that was
included in BPEL version 1.1.

The following example shows the if activity syntax:

<if standard-attributes>
 standard-elements
 <condition>some conditon expression</condition>
 activity
 <elseif>*
 <condition>some condition expression</condition>
 some activity
 </elseif>
 <else>?
 some activity
 </else>
</if>

Chapter 11
Defining Conditional Branching with the If or Switch Activity

11-2

11.2.1.1 How to Create an If Activity

To create an If activity:

1. In the Components window, expand BPEL Constructs.

2. Drag an If activity into the designer.

The if and else conditions are displayed, as shown in Figure 11-1.

Figure 11-1 If Activity

3. Click the if branch.

4. In the Condition field, enter a condition, as shown in Figure 11-2. You can also click the
XPath Expression Builder icon to invoke the Expression Builder dialog.

Figure 11-2 if Branch of the If Activity

5. Click OK.

6. Drag and define additional activities into the if condition, as needed. These activities are
executed if the if condition evaluates to true.

7. Click the elseif branch (if you added this branch).

8. In the Condition field, enter a condition, as shown in Figure 11-3.

Chapter 11
Defining Conditional Branching with the If or Switch Activity

11-3

Figure 11-3 elseif Branch of the If Activity

9. Click OK.

10. If you want to add elseif conditions, highlight the If activity, and select the Add icon
to invoke a menu.

11. Drag and define additional activities into the elseif condition, as needed. These
activities are executed if the if branch did not evaluate to true, and this elseif
branch evaluates to true.

12. Click the else label.

13. Enter a condition or drag and define additional activities into the else condition, as
needed. These activities are executed if the if and any elseif branches did not
evaluate to true, and this else branch evaluates to true.

Figure 11-4 shows a completed if activity in which each branch includes contained
activities.

Figure 11-4 Completed If Activity

11.2.1.2 What Happens When You Create an If Activity
The following code provides an example of the .bpel file after design completion. The
if activity has if, elseif, and else branches defined. The first branch to evaluate to true
is executed.

<sequence>
 <!-- receive input from requester -->
 <receive name="receiveInput" partnerLink="client" portType="tns:Test"
 operation="process" variable="input" createInstance="yes"/>

Chapter 11
Defining Conditional Branching with the If or Switch Activity

11-4

 <!-- assign default value -->
 <assign>
 <copy>
 <from>'Value is greater than zero'</from>
 <to>$output.payload</to>
 </copy>
 <assign>
 <copy>
 <from>'Value is greater than zero'</from>
 <to>$output.payload</to>
 </copy>
 </assign>
 <!-- switch depends on the input value field -->
 <if>
 <condition>$input.payload > 0</condition>
 <extensionActivity>
 <bpelx:exec name="Java_Embedding" version="1.5" language="java">
 System.out.println("if condition is true.\n");
 </bpelx:exec>
 </extensionActivity>
 <elseif>
 <condition>bpws:getVariableData('input', 'payload') < 0</condition>
 <assign>
 <copy>
 <from>'Value is less than zero'</from>
 <to>$output.payload</to>
 </copy>
 </assign>
 </elseif>
 <else>
 <assign>
 <copy>
 <from>'Value is equal to zero'</from>
 <to>$output.payload</to>
 </copy>
 </assign>
 </else>
 </if>

 <!-- respond output to requester -->
 <reply name="replyOutput" partnerLink="client"
 portType="tns:Test" operation="process" variable="output"/>
 </sequence>

11.2.2 Defining Conditional Branching with the Switch Activity in BPEL 1.1
Assume you designed a flow activity in the BPEL process service component that gathered
loan offers from two companies at the same time, but did not compare either of the offers.
Each offer was stored in its own global variable. To compare the two bids and make decisions
based on that comparison, you can use a switch activity.

Figure 11-5 provides an overview of a BPEL conditional branching process that has been
defined in a switch activity.

Chapter 11
Defining Conditional Branching with the If or Switch Activity

11-5

Figure 11-5 Conditional Branching

11.2.2.1 How to Create a Switch Activity

To create a switch activity:

1. In the Components window, expand BPEL Constructs.

2. Drag a Switch activity into the designer, as shown in Figure 11-6.

The Switch activity has two switch case branches by default, each with a box for
functional elements. If you want to add more branches, select the entire switch
activity, right-click, and select Add Switch Case from the menu.

Figure 11-6 Switch Activity

3. In the first branch, double-click the condition box.

A dialog for entering a condition is displayed, as shown in Figure 11-7.

Chapter 11
Defining Conditional Branching with the If or Switch Activity

11-6

Figure 11-7 Condition Dialog

4. In the Label field, enter a name for the condition branch. When complete, this name is
displayed in Oracle BPEL Designer.

5. In the Condition field, click the Expression Builder icon to access the Expression
Builder dialog.

6. Create your expression.

bpws:getVariableDate('loanOffer1','payload','/loanOffer/APR') >
bpws:getVariableData('loanOffer2','payload','/loanOffer/APR')

In this example, two loan offers from completing loan companies are stored in the global
variables loanOffer1 and loanOffer2. Each loan offer variable contains the loan offer's
APR. The BPEL flow must choose the loan with the lower APR. One of the following
switch activities takes place:

• If loanOffer1 has the higher APR, then the first branch selects loanOffer2 by
assigning the loanOffer2 payload to the selectedLoanOffer payload.

• If loanOffer1 does not have the lower APR than loanOffer2, the otherwise case
assigns the loanOffer1 payload to the selectedLoanOffer payload.

7. Click OK.

The expression is displayed. The value you entered in the Label field of the dialog
becomes the name of the condition branch.

8. Click OK.

9. Add and configure additional activities as needed. Figure 11-8 provides details.

Figure 11-8 Switch Activity Design

Chapter 11
Defining Conditional Branching with the If or Switch Activity

11-7

11.2.2.2 What Happens When You Create a Switch Activity
A switch activity, such as a flow activity, has multiple branches. In the example that
follows, there are only two branches shown in the .bpel file after design completion.
The first branch, which selects a loan offer from a company named United Loan, is
executed if a case condition containing an XPath boolean expression is met.
Otherwise, the second branch, which selects the offer from a company named Star
Loan, is executed. By default, the switch activity provides two switch cases, but you
can add more, as needed.

<switch name="switch-1">
 <case condition="bpws:getVariableData('loanOffer1','payload',
 '/autoloan:loanOffer/autoloan:APR') >
 bpws:getVariableData('loanOffer2','payload','/autoloan:loanOffer/
autoloan:APR
 ')">
" name="Choose_the_Loan_with_the_Lower_APR">
 <bpelx:annotation>
 <bpelx:general>
 <bpelx:property name="userLabel">Choose the Loan with
 the Lower APR</bpelx:property>
 </bpelx:general>
 </bpelx:annotation>
 <assign name="selectUnitedLoan">
 <copy>
 <from variable="loanOffer1" part="payload">
 </from>
 <to variable="selectedLoanOffer" part="payload"/>
 </copy>
 </assign>
 </case>
 <otherwise>
 <assign name="selectStarLoan">
 <copy>
 <from variable="loanOffer2" part="payload">
 </from>
 <to variable="selectedLoanOffer" part="payload"/>
 </copy>
 </assign>
 </otherwise>
</switch>

11.3 Defining Conditional Branching with the While Activity
Another way to design your BPEL code to select between multiple actions is to use a
while activity to create a while loop. The while loop repeats an activity until a specified
success criteria is met. For example, if a critical web service is returning a service
busy message in response to requests, you can use the while activity to keep polling
the service until it becomes available. The condition for the while activity is that the
latest message received from the service is busy, and the operation within the while
activity is to check the service again. Once the web service returns a message other
than service busy, the while activity terminates and the BPEL process service
component continues, ideally with a valid response from the web service.

Chapter 11
Defining Conditional Branching with the While Activity

11-8

11.3.1 How To Create a While Activity
To create a while activity:

1. In the Components window, expand BPEL Constructs.

2. Drag a While activity into the designer.

3. Click the + sign to expand the while activity.

The while activity has icons to allow you to build condition expressions and to validate the
while definition. It also provides an area for you to drag an activity to define the while
loop.

4. Drag and define additional activities for using the while condition into the Drop Activity
Here area of the While activity (for example, a Scope activity).

The activities can be existing or new activities.

5. Click the XPath Expression Builder icon to open the Expression Builder dialog.

6. Enter an expression to perform repeatedly, as shown in Figure 11-9. This action is
performed until the given boolean while condition is no longer true. In this example, this
activity is set to loop while less than 5.

Figure 11-9 While Activity with an Expression

7. Click OK when complete.

11.3.2 What Happens When You Create a While Activity
The code that follows provides an example of the .bpel file after design completion. The
while activity includes a scope activity. The scope activity includes sequence and fault
handlers at the top level. The sequence includes invoke and assign activities and fault
handlers that define a catchAll containing assign and wait activities wrapped in a sequence.

The following code calls an external service. If the external service throws a fault, the fault
handler catches the fault and increments the dbStatus variable value.

Chapter 11
Defining Conditional Branching with the While Activity

11-9

Therefore, the exit condition of the while loop is either of the following:

• There is no exception, upon which the dbStatus value is set to a value of 10,
which results in the while condition evaluating to false.

• After throwing a fault five times, the dbStatus value is 5, and the while condition
returns false.

<while name="While_1" condition="bpws:getVariableData('dbStatus') > 5">
 <scope name="Scope_1">
<faultHandlers>
 <catchAll>
 <sequence name="Sequence_2">
 <assign name="assign_DB_retry">
 <copy>
 <from expression="bpws:getVariableData('dbStatus') + 1"/>
 <to variable="dbStatus"/>
 </copy>
 </assign>
 <wait name="Wait_30_sec" for="'PT31S'"/>
 </sequence>
 </catchAll>
 </faultHandlers>
 <sequence name="Sequence_1">
 <invoke name="Write_DBWrite" partnerLink="WriteDBRecord"
 portType="ns2:WriteDBRecord_ptt" operation="insert"
 inputVariable="Invoke_DBWrite_merge_InputVariable"/>
 <assign name="Assign_dbComplete">
 <copy>
 <from expression="'10'"/>
 <to variable="dbStatus"/>
 </copy>
 </assign>
 </sequence>
 </scope>
 </while>

Note:

The while activity code fragment in the preceding example uses a BPEL 1.1
construct of bpws:getVariableData('dbStatus'). For BPEL 2.0, variables
are referenced directly using $ sign and dot (.) notation. For example:

<while name="While1">
 <condition>$inputVariable.payload/client:counter > 0
 </condition>

11.4 Defining Conditional Branching with the repeatUntil
Activity

If the body of an activity must be performed at least once, use a repeatUntil activity
instead of a while activity. The XPath expression condition in the repeatUntil activity is
evaluated after the body of the activity completes. The condition is evaluated
repeatedly (and the body of the activity processed) until the provided boolean
condition is true.

Chapter 11
Defining Conditional Branching with the repeatUntil Activity

11-10

Note:

This activity is supported in BPEL version 2.0 projects.

11.4.1 How to Create a repeatUntil Activity
To create a repeatUntil activity:

1. In the Components window, expand BPEL Constructs.

2. Drag a Repeat Until activity into the designer.

3. Click the Repeat Until activity to display its property fields in the Property Inspector or
double-click the Repeat Until activity.

For information about editing activities in the Property Inspector, see How to Edit BPEL
Activities in the Property Inspector.

4. Enter a name or accept the default value.

5. In the Condition field, click the XPath Expression Builder icon to enter an XPath
expression condition.

The Expression Builder dialog is displayed.

6. Enter a boolean XPath expression condition, and click OK.

The condition you entered is displayed in the Repeat Until dialog, as shown in
Figure 11-10.

Figure 11-10 Completed Repeat Until Dialog

7. Click Apply, then OK.

8. Expand the Repeat Until activity, as shown in Figure 11-11.

Chapter 11
Defining Conditional Branching with the repeatUntil Activity

11-11

Figure 11-11 repeatUntil Activity Being Expanded

9. Design the body of the activity by dragging in activities from the Components
window and defining their property values. These activities are evaluated until the
XPath expression condition is evaluated to true.

11.4.2 What Happens When You Create a repeatUntil Activity
The following provides an example of the .bpel file after design completion. In this
scenario, purchase order validation must be performed at least once, then repeatedly,
based on evaluating the completion status until the status is updated to 5.

<repeatUntil>
 <sequence>
 <invoke name="PurchaseOrderValidation" ... />
 <receive name="receiveValidation"
 partnerLink="PurchaseOrderValidation"
 operation="returnPurchaseOrderValidation"
 variable="PurchaseOrderStatusResponse" />
 </sequence>
 <condition>
 bpel:getVariableProperty(
 "PurchaseOrderStatusResponse","tst:completionStatus") < 5
 </condition>
</repeatUntil>

11.5 Specifying XPath Expressions to Bypass Activity
Execution

Oracle provides an extension that enables you to specify an XPath expression in an
activity in BPEL versions 1.1 and 2.0 that, when evaluated to true, causes that activity
to be skipped. This functionality provides an alternative to using a switch activity for
conditionally executing activities. The skip condition for activities is specified as
follows:

<activity bpelx:skipCondition="boolean-expr"/>

The bpelx:skipCondition attribute causes an XPath expression to be evaluated
immediately upon creation of the activity instance. If the skip expression returns a false
boolean value, the activity is executed. If the skip expression returns a true boolean
value, the activity is completed immediately and execution moves to the activity
immediately following that one.

11.5.1 How to Specify XPath Expressions to Bypass Activity Execution
To specify XPath expressions to bypass activity execution:

1. In the Components window, expand BPEL Constructs.

Chapter 11
Specifying XPath Expressions to Bypass Activity Execution

11-12

2. Drag the activity into the designer in which to create the skip condition.

3. Click the Skip Condition tab.

4. Specify an XPath expression that, when evaluated to true, causes an activity to be
skipped. Figure 11-12 provides details.

Figure 11-12 Skip Condition XPath Expression

5. Click Apply, then OK.

11.5.2 What Happens When You Specify XPath Expressions to Bypass
Activity Execution

The code segment in the .bpel file defines the specific operation after design completion.

For example, the XPath expression shown in the following code, when evaluated to true (for
example, input is 20), causes the assign activity to be skipped.

<sequence name="main">
. . .
. . .
<assign name="Assign_1"

bpelx:skipCondition="number(bpws:getVariableData('inputVariable','payload','/client:
 process/client:input')) > 10">
 <copy>
 <from expression="'Assign Block is not Skipped'"/>
 <to variable="inputVariable" part="payload"
 query="/client:process/client:input"/>
 </copy>
</assign>
. . .
. . .
</sequence>

The bpelx:skipCondition attribute is equivalent to a switch/case structured activity with a
single case element with a condition that is the opposite of the skip condition.

The following example shows the bpelx:skipCondition attribute in BPEL 1.1. If myvalue is 0,
the expression evaluates to true, and the assign activity is skipped. If myvalue is 10, the
expression evaluates to false, and the copy operation of the assign activity is executed.

<assign bpelx:skipCondition="bpws:getVariableData('input',
 'payload','/tns:inputMsg/tns:myvalue') <= 0">
 <copy>
 <from expression="'Value is greater than zero'"/>
 <to variable="output" part="payload"
 query="/tns:resultMsg/tns:valueResult"/>
 </copy>
</assign>

The equivalent functionality used with a switch activity is shown in the following example.

<switch>
 <case condition="bpws:getVariableData('input',

Chapter 11
Specifying XPath Expressions to Bypass Activity Execution

11-13

 'payload','/tns:inputMsg/tns:value') > 0">
 <assign>
 <copy>
 <from expression="'Value is greater than zero'"/>
 <to variable="output" part="payload"
 query="/tns:resultMsg/tns:valueResult"/>
 </copy>
 </assign>
 </case>
</switch>

In BPEL 2.0, the bpelx:skipCondition syntax appears as a child element of an
activity. The following code provides an example of an assign activity with this
convention.

<assign name="Assign4">
<bpelx:skipCondition>ora:getNodeValue($inputVariable.payload/client:input) > 5
</bpelx:skipCondition><copy>
 <from>"dummy result"</from>
 <to>$outputVariable.payload/client:result</to>
 </copy></assign>

You can also use built-in and custom XPath functions within the skip condition
expression. The following code provides several examples.

<assign bpelx:skipCondition="bpws:getVariableData('crOutput', 'payload',
 '/tns:rating') > 0">

<assign bpelx:skipCondition="custom:validateRating()" ... />

<assign xmlns:fn='http://www.w3.org/2005/xpath-functions'
 bpelx:skipCondition="fn:false()" ... />

If an error is thrown by the XPath expression evaluation, the error is wrapped with a
BPEL fault and thrown from the activity.

An event is added to the BPEL instance audit trail for activities that are bypassed due
to the skip condition expression evaluating to true. Even if the skip condition evaluates
to false (meaning the activity is performed), the fact that a skip condition expression
was evaluated is still logged to the audit trail for debugging purposes.

If the XPath engine fails to evaluate the boolean value, bpws:subLanguageFault is
thrown. This is the same fault thrown when a switch/case condition does not evaluate
to a boolean value. This is also logged to the audit trail for debugging purposes.

Chapter 11
Specifying XPath Expressions to Bypass Activity Execution

11-14

12
Using Fault Handling in a BPEL Process

This chapter describes how to use fault handling in a BPEL process. Fault handling allows a
BPEL process service component to handle error messages or other exceptions returned by
outside web services, and to generate error messages in response to business or runtime
faults. This chapter also describes how to use the fault management framework to catch
faults and perform user-specified actions defined in a fault policy file.
This chapter includes the following sections:

• Introduction to a Fault Handler

• Introduction to BPEL Standard Faults

• Introduction to the Business and Runtime Fault Categories of BPEL Faults

• Handling Faults with the Fault Management Framework

• Catching BPEL Runtime Faults

• Getting Fault Details with the getFaultAsString XPath Extension Function

• Throwing Internal Faults with the Throw Activity

• Rethrowing Faults with the Rethrow Activity

• Returning External Faults

• Managing a Group of Activities with a Scope Activity

• Re-executing Activities in a Scope Activity with the Replay Activity

• Using Compensation After Undoing a Series of Operations

• Stopping a Business Process Instance with a Terminate or Exit Activity

• Throwing Faults with Assertion Conditions

• Classifying SOAP Faults as Retriable

12.1 Introduction to a Fault Handler
Fault handlers define how the BPEL process service component responds when target
services return data other than what is normally expected (for example, returning an error
message instead of a number). An example of a fault handler is where the web service
normally returns a credit rating number, but instead returns a negative credit message.

Figure 12-1 provides an example of how a fault handler sets a credit rating variable to -1000.

12-1

Figure 12-1 Fault Handling

The code segment in the following example defines the fault handler for this operation
in the BPEL file:

<faultHandlers>
 <catch faultName="services:NegativeCredit" faultVariable="crError">
 <assign name="crin">
 <copy>
 <from expression="-1000">
 </from>
 <to variable="input" part="payload"
 query="/autoloan:loanApplication/autoloan:creditRating"/>
 </copy>
 </assign>
 </catch>
</faultHandlers>

The faultHandlers tag contains the fault handling code. Within the fault handler is a
catch activity, which defines the fault name and variable, and the copy instruction that
sets the creditRating variable to -1000.

Chapter 12
Introduction to a Fault Handler

12-2

When you select web services for the BPEL process service component, determine the
possible faults that may be returned and set up a fault handler for each one.

12.2 Introduction to BPEL Standard Faults
This section identifies the standard faults for BPEL 1.1 and BPEL 2.0.

12.2.1 BPEL 1.1 Standard Faults
This section identifies the standard faults for BPEL 1.1. Unless otherwise noted below, the
Business Process Execution Language for Web Services Specification defines the following
standard faults in the namespace of http://schemas.xmlsoap.org/ws/2003/03/business-
process/:

• bindingFault (BPEL extension fault defined in http://schemas.oracle.com/bpel/
extension)

• conflictingReceive
• conflictingRequest
• correlationViolation
• forcedTermination
• invalidReply
• joinFailure
• mismatchedAssignmentFailure
• remoteFault (BPEL extension fault defined in http://schemas.oracle.com/bpel/

extension)

• repeatedCompensation
• selectionFailure
• uninitializedVariable
• assertFailure
• coordinationFault
• entityInternalNestedError
• maxLoopCountExceeded
• owsmPolicyFault
• rollback
• timeout
Standard faults are defined as follows:

• Typeless, meaning they do not have associated messageTypes
• Not associated with any Web Services Description Language (WSDL) message

• Caught without a fault variable:

<catch faultName="bpws:selectionFailure">

Chapter 12
Introduction to BPEL Standard Faults

12-3

12.2.2 BPEL 2.0 Standard Faults
The following list specifies the standard faults defined within the WS-BPEL
specification. All standard fault names are qualified with the standard WS-BPEL
namespace.

• ambiguousReceive
• completionConditionFailure
• conflictingReceive
• conflictingRequest
• correlationViolation
• invalidBranchCondition
• invalidExpressionValue
• invalidVariables
• joinFailure
• mismatchedAssignmentFailure
• missingReply
• missingRequest
• scopeInitializationFailure
• selectionFailure
• subLanguageExecutionFault
• uninitializedPartnerRole
• uninitializedVariable
• unsupportedReference
• xsltInvalidSource
• xsltStylesheetNotFound

12.2.2.1 Fault Handling Order of Precedence in BPEL 2.0
In BPEL 2.0, the order of precedence for catching faults thrown without associated
data is as follows:

• If there is a catch activity with a matching faultName value that does not specify a
faultVariable attribute, the fault is sent to the identified catch activity.

• Otherwise, if there is a catchAll activity, the fault is sent to the catchAll fault
handler.

• Otherwise, the fault is processed by the default fault handler.

In BPEL 2.0, the order of precedence for catching faults thrown with associated data is
as follows:

• If there is a catch activity with a matching faultName value that does not specify a
faultVariable attribute, the fault is sent to the identified catch activity.

Chapter 12
Introduction to BPEL Standard Faults

12-4

• If the fault data is a WSDL message type in which the following exists:

– The message contains a single part defined by an element.

– A catch activity with a matching faultName value that has a faultVariable whose
associated faultElement QName matches the QName of the runtime element data
of the single WSDL message part.

Then, the fault is sent to the identified catch activity with the faultVariable initialized to
the value in the single part's element.

• Otherwise, if there is a catch activity with a matching faultName value that does not
specify a faultVariable attribute, the fault is sent to the identified catch activity. In this
case, the fault value is not available from within the fault handler, but is available to the
rethrow activity.

• Otherwise, if there is a catch construct without a faultName attribute that has a
faultVariable whose type matches the type of the runtime fault data, then the fault is
sent to the identified catch activity.

• Otherwise, if the fault data is a WSDL message type in which the message contains a
single part defined by an element and there exists a catch activity without a faultName
attribute that has a faultVariable whose associated faultElement QName matches the
QName of the runtime element data of the single WSDL message part, the fault is sent to
the identified catch activity with the faultVariable initialized to the value in the single
part's element.

• Otherwise, if there is a catchAll activity, the fault is sent to the catchAll fault handler.

• Otherwise, the fault is handled by the default fault handler.

12.3 Introduction to the Business and Runtime Fault Categories
of BPEL Faults

A BPEL fault has a fault name called a Qname (name qualified with a namespace) and a
possible messageType. There are two categories of BPEL faults:

• Business faults

• Runtime faults

12.3.1 Business Faults
Business faults are application-specific faults that are generated when there is a problem with
the information being processed (for example, when a social security number is not found in
the database). A business fault occurs when an application executes a throw activity or when
an invoke activity receives a fault as a response. The fault name of a business fault is
specified by the BPEL process service component. The messageType, if applicable, is defined
in the WSDL file. A business fault can be caught with a faultHandler using the faultName
and a faultVariable.

<catch faultName="ns1:faultName" faultVariable="varName">

12.3.2 Runtime Faults
Runtime faults are the result of problems within the running of the BPEL process service
component or web service (for example, data cannot be copied properly because the variable

Chapter 12
Introduction to the Business and Runtime Fault Categories of BPEL Faults

12-5

name is incorrect). These faults are not user-defined, and are thrown by the system.
They are generated for a variety of reasons, including the following:

• The process tries to use a value incorrectly.

• A logic error occurs (such as an endless loop).

• A Simple Object Access Protocol (SOAP) fault occurs in a SOAP call.

• An exception is thrown by the server.

Several runtime faults are automatically provided. These faults are included in the
http://schemas.oracle.com/bpel/extension namespace. These faults are
associated with the messageType RuntimeFaultMessage. The WSDL file shown in the
following example defines the messageType:

<?xml version="1.0" encoding="UTF-8" ?>
<definitions name="RuntimeFault"
 targetNamespace="http://schemas.oracle.com/bpel/extension"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns="http://schemas.xmlsoap.org/wsdl/">

 <message name="RuntimeFaultMessage">
 <part name="code" type="xsd:string" />
 <part name="summary" type="xsd:string" />
 <part name="detail" type="xsd:string" />
 </message>
</definitions>

If a faultVariable (of messageType RuntimeFaultMessage) is used when catching the
fault, the fault code can be queried from the faultVariable, along with the fault
summary and detail.

12.3.2.1 bindingFault
A bindingFault is thrown inside an activity if the preparation of the invocation fails.
For example, the WSDL of the process fails to load. A bindingFault is not retriable.
This type of fault usually must be fixed by human intervention.

12.3.2.2 remoteFault
A remoteFault is also thrown inside an activity. It is thrown because the invocation
fails. For example, a SOAP fault is returned by the remote service.

12.3.2.3 replayFault
A replayFault replays the activity inside a scope. At any point inside a scope, this
fault is migrated up to the scope. These faults are not populated into a common fault,
but are an indication to BPEL to re-execute the scope. The server then re-executes
the scope from the beginning.

12.3.3 How to Add and Propagate Fault Handling in a Synchronous
BPEL Process

This section describes how to add and propagate fault handling in a synchronous
BPEL process. During the design, you perform the following tasks:

Chapter 12
Introduction to the Business and Runtime Fault Categories of BPEL Faults

12-6

• Modify the existing schema and WSDL files to include fault element, fault message, and
fault operation details.

• Add fault handling to the BPEL process (specifically, a catch activity).

• Create a fault variable with the fault message type you specified in the WSDL file.

• Add assign and reply activities with additional fault handling details.

12.3.3.1 Edit the Schema and WSDL Files

To edit the schema and WSDL files:

1. Create a synchronous BPEL process (for this example, named TestProcess) using the
default settings in the Create BPEL Process dialog.

2. In the Schemas folder of the Applications window, double-click the TestProcess.xsd file.

3. Click Source view, and add a new element called processFault:

<element name="processFault">
 <complexType>
 <sequence>
 <element name="result" type="string"/>
 </sequence>
 </complexType>
</element>

4. In the Applications window, expand the WSDLs folder.

5. Double-click the TestProcess.wsdl file.

6. Click Source view, and add a new message type called TestProcessFaultMessage.

<wsdl:message name="TestProcessFaultMessage">
 <wsdl:part name="payload" element="client:processFault"/>
</wsdl:message>

7. Edit the operation element in the WSDL file to add a fault.

<wsdl:operation name="process">
 <wsdl:input message="client:TestProcessRequestMessage" />
 <wsdl:output message="client:TestProcessResponseMessage"/>
 <wsdl:fault name="FaultResponse" message="
 client:TestProcessFaultMessage"/>
</wsdl:operation>

8. From the File menu, select Save.

12.3.3.2 Add a Fault Handler

To add a fault handler:

1. In the Applications window, expand SOA > BPEL.

2. Double-click TestProcess.bpel.

3. Click the Add Catch icon in the BPEL process to add a catch activity as the fault handler
for the BPEL process. You can also use a CatchAll activity. Figure 12-2 provides details.

Chapter 12
Introduction to the Business and Runtime Fault Categories of BPEL Faults

12-7

Figure 12-2 Add Catch Icon

4. Double-click the catch activity to specify the system fault. Figure 12-3 provides
details.

Figure 12-3 Catch Activity

There is no assert activity to trigger this system fault. You can add one to assert an
input field.

5. In the Namespace URI field, click the Browse icon.

The Fault Chooser dialog is displayed.

6. Select a system fault (for this example, assertFailure), and click OK. There are
many other system faults that can be selected. Figure 12-4 provides details.

Chapter 12
Introduction to the Business and Runtime Fault Categories of BPEL Faults

12-8

Figure 12-4 Fault Chooser Dialog

You are returned to the Edit Catch dialog.

7. In the Fault Variable field, click the Create Variable icon.

The Create Variable dialog is displayed.

A name of FaultVar and a variable of type RuntimeFaultMessage are created.
Figure 12-5 provides details.

Figure 12-5 Create Variable Dialog

8. Copy the RuntimeFault.wsdl file into the SOA > WSDLs folder. This is the same
location as the BPEL process WSDL file.

9. Click OK, and then click OK in the Edit Catch dialog.

12.3.3.3 Create a Fault Response Variable

To create a fault response variable:

1. In the Structure window, right-click the Variables folder and select Create Variable.

2. In the Name field, enter Faultresponse.

3. Select Message Type.

4. For the Message Type field, click the Browse icon.

Chapter 12
Introduction to the Business and Runtime Fault Categories of BPEL Faults

12-9

5. Expand Message Types > Project WSDL Files > TestProcess.wsdl > Message
Types > TestProcessFaultMessage, and click OK. Figure 12-6 provides details.

Figure 12-6 Type Chooser Dialog

6. In the Create Variable dialog, click OK.

12.3.3.4 Add an Assign Activity to the Catch Activity Branch

To add an assign activity to the catch activity branch:

1. Drag an assign activity into the catch activity block.

2. Double-click the assign activity.

3. Concatenate the code, summary, and detail fields of the FaultVar variable to the
FaultResponse variable, and click OK. Figure 12-7 provides details.

Chapter 12
Introduction to the Business and Runtime Fault Categories of BPEL Faults

12-10

Figure 12-7 Edit Assign Dialog

4. In the Name field of the General tab, enter a name (for this example,
FaultDataForClient).

12.3.3.5 Add a Reply Activity to the Catch Activity Branch

To add a reply activity to the catch activity branch:

1. Drag a Reply activity below the Assign activity in the catch activity block.

2. Double-click the Reply activity.

3. In the Namespace URI field, click the Browse icon.

The Fault Chooser dialog is displayed.

4. Expand Project WSDL Files > TestProcess.wsdl, and select the fault named
FaultResponse. Figure 12-8 provides details.

Figure 12-8 Fault Chooser Dialog

5. In the Name field, enter a name (for this example, ReplyWithFault).

6. In the Partner Link field, click the Browse icon.

The Partner Link Chooser dialog is displayed.

7. Select the same partner link to which the replyOutput reply activity is connected, and
click OK.

Chapter 12
Introduction to the Business and Runtime Fault Categories of BPEL Faults

12-11

8. For the Variable field, click the Browse icon.

The Variable Chooser dialog is displayed.

9. Select the FaultResponse variable, and click OK.

Figure 12-9 Variable Chooser Dialog

10. In the Edit Reply dialog, click OK.

The BPEL process looks as shown in Figure 12-10. Both reply activities are
connected to the same partner link.

Figure 12-10 BPEL Process Design

12.4 Handling Faults with the Fault Management Framework
Oracle SOA Suite provides a generic fault management framework for handling faults
in BPEL processes. If a fault occurs during runtime in an invoke activity in a process,
the framework catches the fault and performs a user-specified action defined in a fault
policy file associated with the composite or component. Fault policies are applicable to
the faults that result from the invoke activity. Faults can occur because of preassertion,
postassertion, invocation, or actual business failures in the target service.

If a fault results in a condition in which human intervention is the prescribed action, you
perform recovery actions from Oracle Enterprise Manager Fusion Middleware Control.
The fault management framework provides an alternative to designing a BPEL
process with catch activities in scope activities.

Chapter 12
Handling Faults with the Fault Management Framework

12-12

This section provides an overview of the components that comprise the fault management
framework.

• The fault management framework catches all faults (business and runtime) for an invoke
activity.

• A fault policy file defines fault conditions and their corresponding fault recovery actions.
Each fault condition specifies a particular fault or group of faults, which it attempts to
handle, and the corresponding action for it. A set of actions is identified by an ID in the
fault policy file.

• A set of conditions invokes an action (known as a fault policy).

• Email or JMS notify users of errors associated with a condition.

• A fault policy bindings file associates the policies defined in the fault policy file with the
following:

– SOA composite applications

– BPEL process and Oracle Mediator service components

– Reference binding components for BPEL processes and Oracle Mediator service
components

The framework looks for fault policy bindings in the same directory as the composite.xml
file of the SOA composite application or in a remote location identified by two properties
that you set. The remote location is in the MDS Repository.

Note:

A fault policy configured with the fault management framework overrides any
fault handling defined in catch activities of scope activities in the BPEL process.
The fault management framework can be configured to rethrow the fault
handling back to the catch activities.

• The fault policy file (fault-policies.xml) and fault policy bindings file (fault-
bindings.xml) are placed in either of the following locations:

– In the same directory as the composite.xml file of the SOA composite application.

– In a different location that is specified with two properties that you add to the
composite.xml file. This option is useful if a fault policy must be used by multiple
SOA composite applications. This option overrides any fault policy files that are
included in the same directory as the composite.xml file. The following example
provides details about these two properties. In this example, the fault policy files are
placed into the SOA part of the Oracle Metadata Services (MDS) Repository shared
area.

<property
 name="oracle.composite.faultPolicyFile">oramds:/apps/faultpolicyfiles/
 fault-policies.xml
</property>
<property
 name="oracle.composite.faultBindingFile">oramds:/apps/faultpolicyfiles/
 fault-bindings.xml
</property>

For details about Oracle Mediator fault handling capabilities, see Using Error Handling .

Chapter 12
Handling Faults with the Fault Management Framework

12-13

For details about creating a fault policy with Oracle Business Process Management
(BPM) Suite, see Chapter "Using Fault Handling in BPM" of Developing Business
Processes with Oracle Business Process Management Studio.

12.4.1 Understanding How the Fault Policy Binding Resolution Works
A fault policy bindings file associates the policies defined in a fault policy file with the
SOA composite application or the component (service component or reference binding
component). The framework attempts to identify a fault policy binding in the following
order:

• Reference binding component defined in the composite.xml file.

• BPEL process or Oracle Mediator service component defined in the
composite.xml file.

• SOA composite application defined in the composite.xml file.

During the resolution process, if no action is found that matches the condition, the
framework assumes that resolution failed and moves to the next resolution level.

For example, assume an invoke activity faults with faultname="abc". There is a policy
binding specified in the fault-bindings.xml file:

• SOA composite application binds to policy-id-1
• BPEL process or Oracle Mediator service component or reference binding

component binds to policy-id-2
In the fault-bindings.xml file, the following bindings are also specified:

• SOA composite application binds to policy-id-3
• Reference binding component or service component binds to policy-id-4
The fault management framework behaves as follows:

• First match the resolve binding (in this case, policy-id-4).

• If the fault resolution fails, go to the next possible match (policy-id-2).

• If the fault resolution fails, go to the next possible match (policy-id-3).

• If the fault resolution fails, go to the next possible match (in this case, policy-
id-1).

• If the fault resolution still fails, the fault is sent to the BPEL fault catch activity.

12.4.2 How to Design a Fault Policy for Automated Fault Recovery
with the Fault Policy Wizard

You can design a fault policy with the Fault Policy wizard and associate the fault policy
with the fault policy binding file.

To design a fault policy for automated fault recovery with the Fault Policy
wizard:

1. From the Oracle JDeveloper main menu, select File > New > From Gallery.

2. In the Categories list, select SOA Tier > Faults.

Chapter 12
Handling Faults with the Fault Management Framework

12-14

3. In the Items list, select Fault Policy Document.

The Fault Policy Editor is displayed, as shown in Figure 12-11. A single fault policy with a
name of policy1 is initially displayed for configuration.

Figure 12-11 Fault Policy Editor When Initially Displayed

The Fault Policy Editor consists of several sections and tabs. It is recommended that you
configure the Fault Policy Editor in the following order:

• Properties tab

• Alerts tab

• Actions tab

• Fault policy name and fault handlers

• Association with the fault policy binding file

12.4.2.1 Step 1: Defining Property Sets
You first define property sets to associate with JMS alerts, which are defined in Step 2:
Defining Alerts. You can associate property sets configuration details such as JMS
destinations and connection factories with multiple JMS alerts. For example, for a JMS alert,
the destination and queue information and connection factory can be referenced by additional
JMS alerts configured in the fault policy.

Note:

You cannot create property sets for email alerts in this release.

1. Click the Properties tab. Table 12-1 provides details about available fields.

Chapter 12
Handling Faults with the Fault Management Framework

12-15

Table 12-1 Property Set Selections

For... Then...

Email alerts Email alerts do not support property sets for this release.

JMS queue alerts a. Click Add to specify the properties and values for JMS
alerts. The following properties and associated values
are required:

• jmsDestination: The JNDI name of the configured
queue or topic in which the alerts is queued/published.

• connectionFactory: JNDI name for the configured
connection factory to use.

Figure 12-12 shows a property set configured with JMS destination and
connection factory values.

Figure 12-12 JMS Property Set Configuration

For an example of a fully-defined fault policy file, including a defined JMS
propertySet section, see Step 4 of How to Manually Design a Fault Policy for
Automated Fault Recovery.

12.4.2.2 Step 2: Defining Alerts
1. Click the Alerts tab. Two types of notification alerts are supported:

• Email: Enables you to configure email recipients to receive alerts when a fault
occurs. You must also configure the same email recipients on the Mailer tab of
the Workflow Notification Properties page in Oracle Enterprise Manager
Fusion Middleware Control. For information, see Configuring Human Workflow
Notification Properties in Administering Oracle SOA Suite and Oracle
Business Process Management Suite.

• JMS: Enables you to enqueue the fault to a JMS queue or publish it to a JMS
topic. JMS header values can also be specified. The JMS notification can be
integrated with a third-party resolution system to handle faults. The third-party
resolution system dequeue and subscribes to the targeted queue and topic.
Further fine-graining is achieved by consuming messages based on the
header property values. The payload type of the JMS message is a text
message in XML format. You must also configure JMS queues and topics and
connection factories in Oracle WebLogic Server Administration Console. For
information, see Configuring Basic JMS System Resources in Administering
JMS Resources for Oracle WebLogic Server.

2. Click the Add icon. Table 12-2 provides details.

Chapter 12
Handling Faults with the Fault Management Framework

12-16

Table 12-2 Alert Selections

If You Select... Then...

email You can specify recipients to receive an email alert when a fault occurs.

a. In the ID field, specify an ID or accept the default value.

b. In the To and CC fields, specify the email recipients.

Note: Do not select any property sets from the Property Set list. The email
alert does not support property sets for this release.

c. When complete, click OK.

JMS You can specify queues to receive a JMS alert when a fault occurs.

Two properties are required for configuring a JMS alert.

• jmsDestination: The JNDI name of the configured queue or topic on
which the alert is queued and published.

• connectionFactory: The JNDI Name for the configured connection factory
to use.

a. In the ID field, specify an ID or accept the default value.

b. In the Property Set list, select an existing property set created in Step 1:
Defining Property Sets or click Create Required Properties to create a
new property set with values defined for jmsDestination and
connectionFactory.

c. In the Headers table, optionally specify JMS header values to achieve
finer-grained fault consumption for a JMS alert. Both standard and custom
external systems can filter their subscriptions based on the configured
header properties.

d. When complete, click OK.

Figure 12-13 shows email alert configuration in the Email Properties dialog.

Figure 12-13 Email Alert Configuration

Figure 12-14 shows JMS alert configuration in the JMS Properties dialog. For this
example, both property sets (defined by clicking Create Required Properties to invoke
the Property Set dialog) and headers are defined.

Chapter 12
Handling Faults with the Fault Management Framework

12-17

Figure 12-14 JMS Alert Configuration

For an example of a fully-defined fault policy file, including a defined Alerts
section, see Step 4 of How to Manually Design a Fault Policy for Automated Fault
Recovery.

12.4.2.3 Step 3: Defining Actions

• Click the Actions tab. By default, all types of actions are automatically selected.
Figure 12-15 provides details.

Figure 12-15 Actions Section of Fault Policy Editor

Table 12-3 describes the available action types.

Table 12-3 Supported Action Types

Action Description

Abort Terminates the entire business flow.

Chapter 12
Handling Faults with the Fault Management Framework

12-18

Table 12-3 (Cont.) Supported Action Types

Action Description

Human intervention Causes the current activity to stop processing. Human
intervention from Oracle Enterprise Manager Fusion
Middleware Control is required to handle the fault. For
information, see "Recovering from Faults in a Business Flow
Instance" of Administering Oracle SOA Suite and Oracle
Business Process Management Suite.

Java action: Enables you to execute an external Java class. For more
information, see How to Use a Java Action Fault Policy.

Replay scope Raises a replay fault.

Rethrow fault Sends the fault to the BPEL fault handlers (catch activities in
scope activities). If none are available, the fault is sent up.

Enqueue Enqueues a rejected message to a JMS queue as a JMS
message with the appropriate context and payload. For
additional configuration information, see Section "JMS
Queue" in Understanding Technology Adapters.

Invoke WS: Handles a rejected message by calling a web service. For
additional configuration information, see Section "Web
Service Handler" in Understanding Technology Adapters.

File action Creates an error handler for messages by storing a rejected
message in a file. For additional configuration information,
see Section "File" in Understanding Technology Adapters.

Retry Provides the following options for retrying the activity:

• Retry a specified number of times.
• Provide a delay between retries (in seconds).
• Increase the interval with an exponential back off.
• Chain to a retry failure action if retry N times fails.
For more information about retries, see Table 12-6.

For an example of a fault policy file with a defined Actions section, see Step 4 of How to
Manually Design a Fault Policy for Automated Fault Recovery.

12.4.2.4 Step 4: Defining Fault Names and Policies
1. Define the fault name, description, and default action of the fault policy in the upper

section of the Fault Policy Editor. Table 12-4 provides details.

Table 12-4 Fault Policy Editor - Upper Section

Element Description

Add Fault Policy
icon (upper left
corner)

You can also add additional fault policies for configuration to a single policy
document.

Click the Add icon in the upper left corner to add an additional fault policy. All
polices are then displayed in the column on the far left of the Fault Policy
Editor. You can click the policy that you want to define.

Delete Fault
Policy

Delete a selected fault policy.

Fault Policy Enter a name for the fault policy or accept the default name of policynumber.

Chapter 12
Handling Faults with the Fault Management Framework

12-19

Table 12-4 (Cont.) Fault Policy Editor - Upper Section

Element Description

Add Fault icon
(upper right
corner)

Click to add a fault.

Delete Fault Click to delete a fault.

Fault Name Select a standard type of fault to catch. This list shows the system faults
(binding, Oracle Mediator, or remote) or service (business) fault that you can
select.

Description Enter an optional description. The description is persisted into the audit trail
during runtime.

Default Action Perform the following tasks in this section:

a. From the list, select the default action to perform when this fault occurs (for
example, abort, rethrow, retry, and so on). The actions available for
selection are based on the actions you retained or deleted in Step 3:
Defining Actions.

or

a. Click the Add icon to add an if-then condition to the fault policy. This
selection displays the If, Then, and Default fields.

For example, if you specify a condition in the If field (the default is true),
you can select an action (for example, human intervention) to be invoked
in the Then field. If the condition is not true, you can select the default
action to occur (for example, abort) in the Default field.

b. In the If field, enter a condition or click the Expression Builder icon to
build an XPath expression condition.

c. In the Then field, specify the condition to invoke if the condition in the If
field evaluates to true.

d. In the Default field, specify the condition to invoke if the condition in the If
field evaluates to false.

e. Click the Alert icon to the left of the Add icon to select the type of alert to
send when this condition occurs. The alert types available for selection are
displayed in the Alerts tab in this dialog. You can specify multiple alerts on
a condition.

When complete, the Fault Policy Editor looks as shown in Figure 12-16.

Chapter 12
Handling Faults with the Fault Management Framework

12-20

Figure 12-16 Fault Policy Editor With Fault Name, Description, and Default
Actions Defined

2. Above the SOA Composite Editor, close the fault policy file, and click Yes when prompted
to save your changes. Figure 12-17 provides details.

Figure 12-17 Save Fault Policy Changes

Policy configuration is now complete. You are now ready to associate the fault policy with
the fault policy bindings.

12.4.2.5 Step 5: Defining the Fault Policy Bindings for the Fault Policy
After creating a fault policy with the Fault Policy wizard, you associate the fault policy with a
fault policy bindings file. The fault policy bindings file associates the policies defined in the
fault policy file with service components, service binding components, or reference binding
components in the SOA composite application.

1. Open the SOA Composite Editor.

2. Click the icon above the SOA Composite Editor to define the fault policy bindings for this
fault policy. Figure 12-18 provides details.

Figure 12-18 Fault Policy Binding Icon

The Composite Fault Policies dialog is displayed.

Chapter 12
Handling Faults with the Fault Management Framework

12-21

3. If you want to specify a different fault policy file (for example, one created in the file
directory or MDS Repository), click the Browse icon to the right of the Fault
Policy File field.

4. In the Policy column for the SOA composite application, service binding
component, or reference binding component, select the fault policy to attach.
Figure 12-19 provides details.

Figure 12-19 Composite Fault Policies Dialog

5. In the SOA folder in the Applications window, select the fault-bindings.xml file
to view its contents. Figure 12-20 provides details.

Figure 12-20 Selection of fault-bindings.xml File

The file looks as shown in Figure 12-21.

Chapter 12
Handling Faults with the Fault Management Framework

12-22

Figure 12-21 fault-bindings.xml file

12.4.3 How to Manually Design a Fault Policy for Automated Fault
Recovery

This section describes how to manually design a fault policy. The recommended approach is
to design a fault policy with the Fault Policy wizard, as described in How to Design a Fault
Policy for Automated Fault Recovery with the Fault Policy Wizard.

12.4.3.1 Manually Creating a Fault Policy File for Automated Fault Recovery

To manually create a fault policy file for automated fault recovery:

1. Create a fault policy file (for example, named fault-policies.xml). This file includes
condition and action sections for performing specific tasks.

2. Place the file in the same directory as the composite.xml file or place it in a different
location and define the oracle.composite.faultPolicyFile property.

<property
 name="oracle.composite.faultPolicyFile">oramds:/apps/faultpolicyfiles/
 fault-policies.xml
</property>
<property
 name="oracle.composite.faultBindingFile">oramds:/apps/faultpolicyfiles/
 fault-bindings.xml
</property>

If the fault policy file is located in a file system, use the following format.

<property
name="oracle.composite.faultPolicyFile">file:/project/apps/fault-policies.xml
</property>

3. Define the condition section of the fault policy file.

• Note the following details about the condition section:

– This section provides a condition based on faultName.

– Multiple conditions may be configured for a faultName.

– Each condition has one test section (an XPath expression) and one action
section.

Chapter 12
Handling Faults with the Fault Management Framework

12-23

– The test section (XPath expression) is evaluated for the fault variable
available in the fault.

– The action section has a reference to the action defined in the same file.

– You can only query the fault variable available in the fault.

– The order of condition evaluation is determined by the sequential order in
the document.

– You can associate a single or multiple alerts with a condition to be
delivered (by email, JMS queue, or log file) when a specific error condition
occurs.

Table 12-5 provides examples of the condition section in the fault policy file.
All actions defined in the condition section must be associated with an action
in the action section.

Table 12-5 Use of the condition Section in the Fault Policy File

Condition Example Fault Policy File Syntax

This condition is checking a fault
variable for code =
"WSDLFailure"
An action of ora-terminate is
specified.

<condition>
 <test>$fault.code="WSDLReading Error"
 </test>
 <action ref="ora-terminate"/>
</condition>

No test condition is provided.
This is a catchAll condition for a
given faultName.

<condition>
 <action ref="ora-rethrow"/>
</condition>

Two user notification alerts are
defined for the condition. Select
the type of user notification alert
to create when a fault occurs (for
example, an email alert, a JMS
queue alert, or a log file alert).

<condition>
 <alert ref = "ora-jms"/>
 <alert ref = "ora-email"/>
 <action ref="ora-rethrow"/>
</condition>

If the faultName name attribute
is missing, this indicates a
catchAll activity for faults that
have any QName.

<faultName > . . . </faultName>

4. Define the action section of the fault policy file. Validation of fault policy files is
done during deployment. If you change the fault policy, you must redeploy the
SOA composite application that includes the fault policy.

Table 12-6 provides several examples of the action section in the fault policy file.
You can provide automated recovery actions for some faults. In all recovery
actions except retry and human intervention, the framework performs the actions
synchronously.

Chapter 12
Handling Faults with the Fault Management Framework

12-24

Table 12-6 Use of action Section in the Fault Policy File

Recovery Actions Fault Policy File Syntax

Retry: Provides the following actions
for retrying the activity.

• Retry a specified number of
times.

• Provide a delay between retries
(in seconds).

• Increase the interval with an
exponential back off.

• Chain to a retry failure action if
retry N times fails.

• Chain to a retry success action if
a retry is successful.

Note: Exponential back off indicates
that the next retry attempt is
scheduled at 2 x the delay, where
delay is the current retry interval. For
example, if the current retry interval is
2 seconds, the next retry attempt is
scheduled at 4, the next at 8, and the
next at 16 seconds until the
retryCount value is reached.

<Action id="ora-retry">
 <Retry>
 <retryCount>3</retryCount>
 <retryInterval>2</retryInterval>
 <exponentialBackoff/>
 <retryFailureAction ref="ora-java"/>
 <retrySuccessAction ref="ora-java"/>
 </Retry>
</Action>

Note the following details:

• The framework chains to the retry success action if the retry attempt is
successful.

• If all retry attempts fail, the framework chains to the retry failure action.

Human Intervention: Causes the
current activity to stop processing.
You can now go to Oracle Enterprise
Manager Fusion Middleware Control
and perform manual recovery actions
on this instance.

<Action id="ora-human-intervention">
 <humanIntervention/></Action>

Terminate Process: Terminates the
process

<Action id="ora-terminate"><abort/></Action>

Java Code: Enables you to execute
an external Java class.

returnValue: The implemented
Java class must implement a method
that returns a string. The policy can
chain to a new action based on the
returned string.

For additional information, see How
to Use a Java Action Fault Policy.

<Action id="ora-java">
<!-- this is user provided custom java
 class-->
<javaAction className="mypackage.myClass"
 defaultAction="ora-terminate">
 <returnValue value="REPLAY"
 ref="ora-terminate"/>
 <returnValue value="RETRHOW"
 ref="ora-rethrow-fault"/>
 <returnValue value="ABORT"
 ref="ora-terminate"/>
 <returnValue value="RETRY" ref="ora-retry"/>
 <returnValue value="MANUAL"
 ref="ora-human-intervention"/>
</javaAction>
</Action>

Rethrow Fault: The framework sends
the fault to the BPEL fault handlers
(catch activities in scope activities). If
none are available, the fault is sent
up.

<Action id="ora-rethrow-fault"><rethrowFault/></Action>

Chapter 12
Handling Faults with the Fault Management Framework

12-25

Table 12-6 (Cont.) Use of action Section in the Fault Policy File

Recovery Actions Fault Policy File Syntax

Replay Scope: Raises a replay fault. <Action id="ora-replay-scope"><replayScope/></Action>

Note:

The preseeded recovery action tag names (ora-retry, ora-human-
intervention, ora-terminate, and so on) are only samples. You can
substitute these names with ones appropriate to your environment.

A fault policy file with fully-defined condition, action, and alert sections looks as
follows:

Note:

• Fault policy file names are not restricted to one specific name. However,
they must conform to the fault-policy.xsd schema file.

• This fault policy file provides an example of catching faults based on fault
names. You can also catch faults based on message types, or on both:

<faultName name="myfault" type="fault:faultType">

<?xml version="1.0" encoding="UTF-8"?>
<faultPolicies xmlns="http://schemas.oracle.com/bpel/faultpolicy"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <faultPolicy version="2.0.1" id="ModifyAndRecover"
 xmlns:env="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns="http://schemas.oracle.com/bpel/faultpolicy"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <Conditions>
 <!-- Handle remoteFault system exceptions -->
 <faultName xmlns:bpelx="http://schemas.oracle.com/bpel/extension"
 name="bpelx:remoteFault">
 <condition>
 <!--<test>$fault.code="1"</test>-->
 <alert ref = "ora-jms"/>
 <alert ref = "ora-email"/>
 <action ref="default-human-intervention"/>
 </condition>
 </faultName>
 <faultName xmlns:bpelx="http://schemas.oracle.com/bpel/extension"
 name="bpelx:bindingFault">
 <condition>
 <action ref="default-human-intervention"/>
 </condition>
 </faultName> </Conditions>
 <Alerts>
 <Alert id="ora-email">

Chapter 12
Handling Faults with the Fault Management Framework

12-26

 <email>
 <To>joe.smith@example.com</To>
 <CC>joe.smith@example.com</CC>
 </email>
 </Alert>
 <Alert id="ora-jms">
 <JMS propertySet="jms-props">
 <Headers>
 <property name="correlationId">myvalue</property>
 <property name="correlationId1">myvalue1</property>
 </Headers>
 </JMS>
 </Alert>
 </Alerts>
 <Actions>
 <!-- Generics -->
 <Action id="default-terminate">
 <abort/>
 </Action>
 <Action id="default-replay-scope">
 <replayScope/>
 </Action>
 <Action id="default-rethrow-fault">
 <rethrowFault/>
 </Action>
 <Action id="default-human-intervention">
 <humanIntervention/>
 </Action>
 <Action id="ora-retry-with-human-intervention">
 <retry>
 <retryCount>1</retryCount>
 <retryInterval>2</retryInterval>
 <exponentialBackoff/>
 <retryFailureAction ref="default-terminate"/>
 </retry>
 </Action>
 </Actions>
 <Properties>
 <propertySet name="jms-props">
 <property name="jmsDestination">MyQueue</property>
 <property
 name="connectionFactory">jms/fabric/ehconnectionfactory</property>
 </propertySet>
 </Properties>
 </faultPolicy>
</faultPolicies>

12.4.3.2 Associating a Fault Policy with Fault Policy Binding

Note:

The fault policy binding file must be named fault-bindings.xml. This conforms to
the fault-bindings.xsd schema file.

Chapter 12
Handling Faults with the Fault Management Framework

12-27

To associate a fault policy with fault policy binding:

1. Create a fault policy binding file (fault-bindings.xml) that associates the policies
defined in the fault policy file with the level of fault policy binding you are using
(either a SOA composite application or a component (reference binding
component or BPEL process or Oracle Mediator service component).

2. Place the file in the same directory as the composite.xml file or place it in a
remote location and define the oracle.composite.faultBindingFile property as
shown in Step 2 of Manually Creating a Fault Policy File for Automated Fault
Recovery.

This fault policy bindings file associates the fault policies defined in the fault-
policies.xml file.

<?xml version="1.0" encoding="UTF-8" ?>
<faultPolicyBindings version="0.0.1"
 xmlns="http://schemas.oracle.com/bpel/faultpolicy"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <composite faultPolicy="FusionMidFaults"/>
 <!--<composite faultPolicy="ServiceExceptionFaults"/>-->
 <!--<composite faultPolicy="GenericSystemFaults"/>-->
</faultPolicyBindings>

12.4.3.3 Additional Fault Policy and Fault Policy Binding File Samples
This section provides additional samples of fault policy and fault policy binding files.
The following example shows the fault-policies.xml file contents.

<?xml version="1.0" encoding="UTF-8"?>
<faultPolicies xmlns="http://schemas.oracle.com/bpel/faultpolicy">
<faultPolicy version="2.0.1"
 id="CRM_ServiceFaults"
 xmlns:env="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns="http://schemas.oracle.com/bpel/faultpolicy"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <Conditions>
 <!-- Fault if wsdlRuntimeLocation is not reachable -->
 <faultName xmlns:bpelx="http://schemas.oracle.com/bpel/extension"
 name="bpelx:remoteFault">
 <condition>
 <test>$fault.code="WSDLReadingError"</test>
 <action ref="ora-terminate"/>
 </condition>
 <condition>
 <action ref="ora-java"/>
 </condition>
 </faultName>
 <!-- Fault if location port is not reachable-->
 <faultName xmlns:bpelx="http://schemas.oracle.com/bpel/extension"
 name="bpelx:bindingFault">
 <!--ORA-00001: unique constraint violated on insert-->
 <condition>
 <test>$fault.code="1"</test>
 <action ref="ora-java"/>
 </condition>
 <!--ORA-01400: cannot insert NULL -->
 <condition>

Chapter 12
Handling Faults with the Fault Management Framework

12-28

 <test xmlns:test="http://test">$fault.code="1400"</test>
 <action ref="ora-terminate"/>
 </condition>
 <!--ORA-03220: required parameter is NULL or missing -->
 <condition>
 <test>$fault.code="3220"</test>
 <action ref="ora-terminate"/>
 </condition>
 <condition>
 <action ref="ora-retry-crm-endpoint"/>
 </condition>
 </faultName>
 <!-- Business faults -->
 <!-- Fault comes with a payload of error, make sure the name space is
 provided here or at root level -->
 <faultName xmlns:credit="http://services.otn.com"
 name="credit:NegativeCredit">
 <!-- you get this fault when SSN starts with 0-->
 <condition>
 <test>$fault.payload="Bankruptcy Report"</test>
 <alert ref = "ora-email"/>
 <action ref="ora-human-intervention"/>
 <!--action ref="ora-retry"/-->
 </condition>
 <!-- you get this fault when SSN starts with 1-->
 <condition>
 <test>$fault.payload="Bankruptcy Report-abort"</test>
 <action ref="ora-terminate"/>
 </condition>
 <!-- you get this fault when SSN starts with 2-->
 <condition>
 <test>$fault.payload="Bankruptcy Report-rethrow"</test>
 <action ref="ora-rethrow-fault"/>
 </condition>
 <!-- you get this fault when SSN starts with 3-->
 <condition>
 <test>$fault.payload="Bankruptcy Report-replay"</test>
 <action ref="ora-replay-scope"/>
 </condition>
 <!-- you get this fault when SSN starts with 4-->
 <condition>
 <test
 xmlns:myError="http://services.otn.com">$fault.payload="Bankruptcy
 Report-human"</test>
 <action ref="ora-human-intervention"/>
 </condition>
 <!-- you get this fault when SSN starts with 5-->
 <condition>
 <test>$fault.payload="Bankruptcy Report-java"</test>
 <action ref="ora-java"/>
 </condition>
 </faultName>
 </Conditions>
 <Actions>
 <Action id="ora-retry">
 <retry>
 <retryCount>3</retryCount>
 <retryInterval>2</retryInterval>
 <exponentialBackoff/>
 <retryFailureAction ref="ora-java"/>
 <retrySuccessAction ref="ora-java"/>

Chapter 12
Handling Faults with the Fault Management Framework

12-29

 </retry>
 </Action>
 <Action id="ora-retry-crm-endpoint">
 <retry>
 <retryCount>5</retryCount>
 <retryFailureAction ref="ora-java"/>
 <retryInterval>5</retryInterval>
 <retrySuccessAction ref="ora-java"/>
 </retry>
 </Action>
 <Action id="ora-replay-scope">
 <replayScope/>
 </Action>
 <Action id="ora-rethrow-fault">
 <rethrowFault/>
 </Action>
 <Action id="ora-human-intervention">
 <humanIntervention/>
 </Action>
 <Action id="ora-terminate">
 <abort/>
 </Action>
 <Action id="ora-java">
 <!-- this is user provided class-->
 <javaAction
 className="com.oracle.bpel.client.config.faultpolicy.TestJavaAction"
 defaultAction="ora-terminate" propertySet="prop-for-billing">
 <returnValue value="REPLAY" ref="ora-terminate"/>
 <returnValue value="RETRHOW" ref="ora-rethrow-fault"/>
 <returnValue value="ABORT" ref="ora-terminate"/>
 <returnValue value="RETRY" ref="ora-retry"/>
 <returnValue value="MANUAL" ref="ora-human-intervention"/>
 </javaAction>
 </Action>
 </Actions>
 <Properties>
 <propertySet name="prop-for-billing">
 <property name="user_email_recipient">bpeladmin</property>
 <property name="email_recipient">joe@abc.com</property>
 <property name="email_recipient">mike@xyz.com</property>
 <property name="email_threshold">10</property>
 <property name="sms_recipient">+429876547</property>
 <property name="sms_recipient">+4212345</property>
 <property name="sms_threshold">20</property>
 <property name="user_email_recipient">john</property>
 </propertySet>
 <propertySet name="prop-for-order">
 <property name="email_recipient">john@abc.com</property>
 <property name="email_recipient">jill@xyz.com</property>
 <property name="email_threshold">10</property>
 <property name="sms_recipient">+42222</property>
 <property name="sms_recipient">+423335</property>
 <property name="sms_threshold">20</property>
 </propertySet>
 </Properties>
</faultPolicy>
<faultPolicy version="2.0.1"
 id="Billing_ServiceFaults"
 xmlns:env="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:xs="http://www.w3.org/2001/XMLSchema"

Chapter 12
Handling Faults with the Fault Management Framework

12-30

 xmlns="http://schemas.oracle.com/bpel/faultpolicy"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
<Conditions>
 <faultName>
 <condition>
 <action ref="ora-manual"/>
 </condition>
 </faultName>
</Conditions>
<Actions>
 <Action id="ora-manual">
 <humanIntervention/>
 </Action>
</Actions>
</faultPolicy>
</faultPolicies>

The following example shows the fault-bindings.xml file that associates the fault policies
defined in fault-policies.xml.

<?xml version="1.0" encoding="UTF-8"?>
<faultPolicyBindings version="2.0.1"
 xmlns="http://schemas.oracle.com/bpel/faultpolicy"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <composite faultPolicy="ConnectionFaults"/>
 <component faultPolicy="ServiceFaults">
 <name>Component1</name>
 <name>Component2</name>
 </component>
 <!-- Below listed component names use polic CRM_SeriveFaults -->
 <component faultPolicy="CRM_ServiceFaults">
 <name>HelloWorld</name>
 <name>ShippingComponent</name>
 <name>AnotherComponent"</name>
 </component>
 <!-- Below listed reference names and port types use polic CRM_ServiceFaults
 -->
 <reference faultPolicy="CRM_ServiceFaults">
 <name>creditRatingService</name>
 <name>anotherReference</name>
 <portType
 xmlns:credit="http://services.otn.com">credit:CreditRatingService</portType>
 <portType
 xmlns:db="http://xmlns.oracle.com/pcbpel/adapter/db/insert/">db:insert_
plt</portType>
 </reference>
 <reference faultPolicy="test1">
 <name>CreditRating3</name>
 </reference>
</faultPolicyBindings>

12.4.3.4 Designing a Fault Policy with Multiple Rejection Handlers
If you design a fault policy that uses the action handler for rejected messages, note that only
one write action can be performed. Multiple write actions cannot be performed, even if you
define multiple rejection handlers, as shown in the following example. In this case, only the
first rejection handler defined (for this example, ora-queue) is executed.

<faultName xmlns:rjm="http://schemas.oracle.com/sca/rejectedmessages"
name="rjm:FileIn">

Chapter 12
Handling Faults with the Fault Management Framework

12-31

 <condition>
 <action ref="ora-queue"/>
 </condition>
 </faultName>
 <faultName xmlns:rjm="http://schemas.oracle.com/sca/rejectedmessages"
name="rjm:FileIn">
 <condition>
 <action ref="ora-file"/>
 </condition>
 </faultName>

12.4.4 How to Execute a Fault Policy
You deploy a fault policy as part of a SOA composite application. After deployment,
you can perform the fault recovery actions from Oracle Enterprise Manager Fusion
Middleware Control. Actions such as terminate, retry, rethrow, and Java are retried as
part of composite execution. No explicit user execution is required. The human
intervention action can be manually executed in Oracle Enterprise Manager Fusion
Middleware Control.

• Retry the activity

• Modify a variable (available to the faulted activity)

• Continue the instance (mark the activity as a success)

• Rethrow the exception

• Abort the instance

• Throw a replay scope exception

For additional information, see Administering Oracle SOA Suite and Oracle Business
Process Management Suite.

12.4.5 How to Use a Java Action Fault Policy
Note the following details when using the Java action fault policy:

• The Java class provided follows a specific interface. This interface returns a string.
Multiple values can be provided for output and the fault policy to take after
execution.

• Additional fault policy can be executed by providing a mapping from the output
value (return value) of implemented methods to a fault policy.

• If no ReturnValue is specified, the default fault policy is executed, as shown in the
following example.

<Action id="ora-java">
 <javaAction className="mypackage.myclass"
 defaultAction="ora-human-intervention" propertySet="prop-for-billing">
 <!--defaultAction is a required attribute, but propertySet is optional-->
 <!-- attribute-->
 <ReturnValue value="RETRY" ref="ora-retry"/>
 <!--value is not nilable attribute & cannot be empty-->
 <ReturnValue value="RETRHOW" ref="ora-rethrow-fault"/>
 </javaAction>
</Action>

Table 12-7 provides an example of ReturnValue use.

Chapter 12
Handling Faults with the Fault Management Framework

12-32

Table 12-7 System Interpretation of Java Action Fault Policy

Code Description

<ReturnValue value="RETRY"
 ref="ora-retry"/>

Execute the ora-retry action if the method returns a
string of RETRY.

<ReturnValue value=""
 ref="ora-rethrow"/>

Fails in validation.

<javaAction
 className="mypackage.myclass"
 defaultAction="ora-human-
intervention">

Execute ora-human-intervention after Java code
execution. This attribute is used if the return value
from the method does not match any provided
ReturnValue.

<ReturnValue value="RETRY"
 ref="ora-retry"/>
<ReturnValue value="" ref=""/>

Fails in validation.

<javaAction
 className="mypackage.myclass"
 defaultAction=" ora-human-
intervention">
<ReturnValue></ReturnValue>

Fails in validation.

To invoke a Java class, you can provide a class that implements the
IFaultRecoveryJavaClass interface. IFaultRecoveryJavaClass is included in the fabric-
runtime.jar file. The package name is oracle.integration.platform.faultpolicy.

The IFaultRecoveryJavaClass interface has two methods, as shown in the following
example:

public interface IFaultRecoveryJavaClass
{
public void handleRetrySuccess(IFaultRecoveryContext ctx);
public String handleFault(IFaultRecoveryContext ctx);
}

Note the following details:

• handleRetrySuccess is invoked upon a successful retry attempt. The retry policy chains
to a Java action on retrySuccessAction.

• handleFault is invoked to execute a policy of type javaAction.

• The fault policy class is packaged and deployed in either of two ways:

– Package the Java class with the SOA composite application.

– If the Java class must be shared by multiple SOA composite applications, place it in
the shared location (for example, $MW_HOME/soa/soa/ modules/
oracle.soa.ext_11.1.1). The shared location includes a readme file that describes
how to place the Java class to make it available in the class path.

The following example shows the data available with IFaultRecoveryContext:

Chapter 12
Handling Faults with the Fault Management Framework

12-33

public interface IFaultRecoveryContext {

/**
 * Gets implementation type of the fault.
 * @return
 */
public String getType();

/**
 * @return Get property set of the fault policy action being executed.
 */
public Map getProperties();

/**
 * @return Get fault policy id of the fault policy being executed.
 */
public String getPolicyId();

/**
 * @return Name of the faulted partner link.
 */
public String getReferenceName();

/**
 * @return Port type of the faulted reference .
 */
public QName getPortType();
}

The service engine implementation of this interface provides more information (for
example, Oracle BPEL Process Manager). The following example provides details:

public class BPELFaultRecoveryContextImpl extends BPELXExecLetUtil implements
IBPELFaultRecoveryContext, IFaultRecoveryContext{
...
}

Oracle BPEL Process Manager-specific data is available with
IBPELFaultRecoveryContext, as shown in the following example:

public interface IBPELFaultRecoveryContext {
public void addAuditTrailEntry(String message);

public void addAuditTrailEntry(String message, Object detail);

public void addAuditTrailEntry(Throwable t);
/**
 * @return Get action id of the fault policy action being executed.
 */
public String getActionId();

/**
 * @return Type of the faulted activity.
 */
public String getActivityId();

/**
 * @return Name of the faulted activity.
 */
public String getActivityName();

Chapter 12
Handling Faults with the Fault Management Framework

12-34

/**
 * @return Type of the faulted activity.
 */
public String getActivityType();

/**
 * @return Correleation id of the faulted activity.
 */
public String getCorrelationId();

/**
 * @return BPEL fault that caused the invoke to fault.
 */
public BPELFault getFault();

/**
 * @return Get index value of the instance
 */
public String getIndex(int i);

/**
 * @return get Instance Id of the current process instance of the faulted
 * activity.
 */
public long getInstanceId();

/**
 * @return Get priority of the current process instance of the faulted
 * activity.
 */
public int getPriority();

/**
 * @return Process DN.
 */
public ComponentDN getProcessDN();

/**
 * @return Get status of the current process instance of the faulted
 * activity.
 */
public String getStatus();

/**
 * @return Get title of the current process instance of the faulted
 * activity.
 */
public String getTitle();

public Object getVariableData(String name) throws BPELFault;

public Object getVariableData(String name, String partOrQuery)
throws BPELFault;

public Object getVariableData(String name, String part, String query)
throws BPELFault;

/**
 * @param priority
 * Set priority of the current process instance of the faulted
 * activity.

Chapter 12
Handling Faults with the Fault Management Framework

12-35

 * @return
 */
public void setPriority(int priority);

/**
 * @param status
 * Set status of the current process instance of the faulted
 * activity.
 */
public void setStatus(String status);

/**
 * @param title
 * Set title of the current process instance of the faulted
 * activity.
 * @return
 */
public String setTitle(String title);

public void setVariableData(String name, Object value) throws BPELFault;

public void setVariableData(String name, String partOrQuery, Object value)
throws BPELFault;

public void setVariableData(String name, String part, String query,
Object value) throws BPELFault;
}

The following example provides an example of javaAction implementation.

public class TestJavaAction implements IFaultRecoveryJavaClass {
public void handleRetrySuccess(IFaultRecoveryContext ctx) {
System.out.println("This is for retry success");
handleFault(ctx);
}
public String handleFault(IFaultRecoveryContext ctx) {
System.out.println("-----Inside handleFault-----\n" + ctx.toString());

 dumpProperties(ctx.getProperties());
/* Get BPEL specific context here */
BPELFaultRecoveryContextImpl bpelCtx = (BPELFaultRecoveryContextImpl) ctx;
bpelCtx.addAuditTrailEntry("hi there");
System.out.println("Policy Id" + ctx.getPolicyId());
 ...
 }

12.4.6 How to Design Fault Policies for Oracle BPM Suite
You can design and execute fault policies for Oracle BPM Suite. For more information,
see Chapter "Using Fault Handling in BPM" of Developing Business Processes with
Oracle Business Process Management Studio.

12.4.7 What You May Need to Know About Designing a Fault Policy in
a Synchronous BPEL Process

When designing a fault policy in a synchronous process, do not specify the following
actions. These actions cause dehydration in a synchronous process and leads to
timeouts.

Chapter 12
Handling Faults with the Fault Management Framework

12-36

• Retry

• Human intervention

• Terminate

12.4.8 What You May Need to Know About Fault Management Behavior
When the Number of Instance Retries is Exceeded

When you configure a fault policy to recover instances with the ora-retry action and the
number of specified instance retries is exceeded, the instance is marked as open.faulted
(in-flight state). The instance remains active.

Marking instances as open.faulted ensures that no instances are lost. You can then
configure another fault handling action following the ora-retry action in the fault policy file,
such as the following:

• Configure an ora-human-intervention action to manually perform instance recovery
from Oracle Enterprise Manager Fusion Middleware Control.

• Configure an ora-terminate action to close the instance (mark it as closed.faulted)
and never retry again.

However, if you do not set an action to be performed after an ora-retry action in the fault
policy file and the number of instance retries is exceeded, the instance remains marked as
open.faulted, and recovery attempts to handle the instance.

For example, if no action is defined in the fault policy file shown in the following code after
ora-retry:

<Action id="ora-retry">
 <retry>
 <retryCount>2</retryCount>
 <retryInterval>2</retryInterval>
 <exponentialBackoff/>
 </retry>
 </Action>

The following actions are performed:

• The invoke activity is attempted (using the above-mentioned fault policy code to handle
the fault).

• Two retries are attempted at increasing intervals (after two seconds, then after four
seconds).

• If all retry attempts fail, the following actions are performed:

– A detailed fault error message is logged in the audit trail.

– The instance is marked as open.faulted (in-flight state).

– The instance is picked up and the invoke activity is re-attempted.

• Recovery may also fail. In that case, the invoke activity is re-executed. Additional audit
messages are logged.

Chapter 12
Handling Faults with the Fault Management Framework

12-37

12.4.9 What You May Need to Know About Binding Level Retry
Execution Within Fault Policy Retries

If you are testing retry actions on adapters with both JCA-level retries for the outbound
direction and a retry action in the fault policy file for outbound failures, the JCA-level
(or binding level) retries are executed within the fault policy retries. For example,
assume you have designed the application shown in Figure 12-22:

Figure 12-22 SOA Composite Application

You specify the retry parameters, as shown below, in the composite.xml file:

<property name="jca.retry.count" type="xs:int" many="false"
 override="may">2</property>
<property name="jca.retry.interval" type="xs:int" many="false"
 override="may">2</property>
<property name="jca.retry.backoff" type="xs:int" many="false"
 override="may">2</property>

In the fault policy file for the EQ reference binding component for the outbound
direction, you specify the actions shown in the following code:

<retryCount>3</retryCount>
<retryInterval>3</retryInterval>

If an outbound failure occurs, the expected behavior is for the JCA retries to occur
within the fault policy retries. When the first retry of the fault policy is executed, the
JCA retry is called. In this example, a JCA retry of 2 with an interval of 2 seconds and
exponential back off of 2 is executed for every retry of the fault policy:

• Fault policy retry 1:

– JCA retry 1 (with 2 seconds interval)

– JCA retry 2 (with 4 seconds interval)

• Fault policy retry 2:

– JCA retry 1 (with 2 seconds interval)

– JCA retry 2 (with 4 seconds interval)

• Fault policy retry 3:

– JCA retry 1 (with 2 seconds interval)

– JCA retry 2 (with 4 seconds interval)

Chapter 12
Handling Faults with the Fault Management Framework

12-38

12.5 Catching BPEL Runtime Faults
BPEL runtime faults can be caught as a named BPEL fault. The bindingFault and
remoteFault can be associated with a message. This action enables the faultHandler to get
details about the faults.

12.5.1 How to Catch BPEL Runtime Faults
The following procedure shows how to use the provided examples to generate a fault and
define a fault handler to catch it. In this case, you modify a WSDL file to generate a fault, and
create a catch attribute to catch it.

To catch BPEL runtime faults:

1. Import RuntimeFault.wsdl into your process WSDL. RuntimeFault.wsdl is seeded into
the MDS Repository from soa.mar inside soa-infra-wls.ear during its deployment.

You may see a copy of soa.mar in the deployed SOA Infrastructure in the Oracle
WebLogic Server domain, which is a JAR/ZIP file containing RuntimeFault.wsdl.

2. Declare a variable with messageType bpelx:RuntimeFaultMessage.

3. Catch it using the following syntax:

 <catch faultName="bpelx:remoteFault" | "bpelx:bindingFault" faultName="varName">

12.6 Getting Fault Details with the getFaultAsString XPath
Extension Function

The catchAll activity is provided to catch possible faults. However, BPEL does not provide a
method for obtaining additional information about the captured fault. Use the
getFaultAsString() XPath extension function to obtain additional information.

12.6.1 How to Get Fault Details with the getFaultAsString XPath Extension
Function

The following example shows how to use this function.

<catchAll>
 <sequence>
 <assign>
 <from expression="bpelx:getFaultAsString()"/>
 <to variable="faultVar" part="message"/>
 </assign>
 <reply faultName="ns1:myFault" variable="faultVar" .../>
 </sequence>
</catchAll>

For more information, see getFaultAsString.

Chapter 12
Catching BPEL Runtime Faults

12-39

12.7 Throwing Internal Faults with the Throw Activity
A BPEL application can generate and receive fault messages. The throw activity has
three elements: its name, the name of the fault, and the fault variable. The fault thrown
by a throw activity is internal to BPEL. You cannot use a throw activity on an
asynchronous process to communicate with a client. Throw activity syntax includes the
throw name, fault name, and fault variable:

<throw name="delay" faultName="nsPrefix:fault-1" faultVariable="fVar"/>

12.7.1 How to Create a Throw Activity
To create a throw activity:

1. In the Components window, expand BPEL Constructs.

2. Drag a Throw activity into the designer.

3. Double-click and define the Throw activity.

4. Optionally enter a name or accept the default value.

5. To the right of the Namespace URI field, click the Search icon to select the fault to
monitor.

6. Select the fault in the Fault Chooser dialog, and click OK.

The namespace URI for the selected fault displays in the Namespace URI field.
Your fault selection also automatically displays in the Local Part field.

Figure 12-23 provides an example of a completed Throw dialog.

Figure 12-23 Throw Dialog

7. Click Apply, then OK.

Chapter 12
Throwing Internal Faults with the Throw Activity

12-40

12.7.2 What Happens When You Create a Throw Activity
The following code shows the throw activity in the .bpel file after design completion. The
OrderProcessor process terminates after executing this throw activity.

<throw name="Throw_Fault_CC_Denied"
 faultName="client:OrderProcessorFault"/>

12.8 Rethrowing Faults with the Rethrow Activity
The rethrow activity rethrows faults originally captured by the immediately enclosing fault
handler. Only use the rethrow activity within a fault handler (for example, within catch and
catchAll activities). The rethrow activity is used in fault handlers to rethrow the captured fault
(that is, the fault name and the fault data (if present) of the original fault). The rethrow activity
must ignore modifications to fault data. For example:

• If the fault handler modifies fault data and then calls a rethrow activity, the original fault
data is rethrown, and not the modified fault data.

• If a fault is captured using the functionality that enables message type faults with one part
defined using an element to be caught by fault handlers looking for the same element
type, then the rethrow activity rethrows the original message type data.

Note:

This activity is supported in BPEL version 2.0 projects.

12.8.1 How to Create a Rethrow Activity
To create a rethrow activity:

1. In the Components window, expand BPEL Constructs.

2. Drag a Rethrow activity into the designer.

3. Double-click and define the Rethrow activity.

4. Optionally enter a name or accept the default value, as shown in Figure 12-24.

Chapter 12
Rethrowing Faults with the Rethrow Activity

12-41

Figure 12-24 Rethrow Dialog

5. Click Apply, then OK.

When complete, design can look as shown in Figure 12-25.

Figure 12-25 Throw Activity in BPEL Process

12.8.2 What Happens When You Rethrow Faults
The following example shows the .bpel file after design is complete for a rethrow
activity. The rethrow activity is inside a fault handler (catch activity).

<scope name="scope1">
 <faultHandlers>
 <catch faultName="tns:error" faultVariable="tmpVar"
 faultElement="tns:fault">
 <sequence>
 <assign>
 <copy>
 <from>concat('caught fault: ', $tmpVar)</from>
 <to>$output.payload</to>
 </copy>

Chapter 12
Rethrowing Faults with the Rethrow Activity

12-42

 </assign>
 <rethrow name="Rethrow_1"/>
 </sequence>
 </catch>
 </faultHandlers>
 <throw faultName="tns:error" faultVariable="fault"/>
</scope>

12.9 Returning External Faults
A BPEL process service component can send a fault to another application to indicate a
problem, as opposed to throwing an internal fault. In a synchronous operation, the reply
activity can return the fault. In an asynchronous operation, the invoke activity performs this
function.

12.9.1 How to Return a Fault in a Synchronous Interaction
The syntax of a reply activity that returns a fault in a synchronous interaction is shown in the
following example:

<reply partnerlinke="partner-link-name"
 portType="port-type-name"
 operation="operation-name"
 variable="variable-name" (optional)
 faultName="fault-name">
</reply>

Always returning a fault in response to a synchronous request is not very useful. It is better to
make the activity part of a conditional branch, in which the first branch is executed if the data
requested is available. If the requested data is not available, then the BPEL process service
component returns a fault with this information.

For more information, see the following chapters:

• Invoking a Synchronous Web Service from a BPEL Process for synchronous interactions

• Using Conditional Branching in a BPEL Process for setting up the conditional structure

12.9.2 How to Return a Fault in an Asynchronous Interaction
In an asynchronous interaction, the client does not wait for a reply. The reply activity is not
used to return a fault. Instead, the BPEL process service component returns a fault using a
callback operation on the same port type that normally receives the requested information,
with an invoke activity.

For more information about asynchronous interactions, see Invoking an Asynchronous Web
Service from a BPEL Process.

12.10 Managing a Group of Activities with a Scope Activity
A scope activity provides a container and a context for other activities. A scope provides
handlers for faults, events, compensation, data variables, and correlation sets. Using a scope
activity simplifies a BPEL flow by grouping functional structures. This grouping enables you to
collapse them into what appears to be a single element in Oracle BPEL Designer.

Chapter 12
Returning External Faults

12-43

The following example shows a scope named Scope_FulfillOrder. This scope
invokes the FulfillOrder Oracle Mediator component, which determines the shipping
method for the order.

<scope name="Scope_FulfillOrder">
 <variables>
 <variable name="lFulfillOrder_InputVariable"
 messageType="ns17:requestMessage"/>
 </variables>
 <sequence>
 <assign name="Assign_OrderData">
 <copy>
 <from variable="gOrderInfoVariable"
 query="/ns4:orderInfoVOSDO"/>
 <to variable="lFulfillOrder_InputVariable"
 part="request" query="/ns4:orderInfoVOSDO"/>
 </copy>
 </assign>
 <invoke name="Invoke_FulfillOrder"
 inputVariable="lFulfillOrder_InputVariable"
 partnerLink="FulfillOrder.FulfillOrder"
 portType="ns17:execute_ptt" operation="execute"/>
 </sequence>
</scope>

12.10.1 How to Create a Scope Activity
To create a scope activity:

1. In the Components window, expand BPEL Constructs.

2. Drag a Scope activity into the designer.

3. Open the Scope activity by double-clicking it or by single-clicking the Expand
icon.

4. From the Components window, drag and define activities to build the functionality
within the scope. Figure 12-26 provides details.

Figure 12-26 Expanded Scope Activity

5. Click OK.

Chapter 12
Managing a Group of Activities with a Scope Activity

12-44

When complete, scope activity design can look as shown in Figure 12-27. This example
shows a Scope_AuthorizeCreditCard scope activity.

Figure 12-27 Scope Activity After Design Completion

12.10.2 How to Add Descriptive Notes and Images to a Scope Activity
You can add descriptive notes to scope activities that provide simple descriptions of the
functionality of the scope. You can also change the graphical image of scopes. The notes and
images display in Oracle BPEL Designer. This helps to make a scope easier to understand.

To add descriptive notes and images to a scope activity:

1. Perform one of the following steps:

• Right-click the scope and select User Documentation.

• Double-click the scope and select the User Documentation tab.

The Documentation dialog appears.

2. In the Comment field, enter a brief description of the functionality of the scope.

3. In the Image field, click the Search icon to optionally change the graphical image for the
scope.

4. Click OK.

Your changes display in Oracle BPEL Designer, as shown in Figure 12-28.

Chapter 12
Managing a Group of Activities with a Scope Activity

12-45

Figure 12-28 Scope with Descriptive Note and Modified Image

5. To edit the note, double-click it.

12.10.3 What Happens After You Create a Scope Activity
The following example shows the scope activity in the .bpel file after design
completion. The Scope_AuthorizeCreditCard scope activity consists of activities that
perform the following actions:

• A catch activity for catching faulted orders in which the credit card number is not
provided or the credit type is not valid.

• A throw activity that throws a fault for orders that are not approved.

• An assign activity that takes the credit card type, credit card number, and purchase
amount, and assigns this information to the input variable for the
CreditCardAuthorizationService service.

• An invoke activity that calls a CreditCardAuthorizationService service to
retrieve customer information.

• A switch activity that checks the results of the credit card validation.

<scope name="Scope_AuthorizeCreditCard">
 <variables>
 <variable name="lCreditCardInput"
 messageType="ns2:CreditAuthorizationRequestMessage"/>
 <variable name="lCreditCardOutput"
 messageType="ns2:CreditAuthorizationResponseMessage"/>
 </variables>
 <faultHandlers>
 <catch faultName="bpws:selectionFailure">
 <sequence>
 <assign name="Assign_noCCNumber">
 <copy>
 <from expression="string('CreditCardCheck - NO
 CreditCard')"/>

Chapter 12
Managing a Group of Activities with a Scope Activity

12-46

 <to variable="gOrderProcessorFaultVariable"
 part="code"/>
 </copy>
 </assign>
 <throw name ="Throw_NoCreditCard"
 faultVariable="gOrderProcessorFaultVariable"
 faultName="ns9:OrderProcessingFault"/>
 </sequence>
 </catch>
 <catch faultName="ns2:InvalidCredit">
 <sequence>
 <assign name="Assign_InvalidCreditFault">
 <copy>
 <from expression="concat(bpws:getVariableData
 ('gOrderInfoVariable','/ns4:orderInfoVOSDO/
 ns4:CardTypeCode'), ' is not a valid
 creditcard type')"/>
 <to variable="gOrderProcessorFaultVariable"
 part="summary"/>
 </copy>
 <copy>
 <from expression="string('CreditCardCheck - NOT VALID')"/>
 <to variable="gOrderProcessorFaultVariable"
 part="code"/>
 </copy>
 </assign>
 <throw name="Throw_OrderProcessingFault"
 faultName="ns9:OrderProcessingFault"
 faultVariable="gOrderProcessorFaultVariable"/>
 </sequence>
 </catch>
 </faultHandlers>
 <sequence>
 <assign name="Assign_CreditCheckInput">
 <copy>
 <from variable="gOrderInfoVariable"
 query="/ns4:orderInfoVOSDO/ns4:OrderTotal"/>
 <to variable="lCreditCardInput" part="Authorization"
 query="/ns8:AuthInformation/ns8:PurchaseAmount"/>
 </copy>
 <copy>
 <from variable="gOrderInfoVariable"
 query="/ns4:orderInfoVOSDO/ns4:CardTypeCode"/>
 <to variable="lCreditCardInput" part="Authorization"
 query="/ns8:AuthInformation/ns8:CCType"/>
 </copy>
 <copy>
 <from variable="gOrderInfoVariable"
 query="/ns4:orderInfoVOSDO/ns4:AccountNumber"/>
 <to variable="lCreditCardInput" part="Authorization"
 query="/ns8:AuthInformation/ns8:CCNumber"/>
 </copy>
 </assign>
 <invoke name="InvokeCheckCreditCard"
 inputVariable="lCreditCardInput"
 outputVariable="lCreditCardOutput"
 partnerLink="CreditCardAuthorizationService"
 portType="ns2:CreditAuthorizationPort"
 operation="AuthorizeCredit"/>
 <switch name="Switch_EvaluateCCResult">
 <case condition="bpws:getVariableData('lCreditCardOutput','status','

Chapter 12
Managing a Group of Activities with a Scope Activity

12-47

 /ns8:status') != 'APPROVED'">
 <bpelx:annotation>
 <bpelx:pattern>status <> approved</bpelx:pattern>
 </bpelx:annotation>
 <throw name="Throw_Fault_CC_Denied"
 faultName="client:OrderProcessorFault"/>
 </case>
 /switch>
 </sequence>
</scope>

12.10.4 What You May Need to Know About Scopes
Scopes can use a significant amount of CPU and memory and should not be
overused. Sequence activities use less CPU and memory and can make large BPEL
flows more readable.

12.10.5 How to Use a Fault Handler Within a Scope
If a fault is not handled, it creates a faulted state that migrates up through the
application and can throw the entire process into a faulted state. To prevent this from
occurring, place the parts of the process that have the potential to receive faults within
a scope. The scope activity includes the following fault handling capabilities:

• The catch activity works within a scope to catch faults and exceptions before they
can throw the entire process into a faulted state. You can use specific fault names
in the catch activity to respond in a specific way to an individual fault.

• The catchAll activity catches any faults that are not handled by name-specific
catch activities.

The following example shows the syntax for catch and catchAll activities. Assume that
a fault named x:foo is thrown. The first catch is selected if the fault carries no fault
data. If there is fault data associated with the fault, the third catch is selected if the
type of the fault's data matches the type of variable bar. Otherwise, the default
catchAll handler is selected. Finally, a fault with a fault variable whose type matches
the type of bar and whose name is not x:foo is processed by the second catch. All
other faults are processed by the default catchAll handler.

<faulthandlers>
 <catch faultName="x:foo">
 <empty/>
 </catch>
 <catch faultVariable="bar">
 <empty/>
 </catch>
 <catch faultName="x:foo" faultVariable="bar">
 <empty/>
 </catch>
 <catchAll>
 <empty/>
 </catchAll>
</faulthandlers>

Chapter 12
Managing a Group of Activities with a Scope Activity

12-48

12.10.6 What You May Need to Know About the idempotent Property and
Fault Handling

If the idempotent deployment descriptor property is set to false in the composite.xml file
and the invocation of a partner link fails, recovery does not start from the invoke activity.
Relying on the idempotent property for retrying the invoke activity is not recommended.
Instead, recovery is attempted by fault handling you have designed into the BPEL process
(such as with a catchAll activity). As a best practice, Oracle recommends that you instead
use a fault policy to retry the invoke activity.

Table 12-8 describes the behavior when the idempotent property is set to false and partner
link invocation either succeeds or fails.

Table 12-8 Recovery Behavior When the idempotent Property Is Set to False

If Partner Link Invocation Is... Then...

Successful The invoke activity is dehydrated immediately after execution
and recorded in the dehydration store.

Unsuccessful, and your BPEL process
includes fault handling, such as a
catchAll activity

Recovery is started from the catchAll activity and not from the
invoke activity.

Unsuccessful, and your BPEL process
includes a fault policy

The fault policy is used to attempt recovery of the invoke
activity. This is the recommended approach.

For example, assume your BPEL process includes the following design:

• An invoke activity invokes a partner link (for this example, named myPartnerLink).

• The idempotent deployment descriptor property is set to false in the composite.xml file.

<property name="bpel.partnerLink.myPartnerLink.idempotent">false</property>

This setting causes the BPEL process to dehydrate immediately after execution of this
activity and be recorded in the dehydration store.

You can also set this property to false in the Edit Partner Link dialog. Figure 12-29
provides details.

Chapter 12
Managing a Group of Activities with a Scope Activity

12-49

Figure 12-29 Idempotence Tab of Edit Partner Link Dialog

For more information, see Managing Idempotence at the Partner Link Operation
Level.

• A catchAll activity error handler in a scope activity catches faults and throws a
rollback fault.

If the invocation by the invoke activity to the partner link fails, recovery starts from the
catchAll activity error handler, and not from the invoke activity. The recovery from the
catchAll activity can be observed in the flow activity for the BPEL process in Oracle
Enterprise Manager Fusion Middleware Control.

This is by design. The idempotent property setting is checked after execution of the
invoke activity. If the execution failed and an exception is raised, the idempotent
property setting is never reached. The BPEL process service engine saves the
instance right after opening the catchAll activity. The instance must be saved because
the idempotent property is set to false. This is why recovery resumes in the catchAll
activity.

Oracle recommends that you instead recover the failed invoke activity with a fault
policy. For more information about creating fault polices, see Handling Faults with the
Fault Management Framework.

For more information about the idempotent property, see Introduction to Deployment
Descriptor Properties.

12.10.7 How to Create a Catch Activity in a Scope
To create a catch activity in a scope:

1. In the expanded Scope activity, click Add Catch. Figure 12-30 provides details.

Chapter 12
Managing a Group of Activities with a Scope Activity

12-50

Figure 12-30 Add Catch

This creates a catch activity on the right side of the scope activity.

2. Double-click the Catch activity.

3. Optionally enter a name.

4. To the right of the Namespace URI field, click the Search icon to select the fault.

5. Select the fault in the Fault Chooser dialog, and click OK.

The namespace URI for the selected fault displays in the Namespace URI field. Your
fault selection also automatically displays in the Local Part field.

Figure 12-31 provides an example of a Catch dialog. This example shows the
selectionFailure catch activity of a Scope_AuthorizeCreditCard scope activity. This
catch activity catches orders in which the credit card number is not provided.

Figure 12-31 Catch Dialog

6. Design additional fault handling functionality.

7. Click OK.

Figure 12-32 provides an example of two catch activities for the
Scope_AuthorizeCreditCard scope activity. The second catch activity catches credit
types that are not valid.

Chapter 12
Managing a Group of Activities with a Scope Activity

12-51

Figure 12-32 Catch Activities in the Designer

12.10.8 What Happens When You Create a Catch Activity in a Scope
The following example shows the catch activity in the .bpel file after design
completion. The selectionFailure catch activity catches orders in which the credit
card number is not provided and the InvalidCredit catch activity catches credit types
that are not valid.

<faultHandlers>
 <catch faultName="bpws:selectionFailure">
 <sequence>
 <assign name="Assign_noCCNumber">
 <copy>
 <from expression="string('CreditCardCheck - NO
CreditCard')"/>
 <to variable="gOrderProcessorFaultVariable"
 part="code"/>
 </copy>
 </assign>
 <throw name ="Throw_NoCreditCard"
 faultVariable="gOrderProcessorFaultVariable"
 faultName="ns9:OrderProcessingFault"/>
 </sequence>
 </catch>
 <catch faultName="ns2:InvalidCredit">
 <sequence>
 <assign name="Assign_InvalidCreditFault">
 <copy>
 <from expression="concat(bpws:getVariableData
 ('gOrderInfoVariable','/ns4:orderInfoVOSDO/ns4:CardTypeCode'), '
 is not a valid creditcard type')"/>
 <to variable="gOrderProcessorFaultVariable"
 part="summary"/>
 </copy>
 <copy>
 <from expression="string('CreditCardCheck - NOT VALID')"/>
 <to variable="gOrderProcessorFaultVariable"
 part="code"/>
 </copy>
 </assign>
 <throw name="Throw_OrderProcessingFault"
 faultName="ns9:OrderProcessingFault"
 faultVariable="gOrderProcessorFaultVariable"/>
 </sequence>
 </catch>
</faultHandlers>

If no catch or catchAll activity is selected, the fault is not caught by the current scope
and is rethrown to the immediately enclosing scope. If the fault occurs in (or is

Chapter 12
Managing a Group of Activities with a Scope Activity

12-52

rethrown to) the global process scope, and there is no matching fault handler for the fault at
the global level, the process terminates abnormally. This is as though a terminate activity
(described in Stopping a Business Process Instance with the Terminate Activity in BPEL 1.1)
had been performed.

12.10.9 How to Insert No-Op Instructions into a Business Process with an
Empty Activity

There is often a need to use an activity that does nothing. An example is when a fault must
be caught and suppressed. In this case, you can use the empty activity to insert a no-op
instruction into a business process.

To create an empty activity:

1. In the Components window, expand BPEL Constructs.

2. Drag an Empty activity into the designer.

3. Double-click the Empty activity.

The Empty dialog appears, as shown in Figure 12-33.

Figure 12-33 Empty Activity

4. Optionally enter a name.

5. Click OK.

12.10.10 What Happens When You Create an Empty Activity
The syntax for an empty activity is shown in the following example:

 <empty standard-attributes>
 standard-elements
 </empty>

Chapter 12
Managing a Group of Activities with a Scope Activity

12-53

12.11 Re-executing Activities in a Scope Activity with the
Replay Activity

You can create a replay activity inside a scope activity to re-execute all of the activities
inside the scope.

12.11.1 How to Create a Replay Activity
To create a replay activity:

1. In the Components window, expand Oracle Extensions.

2. Drag a Replay activity into the designer.

3. Double-click the Replay activity.

4. Enter an optional name.

5. Select the scope to re-execute, as shown in Figure 12-34.

Figure 12-34 Replay Dialog

6. Click Apply, then click OK.

7. Continue with the design of your scope activity.

When complete, design of the scope activity can look as shown in Figure 12-35.

Chapter 12
Re-executing Activities in a Scope Activity with the Replay Activity

12-54

Figure 12-35 Replay Activity in a Scope Activity

12.11.2 What Happens When You Create a Replay Activity
The following example shows the .bpel file after design is complete for a replay activity in a
BPEL project that supports BPEL version 2.0. In BPEL 2.0, the replay activity is wrapped in
an extensionActivity element.

<scope name="scope2">
 <sequence>
 <assign>
 <copy>
 <from>$counter2 + 1</from>
 <to>$counter2</to>
 </copy>
 </assign>
 <scope name="scope3">
 <sequence>
 <assign>
 <copy>
 <from>$counter + 1</from>
 <to>$counter</to>
 </copy>
 </assign>
 <if>
 <condition>$counter = 3</condition>
 <empty/>
 <else>
 <extensionActivity>
 <bpelx:replay name="ReplayScope" scope="Scope_RetrieveOrder"/>
 </extensionActivity>
 </else>
 </if>
 </sequence>
 </scope>
 </sequence>
 </scope>

In BPEL 1.1, the replay activity is coded as a bpelx extension.

Chapter 12
Re-executing Activities in a Scope Activity with the Replay Activity

12-55

<bpelx:replay name="ReplayScope" scope="Scope2"/>

12.12 Using Compensation After Undoing a Series of
Operations

Compensation occurs when the BPEL process service component cannot complete a
series of operations after some have completed, and the BPEL process service
component must backtrack and undo the previously completed transactions. For
example, if a BPEL process service component is designed to book a rental car, a
hotel, and a flight, it may book the car and the hotel and then be unable to book a flight
for the right day. In this case, the BPEL flow performs compensation by going back
and unbooking the car and the hotel.

In a scope activity, the compensation handler can reverse previously completed
process steps. The compensation handler can be invoked after successful completion
of its associated scope with either of the following activities.

• Compensate activity (in BPEL version 1.1 and 2.0 projects)

This activity causes the compensation handler of all successfully completed and
not yet compensated child scopes to be executed in default order.

• compensateScope activity (in a BPEL version 2.0 project)

This activity causes the compensation handler of one specific successfully
completed scope to be executed.

12.12.1 Using a Compensate Activity
You can invoke a compensation handler by using the compensate activity, which
names the scope for which the compensation is to be performed (that is, the scope
whose compensation handler is to be invoked). A compensation handler for a scope is
available for invocation only when the scope completes normally. Invoking a
compensation handler that has not been installed is equivalent to using the empty
activity (it is a no-op). This ensures that fault handlers do not have to rely on state to
determine which nested scopes have completed successfully. The semantics of a
process in which an installed compensation handler is invoked multiple times are
undefined.

The ability to explicitly invoke the compensate activity is the underpinning of the
application-controlled error-handling framework of the Business Process Execution
Language for Web Services Specification. You can use this activity only in the
following parts of a business process:

• In a fault handler of the scope that immediately encloses the scope for which to
perform compensation.

• In the compensation handler of the scope that immediately encloses the scope for
which to perform compensation.

For example:

<compensate scope="RecordPayment"/>

If a scope being compensated by name was nested in a loop, the BPEL process
service component invokes the instances of the compensation handlers in the
successive iterations in reverse order.

Chapter 12
Using Compensation After Undoing a Series of Operations

12-56

If the compensation handler for a scope is absent, the default compensation handler invokes
the compensation handlers for the immediately enclosed scopes in the reverse order of the
completion of those scopes.

The compensate form, in which the scope name is omitted in a compensate activity, explicitly
invokes this default behavior. This is useful when an enclosing fault or compensation handler
must perform additional work, such as updating variables or sending external notifications, in
addition to performing default compensation for inner scopes. The compensate activity in a
fault or compensation handler attached to the outer scope invokes the default order of
compensation handlers for completed scopes directly nested within the outer scope. You can
mix this activity with any other user-specified behavior except for the explicit invocation of the
nested scope within the outer scope. Explicitly invoking compensation for such a scope
nested within the outer scope disables the availability of default-order compensation.

12.12.2 How to Create a Compensate Activity
To create a compensate activity:

1. In the Components window, expand BPEL Constructs.

2. Drag a Compensate activity into the designer.

3. Double-click the Compensate activity.

4. Select a scope activity in which to invoke the compensation handler, as shown in
Figure 12-36.

Figure 12-36 Compensate Activity

5. Click Apply, then OK.

12.12.3 What Happens When You Create a Compensate Activity
If a scope activity has a compensation handler defined inline, then the name of the activity is
the name of the scope to be used in the compensate activity. The syntax is shown in the
following example:

Chapter 12
Using Compensation After Undoing a Series of Operations

12-57

<compensate scope="ncname"? standard-attributes>
 standard-elements
 </compensate>

12.12.4 Using a compensateScope Activity in BPEL 2.0
The compensateScope activity is used to start compensation on a specified inner
scope that has already completed successfully. Use this activity only from within a fault
handler, another compensation handler, or a termination handler.

When you create a compensateScope activity, you select a target that must refer to
the immediately-enclosed scope. The scope must include a fault handler or
compensation handler.

12.12.5 How to Create a compensateScope Activity

Note:

This activity is supported in BPEL 2.0 projects.

To create a compensateScope activity:

1. In the Components window, expand BPEL Constructs.

2. Drag a CompensateScope activity into the designer.

3. Double-click the CompensateScope activity.

4. In the Target list, select a specific scope activity in which to invoke the
compensation handler. Figure 12-37 provides details.

Figure 12-37 CompensateScope Activity

5. Click Apply, then OK.

Chapter 12
Using Compensation After Undoing a Series of Operations

12-58

12.12.6 What Happens When You Create a compensateScope Activity
The following example shows the .bpel file after design is complete for a compensateScope
activity. The compensateScope activity is defined in a catchall fault handler. The scope in
which to invoke the compensation handler is defined.

<scope name="ScopeAssignCreditRating">
 <faultHandlers>
 <catchAll>
 <compensateScope target="ScopeAssignScreditRating2" />
 </catchAll>
 </faultHandlers>
 <sequence>
 <scope name="ScopeAssignScreditRating2">
 <compensationHandler>
 <!-- undo work -->
 </compensationHandler>
 <!-- do some work -->
 </scope>
 <!-- do more work -->
 <!-- a fault is thrown here; results of ScopeAssignScreditRating2 must be undone
-->
 </sequence>
</scope>

12.13 Stopping a Business Process Instance with a Terminate
or Exit Activity

You can stop a business process instance with either of the following activities:

• Exit activity (in a BPEL version 2.0 project)

• Terminate activity (in a BPEL version 1.1 project)

12.13.1 Immediately Ending a Business Process Instance with the Exit
Activity in BPEL 2.0

You can use the exit activity to immediately end all currently running activities on all parallel
branches without involving any termination handling, fault handling, or compensation
handling mechanisms. This activity is useful for environments in which there may not be a
reasonable way for dealing with unexpected, severe failures.

Note:

Any open conversations are also impacted by the exit activity. For example, other
partners interacting with the process may wait for a response that never arrives.

Chapter 12
Stopping a Business Process Instance with a Terminate or Exit Activity

12-59

12.13.1.1 How to Create an Exit Activity

To create an exit activity:

1. In the Components window, expand BPEL Constructs.

2. Drag an Exit activity into the section of your BPEL process in which you want to
execute the exit activity.

3. Double-click the Exit activity, as shown in Figure 12-38.

Figure 12-38 Exit Activity

4. Optionally enter a name.

5. Click Apply, then OK.

When complete, the exit activity in a BPEL process appears similar to that shown
in Figure 12-39.

Figure 12-39 Exit Activity in a BPEL Process

Chapter 12
Stopping a Business Process Instance with a Terminate or Exit Activity

12-60

12.13.1.2 What Happens When You Create an Exit Activity
The following example shows the .bpel file after design is complete for an exit activity.

<sequence>
 <!-- receive input from requester -->
 <receive name="receiveInput" partnerLink="client" portType="tns:Test"
 operation="process" variable="input" createInstance="yes"/>
 <assign>
 <copy>
 <from>$input.payload</from>
 <to>$output.payload</to>
 </copy>
 </assign>
 <!-- respond output to requester -->
 <reply name="replyOutput" partnerLink="client"
 portType="tns:Test" operation="process" variable="output"/>
 <exit/>
 </sequence>

12.13.2 Stopping a Business Process Instance with the Terminate Activity
in BPEL 1.1

The terminate activity immediately terminates the behavior of a business process instance
within which the terminate activity is performed. All currently running activities must be
terminated as soon as possible without any fault handling or compensation behavior. The
terminate activity does not send any notifications of the status of a BPEL process service
component. If you are going to use the terminate activity, first program notifications to the
interested parties.

12.13.2.1 How to Create a Terminate Activity

To create a terminate activity:

1. In the Components window in Oracle JDeveloper, expand BPEL Constructs.

2. Drag a Terminate activity into the designer. Figure 12-40 provides an example.

Figure 12-40 Terminate Activity

3. Double-click the terminate activity.

4. Optionally enter a name.

5. Click OK.

Chapter 12
Stopping a Business Process Instance with a Terminate or Exit Activity

12-61

12.13.2.2 What Happens When You Create a Terminate Activity
The syntax for the terminate activity is shown in the following example. This stops the
business process instance.

<terminate standard-attributes>
 standard-elements
</terminate>

12.14 Throwing Faults with Assertion Conditions
You can specify an assertion condition in BPEL versions 1.1 and 2.0 that is executed
upon receipt of a callback message in request-response invoke activities, receive
activities, reply activities, and onMessage branches of pick and scope activities. The
assertion specifies an XPath expression that, when evaluated to false, causes a BPEL
fault to be thrown from the activity. This condition provides an alternative to creating a
potentially large number of switch, assign, and throw activities after a partner callback.

You can select when to execute a condition:

• Preassert: This condition is executed before the invoke or reply activity send out
the outbound message.

• Postassert: This condition is executed after an invoke activity, receive activity, or
onMessage branch receives the inbound message.

12.14.1 How to Create Assertion Conditions
You can create assertion conditions in the following activities:

• In message exchange activities such as invoke activities, receive activities, reply
activities, and OnMessage branches

• In standalone assert activities for specifying XPath expressions

12.14.1.1 To create assertion conditions in invoke activities, receive activities,
reply activities, and OnMessage branches:

1. In the SOA Composite Editor, double-click the BPEL process service component.

2. In the Components window, expand BPEL Constructs.

3. Drag a Receive activity, Invoke activity, Pick activity, or Scope activity into the
designer.

4. Expand the Receive, Invoke, or onMessage branch of the Pick or Scope activity.

5. Click the Assertions tab.

6. If you are creating an assertion for a BPEL 2.0 project, perform the following tasks.
Otherwise, go to Step 6.

a. Select when to execute the condition. Table 12-9 provides details.

Chapter 12
Throwing Faults with Assertion Conditions

12-62

Table 12-9 Assertion Condition Tabs

To Create A... Select The...

Preassertion condition Pre Asserts tab

Postassertion condition Post Asserts tab

b. Click the Add icon, as shown in Figure 12-41.

Figure 12-41 Add Icon of Assertions Tab in BPEL 2.0

The Assert dialog is displayed.

7. If you are creating an assertion for a BPEL 1.1 project, perform the following tasks.

a. Click the Add icon, as shown in Figure 12-42.

Figure 12-42 Add Icon of Assertions Tab in BPEL 1.1

b. Select when to execute the condition. Table 12-10 provides details.

Table 12-10 Condition Execution Options

Element Description

Pre Assert If selected, the condition is executed before the invoke or reply activity send
out the outbound message.

Note: A fault policy does not handle faults thrown from a preassert condition.
Only faults thrown from a postassert condition are supported. For more
information about fault policies, see Handling Faults with the Fault
Management Framework.

Post Assert If selected, the condition is executed after an invoke activity, receive activity, or
onMessage branch receives the inbound message.

Based on your selection, the Pre Assert or Post Assert dialog is displayed.

8. Specify values for the assertion condition, as shown in Figure 12-43. For this example,
Post Assert was selected for an assertion condition on a receive activity in a BPEL 2.0
project.

Chapter 12
Throwing Faults with Assertion Conditions

12-63

a. Select the Fault QName to be thrown by clicking the Search icon and
selecting an existing fault from the Fault Chooser dialog. You can also provide
your own values for the Namespace URI and Local Part fields of the fault. If
you do not specify anything for the Fault QName, then a
bpelx:assertFailure fault is thrown.

Figure 12-43 Assertion Condition Values

9. When complete, click OK to return to the Assertions tab of the activity. The
completed assertion condition is displayed, as shown in Figure 12-44.

Figure 12-44 Assertions Tab with Data

10. Click Apply, then OK.

Chapter 12
Throwing Faults with Assertion Conditions

12-64

12.14.1.2 To create an assertion condition in standalone assert activities:
1. In the SOA Composite Editor, double-click the BPEL process service component.

2. In the Components window, expand Oracle Extensions.

3. Drag an Assert activity into the designer, as shown in Figure 12-45.

Figure 12-45 Assert Activity in Components Window

4. Expand the Assert activity.

5. To the right of the Expression field, click the XPath Expression Builder icon.

6. Create an expression.

7. When complete, click OK.

The Assert dialog looks as shown in Figure 12-46.

Figure 12-46 Assert Dialog

8. Click Apply, then OK.

Chapter 12
Throwing Faults with Assertion Conditions

12-65

12.14.2 How to Disable Assertions
You can disable assertions in either of two ways:

• By setting the System MBean Browser property DisableAsserts to true in Oracle
Enterprise Manager Fusion Middleware Control.

• By setting bpel.config.disableAsserts to true in the composite.xml file of the
SOA composite application, as shown in the following example:

 <component name="AsyncBPELClient">
 <implementation.bpel src="AsyncBPELClient.bpel"/>
 <property name="bpel.config.disableAsserts">true</property>
 </component>

For more information about setting System MBean Browser properties, see
Administering Oracle SOA Suite and Oracle Business Process Management Suite.

12.14.3 What Happens When You Create Assertion Conditions
The code segment in the .bpel file defines the specific operation after design
completion.

For the following BPEL1.1 example, the bpelx:assert condition in the invoke activity,
when evaluated to false (for example, a credit rating of 0 is submitted), returns a
Negative Credit message. If the condition evaluates to true, no fault is thrown from
the invoke activity and the remaining activities in the BPEL process flow are executed
normally.

<invoke name="callbackClient" partnerLink="internalwarehouseservice_client"
 portType="client:InternalWarehouseServiceCallback" operation="processResponse"
 inputVariable="outputVariable">
 <bpelx:assert name="negativeCredit"
 expression="$crOutput.payload/tns:rating > 0"
 message="Negative Credit"/>
</invoke>

In the BPEL 1.1 example that follows, the bpelx:assert condition in the standalone
assert activity, when evaluated to false, returns the following message:

got assertion failure on true expression

If the condition evaluates to true, no fault is thrown from the assert activity and the
remaining activities in the BPEL process flow are executed normally.

<bpelx:assert expression="true()bpws:getLinkStatus()" message="'got assertion
failure on true expression'"

12.14.4 What You May Need to Know About Assertion Conditions
This section describes key assertion condition concepts.

12.14.4.1 bpelx:postAssert and bpelx:preAssert Extensions
Depending upon the activity, you can specify when to execute a condition by clicking
the Add icon in the Assertions tab of invoke, receive, reply, and onMessage branches

Chapter 12
Throwing Faults with Assertion Conditions

12-66

of pick and scope activities, and selecting either Pre Assert or Post Assert. Based on your
selection, the following bpelx extensions are used:

• bpelx:preAssert: If you select Pre Assert, the condition is executed before the invoke or
reply activity send out the outbound message.

• bpelx:postAssert: If you select Post Assert, the condition is executed after an invoke
activity, receive activity, or onMessage branch receives the inbound message.

The following example shows multiple bpelx:postAssert extensions in a receive activity in
BPEL 1.1:

 <receive name="Receive_1" createInstance="no"
 variable="Receive_1_processResponse_InputVariable"
 partnerLink="AsyncBPELService"
 portType="ns1:AsyncBPELServiceCallback"
 bpelx:for="'PT10S'"
 operation="processResponse">
 <bpelx:postAssert name="assert1" expression="true()" message="'assert
 true failed'" faultName="client:fault1"/>
 <bpelx:postAssert name="assert2" expression="false()" message="'assert
 false failed'" faultName="client:fault2"/>
 </receive>

The following example shows multiple bpelx:preAssert extensions in an invoke activity in
BPEL 1.1:

<invoke name="Invoke_1" inputVariable="Invoke_1_process_InputVariable"
 outputVariable="Receive_1_processResponse_InputVariable"
 partnerLink="SyncBPELService" portType="ns1:SyncBPELService"
 operation="process">
 <bpelx:preAssert name="assert1" expression="true()" message="'assert true
 failed'"/>
 <bpelx:preAssert name="assert2"
 expression="bpws:getVariableData('counter') = 3" message="concat('The value of
 counter is ', $counter)"/>

For information on using the Assertions tab, see How to Create Assertion Conditions.

12.14.4.2 Use of faultName and message Attributes
You can specify the faultName and message attributes of the bpelx:postAssert element, as
shown in the schema definition in the following example for BPEL 1.1.

<invoke | receive | onMessage>
 standard-elements
 <bpelx:postAssert name="ncname"? expression="boolean-expr" faultName="QName"+
 message="generic-expr"+/> *
</invoke | receive | onMessage>

The following example shows the syntax for the faultname and message attributes.

<bpelx:postAssert name="Assert_2"
 message='multiple post assert Greater value fired'
 faultName="ns2:GreaterValue"
 expression="bpws:getVariableData('invar','payload','/ns1:process/ns1:input') <
 500"/>

Chapter 12
Throwing Faults with Assertion Conditions

12-67

If you do not specify the faultName attribute, the fault defaults to
bpelx:postAssertFailure. If the message attribute is not specified, the message value
defaults to the name of the activity.

<bpelx:postAssert expression="boolean-expr" />

The specified fault is thrown whenever the assertion condition evaluates to false.
Analysis is performed on the faultName QName to ensure that it properly resolves to a
fault that is defined in the partner WSDL portType. The message expression is a
general expression that can evaluate to any XPath value type (string, number, or
boolean). If a nonstring value is returned, the string equivalent of the value is used.

12.14.4.3 Multiple Assertions
You can nest multiple assertions in receive activities, invoke activities, and the
onMessage branch of pick and scope activities, with evaluation of the assertions
continuing in the order in which they were declared until an expression evaluates to
false. The following example provides details:

<invoke name="invokeCR" partnerLink="creditRatingService"
 portType="services:CreditRatingService" operation="process"
 inputVariable="crInput" outputVariable="crOutput">
 <bpelx:postAssert name="negativeCredit" expression="$crOutput.payload/
tns:rating >
 0"
 faultName="services:NegativeCredit" message="'Negative Credit'"
 />
 <bpelx:postAssert name="insufficientCredit"
 expression="$crOutput.payload/tns:rating > 600"
 faultName="services:InsufficientCredit" message="'Insufficient
 Credit'" />
</invoke>

In the preceding example, the assertion with the expression that checks that the
response credit rating is greater than zero is evaluated first. Table 12-11 describes the
assertion behavior.

Table 12-11 Assertion Behavior

If The Credit Rating For The
Returned Response Is...

Then...

Less than zero The services:NegativeCredit fault is thrown.

Greater than or equal to zero The assertion is correct and the second assertion is evaluated.

Less than 600 The services:InsufficientCredit fault is thrown.

Greater than or equal to 600 The assertion is correct and no fault is thrown from the invoke
activity.

Any number of assertions can be nested. For no fault to be thrown from the activity, all
assertions specified must evaluate to true.

This construct enables you to apply multiple levels of validation on an incoming
payload, similar to if...else if...else statements in Java.

To enable a fault to always be thrown regardless of validation logic, the assertion
expression can be specified as false(). This is similar to the else construct in Java.

Chapter 12
Throwing Faults with Assertion Conditions

12-68

12.14.4.4 Use of Built-in and Custom XPath Functions and $variable References
You can also use built-in and custom XPath functions and $variable references within the
assertion condition. The following code provides several examples.

<bpelx:postAssert expression="bpws:getVariableData('crOutput', 'payload',
 '/tns:rating') > 0" ... />

<bpelx:postAssert expression="custom:validateRating()" ... />

<bpelx:postAssert xmlns:fn='http://www.w3.org/2005/xpath-functions'
 expression="fn:false()" ... />

If an error is thrown by the XPath expression evaluation, the error is wrapped with a BPEL
fault and thrown from the activity.

Faults that are thrown from a request-response invoke activity, receive activity, or onMessage
branch of a pick or scope activity because of a failed assertion evaluation can be caught and
handled by BPEL's fault management framework. For information, see Handling Faults with
the Fault Management Framework.

Faults that are not caught and handled within a BPEL process flow are thrown from a BPEL
component if the component WSDL declares the fault on the operation. If the fault is not
declared on the operation, the fault is converted into a FabricInvocationException, which is
a runtime fault. This fault can be caught by any caller components (including BPEL
components), but the fault type is no longer the one originally thrown (however, the fault
message string still retains traces of the original fault message).

For more information about runtime faults, see Introduction to the Business and Runtime
Fault Categories of BPEL Faults.

For more information about fault policies, see Handling Faults with the Fault Management
Framework.

12.14.4.5 Assertion Condition Evaluation Logging of Events to the Instance Audit
Trail

Each assertion condition that is evaluated causes an event to be logged to the instance audit
trail. The event indicates whether the assertion passed or failed (for failure, the fault name
and message are printed). The event also includes the name attribute specified in the
assertion element. If no name attribute is provided, the line number of the assertion element in
the BPEL process flow is used. The assertion condition printed in the audit event helps
identify the assertion and better enables debugging of the flow.

12.14.4.6 Expressions Not Evaluating to an XML Schema Boolean Type Throw a
Fault

If the assertion condition XPath expression does not evaluate to an XML schema boolean
type, a bpelx:postAssertFailure fault is thrown from the activity. An event in the instance
audit trail is also logged indicating the error. The following example provides details:

<bpelx:postAssert expression="bpws:getVariableData('crOutput', 'payload',
 '/tns:rating') > 0" ... />

<bpelx:postAssert expression="custom:validateRating()" ... />

Chapter 12
Throwing Faults with Assertion Conditions

12-69

<bpelx:postAssert xmlns:fn='http://www.w3.org/2005/xpath-functions'
 expression="fn:false()" ... />

Analysis of the assertion expression is performed by the BPEL compiler and errors are
reported if an expression does not evaluate to an XML schema boolean type. For
custom XPath functions, this type of analysis is not performed.

12.14.4.7 Assertion Conditions in a Standalone Assert Activity
You can also create assertion conditions in a standalone assert activity in a BPEL
process service component. The assertion specifies an XPath expression that, when
evaluated to false, causes a BPEL fault to be thrown from the activity.

The bpelx:assert extension implements assertions in the standalone assert activity:

<bpelx:assert name="Assert1" expression="string" message="string"/>

For information about using the standalone assert activity, see How to Create
Assertion Conditions.

12.14.5 What You May Need to Know About Postassertion and
Preassertion Condition Schemas and Syntax

The assertion condition is specified as a nested extension element. The following
example shows the postassertion condition schema definition in BPEL 2.0.

<invoke | receive | onMessage>
 standard-elements
 <bpelx:postAsserts>
 <bpelx:postAssert faultName="QName">
 <bpelx:expression expressionLanguage="anyURI"?>expression
 </bpelx:expression>
 <bpelx:message expressionLanguage="anyURI"?>expression</bpelx:message>
 </bpelx:postAssert>
 </bpelx:postAsserts>
</invoke | receive | onMessage>

The following example shows the postassertion condition syntax in BPEL 2.0.

<bpelx:postAsserts>
 <bpelx:postAssert faultName="ns2:InvalidInput">
 <bpelx:expression>number(concat($inputVariable.payload/client:input,'2'))
<
 500</bpelx:expression>
 <bpelx:message>"AssertXpathPostInvoke_20 assert fired"</bpelx:message>
 </bpelx:postAssert>
</bpelx:postAsserts>

The following example shows the postassertion condition schema definition in BPEL
1.1. Note the differences between BPEL 1.1 and BPEL 2.0.

<invoke | receive | onMessage>
 standard-elements
 <bpelx:postAssert name="ncname" expression="boolean-expr" faultName="QName"+
 message="generic-expr"+/>
</invoke | receive | onMessage>

Chapter 12
Throwing Faults with Assertion Conditions

12-70

The following example shows the postassertion condition syntax in BPEL 1.1.

<bpelx:postAssert name="Assert_1"
 message='Post Invoke Multiple assert value fired'
 faultName="ns2:NegativeValue"
 expression="bpws:getVariableData('invar','payload','/ns1:process/ns1:input') >
0"/>

The following example shows the preassertion condition schema definition in BPEL 2.0.

<invoke | reply>
 standard-elements
 <bpelx:preAsserts>
 <bpelx:preAssert faultName="QName">
 <bpelx:expression expressionLanguage="anyURI"?>expression</bpelx:expression>
 <bpelx:message expressionLanguage="anyURI"?>expression</bpelx:message>
 </bpelx:preAssert>
 </bpelx:preAsserts>
</invoke | reply>

The following example shows the preassertion condition syntax in BPEL 2.0.

<bpelx:preAsserts>
 <bpelx:preAssert faultName="ns1:InvalidInput">
 <bpelx:expression>concat($inputVariable.payload/client:input,'2') >
 $inputVariable.payload/client:input</bpelx:expression>
 <bpelx:message>"AssertXpathPreInvoke_20 Assert test"</bpelx:message>
 </bpelx:preAssert>
</bpelx:preAsserts>

The following example shows the preassertion condition schema definition in BPEL 1.1. Note
the differences between BPEL 1.1 and BPEL 2.0.

<invoke | reply>
 standard-elements
 <bpelx:preAssert name="NCName" expression="string" message="string"
 faultName="QName"/>
</invoke | reply>

The following example shows the preassertion condition syntax in BPEL 1.1.

<bpelx:preAssert name="Assert_1"
 expression="bpws:getVariableData('invar','payload','/ns1:process/ns1:input') >
 0"
 message='pre invoke assert NegativeInput fired'
 faultName="ns4:NegativeInput"/>

The bpelx:postAssert extension specifies the XPath expression to evaluate upon receipt of
a callback message from a partner. If the assertion expression returns a false boolean value,
the specified fault is thrown from the activity. If the assertion expression returns a true
boolean value, no fault is thrown and the activities following the invoke activity, receive
activity, or the onMessage branch of pick and scope activities are executed as in a normal
BPEL process flow.

The bpelx:preAssert or bpelx:postAssert extension is similar to the Java assert
statement. In Java, if the assert expression does not evaluate to true, an error is reported by
the JVM. Similarly, the expression in the bpelx:preAssert or bpelx:postAssert extension
must evaluate to true; otherwise, the specified fault is thrown.

Chapter 12
Throwing Faults with Assertion Conditions

12-71

For example, with the BPEL 1.1 invoke activity shown in the following example, if the
XPath expression specified in the assertion condition returns false, the
NegativeCredit fault is thrown.

<scope>
 <faultHandlers>
 <catch faultName="services:NegativeCredit" faultVariable="crError">
 <empty/>
 </catch>
 </faultHandlers>
 <sequence>
 <invoke name="invokeCR" partnerLink="creditRatingService"
 portType="services:CreditRatingService" operation="process"
 inputVariable="crInput" outputVariable="crOutput">
 <bpelx:postAssert name="negativeCredit"
 expression="$crOutput.payload/tns:rating > 0"
 faultName="services:NegativeCredit" message="'Negative
 Credit'" />
 </invoke>
 </sequence>
</scope>

The optional name attribute for bpelx:preAssert or bpelx:postAssert is used while
creating the audit trail event message. The name in this instance enables you to
identify the assertion element in case multiple assertions are specified. If no name
attribute is specified, the line number of the assertion element in the BPEL file may be
used.

12.15 Classifying SOAP Faults as Retriable
Starting with 12c, all web service SOAP faults are not automatically retried based on
the fault code returned from the external service. SOAP faults are now retried only
when the fault code is classified as server-related (also known as receiver-related).
Fault codes classified as client-related do not result in retries. This differs from 11g
Release 1 (11.1.1.x), in which Oracle SOA Suite retried all SOAP faults regardless of
their fault code (all faults returned were converted to a bpelx:remoteFault in BPEL,
which was retriable).

In 12c when a fault occurs in a reference binding component, the fault code is returned
to a BPEL process. The fault is retried based on the setting in the fault code. This is
beneficial because you may want to retry the fault only under specific circumstances
(such as a system downtime issue). For all other fault occurrences (such as incorrect
input), you may not want a retry to occur. In fact, retries on all SOAP faults can delay
the processing of legitimate messages.

As described in the Simple Object Access Protocol (SOAP) 1.1 specification at
http://www.w3.org/TR/2000/NOTE-SOAP-20000508/#_Toc478383510, a fault can have
a code of server (also known as receiver) or client. The classification of faults
determines whether the faults are retriable.

• Server

Server errors indicate that the message cannot be processed for reasons not
directly related to the message contents, but rather to the processing of the
message. For example, processing can include communicating with a server that
did not respond. The message may succeed at a later time. This is defined as a
retriable fault.

Chapter 12
Classifying SOAP Faults as Retriable

12-72

http://www.w3.org/TR/2000/NOTE-SOAP-20000508/#_Toc478383510

• Client

Client errors indicate that the message was incorrectly formed or did not contain the
appropriate information to succeed. For example, the message may lack the proper
authentication or payment information. This typically indicates that the message must first
be changed before being resent. This is defined as a nonretriable fault.

This fault classification information is propagated into a FabricInvocationException error.
For fault codes classified as client-related, the retryType flag within this exception is set to
NO_RETRY.

If necessary, you can still invoke a retry on every fault. Set the binding.ws property
oracle.soa.always.retry.on.fault to true in the composite.xml file. This enables Oracle
SOA Suite to always retry on any SOAP faults regardless of the fault code.

<reference name="myreference"
. . .
<binding.ws port=". . . ."
location=". . ."
<property name="oracle.soa.always.retry.on.fault">true</property>
</binding.ws>

Use the following code snippet in composite.xml to enable custom headers defined at SOA
to reach the OSB webservice.

<reference name="RecHttpOSB" ...>
 ...
 <binding.ws ... soapVersion="1.1">
 <property name="oracle.webservices.http.headers">OSBCustomHttp</property>
 </binding.ws>
</reference>

Chapter 12
Classifying SOAP Faults as Retriable

12-73

13
Transaction and Fault Propagation Semantics
in BPEL Processes

This chapter describes transaction and fault propagation semantics in Oracle BPEL Process
Manager. It describes how to configure the transaction behavior for BPEL instances with
initiating calls and the execution of one-way invocations. It also describes how to execute a
business process without a transaction.
This chapter includes the following sections:

• Introduction to Transaction Semantics

• Introduction to Execution of One-way Invocations

• Executing a Business Process Without a Transaction

• Using In-Memory SOA to Improve System Performance

13.1 Introduction to Transaction Semantics
Transaction semantics in Release 12c enable you to use the underlying Java Transaction API
(JTA) infrastructure used in the execution of components. This section describes transaction
semantics for Oracle BPEL Process Manager.

13.1.1 Oracle BPEL Process Manager Transaction Semantics
As with previous releases, Oracle BPEL Process Manager by default creates a new
transaction on a request basis. That is, if a transaction exists, it is suspended, and a new
transaction is created. Upon completion of the child (new) transaction, the master
(suspended) transaction resumes.

However, if the request is asynchronous (that is, one-way), the transaction is either:

• Inherited for insertion into the dehydration store (table dlv_message).

• Enlisted transparently into the transaction (if one exists).

There is no message loss. Either the invocation message is inserted into the dehydration
store for processing or the consumer is notified through a fault.

In Release 10.1.3.x, there were several properties to set on the consuming process (that is,
on the partner link) and the providing process. This enabled you to chain an execution into a
single global transaction. On the consuming side, you set transaction=participate on the
partner link binding in the bpel.xml file. On the providing side, you set
transaction=participate in the <configurations> section of bpel.xml.

In Releases 11g and 12c, you only must set a new transaction property on the BPEL
component being called (known as the callee process). You add bpel.config.transaction
as follows:

• In the Create BPEL Process dialog for a new BPEL process.

13-1

• In the BPEL process service component section in the composite.xml file of an
existing BPEL process (note the required prefix of bpel.config.).

This property configures the transaction behavior for BPEL instances with initiating
calls. If you must change this setting later, you can use the Property Inspector.

The following example provides details:

<component name="InternalWareHouseService" version="2.0">
 <implementation.bpel src="BPEL/InternalWareHouseService.bpel"/>
 <property name="bpel.config.transaction" type="xs:string"
many="false">required | requiresNew | notSupported " </property>
 </component>

Table 13-1 describes the required (the default value) and requiresNew values and
summarizes the behavior of the BPEL instance based on the settings.

Table 13-1 bpel.config.transaction Property Behavior

For... With bpel.config.transaction
Set to required...

With bpel.config.transaction
Set to requiresNew...

Request/response (initiating)
invocations

The caller's transaction is
joined (if there is one) or a new
transaction is created (if there
is not one).

A new transaction is always
created and an existing
transaction (if there is one) is
suspended.

One-way initiating
invocations in which
bpel.config.oneWayDeli
veryPolicy is set to sync.

Invoked messages are
processed using the same
thread in the same transaction.

A new transaction is always
created and an existing
transaction (if there is one) is
suspended.

Note:

The bpel.config.transaction property does not apply for midprocess
receive activities. In those cases, another thread in another transaction is
used to process the message. This is because correlation is needed and it is
always done asynchronously.

For additional information about setting the bpel.config.transaction property, see
How to Add a BPEL Process Service Component and How to Define Deployment
Descriptor Properties in the Property Inspector.

The following sections describe the transaction and fault behavior of setting
bpel.config.transaction to either required or requiresNew.

13.1.1.1 BPELCaller Process Calls a BPELCallee Process That Has
bpel.config.transaction Set to requiresNew

In Table 13-2, the BPELCaller process calls the BPELCallee process. The BPELCallee
process has the property bpel.config.transaction set to requiresNew. Table 13-2
describes fault propagation and transaction behavior when bpel.config.transaction
is set to this value.

Chapter 13
Introduction to Transaction Semantics

13-2

Table 13-2 BPELCaller Calls BPELCallee That Has bpel.config.transaction Set to
requiresNew

If The BPELCallee... Then The BPELCallee
Transaction...

And The BPELCaller...

Replies with a fault (that is, it uses
<reply>).

Is saved. Gets the fault and can catch it.

Throws a fault that is not handled (that is,
it uses <throw>).

Is rolled back. Gets the fault and can catch it.

Replies back with a fault (FaultOne), and
then throws a fault (FaultTwo).

Is rolled back. Gets FaultTwo.

Throws a bpelx:rollback fault (that is,
it uses <throw>).

Is rolled back. Gets a remote fault.

13.1.1.2 BPELCaller Process Calls a BPELCallee Process That Has
bpel.config.transaction Set to required

In Table 13-3, the BPELCaller process calls the BPELCallee process. The BPELCallee
process has the property bpel.config.transaction set to required. Table 13-3 describes
fault propagation and transaction behavior when bpel.config.transaction is set to this
value.

Table 13-3 BPELCaller Calls BPELCallee That Has bpel.config.transaction Set to
required

If The BPELCallee... Then The BPELCaller...

Replies with a fault (that is, it uses
<reply>).

Gets the fault and can catch it. The BPELCaller owns the
transaction. Therefore, if it catches it, the transaction is
committed. If the BPELCaller does not handle it, a global
rollback occurs.

Throws a fault (that is, it uses <throw>). Gets the fault and can catch it.

Replies back with a fault (FaultOne), and
then throws a fault (FaultTwo).

Gets FaultTwo.

Throws (that is, it uses <throw>) a
bpelx:rollback fault.

Gets its transaction rolled back; there is no way to catch it.
This fault cannot be handled.

As an example, assume you create two synchronous processes (BPELMaster and
BPELChild) that each use the same database adapter reference to insert the same record
(and therefore, causes a permission key (PK) violation). The xADatasourceName is set for
both.

Without bpel.config.transaction set, after the fault occurs, and it is not handled,
BPELChild is rolled back. If BPELMaster has a catch block, its transaction is committed.
Therefore, you end up with the record from BPELMaster in the database.

If you do not catch the fault in BPELMaster as well, you get a second rollback (however, in
two different transactions).

If bpel.config.transaction is set to required for the same test case and no fault handlers
are in place, the entire transaction is rolled back based on BPELMaster's unhandled fault.

Chapter 13
Introduction to Transaction Semantics

13-3

If you add a fault handler in BPELMaster to catch the fault from BPELChild and throw
a rollback fault, the transaction is globally rolled back.

This feature enables you to control transaction boundaries and model end-to-end
transactional flows (if your sources and targets are also transactional).

13.2 Introduction to Execution of One-Way Invocations
A one-way invocation (with a possible callback) is typically exposed in a WSDL file as
shown in the following example:

<wsdl:operation name="process">
 <wsdl:input message="client:OrderProcessorRequestMessage"/>
 </wsdl:operation>

This causes the BPEL process service engine to split the execution into two parts:

• For the first part, and always inside the caller transaction, the insertion into the
dlv_message table of the dehydration store occurs (in release 10.1.3.x, it was
inserted into the inv_message table).

• For the second part, the transaction and the new thread execute the work items,
and a new instance is created.

This has several advantages in terms of scalability, because the service engine's
thread pool (invoker threads) executes when a thread is available. However, the
disadvantage is that there is no guarantee that it executes immediately.

If you require a synchronous-type call based on a one-way operation, then you can
use the onewayDeliveryPolicy property, which is similar to the
deliveryPersistPolicy property of release 10.1.3.x.

Specify bpel.config.oneWayDeliveryPolicy as follows:

• In the Create BPEL Process dialog for a new BPEL process.

• In the BPEL process service component section of the composite.xml file for an
existing BPEL process.

If this value is not set in composite.xml, the value for oneWayDeliveryPolicy in the
System MBean Browser in Oracle Enterprise Manager Fusion Middleware Control is
used. The following values are possible.

• async.persist: Messages are persisted in the database. With this setting,
reliability is obtained with some performance impact on the database. In some
cases, overall system performance can be impacted.

• async.cache: Incoming delivery messages are kept only in the in-memory cache.
If performance is preferred over reliability, consider this setting. When set to
async.cache, if the rate at which one-way messages arrive is much higher than
the rate at which they are delivered, or if the server fails, messages can be lost. In
addition, the system can become overloaded (messages become backlogged in
the scheduled queue) and you can receive out-of-memory errors. Consult your
own use case scenarios to determine if this setting is appropriate.

When you set oneWayDeliveryPolicy to async.cache in high availability
environments, invoke and callback messages in the middle of execution at the
time of a server crash may be lost or duplicated. Server failover is not supported
for async.cache.

Chapter 13
Introduction to Execution of One-Way Invocations

13-4

• sync: Direct invocation occurs on the same thread. The scheduling of messages in the
invoke queue is bypassed, and the BPEL instance is invoked synchronously. In some
cases this setting can improve database performance.

For more information about setting the bpel.config.oneWayDeliveryPolicy property, see
How to Add a BPEL Process Service Component and How to Define Deployment Descriptor
Properties in the Property Inspector.

Table 13-4 describes the behavior when the main process calls the subprocess
asynchronously. Table 13-4 is based on the use cases described in BPELCaller Process
Calls a BPELCallee Process That Has bpel.config.transaction Set to requiresNew and
BPELCaller Process Calls a BPELCallee Process That Has bpel.config.transaction Set to
required.

Table 13-4 Main Process Calls the Subprocess Asynchronously

If... If The Subprocess Throws
Any Fault...

If The Subprocess Throws a
bpelx:rollback...

onewayDeliveryPolicy=async.pe
rsist
(The BPELCallee process runs in a
separate thread/transaction.)

The BPELCaller does not get
a response because the
message is saved in the
delivery service. The
BPELCallee transaction is
rolled back if the fault is not
handled.

The BPELCaller does not get
a response because the
message is saved in the
delivery service. The
BPELCallee instance is rolled
back on the unhandled fault.

onewayDeliveryPolicy=sync
and

transaction=requiresNew
(The BPELCallee runs in the same
thread, but a different transaction.)

The BPELCaller receives a
FabricInvocationExcepti
on. The BPELCallee
transaction rolls back if the
fault is not handled.

The BPELCaller receives a
FabricInvocationExcepti
on. The BPELCallee
transaction is rolled back.

onewayDeliveryPolicy=sync
and

transaction=required
(The BPELCallee runs in the same
thread and the same transaction.)

The BPELCallee faulted. The
BPELCaller receives a
FabricInvocationExcepti
on. The BPELCaller has a
chance to handle the fault.

The whole transaction is rolled
back.

onewayDeliveryPolicy=async.ca
che
and

transaction=requiresNew
or

transaction=required

The BPELCaller does not get
a response because the caller
thread returns before the
request is handled. The
BPELCallee transaction is
rolled back if the fault is not
handled. The message is lost
because it is not saved in the
database.

The BPELCaller does not get
a response because the caller
thread returns before the
request is handled. The
BPELCallee transaction is
rolled back if the fault is not
handled. The message is lost
because it is not saved in the
database.

13.3 Executing a Business Process Without a Transaction
You can execute a business process without the need for a transaction. A transaction is only
used at the following points in the process execution:

• At the dehydration point when the internal processing state must be stored in the back
end data store.

• When storing the audit trail or instance tracking-related data during process execution.

Chapter 13
Executing a Business Process Without a Transaction

13-5

13.3.1 When Should I Use a BPEL Process Without a Transaction?
Executing a business process without a transaction is beneficial in scenarios similar to
the following:

• Assume you have a BPEL process in which a flowN activity spawns 2000
branches. Each branch invokes a remote synchronous web service that takes 500
ms to respond. Because the BPEL process service engine executes flowN
branches individually in a single thread, processing all 2000 branches with each
one invoking a synchronous web service takes close to 1000 seconds and the
instance does not have access to the dehydration point during this processing.
The transaction can extend for 1000 seconds and can time out (the default
transaction timeout setting is 300 seconds). Everything can be performed directly
in memory without the need for a transaction.

• The duration of a transaction gets tied up with the life cycle of business process
execution. For example, assume an asynchronous BPEL process includes a
receive activity followed by an assign activity in which a complex XSL
transformation performed on a large document takes 30 seconds. This is followed
by a callback to the client. If executed in a transaction, the BPEL process service
engine starts the transaction at the receive activity and holds a lock inside the
database on the instance while the instance is executing.

As an alternative, all activities can be performed in memory and discarded if an
error occurs. A transaction is not required because a database update does not
occur during instance execution. A transaction is only required once instance
execution reaches the dehydration point, where the BPEL process service engine
updates the instance state, and so on.

• Assume a BPEL process invokes another service or partner link that is
synchronous and participates in a BPEL process service engine's JTA transaction
(for example, if a BPEL process invokes the TaskServiceBean, which has
TransactionAttribute=REQUIRED, and there is a TaskServiceBean time out and
the transaction is roll backed). Even the BPEL process service engine's JTA
transaction gets rolled back and the BPEL process is unable to handle the error
from the TaskServiceBean.

• If a business process invokes a synchronous service and that service is
performing complex work that takes a considerable amount of time, the BPEL
process service engine transaction can time out. Even though the synchronous
service is performing correctly, the BPEL process service engine rolls back once
the business process gets a response from a remote service.

13.3.2 Guidelines for Executing Without a Transaction
To execute a business process without a transaction, select notSupported from the
Transaction list when creating a BPEL process in the Create BPEL Process dialog.

When set, the following behavior occurs:

• All XA distributed transaction benefits are disabled.

When a business process is configured to run in non-transactional mode, the
instance execution is not wrapped in an XA transaction, resulting in potential
duplicate instances, but no loss of message(s). As there is no overhead of a

Chapter 13
Executing a Business Process Without a Transaction

13-6

transaction, the non-transactional mode provides better performance. You can use the
non-transactional option where duplicate instances are acceptable.

• The business process cannot invoke any partner that expects to participate in a
transaction (that is, the partner has the TransactionAttribute set to MANDATORY).

• The invoke from the business process is fire and forget (that is, once the invoke is
finished, it is delivered to the partner. Even if the invoker's transaction rolls back
afterwards, the invoke message is not rolled back).

Even with bpel.config.transaction set to notSupported, the dehydration point starts a
transaction to save the internal BPEL process engine state into the back end. This means the
dehydration concept still applies for the business process. This feature only guarantees that
business process activities such as an assign, an invoke, and others are executed without a
transaction.

This property configures the transaction behavior of a BPEL instance in the case of initiating
calls. Table 13-5 describes the behavior of the BPEL instance based on the
bpel.config.transaction property setting.

Table 13-5 BPEL Process Instance Behavior Based on transaction Property Settings

Transaction Type transaction = requiresNew transaction = required transaction = notSupported

Request/response
(initiating)

A new transaction is created
for the execution. The
existing transaction (if there
is one) is suspended.

The process joins a
caller's transaction (if
there is one) or creates a
new transaction (if there
is not a transaction).

Business process activities are
executed without a transaction.
The transaction is only used to
save internal service engine/
instance state and audit details.
Any bpelx:rollback fault is not
propagated back to the client
because the current instance
does not participate in the client's
transaction.

One-way (initiating,
bpel.config.oneWa
yDeliveryPolicy=s
ync)

A new transaction is created
for the execution and the
existing transaction (if there
is one) is suspended.

The invoke message is
processed using the
same thread in the same
transaction.

Business process activities are
executed without a transaction. A
transaction is only used to save
internal service engine/instance
state and audit details. Any
bpelx:rollback fault is not
propagated back to the client.

One-way
asynchronous

Not applicable. Not applicable. Business process activities are
executed without a transaction.
The transaction is only used to
save internal service engine/
instance state and audit details.

13.3.3 How to Create a Synchronous BPEL Process Without a Transaction
You can create a synchronous BPEL process without a transaction in the Create BPEL
Process dialog.

To create a synchronous BPEL process without a transaction:

1. Create a BPEL process service component in the SOA composite application, as
described in How to Add a BPEL Process Service Component.

2. From the Template list, select Synchronous BPEL Process.

Chapter 13
Executing a Business Process Without a Transaction

13-7

3. From the Transaction list, select notSupported. Figure 13-1 provides details.

Figure 13-1 Create BPEL Process Dialog

4. Click OK.

13.3.4 How to Create an Asynchronous BPEL Process Without a
Transaction

You can create an asynchronous BPEL process without a transaction in the Create
BPEL Process dialog.

To create an asynchronous BPEL process without a transaction:

1. Create a BPEL process service component in the SOA composite application, as
described in How to Add a BPEL Process Service Component.

2. From the Template list, select Asynchronous BPEL Process.

3. From the Delivery list, select sync.

The dialog is refreshed to display the Transaction list.

4. From the Transaction list, select notSupported. Figure 13-2 provides details.

Chapter 13
Executing a Business Process Without a Transaction

13-8

Figure 13-2 Create BPEL Process Dialog

5. Click OK.

13.4 Using In-Memory SOA to Improve System Performance
You can leverage the Coherence cache associated with WebLogic Server to run your non-
transactional business processes in memory. This improves performance and scalability for
these business processes, as read and write operations are performed out of the cache.
Database performance and management also improves, as the costs associated with
continuous disk reads and writes are significantly reduced.

Note:

This SOA Suite feature is part of Oracle Integration Continuous Availability. See the
Oracle Fusion Middleware Licensing Information for more details on Oracle SOA
Suite for Middleware Options.

In-memory SOA enables short-running processes to live in memory. The process state gets
written to the database only when faulted, or at regular, deferred intervals using a write-
behind thread. The BPEL state information is dehydrated and rehydrated to/from the
Coherence cache.

Enable In-Memory SOA

Enable In-Memory SOA through: SOA Administration > common properties >
inMemoryEnvironment.

Chapter 13
Using In-Memory SOA to Improve System Performance

13-9

The WLST Script is /net/slc07yxw/scratch/share/wlst/
enableInMemory.py (it assumes server is running at default port 7001. userid:
weblogic password:weblogic1. Make a copy and update it for your environment).

connect('weblogic', 'weblogic1') custom()
cd('oracle.as.soainfra.config/oracle.as.soainfra.config:name=soa-
infra,type=SoaInfraConfig,Application=soa-infra')
set('InMemoryEnvironment', true)
exit()

13.4.1 Persistence Settings for In-Memory Flow Instances
The persistence settings for the components comprising a business flow determine
when the flow, state, and audit data is persisted to the cache, or the database. This
also impacts the flow instance data that appears in Enterprise Manager Fusion
Middleware Control.

Table 13-6 lists the various persistence settings and their impact on flow, state, audit,
and sensor data.

Table 13-6 Persistence Settings for In-Memory Flow Instances

Completion
Persist
Policy

Description Businesss Flow
Instances in Enterprise
Manager

Immediate The flow trace, BPEL audit trace, and flow instance
state data is always persisted to the database.

The behavior is the
same as if in-memory
SOA is not enabled.

Deferred All flow, audit, and state data is initially persisted to
the Coherence cache. A separate write-behind thread
performs a deferred write of the cache to the
database. The write-behind thread wakes up at
periodic intervals, the default being 5 minutes.
The number of database round-trips is reduced, and
only coalesced data is written to the database every
time the write-behind thread wakes up.

You should see all flow
instances in Enterprise
Manager Fusion
Middleware Control.
However, as the write-
behind thread writes to
the database at deferred
intervals, the flow data
updates happen at
intervals determined by
the write-behind thread.
Enterprise Manager
reads its data from the
database.

Chapter 13
Using In-Memory SOA to Improve System Performance

13-10

Table 13-6 (Cont.) Persistence Settings for In-Memory Flow Instances

Completion
Persist
Policy

Description Businesss Flow
Instances in Enterprise
Manager

Faulted The flow trace, BPEL audit trace, and flow instance
state data is not persisted for successful executions.
If the flow encounters a fault, then all data is
persisted to the database. Once the flow has been
recovered, all flow data is purged.
If a component reaches dehydration point, then the
state data is persisted to the Coherence cache.

For long running flows that span write delay intervals,
the write-behind thread does temporarily persist the
state of running instances to the database. These are
purged after the instances complete execution.

For flows that use the
faulted completion
persist policy, you should
not see flow instances in
Enterprise Manager
Fusion Middleware
Control, except for
faulted flow instances.
Note that long-running
flow instances might
transiently show up in
Enterprise Manager, as
and when they are
persisted to the
database by the write-
behind thread. However,
this data is purged after
the flow instance
completes.

The string values immediate, deferred, and faulted are case-insensitive.

As business flows can span composites and components, persistence for a flow comprising
components with different persistence settings is determined by the components that persist.
So, even if one component is configured to persist to the database, then all components in
the flow will persist to the database.

For example, if you have a BPEL component with persistence set to deferred and another
BPEL component in the same flow has persistence set to immediate, then the immediate
setting overrides the deferred setting, and all flow instance state and flow audit trace data is
persisted immediately to the database. Similarly, if you have all components set to faulted,
but even one component is set to deferred, then the persistence setting defaults to
deferred and flow state and audit data is persisted.

Note:

• The component state and component audit trace is persisted based on the
persistence policy applied to the component. The flow instance state and flow
audit trace is determined by the override rule. So, immediate overrides
deferred overrides faulted.

• Sensor data is persisted per the flow data. If flow is persisted to the database,
then sensor data is also persisted to the database.

Write Delay for In-Memory Flows

The default interval used by the write-delay thread is 5 minutes. This means that the data is
copied from the cache to the database every 5 minutes.

Chapter 13
Using In-Memory SOA to Improve System Performance

13-11

If you have a strong case to modify this, say, if most of your BPEL processes complete
in 6 minutes, as opposed to 5 minutes, and you wish to tweak the write-delay in order
to reduce your database writes, you can set the following server start argument for
your SOA server:

-Dsoa.cache.writebehindDelay=6m

The WebLogic Server Administration Console can be used to set server start
arguments.

13.4.2 Steps to Enable In-Memory SOA
To enable In-Memory SOA, you need to set the in-memory SOA flag in Enterprise
Manager. In addition, you need to design your business processes to be non-
transactional, and to use the correct completion persist policy (faulted or deferred).

The following steps are required.

1. Enabling the In-Memory SOA Flag

2. Designing Your Business Process to Run In-Memory

13.4.2.1 Enabling the In-Memory SOA Flag
If you have one or more business flows designed to run in-memory, you need to set
the InMemoryEnvironment flag in Enterprise Manager Fusion Middleware Control.
After you set the InMemoryEnvironment flag to true (default is false), SOA execution
is performed in-memory for components, composites, and flows that have been
designed to use this feature.

Use the following steps to set the SOA in-memory environment in Enterprise Manager
Fusion Middleware Control.

1. From the SOA Infrastructure menu, select SOA Administration > Common
Properties.

Chapter 13
Using In-Memory SOA to Improve System Performance

13-12

Alternatively, you can also select SOA Infrastructure Common Properties from the
SOA Composite menu on a composite page.

The SOA Infrastructure Common Properties page appears.

2. Click the More SOA Infra Advanced Configuration Properties... link near the bottom of
the page.

The System MBean Browser page appears. The attributes for the soa-infra MBean,
under Application Defined MBeans, are displayed in alphabetical order.

3. Scroll down to the InMemoryEnvironment attribute. Set the Value field to true.

4. Click Apply near the top right of the page.

The SOA in-memory environment is now enabled.

Chapter 13
Using In-Memory SOA to Improve System Performance

13-13

13.4.2.2 Designing Your Business Process to Run In-Memory
To configure a business flow to run in-memory, you must design all the constituent
BPEL components to be non-transactional. In-memory SOA can only be used for non-
transactional business process as coherence cache does not support transnational
behavior at this point. Also, you must set the completion persist policy for all of your
BPEL processes to deferred or faulted.
Use the following settings, when adding a new BPEL process, in order to enable your
BPEL process to run in-memory.

1. On the General tab of the Create BPEL Process dialog, select notSupported for
Transaction.

2. Select the In Memory SOA tab to specify the completion persist policy.

Chapter 13
Using In-Memory SOA to Improve System Performance

13-14

13.4.2.2.1 Setting an Existing Business Process to Be Non-Transactional
To ensure that your business process can use in-memory SOA, you must set up the process
to be non-transactional.

Use the following steps in JDeveloper to set your BPEL process to be non-transactional.

Ensure that the SOA composite, containing the BPEL process, is open in JDeveloper.

1. Select the BPEL component in the composite view.

The Properties for the selected BPEL component appear in the Properties window. If the
Properties window is not visible, select Properties from the JDeveloper Window menu.

2. If the bpel.config.transaction property appears in the Properties window, select the
property and click Edit. Else, click the Add button to add the property.

The Edit Property or Create Property dialog appears.

3. If you are adding the property, typebpel.config.transaction for the Name.

4. Type notSupported under Value.

Chapter 13
Using In-Memory SOA to Improve System Performance

13-15

5. Click OK.

The bpel.config.transaction property appears in the Properties window. Verify that
the Value column reads notSupported.

13.4.2.2.2 Setting the Completion Persist Policy for an Existing BPEL Process
To ensure that your business process can use in-memory SOA, you must set the
completion persist policy to deferred or faulted. When the BPEL process comes
across dehydration points, the state information is cached in memory, and not the
database.

Use the following steps in JDeveloper to set the completion persist policy for your
BPEL process.

Ensure that the SOA composite, containing the BPEL process, is open in JDeveloper.

1. Select the BPEL component in the composite view.

The Properties for the selected BPEL component appear in the Properties window.
If the Properties window is not visible, select Properties from the JDeveloper
Window menu.

2. Click the Add button to add the bpel.config.completionPersistPolicy property.

The Create Property dialog appears.

3. Typebpel.config.completionPersistPolicy for the Name.

4. Type deferred or faulted under Value.

5. Click OK.

The bpel.config.completionPersistPolicy property appears in the Properties
window. Verify that the Value column reads deferred or faulted.

Chapter 13
Using In-Memory SOA to Improve System Performance

13-16

14
Incorporating Java and Java EE Code in a
BPEL Process

This chapter describes how to incorporate sections of Java code into BPEL process service
components of SOA composite applications. It describes how to add custom classes and
JAR files, use the Java embedding activity, embed service data objects (SDOs) with
bpelx:exec, and implement a custom Connection Manager class with a BPEL process.
This chapter includes the following sections:

• Introduction to Java and Java EE Code in BPEL Processes

• Incorporating Java and Java EE Code in BPEL Processes

• Adding Custom Classes and JAR Files

• Using Java Embedding in a BPEL Process in Oracle JDeveloper

• Embedding Service Data Objects with bpelx:exec

• Sharing a Custom Implementation of a Class with Oracle BPEL Process Manager

You can also invoke a spring component. For more information, see Integrating the Spring
Framework in SOA Composite Applications.

14.1 Introduction to Java and Java EE Code in BPEL Processes
This chapter explains how to incorporate sections of Java code into a BPEL process. This is
particularly useful when there is Enterprise JavaBeans code that can perform the necessary
function, and you want to use the existing code rather than start over with BPEL.

14.2 Incorporating Java and Java EE Code in BPEL Processes
There are several methods for incorporating Java and Java EE code in BPEL processes:

• Wrap as a Simple Object Access Protocol (SOAP) service

• Embed Java code snippets into a BPEL process with the bpelx:exec tag

• Use an XML facade to simplify DOM manipulation

• Use bpelx:exec built-in methods

• Use Java code wrapped in a service interface

14.2.1 How to Wrap Java Code as a SOAP Service
You can wrap the Java code as a SOAP service. This method requires that the Java
application have a BPEL-compatible interface. A Java application wrapped as a SOAP
service appears as any other web service, which can be used by many different kinds of
applications. There are also tools available for writing SOAP wrappers.

14-1

14.2.2 What You May Need to Know About Wrapping Java Code as a
SOAP Service

A Java application wrapped as a SOAP service has the following drawbacks:

• There may be reduced performance due to the nature of converting between Java
and SOAP, and back and forth.

• Since SOAP inherently has no support for transactions, this method loses atomic
transactionality, that is, the ability to perform several operations in an all-or-none
mode (such as debiting one bank account while crediting another, where either
both transactions must be completed, or neither of them are completed).

14.2.3 How to Embed Java Code Snippets into a BPEL Process with
the bpelx:exec Tag

You can embed Java code snippets directly into the BPEL process using the Java
BPEL exec extension bpelx:exec. The benefits of this approach are speed and
transactionality. It is recommended that you incorporate only small segments of code.
BPEL is about separation of business logic from implementation. If you remove a lot of
Java code in your process, you lose that separation. Java embedding is recommended
for short utility-like operations, rather than business code. Place the business logic
elsewhere and call it from BPEL.

The server executes any snippet of Java code contained within a bpelx:exec activity,
within its Java Transaction API (JTA) transaction context.The BPEL tag bpelx:exec
converts Java exceptions into BPEL faults and then adds them into the BPEL
process.The Java snippet can propagate its JTA transaction to session and entity
beans that it calls.

For example, a SessionBeanSample.bpel file uses the bpelx:exec tag shown in the
following code to embed the invokeSessionBean Java bean:

 <bpelx:exec name="invokeSessionBean" language="java" version="1.5">
 <![CDATA[
 try {
 Object homeObj = lookup("ejb/session/CreditRating");
 Class cls = Class.forName(
 "com.otn.samples.sessionbean.CreditRatingServiceHome");
 CreditRatingServiceHome ratingHome = (CreditRatingServiceHome)
 PortableRemoteObject.narrow(homeObj,cls);
 if (ratingHome == null) {
 addAuditTrailEntry("Failed to lookup 'ejb.session.CreditRating'"
 + ". Ensure that the bean has been"
 + " successfully deployed");
 return;
 }
 CreditRatingService ratingService = ratingHome.create();

 // Retrieve ssn from scope
 Element ssn =
 (Element)getVariableData("input","payload","/ssn");

 int rating = ratingService.getRating(ssn.getNodeValue());
 addAuditTrailEntry("Rating is: " + rating);

Chapter 14
Incorporating Java and Java EE Code in BPEL Processes

14-2

 setVariableData("output", "payload",
 "/tns:rating", new Integer(rating));
 } catch (NamingException ne) {
 addAuditTrailEntry(ne);
 } catch (ClassNotFoundException cnfe) {
 addAuditTrailEntry(cnfe);
 } catch (CreateException ce) {
 addAuditTrailEntry(ce);
 } catch (RemoteException re) {
 addAuditTrailEntry(re);
 }
]]>
 </bpelx:exec>

14.2.4 How to Embed Java Code Snippets in a BPEL 2.0 Process
The examples in this chapter focus primarily on how to embed Java code snippets with the
bpelx:exec extension. For BPEL projects that support version 2.0 of the BPEL specification,
the syntax is slightly different. The bpelx:exec extension and Java code are wrapped in an
<extensionActivity> element. The following example provides details.

<extensionActivity>
 <bpelx:exec language="java">
 <![CDATA[
 java code
]]>
 </bpelx:exec>
</extensionActivity>

When you drag a Java Embedding activity into a BPEL process in Oracle BPEL Designer,
the <extensionActivity> element and bpelx:exec tag are automatically added.

The following example shows the import syntax for BPEL 2.0:

<import location="class/package name"
 importType="http://schemas.oracle.com/bpel/extension/java"/>

Note:

The BPEL 2.0 import syntax differs from BPEL 1.1, which uses the following syntax:

<bpelx:exec import="class/package name"/>

The following example shows a BPEL file with two Java embedding activities for a project
that supports BPEL version 2.0.

<process name="Test" targetNamespace="http://samples.otn.com/bpel2.0/ch10.9"
 . . .
 . . .
 <import location="oracle.xml.parser.v2.XMLElement"
 importType="http://schemas.oracle.com/bpel/extension/java"/>
. . .
 <sequence>
 . . .
<extensionActivity>
 <bpelx:exec language="java">

Chapter 14
Incorporating Java and Java EE Code in BPEL Processes

14-3

 XMLElement elem = (XMLElement) getVariableData("output", "payload");
 elem.setTextContent("set by java exec");
 </bpelx:exec>
 </extensionActivity>

 <extensionActivity>
 <bpelx:exec language="java">
 <![CDATA[XMLElement elem = (XMLElement) getVariableData("output",
 "payload");
 String t = elem.getTextContent();
 elem.setTextContent(t + ", set by java exec 2");]]>
 </bpelx:exec>
 </extensionActivity>
 . . .
 </sequence>
</process>

For information about using this activity, see Using Java Embedding in a BPEL
Process in .

14.2.5 How to Use an XML Facade to Simplify DOM Manipulation
You can use an XML facade to simplify DOM manipulation. Oracle BPEL Process
Manager and Oracle Mediator provides a lightweight Java Architecture for XML
Binding (JAXB)-like Java object model on top of XML (called a facade). An XML
facade provides a Java bean-like front end for an XML document or element that has a
schema. Facade classes can provide easy manipulation of the XML document and
element in Java programs.

You add the XML facade by using a createFacade method within the bpelx:exec
statement in the .bpel file. The following provides an example:

 <bpelx:exec name= ...
 <![CDATA
 ...
 Element element = ...
 (Element)getVariableData("input","payload","/loanApplication/"):
 //Create an XMLFacade for the Loan Application Document
 LoanApplication xmlLoanApp=
 LoanApplicationFactory.createFacade(element);
 ...

14.2.6 How to Use bpelx:exec Built-in Methods
Table 14-1 lists a set of bpelx:exec built-in methods that you can use to read and
update scope variables, instance metadata, and audit trails.

Table 14-1 Built in Methods for bpelx:exec

Method Name Description

Object lookup(String name) JNDI access

long getInstanceId() Unique ID associated with each instance

String setTitle(String title) /
String getTitle()

Title of this instance

Chapter 14
Incorporating Java and Java EE Code in BPEL Processes

14-4

Table 14-1 (Cont.) Built in Methods for bpelx:exec

Method Name Description

String setStatus(String status) /
String getStatus()

Status of this instance

void setCompositeInstanceTitle(String
title)

Sets the composite instance title

void setIndex(int i, String
value) / String getIndex(int i)

Six indexes can be used for a search

void setCreator(String creator) /
String getCreator()

Who initiated this instance

void setCustomKey(String
customKey) / String getCustomKey()

Second primary key

void setMetadata(String metadata) /
String getMetadata ()

Metadata for generating lists

String getPreference(String key) Access preference

void addAuditTrailEntry(String
message, Object detail)

Add an entry to the audit trail

void addAuditTrailEntry(Throwable t) Access a file stored in the archive

Object getVariableData(String name)
throws BPELFault

Access and update variables stored in the
scope

Object getVariableData(String name,
String partOrQuery) throws BPELFault

Access and update variables

Object getVariableData(String name,
String part, String query)

Access and update variables

void setVariableData(String name,
Object value)

Set variable data

void setVariableData(String name,
String part, Object value)

Set variable data

void setVariableData(String name,
String part, String query, Object
value)

Set variable data

14.2.7 How to Use Java Code Wrapped in a Service Interface
Not all applications expose a service interface. You may have a scenario in which a business
process must use custom Java code. For this scenario, you can:

• Write custom Java code.

• Create a service interface in which to embed the code.

• Invoke the Java code as a web service over SOAP.

For example, assume you create a BPEL process service component in a SOA composite
application that invokes a service interface through a SOAP reference binding component.
For this example, the service interface used is an Oracle Application Development
Framework (ADF) Business Component.

Chapter 14
Incorporating Java and Java EE Code in BPEL Processes

14-5

The high-level instructions for this scenario are as follows.

To use Java code wrapped in a service interface:

1. Create an Oracle ADF Business Component service in Oracle JDeveloper.

This action generates a WSDL file and XSD file for the service.

2. Create a SOA composite application that includes a BPEL process service
component. Ensure that the BPEL process service component is exposed as a
composite service. This automatically connects the BPEL process to an inbound
SOAP service binding component.

3. Import the Oracle ADF Business Component service WSDL into the SOA
composite application.

4. Create a web service binding to the Oracle ADF Business Component service
interface.

5. Design a BPEL process in which you perform the following tasks:

a. Create a partner link for the Oracle ADF Business Component service
portType.

b. Create an assign activity. For this example, this step copies data (for example,
a static XML fragment) into a variable that is passed to the Oracle ADF
Business Component service.

c. Create an invoke activity and connect to the partner link you created in Step
55.a.

6. Connect (wire) the partner link reference to the composite reference binding
component. This reference uses a web service binding to enable the Oracle ADF
Business Component service to be remotely deployed.

7. Deploy the SOA composite application.

8. Invoke the SOA application from the Test Web Service page in Oracle Enterprise
Manager Fusion Middleware Control. For more information, see Initiating a Test
Instance of a Business Flow in Administering Oracle SOA Suite and Oracle
Business Process Management Suite.

For more information on creating Oracle ADF Business Components, see Developing
Fusion Web Applications with Oracle Application Development Framework.

14.3 Adding Custom Classes and JAR Files
You can add custom classes and JAR files to a SOA composite application. A SOA
extension library for adding extension classes and JARs to a SOA composite
application is available in the $ORACLE_HOME/soa/modules/oracle.soa.ext_11.1.1
directory. For Oracle JDeveloper, custom classes and JARs are added to the
application_name/project/sca-inf/lib directory.

14.3.1 How to Add Custom Classes and JAR Files
If the classes are used in bpelx:exec, you must also add the JARs with the
BpelcClasspath property in the System MBean Browser of Oracle Enterprise
Manager Fusion Middleware Control.

Chapter 14
Adding Custom Classes and JAR Files

14-6

14.3.1.1 To Add JARs to BpelcClasspath:
1. From the SOA Infrastructure menu, select SOA Administration > BPEL Properties.

2. At the bottom of the BPEL Service Engine Properties page, click More BPEL
Configuration Properties.

3. Click BpelcClasspath.

4. In the Value field, specify the class path.

5. Click Apply.

6. Click Return.

In addition, ensure that the JARs are loaded by the SOA composite application.

14.3.1.2 To Add Custom Classes:
1. Copy the classes to the classes directory.

2. Restart Oracle WebLogic Server.

14.3.1.3 To Add Custom JARs:
1. Copy the JAR files to this directory or its subdirectory.

2. Run ant.

3. Restart Oracle WebLogic Server.

14.4 Using Java Embedding in a BPEL Process in Oracle
JDeveloper

In Oracle JDeveloper, you can add the bpelx:exec activity and copy the code snippet into a
dialog.

Note:

For custom classes, you must include any JAR files required for embedded Java
code in the BpelcClasspath property in the System MBean Browser of Oracle
Enterprise Manager Fusion Middleware Control. See How to Add Custom Classes
and JAR Files for instructions. The JAR files are then added to the class path of the
BPEL loader. If multiple JAR files are included, they must be separated by a colon
(:) on UNIX or a semicolon (;) on Windows.

14.4.1 How To Use Java Embedding in a BPEL Process in Oracle
JDeveloper

To use Java embedding in a BPEL process in Oracle JDeveloper:

1. From the Components window, expand Oracle Extensions.

Chapter 14
Using Java Embedding in a BPEL Process in Oracle JDeveloper

14-7

2. Drag the Java Embedding activity into the designer.

3. Click the Java Embedding activity to display its property fields in the Property
Inspector or double-click the Java Embedding activity to display the Java
Embedding dialog.

For information about editing activities in the Property Inspector, see How to Edit
BPEL Activities in the Property Inspector.

4. In the Name field, enter a name.

5. In the Code Snippet field, enter (or cut and paste) the Java code. Figure 14-1
provides details.

Figure 14-1 bpel:exec Code Example

Note:

As an alternative to writing Java code in the Java Embedding activity, you
can place your Java code in a JAR file, put it in the class path, and call your
methods from within the Java Embedding activity.

14.4.2 What You May Need to Know About Using thread.sleep() in a
Java Embedding Activity

If you create and deploy a BPEL process that uses thread.sleep() in a Java
Embedding activity, the executing thread is blocked and the transaction associated
with that thread is prevented from committing. This causes BPEL instances to appear
only after the wait is over, which is the expected behavior.

Chapter 14
Using Java Embedding in a BPEL Process in Oracle JDeveloper

14-8

Instead, use a wait activity, which releases the resource upon entering the activity and
enables the ongoing transaction to commit and the BPEL instance data to hydrate into the
data store.

14.5 Embedding Service Data Objects with bpelx:exec
You can embed SDO code in the .bpel file with the bpelx:exec tag. In the syntax provided in
the following example, mytest.apps.SDOHelper is a Java class that modifies SDOs.

</bpelx:exec>
<bpelx:exec name="ModifyInternalSDO" version="1.5" language="java">
 <![CDATA[try{
 Object o = getVariableData("VarSDO");
 Object out = getVariableData("ExtSDO");
 System.out.println("BPEL:Modify VarSDO... " + o + " ExtSDO: " + out);
 mytest.apps.SDOHelper.print(o);
 mytest.apps.SDOHelper.print(out);
 mytest.apps.SDOHelper.modifySDO(o);
 System.out.println("BPEL:After Modify VarSDO... " + o + " ExtSDO: " + out);
 mytest.apps.SDOHelper.print(o);
 mytest.apps.SDOHelper.print(out);
 }catch(Exception e)
 {
 e.printStackTrace();
}]]>
 </bpelx:exec>

The following provides an example of the Java classes modifySDO(o) and print(o) that are
embedded in the BPEL file:

public static void modifySDO(Object o){
 if(o instanceof commonj.sdo.DataObject)
 {
 ((DataObject)o).getChangeSummary().beginLogging();
 SDOType type = (SDOType)((DataObject)o).getType();
 HelperContext hCtx = type.getHelperContext();
 List<DataObject> lines =
 (List<DataObject>)((DataObject)o).get("line");
 for (DataObject line: lines) {
 line.set("eligibilityStatus", "Y");
 }
 } else {
 System.out.println("SDOHelper.modifySDO(): " + o + " is not a
 DataObject!");
 }
 }
. . .
. . .
 public static void print(Object o) {
 try{
 if(o instanceof commonj.sdo.DataObject)
 {
 DataObject sdo = (commonj.sdo.DataObject)o;
 SDOType type = (SDOType) sdo.getType();
 HelperContext hCtx = type.getHelperContext();
 System.out.println(hCtx.getXMLHelper().save(sdo, type.getURI(),
 type.getName()));
 } else {
 System.out.println("SDOHelper.print(): Not a sdo " + o);
 }

Chapter 14
Embedding Service Data Objects with bpelx:exec

14-9

 }catch(Exception e)
 {
 e.printStackTrace();
 } }

14.6 Sharing a Custom Implementation of a Class with
Oracle BPEL Process Manager

When you implement a custom Connection Manager class with the same name as a
class used by Oracle BPEL Process Manager, you must ensure that the custom class
does not override the class used by Oracle BPEL Process Manager.

For example, assume the following is occurring:

• You are using embedded Java in a BPEL project.

• The Connection Manager custom class is overriding the BPEL Connection
Manager class.

• A java.lang.NoClassDefFoundError is occurring at runtime.

14.6.1 How to Configure the BPEL Connection Manager Class to Take
Precedence

To configure the BPEL Connection Manager class to take precedence:

1. Start Oracle JDeveloper.

2. Highlight the BPEL project.

3. From the Edit main menu, select Properties.

4. Select Libraries and Classpath.

5. Click Add JAR/Directory.

6. Navigate to the location of the custom JAR file, and click Select.

This adds the custom Connection Manager JAR file to the classpath.

7. Click OK.

8. Redeploy the BPEL project and retest.

Chapter 14
Sharing a Custom Implementation of a Class with Oracle BPEL Process Manager

14-10

15
Using Events and Timeouts in BPEL
Processes

This chapter describes how to use events and timeouts. It describes how to create a pick
activity to select to continue a process or wait, set timeouts for request-response operations
on receive activities, create wait activities to set an expiration time, create OnEvent branches
in BPEL 2.0 to wait for message arrival, set timeouts on synchronous processes, and invoke
an Oracle Enterprise Scheduler job in a BPEL process.
This chapter includes the following sections:

• Introduction to Event and Timeout Concepts

• Selecting Between Continuing or Waiting on a Process with a Pick Activity

• Setting Timeouts for Request-Reply and In-Only Operations in Receive Activities

• Setting an Expiration Time with a Wait Activity

• Specifying Events to Wait for Message Arrival with an OnEvent Branch in BPEL 2.0

• Setting Timeouts for Durable Synchronous Processes

• Invoking an Oracle Enterprise Scheduler Job in a BPEL Process

15.1 Introduction to Event and Timeout Concepts
Because web services can take a long time to return a response, a BPEL process service
component must be able to time out and continue with the rest of the flow after a period.

This chapter provides an example of how to program a BPEL process service component to
wait one minute for a response from a web service named Star Loan that provides loan
offers. If Star Loan does not respond in one minute, then the BPEL process service
component automatically selects an offer from another web service named United Loan. In
the real world, the time limit is more like 48 hours. However, for this example, you do not want
to wait that long to see if your BPEL process service component is working properly.

Because asynchronous web services can take a long time to return a response, a BPEL
process service component must be able to time out, or give up waiting, and continue with
the rest of the flow after a certain amount of time.

You can use a pick activity to configure a BPEL flow to either wait a specified amount of time
or to continue performing its duties. To set an expiration period for the time, you can use the
wait activity.

15.2 Selecting Between Continuing or Waiting on a Process with
a Pick Activity

The pick activity provides two branches, each one with a condition. The branch that has its
condition satisfied first is executed. In the following example, one branch's condition is to
receive a loan offer, and the other branch's condition is to wait a specified amount of time.

15-1

Figure 15-1 provides an overview. The following activities take place (in order of
priority):

1. An invoke activity initiates a service, in this case, a request for a loan offer from
Star Loan.

2. The pick activity begins next. It has the following conditions:

• onMessage

This condition has code for receiving a reply in the form of a loan offer from
the Star Loan web service. The onMessage code matches the code for
receiving a response from the Star Loan web service before a timeout was
added.

• onAlarm

This condition has code for a timeout of one minute. This time is defined as
PT1M, which means to wait one minute before timing out. In this timeout
setting:

– S is for seconds

– M for one minute

– H is for hour

– D is for day

– Y is for year

In the unlikely event that you want a time limit of 1 year, 3 days, and 15
seconds, you enter it as PT1Y3D15S. The remainder of the code sets the loan
variables selected and approved to false, sets the annual percentage rate
(APR) at 0.0, and copies this information into the loanOffer variable.

The time duration format is specified by the BPEL standard. For more detailed
information on the time duration format, see the duration section of the most
current XML Schema Part 2: Datatypes document at:

http://www.w3.org/TR/xmlschema-2/#duration
3. The pick activity condition that completes first is the one that the BPEL process

service component executes. The other branch is not executed.

Chapter 15
Selecting Between Continuing or Waiting on a Process with a Pick Activity

15-2

http://www.w3.org/TR/xmlschema-2/#duration

Figure 15-1 Overview of the Pick Activity

An onMessage branch is similar to a receive activity in that it receives messages. However,
you can define a pick activity with multiple onMessage branches that can wait for similar
partner links and port types, but have different operations. Therefore, separate threads and
parallel processes can be invoked for each operation. This differs from the receive activity in
which there is only one operation. Another difference is that you can create a new instance of
a business process with a receive activity (by selecting the Create Instance check box), but
you cannot do this with a pick activity.

Note:

You can also create onMessage branches in BPEL 1.1 scope activities and
onAlarm branches in BPEL 1.1 and 2.0 scope activities. Expand the Scope activity
in Oracle JDeveloper, and browse the icons on the left side to find the branch you
want to add.

15.2.1 How To Create a Pick Activity
To create a pick activity:

1. In the SOA Composite Editor, double-click the BPEL process service component.

2. In the Components window, expand BPEL Constructs > Structured Activities.

3. Drag a Pick activity into the designer.

The Pick activity includes an OnMessage branch. Figure 15-2 provides an example.

Chapter 15
Selecting Between Continuing or Waiting on a Process with a Pick Activity

15-3

Figure 15-2 Pick Activity

4. Click the OnMessage branch to display its property fields in the Property Inspector
or double-click the OnMessage branch.

For information about editing activities in the Property Inspector, see How to Edit
BPEL Activities in the Property Inspector.

5. Edit its attributes to receive the response from the loan service. Figure 15-3
provides an example.

Figure 15-3 OnMessage Branch

6. Select the Pick activity.

Icons for adding additional OnMessage branches and an OnAlarm branch are
displayed.

7. Click Add OnAlarm, as shown in Figure 15-4.

Chapter 15
Selecting Between Continuing or Waiting on a Process with a Pick Activity

15-4

Figure 15-4 onAlarm Branch Creation

An OnAlarm branch is displayed.

8. Double-click the OnAlarm branch of the pick activity and set its time limit to 1 minute.
Figure 15-5 provides an example.

Figure 15-5 OnAlarm Branch

9. Click OK.

15.2.2 What Happens When You Create a Pick Activity
The code segment in the following example defines the pick activity for this operation after
design completion:

 <pick>
 <!-- receive the result of the remote process -->
 <onMessage partnerLink="LoanService"
 portType="services:LoanServiceCallback"

Chapter 15
Selecting Between Continuing or Waiting on a Process with a Pick Activity

15-5

 operation="onResult" variable="loanOffer">

 <assign>
 <copy>
 <from variable="loanOffer" part="payload"/>
 <to variable="output" part="payload"/>
 </copy>
 </assign>

 </onMessage>
 <!-- wait for one minute, then timesout -->
 <onAlarm for="PT1M">
 <assign>
 <copy>
 <from>
 <loanOffer xmlns="http://www.autoloan.com/ns/autoloan">
 <providerName>Expired</providerName>
 <selected type="boolean">false</selected>
 <approved type="boolean">false</approved>
 <APR type="double">0.0</APR>
 </loanOffer>
 </from>
 <to variable="loanOffer" part="payload"/>
 </copy>
 </assign>
 </onAlarm>
</pick>

15.2.3 What You May Need to Know About Simultaneous onMessage
Branches in BPEL 2.0

Oracle BPEL Process Manager's implementation of BPEL 2.0 does not support
simultaneous onMessage branches of a pick activity.

When a process has a pick activity with two onMessage branches as its starting
activity (both with initiate set to join in their correlation definitions) and an invoking
process that posts the invocations one after the other, it is assumed that both
invocations reach the same instance of the invoked process. However, in Oracle BPEL
Process Manager's implementation of BPEL 2.0, two instances of the invoked process
are created for each invocation.

This is the expected behavior, but it differs from what is described in the BPEL 2.0
specification.

For example, assume you have synchronous BPEL process A, which has a flow
activity with two parallel branches:

• Branch one invokes operation processMessage1 on asynchronous BPEL process
B.

• Branch two invokes operation processMessage2 on asynchronous BPEL process
B. The invocation occurs after a five second wait. BPEL process A then waits on a
callback from BPEL process B and returns the output back to the client.

The idea is to create one instance of the invoked process and ensure that the second
invocation happens after the first instance is already active and running.

BPEL process B has a pick activity with createInstance set to yes. The pick activity
has two onMessage branches within it:

Chapter 15
Selecting Between Continuing or Waiting on a Process with a Pick Activity

15-6

• One branch is for the processMessage1 operation. For this operation, it goes to sleep for
about 10 seconds.

• The other branch is for the processMessage2 operation. For this operation, it waits for
five seconds.

Both operations have the same input message type and correlation is defined with initiate
set to join.The expectation is that the processMessage1 invocation is invoked immediately
and the BPEL process B instance is created, which should sleep for ten seconds. After five
seconds, the invoking process should then post the processMessage2 invocation to BPEL
process B and this invocation should go to the already existing instance instead of creating a
new one (since the correlation ID is the same and initiate is set to join).

However, for each invocation, a new instance of BPEL process B is created and the result
cannot be predicted.

• If the processMessage2 operation branch finishes first, then the subsequent assign
operation fails because the input variable from processMessage1 is assumed to be null
(for that instance).

• If the processMessage1 operation branch finishes first, then the process returns callback
data with only partial information (does not include the input from processMessage2).

In Oracle BPEL Process Manager's implementation, either one of the two operations
(processMessage1 or processMessage2) creates a new instance. This is implemented so
that database queries do not need to be made to see if there are already instances created.

The workaround is to create two processes that are initiated by the two different operations.

15.3 Setting Timeouts for Request-Reply and In-Only
Operations in Receive Activities

You can provide a timeout setting for the following types of operations in BPEL versions 1.1
and 2.0:

• Request-reply (synchronous) operations.

• In-only receive (asynchronous) operations. In this scenario, the receive activity must be a
midprocess activity and not the activity that creates a new instance (that is, the Create
Instance check box in the Receive dialog is selected).

This provides an alternative to using the onMessage and onAlarm branches of a pick activity
to specify a timeout duration for partner callbacks.

Figure 15-6 shows the Timeout tab of a midprocess receive activity in which you set a
timeout.

Chapter 15
Setting Timeouts for Request-Reply and In-Only Operations in Receive Activities

15-7

Figure 15-6 Timeout Tab of a Receive Activity

For information about key concepts to understand before setting timeouts for request-
reply and in-only operations in receive activities, see What You May Need to Know
About Setting Timeouts for Request-Reply and In-Only Operations.

For information about how to set a timeout in a receive activity in Oracle JDeveloper,
see How to Set Timeouts in Receive Activities.

15.3.1 How to Set Timeouts in Receive Activities
Set timeouts in the following scenarios:

• The Create Instance check box is deselected.

• The receive activity is in the middle of the BPEL process (in most cases)

To set timeouts in receive activities:

1. In the SOA Composite Editor, double-click the BPEL process service component.

2. In the Components window, expand BPEL Constructs.

3. Drag a Receive activity into the designer.

4. Expand the activity.

5. Click the Timeout tab.

This tab enables you to set a timeout for request-response operations, as shown
in Figure 15-7.

Chapter 15
Setting Timeouts for Request-Reply and In-Only Operations in Receive Activities

15-8

Figure 15-7 Timeout Tab

6. Specify appropriate values, and click Apply. For example:

• To specify a timeout setting relative from when the activity is invoked, click the For
button and enter a value or click the Expression button and specify an XPath
expression.

• To specify a timeout setting as an absolute deadline for a request-response
operation, click the Until button and enter a value or click the Expression button and
specify an XPath expression.

7. Click Apply, then OK.

15.3.2 What Happens When You Set Timeouts in Receive Activities
The code segment in the .bpel file defines the specific operation after design completion.

For example, if you specified that the activity expects an inbound message to arrive no later
than five minutes after the activity has started execution, the syntax displays as shown in the
following example:

<bpelx:for="'PT5M'"/>

For example, if you specified that the activity expects an inbound message to arrive no later
than January 24, 2010 11:00 AM UTC+1 after the activity has started execution, the syntax
displays as shown in the following code:

<bpelx:until="'2010-01-24T11:00:00-08:00'"/>

Chapter 15
Setting Timeouts for Request-Reply and In-Only Operations in Receive Activities

15-9

For example, if you specified an XPath expression to obtain a value for a timeout
relative from when the activity is invoked, syntax similar to that shown in the following
code can display:

<bpelx:for="bpws:getVariableData('inputVariable','payload','/tns:waitValue/
tns:for
')"/>

15.3.3 What You May Need to Know About Setting Timeouts for
Request-Reply and In-Only Operations

The following sections describe request-reply and in-only timeout operations
functionality:

• Timeout settings relative from activity invocation

• Timeout settings as an absolute date time

• Timeout settings computed dynamically with an XPath expression

• bpelx:timeout fault thrown during an activity timeout

• Events added to the BPEL instance audit trail during an activity timeout

• Recoverable timeout activities during a server restart

15.3.3.1 Timeout Settings Relative from When the Activity is Invoked
You can specify a timeout setting relative from when the activity is invoked. This
setting is specified as a relative duration using the syntax shown in the following
example for BPEL 1.1.

<receive | bpelx:for="duration-expr">
 standard-elements
</receive>

For BPEL 2.0, the syntax is as shown in the following example:

<receive | <bpelx:for>'duration-expr'</bpelx:for>
 standard-elements
</receive>

This type uses the bpelx:for attribute to specify a static value or an XPath expression
that must evaluate to an XML schema type duration. Only one of the bpelx:for or
bpelx:until attributes is permitted for an activity.

If the XPath expression evaluates to a negative duration, the timeout is ignored and an
event is logged to the instance audit trail indicating that the duration value is invalid.

Once a valid duration value is retrieved, the expiration date for the activity is set to the
current node time (or cluster time after this is available), plus the duration value. For
example, the duration value bpelx:for="'PT5M'" specifies that the activity expects an
inbound message to arrive no later than five minutes after the activity has started
execution.

Chapter 15
Setting Timeouts for Request-Reply and In-Only Operations in Receive Activities

15-10

Note:

The timeout setting attribute does not apply to the onMessage branch of a pick
activity because the same functionality currently exists with the onMessage and
onAlarm branches of that activity.

Timeout durations can only be specified on the following:

• Midprocess receive activities

• Receive activities that do not specify createInstance="true"
A receive activity can only time out after it has been instantiated, which is not the case with
entry receive activities.

15.3.3.2 Timeout Settings as an Absolute Date Time
You can specify a timeout setting as an absolute deadline for request-response receive
activities. For BPEL 2.0, the syntax is as shown in the following example:

<receive <bpelx:until>"deadline-expr"</bpelx:until>
</receive>

For BPEL 1.1, the syntax is as shown in the following example:

<receive bpelx:until="deadline-expr">
 standard-elements
</receive>

The expected expiration time for the bpelx:until attribute must be at least two seconds
ahead of the current time. Otherwise, the timer scheduling is ignored and skipped, just as if
the timer was never specified.

The bpelx:until attribute specifies a static value or an XPath expression that must evaluate
to an XML schema type datetime or date. Only one of the bpelx:for or bpelx:until
attributes is permitted for an activity.

XPath version 1.0 is not XML schema-aware. Therefore, none of the built-in functions of
XPath version 1.0 can create or manipulate dateTime or date values. However, it is possible
to perform one of the following:

• Write a constant (literal) that conforms to XML schema definitions and use that as a
deadline value.

• Extract a field from a variable (part) of one of these types and use that as a deadline
value.

XPath version 1.0 treats that literal as a string literal, but the result can be interpreted as a
lexical representation of a dateTime or date value.

Once a valid datetime or date value has been retrieved, the expiration date for the activity is
set to the specified date. For example, the datetime value
bpelx:until="'2009-12-24T18:00+01:00'" specifies that the activity expects an inbound
message to arrive no later than Dec 24, 2009 6:00 pm UTC+1 after the activity has started
execution.

Chapter 15
Setting Timeouts for Request-Reply and In-Only Operations in Receive Activities

15-11

Note:

The timeout setting attribute does not apply to the onMessage branch of a
pick activity because the same functionality currently exists with the
onMessage and onAlarm branches of the pick activity.

Timeout dates can only be specified on the following activities:

• Midprocess receives

• Receive activities that do not specify createInstance="true"
A receive activity can only time out after it has been instantiated, which is not the case
with entry receive activities.

15.3.3.3 Timeout Settings Computed Dynamically with an XPath Expression
The timeout setting for request-response receives, in-only receives (callback), and
onMessage branches of pick activities can be set using an XPath expression instead
of entering a static duration or datetime value. In this case, the value of the
expression must return either:

• A string that can be interpreted as a static XML duration or datetime value

• An XML schema duration or datetime type

The following example shows the syntax for using XPath expressions in BPEL 1.1.

<bpelx:for="bpws:getVariableData('input', 'payload',
 '/tns:waitValue/tns:for')"/>

<bpelx:until="bpws:getVariableData('input', 'payload',
 '/tns:waitValue/tns:until')"/>

If the returned expression value cannot be interpreted as an XML schema duration or
datetime type, an event is logged in the instance audit trail indicating that an invalid
duration and datetime value was specified, and no activity expiration time can be set.

15.3.3.4 bpelx:timeout Fault Thrown During an Activity Timeout
If a valid XML schema duration or datetime value is returned from the bpelx:for or
bpelx:until attribute, a bpelx:timeout fault is thrown from the timed-out activity. This
fault can be caught by any catch or catchAll block and handled like a regular BPEL
fault. The message of the fault is the name of the activity. In addition, an event is
logged to the instance audit trail indicating that the activity has timed out because the
expected callback message failed to be received before the timeout duration.

If the activity receives a callback from the partner before the timeout period, no fault is
thrown. If a callback is received while the activity is being timed out, the callback
message is not delivered to the activity and is marked as canceled in the delivery
message table. If a timeout action is attempted at the same time that a callback
message is handled, the timeout action is ignored. As of 11g Release 1, instances are
locked optimistically (as opposed to pessimistic locking in Release 10g). Therefore,
the second action in line is still performed.

Chapter 15
Setting Timeouts for Request-Reply and In-Only Operations in Receive Activities

15-12

The bpelx:timeout fault can be thrown from a BPEL component if the component WSDL
declares the fault on the operation. If the fault is not declared on the operation, the fault is
converted into a FabricInvocationException runtime fault. This fault can be caught by any
caller components (including BPEL components), but the fault type is no longer
bpelx:timeout. (However, the fault message string still indicates that the fault was originally
a timeout fault.)

15.3.3.5 Event Added to the BPEL Instance Audit Trail During an Activity Timeout
Once a bpelx:timeout fault is thrown from a timed-out activity, an event is logged to the
instance audit trail indicating that the activity has timed out, as opposed to having received
the expected callback message from its partner.

15.3.3.6 Recoverable Timeout Activities During a Server Restart (Refresh Expiration
Alarm Table)

Activities that specify a valid timeout duration or datetime are likely implemented in a similar
manner to wait and onAlarm activities with an expiration date for the underlying work item
object. If the node that scheduled these activities with the scheduler goes down (either
through graceful shutdown or abrupt termination), all these activities must be rescheduled
with the scheduler upon server restart.

It is not possible to have a single node (the master node) in the cluster be responsible for
rescheduling these activities upon node shutdown.

15.4 Setting an Expiration Time with a Wait Activity
The wait activity allows a process to wait for a given time period or until a time limit has been
reached. Exactly one of the expiration criteria must be specified. A typical use of this activity
is to invoke an operation at a certain time. You typically enter an expression that is dependent
on the state of a process.

When specifying a time period for waiting, note the following:

• Wait times cannot be guaranteed if they are scheduled with other events that require
processing. Due to this additional processing, the actual wait time can be greater than the
wait time specified in the BPEL process.

• Wait times of less than two seconds are ignored by the server. Wait times above two
seconds, but less than one minute, may not get executed in the exact, specified time.
However, wait times in minutes do execute in the specified time.

• The default value of 2 seconds for wait times is specified with the MinBPELWait property
in the System MBean Browser of Oracle Enterprise Manager Fusion Middleware Control.
You can set this property to any value and the wait delay is bypassed for any waits less
than MinBPELWait.

Note:

Quartz version 1.6 is supported for scheduling expiration events on wait activities.

Chapter 15
Setting an Expiration Time with a Wait Activity

15-13

15.4.1 How To Specify the Minimum Wait Time
You can specify the minimum time duration for a BPEL process to perform a wait that
involves a dehydration. If the wait duration is less than or equal to the value, BPEL
continues executing activities in the same thread and transaction.

To specify the minimum wait time:

1. From the SOA Infrastructure menu, select SOA Administration > BPEL
Properties.

2. At the bottom of the BPEL Service Engine Properties page, click More BPEL
Configuration Properties.

3. Click MinBPELWait.

4. In the Value field, specify a value in seconds.

5. Click Apply.

6. Click Return.

15.4.2 How to Create a Wait Activity
To create a wait activity:

1. In the Components window, expand BPEL Constructs.

2. Drag a Wait activity into the designer.

3. Double-click the Wait activity to display the Wait dialog.

4. In the For section, enter the amount of time for which to wait.

5. In the Until section, select the deadline for which to wait, as shown in Figure 15-8.

Chapter 15
Setting an Expiration Time with a Wait Activity

15-14

Figure 15-8 Wait Dialog

15.4.3 What Happens When You Create a Wait Activity
Exactly one of the expiration criteria must be specified, as shown in the following example for
BPEL 2.0.

<wait <for>'duration-expr'</for> | <until>'duration-expr'</until>
 standard-elements
 </wait>

The following example shows the BPEL 1.1 syntax.

<wait (for="duration-expr" | until="deadline-expr") standard-attributes>
 standard-elements
 </wait>

15.5 Specifying Events to Wait for Message Arrival with an
OnEvent Branch in BPEL 2.0

You can create an onEvent branch in a scope activity that causes a specified event to wait for
a message to arrive. For example, assume you have a credit request process that is initiated
by a customer's credit request message. The request may be completely processed without
the need for further interaction, and the results submitted to the customer. In some cases,
however, the customer may want to inquire about the status of the credit request, modify the
request content, or cancel the request entirely while it is being processed. You cannot expect
these interactions to occur only at specific points in the business processing. An event
handler such as an onEvent branch enables the business process to accept requests (such
as status request, modification request, or cancellation request) to arrive in parallel to the
primary business logic flow.

Chapter 15
Specifying Events to Wait for Message Arrival with an OnEvent Branch in BPEL 2.0

15-15

The onEvent event handlers are associated with an enclosed scope. The onEvent
event handlers are enabled when their scope is initialized and disabled when their
scope ends. When enabled, any number of events can occur. They are processed in
parallel to the scope's primary activity and in parallel to each other. Message events
also represent service operations exposed by a process and modeled as onEvent
elements. Event handlers cannot create new process instances. Therefore, message
events are always received by a process instance that is already active.

15.5.1 How to Create an onEvent Branch in a Scope Activity
To create an onEvent branch in a scope activity:

1. In the expanded Scope activity, click Add OnEvent, as shown in Figure 15-9.

Figure 15-9 Add OnEvent Icon

This creates an OnEvent branch and an enclosed scope activity.

2. Double-click the OnEvent branch.

The OnEvent dialog is displayed, as shown in Figure 15-10.

Chapter 15
Specifying Events to Wait for Message Arrival with an OnEvent Branch in BPEL 2.0

15-16

Figure 15-10 OnEvent Dialog

3. In the Partner Link field, click the Search icon to select the partner link that contains the
endpoint reference on which the message is expected to arrive.

The Port Type and Operation fields define the port type and operation invoked by the
partner to cause the event.

4. Specify a method for receiving the message from the partner through use of a variable or
From Parts element.

5. Click Apply, then click OK.

6. Continue the design of your BPEL process.

15.5.2 What Happens When You Create an OnEvent Branch
The following example provides an overview of onEvent branches in the .bpel file after
design completion. The onEvent branches inquire about the status of the credit request,
modify the request content, or cancel the request entirely while it is being processed.

<process name="creditRequestProcess" . . .>
 . . .
 <eventHandlers>
 <onEvent partnerLink="requestCreditScore"
 operation="queryCreditRequestStatus" ...>
 <scope name="scopeStatus">...</scope>
 </onEvent>
 <onEvent partnerLink="requestCreditScore"
 operation="modifyCreditRequest" ...>
 <scope name="scopeRequest">...</scope>
 </onEvent>
 <onEvent partnerLink="requestCreditScore"
 operation="cancelCreditRequest" ...>
 <scope name="scopeCancel">...</scope>

Chapter 15
Specifying Events to Wait for Message Arrival with an OnEvent Branch in BPEL 2.0

15-17

 </onEvent>
 </eventHandlers>
 . . .
</process>

15.6 Setting Timeouts for Durable Synchronous Processes
For durable synchronous processes that connect to a remote database, you must
increase the SyncMaxWaitTime timeout property in the System MBean Browser of
Oracle Enterprise Manager Fusion Middleware Control.

For information on setting this property, see Specifying Transaction Timeout Values in
Durable Synchronous Processes.

15.7 Invoking an Oracle Enterprise Scheduler Job in a BPEL
Process

You can invoke an Oracle Enterprise Scheduler job in a BPEL process. An Oracle
Enterprise Scheduler job is a unit of work in the form of either Java, a database stored
procedure, or any executable. A job definition is associated with Oracle Enterprise
Scheduler, which describes how to execute the job. An Oracle Enterprise Scheduler
web service submits the job from within a BPEL process and associates a schedule
with that job request.

The scheduled Oracle Enterprise Scheduler job resides in a runtime environment and
is accessible with an Oracle Metadata Services Repository (MDS Repository)
connection, using database-based access.

Note:

This section describes how to submit a job from a BPEL process, and not
how to wait for the job to complete. If you want the BPEL process to wait for
the job to complete, you must invoke the web service to request a callback
when the job completes and then perform a receive to get the callback. For
more information, see Chapter "Using the Oracle Enterprise Scheduler Web
Service" of Developing Applications for Oracle Enterprise Scheduler.

15.7.1 How to Create Oracle Database and SOA-MDS Connections
To create Oracle database and SOA-MDS connections:

1. Create a SOA composite application. For information, see Creating a SOA
Application.

2. Create a BPEL process in the SOA Composite Editor (for this example, a
synchronous BPEL process is created). For information, see How to Add a BPEL
Process Service Component.

3. Double-click the BPEL process in the SOA Composite Editor.

Oracle BPEL Designer is displayed.

Chapter 15
Setting Timeouts for Durable Synchronous Processes

15-18

4. Create an Oracle database connection. This is required for querying Oracle Enterprise
Scheduler jobs.

a. From the File main menu, select New > Application.

b. From the Categories list, select Connection.

c. Select Database Connection.

The Create Database Connection wizard is displayed.

d. Complete the dialogs of the Create Database Connection wizard to create the
connection to the Scheduler Oracle Metadata Services Repository database for the
runtime server where Oracle Enterprise Scheduler is deployed, and click Finish.

5. Create a SOA-MDS connection. A database-based MDS Repository is used for retrieving
the jobs to select.

a. From the File main menu, select New > Application.

b. From the Categories list, select Connection.

c. Select SOA-MDS Connection.

The Create SOA-MDS Connection dialog is displayed.

d. From the Connection Type list, select DB Based MDS.

e. From the Connection list, ensure that the database connection created in Step 4 is
displayed.

f. From the Select MDS partition list, select the partition that includes Oracle
Enterprise Scheduler jobs. For jobs defined in the Oracle Enterprise Scheduler
predeployed native hosting application, the MDS partition name is
essUserMetadata.

g. Complete the remaining fields of the dialog to create the SOA-MDS connection, and
click OK.

15.7.2 How to Create a Schedule Job Activity
To create a schedule job activity:

1. From the Components window, expand Oracle Extensions.

2. Drag a Schedule Job activity into the BPEL process, as shown in Figure 15-11.

Figure 15-11 Schedule Job Icon

Chapter 15
Invoking an Oracle Enterprise Scheduler Job in a BPEL Process

15-19

3. Double-click the activity to invoke the Edit Schedule Job dialog. Figure 15-12
provides details. This dialog enables you to specify the application, the description,
the Oracle Enterprise Scheduler job, the job schedule, and the job start time.

Figure 15-12 Edit Schedule Job Dialog - General Tab

4. Provide values appropriate to your environment, as described in Table 15-1, and
click OK,

Table 15-1 Edit Schedule Job Dialog - General Tab

Field Description

Application Displays the value of the selected job's SYS_effectiveApplication
property. This property must be set, or an error message is displayed
and you cannot proceed.

The editable state of this field depends on the selected job definition:

• If the selected job definition provides SYS_effectiveApplication,
then the value for this property is displayed and this field is not
editable.

• If the job definition does not provide SYS_effectiveApplication,
then this field is editable and you must specify the application
name in the User Defined Properties section of the System
Properties tab.

Name Specify the name of the job.

Description Specify a description for the request.

Chapter 15
Invoking an Oracle Enterprise Scheduler Job in a BPEL Process

15-20

Table 15-1 (Cont.) Edit Schedule Job Dialog - General Tab

Field Description

Job Click the Search icon to invoke the Enterprise Scheduler Browser
dialog to select the job from the SOA-MDS connection. When you
select a job, any system or application properties defined for that job
are displayed in the Application Properties and System Properties
tabs.

Schedule Click the Search icon to invoke the Enterprise Scheduler Browser
dialog to select the job schedule. If not specified, the job is executed
immediately.

You define schedules in Oracle Enterprise Manager Fusion Middleware
Control. Those schedules are then displayed for selection in the
Enterprise Scheduler Browser dialog. For more information, see
"Creating or Editing Predefined Job Schedules" of Administering
Oracle Enterprise Scheduler.

Start Time Click the XPath Expression Builder icon to specify the start time as an
XPath expression. The start is separate from the schedule, and
indicates when the job takes effect. If a start time is not specified, the
start time is immediate.

End Time Click the XPath Expression Builder icon to specify the end time as an
XPath expression. The end is separate from the schedule, and
indicates when the job ends. If a schedule is not specified, this field is
not displayed.

5. Click the Application Properties tab. Application properties are unique to a specific job.
When you select an Oracle Enterprise Scheduler job in the Edit Schedule Job dialog -
General tab, the application properties defined in the job are displayed in this dialog. You
can also specify your own application properties in the User Defined Properties section.
Figure 15-13 provides details.

Chapter 15
Invoking an Oracle Enterprise Scheduler Job in a BPEL Process

15-21

Figure 15-13 Edit Schedule Job Dialog - Application Properties Tab

6. Provide values appropriate to your environment, as described in Table 15-2, and
click OK.

Table 15-2 Edit Schedule Job Dialog - Application Properties Tab

Field Description

Job Properties Displays the application properties defined by the job. Only
the values can be modified. The properties in this table
cannot be removed. Double-click a property to edit its value or
click the Browse icon to the right of the Value field to specify
an XPath expression.

User-Defined Properties Displays the application properties that you have added for
this request. You can add, modify, and remove properties in
this table.

7. Click the System Properties tab. System properties are parameters with names
reserved by Oracle Enterprise Scheduler. Oracle Enterprise Scheduler represents
parameter names that are known and used by the system in the SystemProperty
class. When you select an Oracle Enterprise Scheduler job in the Edit Schedule
Job dialog - General tab, the system properties defined in the job are displayed in
this dialog. You can also specify your own system properties in the User Defined
Properties section. Figure 15-14 provides details.

Chapter 15
Invoking an Oracle Enterprise Scheduler Job in a BPEL Process

15-22

Figure 15-14 Edit Schedule Job Dialog - System Properties Tab

For more information about system properties, see Chapter "Using Parameters and
System Properties" of Developing Applications for Oracle Enterprise Scheduler.

8. Provide values appropriate to your environment, as described in Table 15-3, and click OK
to complete configuration.

Table 15-3 Edit Schedule Job Dialog - System Properties Tab

Field Description

Job Properties Displays the system properties defined by the job. Only the values
can be modified. Double-click a property to edit its value or click
the Browse icon to specify an XPath expression in the Expression
Builder dialog.

User-Defined Properties Displays the system properties that you have added for this
request. You can add, modify, and remove properties in this table.
Select from a fixed list of system property names in this table.

The message shown in Figure 15-15 is displayed because the Oracle Enterprise
Scheduler web service includes an abstract WSDL.

Chapter 15
Invoking an Oracle Enterprise Scheduler Job in a BPEL Process

15-23

Figure 15-15 WSDL Message

A BPEL process requires the following:

• A concrete WSDL

• A WSDL with partner links

9. Click Yes.

A concrete wrapper WSDL is created for the abstract WSDL. The wrapper WSDL
includes an Oracle Enterprise Scheduler partner link that is added to the BPEL
process.

10. Expand the schedule job activity in the BPEL process to display its contents.
Figure 15-16 provides details.

Figure 15-16 Expanded Job Schedule Activity in a BPEL Process.

The expanded schedule job activity consists of the following automatically
configured activities:

• EssAssign activity: Contains copy rules operations for the system and
application properties and other job information.

• EssInvoke activity: Invokes the Oracle Enterprise Scheduler partner link.

• EssService activity: Contains the Oracle Enterprise Scheduler web service
partner link.

11. Go to the SOA composite application in the SOA Composite Editor.

12. In the External References swim lane, double-click the EssService partner link.

The Update Reference dialog is displayed.

Chapter 15
Invoking an Oracle Enterprise Scheduler Job in a BPEL Process

15-24

13. In the WSDL URL field, specify a concrete WSDL for the reference binding component,
and click OK.

15.7.3 How to Attach Security Policies to the Service and Reference
Binding Components

To attach security policies to the service and reference binding components

1. Right-click the EssService reference binding component, and select Configure SOA WS
Policies > For Request.

The Configure SOA WS Policies dialog is displayed.

2. In the Security section, click the Add icon.

3. Select oracle/wss_username_token_client_policy, and click OK.

4. In the Configure SOA WS Policies dialog, click OK.

5. Right-click the service binding component, and select Configure SOA WS Policies.

The Configure SOA WS Policies dialog is displayed.

6. In the Security section, click the Add icon.

7. Select oracle/wss_username_token_service_policy, and click OK.

Design is now complete.

Note:

The Oracle Enterprise Scheduler web service is by default not secure. You
must first secure it with an Oracle Web Services Manager policy using a WLST
command or Oracle Enterprise Manager Fusion Middleware Control before
using that web service to submit a job from a BPEL process.

Chapter 15
Invoking an Oracle Enterprise Scheduler Job in a BPEL Process

15-25

16
Coordinating Master and Detail Processes

This chapter describes how to coordinate master and detail processes in a BPEL process.
This coordination enables you to specify the tasks performed by a master BPEL process and
its related detail BPEL processes. This is sometimes referred to as a parent and child
relationship.
This chapter includes the following sections:

• Introduction to Master and Detail Process Coordinations

• Defining Master and Detail Process Coordination in Oracle JDeveloper

16.1 Introduction to Master and Detail Process Coordinations
Master and detail coordinations consist of a one-to-many relationship between a single
master process and multiple detail processes.

For example, assume a business process imports sales orders into an application. Each
sales order consists of a header (customer information, ship-to address, and so on) and
multiple lines (item name, item number, item quantity, price, and so on).

The following tasks are performed to execute the order:

• Validate the header. If the header is invalid, processing stops.

• Validate each line. If any lines are invalid, they are marked as invalid and processing
stops.

• Perform inventory checks for each item. If an item is not available, a work order is
created to assemble it.

• Stage items at the shipping dock after items for each line are available.

• Ship the order to the customer.

To perform these tasks, create a master process to check and validate each header and
multiple BPEL processes to check and validate each line item.

Potential coordination points are as follows:

• The master process must signal the detail processes that header validation is successful
and to continue processing.

• Each detail process must signal the master process after line item validation is complete.

• Each detail process must signal the master process after the line item is available in
inventory.

• After all line items are available, the master must signal each detail process to move its
line item to the shipping dock (the dock may become too crowded if items are simply
moved as soon as they are available).

• After all lines have been moved, the master process must execute logic to ship the
fulfilled order to the customer.

16-1

Figure 16-1 provides an overview of the header and line item validation coordination
points between one master process and two detail processes.

Figure 16-1 Master and Detail Coordination Overview (One BPEL Process to Two Detail
Processes)

The following BPEL process activities coordinate actions between the master and
detail processes:

• Signal: notifies the other processes (master or detail) to continue processing

• Receive signal: waits until it receives the proper notification signal from the other
process (master or detail) before continuing its processing

Both activities are coordinated with label attributes defined in the BPEL process files.
Labels are declared per master process definition.

Figure 16-2 provides an overview of the BPEL process flow coordination.

Chapter 16
Introduction to Master and Detail Process Coordinations

16-2

Figure 16-2 Master and Detail Syntax Overview (One BPEL Process to One Detail
Process)

As shown in Figure 16-2, each master and detail process includes a signal and receive signal
activity. Table 16-1 describes activity responsibilities based on the type of process in which
they are defined.

Table 16-1 Master and Detail Process Coordination Responsibilities

If A... Contains A... Then...

Master process Signal activity The master process signals all of its associated detail
processes at runtime.

Detail process Receive signal activity The detail process waits until it receives the signal
executed by its master process.

Detail process Signal activity The detail process signals its associated master
process at runtime that processing is complete.

Master process Receive signal activity The master process waits until it receives the signal
executed by all of its detail processes.

If the signal activity executes before the receive signal activity, the state set by the signal
activity is persisted and still effective for a later receive signal activity to read.

16.1.1 BPEL File Definition for the Master Process
The BPEL file for the master process defines coordination with the detail processes. The
BPEL file shows that the master process interacts with the partner links of several detail
processes. The following provides an example:

<process name="MasterProcess"
. . .
. . .
 <partnerLinks>
 <partnerLink name="client"
 partnerLinkType="tns:MasterProcess"

Chapter 16
Introduction to Master and Detail Process Coordinations

16-3

 myRole="MasterProcessProvider"
 partnerRole="MasterProcessRequester"/>
 <partnerLink name="DetailProcess"
 partnerLinkType="dp:DetailProcess"
 myRole="DetailProcessRequester"
 partnerRole="DetailProcessProvider"/>
 <partnerLink name="DetailProcess1"
 partnerLinkType="dp1:DetailProcess1"
 myRole="DetailProcess1Requester"
 partnerRole="DetailProcess1Provider"/>
 <partnerLink name="DetailProcess2"
 partnerLinkType="dp2:DetailProcess2"
 myRole="DetailProcess2Requester"
 partnerRole="DetailProcess2Provider"/>
 </partnerLinks>

A signal activity shows the label value and the detail process coordinated with this
master process. The label value (startDetailProcess) matches with the label value in
the receive signal activity of all detail processes. This ensures that the signal is
delivered to the correct process. There is one signal process per receive signal
process. The master process signals all detail processes at runtime. This syntax in the
following example shows a signal activity in a BPEL process that supports BPEL
version 2.0.

<extensionActivity>
 <bpelx:signal name="notifyDetailProcess"
 label="startDetailProcess" to="details"/>
</extensionActivity>

Note:

In BPEL 1.1, the signal activity syntax is slightly different.

<bpelx:signal name="notifyDetailProcess" label="startDetailProcess"
to="details"/>

Assign, invoke, and receive activities describe the interaction between the master and
detail processes. This example shows interaction between the master process and
one of the detail processes (DetailProcess). Similar interaction is defined in this BPEL
file for all detail processes.

In the invoke activity, ensure that the Invoke as Detail check box is selected.
Figure 16-3 provides details.

Figure 16-3 Invoke As Detail Check Box

This selection creates the partner process instance (DetailProcess) as a detail
instance. You must select this check box in the invoke activity of the master process

Chapter 16
Introduction to Master and Detail Process Coordinations

16-4

for each detail process with which to interact. The following provides an example of the BPEL
file contents after you select the Invoke as Detail check box:

<assign>
 <copy>
 <from variable="input" part="payload" query="/tns:processInfo/tns:value"/>
 <to variable="detail_input" part="payload" query="/dp:input/dp:number"/>
 </copy>
</assign

<invoke name="receiveInput" partnerLink="DetailProcess"
 portType="dp:DetailProcess"
 operation="initiate"
 inputVariable="detail_input"
 bpelx:invokeAsDetail="true"/>

<!-- receive the result of the remote process -->
<receive name="receive_DetailProcess" partnerLink="DetailProcess"
 portType="dp:DetailProcessCallback"
 operation="onResult" variable="detail_output"/>

The master BPEL process includes a receive signal activity. This activity indicates that the
master process waits until it receives a signal from all of its detail processes. The label value
(detailProcessComplete) matches with the label value in the signal activity of each detail
process. This ensures that the signal is delivered to the correct process. The following code
provides an example. This syntax shows a receive signal activity in a BPEL process that
supports BPEL version 2.0.

<extensionActivity>
 <bpelx:receiveSignal name="waitForNotifyFromDetailProcess"
 label="detailProcessComplete" from="details"/>
</extensionActivity>

Note:

In BPEL 1.1, the receive signal activity syntax is slightly different.

<bpelx:receiveSignal name="waitForNotifyFromDetailProcess"
 label="detailProcessComplete"
 from="details"/>

16.1.1.1 Correlating a Master Process with Multiple Detail Processes
For environments in which you have one master and multiple detail processes, use the
bpelx:detailLabel attribute for signal correlation. The following example shows how to use
this attribute.

The first invoke activity invokes the DetailProcess detail process and associates it with a
label of detailProcessComplete0.

<invoke name="invokeDetailProcess" partnerLink="DetailProcess"
 portType="dp:DetailProcess"
 operation="initiate"
 inputVariable="detail_input"
 bpelx:detailLabel="detailProcessComplete0"
 bpelx:invokeAsDetail="true"/>

Chapter 16
Introduction to Master and Detail Process Coordinations

16-5

The second invoke activity invokes the DetailProcess1 detail process and associates
it with a label of detailProcessComplete1. The following provides an example.

<invoke name="invokeDetailProcess1" partnerLink="DetailProcess1"
 portType="dp1:DetailProcess1"
 operation="initiate"
 inputVariable="detail_input1"
 bpelx:detailLabel="detailProcessComplete1-2"
 bpelx:invokeAsDetail="true"/>

The third invoke activity invokes the DetailProcess2 detail process again through a
different port and with a different input variable. It associates the DetailProcess2
detail process with a label of detailProcessComplete1-2, as shown in the following
example:

<invoke name="invokeDetailProcess2" partnerLink="DetailProcess2"
 portType="dp2:DetailProcess2"
 operation="initiate"
 inputVariable="detail_input2"
 bpelx:detailLabel="detailProcessComplete1-2"
 bpelx:invokeAsDetail="true"/>

The receive signal activity of the master process shown in the following example waits
for a return signal from detail process DetailProcess0.

<!-- This is a receiveSignal waiting for 1 child to signal back -->
<bpelx:receiveSignal name="waitForNotifyFromDetailProcess0"
label="detailProcessComplete0" from="details"/>

The second receive signal activity of the master process shown in the following
example also waits for a return signal from DetailProcess1 and DetailProcess2.

<!-- This is a receiveSignal waiting for 2 child (detail) processes to signal
back -->
<bpelx:receiveSignal name="waitForNotifyFromDetailProcess1-2"
 label="detailProcessComplete1-2" from="details"/>

Note:

If there is only one receive signal activity in the BPEL process, do not specify
the bpelx:detailLabel attribute in the invoke activity. In these situations, a
default bpelx:detailLabel attribute is assumed and does not need to be
specified.

16.1.2 BPEL File Definition for Detail Processes
The BPEL process file of each detail process defines coordination with the master
process.

A receive signal activity indicates that the detail process shown in the following
example waits until it receives a signal executed by its master process. The label value
(startDetailProcess) matches with the label value in the signal activity of the master
process.

<bpelx:receiveSignal name="waitForNotifyFromMasterProcess"
 label="startDetailProcess" from="master"/>

Chapter 16
Introduction to Master and Detail Process Coordinations

16-6

A signal activity indicates that the detail process shown in the following example signals its
associated master process at runtime that processing is complete. The label value
(detailProcessComplete) matches with the label value in the receive signal activity of each
master process.

<bpelx:signal name="notifyMAsterProcess" label="detailProcessComplete"
 to="master"/>

16.2 Defining Master and Detail Process Coordination in Oracle
JDeveloper

This section provides an overview of how to define master and detail process coordination in
Oracle BPEL Designer. In this example, one master process and one detail process are
defined.

Note:

This section only describes the tasks specific to master and detail process
coordination. It does not describe the standard activities that you define in a BPEL
process, such as creating variables, creating assign activities, and so on.

16.2.1 How to Create a Master Process
To create a master process:

1. In the SOA Composite Editor, create a BPEL process service component. For this
example, the process is named MasterProcess.

2. Double-click the MasterProcess BPEL process.

3. In the Components window, expand Oracle Extensions > Signal.

4. Drag a Signal activity into the designer.

5. Click the Signal activity to display its property fields in the Property Inspector or double-
click the Signal activity.

For information about editing activities in the Property Inspector, see How to Edit BPEL
Activities in the Property Inspector.

This activity signals the detail process to perform processing at runtime.

6. Enter the details described in Table 16-2:

Table 16-2 Signal Dialog Fields and Values

Field Value

Name Enter a name (for this example, contactDetailProcess).

Label Enter a label name (for this example, beginDetailProcess). This
label must match the receive signal activity label you set in the
detail process in Step 6.

To Select details as the type of process to receive this signal.

Chapter 16
Defining Master and Detail Process Coordination in Oracle JDeveloper

16-7

Figure 16-4 shows the Signal dialog.

Figure 16-4 Signal Dialog

7. Click OK.

8. Drag a Receive Signal activity into the designer.

9. Double-click the Receive Signal activity.

This activity enables the master process to wait until it receives the signal
executed by all of its detail processes.

10. Enter the details shown in Table 16-3:

Table 16-3 Receive Signal Dialog Fields and Values

Field Value

Name Enter a name (for this example, waitForDetailProcess).

Label Enter a label name (for this example,
completeDetailProcess). This label must match the signal
activity label you set in the detail process in Step 10.

To Select details as the type of process from which to receive
the signal.

Figure 16-5 shows the Receive Signal dialog.

Chapter 16
Defining Master and Detail Process Coordination in Oracle JDeveloper

16-8

Figure 16-5 Receive Signal Dialog

11. Click OK.

The master process has now been designed to:

• Signal the detail process to perform processing at runtime.

• Wait until it receives the signal executed by the detail process.

16.2.2 How to Create a Detail Process
To create a detail process:

1. In the SOA Composite Editor, create a second BPEL process service component. For
this example, the process is named DetailProcess.

2. Double-click the DetailProcess BPEL process.

3. In the Components window, expand Oracle Extensions.

4. Drag a Receive Signal activity into your BPEL process service component.

5. Double-click the Receive Signal activity.

This activity enables the detail process to wait until it receives the signal executed by its
master process.

6. Enter the details shown in Table 16-4:

Table 16-4 Receive Signal Dialog Fields and Values

Field Value

Name Enter a name (for this example,
WaitForContactFromMasterProcess).

Label Enter a label name (for this example, beginDetailProcess). This
label must match the signal activity label you set in the master
process in Step 6.

Chapter 16
Defining Master and Detail Process Coordination in Oracle JDeveloper

16-9

Table 16-4 (Cont.) Receive Signal Dialog Fields and Values

Field Value

To Select master as the type of process from which to receive the
signal.

Figure 16-6 shows the Receive Signal dialog.

Figure 16-6 Receive Signal Dialog

7. Click OK.

8. Drag a Signal activity into the designer.

9. Double-click the Signal activity.

This activity enables the detail process to signal its associated master process at
runtime that processing is complete.

10. Enter the details described in Table 16-5:

Table 16-5 Signal Dialog Fields and Values

Field Value

Name Enter a name (for this example, contactDetailProcess).

Label Enter a label name (for this example,
completeDetailProcess). This label must match the
receive signal activity label you set in the master process in
Step 10.

To Select master as the destination.

Figure 16-7 shows the Signal dialog.

Chapter 16
Defining Master and Detail Process Coordination in Oracle JDeveloper

16-10

Figure 16-7 Signal Dialog

11. Click OK.

The detail process has now been designed to:

• Wait until it receives the signal executed by its master process.

• Signal the master process at runtime that processing is complete.

16.2.3 How to Create an Invoke Activity
To create an invoke activity:

1. Return to the MasterProcess master process.

2. In the Components window, expand BPEL Constructs.

3. Drag an Invoke activity into your BPEL process service component.

4. Double-click the Invoke activity.

5. Select the DetailProcess BPEL process you created in Step 1 as the partner link.

6. Select the Invoke as Detail check box.

7. Complete all remaining fields in the Invoke dialog, and click OK.

8. In the designer, click Source. The BPEL file appears as follows:

<invoke name="MyInvoke" partnerLink="DetailProcess"
 portType="dp:DetailProcess"
 operation="initiate"
 inputVariable="detail_input"
 bpelx:invokeAsDetail name="true"/>

This attribute creates the partner process (DetailProcess) as a detail instance.

9. If this is an environment in which one master process is interacting with multiple detail
processes, perform the following tasks:

Chapter 16
Defining Master and Detail Process Coordination in Oracle JDeveloper

16-11

a. Specify the bpelx:detailLabel attribute for correlating with the receive signal
activity:

<invoke name="MyInvoke" partnerLink="DetailProcess"
 portType="dp:DetailProcess"
 operation="initiate"
 inputVariable="detail_input"/>
 bpelx:detailLabel="detailProcessComplete0"
 <bpelx:invokeAsdetail name="true"/>

b. Specify the same label value of detailProcessComplete0 in the receive signal
activity of the master process:

<bpelx:receiveSignal name="waitForNotifyFromDetailProcess0-1"
label="detailProcessComplete0" from="details"/>

c. Repeat these steps as necessary for additional detail processes, ensuring that
you specify a different label value.

10. From the File main menu, select Save All.

Master and detail coordination design is now complete.

Chapter 16
Defining Master and Detail Process Coordination in Oracle JDeveloper

16-12

17
Using the Notification Service

This chapter describes how to send notifications from a BPEL process using a variety of
channels. A BPEL process can be designed to send email, instant messaging (IM), or short
message service (SMS) notifications. A BPEL process can also be designed to consider an
end user's channel preference at runtime for selecting the notification channel.
This chapter includes the following sections:

• Introduction to the Notification Service

• Introduction to Notification Channel Setup

• Selecting Notification Channels During BPEL Process Design

• Allowing the End User to Select Notification Channels

17.1 Introduction to the Notification Service
Various scenarios may require sending email messages or other types of notifications to
users as part of the process flow. For example, certain types of exceptions that cannot be
handled automatically may require manual intervention. In this case, a BPEL process can use
the notification service to alert users by email, IM, or SMS message.

The contact information (email address, phone number, and so on) of the recipient is either
static (such as admin@yourcompany.com) or obtained dynamically during runtime. To obtain
the contact information dynamically, XPath expressions can retrieve it from the identity store
(LDAP) or extract it from the BPEL payload.

This chapter uses the following terms:

• Notification

An asynchronous message sent to a user by a specific channel. The message can be
sent as an email, IM, or SMS message.

• Actionable notification

A notification to which the user can respond. For example, workflow sends an email to a
manager to approve or reject a purchase order. The manager approves or rejects the
request by replying to the email with appropriate content.

• Human task email notification layer

Sends email notifications directly from a BPEL process or implicitly from the human task
part of a BPEL process. Implicit notifications are modeled from the Human Task Editor.

For sending email notifications directly from a BPEL process, you must explicitly specify
the user information in the BPEL process. You can be inside or outside of a human task
scope.

For sending email notifications implicitly from the human task part of a BPEL process,
you only specify the recipient based on the relationship of the user with regards to the
task (that is, the creator, assignee, and so on).

17-1

Note:

Implicit notifications are processed through more layers of code than
explicit notifications. If explicit notifications are functioning correctly, it
does not mean that implicit notifications also function correctly.

• Oracle User Messaging Service

The BPEL notification service uses the underlying infrastructure provided by
Oracle User Messaging Service to send notifications.

Oracle User Messaging Service also provides the user preference infrastructure
for getting the end user's preferred channel during runtime.

For more information on the Oracle User Messaging Service, see Developing
Applications with Oracle User Messaging Service.

Figure 17-1 shows the Oracle User Messaging Service interfaces and supported
service types.

Figure 17-1 Service Interfaces and Supported Service Types

For more information about notifications, see the following sections:

• Notifications from Human Workflow

• Specifying Participant Notification Preferences for instructions on specifying email
notifications in the Human Task Editor

• Developing Applications with Oracle User Messaging Service

17.2 Introduction to Notification Channel Setup
Notification setup is a multiple-step process that involves several user interface tools.
Table 17-1 provides an overview of this process, including the task to perform, the tool
to use, and the documentation to which to refer for more specific details.

Chapter 17
Introduction to Notification Channel Setup

17-2

Table 17-1 Notification Tasks

Task Description User Interface Described In...

Select a channel for
sending notifications in
a SOA composite
application.

Select a method for sending
notifications:

• Explicitly select and configure
an email, IM, or SMS channel.

or
• Do not explicitly select a

notification channel, but simply
select that a notification must be
sent. Channel selection occurs
later in the User Messaging
Preferences user interface.

Selected and
configured by the
BPEL process
designer in Oracle
BPEL Designer

Selecting Notification
Channels During BPEL
Process Design

or

Allowing the End User to
Select Notification
Channels

Configure the driver for
the notification channel.

You configure drivers on the same
Oracle WebLogic Server on which
you deploy the SOA composite
application. This action enables
participants to receive and forward
notifications. Driver support is
provided for email, IM, and SMS
channels.

Configured by the
administrator in Oracle
Enterprise Manager
Fusion Middleware
Control

Administering Oracle
SOA Suite and Oracle
Business Process
Management Suite

Configure the
notification mode and
actionable accounts for
human workflows.

If you are using notifications with
human workflow, you configure the
notification mode and actionable
account for email.

Configured by the
administrator in Oracle
Enterprise Manager
Fusion Middleware
Control

Administering Oracle
SOA Suite and Oracle
Business Process
Management Suite

Register the devices
used to access
messages by specifying
user preferences.

This action enables workflow
participants to receive notification
messages. For example, the end
user registers email clients and
specifies the message content to
receive and the channel to use for
receiving messages.

If no channel is specified, email is
used by default. The preferences set
in this application are applicable only
to that specific end user, and not to
other users.

Registered by the end
user in the User
Messaging
Preferences user
interface. You can
access this interface by
selecting Preferences
> Notification in
Oracle BPM Worklist.

Administering Oracle
User Messaging Service

17.3 Selecting Notification Channels During BPEL Process
Design

Oracle JDeveloper includes the email, IM, and SMS channel notification channels in the
Components window. You can set the exact notification channels to use during design time.
For example, a BPEL process can be designed to use the following notification channels:

• If an expense report amount is less than $1000, an email notification channel is used.

• If an expense report amount is between $1000 and $2000, an IM notification channel is
used.

• If an expense report amount is more than $2000, an SMS notification channel is used.

Chapter 17
Selecting Notification Channels During BPEL Process Design

17-3

To select the notification channel during BPEL process design:

1. In the Components window, expand Oracle Extensions.

2. Go to the Notification section.

3. Drag a notification channel into the designer:

• Email

• IM

• SMS

4. See the section in Table 17-2 based on the notification channel you selected.

Table 17-2 Notification Channels

If You
Selected...

See...

Email How To Configure the Email Notification Channel to configure email
notification

IM How to Configure the IM Notification Channel to configure IM notification

SMS How to Configure the SMS Notification Channel to configure SMS notification

Note:

If you delete an email, SMS, or IM activity, any partner link with which it
is integrated is not automatically deleted.

17.3.1 How To Configure the Email Notification Channel
When you drag the Email icon from the Components window, the Email dialog
appears. Figure 17-2 shows the required email notification parameters.

Chapter 17
Selecting Notification Channels During BPEL Process Design

17-4

Figure 17-2 Email Dialog

To configure the email notification channel:

1. Enter information for each field as described in Table 17-3.

Note:

For the To, CC, and Bcc fields, separate multiple addresses with a semicolon
(;).

Table 17-3 Email Notification Parameters

Name Description

Name Enter a name or accept the default name of EmailNumber.

From Account The name of the account used to send this message. The default
account is named Default and is editable from the Mailer tab of
the Workflow Notification Properties page in Oracle Enterprise
Manager Fusion Middleware Control. To add additional accounts,
you must use the System MBean Browser in Oracle Enterprise
Manager Fusion Middleware Control.

For information on editing this property in Oracle Enterprise
Manager Fusion Middleware Control, see Administering Oracle
SOA Suite and Oracle Business Process Management Suite.

Chapter 17
Selecting Notification Channels During BPEL Process Design

17-5

Table 17-3 (Cont.) Email Notification Parameters

Name Description

To The email address to which to deliver the message. This can be
one of the following:

• A static email address entered at the time the message is
created

• An email address retrieved using the identity service
• A dynamic address from the payload
The XPath Expression Builder can get the dynamic email address
from the input. See How to Select Email Addresses and Telephone
Numbers Dynamically.

CC and Bcc The email addresses to which the message is copied and blind
copied. This can also be a static or dynamic address, as described
for the To address.

Reply To The email address to use for replies. This can also be a static or
dynamic address, as described for the To address.

Subject The subject of the email message. This can be plain text or
dynamic text. The XPath Expression Builder can set dynamic text
based on data from process variables that you specify.

Body The message body of the email message. This can also be plain
text, HTML, or dynamic text, as described for the Subject
parameter.

2. Click OK.

The BPEL fragment that invokes the notification service to send the email
message is created.

3. See Table 17-1 of Introduction to Notification Channel Setup for additional
configuration procedures to perform outside of Oracle JDeveloper.

The following example uses an email activity in a scope named
Scope_NotifyCustomerofCompletion. The Oracle User Messaging Service
sends the email to a customer when an order is fulfilled. The following details are
specified in the Email dialog:

• An XPath expression specifies the customer's email address.

bpws:getVariableData('gCustomerInfoVariable','parameters','/
ns3:findCustome
rInfoVO1CustomerInfoVOCriteriaResponse/ns3:result/ns2:ConfirmedEmail')

• A combination of manually-entered text and an XPath expression specifies the
ID of the order:

Order with id
<%bpws:getVariableData('gOrderInfoVariable','/ns2:orderInfoVOSDO/
ns2:OrderI
d')%> shipped!

• A combination of manually-entered text and an XPath expression specifies the
body of the email message:

Dear<%bpws:getVariableData('gCustomerInfoVariable','parameters','/
ns6:findCusto
merInfoVO1CustomerInfoVOCriteriaResponse/ns6:result/ns4:FirstName')%>,
your order has been shipped.

Figure 17-3 provides details.

Chapter 17
Selecting Notification Channels During BPEL Process Design

17-6

Figure 17-3 Email Dialog

17.3.1.1 Setting Email Attachments
You can send attachments with an email activity. Each attachment has three elements: name,
MIME type, and value. All three elements must be set for each attachment.

To add an attachment to an email message:

1. From the Components window, select Email as the notification channel.

2. Specify values for To, Subject, and Body.

3. Click the Attachments tab. Figure 17-4 provides details.

Figure 17-4 Attachments Tab

4. Click the Add icon to add as many attachments as you require. The number of
attachments does not need to include the body part.

Chapter 17
Selecting Notification Channels During BPEL Process Design

17-7

5. In the Name field, change the name or accept the default value of
Attachmentnumber.

6. In the Mime Type field, click the Browse icon to invoke the Expression Builder
dialog for adding MIME type contents.

7. When complete, click OK to return to the Attachments tab.

8. In the Value field, click the Browse icon to invoke the Expression Builder dialog
for adding the contents of the attachment.

9. When complete, click OK to return to the Attachments tab.

The BPEL fragment with an assign activity with multiple copy rules is generated.
One of the copy rules copies the attachment.

10. Click OK.

11. Expand the Email activity in Oracle BPEL Designer.

An assign activity named EmailParamsAssign appears.

12. Double-click EmailParamsAssign.

Note the settings in EmailParamsAssign, as shown in Figure 17-5.

Figure 17-5 EmailParamsAssign Assign Activity

For more information about sending attachments using email, see the following
documentation:

• Developing Applications with Oracle User Messaging Service

• Administering Oracle User Messaging Service

17.3.1.2 Formatting the Body of an Email Message as HTML
You can format the body of an email message as HTML instead of straight text. To
perform this action, apply an XSLT transform to generate the email body. Add in the
XSLT tag you want to use. Tools such as XMLSpy can provide assistance in writing

Chapter 17
Selecting Notification Channels During BPEL Process Design

17-8

and testing the XSLT. The MIME type should be string('text/html;charset=UTF-8').

The email notification assignment looks as shown in the following example:

<copy>
 <from
expression="ora:processXSLT('TransformPositionSummary7.xslt',bpws:
getVariableData('ClientPositionSummary'))"/>
 <to variable="varNotificationReq" part="EmailPayload"
query="/EmailPayload/ns9:Content/ns9:ContentBody"/>
</copy>

17.3.1.3 Using Dynamic HTML for Message Content Requires a CDATA Function
If the HTML for the message content of an email activity is generated dynamically, (as with
XSLT, file read, and so on), it must be wrapped in a CDATA function. This prevents conflicts
between the XML/HTML content of the message body and BPEL's internal XML data
structures.

For example, assume you use the append operation shown in the following example for the
message content inside the email activity:

<bpelx:append>
 <bpelx:from
 expression="ora:processXSLT('xsl/email.xslt',bpws:getVariableData('Variable_1'
))"/>
 <bpelx:to variable="varNotificationReq" part="EmailPayload"
 query="/EmailPayload/ns1:Content/ns1:ContentBody/ns1:MultiPart/ns1:BodyPart[1]
 /ns1:ContentBody"/>
</bpelx:append>

For this to work correctly, you must pass the output of the processXSLT() function to the
CDATA() function, as shown in the following example:

<%ora:toCDATA(xdk:processXSLT('xsl/email.xslt',
 bpws:getVariableData('inputVariable','payload','/client:process/client:input')
))%>

17.3.2 How to Configure the IM Notification Channel
When you drag the IM icon from the Components window, the IM dialog appears. Figure 17-6
shows the required IM notification parameters.

Chapter 17
Selecting Notification Channels During BPEL Process Design

17-9

Figure 17-6 IM Dialog

To configure the IM notification channel:

1. Enter information for each field as described in Table 17-4.

Table 17-4 IM Notification Parameters

Name Description

Name Enter a name or accept the default name of IMNumber.

To The IM address to which to deliver the message. Enter the
address manually or click the XPath Expression Builder
icon to display the Expression Builder dialog to dynamically
enter an account.

Body The IM message body. This can be plain text or dynamic text.
The XPath Expression Builder can set dynamic text based on
data from process variables that you specify.

2. Click OK.

The BPEL fragment that invokes the notification service for IM notification is
created.

3. See Table 17-1 of Introduction to Notification Channel Setup for additional
configuration procedures to perform outside of Oracle JDeveloper.

17.3.3 How to Configure the SMS Notification Channel
When you drag the SMS icon from the Components window, the SMS dialog appears.
Figure 17-7 shows the required SMS notification parameters.

Chapter 17
Selecting Notification Channels During BPEL Process Design

17-10

Figure 17-7 SMS Dialog

To configure the SMS notification channel:

1. Enter information for each field as described in Table 17-5.

Table 17-5 SMS Notification Parameters

Name Description

Name Enter a name or accept the default name of SMSNumber.

From # The telephone number from which to send the SMS notification.
This can be a static telephone number entered at the time the
message is created or a dynamic telephone number from the
payload. The XPath Expression Builder can get the dynamic
telephone number from the input. See How to Select Email
Addresses and Telephone Numbers Dynamically.

Telephone # Select a method for specifying the telephone number to which to
deliver the message:

• A static telephone number entered at the time the message is
created.

• A telephone number retrieved using the identity service.
• A dynamic telephone number from the payload. The XPath

Expression Builder can get the dynamic telephone number
from the input.

Subject The subject of the SMS message. This can be plain text or
dynamic text. The XPath Expression Builder can set dynamic text
based on data from process variables that you specify.

Body The SMS message body. This must be plain text. This can be plain
text or dynamic text as described for the Subject parameter.

2. Click OK.

The BPEL fragment that invokes the notification service for SMS notification is created.

3. See Table 17-1 of Introduction to Notification Channel Setup for additional configuration
procedures to perform outside of Oracle JDeveloper.

Chapter 17
Selecting Notification Channels During BPEL Process Design

17-11

17.3.4 How to Select Email Addresses and Telephone Numbers
Dynamically

You can set email addresses or telephone numbers dynamically based on certain
process variables. You can also look up contact information for a specific user using
the built-in XPath functions for the identity service:

• To get the email address or telephone number directly from the payload, use the
following XPath expression:

bpws:getVariableData('<variable name>',
'<part>','input_xpath_to_get_an_address')

For example, to get the email address from variable inputVariable and part
payload based on XPath /client/BPELProcessRequest/client/mail:

<%bpws:getVariableData('inputVariable','payload','/client:BPELProcessRequest/
client:email')%>

You can use the XPath Expression Builder to select the function and enter the
XPath expression to get an address from the input variable.

• To get the email address or telephone number dynamically from the underlying
identity store (LDAP) use the following XPath expression:

ids:getUserProperty(userName, attributeName[, realmName])

The first argument evaluates to the user ID. The second argument is the property
name. The third argument is the realm name. Table 17-6 lists the property names
that can be used with this XPath function.

Table 17-6 Properties for the Dynamic User XPath Function

Property Name Description

mail Look up a user's email address.

telephoneNumber Look up a user's telephone number.

mobile Look up a user's mobile telephone number.

homephone Look up a user's home telephone number.

The following example gets the email address of the user identified by the variable
inputVariable, part payload, and queries /client:BPELProcessRequest/
client:userID:

ids:getUserProperty(bpws:getVariableData(‘inputVariable',
‘payload',‘/client:BPELProcessRequest/client:userid'), ‘mail')

If realmName is not specified, then the default realm name is used. For example, if
the default realm name is jazn.com, the following XPath expression searches for
the user in the jazn.com realm:

ids:getUserProperty('jcooper', 'mail');

The following XPath expression provides the same functionality as the one above.
In this case, however, the realm name of jazn.com is explicitly specified:

Chapter 17
Selecting Notification Channels During BPEL Process Design

17-12

ids:getUserProperty('jcooper', 'mail', 'jazn.com');

17.3.5 How to Select Notification Recipients by Browsing the User
Directory

You can select users or groups in Oracle JDeveloper to whom you want to send notifications
by browsing the user directory (for example, Oracle Internet Directory) that is configured for
use with Oracle BPEL Process Manager. Click the Search icon to the right of the following
fields to open the Identity Lookup dialog:

• To field on the Email and IM dialogs

• Telephone # field on the SMS dialog

For more information about using the Identity Lookup dialog, see Introduction to Human
Workflow Services.

17.4 Allowing the End User to Select Notification Channels
You can design a BPEL process in which you do not explicitly select a notification channel
during design time, but simply indicate that a notification must be sent. The channel to use for
sending notifications is resolved at runtime based on preferences defined by the end user in
the User Messaging Preferences user interface of the Oracle User Messaging Service. This
moves the responsibility of notification channel selection from the BPEL process in Oracle
BPEL Designer to the end user. If the end user does not select a preferred channel or rule,
email is used by default for sending notifications to that user. Regardless of who selects the
channel to use, channel use is still based on the driver installation and configuration
performed in the Oracle User Messaging Service section of Oracle Enterprise Manager
Fusion Middleware Control by the administrator.

For example, an end user may set their preferences as follows:

• If an expense report amount is less than $153, they receive an email notification.

• If an expense report amount is between $153 and $3678, they receive an IM notification.

• If an expense report amount is more than $3678, they receive an SMS notification.

Note:

You can also set user preferences for sending notifications in human workflows in
the Human Task Editor. Set these preferences in the Notification Filters part of the
Notification Settings section. These preferences are used to evaluate rules in the
task. For more information, see How to Send Task Attachments with Email
Notifications.

For more information about the Oracle User Messaging Service, see Administering User
Communication Preferences.

For information about configuring the Oracle User Messaging Service in Oracle Enterprise
Manager Fusion Middleware Control, see Administering Oracle User Messaging Service.

Chapter 17
Allowing the End User to Select Notification Channels

17-13

17.4.1 How to Allow the End User to Select Notification Channels
To allow the end user to select notification channels:

1. From the Components window list, expand Oracle Extensions.

2. From the Notification section, drag the User Notification activity into the
designer. Figure 17-8 shows the required user notification parameters.

Figure 17-8 User Notification Dialog

3. Enter information for each field as described in Table 17-7.

Table 17-7 User Notification Parameters

Name Description

Name Enter a name or accept the default name of
UserNotificationNumber.

To Enter a valid user for the recipient of this notification message
through one of the following methods:

• Enter the user manually.
• Click the Search icon to display a dialog for selecting a

user configured through the identity service. The identity
service enables the lookup of user properties, roles, and
group memberships.

• Click the XPath Expression Builder icon to display the
Expression Builder dialog to dynamically enter a user.

Note: You must specify a user name (for example, jcooper)
instead of an address.

Chapter 17
Allowing the End User to Select Notification Channels

17-14

Table 17-7 (Cont.) User Notification Parameters

Name Description

Subject Enter a message name or click the XPath Expression
Builder icon to display the Expression Builder dialog to
dynamically enter a subject. If notification is sent through
email, this field is used during runtime. This field is ignored if
notifications are sent through the SMS or IM channels.

Notification Message Enter the notification message or click the XPath Expression
Builder icon to display the Expression Builder dialog to
dynamically enter a message to send.

4. Click Apply.

17.4.1.1 How to Create and Send Headers for Notifications
The Advanced tab of the User Notification dialog enables you to create and send header and
name information that may be useful to an end user in creating their own preference rules for
receiving notifications. For example:

• Oracle BPEL Designer specifies the users named jcooper and jstein in the General
tab.

• Oracle BPEL Designer creates the following header and name information in the
Advanced tab:

– Amount = payload->salary
– Application = HR-Application

• The administrator deploys the process and configures various channel drivers in Oracle
Enterprise Manager Fusion Middleware Control.

• The end user jcooper creates the following preference rules in the User Messaging
Preferences user interface:

'Email if Amount < 30000" and "IM if Amount is between 30000 and 100000' and
"SMS if Amount > 100000"

• The end user jstein creates the following preference rule in the User Messaging
Preferences user interface:

If "Application == HR-Application" and Amount > 2000000" send SMS
1. If you want to create and send header and name information to an end user for creating

their own preference rules, click Advanced.

Figure 17-9 shows the Advanced tab of the User Notification dialog.

Chapter 17
Allowing the End User to Select Notification Channels

17-15

Figure 17-9 User Notification Advanced Parameters

2. Click the Add icon to add a row to the Header and Name columns.

3. In the Header column, click the field to display a list for selecting a value.
Otherwise, manually enter a value.

4. In the Name column, enter a value.

5. Click OK.

Chapter 17
Allowing the End User to Select Notification Channels

17-16

18
Using Oracle BPEL Process Manager
Sensors and Analytics

This chapter describes how to use sensors to select BPEL activities, variables, and faults to
monitor during runtime in a BPEL process. It also describes how to create sensor actions to
publish the values of sensors to an endpoint.
This chapter includes the following sections:

• Introduction to Oracle BPEL Process Manager Sensors

• Configuring Sensors and Sensor Actions in Oracle JDeveloper

• Viewing Sensors and Sensor Action Definitions in Oracle Enterprise Manager Fusion
Middleware Control

• Configuring BPEL Process Analytics

For more information about Oracle BPEL Process Manager sensors, see Understanding
Sensor Public Views and the Sensor Actions XSD .

18.1 Introduction to Oracle BPEL Process Manager Sensors
Sensors are used to declare interest in specific events throughout the life cycle of a BPEL
process instance. In a business process, that can be the activation and completion of a
specific activity or the modification of a variable value in the business process.

When a sensor is triggered, a specific sensor value is created. For example, if a sensor
declares interest in the completion of a BPEL scope, the sensor value consists of the name of
the BPEL scope and a time stamp value of when the activity was completed. If a sensor
value declares interest in a BPEL process variable, then the sensor value consists of the
following:

• The value of the variable at the moment it was modified

• A time stamp when the variable was modified

• The activity name and type that modified the BPEL variable

The data format for sensor values is normalized and well-defined using XML schema.

A sensor action is an instruction on how to process sensor values. When a sensor is
triggered by Oracle BPEL Process Manager, a new sensor value for that sensor is created.
After that, all the sensor actions associated with that sensor are performed. A sensor action
typically persists the sensor value in a database or sends the normalized sensor value data
to a JMS queue or topic. For integration with Oracle BAM, the sensor value can be sent to
the Oracle BAM adapter.

You can define the following types of sensors, either through Oracle JDeveloper or manually
by providing sensor configuration files.

• Activity sensors

18-1

Activity sensors monitor the execution of activities within a BPEL process. For
example, they can monitor the execution time of an invoke activity or how long it
takes to complete a scope. Along with the activity sensor, you can also monitor
variables of the activity.

• Variable sensors

Variable sensors are used to monitor variables (or parts of a variable) of a BPEL
process. For example, variable sensors can monitor the input and output data of a
BPEL process.

• Fault sensors

Fault sensors are used to monitor BPEL faults.

You typically add or edit sensors as part of the BPEL modeling of activities, faults, and
variables.

These sensors are exposed through the following public SQL views:

• BPEL_ACTIVITY_SENSOR_VALUES
• BPEL_FAULT_SENSOR_VALUES
• BPEL_VARIABLE_SENSOR_VALUES
These views can be joined with the BPEL_PROCESS_INSTANCES view to associate the
sensor value with the BPEL process instance that created the sensor values. For more
information, see Understanding Sensor Public Views and the Sensor Actions XSD .

When you model sensors in Oracle JDeveloper, two new files are created as part of
the BPEL process archive:

• bpel_process_name_sensor.xml
Contains the sensor definitions of a BPEL process

• bpel_process_name_sensorAction.xml
Contains the sensor action definitions of a BPEL process

For information about how these files are created, see How to Configure Activity,
Variable, and Fault Sensors and How to Configure Sensor Actions.

After you define sensors for a BPEL process, you must configure sensor actions to
publish the sensor data to a specified destination. If no sensor action is defined for a
sensor, then nothing happens at runtime.

The following information is required for a sensor action:

• Name

• Publish type

The publish type specifies the destination in which the sensor data must be
presented. You can publish sensor data to the following destination types.

– Database

Publishes the sensor data to the reports schema in the database. The sensor
data can then be queried using SQL.

– JMS queue

Chapter 18
Introduction to Oracle BPEL Process Manager Sensors

18-2

Publishes the sensor data to a JMS queue. The XML data is posted in accordance
with the Sensor.xsd file. This file is included with Oracle JDeveloper in the following
directory:

/soa/integration/seed/soa/shared/bpel/Sensor.xsd

The Sensor.xsd file is also included in the following directory:

/soa/integration/jdeveloper/seed/soa/shared/bpel/Sensor.xsd
– JMS topic

Publishes the sensor data to a JMS topic. The XML data is posted in accordance with
the same Sensor.xsd file used with JMS queues.

– Custom

Publishes the data to a custom Java class.

– JMS Adapter

Uses the JMS adapter to publish to remote queues or topics and a variety of different
JMS providers. The JMS queue and JMS topic publish types only publish to local
JMS destinations.

• List of sensors

The sensors for a sensor action.

18.1.1 Composite Sensors
While BPEL sensors are used to declare interest in specific events throughout the life cycle of
a BPEL process instance, composite sensors provide a method for implementing trackable
fields on messages. Composite sensors enable you to perform the following tasks:

• Monitor incoming and outgoing messages.

• Publish JMS data computed from incoming and outgoing messages.

• Track composite instances initiated through business event subscriptions.

For information about composite sensors, see Defining Composite Sensors .

18.2 Configuring Sensors and Sensor Actions in Oracle
JDeveloper

In Oracle JDeveloper, sensor actions and sensors are displayed as part of Monitor view.

18.2.1 How to Access Sensors and Sensor Actions
To access sensors and sensor actions:

1. Select Change to Monitor view at the top of Oracle BPEL Designer, as shown in
Figure 18-1.

Chapter 18
Configuring Sensors and Sensor Actions in Oracle JDeveloper

18-3

Figure 18-1 Monitor View

Figure 18-2 shows the sensor actions and sensors in the Structure window.

Figure 18-2 Sensors and Sensor Actions Displayed in Oracle JDeveloper

You typically add or edit sensors as part of the BPEL modeling of activities, faults,
and variables.

2. Add sensor actions by right-clicking the Sensor Actions folder and selecting
Create > Sensor Action.

3. Add activity sensors, variable sensors, or fault sensors as follows:

a. Expand the Sensors folder.

b. Right-click the appropriate Activity, Variable, or Fault subfolder.

c. Click Create.

4. Add sensors to individual activities by right-clicking an activity and selecting
Create > Sensor. Figure 18-3 provides details.

Figure 18-3 Creating an Activity Sensor

The following sections describe how to configure sensors and sensor actions.

Chapter 18
Configuring Sensors and Sensor Actions in Oracle JDeveloper

18-4

18.2.2 How to Configure Activity, Variable, and Fault Sensors
This section describes how to configure activity, variable, and fault sensors.

18.2.2.1 To Configure an Activity Sensor:
Assume you are monitoring a loan flow application, and want to know the following:

• When a scope named GetCreditRating is initiated

• When it is completed

• At completion, what is the credit rating for the customer

The solution is to create an activity sensor for the GetCreditRating scope in Oracle BPEL
Designer, as shown in Figure 18-4.

1. Select Change to Monitor view at the top of Oracle BPEL Designer.

2. In the Structure window, expand the Sensors folder.

3. Right-click Activity, and select Create.

4. To the right of the Activity Name field, click the Browse icon to select the activity for
which to create the sensor. This is a required field.

Figure 18-4 Creating an Activity Sensor

Activities that have sensors associated with them are identified with a magnifying glass in
Oracle BPEL Designer.

Chapter 18
Configuring Sensors and Sensor Actions in Oracle JDeveloper

18-5

The Evaluation Time list shown in Figure 18-4 controls the point at which the
sensor is fired.

5. Select from the following:

• All:

The sensor monitors during the activation, completion, fault, compensation,
and retry phases.

• Activation

The sensor is fired just before the activity is executed.

• Completion

The sensor is fired just after the activity is executed.

• Fault

The sensor is fired if a fault occurs during the execution of the activity. Select
this value only for sensors that monitor simple activities.

• Compensation

The sensor is fired when the associated scope activity is compensated. Select
this value only for sensors that monitor scopes.

• Retry

The sensor is fired when the associated invoke activity is retried.

A new entry is created in the bpel_process_name_sensor.xml file:

<sensor sensorName="CreditRatingSensor"

classname="oracle.tip.pc.services.reports.dca.agents.BpelActivitySensorAgent"
 kind="activity"
 target="GetCreditRating">

 <activityConfig evalTime="all">
 <variable outputNamespace="http://www.w3.org/2001/XMLSchema"
 outputDataType="int"
 target="$crOutput/payload//services:rating"/>
 </activityConfig>
</sensor>

6. If you want to create a variable sensor on the activity, then in the Activity Variable
Sensors section, click the Add icon. This is an optional field.

7. If you want to add a sensor action on the activity, then in the Sensor Actions
section, click the Add icon. For more information, see How to Configure Sensor
Actions.

8. Click OK.

Note:

If you did not specify any values in the Activity Variable Sensors and
Sensor Actions sections, you do not receive any validation errors or
warning messages in the Log window in Oracle JDeveloper or in any log
files. This is the expected behavior.

Chapter 18
Configuring Sensors and Sensor Actions in Oracle JDeveloper

18-6

18.2.2.2 To Configure a Variable Sensor:
If you want to record all incoming loan requests, you can create a variable sensor.

1. Select Change to Monitor view at the top of Oracle BPEL Designer.

2. In the Structure window, expand the Sensors folder.

3. Right-click Variable, and select Create.

4. Click the Edit icon to the right of the Target field to create a variable sensor for a variable
(for this example, named input), as shown in Figure 18-5.

Figure 18-5 Creating a Variable Sensor

Based on your selection for the Target field, the Output Namespace and Output
Datatype fields are automatically filled in.

A new entry is created in the bpel_process_name_sensor.xml file:

<sensor sensorName="LoanApplicationSensor"
 classname="oracle.tip.pc.services.reports.dca.agents.BpelVariableSensorAgent"
 kind="variable"
 target="$input/payload">
 <variableConfig outputNamespace="http://www.autoloan.com/ns/autoloan"
 outputDataType="loanApplication"/>
</sensor>

18.2.2.3 To Configure a Fault Sensor:
If you want to monitor faults (for this example, from the identity service), you can create a
fault sensor.

1. Select Change to Monitor view at the top of Oracle BPEL Designer.

2. In the Structure window, expand the Sensors folder.

Chapter 18
Configuring Sensors and Sensor Actions in Oracle JDeveloper

18-7

3. Right-click Fault, and select Create.

4. Click the Browse icon above the Namespace field to select to create a fault
sensor, as shown in Figure 18-6.

Figure 18-6 Creating a Fault Sensor

Based on your selection, the Namespace and Local Parts fields are automatically
filled in.

5. If you want to add a sensor action on the fault, then in the Sensor Actions
section, click the Add icon. For more information, see How to Configure Sensor
Actions.

6. Click OK.

A new entry is created in the bpel_process_name_sensor.xml file:

<sensor sensorName="IdentityServiceFault"

classname="oracle.tip.pc.services.reports.dca.agents.BpelFaultSensorAgent"
 kind="fault"
 target="is:identityServiceFault">
 <faultConfig/>
</sensor>

18.2.3 How to Configure Sensor Actions
When you create sensors, you identify the activities, variables, and faults you want to
monitor during runtime. If you want to publish the values of the sensors to an endpoint
(for example, you want to publish the data of the LoanApplicationSensor variable
sensor created in Figure 18-5 to a JMS queue), then create a sensor action, as shown
in Figure 18-7, and associate it with the LoanApplicationSensor variable.

To configure a sensor action:

1. Select Change to Monitor view at the top of Oracle BPEL Designer.

2. In the Structure window, right-click the Sensor Actions folder.

Chapter 18
Configuring Sensors and Sensor Actions in Oracle JDeveloper

18-8

3. Select Create > Sensor Action.

4. Enter the details described in Table 18-1.

Table 18-1 Sensor Actions Dialog

Field Description

Name Enter a name or accept the default name.

Publish Type Select the destination to which to publish sensor data. For more
information, see section Introduction to Sensors.

JMS Connection Factory If your publish type is JMS Queue, JMS Topic, or JMS Adapter,
specify the connection factory.

Publish Target If your publish type is JMS Queue, JMS Topic, Custom, or JMS
Adapter, specify the publish target. The publish target represents
different things depending on the publish type specified:

• If the publish type is a database, this field is left blank.
• If the publish type is JMS Queue, JMS Topic, or JMS

Adapter, this represents the JMS destination's JNDI name.
• If the publish type is Custom, this represents the fully-

qualified Java class name.

Filter Enter filter logic as a boolean expression. A filter enables you to
monitor sensor data within a specific range. For an example of a
configured filter, see Figure 18-9.

Enable Deselect this check box to disable a sensor action. By default,
sensor actions are enabled. If you disable a sensor action by
deselecting this check box, the action does not publish data.

Figure 18-7 Creating a Sensor Action

A new entry is created in the bpel_process_name_sensorAction.xml file:

<action name="BAMFeed"
 enabled="true"
 publishType="JMSQueue"
 publishTarget="jms/bamTopic">
 <sensorName>LoanApplicationSensor</sensorName>
 <property name=“JMSConnectionFactory“>
 weblogic.jms.ConnectionFactory
 </property>
</action>

Chapter 18
Configuring Sensors and Sensor Actions in Oracle JDeveloper

18-9

Note:

You cannot specify a < (less than) sign in the Filter field of the Sensor
Action dialog. If you do, Oracle JDeveloper translates the < sign to <
in the bpel_process_name_sensorAction.xml file. In addition, you
cannot specify a < sign by directly editing the
filename_sensorAction.xml file. This action causes an error.

5. If you want to publish the values of LoanApplicationSensor and
CreditRatingSensor to the reports schema in the database, create an additional
sensor action, as shown in Figure 18-8, and associate it with both
CreditRatingSensor and LoanApplicationSensor.

Figure 18-8 Creating an Additional Sensor Action

A new entry is created in the bpel_process_name_sensorAction.xml file:

<action name="PersistingAction"
 enabled="true"
 publishType="BPELReportsSchema">
 <sensorName>LoanApplicationSensor</sensorName>
 <sensorName>CreditRatingSensor</sensorName>
</action

The data of one sensor can be published to multiple endpoints. In the two
preceding code samples, the data of LoanApplicationSensor was published to a
JMS queue and to the reports schema in the database.

6. If you want to monitor loan requests for which the loan amount is greater
than $100,000, create a sensor action with a filter, as shown in Figure 18-9. There
is no design-time validation of the filter query. You must ensure the query is
correct.

Chapter 18
Configuring Sensors and Sensor Actions in Oracle JDeveloper

18-10

Figure 18-9 Creating a Sensor Action with a Filter

A new entry is created in the bpel_process_name_sensorAction.xml file:

<action name="BigMoneyBAMAction"
 enabled='true'
 filter="boolean(/s:actionData/s:payload
 /s:variableData/s:data
 /autoloan:loanAmount > 100000)"
 publishType="JMSQueue"
 publishTarget="jms/bigMoneyQueue">
 <sensorName>LoanApplicationSensor</sensorName>
 <property name=“JMSConnectionFactory“>
 weblogic.jms.ConnectionFactory
 </property>
</action>

Note:

• You must specify all the namespaces that are required to configure an
action filter in the bpel_process_name_sensorAction.xml configuration file.
For example, assume you have a customer XML-schema element with
namespace "http://myCustomer" and you want to create a filter on the
customer age element. Therefore, you must manually declare the
namespace for "http:/myCustomer" in the file before you can use it in your
filter. Otherwise, it is not possible to create a valid query. Add
xmlns:ns1="http://myCustomer" in the attribute declaration part of the file.
You can then use/ns1:customer/ns1:age/... in your query.

• You must specify the filter as a boolean XPath expression.

7. If you have special requirements for a sensor action that cannot be accomplished by
using the built-in publish types (database, JMS queue, JMS topic, and JMS adapter),
then you can create a sensor action with the custom publish type, as shown in
Figure 18-10. The name in the Publish Target field denotes a fully qualified Java class
name that must be implemented. For more information, see How to Create a Custom
Data Publisher.

Chapter 18
Configuring Sensors and Sensor Actions in Oracle JDeveloper

18-11

Figure 18-10 Using the Custom Publish Type

18.2.4 How to Publish to Remote Topics and Queues
The JMS queue and JMS topic publish types only publish to local JMS destinations. If
you want to publish sensor data to remote topics and queues, use the JMS adapter
publish type, as shown in Figure 18-11.

Figure 18-11 Using the JMS Adapter Publish Type

In addition to enabling you to publish sensor data to remote topics and queues, the
JMS adapter supports a variety of different JMS providers, including:

• Third-party JMS providers such as Tibco JMS, IBM WebSphere MQ JMS, and
SonicMQ

• Oracle Enterprise Messaging Service (OEMS) providers such as memory/file and
database

If you select the JMS adapter publish type, you must create an entry in the weblogic-
ra.xml file, which is updated through editing in the Oracle WebLogic Console. Each
JMS connection factory (pool) entry created in this console corresponds to one JNDI
entry in weblogic-ra.xml. Update the Sensor Actions dialog with the chosen JNDI
name selected during the creation of the JMS connection factory (pool).

For more information about the JMS adapter, see Understanding Technology
Adapters.

Chapter 18
Configuring Sensors and Sensor Actions in Oracle JDeveloper

18-12

18.2.5 How to Create a Custom Data Publisher
To create a custom data publisher, perform the following steps:

To create a custom data publisher:

1. In the Applications window, double-click the BPEL project.

The Project Properties dialog appears.

2. Click Libraries and Classpath.

3. Browse and select the following:

SOA_ORACLE_HOME/lib/java/shared/oracle.soainfra.common/11.1.1/orabpel.jar

Figure 18-12 provides details.

Figure 18-12 Project Properties Dialog

4. Create a new Java class.

The package and class name must match the publish target name of the sensor action.

5. Implement the com.oracle.bpel.sensor.DataPublisher interface.

This updates the source file and fills in the methods and import statements of the
DataPublisher interface.

6. Using Oracle JDeveloper, implement the publish method of the DataPublisher interface,
as shown in the sample custom data publisher class in Figure 18-13.

Chapter 18
Configuring Sensors and Sensor Actions in Oracle JDeveloper

18-13

Figure 18-13 Custom Data Publisher Class

7. Ensure that the class compiles successfully.

The next time that you deploy the BPEL process, the Java class is added to the
SOA archive (SAR) and deployed.

Note:

Ensure that additional Java libraries needed to implement the data publisher
are in the class path.

Oracle BPEL Process Manager can execute multiple process instances
simultaneously, so ensure that the code in your data publisher is thread safe,
or add appropriate synchronization blocks. To guarantee high throughput, do
not use shared data objects that require synchronization.

18.2.6 How to Register the Sensors and Sensor Actions in the
composite.xml File

Oracle JDeveloper automatically updates the composite.xml file to include appropriate
properties for sensors and sensor actions, as shown in the following exxample:

<composite name="JMSQFComposite" applicationName="JMSQueueFilterApp"
 revision="1.0" label="2007-04-02_14-41-31_553" mode="active" state="on">
 <import namespace="http://xmlns.oracle.com/JMSQueueFilter"
 location="JMSQueueFilter.wsdl" importType="wsdl"/>

Chapter 18
Configuring Sensors and Sensor Actions in Oracle JDeveloper

18-14

 <service name="client">
 <interface.wsdl interface="http://xmlns.oracle.com/
 JMSQueueFilter#wsdl.interface(JMSQueueFilter)"/>
 <binding.ws
 port="http://xmlns.oracle.com/JMSQueueFilter#wsdl.endpoint(client/
 JMSQueueFilter_pt)"/>
 </service>
 <component name="JMSQueueFilter">
 <implementation.bpel src="JMSQueueFilter.bpel"/>
 <property name="configuration.sensorLocation" type="xs:string"
 many="false">JMSQueueFilter_sensor.xml</property>
 <property name="configuration.sensorActionLocation" type="xs:string"
 many="false">JMSQueueFilter_sensorAction.xml</property>
</component>
<wire>
 <source.uri>client</source.uri>
 <target.uri>JMSQueueFilter/client</target.uri>
</wire>
</composite>

You can specify additional properties with <property name= ...>, as shown in the preceding
example.

18.3 Viewing Sensors and Sensor Action Definitions in Oracle
Enterprise Manager Fusion Middleware Control

Oracle Enterprise Manager Fusion Middleware Control provides support for viewing the
metadata of sensors, sensor actions, and the sensor data created as part of the process
execution.

For more information, see Administering Oracle SOA Suite and Oracle Business Process
Management Suite.

Note:

Only sensors with an associated database sensor action are displayed in Oracle
Enterprise Manager Fusion Middleware Control. Sensors associated with a JMS
queue, JMS topic, remote JMS, or custom sensor action are not displayed.

18.4 Configuring BPEL Process Analytics
BPEL process analytics provide the following features:

• A uniform measurement mechanism across Oracle SOA Suite components such as
Oracle BPMN, human workflow, and BPEL processes for collecting disparate data.

• A runtime infrastructure for evaluating, publishing, and synthesizing measurement
events.

For information about BPEL process analytics integration with Oracle Business Activity
Monitoring (BAM), see Chapter "Integrating with Oracle SOA Suite" of Monitoring Business
Activity with Oracle BAM and Chapter "Gaining Business Insights with Oracle Business
Activity Monitoring" of Understanding Oracle SOA Suite.

Chapter 18
Viewing Sensors and Sensor Action Definitions in Oracle Enterprise Manager Fusion Middleware Control

18-15

18.4.1 Introduction to Business Indicators
Business indicators are defined in a SOA composite application to identify objects that
contribute to the analytical and metric calculations of components. Business indicators
consist of the following types:

• Measures

Store the values of a variable such as a sales amount, an employee salary, and so
on. Measures only enable data types that are continuous, and are typically
numeric values.

• Dimensions

Label group or filter measures.

• Counters

Track the number of times a process instance completes a marked element.

Metadata specified dimensions and measures are captured as part of the
measurement.

Business indicators are designed to be sharable and bindable to multiple BPEL
processes within the composite. This enables you to monitor their value changes from
one process to another when the composite is executed during analytics runtime.

18.4.2 Introduction to Standard Sampling Points
Standard sampling points are points in a component path at which the component
inherently attempts to create a measurement event. Measurement metadata can
configure measurements at these standard sampling points. If appropriate
measurement metadata exists that enables some or all of the standard sampling point
measurement events, then these measurement events are generated, published, and
processed. For example, a standard sampling point in a process can be the following:

• Start and stop a process

• Start and stop an activity

• Faults

18.4.3 Introduction to User-Defined Sampling Points
These are the sampling points that you can specify on a component:

• Measurement mark:

A single point of measurement for the specified measure.

• Measurement interval:

A measurement consisting of a starting point and ending point (therefore,
constituting an interval identified by a measurement interval name) typically along
the path taken by a component.

• Measurement counter:

A measurement that identifies the occurrence of a specific point in the path taken
by a component.

Chapter 18
Configuring BPEL Process Analytics

18-16

Measurements are a combination of a sampling point and a selected business indicator
executed at runtime. For more information about measurements, see How to Define
Measurements.

18.4.4 How to Access Analytics View
You edit business indicators and measurements in analytics view of a BPEL process in
Oracle BPEL Designer.

To access analytics view:

1. In the SOA Composite Editor, double-click a BPEL process.

2. Above the BPEL process in Oracle BPEL Designer, click Change to Analytics view.
Figure 18-14 provides details.

Figure 18-14 Analytics View Icon in Oracle BPEL Designer

This displays the BPEL process in analytics view, as shown in Figure 18-15.

• The Components window displays a palette of measurement marks and intervals that
can be dragged onto BPEL process activities.

• The Structure window displays business indicators for creating counters, dimensions,
and measures.

Chapter 18
Configuring BPEL Process Analytics

18-17

Figure 18-15 Analytics View of a BPEL Process

When business indicator and measurement design is complete, analytics view
looks similar to that shown in Figure 18-16.

• Business indicators (counters, dimensions, and measures) and measurements
(intervals and marks) defined for the BPEL process are displayed in the
Structure window. You can create, edit, and delete business indicators from
the Structure window. You can edit and delete, but not create, measurements
from the Structure window. Measurements are created by dragging the
appropriate icon from the Components window.

• Measurement intervals and marks are defined as floaters on top of the read-
only activities in the BPEL process. The measurement floaters can be moved
around by mouse on top of activities in the BPEL process to achieve the
necessary topology.

• The Property Inspector at the bottom of Oracle BPEL Designer enables you to
edit the selected business indicator or measurement. Changes are
automatically committed.

Chapter 18
Configuring BPEL Process Analytics

18-18

Figure 18-16 Analytics View with Business Indicator and Measurement Design Complete

18.4.4.1 How to Define Business Indicators
You can bind business indicators to BPEL XPath expression functions during creation.
Business indicators are designed to be sharable and bindable to multiple BPEL processes
within the composite. This enables you to monitor their value changes from one process to
another when the composite is executed during analytics runtime.

You can define the following business indicators in a BPEL process:

• Define a counter binding for the BPEL process. An available counter is selected and
bound to the BPEL process without the need to specify any XPath expression. A counter
is meant to count how many times a certain BPEL activity gets executed at runtime. This
means there is no need to specify any XPath expression for the binding.

• Define a dimension binding for the BPEL process. An available dimension is selected and
bound to a BPEL XPath expression.

• Define a measure binding for the BPEL process. An available measure is selected and
bound to a BPEL XPath expression.

For more information about business indicators, see Introduction to Business Indicators.

Chapter 18
Configuring BPEL Process Analytics

18-19

After definition, you can edit and delete business indicators in the Business Indicator
Overview Editor described in How to Edit Business Indicators in the Business Indicator
Overview Editor.

18.4.4.1.1 Defining Counters
You can define business indicator counters.

To define counters:

1. Access analytics view in a BPEL process as described in How to Access Analytics
View.

2. In the Structure window, right-click Counters and select Create.

The Bind Counter dialog is displayed.

3. Select a name, and click OK. If there is no counter to which to bind, click the Add
icon to create a new counter. You can also create counters in the Business
Indicator Overview Editor that are then displayed for selection in this dialog. For
more information, see How to Edit Business Indicators in the Business Indicator
Overview Editor.

When complete, the Bind Counter dialog looks as shown in Figure 18-17.

Figure 18-17 Bind Counter Dialog

18.4.4.1.2 Defining Dimensions

You can define business indicator dimensions.

To define dimensions:

1. Access analytics view in a BPEL process as described in How to Access Analytics
View.

2. In the Structure window, right-click Dimensions and select Create.

The Bind Dimension dialog is displayed.

3. Enter values appropriate to your environment, and click OK. Table 18-2 provides
details.

Chapter 18
Configuring BPEL Process Analytics

18-20

Table 18-2 Bind Dimension Dialog

Element Description

Name Select a name. If there is no dimension to which to bind, click the Add
icon to invoke the Create Dimension dialog to enter a name and select a
data type (boolean, decimal, integer, string or time) for the dimension.

You can also create dimensions in the Business Indicator Overview
Editor that are then displayed for selection in this dialog. For more
information, see How to Edit Business Indicators in the Business
Indicator Overview Editor.

Note: Optional ranges can be specified for some data types such as
integers and decimals. This enables the dimensions to show their
ranges at analytics runtime for better reporting.

XPath Expression Click the Edit icon to invoke the Expression Builder dialog in which to
build an XPath expression for binding to the dimension.

When complete, the Bind Dimension dialog looks as shown in Figure 18-18.

Figure 18-18 Bind Dimension Dialog

18.4.4.1.3 Defining Measures

You can define business indicator measures.

To define measures:

1. Access analytics view in a BPEL process as described in How to Access Analytics View.

2. In the Structure window, right-click Measures and select Create.

The Bind Measure dialog is displayed.

3. Enter values appropriate to your environment, and click OK. Table 18-3 provides details.

Table 18-3 Bind Measure Dialog

Element Description

Name Select a name. If there is no measure to which to bind, click the Add
icon to invoke the Create Measure dialog to enter a name and select a
measure (decimal or integer).

You can also create measures in the Business Indicator Overview Editor
that are then displayed for selection in this dialog. For more information,
see How to Edit Business Indicators in the Business Indicator Overview
Editor.

Chapter 18
Configuring BPEL Process Analytics

18-21

Table 18-3 (Cont.) Bind Measure Dialog

Element Description

XPath Expression Click the Edit icon to invoke the Expression Builder dialog in which to
build the XPath expression for binding to the measure.

When complete, the Bind Measure dialog looks as shown in Figure 18-19.

Figure 18-19 Bind Measure Dialog

18.4.4.2 How to Define Measurements
The Components window consists of the measurement types shown in Figure 18-20:

Figure 18-20 Measurement Types in the Components Window

You drag a measurement type on to a BPEL process activity in the designer for initial
creation. Measurements are defined as floaters on top of read-only activities in the
BPEL process. You can edit the measurement later in the Property Inspector or by
double-clicking the measurement. The measurement floaters can be moved around by
mouse on top of the BPEL process to achieve the necessary topology.

Each measurement type includes two tabs:

• General tab: For defining the impacted activity, the evaluation event that triggers
the measurement being taken, the measurement description, and whether the
measurement is enabled.

• Business Indicator tab: For selecting the business indicators for the
measurement.

18.4.4.2.1 How to Define a Counter Mark
You can define a counter mark measurement.

Chapter 18
Configuring BPEL Process Analytics

18-22

To define a counter mark:

1. Access analytics view in a BPEL process as described in How to Access Analytics View.

2. From the Components window, drag a Counter Mark icon on to an activity or right-click
an activity and select Counter Mark.

3. Double-click the icon that is added.

The Counter Mark dialog is displayed.

4. Enter values appropriate to your environment, and click OK. Table 18-4 provides details.

Table 18-4 Counter Mark Dialog - General Tab

Element Description

Name Enter the name of the counter mark.

Activity Displays the BPEL activity on which the counter mark is taken.

Evaluation Event Select the specific activity event that triggers the counter mark. It
can be one of the five activity events: Activate, Compensate,
Complete, Fault, and Retry.

Description Enter an optional description of the counter mark.

Enabled Select whether to enable the counter mark. By default, this
measurement is enabled.

When complete, the General tab of the Counter Mark dialog looks as shown in
Figure 18-21.

Figure 18-21 General Tab of Counter Mark Dialog

5. Click the Business Indicators tab.

6. Move selected business indicators to the Selected section. You can also click the Add
icon to create new business indicators. Created business indicators are automatically
added to the Selected section.

Chapter 18
Configuring BPEL Process Analytics

18-23

Note:

You can only create and select counters for counter marks. Dimensions
are implicitly added to counter marks, and you cannot create and select
measures for counter marks. Measures can only be created and
selected for interval starts, interval stops, and single marks.

When complete, the Business Indicators tab looks as shown in Figure 18-22.

Figure 18-22 Business Indicators Tab

18.4.4.2.2 How to Define an Interval Start
You can define an interval start measurement.

To define an interval start:

1. Access analytics view in a BPEL process as described in How to Access Analytics
View.

2. From the Components window, drag an Interval Start icon on to an activity or
right-click an activity and select Interval Start.

3. Double-click the icon that is added.

The Interval Start dialog is displayed.

4. Enter values appropriate to your environment, and click OK. Table 18-5 provides
details.

Table 18-5 Interval Start Dialog - General Tab

Element Description

Name Enter the name of the interval start.

Activity Displays the BPEL activity from which the interval starts.

Chapter 18
Configuring BPEL Process Analytics

18-24

Table 18-5 (Cont.) Interval Start Dialog - General Tab

Element Description

Evaluation Event Select the specific activity event that triggers the start of the
interval. It can be one of the five activity events: Activate,
Compensate, Complete, Fault, and Retry.

Description Enter an optional description of the interval start.

Enabled Select whether to enable the interval start. By default, this
measurement is enabled.

Note:

Any name change is propagated to the corresponding interval stop
measurement because the interval name is shared by both the interval start
and the interval stop measurements.

In addition, any activity change updates the activity anchor of the interval start
floater in the designer.

When complete, the General tab of the Interval Start dialog looks as shown in
Figure 18-23.

Figure 18-23 General Tab of Interval Start Dialog

5. Click the Business Indicators tab.

6. Move selected business indicators to the Selected section. You can also click the Add
icon to create new business indicators. Created business indicators are automatically
added to the Selected section.

Chapter 18
Configuring BPEL Process Analytics

18-25

Note:

You can only create and select measures for interval starts. Dimensions
are implicitly added to interval starts, and you cannot create and select
counters for interval starts. Counters can only be created and selected
for counter marks.

Any change on the business indicators for an interval start is propagated
to its corresponding interval stop because both the interval start and stop
share the same business indicators.

When complete, the Business Indicators tab looks as shown in Figure 18-24

Figure 18-24 Business Indicators Tab

18.4.4.2.3 How to Define an Interval Stop
You can define an interval stop measurement.

To define an interval stop:

1. Access analytics view in a BPEL process as described in How to Access Analytics
View.

2. From the Components window, drag an Interval Stop icon on to an activity or
right-click an activity and select Interval Stop.

3. Double-click the icon that is added.

The Interval End dialog is displayed.

4. Enter values appropriate to your environment, and click OK. Table 18-6 provides
details.

Chapter 18
Configuring BPEL Process Analytics

18-26

Table 18-6 Interval End Dialog - General Tab

Element Description

Name Enter the name of the interval stop.

Activity Displays the BPEL activity on which the interval stops.

Evaluation Event Select the specific activity event that triggers the stop of the
interval. It can be one of the five activity events: Activate,
Compensate, Complete, Fault, and Retry.

Description Enter an optional description of the interval stop.

Enabled Select whether to enable the interval stop. By default, this
measurement is enabled.

Note:

A name change is propagated to its corresponding interval start, because the
interval name is shared by both the interval start and the interval stop
measurements.

An activity change updates the activity anchor of the interval stop floater in the
designer.

When complete, the General tab of the Interval End dialog looks as shown in
Figure 18-25.

Figure 18-25 General Tab of Interval End Dialog

5. Click the Business Indicators tab.

6. Move selected business indicators to the Selected section. You can also click the Add
icon to create new business indicators. Created business indicators are automatically
added to the Selected section.

Chapter 18
Configuring BPEL Process Analytics

18-27

Note:

You can only create and select measures for interval stops. Dimensions
are implicitly added to interval stops, and you cannot create and select
counters for interval stops. Counters can only be created and selected
for counter marks.

Any change on the business indicators for an interval stop is propagated
to its corresponding interval start, because both the interval start and
stop share the same business indicators.

When complete, the Business Indicators tab looks as shown in Figure 18-26.

Figure 18-26 Business Indicators Tab

18.4.4.2.4 How to Define a Single Mark
You can define a single mark measurement.

To define a single mark:

1. Access analytics view in a BPEL process as described in How to Access Analytics
View.

2. From the Components window, drag a Single Mark icon on to an activity or right-
click an activity and select Single Mark.

3. Double-click the icon that is added.

The Management Mark dialog is displayed.

4. Enter values appropriate to your environment, and click OK. Table 18-7 provides
details.

Chapter 18
Configuring BPEL Process Analytics

18-28

Table 18-7 Management Mark Dialog - General Tab

Element Description

Name Enter the name of the single mark.

Activity Displays the BPEL activity on which the single mark is taken.

Evaluation Event Select the specific activity event that triggers the single mark. It
can be one of the five activity events: Activate, Compensate,
Complete, Fault, and Retry.

Description Enter an optional description of the single mark.

Enabled Select whether to enable the single mark. By default, this
measurement is enabled.

Note:

The activity change updates the activity anchor of the single mark floater in the
designer.

When complete, the General tab of the Management Mark dialog looks as shown in
Figure 18-27.

Figure 18-27 General Tab of Management Mark Dialog

5. Click the Business Indicators tab.

6. Move selected business indicators to the Selected section. You can also click the Add
icon to create new business indicators. Created business indicators are automatically
added to the Selected section.

Note:

The activity change updates the activity anchor of the single mark floater in the
designer.

Chapter 18
Configuring BPEL Process Analytics

18-29

When complete, the Business Indicators tab looks as shown in Figure 18-28.

Figure 18-28 Business Indicators Tab

Note:

You can only create and select measures for single marks. Dimensions
are implicitly added to single marks, and you cannot create and select
counters for single marks. Counters can only be created and selected for
counter marks.

18.4.4.3 How to Configure Composite-Level Analytic Sampling Points
You can configure analytic sampling points (process start/stop, activity start/stop) at
the SOA composite application level. Composite level configuration applies to all BPEL
processes in the composite. For information about configuring analytics at the specific
BPEL process level, see How to Configure Process-Level Analytic Sampling Points.

To configure composite-level analytic sampling points:

1. Above the SOA Composite Editor, click the Configure Analytics icon, as shown
in Figure 18-29.

Figure 18-29 Configure Analytics Icon Above SOA Composite Editor

The SOA Analytics Metrics dialog is displayed, as shown in Figure 18-30.

Chapter 18
Configuring BPEL Process Analytics

18-30

Figure 18-30 SOA Analytics Metrics Dialog

2. Select appropriate options, then click OK. Table 18-8 provides details.

Table 18-8 Composite Analytics Setting Dialog

Element Description

Generate For All Activities Generates standard analytic events for all process and activity
events.

Human Workflow Activities
Only

Generates standard analytic events only for human task events.

Start and Stop of the BPEL
Process Only

Generates standard analytic events for starting and stopping of the
BPEL process.

Do not Generate Does not generate any standard analytic events.

18.4.4.4 How to Configure Process-Level Analytic Sampling Points
You can configure analytic sampling points (process start/stop, activity start/stop) at the
individual BPEL process level. Process level configuration only applies to the generation of
standard analytics events for the specific BPEL process. It does not impact the generation of
user-defined measurement events for the process. User-defined measurements always
generate their measurement events, if enabled.

For information about configuring analytics at the SOA composite application level, see How
to Configure Composite-Level Analytic Sampling Points.

To configure process-level analytic sampling points:

1. Access the BPEL process in analytics view as described in How to Access Analytics
View.

2. Above the BPEL process, click the Configure Analytics icon, as shown in Figure 18-31.

Figure 18-31 Configure Analytics Icon

The Composite Analytics Sampling Points for BPEL dialog is displayed, as shown in
Figure 18-32.

Chapter 18
Configuring BPEL Process Analytics

18-31

Figure 18-32 Composite Analytics Sampling Points for BPEL Dialog

3. Select appropriate options, then click OK. Table 18-9 provides details.

Table 18-9 Process Analytics Setting Dialog

Element Description

Inherit From Composite
Default

Inherits the analytics setting from the composite level
analytics configuration described in How to Configure
Composite-Level Analytic Sampling Points.

Human Workflow
Activities Only

Generates standard analytic events for human task activity
events.

Generate For
Interactive(s) Only

Generates standard analytic events only for interactive
process and activity events such as human task events.

Start and Stop of the
BPEL Process Only

Generates standard analytics events for the starting and
stopping of the BPEL process.

Do not Generate Does not generate any standard analytic events.

Is Primary Process Select to inform analytics runtime if the process is one of the
primary processes for the SOA composite application.

18.4.5 How to Edit Business Indicators in the Business Indicator
Overview Editor

You can create, edit, and delete business indicators for the SOA composite application
in the Business Indicator Overview Editor, regardless of whether or how these
business indicators are bound to specific BPEL processes. This editor does not
change the bindings for those business indicators as long as they are not deleted.
When a business indicator is deleted, all its bindings with the specific BPEL processes
are also deleted.

The Business Indicator Overview Editor is the only way to edit and delete business
indicators. From the various dialogs for counters, dimensions, and measures that you
access from the Structure window or Property Inspector, you cannot edit or delete the
business indicators. You can only edit their bindings to the BPEL process. The view of
business indicators from the Structure window or Property Inspector is actually a
binding view of the business indicators, and not a view of all the business indicators.
Any unbound business indicators do not show up from the Structure window or
Property Inspector.

Chapter 18
Configuring BPEL Process Analytics

18-32

Any relevant change in the Business Indicator Overview Editor is reflected in the Structure
window or Property Inspector. Any relevant change from the Structure window or Property
Inspector is reflected in the Business Indicator Overview Editor.

To edit business indicators in the Business Indicator Overview Editor:

1. In the Applications window, double-click Business Indicators. Figure 18-33 provides
details.

Figure 18-33 Business Indicators Overview Editor

2. Create, edit, and delete business indicators for counters, measures, and dimensions, as
required.

Note:

You can also create a special type of business indicator called an attribute.
However, Oracle SOA Suite analytics design time does not currently support
attribute binding to BPEL processes. Therefore, you cannot create or bind
attributes to the BPEL process in the Structure window or Property Inspector.

18.4.6 Deploying BPEL Analytics
Analytic configurations are included with SOA composite application deployment. If there are
no analytics defined in the composite, no deployment of analytics occurs.

The SOA analytics deployment performs the following procedures:

Chapter 18
Configuring BPEL Process Analytics

18-33

• Populates the analytics definition (composite, process, activity, role) data objects.

• Creates the composite-specific physical and logical data objects (process and
activity).

Analytics deployment is divided into two steps based on whether the data population is
at the composite level or the component (BPEL process) level:

• Composite-level analytics deployment

The composite definition data object is populated and the composite-specific
physical and logical data objects are created (process and activity). Composite-
level analytics deployment is invoked at composite deployment time. This
deployment step is performed once for a composite.

• Component-level analytics deployment

The process, activity, and role definition data objects are populated. Component-
level analytics deployment is invoked at component deployment time. This
deployment step is performed for each component of the composite.

18.4.7 Viewing BPEL Analytics at Runtime
The measurement events based on the deployed analytics metadata are triggered.
BPEL process and activity events such as start and stop trigger the measurement
events. A measurement event captures the values of all business indicators defined
for the measurement from the BPEL process service engine, and can be synthesized
and published to Oracle BAM.

BPEL process and activity events themselves can also be published to Oracle BAM
based on analytics sampling control. BPEL process and activity events also capture
applicable business intelligence values.

BPEL measurement events are published to SOA analytics data objects (process and
activity) in BAM.

For information about BPEL process analytics integration with Oracle Business Activity
Monitoring (BAM), see Integrating with Oracle SOA Suite in Monitoring Business
Activity with Oracle BAM and Gaining Business Insights with Oracle Business Activity
Monitoring in Understanding Oracle SOA Suite.

Chapter 18
Configuring BPEL Process Analytics

18-34

Part III
Using the Oracle Mediator Service
Component

This part describes the components that comprise the Oracle Mediator service component.

This part contains the following chapters:

• Getting Started with Oracle Mediator

• Creating Routing Rules

• Working with Multiple Part Messages in Oracle Mediator

• Using Error Handling

• Resequencing in Oracle Mediator

• Understanding Message Exchange Patterns of an Oracle Mediator

19
Getting Started with Oracle Mediator

This chapter describes Oracle Mediator, which provides transformation, validation, and
routing logic to Oracle SOA Suite applications. This chapter also describes how to create a
Mediator component and the associated WSDL documents in Oracle JDeveloper.
This chapter includes the following sections:

• Introduction to Oracle Mediator

• Mediator Functionality

• Creating a Mediator

• Introduction to the Mediator Editor Environment

• Configuring the Mediator Interface Definition

• Defining an Interface for a Mediator

• Generating a WSDL File

• Specifying Validation and Priority Properties

• Modifying a Mediator Service Component

19.1 Introduction to Oracle Mediator
Oracle Mediator is a service component of the Oracle SOA Suite that provides mediation
capabilities such as selective routing, transformation, and validation capabilities, along with
various message exchange patterns, such as synchronous, asynchronous, and event
publishing or subscriptions.

Mediator provides a lightweight framework to mediate between various components within a
composite application, such as business processes, human workflows, and so on, using a
Web Services Description Language (WSDL) document as the interface. Mediator converts
data to facilitate communication between different interfaces exposed by different
components that are wired to build a SOA composite application. For example, Mediator can
accept data contained in a text file from an application or service, transform it into a format
appropriate for updating a database that serves as a customer repository, and then route and
deliver the data to that database.

Mediator facilitates integration between events and services, where service invocations and
events can be mixed and matched. You can use a Mediator service component to consume a
business event or receive a service invocation. A Mediator service component can evaluate
routing rules, perform transformations, validate, and either invoke another service or raise
another business event. You can use a Mediator service component to handle returned
responses, callbacks, faults, and timeouts.

19.2 Mediator Functionality
The following sections describe the primary functions that Oracle Mediator supplies to an
Oracle SOA Suite application.

19-1

19.2.1 Content-Based and Header-Based Routing
Mediator enables you to define rules based on the message payload or message
headers. You can select elements or attributes from the message payload or the
message header and, based on the values in those elements or attributes, you can
specify an action. For example, Mediator receives a file from an application or service
containing data about new customers. Based on the country mentioned in the
customer's address, you can route and deliver data to the database storing data for
that particular country. Similarly, you can route a message based on the message
header.

For more information about header-based routing, see How to Access Headers for
Filters and Assignments.

19.2.2 Synchronous and Asynchronous Interactions
Mediator supports both synchronous and asynchronous request and response
interactions. In a synchronous interaction, the client requests a service and then waits
for a response to the request. In an asynchronous interaction, the client invokes the
service, but does not wait for the response. You can specify a timeout period for an
asynchronous interaction and you can specify an action to perform after the timeout
period, such as to raise an event or start a process.

Mediator also supports event-based interactions. Events are one-way (fire-and-forget)
asynchronous interactions.

For more information about synchronous and asynchronous interactions, see How to
Configure Response Messages and Understanding Message Exchange Patterns of an
Oracle Mediator.

19.2.3 Sequential and Parallel Routing of Messages
Mediator lets you specify that a routing rule be executed either in parallel or in
sequence. You can configure the execution type from the Routing Rules section of
the Mediator Editor.

For more information about sequential and parallel routing of messages, see How to
Specify Sequential or Parallel Execution.

19.2.4 Message Resequencing
When you use the Mediator resequencer, it rearranges streams of related but out-of-
sequence messages into their sequential order based on the type of resequencer used
and the rules you define. When incoming messages arrive in a random order, the
resequencer orders the messages based on sequential or chronological information,
and then sends the messages to the target services in the correct order based on the
resequencing configuration.

For more information about resequencing messages, see Resequencing in Oracle
Mediator.

Chapter 19
Mediator Functionality

19-2

19.2.5 Data Transformation
Mediator lets you define data transformation from one XML schema to another. This feature
enables data interchange among applications using different schemas. For example, you can
transform a comma-delimited file to an XML schema that is compatible with a database.

For more information about transformations, see How to Create XSLT Transformations.

19.2.6 Payload Validation
You can configure Mediators to validate the incoming message payload using a Schematron
or an XSD file. You can specify Schematron files for each inbound message part and
Mediator executes Schematron file validations for those parts.

For more information about validations, see Specifying Validation and Priority Properties,
How to Use Semantic Validation, and http://www.schematron.com/.

19.2.7 Java Callouts
Mediator lets you add Java callouts to the routing rules. Java callouts enable you to use
external Java classes to manipulate messages flowing through the Mediator.

For more information about Java callouts, see How to Use Java Callouts.

19.2.8 Event Handling
An event is a message sent because an activity occurred in a business environment.
Mediator can both subscribe to and raise business events. You can subscribe to a business
event that is generated when a situation of interest occurs. For example, you can subscribe
to an event that is generated when a new customer is created and then use this event to start
a business process, such as sending a confirmation email. Similarly, you can generate
business events when a situation of interest occurs. For example, after a new customer
profile is created, you can generate a customer-created event.

For more information about event handling, see Using Business Events and the Event
Delivery Network.

19.2.9 Dynamic Routing
Dynamic routing separates the control logic of a process from the execution of the process.
The control logic determines the path taken by the process. You can create dynamic routing
rules using the Mediator Editor.

For more information about dynamic routing, see How to Create Dynamic Routing Rules.

19.2.10 Error Handling
Mediator supports both manual error handling and error handling based on fault policies. A
fault policy consists of conditions and actions, where the conditions specify the action to be
carried out for a particular error condition.

For more information about error handling, see Using Oracle Mediator Error Handling.

Chapter 19
Mediator Functionality

19-3

http://www.schematron.com/

19.2.11 Sending Messages Back to the Caller (Echo)
Mediator can echo source messages back to the initial caller without routing the
message to another target. Mediator can perform transformations, validations,
assignments, or sequencing operations before echoing the message back to the caller.

For more information about Mediator echo support, see "To echo a service:" of How to
Specify Mediator Services or Events.

19.2.12 Multiple Part Messages
Mediator can process messages that consist of multiple parts. Some Remote
Procedure Call (RPC) web services contain multiple parts in the SOAP message.

For more information about multiple part message support, see Working with Multiple
Part Messages in Oracle Mediator.

19.3 Creating a Mediator
You can create a Mediator in multiple ways, depending on where you are in your
application development process. Follow the appropriate instructions in the following
sections to create the component.

19.3.1 How to Create a Mediator
You can create a Mediator in a SOA composite application in Oracle JDeveloper at
any of the following points in the development cycle:

• When you create a composite application

• When you modify an existing composite application

• When you create a project

• When you modify an existing project

When you create a Mediator, the Create Mediator dialog appears so you can name the
Mediator and select a template for the interface.

19.3.1.1 To create a composite application with a Mediator:
1. Create and Name the SOA application and project using the Create SOA

Application wizard.

2. When you reach the Configure SOA Settings page, select Composite with
Mediator in the Composite Template list, as shown in Figure 19-1.

Chapter 19
Creating a Mediator

19-4

Figure 19-1 Composite with Mediator Selection in Create SOA Project Wizard

3. Click Finish.

The Create Mediator dialog appears.

4. Configure the Mediator interface, as described in Configuring the Mediator Interface
Definition.

5. Define routing rules for the Mediator, as described in Creating Oracle Mediator Routing
Rules.

19.3.1.2 To create a Mediator in an existing composite application:
1. Open the composite application to which you are adding a Mediator in the SOA

Composite Editor.

2. Drag and drop a Mediator from the Components window (shown in Figure 19-2) to the
Components section of the editor.

Alternatively, right-click a blank area in the Components section of the editor. Select
Insert > Mediator from the context menu that appears.

Tip:

The Components window is to the right of the SOA Composite Editor.

Chapter 19
Creating a Mediator

19-5

Figure 19-2 Components Window with a Mediator Service Component

The Create Mediator dialog appears.

3. Configure the Mediator interface, as described in Configuring the Mediator
Interface Definition.

4. Define routing rules for the Mediator, as described in Creating Oracle Mediator
Routing Rules.

19.3.1.3 To create a new project with a Mediator:
1. Right-click in the Applications window, and then select New.

The New Gallery wizard appears.

2. Create and name a new SOA project in the SOA Tier category.

3. On the Configure SOA Settings page of the New Gallery dialog, select Composite
With Mediator from the Composite Template list, shown in Figure 19-3.

Chapter 19
Creating a Mediator

19-6

Figure 19-3 Create SOA Project Wizard with Composite With Mediator Template
Shown

4. Click Finish.

The Create Mediator dialog appears.

5. Configure the Mediator interface, as described in Configuring the Mediator Interface
Definition.

19.3.1.4 To create a Mediator in an existing project:
1. In the Applications window, select the project to which you want to add a Mediator.

2. Right-click in the navigator pane and select New.

3. Under Categories, select Service Components, and then select Mediator from the
Items list, as shown in Figure 19-4.

Chapter 19
Creating a Mediator

19-7

Figure 19-4 New Gallery Dialog with Mediator Service Component

4. Click OK.

The Create Mediator dialog appears.

5. Configure the Mediator interface, as described in Configuring the Mediator
Interface Definition.

6. Define routing rules for the Mediator, as described in Creating Oracle Mediator
Routing Rules.

19.4 Introduction to the Mediator Editor Environment
You can create a Mediator service component in a SOA composite application of
Oracle JDeveloper and then configure it using the Mediator Editor. To display the
Mediator Editor, double-click the Mediator service component in the SOA Composite
Editor. For information about the SOA Composite Editor, see Getting Started with
Developing SOA Composite Applications.

Figure 19-5 shows the Mediator Editor along with the Applications window, Structure,
and Messages windows.

Note:

Oracle recommends using a Unicode database with AL32UTF8 as the
database character set for full globalization support in Mediator.

Chapter 19
Introduction to the Mediator Editor Environment

19-8

Figure 19-5 Mediator Editor Window

Each section of the view shown in Figure 19-5 lets you perform specific design and
deployment tasks. The sections in this view include the following:

• Applications window

The Applications window, shown in the upper left section of Figure 19-5, displays the
Mediator mplan file. This file appears under the SOA Content folder of the project where
you created a Mediator. For more information about the Applications window and the
composite files, see Table 2-3.

• Mediator Editor

The Mediator Editor, shown in the middle of Figure 19-5, provides a visual view of the
Mediator. This view appears when you perform one of the following actions:

– Double-click an Oracle Mediator icon in the SOA Composite Editor.

– Double-click the.mplan file for the Mediator in the Applications window.

• Source View

The Source view displays the source code of a Mediator. Click Source at the bottom of
the Mediator Editor to view the source code. The code in Source view is immediately
updated to reflect any changes to an a Mediator.

The following example shows sample Mediator source code:

<?xml version = '1.0' encoding = 'UTF-8'?>
<!--Generated by Oracle SCA Modeler version 1.0 at [4/16/07 10:05 PM].-->
<Mediator name="CustomerDataRouter" xmlns:xsi="http://www.w3.org/2001/XMLSchema-
instance"
xmlns="http://xmlns.oracle.com/sca/1.0/mediator"/>

• History Window

Chapter 19
Introduction to the Mediator Editor Environment

19-9

The History window displays history information about the Mediator file, including a
revision history and side-by-side comparisons of read-only and editable versions
of a file. Click History at the bottom of the Design window shown in Figure 19-5 to
open the History window. Figure 19-6 shows the History view for a Mediator file.

Figure 19-6 History Window

19.5 Configuring the Mediator Interface Definition
When you create a new Mediator, you can specify an interface template that generates
a basic set of default files in the Mediator project. These files provide a framework
from which you can design and configure the Mediator. You can create a Mediator with
the following interface options:

• Mediator with no interface definition

This creates an empty Mediator and does not create a WSDL file. This method
provides you with the flexibility to create the SOA components in the order you
want.

After you create a Mediator without an interface definition, you must create a
service or an event that starts the component. You can also define the interface
implicitly by dragging and dropping a service, or the output interface from another
component, to the Mediator input.

• Mediator with the interface defined by a WSDL file

This bases the interface definition on a WSDL file, which describes the interfaces
of a Mediator, such as port type, operations, services, and schemas. The WSDL
file can already exist or you can generate one from a schema file.

• Mediator with a one-way interface

This defines an interface with a one-way interaction, where the client sends a
message to a service and the service does not need to reply.

• Mediator with a synchronous interface

This creates an interface with synchronous request-response interactions. In a
synchronous interaction, a client sends a request to a service and receives an
immediate response. The client does not proceed further until the response
arrives.

Chapter 19
Configuring the Mediator Interface Definition

19-10

• Mediator with an asynchronous interface

This creates an interface with asynchronous request-response interactions. In an
asynchronous interaction, a client sends a request to a service, but does not block and
wait for a reply.

• Mediator that subscribes to events

This creates a Mediator that subscribes to a business event generated when a situation
of interest occurs. A business event consists of message data sent as the result of an
occurrence in a business environment. For information about business events, see Using
Business Events and the Event Delivery Network.

To subscribe to events, the events must be defined in an Event Definition (EDL) file.

19.5.1 How to Configure the Mediator Interface Definition
You configure the interface definition for a Mediator on the Create Mediator dialog.

To configure the Mediator interface definition:

1. Create a Mediator using one of the methods described in Creating a Mediator.

The Create Mediator dialog appears.

2. In the Name field, enter a name for the Mediator service component.

3. Select one of the following from the Template list. Refer to the descriptions at the
beginning of this section for more information on each.

• Define Interface Later

• Interface Definition from WSDL

• One-Way Interface

• Synchronous Interface

• Asynchronous Interface

• Subscribe to Events

Figure 19-7 and Figure 19-8 illustrate how the properties change on the Create Mediator
dialog for different interface types.

Chapter 19
Configuring the Mediator Interface Definition

19-11

Figure 19-7 Synchronous Interface Template Selection on the Create
Mediator Dialog

Figure 19-8 Interface Definition from WSDL Template Selection on the
Create Mediator Dialog

4. For any interface type except Subscribe to Events, configure the appropriate
properties. For information about the displayed properties for each type, see
Table 19-1 following these instructions.

5. If you selected Subscribe to Events, do the following:

a. Click Add on the Create Mediator dialog.

Chapter 19
Configuring the Mediator Interface Definition

19-12

Figure 19-9 Subscribe to Events Template Selection in Create Mediator Dialog

The Event Chooser dialog appears.

b. To the right of the Event Definition field, click Search.

The SOA Resource Browser dialog appears.

c. Select an event definition file (.edl) and click OK.

The Event field is populated with the events described in the.edl file that you
selected. For more information about creating.edl files, see Using Business Events
and the Event Delivery Network.

d. Select one or more events in the Event field, as shown in Figure 19-10, and click OK.

Figure 19-10 Event Chooser Dialog

e. Select a level of delivery consistency for the event.

one and only one: A global (JTA) transaction is used for event delivery. If the event
call fails, the transaction is rolled back and the call is retried a configurable number of
times.

Chapter 19
Configuring the Mediator Interface Definition

19-13

guaranteed: A local transaction is used to guarantee delivery. There are no
retries upon failure.

immediate: Events are delivered on the same thread and on the same
transaction as the caller.

f. In the Run as publisher field, select whether to run the event subscription
under the security of the event publisher.

By default, event subscriptions run under the security of the event publisher.

g. To filter the event, double-click the Filter column of the selected event, or
select the event and then click the filter icon (first icon).

The Expression Builder dialog appears.

h. In the Expression field, enter an XPath expression and click OK.

Figure 19-11 shows a sample Expression Builder dialog.

Figure 19-11 Business Event Filter

The expression you created appears in the Filter column of the Create
Mediator dialog.

i. Click OK.

6. Click OK on the Create Mediator dialog.

7. If you chose to create a Mediator without an interface, you must create the
interface at a later time as described in How to Define an Interface for a Mediator .

Chapter 19
Configuring the Mediator Interface Definition

19-14

The following table lists and describes the properties you can configure to define an interface.
The available properties change depending on the interface type you select, so not all of the
listed properties apply to all interface types.

Table 19-1 Mediator Interface Properties

Property Description

Create Composite Service with
SOAP Bindings

Select this option to create an exposed service with SOAP bindings
that is automatically connected to your Mediator when the interface is
generated.

WSDL URL Enter the location of the WSDL file to use when creating the interface
from a WSDL file. Do one of the following:

• To use an existing WSDL file, enter the name of the file or click
Find existing WSDL files to browse for the file.

• To create a new WSDL file, click Generate WSDL from
schema(s).

For more information about these options, see Generating a WSDL
File.

Port Type Select the port type name from the list. The available port types are
parsed from the WSDL file that you specify in the WSDL URL field.

Callback Port Type Select the port type name to which the response message is sent in
an asynchronous communication. The available port types are parsed
from the WSDL file that you specify in the WSDL URL field.

Input Enter the schema element for the input message. Click Search to the
right of the field to select the element. By default, the singleString
schema element is selected for the input message.

For a sample schema, see the schema that follows after this table.

Output Enter the schema element for the output message. Click Search to
the right of the field to select the element. By default, the singleString
schema element is selected for the input message.

You can use any XSD schema to specify the format of the input document that Mediator
processes. Here is a sample schema:

<xsd:schema attributeFormDefault="qualified"
 elementFormDefault="qualified"
 targetNamespace="http://samples.otn.com/helloworld"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns="http://samples.otn.com/helloworld">
 <include namespace="http://samples.otn.com/helloworld"
 schemaLocation="helloworld.xsd" />
 <xsd:element name="name1" type="xsd:string" />
 <xsd:element name="result1" type="xsd:string"/>
</xsd:schema>

19.5.2 What Happens When You Create a Mediator
The Mediator files are generated under the specified application and project in the
Applications window, and the new Mediator appears in the Mediator Editor in Design view. If
you created the Mediator with an interface definition and the WSDL file did not already exist,
the new WSDL file is also generated with the same name as the Mediator. If the WSDL file
you specified is located in a different directory than the project files, the file and its associated
schema files are copied to the Mediator project.

Chapter 19
Configuring the Mediator Interface Definition

19-15

19.5.2.1 Without an Interface Definition
This Mediator has no associated WSDL file, port types, or operations. You must define
these separately as described in Defining an Interface for a Mediator. Figure 19-12
shows how a Mediator created with no interface definition appears in the Mediator
Editor.

Figure 19-12 Mediator with no Interface Definition in the Mediator Editor

19.5.2.2 With a WSDL-Based Interface
The appearance and source code of this Mediator varies depending on the name of
the WSDL file and the port types and operations defined by the WSDL file.
Figure 19-13 shows a sample Mediator created from a WSDL file.

Figure 19-13 Mediator from WSDL in the Mediator Editor

Chapter 19
Configuring the Mediator Interface Definition

19-16

19.5.2.3 With a One-Way Interface Definition
Figure 19-14 shows how a Mediator created with a one-way interface appears in the Mediator
Editor. The arrow to the left of the execute operation represents a one-way operation.

Figure 19-14 One-Way Interface Oracle Mediator in the Mediator Editor

19.5.2.4 With a Synchronous Interface Definition
In a synchronous interaction, only one port is defined because the response is sent to the
same port as the request. Figure 19-15 shows how a Mediator created with a synchronous
interface appears in the Mediator Editor. The arrows to the left of the execute operation in
Figure 19-15 represent a synchronous operation.

Figure 19-15 Synchronous Mediator in the Mediator Editor

19.5.2.5 With an Asynchronous Interface Definition
Figure 19-16 shows how a Mediator created with an asynchronous interface appears in the
Mediator Editor. The Port Type field displays the port on which the request message is sent.

Chapter 19
Configuring the Mediator Interface Definition

19-17

The Callback Port Type field displays the port to which the response is sent. The
arrows to the left of the execute operation in Figure 19-16 represent an asynchronous
operation.

Figure 19-16 Asynchronous Mediator in the Mediator Editor

19.5.2.6 With an Event Subscription
When you view the Mediator in the SOA Composite Editor, the icon on the left side of
the Mediator indicates that this Mediator is configured for an event subscription, as
shown in Figure 19-17.

Figure 19-17 Mediator Created with the Subscribe to Events Template

When you double-click the Mediator, the Mediator Editor appears, as shown in
Figure 19-18.

Chapter 19
Configuring the Mediator Interface Definition

19-18

Figure 19-18 Event Subscription Mediator in the Mediator Editor

19.6 Defining an Interface for a Mediator
After you create a Mediator without an interface definition, you must define the interface by
subscribing to events or by defining services. You can define services in the following two
ways:

• Connect the Mediator to a service through a wire in the SOA Composite Editor.

• Use the Define Service or Add Event Subscription option in the Mediator Editor.

19.6.1 How to Define an Interface for a Mediator
The following procedures describe how to define an interface for an existing Mediator by
subscribing to events, by defining services creating a wire in the composite, and by defining
services using the Mediator Editor.

19.6.1.1 To Subscribe to Events:
To subscribe to events, the events must be defined in an Event Definition (EDL) file.

1. Open the Mediator you want to edit in the Mediator Editor.

2. In the Routing Rules section, click Add Event Subscription.

The Subscribed Events dialog appears.

3. Click Add.

The Event Chooser dialog appears.

4. To use an existing EDL file, follow the instructions under Configuring the Mediator
Interface Definition beginning with Step 55.b.

Note:

You can alternatively create a new EDL file. Click Create EDL file to create a
new EDL file. Enter the event details in the Create Event Definition dialog that
appears.

Chapter 19
Defining an Interface for a Mediator

19-19

5. Click OK.

19.6.1.2 To Define Services for a Mediator Using a Wire:
• In the SOA Composite Editor, drag a wire from a Mediator to a service.

For more information about wires and how to wire a service component to a
service, see How to Wire a Service and a Service Component.

Note:

You can also wire a Mediator with a defined service interface to another
interface. However, to connect a Mediator to a service, the interface of
the Mediator and of the service must match.

When you define a service using a wire, the service for the Mediator is
automatically defined using the WSDL file from the wire source. For example, if
you connect the ReadFile service shown in Figure 19-19 to the
CustomerDataRouter Mediator, the CustomerDataRouter Mediator automatically
inherits the service definition of the ReadFile service.

Figure 19-19 Connecting Mediator to a Service

For information about how wiring two Mediator service components can cause an
infinite loop, see What You May Need to Know About Adding and Deleting Wires.

Chapter 19
Defining an Interface for a Mediator

19-20

19.6.1.3 To Define Services for a Mediator in the Mediator Editor:
1. Display the Mediator you want to edit in the Mediator Editor.

2. To the right of the WSDL URL field, click Define Service.

The Define Service dialog appears, as shown in Figure 19-20.

Figure 19-20 Define Service Dialog

3. Do one of the following:

• To use an existing WSDL file, click Find existing WSDLs to the right of the WSDL
URL field.

• To create a WSDL file, click Generate WSDL from schema(s) to the right of the
WSDL URL field.

For information about how to generate a WSDL file, see Generating a WSDL File.

4. From the Port Type list, select a port.

5. From the Callback Port Type list, select a port for the response message in an
asynchronous interaction.

6. Click OK.

19.7 Generating a WSDL File
You can generate the WSDL file for a message using an XML schema definition (XSD) file.
When working with Mediator, you can generate a WSDL file at either of the following times:

• When you are creating a Mediator and you select the Interface Definition from WSDL
template in the Create Mediator dialog, selecting Generate WSDL from Schema(s) next
to the WSDL URL field opens the Create WSDL dialog.

• When you have a Mediator with no interface defined and you click Define Service next to
the WSDL URL field in the Mediator Editor, selecting Generate WSDL from Schema(s)
next to the WSDL URL field opens the Create WSDL dialog.

Chapter 19
Generating a WSDL File

19-21

The Create WSDL dialog populates standard fields, such as the file name, directory,
and namespace; and the dialog changes depending on the interface type you select.
You can specify the same or different schema files for the message inputs.

19.7.1 How to Generate a WSDL File
The way you configure a WSDL file depends on the type of interface being defined by
the WSDL file. You can define a one-way interface, a synchronous interface, or an
asynchronous interface.

19.7.1.1 To generate a WSDL file for a one-way interface from an XSD file:
Perform these steps after the Create WSDL dialog appears when you are creating a
Mediator or when you are defining a service for a Mediator.

1. On the Create WSDL dialog, accept the default values or enter the following
information for the WSDL file:

Table 19-2 WSDL Properties

Property Description

File Name A unique name for the WSDL file.

Directory The directory where you want to store the WSDL file. By
default, it is stored in the SOA/WSDLs folder under the project
folder.

Namespace A namespace address for the WSDL file; for example,
http://oracle.com/esb/namespaces/Mediator. The
default namespace is based on the JDeveloper application
name, project name, and the mediator name.

The namespace that you specify is defined as the tns
namespace in the WSDL file.

Port Type The name of the port type in the WSDL file that contains the
operation to use.

Operation The name of the action to perform; for example,
executeQuery.

Note:

Spaces and special characters are not allowed in an operation name or
port type. Only alphabetic and numeric characters are supported, and
the first character cannot be a number.

2. In the Interface Type field, select One-Way Interface.

The Input field appears, as shown in Figure 19-21.

Chapter 19
Generating a WSDL File

19-22

Figure 19-21 Create WSDL Dialog for a One-Way Interface

3. To the upper right of the Input field, click Add a new message part.

The Add Message Part dialog appears, as shown in Figure 19-22.

Figure 19-22 Add Message Part Dialog

4. In the Part Name field, enter a name for the message part.

5. To the right of the URL field, click the browse for schema file icon to browse for the
URL.

The Type Chooser dialog appears and contains a list of the schema files (XSD files), as
shown in Figure 19-23.

Chapter 19
Generating a WSDL File

19-23

Figure 19-23 Type Chooser Dialog

6. Expand the Type Explorer tree to locate and select the schema element to use.

If the schema you want to use is not located in the project in which you are
working, you can import a schema XSD file or WSDL file into the project using the
Import Schema File or Import WSDL icon in the upper right corner of the dialog.

After you specify a file, Oracle JDeveloper parses it to determine the defined
schema elements and displays them in a list from which you select.

7. Select the root element of the XSD file and click OK.

The Add Message Part dialog reappears with the URL and Schema Element
fields populated from the Type Chooser dialog. If you selected an XSD simple
type, these fields are replaced by a Simple Type field.

8. Click OK on the Add Message Part dialog.

The input information appears in the Input field of the Create WSDL dialog.

9. If needed, repeat the above steps to define additional message parts.

10. Click OK.

Note:

Partner link types are generally used in BPEL, so you do not need to
select Generate partnerlinkType extension for Mediator.

19.7.1.2 To generate a WSDL file for a synchronous interface from an XSD file:
Perform these steps after the Create WSDL dialog appears when you are creating a
Mediator or when you are defining a service for a Mediator.

1. On the Create WSDL dialog, enter the information for the properties listed in
Table 19-2.

2. In the Interface Type field, select Synchronous Interface.

The Input, Output, and Fault fields appear, as shown in Figure 19-24.

Chapter 19
Generating a WSDL File

19-24

Figure 19-24 Create WSDL Dialog for a Synchronous Interface

3. Repeat steps 3 to 8, as in the previous procedure.

4. Repeat the same steps to define message parts for the Output and Fault fields.

The output represents the response message and is required in synchronous
transactions. Faults are optional.

5. Click OK.

Note:

Partner link types are generally used in BPEL, so you do not need to select
Generate partnerlinkType extension for Mediator.

19.7.1.3 To generate a WSDL file for an asynchronous interface from an XSD file:
Perform these steps after the Create WSDL dialog appears when you are creating a Mediator
or when you are defining a service for a Mediator.

1. On the Create WSDL dialog, enter the information for the properties listed in Table 19-2.

2. In the Interface Type field, select Asynchronous Interface.

The Input field and Callback section appear, as shown in Figure 19-25.

Chapter 19
Generating a WSDL File

19-25

Figure 19-25 Create WSDL Dialog for an Asynchronous Interface

3. Repeat steps 3 to 8, as in the earlier procedure.

4. Repeat the same steps to define the input message parts for the Callback section.

Note:

The callback input represents the response message and is required in
asynchronous transactions.

5. In the Callback section, specify the following information for the response
message:

• Port Type: The name of the port type in the WSDL file that contains the
operation to use.

• Operation: The name of the action to perform; for example, executeResponse.

Note:

Spaces and special characters are not allowed in an operation name
or port type. Only alphabetic and numeric characters are supported,
and the first character cannot be a number. Both of these fields are
required.

6. Click OK.

Chapter 19
Generating a WSDL File

19-26

Note:

Partner link types are generally used in BPEL, so you do not need to select
Generate partnerlinkType extension for Mediator.

19.8 Specifying Validation and Priority Properties
After creating a Mediator, you can configure properties for the operation or event subscription
specified for the component. On the Mediator Editor, you can specify whether to validate the
schemas of inbound messages and you can specify a priority for the operation or event
subscription.

To validate inbound message schemas, select the Validate Syntax (XSD) check box for an
operation or event subscription in the Routing Rules section of the Mediator Editor. The
Mediator Engine validates the XML inbound payload syntactic structure against the
associated XML schema. Any syntax error, such as an incorrect element name or location,
causes a fault and the routing rule is not processed.

To specify a priority for an Oracle Mediator component, select a value from zero to nine in the
Priority field in the Mediator Editor's Routing Rules section. This determines the order in
which messages are retrieved for all Oracle Mediator service components. This property is
only valid for parallel routing rules and not sequential. For more information about priorities,
see "Basic Principles of Parallel Routing Rules".

19.9 Modifying a Mediator Service Component
You can modify the operations or event subscriptions of a Mediator using the Mediator Editor.

19.9.1 How To Modify Mediator Operations
You can modify an Oracle Mediator WSDL file by adding or deleting operations. After
modifying the WSDL file, use the Refresh WSDL dialog to synchronize the changes.

To modify operations:

1. In the Mediator Editor, click the Refresh operations From WSDL icon to the right of the
WSDL URL field.

The Refresh WSDL dialog appears. If you have made any modifications to the WSDL file,
the Refresh WSDL dialog lists all the operations to delete or add. The Refresh will
delete Mediator operation field lists all the operations that have been removed from the
WSDL file. The Refresh will add Mediator operation field lists all the new operations
that have been added in the WSDL file. Figure 19-26 shows the Refresh WSDL dialog.

Chapter 19
Specifying Validation and Priority Properties

19-27

Figure 19-26 Refresh WSDL Dialog

2. To specify a different WSDL file, click Find existing WSDLs to the right of the
WSDL URL field to use an existing WSDL file or Generate WSDL From
schema(s) to create a WSDL file.

The Refresh WSDL dialog is updated based on the operations defined in the
specified WSDL file.

3. Click OK.

4. From the File menu, select Save All.

19.9.2 How To Modify Mediator Event Subscriptions
You can subscribe to new events, modify existing event subscriptions, and
unsubscribe from subscribed events using the Manage Event Subscriptions option in
the Mediator Editor.

To modify event subscriptions:

1. In the Mediator Editor, click the Manage Event Subscriptions icon to the right of
Event Subscriptions.

The Subscribed Events dialog appears, as shown in Figure 19-27.

Chapter 19
Modifying a Mediator Service Component

19-28

Figure 19-27 The Subscribed Events Dialog

2. You can perform any of the following functions:

• Subscribe to a new event.

• Unsubscribe from an event.

• Modify or specify the filter criteria for an event.

• Modify the Consistency or Run as Roles properties of an event subscription.

For more information about the Consistency, Run as Roles, and Filter fields of an
event, see How to Configure the Mediator Interface Definition.

3. Click OK.

4. From the File menu, select Save All.

Chapter 19
Modifying a Mediator Service Component

19-29

20
Creating Oracle Mediator Routing Rules

This chapter describes Oracle Mediator routing rules and how to specify routing rules for a
Mediator service component. Routing rules include transformation, filtering, validation,
mapping, and routing logic.
This chapter includes the following sections:

• Introduction to Routing Rules

• Resequencing Rules

• Defining Routing Rules

For additional information about defining routing rules for specific scenarios, see:

• Working with Multiple Part Messages in Oracle Mediator

• Using Error Handling

• Resequencing in Oracle Mediator

20.1 Introduction to Routing Rules
Routing rules are mediation logic or execution logic that you define to achieve the requisite
mediation. Mediator lets you route data between service consumers and service providers.
As the data flows from service to service, it must be transformed. These two tasks, routing
and transformation, are the core responsibilities of Mediator. You can use routing rules to
specify how a message processed by a Mediator reaches its next destination. Routing rules
specify where a Mediator sends the message, how it sends the message, and what changes
should be made to the message structure before sending it to the target service.

A routing rule can be triggered either by a service operation or an event subscription. The
service operation can be synchronous, asynchronous, or one-way. Routing rules can be of
the following two types:

• Static Routing Rules

Static rules do not change depending on the invocation context and are applied
consistently.

• Dynamic Routing Rules

Dynamic rules let you externalize the routing logic to an Oracle Rules Dictionary, which in
turn enables dynamic modification of the routing logic.

For more information about creating routing rules, see How to Create Static Routing Rules
and How to Create Dynamic Routing Rules. For information about standard message
exchange patterns and how they are handled by Mediator, see Understanding Message
Exchange Patterns of an Oracle Mediator.

20.1.1 Static Routing Rules
A static routing rule is not expected to change depending on the invocation context. In this
case, the routing can be an echo, a routing to another service, or a publishing of an event.

20-1

When you define static rules, you can specify the following types of information:

• Target Service

Mediator sends messages to the target service you specify. This service can either
be defined as a WSDL interface or a Java interface. For information about
invoking a target service, see How to Specify Mediator Services or Events.

• Execution Type

Mediator executes routing rules either sequentially (that is, running in the same
thread) or in parallel (running on different threads). For information about
specifying an execution type, see How to Specify Sequential or Parallel Execution.

Note:

For synchronous service invocations, the routing rule should always be
sequential.

• Reply, Callback, and Fault Handlers

You can define how Mediator handles synchronous reply, callback, and fault
messages. For information about handlers, see How to Configure Response
Messages, How to Handle Faults, and Static Routing Rule Components.

20.1.1.1 Types of Static Rules
You can define the following types of static rules for a Mediator:

• Filter Expression

You can define a filter expression that is applied to the message content (payload
or headers). When you define a filter, the contents are analyzed before any service
is invoked. For example, you might apply a filter expression that specifies that a
service be invoked only if the message includes a customer ID, or if the value for
that customer ID matches a certain pattern. For information about specifying filter
expressions, see How to Specify an Expression for Filtering Messages.

• Transformations

Mediator can transform message data before forwarding the message to a service.
You can define transformations to set a value on the target payload by mapping
data or by assigning values.

The XSLT Mapper lets you define transformations that apply to the whole
message body to convert messages from one XML schema to another. The
Assign Values function works on individual fields. Using this dialog, you can assign
values from the message (for example, payload and headers), from a constant, or
from various system properties, such as the properties of an adapter present in the
data path. For information about defining transformations, see How to Create
XSLT Transformations and How to Assign Values.

• Accessing Header Variables from Expressions

Mediator can detect any SOAP headers that are used in building the expression
for the current routing rule operation. For information about accessing headers,
see How to Access Headers for Filters and Assignments and Manual Expression
Building for Accessing Properties for Filters and Assignments.

Chapter 20
Introduction to Routing Rules

20-2

• Schematron-Based Validations

You can specify the Schematron files that Mediator should use to validate different parts
of an inbound message. For information about performing Schematron-based validations,
see How to Use Semantic Validation.

• Java Callouts

Mediator lets you add Java callouts to the routing rules. Java callouts enable you to use
external Java classes to manipulate messages flowing through the Mediator. For
information about using Java callouts, see How to Use Java Callouts.

• User-defined Extension Functions

These are your own set of functions that can be used by the XSLT Mapper. For
information about using user-defined extension functions, see "To add user-defined
extension functions:".

20.1.1.2 Static Routing Rule Components
Static routing rules define the following components:

• Request Handler: Defines how Mediator handles incoming requests.

• Reply Handler: Defines how the synchronous response from the called service is
handled by Mediator.

• Fault Handler: Defines how the named or declared faults from the called service are
handled by Mediator.

• Callback Handler: Defines how the asynchronous response and callback from the called
service are handled by Mediator.

• Timeout Handler in Callback: Defines how long Mediator waits for the asynchronous
response and callback before performing timeout handling for the particular
asynchronous request.

• Event Publishing and Service Invocation: Calls other services or publishes an event
depending on the configuration of the handlers.

20.1.2 Dynamic Routing Rules
A dynamic routing rule lets you externalize the routing logic to an Oracle Rules Dictionary or
Domain Value Map (DVM), which in turn enables dynamic modification of the routing logic in
a routing rule. Dynamic routing enables you to dynamically route messages at runtime from a
mediator to multiple target services, based on the message content.

Dynamic routing rules are described in more detail in How to Create Dynamic Routing Rules.

20.1.3 Sequential and Parallel Execution
Routing rules can be executed sequentially or in parallel. This section describes the basic
principles of both types of execution. If an operation or event has both sequential and parallel
routing rules, first sequential routing rules are evaluated and actions are performed, and then
parallel routings are queued for parallel execution.

Chapter 20
Introduction to Routing Rules

20-3

Note:

If a Mediator service component with a request-response interface has only
parallel routing rules, the Mediator service component does not send a
response back to the caller. Though you can create this type of Mediator
service component, the caller of the Mediator service component does not
receive a response at runtime.

20.1.3.1 Basic Principles of Sequential Routing Rules
Mediator processes sequential routing rules based on the following principles:

• Mediator evaluates routings and performs the resulting actions sequentially.
Sequential routings are evaluated in the same thread and transaction as the caller.

• Mediator always enlists itself into the global transaction propagated through the
thread that is processing the incoming message. For example, if an inbound JCA
adapter invokes a Mediator, the Mediator enlists itself with the transaction that the
JCA adapter has initiated.

• Mediator propagates the transaction through the same thread as the target
components while executing the sequential routing rules.

• Mediator never commits or rolls back transactions propagated by external entities.

• Mediator manages the transaction only if the thread-invoking Mediator does not
already have an active transaction. For example, if Mediator is invoked from
inbound SOAP services, Mediator starts a transaction and commits or rolls back
the transaction depending on success and failure.

20.1.3.2 Basic Principles of Parallel Routing Rules
Mediator processes routing rules in parallel based on the following principles:

• Mediator queues and evaluates routings in parallel in different threads.

The messages of each Mediator service component are retrieved in a weighted,
round-robin fashion to ensure that all Mediator service components receive
parallel processing cycles. This is true even if one or more Mediator service
components produce a higher number of messages compared to other
components. The weight used is the message priority set when designing a
Mediator service component. Higher numbers of parallel processing cycles are
allocated to the components that have higher message priority.

You can set the Priority field in the Mediator Editor to indicate the priority of a
Mediator service component. Priorities can range from zero to nine, with nine
being the highest priority. The default priority is four.

Note:

The Priority property is applicable only to parallel routing rules.

Chapter 20
Introduction to Routing Rules

20-4

• Mediator initiates a new transaction for processing each parallel rule. The initiated
transaction ends with an enqueue to the Mediator parallel message dehydration store.

For example, if a Mediator service component has one parallel routing rule, one message
is enqueued on the Mediator parallel message dehydration store. The parallel message
dispatcher to the store then initiates a transaction, reads the message from the database
store, and invokes the target component or service of this routing rule. The transaction
initiated by the listener thread is a completely new transaction and is propagated to the
target components.

Note:

Dehydrating of messages means storing the incoming messages in a database
for parallel routing rules so they can be processed later by worker threads.

• Mediator commits or rolls back transactions because it is the initiator of these
transactions.

20.1.3.3 Finer Control Over Thread Allocation in Parallel Routing
You can specify dedicated work managers to handle parallel routing and error handling
messages for a mediator component. You can use the Oracle WebLogic Server
Administration Console to configure work managers. See Viewing and Configuring Work
Manager Properties in Administering Oracle SOA Suite and Oracle Business Process
Management Suite for more details on configuring work managers.

Use the NameWorkManagerMappings Mediator service engine property to specify the mediator
component and its associated work managers in Oracle Enterprise Manager Fusion
Middleware Control. See Configuring Oracle Mediator Service Engine Propertiesin
Administering Oracle SOA Suite and Oracle Business Process Management Suite for more
details on configuring Mediator runtime properties.

The NameWorkManagerMappings property has the following keys:

• parallelRoutingWorkManagerName: The name of the work manager configured for
parallel routing. If this is not specified, the default SOA work manager is used.

• fullyQualifiedComponentDistinguishedName: The fully qualified distinguished name of
the mediator component. The format to be used is PartitionName/CompositeName!
Revision/ComponentName. For example, soaInfra/MyProject!1.0/Mediator1.

20.2 Resequencing Rules
Mediator includes a resequencer, which rearranges streams of related but out-of-sequence
messages into their sequential order based on the type of resequencer used and the rules
you define. When incoming messages arrive in a random order, the resequencer orders the
messages based on sequential or chronological information, and then sends the messages to
the target services in the correct order based on the resequencing configuration.

For more information about resequencing messages, see Resequencing in Oracle Mediator.

Chapter 20
Resequencing Rules

20-5

20.3 Defining Routing Rules
Routing rules can only be defined for a Mediator with a defined interface. For more
information on how to define an interface, see How to Define an Interface for a
Mediator .

20.3.1 How To Access the Routing Rules Section
You define the routing rules in the Routing Rules section of the Mediator Editor.

Figure 20-1 shows the Routing Rules section of the Mediator Editor.

Figure 20-1 Mediator Editor- Routing Rules Section

Figure 20-2 lists and describes the icons in the Routing Rules section.

Chapter 20
Defining Routing Rules

20-6

Figure 20-2 Routing Rule Section Icons

You can access the Routing Rules section of the Mediator Editor using one of the following
methods:

20.3.1.1 From the SOA Composite Editor:
1. Double-click the icon that represents the Mediator for which you want to specify the

routing rules.

2. If the Routing Rules section is not visible, click the Plus (+) icon next to Routing Rules.

20.3.1.2 From the Applications window:
1. In the Applications window, expand the SOA project and then expand the SOA Content

folder.

2. In the SOA Content folder, double-click the name of the Mediator file in which you want
to specify the routing rules.

The Mediator file has an MPLAN extension.

3. If the Routing Rules section is not visible, click the Plus (+) icon next to Routing Rules.

20.3.2 How to Create Static Routing Rules
The following topics provide information and instructions for defining static routing rules for
Mediator, including specifying the services and events, defining handlers, transformations,
expressions, filters, and so on.

20.3.2.1 How to Specify Mediator Services or Events
After creating a Mediator component, you associate it with inbound service operations or
event subscriptions and with outbound targets. Targets are outbound service operations or
event publishing. A target specifies the next service or event to which a Mediator sends

Chapter 20
Defining Routing Rules

20-7

messages and also specifies which service operation to invoke. You can specify a
service or an event as a target type.

You can also echo source messages back to the initial caller after any transformation,
validations, assignments, or sequencing operations are performed. An echo can only
be specified if the Mediator component has a synchronous or asynchronous interface.
Whether the echo is synchronous or asynchronous depends on the WSDL file of the
caller. The echo option is only available for inbound service operations and is not
available for event subscriptions.

The purpose of the echo option is to expose all the Mediator functionality as a callable
service without having to route it to any other service. For example, you can call a
Mediator to perform a transformation, a validation, or an assignment, and then echo
the Mediator back to your application without routing it anywhere else.

You can specify multiple routings for an inbound operation or event. Each routing is
mapped to one target service invocation or event. Therefore, to specify multiple
service invocations or raise multiple events, you must specify one routing rule for each
target. For example, you can invoke an operation based on a message payload from
the following operations defined in a service:

• insert

• update

• updateid

• delete

To do this action, you must create four routing rules, one for each operation. Later,
when you specify a filter expression for each rule, you can specify which target and
operation is applied to each message instance based on the message payload, as
shown in Figure 20-3.

Chapter 20
Defining Routing Rules

20-8

Figure 20-3 Multiple Routings for an Inbound Operation

20.3.2.1.1 To invoke a service:

To perform this step, the target service must be defined in a WSDL document or a Java
interface.

1. In the Routing Rules section, click Add next to the operation for which you are defining
routing rules, and then select static routing rule.

The Target Type dialog appears, as shown in Figure 20-4.

Figure 20-4 Target Type Dialog

Chapter 20
Defining Routing Rules

20-9

2. Click Service.

The Target Services dialog appears, as shown in Figure 20-5.

Figure 20-5 Target Services Dialog

3. In the Target Services dialog, navigate to and then select an operation provided by
a service.

Note:

You can select a service defined by a WSDL file or a Java interface. A
service can consist of multiple operations, as shown in Figure 20-5.

4. Click OK.

5. If you selected a target service defined by a Java interface, the Interface Required
dialog appears. Click Yes to create the required WSDL file, and then click OK on
the confirmation dialog.

A new Static Routing section appears where you can define the routing rule.

6. Configure the routing rule as described the remaining sections of this chapter.

20.3.2.1.2 To trigger an event:

1. In the Routing Rules section, click Add next to the operation for which you are
defining routing rules, and then select static routing rule.

The Target Type dialog appears, as shown in Figure 20-4.

Chapter 20
Defining Routing Rules

20-10

2. Click Event.

The Event Chooser dialog appears.

3. To the right of the Event Definition field, click Search.

The SOA Resource Browser dialog appears.

4. Select an event (.edl) file and click OK.

The Event field is populated with the events defined in the selected file, as shown in
Figure 20-6.

Figure 20-6 Event Chooser Dialog

Note:

Instead of browsing for an existing event definition file, you can create a new
file by clicking Create new event definition (edl) file and completing the fields
in the Create Event Definition File dialog.

5. Select an event.

6. Click OK.

A new Static Routing section appears where you can define the routing rule.

7. Configure the routing rule as described the remaining sections of this chapter.

20.3.2.1.3 To echo a service:

1. In the Routing Rules section, click Add next to the operation for which you are defining
routing rules, and then select static routing rule.

The Target Type dialog is displayed, as shown in Figure 20-7.

Chapter 20
Defining Routing Rules

20-11

Figure 20-7 Target Type Dialog

2. Click Echo.

Note:

The Echo button only appears on the Target Type dialog if the interface
is synchronous or asynchronous.

Figure 20-8 shows a routing rule with a synchronous echo. An asynchronous echo
has an icon with a dotted line on the return.

Figure 20-8 Sample Mediator Supporting Echo Operation

20.3.2.2 What You May Need to Know About Echoing a Service
The echo option has the following limitations:

• Echoing a service is supported only with Mediator interfaces having the following
types of WSDL files:

– Request/reply

– Request/reply/fault

– Request/callback

Note:

The echo option is not available for Mediator interfaces having request/
reply/fault/callback WSDL files or for one-way WSDL files.

• The echo option is available for synchronous operations such as request/reply and
request/reply/fault.

Chapter 20
Defining Routing Rules

20-12

Note:

The echo option is only available for synchronous operations when the routing
rule is sequential because parallel routing rules are not supported for Mediators
with synchronous operations.

• For synchronous operations with a conditional filter, the echo option does not return a
response to the caller when the filter condition is set to false. Instead, it returns a null
response.

• The echo option is available for asynchronous operations only if the Mediator interface
has a callback operation. In this case, the echo is run on a separate thread.

Note:

The asynchronous echo option is available only when the routing rule is
parallel. If you use the echo option, then sequential routing rules are not
supported for Mediators with asynchronous operations.

20.3.2.3 How to Specify Sequential or Parallel Execution
A routing rule can be executed either in parallel or sequentially. To specify an execution type
for a routing rule, select the Sequential or Parallel execution type in the Routing Rules
section.

20.3.2.4 How to Configure Response Messages
In the Mediator routing rules, you can specify how to handle the response messages in
synchronous and asynchronous interactions. For synchronous interactions, you can specify
the transformations and assignments for the response and the fault message. You can
forward the response and the fault message to another service or event, or you can send
them back to the initial caller, if the initial caller is expecting responses and faults.

For asynchronous interactions, you can specify transformations and assignments, and a
timeout period for receiving the response. The timeout period can be specified in seconds,
hours, days, months, or years. By default, the timeout period is infinite. If a callback response
does not come within the specified timeout period, a timeout response can be forwarded to
another service, to another event, or back to the initial caller.

You cannot route a Mediator response to a two-way service. If you want to route a response
to a two-way service, you should use a one-way Mediator between the first Mediator and the
two-way service. The response should first be forwarded to the one-way Mediator, which in
turn should call the two-way service.

Chapter 20
Defining Routing Rules

20-13

Note:

• Zero is an unsupported value to be specified as a timeout period.

• If the callback is received and processing of the callback fails, by default
the timeout handler is invoked for processing the action specified in the
timeout handler.

• Typically, the caller receives the callback after waiting for 100
milliseconds. However, if you have a bridge Mediator with a sequential
routing rule and a connection to a synchronous interface service, then
due to the complex flow of the program with all sequential routing rules,
the caller may take longer to get ready to receive the callback. You can
work around this issue by changing the routing rule of the bridge
Mediator to parallel.

To specify a timeout period for asynchronous processing:

The following steps are performed in the Routing Rules section of the Mediator Editor.

1. Next to the <<Target Operation>> field by the Timeout in field in the Callback
section, click the Browse for target service operation icon.

The Target Type dialog appears.

2. Select Service, Event, or Initial Caller.

If you selected Service or Event, the Target Service or the Event Chooser appears
depending on your selection.

3. Select an event or service.

4. Click OK

5. In the Timeout in field, enter the number of units for the timeout period, and then
select the unit of time from the dropdown list.

The timeout response is forwarded to the specified service or event.

Note:

If the number of routing rules is larger and the time taken to execute the
routing rules exceeds the transaction timeout, you must set the transaction
timeout to a value that is greater than the time taken to execute all the
routing rules.

20.3.2.5 How to Handle Premature Callbacks
Callback messages might arrive before the initiating transaction is completed. In this
case, correlation in Mediator fails. If you have an issue with premature callbacks, you
can use the oracle.tip.mediator.callback.correlationWaitDuratino_in_seconds
property to set a time period in seconds for which the callback thread waits before
retrying the callback.

Chapter 20
Defining Routing Rules

20-14

You define the property in the composite.xml file in the component element that defines the
Mediator component. In the example shown below, the wait time before retrying is 15
seconds.

<component name="Mediator1">
 <implementation.mediator src="Mediator1.mplan"/>
 <property name="oracle.tip.mediator.callback.correlationWaitDuration_in_
 seconds">15</property>
</component>

20.3.2.6 How to Handle Multiple Callbacks
A single Mediator cannot handle multiple callbacks. If you have a composite application with
a Mediator that receives multiple callbacks, the behavior of the composite application is
undetermined. For example, in the scenario shown in Figure 20-9, AsyncMediator forwards
the callback response from AsyncEchoMediator1 and AsyncEchoMediator2 to
FileInMediator. In such a flow, the AsyncMediator might return the callback from both
AsyncEchoMediator1 and AsyncEchoMediator2, or from either one of them. The exact
behavior is random and unpredictable.

Figure 20-9 Sample Mediator Handling Multiple Callback

20.3.2.7 How to Handle Faults
If you create a new routing rule in which the target service operation has one or more faults,
you still see a single fault routing section in the Mediator Editor. If the source Mediator service
component supports one or more faults, then the fault is routed back to the caller by default.
You can choose the source and target fault names to be routed. You can also use the service
browser to route the fault to another target.

Chapter 20
Defining Routing Rules

20-15

20.3.2.7.1 To define an additional fault routing:

The following steps are performed in the Routing Rules section of the Mediator Editor.

1. In the Faults section, click the Add another fault routing button shown in
Figure 20-10.

Figure 20-10 Adding a Second Fault

Another fault section appears in the routing rule box.

2. Configure the target service, transformations, and assign values for the new fault.

Figure 20-11 shows a second fault being routed to a file adapter service.

Chapter 20
Defining Routing Rules

20-16

Figure 20-11 Second Fault Added to Routing Rules

Note:

You can route the same fault to multiple targets using different transformations.

20.3.2.7.2 To remove a fault routing section:

The following steps are performed in the Routing Rules section of the Mediator Editor.

• Highlight the fault routing you want to remove by clicking in the target service field, and
then click Delete the selected fault routing, as shown in Figure 20-12.

Chapter 20
Defining Routing Rules

20-17

Figure 20-12 Deleting a Fault Routing

20.3.2.8 How to Specify an Expression for Filtering Messages
The filter expression routing rule lets you filter messages based on their payload. If the
filter expression for a given message instance evaluates to true, the message is
delivered to the target service or event specified within the routing rule.

For example, you route your data to customers in two different countries, such as US
and Canada, but you only want notices regarding the MOBILE product line to be sent
to US customers and the LANDLINE product line to customers in Canada. To
implement this routing, you must define a routing rule for each component and
operation pair that sends messages to the target customers. In addition, you specify
filter expressions for the routing rules that send messages to the customers in the US
or Canada.

You can also define filter expression message properties or message headers.

Filter Expression Message Properties

Two examples of filter expression message properties are shown below:

$in.property.custom.Priority = '1'

$in.property.tracking.ecid = '2'

Filter Expression Message Headers

Chapter 20
Defining Routing Rules

20-18

Two examples of filter expression message headers are shown below:

$in.header.wsse_Security/wsse:Security/Priority = '234'

$in.header.wsse_Security/wsse:Security/Priority = '234'

For the preceding filter expression message headers to work, you must add the attribute
shown in the following example to the root element of the .mplan file.

wsse = "http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-
 secext-1.0.xsd"

20.3.2.8.1 To specify an expression for filtering messages:

You can use the Expression Builder to graphically create a filter expression. The Expression
Builder dialog contains the components and controls that assist you in designing a filter
expression.

1. To the right of the Filter Expression field in the Routing Rules section, click the Invoke
Expression Builder icon.

The Expression Builder dialog appears, as shown in Figure 20-13.

Figure 20-13 Expression Builder Dialog

2. Double-click a value in the Variables field or the Functions palette to add the value to
the Expression field. Using a combination of variable elements, functions, and manually
entered text, you can build an expression by which you want message payloads to be
filtered for a given routing rule.

The following table describes each of the fields in the Expression Builder dialog:

Chapter 20
Defining Routing Rules

20-19

Table 20-1 Expression Builder Fields

Field Description

Expression This field contains the actual expression used to filter
messages. You can enter the filter expression either manually
or by using the Variable field and the Functions palette.

Using the icons on the upper right side of this field, you can
undo the last edit made, redo the last edit made, or clear the
entire Expression field.

Variables This field contains the message defined for a Mediator
component. Oracle JDeveloper parses the Mediator WSDL
file and presents the message definition in the Variables field.
The input message is stored in the $in variable, and you can
use the $in.properties to access the properties of an
input message.

If the input message consists of multiple parts,
use $in.partname to access a part of an input message.

Functions Palette This list provides a list of functions that you can include in an
expression. When you select a function, a preview of how that
function appears when added to the Expression field
appears in the Content Preview field, and a description of
the function appears in the Description field.

Content Preview This field indicates how a value selected from the Variables
field or Functions palette appears when it is inserted into the
Expression field.

Description This field describes the value selected from the Variables
field or Functions Palette.

20.3.2.8.2 To specify a filter expression on a message payload:

1. To the right of the Filter Expression field in the Routing Rules section, click the
Invoke Expression Builder icon.

The Expression Builder dialog is displayed.

2. In the Variables field, expand the message definition and select the message
element on which you want to base the expression.

For example, the CustomerId element is shown selected in Figure 20-14.

Chapter 20
Defining Routing Rules

20-20

Figure 20-14 Expression Builder Dialog – Variables Element Selected

3. Click Insert Into Expression.

The expression is added in the Expression field, as shown in Figure 20-15.

Chapter 20
Defining Routing Rules

20-21

Figure 20-15 Expression Builder Dialog – Variables Element Inserted

4. From the Functions list, select the function to apply to the message payload. For
example, equals.

Functions are grouped in categories that are listed when you click the down arrow
in the Functions list. For example, if you click the down arrow and select Logical
Functions, the list appears as shown in Figure 20-15.

5. Click Insert Into Expression.

The XPath expression for the selected function is inserted into the Expression
field.

6. Complete the expression.

In this example, the Customer ID must equal1001 to evaluate to true, as shown in
Figure 20-16.

Chapter 20
Defining Routing Rules

20-22

Figure 20-16 Sample Expression Builder Dialog – Value Entered

7. If there are any errors, you can edit the expression manually, or use the expression
editing icons, which are summarized in Figure 20-17.

Figure 20-17 Expression Editing Icons

8. Click OK.

The expression is added to the Routing Rules section.

To modify or delete a filter expression, double-click the Add Filter Expression icon, and then
modify or delete the expression in the Expression field of the Expression Builder.

20.3.2.9 How to Translate Between Native XSD Formats and XML Formats
Mediator enables you to translate native format data into XML data, for inbound data, and
XML data into native format data for outbound translations. So, for example, you can use
inbound translation to convert an incoming comma-delimited native data file into an XML data
file. You can use outbound translation to convert XML data into native data format for a target
service.

Mediator provides the following translation features:

• Inbound Translation: Converts inbound data from native data format to XML. Inbound
translation is configured at the operation level. The translated data is available for
transform and assign operations.

Chapter 20
Defining Routing Rules

20-23

• Outbound Translation: Converts outbound data from XML to native data format.
Outbound translation can be configured for each routing rule. The native data is
then routed to the target service.

• Translate and Route Only: Translates inbound data from native data format to
XML, and routes it to the target service. An outbound WSDL file is created for the
target service. This feature is only supported for mediators that have a one-way
(no response) operation.

20.3.2.10 How to Use Inbound Translation
This section demonstrates using inbound translation. Figure 20-18 shows a mediator
(Mediator1) connected to an inbound web service. The mediator receives a native
string from the inbound web service, and uses inbound translation to convert the
native string into XML.

Figure 20-18 Mediator Receiving Inbound Data

To translate inbound data from native XSD to XML format:

1. Right-click the mediator (Mediator1), and select Edit.

2. Under the Operations section, click the icon to the right of the Translate From
Native field. Figure 20-19 shows the Operations section for Mediator1.

Chapter 20
Defining Routing Rules

20-24

Figure 20-19 Translate From Native Option

3. In the Add Translation dialog box that appears, click the icon to the right of the Input field.
The Expression Builder dialog appears.

4. Double-click the input string in the Variables tree. Wrap (cast) the input string that
appears in the Expression field with the string() function. Figure 20-20 shows the
Expression Builder dialog with the completed input string. Click OK.

Chapter 20
Defining Routing Rules

20-25

Figure 20-20 Completed Input String in Expression Builder

5. To the right of the NXSD Schema field, select the Search icon to invoke the Type
Chooser dialog for selecting the schema. If the schema does not exist, you can
click the second icon to create the schema.

6. Select the schema, and click OK. The Element field is populated from the
selected schema. The Output field is populated with an intermediate output
variable created by Mediator. This variable must be in the format
translateFromNative.out.some_name.
Figure 20-21 shows the completed Add Translation dialog.

Chapter 20
Defining Routing Rules

20-26

Figure 20-21 Add Translation Dialog

7. Click OK. The Translate From Native field is populated.

20.3.2.11 How to Use Outbound Translation
This section demonstrates using outbound translation. Figure 20-22 shows a mediator
(Mediator1) connected to a BPEL process. The mediator uses outbound translation to
convert XML data into native string, and routes this string to the BPEL process.

Figure 20-22 Mediator Sending Outbound Data

To translate outbound data from XML to native XSD format:

1. Right-click the mediator (Mediator1), and select Edit.

2. Under the routing rule that routes data from the mediator to the BPEL process (target
service), click the icon to the right of the Translate To Native field. Figure 20-23 shows
the routing rule section for Mediator1.

Chapter 20
Defining Routing Rules

20-27

Figure 20-23 Translate To Native Option

3. In the Add Translation dialog box that appears, optionally edit the default input
variable in the Input field. The Input field is populated with an intermediate input
variable created by Mediator. This variable must be in the format
translateToNative.in.some_name.

Note:

You can later assign a value to the intermediate input variable using the
Assign or Transform action of the associated routing rule.

Figure 20-24 shows the Add Translation dialog box.

Figure 20-24 Add Translation Dialog

4. To the right of the NXSD Schema field, select the Search icon to invoke the Type
Chooser dialog for selecting the schema. If the schema does not exist, you can
click the second icon to create the schema.

5. Select the schema, and click OK. The Element field is populated from the
selected schema.

6. Click the icon to the right of the Output field. The Expression Builder dialog
appears.

7. Double-click the output string in the Variables tree. Click OK.

Chapter 20
Defining Routing Rules

20-28

Figure 20-25 Completed Output String in Expression Builder

8. Click OK in the Add Translation dialog box.

20.3.2.12 How to Create XSLT Transformations
Oracle JDeveloper provides an XSLT Mapper that lets you specify a mapper file (XSL file) to
transform data from one XML schema (expressed as an XSD file) to another. The XSLT
Mapper enables data interchange among applications using different schemas. For example,
you can map an incoming purchase order schema to an outgoing invoice schema. After you
define an XSL file, you can reuse it in multiple routing rule specifications.

20.3.2.12.1 To create a transformation:

1. In the Routing Rules section, click the Select an existing mapper file or create a new
one icon to the right of the Transform Using field. The Request Transformation Map
dialog appears.

2. Do one of the following:

• If the XSLT map file (.xsl) exists, click Browse to find and select the XSLT file to use.
Click OK.

• If you are creating a new XSLT map file, click the Create Mapping icon. The Create
Transformation Map dialog appears.

3. In the Create Transformation Map dialog, select XSLT under Type.

4. Edit the XSLT File Name, as appropriate.

Chapter 20
Defining Routing Rules

20-29

5. Edit the XSLT Directory, as appropriate. The default directory is the
SOA_Project/SOA/Transformations directory. Click Browse to browse and select
the directory.

6. Repeat the above steps for any synchronous reply, callback, response, or fault
messages.

In case of synchronous reply or fault message, the Reply Transformation Map
dialog or the Fault Transformation Map dialog contains an Include Request in the
Reply Payload option, as shown in Figure 20-26.

Figure 20-26 Reply Transformation Map Dialog

7. To create an $initial variable that contains the original message of a
synchronous interaction, select the Include Request in the Reply Payload
option.

The variable is created, as shown in Figure 20-27.

Figure 20-27 Initial Variable in XSL File

Note:

An initial message can also consist of multiple parts.
Use $initial.partname to access a part of the initial message. If the parts
of the inbound and outbound messages are identical, then no transformation
is required for data interchange.

For information about the XSLT Mapper, see Creating Transformations with the XSLT
Map Editor .

Chapter 20
Defining Routing Rules

20-30

20.3.2.12.2 To add user-defined extension functions:

You can use the Expression Builder to include user-defined extension functions.

1. Create an XPath function.

2. Register the Jaxen XPath function with a Mediator service component in the xpath-
function.xml file on the server.

3. Start Oracle JDeveloper.

4. Use the Expression Builder to customize the expression.

5. Deploy the Oracle JDeveloper project to Oracle WebLogic Server.

6. Copy the JAR file containing the user-defined extension functions to the $BEAHOME/
user_projects/domains/soainfra/autodeploy/soa-infra/APP-INF/lib directory.

7. Modify the .mplan file of the project as follows:

• Add the function namespace you defined for the extension functions under the
Mediator element.

• Add the function names under the Expression element.

This is shown in Figure 20-28.

Figure 20-28 Project .mplan file – Modified to Use User-Defined Extension Functions

8. Invoke the test page with a suitable payload.

20.3.2.13 How to Create XQuery Transformations
Oracle Mediator supports XQuery transformations from one XML schema to another. The
XQuery 1.0 specification is supported.

Chapter 20
Defining Routing Rules

20-31

20.3.2.13.1 To create an XQuery transformation:
1. In the Routing Rules section, click the Select an existing mapper file or create a

new one icon to the right of the Transform Using field. The Request
Transformation Map dialog appears.

2. Do one of the following:

• If the XQuery map file (.xqy) exists, click Browse to find and select the
XQuery file to use. Click OK.

• If you are creating a new XQuery map file, click the Create Mapping icon. The
Create Transformation Map dialog appears.

3. In the Create Transformation Map dialog, select XQuery under Type.

Figure 20-29 shows the Create Transformation Map dialog.

Figure 20-29 Create Transformation Map Dialog

4. Edit the XQuery File Name, as appropriate.

5. Edit the XQuery Directory, as appropriate. The default directory is the
SOA_Project/SOA/Transformations directory. Click Browse to browse and select
the directory.

6. Under the External Variables section, you can define the external variables for the
XQuery. Click Add Variable to add a new external variable. The Add External
Variable dialog appears.

Chapter 20
Defining Routing Rules

20-32

Note:

External variables are automatically created for implicit mediator variables that
are available as transformation input. For example, the mediator input request
in.request automatically has an external variable for it.

Figure 20-30 shows the Add External Variable dialog.

Figure 20-30 Add External Variable Dialog

7. Specify a Name, Schema, and schema Element for the external variable.

8. Under From, choose how to map the value for the external variable. Select from one of
the following:

• Property: Lists the properties that you can select from.

• Expression: Enables you to build an expression using mediator implicit variables,
properties, and a list of functions that you can use in the expression. You can click
the Invoke Expression Builder icon to launch the expression builder.

See How to Specify an Expression for Filtering Messages and Building XPath
Expressions in the Expression Builder in for more information about working with the
expression builder.

• Constant: Enables you to specify a literal value for the external variable.

• XML Fragment: Enables you to specify XML data for the external variable.

9. Click OK in the Add External Variable dialog to add the external variable. The Create
Transformation Map dialog is populated with the external variable.

Note:

To edit an external variable, select it from the list and click Update Variable.

To delete an external variable, select it from the list and click Delete Variable.

Chapter 20
Defining Routing Rules

20-33

10. Click OK in the Create Transformation Map dialog. The Request Transformation
Map dialog appears, and it is populated with the Mapper File name and the
external variables defined.

Figure 20-31 shows the Request Transformation Map dialog.

Figure 20-31 Request Transformation Map Dialog

11. Click OK in the Request Transformation Map dialog. The transformation action
details are added to the mediator mplan file.

20.3.2.13.2 To edit an XQuery transformation:
1. In the Routing Rules section, click the Select an existing mapper file or create a

new one icon to the right of the Transform Using field. The Request
Transformation Map dialog appears.

Note:

You cannot add or delete external variables from an existing XQuery
(.xqy) map. However, you can select a variable and click Update
Variable to modify the expression or value associated with the external
variable.

2. Click the Edit Mapping icon to the right of the Mapper File field. The XQuery map
opens in the XQuery Mapper.

3. See Creating Transformations with the XQuery Mapper for more information on
using the XQuery Mapper.

20.3.2.14 How to Assign Values
You can use the Assign Values field to propagate the headers, payload, and
properties of a message from source to target. Figure 20-32 shows the Assign Values
dialog that is displayed when you click the Assign Values icon in the Routing Rules
section.

Chapter 20
Defining Routing Rules

20-34

Figure 20-32 Assign Values Dialog

The left hand pane of the Assign Values dialog contains the source variables and the right
hand pane shows the target variables. You can copy values from source variables to target
variables. You can also create complex expressions and assign them to target variables. You
can also assign literals (constants or XML fragments) to target variables.

The bottom pane of the Assign Values dialog shows the assignments you have created. You
can select and edit any assignment.

20.3.2.14.1 To copy a source node to a target node:
1. Expand the source tree in the left pane by clicking the plus sign (+) next to a source

node. Similarly expand the target tree in the right pane.

2. Use one of the following methods to copy a source variable to a target variable:

• Drag the desired source node to the target node. A line appears connecting the
source and target nodes. The assignment also appears in the bottom pane.
Figure 20-33 shows the Assign Values dialog after copying a source node to a target
node.

• Select the source node in the left pane and the target node in the right pane. Click
the Create rule from selected nodes icon (green plus icon) above the bottom pane
to create an assignment.

Chapter 20
Defining Routing Rules

20-35

Figure 20-33 Copying Source Variables to Target Variables

3. Click OK to create the assignment.

20.3.2.14.2 To assign complex expressions:
1. Drag the Assign Source Expression icon from the top right hand corner to the

target node or the canvas (center pane). The Expression Builder appears.

2. Create an expression using the available source variables and functions.

Optionally click Help for more information about the Expression Builder dialog.

3. Click OK to close the Expression Builder.

4. If you had dragged the expression to the canvas or center pane in Step 1, drag the
expression icon in the canvas to the desired target node. This maps the
expression to the target variable.

Note:

To edit the assignment, right-click the assignment in the bottom pane.
Select Edit Source Expression or Edit Target Expression to edit the
source and target respectively.

5. Click OK to create the assignment.

20.3.2.14.3 To assign constant values and XML fragments:
1. Drag the Assign Source Literal icon from the top right hand corner to the target

node or the canvas (center pane). The Assign Source Literal dialog appears.

Chapter 20
Defining Routing Rules

20-36

2. Enter the constant value or XML Fragment to be assigned.

3. Select Literal is XML Fragment if your constant value is valid XML.

4. Click OK.

5. If you had dragged the source literal to the canvas or center pane in Step 1, drag the
source literal icon in the canvas to the desired target node. This maps the source literal to
the target variable.

Note:

• When you assign values to a particular Mediator property during event
publishing, the assigned value does not get propagated to the subscribing
event.

You can work around this issue by using transformations to include the property
as part of the event body.

• You cannot assign values to the jca.db.userName and jca.db.password
properties on Oracle WebLogic Server because their data sources do not
support setting the user name or password dynamically to the getConnection
method.

Table 20-2 through Table 20-4 list the various possibilities of assignment on constants and
properties, payloads, and headers of a message from source to target.

Table 20-2 Possibilities on Constants and Properties

Source Target Example

Property Property <copy expression="$in.property.jca.file.FileName"
target="$out.property.jca.file.FileName"/>

Constant Property <copy value="ConstantNameAssigned.xml"
target="$out.property.jca.file.FileName"/>

Table 20-3 Possibilities on Payload

Source Target Example

XPath Expression Property <copy
expression="concat('ExprPropMed','-',oraext:gener
ate-guid())"
target="$out.property.jca.file.FileName"
xmlns:oraext="http://www.oracle.com/XSL/
Transform/java/
oracle.tip.pc.services.functions.ExtFunc"/>

XPath Expression
(below part level)

Property <copy expression="$in.body/imp1:request/
ProductReq/Make"
target="$out.property.jca.file.FileName"
xmlns:imp1="http://xmlns.oracle.com/psft"/>

Chapter 20
Defining Routing Rules

20-37

Table 20-3 (Cont.) Possibilities on Payload

Source Target Example

Property XPath Expression
(below part level)

<copy value="$in.property.jca.file.FileName"
target="$out.request/inp1:request/ProductReq/
Model" xmlns:inp1="http://xmlns.oracle.com/
psft"/>

Constant XPath Expression
(below part level)

<copy value="ConstantModel" target="$out.request/
inp1:request/ProductReq/Model"
xmlns:inp1="http://xmlns.oracle.com/psft"/>

XPath Expression XPath Expression <copy expression="$in.body"
target="$out.request"/>

XPath Expression
(below part level)

XPath Expression
(below part level)

<copy expression="$in.body/imp1:request/
ProductReq/Make" target="$out.request/
imp1:request/ProductReq/Model"
xmlns:imp1="http://xmlns.oracle.com/psft"/>

Table 20-4 Possibilities on Header

Source Target Example

XPath
Expression
(below part
level)

Property <copy expression="$in.header.inp1_header/
inp1:header/Name"
target="$out.property.jca.file.FileName"
xmlns:inp1="http://xmlns.oracle.com/psft"/>

Property XPath
Expression
(below part
level)

<copy value="$in.property.jca.file.FileName"
target="$out.header.inp1_header/inp1:header/
Name" xmlns:inp1="http://xmlns.oracle.com/
psft"/>

Constant XPath
Expression
(below part
level)

<copy value="NewID.xml"
target="$out.header.inp1_header/
inp1:header/Id" xmlns:inp1="http://
xmlns.oracle.com/psft"/>

Constant XPath
Expression
(below part
level)

<copy value="sampleusername"
xmlns:wsse1="http://docs.oasis-open.org/wss/
2004/01/oasis-200401-wss-wssecurity-
secext-1.0.xsd"
target="$out.header.wsse1_Security/
wsse1:Security/wsse1:UsernameToken/
wsse1:Username"/>

XPath
Expression

XPath
Expression

<copy target="$out.header.inp1_header"
expression="$in.header.inp1_header"
xmlns:inp1="http://xmlns.oracle.com/psft"/>

XPath
Expression
(below part
level)

XPath
Expression
(below part
level)

<copy target="$out.header.inp1_header/
inp1:header/Name"
expression="$in.header.inp1_header/
inp1:header/Id" xmlns:inp1="http://
xmlns.oracle.com/psft"/>

Chapter 20
Defining Routing Rules

20-38

20.3.2.15 What You May Need to Know About the Assign Activity
Note the following issues about the assign activity.

• The assign activity is executed in the order of the <copy> elements that appear in the
Mediator mplan.

• You can reorder the assignments by selecting an assignment in the bottom pane of the
Assign Values dialog and clicking the Up or Down arrow to move the assignment in the
assignments list.

• When creating a new assignment, you can choose to insert it at the desired place in the
list of assignments. Select an existing assignment in the bottom pane of the Assign
Values dialog and select Insert New Rule After or Insert New Rule Before from the list
at the top left of the dialog.

• The output variable from the Translate From Native activity and the input variable to a
Translate To Native activity are also available for assignments in the Assign Values
dialog.

• All assignments that appear in the bottom pane of the Assign Values dialog are applied to
the Mediator mplan only after you click OK.

• A source XPath expression should always refer to a leaf node while the source is
assigned to a target property. Otherwise, all the values of the child nodes in the source
get concatenated and are assigned to the target property. The following example
provides details:

<copy target="$out.property.jca.file.FileName"
 expression="$in.body/imp1:request/ProductReq/Make"
 xmlns:imp1="http://xmlns.oracle.com/psft"/>

Note:

A leaf node is a node with no child nodes.

• While assigning a constant or a property to a target XPath expression, the target XPath
expression should always point to a leaf node. Otherwise, nonleaf nodes contain only a
string value that may generate nonvalid XML according to the .xsd file. The following
example provides details.

<copy target="$out.request/inp1:request/ProductReq/Make" value="NewMakeValue"
 xmlns:inp1="http://xmlns.oracle.com/psft"/>

In this example, $out.request/inp1:request/ProductReq/Make refers to the leaf node.

• If a transformation is available, then while assigning a source part to a target part, the
target is overwritten because the assign activity occurs on top of the transformation. If the
transformation is not available, then the assign activity creates the target. The following
example provides details.

<copy target="$out.request" expression="$in.body"/>

<copy target="$out.header.inp1_header" expression="$in.header.inp1_header"
 xmlns:inp1="http://xmlns.oracle.com/psft"/>

• If one of the child nodes in the target payload has to be modified, then there are the
following two use cases:

Chapter 20
Defining Routing Rules

20-39

– If a transformation is available, then directly assign a source expression to a
target XPath expression that is pointing to that child node in the target. The
following example provides details:

<copy value="ConstantModel"
target="$out.request/inp1:request/ProductReq/Model"
 xmlns:inp1="http://xmlns.oracle.com/psft"/>

– If a transformation is not available, then there are two steps involved. First,
assign the source part to the target part, and then assign the source
expression to a target XPath expression that is pointing to the child node in the
target. The following example provides details:

<copy target="$out.request" expression="$in.body"/> and <copy
 value="ConstantModel" target="$out.request/inp1:request/ProductReq/
Model"
 xmlns:inp1="http://xmlns.oracle.com/psft"/>

• When only one of the child nodes of the source has to be propagated into a target,
then first ensure that there is no transformation invoked. Then, assign the source
XPath expression to point to the required child node. The following example
provides details:

<copy target="$out.request/imp1:ProductReq"
 expression="$in.body/imp1:request/ProductReq"
 xmlns:imp1="http://xmlns.oracle.com/psft"/>

In this case, the source element evaluated from $in.body/imp1:request/
ProductReq does not contain a complete tree structure that starts from the root
element, but contains only a child node. The following example provides details:

<ProductReq>
 <Make>MAKE</Make>
 <Model>MODEL</Model>
</ProductReq>

• If there are multiple assign activities in a Mediator and each source XPath
expression points to a different child node, then there are the following two use
cases:

– If a transformation is available, then the corresponding child node in the target
is updated.

– If a transformation is not available, then the target should be a multiple part
target with each part referring to the source child node.

• With headers, if the passThroughHeader property is set, then

– Any header manipulation in a transformation is updated in the target headers.

– The part level assign activity overwrites the target header part.

– The below part level node assign activity updates the corresponding node in
the target.

• If multiple source nodes (below part level) are assigned to the same target node
(below part level), then the target node contains the value of the last copy element
in the assign activity. The following example provides details.

<copy target="$out.request/imp1:request/ProductReq/Make"
 expression="$in.body/imp1:request/ProductReq/Model"
xmlns:imp1="http://xmlns.oracle.com/psft"/>

<copy target="$out.request/imp1:request/ProductReq/Make"

Chapter 20
Defining Routing Rules

20-40

 expression="$in.body/imp1:request/Description"
xmlns:imp1="http://xmlns.oracle.com/psft"/>

In the preceding example, the first copy element does not have any effect because the
second copy element overwrites it.

• If the XPath expression results in a list (multiple occurrences), then there are the
following two use cases:

– If the list contains a single element, then the XPath expression is propagated.

– If the list contains multiple elements, then the XPath expression is not supported.

• The following activities happen while assigning a source child node to a target child node:

1. The source child node name and namespace are overwritten by the target node
name and namespace, respectively.

2. The target child node is replaced by the source child node in the parent node of the
target node.

20.3.2.16 How to Access Headers for Filters and Assignments
When the Expression Builder is invoked from a Mediator, either for defining a filter or for
defining an assignment source or target, the WSDL file is parsed. This automatically detects
any SOAP headers for the current routing rule operation and makes them visible as variables
under the in or out folder as header./ns_elementName/, as shown in Figure 20-34. Here, ns
is the namespace prefix and elementName is the root element name for the header schema.

The following scenarios provide details.

Scenario 1: Namespace Prefixes wsse and ns1 Are Already Defined

Assume the namespace prefixes wsse and ns1 are already defined in the WSDL file or
the .mplan file. You can then write an XPath expression as follows:

$in.header.wsse_Security/wsse:Security/ns1:Foo/Priority

Scenario 2: Schema Without a Namespace Predefined in the WSDL File

Assume you want to use a schema that does not have a namespace predefined in the WSDL
file. The Expression Builder is then enhanced to allow you to enter {full_namespace} instead
of a prefix. The Expression Builder then generates a unique prefix and the prefix definition is
added to the .mplan file.

For example, enter the expression in the Expression Builder shown in the following example:

$in.header.{http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-sec
ext-1.0.xsd}_Security/
{"http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-secext-1.0.xs
d"}:
Security/{"http://www.globalcompany.com/ns/OrderBooking"}:Foo/Priority

The .mplan file contains the content shown in the following example:

xmlns:ns1="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-
secext-1.0.xsd"
xmlns:ns2="http://www.globalcompany.com/ns/OrderBooking"
...
expression="$in.header.ns1_Security/ns1:Security/ns2:Foo/Priority"

Chapter 20
Defining Routing Rules

20-41

Figure 20-34 Expression Builder Dialog - Automatic Header Detection

By default, SOAP headers are not passed through by Mediator. You must add the
passThroughHeader endpoint property to the corresponding Mediator routing service:

<property name="passThroughHeader">true</property>

For example, to add this property, you can modify the composite.xml file, as shown in
the following example:

<component name="Mediator1">
 <implementation.mediator src="Mediator1.mplan"/>
 <property name="passThroughHeader">true</property>
</component>

For the headers to pass through, the source and the target must have the same
QName (name and namespace). If the source and the target have different QNames,
then either a transformation or part-level assignment must be performed.

It is important to note that, with a passthrough Mediator (without a transformation or
assign), if the source and target part QNames are not identical, then Mediator passes
through the message payloads to the target service without any error. However, this
can result in an error in the target service because the message payloads are not
reconstructed according to the message structure of the target service.

Chapter 20
Defining Routing Rules

20-42

Note:

• The user interface supports both SOAP 1.1 and SOAP 1.2.

• For automatic header detection, a concrete WSDL file must be used when
creating the Mediator service component.

• Assignments execute after filters. Therefore, if you are assigning a value in a
custom header, then the particular assignment is not visible to the filter.

20.3.2.16.1 Manual Expression Building for Accessing Headers for Filters and Assignments
There are use cases in which the header schemas cannot be determined from the WSDL
files. For example, security headers that are appended to a message, or the headers for a
Mediator that are created using an abstract WSDL file. To access these headers, you must
manually enter the XPath expression into the Expression Builder.

The syntax for header expressions is shown in the following example:

$in.header.<header root element namespace prefix>_<header root element name>/<xpath>

Therefore, for the header shown in the following example:

<wsse:Security xmlns:wsse="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-
wssecurity-sec
ext-1.0.xsd">
<Priority>234</Priority>
</wsse:Security>

The filter expression is as follows:

$in.header.wsse_Security/wsse:Security/Priority = '234'

The assignment expression is as shown in the following example:

<copy target="$out.property.jca.jms.priority"
 expression="$in.header.wsse_Security/wsse:Security/Priority"/>

For the preceding expressions to work, you must add the attribute shown in the following
example to the root element of the .mplan file.

wsse = "http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-
secext-1.0.xsd"

20.3.2.16.2 Manual Expression Building for Accessing Properties for Filters and Assignments
An example of a filter expression is as follows.

$in.property.tracking.ecid = '2'

An example of an assignment expression is as follows.

<copy target="$out.property.tracking.ecid" value="$in.property.tracking.ecid"/>

Chapter 20
Defining Routing Rules

20-43

20.3.2.17 How to Use Semantic Validation
You can specify Schematron files for validating an inbound message and its various
parts. Schematron version 1.5 is the supported version.

Perform the following steps for specifying a Schematron schema to validate an
inbound message and its various parts.

To use semantic validation:

1. To the right of the Validate Semantic field, click the Select Validation File icon.

The Validations dialog is displayed.

2. Click Add.

The Add Validation dialog is displayed.

3. From the Part list, select a message part.

4. To the right of the File field, click Search.

The SOA Resource Browser dialog is displayed.

5. Select a Schematron file and click OK.

Note:

• Schematron files usually have a .sch extension.

• No error message or warning is displayed if the selected
Schematron file is empty.

The Add Validation dialog is updated, as shown in Figure 20-35.

Figure 20-35 Add Validation Dialog

6. Click OK.

The Validation dialog is updated, as shown in Figure 20-36.

Chapter 20
Defining Routing Rules

20-44

Figure 20-36 Validation Dialog

7. Click Add to specify a Schematron file for another message part or click OK.

For more information about building a Schematron schema, see the resources available
at

http://www.schematron.com

Note:

In semantic validation, if you check for the length of each element name, then
the element name may change for a different set of inputs. This happens when
there are white spaces between nodes because the parser treats the white
spaces as test nodes.

20.3.2.18 How to Work with Attachments
You can configure how Mediator handles attachments by adding properties to the project's
composite.xml file. For information on working with attachments, see "Sending Attachment
Streams" and "Overriding Pass Through Settings for Attachments in ".

20.3.2.19 How to Use Java Callouts
Java callouts enable you to use external Java classes to manipulate messages flowing
through the Mediator. Only one Java callout is supported per operation or event subscription.
The callout class must implement the oracle.tip.mediator.common.api.IjavaCallout
interface. Callouts are available for both static and dynamic routings. Figure 20-37 shows a
sample Mediator with two operations, in which both the operations have one routing rule each
and the first operation has a callout class.

Chapter 20
Defining Routing Rules

20-45

http://www.schematron.com

Figure 20-37 Sample Mediator Supporting Java Callout

20.3.2.19.1 To make Java callout classes available:
You must ensure that the Java callout class is available on the server. You can use any
of the following methods for this:

• Copy the Java class to the SCA-INF/classes folder.

• Copy the JAR file containing the Java class to the SCA-INF/lib folder.

• If you want to share custom classes across multiple mediator projects:

– Copy the custom JARs to <SOA_HOME>/soa/modules/oracle.soa.ext_11.1.1
directory.

– Run ANT.

– Restart SOA Server.

Alternatively, you can also do the following:

– Add the path of the JAR to manifest of <SOA_HOME>/soa/modules/
oracle.soa.ext_11.1.1/oracle.soa.ext.jar.

– Restart SOA Server.

For steps you need to update oracle.soa.ext.jar, see the soa/modules/
oracle.soa.ext_11.1.1/readme.txt file.

For instructions about adding custom classes and JAR files, see Adding Custom
Classes and JAR Files.

Chapter 20
Defining Routing Rules

20-46

http://docs.oracle.com/cd/E15586_01/integration.1111/e10224/bp_java.htm#autoId9
http://docs.oracle.com/cd/E15586_01/integration.1111/e10224/bp_java.htm#autoId9

20.3.2.19.2 To enter the Java class for the callout:

You can either manually enter the Java class or select a class from the Class Browser.

• To manually enter the name of the Java callout class, start typing the class name in the
Callout To field, as shown in Figure 20-38. The auto-completion feature of Oracle
JDeveloper completes the address and the classes in the current project.

Figure 20-38 Callout To Field

• To select from a list of available classes, click the Select Java Callout Class icon.

The standard Oracle JDeveloper class browser appears, as shown in Figure 20-39.

Figure 20-39 Class Browser Dialog

The class browser is filtered so it only displays classes that implement the
oracle.tip.mediator.common.api.IjavaCallout interface.

20.3.2.19.3 To set the payload root element (when using a filter expression):

If you have a Java callout in Mediator and use a filter expression in the same Mediator, you
must set the root element for the payload, as shown in the following example:

Chapter 20
Defining Routing Rules

20-47

changexmldoc = XmlUtils.getXmlDocument(ChangedDoc);
String mykey = "request";
message.addPayload(mykey,changexmldoc.getDocumentElement());

20.3.2.19.4 To enable domain value map and cross reference functions:

To use domain value map functions or cross reference functions in a Java callout, you
must add the soa-xpath-exts.jar file to the project and import the necessary Java
classes into your code.

1. In the Oracle JDeveloper Projects Explorer, right-click the name of the project
containing the Java callout.

2. Select Project Properties.

The Project Properties dialog appears.

3. In the left panel, select Libraries and Classpath, as shown in Figure 20-40.

Figure 20-40 Libraries and Classes on the Project Properties Dialog

4. Click Add JAR/Directory.

The Add Archive or Directory dialog appears, as shown in Figure 20-41.

Chapter 20
Defining Routing Rules

20-48

Figure 20-41 Add Archive or Directory Dialog

5. In the explorer tree, expand the directories to select <JDEV_HOME>/jdeveloper/soa/
modules/oracle.soa.fabric_11.1.1/soa-xpath-exts.jar, and then click Select.

The JAR file appears in the Classpath Entries list.

6. Click OK.

Note:

When using domain value map functions, import the following into your Java class:

• oracle.tip.dvm.LookupValue
• oracle.tip.dvm.exception.DVMException
When using cross reference (xref) functions, import the following into your Java
class:

• oracle.tip.xref.xpath.XRefXPathFunctions
• oracle.tip.xref.exception.XRefException

20.3.2.19.5 Mediator Java Callout API

The Java callout API defines two interfaces:
oracle.tip.mediator.common.api.IjavaCallout and
oracle.tip.mediator.common.api.CalloutMediatorMessage.

Table 20-5 lists and describes the methods in the
oracle.tip.mediator.common.api.IjavaCallout interface.

Chapter 20
Defining Routing Rules

20-49

Table 20-5 Description of Methods in the IjavaCallout Interface

Method Description

initialize This method is invoked when the callout implementation class is
instantiated for the first time.

preRouting This method is called before Mediator starts executing the cases.
You can customize this method to include validations and
enhancements.

preRoutingRule This method is called before Mediator starts executing any
particular case. You can customize this method to include case-
specific validations and enhancements.

preCallbackRouting This method is called before Mediator finishes executing callback
handling. You can customize this method to perform callback
auditing and custom fault tracking.

postRouting This method is called after Mediator finishes executing the
cases. You can customize this method to perform response
auditing and custom fault tracking.

Post-processing methods are called after all sequential routing
rules are executed and do not wait for parallel routing rules to
complete.

postRoutingRule This method is called after Mediator starts executing the cases.
You can customize this method to perform response auditing and
custom fault tracking.

postCallbackRouting This method is called after Mediator finishes executing callback
handling. You can customize this method to perform callback
auditing and custom fault tracking.

Note:

If you change the message properties of a Mediator by using a Java callout
in the preRoutingRule method or the preRouting method, then you must
explicitly copy the changed property to the outbound message by using
Mediator assignment functionality. For example, if you are changing the
jca.file.FileName property in a Java callout, then you must update the
Mediator assignment statement as follows:

<assign>
<copy target="$out.property.jca.file.FileName"
expression="$in.property.jca.file.FileName"/>
</assign>

Table 20-6 discusses the methods in the CalloutMediatorMessage interface.

Table 20-6 Description of Methods in the CalloutMediatorMessage Interface

Method Description

addPayload This method sets a payload of the Mediator messages.

addProperty This method adds a property to the Mediator messages.

Chapter 20
Defining Routing Rules

20-50

Table 20-6 (Cont.) Description of Methods in the CalloutMediatorMessage
Interface

Method Description

addHeader This method adds a header to the Mediator messages.

getProperty This method retrieves Mediator message properties by providing
the property name.

getProperties This method retrieves Mediator message properties.

getId This method retrieves the instance ID of the Mediator messages.
This instance ID is the Mediator instance ID created for that
particular message.

getPayload This method retrieves a payload of the Mediator messages.

getHeaders This method retrieves a header of the Mediator messages.

getComponentDN This method retrieves a componentDN for the Mediator service
component.

Note:

• The oracle.tip.mediator.common.api.AbstractJavaCalloutImpl class is a
dummy implementation of the IJavaCallout interface. This class defines all the
methods present in the IJavaCallout interface. Therefore, you can extend this
class to override only a few specific methods of the IJavaCallout interface.

Dummy implementation of an interface means that the implementation class
provides definitions for all the methods declared in the particular interface, but
one or more defined methods may have an empty method body. Extending a
dummy implementation class is much easier because you can choose to
override only a subset of the methods, unlike implementing an interface and
defining all the methods.

• Details of the processing occurring within the Java callout are not displayed in
the Mediator audit trail screen.

20.3.2.19.6 Sample Java Callout Class

The following example shows a sample Java callout class:

package qa.as11tests.javacallout;

import com.collaxa.cube.persistence.dto.XmlDocument;

import com.oracle.bpel.client.NormalizedMessage;

import java.util.logging.Logger;
import java.util.Map;
import java.util.Iterator;

import oracle.tip.mediator.common.api.CalloutMediatorMessage;
import oracle.tip.mediator.common.api.ExternalMediatorMessage;

Chapter 20
Defining Routing Rules

20-51

import oracle.tip.mediator.common.api.IJavaCallout;
import oracle.tip.mediator.common.api.MediatorCalloutException;
import oracle.tip.mediator.metadata.CaseType;
import oracle.tip.mediator.utils.XmlUtils;

import oracle.tip.pc.services.functions.ExtFunc;

import oracle.xml.parser.v2.XMLDocument;

import org.w3c.dom.Document;
import org.w3c.dom.Element;
import org.w3c.dom.Node;

public class JavaCalloutSanity implements IJavaCallout {
 Logger logger = Logger.getLogger("Callout");
 public JavaCalloutSanity() { }

 public void initialize(Logger logger) throws MediatorCalloutException {
 this.logger = logger;
 this.logger.info("Initializing...");
 }
 public boolean preRouting(CalloutMediatorMessage calloutMediatorMessage) {
 System.out.println("Pre routing...");
 String sPayload = "null";
 String sPayload_org = "null";
 for (Iterator msgIt =
calloutMediatorMessage.getPayload().entrySet().iterator();
 msgIt.hasNext();) {
 Map.Entry msgEntry = (Map.Entry)msgIt.next();
 Object msgKey = msgEntry.getKey();
 Object msgValue = msgEntry.getValue();
 if (msgKey.equals("request"))
 sPayload =
XmlUtils.convertDomNodeToString((Node)msgValue);
 }
 sPayload_org = sPayload;
 String tobeReplaced = "CHANGE_THIS";
 String replaceWith = "JAVA_CALLOUT_||_PRE_ROUTING";
 int start = sPayload.indexOf(tobeReplaced);
 StringBuffer sb = new StringBuffer();
 sb.append(sPayload.substring(0, start));
 sb.append(replaceWith);
 sb.append(sPayload.substring(start + tobeReplaced.length()));
 String changedPayload = sb.toString();
 String uid;
 try {
 uid = ExtFunc.generateGuid();
 } catch (Exception e) {
 }
 XMLDocument changedoc;
 try {
 changedoc = XmlUtils.getXmlDocument(changedPayload);
 String mykey = "request";
 calloutMediatorMessage.addPayload(mykey,
 changedoc.getDocumentElement());
 //calloutMediatorMessage.getPayload().put(mykey, changedoc);
 } catch (Exception e) {
 }
 System.out.println("Changed from :
\n"+sPayload_org+"\nTo\n"+changedPayload);
 System.out.println("End Pre routing...\n\n");

Chapter 20
Defining Routing Rules

20-52

 return false;
 }
 public boolean postRouting(CalloutMediatorMessage calloutMediatorMessage,
 CalloutMediatorMessage calloutMediatorMessage1,
 Throwable throwable) throws MediatorCalloutException {
 System.out.println("Start Post routing...");
 String sPayload = "null";
 String sPayload_org = "null";
 for (Iterator msgIt =
calloutMediatorMessage1.getPayload().entrySet().iterator();
 msgIt.hasNext();) {
 Map.Entry msgEntry = (Map.Entry)msgIt.next();
 Object msgKey = msgEntry.getKey();
 Object msgValue = msgEntry.getValue();
 if(msgKey.equals("reply"))
 sPayload = XmlUtils.convertDomNodeToString((Node)msgValue);
 }

 sPayload_org = sPayload;
 String tobeReplaced = "POST_ROUTING_RULE_REQUEST_REPLY";
 String replaceWith = "POST_ROUTING_RULE_REQUEST_REPLY_||_POSTROUTING_||
_JAVA_CALLOUT_WORKING";
 int start = sPayload.indexOf(tobeReplaced);
 StringBuffer sb = new StringBuffer();
 sb.append(sPayload.substring(0, start));
 sb.append(replaceWith);
 sb.append(sPayload.substring(start + tobeReplaced.length()));
 String changedPayload = sb.toString();
 XMLDocument changedoc;
 try {
 changedoc = XmlUtils.getXmlDocument(changedPayload);
 String mykey = "reply";
 calloutMediatorMessage1.addPayload(mykey,changedoc.getDocumentElement());
 // calloutMediatorMessage1.getPayload().put(mykey,
changedoc.getDocumentElement());
 } catch (Exception f) {
 }
 System.out.println("Changed from : \n"+sPayload_org+"\nTo\n"+
 changedPayload);
 System.out.println("End Post routing...\n\n");
 return false;
 }
 public boolean preRoutingRule(CaseType caseType,
 CalloutMediatorMessage calloutMediatorMessage) {
 System.out.println("\nStart PreRoutingRule.\n");
 String sPayload = "null";
 String sPayload_org = "null";
 for (Iterator msgIt =
 calloutMediatorMessage.getPayload().entrySet().iterator();
 msgIt.hasNext();) {

 Map.Entry msgEntry = (Map.Entry)msgIt.next();
 Object msgKey = msgEntry.getKey();
 Object msgValue = msgEntry.getValue();
 if(msgKey.equals("request"))
 sPayload = XmlUtils.convertDomNodeToString((Node)msgValue);
 }
 sPayload_org = sPayload;
 String tobeReplaced = "PRE_ROUTING";
 String replaceWith = "PRE_ROUTING_||_PRE_ROUTING_RULE";
 int start = sPayload.indexOf(tobeReplaced);

Chapter 20
Defining Routing Rules

20-53

 StringBuffer sb = new StringBuffer();
 sb.append(sPayload.substring(0, start));
 sb.append(replaceWith);
 sb.append(sPayload.substring(start + tobeReplaced.length()));
 String changedPayload = sb.toString();
 XMLDocument changedoc;
 try {
 changedoc = XmlUtils.getXmlDocument(changedPayload);
 String mykey = "request";
 calloutMediatorMessage.addPayload(mykey,
 changedoc.getDocumentElement());
 // calloutMediatorMessage.getPayload().put(mykey, changedoc);
 } catch (Exception e) {
 }
 System.out.println("Changed from :
\n"+sPayload_org+"\nTo\n"+changedPayload);
 System.out.println("End PreRoutingRule.\n\n");
 return true;
 }
 public boolean postRoutingRule(CaseType caseType,
 CalloutMediatorMessage calloutMediatorMessage,
 CalloutMediatorMessage
calloutMediatorMessage1,
 Throwable throwable) {
 System.out.println("Start PostRoutingRule.");
 String req_sPayload = "null";
 String req_sPayload_org = "null";
 String rep_sPayload = "null";
 String rep_sPayload_org = "null";
 for (Iterator msgIt =
 calloutMediatorMessage.getPayload().entrySet().iterator();
 msgIt.hasNext();) {
 Map.Entry msgEntry = (Map.Entry)msgIt.next();
 Object msgKey = msgEntry.getKey();
 Object msgValue = msgEntry.getValue();
 if(msgKey.equals("request"))
 req_sPayload =
XmlUtils.convertDomNodeToString((Node)msgValue);
 }
 req_sPayload_org = req_sPayload;
 String tobeReplaced = "PRE_ROUTING_RULE";
 String replaceWith = "PRE_ROUTING_RULE_||_POST_ROUTING_RULE_REQUEST";
 int start = req_sPayload.indexOf(tobeReplaced);
 StringBuffer sb = new StringBuffer();
 sb.append(req_sPayload.substring(0, start));
 sb.append(replaceWith);
 sb.append(req_sPayload.substring(start + tobeReplaced.length()));
 String changedPayload = sb.toString();
 XMLDocument changedoc;
 try {
 changedoc = XmlUtils.getXmlDocument(changedPayload);
 String mykey = "request";
 calloutMediatorMessage.addPayload(mykey,
 changedoc.getDocumentElement());
 // calloutMediatorMessage.getPayload().put(mykey, changedoc);
 } catch (Exception e) {
 }
 for (Iterator msgIt =
 calloutMediatorMessage1.getPayload().entrySet().iterator();
 msgIt.hasNext();) {
 Map.Entry msgEntry = (Map.Entry)msgIt.next();

Chapter 20
Defining Routing Rules

20-54

 Object msgKey = msgEntry.getKey();
 Object msgValue = msgEntry.getValue();
 if(msgKey.equals("reply"))
 rep_sPayload =
XmlUtils.convertDomNodeToString((Node)msgValue);
 }
 rep_sPayload_org = rep_sPayload;
 tobeReplaced = "PRE_ROUTING_RULE";
 replaceWith = "PRE_ROUTING_RULE_||_POST_ROUTING_RULE_REQUEST_REPLY";
 start = rep_sPayload.indexOf(tobeReplaced);
 sb = new StringBuffer();
 sb.append(rep_sPayload.substring(0, start));
 sb.append(replaceWith);
 sb.append(rep_sPayload.substring(start + tobeReplaced.length()));
 changedPayload = sb.toString();
 try {
 changedoc = XmlUtils.getXmlDocument(changedPayload);
 String mykey = "reply";
 calloutMediatorMessage1.addPayload(mykey,changedoc.getDocumentElement());
 // calloutMediatorMessage1.getPayload().put(mykey,
changedoc.getDocumentElement());
 } catch (Exception e) {
 }
 System.out.println("Changed from :
\n"+req_sPayload_org+"\nTo\n"+changedPayload);
 System.out.println("End postRoutingRule\n\n");
 return true;
 }
}

20.3.3 How to Create Dynamic Routing Rules
The basic idea behind dynamic routing is to separate the control logic, which determines the
path taken by the process, from the execution of the process. Dynamic routing enables you to
dynamically route messages at runtime from a mediator to multiple target services, based on
the message content. You can use Domain Value Maps (DVMs) or Decision Components
(Business Rules) to override static routes at runtime.

20.3.3.1 How to Dynamically Override a Static Routing Rule Using a DVM
You can use a Domain Value Map (DVM) to dynamically override an existing static routing
rule. You can create a new DVM, or use an existing DVM to override mediator routing
options.

20.3.3.1.1 To override a static route using DVM:
1. Double-click the mediator component to open the Mediator Editor.

2. Under the Routing Rules section, scroll down to the routing rule that you want to modify.

3. To the right of the Override Using field, click the button, identified by the green arrow.
Figure 20-42 shows the Override Using field.

Chapter 20
Defining Routing Rules

20-55

Figure 20-42 Override Using Field Under Routing Rules

The Override Routing dialog appears.

4. Select Use Domain Value Map to create or use a domain value map.
Figure 20-43 shows the Override Routing dialog.

Figure 20-43 Override Routing Dialog

5. To the right of the Location field, click Create new DVM file, identified by the
green plus (+) icon, to create a new DVM file. The Create Domain Map Value
dialog appears.

Chapter 20
Defining Routing Rules

20-56

Note:

You can also choose an existing DVM file by clicking Find existing DVM file,
identified by the Search icon.

6. In the Create Domain Map Value dialog, specify a DVM Name and select a Directory to
store the DVM file. Click OK. The DVM File Created dialog appears.

7. Click OK to confirm. The Override Routing dialog is now populated with the details of the
new DVM. shows the Override Routing dialog after creating a new DVM.

Figure 20-44 New Domain Value Map Details

A new domain is created for each feature of the mediator that can be overridden. For
example, as shown in Figure 20-44, the Filter domain is created for the mediator Filter
Expression.

8. Select a Key Domain corresponding to the lookup column for the DVM.

9. To the right of the Value Expression field, click the Invoke Expression Builder icon to
specify a value expression corresponding to the key domain. The Expression Builder
dialog appears.

Chapter 20
Defining Routing Rules

20-57

Figure 20-45 Expression Builder

10. Build the expression corresponding to the value expression for the domain key,
and click OK. You can use the Help button for more information on the Expression
Builder.

11. Click OK in the Override Routing dialog.

20.3.3.1.2 To add a new domain to the DVM:
1. In the Override Routing dialog (Figure 20-44), click the Open DVM file editor icon

to the right of the Location field. The Edit Mediator Override DVM dialog appears.
Figure 20-46 shows the Edit Mediator Override DVM dialog.

Chapter 20
Defining Routing Rules

20-58

Figure 20-46 Edit Mediator Override DVM Dialog

2. If required, edit the Name and Description of the DVM.

3. Under Map Table, click the Add Domain/Values icon identified by the green plus (+)
icon. A pop-up menu appears.

4. To add a new domain or column, select Add Domain. The Create Domain dialog
appears.

5. Specify a Name for the new domain. Use the Help button for more details on the Create
Domain process.

Click OK

20.3.3.1.3 To add a new row to the DVM:
1. In the Override Routing dialog (Figure 20-44), click the Open DVM file editor icon to the

right of the Location field. The Edit Mediator Override DVM dialog appears
(Figure 20-46).

2. Under Map Table, click the Add Domain/Values icon identified by the green plus (+)
icon. Select Add Domain Values from the pop-up menu that appears.

3. You can click each row item to edit it. Alternatively select the row and click the Edit
Domain/Values icon to edit the row. The Edit Mediator Override Row dialog appears.
Figure 20-47 shows the Edit Mediator Override Row dialog.

Chapter 20
Defining Routing Rules

20-59

Figure 20-47 Edit Mediator Override Row Dialog

4. Edit the fields, as desired. The usual mediator tools are available to assist you with
the editing. For example, clicking the Transform button next to the Transform
domain enables you to create a transformation map. After the edits are complete,
click OK.

20.3.3.1.4 To delete a domain from the DVM:
1. In the Override Routing dialog (Figure 20-44), click the Open DVM file editor icon

to the right of the Location field. The Edit Mediator Override DVM dialog appears
(Figure 20-46).

2. To delete a DVM row, select the row and click the Remove Domain/Values icon.

20.3.3.1.5 To delete a row from the DVM:
1. In the Override Routing dialog (Figure 20-44), click the Open DVM file editor icon

to the right of the Location field. The Edit Mediator Override DVM dialog appears
(Figure 20-46).

2. To delete a DVM column, select the column and click the Remove Domain/
Values icon.

20.3.3.2 How to Dynamically Override a Static Routing Rule Using a Decision
Component

You can use a decision component, or business rule, to dynamically override an
existing static routing rule. You can create a new decision component, or use an
existing decision component to override mediator routing options.

20.3.3.2.1 To override a static route using a Decision Component:
1. Double-click the mediator component to open the Mediator Editor.

2. Under the Routing Rules section, scroll down to the routing rule that you want to
modify.

Chapter 20
Defining Routing Rules

20-60

3. To the right of the Override Using field, click the button, identified by the green arrow.
Figure 20-48 shows the Override Using field.

Figure 20-48 Override Using Field Under Routing Rules

The Override Routing dialog appears.

4. Select Use Decision Component to create or use a decision component.

5. To the right of the Decision Component field, click Create Decision Service, identified by
the green plus (+) icon, to create a new decision service component. The Create
Decision Service dialog appears.

Note:

You can also choose an existing decision service component file by clicking
Find existing decision service component, identified by the Search icon.

6. Specify a Component Name for the decision component and a Service Name for the
service. Click OK. The new decision service component is created, and you are returned
to the Override Routing dialog. The dialog now contains the details for the decision
service component.

This creates a new business rule service component that is wired to the Mediator service
component within the SOA composite of the Mediator service component.

If you look at the design view of the composite, you can see a business rule component
wired to the mediator in addition to the static reference wiring. Figure 20-49 shows the
design view for a sample composite.

Chapter 20
Defining Routing Rules

20-61

Figure 20-49 Mediator Connected to a Business Rule Component

The business rule service component includes a rule dictionary. The rule dictionary
is a metadata container for the rule engine artifacts, such as fact types, rulesets,
rules, decision tables and so on. As part of creating the business rule service
component, the rule dictionary is preinitialized with the following data.

• Fact Type Model

The fact type model is the data model that can be used for modeling rules.
The rule dictionary is populated with a fact type model that corresponds to the
input of a phase activity in a BPEL process, and some fixed data model that is
required as part of the contract between the Mediator service component and
the business rule service component.

• Ruleset

A ruleset is a container of rules used as a kind of grouping mechanism for
rules. A ruleset can be exposed as a service. As part of creating the business
rule service component, one ruleset is created within the rule dictionary.

• Decision Table (or matrix)

From a rule engine perspective, a decision table is a collection of rules with
the same fact type model elements in the condition and action part of the
rules. The decision table enables you to visualize rules in a tabular format. As
part of creating the business rule service component, a new decision table is
created within the ruleset.

• Decision Service

As part of creating the business rule service component, a decision service is
created to expose the ruleset as a service of the business rule service
component. The service interface is used by the Mediator service component
to evaluate the decision table.

20.3.3.2.2 To edit a decision component:
1. In the Override Routing dialog (Figure 20-44), click the Open Decision

Component Editor icon to the right of the Decision Component field. The
Decision Component Editor appears, as shown in Figure 20-50.

Chapter 20
Defining Routing Rules

20-62

Figure 20-50 Decision Component Editor

2. Under Decision Tables, select the decision table and click Edit to edit the decision table.

See Getting Started with Oracle Business Rules for more information on working with
decision tables and business rules.

20.3.3.3 How to Remove an Existing Dynamic Routing Rule
You can remove a DVM or Decision Component based routing rule override.

To remove a dynamic routing rule override:

1. Double-click the mediator component to open the Mediator Editor.

2. Under the Routing Rules section, scroll down to the routing rule that you want to modify.

3. To the right of the Override Using field, click the button, identified by the green arrow.
Figure 20-48 shows the Override Using field.

The Override Routing dialog appears.

4. Select Remove Override to remove any static routing rule overrides.

5. Click OK.

20.3.4 What You May Need to Know About Using Dynamic Routing Rules
Note the following limitations on using dynamic routing rules with Mediator:

• All possible message patterns are supported (Synchronous, Asynchronous,
Synchronous-Asynchronous, and One-Way).

• Event publishers and echo cannot have dynamic routing rules associated with them.

• Static rule overrides are applicable only for requests, and not for responses. If you must
override a response, you must route it to another mediator and override it as a request.

Chapter 20
Defining Routing Rules

20-63

• When overriding a target port, the overriding port must be of the same port type.

20.3.5 How to Define Default Routing Rules
Mediator processes messages depending on the conditions specified in the routing
rules. In some cases, a Mediator may not process an incoming message because the
message does not satisfy any of the conditions specified in the routing rules. You can
define a default routing rule for such messages. The default routing rule is executed
when none of the conditions of other routing rules are satisfied.

A default routing rule is the same as the routing rules discussed in How to Create
Static Routing Rules. The only difference between a default routing rule and other
routing rules is that a default routing rule does not have any condition associated with
it. Otherwise, a default routing rule is the same as other routing rules in every other
aspect, such as target service, response handling, fault handling, and so on.

Note:

• Default rules are available only for static routing rules.

• You cannot specify a default routing rule for a Mediator service
component with dynamic routing rules because you cannot define both
static and dynamic routing rules in the same Mediator service
component.

20.3.5.1 Default Rule Scenarios
A default routing rule can be either a sequential rule or a parallel rule. A default routing
rule, whether sequential or parallel, is guaranteed to be executed when no other
routing rule condition is satisfied. When the default rule is executed, the Mediator audit
trail shows that the filter conditions of all the routing rules failed, and the filter condition
of the default routing rule passed and was executed. The following example provides
details:

ActivityJan 7, 2010 4:35:15 PM
Message onCase "fileout2.Write"
Jan 7, 2010 4:35:15 PM
Message Evaluation of xpath condition " No Filter (DEFAULT CASE) " resulted
true

You can define all routing rules, including default routing rules, as either sequential or
parallel routing rules, so the expected behavior of routing rules varies. The following
sections discuss each combination and the expected behavior:

Sequential Default Routing Rule

You can have the following possible scenarios with a sequential default routing rule:

• All the other routing rules of the Mediator are sequential: This is the simplest
case in which all the routing rules, including the default routing rule, are of a
sequential type. Runtime evaluates the filter conditions of all routing rules and, if
none of the filter conditions are matched, then the default sequential routing rule is
executed. Default sequential routing rule execution happens in the same

Chapter 20
Defining Routing Rules

20-64

transaction as the incoming message. After the default rule is executed, a post Java
callout occurs.

• At Least One of the Routing Rules of the Mediator are parallel: This is a complex
case in which the default routing rule is sequential and at least one of the other routing
rules is parallel. The default behavior at runtime is to execute all sequential routing rules
first and then execute parallel routing rules. Therefore, this is a tricky situation because a
default rule should be executed only after all other routing rules are evaluated to be false.

In this case, the server first evaluates the filter condition of parallel rules before
evaluating the default routing rule filter condition. If none of the other filter conditions are
matched, then the default sequential routing rule is executed.

Parallel Default Routing Rule

You can have the following possible scenarios with a parallel default routing rule:

• All the other routing rules of the Mediator are parallel: This is a straightforward case.
The default routing rule is not executed if any of the filter conditions specified in the other
routing rules are matched. If none of the filter conditions are matched, then the default
routing rule is executed asynchronously.

• Other Routing Rules of the Mediator are sequential or parallel: This is a complex but
common use case in which there are other sequential or parallel routing rules available,
and the default routing rule is parallel. The default routing rule is not executed if any of
the other sequential or parallel routing rule criteria is matched. If none of the conditions
are matched, then the default routing rule is executed asynchronously.

Note:

The fact that the default routing rule is executed automatically implies that the
default routing rule is the only case that was executed for the given Mediator
service component. Similarly, if a Mediator service component has one routing rule
without any filter condition and also has a default routing rule, then the default
routing rule is never executed.

20.3.5.2 Default Rule Target
The target of the default routing rule is the same as the supported targets of any other
existing routing rule. This indicates that the target can be a service, an event, or an echo.
Similarly, the response from the default routing rule target service can be forwarded or
returned to the original caller. If the target service returns a fault, then the fault is handled in
the same way as it is handled in any other routing rule.

Note:

If exceptions occur while evaluating or executing other routing rules, then the
default routing rule is not executed.

Chapter 20
Defining Routing Rules

20-65

20.3.5.3 Default Rule: Validation, Transformation, and Assign Functionality
Schematron validation, transformation, and assign functionality for the default routing
rule works in the same way as other routing rules.

20.3.5.4 Default Rule: Java Callouts
The current behavior of a pre-Java callout or post-Java callout works in the same way
as for other routing rules. For Java callouts, the default routing rule is considered
another routing rule. Therefore, for the scenarios in which the default routing rule is
executed, the postRouting() callback method occurs only after the default routing rule
is executed.

Note:

The post-Java callouts occur after the execution of sequential rules and do
not wait for the parallel rules to complete execution. Therefore, if the default
routing rule is sequential, then the postRouting() callback method occurs
after executing the default routing rule. If the default routing rule is parallel,
then the postRouting() callback occurs after all sequential rules are
executed and does not wait for the execution of the parallel default routing
rule.

20.3.5.5 Default Rule: Mediator .mplan File
To set a routing rule as the default one, click the Set as Default Routing Rule icon
shown on Figure 20-2. The .mplan file changes, as shown in Figure 20-51.

Figure 20-51 .mplan File of a Mediator with a Default Routing Rule

Chapter 20
Defining Routing Rules

20-66

21
Working with Multiple Part Messages in
Oracle Mediator

This chapter describes how to define routing rules for multiple part (multipart) messages for
an Oracle Mediator service component, including defining filters, transformations, and
validations.
This chapter includes the following sections:

• Introduction to Mediator Multipart Message Support

• Working with Multipart Request Messages

For more information on routing rules, see Creating Oracle Mediator Routing Rules.

21.1 Introduction to Mediator Multipart Message Support
Mediator includes support for working with multipart source and target messages, which
include multipart filter expression building, multipart schema validation, and transformations
between multipart source and target messages for requests, replies, faults, and callbacks.

The Mediator Editor with a multipart source looks similar to Figure 21-1.

Figure 21-1 Mediator Editor for a Multipart Source

21-1

21.2 Working with Multipart Request Messages
This section describes how to work with different types of multipart messages.

21.2.1 How to Specify Filter Expressions for Multipart Request
Messages

If you specify a filter expression for a multipart message, then the Expression Builder
displays all message parts under the in variable, as shown in Figure 21-2:

Figure 21-2 Expression Builder for a Multipart Request Source

21.2.2 How to Add Validations for Multipart Request Messages
If you add a validation for a multiple part message, then the Add Validation dialog
displays a list of parts from which you can choose one part, as shown in Figure 21-3.
You specify a Schematron file for each request message part. Oracle Mediator then
processes the Schematron files for the parts.

Chapter 21
Working with Multipart Request Messages

21-2

Figure 21-3 Add Validation Dialog for a Multipart Request Source

21.2.3 How to Create Transformations for Multipart Request Messages
If you create a new mapper file for a multipart message, then the generated mapper file
shows multiple source parts in the XSLT Mapper, as shown in Figure 21-4:

Figure 21-4 XSLT Mapper for a Multipart Request Source

21.2.4 How to Assign Values for Multipart Request Messages
If you assign values using a source expression and invoke the Expression Builder from the
Assign Value dialog, the Expression Builder displays all message parts under the in variable,
as shown in Figure 21-2. This is the same as specifying filter expressions.

21.2.5 How to Work with Multipart Reply, Fault, and Callback Source
Messages

The method to create transformations and assign values to multipart reply, fault, and callback
source messages is the same as working with request source messages.

Note:

You cannot specify filter expressions or add validations for reply, fault, and callback
messages.

Chapter 21
Working with Multipart Request Messages

21-3

21.2.6 How to Work with Multipart Target Messages
If a routing target (that is, a request, reply, fault, or callback) has a multipart message,
then the transformation is handled in a slightly different way. This is because the XSLT
Mapper does not support multipart targets. In such a case, the Mediator creates and
coordinates a separate mapper file for each target part, as shown in Figure 21-5:

Figure 21-5 Request Transformation Map for a Multipart Routing Target

Chapter 21
Working with Multipart Request Messages

21-4

22
Using Oracle Mediator Error Handling

This chapter describes the error handling capabilities of Oracle Mediator and provides
instructions for defining error handling for both business faults and system faults.
This chapter includes the following sections:

• Introduction to Mediator Error Handling

• Using Error Handling with Mediator

• Fault Recovery Using Oracle Enterprise Manager Fusion Middleware Control

• Error Handling XML Schema Definition Files

22.1 Introduction to Mediator Error Handling
Mediator provides sophisticated error handling capabilities that enable you to configure a
Mediator service component for error occurrences and corresponding corrective actions.
Error handling enables a Mediator to handle errors that occur during the processing of
messages and also the exceptions returned by outside web services. You can handle both
business faults and system faults with Mediator.

Business faults are application-specific and are explicitly defined in the service WSDL file.
You can handle business faults by defining the fault handlers in Oracle JDeveloper at design
time. System faults occur because of some problem in the underlying system such as a
network not being available. Mediator provides fault policy-based error handling for system
faults.

Fault policies enable you to handle errors automatically or through human intervention.
Mediator fault policy-based error handling consists of the following three components:

• Fault policies

• Fault bindings

• Error groups

22.1.1 Fault Policies
A fault policy defines error conditions and corresponding actions. Fault policies are defined in
the fault-policies.xml file, which should be created based on the XML schema shown in
Schema Definition File for fault-policies.xml .

Fault policies for sequential routing rules are handled differently than for parallel routing rules,
as described below:

• Due to the single threading of sequential routing rules, only three actions (Abort, Rethrow,
and Java) are supported for handling errors, and the specified actions are executed
immediately in the caller's thread.

• Mediator messages are not persisted in sequential routing.

• Asynchronous and one-way Mediator components cannot handle system faults thrown
from other SOA Suite components, such as a BPEL business process.

22-1

For more information about available error handling actions, see Actions.

Note:

Fault policies are not supported for the following:

• Callback execution failures

• Fault Handler action failures

• Resequencer failures

A sample fault policy file is shown below:

<?xml version="1.0" encoding="UTF-8"?>
<faultPolicies>
 <faultPolicy version="2.0.1" id="CRM_ServiceFaults">
 <Conditions>
 <faultName xmlns:medns="http://schemas.oracle.com/mediator/faults"
 name="medns:mediatorFault">
 <condition>
 <test>contains($fault.mediatorErrorCode, "TYPE_FATAL_MESH")</test>
 <action ref="ora-retry"/>
 </condition>
 </faultName>
 </Conditions>
 <Actions>
 <Action id="ora-retry">
 <retry>
 <retryCount>3</retryCount>
 <retryInterval>2</retryInterval>
 <exponentialBackoff/>
 <retryFailureAction ref="ora-java"/>
 <retrySuccessAction ref="ora-terminate"/>
 </retry>
 </Action>
 </Actions>
 </faultPolicy>
</faultPolicies>

The two components of the fault policy (conditions and actions) are described in the
following sections.

22.1.1.1 Conditions
Conditions allow you to identify error or fault conditions and then specify the actions to
be taken when a particular error or fault condition occurs. For example, for a particular
error occurring because of a service not being available, you can perform an action
such as a retry. Similarly, for another error occurring because of the failure of
Schematron validation, you can perform the action of human intervention. This fault
can be recovered manually by editing the payload and then resubmitting it through
Oracle Enterprise Manager Fusion Middleware Control.

Conditions are defined in the fault-policies.xml file, as shown in the following
example:

Chapter 22
Introduction to Mediator Error Handling

22-2

<Conditions>
 <faultName xmlns:medns="http://schemas.oracle.com/mediator/faults"
 name="medns:mediatorFault">
 <condition>
 <test>contains($fault.mediatorErrorCode,"TYPE_DATA_TRANSFORMATION")</test>
 <action ref="ora-java"/>
 </condition>
 </faultName>
 <faultName xmlns:medns="http://schemas.oracle.com/mediator/faults"
name="medns:mediatorFault">
 <condition>
 <test>contains($fault.mediatorErrorCode, "TYPE_FATAL_MESH")</test>
 <action ref="ora-retry"/>
 </condition>
 </faultName>
 <faultName xmlns:medns="http://schemas.oracle.com/mediator/faults"
name="medns:mediatorFault">
 <condition>
 <test>contains($fault.mediatorErrorCode,"TYPE_DATA_ASSIGN")</test>
 <action ref="ora-retry-crm-endpoint"/>
 </condition>
 </faultName>
</Conditions>

Identifying Fault Types Using Conditions

You can categorize the faults that can be captured using conditions into the following types:

• Mediator-specific faults

For all Mediator-specific faults, the Mediator service engine throws only one fault, namely
{http://schemas.oracle.com/mediator/faults}mediatorFault. Every Mediator fault is
wrapped into this fault. The errors or faults generated by a Mediator can be captured by
using the format shown in the following example:

<faultName xmlns:medns="http://schemas.oracle.com/mediator/faults"
name="medns:mediatorFault">
<!-- mediatorFault is a bucket for all the mediator faults -->
 <condition>
 <test>
 contains($fault.mediatorErrorCode, "TYPE_FATAL_MESH")
 </test>
<!-- Captures TYPE_FATAL_MESH errors -->
 <action ref="ora-retry"/>
 </condition>
 </faultName>

• Business faults and SOAP faults

These errors or faults can be captured by defining an XPath condition, which is based on
the fault payload. The following example provides details:

<faultName xmlns:ns1="http://xmlns.oracle.com/Customer"
 name="ns1:InvalidCustomer"> <!-- Qname of Business/SOAP fault -->
 <condition>
 <test>
contains($fault.<PART_NAME>/custid, 1011)
 </test>
<!-- xpath condition based on fault payload -->
 <action ref="ora-retry"/>
 </condition>
 </faultName>

Chapter 22
Introduction to Mediator Error Handling

22-3

When a reference service returns a business fault, the fault can be handled in the
Mediator service component. The returned fault can be forwarded to another
component, redirected to an adapter service such as a file adapter, or an event
can be raised. However, if both a fault policy and fault handler are defined for a
business fault, then the fault policy takes precedence over the fault handler. In
such a case, the fault handlers in the Mediator service component are ignored, if
the fault policy is successfully executed.

• Adapter-specific fault

The errors or faults generated by an adapter can be captured by using the format
shown in the following example:

<faultName xmlns:medns="http://schemas.oracle.com/mediator/faults"
name="medns:mediatorFault">
 <condition>
 <test>$fault.faultCode = "1"</test> <!-- unique constraint violation in
DB adapter-->
 <action ref="ora-retry"/>
 </condition>
 </faultName>

22.1.1.2 Actions
Actions specify the tasks to perform when an error occurs. Mediator supports retry,
human intervention, abort, and Java code actions for parallel routing rules. For
sequential routing rules, fault policies can contain these actions: abort, rethrow, and
Java code.

If retry or human intervention action is chosen with sequential routing rules, the fault
goes back to the caller directly, and the policy is not applied. The fact that an
incompatible action was chosen is recorded in the log. This is consistent with BPEL
fault policy behavior. It is the responsibility of the caller to handle the fault. If the caller
is an adapter, you can define rejection handlers on the inbound adapter to take care of
the messages that error out (that is, the rejected messages). For more information
about rejection handlers, see Understanding Technology Adapters.

Fault policy actions are described in the following sections.

22.1.1.2.1 Retry Action

Retry actions such as enqueueing a message to a JMS queue that is stopped,
inserting a record with a unique key constraint error, and so on, enable you to retry a
task that caused the error. A new thread is started with every retry action. Therefore,
with every retry action, a new transaction starts. Table 22-1 describes the options
available with the retry action. Retry actions are applicable to parallel routing rules
only.

Table 22-1 Retry Action Options

Option Description

Retry Count Retry N times.

Retry Interval Delay in seconds for a retry.

Exponential Backoff Retry interval increase with an exponential backoff.

Retry Failure Action Chain to this action if a retry N times fails.

Chapter 22
Introduction to Mediator Error Handling

22-4

Table 22-1 (Cont.) Retry Action Options

Option Description

Retry Success Action Chain to this action if a retry succeeds.

Note:

Exponential backoff indicates that the next retry attempt is scheduled at 2 x the
delay, where delay is the current retry interval. For example, if the current retry
interval is 2 seconds, the next retry attempt is scheduled at 4, the next at 8, and the
next at 16 seconds until the retryCount value is reached.

The following example shows how to specify the retry action:

 <Action id="ora-retry">
 <retry>
 <retryCount>3</retryCount>
 <retryInterval>2</retryInterval>
 <exponentialBackoff/>
 <retryFailureAction ref="ora-java"/>
 <retrySuccessAction ref="ora-java"/>
 </retry>
 </Action>

If you set the retry interval in the fault policy to a duration of less than 30 seconds, then the
retry may not happen within the specified intervals. This is because the default value of the
org.quartz.scheduler.idleWaitTime property is 30 seconds, and the scheduler waits for 30
seconds before retrying for available triggers, when the scheduler is otherwise idle. If the
retry interval is set to a value of less than 30 seconds, then latency is expected.

If you want the system to use a retry interval that is less than 30 seconds, add the following
property under the section <property name="quartzProperties"> in the fabric-config-
core.xml file:

org.quartz.scheduler.idleWaitTime=<value>

22.1.1.2.2 Rethrow Action

Rethrow executes the fault policy in the caller's thread and returns the original exception to
the user.

An example of a rethrow action is shown below:

<Action id="ora-rethrow-fault"><rethrowFault/></Action>

22.1.1.2.3 Human Intervention Action

The human intervention action allows you to manually recover the fault by correcting the error
(for example, altering the payload) and then manually retrying the message. This action is
applicable to parallel routing rules only.

An example of a human intervention action is shown below:

Chapter 22
Introduction to Mediator Error Handling

22-5

<Action id="ora-human-intervention"><humanIntervention/></Action>

22.1.1.2.4 Abort Action

The abort action enables you to terminate the message flow. This action is applicable
to both parallel and sequential routing rules.

When the abort action is executed for a sequential routing rule, the exception
FabricInvocationException is thrown back to the caller, and the mediator component
state changes to terminated. The fault policy is executed in the caller's thread.

An example of an abort action is shown below:

<Action id="ora-terminate"><abort/></Action>

22.1.1.2.5 Java Code Action

The Java code action lets you call a customized Java class that implements the
oracle.integration.platform.faultpolicy.IFaultRecoveryJavaClass interface.
This action is applicable to both parallel and sequential routing rules. The following
example shows how Java code actions can be implemented.

Note:

The implemented Java class must implement a method that returns a string.
The policy can be chained to a new action based on the returned string.

The Java code action first looks for the implemented class in the domain
class library. If the class is not found there, the action looks in the Composite
Application's class library.

 <Action id="ora-java">
 <javaAction className="mypackage.myClass" defaultAction="ora-terminate">
 <returnValue value="ABORT" ref="ora-terminate"/>
 <returnValue value="RETRY" ref="ora-retry"/>
 <returnValue value="MANUAL" ref="ora-human-intervention"/>
 </javaAction>
 </Action>

For a sequential routing rule fault policy, the returnValue action must be one of Abort,
Rethrow, or Java action. If the returnValue is other than these valid values, then the
defaultAction is checked. If the defaultAction is also not a valid action (Abort,
Rethrow, or Java action), then no action is performed by default, and the original fault
is thrown back to the caller.

oracle.integration.platform.faultpolicy.IFaultRecoveryJavaClass {

 public void handleRetrySuccess(IFaultRecoveryContext ctx);
 public String handleFault(IFaultRecoveryContext ctx);
}

public interface IFaultRecoveryContext {

 /**

Chapter 22
Introduction to Mediator Error Handling

22-6

 * Gets implementation type of the fault.
 * @return
 */
 public String getType();

 /**
 * @return Get property set of the fault policy action being executed.
 */
 public Map getProperties();

 /**
 * @return Get fault policy id of the fault policy being executed.
 */
 public String getPolicyId();

 /**
 * @return Name of the faulted reference.
 */
 public String getReferenceName();

 /**
 * @return Port type of the faulted reference link.
 */
 public QName getPortType();
}

Mediator Service Engine Implementation

The following example shows the Oracle Mediator service engine implementation of the
IFaultRecoveryContext interface.

package oracle.tip.mediator.common.error.recovery;
public class MediatorRecoveryContext implements IFaultRecoveryContext{
 ...
}

You can use the methods shown in the following example to retrieve additional Mediator-
specific data available with the MediatorRecoveryContext class:

public CommonFault getACommonFault()
public CalloutMediatorMessage getMediatorMessage()

The following example shows how to retrieve data using the CalloutMediatorMessage
interface:

 /**
 * Accessing Mediator Message properties by providing the property name
 * @param propertyName
 * @return
 * @throws MediatorException
 */
 public Object getProperty(String propertyName);

 /**
 * Accessing Mediator Message properties
 * @return
 * @throws MediatorException
 */
 public Map getProperties();

Chapter 22
Introduction to Mediator Error Handling

22-7

 /**
 * Accessing instance id of the mediator message
 * This will be the mediator instance id created for that particular message
 * object
 * @return
 * @throws MediatorException
 */
 public String getId() throws MediatorException;

 /**
 * Accessing payload of the mediator message
 * object
 * @return
 * @throws MediatorException
 */
 public Map getPayload();

 /**
 * Accessing header of the mediator message
 * object
 * @return
 * @throws MediatorException
 */
 public List<Element> getHeaders();

 /**
 * Accessing componentDN for mediator component
 * @return
 * @throws MediatorException
 */
 public String getComponentDN(
 /**
 * Setting payload to the mediator message
 * @return
 * @throws MediatorCalloutException
 */
 public void addPayload(String partName,Object payload) throws
MediatorCalloutException;

 /**
 * Adding property to the mediator message
 * @return
 * @throws MediatorCalloutException
 */
 public void addProperty(String name,Object value) throws
MediatorCalloutException;

 /**
 * Adding header to the mediator message
 * @return
 * @throws MediatorCalloutException
 */
 public void addHeader(Object header) throws MediatorCalloutException;

22.1.2 Fault Bindings
Fault bindings associate fault policies with composites or components, and are defined
in the fault-bindings.xml file. Create the fault-bindings.xml file based on the XML
schema defined in Schema Definition File for fault-bindings.xml .

Chapter 22
Introduction to Mediator Error Handling

22-8

Fault policies can be created at the following levels:

• Composite: You can define one fault policy for all Mediator components in a composite.
You can specify this level in the following way:

<composite faultPolicy="ConnectionFaults"/>
• Component: You can define a fault policy exclusively for a Mediator service component.

A component-level fault policy overrides the composite-level fault policy. You can specify
this level as shown in the following example:

<component faultPolicy="ConnectionFaults">
 <name>Component1</name>
 <name>Component2</name>
</component>

• Reference: You can define a fault policy for the references of a Mediator component. You
can specify this level as shown in the following example:

<reference faultPolicy="policy1">
 <name>DBAdapter3</name>
 </reference>

Note:

The level of precedence for fault policies is Reference -> Component -> Composite.

Note:

Human intervention is the default action for errors that do not have a fault policy
defined.

A sample fault binding file is shown in the following example:

<?xml version="1.0" encoding="UTF-8"?>
<faultPolicyBindings version="2.0.1"
 xmlns="http://schemas.oracle.com/bpel/faultpolicy"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <composite faultPolicy="ConnectionFaults"/>
</faultPolicyBindings>

22.1.3 Error Groups in Mediator
You can specify an action for an error type or error group while defining the conditions in a
fault policy. In the previous examples, medns:mediatorFault indicates that the error is a
Mediator error, whereas medns:TYPE_FATAL_MESH refers to an error group. An error group
consists of one or more child error types. TYPE_ALL is an error group that contains all
Mediator errors.

The following list describes various error groups contained in the TYPE_ALL error group:

• TYPE_DATA: Contains errors related to data handling.

– TYPE_DATA_ASSIGN: Contains errors related to data assignment.

Chapter 22
Introduction to Mediator Error Handling

22-9

– TYPE_DATA_FILTERING: Contains errors related to data filtering.

– TYPE_DATA_TRANSFORMATION: Contains errors that occur during a
transformation.

– TYPE_DATA_VALIDATION: Contains errors that occur during payload validation.

• TYPE_METADATA: Contains errors related to Mediator metadata.

– TYPE_METADATA_FILTERING: Contains errors that occur while processing the
filtering conditions.

– TYPE_METADATA_TRANSFORMATION: Contains errors that occur while getting the
metadata for a transformation.

– TYPE_METADATA_VALIDATION: Contains errors that occur during validation of
metadata for Mediator (.mplan file).

– TYPE_METADATA_COMMON: Contains other errors that occur during the handling
of metadata.

• TYPE_FATAL: Contains fatal errors that are not easily recoverable.

– TYPE_FATAL_DB: Contains database-related fatal errors, such as a Datasource
not found error.

– TYPE_FATAL_CACHE: Contains Mediator cache-related fatal errors.

– TYPE_FATAL_ERRORHANDLING: Contains fatal errors that occur during error
handling such as Resubmission queues not available.

– TYPE_FATAL_MESH: Contains fatal errors from the Service Infrastructure such as
Invoke service not available.

– TYPE_FATAL_MESSAGING: Contains fatal messaging errors arising from the
Service Infrastructure.

– TYPE_FATAL_TRANSACTION: Contains fatal errors related to transactions such as
Commit can't be called on a transaction which is marked for
rollback.

– TYPE_FATAL_TRANSFORMATION: Contains fatal transformation errors such as an
error occurring because of the XPath functions used in a transformation.

• TYPE_TRANSIENT: Contains transient errors that can be recovered on a retry.

– TYPE_TRANSIENT_MESH: Contains errors related to the Service Infrastructure.

– TYPE_TRANSIENT_MESSAGING: Contains errors related to JMS such as
enqueuing and dequeuing.

• TYPE_INTERNAL: Contains internal errors.

22.2 Using Error Handling with Mediator
You can enable error handling for an Oracle Mediator by using the fault-
policies.xml and fault-bindings.xml files.

Chapter 22
Using Error Handling with Mediator

22-10

22.2.1 How to Use Error Handling for a Mediator Service Component
To use error handling for a Mediator service component:

1. Create a fault-policies.xml file based on the schema defined in Schema Definition
File for fault-policies.xml .

2. Create a fault-bindings.xml file based on the schema defined in Schema Definition
File for fault-bindings.xml .

3. Copy the fault-policies.xml and the fault-bindings.xml file to your SOA composite
application project directory.

4. Deploy the SOA composite application project.

22.2.2 What Happens at Runtime
All the fault policies for a composite are loaded when the first error occurs. When an error
occurs, the Mediator Service Engine checks for the existence of the fault policy files (fault-
policies.xml and fault-bindings.xml). The fault policy bindings are checked to determine
the fault policy associated with the component or composite. If a fault policy is associated
with the component or composite, then Mediator performs the action defined in the fault
policy corresponding to the fault condition. If no fault policy bindings are found for the
component or composite, then no action is performed and the behavior is the same as if the
fault policies did not exist.

If there is no fault policy defined and the routing rule is executed in parallel, the default action
of human intervention is performed. If there is no fault policy defined and the routing rule is
executed sequentially, the error is thrown back to the caller.

Note:

All sequential routing transactions that encounter an error are rolled back, even if a
fault policy has been used to handle the errors.

For more information about how fault policies are processed, see Actions.

22.3 Fault Recovery Using Oracle Enterprise Manager Fusion
Middleware Control

Apart from policy-based recovery using the fault policy file, you can also perform fault
recovery actions on Oracle Mediator faults identified as recoverable in Oracle Enterprise
Manager Fusion Middleware Control. Use any of the following ways to recover faults:

• Manual recovery by modifying the payload using Oracle Enterprise Manager Fusion
Middleware Control

• Bulk recovery without modifying the payload using Oracle Enterprise Manager Fusion
Middleware Control

• Aborting a faulted instance using Oracle Enterprise Manager Fusion Middleware Control,
if you do not want to do any more processing on the instance.

Chapter 22
Fault Recovery Using Oracle Enterprise Manager Fusion Middleware Control

22-11

For more information about fault recovery using Oracle Enterprise Manager Fusion
Middleware Control, see Administering Oracle SOA Suite and Oracle Business
Process Management Suite.

22.4 Error Handling XML Schema Definition Files
This section describes the schema files for the fault-policies.xml and fault-
bindings.xml files.

22.4.1 Schema Definition File for fault-policies.xml
The fault-policies.xml file should be based on the XSD file as shown in the
following example:

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema targetNamespace="http://schemas.oracle.com/bpel/faultpolicy"
xmlns:tns="http://schemas.oracle.com/bpel/faultpolicy"
xmlns:xs="http://www.w3.org/2001/XMLSchema" elementFormDefault="qualified">
 <!-- Conditions contain a list of fault names -->
 <xs:element name="Conditions">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="faultName" type="tns:faultNameType"
 maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <!-- action Ref must exist in the same file -->
 <xs:complexType name="actionRefType">
 <xs:attribute name="ref" type="xs:string" use="required"/>
 </xs:complexType>
 <!-- one condition has a test and action, if test is missing, this is the
 catch all condition -->
 <xs:complexType name="conditionType">
 <xs:all>
 <xs:element name="test" type="tns:idType" minOccurs="0"/>
 <xs:element name="action" type="tns:actionRefType"/>
 </xs:all>
 </xs:complexType>
 <!-- One fault name match contains several conditions -->
 <xs:complexType name="faultNameType">
 <xs:sequence>
 <xs:element name="condition" type="tns:conditionType"
 maxOccurs="unbounded"/>
 </xs:sequence>
 <xs:attribute name="name" type="xs:QName"/>
 </xs:complexType>
 <xs:complexType name="ActionType">
 <xs:choice>
 <xs:element name="retry" type="tns:RetryType"/>
 <xs:element ref="tns:rethrowFault"/>
 <xs:element ref="tns:humanIntervention"/>
 <xs:element ref="tns:abort"/>
 <xs:element ref="tns:replayScope"/>
 <xs:element name="javaAction" type="tns:JavaActionType">
 <xs:key name="UniqueReturnValue">
 <xs:selector xpath="tns:returnValue"/>
 <xs:field xpath="@value"/>

Chapter 22
Error Handling XML Schema Definition Files

22-12

 </xs:key>
 </xs:element>
 </xs:choice>
 <xs:attribute name="id" type="tns:idType" use="required"/>
 </xs:complexType>
 <xs:element name="Actions">
 <xs:annotation>
 <xs:documentation>Fault Recovery Actions</xs:documentation>
 </xs:annotation>
 <xs:complexType>
 <xs:sequence>
 <xs:element name="Action" type="tns:ActionType"
 maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:complexType name="JavaActionType">
 <xs:annotation>
 <xs:documentation>This action invokes java code
 provided</xs:documentation>
 </xs:annotation>
 <xs:sequence>
 <xs:element name="returnValue" type="tns:ReturnValueType"
 minOccurs="0" maxOccurs="unbounded"/>
 </xs:sequence>
 <xs:attribute name="className" type="tns:idType" use="required"/>
 <xs:attribute name="defaultAction" type="tns:idType" use="required"/>
 <xs:attribute name="propertySet" type="tns:idType"/>
 </xs:complexType>
 <xs:complexType name="RetryType">
 <xs:annotation>
 <xs:documentation>This action attempts retry of activity
 execution</xs:documentation>
 </xs:annotation>
 <xs:all>
 <xs:element ref="tns:retryCount"/>
 <xs:element ref="tns:retryInterval"/>
 <xs:element ref="tns:exponentialBackoff" minOccurs="0"/>
 <xs:element name="retryFailureAction"
 type="tns:retryFailureActionType" minOccurs="0"/>
 <xs:element name="retrySuccessAction"
 type="tns:retrySuccessActionType" minOccurs="0"/>
 </xs:all>
 </xs:complexType>
 <xs:simpleType name="idType">
 <xs:restriction base="xs:string">
 <xs:minLength value="1"/>
 </xs:restriction>
 </xs:simpleType>
 <xs:complexType name="ReturnValueType">
 <xs:annotation>
 <xs:documentation>Return value from java code can chain another action
 using
 return values</xs:documentation>
 </xs:annotation>
 <xs:attribute name="value" type="tns:idType" use="required"/>
 <xs:attribute name="ref" type="xs:string" use="required"/>
 </xs:complexType>
 <xs:element name="exponentialBackoff">
 <xs:annotation>
 <xs:documentation>Setting this will cause retry attempts to use

Chapter 22
Error Handling XML Schema Definition Files

22-13

 exponentialBackoff algorithm</xs:documentation>
 </xs:annotation>
 <xs:complexType/>
 </xs:element>
 <xs:element name="humanIntervention">
 <xs:annotation>
 <xs:documentation>This action causes the activity to
 freeze</xs:documentation>
 </xs:annotation>
 <xs:complexType/>
 </xs:element>
 <xs:element name="replayScope">
 <xs:annotation>
 <xs:documentation>This action replays the immediate enclosing
 scope</xs:documentation>
 </xs:annotation>
 <xs:complexType/>
 </xs:element>
 <xs:element name="rethrowFault">
 <xs:annotation>
 <xs:documentation>This action will rethrow the
 fault</xs:documentation>
 </xs:annotation>
 <xs:complexType/>
 </xs:element>
 <xs:element name="retryCount" type="xs:positiveInteger">
 <xs:annotation>
 <xs:documentation>This value is used to identify number of
 retries</xs:documentation>
 </xs:annotation>
 </xs:element>
 <xs:complexType name="retryFailureActionType">
 <xs:annotation>
 <xs:documentation>This is the action to be chained if retry attempts
 fail</xs:documentation>
 </xs:annotation>
 <xs:attribute name="ref" type="xs:string" use="required"/>
 </xs:complexType>
 <xs:complexType name="retrySuccessActionType">
 <xs:annotation>
 <xs:documentation>This is the action to be chained if retry attempts
 is successful</xs:documentation>
 </xs:annotation>
 <xs:attribute name="ref" type="xs:string" use="required"/>
 </xs:complexType>
 <xs:element name="retryInterval" type="xs:unsignedLong">
 <xs:annotation>
 <xs:documentation>This is the delay in milliseconds of retry
 attempts</xs:documentation>
 </xs:annotation>
 </xs:element>
 <xs:element name="abort">
 <xs:annotation>
 <xs:documentation>This action terminates the
 process</xs:documentation>
 </xs:annotation>
 <xs:complexType/>
 </xs:element>
 <xs:element name="Properties">
 <xs:annotation>
 <xs:documentation>Properties that can be passes to a custom java

Chapter 22
Error Handling XML Schema Definition Files

22-14

 class</xs:documentation>
 </xs:annotation>
 <xs:complexType>
 <xs:sequence>
 <xs:element name="propertySet" type="tns:PropertySetType"
 maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:complexType name="PropertySetType">
 <xs:sequence>
 <xs:element name="property" type="tns:PropertyValueType"
 maxOccurs="unbounded"/>
 </xs:sequence>
 <xs:attribute name="name" type="tns:idType" use="required"/>
 </xs:complexType>
 <xs:complexType name="PropertyValueType">
 <xs:simpleContent>
 <xs:extension base="tns:idType">
 <xs:attribute name="name" type="tns:idType" use="required"/>
 </xs:extension>
 </xs:simpleContent>
 </xs:complexType>
 <xs:element name="faultPolicy">
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="tns:Conditions"/>
 <xs:element ref="tns:Actions"/>
 <xs:element ref="tns:Properties" minOccurs="0"/>
 <!--Every policy has on Conditions and and one Actions, however,
 Properties is optional -->
 </xs:sequence>
 <xs:attribute name="id" type="tns:idType" use="required"/>
 <xs:attribute name="version" type="xs:string" default="2.0.1"/>
 </xs:complexType>
 <xs:key name="UniqueActionId">
 <xs:selector xpath="tns:Actions/tns:Action"/>
 <xs:field xpath="@id"/>
 </xs:key>
 <xs:key name="UniquePropertySetId">
 <xs:selector xpath="tns:Properties/tns:property_set"/>
 <xs:field xpath="@id"/>
 </xs:key>
 <xs:keyref name="RetryActionRef" refer="tns:UniqueActionId">
 <xs:selector xpath="tns:Actions/tns:Action/tns:retry/
tns:retryFailureAction"/>
 <xs:field xpath="@ref"/>
 </xs:keyref>
 <xs:keyref name="RetrySuccessActionRef" refer="tns:UniqueActionId">
 <xs:selector
 xpath="tns:Actions/tns:Action/tns:retry/tns:retrySuccessAction"/>
 <xs:field xpath="@ref"/>
 </xs:keyref>
 <xs:keyref name="JavaActionRef" refer="tns:UniqueActionId">
 <xs:selector
 xpath="tns:Actions/tns:Action/tns:javaAction/tns:returnValue"/>
 <xs:field xpath="@ref"/>
 </xs:keyref>
 <xs:keyref name="ConditionActionRef" refer="tns:UniqueActionId">
 <xs:selector
 xpath="tns:Conditions/tns:faultName/tns:condition/tns:action"/>

Chapter 22
Error Handling XML Schema Definition Files

22-15

 <xs:field xpath="@ref"/>
 </xs:keyref>
 <xs:keyref name="JavaDefaultActionRef" refer="tns:UniqueActionId">
 <xs:selector xpath="tns:Actions/tns:Action/tns:javaAction"/>
 <xs:field xpath="@defaultAction"/>
 </xs:keyref>
 <xs:keyref name="JavaPropertySetRef" refer="tns:UniquePropertySetId">
 <xs:selector xpath="tns:Actions/tns:Action/tns:javaAction"/>
 <xs:field xpath="@property_set"/>
 </xs:keyref>
 </xs:element>
 <xs:element name="faultPolicies">
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="tns:faultPolicy" maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
</xs:schema>

22.4.2 Schema Definition File for fault-bindings.xml
The fault-bindings.xml file should be based on the XSD file as shown in the
following example:

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema targetNamespace="http://schemas.oracle.com/bpel/faultpolicy"
 xmlns:tns="http://schemas.oracle.com/bpel/faultpolicy"
 xmlns:xs="http://www.w3.org/2001/XMLSchema" elementFormDefault="qualified">
 <xs:element name="faultPolicyBindings">
 <xs:annotation>
 <xs:documentation>Bindings to a specific fault policy
 </xs:documentation>
 </xs:annotation>
 <xs:complexType>
 <xs:sequence>
 <xs:element name="composite" type="tns:compositeType"
 minOccurs="0" maxOccurs="1"/>
 <xs:element name="component" type="tns:componentType"
 minOccurs="0" maxOccurs="unbounded"/>
 <xs:element name="reference" type="tns:referenceType"
 minOccurs="0" maxOccurs="unbounded"/>
 </xs:sequence>
 <xs:attribute name="version" type="xs:string" default="2.0.1"/>
 </xs:complexType>
 <xs:key name="UniquePartnerLinkName">
 <xs:selector xpath="tns:reference/tns:name"/>
 <xs:field xpath="."/>
 </xs:key>
 <xs:key name="UniquePortType">
 <xs:selector xpath="tns:reference/tns:portType"/>
 <xs:field xpath="."/>
 </xs:key>
 <xs:key name="UniquePolicyName">
 <xs:selector xpath="tns:reference"/>
 <xs:field xpath="@faultPolicy"/>
 </xs:key>
 </xs:element>
 <xs:simpleType name="nameType">
 <xs:restriction base="xs:string">

Chapter 22
Error Handling XML Schema Definition Files

22-16

 <xs:minLength value="1"/>
 </xs:restriction>
 </xs:simpleType>
 <xs:complexType name="propertyType">
 <xs:simpleContent>
 <xs:extension base="tns:nameType">
 <xs:attribute name="name" type="xs:string" use="required"
 fixed="faultPolicy"/>
 </xs:extension>
 </xs:simpleContent>
 </xs:complexType>

 <xs:complexType name="referenceType">
 <xs:annotation>
 <xs:documentation>Bindings for a partner link. Overrides composite
 level binding.</xs:documentation>
 </xs:annotation>
 <xs:sequence>
 <xs:annotation>
 <xs:documentation>Specification at partner link name overrides
 specification for a port type</xs:documentation>
 </xs:annotation>
 <xs:element name="name" type="tns:nameType" minOccurs="0"
 maxOccurs="unbounded"/>
 <xs:element name="portType" type="xs:QName" minOccurs="0"
 maxOccurs="unbounded"/>
 </xs:sequence>
 <xs:attribute name="faultPolicy" type="tns:nameType" use="required"/>
 </xs:complexType>

 <xs:complexType name="componentType">
 <xs:annotation>
 <xs:documentation>Binding for a component </xs:documentation>
 </xs:annotation>
 <xs:sequence>
 <xs:element name="name" type="tns:nameType" minOccurs="0"
 maxOccurs="unbounded"/>
 </xs:sequence>
 <xs:attribute name="faultPolicy" type="tns:nameType" use="required"/>
 </xs:complexType>
 <xs:complexType name="compositeType">
 <xs:annotation>
 <xs:documentation>Binding for the entire composite</xs:documentation>
 </xs:annotation>
 <xs:attribute name="faultPolicy" type="tns:nameType" use="required"/>
 </xs:complexType>
</xs:schema>

Chapter 22
Error Handling XML Schema Definition Files

22-17

23
Resequencing in Oracle Mediator

This chapter describes message resequencing concepts in Oracle Mediator, and provides
instructions for configuring standard resequencing, first-in/first-out resequencing, and best
effort resequencing.
This chapter includes the following sections:

• Introduction to the Resequencer

• Resequencing Order

• Configuring the Resequencer

23.1 Introduction to the Resequencer
The resequencer in Mediator rearranges a stream of related but out-of-sequence messages
into a sequential order. When incoming messages arrive, they may be in a random order. The
resequencer orders the messages based on sequential or chronological information, and
then sends the messages to the target services in an orderly manner. The sequencing is
performed based on the sequencing strategy selected.

23.1.1 Groups and Sequence IDs
The resequencer works with two central concepts: groups and sequence IDs. The sequence
ID is an identifying part of the message, and messages are rearranged based on this
identifier. The messages arriving for resequencing are split into groups and the messages
within a group are sequenced according to the sequence ID. Sequencing within a group is
independent of the sequencing of messages in any other group. Groups in themselves are
not dependent on each other and can be processed independently of each other.

As an example, messages attached to certain groups arrive to a Mediator service component
in the following order:

msg9(a), msg8(b), msg7(a), msg6(c), msg5(a), msg4(b), msg3(c), msg2(b), msg1(a)

Table 23-1 shows how the Mediator sorts the messages into groups. The order of the
messages in each group depends on the type of resequencer used.

Table 23-1 Messages Sorted into Groups

Group c Group b Group a

msg6(c), msg3(c) msg8(b), msg4(b), msg2(b) msg9(a), msg7(a), msg5(a),
msg1(a)

All the groups are processed independently of each other and any error occurring in ones
group does not affect the processing of other groups.

23-1

23.1.2 Identification of Groups and Sequence IDs
Groups and sequence IDs are identified through XPath expressions in the message
payload and header. You specify XPath expressions that point to the elements in the
message payload on which grouping is done and on which sequencing is done.

In the message payload shown in Figure 23-1, CustomerId is the field on which to
base instance sequencing and Type is the field on which to base grouping.

Figure 23-1 Message Payload

Note:

Resequencing is not supported for synchronous operations.

23.2 Resequencing Order
Mediator can resequence the incoming messages in a user-specified order. This
implementation enables you to specify three types of resequencing orders:

• Standard Resequencer

• FIFO Resequencer

• Best Effort Resequencer

23.2.1 Standard Resequencer
The standard resequencer supports a standard resequencer pattern. The following
sections describe the standard resequencer and how it processes messages.

Chapter 23
Resequencing Order

23-2

23.2.1.1 Overview of the Standard Resequencer
The standard resequencer is useful for applications that use identifiers from a simple numeric
identifier sequence in their messages. The standard resequencer receives a stream of
messages that might not arrive in order; it then stores the out-of-sequence messages until a
complete sequence based on the sequence IDs is received. The in-sequence messages are
then processed asynchronously based on their sequence ID.

It is important to note that the messages to outbound services of the standard resequencer
Mediator service component are guaranteed to arrive in sequence.

23.2.1.2 Information Required for Standard Resequencing
When using the standard resequencer in Mediator, you must always specify a group XPath
expression and a sequence ID XPath expression. These specify where the Mediator
resequencer can find the group and the sequence ID in the messages. You must also supply
the sequence numbering in terms of the start sequence ID and the sequence ID incremental
delta. This numbering is used to form each group. In addition to the group, sequence ID, and
increment properties, you can also specify a timeout period, in seconds, to wait for the
expected messages.

The Mediator standard resequencer holds back messages in the Mediator resequencer
database until it can produce the right sequence for different groups. This situation means
that if for a given group, the message with a particular sequence ID does not arrive within the
timeout period, the subsequent messages for that group are held back forever. In such a
case, you must manually unlock the group through Oracle Enterprise Manager Fusion
Middleware Control and go to the next available message, skipping the pending message.

23.2.1.3 Example of the Standard Resequencer
Table 23-2 shows how groups are formed differently for two different values of the
incremental delta.

Table 23-2 Groups Formed Differently for Two Different Values

Start SequenceID Incremental
Delta

Group1 Group2 ... Groupn

1 1 1,2,3,4,5,... 1,2,3,4,5,... ... 1,2,3,4,5,...n

1 5 1,5,10,15,... 1,5,10,15,... ... 1,5,10,15,...

Note:

If the sequence numbering is different for various groups (for example, if the groups
do not have the same incremental delta or start sequence ID) and the messages do
not arrive in order, then you can use the best effort resequencer to rearrange the
messages.

Chapter 23
Resequencing Order

23-3

23.2.2 FIFO Resequencer
The FIFO resequencer supports a standard first in, first out (FIFO) pattern. The
following sections describe the FIFO resequencer and how it processes messages.

23.2.2.1 Overview of the FIFO Resequencer
The FIFO resequencer is useful for applications that need sequencing based on the
time the messages arrive to the Mediator. The FIFO resequencer receives a stream of
messages that are in order and processes them in sequence for each group based on
the arrival time of the messages.

It is important to note that the messages to outbound services of the Mediator acting
as a FIFO resequencer are guaranteed to arrive in order based on arrival time.
Therefore, the messages are delivered in the order they were stored in the
resequencer data store.

23.2.2.2 Information Required for FIFO Resequencing
When using the FIFO resequencer, you must always specify a group XPath
expression. However, you do not need to specify a sequence ID because the
messages are processed according to the time of arrival to the Mediator service
component that is configured for FIFO resequencing. The group XPath expression
specifies where the FIFO resequencer should find the group information in the
message to group the messages. No further configuration is needed for a FIFO
pattern.

23.2.2.3 Example of the FIFO Resequencer
Table 23-3 illustrates the behavior of the FIFO resequencer where msgX(Y,Z) indicates
that the message arrives as message number X to the Mediator service component
and the message contains sequenceID Y and group Z.

Table 23-3 FIFO Resequencer Behavior

Incoming Messages Sequenced Messages

msg12(4,c)

msg05(9,a)

msg02(7,a)

msg10(3,c)

msg10(3,a)

msg07(5,a)

msg06(1,c)

msg03(2,c)

msg12(4,c),msg10(3,c),msg06(1,c),msg03(2,c)

msg05(9,a), msg02(7,a), msg10(3,a), msg07(5,a)

As shown in Table 23-3, the messages are sequenced based on their time of arrival
and the sequenceID is not used for sequencing.

Chapter 23
Resequencing Order

23-4

Note:

When using the FIFO resequencer, use a single-threaded inbound adapter to avoid
unpredictable results. For example, when you use the file/FTP adapter, the
database adapter, or the AQ adapter in front of a Mediator service component that
is configured as a FIFO resequencer, configure the adapter for single-threaded
processing. Otherwise, unpredictable results occur because the arrival time of each
message is calculated when the message arrives to the Mediator service
component instead when it arrives to the adapter service.

23.2.3 Best Effort Resequencer
The Mediator resequencer supports a best effort pattern. The following sections describe the
best effort resequencer and how it processes messages.

23.2.3.1 Overview of the Best Effort Resequencer
The best effort pattern is useful for applications that produce a large number of messages in
a short period and cannot provide information to the resequencer about the identifier to use
for sequencing. Typically, the identifier used for sequencing in such scenarios is of a
dateTime type or numeric type. Using the dateTime field as the sequence ID XPath enables
you to control the sequencing. The messages are expected to be sent in sequence by the
applications, thus the date and time the messages are sent can be used for sequencing. The
Mediator makes the best effort to ensure that the messages are delivered in sequence.

The best effort resequencer can reorder messages based on no knowledge about the
increment of the sequence ID. This situation means that unlike the standard resequencer,
you do not need to define the increment of the sequence ID for the best effort resequencer in
advance. When the messages are processed, they are processed in sequence based on the
specified sequence ID and the messages that have arrived, whether a true sequence is
received. The sequence IDs are either numeric or dateTime. Therefore, sequencing occurs
on the numeric order or the dateTime order of the sequence IDs.

23.2.3.2 Best Effort Resequencer Message Selection Strategies
The best effort resequencer processes messages asynchronously based on one of two
message selection strategies: Maximum rows selected or time window. The messages
selected and processed at any one time are based either on the maximum number of rows
you specify or on a window of time in which they arrive.

23.2.3.2.1 Maximum Rows Selected

When the best effort resequencer is configured to use a maximum number of rows, it
performs the following steps whenever new messages are available in the resequencer
database:

1. The resequencer orders the messages according to the specified sequence ID (typically
a date and time stamp).

2. The resequencer locks and selects the number of messages equal to the value of the
maxRowsRetrieved parameter from the ordered messages above.

Chapter 23
Resequencing Order

23-5

3. The resequencer processes the selected messages one after another in its own
transaction in sequence.

23.2.3.2.2 Time Window

When the best effort resequencer is configured to use a time window instead of a
maximum number rows, the messages to select and process at one time are based on
a period you specify plus an optional buffer time. Each message belongs to a specific
time window, and messages that are part of one time window are processed
separately from messages belonging to a different time window.

In addition to the time window, you can specify a buffer time, which is an overlap
between two sequential time windows that allows messages that arrive a little late to
be associated with the first time window. By default, the buffer time is 10% of the time
window you specify.

When the best effort resequencer is configured to use a time window, groups are
processed in an iterative manner and messages are processed in the following steps:

1. The first message arrives and the time window begins.

2. The buffer is added to the time window, and processing begins after the buffer
time.

3. The resequencer retrieves the messages that arrived within the time window, and
identifies the maximum sequence ID (typically a date and time stamp) from all the
messages.

4. The resequencer retrieves any messages that arrive within the buffer time and that
have a sequence ID that is less than the maximum sequence ID identified above.

5. The resequencer sorts all messages retrieved in the above steps in ascending
order of the sequence IDs and processes the messages.

23.2.3.3 Best Effort Resequencer Message Delivery
It is important to note that the messages to outbound services of the Mediator service
component configured for best effort resequencing are not guaranteed to arrive in
order of a sequence ID. At any given time, a snapshot of the available messages is
taken and sequencing is performed only on those messages. Therefore, unlike a
standard resequencer, it is not guaranteed that a message with a lesser sequence ID
value is sent before a message that ha a greater sequence ID value but that arrived
earlier. Messages with a lesser sequence ID value that arrive later might be processed
in the following cycle when a snapshot of available messages is taken again and the
messages are reordered.

23.2.3.4 Information Required for Best Effort Resequencing
When using the best effort resequencer, you must specify a group XPath expression, a
sequence ID XPath expression, and the data type of the sequence ID (numeric or
dateTime). These specify where the resequencer should find the group and the
sequence ID in the messages and how to handle the sequence ID. In addition, you
must specify either a maximum number of rows to select for each resequencing batch
or a time window during which the messages included in one batch arrive.

Chapter 23
Resequencing Order

23-6

Unlike the standard resequencer, the best effort resequencer has no knowledge about how
the sequence is built. No further information is used by the best effort resequencer to perform
its responsibilities.

23.2.3.5 Example of Best Effort Resequencing Based on Maximum Rows
Table 23-4 illustrates the behavior of the best effort resequencer when it is configured to use
the maximum number of rows to determine which messages to process. In this example,
msgX(Y,Z) indicates that the message arrives as message number X to the Mediator service
component and the message contains sequenceID Y and group Z.

Table 23-4 Best Effort Resequencer Behavior Based on Maximum Rows

Group C Sequenced Messages

msg03(1,c)

msg06(2,c)

msg10(3,c)

msg12(4,c)

msg12(4,c),msg10(3,c),msg06(2,c),msg03(1,c)

Note:

For the best effort resequencer to work correctly, the messages must arrive in
sequence or nearly in sequence. Otherwise, they are not resequenced correctly. If
the messages do not arrive close together, set the value of the maxRowsRetrieved
parameter to 1 so the next message in the sequence has enough time to arrive and
be picked up by the next processing loop (and therefore be delivered in sequence).

23.2.3.6 Example of Best Effort Resequencing Based on a Time Window
Table 23-5 illustrates the behavior of the best effort resequencer when it is configured to
process messages based on the time period in which they arrive. In this example, the time
window is 10 minutes, the buffer is 10% (one minute), and msgX(Y) indicates that the
message arrives as message number X to the Mediator service component and the message
contains the sequence ID Y. The first message arrives at 2:00:00, which starts the time
window. The time window lasts until 2:10:00, but with the addition of the buffer time,
messages that arrived until 2:11:00 are processed.

Chapter 23
Resequencing Order

23-7

Table 23-5 Best Effort Resequencer Behavior Based on a Time Window

Group C
Message/Time

Sequenced Messages

msg01(04)/2:00:00

msg02(05)/2:00:20

msg03(01)/2:00:30

msg04(03)/2:00:50

msg05(07)/2:04:20

msg06(02)/2:04:45

msg07(13)/2:05:10

msg08(08)/2:05:40

msg09(06)/2:08:40

msg10(12)/2:09:20

msg11(10)/2:10:30

msg12(09)/2:10:40

msg13(14)/2:10:50

msg14(11)/2:13:00

msg03(01), msg06(02), msg04(03), msg01(04), msg02(05),
msg09(06), msg05(07), msg08(08), msg12(09), msg11(10),
msg10(12), msg07(13)

Note:

In the above example, the resequencer identified the maximum sequence ID
for the time window as 13 (from message 7). Message 13 arrived within the
buffer time, but has a sequence ID of 14. It is not processed with the original
group, but instead begins a new time window at its arrival time of 2:10:50.
Message 14 arrived too late and is included in the second time window.

23.3 Configuring the Resequencer
You can configure the resequencer using Oracle JDeveloper. This section describes
how to configure the resequencer in Oracle JDeveloper.

23.3.1 How to Specify the Resequencing Level
You can define resequencing at either the service component level or the operation
level. For Mediator service components with only one operation, configuring
resequencing at the operation or service component level results in the same
behavior. For Mediator service components having multiple operations, specifying the
resequencing at the service component level applies the same resequencing rules to
all the operations, and messages arriving at any operation are resequenced. By
default, the resequencing level is operations.

To specify the resequencing level:

• On the Mediator Editor, select the resequencing level from the Resequence Level
dropdown list, as shown in Figure 23-2.

Chapter 23
Configuring the Resequencer

23-8

Figure 23-2 Mediator Editor with Resequence Level Field

If you choose component, the Resequence field under each operation no longer
appears and the Resequence Mode field appears under the Resequence Level field so
you can set the resequencing mode for the service component. By default, the
resequencing mode is set to off.

When you select a resequencing mode, the Resequence Options box appears under
the service component or operation, as shown in Figure 23-3. If the Resequence Mode
field for an operation is set to off, the Resequence Options box disappears.

Figure 23-3 Mediator Editor with Resequence Options Section

The options in the Resequence Options section change depending on the resequencing
mode you select.

23.3.2 How to Configure the Resequencing Strategy
This section provides instructions on how to configure the three different types of
resequencing strategies.

23.3.2.1 To configure a standard resequencer:
1. Set the resequence level as described in How to Specify the Resequencing Level.

2. On the Mediator Editor under either the Mediator component or the operation you want to
configure, select Standard from the Resequence Mode dropdown list.

The Resequence Options box appears and includes the options for the standard
resequencer, as shown in Figure 23-4.

Chapter 23
Configuring the Resequencer

23-9

Figure 23-4 Oracle Mediator with Resequence Mode set to Standard

3. Fill in the fields listed inTable 23-6.

Note:

To specify values for the Group and ID fields, click the Invoke
Expression Builder button to the right of each field. This launches the
Expression Builder, which provides graphical assistance in creating field
expressions and adding functions.

Table 23-6 Standard Resequencing Options

Field Name Description Default Value Mandatory

Group The XPath that points to the field in the
incoming message on which grouping is
done.

component_na
me-operation

N

ID The XPath that points to the field in the
incoming message on which resequencing
is done.

N/A Y

Timeout The time period in seconds to wait for an
expected message. The resequencer locks
the group as timed-out if a time out occurs.

01 N

Start The starting number of the ID sequence. 1 N

Increment The increment of the ID sequence. 1 N

1 This default value means that the timeout never happens for a group by default.

23.3.2.2 To configure a FIFO resequencer:
1. Set the resequence level as described in How to Specify the Resequencing Level.

2. On the Mediator Editor under either the Oracle Mediator component or the
operation you want to configure, select FIFO from the Resequence Mode
dropdown list.

The Resequence Options box appears and includes the option for the standard
resequencer, as shown in Figure 23-5.

Figure 23-5 Oracle Mediator with Resequence Mode set to FIFO

3. In the Group field, enter the XPath expression pointing to the field in the incoming
message on which grouping is performed.

Chapter 23
Configuring the Resequencer

23-10

23.3.2.3 To configure a best effort resequencer:
1. Set the resequence level as described in How to Specify the Resequencing Level.

2. On the Mediator Editor under either the Mediator component or the operation you want to
configure, select Best Effort from the Resequence Mode dropdown list.

The Resequence Options box appears and includes the option for the standard
resequencer, as shown in Figure 23-6.

Figure 23-6 Oracle Mediator with Resequence Mode set to Best Effort

3. Fill in the fields listed in Table 23-7 to configure the best effort resequencer.

Note:

You can specify either a maximum number of rows to process at one time or a
time window for the messages. You cannot specify both. You must set one
control to zero for the other control to be enabled.

4. If needed, you can change the percent of the time window that is added as a buffer. You
configure the buffer using the Oracle Enterprise Manager Fusion Middleware Control.

For instructions, see “Configuring Resequenced Messages" in the Administering Oracle
SOA Suite and Oracle Business Process Management Suite.

Table 23-7 Best Effort Resequencing Options

Field Name Description Default Value Mandatory

Group The XPath that points to the field in the
incoming message on which grouping is
performed.

component_na
me-operation

N

ID The XPath that points to the field in the
incoming message that contains the ID on
which resequencing is performed.

N/A Y

Datatype The data type of the sequence ID. The
ordering process is based on the data type.
Supported values are datetime and numeric.

Numeric Y

Max Rows Number of in-sequence messages that the
resequencer should pick from the data store at
a time.

You must specify a time window or the
maximum rows, but not both. You must set one
control to zero for the other control to be
enabled.

5 N

Chapter 23
Configuring the Resequencer

23-11

Table 23-7 (Cont.) Best Effort Resequencing Options

Field Name Description Default Value Mandatory

Time Window The length of time in minutes to wait after a
message arrives to select messages from the
data store for resequencing.

You must specify a time window or the
maximum rows, but not both. You must set one
control to zero for the other control to be
enabled.

0 N

Chapter 23
Configuring the Resequencer

23-12

24
Understanding Message Exchange Patterns
of an Oracle Mediator

This chapter describes common message exchange patterns between an Oracle Mediator
service component and other applications.
This chapter includes the following sections:

• One-way Message Exchange Patterns

• Request-Reply Message Exchange Patterns

• Request-Reply-Fault Message Exchange Patterns

• Request-Callback Message Exchange Patterns

• Request-Reply-Callback Message Exchange Patterns

• Request-Reply-Fault-Callback Message Exchange Patterns

Note:

The following exchange patterns show the default handling of responses, faults,
and callbacks by Oracle JDeveloper when a routing rule is created. Keep in mind
the following points for all cases:

• When a response, fault, or callback is sent back to the caller, it is also possible
to route the same message to a different target service or event by clicking the
button next to the target and selecting a different target.

• When the caller of the Mediator expects a response, one or more routing rules
may route the request to a target that does not return a response, but there
should be at least one sequential routing rule that returns a response.

• When there are multiple routing rules in a request-response pattern with
multiple rules sending a response back to the initial caller, the first response
that is received is the one delivered to the caller. The other responses are
ignored. Thus, the routing rules that send the response should precede other
routing rules that forward the response (if any).

24.1 One-way Message Exchange Patterns
In a one-way interaction, the Mediator is invoked, but it does not send a response back to the
caller. Depending on the type of routing rule target, the responses, faults, and callbacks are
handled as shown in Table 24-1:

24-1

Note:

Event subscriptions follow the same exchange pattern as one-way
interactions.

Table 24-1 Response When Mediator's WSDL Is a One-way Interaction

Routing Rule Target Type Response

Request No response.

Request Response Response is forwarded to another target or event.

Request Response Fault Response and fault are forwarded to another target or event.

Request Callback Callback is forwarded to another target or event.

Request Response Callback Response and callback are forwarded to another target or event.

Request Response Fault
Callback

Response, fault, and callback are forwarded to another target or
event.

Figure 24-1 illustrates the one-way message exchange pattern.

Figure 24-1 One-way Message Exchange Pattern

24.1.1 The one.way.returns.fault Property
The one.way.returns.fault property controls how faults and one-way messages are
handled for one-way interface SOAP calls. You can add this property to the service
binding component of the web service section for one-way web services in the
composite.xml file. This property is not applicable to references. It is applicable only to
services and only to the binding.ws binding type. Table 24-2 provides more details on
this property.

Chapter 24
One-way Message Exchange Patterns

24-2

Table 24-2 one.way.returns.fault Property

If one.way.returns.fault Is... Then...

Set to true:

. . .
<service name="Mediator1_2"
 ui:wsdlLocation="ReadFile.wsdl">
 <interface.wsdl
 interface="http://xmlns.oracle.com/pcbpel/adapter/file
 /LocalSandbox/Project1/ReadFile%2F#wsdl.interface(Read_
ptt)"/>
 <binding.ws
 port="http://xmlns.oracle.com/pcbpel/adapter/file
/LocalSandbox/Project1/ReadFile%2F#wsdl.endpoint
(Mediator1/Read_pt)">
 <property name="one.way.returns.fault" type="xs:string"
many="false"
 override="may">true</property>
 </binding.ws>
</service>
. . .

Any fault that occurs
during downstream
processing returns a
SOAP fault to the client
and an HTTP response
code of 500. (The same
behavior as 11g Release
1.)

Set to false:

. . .
<service name="Mediator1_2"
 ui:wsdlLocation="ReadFile.wsdl">
 <interface.wsdl
 interface="http://xmlns.oracle.com/pcbpel/adapter/file/
Local Sandbox/Project1/ReadFile%2F#wsdl.interface(Read_
ptt)"/>
 <binding.ws
port="http://xmlns.oracle.com/pcbpel/adapter/file/LocalSan
dbox/Project1/ReadFile%2F#wsdl.endpoint(Mediator1/Read_
pt)">
 <property name="one.way.returns.fault"
 type="xs:string" many="false"
 override="may">false</property>
 </binding.ws>
 </service>
. . .

Any fault that occurs
during downstream
processing returns only an
HTTP response code of
500. No SOAP fault is
returned to the client.

Not set (the default case) Any fault that occurs
during downstream
processing returns a
SOAP fault to the client
and an HTTP response
code of 500. (The same
behavior as 11g Release
1.)

24.1.1.1 To add the one.way.returns.fault property:
1. In the SOA Composite Editor, select the service binding component to which you want to

add the one.way.returns.fault property.

2. Go to the Property Inspector section in the lower right part of the editor.

Chapter 24
One-way Message Exchange Patterns

24-3

3. In the Binding Properties section, click the Add icon.

The Create Property dialog is displayed.

4. In the Name field, enter one.way.returns.fault.

5. In the Value field, enter true or false.

6. Click OK.

24.2 Request-Reply Message Exchange Patterns
In a request-reply interaction, the Mediator is invoked and sends a reply to the caller.
Depending on the type of routing rule target, the responses, faults, and callbacks are
handled as shown in Table 24-3:

Table 24-3 Response When Mediator's WSDL Is a Request Reply

Routing Rule Target Type Response

Request There is no response from the target, but there should be at least
one sequential routing rule with a request-response service.

Request Response The response is sent back to the caller. The response can be
forwarded to another target or event, but there should be at least
one sequential routing rule that returns a response back to the
caller.

Request Response Fault The response is sent back to the caller. The fault is forwarded to
another target or event.

Request Callback There is no response from the target, but there should be at least
one sequential routing rule with a request-response service. The
callback is forwarded to another target or event.

Request Response Callback The response is sent back to the caller. The callback is
forwarded to another target or event.

Request Response Fault
Callback

The response is sent back to the caller. The callback and fault
are forwarded to another target or event.

Figure 24-2 illustrates the request-reply message exchange pattern.

Chapter 24
Request-Reply Message Exchange Patterns

24-4

Figure 24-2 Request-Reply Message Exchange Pattern

24.3 Request-Reply-Fault Message Exchange Patterns
In a request-reply-fault interaction, the Mediator is invoked and sends a reply and one or
more faults back to the caller. Depending on the type of routing rule target, the responses,
faults, and callbacks are handled as shown in Table 24-4:

Table 24-4 Response When Mediator's WSDL Is a Request Reply Fault

Routing Rule Target Type Response

Request There should be at least one sequential routing rule with a request-
response-fault service. Mediator returns null when there is no
response to be sent.

Request Response The response is sent back to the caller. Any exception in Mediator
message processing may result in a fault.

Request Response Fault The response and fault are sent back to the caller. Any exception in
Mediator message processing may result in a fault.

Request Callback There is no response from the target, but there should be at least one
sequential routing rule with a request-response service. Mediator
returns null when there is no response to be sent. The callback is
forwarded to another target or event.

Request Response Callback The response is sent back to the caller. Any exception in Mediator
message processing may result in a fault.

Request Response Fault
Callback

The response and fault are sent back to the caller. Any exception in
Mediator message processing may result in a fault.

Figure 24-3 illustrates the request-reply-fault message exchange pattern.

Chapter 24
Request-Reply-Fault Message Exchange Patterns

24-5

Figure 24-3 Request-Reply-Fault Message Exchange Pattern

24.4 Request-Callback Message Exchange Patterns
In a request-callback interaction, the Mediator is invoked and may send an
asynchronous reply to the caller. Depending on the type of routing rule target, the
responses, faults, and callbacks are handled as shown in Table 24-5:

Table 24-5 Response When Mediator's WSDL Is a Request Callback

WSDL of the Routing Rule
Target

Response

Request There should be at least one sequential routing rule with a
request-callback service. No callback is sent to the caller if there
is no routing rule with a defined callback.

Request Response The response is sent back to the caller, as a callback, in a
separate thread. You can create additional routing rules to
forward the response to another target or event.

Request Response Fault The response is sent back to the caller, as a callback, in a
separate thread. The fault is forwarded to another target or
event. As above, you can create additional routing rules to
forward the response to another target or event.

Request Callback The callback is sent back to the caller.

Request Response Callback The callback is sent back to the caller, and the response is
forwarded to another target or event.

Request Response Fault
Callback

The callback is sent back to the caller. The response and fault
are forwarded to another target or event.

Figure 24-4 illustrates the request-callback message exchange pattern.

Chapter 24
Request-Callback Message Exchange Patterns

24-6

Figure 24-4 Request-Callback Message Exchange Pattern

24.5 Request-Reply-Callback Message Exchange Patterns
In a request-reply-callback interaction, the Mediator is invoked and sends a response and an
asynchronous reply to the initial caller. Depending on the type of routing rule target, the
responses, faults, and callbacks are handled as shown in Table 24-6:

Table 24-6 Response When Mediator's WSDL Is a Request Response Callback

Routing Rule Target Type Response

Request There should be at least one sequential routing rule that returns a
response. No callback is sent to the caller if there is no routing rule
with a defined callback.

Request Response There should be at least one sequential routing rule that returns a
response. No callback is sent if there is no routing rule with a defined
callback.

Request Response Fault There should be at least one sequential routing rule that returns a
response. No callback is sent to the caller if there is no routing rule
with a defined callback. The fault is forwarded to another target or
event.

Request Callback There should be at least one sequential routing rule that returns a
response. Mediator returns null when there is no response to be
sent.

Request Response Callback The response and callback are sent back to the caller.

Request Response Fault
Callback

The response and callback are sent back to the caller. The fault is
forwarded to another target or event.

Figure 24-5 illustrates the request-reply-callback message exchange pattern.

Chapter 24
Request-Reply-Callback Message Exchange Patterns

24-7

Figure 24-5 Request-Reply-Callback Message Exchange Pattern

24.6 Request-Reply-Fault-Callback Message Exchange
Patterns

In a request-reply-fault-callback interaction, the Mediator is invoked and sends a
response, an asynchronous reply, and one or more fault types to the initial caller.
Depending on the type of routing rule target, the responses, faults, and callbacks are
handled as shown in Table 24-7:

Table 24-7 Response to a Request Response Fault Callback Mediator

WSDL of the Routing Rule
Target

Response

Request There should be at least one sequential routing rule with a
request-callback service and at least one sequential routing rule
that returns a response. No callback or response is sent unless
the required routing rules are defined.

Request Response There should be at least one sequential routing rule with a
request-callback service and at least one sequential routing rule
that returns a response. No callback or response is sent unless
the required routing rules are defined.

Request Response Fault There should be at least one sequential routing rule with a
request-callback service and at least one sequential routing rule
that returns a response. No callback or response is sent unless
the required routing rules are defined.

Request Callback There should be at least one sequential routing rule that returns
a response. Mediator returns null when there is no response to
be sent.

Chapter 24
Request-Reply-Fault-Callback Message Exchange Patterns

24-8

Table 24-7 (Cont.) Response to a Request Response Fault Callback Mediator

WSDL of the Routing Rule
Target

Response

Request Response Callback The response and callback are sent back to the caller. Any
exception in Mediator message processing may result in a fault.

Request Response Fault
Callback

The response, fault, and callback are sent back to the caller.

Figure 24-6 illustrates the request-reply-fault-callback message exchange pattern.

Figure 24-6 Request-Reply-Fault-Callback Message Exchange Pattern

Chapter 24
Request-Reply-Fault-Callback Message Exchange Patterns

24-9

Part IV
Using the Business Rules Service Component

Learn how to use the business rules service component.

• Getting Started with Oracle Business Rules

• Using Declarative Components and Task Flows

25
Getting Started with Oracle Business Rules

Learn how to use a business rule service component to integrate a SOA composite
application with Oracle Business Rules. A business rule service component is also called a
decision component. You can add business rules as part of a SOA composite application or
as part of a BPEL process.

• Introduction to the Business Rule Service Component

• Overview of Rules Designer Editor Environment

• Introduction to Creating and Editing Business Rules

• Adding Business Rules to a BPEL Process

• Adding Business Rules to a SOA Composite Application

• Running Business Rules in a Composite Application

• Using Business Rules with Oracle ADF Business Components Fact Types

For more examples of using Oracle Business Rules, see Designing Business Rules with
Oracle Business Process Management.

Note that some screen shots may reflect a previous version, however, the content is
applicable.

25.1 Introduction to the Business Rule Service Component
A decision component, also called a business rule service component, supports use of
Oracle Business Rules in a SOA composite application.

Decision components support the following SOA composite usage:

• A decision component can be used within a SOA composite and wired to a BPEL
component.

• A decision component can be used within a SOA composite and used directly to run
business rules.

• A decision component can be used with the dynamic routing capability of Mediator.

For more information, see Creating Routing Rules .

• A decision component can be used with the Advanced Routing Rules in Human
Workflow.

For more information, see Associating Human Tasks with BPEL Processes.

25.1.1 Integrating BPEL Processes, Business Rules, and Human Tasks
You can create a SOA composite application that includes BPEL process, business rule, and
human task service components. These components are complementary technologies. BPEL
processes focus on the orchestration of systems, services, and people. Business rules focus
on decision making and policies. Human tasks enable you to model a workflow that describes
the tasks for users or groups to perform as part of an end-to-end business process flow.

25-1

Some examples of where business rules can be used include:

• Dynamic processing

Rules can perform intelligent routing within the business process based on service
level agreements or other guidelines. For example, if the customer requires a
response within one day, send a loan application to the QuickLoan loan agency
only. If the customer can wait longer, then route the request to three different loan
agencies.

• Externalizing business rules in the process

There are typically many conditions that must be evaluated as part of a business
process. However, the parameters to these conditions can be changed
independently of the process. For example, you provide loans only to customers
with a credit score of at least 650. This value may be changed dynamically based
on new guidelines set by business analysts.

• Data validation and constraint checks

Rules can validate input data or apply additional constraints on requests. For
example, a new customer request must always be accompanied with an
employment verification letter and bank account details.

• Human task routing

Rules are frequently used for human tasks in the business process:

– Policy-based task assignments dispatch tasks to specific roles or users. For
example, a process that handles incoming requests from a portal can route
loan requests and insurance quotes to a different set of roles.

– Load balancing of tasks among users. When a task is assigned to a set of
users or a role, each user in that role acquires a set of tasks and acts on them
in a specified time. For new incoming tasks, policies may be applied to set
priorities on the task and put them in specific user queues. For example, a
specific loan agent is assigned a maximum of 10 loans at any time.

For more information about creating business rules in the Human Task editor of a
human task component, see How to Specify Advanced Task Routing Using Business
Rules.

25.2 Overview of Rules Designer Editor Environment
You can create a business rules service component in the SOA composite application
of Oracle JDeveloper and then design it by using the Business Rules Designer, which
is displayed when you double-click a business rule in the SOA Composite Editor.

The Business Rules Designer consists of the following main sections shown in
Figure 25-1. These sections allow you to work with business rules in Oracle
JDeveloper.

Chapter 25
Overview of Rules Designer Editor Environment

25-2

Figure 25-1 Rules Designer in Oracle JDeveloper

Note that a SOA installation does not have Verbal Rules or Business Phrases. This is BPM
functionality.

25.2.1 Applications Window
The Applications window displays the files in the project. Each project can only contain one
composite. But each composite can have multiple components of either the same type or
different types (Business Rules, BPEL process, Oracle Mediator, and human workflow).

As you design business rules, additional files, folders, and elements can appear in the
Applications window.

25.2.2 Rules Designer Window
The Rules Designer window provides a visual view of the selected dictionary component.
You use the Rules Designer navigation tabs to select different parts of the dictionary with
which to work. The rules designer window displays when you perform one of the following
actions:

• In a composite, double-click a Business Rule component.

• Double-click the Business Rule component in the SOA Composite Editor.

• In a BPEL process, double-click a business rule.

Chapter 25
Overview of Rules Designer Editor Environment

25-3

• In the Applications window, double-click a business rules dictionary file (a file with
the .rules extension).

• Click the Design tab with a .rules file selected.

Table 25-1 describes where you can find information about working with a dictionary
with Rules Designer.

Table 25-1 Rules Designer Navigation Areas Descriptions

Rules Designer
Navigation Tab

Description

Facts olink:ASRUG243Facts are the objects that rules reason on.

Functions olink:ASRUG296A function, in Oracle Business Rules, refers to the
standard mathematical functions.

Globals olink:ASRUG277A global, in Oracle Business Rules, is similar to a
public static variable in Java.

Value Sets olink:ASRUG243A Value Set puts constraints on values or ranges
of values for selection in a decision table.

Links olink:ASRUG271Links are used to link to a dictionary in the same
application or in another application.

Decision Functions olink:ASRUG99955A decision Function is a function that is
configured declaratively. It can be invoked by other components
(BPEL, Task) to reason on inputs based on configured rulesets to
arrive at outputs.

Translations This helps you localize the rules and their artifacts.

Rulesets with Rules and
Decision Tables

A ruleset provides a unit of execution for rules and for decision
tables. A decision table is a set of rules written in tabular form.
Decision Tables provides additional functionality for rules that are
grouped in the table (conflicts, completeness, and so on.).

For more information and descriptions for the Rules Designer navigation areas, see
Designing Business Rules with Oracle Business Process Management.

25.2.3 Structure Window
The Structure window offers a structural view of the data in the Business Rule
dictionary currently selected in the Rules Designer window. You can perform a variety
of tasks from this section, by selecting an element and right-clicking the element,
including:

• Managing (creating, editing, refreshing, and deleting) elements such as facts,
functions, globals, value sets, dictionary links, and decision functions

• Accessing rule sets, rules, and Decision Tables

Figure 25-2 shows the Structure window.

Chapter 25
Overview of Rules Designer Editor Environment

25-4

Figure 25-2 Structure Window with Rules Designer Dictionary

25.2.4 Business Rule Validation Log Window
Rules Designer displays the status of dictionary validation in the business rule validation log,
as shown in Figure 25-3.

When a dictionary is invalid, Rules Designer produces a list of warning messages and lists
the associated dictionary objects that you can use to locate the dictionary object and to
correct the problem. You can safely ignore the validation warnings that you see when you
create rules using Rules Designer. The validation warnings are removed as you create the
rules, but are shown during the intermediate steps. To test or deploy rules, the associated
dictionary must not display warnings.

For more information on business rules validation, see Designing Business Rules with Oracle
Business Process Management.

Figure 25-3 Rules Designer Business Rule Validation Log

25.3 Introduction to Creating and Editing Business Rules
Learn how to get started with business rules and provides a brief introduction to the main
sections of Oracle JDeveloper that you use to design business rules.

25.3.1 How to Create Business Rules Components
You can add Business Rule components using the SOA Composite Editor.

Chapter 25
Introduction to Creating and Editing Business Rules

25-5

To create a Business Rule component:

1. Follow the instructions in Table 25-2 to start Oracle JDeveloper.

Table 25-2 Starting Oracle JDeveloper

To Start... On Windows... On UNIX...

Oracle JDeveloper Click
JDev_Oracle_Home\JDev\bin\jde
v.exe or create a shortcut

$ORACLE_HOME/jdev/bin/jdev

2. Create a Business Rule service component through one of the following methods:

As a service component in an existing SOA composite application, drag a
Business Rule service component from the Components window into the SOA
Composite Editor

In a new application:

a. From the Applications window, select File > New > Applications > SOA
Application.

This starts the Create SOA Application wizard.

b. In the Name your application page, enter an application name in the Name
field.

c. In the Directory field, enter a directory path in which to create the SOA
composite application and project.

d. Click Next.

e. In the Name your project page, enter a unique project name in the Project
Name field. The project name must be unique across SOA composite
applications. This is because the uniqueness of a composite is determined by
its project name. For example, do not perform the actions described in
Table 25-3.

Table 25-3 Restrictions on Naming a SOA Project

Create an Application Named... With a SOA Project Named...

Application1 Project1
Application2 Project1

During deployment, the second deployed project (composite) overwrites the
first deployed project (composite).

f. Click Next.

g. In the Configure SOA settings page, select Composite with Business Rule.

h. Click Finish.

Each method causes the Create Business Rules dialog to appear.

3. Provide the required details. For more information on providing Inputs and Outputs
and on using the Import Dictionary option with this dialog, see Designing
Business Rules with Oracle Business Process Management.

Chapter 25
Introduction to Creating and Editing Business Rules

25-6

4. Click OK.

25.3.2 Working with Business Rules in Rules Designer
When you are working with business rules Oracle JDeveloper displays Rules Designer.

25.4 Adding Business Rules to a BPEL Process
You can use a decision component, also called a business rule service component, to
execute business rules in a BPEL process.

You add business rules to a BPEL process using a Business Rule component. When you
add a business rule component to a BPEL process, you must include input and output
variables to provide input to the rules and obtain results back from the business rules.

A business rule component enables you to execute business rules and make business
decisions based on the rules. To create a business rule component, also called a decision
component, you drag-and-drop a Business Rule from the Components window into the
BPEL process.

To add a business rule to a BPEL process:

1. Create a BPEL process service component. For more information, see Introduction to the
BPEL Process Service Component.

2. Expand the BPEL process by double-clicking the process item. For example, expand the
BPEL process to view receiveInput and callbackClient as shown in Figure 25-4.

Figure 25-4 Adding A Business Rule to a BPEL Process

3. Select Business Rule from the SOA Components section of the Components window
and drag-and-drop a Business Rule into the position where the business rules are
needed. For example, drag-and-drop a Business Rule between receiveInput and
callbackClient, as shown in Figure 25-5.

Chapter 25
Adding Business Rules to a BPEL Process

25-7

Figure 25-5 Drag-and-drop a Business Rule into a BPEL Process

4. Oracle JDeveloper displays the business rule in the diagram. Double-click the
business rule component to display the Rule dialog box.

The Rule dialog box provides tabs, such as General, Dictionary, Correlation Sets,
and so on, where you can select an existing Oracle Business Rules dictionary or
enter the name of a new dictionary to create. Under the General tab, in the Name
field enter a name for the business rule. For example, enter GetCreditRating, as
shown in Figure 25-6. If you previously created a dictionary, under the Dictionary
tab, in the Dictionary field, select an existing dictionary.

Chapter 25
Adding Business Rules to a BPEL Process

25-8

Figure 25-6 Business Rule Added to Auto Loan BPEL Process

5. In the Business Rule area for the Business Rule Dictionary, click the Create
Dictionary icon to display the Create Business Rules dialog.

6. In the Create Business Rules dialog you do the following:

• Specify a name for the Oracle Business Rules dictionary and a package name.

• Specify the input and output data elements for the business rule. For example, for a
sample decision component named GetCreditRating, the input is a rating request
document. The output is generated when you run the business rules, and for this
example is a rating document. For example, in BPEL you can create two new
variables, RatingRequest and Rating that carry the input and output data for the
GetCreditRating rules.

Enter a name for the Oracle Business Rules dictionary. For example, enter
GetCreditRating, as shown in Figure 25-7.

Chapter 25
Adding Business Rules to a BPEL Process

25-9

Figure 25-7 Adding GetCreditRating Business Rule Dictionary

25.4.1 How to Add Inputs for Business Rule
To add inputs for business rule:

1. In the Create Business Rules dialog, from the menu next to the Add icon select
Add Input Variable... to create the input variable.

This displays the Add Input Variable dialog box.

2. In the Add Input Variable dialog box, expand the Process folder and select the
Variables folder immediately inside the Process.

3. Right-click the Variables folder, and from the list select Create Variable... as
shown in Figure 25-8.

Chapter 25
Adding Business Rules to a BPEL Process

25-10

Figure 25-8 Add Input Variable

This displays the Create Variable dialog box.

4. In the Create Variable dialog box, in the Name field enter a value. For example, enter
RatingRequest as shown in Figure 25-9.

Figure 25-9 Create Variable Dialog

5. In the Create Variable Type area click the Browse Elements icon. Use the navigator to
locate the schema element type for the input variable. For example, select the
ratingrequest type. Add any needed types using the Type Chooser.

6. Click the Import Schema File icon to import the schema. For example, import
CreditRatingTypes.xsd. Also import any other required schema for your application.

Chapter 25
Adding Business Rules to a BPEL Process

25-11

7. In the Type Chooser dialog, select ratingrequest and click OK.

8. In the Create Variable dialog, click OK.

9. In the Add Input Variable dialog, click OK.

25.4.2 How to Add Outputs for Business Rule
To add outputs for business rule:

1. In the Create Business Rules dialog, from the dropdown menu next to the Add
icon, select Add Output Variable.... This displays the Add Output Variable dialog.
Use this dialog to create an output variable. For example, create an output
variable for GetCreditRating in the same way you created the input variable.

2. In the Add Output Variable dialog select the scope by selecting the Variables
folder under Process.

3. Right-click and from the dropdown list select Create Variable.... This displays the
Create Variable dialog.

4. In the Create Variable dialog, in the Name field enter the output variable name.
For example enter Rating.

5. In the Create Variable dialog, in the Type area select the Browse elements icon
and use the Type Chooser dialog to enter the type for the output variable. For
example, expand the CreditRatingTypes.xsd and select the element type rating.

6. In the Type Chooser dialog, click OK.

7. In the Create Variable dialog, click OK.

8. In the Add Output Variable dialog, click OK.

This displays the Create Business Rules dialog, as shown in Figure 25-10.

Figure 25-10 Create Business Rules Dialog with Input and Output Variables

Chapter 25
Adding Business Rules to a BPEL Process

25-12

25.4.3 How to Set Options and Create Decision Service and Business Rule
Dictionary

To create decision service and business rules dictionary:

1. If you do not want to use the default service name, then select the Advanced tab and in
the Service Name field enter the service name. For example enter the service name
CreditRatingService.

2. Determine if the decision component is stateful or stateless with Reset Session. For
more information, see What You May Need to Know About Decision Component Stateful
Operation.

3. In the Create Business Rules dialog, click OK. Oracle JDeveloper creates the decision
component and the dictionary and displays Rules Designer, as shown in Figure 25-11.

Figure 25-11 Rules Designer Canvas Where You Work with Business Rules

For information on Rules Designer, see Designing Business Rules with Oracle Business
Process Management.

Chapter 25
Adding Business Rules to a BPEL Process

25-13

25.4.4 What Happens When You Add Business Rules to a BPEL
Process

When you add business rules to a BPEL process, Oracle JDeveloper creates a
decision component to control and run the business rules using the Business Rule
Service Engine.

A decision component consists of the following:

• Rules or Decision Tables that are evaluated using the Rules Engine. These are
defined using Rules Designer and stored in a business rules dictionary.

• A description of the facts required for specific rules to be evaluated and the
decision function to call. Each ruleset that contains rules or Decision Tables is
exposed as a service with facts that are input and output, and the name of an
Oracle Business Rules decision function. The facts are exposed through XSD
definitions when you define the inputs and outputs for the business rule. A
decision function is stored in an Oracle Business Rules dictionary. For more
information, see Designing Business Rules with Oracle Business Process
Management.

• A web service wraps the input, output, and the call to the underlying Business
Rule service engine.

This web service lets business processes assert and retract facts as part of the
process. In some cases, all facts can be asserted from the business process as
one unit. In other cases, the business process can incrementally assert facts and
eventually consult the rule engine for inferences. Therefore, the service supports
both stateless and stateful interactions.

You can create a variety of such decision components.

For more information, see Designing Business Rules with Oracle Business
Process Management.

25.4.5 What Happens When You Create a Business Rules Dictionary
After you create an application, a project, and a rules dictionary, the rules dictionary
appears in the structure pane in Oracle JDeveloper and Rules Designer opens in the
main canvas.

As part of the create Business Rule dialog you either select an existing dictionary or a
new rule dictionary is created with the following pre-loaded data:

• XML fact type model based on the input and output information of the Business
Rule.

• A Ruleset that must be completed by adding rules or Decision Tables. With an
existing dictionary, you use the import option to specify a dictionary that may
already contain the rules or Decision Tables.

• A service component with the input and output contract of the decision component.

• A decision component for the rule dictionary and wires to the BPEL process.

Chapter 25
Adding Business Rules to a BPEL Process

25-14

Note:

When you create inputs and outputs for a business rule, the XML fact type that is
created in the associated dictionary is named based on the schema types for the
inputs and outputs that you supply in the Create Business Rules dialog. When you
specify schema type for the input and the output, Rules Designer defines fact types
and aliases associated with your type selections for input and output. If you only
use a single type for both the input and the output, then the decision component
creates a single fact that is shown in the Rules Designer Facts tab. This fact
represents the fact type you specified and uses an alias name that is a
concatenation of both the input variable name and the output variable name. In
Rules Designer you can rename this alias if you do not like the default naming
scheme for the fact type.

25.4.6 What You May Need to Know About Invoking Business Rules in a
BPEL Process

When you add business rules to a BPEL process Oracle JDeveloper creates a decision
Service that supports calling Oracle Business Rules with the inputs you supply, and returning
the outputs with results. The decision service provides access to Oracle Business Rules
Engine at runtime as a web service. For more information, see Designing Business Rules
with Oracle Business Process Management.

25.4.7 What You May Need to Know About Decision Component Stateful
Operation

A decision component running in a business rules service engine supports either stateful or
stateless operation. The Reset Session check box in the Create Business Rules dialog
provides support for these two modes of operation.

By default the Reset Session check box is selected which indicates stateless operation.
Stateless operation means that, at runtime, the rule session is released after the decision
component invocation.

When Reset Session is unselected, the underlying Oracle Business Rules object is kept in
the memory of the business rules service engine at a separate location (so that it is not given
back to the Rule Session Pool when the operation is finished). A subsequent use of the
decision component re-uses the cached RuleSession object, with all its state information from
the callFunctionStateful invocation, and then releases it back to the Rule Session pool
after the callFunctionStateless operation is finished. Thus, when Reset Session is
unselected the rule session is saved for a subsequent request and a sequence of decision
service invocations from the same BPEL process should always end with a stateless
invocation.

25.5 Adding Business Rules to a SOA Composite Application
To work with Oracle Business Rules in a SOA composite application, you create an
application and add business rules.

Chapter 25
Adding Business Rules to a SOA Composite Application

25-15

The business rule service component enables you to integrate your SOA composite
application with business rules. This creates a business rule dictionary and enables
you to execute business rules and make business decisions based on the rules.

After creating a project in Oracle JDeveloper, you must create a Business Rule
Service component within the project. When you add a business rule you can create
input and output variables to provide input to the service component and to obtain
results from the service component.

To use business rules with Oracle JDeveloper, you do the following:

• Add a business rules service component

• Create input and output variables for the service component

• Create an Oracle Business Rules dictionary

25.5.1 How to Add Business Rules to a SOA Composite Application
To work with Oracle Business Rules in a SOA composite application you use Oracle
JDeveloper to create an application, a project, and then add a business rule
component.

To create a SOA application with business rules:

1. Create a SOA application and project. For more information, see How to Create a
SOA Application and Project. For a SOA composite using business rules, pick the
required technologies for your application. For example, you may need the
following for a SOA application with business rules: ADF Business Components,
Java, and XML. You move these items to the Selected area on the Project
Technologies tab.

2. In the Applications window, if the SOA composite editor is not showing, then in
your project expand SOA Content folder and double-click composite.xml to
launch the SOA composite editor.

3. From the Components window, drag-and-drop a Business Rule from the Service
Components area of the SOA menu to the Components lane of the SOA
composite editor, as shown in Figure 25-12.

Chapter 25
Adding Business Rules to a SOA Composite Application

25-16

Figure 25-12 Adding Business Rules to a SOA Composite Application

4. When you drag-and-drop a Business Rule, Oracle JDeveloper displays the Create
Business Rules dialog as shown in Figure 25-13.

Figure 25-13 Adding Business Rules to a SOA Composite and Creating a
Dictionary

25.5.1.1 How to Add Inputs to a Business Rule

To add inputs to a business rule:

1. In the Create Business Rules dialog box, from the menu next to the Add icon select
Input... to add input for the business rule. This displays the Type Chooser dialog.

Chapter 25
Adding Business Rules to a SOA Composite Application

25-17

2. In the Type Chooser dialog, add inputs. If the schema is available in the Project
Schema Files, skip to step 9 to select the appropriate schema.

3. Click the Import Schema File... icon. This brings up the Import Schema File
dialog.

4. In the Import Schema File dialog click Browse Resources to choose the XML
schema elements for the input. This displays the SOA Resource Browser dialog.

5. In the SOA Resource Browser dialog, navigate to find the schema for your
business rules input. For example, select the order.xsd schema file, and click OK.

6. In the Import Schema File dialog select Copy to Project, as shown in
Figure 25-14.

Figure 25-14 Importing Schema for Input to Business Rules

7. In the Import Schema File dialog, click OK.

8. In the Localize Files dialog, click OK.

9. Use the Type Chooser dialog navigator to locate and select the input from the
schema and click OK. For example, select the CustomerOrder element as the
input.

25.5.1.2 How to Add Output to a Business Rule

To add outputs to a business rule:

1. In the Create Business Rules dialog, from the dropdown menu next to the Add
icon select Output....

2. In the Type Chooser dialog, in a manner similar to adding an input add the output.
For example, add OrderApproval from the order.xsd and click OK.

3. This displays the Create Business Rules dialog, as shown in Figure 25-15.

Chapter 25
Adding Business Rules to a SOA Composite Application

25-18

Figure 25-15 Create Business Rules Dialog with Input and Output

25.5.1.3 How to Set Options and Create Decision Service and Business Rules
Dictionary

To create decision service and business rules dictionary:

1. In the Create Business Rules dialog, select Expose as Composite Service.

2. If you do not want to use the default service name, then select the Advanced tab and in
the Service Name field enter the service name.

3. In the Create Business Rules dialog, click OK. This creates the Business Rule
component, also called a decision component, and Oracle JDeveloper shows the
Business Rule component in the canvas workspace as shown in Figure 25-16.

Chapter 25
Adding Business Rules to a SOA Composite Application

25-19

Figure 25-16 Business Rule Component in SOA Composite

4. Double-click the decision component to open Rules Designer, as shown in
Figure 25-17. The validation log shows validation warnings for the input and output
facts. By working with Rules Designer to define rules or decision tables, you
remove these warning messages.

Figure 25-17 Rules Designer Showing New Dictionary for SOA Composite
Application

For information on Rules Designer, see Designing Business Rules with Oracle
Business Process Management.

Note that a SOA installation does not have Verbal Rules or Business Phrases. This is
BPM functionality.

Chapter 25
Adding Business Rules to a SOA Composite Application

25-20

25.5.2 How to Select and Modify a Decision Function in a Business Rule
Component

You can specify one or more decision functions as inputs for calling Oracle Business Rules
as a component in a composite application. For example, you can specify a particular
decision function as the input when multiple decision functions are available in an Oracle
Business Rules dictionary.

To specify a decision function in a composite application:

1. Add a decision function to the Oracle Business Rules dictionary. For more information,
see Designing Business Rules with Oracle Business Process Management.

2. Add a Business Rule component to the composite application. For more information, see
How to Add Business Rules to a SOA Composite Application.

3. Select a business rule component, as shown in Figure 25-18.

Figure 25-18 Selecting a Business Rule Component in a Composite Application

4. Select the decision function port of interest. For example, select the port for DF_2 as
shown in Figure 25-19.

Chapter 25
Adding Business Rules to a SOA Composite Application

25-21

Figure 25-19 Selecting a Decision Function Port in a Business Rule
Component

5. When you select the port, Oracle JDeveloper shows the port information in the
Property Inspector.

6. When you double-click the port, Oracle JDeveloper displays the Update Interface
dialog for the port as shown in Figure 25-20.

Figure 25-20 Update Interface Dialog for a Decision Function in a Business Rule Decision
Port

Chapter 25
Adding Business Rules to a SOA Composite Application

25-22

25.6 Running Business Rules in a Composite Application
You run business rules as part of a decision component within a SOA composite application.
The business rules are executed by the Business Rule Service Engine.

You can use Oracle Enterprise Manager Fusion Middleware Control to monitor the Business
Rule Service Engine and to test a SOA composite application that includes a decision
component. For more information, see Administering Oracle SOA Suite and Oracle Business
Process Management Suite.

25.6.1 What You May Need to Know About Testing a Standalone Decision
Service Component

To test a standalone decision service component by using Oracle Enterprise Manager Fusion
Middleware Control, you must provide the name of the decision service as the value of the
payload name field in the Test Web Service page as shown in Figure 25-21.

Figure 25-21 Invoking a Standalone Test Decision Service

'name' in payload should be the decision service name as can be seen in the sample .decs
file in Figure 25-22.

Chapter 25
Running Business Rules in a Composite Application

25-23

Figure 25-22 Sample .decs File

Without the decision service name, it is not possible to invoke the standalone decision
service with just the payload and endpoint details.

25.7 Using Business Rules with Oracle ADF Business
Components Fact Types

You can use Oracle ADF Business Components Fact Types and ActionTypes from the
Business Rules Service Engine. Typically, a decision component can be used within a
SOA composite and wired to a BPEL component and the Oracle Business Rules rules
act on XML types. The Business Rules Service Engine is called as a web service with
a payload containing instances of the XML schema types, and the service engine
returns a response similarly.

You can also use Oracle ADF Business Components Fact Types from a decision
component. Instead of loading the Oracle ADF Business Components Fact Type
instances and passing them to the Business Rules Service Engine, you call the
Business Rules Service Engine with configuration information describing how the
Oracle ADF Business Components view object rows can be loaded. Special Oracle
Business Rules decision functions in the DecisionPointDictionary and classes in the
Oracle Business Rules SDK Decision Point API then load the rows and assert Oracle
ADF Business Components fact type instances. When working with Oracle ADF
Business Components Fact Types, you write rules that use user-defined Java classes
which inherit from ActionType to affect action, such as modifying the Oracle ADF
Business Components fact type instances such that they update their underlying
database rows.

A decision component requires an XML document as input. The Oracle Business
Rules Decision Point dictionary provides an XML Fact Type called
SimpleDecisionPointInput that serves as this input. The primary key(s) of Oracle
ADF Business Components are passed to the business rule service component. The
business rule service component invokes a user-defined decision function which it

Chapter 25
Using Business Rules with Oracle ADF Business Components Fact Types

25-24

invokes to load the Oracle ADF Business Components view object instances, asserts them in
the rules engine, and then marshals the results in the following order:

1. DecisionPointDictionary.DecisionPoint_Preprocessing_Webservice Ruleset: The
preprocessing ruleset reads the business component from the database and asserts
them as facts.

2. User-defined rulesets: The user ruleset matches these facts and should assert facts that
extend ActionType to update the business component.

3. DecisionPointDictionary.DecisionPoint_Postprocessing_Webservice Ruleset: The actual
updating is performed by the postprocessing ruleset. Use of ActionTypes is optional.

For specific instructions on how to use Oracle ADF Business Components Fact Types and
ActionTypes from the Business Rules Service Engine, see the source code for Rules
Designer-specific samples available with the Oracle SOA Suite samples.

Chapter 25
Using Business Rules with Oracle ADF Business Components Fact Types

25-25

26
Using Declarative Components and Task
Flows

Learn how to use different Oracle Business Rules declarative components and task flows to
develop high-performance, interactive, and multitiered applications that are also easy to
maintain. It describes how to use the Oracle Business Rules Editor declarative component
and the Oracle Business Rules Dictionary Editor declarative component and task flow. It also
describes how to localize the ADF-based web application.

• Introduction to Declarative Components and Task Flows

• Introduction to the Oracle Business Rules Editor Declarative Component

• Introduction to the Oracle Business Rules Dictionary Editor Declarative Component

• Introduction to the Oracle Business Rules Dictionary Editor Task Flow

• Localizing the ADF-Based Web Application

• Working with Translations

26.1 Introduction to Declarative Components and Task Flows
Declarative components are reusable, composite user interface (UI) components that
comprise other existing Application Development Framework (ADF) Faces components.

Consider an application that contains multiple JSF pages. On a particular page, a set of
specific components is used in multiple parts of that page. In this scenario, if you make any
changes to any of the components in the set, you typically must replicate the changes in
multiple parts of the page. This approach makes it difficult to maintain the consistency of the
structure and layout of the page. However, by defining a declarative component that
comprises the given set of components, you can reuse that composite declarative component
in multiple places or pages. Declarative components, thereby, save time and ensure integrity
across pages because when you make any changes to the components, the JSF pages
using them automatically get updated.

ADF task flows are reusable components that provide a modular and transactional method in
specifying the control flow in an application. You can use a set of reusable task flows as an
alternative to representing an application as a single large JSF page flow, thereby providing
modularity. Each task flow contains a part of the entire navigational plan of the application.
The nodes in a task flow are called activities. Apart from navigation, task flow activities can
also call methods on managed beans or call another task flow without invoking any particular
page. This facilitates reuse because business logic can be invoked independently of the page
being displayed.

26.2 Introduction to the Oracle Business Rules Editor
Declarative Component

Get an overview of the Oracle Business Rules Editor declarative component.

26-1

Learn how to create and run an application using the Rules Editor component, and
then deploy the application. Also get an overview of the supported tags and the
localization process for the application.

26.2.1 Using the Oracle Business Rules Editor Component
The Oracle Business Rules Editor is a declarative component that can be embedded
in any ADF-based web application. The component renders the user interface for rules
editing and handles all events associated with rules editing. The Rules Editor uses the
Rules SDK2 API to create and edit rules.

Note:

You should not confuse the Rules Editor with the Rules Dictionary Editor.
The Rules Editor is used to edit rules inside a specified ruleset. In fact, the
Rules Editor is embedded within the Rules Dictionary Editor. For more
information about the Rules Dictionary Editor, see Introduction to the Oracle
Business Rules Dictionary Editor Declarative Component.

Using the Rules Editor, you can create, delete and edit the general rules, verbal rules,
and decision tables that are part of a single ruleset. You are required to specify a
RuleSetModel object, which is a wrapper around the Rules SDK ruleset object, as a
parameter to the Rules Editor component. If multiple rulesets are required to be
modified, multiple Rules Editor components must be instantiated, one for each ruleset.

The Rules Editor component performs the following functions:

• Creates, updates, and deletes:

– Rules in a ruleset, as shown in Figure 26-1.

– Simple tests or conditions in a rule, as shown in the IF area.

– Actions in a rule, as shown in the THEN area.

Figure 26-1 General Rules in a Ruleset

– Verbal rules, as shown in Figure 26-2.

Chapter 26
Introduction to the Oracle Business Rules Editor Declarative Component

26-2

Figure 26-2 Verbal Rules in a Ruleset

– Decision tables, as shown in Figure 26-3.

Figure 26-3 Decision Table

• Sets effective dates and priorities for rulesets and rules.

• Provides support for user-defined operators.

• Provides a Condition Browser pop-up to display the left or right value options, as shown
in Figure 26-4.

Figure 26-4 Condition Browser

• Provides a Date Browser for selecting date types.

• Provides a Right Operand browser to handle multiple right-hand side expressions.

Chapter 26
Introduction to the Oracle Business Rules Editor Declarative Component

26-3

• Provides support for nested rules.

• Provides the Properties browser for editing properties of a rule action, as shown in
Figure 26-5.

Figure 26-5 Properties Browser

• Provides an Expression Builder window to build custom expressions.

• Provides a Validation panel to manage error messages, as shown in Figure 26-6.

Figure 26-6 Validation Panel to Manage Error Messages

Note:

After all the edits are done, the component user is responsible for saving the
ruleset.

26.2.2 How to Create and Run a Sample Application by Using the
Rules Editor Component

This section lists the steps for creating and running a sample application by using the
Rules Editor component.

The prerequisite for using the Rules Editor component to create ADF-based web
applications is having a running installation of Oracle SOA Suite and Oracle
JDeveloper on your computer.

To create a sample application by using the Rules Editor:

1. Open Oracle JDeveloper.

2. From the File menu, select New.

3. Select ADF Fusion Web Application to create a new application as shown in
Figure 26-7.

Chapter 26
Introduction to the Oracle Business Rules Editor Declarative Component

26-4

Figure 26-7 Creating Fusion Web Application

4. Enter a name for the application in the Application Name field, for example,
useRulesDCApp, and click Next as shown in Figure 26-8.

Figure 26-8 Creating a Generic Application

5. Use the default for everything else.

6. Click Finish.

7. Right click ViewController project and select Project Properties.

Chapter 26
Introduction to the Oracle Business Rules Editor Declarative Component

26-5

8. Select Libraries and Classpath from the menu on the left.

9. a. Click the Add Library button.

b. Select Oracle Rules and Oracle Rules Dictionary Component from the
Extension List and click OK. This adds the Rules SDK and the Rules ADF
component tag libraries to the project as shown in Figure 26-9.

c. Click OK once more to come out of Project Properties.

Figure 26-9 Adding Library

Note:

If the 'Oracle Rules' and 'Oracle Rules Dictionary Component' do not
show up in the 'Extension' List, open a SOA/BPM project within
jDeveloper to load the required libraries.

10. Click Save All to save the project.

11. Check to make sure all the required tag libraries are added.

12. a. Right click ViewController project and select Project Properties.

b. Select JSP Tag Libraries from the menu on the left and check if all the tag
libraries are added Figure 26-10.

Chapter 26
Introduction to the Oracle Business Rules Editor Declarative Component

26-6

Figure 26-10 Checking the Required Tag Libraries

26.2.2.1 How to Create the RuleSetModel Object
The Rules Editor component requires a oracle.bpel.rulesdc.model.impl.RuleSetModel
object.

To create the RuleSetModel object:

1. Create a Java Class e.g. 'SomeBean.java' in your project.

2. Open Oracle JDeveloper.

3. From the File menu, select New and create a Java Class.

4. In SomeBean.java provide a method that returns the RuleSetModel object. You must
specify the location/path of the rules file.The following is a sample of the SomeBean.java
file:

package view;import java.io.BufferedReader;
import java.io.FileOutputStream;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.OutputStreamWriter;
import java.io.Serializable;

import java.net.MalformedURLException;
import java.net.URL;

import oracle.bpel.rulesdc.model.decisiontable.impl.DecisionTablePrefsImpl;
import oracle.bpel.rulesdc.model.decisiontable.interfaces.DecisionTablePrefs;
import oracle.bpel.rulesdc.model.impl.IfThenPreferencesImpl;
import oracle.bpel.rulesdc.model.impl.RuleSetModel;
import oracle.bpel.rulesdc.model.interfaces.IfThenPreferences;
import oracle.bpel.rulessharedutils.impl.RulesSharedUtils;

Chapter 26
Introduction to the Oracle Business Rules Editor Declarative Component

26-7

import oracle.rules.sdk2.decisionpoint.DecisionPointDictionaryFinder;
import oracle.rules.sdk2.dictionary.DictionaryFinder;
import oracle.rules.sdk2.dictionary.RuleDictionary;
import oracle.rules.sdk2.exception.SDKException;
import oracle.rules.sdk2.ruleset.RuleSet;
import oracle.rules.sdk2.ruleset.RuleSetTable;

public class SomeBean {
 //on windows
 private static final String RULES_FILE1 =
 "file:///D:/scratch/asuraj/system_MAIN/rules_files/ApprovalRules.rules";
 /*
 * on linux
 private static final String RULES_FILE1 =
 "file:////scratch/asuraj/backup/rules_files/ApprovalRules.rules";
 */
 private RuleSetModel ruleSetModel = null;

 private boolean viewOnly = true;
 private DecisionTablePrefs dtPrefs;

 private IfThenPreferences ifThenPrefs;

 public SomeBean() {
 super();
 }

 public RuleSetModel getRuleSetModel() {
 if (ruleSetModel != null)
 return ruleSetModel;
 ruleSetModel = new RuleSetModel(getRuleSet());
 System.out.println("ruleSetModel = " + ruleSetModel);
 return ruleSetModel;
 }

 public RuleSet getRuleSet() {

 RuleDictionary dict =
 openRulesDict(RULES_FILE1, new DecisionPointDictionaryFinder());
 if (dict == null)
 return null;

 RuleSetTable ruleSetTable = dict.getRuleSetTable();
 if (ruleSetTable == null || ruleSetTable.isEmpty())
 return null;

 return ruleSetTable.get(0);
 }

 public void saveDictionary() {

 RuleDictionary dict = null;
 String rulesFile = null;

 if (this.ruleSetModel == null)
 return;
 dict = this.ruleSetModel.getRuleSet().getDictionary();

 if (dict == null)

Chapter 26
Introduction to the Oracle Business Rules Editor Declarative Component

26-8

 return;

 if (dict.isModified())
 RulesSharedUtils.updateDictionary(dict);
 if (!dict.isTransactionInProgress())
 saveDictionary(dict, RULES_FILE1);
 }

 public void validate() {
 if (this.ruleSetModel == null)
 return;

 this.ruleSetModel.validate();
 }

 //utility methods

 public static RuleDictionary openRulesDict(String fileName,
 DictionaryFinder finder) {
 URL url = null;
 try {
 url = new URL(fileName);
 } catch (MalformedURLException e) {
 System.err.println(e);
 return null;
 }
 RuleDictionary dict = null;

 try {
 dict = readFromDisk(url, finder);
 } catch (Exception e) {
 System.err.println(e);
 return null;
 }
 return dict;
 }

 public static RuleDictionary readFromDisk(URL dictURL, DictionaryFinder
 finder) {
 BufferedReader buf = null;
 try {
 buf = new BufferedReader(new
 InputStreamReader(dictURL.openStream(), "UTF-8"));
 return RuleDictionary.readDictionary(buf, finder);
 } catch (SDKException e) {
 System.err.println(e);
 } catch (IOException e) {
 System.err.println(e);
 } finally {
 if (buf != null)
 try {
 buf.close();
 } catch (IOException e) {
 System.err.println(e);
 }
 }

 return null;
 }

 public static boolean saveDictionary(RuleDictionary dict, String

Chapter 26
Introduction to the Oracle Business Rules Editor Declarative Component

26-9

 ruleFileName) {
 if (dict == null || ruleFileName == null)
 return false;

 if (dict.isTransactionInProgress())
 System.out.println("Transaction in progress, cannot save
 dictionary");

 try {
 writeToDisk(dict, new URL(ruleFileName));
 } catch (MalformedURLException e) {
 System.err.println(e);
 return false;
 } catch (Exception e) {
 System.err.println(e);
 return false;
 }
 return true;
 }

 public static void writeToDisk(RuleDictionary dic, URL dictURL) {
 OutputStreamWriter writer = null;
 try {
 writer = new OutputStreamWriter(new
 FileOutputStream(dictURL.getPath()), "UTF-8");
 dic.writeDictionary(writer);
 } catch (IOException e) {
 System.err.println(e);
 } catch (SDKException e) {
 System.err.println(e);
 } finally {
 if (writer != null)
 try {
 writer.close();
 } catch (IOException e) {
 System.err.println(e);
 }
 }
 }

 public void toggleMode() {
 viewOnly = !viewOnly;
 }

 public boolean isViewOnly() {
 return viewOnly;
 }

 public DecisionTablePrefs getDtPreferences() {
 if (dtPrefs == null)
 dtPrefs = new DTPreferences();
 return dtPrefs;
 }

 public IfThenPreferences getIfThenPreferences() {
 if (ifThenPrefs == null)
 ifThenPrefs = new MyIfThenPrefs();
 return ifThenPrefs;
 }
 public class MyIfThenPrefs extends IfThenPreferencesImpl implements
 Serializable {

Chapter 26
Introduction to the Oracle Business Rules Editor Declarative Component

26-10

 @Override
 public boolean isGenericAction() {
 return true;
 }

 @Override
 public boolean isGenericCondition() {
 return true;
 }
 }

 public class DTPreferences extends DecisionTablePrefsImpl implements
 Serializable {

 @Override
 public boolean isShowDTButtons() {
 return true;
 }
 }
}

5. Point to SomeBean.java in adfc-config.xml with Bean Name "someBean" and a "session"
scope. Example adfc-config.xml:

<?xml version="1.0" encoding="UTF-8" ?>
<adfc-config xmlns="http://xmlns.oracle.com/adf/controller" version="1.2">
 <managed-bean id="__1">
 <managed-bean-name>someBean</managed-bean-name>
 <managed-bean-class>view.SomeBean</managed-bean-class>
 <managed-bean-scope>session</managed-bean-scope>
 </managed-bean>
</adfc-config>

6. The ADF/JSF framework makes calls to SomeBean.java multiple times to render the UI.
For instance, someBean.ruleSetModel is called many times. So it is more efficient to
create the ruleSetModel once and cache it and return it each time instead of recreating it.

26.2.2.2 How to Create the .jspx File
The next task is to create the .jspx file to include the Rules Editor component tag.

To create the .jspx file to include the Rules Editor Component tag:

1. Open Oracle JDeveloper.

2. From the File menu, select New and then select JSF.

3. Select JSF Page and click OK.

4. Select Document Type as JSP XML.

5. Enter rulesEditor.jspx as file name. Click OK.

6. The RulesEditor is visible in the component window in jDeveloper.

7. Select RulesEditor, after that the Rulesdc tag can be seen.

8. Drag and drop the rulesdc tag into the JSPX file. You can also add the rulesDC tag
manually in your jspx file like this:

<?xml version='1.0' encoding='UTF-8'?>
<jsp:root xmlns:jsp="http://java.sun.com/JSP/Page" version="2.1" xmlns:f="http://

Chapter 26
Introduction to the Oracle Business Rules Editor Declarative Component

26-11

java.sun.com/jsf/core"
 xmlns:af="http://xmlns.oracle.com/adf/faces/rich"
xmlns:rdc="http://xmlns.oracle.com/bpel/rules/editor">
 <jsp:directive.page contentType="text/html;charset=UTF-8"/>
 <f:view>
 <af:document title="rulesEditor" id="d1">
 <af:form id="f1">
 <af:panelGridLayout id="pgl1" inlineStyle="margin:15px;"
styleClass="AFStretchWidth"
 partialTriggers="cb1 cb3 cb4">
 <af:gridRow id="gr2">
 <af:gridCell marginStart="5px" marginEnd="5px"
width="100%" halign="stretch" id="gc1">
 <af:panelGroupLayout id="pgl2"
layout="horizontal">
 <af:commandButton text="Save Dict"
action="#{someBean.saveDictionary}" id="cb1"/>
 <af:spacer width="10" height="10" id="s2"/>
 <af:commandButton text="Validate" id="cb3"
action="#{someBean.validate}"
 partialSubmit="true"/>
 <af:spacer width="10" height="10" id="s8"/>
 <af:commandButton text="Toggle Mode"
id="cb4" action="#{someBean.toggleMode}"
 partialSubmit="true"/>
 </af:panelGroupLayout>
 </af:gridCell>
 </af:gridRow>
 <af:gridRow height="100%" id="gr1">
 <af:gridCell marginStart="5px" marginEnd="5px"
width="100%" halign="stretch" valign="stretch"
 id="gc2">
 <rdc:rulesdc
rulesetModel="#{someBean.ruleSetModel}" id="r1"

ifThenPreferences="#{someBean.ifThenPreferences}"

dtPreferences="#{someBean.dtPreferences}" viewOnly="#{someBean.viewOnly}"
 disableVerbalRules="false"></
rdc:rulesdc>
 </af:gridCell>
 </af:gridRow>
 </af:panelGridLayout>
 </af:form>
 </af:document>
 </f:view>
</jsp:root>

26.2.2.3 How to Refer to the Oracle Rules Shared Libraries
After creating the .jspx file, you must refer to the oracle.rules and
oracle.soa.rules_dict_dc.webapp shared libraries from the weblogic-
application.xml file.

To refer to the oracle.rules and the oracle.soa.rules_dict_dc.webapp shared
libraries:

1. In Oracle JDeveloper, from the Application Resources, open Descriptors, and
then META-INF. Edit the weblogic-application.xml file and add the following lines
(this refers to the oracle.rules shared library.)

Chapter 26
Introduction to the Oracle Business Rules Editor Declarative Component

26-12

<library-ref>
 <library-name>oracle.rules</library-name>
</library-ref>

2. In Oracle JDeveloper,

a. Select File menu, then select New and then Deployment Descriptors.

b. Select Weblogic Deployment Descriptor and select weblogic.xml from the list.

c. Select version 12.1.2 and click Finish.

d. In weblogic.xml overview mode, select Libraries from the left and add
oracle.soa.rules_dict_dc.webapp as the library name. Example weblogicogic.xml
file:

<?xml version = '1.0' encoding = 'UTF-8'?>
<weblogic-web-app xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://xmlns.oracle.com/weblogic/weblogic-web-app
http://xmlns.oracle.com/weblogic/weblogic-web-app/1.5/weblogic-web-app.xsd"
xmlns="http://xmlns.oracle.com/weblogic/weblogic-web-app">
 <library-ref>
 <library-name>oracle.soa.rules_dict_dc.webapp</library-name>
 </library-ref>
</weblogic-web-app>

e. Click Save All.

Note:

Note that oracle.rules and oracle.soa.rules_dict_dc.webapp shared libraries
must be deployed to the embedded WLS server.

3. All the shared libraries must be deployed using the weblogic console of your embedded
WLS:

a. Launch WLS console (http://host:port/console/login/LoginForm.jsp) and log in.

b. Click Deployments.

Check if oracle.rules and oracle.soa.rules_dict_dc.webapp shared libraries are
deployed as shown in Figure 26-11.

Figure 26-11 Deployments

Chapter 26
Introduction to the Oracle Business Rules Editor Declarative Component

26-13

4. Deploy the shared libraries manually if they are not deployed.

To start the WLS embedded server:

a. Open JDeveloper.

b. Select Run and then select Start Server Instance as shown in Figure 26-12

Figure 26-12 Start Embedded WLS

Skip this step if the shared libraries are already deployed.

Note:

WLS embedded server on JDeveloper must be running so that the
shared libraries can be deployed.

5. To deploy the oracle.rules shared library to WLS:

a. Launch WLS console (http://host:port/console/login/LoginForm.jsp)
and log in.

b. Select Deployments and click Install.

c. Select <SOA_INSTALL>/soa/soa/modules/oracle.rules_11.1.1/rules.jar.

d. Click Next and then click Finish.

6. To deploy the oracle.soa.rules_dict_dc.webapp shared library to WLS:

a. In WLS console, select Deployments, click Install.

b. Select <SOA_INSTALL>/soa/soa/modules/
oracle.soa.rules_dict_dc.webapp_11.1.1/
oracle.soa.rules_dict_dc.webapp.war.

c. Click Next and then click Finish.

Chapter 26
Introduction to the Oracle Business Rules Editor Declarative Component

26-14

d. Select Install this deployment as a library.

e. Click Finish.

f. The oracle.soa.rules_dict_dc.webapp gets added to the list of deployments as
shown in Figure 26-11

26.2.2.4 How to Run the Sample Application
The last task is running the sample application.

To run the Sample Application:

1. To run the sample application, from JDeveloper, right click rulesEditor.jspx file.

2. Select Run.

This should start the sample application on a browser., as shown in Figure 26-13.

Figure 26-13 Rules Editor Running

26.2.3 How to Deploy a Rules Editor Application to a Standalone WLS
When you are ready to deploy your application EAR file to the standalone Oracle WebLogic
Server, perform the following:

1. Check if the shared libraries are deployed using the WebLogic console of your
standalone WLS.

a. Launch WLS console. (http://host:port/console/login/LoginForm.jsp) and log
in.

b. Click Deployments. Check if oracle.rules and oracle.soa.rules_dict_dc.webapp
shared libraries are deployed as showed in Figure 26-11.

2. If the shared libraries are not deployed, then refer to the previous steps to deploy the
shared libraries manually.

3. In a project that uses the Rules Editor Component:

a. Include Oracle Rules Dictionary Component in your Libraries and Classpath.

This does not deploy these libraries by default, so the jars are not included in your project
war file.

Chapter 26
Introduction to the Oracle Business Rules Editor Declarative Component

26-15

4. In a project that is deploying (i.e where you create the ear file):

a. Add this to your weblogic-application.xml:

<library-ref>
 <library-name>oracle.rules</library-name>
</library-ref>

b. Add this to weblogic.xml in your project's war file:

<library-ref>
 <library-name>oracle.soa.rules_dict_dc.webapp</library-name>
</library-ref>

5. Deploy your ear file in WLS.

For more information about creating an EAR file, see "How to Create an EAR File for
Deployment" in Developing Fusion Web Applications with Oracle Application
Development Framework.

26.2.4 What You May Need to Know About the Custom Permissions
for the Rules Editor Component

For role-based authorization, Rules DC implements custom JAAS permissions
(extending the oracle.adf.share.security.authorization.ADFPermission class to
ensure that the permission can be used by ADF security).

If a Rules Editor application supports ADF security, which means there is support for
role-based authentication and authorization, then security is enforced by implementing
custom JAAS permissions (by extending the
oracle.adf.share.security.authorization.ADFPermission class to ensure that the
permission can be used by ADF security). You have to create ADF security policies by
granting the following permissions to the user roles based on your application
requirement:

• oracle.rules.adf.permission.AddRulePermission: Displays the Add Rule
button; if permission is not granted, the Add Rule button is not visible to the user.

• oracle.rules.adf.permission.DeleteRulePermission: Displays the Delete Rule
button; if permission is not granted, the Delete Rule button is not visible to the
user.

• oracle.rules.adf.permission.EditRulePermission: Displays the Edit Rule
button for rules inside a ruleset; if permission is not granted, then the rules are
view-only.

• oracle.rules.adf.permission.AddDTPermission: Displays the Add Decision
Table button; if permission is not granted, the Add Decision Table button is not
visible to the user.

• oracle.rules.adf.permission.DeleteDTPermission: Displays the Delete
Decision Table button; if permission is not granted, the Delete Decision Table
button is not visible to the user.

• oracle.rules.adf.permission.EditDTPermission: Displays the Edit Decision
Table button for decision tables within a ruleset; if permission is not granted, the
decision tables are view-only.

• oracle.rules.adf.permission.RulesEditorPermission: A global permission that
sets all the preceding permissions to true.

Chapter 26
Introduction to the Oracle Business Rules Editor Declarative Component

26-16

For example, to grant the delete rule permission to a role, specify the following code in the
jazn-data.xml file of the application:

<policy-store>
 <applications>
 <application>
 <name>UseRuleDictDCWtPerm</name>
 <app-roles>
 <app-role>
 <name>Admin</name>
 <class>oracle.security.jps.service.policystore.ApplicationRole</class>
 <display-name>Admin</display-name>
 <members>
 <member>
 <name>admin</name>
 <class>oracle.security.jps.internal.core.principals.JpsXmlUserImpl</
class>
 </member>
 </members>
 </app-role>
 <app-role>
 <name>BusinessUser</name>
 <class>oracle.security.jps.service.policystore.ApplicationRole</class>
 <display-name>BusinessUser</display-name>
 <members>
 <member>
 <name>buser</name>
 <class>oracle.security.jps.internal.core.principals.JpsXmlUserImpl</
class>
 </member>
 </members>
 </app-role>
 </app-roles>
 <jazn-policy>
 <grant>
 <grantee>
 <principals>
 <principal>
 <class>oracle.security.jps.service.policystore.ApplicationRole</
class>
 <name>Admin</name>
 </principal>
 </principals>
 </grantee>
 <permissions>
 <permission>
 <class>oracle.rules.adf.permission.RulesEditorPermission</class>
 <name>RulesEditorPermission</name>
 <actions>access</actions>
 </permission>
 </permissions>
 </grant>
 </jazn-policy>
 </application>
 </applications>
 </policy-store>

If you do not want to use the individual permissions, such as AddRulePermission or
DeleteRulePermission, you can set the RulesEditorPermission in the jazn-data.xml file to
set global permissions.

Chapter 26
Introduction to the Oracle Business Rules Editor Declarative Component

26-17

26.2.5 What You May Need to Know About the Supported Tags of the
Rules Editor Component

This section lists the tags and attributes that are supported by the Rules Editor
component.

Table 26-1 lists the supported attributes.

Table 26-1 Supported Attributes of the Rules Editor Component

Name Type Required Default Value Supports
EL?

Description

rulesetModel oracle.bpel.rulesd
c
.model.interfaces.
R
uleSetInterface

yes Only EL Wrapper around the
Rules SDK ruleset
object. The user can
use the
RuleSetModel object
supplied as part of
the Rules Editor
Component.

ruleModel java.lang.String no oracle.bpel.
rulesdc.mode
l.impl.RuleM
odel

yes Used to customize
the default
RuleModel. User can
extend the
RuleModel class to
override certain
methods.
Deprecated. Use
'ifThenPreferences'
attribute and override
getRuleModel().

simpleTestModel java.lang.String no oracle.bpel
.rulesdc.mo
del.impl.Si
mpleTestMod
el

yes Used to customize
the default
SimpleTestModel.
User can extend the
SimpleTestModel
class to override
certain methods.
Deprecated. Use
'ifThenPreferences'
attribute and override
getSimpleTestModel()
.

viewOnly java.lang.Boolean no true yes In the "viewOnly"
mode user can view
the existing rules in
the ruleset. If "false",
in the "edit" mode,
the user is allowed to
add new rules and
edit existing rules.

genericPattern java.lang. Boolean no true yes Deprecated and not
used.

Chapter 26
Introduction to the Oracle Business Rules Editor Declarative Component

26-18

Table 26-1 (Cont.) Supported Attributes of the Rules Editor Component

Name Type Required Default Value Supports
EL?

Description

genericAction java.lang.Boolean no true yes Deprecated and not
used.

locale java.util.Locale no Locale.getDe
fault()

yes Used for Localization.

timezone java.util.TimeZon
e

no TimeZone.get
Default()

yes Used for Localization

displayRuleSetEffDate java.lang.Boolean no true yes Deprecated and not
used.

discloseRules java.lang.Boolean no false yes Deprecated and not
used.

displayRuleSetName java.lang.Boolean no false yes Deprecated and not
used.

disableRuleSetName java.lang.Boolean no false yes Deprecated and not
used.

dtColumnPageSize java.lang.
Integer

no 5 yes Deprecated and not
used.

dtHeight java.lang.
Integer

no 16 yes Deprecated and not
used.

dateStyle java.lang.String no gets it from
the locale

yes If specified, the date
style is used in all
inputDate
components.
Example:
"yyyy.MM.dd"

timeStyle java.lang.String no gets it from
the locale

yes If specified, the time
style is used in all
inutDate
components.Example
: "HH:mm:ss".

showValidationPanel java.lang.Boolean no true yes Displays the
validation panel by
default. User can
choose to hide this by
setting this to false.

showDTButtons java.lang.Boolean no true yes Deprecated and not
used.

rulesPageSize java.lang.Integer no 5 yes Deprecated and not
used.

decimalSeparator java.lang.
Character

no Based on
Locale

yes Used to specify the
decimal separators.
This is used in
Number Formatting.
If specified, overrides
the decimal separator
based on locale.

Chapter 26
Introduction to the Oracle Business Rules Editor Declarative Component

26-19

Table 26-1 (Cont.) Supported Attributes of the Rules Editor Component

Name Type Required Default Value Supports
EL?

Description

groupingSeparator java.lang.Charact
er

no Based on
Locale

yes Used to specify the
grouping separators.
This is used in
Number Formatting.
If specified, overrides
the grouping
separator based on
locale.

disableVerbalRules java.lang.Boolean no true yes Disables
verbalization UI if
'true'.

vldnPanelCollapsed java.lang.Boolean no false yes Used to specify if
validation panel
should be collapsed
by default.

vldnTabTitle java.lang. String no - yes Used to specify the
validation panel title.

genericDTAddActionMenu java.lang.Boolean yes true yes If 'true', the generic
add action menu is
displayed in the
decision table tool
bar. If 'false'
consumer must
specify the add
action menu using
'dtAddActionMenuDD
C' attribute.
Deprecated. Use
'dtPreferences'
attribute and override
isGenericDTAddActio
nMenu().

genericDTEditAction java.lang.Boolean no true yes If 'true', generic
action UI is displayed
in the action editor
browser that shows
up when an action
row is edited in the
decision table. If
'false' consumer must
specify the edit action
UI using the
'dtEditActionDDC'
attribute. Deprecated.
Use 'dtPreferences'
attribute and override
isGenericDTEditActio
n().

Chapter 26
Introduction to the Oracle Business Rules Editor Declarative Component

26-20

Table 26-1 (Cont.) Supported Attributes of the Rules Editor Component

Name Type Required Default Value Supports
EL?

Description

genericDTActionParam java.lang.Boolean no true yes If 'true', generic UI is
displayed in the
action parameter cell
of the decision table.
If 'false', consumer
must specify the
action parameter cell
UI using the
'dtActionParamCellD
DC' attribute.
Deprecated. Use
'dtPreferences'
attribute and override
isGenericDTActionPa
ram().

dtAddActionMenuDDC jjava.lang.String no - yes Used only when
'genericDTAddAction
Menu' is true.
Consumer must pass
the DDC (i.e the
dynamic declarative
component) including
the context path that
specifies the add
menu items in the
decision table toolbar.
Example "/
userulesdc/
decisiontable/
dtAddActionMenu.jsff
". Deprecated. Use
'dtPreferences'
attribute and override
getDtAddActionMenu
DDC()..

Chapter 26
Introduction to the Oracle Business Rules Editor Declarative Component

26-21

Table 26-1 (Cont.) Supported Attributes of the Rules Editor Component

Name Type Required Default Value Supports
EL?

Description

dtEditActionDDC java.lang. String no - yes Used only when
'genericDTEditAction'
is true. Consumer
must pass the DDC
(i.e the dynamic
declarative
component) including
the context path that
specifies the action
UI to be displayed in
the action editor
browser that shows
up when an action
row is edited in the
decision table.
Example "/
userulesdc/
decisiontable/
actionEditor.jsff".
Deprecated. Use
'dtPreferences'
attribute and override
getDtEditActionDDC(
).

dtActionParamCellDDC java.lang. String no - yes Used only when
'genericDTActionPara
m' is true. Consumer
must pass the DDC
(i.e the dynamic
declarative
component) including
the context path that
specifies the UI to be
displayed in the
action parameter cell
of the decision table.
Example "/
userulesdc/
decisiontable/
actionParamCell.jsff".
Deprecated. Use
'dtPreferences'
attribute and override
getDtActionParamCel
lDDC().

Chapter 26
Introduction to the Oracle Business Rules Editor Declarative Component

26-22

Table 26-1 (Cont.) Supported Attributes of the Rules Editor Component

Name Type Required Default Value Supports
EL?

Description

dtActionNameCustomizer oracle.bpel.rulesd
c
.model.interfaces.
A
ctionNameCustomize
r

no - yes Used to specify the
action name and
action parameter
name in the decision
table header.
Deprecated. Use
'dtPreferences'
attribute and override
getDtActionNameCus
tomizer().

dtPreferences oracle.bpel.rulesd
c
.model.decisiontab
l
e.interfaces.Decis
i
onTablePrefs

no oracle.bpel.
rulesdc.mode
l.decisionta
ble.impl.Dec
isionTablePr
efsImpl

yes Used to specify
decision table
preferences.
Consumers can
extend the default
implementation i.e
(oracle.bpel.rulesdc.
model.decisiontable.i
mpl.DecisionTablePre
fsImpl) and override
only the required
preferences. s.

ifThenPreferences oracle.bpel.rulesd
c
.model.interfaces.
I
fThenPreferences

no oracle.bpel.
rulesdc.mode
l.impl.IfThe
nPreferences
Impl

yes Used to specify if
validation panel
should be collapsed
by default.

resourceManager joracle.bpel.rules
s
hareddc.model.inte
r
faces.ResourceMana
g
erInterface

no - yes Used to specify the
resource manager for
translations UI. Refer
to the section on
'translations'.

verbalRuleGotoDSLListe
ner oracle.bpel.ruless

h
areddc.model.inter
f
aces.VerbalRuleGot
o
LinkListener

no - yes Listener object
triggered when 'Goto
phrase' link is clicked
from the verbal rule.

26.3 Introduction to the Oracle Business Rules Dictionary Editor
Declarative Component

Get an overview of the Oracle Business Rules Dictionary Editor declarative component.

Chapter 26
Introduction to the Oracle Business Rules Dictionary Editor Declarative Component

26-23

Learn how to create and run an application using the Rules Dictionary Editor
component, and then deploy the application. Also get an overview of supported tags
and the localization process for the application.

26.3.1 Using the Oracle Business Rules Dictionary Component
Rules Dictionary Editor Component is an ADF Declarative Component that allows
editing of Business Rules meta-data artifacts such as Rulesets, Value Sets, Globals,
Decision Functions and so on using the Rules SDK2 API.

Rules Dictionary Editor Component must not be confused with the Rules Editor
Component which is mainly used to edit Rules inside a specified Ruleset. The Rules
Dictionary Component is a composite component that allows editing of Globals, Value
sets, Rulesets and so on. The Rules Dictionary Editor Task Flow uses the Rules
Dictionary Editor Component.

The Rules Dictionary Editor Component provides the following features:

• CRUD (create/read/update/delete) operations on rulesets and general rules,
verbal rules and decision tables within a ruleset.

• CRUD (create/read/update/delete) operations on Business Phrases (used in
verbalization).

• CRUD (create/read/update/delete) operations on Value sets.

• CRUD (create/read/update/delete) operations on Globals/Variables.

• CRUD (create/read/update/delete) operations on Decision Functions.

• CRUD (create/read/update/delete) operations on RL and XML Facts and viewing
for all other Fact types.

• View linked dictionaries.

• Support for user-defined translations.

• Cut/copy/paste of all dictionary components.

• Compare and merge different versions of the dictionary (diff/merge support).

• Export decision tables to Excel.

The Rules Dictionary Editor task flow uses the Rules Dictionary Editor Component to
create applications. Typically, you should either use the Rules Dictionary Editor
component or the Rules Dictionary Editor task flow, but not both. For more information
on the Rules Dictionary Editor task flow, see Introduction to the Oracle Business Rules
Dictionary Editor Task Flow.

The Rules Dictionary Editor component enables you to:

• Edit globals or variables that have the final attribute set to true by using the
Globals Editor, as shown in Figure 26-14.

Chapter 26
Introduction to the Oracle Business Rules Dictionary Editor Declarative Component

26-24

Figure 26-14 Globals Editor

The Globals Editor enables you to create, delete, edit the name, description, value,
change value set, change type and make global final. It supports validation of globals.

• Edits value sets by using the Value Sets Editor as shown in Figure 26-15.

Figure 26-15 Value Sets Editor

The Value Sets Editor enables you to perform CRUD (create, read, update, and delete)
operations on value sets and ranges inside a value set. It also supports validation of
value sets.

• Edit Rulesets, as shown in Figure 26-16.

Chapter 26
Introduction to the Oracle Business Rules Dictionary Editor Declarative Component

26-25

Figure 26-16 Edit Rulesets

The Rules Dictionary Editor enables you to edit only rules inside a selected
ruleset. It does not allow creation or deletion of rulesets.

• Edit General Rules, as shown in Figure 26-17.

Figure 26-17 General Rule

• Edit Verbal Rules, as shown in Figure 26-18.

Chapter 26
Introduction to the Oracle Business Rules Dictionary Editor Declarative Component

26-26

Figure 26-18 Verbal Rule

• Edit Decision Tables, as shown in Figure 26-19.

Figure 26-19 Decision Table

• Edit Business Phrases, as shown in Figure 26-20.

Chapter 26
Introduction to the Oracle Business Rules Dictionary Editor Declarative Component

26-27

Figure 26-20 Business Phrases Tab

• View Explorer, as shown Figure 26-21.

Figure 26-21 Explorer Tab

• Edit Facts, as shown in Figure 26-22.

Chapter 26
Introduction to the Oracle Business Rules Dictionary Editor Declarative Component

26-28

Figure 26-22 Facts Tab

• Edit Decision Functions, as shown in Figure 26-23.

Figure 26-23 Decision Functions Tab

• Edit Translations, as shown in Figure 26-24.

Chapter 26
Introduction to the Oracle Business Rules Dictionary Editor Declarative Component

26-29

Figure 26-24 Translations Tab

• Create and run tests to validate rules, as shown in Figure 26-25.

Figure 26-25 Tests Tab

For more information about these features and tabs, see Designing Business Rules
with Oracle Business Process Management.

26.3.2 How to Create and Run a Sample Application by Using the
Rules Dictionary Editor Component

This section lists the steps for creating and running a sample application by using the
Rules Dictionary Editor Component.

Chapter 26
Introduction to the Oracle Business Rules Dictionary Editor Declarative Component

26-30

The prerequisite for using the Rules Dictionary Editor Component to create ADF-based web
applications is having JDeveloper with SOA installation.The first task is to create a sample
application.

To create a sample application by using the Rules Dictionary Editor Component:

1. Open JDeveloper, from the File Menu, select New and then select ADF Fusion Web
Application to create a new application as shown in Figure 26-26.

Figure 26-26 Create Fusion Web Application.

2. Enter a name for the application in the Application Name field, for example,
UseRuleDictDCApp and click Next as shown in Figure 26-27.

Figure 26-27 Creating a Generic Application

Chapter 26
Introduction to the Oracle Business Rules Dictionary Editor Declarative Component

26-31

3. Use the default for everything else.

4. Click Finish.

5. Right click ViewController project and select Project Properties. Select
Libraries and Classpath from the menu on the left.

a. Click Add Library.

b. Select Oracle Rules and Oracle Rules Dictionary Component from the
Extension List and click OK. This adds the Rules SDK and the Rules ADF
component tag libraries to the project as shown in Figure 26-28.

Figure 26-28 Adding a Library

Note:

If the 'Oracle Rules' and 'Oracle Rules Dictionary Component' do not
show up in the 'Extension' List, open a SOA/BPM project within
jDeveloper to load the required libraries.

c. Click OK once more to come out of Project Properties.

6. Click Save All to save the project.

7. Check to make sure all the required tag libraries are added.

a. Right click ViewController project and select Project Properties.

b. Select JSP Tag Libraries from the menu on the left and check if all the tag
libraries are added as shown in Figure 26-29.

Chapter 26
Introduction to the Oracle Business Rules Dictionary Editor Declarative Component

26-32

Figure 26-29 JSP Tag Libraries

26.3.2.1 How to Create the RuleDictionaryModel Object
The Rules Dictionary Editor component requires a
oracle.bpel.ruledictionarydc.model.impl.RuleDictionaryModel object to create the
RuleDictionaryModel object.

To create the RuleDictionaryModel object:

1. To create a Java Class e.g. SomeBean.java in your project, from the File menu, select
New and then select Java Class.

2. In SomeBean.java provide a method that returns the RuleDictionaryModel object. You
must specify the location/path of the rules file. The following is an example of
SomeBean.java:

package view;

import java.io.BufferedReader;
import java.io.FileOutputStream;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.OutputStreamWriter;
import java.io.Serializable;

import java.net.MalformedURLException;
import java.net.URL;

import oracle.bpel.ruledictionarydc.model.impl.RuleDictionaryModel;
import oracle.bpel.ruledictionarydc.model.impl.RulesEditorPreferencesImpl;
import oracle.bpel.ruledictionarydc.model.interfaces.RulesEditorPreferences;
import oracle.bpel.rulesdc.model.decisiontable.impl.DecisionTablePrefsImpl;
import oracle.bpel.rulesdc.model.decisiontable.interfaces.DecisionTablePrefs;
import oracle.bpel.rulesdc.model.impl.IfThenPreferencesImpl;

Chapter 26
Introduction to the Oracle Business Rules Dictionary Editor Declarative Component

26-33

import oracle.bpel.rulesdc.model.interfaces.IfThenPreferences;
import oracle.bpel.rulessharedutils.impl.RulesSharedUtils;

import oracle.rules.sdk2.decisionpoint.DecisionPointDictionaryFinder;
import oracle.rules.sdk2.dictionary.DictionaryFinder;
import oracle.rules.sdk2.dictionary.RuleDictionary;
import oracle.rules.sdk2.exception.SDKException;

public class SomeBean {
 private RuleDictionaryModel ruleDictModel;
 private RulesEditorPreferences rulesEditorPrefs;
 private boolean viewOnly = true;

 //on windows
 //private static final String RULES_FILE1 =
 "file:///D:/scratch/asuraj/system_MAIN/rules_
 files/insurancequoteproject/CarInsuranceRules.rules";

 // on linux
 private static final String RULES_FILE1 =
 "file:////scratch/asuraj/backup/rules_files/ApprovalRules.rules";

 public SomeBean() {
 super();
 }

 public RuleDictionaryModel getRuleDictModel() {
 if (ruleDictModel != null)
 return ruleDictModel;

 ruleDictModel = new RuleDictionaryModel(openRulesDict(RULES_FILE1, new
 DecisionPointDictionaryFinder()));
 return ruleDictModel;
 }

 public void saveDictionary() {
 RuleDictionary dict = null;

 if (this.ruleDictModel == null)
 return;
 dict = this.ruleDictModel.getRuleDictionary().getDictionary();

 if (dict == null)
 return;

 if (dict.isModified())
 RulesSharedUtils.updateDictionary(dict);
 if (!dict.isTransactionInProgress())
 saveDictionary(dict, RULES_FILE1);
 }

 public void validate() {
 if (this.ruleDictModel == null)
 return;

 this.ruleDictModel.validate();
 }

 public void toggleMode() {

Chapter 26
Introduction to the Oracle Business Rules Dictionary Editor Declarative Component

26-34

 viewOnly = !viewOnly;
 }

 public boolean isViewOnly() {
 return viewOnly;
 }

 public RulesEditorPreferences getRulesEditorPrefs() {
 if (rulesEditorPrefs == null)
 rulesEditorPrefs = new MyRulesEditorPrefs();
 return rulesEditorPrefs;
 }

 //utility methods

 public static RuleDictionary openRulesDict(String fileName, DictionaryFinder
finder) {
 URL url = null;
 try {
 url = new URL(fileName);
 } catch (MalformedURLException e) {
 System.err.println(e);
 return null;
 }
 RuleDictionary dict = null;

 try {
 dict = readFromDisk(url, finder);
 } catch (Exception e) {
 System.err.println(e);
 return null;
 }
 return dict;
 }

 public static RuleDictionary readFromDisk(URL dictURL, DictionaryFinder
 finder) {
 BufferedReader buf = null;
 try {
 buf = new BufferedReader(new
 InputStreamReader(dictURL.openStream(), "UTF-8"));
 return RuleDictionary.readDictionary(buf, finder);
 } catch (SDKException e) {
 System.err.println(e);
 } catch (IOException e) {
 System.err.println(e);
 } finally {
 if (buf != null)
 try {
 buf.close();
 } catch (IOException e) {
 System.err.println(e);
 }
 }
 return null; } public static boolean saveDictionary(RuleDictionary
dict, String
 ruleFileName) {
 if (dict == null || ruleFileName == null)
 return false;

 if (dict.isTransactionInProgress())

Chapter 26
Introduction to the Oracle Business Rules Dictionary Editor Declarative Component

26-35

 System.out.println("Transaction in progress, cannot save
 dictionary");

 try {
 writeToDisk(dict, new URL(ruleFileName));
 } catch (MalformedURLException e) {
 System.err.println(e);
 return false;
 } catch (Exception e) {
 System.err.println(e);
 return false;
 }
 return true;
 }

 public static void writeToDisk(RuleDictionary dic, URL dictURL) {
 OutputStreamWriter writer = null;
 try {
 writer = new OutputStreamWriter(new
 FileOutputStream(dictURL.getPath()), "UTF-8");
 dic.writeDictionary(writer);
 } catch (IOException e) {
 System.err.println(e);
 } catch (SDKException e) {
 System.err.println(e);
 } finally {
 if (writer != null)
 try {
 writer.close();
 } catch (IOException e) {
 System.err.println(e);
 }
 }
 }

 public class MyRulesEditorPrefs extends RulesEditorPreferencesImpl
 implements Serializable {

 private DecisionTablePrefs dtPrefs;
 private IfThenPreferences ifThenPrefs;

 @Override
 public DecisionTablePrefs getDecisionTablePreferences() {
 if (dtPrefs == null)
 dtPrefs = new DTPreferences();
 return dtPrefs;
 }

 @Override
 public IfThenPreferences getIfThenPreferences() {
 if (ifThenPrefs == null)
 ifThenPrefs = new MyIfThenPrefs();
 return ifThenPrefs;
 }

 @Override
 public boolean isShowRSButtons() {
 return true;
 }
 }

Chapter 26
Introduction to the Oracle Business Rules Dictionary Editor Declarative Component

26-36

 public class MyIfThenPrefs extends IfThenPreferencesImpl implements
 Serializable {

 @Override
 public boolean isGenericAction() {
 return true;
 }

 @Override
 public boolean isGenericCondition() {
 return true;
 }
 } public class DTPreferences extends DecisionTablePrefsImpl implements
 Serializable {

 @Override
 public boolean isShowDTButtons() {
 return true;
 }
 }
}

3. Point to SomeBean.java in adfc-config.xml with Bean Name someBean and a session
scope. Example adfc-config.xml.

4. Ensure that Java Class under Items is selected and click OK to display the Create Java
Class dialog box.

<?xml version="1.0" encoding="UTF-8" ?>
<adfc-config xmlns="http://xmlns.oracle.com/adf/controller" version="1.2">
 <managed-bean id="__1">
 <managed-bean-name>someBean</managed-bean-name>
 <managed-bean-class>view.SomeBean</managed-bean-class>
 <managed-bean-scope>session</managed-bean-scope>
 </managed-bean>
</adfc-config>

5. The ADF/JSF framework makes calls to SomeBean.java multiple times to render the UI.
For instance, someBean.ruleDictModel is called many times. So it is more efficient to
create the ruleDictModel once and cache it and return it each time instead of recreating it.

26.3.2.2 How to Create .jspx File for the Rules Dictionary Editor Component
The next task is to create the .jspx file to include the Rules Dictionary Editor Component tag.

To create the .jspx file for the Rules Dictionary Editor Component tag:

1. Open Oracle JDeveloper.

2. From the File Menu, select New and then select JSF/Facelets.

3. Select JSF Page and click OK.

4. Select Document Type as JSP XML.

5. Enter file name as ruleDictEditor.jspx. Click OK.

6. The RuleDictionaryDC is visible in the Components window in jDeveloper as shown in
Figure 26-30.

Chapter 26
Introduction to the Oracle Business Rules Dictionary Editor Declarative Component

26-37

Figure 26-30 Components Window

7. Select RuleDictionaryDC, now you should see the RuleDictionaryDC tag. Drag
and drop the RuleDictionaryDC tag into the JSPX fileFigure 26-31.

Figure 26-31 Rule Dictionary DC Tag

You can also add the 'RuleDictionaryDC' tag manually in your jspx file like this:

<?xml version='1.0' encoding='UTF-8'?>
<jsp:root xmlns:jsp="http://java.sun.com/JSP/Page" version="2.1"
xmlns:f="http://java.sun.com/jsf/core"
 xmlns:af="http://xmlns.oracle.com/adf/faces/rich"
 xmlns:rddc="http://xmlns.oracle.com/bpel/rules/dictionaryEditor">

Chapter 26
Introduction to the Oracle Business Rules Dictionary Editor Declarative Component

26-38

 <jsp:directive.page contentType="text/html;charset=UTF-8"/>
 <f:view>
 <af:document title="ruleDictEditor" id="d1">
 <af:form id="f1">
 <af:panelGridLayout id="pgl1" inlineStyle="margin:15px;"
styleClass="AFStretchWidth"
 partialTriggers="cb2 cb3 cb6">
 <af:gridRow id="dc_gr1" marginTop="5px" marginBottom="5px">
 <af:gridCell marginStart="5px" marginEnd="5px"
width="100%" halign="stretch" id="gc1">
 <af:panelGroupLayout id="pgl3" layout="horizontal">
 <af:button text="Save Dictionary" id="cb2"
action="#{someBean.saveDictionary}"/>
 <af:spacer width="10" height="10" id="s1"/>
 <af:button text="Validate" id="cb3"
action="#{someBean.validate}"/>
 <af:spacer width="10" height="10" id="s3"/>
 <af:button text="Toggle Mode" id="cb6"
action="#{someBean.toggleMode}"/>
 </af:panelGroupLayout>
 </af:gridCell>
 </af:gridRow>
 <af:gridRow height="100%" id="gr2">
 <af:gridCell width="100%" halign="stretch"
valign="stretch" id="gc2">
 <!-- Content -->
 <rddc:ruleDictionaryDC
ruleDictModel="#{someBean.ruleDictModel}" id="rddc1"

rulesEditorPrefs="#{someBean.rulesEditorPrefs}"
 viewOnly="#{someBean.viewOnly}"
disableVerbalRules="false"/>
 </af:gridCell>
 </af:gridRow>
 </af:panelGridLayout>
 </af:form>
 </af:document>
 </f:view>
</jsp:root>

26.3.2.3 How to Refer the oracle.rules and the oracle.soa.rules_dict_dc.webapp
Shared Libraries

After creating the .jspx file, you must refer to the oracle.rules and
oracle.soa.rules_dict_dc.webapp shared libraries from the weblogic-application.xml
file.

To refer to the oracle.rules and the oracle.soa.rules_dict_dc.webapp shared libraries:

1. In JDeveloper from Application Resources select Descriptors and then META-INF.
Edit the weblogic-application.xml file and add the following lines (this refers to the
oracle.rules shared library):

<library-ref>
 <library-name>oracle.rules</library-name>
</library-ref>

2. In JDeveloper select File, then New and then Deployment Descriptors.

Chapter 26
Introduction to the Oracle Business Rules Dictionary Editor Declarative Component

26-39

a. Select Weblogic Deployment Descriptor and then select weblogic.xml from
the list.

b. Select version 12.1.2 and click Finish.

c. In weblogic.xml overview mode, select Libraries from the left and add library
name as oracle.soa.rules_dict_dc.webapp. Example weblogic.xml file:

<?xml version = '1.0' encoding = 'UTF-8'?>
<weblogic-web-app xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://xmlns.oracle.com/weblogic/weblogic-web-app
http://xmlns.oracle.com/weblogic/weblogic-web-app/1.5/weblogic-web-
app.xsd"
xmlns="http://xmlns.oracle.com/weblogic/weblogic-web-app">
 <library-ref>
 <library-name>oracle.soa.rules_dict_dc.webapp</library-name>
 </library-ref>
</weblogic-web-app>

d. Click Save All.

Note:

Note that 'oracle.rules' and 'oracle.soa.rules_dict_dc.webapp' shared
libraries must be deployed to the embedded WLS server.

3. Check to make sure the shared libraries are deployed using the weblogic console
of your embedded WLS.

a. Launch WLS console (http://host:port/console/login/LoginForm.jsp)
and log in.

b. Click Deployments and see if oracle.rules and
oracle.soa.rules_dict_dc.webapp shared libraries are deployed as shown in
Figure 26-32.

Figure 26-32 Deployments

4. If the shared libraries are not deployed, then follow this process to deploy them
manually:

a. To start the WLS embedded server, in JDeveloper select Run and then select
Start Server Instance as shown in Figure 26-33.

Chapter 26
Introduction to the Oracle Business Rules Dictionary Editor Declarative Component

26-40

Figure 26-33 Start Server Instance

Skip this if the shared libraries are already deployed.

Note:

WLS embedded server on JDeveloper must be running so that the shared
libraries can be deployed.

5. To deploy the oracle.rules shared library to WLS:

a. Launch WLS console (http://host:port/console/login/LoginForm.jsp) and log
in.

b. Select Deployments and click Install.

c. Select <SOA_INSTALL>/soa/soa/modules/oracle.rules_11.1.1/rules.jar and then
click Next and Finish.

6. To deploy the oracle.soa.rules_dict_dc.webapp shared library to WLS:

a. In WLS console, select Deployments, click Install.

b. Select <SOA_INSTALL>/soa/soa/modules/
oracle.soa.rules_dict_dc.webapp_11.1.1/oracle.soa.rules_dict_dc.webapp.war.

c. Click Next and then click Finish.

d. Select Install this deployment as a library.

e. Click Finish

f. Now you should see oracle.soa.rules_dict_dc.webapp added to the list of
deployments. as shown in Figure 26-32.

Chapter 26
Introduction to the Oracle Business Rules Dictionary Editor Declarative Component

26-41

26.3.2.4 How to Run the Sample Rules Dictionary Editor Application
The last task is running the sample application.

To run the sample Rules Dictionary Editor application:

1. To run the sample application, from JDeveloper, right click ruleDictEditor.jspx file.

2. Select Run.

This should start the sample application on a browser as shown in Figure 26-34.

Figure 26-34 Rules Dictionary Editor Application

26.3.3 How to Deploy a Rules Dictionary Application to a Standalone
Oracle WebLogic Server

When you're ready to deploy your application ear file to the stand-alone WLS, follow
these steps to make sure everything runs smoothly.

1. Check to make sure the shared libraries are deployed using the weblogic console
of your stand-alone WLS.

a. Launch WLS console http://host:port/console/login/LoginForm.jsp and
log in.

b. Click 'Deployments' and see if 'oracle.rules' and
'oracle.soa.rules_dict_dc.webapp' shared libraries are deployed as shown in
Figure 26-11.

2. If the shared libraries are not deployed, then follow the previous process to deploy
the shared libraries manually.

3. In your project that uses the Rule Dictionary Editor Component, include the
"Oracle Rules Dictionary Component" in your 'Libraries and Classpath'. This does
not deploy these libraries by default, so the jars are not included in your project
war file.

Chapter 26
Introduction to the Oracle Business Rules Dictionary Editor Declarative Component

26-42

4. In the project that is finally deploying (i.e where you create the ear file):

a. Add this to your weblogic-application.xml:

<library-ref>
 <library-name>oracle.rules</library-name>
</library-ref>

b. Add this to weblogic.xml in your project's war file:

<library-ref>
 <library-name>oracle.soa.rules_dict_dc.webapp</library-name>
</library-ref>

5. Now you can deploy your ear file in WLS and things should work.

26.3.4 What You May Need to Know About the Supported Attributes of the
Rules Dictionary Editor Component

This section lists the attributes that are supported by the Rules Dictionary Editor component.

Table 26-2 lists the supported attributes.

Table 26-2 Supported Rules Dictionary Editor Attributes

Name Type Required Default
Value

Support
s EL?

Description

ruleDictModel oracle.bpel.ruledic
t
ionarydc.model.inte
r
faces.RuleDictionar
y
Interface

yes - Only EL Wrapper around the
Rules SDK Dictionary
object.The user can use
the
RuleDictionaryModel
object supplied as part
of the Rules Dictionary
Editor Component jar
file
(adflibRuleDictionaryDC
.jar).

viewOnly java.lang.Boolean no true yes In the "viewOnly" mode
user can view the
existing dictionary data
but cannot edit. If
"false", i.e. the "edit"
mode, the user is
allowed to edit the
dictionary.

locale java.util.Locale no Locale.getD
efault()

yes Used for Localization.

timezone java.util.TimeZone no TimeZone.ge
tDefault()

yes Used for Localization

Chapter 26
Introduction to the Oracle Business Rules Dictionary Editor Declarative Component

26-43

Table 26-2 (Cont.) Supported Rules Dictionary Editor Attributes

Name Type Required Default
Value

Support
s EL?

Description

ruleModel java.lang.String no oracle.bpel
.rulesdc.mo
del.impl.Ru
leModel

yes Used to customize the
default RuleModel. User
can extend the
RuleModel class to
override certain
methods. Deprecated.
Use 'rulesEditorPrefs'
and override
getIfThenPreferences().
getRuleModel().

simpleTestModel java.lang.String no oracle.bpel
.rulesdc.mo
del.impl.Si
mpleTestMod
el

yes Used to customize the
default
SimpleTestModel. User
can extend the
SimpleTestModel class
to override certain
methods. Use
'rulesEditorPrefs' and
override
getIfThenPreferences().
getSimpleTestModel().

selectedTab java.lang.String no - yes Switches to the
specified tab name
(either GLOBALS,
FACTS, VALUESETS,
LINKS, DESC_FUNCS,
DSL_DEFNS, TESTS,
TRANSLATIONS or the
ruleset name).

selectedRulesetIdx java.lang.String no - yes Used to specify the
ruleset index to be
selected by default. If
'selectedRulesetIdx' is
specified, it overrides
the 'selectedTab'
attribute.

dtColumnPageSize java.lang.Integer no 5 yes Deprecated and not
used.

dtHeight java.lang.Integer no 16 yes Deprecated and not
used.

dateStyle java.lang.String no gets it from
the locale

yes If specified, the date
style is used in all
inputDate components.
Example: "yyyy.MM.dd".

timeStyle java.lang.String no gets it from
the locale

yes If specified, the time
style is used in all
inutDate
components.Example:
"HH:mm:ss".

Chapter 26
Introduction to the Oracle Business Rules Dictionary Editor Declarative Component

26-44

Table 26-2 (Cont.) Supported Rules Dictionary Editor Attributes

Name Type Required Default
Value

Support
s EL?

Description

showValidationPanel java.lang.Boolean no true yes Displays the validation
panel by default. User
can choose to hide this
by setting this to false.

discloseRules java.lang.Boolean no false yes Deprecated and not
used.

displayRuleSetName java.lang.Boolean no true yes Deprecated and not
used.

disableRuleSetName java.lang.Boolean no false yes Deprecated and not
used.

showDTButtons java.lang.Boolean no true yes Deprecated and not
used

disableDFName java.lang.Boolean no false yes Disables the Decision
Function Name in the
Decision Function editor
pop-up if true.
Deprecated. Use
'dfEditorPrefs' and
override
isDisableDFName().

displayWSName java.lang.Boolean no true yes Displays the decision
service name if 'true' in
the Decision Function
editor pop-up. Note that
the service name
makes sense only when
'Invoke as rule service'
is checked. Deprecated.
Use 'dfEditorPrefs' and
override
isDisplayWSName()..

displayWSCheck java.lang.Boolean no true yes Displays the 'Invoke as
rule service' check box
in the Decision Function
editor pop-up if true.
Deprecated. Use
'dfEditorPrefs' and
override
isDisplayWSCheck().

disableInputOps java.lang.Boolean no false yes Disables add, edit and
delete operations for the
Inputs table in the
Decision Function editor
pop-up. Deprecated.
Use 'dfEditorPrefs' and
override
isDisableInputOps().

Chapter 26
Introduction to the Oracle Business Rules Dictionary Editor Declarative Component

26-45

Table 26-2 (Cont.) Supported Rules Dictionary Editor Attributes

Name Type Required Default
Value

Support
s EL?

Description

disableOutputOps java.lang.Boolean no false yes Disables add, edit and
delete operations for the
Outputs table in the
Decision Function editor
pop-up. Deprecated.
Use 'dfEditorPrefs' and
override
isDisableOutputOps().

displayAddDF java.lang.Boolean no true yes Displays the add
decision function
button. Deprecated.
Use 'dfEditorPrefs' and
override
isDisableAddDF().

displayDeleteDF java.lang.Boolean no true yes Displays the delete
decision function
button. Deprecated.
Use 'dfEditorPrefs' and
override
isDisableDeleteDF().

rulesPageSize java.lang.Integer no 5 yes Deprecated and not
used.

decimalSeparator java.lang.Characte
r

no Based on
Locale

yes Used to specify the
decimal separators.
This is used in Number
Formatting. If specified,
overrides the decimal
separator based on
locale.

groupingSeparator java.lang.Character no Based on
Locale

yes Used to specify the
grouping separators.
This is used in Number
Formatting. If specified,
overrides the grouping
separator based on
locale.

vldnPanelCollapsed java.lang.Boolean no false yes Used to specify if
validation panel should
be collapsed by default.

vldnTabTitle java.lang.String no Localized text
"Business
Rule
Validation -
Log"

yes Used to specify the
validation panel title.

Chapter 26
Introduction to the Oracle Business Rules Dictionary Editor Declarative Component

26-46

Table 26-2 (Cont.) Supported Rules Dictionary Editor Attributes

Name Type Required Default
Value

Support
s EL?

Description

resourceManager oracle.bpel.rulessh
a
reddc.model.interfa
c
es.ResourceManagerI
n
terface

no - yes Used to specify the
resource manager for
translations UI. Refer to
the section on
'translations'.

rulesEditorPrefs oracle.bpel.ruledic
t
ionarydc.model.inte
r
faces.RulesEditorPr
e
ferences

no oracle.bpel
.ruledictio
narydc.mode
l.impl.Rule
sEditorPref
erencesImpl

yes Used to specify the
rules editor preferences.
Consumers can extend
the default
implementation i.e
(oracle.bpel.ruledictiona
rydc.model.impl.RulesE
ditorPreferencesImpl)
and override only the
required preferences.

dfEditorPrefs oracle.bpel.ruledic
t
ionarydc.model.inte
r
faces.DFEditorPrefe
r
ences

no oracle.bpel
.ruledictio
narydc.mode
l.impl.DFEd
itorPrefere
ncesImpl

yes Used to specify the
decision function editor
preferences.
Consumers can extend
the default
implementation i.e
(oracle.bpel.ruledictiona
rydc.model.impl.DFEdit
orPreferencesImpl) and
override only the
required preferences.

showRSButtons java.lang.Boolean no true yes Deprecated and not
used.

dfListener oracle.bpel.decisio
n
funceditordc.listen
e
r.DecisionFuncListe
n
er

no - yes Used for notification of
decision function editor
updates. Deprecated.
Use 'dfEditorPrefs' and
override
getDfListener().

dfActionListener oracle.bpel.ruledic
t
ionarydc.listener.D
e
cisionFuncActionLis
t
ener

no - yes Used for notification
when a decision
function is added or
deleted. Deprecated.
Use 'dfEditorPrefs' and
override
getDfActionListener()

Chapter 26
Introduction to the Oracle Business Rules Dictionary Editor Declarative Component

26-47

Table 26-2 (Cont.) Supported Rules Dictionary Editor Attributes

Name Type Required Default
Value

Support
s EL?

Description

dfServiceNameCustomi
ze oracle.bpel.decisio

n
funceditordc.listen
e
r.DecisionFuncServi
c
eNameCustomizer

no - yes Used to customize the
decision function
service name.
Deprecated. Use
'dfEditorPrefs' and
override
getDfServiceNameCust
omizer().

dictVersionInfo oracle.bpel.ruledic
t
ionarydc.model.inte
r
faces.DictVersionIn
f
o

no - yes Used in diff/merge to
retrieve the list of
dictionary versions for
comparison.
Deprecated. Use
'dfEditorPrefs' and
override
getDfServiceNameCust
omizer().

testExecutor oracle.bpel.testedi
t
ordc.interfaces.Tes
t
Executor

no - yes Used for executing test
suites, test templates
and test cases.

disableRulesTesting java.lang.Boolean no false yes If true, the rule testing
capability is disabled.

disableVerbalRules java.lang.Boolean no true yes If true, the verbalization
capability is disabled
that is the Business
Phrases tab is not
displayed and CRUD
operations on verbal
rules are disabled.

boUpdateListener oracle.bpel.ruledic
t
ionarydc.listener.B
O
UpdateListener

no - yes Used for synchronizing
business objects.

26.4 Introduction to the Oracle Business Rules Dictionary
Editor Task Flow

Get an overview of the Oracle Business Rules Dictionary Editor task flow.

Learn how to create and run an application using the Rules Dictionary Editor task flow,
and then deploy the application.

Chapter 26
Introduction to the Oracle Business Rules Dictionary Editor Task Flow

26-48

26.4.1 Using the Oracle Business Rules Dictionary Task Flow
The Oracle Rules Dictionary Editor Task Flow is basically a wrapper around the Rules
Dictionary Editor declarative component. The task flow is used in ADF-based web
applications that require a task flow instead of a declarative component. For more information
on the Rules Dictionary Editor component, see Introduction to the Oracle Business Rules
Dictionary Editor Declarative Component.

26.4.2 How to Create and Run a Sample Application By Using the Rules
Dictionary Editor Task Flow

This section lists the steps for creating and running a sample application by using the Oracle
Rules Dictionary Editor task flow.

The prerequisites for using the Oracle Rules Dictionary Editor task flow to create ADF-based
web applications is having a running installation of Oracle SOA Suite and Oracle JDeveloper
on your computer.

The first task is to create a sample application.

To create a sample application by using the Oracle Rules Dictionary Editor task flow:

1. Open Oracle JDeveloper.

2. From the File menu, select New and then Custom Application to create an application.

3. Enter a name for the application in the Application Name field, for example,
useRuleDictTaskFlowApp, and click Next as shown in Figure 26-35.

Figure 26-35 Creating a Generic Task Flow Application

4. Enter useRuleDictTaskFlow in the Project Name field and ensure that ADF Faces is
selected in the Project Technologies tab, as shown in Figure 26-36.

Chapter 26
Introduction to the Oracle Business Rules Dictionary Editor Task Flow

26-49

Figure 26-36 Creating a Task Flow Project

5. Click Finish to create the project.

6. Right-click the useRuleDictTaskFlow project in the Applications window of Oracle
JDeveloper, and select Project Properties to display the Project Properties dialog
box.

In the Project Properties dialog box:

a. Select JSP Tag Libraries from the left panel.

b. Click Add and select ADF Faces Components from the Extension list in the
Choose Tag Libraries dialog box, and click OK as shown in Figure 26-37.

Chapter 26
Introduction to the Oracle Business Rules Dictionary Editor Task Flow

26-50

Figure 26-37 Choosing Tab Libraries for the Task Flow Application

c. Select Libraries and Classpath from the left panel and click Add Library to display
the Add Library dialog box.

d. Select Oracle Rules and then Oracle Rules Dictionary Task Flow in the Libraries
list and click OK as shown in Figure 26-38. This adds the Rules SDK and the Rules
Dictionary Task Flow JARs to the project.

Figure 26-38 Adding the Rules SDK and Rules Dictionary Task Flow

Chapter 26
Introduction to the Oracle Business Rules Dictionary Editor Task Flow

26-51

e. Click OK to close the Project Properties dialog box.

7. Click Save All from the Oracle JDeveloper File menu to save the project.

8. Create a Java class that implements the
oracle.integration.console.metadata.model.share.MetadataDetails
interface, which is defined in soaComposerTemplates.jar. For more information on
the MetadataDetails interface, see The MetadataDetails Interface.

The steps are:

a. Open Oracle JDeveloper.

b. From the File menu, select New to display the New Gallery dialog box.

c. In the New Gallery dialog box, select Java under General from the
Categories panel. Ensure that Java Class under Items is selected and click
OK to display the Create Java Class dialog box.

d. Enter the name of the Java class, for example MyMetaDataDetails.

e. Add the MetadataDetails interface in the Implements box under Optional
Attributes, and click OK to create the Java class in your project, as shown in
Figure 26-39.

Figure 26-39 Creating a Java Class that Implements the
MetadataDetails Interface

The following is a sample of the content of the MyMetaDataDetails.java file:

package useruledicttaskflow;

import java.io.BufferedReader;
import java.io.FileNotFoundException;
import java.io.FileOutputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.InputStreamReader;
import java.io.OutputStreamWriter;
import java.io.UnsupportedEncodingException;
import java.io.Writer;

Chapter 26
Introduction to the Oracle Business Rules Dictionary Editor Task Flow

26-52

import java.net.MalformedURLException;
import java.net.URL;

import oracle.integration.console.metadata.model.share.MetadataDetails;
import oracle.integration.console.metadata.model.share.RelatedMetadataPath;

public class MyMetaDataDetails implements MetadataDetails {
 public MyMetaDataDetails() {
 super();
 }

 private static final String RULES_FILE1 =
 "file:///<path of Rules file>";

 public String getDocument() {
 URL url = null;
 try {
 url = new URL(RULES_FILE1);
 return readFile(url);
 } catch (IOException e) {
 System.err.println(e);
 }
 return "";
 }

 public void setDocument(String string) {
 URL url = null;

 try {
 url = new URL(RULES_FILE1);
 } catch (MalformedURLException e) {
 System.err.println(e);
 return;
 }
 Writer writer = null;
 try {
 //os = new FileWriter(url.getPath());
 writer =
 new OutputStreamWriter(new FileOutputStream(url.getPath()),
 "UTF-8");
 } catch (FileNotFoundException e) {
 System.err.println(e);
 return;
 } catch (IOException e) {
 System.err.println(e);
 return;
 }
 try {
 writer.write(string);
 } catch (IOException e) {
 System.err.println(e);
 } finally {
 if (writer != null) {
 try {
 writer.close();
 } catch (IOException ioe) {
 System.err.println(ioe);
 }
 }
 }

Chapter 26
Introduction to the Oracle Business Rules Dictionary Editor Task Flow

26-53

 }

 private String readFile(URL dictURL) {
 InputStream is;
 try {
 is = dictURL.openStream();
 } catch (IOException e) {
 System.err.println(e);
 return "";
 }
 BufferedReader reader;
 try {
 reader = new BufferedReader(new InputStreamReader(is,
"UTF-8"));
 } catch (UnsupportedEncodingException e) {
 System.err.println(e);
 return "";
 }
 String line = null;
 StringBuilder stringBuilder = new StringBuilder();
 String ls = System.getProperty("line.separator");
 try {
 while ((line = reader.readLine()) != null) {
 stringBuilder.append(line);
 stringBuilder.append(ls);
 }
 } catch (IOException e) {
 System.err.println(e);
 return "";
 } finally {
 try {
 reader.close();
 } catch (IOException e) {
 System.err.println(e);
 }
 }
 return stringBuilder.toString();
 }

public String getRelatedDocument(RelatedMetadataPath
relatedMetadataPath) {
 String currPath =
 RULES_FILE1.substring(0, RULES_FILE1.indexOf("oracle/
rules"));
 String relatedDoc =
 currPath + "oracle/rules/" + relatedMetadataPath.getValue();

 URL url = null;
 try {
 url = new URL(relatedDoc);
 return readFile(url);
 } catch (IOException e) {
 System.err.println(e);
 }
 return "";
 }
}

9. Create a Java class called MyNLSPreferences that implements the
oracle.integration.console.metadata.model.share.NLSPreferences interface,
which is defined in soaComposerTemplates.jar.

Chapter 26
Introduction to the Oracle Business Rules Dictionary Editor Task Flow

26-54

For more information about the NLS Preferences interface, see The NLSPreferences
Interface.

The following sample of MyNLSPreferences.java implements the NLSPreferences
interface:

package useruledicttaskflow;

import java.util.Locale;
import java.util.TimeZone;

import oracle.integration.console.metadata.model.share.NLSPreferences;

public class MyNLSPreferences implements NLSPreferences {
 private static final String DATE_STYLE = "yyyy-MM-dd";
 private static final String TIME_STYLE = "HH-mm-ss";

 public MyNLSPreferences() {
 super();
 }

 public Locale getLocale() {
 return Locale.getDefault();
 }

 public TimeZone getTimeZone() {
 return TimeZone.getTimeZone("America/Los_Angeles");
 }

 public String getDateFormat() {
 return DATE_STYLE;
 }

 public String getTimeFormat() {
 return TIME_STYLE;
 }
}

10. Create a managed bean called MyBean.java to return the implementation of
MetadataDetails and NLSPreferences. It also returns the
oracle.integration.console.metadata.model.share.MetadataDetailsMode object and
provides event handlers such as toggleMode(), saveDictionary(),
saveNoValidateDictionary(), and validate().

The following is a sample of the MyBean.java file:

package useruledicttaskflow;

import javax.el.ELContext;
import javax.el.ExpressionFactory;
import javax.el.MethodExpression;

import javax.faces.context.FacesContext;
import javax.faces.event.PhaseId;

import oracle.adf.view.rich.component.rich.fragment.RichRegion;

import oracle.integration.console.metadata.model.share.MetadataDetails;
import oracle.integration.console.metadata.model.share.MetadataDetailsMode;
import oracle.integration.console.metadata.model.share.NLSPreferences;

public class MyBean {

Chapter 26
Introduction to the Oracle Business Rules Dictionary Editor Task Flow

26-55

 private MyMetaDataDetails details = null;
 private MetadataDetailsMode mode = MetadataDetailsMode.VIEW;
 private RichRegion regionComp;
 private NLSPreferences nlsPrefs;

 public MyBean() {
 super();
 }

 public MetadataDetails getMetaDataDetails() {
 if (details != null)
 return details;

 details = new MyMetaDataDetails();
 return details;
 }

 public MetadataDetailsMode getDetailsMode() {
 return mode;
 }

 public void toggleMode() {
 if (mode.equals(MetadataDetailsMode.EDIT))
 mode = MetadataDetailsMode.VIEW;
 else
 mode = MetadataDetailsMode.EDIT;
 }

 public void saveDictionary() {
 if (regionComp == null)
 return;
 FacesContext fc = FacesContext.getCurrentInstance();
 ExpressionFactory ef = fc.getApplication().getExpressionFactory();
 ELContext elc = fc.getELContext();
 MethodExpression me =
 ef.createMethodExpression(elc, "doMetadataUpdate", String.class,
 new Class[] { });
 regionComp.queueActionEventInRegion(me, null, null, false, -1, -1,
 PhaseId.ANY_PHASE);
 }

 public void saveNoValidateDictionary() {
 if (regionComp == null)
 return;
 FacesContext fc = FacesContext.getCurrentInstance();
 ExpressionFactory ef = fc.getApplication().getExpressionFactory();
 ELContext elc = fc.getELContext();
 MethodExpression me =
 ef.createMethodExpression(elc, "doNoValidateMetadataUpdate",
 String.class, new Class[] { });
 regionComp.queueActionEventInRegion(me, null, null, false, -1, -1,
 PhaseId.ANY_PHASE);
 }

 public void validate() {
 if (regionComp == null)
 return;
 FacesContext fc = FacesContext.getCurrentInstance();
 ExpressionFactory ef = fc.getApplication().getExpressionFactory();
 ELContext elc = fc.getELContext();
 MethodExpression me =

Chapter 26
Introduction to the Oracle Business Rules Dictionary Editor Task Flow

26-56

 ef.createMethodExpression(elc, "doValidate", String.class,
 new Class[] { });
 regionComp.queueActionEventInRegion(me, null, null, false, -1, -1,
 PhaseId.ANY_PHASE);
 }

 public void setRegionComp(RichRegion regionComp) {
 this.regionComp = regionComp;
 }
 public RichRegion getRegionComp() {
 return regionComp;
 }

 public NLSPreferences getNlsPrefs() {
 if (nlsPrefs != null)
 return nlsPrefs;

 nlsPrefs = new MyNLSPreferences();
 return nlsPrefs;
 }
}

11. Open the faces-config.xml file in Overview mode and click the + button under
Managed Beans to display the Create Managed Bean dialog box.

12. Point to MyBean.java by entering MyBean in the Bean Name field and selecting session
from the Scope list, as shown in Figure 26-40.

Figure 26-40 Specifying the Bean Name and Scope in the Task Flow Application

26.4.2.1 How to Add a Rule Dictionary Editor Task Flow
The next task is to create the .jspx file to include the Rules Dictionary Editor component tag.

To add a Rules Dictionary Editor task flow in a .jspx file:

1. Open Oracle JDeveloper.

2. From the File menu, select New to display the New Gallery dialog box.

3. In the New Gallery dialog box, select JSF under Web Tier from the Categories panel.

Chapter 26
Introduction to the Oracle Business Rules Dictionary Editor Task Flow

26-57

4. Select JSF Page under Items and click OK to display the Create JSF Page dialog
box, as shown in Figure 26-41.

Figure 26-41 Creating the JSF Page File to Include the Rules Dictionary
Editor Task Flow

5. In the Create JSF Page dialog box, enter useRuleDictTaskFlow.jspx as the file
name, as shown in Figure 26-42.

Figure 26-42 Specifying the Name of the JSF Page for the Task Flow

adflibRuleDictionaryTaskFlow.jar is displayed in the Components window of
Oracle JDeveloper, as shown in Figure 26-43.

Chapter 26
Introduction to the Oracle Business Rules Dictionary Editor Task Flow

26-58

Figure 26-43 Rules Dictionary Task Flow JAR in the Components Window

This is because you have added the Oracle Rules Dictionary Task Flow shared library
when creating the sample application.

6. Select adflibRuleDictionaryTaskFlow.jar to make rule-dict-flow-definition available
under Regions in the Components window. You can drag and drop the rule-dict-flow-
definition region into the .jspx file as shown in Figure 26-44, and specify all the required
parameters.

Figure 26-44 Dragging and Dropping the Region

The following is a sample of the useRuleDictTaskFlow.jspx file with the task flow added:

<f:view>
 <af:document id="d1">

Chapter 26
Introduction to the Oracle Business Rules Dictionary Editor Task Flow

26-59

 <af:form id="f1">
 <af:panelStretchLayout id="psl1" inlineStyle="margin:8px;">
 <f:facet name="top">
 <af:menuBar id="mb1">
 <af:commandMenuItem text="Toggle Mode" id="cmi1"
 action="#{MyBean.toggleMode}"
 partialSubmit="true"/>
 <af:commandMenuItem text="Save Dict" id="cmi2"
 action="#{MyBean.saveDictionary}"
 partialSubmit="true"/>
 <af:commandMenuItem text="Save Dict No Validate" id="cmi3"
 action="#{MyBean.saveNoValidateDictionary}"
 partialSubmit="true"/>
 <af:commandMenuItem text="Validate" id="cmi4"
 action="#{MyBean.validate}"
 partialSubmit="true"/>
 </af:menuBar>
 </f:facet>
 <f:facet name="center">
 <af:region
value="#{bindings.rulesdictflowdefinition1.regionModel}"
 id="r2" binding="#{MyBean.regionComp}"
 partialTriggers="::cmi1 ::cmi2 ::cmi3 ::cmi4"/>
 </f:facet>
 </af:panelStretchLayout>
 </af:form>
 </af:document>
 </f:view>

In the preceding sample, you can find code snippets for rendering the following
buttons to the page:

• Toggle Mode: Enables switching between read-only and editable modes of
Oracle SOA Composer.

• Save Dict: Enables saving the dictionary (with or without validation).

26.4.2.2 How to Edit the pagedef.xml File
After you add the task flow to the .jspx file, you must edit the
useRuleDictTaskFlowPageDef.xml file. The pagedef.xml file is created when you drop
the Rules Dictionary task flow into the .jspx page.

The following is a sample of the pagedef.xml file along with all the parameters that
must be passed to the rules dictionary task flow:

<?xml version="1.0" encoding="UTF-8" ?>
<pageDefinition xmlns="http://xmlns.oracle.com/adfm/uimodel"
 version="11.1.1.55.99" id="useRuleDictTaskFlowPageDef"
 Package="useruledicttaskflow.pageDefs">
 <parameters/>
 <executables>
 <variableIterator id="variables"/>
 <taskFlow id="rulesdictflowdefinition1"
 taskFlowId= "/WEB-INF/rule-dict-flow-definition.xml#rules-dict-flow-
definition"
 activation="deferred"
 xmlns="http://xmlns.oracle.com/adf/controller/binding">
 <parameters>
 <parameter id="details" value="#{MyBean.metaDataDetails}"
 xmlns="http://xmlns.oracle.com/adfm/uimodel"/>

Chapter 26
Introduction to the Oracle Business Rules Dictionary Editor Task Flow

26-60

 <parameter id="mode" value="#{MyBean.detailsMode}"
 xmlns="http://xmlns.oracle.com/adfm/uimodel"/>
 <parameter id="dtHeight" value="10"
 xmlns="http://xmlns.oracle.com/adfm/uimodel"/>
 <parameter id="selectedTab" value="Ruleset_1"
 xmlns="http://xmlns.oracle.com/adfm/uimodel"/>
 <parameter id="dtColumnPageSize" value="6"
 xmlns="http://xmlns.oracle.com/adfm/uimodel"/>
 <parameter id="nlsPrefs" value="#{MyBean.nlsPrefs}"
 xmlns="http://xmlns.oracle.com/adfm/uimodel"/>
 <parameter id="discloseRules" value="true"
 xmlns="http://xmlns.oracle.com/adfm/uimodel"/>
 </parameters>
 </taskFlow>
 </executables>
 <bindings/>
</pageDefinition

26.4.2.3 How to Refer to oracle.rules and oracle.soa.rules_dict_dc.webapp Shared
Libraries

The next task is to refer to the oracle.rules and oracle.soa.rules_dict_dc.webapp shared
libraries from the weblogic-application.xml file.

For more information on referring to the shared libraries, see How to Create and Run a
Sample Application by Using the Rules Dictionary Editor Component.

26.4.2.4 How to Run the Sample Task Flow Application
The last task is running the sample application in the embedded Oracle WebLogic Server.

To run the sample task flow application:

1. To run the sample application, from Oracle JDeveloper, right-click the
useRulesDictTaskFlow.jspx file.

2. Select Run.

This starts the sample application in a web browser, as shown in Figure 26-45.

Chapter 26
Introduction to the Oracle Business Rules Dictionary Editor Task Flow

26-61

Figure 26-45 Running the Sample Rules Dictionary Editor Task Flow Application

26.4.3 How to Deploy a Rules Dictionary Editor Task Flow Application
to a Standalone Oracle WebLogic Server

When you are ready to deploy your application EAR file to the standalone Oracle
WebLogic Server, perform the following:

1. Launch the Oracle WebLogic Server Administration Console (http://host:port/
console/login/LoginForm.jsp).

2. Ensure that oracle.rules is displayed in the deployments list.

3. Ensure that oracle.soa.rules_dict_dc.webapp is displayed in the deployments
list.

4. If this is not displayed, click Install and select the JDEV_INSTALL/
jdeveloper/soa/modules/oracle.soa.rules_dict_dc.webapp_11.1.1/
oracle.soa.rules_dict_dc.webapp.war file.

5. In the project that has to be deployed (where you create the EAR file):

a. Add the following lines to the weblogic-application.xml:

<library-ref>
 <library-name>oracle.rules</library-name>
</library-ref>

b. Add the following lines to weblogic.xml in the project WAR file:

<library-ref>
 <library-name>oracle.soa.rules_dict_dc.webapp</library-name>
</library-ref>

c. Deploy the EAR file in Oracle WebLogic Server.

Chapter 26
Introduction to the Oracle Business Rules Dictionary Editor Task Flow

26-62

26.5 Localizing the ADF-Based Web Application
You can localize an application that is created using the Rules Editor component, Rules
Dictionary Editor component, or Rules Dictionary Editor task flow.

To localize your application:

1. Change the faces-config.xml in the application using the Rule Dict Editor component.
The faces-config.xml file should have the following code within the <application> tag
in order to support the available resource bundles:

<locale-config>
 <default-locale>en</default-locale>
 <supported-locale>en</supported-locale>
 <supported-locale>ar</supported-locale>
 <supported-locale>cs</supported-locale>
 <supported-locale>da</supported-locale>
 <supported-locale>de</supported-locale>
 <supported-locale>el</supported-locale>
 <supported-locale>es</supported-locale>
 <supported-locale>fi</supported-locale>
 <supported-locale>fr</supported-locale>
 <supported-locale>hu</supported-locale>
 <supported-locale>it</supported-locale>
 <supported-locale>iw</supported-locale>
 <supported-locale>ja</supported-locale>
 <supported-locale>ko</supported-locale>
 <supported-locale>nl</supported-locale>
 <supported-locale>no</supported-locale>
 <supported-locale>pl</supported-locale>
 <supported-locale>pt-BR</supported-locale>
 <supported-locale>pt</supported-locale>
 <supported-locale>ro</supported-locale>
 <supported-locale>ru</supported-locale>
 <supported-locale>sk</supported-locale>
 <supported-locale>sv</supported-locale>
 <supported-locale>th</supported-locale>
 <supported-locale>tr</supported-locale>
 <supported-locale>zh-CN</supported-locale>
 <supported-locale>zh-TW</supported-locale>
 </locale-config>

2. Change the browser language to the locale you are interested in.

3. If you want to override the locale provided by the browser and display the UI in some
particular locale then pass that locale as an attribute to the component and modify the
f:view tag to the following in the application using the component.:

<f:view locale="#{someBean.locale}">

Note:

The locale passed here should be same as the one passed to the component
using 'locale' attribute.

Chapter 26
Localizing the ADF-Based Web Application

26-63

26.6 Working with Translations
Translations feature supports translation of aliases in Business Rules Web UI.

You can have the aliases according to the locale. You can also edit the translations of
aliases for different locales through translation tab or resource editor pop-up in
Business Rules Web UI.

26.6.1 Enabling Translations for Consumer of Reusable Rules UI ADF
Task Flow Component

To support translation of aliases, the consumers of reusable Rules UI ADF Task Flow
component must provide locale specific resource artifacts as additional parameters
while calling Rules UI ADF Task Flow. However, these additional parameters are
optional and required only if the consumers want to use the enhanced translation
support.

The additional parameters are:

property-name: relatedDetails
property-class:
oracle.integration.console.metadata.model.share.IRelatedMetadataDetails

<taskFlow id="rulesdictflowdefinition1"
 taskFlowId="/WEB-INF/rule-dict-flow-definition.xml#rules-dict-flow-
definition"
 activation="deferred" Refresh="default"
 RefreshCondition="${MyBean.refreshReqd}"
 xmlns="http://xmlns.oracle.com/adf/controller/binding">
 <parameter id="relatedDetails"
 value="#{MyBean.relatedMetadataDetails}"/>
</taskflow>

26.6.1.1 Sample Code to Pass an Implementation of IRelatedMetadataDetails
The consumer has to pass an implementation of
oracle.integration.console.metadata.model.share.IRelatedMetadataDetails

The implementation of IRelatedMetadataDetails contains the code for loading the
resource bundles from the repository and also for saving the bundles files when user
commits any change to rules application.

The consumer should use dictionaryName + "Translations_" +
locale.toString() + ".xml" convention to build the name of the resource bundle
file.

public class MyRelatedMetadataDetails implements IRelatedMetadataDetails {

 private static final Locale[] LOCALES = { Locale.US, Locale.FRENCH };

 private static final String RESOURCE_PATH =
 "file:///C:/scratch/sumit/system/rules/";
 private static final String RESOURCE_BASE = "SimpleRule";

 public MyRelatedMetadataDetails() {

Chapter 26
Working with Translations

26-64

 super();
 }

 public String getDocument(IRelatedMetadataPath relatedPath) {
 String resourceSuffix = relatedPath.getValue();
 try {
 return loadResource(resourceSuffix);
 } catch (IOException e) {
 return "";
 }
 }

 private static String loadResource(String resourceSuffix) throws IOException {

 FileInputStream fis = null;
 FileChannel fc = null;
 try {
 URL url = new URL(RESOURCE_PATH + RESOURCE_BASE + resourceSuffix);
 fis = new FileInputStream(url.getFile());
 fc = fis.getChannel();
 ByteBuffer bb = ByteBuffer.allocate((int)fc.size());
 fc.read(bb);
 bb.rewind();
 return Charset.defaultCharset().decode(bb).toString();
 } finally {
 if (fis != null) {
 fis.close();
 }
 if (fc != null) {
 fc.close();
 }
 }
 }

 public void createDocument(IRelatedMetadataPath relatedPath,
 String document) {
 try {
 storeResource(relatedPath.getValue(), document);
 } catch (IOException e) {
 e.printStackTrace();
 }
 }

 public void saveDocument(IRelatedMetadataPath path, String document) {
 try {
 storeResource(path.getValue(), document);
 } catch (IOException e) {
 e.printStackTrace();
 }
 }

 private static void storeResource(String resourceSuffix,
 String document) throws IOException {
 FileOutputStream fos = null;
 FileChannel fc = null;
 try {
 URL url = new URL(RESOURCE_PATH + RESOURCE_BASE + resourceSuffix);
 fos = new FileOutputStream(url.getFile());
 fc = fos.getChannel();
 ByteBuffer bb = ByteBuffer.allocateDirect(1024);
 bb.clear();

Chapter 26
Working with Translations

26-65

 bb.put(Charset.defaultCharset().encode(document));
 bb.flip();
 while (bb.hasRemaining()) {
 fc.write(bb);
 }
 } finally {
 if (fos != null) {
 fos.close();
 }
 if (fc != null) {
 fc.close();
 }
 }
 }

 public IRelatedMetadataPathFinderFactory getFinderFactory() {
 return new RelatedMetadataPathFinderFactory();
 }

 public List<IRelatedMetadataPath> getExisting(IRelatedMetadataPathFinder
finder) {

 List<IRelatedMetadataPath> paths = new ArrayList<IRelatedMetadataPath>();
 for (Locale locale : LOCALES) {
 paths.add(RelatedResourceMetadataPath.buildFromLocale(locale));
 }
 return paths;
 }

 public class RelatedMetadataPathFinderFactory implements
IRelated`MetadataPathFinderFactory {

 public IRelatedMetadataPathFinder getResourceFinder() {
 return new RelatedMetadataPathFinder();
 }
 }

 public class RelatedMetadataPathFinder implements IRelatedMetadataPathFinder {

 public String getType() {
 return null;
 }

 public IRelatedMetadataPath
matches(oracle.integration.console.metadata.model.share.MetadataPath srcPath,

oracle.integration.console.metadata.model.share.MetadataPath matchPath) {
 return null;
 }
 }

}

26.6.2 Enabling Translations for Consumer of Rules Web UI
Application

To support translation of aliases, the consumer of Rules Web UI application must pass
an attribute to the Rules Dictionary DC or Rules DC. The attribute is resourceManager
which accepts an instance of type

Chapter 26
Working with Translations

26-66

oracle.bpel.rulesshareddc.model.interface.ResourceManagerInterface.java. However,
this additional parameters are optional and required only if the consumers want to use the
enhanced translation support.

<rddc:ruleDictionaryDC ruleDictModel="#{SomeBean.ruleDictModel1}"
 id="rddc1"
 resourceManager="#{SomeBean.resourceManager}">
 </rddc:ruleDictionaryDC>

26.6.2.1 Sample Code for Creating an Instance of resourceManager
Implementation of ResourceManagerInterface is provided as
oracle.bpel.rulesshareddc.model.impl.ResourceManager. Consumers may create an
instance of ResourceManager and pass it to corresponding UI component.

Note:

The consumer has to load all the saved resource bundles from the repository and
should construct a java.util.Map (resourceMap) where java.util.Locale of the
resource bundle is kept as key and the content of the resource bundle file as value
which is of type java.lang.String.

The consumer should use dictionaryName + "Translations_" + locale.toString() +
".xml" convention to build the name of the resource bundle file.

The consumer has to save these resource bundles to the repository whenever the user
commits any change in the application.

public ResourceManagerInterface getResourceManager() {
 if (resourceManager == null) {
 resourceManager =
 new ResourceManager(loadResources(), ruleDictionary);
 }
 return resourceManager;
 }

 private Map<Locale, String> loadResources() {

 Map<Locale, String> resourceMap = new HashMap<Locale, String>();

 for (Locale locale : LOCALES) {
 try {
 URL url =
 new URL(RULES_FILE_PATH + "Translations_" + locale.toString() +
 ".xml");
 String content =
 new Scanner(new File(url.getFile()), "UTF-8").useDelimiter("\\A").next();
 resourceMap.put(locale, content);
 } catch (IOException e) {
 resourceMap.put(locale, "");
 LOG.severe("Failed to load resource:" + e.getMessage());
 }
 }
 if (!resourceMap.keySet().contains(getLocale())) {
 resourceMap.put(getLocale(), "");
 }

Chapter 26
Working with Translations

26-67

 return resourceMap;
 }

 private void storeResources(Map<Locale, String> resourceMap) {
 for (Locale locale : resourceMap.keySet()) {
 try {
 URL url =
 new URL(RULES_FILE_PATH + "Translations_" + locale.toString() +
 ".xml");
 BufferedWriter out = new BufferedWriter(new FileWriter(url.getFile()));
 out.write(resourceMap.get(locale));
 out.close();
 } catch (IOException e) {
 LOG.severe("Failed to store resource:" + e.getMessage());
 }
 }
 }

Chapter 26
Working with Translations

26-68

Part V
Using the Human Workflow Service
Component

Learn how to use the human workflow service component.

• Getting Started with Human Workflow

• Creating Human Tasks

• Configuring Human Tasks

• Designing Task Forms for Human Tasks

• Human Workflow Tutorial

• Using Oracle BPM Worklist

• Building a Custom Worklist Client

• Introduction to Human Workflow Services

27
Getting Started with Human Workflow

Get an overview of the human workflow concepts, features, and architecture. Also check use
cases for human workflow. Learn how to design your workflow from start to finish.

• Introduction to Human Workflow

• Introduction to Human Workflow Concepts

• Introduction to Human Workflow Use Cases

• Introduction to Human Workflow Architecture

• Human Workflow and Business Rule Differences Between Oracle SOA Suite and Oracle
BPM Suite

WARNING:

You must not modify SOA Human Task database tables directly. Oracle does not
guarantee backward compatibility for the column names and data in these tables.

27.1 Introduction to Human Workflow
Many end-to-end business processes require human interactions with the process. For
example, humans may be needed for approvals, exception management, or performing
activities required to advance the business process.

The human workflow component provides the following features:

• Human interactions with processes, including assignment and routing of tasks to the
correct users or groups

• Deadlines, escalations, notifications, and other features required for ensuring the timely
performance of a task (human activity)

• Presentation of tasks to end users through a variety of mechanisms, including a worklist
application (Oracle BPM Worklist)

• Organization, filtering, prioritization, and other features required for end users to
productively perform their tasks

• Reports, reassignments, load balancing, and other features required by supervisors and
business owners to manage the performance of tasks

Figure 27-1 provides an overview of human workflow.

27-1

Figure 27-1 Human Workflow

In Figure 27-1, the following actions occur:

• A BPEL process invokes a special activity of the human task type when it needs a
human to perform a task.

• This creates a task in the human task service component. The process waits for
the task to complete. It is also possible for the process to watch for other callbacks
from the task and react to them.

• There is metadata associated with the task that is used by the human task service
component to manage the lifecycle of the task. This includes specification of the
following:

– Who performs the task. If multiple people are required to perform the task,
what is the order?

– Who are the other stakeholders?

– When must the task be completed?

– How do users perform the task, what information is presented to them, what
are they expected to provide, and what actions can they take?

• The human task service component uses an identity directory to determine
people's roles and privileges.

You can configure the identity store to use the embedded WebLogic LDAP, Oracle
Virtual Directory, third-party LDAPs and Active Directory RDBMS. For more
information, see Securing Applications with Oracle Platform Security Services.

• The human task service component presents tasks to users through a variety of
channels, including the following:

– Oracle BPM Worklist, a role-based application that supports the concept of
supervisors and process owners, and provides functionality for finding,
organizing, managing, and performing tasks.

Chapter 27
Introduction to Human Workflow

27-2

– Worklist functionality is also available as portlets that can be exposed in an enterprise
portal.

– Notifications can be sent by email, phone, SMS, and other channels. Email
notifications can be actionable, enabling users to perform actions on the task from
within the email client without connecting to Oracle BPM Worklist or Oracle WebLogic
Server.

27.2 Introduction to Human Workflow Concepts
Get an overview of key human workflow design time and runtime concepts the three main
stages of human workflow design.

27.2.1 Introduction to Design and Runtime Concepts
Before designing a human task, it is important to understand the design and runtime
concepts. A typical task consists of a subject, priority, task participants, task parameters or
data, deadlines, notifications or reminders, and task forms. This section provides an overview
of key concepts.

Note:

Human workflow design-time tasks are performed in a graphical editor known as
the Human Task Editor. The tutorial in Human Workflow Tutorial describes how to
use this editor.

27.2.1.1 Task Assignment and Routing
Human workflow supports declarative assignment and routing of tasks. In the simplest case,
a task is assigned to a single participant (user or group). However, there are many situations
in which more detailed task assignment and routing is necessary (for example, when a task
must be approved by a management chain or worked and voted on by a set of people in
parallel, as shown in Figure 27-2). Human workflow provides declarative, pattern-based
support for such scenarios.

Chapter 27
Introduction to Human Workflow Concepts

27-3

Figure 27-2 Participants in a Task

27.2.1.1.1 Participant
A participant is a user or set of users in the assignment and routing policy definition. In
Figure 27-2, each block with an icon representing people is a participant.

27.2.1.1.2 Participant Type
In simple cases, a participant maps to a user, group, or role. However, as discussed in
Task Assignment and Routing, workflow supports declarative patterns for common
routing scenarios such as management chain and group vote.The following participant
types are available:

• Single approver

This is the simple case where a participant maps to a user, group, or role.

For example, a vacation request is assigned to a manager. The manager must act
on the request task three days before the vacation starts. If the manager formally
approves or rejects the request, the employee is notified with the decision. If the
manager does not act on the task, the request is treated as rejected. Notification
actions similar to the formal rejection are taken.

• Parallel

This participant indicates that a set of people must work in parallel. This pattern is
commonly used for voting.

For example, multiple users in a hiring situation must vote to hire or reject an
applicant. You specify the voting percentage that is needed for the outcome to take
effect, such as a majority vote or a unanimous vote.

• Serial

This participant indicates that a set of users must work in sequence. While working
in sequence can be specified in the routing policy by using multiple participants in
sequence, this pattern is useful when the set of people is dynamic. The most
common scenario for this is management chain escalation, which is done by

Chapter 27
Introduction to Human Workflow Concepts

27-4

specifying that the list is based on a management chain within the specification of this
pattern.

• FYI (For Your Information)

This participant also maps to a single user, group, or role, just as in single approver.
However, this pattern indicates that the participant just receives a notification task and the
business process does not wait for the participant's response. FYI participants cannot
directly impact the outcome of a task, but in some cases can provide comments or add
attachments.

For example, a regional sales office is notified that a candidate for employment has been
approved for hire by the regional manager and their candidacy is being passed onto the
state wide manager for approval or rejection. FYIs cannot directly impact the outcome of
a task, but in some cases can provide comments or add attachments.

For more information, see Assigning Task Participants.

27.2.1.1.3 Participant Assignment
A task is work that must be done by a user. When you create a task, you assign humans to
participate in and act upon the task. Participants can perform actions upon tasks during
runtime from Oracle BPM Worklist, such as approving a vacation request, rejecting a
purchase order, providing feedback on a help desk request, or some other action. There are
three types of participants:

• Users

You can assign individual users to act upon tasks. For example, you may assign users
jlondon or jstein to a particular task. Users are defined in an identity store configured
with the SOA Infrastructure. These users can be in the embedded LDAP of Oracle
WebLogic Server, Oracle Internet Directory, or a third-party LDAP directory.

• Groups

You can assign groups to act upon tasks. Groups contain individual users who can claim
and act upon a task. For example, users jcooper and fkafka may be members of the
group LoanAgentGroup that you assign to act upon the task.

As with users, groups are defined in the identity store of the SOA Infrastructure.

• Application roles

You can assign users who are members of application roles to claim and act upon tasks.

Application roles consist of users or other roles grouped logically for application-level
authorizations. These roles are application-specific and are defined in the application
Java policy store rather than the identity store. These roles are used by the application
directly and are not necessarily known to a Java EE container.

Application roles define policy. Java permissions can be granted to application roles.
Therefore, application roles define a set of permissions granted to them directly or
indirectly through other roles (if a role is granted to a role). The policy can contain grants
of application roles to enterprise groups or users. In the jazn-data.xml file of the file-
based policy store, these roles are defined in <app-role> elements under <policy-
store> and written to system-jazn-data.xml at the farm level during deployment. You
can also define these roles after deployment using Oracle Enterprise Manager Fusion
Middleware Control. You can set a task owner or approver to an application role at design
time if the role has been previously deployed.

For more information about Oracle BPM Worklist, see Task Forms.

Chapter 27
Introduction to Human Workflow Concepts

27-5

27.2.1.1.4 Ad Hoc Routing
In processes dealing with significant variance, you cannot always determine all
participants. Human workflow enables you to specify that a participant can invite other
participants as part of performing the task.

For more information, see Allow All Participants to Invite Other Participants or Edit
New Participants.

27.2.1.1.5 Outcome-based Completion of Routing Flow
By default, a task goes from starting to final participant according to the flow defined in
the routing policy (as shown in Figure 27-2). However, sometimes a certain outcome at
a particular step within a task's routing flow makes it unnecessary or undesirable to
continue presenting the task to the next participants. For example, if an approval is
rejected by the first manager, it does not need to be routed to the second manager.
Human workflow supports specifying that a task or subtask be completed when a
certain outcome occurs.

For more information, see Stopping Routing of a Task to Further Participants.

27.2.1.2 Static, Dynamic, and Rule-Based Task Assignment
There are different methods for assigning users, groups, and application roles to tasks.

• Static Task Assignment

• Dynamic Task Assignment

27.2.1.2.1 Static Task Assignment

You can assign users, groups, and application roles statically (or by browsing the
identity service). The values can be either of the following:

• A single user, group, or application role (for example, jstein, CentralLoanRegion,
or ApproverRole).

• A delimited string of users, groups, or application roles (for example, jstein,
wfaulk, cdickens).

27.2.1.2.2 Dynamic Task Assignment
You can assign users, groups, and application roles dynamically in the following ways:

• By using a task-assignment pattern. This pattern enables you to do the following:

– Simply enable participants to claim the task manually. This is the default
behavior. No task-assignment pattern is applied.

– If the participant type is either Single or FYI, then apply a task-assignment
pattern to select a single assignee of a requested type from all potential
assignees in the participant.

For example, suppose that the potential assignees comprise the user jcooper,
the group LoanAgent, and the application role Developers. Suppose further
that the requested type is user. Applying this task-assignment pattern selects

Chapter 27
Introduction to Human Workflow Concepts

27-6

a single user from the user jcooper, and from all members of the group LoanAgent,
and from all users with the application role Developers.

– If the particulates type is Parallel or Serial, then apply a task-assignment pattern to
select a single assignee of a requested type from each of the potential assignees in
the participant.

For example, suppose that the potential assignees comprise the user jcooper, the
group LoanAgent, and the application role Developers. Suppose further that the
requested type is user. Applying this task-assignment pattern selects the user
jcooper, and one user from the group LoanAgent, and one user with the application
role Developers.

• By using XPath expressions. These expressions enable you to dynamically determine
assignment to users not included in the participant type. Here you create a list of potential
assignees, one of whom must then claim the task.

For example, you may have a business requirement to create a dynamic list of task
approvers specified in a payload variable. The XPath expression can resolve to zero or
more XML nodes. Each node value can be either a single user, group, or application role
or a delimited string of users, groups, or application roles. The default delimiter for the
assignee delimited string is a comma (,).

For example, if the task has a payload message attribute named po within which the task
approvers are stored, you can use the following XPath expression:

/task:task/task:payload/po:purchaseOrder/po:approvers
ids:getManager('jstein', 'jazn.com')
This returns the manager of jstein.

ids:getReportees('jstein', 2, 'jazn.com')
This returns all reportees of jstein up to two levels.

ids:getUsersInGroup('LoanAgentGroup', false, 'jazn.com')
This returns all direct and indirect users in the group LoanAgentGroup.

You can use both options simultaneously—for example, you can use an XPath expression to
dynamically select a group, and then apply a task-assignment pattern to dynamically select a
user from that group.

27.2.1.2.3 Assign tasks with Business Rules
You can create the list of task participants with complex expressions. The result of using
business rules is the same as using XPath expressions. You can also apply the task-
assignment pattern to a participant list created using business rules.

27.2.1.3 Task Stakeholders
A task has multiple stakeholders. Participants are the users defined in the assignment and
routing section of the task definition. These users are the primary stakeholders that perform
actions on the task.

In addition to the participants specified in the assignment and routing policy, human workflow
supports additional stakeholders:

• Owner

Chapter 27
Introduction to Human Workflow Concepts

27-7

This participant has business administration privileges on the task. This participant
can be specified as part of the task definition or from the invoking process (and for
a particular instance). The task owner can act upon tasks they own and also on
behalf of any other participant. The task owner can change both the outcome of
the task and the assignments.

For more information, see How to Specify a Task Owner to specify an owner in the
Human Task Editor or Specifying a Task Owner to specify an owner in the
Advanced tab of the Human Task dialog box.

• Initiator

The person who initiates the process (for example, the initiator files an expense
report for approval). This person can review the status of the task using initiated
task filters. Also, a useful concept is for including the initiator as a potential
candidate for request-for-information from other participants.

For more information, see Specifying the Task Initiator and Task Priority.

• Reviewer

This participant can review the status of the task and add comments and
attachments. You can grant the reviewer role to a participant at runtime using the
process instance attributes reviewer and reviewerType. The reviewer process
attribute stores the name of the reviewer, the default value is "ProcessReviewer"
or the value assigned in the Human Task configuration. The reviewerType process
attribute stores the type of reviewer which can be: user, role or group. You can set
these attributes dynamically to modify the effective reviewer.

• Admin

This participant can view all tasks and take certain actions such as reassigning a
test, suspending a task to handle errors, and so on. The task admin cannot
change the outcome of a task.

While the task admin cannot perform the types of actions that a task participant
can, such as approve, reject, and so on, this participant type is the most powerful
because it can perform actions such as reassign, withdraw, and so on.

• Error Assignee

When an error occurs, the task is assigned to this participant (for example, the
task is assigned to a nonexistent user). The error assignee can perform task
recovery actions from Oracle BPM Worklist, the task form in which you perform
task actions during runtime.

For more information, see How to Configure the Error Assignee and Reviewers.

27.2.1.4 Task Deadlines
Human workflow supports the specification of deadlines associated with a task. You
can associate the following actions with deadlines:

• Reminders:

The task can be reminded multiple times based on the time after the assignment
or the time before the expiration.

• Escalation:

The task is escalated up the management hierarchy.

• Expiration:

Chapter 27
Introduction to Human Workflow Concepts

27-8

The task has expired.

• Renewal:

The task is automatically renewed.

For more information, see Escalating, Renewing, or Ending the Task.

27.2.1.5 Notifications
You can configure your human task to use notifications. Notifications enable you to alert
interested users to changes in the state of a task during the task lifecycle. For example, a
notification is sent to an assignee when a task has been approved or withdrawn.

You can specify for notifications to be sent to different types of participants for different
actions. For example, you can specify the following:

• For the owner of a task to receive a notification message when a task is in error (for
example, sent to a nonexistent user).

• For a task assignee to receive a notification message when a task has been escalated.

You can specify the contents of the notification message and the notification channel to use
for sending the message.

• Email

You can configure email notification messages to be actionable, meaning that a task
assignee can act upon a task from within the email.

• Instant messaging (IM)

• Short message service (SMS)

For example, you may send the message shown below by email when a task assignee
requests additional information before they can act upon a task:

For me to approve this task, more information is required to justify the need
 for this business trip

During runtime, you can mark a message sender's address as spam and also display a list of
bad or invalid addresses. These addresses are automatically added to the bad address list.

For more information about notifications, see the following:

• Using the Notification Service

• Specifying Participant Notification Preferences

• Part XI, "Using Oracle User Messaging Service"

27.2.1.6 Task Forms
Task forms provide you with a way to interact with a task. Oracle BPM Worklist displays all
worklist tasks that are assigned to task assignees in the task form. When you navigate into a
specific task, the task form displays the contents of the task to the user's worklist. For
example, an expense approval task may show a form with line items for various expenses,
and a help desk task form may show details such as severity, problem location, and so on.

The integrated development environment of Oracle SOA Suite includes Oracle Application
Development Framework (Oracle ADF) for this purpose. With Oracle ADF, you can design a
task form that depicts the human task in the SOA composite application.

Chapter 27
Introduction to Human Workflow Concepts

27-9

ADF-based task forms can be automatically generated. Advanced users can design
their own task forms by using ADF data controls to lay out the content on the page and
connect to the workflow service engine at execution time to retrieve task content and
act on tasks.

You can create task forms in JSF, .NET, or any other client technologies using the
APIs.

For more information, see the following:

• Designing Task Forms for Human Tasks

• Using Oracle BPM Worklist

27.2.1.7 Advanced Concepts
This section describes advanced human workflow concepts.

• Rule-based Routing

You can use Oracle Business Rules to dynamically alter the routing flow. If used,
each time a participant completes their step, the associated rules are invoked and
the routing flow can be overridden from the rules.

For more information, see How to Specify Advanced Task Routing Using Business
Rules.

• Rule-based Participant Assignment

You can use Oracle Business Rules to dynamically build a list of users, groups,
and roles to associate with a participant.

For more information, see Assigning Task Participants.

• Stages

A stage is a way of organizing the approval process for blocks of participant types.
You can have one or more stages in sequence or in parallel. Within each stage,
you can have one or more participant type blocks in sequence or in parallel.

For more information, see Assigning Task Participants.

• Access Rules

You can specify access rules that determine the parts of a task that assignees can
view and update. For example, you can configure the task payload data to be read
by assignees. This action enables only assignees (and nobody else) to have read
permissions. No one, including assignees, has write permissions.

For more information, see Introduction to Access Rules.

• Callbacks

While human workflow supports detailed behavior that can be declaratively
specified, in some advanced situations, more extensible behavior may be
required. Task callbacks enable such extensibility; these callbacks can either be
handled in the invoking BPEL process or a Java class.

For more information, see Specifying Java Callbacks.

27.2.1.8 Reports and Audit Trails
Oracle BPM Worklist provides several out-of-the-box reports for task analysis:

Chapter 27
Introduction to Human Workflow Concepts

27-10

• Unattended tasks

Analysis of tasks assigned to users' groups or reportees' groups that have not yet been
acquired.

• Tasks priority

Analysis of tasks assigned to a user, reportees, or their groups, based on priority.

• Tasks cycle time

Analysis of the time taken to complete tasks from assignment to completion based on
users' groups or reportees' groups.

• Tasks productivity

Analysis of assigned tasks and completed tasks in a given time period for a user,
reportees, or their groups.

• Tasks time distribution

The time an assignee takes to perform a task.

You can view an audit trail of actions performed by the participants in the task and a snapshot
of the task payload and attachments at various points in the workflow. The short history for a
task lists all versions created by the following tasks:

• Initiate task

• Reinitiate task

• Update outcome of task

• Completion of task

• Erring of task

• Expiration of task

• Withdrawal of task

• Alerting of task to the error assignee

For more information, see Using Oracle BPM Worklist.

27.2.2 Introduction to the Stages of Human Workflow Design
Human workflow modeling consists of three stages of modeling:

• Stage 1: You create and define contents of the human task in the Human Task Editor,
including defining a participant type, routing policy, escalation and expiration policy,
notification, and so on. For more information, see Introduction to Creating a Human Task
Definition.

• Stage 2: You associate the human task definition with a BPEL process. The BPEL
process integrates a series of activities (including the human task activity) and services
into an end-to-end process flow. For more information, see Introduction to Associating the
Human Task Definition with a BPEL Process.

• Stage 3: You create a task form. This form displays the task details on which you act at
runtime in Oracle BPM Worklist. For more information, see Introduction to Generating the
Task Form.

Chapter 27
Introduction to Human Workflow Concepts

27-11

27.3 Introduction to Human Workflow Use Cases
Get an overview of use cases for human workflow and services. After that, a tutorial
guides you through the design of a human task from start to finish.

27.3.1 Task Assignment to a User or Role
A vacation request process may start with getting the vacation details from a user and
then routing the request to their manager for approval. User details and the
organizational hierarchy can be looked up from a user directory or identity store. This
scenario is shown in Figure 27-3.

Figure 27-3 Assigning Tasks to a User or Role from a Directory

27.3.2 Use of the Various Participant Types
A task can be routed through multiple users with a group vote, management chain, or
sequential list of approvers participant type. For example, consider a loan request that
is part of the loan approval flow. The loan request may first be assigned to a loan
agent role. After a specific loan agent acquires and accepts the loan, the loan may be
routed further through multiple levels of management if the loan amount is greater
that $100,000. This scenario is shown in Figure 27-4.

Chapter 27
Introduction to Human Workflow Use Cases

27-12

Figure 27-4 Flow Patterns and Routing Policies

You can use these types as building blocks to create complex workflows.

27.3.3 Escalation, Expiration, and Delegation
A high-priority task can be assigned to a certain user or role based on the task type through
use of custom escalation functions. However, if the user does not act on it in a certain time,
the task may expire and in turn be escalated to the manager for further action. As part of the
escalation, you may also notify the users by email or SMS. Similarly, a manager may
delegate tasks from one reportee to another to balance the load between various task
assignees. All tasks defined in BPEL have an associated expiration date. Additionally, you
may specify escalation or renewal policies, as shown in Figure 27-5. For example, consider a
support call, which is part of a help desk service request process. A high-priority task may be
assigned to a certain user, and if the user does not respond in two days, the task is routed to
the manager for further action.

Figure 27-5 Escalation and Notification

Chapter 27
Introduction to Human Workflow Use Cases

27-13

27.3.4 Automatic Assignment and Delegation
A user may decide to have another user perform tasks on their behalf. Tasks can be
explicitly delegated from the Oracle BPM Worklist or can be automatically delegated.
For example, a manager sets up a vacation rule saying that all their high priority tasks
are automatically routed to one of their direct reports while the manager is on vacation.
In some cases, tasks can be routed to different individuals based on the content of the
task. Another example of automatic routing is to allocate tasks among multiple
individuals belonging to a group. For example, a help desk supervisor decides to
allocate all tasks for the western region based on a round robin basis or assign tasks
to the individual with the lowest number of outstanding tasks (the least busy).

27.3.5 Dynamic Assignment of Users Based on Task Content
An employee named James in the human resources department requests new
hardware that costs $5000. The company may have a policy that all hardware
expenses greater than $3000 must go through manager and vice president approval,
and then review by the director of IT. In this scenario, the workflow can be configured
to automatically determine the manager of James, the vice president of the human
resources department, and the director of IT. The purchase order is routed through
these three individuals for approval before the hardware is purchased.

27.4 Introduction to Human Workflow Architecture
An overview of human workflow architecture.

• The services that perform a variety of operations in the lifecycle of a task, such as
querying tasks for a user, retrieving metadata information related to a task, and so
on.

• The two ways to use a human task:

– Associated with a BPEL process service component

– Used in standalone mode

• The role of the service engine in the life of a human task

27.4.1 Human Workflow Services
Starting with release 11g, all human task metadata is stored and managed in the
Metadata Service (MDS) repository. The workflow service consists of many services
that handle various aspects of human interaction with a business process.

Figure 27-6 shows the following workflow service components:

• Task Service:

The task service provides task state management and persistence of tasks. In
addition to these services, the task service exposes operations to update a task,
complete a task, escalate and reassign tasks, and so on. The task service is used
by Oracle BPM Worklist to retrieve tasks assigned to users. This service also
determines if notifications are to be sent to users and groups when the state of the
task changes. The task service consists of the following services.

– Task Routing Service

Chapter 27
Introduction to Human Workflow Architecture

27-14

The task routing service offers services to route, escalate, and reassign the task. The
service makes these decisions by interpreting a declarative specification in the form
of the routing slip.

– Task Query Service

The task query service queries tasks for a user based on a variety of search criterion
such as keyword, category, status, business process, attribute values, history
information of a task, and so on.

– Task Metadata Service

The task metadata service exposes operations to retrieve metadata information
related to a task.

• Identity Service

The identity service is a thin web service layer on top of the Oracle Application Server
11g security infrastructure or any custom user repository. It enables authentication and
authorization of users and the lookup of user properties, roles, group memberships, and
privileges.

• Notification Service

The notification service delivers notifications with the specified content to the specified
user through the email, IM, and SMS channels. See Notifications from Human Workflow
for more information.

• User Metadata Service

The user metadata service manages metadata related to workflow users, such as user
work queues, preferences, vacations, and delegation rules.

• Runtime Config Service

The runtime config service provides methods for managing metadata used in the task
service runtime environment. It principally supports management of task payload mapped
attribute mappings.

• Evidence service

The evidence service supports storage and nonrepudiation of digitally-signed workflow
tasks.

Chapter 27
Introduction to Human Workflow Architecture

27-15

Figure 27-6 Workflow Services Components

Figure 27-7 shows the interactions between the services and the business process.

Chapter 27
Introduction to Human Workflow Architecture

27-16

Figure 27-7 Workflow Services and Business Process Interactions

27.4.2 Use of Human Task
You can use a human task in the following ways:

• Human task associated with a BPEL process

You can associate your human task with a BPEL process. The BPEL process integrates
a series of activities (including the human task activity) and services into an end-to-end
process flow.

• Human task associated with a BPMN process

Chapter 27
Introduction to Human Workflow Architecture

27-17

You can associate your human task with a BPMN process. The BPMN process
may contain other types of BPMN flow objects as part of the flow of the process.
The human task is the implementation of a BPMN user task.

• Standalone human task

You can also create the human task as a standalone component only in the SOA
Composite Editor and not associate it with a BPEL process. Standalone human
task service components are useful for environments in which there is no need for
any automated activity in an application. In the standalone case, the client can
create the task themselves.

27.4.3 Service Engines
During runtime, the business logic and processing rules of the human task service
component are executed by the human workflow service engine. Each service
component (BPEL process, human workflow, decision service (business rules), and
Oracle Mediator) has its own service engine container for performing these tasks. All
human task service components, regardless of the SOA composite application of
which they are a part, are executed in this single human task service engine.

For more information about configuring, monitoring, and managing the human
workflow service engine, see Administering Oracle SOA Suite and Oracle Business
Process Management Suite.

27.5 Human Workflow and Business Rule Differences
Between Oracle SOA Suite and Oracle BPM Suite

Oracle SOA Suite and Oracle Business Process Management (BPM) Suite both
provide support for business rules and human workflow. However, Oracle BPM Suite
provides additional business rules and human workflow features that are not available
in Oracle SOA Suite.

Table 27-1 identifies which business rule and human workflow features are supported
in each suite.

Table 27-1 Business Rule and Human Workflow Features in Oracle SOA Suite
and Oracle BPM Suite

Feature Supported in
Oracle BPM Suite?

Supported in
Oracle SOA Suite?

Workspaces, process tracking, standard
dashboards, case management, and applications
menu

Yes No

Approval groups (participant list) Yes No

Human workflow and business rules (participant
list, routing rules)

Yes Yes

Verbal rules Yes No

Rules business phrases Yes No

Oracle BPM Composer - design time rules editing Yes No

Chapter 27
Human Workflow and Business Rule Differences Between Oracle SOA Suite and Oracle BPM Suite

27-18

Table 27-1 (Cont.) Business Rule and Human Workflow Features in Oracle SOA
Suite and Oracle BPM Suite

Feature Supported in
Oracle BPM Suite?

Supported in
Oracle SOA Suite?

Process asset catalog (PAM) for source
management between Oracle BPM Studio and
Oracle BPM Composer

Yes No

Rules testing in both Oracle JDeveloper and SOA
Composer with usability enhancements

Yes Yes

Microsoft Excel import/export for rules decision
tables

Yes Yes

For more information about Oracle BPM Suite, see Developing Business Processes with
Oracle Business Process Management Studio.

Chapter 27
Human Workflow and Business Rule Differences Between Oracle SOA Suite and Oracle BPM Suite

27-19

28
Creating Human Tasks

Learn how to create a human task, save it, and associate it with a BPEL process. Also
describes how to delete a human task and remove its association with a BPEL process.

• Introduction to Human Tasks

• Creating Human Tasks

• Configuring Human Tasks

• Exiting the Human Task Editor and Saving Your Changes

• Associating Human Tasks with BPEL Processes

For information about human task concepts, see Getting Started with Human Workflow .

For information about troubleshooting human workflow issues, see section "Human Workflow
Troubleshooting" of Administering Oracle SOA Suite and Oracle Business Process
Management Suite.

For information about installing and using the organizational hierarchy of users and groups
known as the demo user community, see Appendix "Installing the Demo User Community in
the Database" of Administering Oracle SOA Suite and Oracle Business Process
Management Suite.

28.1 Introduction to Human Tasks
Oracle SOA Suite provides a graphical tool, known as the Human Task Editor, for modeling
your task metadata.

The modeling process consists of the following:

• Creating and modeling a human task service component in the SOA Composite Editor.

• Associating it with a BPEL process

• Generating the task form for displaying the human task during runtime in Oracle BPM
Worklist.

To use the Human Task Editor, you must understand human task design concepts, including
the following:

• The types of users to which to assign tasks

• The methods by which to assign users to tasks (statically, dynamically, or rule-based)

• The task participant types available for modeling a task to which you assign users

• The options for creating lists of task participants

• The participants involved in the entire life cycle of a task

This section provides a brief overview of these modeling tasks and provides references to
specific modeling instructions.

For more information about using the SOA Composite Editor, see Getting Started with
Developing SOA Composite Applications.

28-1

For information about available samples, see Human Workflow Tutorial.

28.1.1 Introduction to Creating a Human Task Definition
The Human Task Editor enables you to specify human task metadata such as task
outcome, payload structure, assignment and routing policy, expiration and escalation
policy, notification settings. This information is saved to a metadata task configuration
file with a .task extension. In addition, some workflow patterns may also need to use
the Oracle Business Rules Designer to define task routing policies or the list of
approvers.

After you create a Human Task you can configure its metadata using the Human Task
Editor. For a detailed description of the metadata and configuration procedures, see
Configuring Human Tasks .

You define the metadata for the human task in either of two ways:

• By dragging a human task from the Components window into a BPEL process in
Oracle BPEL Designer and clicking the Add icon in the Create Human Task dialog
that automatically is displayed. This displays a dialog for creating the human task
service component. When creation is complete, the Human Task Editor is
displayed.

• By dragging a human task service component from the Components window into
the SOA Composite Editor. This displays a dialog for creating the human task
component. When creation is complete, the Human Task Editor is displayed.

For more information, see Creating Human Tasks.

28.1.2 Introduction to Associating the Human Task Definition with a
BPEL Process

You can associate the .task file that consists of the human task settings with a BPEL
process in Oracle BPEL Designer. Association is made with a human task that you
drag into your BPEL process flow for configuring, as shown in Figure 28-1.

Figure 28-1 Dragging a Human Task into a BPEL Process

Chapter 28
Introduction to Human Tasks

28-2

You also specify the task definition, task initiator, task priority, and task parameter mappings
that carry the input data to a BPEL variable. You can also define advanced features, such as
the scope and global task variables names (instead of accepting the default names), task
owner, identification key, BPEL callback customizations, and whether to extend the human
task to include other workflow tasks.

When association is complete, a task service partner link is created. The task service
exposes the operations required to act on the task.

You can also create the human task as a standalone component only in the SOA Composite
Editor and not associate it with a BPEL process. Standalone human task service components
are useful for environments in which there is no need for any automated activity in an
application. In the standalone case, the client can create the task themselves.

For more information, see Associating Human Tasks with BPEL Processes.

28.1.3 Introduction to Generating the Task Form
You can generate a task form using the Oracle Application Development Framework (ADF).
This form is used for displaying the task details on which you act at runtime in Oracle BPM
Worklist.

For information on generating the task form, see Designing Task Forms for Human Tasks .

28.2 Creating Human Tasks
The Human Task Editor enables you to define the metadata for the task. The editor enables
you to specify human task settings, such as task outcome, payload structure, assignment and
routing policy, expiration and escalation policy, notification settings, and so on.

You create a human task service component in the SOA Composite Editor or in Oracle BPEL
Designer. After creation, you design the component in the Human Task Editor. The method by
which you create the human task service component determines whether the component can
be associated later with a BPEL process service component or is a standalone component in
the SOA Composite Editor.

28.2.1 How to Create a Human Task Using the SOA Composite Editor
You can create a human task using the SOA Composite Editor. You can use this method to
create a human task to later associate with a BPEL process or use as a standalone
component.

To create a human task service component in the SOA Composite Editor:

1. Go to the SOA project in which to create a human task service component in the SOA
Composite Editor.

2. From the Components window list, select SOA.

The list refreshes to display service components and service adapters.

3. From the list, drag a Human Task into the designer.

The Create Human Task dialog appears.

4. In the Name field, enter a name.

The name you enter becomes the .task file name.

Chapter 28
Creating Human Tasks

28-3

5. Note the Create Composite Service with SOAP Bindings check box. The
selection of this check box determines how the human task service component is
created.

a. To create a human task service component that you later associate with a
BPEL process service component, do not select the Create Composite
Service with SOAP Bindings check box. The human task service component
is created as a component that you explicitly associate with a BPEL process
service component. Figure 28-2 provides details.

Figure 28-2 Human Task Component

b. To create the human task service component as a standalone component in
the SOA Composite Editor, select the Create Composite Service with SOAP
Bindings check box. This creates a human task service component that is
automatically wired to a Simple Object Access Protocol (SOAP) web service.
Figure 28-3 provides details.

Figure 28-3 Standalone Human Task Component

This web service provides external customers with an entry point into the
human task service component of the SOA composite application.

6. Click OK.

For more information about creating a human task service component in the SOA
Composite Editor, see Getting Started with Developing SOA Composite Applications.

28.2.2 How to Create a Human Task Using Oracle BPEL Designer
You can create a human task using Oracle BPEL Designer. Generally you use this
method when you want to create a human task to use with a BPEL process.

To create a human task in Oracle BPEL Designer:

1. In the Components window, expand SOA Components.

2. From the list, drag a Human Task into the designer.

The Create Human Task dialog appears.

3. Click the Add icon to create a human task.

Chapter 28
Creating Human Tasks

28-4

4. In the Name field, enter a name.

The name you enter becomes the .task file name.

5. In the Title field, enter a task.

6. Click OK.

The Human Task Editor appears.

Note:

You can also create a human task that you later associate with a BPEL process by
selecting New from the File main menu, then selecting SOA Tier > Service
Components > Human Task.

28.2.3 What Happens When You Create a Human Task
When a human task is created, the following folders and files appear:

• The human task settings specified in the Human Task Editor are saved to a metadata
task configuration file in the metadata service (MDS) repository with a .task extension.
This file appears in the Applications window under SOA_Project_Name > SOA. You can
re-edit the settings in this file by double-clicking the following:

– The .task file in the Applications window in either the SOA Composite Editor or
Oracle BPEL Designer

– The human task icon in the SOA Composite Editor or in your BPEL process in Oracle
BPEL Designer.

This reopens the .task file in the Human Task Editor.

• A Human Tasks folder containing the human task you created appears in the Structure
window of the SOA Composite Editor.

Figure 28-4 shows these folders and files.

Chapter 28
Creating Human Tasks

28-5

Figure 28-4 Human Task Folders and Files

For information about available samples, see Human Workflow Tutorial.

28.3 Configuring Human Tasks
After creating a human task, modify its settings using the Human Task Editor.

For more information on how to configure a human task, see Configuring Human
Tasks .

28.4 Exiting the Human Task Editor and Saving Your
Changes

You can save your human task changes at any time. The task can be re-edited at a
later time by double-clicking the metadata task configuration .task file in the
Applications window.

To exit the Human Task Editor and save your changes:

1. From the File main menu, select Save or click the X sign shown in Figure 28-5 to
close the .task metadata task configuration file.

Chapter 28
Configuring Human Tasks

28-6

Figure 28-5 File Closure

2. If you click the X sign, select Yes when prompted to save your changes.

28.5 Associating Human Tasks with BPEL Processes
To associate the human task service component created in the SOA Composite Editor with a
BPEL process, follow these instructions. When association is complete, a task service
partner link is created in Oracle BPEL Designer. The task service exposes the operations
required to act on a task.

28.5.1 How to Associate a Human Task with a BPEL Process
There are two ways to associate a human task service component with a BPEL process:

• If you have created a human task service component in the SOA composite application,
drag a human task activity into the BPEL process in Oracle BPEL Designer. Then, select
the existing human task service component from the Task Definition list of the Create
Human Task dialog. You can then specify the task title, initiator, parameter values, and
other values.

• If you have not created a human task service component, drag the human task activity
into the BPEL process in Oracle BPEL Designer Then, click the Add icon to the right of
the Task Definition list in the Create Human Task dialog. This action enables you to
specify the name of the new human task service component, the parameters, and the
outcomes. The Human Task Editor then opens for you to design the remaining task
metadata. After design completion, close the Human Task Editor.

To associate a human task with a BPEL process:

1. Go to the SOA Composite Editor.

2. Double-click the BPEL process service component with which to associate the .task file
of the human task service component.

3. In the Components window, expand SOA Components.

4. Drag a new Human Task activity into the BPEL process.

5. Double-click the Human Task activity.

The Human Task dialog appears.

6. From the Task Definition list of the General tab, select the human task, as shown in
Figure 28-6.

Chapter 28
Associating Human Tasks with BPEL Processes

28-7

Figure 28-6 Task Definition List Selection

The .task file of the human task service component is associated with the BPEL
process.

Note:

After you complete association of your human task activity with a BPEL
process and close the Create Human Task dialog, you can always re-
access this dialog by double-clicking the human task activity in Oracle
BPEL Designer.

28.5.2 What You May Need to Know About Deleting a Wire Between a
Human Task and a BPEL Process

If you delete the wire between a BPEL process and the human task service
component that it invokes, the invoke activity of the human workflow is deleted from
the BPEL process. However, the taskSwitch switch activity for taking action (contains
the approve, reject, and otherwise task outcomes) is still there. This is by design for
the following reasons:

• The switch activity contains user-entered BPEL code.

• The switch can be reused if the intention for deleting the wire is only to point to
another human task.

• Deleting the switch is a single-step action.

If you then drag and drop a human task service component into the BPEL process to
use the same taskSwitch switch activity, a new taskSwitch switch activity is created.
You then have two switch activities in the BPEL process with the same name. To

Chapter 28
Associating Human Tasks with BPEL Processes

28-8

determine which one to delete, you must go into the approve, reject, and otherwise task
outcomes of the taskSwitch switch activities to determine which is the older, modified switch
and which is the newer switch.

28.5.3 How to Define the Human Task Activity Title, Initiator, Priority, and
Parameter Variables

Figure 28-7 shows the General tab that displays after you select the human task.

Figure 28-7 Human Task — General Tab (After Selection)

The General tab of the Human Task activity enables you to perform the tasks shown in
Table 28-1:

Table 28-1 Human Task - General Tab

For this Field... See...

Task Title Specifying the Task Title

Initiator
Priority

Specifying the Task Initiator and Task Priority

Task Parameters Specifying Task Parameters

28.5.3.1 Specifying the Task Title
The title displays the task in Oracle BPM Worklist during runtime. This is a mandatory field.
Your entry in this field overrides the task title you entered in the Task Title field of the
General section of the Human Task Editor described in How to Specify a Task Title.

Chapter 28
Associating Human Tasks with BPEL Processes

28-9

In the Task Title field of the General tab, enter the task title by entering the title
manually. Alternatively, click the icon to the right of the field to display the Expression
Builder dialog to dynamically create the title.

You can also combine static text and dynamic expressions in the same title. To include
dynamic text, place your cursor at the appropriate point in the text and click the icon on
the right to invoke the Expression Builder dialog.

28.5.3.2 Specifying the Task Initiator and Task Priority
You can specify a task initiator. The initiator is the user who initiates a task. The
initiator can view their created tasks from Oracle BPM Worklist and perform specific
tasks, such as withdrawing or suspending a task.

To specify the task initiator and task priority:

1. To the right of the Initiator field of the General tab, enter the initiator (for example,
jcooper) or click the icon to display the Expression Builder dialog for dynamically
specifying an initiator. This field is optional. If not specified, the initiator defaults to
the task owner specified on the Advanced tab of the Human Task dialog. The
initiator defaults to bpeladmin if a task owner is also not specified.

2. From the Priority list, select a priority value between 1 (the highest) and 5. This
field is provided for user reference and does not make this task a higher priority
during runtime. Use the priority to sort tasks in Oracle BPM Worklist. This priority
value overrides the priority value you select in the Priority list of the General
section of the Human Task Editor.

For more information about specifying the priority in the Human Task Editor, see How
to Specify a Task Title.

28.5.3.3 Specifying Task Parameters
The task parameter table shown in Figure 28-8 displays a list of task parameters after
you complete the Task Title and Initiator fields.

Chapter 28
Associating Human Tasks with BPEL Processes

28-10

Figure 28-8 Task Parameter Table

To specify task parameters:

1. In the BPEL Variable column, double-click the dots to map the task parameter to the
BPEL variable. To display these dots for selection, you must have already specify your
data parameters. For more information on how to specify the data parameters, see How
to Specify the Task Payload Data Structure. You must map only the task parameters that
carry input data. For output data that is filled in from Oracle BPM Worklist, you do not
need to map the corresponding variables.

The Task Parameters dialog appears.

2. Expand the Variables tree shown in Figure 28-9 and select the appropriate task variable.

Chapter 28
Associating Human Tasks with BPEL Processes

28-11

Figure 28-9 Variables Tree

3. Click OK.

The Human Task dialog shown in Figure 28-10 appears as follows.

Figure 28-10 Human Task Dialog

4. To define advanced features for the human task activity, click the Advanced tab
and go to How to Define the Human Task Activity Advanced Features . Otherwise,
click OK to close the Human Task dialog.

28.5.4 How to Define the Human Task Activity Advanced Features
Figure 28-11 shows the Advanced tab.

Chapter 28
Associating Human Tasks with BPEL Processes

28-12

Figure 28-11 Create Human Task — Advanced Tab

The Advanced tab of the Human Task activity enables you to perform the tasks shown in
Table 28-2:

Table 28-2 Human Task - Advanced Tab

For this Field... See...

Scope Name
Global Task Variable Name

Specifying a Scope Name and a Global Task Variable Name

Owner Specifying a Task Owner

Identification Key Specifying an Identification Key

Identity Context Specifying an Identity Context

Application Context Specifying an Application Context

Include task history from Including the Task History of Other Human Tasks

28.5.4.1 Specifying a Scope Name and a Global Task Variable Name
You are automatically provided with default scope and global task variable names during
human task activity creation. However, you can specify custom names that are used to name
the scope and global variable during human task activity creation.

To specify a scope name and a global task variable name:

1. In the Scope Name field of the Advanced tab, enter the name for the BPEL scope to be
generated.

This BPEL scope encapsulates the entire interaction with the workflow service and BPEL
variable manipulation.

Chapter 28
Associating Human Tasks with BPEL Processes

28-13

2. In the Global Task Variable Name field of the Advanced tab, enter the global
task variable name.

This is the name of the BPEL task variable used for the workflow interaction.

28.5.4.2 Specifying a Task Owner
The task owner can view tasks belonging to business processes they own and perform
operations on behalf of any of the task assignees. Additionally, the owner can also
reassign, withdraw, or escalate tasks.

If you do not specify a task initiator on the General tab of the Human Task dialog, it
defaults to the owner specified here. In the Owner field of the Advanced tab, enter the
task owner name or click the icon to the right to use the Expression Builder to
dynamically specify the owner of this task.

28.5.4.3 Specifying an Identification Key
The identification key can be used as a user-defined ID for the task. For example, if
the task is meant for approving a purchase order, the purchase order ID can be set as
the identification key of the task. Tasks can be searched from Oracle BPM Worklist
using the identification key. This attribute has no default value.

In the Identification Key field of the Advanced tab, enter an optional identification
key value to specify a key.

28.5.4.4 Specifying an Identity Context
The identity realm name is used for the task when multiple realms are configured. You
cannot have assignees from multiple realms working on the same task. This field is
required if you are using multiple realms. To specify an identity context, in the Identity
Context field of the Advanced tab, enter a value

28.5.4.5 Specifying an Application Context
The stripe name of the application contains the application roles used in the task. To
specify an application context, in the Application Context field of the Advanced tab,
enter a value.

28.5.4.6 Including the Task History of Other Human Tasks
This feature enables one human task to be continued with another human task. There
are many scenarios in which you have related tasks in a single BPEL process. For
example, assume you have the following:

• A procurement process to obtain a manager's approval for a computer

• Several BPEL activities in between

• Another task for the IT department to buy the computer

The participant of the second task may want to see the approval history, comments,
and attachments created when the manager approved the purchase. You can link
these different tasks in the BPEL process by chaining the second task to the first task
with this option.

Chapter 28
Associating Human Tasks with BPEL Processes

28-14

For chained tasks, the title of the new task cannot be set from the task metadata (.task file).
For example, assume existing Task A is chained with new task Task B, and Task B has a new
title set in the Human Task Editor; this title is not recognized. Therefore, if the chained task
requires a different title, it must be set in the task instance before calling the task service
reinitiate operation. If a BPEL process is initiating the tasks, set the task title before the
workflow service APIs are called. If a Java program is calling the workflow APIs
programatically, then it must set the title.

To include the task history of other tasks:

1. Select the Include task history from check box of the Advanced tab to extend a
previous workflow task in the BPEL process. Selecting this check box includes the task
history, comments, and attachments from the previous task. This provides you with a
complete end-to-end audit trail.

When a human task is continued with another human task, the following information is
carried over to the new workflow:

• Task payload and the changes made to the payload in the previous workflow

• Task history

• Comments added to the task in the previous workflow

• Attachments added to the task in the previous workflow

• Due date

In the Include task history from list, all existing workflows are listed.

2. Select a particular human task to extend (continue) the selected human task.

For example, a hiring process is used to hire new employees. Each interviewer votes to
hire or not hire a candidate. If 75% of the votes are to hire, then the candidate is hired;
otherwise, the candidate is rejected. If the candidate is to be hired, an entry in the HR
database is created and the human resources contact completes the hiring process. The
HR contact also must see the interviewers and the comments they made about the
candidate. This process can be modeled using a parallel participant type for the hiring. If
the candidate is hired, a database adapter is used to create the entry in the HR database.
After this action, a simple workflow can include the task history from the parallel
participant type so that the hiring request, history, and interviewer comments are carried
over. This simple workflow is assigned to the HR contact.

3. Select a payload to use:

• Clear old payload and recreate

This option is applicable when the payload attributes in the XML files of the human
tasks involved in this extended workflow are different. For example, the payload
attribute for the human task whose history you are including has three extra attributes
than the payload of the other human task.

• Use existing payload

This option is applicable when the payload attributes in the XML files of the human
tasks involved in this extended workflow are the same.

28.5.5 How to View the Generated Human Task Activity
When you have completed modeling the human task activity, the human task is generated in
the designer.

Chapter 28
Associating Human Tasks with BPEL Processes

28-15

Figure 28-12 shows how a workflow interaction is modeled. Figure 28-12 also
illustrates the interaction when no BPEL callbacks are modeled. In this case, after a
task is complete, the BPEL process is called back with the completed task. No
intermediary events are propagated to the BPEL process instance. It is recommended
that any user customizations be done in the first assign, AssignTaskAttributes, and that
AssignSystemTaskAttributes not be changed.

Figure 28-12 Workflow Interaction Modeling

Click the Expand icon next to the human task activity in Oracle BPEL Designer to
display its contents, as shown in Figure 28-13.

Figure 28-13 Expanding the Human Task Activity

28.5.5.1 Invoking BPEL Callbacks
If intermediary events must be propagated to the BPEL process instance, select the
Allow task and routing customization in BPEL callbacks check box in the Events
section of the Human Task Editor. When this option is selected, the workflow service
invokes callbacks in the BPEL instance during each update of the task. The callbacks
are listed in the TaskService.wsdl file and described as follows:

• onTaskCompleted
This callback is invoked when the task is completed, expired, withdrawn, or
errored.

Chapter 28
Associating Human Tasks with BPEL Processes

28-16

• onTaskAssigned
This callback is invoked when the task is assigned to a new set of assignees due to the
following actions:

– Outcome update

– Skip current assignment

– Override routing slip

• onTaskUpdated
This callback is invoked for any other update to the task that does not fall in the
onTaskComplete or onTaskAssigned callback. This includes updates on tasks due to a
request for information, a submittal of information, an escalation, a reassign, and so on.

• onSubTaskUpdated
This callback is invoked for any update to a subtask.

Figure 28-14 shows how a workflow interaction with callbacks is modeled. After this task is
initiated, a while loop is used to receive messages until the task is complete. The while loop
contains a pick with four onMessage branches — one for each of the above-mentioned
callback operations. The workflow interaction works fine even if nothing is changed in the
onMessage branches, meaning that customizations in the onMessage branches are not
required.

In this scenario, a workflow context is captured in the BPEL instance. This context can be
used for all interaction with the workflow services. For example, to reassign a task if it is
assigned to a group, then you need the workflow context for the reassignTask operation on
the task service.

It is recommended that any user customizations be performed in the first assign,
AssignTaskAttributes, and that AssignSystemTaskAttributes not be changed.

Chapter 28
Associating Human Tasks with BPEL Processes

28-17

Figure 28-14 Workflow Interaction Modeling (with Callbacks)

28.5.6 What You May Need to Know About Changing the Generated
Human Task Activity

If you must change a generated human task activity, note the following details:

• Do not modify the assign tasks that are automatically created in a switch activity
when you add a human task to a BPEL process flow. Instead, add a new assign
activity outside the switch activity.

• If the parameter passed into a human task is modified (for example, you change
the parameter type in the Edit Task Parameter dialog), you must open the human
task activity in the BPEL process flow and click OK to correct the references to the

Chapter 28
Associating Human Tasks with BPEL Processes

28-18

payload variable. Not doing so causes the parameter name to change and become
uneditable.

If the task outcomes in the Human Task Editor are modified, you must edit the human
task activity and click OK. The switch case is then updated based on the changes to the
outcomes.

• If you make any changes to the translatable strings of the title or category of a task in the
resource bundle, those changes do not appear in any instances of that task that are
already initiated. However, they do appear in instances of that task that are initiated after
you make the changes.

• When you copy comments to a human task, make sure that those comments do not
contain the task ID. The taskId element must be empty.

28.5.7 What You May Need to Know About Deleting a Partner Link
Generated by a Human Task

Deleting a partner link that was generated by a human task (for example,
human_task_name.TaskService in the Partner Links swimlane) causes the human task to
become unusable. If you delete the partner link, you must delete the human task activity in
Oracle BPEL Designer and start over again.

28.5.8 How to Define Outcome-Based Modeling
In many cases, the outcome of a task determines the flow of the business process. To
facilitate modeling of the business logic, when a user task is generated, a BPEL switch
activity is also generated with prebuilt BPEL case activities. By default, one case branch is
created for each outcome selected during creation of the task. An otherwise branch is also
generated in the switch to represent cases in which the task is withdrawn, expired, or in error.

28.5.8.1 Specifying Payload Updates
The task carries a payload in it. If the payload is set from a business process variable, then
an assign activity with the name copyPayloadFromTask is created in each of the case and
otherwise branches to copy the payload from the task back to its source. If the payload is
expressed as other XPath expressions (such as ora:getNodes(...)), then this assign is not
created because of the lack of a process variable to copy the payload back. If the payload
does not require modification, then you can remove the assign generated in the switch-case
after the task scope.

28.5.8.2 Using Case Statements for Other Task Conclusions
By default, the switch activity contains case statements for the outcomes only. The other task
conclusions are captured in the otherwise branch. These conclusions are as follows:

• The task is withdrawn.

• The task is in error.

• The task is expired.

If business logic must be added for each of these other conclusions, then case statements
can be added for each of the preceding conditions. The case statements can be created as
shown in the following BPEL segment. The XPath conditions for the other conclusions in the
case activities for each of the preceding cases are shown in bold in the following example:

Chapter 28
Associating Human Tasks with BPEL Processes

28-19

<switch name="taskSwitch">
 <case condition="bpws:getVariableData('SequentialWorkflowVar1',
'/task:task/task:state') = 'COMPLETED' and
bpws:getVariableData('SequentialWorkflowVar1', '/task:task/task:conclusion') =
'ACCEPT'">
 <bpelx:annotation>
 <bpelx:pattern>Task outcome is ACCEPT
 </bpelx:pattern>
 </bpelx:annotation>
 ...
 </case>
 <case condition=
"bpws:getVariableData('SequentialWorkflowVar1', '/task:task/task:state') =
 'WITHDRAWN'">
 <bpelx:annotation>
 <bpelx:pattern>Task is withdrawn
 </bpelx:pattern>
 </bpelx:annotation>
 ...
 </case>
 <case condition=
"bpws:getVariableData('SequentialWorkflowVar1', '/task:task/task:state') =
 'EXPIRED'">
 <bpelx:annotation>
 <bpelx:pattern>Task is expired
 </bpelx:pattern>
 </bpelx:annotation>
 ...
 </case>
 <case condition=
"bpws:getVariableData('SequentialWorkflowVar1', '/task:task/task:state') =
 'ERRORED'">
 <bpelx:annotation>
 <bpelx:pattern>Task is errored
 </bpelx:pattern>
 </bpelx:annotation>
 ...
 </case>
 <otherwise>
 <bpelx:annotation>
 <bpelx:pattern>Task is EXPIRED, WITHDRAWN or ERRORED
 </bpelx:pattern>
 </bpelx:annotation>
 ...
 </otherwise>
</switch>

28.5.9 What You May Need to Know About Encoding an Attachment
To enable text files to be attached to a human task, you must set a flag that describes
whether the content of text attachments is encoded. This flag is named
isContentEncoded.You can set this flag by customizing the BPEL code in any Human
Workflow sample that includes a human task. To do this customization, in the .bpel
file in the sample, enter the following copy rule in the BPEL assign activity code:

<copy>
<from>true()</from>
<to>$initiateTaskInput.payload/task:task/task:attachment/task:isContentEncoded
</to>
</copy>

Chapter 28
Associating Human Tasks with BPEL Processes

28-20

Once you have entered this copy rule, you can either save the file and continue designing the
BPEL process or, if you have finished designing, you can deploy the process.

Chapter 28
Associating Human Tasks with BPEL Processes

28-21

29
Configuring Human Tasks

Learn how to configure the different properties of a human task. It covers basic properties,
task payload data structure, participant assignment, routing policies, localization, escalation,
notification preferences, access policies and task actions, restrictions and Java and business
event callbacks.

• Accessing the Sections of the Human Task Editor

• Specifying the Title, Description, Outcome, Priority, Category, Owner, and Application
Context

• Specifying the Task Payload Data Structure

• Assigning Task Participants

• Selecting a Routing Policy

• Specifying Multilingual Settings and Style Sheets

• Specifying What to Show in Task Details in the Worklist

• Escalating, Renewing, or Ending the Task

• Specifying Participant Notification Preferences

• Specifying Access Policies and Task Actions on Task Content

• Specifying Restrictions on Task Assignments

• Specifying Java or Business Event Callbacks

For information about troubleshooting human workflow issues, see Human Workflow
Troubleshooting in Administering Oracle SOA Suite and Oracle Business Process
Management Suite.

29.1 Accessing the Sections of the Human Task Editor
Learn how to access the sections of the Human Task Editor.

To access the sections of the Human Task Editor:

• Double-click the Human Task icon in the SOA Composite Editor or double-click the
Human Task icon in Oracle BPEL Designer.

The Human Task Editor consists of the main sections shown on the left side in
Figure 29-1. These sections enable you to design the metadata of a human task.

29-1

Figure 29-1 Human Task Editor

Instructions for using these main sections of the Human Task Editor to create a
workflow task are listed in Table 29-1.

Table 29-1 Human Task Editor

Section Description See...

General
(title, description,
outcomes, category,
priority, owner, and
application context)

Enables you to define task
details such as title, task
outcomes, owner, and other
attributes.

Specifying the Title,
Description, Outcome, Priority,
Category, Owner, and
Application Context

Data Enables you to define the
structure (message elements) of
the task payload (the data in the
task).

Specifying the Task Payload
Data Structure

Assignment Enables you to assign
participants to the task and
create a policy for routing the
task through the workflow.

Assigning Task Participants

Selecting a Routing Policy

Presentation Enables you to specify the
following settings:

• Multilingual settings
• WordML and custom style

sheets for attachments

Specifying Multilingual Settings
and Style Sheets

Deadlines Enables you to specify the
expiration duration of a task,
custom escalation Java classes,
and due dates.

Escalating, Renewing, or
Ending the Task

Notification Enables you to create and send
notifications when a user is
assigned a task or informed that
the status of the task has
changed.

Specifying Participant
Notification Preferences

Chapter 29
Accessing the Sections of the Human Task Editor

29-2

Table 29-1 (Cont.) Human Task Editor

Section Description See...

Access Enables you to specify access
rules for task content and task
actions, workflow signature
policies, and assignment
restrictions.

Specifying Access Policies and
Task Actions on Task Content

How to Specify a Workflow
Digital Signature Policy

Specifying Restrictions on Task
Assignments

Events Enables you to specify callback
classes and task and routing
assignments in BPEL callbacks.

Specifying Java or Business
Event Callbacks

29.2 Specifying the Title, Description, Outcome, Priority,
Category, Owner, and Application Context

Learn how to specify the task details such as the title, description, outcome, priority, category
Owner and the Application context.

To specify the details of a task:

1. Access the Human Task Editor.

2. Click the General tab.

Figure 29-2 shows the General section of the Human Task Editor.

This section enables you to specify details such as the task title, description, task
outcomes, task category, task priority, and task owner.

Figure 29-2 Human Task Editor — General Section

Instructions for configuring the following subsections of the General section are listed in
Table 29-2:

Chapter 29
Specifying the Title, Description, Outcome, Priority, Category, Owner, and Application Context

29-3

Table 29-2 Human Task Editor — General Section

For This Subsection... See...

Title How to Specify a Task Title

Description How to Specify a Task Description

Outcomes How to Specify a Task Outcome

Priority How to Specify a Task Priority

Category How to Specify a Task Category

Owner How to Specify a Task Owner

Application Context How To Specify an Application Context

29.2.1 How to Specify a Task Title
Enter an optional task title. The title defaults to this value only if the initiated task does
not have a title set in it. The title provides a visual identifier for the task. The task title
displays in Oracle BPM Worklist. You can also search on titles in Oracle BPM Worklist.

To specify a task title:

1. In the Task Title field of the General section, select a method for specifying a task
title:

• Plain Text: Manually enter a name (for example, Vacation Request
Approved).

• Text and XPath: Enter a combination of manual text and a dynamic
expression. After manually entering a portion of the title (for example,
Approval Required for Order Id:), place the cursor one blank space to the
right of the text and click the icon to the right of this field. This displays the
Expression Builder for dynamically creating the remaining portion of the title.
After completing the dynamic portion of the name, click OK to return to this
field. The complete name is displayed. For example:

Approval Required for Order Id: <%/task:task/task:payload/task:orderId%>

The expression is resolved during runtime with the exact order ID value from
the task payload.

• Translation: Click the Lookup button and locate a translation bundle to use to
specify the title.

• Resource Xpath: Click the Lookup button and locate a resource bundle to use
to specify the title.

2. If you enter a title in the Task Title field of the General tab of the Create Human
Task dialog box described in Specifying the Task Title, the title you enter here is
overridden.

29.2.2 How to Specify a Task Description
You can optionally specify a description of the task in the Description field of the
General section. The description enables you to provide additional details about a
task. For example, if the task title is Computer Upgrade Request, you can provide

Chapter 29
Specifying the Title, Description, Outcome, Priority, Category, Owner, and Application Context

29-4

additional details in this field, such as the model of the computer, amount of CPU, amount of
RAM, and so on. The description does not display in Oracle BPM Worklist.

To add a task description:

1. Select the drop-down menu and choose either Plain Text or Translation.

2. Provide the description:

Plain text:

a. Type a description into the dialog box.

b. Click Ok.

Translation:

a. Click the Lookup button.

b. Locate a resource bundle and provide a description.

c. Click Ok.

29.2.3 How to Specify a Task Outcome
Task outcomes capture the possible outcomes of a task. Oracle BPM Worklist displays the
outcomes you specify here as the possible task actions to perform during runtime.
Figure 29-3 provides details.

Figure 29-3 Outcomes in Oracle BPM Worklist

You can specify the following types of task outcomes:

• Select a seeded outcome

• Enter a custom outcome

The task outcomes can also have runtime display values that are different from the actual
outcome value specified here. This permits outcomes to be displayed in a different language
in Oracle BPM Worklist. For more information about internationalization, see How to Specify
Multilingual Settings.

Chapter 29
Specifying the Title, Description, Outcome, Priority, Category, Owner, and Application Context

29-5

To specify a task outcome:

1. To the right of the Outcomes field in the General section, click the Search icon.

The Outcomes dialog box shown in Figure 29-4 displays the possible outcomes for
tasks. APPROVE and REJECT are selected by default.

Figure 29-4 Outcomes Dialog

2. Enter the information shown in Table 29-3.

Table 29-3 Outcomes Dialog

Field Description

Select one or more
outcomes

Select additional task outcomes or deselect the default outcomes.

Add icon Click to invoke a dialog box for adding custom outcomes.

In the Name field of the dialog box, enter a custom name, and
click OK. Your outcome displays in the Outcomes field.

Notes: Be aware of the following naming restrictions:

• Do not specify a custom name that matches a name listed in
the Actions tab of the Access section of the Human Task
Editor (for example, do not specify Delete). Specifying the
same name can cause problems at runtime.

• Do not specify a custom name with blank spaces (for
example, On Hold). This causes an error when the custom
outcome is accessed in Oracle BPM Worklist. If you must
specify an outcome with spaces, use a resource bundle. For
more information, see Introduction to Human Workflow
Services.

• A custom task outcome must begin with a letter of the
alphabet, either upper or lower case. It should contain only
letters of the alphabet and the numbers zero (0) through nine
(9).

Chapter 29
Specifying the Title, Description, Outcome, Priority, Category, Owner, and Application Context

29-6

Table 29-3 (Cont.) Outcomes Dialog

Field Description

Outcomes Requiring
Comment

Click to select an outcome to which an assignee adds comments
in Oracle BPM Worklist at runtime. The assignee must add the
comments and perform the action without saving the task at
runtime.

Default Outcome Select the default outcome for this outcome.

The seeded and custom outcomes selected here display for selection in the Majority
Voted Outcome section of the parallel participant type.

3. For more information, see Specifying the Voting Outcome.

29.2.4 How to Specify a Task Priority
Specify the priority of the tasks. Priority can be 1 through 5, with 1 being the highest. By
default, the priority of a task is 3. This priority value is overridden by any priority value you
select in the General tab of the Create Human Task dialog box. You can filter tasks based on
priority and create views on priorities in Oracle BPM Worklist.

From the Priority list in the General section, select a priority for the task to specify a priority.

For more information about specifying a priority value in the Create Human Task dialog box,
see Specifying the Task Initiator and Task Priority.

29.2.5 How to Specify a Task Category
You can optionally specify a task category in the Category field of the General section. This
categorizes tasks created in a system. For example, in a help desk environment, you may
categorize customer requests as either software-related or hardware-related. The category
displays in Oracle BPM Worklist. You can filter tasks based on category and create views on
categories in Oracle BPM Worklist.

To specify a task category:

• Select a method for specifying a task category in the Category field of the General
section:

• By Name: Manually enter a name.

• By Expression: Click the icon to the right of this field to display the Expression
Builder for dynamically creating a category.

• Translation: If the composite contains a resource bundle file, then use the Lookup
button to locate the resource bundle file and to specify a category.

29.2.6 How to Specify a Task Owner
The task owner can view the tasks belonging to business processes they own and perform
operations on behalf of any of the assigned task participant types. Additionally, the owner can
also reassign, withdraw, or escalate tasks. The task owner can be considered the business
administrator for a task. The task owner can also be specified in the Advanced tab of the
Create Human Task dialog box described in Specifying a Task Owner. The task owner
specified in the Advanced tab overrides any task owner you enter here.

Chapter 29
Specifying the Title, Description, Outcome, Priority, Category, Owner, and Application Context

29-7

For more information about the task owner, see Task Stakeholders.

To specify a task owner:

• Select a method for specifying the task owner:

• Statically through the identity service user directory or the list of application
roles

• Dynamically through an XPath expression

For example: If the task has a payload message attribute named po within
which the owner is stored, you can specify an XPath expression such as:

/task:task/task:payload/po:purchaseOrder/po:owner
ids:getManager('jstein', 'jazn.com')
The manager of jstein is the task owner.

For more information about users, groups, and application roles, see Task Assignment
and Routing.

29.2.6.1 Specifying a Task Owner Statically Through the User Directory or a
List of Application Roles

Task owners can be selected by browsing the user directory (Oracle Internet Directory,
Java AuthoriZatioN (JAZN)/XML, LDAP, and so on) or a list of application roles
configured for use with Oracle SOA Suite.

To specify a task owner statically through the user directory or a list of
application roles:

1. In the first list to the right of the Owner field in the General section, select User,
Group, or Application Role as the type of task owner. Figure 29-5 provides
details.

Note:

By default, group names in human tasks are case sensitive. Therefore, if
you select Group and enter a name in upper case text (for example,
LOANAGENTGROUP), no task is displayed under the Administrative Tasks
tab in Oracle BPM Worklist. To enable group names to be case agnostic
(case insensitive), you must set the caseSensitiveGroups property to
false in the System MBeans Browser. For information, see
Administering Oracle SOA Suite and Oracle Business Process
Management Suite.

Chapter 29
Specifying the Title, Description, Outcome, Priority, Category, Owner, and Application Context

29-8

Figure 29-5 Specify a Task Owner By Browsing the User Directory or Application
Roles

2. In the second list to the right of the Owner field in the General section, select Static.

3. See the step in Table 29-4 based on the type of owner you selected.

Table 29-4 Type of Owner

If You Selected... See Step...

User or Group 4

Application Role 5

4. If you selected User or Group, the Identity Lookup dialog box shown in Figure 29-6
appears.

Figure 29-6 Identity Lookup Dialog

To select a user or group, you must first create an application server connection by
clicking the Add icon. Note the following restrictions:

• Do not create an application server connection to an Oracle WebLogic Administration
Server from which to retrieve the list of identity service realms. This is because there

Chapter 29
Specifying the Title, Description, Outcome, Priority, Category, Owner, and Application Context

29-9

is no identity service running on the Administration Server. Therefore, no realm
information displays and no users display when performing a search with a
search pattern in the Identity Lookup dialog box. Instead, create an application
server connection to a managed Oracle WebLogic Server.

• You must select an application server connection configured with the complete
domain name (for example, myhost.us.example.com). If you select a
connection configured only with the hostname (for example, myhost), the
Realm list may not display the available realms. If the existing connection
does not include the domain name, perform the following steps:

– In the Resource Palette, right-click the application server connection.

– Select Properties.

– In the Configuration tab, add the appropriate domain to the hostname.

– Return to the Identity Lookup dialog box and reselect the connection.

a. Select or create an application server connection to display the realms for
selection. A realm provides access to a policy store of users and roles
(groups).

b. Search for the owner by entering a search string such as jcooper, j*, *,
and so on. Clicking the Lookup icon to the right of the User Name field
fetches all the users that match the search criteria. Figure 29-7 provides
details. One or more users or groups can be highlighted and selected by
clicking Select.

Chapter 29
Specifying the Title, Description, Outcome, Priority, Category, Owner, and Application Context

29-10

Figure 29-7 Identity Lookup with Realm Selected

c. View the hierarchy of a user by highlighting the user and clicking Hierarchy.
Similarly, clicking Reportees displays the reportees of a selected user or group.
Figure 29-8 provides details.

Chapter 29
Specifying the Title, Description, Outcome, Priority, Category, Owner, and Application Context

29-11

Figure 29-8 User Hierarchy in Identity Lookup Dialog

d. View the details of a user or group by highlighting the user or group and
clicking Detail. Figure 29-9 provides details.

Figure 29-9 User or Group Details

e. Click OK to return to the Identity Lookup dialog box.

f. Click Select to add the user to the Selected User section.

g. Click OK to return to the Human Task Editor.

Your selection displays in the Owner field.

5. If you selected Application Role, the Select an Application Role dialog box
appears.

a. In the Application Server list, select the type of application server that
contains the application role or click the Add icon to launch the Create
Application Server Connection wizard to create a connection.

Chapter 29
Specifying the Title, Description, Outcome, Priority, Category, Owner, and Application Context

29-12

b. In the Application list, select the application that contains the application roles (for
example, a custom application or soa-infra for the SOA Infrastructure application).

c. In the Available section, select appropriate application roles and click the > button.
To select all, click the >> button. Figure 29-10 provides details.

Figure 29-10 Application Role

d. Click OK.

29.2.6.2 Specifying a Task Owner Dynamically Through an XPath Expression
Task owners can be selected dynamically in the Expression Builder dialog box.

To specify a task owner dynamically:

1. In the first list to the right of the Owner field in the General section, select User, Group,
or Application Role as the type of task owner. Figure 29-11 provides details.

Figure 29-11 Specify a Task Owner Dynamically

Chapter 29
Specifying the Title, Description, Outcome, Priority, Category, Owner, and Application Context

29-13

2. In the second list to the right of the Owner field in the General section, select
XPath.

3. Click the icon to launch the Expression Builder.

This displays the Expression Builder dialog box shown in Figure 29-12:

Figure 29-12 Expression Builder

4. Browse the available variable schemas and functions to create a task owner.

5. Click OK to return to the Human Task Editor.

Your selection displays in the Owner field.

For more information, see the following:

• Click Help for instructions on using the Expression Builder dialog box and
XPath Building Assistant

• XPath Extension Functions for information about workflow service dynamic
assignment functions, identity service functions, and instructions on using the
XPath Building Assistant

29.2.7 How To Specify an Application Context
You can specify the name of the application that contains the application roles used in
the task. This indicates the context in which the application role operates. If you do not
explicitly create a task, but end up having one, you can set up the context.

Chapter 29
Specifying the Title, Description, Outcome, Priority, Category, Owner, and Application Context

29-14

Note:

An application context is required to be set in the task definition in order to be able
to reassign the task to an application role in the Oracle Process Workspace and
Oracle BPM Worklist applications.

In the Application Context field of the General section, enter the name to specify an
application context.

29.3 Specifying the Task Payload Data Structure
Learn how to specify the structure (message elements) of the task payload (the data in the
task) defined in the XSD file.

Create parameters to represent the elements in the XSD file. This makes the payload data
available to the workflow task. For example:

• You create a parameter for an order ID element for placing an order from a store front
application.

• You create parameters for the location, type, problem description, severity, status, and
resolution elements for creating a help desk request.

Figure 29-13 shows the Data section of the Human Task Editor.Task payload data consists of
one or more elements or types. Based on your selections, an XML schema definition is
created for the task payload.

Figure 29-13 Human Task Editor — Parameters Section

29.3.1 How to Specify the Task Payload Data Structure
To specify the task payload data structure:

1. Click the Data tab.

2. Click the Add icon and select a payload type:

• String

• Integer

• Boolean

• Other

The Add Task Parameter dialog box is displayed, as shown in Figure 29-14.

Chapter 29
Specifying the Task Payload Data Structure

29-15

Figure 29-14 Add Task Parameter Dialog

3. Enter the details described in Table 29-5:

Table 29-5 Add Task Parameter Dialog Fields and Values

Field Description

Parameter Type Select Type or Element and click the Search icon to display
the Type Chooser dialog box for selecting the task parameter.

Parameter Name Accept the default name or enter a custom name. This field
only displays if Type is the selected parameter type.

Editable via worklist Select this check box to enable users to edit this part of the
task payload in Oracle BPM Worklist. For example, for a loan
approval task, the APR attribute may need to be updated by
the user reviewing the task, but the SSN field may not be
editable.

You can also specify access rules that determine the parts of
a task that participants can view and update. For more
information, see Specifying Access Policies and Task Actions
on Task Content.

Use Collections If a task uses collections, then define this parameter to use
collections. Click the Add button to provide the collection
name and the Xpath expression for the collection type. Use
Expression Builder to look up the collection type from the
schema.

Chapter 29
Specifying the Task Payload Data Structure

29-16

Note:

You can only define payload mapped attributes (previously known as flex field
mappings) in Oracle BPM Worklist for payload parameters that are simple XML
types (string, integer, and so on) or complex types (for example, a purchase
order, and so on). If you must search tasks using keywords or define views or
delegation rules based on task content, then you must use payload parameters
based on simple XML types. These simple types can be mapped to flex
columns in Oracle BPM Worklist.

4. Select the type, as shown in Figure 29-15.

Figure 29-15 Parameter Type

5. Click OK to return to the Human Task Editor.

Your selection displays in the Data section.

6. To edit your selection, select it and click the Edit icon in the upper right part of the Data
section.

29.4 Assigning Task Participants
Learn how to select a participant type that meets your business requirements. While
configuring the participant type, you build lists of users, groups, and application roles to act
upon tasks.

Figure 29-16 shows the Assignment section of the Human Task Editor.

Chapter 29
Assigning Task Participants

29-17

Figure 29-16 Human Task Editor — Assignment Section

You can easily mix and match participant types to create simple or complex workflow
routing policies. You can also extend the functionality of a previously configured
human task to model more complex workflows.

A participant type is grouped in a block under a stage (for example, named Stage1 in
Figure 29-16). A stage is a way of organizing the approval process for blocks of
participant types. You can have one or more stages in sequence or in parallel. Within
each stage, you can have one or more participant type blocks in sequence or in
parallel. The up and down keys enable you to rearrange the order of your participant
type blocks.

For example:

• You can create all participant type blocks in a single stage (for example, a
purchase order request in which the entire contents of the order are approved or
rejected as a whole).

• You can create more complex approval tasks that may include one or more
stages. For example, you can place one group of participant type blocks in one
stage and another block in a second stage. The list of approvers in the first stage
handles line entry approvals and the list of approvers in the second stage handles
header entry approvals.

Each of the participant types has an associated editor that you use for configuration
tasks. The sequence in which the assignees are added indicates the execution
sequence.

To specify a different stage name or have a business requirement that requires you to
create additional stages, perform the following steps. Creating additional stages is an
advanced requirement that may not be necessary for your environment.

For more information about participant types, see Task Assignment and Routing.

Chapter 29
Assigning Task Participants

29-18

29.4.1 How to Specify a Stage Name and Add Parallel and Sequential
Blocks

The stage is named Stage1 by default, however you can change the name.

To specify a stage name and add parallel and sequential blocks:

1. Double-click the name. The Edit dialog box displays.

2. In the Edit dialog box, enter the following details and click OK.

• Stage: The name of the stage.

• Non Repeating: Do not stage in parallel for each item in the collection.

• Repeat Stage in parallel for each item in a collection: Choose one collection from
the drop-down list to specify which collection type to use for the repeated stages.

3. Drag and drop the type of participant from the Participant palette on the right onto the
stage.

4. Drag Stage from the Participant Palette on the right and drop it on the green dot of the
existing stage.

When you bring the new stage closer to the current stage, four green dots display around
the current stage. Choose the green dot that is to right to the current stage. A second
stage is added in parallel to the first stage, as shown in Figure 29-17.

Figure 29-17 Parallel Stage

5. Drag Stage from the Participant Palette on the right and drop it on the green dot of the
existing stage

When you bring the new stage below the current stage, four green dots display around
the current stage. Choose the green dot that is below the current stage.

A sequential stage is added below the selected block.

Chapter 29
Assigning Task Participants

29-19

Figure 29-18 Sequential Stage

You create participant types within these blocks.

29.4.2 How to Assign Task Participants
To assign task participants:

1. In the Assignment section, perform one of the following tasks:

• Drag and drop Participants from the Components window onto Stage. The first
time you create a task participant, the box is labeled <Edit Participant>.

• Double-click the participant box.

The Edit Participant Type dialog box appears. This dialog box enables you to
select a specific participant type.

2. From the Type list, select a participant type shown in Figure 29-19.

Figure 29-19 Type List

3. See the section shown in Table 29-6 based on your selection.

Chapter 29
Assigning Task Participants

29-20

Table 29-6 Participant Types

Participant
Type

For a Description of this
Participant Type, See...

For Instructions on Configuring this Participant Type,
See...

• Single
• Parallel
• Serial
• FYI

Task Assignment and Routing How to Configure the Single Participant Type

How to Configure the Parallel Participant Type

How to Configure the Serial Participant Type

How to Configure the FYI Participant Type

29.4.3 How to Configure the Single Participant Type
Figure 29-20 shows the Edit Participant Type dialog box for the single participant type.
Figure 29-21 shows the expanded Advanced section.

Figure 29-20 Edit Participant Type — Single Type

Chapter 29
Assigning Task Participants

29-21

Figure 29-21 Edit Participant Type — Advanced Tab

To be dynamically assigned to a task, a single participant can be selected from a
group, an application role, or a participant list.

To configure the single participant type:

• In the Label field, enter a recognizable label for this participant. This label must be
unique among all the participants in the task definition (for example, Approval
Manager, Primary Reviewers, and so on).

Instructions for configuring the following subsections of the Edit Participant Type
dialog box for the single participant type are listed in Table 29-7:

Table 29-7 Edit Participant Type — Single Type

For This Subsection... See...

Participant List Creating a Single Task Participant List

Limit allocated duration to (under
the Advanced section)

Specifying a Time Limit for Acting on a Task

Allow this participant to invite
other participants (under the
Advanced section)

Inviting Additional Participants to a Task

Specify skip rule (under the
Advanced section)

Bypassing a Task Participant

Chapter 29
Assigning Task Participants

29-22

Table 29-7 (Cont.) Edit Participant Type — Single Type

For This Subsection... See...

Assignment Control (under the
Advanced section)

If this participant is associated with a particular
assignment context, then add that name here. Use
the Add button to add new entry. Use the drop-down
list to select the assignment context Name and
provide a value for this assignment context.

Let participants manually claim
task (under the General section)

Creating Participant Lists Consisting of Value-Based
Names and Expressions

Auto assign task to a single
user/group/application role
(under the General section)

Creating Participant Lists Consisting of Value-Based
Names and Expressions

29.4.3.1 Creating a Single Task Participant List
Users assigned to a participant list can act upon tasks. In a single-task participant list, only
one user is required to act on the task. You can specify either a single user or a list of users,
groups, or application roles for this pattern. If a list is specified, then all users on the list are
assigned the task. You can specify either that one of them must manually claim and act upon
the task, or that one user from the list is automatically selected by an assignment pattern.
When one user acts on the task, the task is withdrawn from the task list of other assignees.

You can create several types of lists for the single user participant, and for the parallel, serial,
and FYI user participants, for example:

• Value-based name and expression lists

These lists enable you to statically or dynamically select users, groups, or application
roles as task assignees.

• Value-based management chain lists

Management chains are typically used for serial approvals through multiple users in a
management chain hierarchy. Therefore, this list is most likely useful with the serial
participant type. This is typically the case if you want all users in the hierarchy to act upon
the task. Management chains can also be used with the single participant type. In this
case, however, all users in the hierarchy get the task assigned at the same time. As soon
as one user acts on the task, it is withdrawn from the other users.

For example, a purchase order is assigned to a manager. If the manager approves the
order, it is assigned to their manager. If that manager approves it, it is assigned to their
manager, and so on until three managers approve the order. If any managers reject the
request or the request expires, the order is rejected if you specify an abrupt termination
condition. Otherwise, the task flow continues to be routed.

• Rule-based names and expression lists and management chain lists

Business rules enable you to create the list of task participants with complex expressions.
For example, you create a business rule in which a purchase order request below $5000
is sent to a manager for approval. However, if the purchase order request
exceeds $5000, the request is sent to the manager of the manager for approval. Two key
features of business rules are facts and action types, which are described in How to
Specify Advanced Task Routing Using Business Rules.

When you select a participant type, a dialog box enables you to choose an option for building
your list of task participant assignees (users, groups, or application roles), as shown in

Chapter 29
Assigning Task Participants

29-23

Figure 29-22. The three selections described above are available: Names and
expressions, Management Chain, and Rule-based.

Figure 29-22 Build a List of Participants

After selecting an option, you dynamically assign task participant assignees (users,
groups, or application roles) and a data type, as shown in Figure 29-23.

Figure 29-23 Assignment of Task Assignees

Chapter 29
Assigning Task Participants

29-24

This section describes how to create these lists of participants.

29.4.3.1.1 Creating Participant Lists Consisting of Value-Based Names and Expressions

Select a method for statically or dynamically assigning a user, group, or application role as a
task participant. If the participant list contains a user, the selecting a group or an application
role causes the dynamic assignment to fail.

For conceptual information about:

• Users, groups, or application roles, see Task Assignment and Routing.

• Statically and dynamically assigning task participants, see Static, Dynamic, and Rule-
Based Task Assignment.

To create participant lists consisting of value-based names and expressions:

1. From the Build a list of participants using list, select Names and expressions.

2. Do either of the following:

• Select Let participants manually claim the task. If you select this option, then the
task is assigned to all participants in the list. An individual user from the task
assignees can then manually claim the task to work on it.

• Select Auto-assign to a single list, select User, Group, or Application Role, then
select an assignment pattern.

To find out more about each assignment pattern, and to select and configure it, click
Assignment Pattern. The Assignment Pattern dialog box appears. Figure 29-24
shows an example of an Assignment Pattern dialog box.

Figure 29-24 Selecting and Configuring an Assignment Pattern

Chapter 29
Assigning Task Participants

29-25

When you specify an application server connection in the Application Server
field, the assignment patterns are loaded into the Assignment Pattern list.
When you select one of the patterns from the Assignment Pattern list, a
description of your selection appears in the text box.

If you want the assignment pattern to consider all types of tasks, then select
Use tasks of all types to evaluate pattern criteria. Otherwise, the pattern
considers only this task type when determining the selected user. For
example, to assign a vacation request task to the least busy user, and you
select Use tasks of all types to evaluate pattern criteria, then all assigned
tasks are taken into consideration when determining the least busy user. If you
do not select Use tasks of all types to evaluate pattern criteria, then only
assigned vacation request tasks are considered when determining the least
busy user.

A particular pattern may enable you to specify input parameters that control
how the pattern is evaluated. For example, as shown in Figure 29-24, the Most
Productive pattern enables you to specify the Time Period (in days) over which
the productivity is calculated. Input values can be static, or can be dynamically
set by using an XPath expression. Not all patterns accept parameters.

3. From the Specify attributes using list, select Value-based.

The dialog box refreshes to display the fields shown in Figure 29-25.

Figure 29-25 Value-Based Names and Expressions

4. Click the Add icon and select a user, group, or application role as a task
participant.

The Identification Type column of the Participant Names table displays your
selection of user, group, or application role.

5. To change your selection in the Identification Type column, click it to invoke a
drop-down list.

6. In the Data Type column, click your selection to invoke a drop-down list to assign
a value:

• By Name: If your identification type is a user or group, click the Browse icon
(the dots) on the right to display a dialog box for selecting a user or group
configured through the identity service. The identity service enables the lookup
of user properties, roles, and group memberships. User information is
obtained from an LDAP server such as Oracle Internet Directory. You can use
wild cards (*) to search for IDs.

Chapter 29
Assigning Task Participants

29-26

If your selection is an application role, click the Browse icon to display the Select an
Application Role dialog box for selecting an application role. To search for application
roles, you must first create a connection to the application server. When searching,
you must specify the application name to find the name of the role. The task definition
can refer to only one application name. You cannot use application roles from
different applications as assignees or task owners.

• By Expression: For a user, group, or application role, click the Browse icon to
dynamically select a task assignee in the Expression Builder dialog box. Use the
bpws:getVariableData(...) expression or the ids:getManager() XPath function.

The Value column displays the value you specified.

7. To manually enter a value, click the field in the Value column and specify a value.

29.4.3.1.2 Creating Participant Lists Consisting of Value-Based Management Chains

Select a method for statically or dynamically assigning management chain parameters as
task participants.

For conceptual information about:

• Users, groups, or application roles, see Task Assignment and Routing.

• Statically and dynamically assigning task participants, see Static, Dynamic, and Rule-
Based Task Assignment.

• Management chains, see Creating a Single Task Participant List.

To create participant lists based on value-based management chains:

1. From the Build a list of participants using list, select Management Chain.

2. Do either of the following:

• Select Let participants manually claim the task. If you select this option, then the
task is assigned to all participants in the list. An individual user from the task
assignees can then manually claim the task to work on it.

• Select Auto-assign to a single list, select User, then select an assignment pattern.

To find out more about each assignment pattern, and to select and configure it, click
Assignment Pattern. The Assignment Pattern dialog box appears. Figure 29-24
shows an example of an Assignment Pattern dialog box.

When you specify an application server connection in the Application Server field, the
assignment patterns are loaded into the Assignment Pattern list. When you select
one of the patterns from the Assignment Pattern list, a description of your selection
appears in the text box.

If you want the assignment pattern to consider all types of tasks, then select Use
tasks of all types to evaluate pattern criteria. Otherwise, the pattern considers
only this task type when determining the selected user. For example, to assign a
vacation request task to the least busy user, and you select Use tasks of all types
to evaluate pattern criteria, then all assigned tasks are taken into consideration
when determining the least busy user. If you do not select Use tasks of all types to
evaluate pattern criteria, then only assigned vacation request tasks are considered
when determining the least busy user.

A particular pattern may enable you to specify input parameters that control how the
pattern is evaluated. For example, as shown in Figure 29-24, the Most Productive

Chapter 29
Assigning Task Participants

29-27

pattern enables you to specify the Time Period (in days) over which the
productivity is calculated. Input values can be static, or can be dynamically set
by using an XPath expression. Not all patterns accept parameters.

3. From the Specify attributes using list, select Value-based.

The dialog box refreshes to display the fields shown in Figure 29-26.

Figure 29-26 Value-Based Management Chains

4. See Step 4 through Step 7 of Creating a Single Task Participant List for
instructions on assigning a user, group, or application role to a list in the Starting
Participant table.

5. In the Top Participant list, select a method for assigning the number of task
participant levels:

• By Title: Select the title of the last (highest) approver in the management
chain.

• XPath: Select to dynamically enter a top participant through the Expression
Builder dialog box.

6. In the Number of Levels list, select a method for assigning a top participant:

• By Number: Enter a value for the number of levels in the management chain
to include in this task. For example, if you enter 2 and the task is initially
assigned to user jcooper, both the user jstein (manager of jcooper) and the
user wfaulk (manager of jstein) are included in the list (apart from jcooper,
the initial assignee).

• XPath: Select to dynamically enter a value through the Expression Builder
dialog box.

Chapter 29
Assigning Task Participants

29-28

29.4.3.1.3 Creating Participant Lists Consisting of Rulesets

A ruleset provides a unit of execution for rules and for decision tables. In addition, rulesets
provide a unit of sharing for rules; rules belong to a ruleset. Multiple rulesets can be executed
in order. This is called rule flow. The ruleset stack determines the order. The order can be
manipulated by rule actions that push and pop rulesets on the stack. In rulesets, the priority
of rules applies to specify the order of firing of rules in the ruleset. Rulesets also provide an
effective date specification that identifies that the ruleset is always active, or that the ruleset is
restricted based on a time and date range, or a starting or ending time and date.

The method by which you create a ruleset is based on how you access it. This is described in
the following section.

Note:

You cannot update facts after the rule dictionary is created.

To specify participant lists based on rulesets:

Business rules can define the participant list. There are two options for using business rules:

• Rules define parameters of a specific list builder (such as Names and Expressions or
Management Chain). In this case, the task routing pattern is modeled to use a specific
list builder. In the list builder, the parameters are listed as coming from rules. Rules return
the list builder of the same type as the one modeled in Oracle JDeveloper.

1. From the Build a list of participants using list, select Names and expressions or
Management Chain.

2. From the Specify attributes using list, select Rule-based.

3. In the List Ruleset field, enter a ruleset name.

Figure 29-27 provides details.

Chapter 29
Assigning Task Participants

29-29

Figure 29-27 Rulesets

4. Do either of the following:

– Select Let participants manually claim the task. If you select this
option, then the task is assigned to all participants in the list. An individual
user from the task assignees can then manually claim the task to work on
it.

– Select Auto-assign to a single list, select User, Group, or Application
Role, then select an assignment pattern.

To find out more about each assignment pattern, and to select and
configure it, click Assignment Pattern. The Assignment Pattern dialog
box appears. Figure 29-24 shows an example of an Assignment Pattern
dialog box.

When you specify an application server connection in the Application
Server field, the assignment patterns are loaded into the Assignment
Pattern list. When you select one of the patterns from the Assignment
Pattern list, a description of your selection appears in the text box.

If you want the assignment pattern to consider all types of tasks, then
select Use tasks of all types to evaluate pattern criteria. Otherwise, the
pattern considers only this task type when determining the selected user.
For example, to assign a vacation request task to the least busy user, and
you select Use tasks of all types to evaluate pattern criteria, then all
assigned tasks are taken into consideration when determining the least

Chapter 29
Assigning Task Participants

29-30

busy user. If you do not select Use tasks of all types to evaluate pattern
criteria, then only assigned vacation request tasks are considered when
determining the least busy user.

A particular pattern may enable you to specify input parameters that control how
the pattern is evaluated. For example, as shown in Figure 29-24, the Most
Productive pattern enables you to specify the Time Period (in days) over which
the productivity is calculated. Input values can be static, or can be dynamically
set by using an XPath expression. Not all patterns accept parameters.

5. Click OK.

• Rules define the list builder and the list builder parameters. In this case, the list itself is
built using rules. The rules define the list builder and the parameters.

1. From the Build a list of participants using list, select Rule-based.

2. In the List Ruleset field, enter a ruleset name.

Figure 29-28 provides details.

Figure 29-28 Rulesets

3. Do either of the following:

– Select Let participants manually claim the task. If you select this option, then
the task is assigned to all participants in the list. An individual user from the task
assignees can then manually claim the task to work on it.

Chapter 29
Assigning Task Participants

29-31

– Select Auto-assign to a single list, select User, Group, or Application
Role, then select an assignment pattern.

To find out more about each assignment pattern, and to select and
configure it, click Assignment Pattern. The Assignment Pattern dialog
box appears. Figure 29-24 shows an example of an Assignment Pattern
dialog box.

When you specify an application server connection in the Application
Server field, the assignment patterns are loaded into the Assignment
Pattern list. When you select one of the patterns from the Assignment
Pattern list, a description of your selection appears in the text box.

If you want the assignment pattern to consider all types of tasks, then
select Use tasks of all types to evaluate pattern criteria. Otherwise, the
pattern considers only this task type when determining the selected user.
For example, to assign a vacation request task to the least busy user, and
you select Use tasks of all types to evaluate pattern criteria, then all
assigned tasks are taken into consideration when determining the least
busy user. If you do not select Use tasks of all types to evaluate pattern
criteria, then only assigned vacation request tasks are considered when
determining the least busy user.

4. Click OK.

Both options create a rule dictionary, if one is not already created, and preseed several
rule functions and facts for easy specifications of the participant list. In the rule
dictionary, the following rule functions are seeded to create participant lists:

• CreateResourceList
• CreateManagementChainList
The Task fact is asserted by the task service for basing rule conditions.

29.4.3.1.3.1 Viewing the Rule Dictionary

After the rule dictionary is created, the Oracle Business Rules Designer is displayed.

1. Model your rule conditions. In the action part, call one of the above functions to
complete building your lists. Figure 29-29 provides details.

Figure 29-29 Business Rules

The parameters for the rule functions are similar to the ones in Oracle JDeveloper
modeling. In addition to the configurations in Oracle JDeveloper, some additional

Chapter 29
Assigning Task Participants

29-32

options are available in the Oracle Business Rules Designer for the following attributes:

• responseType: If the response type is REQUIRED, the assignee must act on the
task. Otherwise, the assignment is converted to an FYI assignment.

• ruleName: The rule name can create reasons for assignments.

• lists: This object is a holder for the lists that are built. Clicking this option shows a
pre-asserted fact Lists object to use as the parameter.

An example of rules specifying management chain-based participants is shown in
Figure 29-30.

Figure 29-30 Business Rules

If multiple rules are fired, the list builder created by the rule with the highest priority is
selected.

29.4.3.2 Specifying a Time Limit for Acting on a Task
You can specify the amount of time a user, group, or application role receives to act on a
task. If the user, group, or role does not act in the time specified, the global escalation and
renewal policies that you set in the Deadlines section (known as the routing slip level) of the
Human Task Editor are applied. For example, if the global policy is set to escalate the task
and this participant does not act in the duration provided, the task is escalated to the
manager or another user, as appropriate.

To specify a time limit for acting on a task:

1. Expand the Advanced section of the Edit Participant Type dialog box for the single type,
as shown in Figure 29-31.

Figure 29-31 Advanced Section of Edit Participant Type — Single Type

Chapter 29
Assigning Task Participants

29-33

2. Select Limit allocated duration to.

3. Specify the amount of time.

For more information about setting the global escalation and renewal policies in
the Deadlines section of the Human Task Editor, see Escalating, Renewing, or
Ending the Task.

29.4.3.3 Inviting Additional Participants to a Task
You can allow a task assignee to invite other participants into the workflow before
routing it to the next assignee in this workflow. For example, assume the approval
workflow goes from James Cooper to John Steinbeck. If this option is checked, James
Cooper can decide to first route it to Irving Stone before it goes to John Steinbeck.

This is also known as ad hoc routing. If this option is selected, Adhoc Route is added
to the Actions list in Oracle BPM Worklist at runtime.

Note:

Do not add adhoc assignees either above or below an FYI participant.

To invite additional participants to a task:

1. Expand the Advanced section of the Edit Participant Type dialog box for the
single type, as shown in Figure 29-31.

2. Select Allow this participant to invite other participants.

29.4.3.4 Bypassing a Task Participant
You can bypass a task participant (user, group, or application role) if a specific
condition is satisfied. For example, if a user submits a business trip expense report
that is under a specific amount, no approval is required by their manager.

To bypass a task:

1. Expand the Advanced section of the Edit Participant Type dialog box for the
single type, as shown in Figure 29-31.

2. Select Specify skip rule.

This action displays an icon for accessing the Expression Builder dialog box for
building a condition.

The expression to bypass a task participant must evaluate to a boolean value. For
example, /task:task/task:payload/order:orderAmount < 1000 is a valid XPath
expression for skipping a participant.

For more information about creating dynamic rule conditions, see How to Specify
Advanced Task Routing Using Business Rules.

29.4.4 How to Configure the Parallel Participant Type
The parallel participant type is used when multiple users, working in parallel, must act
simultaneously, such as in a hiring situation when multiple users vote to hire or reject

Chapter 29
Assigning Task Participants

29-34

an applicant. You specify the voting percentage that is needed for the outcome to take effect,
such as a majority vote or a unanimous vote. In case of parallel routing with parallel
participants, the voting and the percentage rule takes precedence to decide the final outcome
of the parent task.

For example, a business process collects the feedback from all interviewers in the hiring
process, consolidates it, and assigns a hire or reject request to each of the interviewers. At
the end, the candidate is hired if the majority of interviewers vote for hiring instead of
rejecting.

Figure 29-32 and Figure 29-33 display the upper and lower sections of the Parallel dialog
box.

Figure 29-32 Edit Participant Type — Parallel Type (Upper Section of Dialog)

Figure 29-33 Edit Participant Type — Parallel Type (Lower Section of Dialog)

Chapter 29
Assigning Task Participants

29-35

To assign participants to the parallel participant type:

• In the Label field, enter a recognizable label for this participant. This label must be
unique among all the participants in the task definition (for example, Approval
Manager, Primary Reviewers, and so on).

Instructions for configuring the following subsections of the Edit Participant Type
dialog box for the parallel participant type are listed in Table 29-8:

Table 29-8 Edit Participant Type — Parallel Type

For This Subsection... See...

Vote Outcome Specifying the Voting Outcome

Participant List Creating a Parallel Task Participant List

Limit allocated duration to (under
the Advanced section)

Specifying a Time Limit for Acting on a Task

Allow this participant to invite
other participants (under the
Advanced section)

Inviting Additional Participants to a Task

Specify skip rule (under the
Advanced section)

Bypassing a Task Participant

Add Assignment Context (under
the Advanced section)

If this participant is associated with a particular
assignment context, then add that name here. Use
the Add button to add a new entry. Use the drop-
down list to select an assignment context Name and
to provide a value for this assignment context.

29.4.4.1 Specifying the Voting Outcome
You can specify a voted-upon outcome that overrides the default outcome selected in
the Default Outcome list. This outcome takes effect if the required percentage is
reached. Outcomes are evaluated in the order listed in the table.

To specify group voting details:

1. Go to the Vote Outcome section of the Edit Participant Type dialog box for the
parallel type.

2. From the list in the Voted Outcomes column, select an outcome for the task (for
example, Any, ACCEPT, REJECT, or any other outcome specified in How to
Specify a Task Outcome).

The Any outcome enables you to determine the outcome dynamically at runtime.
For example, if you select Any and set the outcome percentage to 60, then at
runtime, whichever outcome reaches 60% becomes the final voted outcome. If
60% of assignees vote to reject the outcome, then it is rejected.

3. From the list in the Outcome Type column, select a method for determining the
outcome of the final task.

• By Expression: Dynamically specify the details with an XPath expression.

• By Percentage: Specify a percentage value that determines when the
outcome of this task takes effect.

Chapter 29
Assigning Task Participants

29-36

4. From the list in the Value column, specify a value based on your selection in Step 3.

• If you selected By Expression, click the Browse icon to the right of the field to
display the Expression Builder dialog box for creating an expression.

• If you selected By Percentage, enter a percentage value required for the outcome of
this task to take effect (for example, a majority vote (51) or a unanimous vote (100)).
For example, assume there are two possible outcomes (ACCEPT and REJECT) and
five subtasks. If two subtasks are accepted and three are rejected, and the required
acceptance percentage is 50%, the outcome of the task is rejected. Figure 29-34
provides details.

This functionality is nondeterministic. For example, selecting a percentage of 30%
when there are two subtasks does not make sense.

Figure 29-34 Vote Outcomes Section

5. Click the Add icon to specify additional outcomes.

6. In the Default Outcome list, select the default outcome or enter an XPath expression for
this task to take effect if the consensus percentage value is not satisfied. This happens if
there is a tie or if all participants do not respond before the task expires. Seeded and
custom outcomes that you entered in the Outcomes dialog box in How to Specify a Task
Outcome display in this list.

29.4.4.2 Creating a Parallel Task Participant List
Users assigned to the list of participants can act upon tasks. You can create several types of
lists:

• Value-based name and expression lists

• Value-based management chain lists

• Rule-based names and expression lists

• Rule-based management chain lists

• Rule-based links

For information about creating these lists of participants, see section Creating a Single Task
Participant List.

29.4.4.3 Specifying a Time Limit for Acting on a Task
You can specify the amount of time a user, group, or application role receives to act on a
task. If the user, group, or role does not act in the time specified, the global escalation and
renewal policies that you set in the Deadlines section (known as the routing slip level) of the
Human Task Editor are applied. For example, if the global policy is set to escalate the task
and this participant does not act in the duration provided, the task is escalated to the
manager or another user, as appropriate.

Chapter 29
Assigning Task Participants

29-37

To specify a time limit for acting on a task:

1. In the Advanced section of the Edit Participant Type dialog box for the parallel
type, click the Advanced tab to expand the section shown in Figure 29-33.

2. Select Limit allocated duration to.

3. Specify the amount of time.

For more information about setting the global escalation and renewal policies in the
Deadlines section of the Human Task Editor, see Escalating, Renewing, or Ending the
Task.

29.4.4.4 Inviting Additional Participants to a Task
You can allow a task assignee to invite other participants into the workflow before
routing it to the next assignee in this workflow. For example, assume the approval
workflow goes from James Cooper to John Steinbeck. If this option is checked, James
Cooper can decide to first route it to Irving Stone before it goes to John Steinbeck.

To invite additional participants to a task:

1. In the Advanced section of the Edit Participant Type dialog box for the parallel
type, click the Advanced icon to expand the section (if not expanded).

2. Select Allow this participant to invite other participants.

29.4.4.5 Bypassing a Task Participant
You can bypass a task participant (user, group, or application role) if a specific
condition is satisfied. For example, if a user submits a business trip expense report
that is under a specific amount, no approval is required by their manager.

To bypass a task participant:

• In the Edit Participant Type dialog box for the parallel type, select the Specify skip
rule check box.

This action displays an icon for accessing the Expression Builder dialog box for
building a condition. The expression must evaluate to a boolean value.

For information about a valid XPath expression for skipping a participant, see
Bypassing a Task Participant.

29.4.5 How to Configure the Serial Participant Type
This participant type enables you to create a list of sequential participants for a
workflow. For example, if you want a document to be reviewed by John, Mary, and
Scott in sequence, use this participant type. For the serial participant type, they can be
any list of users or groups.

Figure 29-35 displays the Serial dialog box. Figure 29-36 shows the expanded
Advanced section.

Chapter 29
Assigning Task Participants

29-38

Figure 29-35 Edit Participant Type — Serial Type

Chapter 29
Assigning Task Participants

29-39

Figure 29-36 Edit Participant Type — Serial Type (Advanced Tab)

To configure the serial participant type:

• In the Label field, enter a recognizable label for this participant. This label must be
unique among all the participants in the task definition (for example, Approval
Manager, Primary Reviewers, and so on).

Instructions for configuring the following subsections of the Edit Participant Type
dialog box for the serial participant type are listed in Table 29-9.

Table 29-9 Edit Participant Type — Serial Type

For This Subsection... See...

Participant List Creating a Serial Task Participant List

Limit allocated duration to (under
the Advanced section)

Specifying a Time Limit for Acting on a Task

Note that if you specify the task expiry time at the
level of a serial participant, then, when that time
expires, the task does not move to the next
participant in the series. Rather, the entire task
expires.

Allow this participant to invite
other participants (under the
Advanced section)

Inviting Additional Participants to a Task

Chapter 29
Assigning Task Participants

29-40

Table 29-9 (Cont.) Edit Participant Type — Serial Type

For This Subsection... See...

Specify skip rule (under the
Advanced section)

Bypassing a Task Participant

Assignment Context (under the
Advanced section)

If this participant is associated with a particular
assignment context, then add that name here. Use
the Add button to add a new entry. Use the drop-
down list to select assignment context Name and to
provide a value for this assignment context.

29.4.5.1 Creating a Serial Task Participant List
Users assigned to the list of participants can act upon tasks. You can create several types of
lists:

• Value-based name and expression lists

• Value-based management chain lists

• Rule-based names and expression lists

• Rule-based management chain lists

• Rule-based lists

See section Creating a Single Task Participant List for instructions on creating these lists of
participants.

29.4.5.2 Specifying a Time Limit for Acting on a Task
You can specify the amount of time a user, group, or application role receives to act on a
task. If the user, group, or role does not act in the time specified, the global escalation and
renewal policies that you set in the Deadlines section (known as the routing slip level) of the
Human Task Editor are applied. For example, if the global policy is set to escalate the task
and this participant does not act in the duration provided, the task is escalated to the
manager or another user, as appropriate.

To specify a time limit for acting on a task:

1. In the Advanced tab of the Edit Participant Type dialog box for the serial type, click the
Advanced icon to expand the section shown in Figure 29-35.

2. Click Limit allocated duration to.

3. Specify the amount of time.

Note:

If you specify the task expiry time at the level of a serial participant, then, when
that specified time limit is reached, the task does not move to the next
participant in the series. Rather, the entire task expires.

Chapter 29
Assigning Task Participants

29-41

For more information about setting the global escalation and renewal policies in
the Deadlines section of the Human Task Editor, see Escalating, Renewing, or
Ending the Task.

29.4.5.3 Inviting Additional Participants to a Task
You can allow a task assignee to invite other participants into the workflow before
routing it to the next assignee in this workflow. For example, assume the approval
workflow goes from James Cooper to John Steinbeck. If this option is checked, James
Cooper can decide to first route it to Irving Stone before it goes to John Steinbeck.

To invite additional participants to a task:

1. In the Advanced section of the Edit Participant Type dialog box for the serial type,
click the Advanced icon to expand the section (if not already expanded).

2. Select Allow this participant to invite other participants.

Note:

For the serial participant type, additional participants can be invited as
follows:

• Globally specifying that the ad hoc participants can be invited at
anytime. In this case, even in a sequential workflow, approvers can
invite other participants at any level in the sequential workflow.

• Specifying that an ad hoc invitation of other participants can be done
only in specific points in the workflow. In this case, other ad hoc
participants are invited only when a series is complete.

29.4.5.4 Bypassing a Task Participant
You can bypass a task participant (user, group, or application role) if a specific
condition is satisfied. For example, if a user submits a business trip expense report
that is under a specific amount, no approval is required by their manager.

In the Advanced section of the Edit Participant Type dialog box for the serial type,
select the Specify skip rule check box to bypass a task participant. This action
displays an icon for accessing the Expression Builder dialog box for building a
condition. The expression must evaluate to a boolean value.

For more information about a valid XPath expression for skipping a participant, see
Bypassing a Task Participant.

29.4.6 How to Configure the FYI Participant Type
This participant type is used when a task is sent to a user, but the business process
does not wait for a user response; it just continues. FYIs cannot directly impact the
outcome of a task, but in some cases can provide comments or add attachments.

For example, a magazine subscription is due for renewal. If the user does not cancel
the current subscription before the expiration date, the subscription is renewed. This
user is reminded weekly until the request expires or the user acts on it.

Chapter 29
Assigning Task Participants

29-42

Figure 29-37 displays the Edit Participant Type dialog box for the FYI type. This dialog box
also includes a Participants Exclusion List at the bottom that is not displayed in
Figure 29-37.

Figure 29-37 Edit Participant Type — FYI Type

To configure the FYI participant type, in the Label field, enter a recognizable label for this
participant. This label must be unique among all the participants in the task definition (for
example, Approval Manager, Primary Reviewers, and so on).

29.4.6.1 Creating an FYI Task Participant List
Users assigned to the list of participants can act upon tasks. You can create several types of
lists:

• Value-based name and expression lists

• Value-based management chain lists

• Rule-based names and expression lists

• Rule-based management chain lists

• Rule-based lists

See section Creating a Single Task Participant List for instructions on creating these lists of
participants.

29.5 Selecting a Routing Policy
You can select a routing policy in the Human Task Editor.

After you configure a participant type and are returned to the Human Task Editor, use the
links on the top right corner as shown in Figure 29-38.

Chapter 29
Selecting a Routing Policy

29-43

Figure 29-38 Human Task Editor — Assignment Section

Table 29-10 describes the routing policy methods provided.

Table 29-10 Routing Policy Method

Routing Policy Selection Use This Policy In Environments
Where...

Section

• Allow all participants
to invite other
participants

A participant can select users or groups as
the next assignee (ad hoc) when approving
the task.

Allow All Participants to Invite Other
Participants or Edit New Participants

• Complete task when
a participant
chooses: <outcome>

A participant in a task can accept or reject it,
thus ending the workflow without the task
being sent to any other participant. For
example, a manager rejects a purchase
order, meaning that purchase order is not
sent to their manager for review.

Stopping Routing of a Task to Further
Participants

• Enable early
completion in
parallel subtasks

Note: This option is for environments in
which you have multiple stages and
participants working in parallel.

Participants perform subtasks in parallel,
and one group's rejection or approval of a
subtask does not cause the other group's
subtask to also be rejected or approved.

Enabling Early Completion in Parallel
Subtasks

• Complete parent
tasks of early
completing subtasks

Note: This option is for environments in
which you have multiple stages and
participants working in parallel.

Participants perform subtasks in parallel,
and one group's rejection or approval of a
subtask causes the other group's subtask to
also be rejected or approved.

Completing Parent Subtasks of Early
Completing Subtasks

Chapter 29
Selecting a Routing Policy

29-44

Table 29-10 (Cont.) Routing Policy Method

Routing Policy Selection Use This Policy In Environments
Where...

Section

Use Advanced Rules The participants to whom the task is routed
are determined by the business rule logic
that you model. For example, a loan
application task is designed to go through a
loan agent, their manager, and then the
senior manager. If the loan agent approves
the loan, but their manager rejects it, the
task is returned to the loan agent.

How to Specify Advanced Task Routing
Using Business Rules

Use External Routing The participants in a task are dynamically
determined. For example, a company's rules
may require the task participants to be
determined and then retrieved from a back-
end database during runtime.

How to Use External Routing

Assignment tab A participant is assigned a failed task for the
purposes of recovery.

How to Configure the Error Assignee
and Reviewers

29.5.1 How to Customize Tasks Routing
Tasks are reviewed by all the selected participants in the order they appear. This is the
default routing. However, you can add some Adhoc or Dynamic routing rules.

Dynamic and Adhoc Routing Rules

Dynamic and Adhoc Routing help you with the following:

• Allowing all participants to invite other participants

• Completing a task when a participant chooses

• Enabling early completion in parallel subtasks

• Completing parent subtasks of early completing subtasks

29.5.1.1 Exclude Task Creator from Approval List
Before you create the task and create routing rules for the tasks, you can exclude the task
creator from the list of approvers by adding the creator to the excluded participant list. At the
same time, you can assign to the task to the task creator’s manager.

To exclude the task creator from the participant list and add task creator’s manager to the
approval list:

1. Click the Configure icon on the top.

Task Properties screen appears.

2. Select the Skip Creator from Approval List option.

3. Select the Assign to Creator’s Manager option.

4. Click OK.

• When you select only the Skip Creator from Approval List option:

Chapter 29
Selecting a Routing Policy

29-45

– If there are multiple users in the task and one of the users is the task creator,
then the assignment is skipped for the task creator and assigned to other
users.

– If there is only one user and the user is the task creator, then the task moves
to completed state. There is no assignee for the task.

• When you select both the Skip Creator from Approval List and Assign to
Creator’s Manager options:

– If there are multiple users in the task and one of the users is the task creator,
then the creator’s manager is fetched from the identity store and the task is
assigned to the manager along with other users.

– If there is only one user in the task and the user is the task creator, then the
creator’s manager is fetched from the identity store and the task is assigned to
the manager.

29.5.1.2 Allow All Participants to Invite Other Participants or Edit New
Participants

This check box is the equivalent of the ad hoc workflow pattern of pre-10.1.3 Oracle
BPEL Process Manager releases. This applies when there is at least one participant.
In this case, each user selects users or groups as the next assignee when approving
the task.

To allow all participants to invite other participants:

1. Click Adhoc Routing.

2. Select the Allow all participants to invite other participants check box for this
task assignee to invite other participants into the workflow before routing it to the
next assignee in this workflow.

3. Select the Allow participants to edit new participants check box for this task
assignee to edit other adhoc participants that were added to the routing slip.

Note:

Do not add adhoc assignees either above or below an FYI participant.

29.5.1.3 Allow Initiator to Add Participants
In the Adhoc Routing screen, select the Allow all initiator to add participants
check box so this task initiator can invite other participants into the workflow before
routing to the next assignee in this workflow.

29.5.1.4 Stopping Routing of a Task to Further Participants
You can specify conditions under which a task can be marked complete early,
regardless of the other participants in the workflow.

For example, assume an expense report goes to the manager, and then the director. If
the first participant (manager) rejects it, you can end the workflow without sending it to
the next participant (director).

Chapter 29
Selecting a Routing Policy

29-46

To abruptly complete a condition:

1. Click Early Completion.

2. Select the Complete task when a participant chooses: <outcome> check box.

The Abrupt Completion Details screen appears. There are two methods for specifying
the abrupt completion of a task:

• Outcomes

• XPath expression routing condition

If outcomes are specified, any time the selected task outcome occurs, the task
completes. If both outcome and routing condition are specified, the workflow service
performs a logical OR operation on the two.

3. Select appropriate outcomes and click the > button, as shown in Figure 29-39. To select
all, click the >> button.

Figure 29-39 Abrupt Completion Details

4. To the right of the Routing Condition field, click the icon to display the Expression
Builder dialog box for dynamically creating a condition under which to complete this task
early. For example, if a user submits a business trip expense report that is under a
specific amount, no approval is required by their manager.

An early completion XPath expression is not evaluated until at least one user has acted
upon the task.

5. To enable early completion, click Enable early completion in parallel with subtasks.
For more information, see Enabling Early Completion in Parallel Subtasks.

6. To enable early completion of parent tasks, click Complete parent tasks of early
completing subtasks. For more information, see Completing Parent Subtasks of Early
Completing Subtasks.

7. Click OK to return to the Human Task Editor.

You can click the icon to the right of the Complete task when a participant chooses:
<outcome> check box to edit this information.

Chapter 29
Selecting a Routing Policy

29-47

29.5.1.4.1 Enabling Early Completion in Parallel Subtasks
You can use this option in the following environments:

• Multiple stages and groups of participants perform subtasks in parallel.

• A participant in one group approves or rejects a subtask, which causes the other
participants in that same group to stop acting upon the task. However, this does
not cause the other parallel group to stop acting upon subtasks. That group
continues taking actions on tasks.

For example, assume there are two parallel subgroups, each in separate stages. One
group acts upon lines of a purchase order. The other group acts upon headers of the
same purchase order. If participant ApproveLines.Participant2 of the first group
rejects a line, all other task participants in the first group stop acting upon tasks.
However, the second parallel group continues to act upon headers in the purchase
order. In this scenario, the entire task does not complete early. Figure 29-40 provides
details.

Figure 29-40 Early Completion of Parallel Subtasks

29.5.1.4.2 Completing Parent Subtasks of Early Completing Subtasks
You can use this option in the following environments:

• Multiple stages and groups of participants perform subtasks in parallel.

• A participant in one group approves or rejects a subtask, which causes the other
participants in that same group to stop acting upon the task. This also causes the
other parallel group to stop acting upon subtasks.

For example, assume there are two parallel subgroups, each in separate stages, as
shown in Figure 29-40. One group acts upon lines of a purchase order. The other
group acts upon headers of the same purchase order. If participant
ApproveLines.Participant2 of the first group rejects a line, all other task participants
in the first group stop acting upon tasks. In addition, the second parallel group stops
acting upon headers in the purchase order. In this scenario, the entire task completes
early.

Chapter 29
Selecting a Routing Policy

29-48

29.5.2 How to Specify Advanced Task Routing Using Business Rules
Use advanced routing rules to create complex workflow routing scenarios. The participant
types (single, parallel, serial, and FYI) are used to create a linear flow from one set of users
to another with basic conditions such as abrupt termination, skipping assignees, and so on.
However, there is often a need to perform more complex back and forth routing between
multiple individuals in a workflow. One option is to use the BPEL process as the orchestrator
of these tasks. Another option is to specify it declaratively using business rules. This section
describes how you can model such complex interactions by using business rules with the
Human Task Editor.

29.5.2.1 Introduction to Advanced Task Routing Using Business Rules
You can define state machine routing rules using Oracle Business Rules. This action enables
you to create Oracle Business Rules that are evaluated:

• After a routing slip task participant sets the outcome of the task

• Before the task is assigned to the next routing slip participant

This action enables you to override the standard task routing slip method described in How to
Route Tasks to All Participants in the Specified Order and build complex routing behavior into
tasks.

Using Oracle Business Rules, you define a set of rules (called a ruleset) that relies on
business objects, called facts, to determine which action to take.

29.5.2.2 Facts
A fact is an object with certain business data. Each time a routing slip assignee sets the
outcome of a task, instead of automatically routing the task to the next assignee, the task
service performs the following steps:

• Asserts facts into the decision service

• Executes the advanced routing ruleset

Rules can test values in the asserted facts and specify the routing behavior by setting values
in a TaskAction fact type.

Table 29-11 describes the fact types asserted by the task service.

Table 29-11 Fact Types Asserted By the Task Service

Fact Type Description

Task This fact contains the current state of the workflow task instance. All task
attributes can be tested against it. The task fact also contains the current task
payload. This fact enables you to construct tests against payload values and task
attribute values.

Chapter 29
Selecting a Routing Policy

29-49

Table 29-11 (Cont.) Fact Types Asserted By the Task Service

Fact Type Description

PreviousOutcome This fact describes the previous task outcome and the assignee who set the
outcome. The previous outcome fact contains the following attributes:

• actualParticipant: The name of the participant who set the task
outcome (for example, jstein)

• logicalParticipant: The logical name (or label) for the routing slip
participant responsible for setting the task outcome (for example,
assignee1)

• outcome: The outcome that was set (for example, approve or reject)

• level: If the previous participant was part of a management chain, then this
attribute records their level in the chain, where 1 is the first level in the chain.
For other participant types, the value is -1.

• totalNumberOfApprovals: The total number of users that have now set
the outcome of the task.

TaskAction This fact is not intended for writing rule tests against it. Instead, it is updated by
the ruleset, and returned to the task service to indicate how the task should be
routed. Rules should not directly update the TaskAction fact. Instead, they
should call one of the RL functions described in Action Types. These functions
handle updating the TaskAction fact with the appropriate values.

Some fact types can only be used in workflow routing rules, while others can only be
used in workflow participant rules. Table 29-12 describes where you can use each
type.

Table 29-12 Use of Fact Types

Fact Type Can Use in Routing Rules? Can Use in Participant Rules?

Task Yes Yes

PreviousOutcome Yes No

TaskAction Yes No

Lists No Yes

RoutingSlipObjectFacto
ry

No Yes

ResourceListType No Yes

ManagementChainListTyp
e

No Yes

ResourceType No Yes

ParameterType No Yes

AutoActionType No Yes

ResponseType No Yes

29.5.2.3 Action Types
To instruct the task service on how to route the task, rules can specify one of many
task actions. This is done by updating the TaskAction fact asserted into the rule

Chapter 29
Selecting a Routing Policy

29-50

session. However, rules should not directly update the TaskAction fact. Instead, rules should
call one of the action RL functions, passing the TaskAction fact as a parameter. These
functions handle the actual updates to the fact. For example, to specify an action of go
forward, you must add a call GO_FORWARD(TaskAction) to the action part of the rule.

Each time a state machine routing rule is evaluated, the rule takes one of the actions shown
in Table 29-13:

Table 29-13 Business Rule Actions

Action Description Parameters

GO_FORWARD Goes to the next participant in the routing slip
(default behavior).

None

PUSHBACK Goes back to the previous participant in the
routing slip (the participant before the one that
just set the task outcome).

Note: Pushback is designed to work with
single approvers and not with group votes.
Pushback from a stage with group vote (or
parallel) scenario to another stage is not
allowed. Similarly, you cannot push back from
a single assignee to a group vote (or parallel)
scenario.

None

GOTO Goes to a specific participant in the routing
slip.

participant'

A string that identifies the label
of the participant (for example,
Approver1) to which to route
the task.

COMPLETE Finishes routing and completes the task. The
task is marked as completed, and no further
routing is required.

None

ESCALATE Escalates and reassigns the task according to
the task escalation policy (usually to the
manager of the current assignee).

None

29.5.2.4 Sample Ruleset
This section describes how to use rules to implement custom routing behavior with a simple
example. A human workflow task is created for managing approvals of expense requests.
The outcomes for the task are approve and reject. The task definition includes an
ExpenseRequest payload element. One of the fields of ExpenseRequest is the total amount of
the expense request. The routing slip for the task consists of three single participants
(assignee1, assignee2, and assignee3).

By default, the task gets routed to each of the assignees, with each assignee choosing to
approve or reject the task.

Instead of this behavior, the necessary routing behavior is as follows:

• If the total amount of the expense request is less than $100, approval is only required
from one of the participants. Otherwise, it must be approved by all three.

• If an expense request is rejected by any of the participants, it must be returned to the
previous participant for re-evaluation. If it is rejected by the first participant, the expense
request is rejected and marked as completed.

Chapter 29
Selecting a Routing Policy

29-51

This behavior is implemented using the following rules. When a rule dictionary is
generated for advanced routing rules, it is created with a template rule that implements
the default GO_FORWARD behavior. You can edit this rule, and make copies of the
template rule by right-clicking and selecting Copy Rule in the Oracle Business Rules
Designer.

If the amount is greater than $100 and the previous assignee approved the task, it is
not necessary to provide a rule for routing a task to each of the assignees in turn. This
is the default behavior that is reverted to if none of the rules in the ruleset are
triggered:

• Early approval rule (Figure 29-41):

Figure 29-41 Early Approval Rule

• Push back on the rejected rule (Figure 29-42):

Figure 29-42 Push Back On The Rejected Rule

• Complete the Assignee1 rejected rule (Figure 29-43):

Figure 29-43 Completion of the Assignee1 Rejected Rule

Chapter 29
Selecting a Routing Policy

29-52

For information about iterative design, see the workflow-106-IterativeDesign sample
available with the Oracle SOA Suite samples.

29.5.2.5 Linked Dictionary Support
For human workflow, business rule artifacts are now stored in two rules dictionaries. This is
useful for scenarios in which you must customize your applications. For example, you create
and ship version 1 of an application to a customer. The customer then customizes the
rulesets in the application with Oracle SOA Composer. Those customizations are now stored
in a different rules dictionary than the base rules dictionary. The rules dictionary that stores
the customized rulesets links with the rules in the base dictionary. When you later ship
version 2 of the application, the base rule dictionary may contain additional changes
introduced in the product. The ruleset customization changes previously performed by the
customer are preserved and available with the new changes in the base dictionary. When an
existing application containing a task using rules is opened, if the rules are in the old format
using one dictionary, they are automatically upgraded and divided into two rules dictionaries:

• Base dictionary

• Custom dictionary

For more information about customizations, see Customizing SOA Composite Applications .

29.5.2.6 Creating Advanced Routing Rules

To create advanced routing rules:

1. In the Assignment section, click Dynamic Routing Rules.

The Use Advanced Rules edit box displays.

2. Click Create Rules.

This starts the Oracle Business Rules Designer with a pre-seeded repository containing
all necessary fact definitions, as shown in Figure 29-44. A decision service component is
created for the dictionary, and is associated with the task service component.

Figure 29-44 Human Task Rule Dictionary

3. Define state machine routing rules for your task using Oracle Business Rules.

This automatically creates a fully-wired decision service in the human task and the
associated rule repository and data model.

To edit the business rules, click the Edit icon, next to the Rules Dictionary field.

Chapter 29
Selecting a Routing Policy

29-53

For more information about business rules, see the following documentation:

• Sample Ruleset for an example human task ruleset

• Designing Business Rules with Oracle Business Process Management

• Rules Language Reference for Oracle Business Process Management

29.5.3 How to Use External Routing
You configure an external routing service that dynamically determines the participants
in the workflow. If this routing policy is specified, all other participant types are ignored.
It is assumed that the external routing service provides a list of participant types
(single approver, serial approver, parallel approver, and so on) at runtime to determine
the routing of the task.

Use this option if you do not want to use any of the routing rules to determine task
assignees. In this case, all the logic of task assignment is delegated to the external
routing service.

Note:

If you select Use External Routing in the Configure Assignment dialog box,
specify a Java class, and click OK to exit, the next time you open this dialog
box, the other two selections (Route task to all participants, in order
specified and Use Advanced Rules) no longer appear in the drop-down list.
To access all three selections again, you must delete the entire assignment.

To use external routing

1. Drag and drop External Routing Service from the Workflow Editor Components
window.

The Use External Routing edit box displays.

2. Click the Edit icon.

The External Routing dialog box appears, as shown in Figure 29-45.

Chapter 29
Selecting a Routing Policy

29-54

Figure 29-45 Use External Routing Dialog

3. In the Class Name field, enter the fully qualified class file name (for example, the
org.mycompany.tasks.RoutingService class name). This class must implement the
following interface:

oracle.bpel.services.workflow.task.IAssignmentService
4. Add name and pair value parameters by name or XPath expression that can be passed

to the external service, as shown in Table 29-14.

Table 29-14 External Routing

Field Description

By Name Enter a name in the Name field and a value in the Value field.

By Expression Enter a name and dynamically enter a value by clicking the icon to
the right of the field to display the Expression Builder dialog box.

5. Click the Add icon to add additional name and pair value parameters.

29.5.4 How to Configure the Error Assignee and Reviewers
Tasks can error for reasons such as incorrect assignments. When such errors occur, the task
is assigned to the error assignee, who can perform corrective actions. Recoverable errors are
as follows:

• Invalid user and group for all participants

• Invalid XPath expressions that are related to assignees and expiration duration

• Escalation on expiration errors

• Evaluating escalation policy

• Evaluating renewal policy

• Computing a management chain

Chapter 29
Selecting a Routing Policy

29-55

• Evaluating dynamic assignment rules. The task is not currently in error, but is still
left as assigned to the current user and is therefore recoverable.

• Dynamic assignment cyclic assignment (for example, user A > user B > user A).
The task is not currently in error, but is still left as assigned to the last user in the
chain and is therefore recoverable.

The following errors are not recoverable. In these cases, the task is moved to the
terminating state ERRORED.

• Invalid task metadata

• Unable to read task metadata

• Invalid GOTO participant from state machine rules

• Assignment service not found

• Any errors from assignment service

• Evaluating custom escalate functions

• Invalid XPath and values for parallel default outcome and percentage values

During modeling of workflow tasks, you can specify error assignees for the workflow. If
error assignees are specified, they are evaluated and the task is assigned to them. If
no error assignee is specified at runtime, an administration user is discovered and is
assigned the alerted task. The error assignee can perform one of the following actions:

• Ad hoc route

Route the task to the actual users assigned to the task. Ad hoc routing allows the
task to be routed to users in sequence, parallel, and so on. Note: Do not add
adhoc assignees either above or below a FYI participant.

• Reassign

Reassign the task to the actual users assigned to this task

• Error task

Indicate that this task cannot be rectified.

If there are any errors in evaluating the error assignees, the task is marked as being in
error.

This dialog box enables you to specify the users or groups to whom the task is
assigned if an error in assignment has occurred.

To configure the error assignee:

1. Click the Add icon to assign reviewers or error assignees, as shown in
Figure 29-46.

Chapter 29
Selecting a Routing Policy

29-56

Figure 29-46 Error Assignment Details

2. Click the Add icon and select a user, group, or application role to participate in this task.

The Identification Type column of the Starting Participant table displays your selection
of user, group, or application role.

3. See Step 5 through 7 of Creating a Single Task Participant List for instructions on
selecting a user, group, or application role.

4. If you are using parallel participant types, you can specify where to store the subtask
payload with the following options.

• Use server settings

The SharePayloadAcrossAllParallelApprovers System MBean Browser boolean
property in Oracle Enterprise Manager Fusion Middleware Control determines
whether to share the payload of subtasks in the root task. By default, this property is
set to true. If set to true, the All task participants share the same payload (better
performance and less storage space) option is used. If this property is set to false,
the Each parallel participant has a local copy of the payload option is used. To
change the settings, see How to Change Server Settings.

• All task participants share the same payload (better performance and less
storage space)

The payload for the subtasks is stored in their root task. This situation means that the
payload of the root task is shared across all its subtasks. Internally, this option
provides better performance and storage space consumption. Less storage space is
consumed because the payload of the root task is shared across all its subtasks.

• Each parallel participant has a local copy of the payload

Each subtask has its own copy of the payload. Internally, this option provides lesser
performance and storage space consumption because more storage space is
consumed.

5. Click OK.

For more information about users, groups, or application roles, see Task Assignment and
Routing.

Chapter 29
Selecting a Routing Policy

29-57

29.5.4.1 How to Change Server Settings
To change the default setting of SharePayloadAcrossAllParallelApprovers property,
perform the following steps:

1. Right-click soa-infra and select Administration > System MBean Browser.

2. Expand Application Defined MBeans > oracle.as.soainfra.config > Server:
server_name > WorkflowConfig > human-workflow.

3. Click SharePayloadAcrossAllParallelApprovers.

4. Change this property in the list, and click Apply.

29.6 Specifying Multilingual Settings and Style Sheets
You can specify resource bundles to displaying task details in different languages and
custom style sheets.

The Presentation section shown in Figure 29-47 enables you to specify resource
bundles for displaying task details in different languages in Oracle BPM Worklist and
WordML and custom style sheets for attachments.

Figure 29-47 Presentation Section

29.6.1 How to Specify WordML and Other Style Sheets for
Attachments

To specify WordML style sheets for attachments:

1. In the Stylesheet for Attachments list of the Presentation section, select one of
the following options:

• Word ML: This option dynamically creates Microsoft Word documents for
sending as email attachments using a WordML XSLT style sheet. The XSLT
style sheet is applied on the task document.

• Other: This option creates email attachments using an XSLT style sheet. The
XSLT style sheet is applied on the task document.

2. Click the Search icon to select the style sheet as an attachment.

Chapter 29
Specifying Multilingual Settings and Style Sheets

29-58

29.6.2 How to Specify Multilingual Settings
You can specify resource bundles for displaying task details in different languages in Oracle
BPM Worklist. Resource bundles are supported for the following task details:

• Displaying the value for task outcomes in plain text or with the message(key) format.

• Making email notification messages available in different languages. At runtime, you
specify the hwf:getTaskResourceBundleString(taskId, key, locale?) XPath
extension function to obtain the internationalized string from the specified resource
bundle. The locale of the notification recipient can be retrieved with the function
hwf:getNotificationProperty(propertyName).

Resource bundles can also simply be property files. For example, a resource bundle that
configures a display name for task outcomes can look as follows:

• APPROVE=Approve
• REJECT=Reject

To specify multilingual settings:

1. In the Presentation section, click the Add icon across from Resource Bundle.

The Resource Details dialog box shown in Figure 29-48 appears.

Figure 29-48 Resource Details Dialog

2. In the Resource Name field, enter the name of the resource used in the resource bundle.
This should be a .properties-based resource bundle file.

3. In the Resource Location field, click the Search icon to select the JAR or ZIP resource
bundle file to use. The resource bundle is part of your system archive (SAR) file.

If the resource bundle is outside of the composite project, you are prompted to place a
local copy in SCA-INF/lib.

If the resource bundle file is not in the composite class loader (directly under SCA-INF/
classes or in a JAR file in SCA-INF/lib), you must specify its location. For example, if the
resource bundle is accessible from a location outside of the composite class loader (for

Chapter 29
Specifying Multilingual Settings and Style Sheets

29-59

example, an HTTP location such as http://host:port/bundleApp/
taskBundles.jar), then this location must be specified in this field.

4. Click OK to return to the Human Task Editor.

For more information, see How to Configure Notification Messages in Different
Languages.

29.7 Specifying What to Show in Task Details in the Worklist
The Presentation section enables you to specify the records in the runtime history
section of the task details form in worklistapp.

Merge repeating stages: Select this option to view one aggregated entry for all
repeating stages. The Worklist UI also provides an option to set or unset this option.

Show future participants: Select this option to see details about all future participants
in the task.

Show only user performed actions: By default, task history details contain records
for Admin and system actions, such as root task updates. Select this option to not see
only user-performed action updates in the task details.

29.8 Escalating, Renewing, or Ending the Task
You can specify the expiration duration of a task in this global policy section (also
known as the routing slip level).

Figure 29-49 shows the Deadlines section of the Human Task Editor.

If the expiration duration is specified at the routing slip level instead of at the
participant type level, then this duration is the expiration duration of the task across all
the participants. However, if you specify expiration duration at the participant type level
(through the Limit allocated duration to check box), then those settings take
precedence over settings specified in the Deadlines section (routing slip level).

You can also specify that a task be escalated to a user's manager after a specified
time period. For more information, see Specifying a Time Limit for Acting on a Task.

Figure 29-49 Human Task Editor — Deadlines Section

Chapter 29
Specifying What to Show in Task Details in the Worklist

29-60

29.8.1 Introduction to Escalation and Expiration Policy
This section provides an overview of how specifying the expiration duration at this level
makes this setting the expiration duration of the task across all the participants.

For example, participant LoanAgentGroup and participant Supervisor have three days to
act on the task between them, as shown in Figure 29-50:

Figure 29-50 Expire After Policy

If there is no expiration specified at either the participant level or this routing slip level, then
that task has no expiration duration.

If expiration duration is specified at any level of the participants, then for that participant, the
participant expiration duration is used. However, the global expiration duration is still used for
the participants that do not have participant level expiration duration. The global expiration
duration is always decremented by the time elapsed in the task.

The policy for interpreting the participant level expiration for the participants is described as
follows:

• Serial

Each assignment in the management chain gets the same expiration duration as the one
specified in the serial. The duration is not for all the assignments resulting from this
assignment. If the task expires at any of the assignments in the management chain, the
escalation and renewal policy is applied.

• Parallel:

– In a parallel workflow, if the parallel participants are specified as a resource, a routing
slip is created for each of the resources. The expiration duration of each created
routing slip follows these rules:

The expiration duration equals the expiration duration of the parallel participant if it
has an expiration duration specified.

The expiration duration that is left on the task if it was specified at the routing slip
level.

Otherwise, there is no expiration duration.

– If parallel participants are specified as routing slips, then the expiration duration for
the parallel participants is determined by the routing slip.

Chapter 29
Escalating, Renewing, or Ending the Task

29-61

Note:

When the parent task expires in a parallel task, the subtasks are withdrawn if
those tasks have not expired or completed.

29.8.2 How to Specify a Policy to Never Expire
You can specify for a task to never expire.

In the drop-down list in the Deadlines section, as shown in Figure 29-49, select Never
Expire to specify a policy to never expire.

29.8.3 How to Specify a Policy to Expire
You can specify for a task to expire. When the task expires, either the escalation policy
or the renewal policy at the routing slip level is applied. If neither is specified, the task
expires. The expiration policy at the routing slip level is common to all the participants.

To specify for a task to expire:

1. In the drop-down list of the Deadlines section, select Expire after, as shown in
Figure 29-51.

2. Specify the maximum time period for the task to remain open.

The expiration policy for parallel participants is interpreted as follows:

• If parallel participants are specified as resources in parallel elements, there is
no expiration policy for each of those participants.

• If parallel participants are specified as routing slips, then the expiration policy
for the routing slip applies to the parallel participants.

Figure 29-51 indicates that the task expires in three days.

Figure 29-51 Expire After Policy

Chapter 29
Escalating, Renewing, or Ending the Task

29-62

Note:

The escalation time is limited to future times that are before the year 2286.
Using a value that is greater results in runtime errors. The technical limit of the
future value is 9,999,999,999,999 milliseconds since January 1, 1970, 00:00:00
GMT.

29.8.4 How to Extend an Expiration Policy Period
You can extend the expiration period when the user does not respond within the allotted time.
You do this by specifying the number of times the task can be renewed upon expiration (for
example, renew it an additional three times) and the duration of each renewal (for example,
three days for each renewal period).

To extend an expiration policy period:

1. In the drop-down list of the Deadlines section, select Renew after, as shown in
Figure 29-52.

2. Specify the maximum number of times to continue renewing this task.

In Figure 29-52, when the task expires, it is renewed at most three times. It does not
matter if the task expired at the LoanAgentGroup participant or the Supervisor
participant.

Figure 29-52 Renew After Policy

29.8.5 How to Escalate a Task Policy
You can escalate a task if a user does not respond within the allotted time. For example, if
you are using the escalation hierarchy configured in your user directory, the task can be
escalated to the user's manager. If you are using escalation callbacks, the task is escalated
to whoever you have defined. When a task has been escalated the maximum number of
times, it stops escalating. An escalated task can remain in a user inbox even after the task
has expired.

To escalate a task policy:

1. In the drop-down list of the Deadlines section, select Escalate after, as shown in
Figure 29-53.

2. Specify the following additional values. When both are set, the escalation policy is more
restrictive.

Chapter 29
Escalating, Renewing, or Ending the Task

29-63

• Maximum Escalation Levels

Number of management levels to which to escalate the task. This field is
required.

• Highest Approver Title

The title of the highest approver (for example, self, manager, director, or CEO).
These titles are compared against the title of the task assignee in the
corresponding user repository. This field is optional.

The escalation policy specifies the number of times the task can be escalated on
expiration and the renewal duration. In Figure 29-53, when the task expires, it is
escalated at most three times. It does not matter if the task expired at the
LoanAgentGroup participant or the Supervisor participant.

Figure 29-53 Escalate After Policy

29.8.6 How to Specify Escalation Rules
This option allows a custom escalation rule to be plugged in for a particular workflow.
For example, to assign the task to a current user's department manager on task
expiration, you can write a custom task escalation function, register it with the workflow
service, and use that function in task definitions.

The default escalation rule is to assign a task to the manager of the current user. To
add a new escalation rule, follow these steps.

To specify escalation rules:

1. Implement the following interface:

oracle.bpel.services.workflow.assignment.dynamic.IDynamicTaskEscalationFuncti
on

This implementation must be available in the class path for the server.

2. Log in to Oracle Enterprise Manager Fusion Middleware Control.

3. Expand the SOA folder in the navigator.

4. Right-click soa-infra, and select SOA Administration > Workflow Config > Task
tab.

The Workflow Task Service Properties page appears.

5. Add a new function. For example:

• Function name: DepartmentSupervisor

Chapter 29
Escalating, Renewing, or Ending the Task

29-64

• Classpath:
oracle.bpel.services.workflow.assignment.dynamic.patterns.DepartmentSuper
visor

• Function parameter name

• Function parameter value

6. In the Custom Escalation Java Class field of the Deadlines section, enter the function
name as defined in the Workflow Task Service Properties page for the escalation rule.

For more information, see Custom Escalation Function.

29.8.7 How to Specify a Due Date
A due date indicates the date by which the task should be completed. The due date is
different from the expiration date. When a task expires it is either marked expired or
automatically escalated or renewed based on the escalation policy. The due date is generally
a date earlier than the expiration date and an indication to the user that the task is about to
expire.

You can enter a due date for a task, as shown in Figure 29-49. A task is considered overdue
after it is past the specified due date. This date is in addition to the expiration policy. A due
date can be specified irrespective of whether an expiration policy has been specified. The
due date enables Oracle BPM Worklist to display a due date, list overdue tasks, filter overdue
tasks in the inbox, and so on. Overdue tasks can be queried using a predicate on the
TaskQueryService.queryTask(...) API.

To specify a due date:

1. In the Deadlines section, select the Action Requested Before check box.

2. Select By Duration to enter a time duration or select By Expression to dynamically
enter a value as an XPath expression.

Note the following details:

• The due date can be set on both the task (using the Create ToDo Task dialog box in
Oracle BPM Worklist) and in the .task file (using the Human Task Editor). This is to
allow to-do tasks without task definitions to set a due date during initiation of the task.
A due date that is set in the task (a runtime object) overrides a due date that is set in
the .task file.

• In the task definition, the due date can only be specified at the global level, and not
for each participant.

• If the due date is set on the task, the due date in the .task file is ignored.

• If the due date is not set on the task, the due date in the .task file is evaluated and
set on the task.

• If there is no due date on either the task or in the .task file, there is no due date on
the task.

Note:

You cannot specify business rules for to-do tasks.

Chapter 29
Escalating, Renewing, or Ending the Task

29-65

For more information, see How To Create a ToDo Task.

29.9 Specifying Participant Notification Preferences
Notifications indicate when a user or group is assigned a task or informed that the
status of the task has changed. Notifications can be sent through email, instant
message (IM), or SMS. Notifications are sent to different types of participants for
different actions. Notifications are configured by default with default messages. For
example, a notification message is sent to indicate that a task has completed and
closed. You can create your own or modify existing configurations.

Figure 29-54 shows the General tab of the Notification section of the Human Task
Editor (when fully expanded).

Note:

Embedded LDAP does not support group email addresses. Therefore, when
a task is assigned to a group ID, emails are sent to all of its members instead
of to the group email address.

Figure 29-54 Human Task Editor — General Tab of Notification Section

To specify participant notification preferences:

1. Click the Notification tab (displays as shown in Figure 29-54).

Instructions for configuring the following subsections of the General tab of the
Notification section are listed in Table 29-15.

Table 29-15 Human Task Editor — General Tab of Notification Section

For This Subsection... See...

Task Status
Recipient

How to Notify Recipients of Changes to Task Status

Notification Header How to Edit the Notification Message

Chapter 29
Specifying Participant Notification Preferences

29-66

For information about the notification service, see Notifications from Human Workflow.

2. In the Notification section, click the Advanced tab. Figure 29-55 provides details.

Figure 29-55 Notification Section - Advanced Tab

Instructions for configuring the following subsections of the Advanced tab of the
Notification section are listed in Table 29-16.

Table 29-16 Human Task Editor — Advanced Tab of Notification Section

For This Subsection... See...

Reminders How to Set Up Reminders

Encoding How to Change the Character Set Encoding

Make notifications secure (exclude
details)

How to Secure Notifications to Exclude Details

Show worklist URL in notifications How to Display the URL in Notifications

Make notifications actionable How to Make Email Messages Actionable

Send task attachments with email
notifications

How to Send Task Attachments with Email Notifications

Group notification configuration How to Send Email Notifications to Groups and
Application Roles

Notification header attributes How to Customize Notification Headers

29.9.1 How to Notify Recipients of Changes to Task Status
You can configure to send notifications to users when there is a change in Task Status. You
can configure for multiple Task Status types like Assign, Complete, Suspend and so on and
also for multiple recipients like Assignee, Initiator, Approvers, Owner, and Reviewer.

To notify recipients of changes to tasks status:

Chapter 29
Specifying Participant Notification Preferences

29-67

1. Click the Notification tab.

2. Select one of the Task Status types from the list:

• Alerted

When a task is in an alerted state, you can notify recipients. However, none of
the notification recipients (assignees, approvers, owner, initiator, or reviewer)
can move the task from an alerted state to an error state; they only receive an
FYI notification of the alerted state. The owner can reassign, withdraw, delete,
or purge the task, or ask the error assignee to move the task to an error state
if the error cannot be resolved. Only the error assignee can move a task from
an alerted state to an error state.

You configure the error assignee on the Assignment tab of the Configure
Assignment dialog box under the Task will go from starting to final
participant icon in the Assignment section. For more information, see How to
Configure the Error Assignee and Reviewers.

• Assign

When the task is assigned to users or a group. This captures the following
actions:

– Task is assigned to a user

– Task is assigned to a new user in a serial workflow

– Task is renewed

– Task is delegated

– Task is reassigned

– Task is escalated

– Information for a task is submitted

• Complete

• Error

• Expire

• Request Info

• Resume

• Suspend

• Update

– Task payload is updated

– Task is updated

– Comments are added

– Attachments are added and updated

• Update Outcome

• Withdraw

• All Other Actions

– Any action not covered in the above task types. This includes acquiring a
task.

Chapter 29
Specifying Participant Notification Preferences

29-68

Notifications can be sent to users involved in the task in various capacities. This includes
when the task is assigned to a group, each user in the group is sent a notification if there
is no notification endpoint available for the group.

3. Select the recipient from the Recipient from the list of possible recipients for the
notification message for the Task Status type:

• Assignees

The users or groups to whom the task is currently assigned.

• Initiator

The user who created the task.

• Approvers

The users who have acted on the task up to this point. This applies in a serial
participant type in which multiple users have approved the task and a notification
must be sent to all of them.

• Owner

The task owner

• Reviewer

The user who can add comments and attachments to a task.

For more information, see How to Configure the Notification Channel Preferences.

4. Save the changes.

Note:

To configure notifications for additional Task Status types, click the + icon above
the Task Status section and to remove notification for a Task Status type, select
the task status row and click the X icon.

29.9.2 How to Edit the Notification Message
A default notification message is available for delivery to the selected recipient. If you want,
you can modify the default message text.

To edit the notification message:

1. In the Notification section, click the General tab.

2. In the Notification Header column, click the Edit icon to modify the default notification
message.

The Edit Notification Message dialog box shown in Figure 29-56 appears.

Chapter 29
Specifying Participant Notification Preferences

29-69

Figure 29-56 Edit Notification Message Dialog

This message applies to all the supported notification channels: email, instant
messaging (IM), and SMS. Email messages can also include the worklist task
detail defined in this message. The channel by which the message is delivered is
based upon the notification preferences you specify.

3. Modify the message wording as necessary.

4. Click OK to return to the Human Task Editor.

For more information about notification preference details, see Notifications from
Human Workflow.

29.9.3 How to Set Up Reminders
You can send task reminders, which can be based on the time the task was assigned
to a user or the expiration time of a task. The number of reminders and the interval
between the reminders can also be configured.

To set up reminders:

1. In the Notification section, click the Advanced tab.

2. From the list, select the number of reminders to send.

3. If you selected to remind the assignee one, two, or three times, select the interval
between reminders, and whether to send the reminder before or after the
assignment.

For more information, see How to Send Reminders.

29.9.4 How to Change the Character Set Encoding
Unicode is a universally-encoded character set that enables information from any
language to be stored using a single character set. Unicode provides a unique code
value for every character, regardless of the platform, program, or language. You can
use the default setting of UTF-8 or you can specify a character set with a Java class.

To change the character set encoding

1. In the Notification section, click the Advanced tab.

Chapter 29
Specifying Participant Notification Preferences

29-70

2. From the Encoding list, select Specify by Java Class.

3. Enter the Java class to use.

29.9.5 How to Secure Notifications to Exclude Details
To secure notifications, make messages actionable, and send attachments:

1. In the Notification section, click the Advanced tab.

2. Select Make notifications secure (exclude details).

If selected, a default notification message is used. There are no HTML worklist task
details, attachments, or actionable links in the email. Only the task number is in the
message.

For more information, see How to Send Secure Notifications.

29.9.6 How to Display the Oracle BPM Worklist URL in Notifications
You can configure whether to display the Oracle BPM Worklist URL in email notification
messages.

To display the Oracle BPM Worklist URL in notifications:

1. In the Notification section, click the Advanced tab.

2. Select the Show worklist URL in notifications check box to display the Oracle BPM
Worklist URL in email notification messages. If this check box is not selected, the URL is
not displayed.

29.9.7 How to Make Email Messages Actionable
To make email messages actionable:

1. In the Notification section, click the Advanced tab.

2. Select Make notification actionable. This action enables you to perform task actions
through email.

Note:

FYI tasks are not actionable and cannot be acknowledged from email
messages.

For more information about additional configuration details, see How to Send Actionable
Messages.

For more information about configuring outbound and inbound emails, see Administering
Oracle SOA Suite and Oracle Business Process Management Suite.

29.9.8 How to Send Task Attachments with Email Notifications
You can send task attachments with email notifications.

Chapter 29
Specifying Participant Notification Preferences

29-71

To send task attachments with email notifications:

1. In the Notification section, click the Advanced tab.

2. Select Send task attachments with email notifications.

29.9.9 How to Send Email Notifications to Groups and Application
Roles

You can send email notifications to groups and application roles to which tasks are
assigned.

To send email notifications to groups and application roles:

1. In the Notification section, click the Advanced tab.

2. From the Group notification configuration list, select one of the following
options.

• Send individual emails

Each user in the group or application role receives an individual email
notification. This is the default selection.

In addition, the Use separate task forms based on locale check box is
automatically selected. When selected, this sends individual emails with a
separate task form based on the language locale. When not selected, this
sends individual emails and reuses (shares) the task form.

• Send one email containing all user addresses

A shared notification email is generated once for a user locale in a group or
application role, thereby saving time in notification email content generation.
The email is sent to all users in the group or application role.

Note:

– Since all (or a subset of) users receive the same email, the users
in the group or application role are expected to have the same
privilege. This ensures that the user does not see task details to
which they are not entitled.

– When sending one email to all users, the maximum number of
characters allowed in the address field is 2000. If the limit is
exceeded, email is sent to only those user addresses contained
within the maximum limit.

29.9.10 How to Customize Notification Headers
Custom notification headers are used to specify name and value pairs to identify key
fields within the notification. These entries can be used by users to define delivery
preferences for their notifications. For example:You can set Name to ApprovalType
and value to Expense or Name to Priority and value to High.Users can then specify

Chapter 29
Specifying Participant Notification Preferences

29-72

delivery preferences in Oracle BPM Worklist. These preferences can be based on the
contents of the notification.

The rule-based notification service is only used to identify the preferred notification channel to
use. The address for the preferred channel is still obtained from the identity service.

To customize notification headers:

1. In the Notification section, click the Advanced tab.

2. Expand Notification Header Attributes.

3. Add name and pair value parameters by name or XPath expression.

For more information about preferences, see the following sections:

• How to Send Inbound and Outbound Attachments

• How to Create Custom Notification Headers

• Developing Applications with Oracle User Messaging Service

29.10 Specifying Access Policies and Task Actions on Task
Content

You can specify access rules on task content and actions to perform on that content.

You can specify access rules that determine the parts of a task that participants can view and
update. Access rules are enforced by the workflow service by applying rules on the task
object during the retrieval and update of the task.

Note:

Task content access rules and task actions access rules exist independently of one
another.

29.10.1 Introduction to Access Rules
Access rules are computed based on the following details:

• Any attribute configured with access rules declines any permissions for roles not
configured against it. For example, assume you configure the payload to be read by
assignees. This action enables only assignees and nobody else to have read
permissions. No one, including assignees, has write permissions.

• Any attribute not configured with access rules has all permissions.

• If any payload message attribute is configured with access rules, any configurations for
the payload itself are ignored due to potential conflicts. In this case, the returned map by
the API does not contain any entry for the payload. Write permissions automatically
provide read permissions.

• If only a subset of message attributes is configured with access rules, all message
attributes not involved have all permissions.

• Only comments and attachments have add permissions.

Chapter 29
Specifying Access Policies and Task Actions on Task Content

29-73

• Write permissions on certain attributes are meaningless. For example, write
permissions on history do not grant or decline any privileges on history.

• The following date attributes are configured as one in the Human Task Editor. The
map returned by TaskMetadataService.getVisibilityRules() contains one key
for each. Similarly, if the participant does not have read permissions on DATES, the
task does not contain any of the following task attributes:

– START_DATE
– END_DATE
– ASSIGNED_DATE
– SYSTEM_END_DATE
– CREATED_DATE
– EXPIRATION_DATE
– ALL_UPDATED_DATE

• The following assignee attributes are configured as one in the Human Task Editor.
The map returned by TaskMetadataService.getVisibilityRules() contains one
key for each of the following. Similarly, if the participant does not have read
permissions on ASSIGNEES, the task does not contain any of the following task
attributes:

– ASSIGNEES
– ASSIGNEE_USERS
– ASSIGNEE_GROUPS
– ACQUIRED_BY

• Mapped attributes do not have individual representation in the map returned by
TaskMetadataService.getVisibilityRules().

• All message attributes in the map returned by
TaskMetadataService.getVisibilityRules() are prefixed by
ITaskMetadataService.TASK_VISIBILITY_ATTRIBUTE_PAYLOAD_MESSAGE_ATTR_PR
EFIX (PAYLOAD).

An application can also create pages to display or not display task attributes based on
the access rules. This can be achieved by retrieving a participant's access rules by
calling the API on
oracle.bpel.services.workflow.metadata.ITaskMetadataService. as shown in the
example below:

public Map<String, IPrivilege> getTaskVisibilityRules(IWorkflowContext context,
 String taskId)
 throws TaskMetadataServiceException;

For more information about this method, see Workflow Services Java API Reference
for Oracle SOA Suite.

29.10.2 Specifying User Privileges for Acting on Task Content
You can specify the privileges that specific users (such as the task creator or owner)
have for acting on specific task content (such as a payload).

Chapter 29
Specifying Access Policies and Task Actions on Task Content

29-74

To specify user privileges for acting on task content:

1. Click the Access tab.

2. Click the Content tab.

3. Select the task content for which to specify access privileges, as shown in Figure 29-57.

Figure 29-57 Configure Task Content Access

4. Assign privileges (read, write, or no access) to users to act upon task content. A user
cannot be assigned a privilege above their highest level. For example, an ADMIN user
cannot be assigned write access on the PAYLOAD task content. Table 29-17 shows the
maximum privilege each user has on task content.

Table 29-17 Highest Privilege Levels for Users of Task Content

Task Content Individual with Read Access Individual with Write Access

Assignees Admin, Approvers, Assignees,
Creator, Owner, Reviewers

--

Attachments Admin, Approvers Assignees, Creator, Owner,
Reviewers

Comments Admin, Approvers Assignees, Creator, Owner,
Reviewers

Dates Admin, Approvers, Assignees,
Creator, Owner, Reviewers

--

Flexfields Admin, Approvers, Reviewers Assignees, Creator, Owner

History Admin, Approvers, Assignees,
Creator, Owner, Reviewers

--

Payload Admin, Approvers, Reviewers Assignees, Creator, Owner

Reviewers Admin, Approvers, Assignees,
Creator, Owner, Reviewers

--

Payload elements Inherited from payload Inherited from payload

For example, if you accept the default setting of ASSIGNEES, CREATOR, and OWNER
with write access, ADMIN, APPROVERS, and REVIEWERS with read access, and

Chapter 29
Specifying Access Policies and Task Actions on Task Content

29-75

PUBLIC with no access to the PAYLOAD task content, the dialog box appears as
shown in Figure 29-57.

5. Select the method for displaying task content in this dialog box. Choosing the
currently unselected option causes all settings to reset to their default values.

• Coarse grained (default)

Displays the task content as a whole (for example, displays only one payload
or reviewer).

• Fine grained

Displays the content as individual elements (for example, displays all payloads
(such as p1, p2, and p3) and all reviewers assigned to this task (such as
jstein, wfaulk, and cdickens).

Note:

Access rules are always applied on top of what the system permits,
depending on who is performing the action and the current state of the task.

29.10.3 Specifying Actions for Acting Upon Tasks
You can specify the actions (either access or no access) that specific users (such as
the task creator or owner) have for acting on the task content (such as a payload) that
you specified in the Configure Task Content Access dialog box.

To specify actions for acting upon tasks:

1. Click the Access tab.

2. Click the Actions tab.

3. Select the task action for which to specify users, as shown in Figure 29-58.

Figure 29-58 Selection of Add Action Access Rule

4. Select if participants can or cannot perform the selected actions.

Chapter 29
Specifying Access Policies and Task Actions on Task Content

29-76

5. Select the method for displaying task actions in this dialog box. Choosing the currently
unselected option causes all settings to reset to their default values.

• Coarse grained (default)

Displays the task actions as a whole (for example, displays only one approval or
rejection).

• Fine grained

Displays the content actions as individual elements. (for example, displays all
approvals or rejections).

29.10.4 How to Specify a Workflow Digital Signature Policy
Digital signatures provide a mechanism for the nonrepudiation of digitally-signed human
tasks. This ability to mandate that a participant acting on a task signs the details and their
action before the task is updated ensures that they cannot repudiate it later.

Note:

If digital signatures are enabled for a task, actionable emails are not sent during
runtime. This is the case even if actionable emails are enabled during design time.

To specify a workflow digital signature policy:

1. Click the Access tab.

2. From the Signature Policy list, select Configure Policy, as shown in Figure 29-59.

Figure 29-59 Digital Signatures

3. Specify the signature policy for task participants to use:

• No signature required

Participants can send and act upon tasks without providing a signature. This is the
default policy.

• Password required

Chapter 29
Specifying Access Policies and Task Actions on Task Content

29-77

Participants specify a signature before sending tasks to the next participant.
Participants must reenter their password while acting on a task. The password
is used to generate the digital signature. A digital signature authenticates the
identity of the message sender or document signer. This ensures that the
original content of the sent message is unchanged.

• Digital certificate required

Participants must possess a digital certificate for the nonrepudiation of
digitally-signed human tasks. A digital certificate establishes the participant's
credentials. It is issued by a certification authority (CA). It contains the name, a
serial number, expiration dates, a copy of the certificate holder's public key
(used for encrypting messages and digital signatures), digital signature of the
certificate-issuing authority so that message authenticity can be established

The CA names and CA CRL and URLs of the issuing authorities must be
configured separately.

4. Click OK.

For more information, see Evidence Store Service and Digital Signatures.

29.10.4.1 Specifying a Certificate Authority
To use digital signatures, you must specify CAs you consider trustworthy in the System
MBean Browser in Oracle Enterprise Manager Fusion Middleware Control. Only
certificates issued from such CAs are considered valid by human workflow.

To specify a certificate authority:

1. From the SOA Infrastructure menu, select Administration > System MBean
Browser.

2. Select Application Defined MBeans > oracle.as.soainfra.config > Server:
server_name > WorkflowConfig > human.workflow.

3. Click the Operations tab.

4. Click AddTrustedCA.

5. In the Value fields for CaName and CaURL, specify appropriate values.

6. Click Invoke.

7. Click Return.

You must validate these values before using them.

29.11 Specifying Restrictions on Task Assignments
You can restrict the users to which a task can be reassigned or routed by using a
callback class.

The user community seeded in a typical LDAP directory can represent the whole
company or division. However, it may be necessary at times to limit the potential list of
users to associate with a task based on the scope or importance of the task or
associated data. For example, in a large company with thousands of users, only a few
people have the ability to approve and create purchase orders. Specifically for such
tasks, the users that can be chosen for ad hoc routing and reassignment should not be
the whole company. Instead, only a few users who are relevant or have the right
privilege should be chosen. This can be achieved by the restricted assignment

Chapter 29
Specifying Restrictions on Task Assignments

29-78

functionality. This is implemented as a callback class that can implement the logic to choose
the right set of users dynamically based on the task object that is passed containing the
instance data.

Note:

Certain functions, such as restricted task reassignment, are available only when a
single task is selected. If multiple tasks that use restricted reassignment are
selected, then the restricted reassignment algorithm is not invoked. In that case, the
complete list of users gets returned as though restricted reassignment had not been
specified.

29.11.1 How to Specify Restrictions on Task Assignments
To specify restrictions on task assignments:

1. In the Access section, click Configure Restricted Assignments.

The Configure Restricted Assignment dialog box appears.

2. Enter the class name. The class must implement the
oracle.bpel.services.workflow.task.IRestrictedAssignmentCallback interface.

3. Click the Add icon to add name and value pairs for the property map passed to invoke
the callback.

4. Click OK.

29.12 Specifying Java or Business Event Callbacks
You can specify Java or business event callbacks. You can register callbacks for the workflow
service to call when a particular stage is reached during the lifecycle of a task.

Note:

If you implemented a callback, then the user callback implementation overrides any
other form of restricted assignment. When you perform a search, the result only
shows the users that the user callback returns.

Two types of callbacks are supported:

• Java callbacks: The callback class must implement the interface
oracle.bpel.services.workflow.task.IRoutingSlipCallback. Make the callback class
available in the class path of the server.

• Business event callbacks: You can have business events raised when the state of a
human task changes. You do not need to develop and register a Java class. The caller
implements the callback using an Oracle Mediator service component to subscribe to the
applicable business event to be informed of the current state of an approval transaction.

Chapter 29
Specifying Java or Business Event Callbacks

29-79

To specify callback classes on task status:

1. Click the Events tab.

The following state change callbacks are available for selection:

• OnAssigned

Select if the callback class must be called on any assignment change,
including standard routing, reassignment, delegation, escalation, and so on. If
a callback is required when a task has an outcome update (that is, one of the
approvers in a chain approves or rejects the task), this option must be
selected.

• OnUpdated

Select if the callback class must be called on any update (including payload,
comments, attachments, priority, and so on).

• OnCompleted

Select if the callback class must finally be called when the task is completed
and control is about to be passed to the initiator (such as the BPEL process
initiating the task).

• OnStageCompleted

Select if the callback class must be called to enable business event callbacks
in a human workflow task. When the event is raised, it contains the name of
the completed stage, the outcome for the completed stage, and a snapshot of
the task when the callback is invoked.

• OnSubtaskUpdated

Select if the callback class must be called on any update (including payload,
comments, attachments, priority, and so on) on a subtask (one of the tasks in
a parallel-and-parallel scenario).

If your Oracle JDeveloper installation is updated to include both the BPEL and
BPM extensions, then the following content callbacks are also available for
selection:

• Comments Callback

Select if the callback class must be called to store the comments in a schema
other than the WFCOMMENTS column. The callback class must implement the
oracle.bpel.services.workflow.callback.NotesStore interface.

• Attachment Call Back

Select if the callback class must be called to store the attachments in a
schema other than the WFATTACHMENT table in the soa-infra schema. The
callback class must implement the
oracle.bpel.services.workflow.callback.AttachmentStore interface.

• Validation Callback

Select if the callback class must be called to validate either the task or payload
before updating, approving, and so on. The callback class must implement the
oracle.bpel.services.workflow.task.ITaskValidationCallback interface.

2. See the following section based on the type of callback to perform.

• Specifying Java Callbacks

Chapter 29
Specifying Java or Business Event Callbacks

29-80

• Specifying Business Event Callbacks

29.12.1 Specifying Java Callbacks
To specify Java callbacks:

1. In the State column of the Events section, select a task state.

2. In the Java Class column, click the empty field to enter a value. This value is the
complete class name of the Java class that implements
oracle.bpel.services.workflow.task.IRoutingSlipCallback. Figure 29-60 provides
details.

Figure 29-60 CallBack Details Dialog with Java Selected

3. Click OK.

29.12.2 Specifying Business Event Callbacks
To specify business event callbacks:

1. In the State column of the Events section, select a task state. Leave the Java Class field
empty.

2. Select the Trigger Workflow Event check box. This action disables the Java Class
column, as shown in Figure 29-61. Each callback, such as OnAssigned, corresponds to
a business event point. When a business event is fired, the event details contain the task
object and a set of properties that are populated based on the context of the event being
fired.

Chapter 29
Specifying Java or Business Event Callbacks

29-81

Figure 29-61 CallBack Details Dialog with Business Events Selected

A pre-seeded, static event definition language (EDL) file
(JDev_Home\jdeveloper\integration\seed\soa\shared\workflow\HumanTaskEve
nt.edl) provides the list of available business events to which to subscribe. These
business events correspond to the callbacks you select in the Callback Details
dialog box. You must now create an Oracle Mediator service component in which
you reference the EDL file and subscribe to the appropriate business event.

Note:

A file-based MDS connection is required so that the EDL file can be
located. The location for the file-based MDS is
JDev_Home\jdeveloper\integration\seed.

3. Create an Oracle Mediator service component in the same or a different SOA
composite application that can subscribe to the event.

4. In the Template list during Oracle Mediator creation, select Subscribe to Events.

5. Click the Add icon to subscribe to a new event.

6. To the right of the Event Definition field, click the Browse icon to select the EDL
file.

The SOA Resource Browser dialog box appears.

7. Select the previously created file-based MDS connection.

8. From the list at the top, select Resource Palette.

9. Select SOA > Shared > Workflow > HumanTaskEvent.edl.

Click OK.

Chapter 29
Specifying Java or Business Event Callbacks

29-82

The Event Chooser is now populated with EDL file business events available for
selection.

10. In the Event field, select the event to which to subscribe. Figure 29-62 provides details.

Figure 29-62 Event Callbacks

You can have multiple human tasks available for subscribing to the event. For example,
assume you performed the following:

• Configured a human task named TaskA to subscribe to the event (for example,
OnAssigned)

• Configured a human task named TaskB to subscribe to the same event

To distinguish between events for TaskA and TaskB and ensure that an event is
processed only by the intended Oracle Mediator, you can add a static routing filter:

xpath20:compare(med:getComponentName(), 'TaskA')

This only invokes this routing when the sending component is TaskA.

11. If the EDL file was not selected from the file-based MDS connection, accept to import the
dependent XSD files when prompted, and click OK. If the EDL file was selected from the
file-based MDS connection, you are not prompted.

The Oracle Mediator service component is now populated with the business event to
which to subscribe. You can also subscribe to other business events defined in the same
EDL file now or at a later time.

See the following documentation for additional details about business events and callbacks:

• Using Business Events and the Event Delivery Network for specific details about
business events

• Sample workflow-116-WorkflowEventCallback, which is available with the Oracle SOA
Suite samples.

Chapter 29
Specifying Java or Business Event Callbacks

29-83

29.12.3 How to Specify Task and Routing Customizations in BPEL
Callbacks

In general, the BPEL process calls into the workflow component to assign tasks to
users. When the workflow is complete, the human workflow service calls back into the
BPEL process. However, if you want fine-grained callbacks (for example,
onTaskUpdate or onTaskEscalated) to be sent to the BPEL process, you can use the
Allow task and routing customization in BPEL callbacks option.

Make sure to manually refresh the BPEL diagram for this callback setting.

To specify task and routing customizations in BPEL callbacks:

1. In the Events section, select the Allow task and routing customization in BPEL
callbacks check box.

2. Return to Oracle BPEL Designer.

3. Open the task activity dialog box.

4. Click OK.

This creates the while, pick, and onMessage branch of a pick activity for BPEL
callback customizations inside the task scope activity.

For more information about specifying task and routing customizations, see Invoking
BPEL Callbacks.

29.12.4 How to Disable BPEL Callbacks
A user talk activity (in Oracle BPEL Designer) has an invoke activity followed by a
receive or pick activity. Deselecting the Disable BPEL callbacks check box enables
you to invoke the task service without waiting for a reply.

To disable BPEL callbacks:

1. In the Events section, deselect the Disable BPEL callbacks check box.

2. Click OK.

Chapter 29
Specifying Java or Business Event Callbacks

29-84

30
Designing Task Forms for Human Tasks

Learn how to design and customize task forms for human tasks by using ADF task flows in
Oracle JDeveloper. Human tasks enable users to interact with the business process. Each
task has two parts—the task metadata and the task form. The task form is used to display the
contents of the task to the user's worklist.
Oracle BPM Worklist displays all worklist tasks that are assigned to a user or a group. When
a worklist user drills down into a specific task, the task form renders the details of that task.

• Introduction to the Task Form

• Associating the Task Flow with the Task Service

• Creating an ADF Task Flow Based on a Human Task

• Creating a Task Form

• Refreshing Data Controls When the Task XSD Changes

• Securing the Task Flow Application

• Creating an Email Notification

• Deploying a Composite Application with a Task Flow

• Displaying a Task Form in the Worklist

• Displaying a Task in an Email Notification

• Reusing the Task Flow Application with Multiple Human Tasks

For information about troubleshooting human workflow issues, see section "Human Workflow
Troubleshooting" of Administering Oracle SOA Suite and Oracle Business Process
Management Suite.

30.1 Introduction to the Task Form
If your SOA composite includes a human task, then you need a way for users to interact with
the task. The integrated development environment of Oracle SOA Suite includes Oracle
Application Development Framework (Oracle ADF) for this purpose. With Oracle ADF, you
can design a task form that depicts the human task in the SOA composite.

The task form is a Java Server Page XML (.jspx) file that you create in the Oracle
JDeveloper designer where you created the SOA composite containing the human task. You
must set the page encoding to UTF-8 in Oracle JDeveloper before creating the Java Server
Page XML file. You can do this in Oracle JDeveloper by choosing Tools > Preferences >
Environment, and selecting UTF-8 using the Encoding dropdown list.

Figure 30-1 shows the Oracle JDeveloper ADF Task Flow Based on Human Task option
where you start creating a task form.

30-1

Figure 30-1 ADF Task Flow Based on a Human Task, in Oracle JDeveloper

30.1.1 What You May Need to Know About Task Forms: Time Zone
Conversion

Time zone conversion is not automatic for datetime elements in the task payload when
a task form is created. You must add the <af:convertDateTime> tag to enable time
zone conversion on a datetime element. See any standard task header time label for
an example. The following example shows a sample header:

<af:outputText value="#{bindings.createdDate.inputValue}"
 id="ot15">
 <f:convertDateTime type="#{pageFlowScope.dt}"
 timeZone="#{pageFlowScope.tz}"
 dateStyle="#{pageFlowScope.df}"
 timeStyle="#{pageFlowScope.tf}"/>
 </af:outputText>

30.2 Associating the Task Flow with the Task Service
When you create an ADF task flow based on a human task, you must select a task
metadata file to generate the data control. This data control is used to lay out the
content on the page and connect to the workflow service engine at execution time to
retrieve task content and act on tasks.

The hwtaskflow.xml file is used to capture the details on connecting with the service
engine. By default, it uses remote EJBs to connect to the workflow server. The SOA
server URL and port are automatically determined by using WebLogic Server runtime

Chapter 30
Associating the Task Flow with the Task Service

30-2

MBeans. However, you can override these by explicitly specifying the URL and port
information here.

Seed a user that has ORMI privileges so that the task details application can connect to the
workflow service. You can seed this user by using Oracle Enterprise Manager Fusion
Middleware Control.

30.3 Creating an ADF Task Flow Based on a Human Task
ADF task flows are used to model the user interface for the task details page. You can create
the task flow in the same application that contains the human task or in a separate
application.

You must have previously created a human task (.task file) as part of a SOA composite
before you can create a task flow. See Creating Human Tasks for how to create the.task file.

If the task flow is in the same application as the human task, create a different project for the
task flow. If the SOA composite contains multiple human tasks, create a separate project for
each ADF task flow associated with each human task. By using an ADF task flow, you create
data controls based on the task parameters and outcomes.

To autogenerate an ADF task form, access the human task in the SOA composite application
(form and task are in the same application). See How To Create an ADF Task Flow from the
Human Task Editor, for more information.

To create an ADF task form in a separate application, create the new application and project
and browse for the .task file for the human task. See How To Create an ADF Task Flow
Based on a Human Task, for more information.

An ADF task form does not validate user inputs. The only validation that is done is to check
that mandatory inputs have values. You should review your task forms and add additional
validators as needed.

30.3.1 How To Create an ADF Task Flow from the Human Task Editor
The.task file that specifies the human task is easily associated with the task flow when the
two are located in the same application.

To create an ADF task flow for a human task:

1. Open the BPEL process within the SOA composite application.

2. Double-click the human task activity and click Edit.

Figure 30-2 shows the Human Task dialog.

Chapter 30
Creating an ADF Task Flow Based on a Human Task

30-3

Figure 30-2 Editing a Human Task

3. In the .task tab (shown in Figure 30-3), click Form and select Auto-Generate
Task Form.

Chapter 30
Creating an ADF Task Flow Based on a Human Task

30-4

Figure 30-3 Creating a Task Flow from the Human Task Editor

4. Provide a project name and a directory path (or use the default) and click OK.

The taskDetails1_jspx icon appears in the designer, as shown in Figure 30-4.

Figure 30-4 The taskDetails1_jspx Icon

Chapter 30
Creating an ADF Task Flow Based on a Human Task

30-5

The task flow and task form are complete and ready to be deployed.

30.3.2 How To Create an ADF Task Flow Based on a Human Task
The ADF Task Flow Based on Human Task option (shown in Figure 30-1) creates an
ADF task flow and additional artifacts to make deployment easier. When you select
the .task file to associate with the ADF task flow, human task data controls are
created based on the task parameters and outcomes. These are then available to use
in the JSPX page. You must have access to the SOA composite project while creating
the task flow project.

To create an ADF task flow based on a human task:

1. From the File main menu, select New > Applications > Custom Application.

2. Click OK.

3. Provide an application name and directory information (or accept the default), and
click Finish.

4. Right-click the project name and select New.

5. Under Web Tier, select JSF.

6. Select ADF Task Flow Based on Human Task and click OK.

7. In the SOA Resource Browser, find and select the .task file where you defined the
human task and click OK.

a. If the human task is in the same application as the task definition, then click
File System to use the file browser to navigate to the .task file, which is
typically in the composite directory.

b. If the human task is in a different application, then click SOA-MDS to use the
MDS resource catalog and find the .task file in the composite application.

c. If the .task file is located within the current application, then click
Application.

This displays the Create Task Flow dialog and creates the data controls.

8. In the Create Task Flow dialog, accept the defaults and click OK.

The taskDetails1_jspx icon appears in the designer, as shown in Figure 30-4.
The task flow has a view, a control flow, and a task return.

To continue creating the task form, see the following:

• How To Create a Task Form Using the Complete Task with Payload Drop Handler.

• How To Create Task Form Regions Using Individual Drop Handlers.

30.3.3 What Happens When You Create an ADF Task Flow Based on
a Human Task

With an ADF task flow based on a human task, the task flow application has task data
controls that wire the task form with the workflow services. The data controls provide
the following:

• Various parameters and operations to access task data and act on it

Chapter 30
Creating an ADF Task Flow Based on a Human Task

30-6

• Drop handlers with which you can create interface regions to display the contents of the
task

The human task-aware data controls appear in the Data Controls panel of the Oracle
JDeveloper Applications window, as shown in Figure 30-5.

Figure 30-5 The Task Collection in the Data Controls Panel

The data controls for the task (represented by the Task node in Figure 30-5) have drop
handlers to render the task form. See Creating a Task Form, for more information.

30.3.4 What You May Need to Know About Having Multiple ADF Task
Flows That Contain the Same Element with Different Meta-attributes

You must create separate ADF task flows if both contain the same element, but with different
meta-attributes specified (for example, editable and noneditable).

Chapter 30
Creating an ADF Task Flow Based on a Human Task

30-7

For example, assume you perform the following tasks.

1. Create two task form applications for a SOA composite application:

• Task form application one (for example, named EnterBankDetails.task) has
one editable payload (for example, named BankDetails) and one noneditable
payload (for example, named Employee).

• Task form application two (for example, named
ValidatePersonalInformation.task) has one editable payload (for example, also
Employee).

While creating the task form, the wizard provides you with the option to define the
ADF table for payload Employee.

2. Complete the wizard, then deploy the process.

3. Invoke the process.

4. Log in to Oracle BPM Worklist.

There is a Validate Personal Information task (for
ValidatePersonalInformation.task).

5. Select the task.

Employee details are available for modification, as expected.

6. Add a new record, then approve the task.

7. Select the Enter Bank Details task (for EnterBankDetails.task). In the task form,
the Insert New and Delete buttons are still present for Employee data, even
though it is a noneditable payload.

8. Click Delete, then select Approve. The payload gets deleted.

Ensure that you create two separate ADF task flow applications because both contain
the Employee element, but with different meta-attributes specified (editable and
noneditable).

30.4 Creating a Task Form
You can create a task form by using the Auto-Generate Task Form option, the
Launch Task Form Wizard option, or by using human task drop handlers.

• For how to use the Auto-Generate Task Form option, see How To Create an
Autogenerated Task Form.

• For how to use the Launch Task Form Wizard option, see How To Create a Task
Form Using the Custom Task Form Wizard.

• For how to use human task drop handlers, see the following:

– How To Create a Task Form Using the Complete Task with Payload Drop
Handler

– How To Create Task Form Regions Using Individual Drop Handlers

– How To Add the Payload to the Task Form

Chapter 30
Creating a Task Form

30-8

Note:

A task form name must begin with a letter of the alphabet, either upper or lower
case. It should contain only letters of the alphabet and the numbers zero (0) through
nine (9).

30.4.1 How To Create an Autogenerated Task Form
Autogenerating a task form opens a default template that you can then modify.

To create an autogenerated task form:

1. Open the BPEL process within the SOA composite application.

2. Double-click the human task activity and click Edit.

3. From the .task editor, click Create Form and select Auto-Generate Task Form, as
shown in Figure 30-6.

Figure 30-6 Creating a Task Form

4. Provide a project name and a directory path (or use the default) and click OK.

The default form opens in the taskDetails1.jspx tab. The default form for
ApprovalHumanTask is shown in Figure 30-7.

Chapter 30
Creating a Task Form

30-9

Figure 30-7 Autogenerated Task Form for ApprovalHumanTask

30.4.2 How to Register the Library JAR File for Custom Page
Templates

You can optionally specify your own custom page templates in the Custom Task Form
wizard. As described in How To Create a Task Form Using the Custom Task Form
Wizard, you select Custom in the Name and Definition page of the Custom Task Form
Wizard and select the library and .jspx template.

As a prerequisite, you first must register the library JAR file in Oracle JDeveloper.

To create the library JAR file for custom page templates:

1. From the Tools menu, select Manage Libraries.

2. Click New.

The Create Library dialog appears.

3. Highlight Class Path, and click Add Entry.

The Select Path Entry dialog appears.

4. Select the class path for the library, and click Select.

Chapter 30
Creating a Task Form

30-10

The class path is displayed below Class Path and the library JAR file name is displayed
in the Library Name field. Ensure that the library name you select ends with a suffix
of .jar. Figure 30-8 provides details.

Figure 30-8 Custom Library JAR File

5. Select the Deployed by Default check box.

6. Click OK.

When you run the Custom Task Form wizard, you select the Custom radio button on the
Name and Definition page, and select the library and template that you registered.

30.4.3 How To Create a Task Form Using the Custom Task Form Wizard
This wizard enables you to create a task form using ADF page templates and standardized
task regions. The page templates can be either of the following:

• Default page templates that are automatically provided at the following location:

[JDeveloper_Home}/jdeveloper/soa/modules/oracle.soa.worklist_11.1.1/
adflibWorklistComponents.jar

The default page templates are:

– Nontabbed, default template: taskDetailsTemplate.jspx
– Tabbed templates in which the payload and comments, attachment, and history

sections are displayed on a separate tab: taskDetailsTemplate2.jspx
In the Name and Definition page of the Custom Task Flow wizard, select Packaged, then
select either Default or Tabbed.

Chapter 30
Creating a Task Form

30-11

• Custom page templates that you define. In the Name and Definition page of the
Custom Task Flow wizard, select Custom, then select the library name and the
template name.

You package a page template and its artifacts into an ADF library JAR file. These
JAR files can be packaged, deployed, discovered, and used like any other Oracle
library component. The wizard prompts you to specify the JAR name and template
location in the JAR.

Page templates let you define entire page layouts, including values for certain
attributes of the page. When pages are created using a template, they all inherit the
defined layout. When you make layout modifications to the template, all pages that
consume the template automatically reflect the layout changes.

The templates used in the wizard generate content for the following six facets:

• Actions

• Attachments

• Body

• Comments

• Header

• History

For the action, header, and body facets, you can pick the content and attributes to be
displayed and then fine tune the layout.

All six facets are defined in the default page templates. In the case of custom
templates, you use these exact facet names in your template. If your template does
not include these facets, then the facet content is not generated in the JSPX file.

To create a custom task form:

1. Open the BPEL process within the SOA composite application.

2. Double-click the human task activity, and click the Edit icon.

The Human Task Editor appears.

3. Above the editor, click Form and select Launch Task Form Wizard.

4. Provide a project name and a directory path (or use the default), and click OK. The
Custom Form Wizard displays the Name and Definition screen as shown in
Figure 30-9.

Chapter 30
Creating a Task Form

30-12

Figure 30-9 Custom Task Form Wizard: Form Name and Definition

5. In the Form Name field, provide the name of the form (.jspx file) that is to be generated
at the end of the wizard. If you do not provide a name, then the default name,
Humantasknumber_Form, is provided. Ensure that valid characters are used in the name.
Spaces are not permitted.

6. Specify the Task Flow Name, that is, the name of the ADF task flow that is generated at
the end of the wizard. Accept the default name of Humantasknumber_TaskFlow or specify
a different name.

7. In the Page Templates section, select either:

• Packaged: Select this to use one of the default page templates, then select the
particular template from the list.

• Custom: Select the library and template. If no library is listed, click Manage
Libraries and follow the instructions in How to Register the Library JAR File for
Custom Page Templates.

Click Next. The Header page appears.

8. On the Header page, shown in Figure 30-10, perform the following procedures and click
Next.

• In the Actions facet section, select the options to include in the title bar of the task
form:

Other actions (menu): Lists the system actions that are possible for the task, such
as Request Information, Reassign, Renew, Suspend, Escalate, and Save.

Outcomes (buttons): Displays buttons for task actions that are defined in the human
task, such as setting task outcomes.

• In the Header facet section, enter the number of display columns. If you want each
header label to display in its own column, then enter the same number as the number

Chapter 30
Creating a Task Form

30-13

of headers you move into the Selected list. If you enter 1, but select 7
headers, all 7 headers appear in one column.

• Move header labels into the Selected list and reorder them as needed.

Figure 30-10 Custom Task Form Wizard: Setting Up the Header

9. On the Body page, shown in Figure 30-11, perform the following procedures in the
Body facet section to set up the form, and click Next:

• Enter a title that describes the body panel.

• Enter the number of columns for row 1. For a simple form, you may want to
enter the same number as you entered for the number of header columns.

• Click the Add (+) button to add more rows. For each new row, you can also
specify the number of columns. Each row can have its own column layout. For
each column in each row, a body page is created, labeled Row1, Column1,
and so on.

Chapter 30
Creating a Task Form

30-14

Figure 30-11 Custom Task Form Wizard: Setting Up the Body

Note:

If you specify rows or columns for which no payload data appears, then an
empty panel group is displayed. You can use this blank section to add
content to the form later by using data controls.

10. On the Row1 Column1 page, shown in Figure 30-12, move all or part of the payload to
the Selected list and click Next.

Figure 30-12 Custom Task Form Wizard: Selecting the Body Fields

11. For any Rown Columnn page after Row1 Column1, repeat Step 10 and click Next.

Chapter 30
Creating a Task Form

30-15

The Footer page that displays is based upon the page template you selected on
the Name and Definition page in Step 6 (either Default Page Template or Custom
Page Template).

If you selected Default Page Template, the Footer page shown in Figure 30-13 is
displayed. Deselect any comments, attachments, or history facet that you do not
want to include in the footer, and click Next. By default, the comments,
attachments, and history facets are all selected.

Figure 30-13 Custom Task Form Wizard: Selecting the Footer Fields for the Default Page
Template

12. On the Summary page, shown in Figure 30-14, inspect your selections. Click Back
to make changes or click Finish.

This form is created as an ADF task flow and added to the project.

Chapter 30
Creating a Task Form

30-16

Figure 30-14 Custom Task Form Wizard: Summary

The Designer initializes and the form_name.jspx tab is displayed, as shown in
Figure 30-15 (upper part of tab) and Figure 30-16 (lower part of tab).

Chapter 30
Creating a Task Form

30-17

Figure 30-15 Custom Task Form (Upper Part of Tab)

Chapter 30
Creating a Task Form

30-18

Figure 30-16 Custom Task Form (Lower Part of Tab)

30.4.4 How To Create a Task Form Using the Complete Task with Payload
Drop Handler

The human task drop handlers appear in the context menu of the designer, as shown in
Figure 30-17.

Chapter 30
Creating a Task Form

30-19

Figure 30-17 Human Task Drop Handlers for Creating the Task Form

Other ADF drop handlers—for forms, tables, trees, and so on (shown in Figure 30-17)
—can also be used to create task forms.

To create a task form using the Complete Task with Payload drop handler:

1. In the designer, double-click taskDetails1_jspx.

2. In the Create JSF Page dialog, provide a file name and directory information (or
accept the defaults) and click OK.

3. In the Data Controls panel of the Applications window, expand the human task
node, then the getTaskDetails node, and then the Return node.

4. Drag the Task icon into the taskDetails.jspx window.

5. Select Human Task, and then Complete Task with Payload.

6. In the Edit Action Binding dialog, shown in Figure 30-18, click OK.

Chapter 30
Creating a Task Form

30-20

Figure 30-18 Edit the Action Binding

7. In the next Edit Action Binding dialog, the data collection is selected, as shown in
Figure 30-19; click OK.

Chapter 30
Creating a Task Form

30-21

Figure 30-19 Select the Data Collection and Action

The task form is displayed, as shown in Figure 30-20.

Chapter 30
Creating a Task Form

30-22

Figure 30-20 Task Form

30.4.4.1 Complete Task with Payload
This option creates the combination of all the preceding task form components (the task
header, task history, task actions, and task comments and attachments), plus the interface for
the payload. The payload interface is created as follows:

• All text nodes are created as text input fields.

• If an element has maxOccurs="unbounded", then it appears as a table.

• Nested tables are not rendered; that is, if an element has maxOccurs="unbounded" and it
has a child with maxOccurs="unbounded", then the child element is not rendered.

• If there are multiple levels of nesting, then drag and drop the individual sections and use
a standard ADF drop handler.

30.4.4.2 Complete Task without Payload
This option creates the combination of all of the preceding task form components (the task
header, task history, task actions, and task comments and attachments).

Chapter 30
Creating a Task Form

30-23

30.4.4.3 Task Details for Email
This option creates an ADF region that renders well when sent by email. It generates
the form shown in Figure 30-21.

Figure 30-21 Task Form for Email Notification

See Creating an Email Notification , for more information.

30.4.4.4 Task Header
All the standard header fields are added to the task form. This includes the task
number and title; the state, outcome, and priority of the BPEL process, and information
about who created, updated, claimed, or is assigned to the task. The header also
displays dates related to task creation, last modification, and expiration. You can add
or remove header fields as required for your task display.

Figure 30-22 shows an example of header information.

Figure 30-22 Header Information

Buttons for task actions are also created in the header, as shown in Figure 30-23.

Chapter 30
Creating a Task Form

30-24

Figure 30-23 Task Header: Task Action Buttons

30.4.4.5 Task Actions
The following task actions appear from the Actions dropdown list or as buttons. The tasks
that appear depend on the state of the task (assigned, completed, and so on) and the
privileges that are granted to the user viewing the task. For example, when a task is assigned
to a group, only the Claim button appears. After the task is claimed, other actions such as
Reject and Approve appear.

The first three custom actions appear on the task form as buttons: Claim, Dismiss, and
Resume. Only those buttons applicable to the task appear. Other actions are displayed under
the Actions list, starting with Request for Information, Reassign, and Route. Systems
actions—Withdraw, Pushback, Escalate, Release, Suspend, and Renew—follow the
custom actions, followed by the Save button. These actions require no further dialog to
complete.

• Claim—A task that is assigned to a group or multiple users must be claimed first. Claim
is the only action available in the Task Action list for group or multiuser assignments.
After a task is claimed, all applicable actions are listed.

Note:

– If an FYI task is sent to multiple users, a user must first select the Claim
button to claim the task before they can dismiss it.

– Pushback is designed to work with single approvers and not with group
votes. Pushback from a stage with group vote (or parallel) scenario to
another stage is not allowed. Similarly, you cannot push back from a single
assignee to a group vote (or parallel) scenario.

• Dismiss—This action is used for a task that requires the person acting on the task to
acknowledge receipt, but not take any action (such as an FYI).

• Resume—A task that was halted by a Suspend action can be worked on again. See
Suspend.

• Request for Information—You can request more information from the task creator or
any of the previous assignees. If reapproval is not required, then the task is assigned to
the next approver or the next step in the business process.

• Reassign—Managers can reassign a task to reportees. The Reassign option also
provides a Delegate function. A task can be delegated to another user or group. The
delegated task appears in both the original user's and the delegated user's worklists. The
delegated user can act on behalf of the original assignee, and has the same privileges for
that task as the original assignee.

• Route—If there is no predetermined sequence of approvers or if the workflow was
designed to permit ad hoc routing, then the task can be routed in an ad hoc fashion. For
such tasks, a Route button appears on the task details page. From the Routing page,

Chapter 30
Creating a Task Form

30-25

you can look up one or more users for routing. When you specify multiple
assignees, you can choose whether the list of assignees is for simple (group
assignment to all users), sequential, or parallel assignment. In the case of parallel
assignment, you provide the percentage of votes required for approval.

• Withdraw—Only the task creator can withdraw (cancel) the task. The Comments
area is available for an optional comment. The business process determines what
happens next.

• Pushback—This action sends a task up one level in the workflow to the previous
assignee. Note: Pushback is designed to work with single approvers and not with
group votes. Pushback from a stage with group vote (or parallel) scenario to
another stage is not allowed. Similarly, you cannot push back from a single
assignee to a group vote (or parallel) scenario.

• Escalate—An escalated task is assigned to the user's manager. The Comments
area is available for an optional comment.

• Release—Releasing a task makes it available to other assignees. A task assigned
to a group or multiple users can then be claimed by the other assignees.

• Suspend—This action suspends the expiration date indefinitely, until the task is
resumed. Suspending and resuming tasks are available only to users who have
been granted the BPMWorkflowSuspend role. Other users can access the task by
selecting Previous in the task filter or by looking up tasks in the Suspended
status. Buttons that update a task are disabled after suspension.

• Renew—Renewing a task extends the task expiration date seven days (P7D is the
default). The renewal duration is controlled from Oracle Enterprise Manager Grid
Control. A renewal appears in the task history. The Comments area is available
for an optional comment.

• Save—Changes to the task are saved.

While you are creating a task form, all possible system action buttons appear, although
only those actions that are appropriate for the task state and fit the user's privileges
appear in the worklist.

30.4.4.6 Task History
The history of task actions appears on the task details page, and is displayed in the
worklist as a history table. The history includes the following fields:

• Version number

• Participant name—the person who acted on the task

• Action—for example, if the task was approved or assigned

• Updated By—name of the person who last updated the task

• Action date

See Figure 32-20 and Figure 32-21 for how task history is displayed in Oracle BPM
Worklist, including the options to take a history snapshot, list future participants, and
list full task actions.

30.4.4.7 Task Comments and Attachments
A trail of comments with the comment date and comment writer's user name is
maintained throughout the life cycle of a task.

Chapter 30
Creating a Task Form

30-26

Files or reference URLs associated with a task can be added by any of the human task
participants.

Figure 30-24 shows an example of the comments and attachments region.

Figure 30-24 Comments and Attachment Region

30.4.5 How To Create Task Form Regions Using Individual Drop Handlers
You can create a display form with multiple regions using the individual Task Header, Task
Action, Task History, and Task Comment and Attachment drop handlers shown in
Figure 30-25.

Figure 30-25 Using Human Task Drop Handlers

Task Header provides both header and task actions, so you do not need the Task Action
drop handler when you use Task Header. Use Task Action when you want the actions
dropdown menu and buttons, but not header details.

To create the task form without building each region individually, see How To Create a Task
Form Using the Complete Task with Payload Drop Handler.

Before you create this task form, you must have created the following:

• A new application and SOA project, and a human task service.

• An ADF task flow based on the human task. See Introduction to the Human Workflow
Tutorial for more information.

Chapter 30
Creating a Task Form

30-27

To create task form regions using individual drop handlers:

1. In the designer, double-click taskDetails1.jspx.

2. In the Create JSF Page dialog, provide a file name and directory information (or
accept the defaults) and click OK.

3. In the Data Controls panel of the Applications window, expand the human task
node, then the getTaskDetails node, and then the Return node.

4. Drag the Task icon into the taskDetails.jspx window.

5. Select Human Task, and then Task Header.

This creates the Actions dropdown list and buttons for task actions, as shown in
Figure 30-26, and header details, as shown in Figure 30-27.

Figure 30-26 Designing the Task Form: Buttons for Task Actions

Figure 30-27 Designing the Task Form: Task Headers

6. Drag additional Task icons into the JSPX designer, selecting these options with
each iteration:

• Human Task, then Task History

• Human Task, then Task Comment and Attachment

The task form now has multiple regions for task action dropdown lists and buttons,
task header details, task history, and comments and attachments.

To continue creating the task form, see Step 1 in How To Add the Payload to the Task
Form.

30.4.6 How To Add the Payload to the Task Form
In addition to adding the payload, you can create task form regions. See Step 1 in How
To Create Task Form Regions Using Individual Drop Handlers.

To add the payload to the task form:

1. From the Components window, select ADF Faces.

2. Expand Layout.

3. Drag Panel Group Layout between the Header and Comment sections.

Chapter 30
Creating a Task Form

30-28

4. In the Data Controls panel, expand Task, and then Payload.

5. Drag the payload data collection to the left of the Panel Group Layout area.

An alternative to dropping the payload node onto the form is to expand the payload node
and drop the necessary child elements onto the form. For example, to create a read-only
form for the VacationRequest payload, expand the payload node, drag the Vacation
Request Process Request node onto the form, and select Forms > ADF Read-only
Form.

6. From the context menu, select Forms, then ADF Read-only Form, as shown in
Figure 30-28.

Figure 30-28 Adding ADF Read-Only Fields to the Task Form Payload Region

7. In the Edit Form Fields dialog, accept the defaults and click OK.

This creates read-only fields in the payload region, between the Details and History
sections.

The payload regions appear, as shown in Figure 30-29.

Figure 30-29 The Payload Region of the Task Form

The task form, shown in Figure 30-30, is complete and ready to be deployed.

Chapter 30
Creating a Task Form

30-29

Figure 30-30 The Task Form (taskDetails.jspx)

30.4.7 What Happens When You Create a Task Form
The form you designed is saved in the .jspx file at

JDev_Oracle_Home\mywork\task_form_application_name\project_name\public_html

The task form is ready to be deployed. See Deploying a Composite Application with a
Task Flow.

30.5 Refreshing Data Controls When the Task XSD
Changes

When task metadata changes, refresh the Data Controls view (XSD changes are not
refreshed) that is based on that task metadata.

The refresh functionality re-creates the data control. Figure 30-31 shows the Refresh
option.

Chapter 30
Refreshing Data Controls When the Task XSD Changes

30-30

Figure 30-31 Refreshing Data Controls

To refresh the data control:

1. Right-click the data control.

2. Select the Edit Definition option to display the Refresh Data Control dialog, as shown in
Figure 30-32.

Figure 30-32 The Refresh Data Control Button

30.6 Securing the Task Flow Application
You can use any container-based security for securing the task flow.

See Requirements for Client Applications For Identity Propagation , for more information.
Form-based authentication and SSO-based authentication are available for web security.

If you are sending a notification as email, do not secure the URL with "/notification/
secure" to use container-based security because this is accessed by SOA APIs using an

Chapter 30
Securing the Task Flow Application

30-31

internal context that cannot be created outside of SOA. The URL pattern inside
security cannot contain "/" (all URLs) and "//notification".

No additional steps are required for identity propagation. Identity is automatically
propagated to the server EJBs.

30.7 Creating an Email Notification
A task form is used to provide an email notification, if email notification is defined as
part of the human task.

Options for email notification include:

• Default email notification—Use the first page of the task form that you create for
the human task. The content is sent as an HTML-based email. Images in the task
flow are included as attachments so that the notification can be viewed in
disconnected mode. All drop handlers, including Complete Task with Payload
and Complete Task without Payload, are suitable for emails.

• Custom email notification—Use the Task display for email drop handler to create
a custom email notification task page.

Notifications from Human Workflow to review notification settings as part of a human
task definition (.task file).

30.7.1 How To Create an Email Notification
To send a custom email notification whose content and layout you have specified,
create another JSPX file in which you design an email notification page. (Note,
however, that you can use the default page for notification with no further
modifications.) Create the custom notification page by using the custom and standard
drop handlers, or use the email notification drop handler. In addition, do the following:

• Add a router to the task flow. The router directs the task flow to send either the
email notification page or the default page, depending on the control flow based on
the bpmClientType page flow scope value.

• Edit the generated inline CSS to customize the page. No additional CSS is
included at runtime and the ADF CSS is not available at runtime. See the samples
notification-101 and notification-102 available with the Oracle SOA Suite samples.

• Reference images directly from the HTML or JSF page. (Indirect references, for
example, an included JSF that in turn includes the image, are not allowed.)

30.7.1.1 Creating a Task Flow with a Router
The control flow case with a router enables you to direct the request to a specific page
based on certain parameters. For an ADF task flow based on a human task, you need
a special page for email notifications. This section describes how to create a special
page for email notifications.

To create a task flow with a router:

1. In the Applications window, expand the task flow project and double-click
project_name _TaskFlow.xml.

The XML file opens in the designer. In the diagram view, you see the
taskDetails1.jspx icon.

Chapter 30
Creating an Email Notification

30-32

2. From the Components window, select ADF Task Flow, and drag the View icon into the
designer.

3. Click view1 below the icon and enter a name for the email notification page.

Figure 30-33 shows an example using the name EmailPage.

Figure 30-33 Creating the Email Page

4. From the Components window, drag Router into the designer.

5. Click router1 below the icon and enter a router name.

Figure 30-35 shows an example using the name PageRouter.

6. To ensure that the router is called, right-click the router icon and click Mark Activity >
Default Activity, as shown in Figure 30-34.

Chapter 30
Creating an Email Notification

30-33

Figure 30-34 Marking the Router as the Default Activity

7. Click the router - router_name - Property Inspector tab.

8. In the default-outcome field, enter default.

9. Click Add, and in the Outcome field, enter the name of the email notification
page.

10. Use the Expression Builder to enter the following in the expression field:
#{pageFlowScope.bpmClientType=="notificationClient"}

11. In the Components window, click Control Flow Case.

12. In the designer, drag from the router page icon to taskDetails1.jspx.

The control flow is automatically labeled default, as shown in Figure 30-35.

Chapter 30
Creating an Email Notification

30-34

Figure 30-35 Connecting the Control Flow

13. In the Components window, click Control Flow Case.

14. In the designer, drag from the router page icon to the email notification page icon.

15. Click the control-flow-case - email_page_name - Property Inspector tab.

16. From the from-outcome list, select the name of the email notification page.

Figure 30-36 shows the completed control flow.

Chapter 30
Creating an Email Notification

30-35

Figure 30-36 Completed Control Flow for an Email Notification

To continue creating the email notification page, see Step 1 in Creating an Email
Notification Page.

30.7.1.2 Creating an Email Notification Page
Creating an email notification page is similar to creating a task form, with the addition
of defining layout and inline styles.

To create an email notification page:

1. In the designer, double-click EmailPage.

2. In the Create JSF Page dialog, provide a file name and directory information (or
accept the defaults) and click OK.

The EmailPage.jspx tab opens in the designer.

3. From the Components window, drag any of the Common Components (for an
image, for example) or Layout components into the designer.

4. For the layout component you selected, provide alignment and other details in the
Property Inspector tab.

Figure 30-37 shows the layout fields available when Panel Group Layout is
selected.

Chapter 30
Creating an Email Notification

30-36

Figure 30-37 Specifying a Layout

5. Expand Appearance, Style and Theme, Behavior, Advanced, Customization, and
Annotations to specify other details, as shown in Figure 30-38.

Chapter 30
Creating an Email Notification

30-37

Figure 30-38 Specifying a Layout: More Details

6. From the Data Controls panel, expand the human task node, then the
getTaskDetails node, and then the Return node.

7. Drag Task into the panel group layout area.

8. Select Human Task, and then Task details for email, as shown in Figure 30-39.

Chapter 30
Creating an Email Notification

30-38

Figure 30-39 Human Task Drop Handlers

This drop handler includes a header with inline style, a payload using ADF, and a
comment using inline style. Because the payload is dynamically generated, it does not
include an inline style.

In general, you can find the inline styles for the Header section for each component and
use the same style for the Content section for the respective components.

9. In the Edit Action Bindings dialog, select the data collection and click OK.

The email task form is complete and ready to be deployed.

30.7.2 What Happens When You Create an Email Notification Page
The email notification page is sent as HTML content in the email message body. Images on
the page are inlined as attachments. Relative URLs are converted to absolute URLs.

A notification may not display correctly in email if the styles used in the fields of the form are
not valid for email. Editing the generated inline CSS to customize the page may be required.
See How To Create an Email Notification, for more information.

Security issues can also prevent the form from being rendered correctly. See Securing the
Task Flow Application, for more information.

30.8 Deploying a Composite Application with a Task Flow
The composite application that contains the task flow must be deployed before you can use
the task form in the Worklist Application.

The process for deploying an application with a task flow is basically the same as deploying
any SOA composite application, as described in How To Deploy a Composite Application with
a Task Flow. See Deploying SOA Composite Applications for more information.

30.8.1 How To Deploy a Composite Application with a Task Flow
An application server connection is required to do the following.

To deploy a composite application with a task flow:

1. Right-click the composite application name, select Deploy, and then application_name
> to > application_server_connection.

Chapter 30
Deploying a Composite Application with a Task Flow

30-39

If you do not have a connection, select New Connection and use the Application
Server Connection wizard.

2. In the Select Deployment Targets dialog, select a server instance.

3. Click OK.

30.8.2 How To Redeploy the Task Form
If you change the task form and want to redeploy it, repeat the deployment step.
(Right-click the task form application name, select Deploy, and then
application_name > to > application_server_connection.) A message asking you if
you want to undeploy the form is displayed. Click OK and deploy the task form again.

30.8.3 How To Deploy a Task Flow as a Separate Application
If you want to deploy the task flow as a separate application, outside of the SOA
composite application, then create an application and project as a container for the
task flow. After you deploy the SOA composite application, deploy the task flow
application.

30.8.4 How To Deploy a Task Form to a non-SOA Oracle WebLogic
Server

This section describes how to deploy a task form to a non-SOA Oracle WebLogic
Server.

30.8.4.1 Before Deploying the Task Form: Port Changes
If you are not using the default values for RMI or HTTP ports, open the
wf_client_config.xml file in Oracle JDeveloper to change values.

When you want to deploy task details on non-SOA servers, you must configure the
wf_client_config.xml file. This file should be created and added to the task details
project only if the task detail is deployed to a separate managed server that is not the
SOA server. The <serverURL> and <rootEndpointURL> in the file should refer to the
SOA server host name and port number.

The following example shows a sample wf_client_config.xml file.

<?xml version="1.0" encoding="UTF-8" ?>
xmlns="http://xmlns.oracle.com/bpel/services/client">
 <server default="true" name="default">
 <localClient>

<participateInClientTransaction>false</participateInClientTransaction>
 </localClient>
 <remoteClient>
 <serverURL>t3://my_host.us.example.com:8001</serverURL>

<initialContextFactory>weblogic.jndi.WLInitialContextFactory</
initialContextFactory>

<participateInClientTransaction>false</participateInClientTransaction>
 </remoteClient>
 <soapClient>

Chapter 30
Deploying a Composite Application with a Task Flow

30-40

<rootEndPointURL>http://my_host.us.example.com:8001</rootEndPointURL>
 </soapClient>
 </server>
</workflowServicesClientConfiguration>

30.8.4.2 Configuring Unique Cookie Context Paths for the Session Tracking Cookies
Before deploying the task form to a non-SOA Oracle Weblogic Server, ensure that the
session tracking cookie of your task-form web application is configured with a cookie trigger
path unique to your application. This ensures that your task form application has its unique
session tracking cookie and cannot be overwritten by the session tracking cookies created for
other Oracle BPM applications such as Oracle BPM Worklist or Oracle Business Process
Management Workspace.

To configure the session cookie trigger path, in JDeveloper, open the weblogic.xml file in
your web project. Choose the overview tab in your .xml file editor, and choose the session. In
the cookie trigger path field, enter the application context path of your web application. For
example, if the URL of your application is http://host:port/my-application-context-root
in which my-application-context-root is the name of your application context root, then the
cookie trigger path is set as follows:

/my-application-context-root

30.8.4.3 Deploying oracle.soa.workflow.jar to a non-SOA Oracle WebLogic Server
The oracle.soa.workflow.jar shared library is needed on the non-SOA Oracle WebLogic
Server. It is available from

ORACLE_JDEV_HOME\jdeveloper\soa\modules\oracle.soa.workflow_11.1.1

Use Oracle WebLogic Server Administration Console to deploy the JAR file.

To deploy oracle.soa.workflow.jar:

1. Go to Oracle WebLogic Server Administration Console at

http://remote_hostname:remote_portnumber/console
2. In the Domain Structure area, click Deployments.

3. Click Install, as shown in Figure 30-40.

Chapter 30
Deploying a Composite Application with a Task Flow

30-41

Figure 30-40 Oracle WebLogic Server Administration Console: List of Deployments

4. In the Path field, provide the following path and click Next.

ORACLE_JDEV_HOME/jdeveloper/soa/modules/oracle.soa.workflow_11.1.1/
oracle.soa.workflow.jar

5. Keep the same name for the deployment and click Next, as shown in
Figure 30-41.

Chapter 30
Deploying a Composite Application with a Task Flow

30-42

Figure 30-41 Oracle WebLogic Server Administration Console: Install Applications Assistant

6. Select the Deploy as Library option and click Finish.

7. Confirm that the oracle.soa.workflow(11.1.1,11.1.1) library is in the Active state, as
shown in Figure 30-42.

Figure 30-42 Oracle WebLogic Server Administration Console: The oracle.soa.workflow Active
State

See Defining the Foreign JNDI Provider on a non-SOA Oracle WebLogic Server, to continue.

30.8.4.4 Defining the Foreign JNDI Provider on a non-SOA Oracle WebLogic Server
Use Oracle WebLogic Server Administration Console to complete this portion of the task.

Chapter 30
Deploying a Composite Application with a Task Flow

30-43

To define the foreign JNDI provider:

1. In the Domain Structure area, expand Services and click Foreign JNDI
Providers.

2. Click New.

3. In the Name field, enter ForeignJNDIProvider-SOA, as shown in Figure 30-43,
and click Next.

Figure 30-43 Creating a Foreign JNDI Provider

4. Click the ForeignJNDIProvider-SOA link.

5. Do the following and click Save.

• For Initial Context Factory, enter weblogic.jndi.WLInitialContextFactory.

• For Provider URL, enter t3://soa_hostname:soa_portnumber/soa-infra.

In a clustered environment, for Provider URL, enter http://
soa_hostname:soa_portnumber/soa-infra.

• For User, enter weblogic.

• For Password, enter weblogic.

Figure 30-44 shows the page where you enter this information.

Chapter 30
Deploying a Composite Application with a Task Flow

30-44

Figure 30-44 Defining the Foreign JNDI Provider

See Defining the Foreign JNDI Provider Links on a non-SOA Oracle WebLogic Server, to
continue.

30.8.4.5 Defining the Foreign JNDI Provider Links on a non-SOA Oracle WebLogic
Server

Use Oracle WebLogic Server Administration Console to complete this portion of the task.

To define the foreign JNDI provider links:

1. In the Domain Structure area, expand Services and click Foreign JNDI Providers.

2. Click the ForeignJNDIProvider-SOA link.

3. Click the Links tab.

4. Click New.

Figure 30-45 shows the Links tab.

Chapter 30
Deploying a Composite Application with a Task Flow

30-45

Figure 30-45 Defining the Foreign JNDI Provider Links: The Links Tab

5. Do the following and click OK.

• For Name, enter RuntimeConfigService.

• For Local JNDI Name, enter RuntimeConfigService.

• For Remote JNDI Name, enter RuntimeConfigService.

Figure 30-46 shows where you do this.

Figure 30-46 Defining the Foreign JNDI Provider Links: Link Properties

6. Do the following and click OK.

• For Name, Local JNDI Name, Remote JNDI Name, enter ejb/bpel/
services/workflow/TaskServiceBean.

• For Name, Local JNDI Name, Remote JNDI Name, enter ejb/bpel/
services/workflow/TaskMetadataServiceBean.

Chapter 30
Deploying a Composite Application with a Task Flow

30-46

• For Name, Local JNDI Name, Remote JNDI Name, enter TaskReportServiceBean.

• For Name, Local JNDI Name, Remote JNDI Name, enter
TaskEvidenceServiceBean.

• For Name, Local JNDI Name, Remote JNDI Name, enter TaskQueryService.

• For Name, Local JNDI Name, Remote JNDI Name, enter UserMetadataService.

See Including a Grant for bpm-services.jar, to continue.

30.8.4.6 Including a Grant for bpm-services.jar
To include a grant for bpm-services.jar, edit the system-jazn-data.xml file and then restart
the non-SOA Oracle WebLogic Server.

To include a grant for bpm-services.jar:

1. Locate the system-jazn-data.xml file by navigating to the domain directory, soa-infra,
and then to

ORACLE_WEBLOGIC_INSTALL/user_projects/domains/your_domain_name/config/fmwconfig
2. In system-jazn-data.xml, add the following grant. (If all or some portion of the grant

exists, then add only what is missing.)

<grant>
 <grantee>
 <codesource>
 <url>file: ORACLE_JDEV_HOME/jdeveloper/soa/modules/oracle.soa.workflow_
11.1.1/bpm-services.jar</url>
 </codesource>
 </grantee>
 <permissions>
 <permission>
 <class>oracle.security.jps.JpsPermission</class>
 <name>VerificationService.createInternalWorkflowContext</name>
 </permission>
 <permission>
 <class>oracle.security.jps.service.credstore.CredentialAccessPermission
 </class>
 <name>credstoressp.credstore.BPM-CRYPTO.BPM-CRYPTO</name>
 <actions>read,write</actions>
 </permission>
 <permission>
 <class>oracle.security.jps.JpsPermission</class>
 <name>IdentityAssertion</name>
 <actions>*</actions>
 </permission>
 </permissions>
</grant>

3. Restart the non-SOA Oracle WebLogic Server.

See Deploying the Application, to continue.

30.8.4.7 Deploying the Application
Deploy the application that contains the task form to a non-SOA Oracle WebLogic Server the
same way other applications are deployed. When you set up the application server
connection, specify the domain on the non-SOA server (the domain you specified in Step 1 of

Chapter 30
Deploying a Composite Application with a Task Flow

30-47

Including a Grant for bpm-services.jar.. See Deploying SOA Composite Applications
for information on deploying applications.

30.8.5 What Happens When You Deploy the Task Form
When the task form is deployed, an automatic association is created between the task
metadata and the task flow application URL. Use Oracle Enterprise Manager Fusion
Middleware Control to update this mapping. Access the task flow component in the
Component Metrics table for a specific SOA composite application. The
Administration tab shows the URI for the task form. See Administering Oracle SOA
Suite and Oracle Business Process Management Suite for more information. If the
task flow is configured for HTTPS access, you may need to do additional settings in
Enterprise Manager.

Note:

For the task form association to happen automatically, the SOA server must
be running. If the association does not happen, then you receive the
message Task details not found for this task when you try to access the
task form for that task in Worklist Application or Oracle Business Process
Management Workspace. In this case, you can either restart the application
or go to Oracle Enterprise Manager and register the task form URL manually.

See Using for information on how to act on tasks.

Note:

• For the task form to work correctly, always specify the URL using the
complete name for the host on which the task flow is deployed.

• If you want to access the task form from a different URL that has a
different port number than the hostname and port number previously set
in Oracle WebLogic Server Administration Console, then you must
change the port number for the front-end in Oracle WebLogic Server
Administration Console and redeploy the task form so that the task
details appear correctly in the worklist.

30.8.6 What You May Need to Know About Undeploying a Task Flow
When a task flow Web application is deployed, the task flow URL is registered in the
database. This URL is displayed in Oracle BPM Worklist when a task is clicked and
the task details are displayed. If the task flow Web application is later undeployed or
stopped, the task flow URL in the database is not removed as part of the
undeployment. Consequently, when you click the task in the worklist to see the task
details, a 404 Not Found error is displayed rather than the message Details not
available for task. To avoid the 404 Not Found error, use Oracle Enterprise Manager
Fusion Middleware Control to undeploy the task flow application from the application
home page.

Chapter 30
Deploying a Composite Application with a Task Flow

30-48

30.9 Displaying a Task Form in the Worklist
The task form is displayed in Oracle BPM Worklist, a web-based interface for users to act on
their assigned human tasks. Specific actions are available or unavailable depending on a
user's privileges.

Figure 30-47 shows how the task form for the help desk request example is displayed in the
Worklist Application task details page.

Figure 30-47 Worklist Task Details Page

The task form is available in Oracle BPM Worklist after you log in. See How To Log In to the
Worklist for instructions.

30.10 Displaying a Task in an Email Notification
Learn how to display a task in an email notification.

Figure 30-48 shows how an email task notification appears in email.

Chapter 30
Displaying a Task Form in the Worklist

30-49

Figure 30-48 Email Task Notification

You can click an available action, RESOLVED or UNRESOLVED, or click the Worklist
Application link to log in to the worklist. Clicking an action displays an email
composer window in which you can add a comment and send the email.

By default, the text in a task notification refers to "Worklist Application," but you can
change that text and its associated URL.

30.10.1 Changing the Text for the Worklist Application in Task
Notifications

By default, the text in a task notification refers to "Worklist Application," but you can
change that text. To change it, you create a custom resource bundle and modify the
appropriate strings.

To change the text in a task notification:

1. Open the WorkflowLabels.properties resource bundle in the sample
workflow-110-workflowCustomizations.

2. In the WorkflowLabels.properties file, modify the following strings:

Chapter 30
Displaying a Task in an Email Notification

30-50

TASK_NOTIF_MSG.WORKLIST_APPLICATION=Worklist Application
TASK_NOTIF_MSG.WORKSPACE_APPLICATION=Workspace Application

For more details on how to modify the resource bundle string, see the workflow-110-
workflowCustomizations sample.

3. Update the Workflow Custom Classpath URL configuration parameter on your instance.

You do not have to deploy the WorkflowLabels.properties file as an application for it to
work. Instead, you can do either of the following:

• Host it on the file system, using a URL beginning with file:/// to point to the
appropriate location.

• Host the file in MDS, using a URL beginning with oramds:///....

30.10.2 Changing the URL of the Worklist Application in Task Notifications
To change the text in a task notification:

1. Log in to Oracle Enterprise Manager Fusion Middleware Control.

2. In the navigator, expand the SOA folder.

3. Right-click soa-infra, and select SOA Administration > Workflow Config > Task tab.

The Workflow Task Service Properties page appears.

4. Expand Advanced.

5. Modify the Worklist Application URL. For example, you can change an existing entry like
this:

http://[HTTP_HOST]:[HTTP_PORT]/integration/worklistapp/TaskDetails?
taskId=PC_HW_TASK_ID_TAG

to something like this:

http://[HTTP_HOST]:[HTTP_PORT]/patch/info/page.jspx?taskId=PC_HW_TASK_ID_TAG

For information about showing or hiding the URL of the Worklist Application, see How to
Display the URL in Notifications.

30.11 Reusing the Task Flow Application with Multiple Human
Tasks

You can reuse a single task flow application with multiple human tasks. To use this feature, all
human tasks must have both the payload elements and the outcomes must be identical.

30.11.1 How To Reuse the Task Flow Application with Multiple Human
Tasks

1. Open the TASKFLOW_PROJ_DIR\adfmsrc\hwtaskflow.xml file.

2. For each additional human task, add the following element inside the file (at the bottom
just before </hwTaskFlows>):

Chapter 30
Reusing the Task Flow Application with Multiple Human Tasks

30-51

<hwTaskFlow>
 <WorkflowName>$TASK_NAME</WorkflowName>
 <TaskDefinitionNamespace>$TASK_NAMESPACE</TaskDefinitionNamespace>
 <TaskFlowId>$TASK_FLOW_NAME</TaskFlowId>
 <TaskFlowFileName>$TASK_FLOW_FILENAME</TaskFlowFileName>
</hwTaskFlow

where:

• $TASK_NAME is replaced with the name of the human task inside the .task file
(value of the <name> element).

• $TASK_NAMESPACE is replaced with the namespace of the human task inside
the .task file (value of the attribute targetNameSpace of element
<taskDefinition>).

• $TASK_FLOW_NAME is copied from the existing <hwTaskFlow>/<TaskFlowId>
element.

• $TASK_FLOW_FILENAME is copied from the existing <hwTaskFlow>/
<TaskFlowFileName> element.

30.11.2 How to Reuse the Task Flow Application with Different Actions
You can reuse a single task flow that has different actions for different tasks. To do
this:

1. Define all actions in the task that you use to generate the taskflow.

2. In any given task, disable the actions that you do not want to include.

Chapter 30
Reusing the Task Flow Application with Multiple Human Tasks

30-52

31
Human Workflow Tutorial

Learn how to design your first workflow from start to finish.

• Introduction to the Human Workflow Tutorial

• Prerequisites

• Creating an Application and a Project with a BPEL Process

• Creating the Human Task Service Component

• Designing the Human Task

• Associating the Human Task and BPEL Process Service Components

• Creating a Task Form Project

• Deploying the Task Form

• Creating an Application Server Connection

• Deploying the SOA Composite Application

• Initiating the Process Instance

• Acting on the Task in Oracle BPM Worklist

31.1 Introduction to the Human Workflow Tutorial
Learn how to create a new application and SOA project and how to design a human task to
send a vacation request to a manager for approval or rejection with the help of the tutorial.

The application developed in this tutorial is based on the following use-case:

• an employee submits a vacation request

• the manager approves or rejects the vacation request

• the employee receives a notification that approves or rejects their request

The SOA composite application contains the following components:

• A BPEL process

• A human task, for approving a vacation request submitted by an employee

It also describes how to create an Oracle ADF-based task form that enables the end user to
act upon the vacation request once the application is deployed and running. To create an
Oracle ADF-based task form you must create a new application and a new project.

This tutorial guides you through the following tasks:

• Using the SOA Composite Editor

• Using the Human Task Editor

• Modeling a single approval workflow using Oracle BPEL Designer

• Creating an Oracle ADF-based Oracle BPM Worklist

31-1

• Using Oracle BPM Worklist to view and respond to the task

31.2 Prerequisites
This tutorial makes the following assumptions:

• Oracle SOA Suite is installed on a host on which the SOA Infrastructure is
configured.

• You are familiar with basic BPEL constructs, including BPEL activities and partner
links, and basic XPath functions. Familiarity with the SOA Composite Editor and
Oracle BPEL Designer, the environment for designing and deploying BPEL
processes, is also assumed.

Create a file named VacationRequest.xsd with the following syntax. This file includes
the schema for the vacation request and subsequent response.

<schema attributeFormDefault="qualified" elementFormDefault="qualified"
 targetNamespace="http://xmlns.oracle.com/VacationRequest"
 xmlns="http://www.w3.org/2001/XMLSchema">
 <element name="VacationRequestProcessRequest">
 <complexType>
 <sequence>
 <element name="creator" type="string"/>
 <element name="fromDate" type="date"/>
 <element name="toDate" type="date"/>
 <element name="reason" type="string"/>
 </sequence>
 </complexType>
 </element>
 <element name="VacationRequestProcessResponse">
 <complexType>
 <sequence>
 <element name="result" type="string"/>
 </sequence>
 </complexType>
 </element>
</schema>

31.3 Creating an Application and a Project with a BPEL
Process

Learn how to create an application and a project with a BPEL process.

This tutorial makes the following assumptions:

• Oracle SOA Suite is installed on a host on which the SOA Infrastructure is
configured.

• You are familiar with basic BPEL constructs, including BPEL activities and partner
links, and basic XPath functions. Familiarity with the SOA Composite Editor and
Oracle BPEL Designer, the environment for designing and deploying BPEL
processes, is also assumed.

Create a file named VacationRequest.xsd with the following syntax. This file includes
the schema for the vacation request and subsequent response.

Chapter 31
Prerequisites

31-2

<schema attributeFormDefault="qualified" elementFormDefault="qualified"
 targetNamespace="http://xmlns.oracle.com/VacationRequest"
 xmlns="http://www.w3.org/2001/XMLSchema">
 <element name="VacationRequestProcessRequest">
 <complexType>
 <sequence>
 <element name="creator" type="string"/>
 <element name="fromDate" type="date"/>
 <element name="toDate" type="date"/>
 <element name="reason" type="string"/>
 </sequence>
 </complexType>
 </element>
 <element name="VacationRequestProcessResponse">
 <complexType>
 <sequence>
 <element name="result" type="string"/>
 </sequence>
 </complexType>
 </element>
</schema>

To create an application and a project with a BPEL process:

1. Start Oracle JDeveloper. From the File main menu, select New > Applications > SOA
Application.

Click OK.

2. In the Application Name field, enter VacationRequest, and click Next.

3. In the Project Name field, enter VacationRequest, and click Next.

4. In the Composite Template list, select Composite with BPEL Process, and click
Finish.

The Create BPEL Process dialog appears.

5. In the Name field, enter VacationRequestProcess.

Go to the bottom of the Create BPEL Process dialog.

6. To the right of the Input field, click the Search icon.

The Type Chooser dialog appears.

7. In the upper right corner, click the Import Schema File icon.

The Import Schema File dialog appears.

8. Browse for and select the VacationRequest.xsd file.

Click OK until you are returned to the Type Chooser dialog.

Chapter 31
Creating an Application and a Project with a BPEL Process

31-3

Figure 31-1 Type Chooser Dialog with the Request and Response Elements

9. Select the input element VacationRequestProcessRequest, and click OK.

You are returned to the Create BPEL Process dialog.

10. To the right of the Output field, click the Search icon.

11. Select the output element VacationRequestProcessResponse, and click OK.

You are returned to the Create BPEL Process dialog.

Chapter 31
Creating an Application and a Project with a BPEL Process

31-4

Figure 31-2 BPEL Process Dialog

12. Accept the default values for all other settings, and click OK.

A BPEL process service component is created in the SOA Composite Editor. Because
Expose as a SOAP service was selected in the Create BPEL Process dialog, the BPEL
process is automatically connected with a service binding component. The service
exposes the SOA composite application to external customers.

Figure 31-3 BPEL Process in SOA Composite Editor

For more information about service components and the SOA Composite Editor, see
Getting Started with Developing SOA Composite Applications.

Chapter 31
Creating an Application and a Project with a BPEL Process

31-5

31.4 Creating the Human Task Service Component
Learn to create the human task service component in which you design your human
task.

To create the human task service component:

1. From the Service Components section of the Components window, drag a
Human Task into the SOA Composite Editor.

The Create Human Task dialog appears.

2. Enter the details described in Table 31-1.

Table 31-1 Create Human Task Dialog Fields and Values

Field Value

Name Enter VacationRequestTask.

Namespace Accept the default value.

Create Composite
Service with SOAP
Bindings

Do not select the check box. Instead, you create a human
task that you later associate with the BPEL process you
created in Creating an Application and a Project with a BPEL
Process. The BPEL process was created with an
automatically-bound web service.

3. Click OK.

The Human Task icon appears in the SOA Composite Editor above the BPEL
process, as shown in Figure 31-4.

Figure 31-4 Human Task Icon in SOA Composite Editor

4. Double-click the Human Task icon.

The Human Task Editor appears. You are now ready to begin design of your
human task.

Chapter 31
Creating the Human Task Service Component

31-6

31.5 Designing the Human Task
Learn how to design a human task.

To design the human task:

1. In the Task Title field, enter Request for Vacation.

2. Accept the default values for outcomes (APPROVE and REJECT). For this task, these
outcomes represent the two choices the manager has for acting on the vacation request.

3. Click the Data tab on the left side of the editor and click the Add icon to specify the task
payload

4. Select Add string parameter.

The Add Task Parameter dialog is displayed. You now create parameters to represent the
elements in your XSD file. This makes the payload data available to the workflow task.

5. Select Element. To the right of the Element field, click the Search icon.

The Type Chooser dialog appears.

6. Expand and select Project Schema Files > VacationRequest.xsd > process, and click
OK. Figure 31-5 provides details.

Figure 31-5 Type Chooser Dialog

Chapter 31
Designing the Human Task

31-7

Ensure that the Editable via worklist check box is selected. This provides you
with the option to modify this parameter during runtime from Oracle BPM Worklist.

Click OK on the Add Task Parameter dialog.

7. Click the Assignment tab on the left side of the editor.

8. From the Participants section from the Components window, grab a Single
Participant type and drop it in the <Drop participant here> box, as shown in
Figure 31-6. You select this type because a single assignee, the manager, acts on
the vacation request task.

Oracle SOA Suite provides several out-of-the-box patterns known as participant
types for addressing specific business needs. For more information, see Task
Assignment and Routing.

Figure 31-6 Assignment and Routing Policy

9. Double-click the participant you added.

The Edit Participant Type dialog box opens.

10. In the Participant Names table, click the Add icon, and select Add User.

This participant type acts alone on the task.

11. Click the Data Type column, and select By Expression from the list that is
displayed. Figure 31-7 provides details.

This action enables the task to be assigned dynamically by the contents of the
task. The employee filing the vacation request comes from the parameter passed
to the task (the creator element in the XSD file you imported in Creating an
Application and a Project with a BPEL Process). The task is automatically routed
to the employee's manager.

Figure 31-7 Selection of By Expression from the Data Type Column

12. In the Value column, click the Browse icon (the dots) to invoke the Expression
Builder dialog.

Chapter 31
Designing the Human Task

31-8

13. In the dropdown list in the Functions section, select Identity Service Functions.

14. Select getManager. This function gets the manager of the user who created the vacation
request task.

15. Above the Functions section, click Insert into Expression. Place the cursor between
the parentheses of the function.

16. In the Schema section, expand task:task > task:payload >
ns1:VacationRequestProcessRequest > ns1:creator.

where ns1 is the namespace for this example; your namespace may be different.

17. Click Insert into Expression.

The Expression Builder dialog displays the XPath expression in the Expression section.
Figure 31-8 provides details.

Figure 31-8 XPath Expression

18. Click OK to exit the Expression Builder dialog. Again, click OK to exit the Add Participant
Type dialog.

19. From the File menu, select Save All.

31.6 Associating the Human Task and BPEL Process Service
Components

Learn how to associate your human task with the BPEL.

Associate your human task with the BPEL process you created in Creating an Application
and a Project with a BPEL Process.

To associate the human task and BPEL process service component:

1. In the Applications window, double-click composite.xml.

2. Double-click the VacationRequestProcess BPEL process service component in the
SOA Composite Editor.

The BPEL process displays in Oracle BPEL Designer.

3. In the Components window, expand SOA Components.

4. Drag a Human Task beneath the receiveInput receive activity. Double-click the activity.

The Human Task dialog appears.

5. From the Task Definition list, select the VacationRequestTask task you created (if it is
not currently displaying).

The dialog refreshes as shown in Figure 31-9 to display additional fields.

Chapter 31
Associating the Human Task and BPEL Process Service Components

31-9

Figure 31-9 Human Task Dialog

6. In the BPEL Variable column, click the Browse icon (dots) shown in Figure 31-10.

Figure 31-10 BPEL Variable Entry

The Task Parameters dialog appears.

7. From the Type list, select Variable.

8. Expand Process > Variables > inputVariable > payload >
ns1:VacationRequestProcessRequest. Figure 31-11 provides details.

Chapter 31
Associating the Human Task and BPEL Process Service Components

31-10

Figure 31-11 Variable Selection

Click OK.

9. Click OK to close the Human Task dialog.

The human task activity appears as shown in Figure 31-12.

Chapter 31
Associating the Human Task and BPEL Process Service Components

31-11

Figure 31-12 Human Task and Partner Links in Oracle BPEL Designer

10. Return to the SOA Composite Editor and note that the BPEL process and human
task service components have been automatically connected. Figure 31-13
provides details. From the File menu, select Save All.

Figure 31-13 SOA Composite Editor

Chapter 31
Associating the Human Task and BPEL Process Service Components

31-12

31.7 Creating a Task Form Project
Learn to create a project for the task form. This is a separate project from the one in which
you created the human task.

To create a task form project:

1. Double-click the VacationRequestTask human task.

The Human Task Editor is displayed.

2. From the Form menu at the top, select Auto-Generate Task Form. Figure 31-14
provides details.

Figure 31-14 Task Form Creation

The Create Project dialog appears.

3. In the Project Name field, enter VacationRequestTaskFlow, and click OK.

4. From the File main menu, select Save All.

31.8 Deploying the Task Form
Learn how to deploy the task form.

To deploy the task form:

1. In the Applications window, right-click the VacationRequestTaskFlow project and select
Deploy > VacationRequestTaskFlow.

2. Follow the pages of the deployment wizard to deploy the task form.

The task form is deployed.

For more information about deployment, see Deploying SOA Composite Applications in .

3. Return to Oracle BPM Worklist.

4. Note that the task form now appears at the bottom of Oracle BPM Worklist.

Chapter 31
Creating a Task Form Project

31-13

31.9 Creating an Application Server Connection
Learn to create a connection to the application server on which Oracle SOA Suite is
installed and configured with the SOA Infrastructure. These instructions describe how
to create a connection to Oracle WebLogic Server.

To create an application server connection

1. From the File main menu, select New > Connections > Application Server
Connection.

Click OK.

2. In the Connection Name field, enter a connection name.

3. From the Connection Type list, select WebLogic 10.3.

Click Next.

4. In the Username field, enter weblogic.

5. In the Password field, enter the password for connecting to the application server.

Click Next.

6. Enter the hostname for the application server that is configured with the SOA
Infrastructure.

7. In the Weblogic Domain field, enter the Oracle WebLogic Server domain.

Click Next.

8. Click Test Connection.

If successful, the message shown in Figure 31-15 is displayed.

Figure 31-15 Connection Success

9. Click Finish.

10. From the File menu, select Save All.

Chapter 31
Creating an Application Server Connection

31-14

31.10 Deploying the SOA Composite Application
Learn how to deploy to the application server on which you created the connection.

To deploy the SOA composite application

1. In the Applications window, right-click the VacationRequest project and select Deploy >
VacationRequest.

2. Follow the pages of the deployment wizard to deploy the project.

The project is deployed.

For more information about deployment, see Deploying SOA Composite Applications in .

31.11 Initiating the Process Instance
Learn how to initiate the process instance.

See Administering Oracle SOA Suite and Oracle Business Process Management Suite for
instructions on accessing the Test Web Service page for initiating the process instance.

31.12 Acting on the Task in Oracle BPM Worklist
Learn how to act on the tasks in Oracle BPM Worklist.

To resolve the task in Oracle BPM Worklist:

1. Go to Oracle BPM Worklist:

http://hostname:7001/integration/worklistapp
2. Log in to Oracle BPM Worklist.

3. Resolve the task.

Chapter 31
Deploying the SOA Composite Application

31-15

32
Using Oracle BPM Worklist

Get an overview of how worklist users and administrators interact with Oracle BPM Worklist,
and how to customize the worklist display to reflect local business needs, languages, and
time zones.

• Introduction to Oracle BPM Worklist

• Logging In to Oracle BPM Worklist

• Customizing the Task List Page

• Exporting Tasks to Microsoft Excel

• Acting on Tasks: The Task Details Page

• Approving Tasks

• Setting a Vacation Period

• Setting Rules

• Using the Worklist Administration Functions

• Specifying Notification Settings

• Using Mapped Attributes (Flex Fields)

• Creating Worklist Reports

• Accessing Oracle BPM Worklist in Local Languages and Time Zones

• Creating Reusable Worklist Regions

• Java Code for Enabling Customized Applications in Oracle BPM Worklist

For information about how to use the APIs exposed by the workflow service, Building a
Custom Worklist Client.

For information about troubleshooting human workflow issues, see section "Human Workflow
Troubleshooting" of Administering Oracle SOA Suite and Oracle Business Process
Management Suite.

32.1 Introduction to Oracle BPM Worklist
Oracle BPM Worklist enables business users to access and act on tasks assigned to them.
For example, from a worklist, a loan agent can review loan applications or a manager can
approve employee vacation requests.

Oracle BPM Worklist provides different functionality based on the user profile. Standard user
profiles include task assignee, supervisor, process owner, reviewer, and administrator. For
example, worklist users can update payloads or business data, attach documents or
comments, and route tasks to other users, in addition to completing tasks by providing
conclusions such as approvals or rejections. Supervisors or group administrators can use the
worklist to analyze tasks assigned to a group and route them appropriately.

Users can filter their tasks by creating views or saved searches.

32-1

Using Oracle BPM Worklist, task assignees can do the following:

• Perform authorized actions on tasks in the worklist, acquire and check out shared
tasks, define personal ToDo tasks, and define subtasks.

• Filter tasks in a worklist view based on various criteria.

• Work with standard work queues, such as high priority tasks, tasks due soon, and
so on. Work queues allow users to create a custom view to group a subset of
tasks in the worklist, for example, high priority tasks, tasks due in 24 hours,
expense approval tasks, and more.

• Define custom work queues.

• Gain proxy access to part of another user's worklist.

• Define custom vacation rules and delegation rules.

• Enable group owners to define task dispatching rules for shared tasks.

• Collect a complete workflow history and audit trail.

• Use digital signatures for tasks.

Figure 32-1 shows an illustration of Oracle BPM Worklist.

Figure 32-1 Oracle BPM Worklist—Access Tasks, Forms, Attachments, and
Reports

The worklist is the list of tasks. A task form displays and updates the task details. You
can create a task form using ADF task flows in Oracle JDeveloper. See Designing
Task Forms for Human Tasks for more information.

You can build clients for workflow services using the APIs exposed by the workflow
service. The APIs enable clients to communicate with the workflow service using local
and remote EJBs, SOAP, and HTTP.

Chapter 32
Introduction to Oracle BPM Worklist

32-2

32.2 Logging In to Oracle BPM Worklist
The following are the different types of users recognized by Oracle BPM Worklist, based on
the privileges assigned to the user.

Table 32-1 Worklist User Types

Type of User Access

End user (user) Acts on tasks assigned to him or his group and has access to system and custom
actions, routing rules, and custom views

Supervisor (manager) Acts on the tasks, reports, and custom views of his reportees, in addition to his own
end-user access

Process owner Acts on tasks belonging to the process but assigned to other users, in addition to his
own end-user access

Group administrator Manages group rules and dynamic assignments, in addition to his own end-user
access

Workflow administrator Administers tasks that are in an errored state, for example, tasks that must be
reassigned or suspended. The workflow administrator can also change application
preferences and map attributes, and manage rules for any user or group, in addition to
his own end-user access.

Assignee Acts on tasks assigned to him, in addition to his own end-user access

Reviewer Acts on tasks assigned for review, in addition to his own end-user access

Note:

Multiple authentication providers (for example, SSO and forms) are not supported.

32.2.1 How to Log In to the Worklist
To log in, you must have installed Oracle SOA Suite and the SOA Server must be running.
See Installing and Configuring Oracle SOA Suite and Business Process Management for
more information.

Use a supported web browser:

Browser Minimum Version

Microsoft Edge 103

Google Chrome 103

Mozilla Firefox 102

Apple Safari 14

To log in:

1. Go to:

http://hostname:port_number/integration/worklistapp
• hostname is the name of the host computer on which Oracle SOA Suite is installed

Chapter 32
Logging In to Oracle BPM Worklist

32-3

• port_number is the port used at installation

2. Enter the user name and password.

You can use the preseeded user to log in as an administrator. If you have loaded
the demo user community in the identity store, then you can use other users such
as jstein or jcooper.

The user name and password must exist in the user community provided to JAZN.
See Administering Oracle SOA Suite and Oracle Business Process Management
Suite for the organizational hierarchy of the demo user community used in
examples throughout this chapter.

3. Click Login.

32.2.1.1 Enabling the weblogic User for Logging in to the Worklist
For the weblogic user in Oracle Internet Directory to log in to Oracle BPM Worklist, the
Oracle Internet Directory Authenticator must have an Administrators group, and the
weblogic user must be a member of that group.

To enable the weblogic user:

1. Create a weblogic user in Oracle Internet Directory using the LDAP browser. The
users.ldif file is imported to Oracle Internet Directory as follows:

dn: cn=weblogic,cn=Users,dc=us,dc=oracle,dc=com
objectclass: inetorgperson
objectclass: organizationalPerson
objectclass: person
objectclass: orcluser
objectclass: orcluserV2
objectclass: top
sn: weblogic
userpassword: welcome1
uid: weblogic

2. Create an Administrators group in Oracle Internet Directory and assign the
weblogic user to it. The groups.ldif file is imported to Oracle Internet Directory
as follows:

dn: cn=Administrators,cn=Groups,dc=us,dc=oracle,dc=com
objectclass: groupOfUniqueNames
objectclass: orclGroup
objectclass: top
owner: cn=orcladmin,cn=Users,dc=us,dc=oracle,dc=com
uniquemember: cn=weblogic,cn=Users,dc=us,dc=oracle,dc=com

32.2.2 What Happens When You Log In to the Worklist
Identity service workflow APIs authenticate and authorize logins using a user name,
password, and optionally a realm set, if multiple realms were defined for an
organization. See How to Specify the Login Page Realm Label, for information on how
administrators can set a preference to change the realm label displayed in the
interface, or specify an alternative location for the source of the login page image.

Figure 32-2 shows an example of the Home page.

Chapter 32
Logging In to Oracle BPM Worklist

32-4

Figure 32-2 Oracle BPM Worklist—The Home (Task List) Page

This page lists all the tasks and work items assigned to you, depending on your role. For
example, all users can access the My Tasks and Initiated Tasks pages. Only supervisors can
access the My Staff page, and only Process Workspace administrators can access the
Administrative Tasks page.

At the far left, as shown in Figure 32-3, is a list of views with My Tasks selected. Expand this
list to select:

• A particular view showing the number of open tasks for each view. Selecting a particular
view refreshes the task count to the latest number.

• A list of applications deployed to Process Workspace

• Any favorite links or applications you may have specified

To keep this list visible while you work on tasks, click Pin. Then, to hide it, click Unpin

Chapter 32
Logging In to Oracle BPM Worklist

32-5

Figure 32-3 Selecting a View

Table 32-2 describes the components of the Home (task list) page.

Table 32-2 Components of the Home (Task List) Page

Component Description

Views list Inbox, Standard Views, My Views. For more information, see How To Create, Delete, and
Customize Worklist Views.

The inbox views displayed depend on the role granted to the logged-in user.

• Everyone (the user role) sees My Tasks, Initiated Tasks and Administrative Tasks.
• Users who are also managers see the My Tasks, Initiated Tasks, Administrative Tasks and

My Staff Tasks tabs.
• Users who are also administrators (the BPMWorkflowAdmin), but not managers, see the My

Tasks, Initiated Tasks, Administrative Tasks, Administration, and Evidence Search tabs.
• Users who are managers and administrators see all the tabs— My Tasks, Initiated Tasks,

My Staff Tasks, Administrative Tasks, Administration, and Evidence Search.
• Users with the workflow.admin.evidenceStore permission also see the Evidence

Search tab.
See the following for more information:

• How To Act on Tasks That Require a Digital Signature, for information about evidence search
• How To Manage Other Users' or Groups' Rules (as an Administrator)

Worklist Views -

Task Status A bar chart shows the status of tasks in the current view. For more information, see How To
Customize the Task Status Chart.

Chapter 32
Logging In to Oracle BPM Worklist

32-6

Table 32-2 (Cont.) Components of the Home (Task List) Page

Component Description

Display Filters Specify search criteria from the Assignee or State fields. The category filters that are available
depend on which tab is selected.

• From the My Tasks tab, the Assignee filters are Me, My Group, Me & My Group, Me
(Previously) (tasks worked on previously), and Me (Review Only). From the Initiated Tasks
tab, the assignee filter is not available. From the My Staff Tasks tab, the only assignee filter is
Reportees. From the Administrative Tasks tab, the assignee filter is not available.

• The State filters include Any, Assigned, Completed, Suspended, Withdrawn, Expired,
Errored, Alerted, Information Requested.

Use Search to enter a keyword, or use Advanced Search. For more information, see How To
Filter Tasks.

Actions List Select a group action (Claim) or a custom action (for example, Approve or Reject) that was
defined for the human task. Claim appears for tasks assigned to a group or multiple users, even if
the task is an FYI task; one user must claim the task before it can be worked on. Other possible
actions for a task, such as system actions, are displayed on the task details page for a specific
task. You can also create ToDo tasks and subtasks here.

Note:
• If a task is aggregated, you only see actions such as Approve and Reject, even if the

aggregated task includes FYI tasks. No acknowledge action is explicitly provided. Approve or
Reject can be interpreted as an acknowledge action.

• The Claim button remains enabled even when Auto Claim has been previously enabled. This
button enables a user to claim and continue working on the task rather than to simply approve
it.

Default
Columns

Title—The title specified when the human task was created. Tasks associated with a purged or
archived process instance do not appear.

Number—A unique ID number assigned to the task.

Creator—The user who created the task.

Assigned—The date that the task was assigned.

Priority—The priority specified when the human task was created. The highest priority is 1; the
lowest is 5.

Task Details Task details can be viewed in the lower half of the worklist by selecting the task in the Inbox. You
can also view them in the same window or a new window by hiding the task details pane in Edit
Inbox Settings. After you complete a task:

• The Task Details page for the completed task disappears.
• The task list refreshes to show only the remaining tasks.
• The details of the next open task are shown.
For more information, see Acting on Tasks: The Task Details Page.

Figure 32-2 also shows the Administration, Reports, and Preferences links (upper-right
corner). Table 32-3 summarizes the Home, Administration, Reports, and Preferences
pages.

Table 32-3 Worklist Main Pages Summary

Page Description

Home As described in Table 32-2, the logged-in user's list of tasks, details for a selected
task, and all the functions needed to start acting on a task are provided.

Chapter 32
Logging In to Oracle BPM Worklist

32-7

Table 32-3 (Cont.) Worklist Main Pages Summary

Page Description

Administration The following administrative functions are available:

• Setting application preferences
• Mapping attributes
• Searching the evidence store
• Administering approval groups
• Configuring tasks

Reports The following reports are available: Unattended Tasks Report, Tasks Priority Report,
Tasks Cycle Time Report, Tasks Productivity Report, and Tasks Time Distribution
Report. For more information, see How To Create Reports.

Preferences Preference settings include:

• Setting rules for users or groups, including vacation rules, and setting vacation
periods

• Uploading certificates
• Specifying user notification channels and message filters

32.2.3 What Happens When You Change a User's Privileges While
They are Logged in to Oracle BPM Worklist

If you change a user's privileges in Oracle Enterprise Manager Fusion Middleware
Control while the user is logged in to Oracle BPM Worklist, the changes take effect
only after a subsequent login by the user. This is true for situations in which there are
two active worklist sessions, one in which the user is logged in before the privileges
are changed, and one in which the same user logs in after the privileges are changed.
In the first case, the changes to the user's privileges do not take effect while the user is
logged in. In the second case, when the user logs in to the second instance of the
Worklist Application, the changes to the user's privileges do take effect.

32.3 Customizing the Task List Page
You can customize your task list in several ways, including adding worklist views,
selecting which columns to display, setting the task details pane to show or hide, and
displaying a subset of the tasks based on filter criteria. Resize the task list display area
to increase the number of tasks fetched.

Note:

When you deploy SOA composite applications with human tasks to
partitions, the tasks created for these composites cannot be filtered using the
partition as a parameter inside Oracle BPM Worklist. For example, you can
select a task type corresponding to a particular partition (the same task type,
but in different partitions), but filtering does not work with the advanced
search, custom views, custom rules, and mapped attribute features. For
example, assume VacationRequestApp is deployed to partition 1 and
partition 2. When the advanced search is used to select tasks corresponding
to composites deployed in partition 1, the result does not return the tasks.

Chapter 32
Customizing the Task List Page

32-8

32.3.1 How To Filter Tasks
Figure 32-4 shows the filter fields.

Figure 32-4 Filters—Assignee, Status, Search, and Advanced Search

Filters are used to display a subset of tasks, based on the following filter criteria:

• Assignee

From the Assignee drop-down list, select from the following:

– Me—Retrieves tasks directly assigned to the logged-in user

– My Group—Retrieves the following:

* Tasks that are assigned to groups to which the logged-in user belongs

* Tasks that are assigned to an application role that the logged-in user is assigned

* Tasks that are assigned to multiple users, one of which is the logged-in user

– Me & My Group—Retrieves all tasks assigned to the user, whether through direct
assignment, or by way of a group, application role, or list of users

– Me (Previously)—Retrieves tasks that the logged-in user has previously updated or
closed

– Me (Review Only)—Retrieves task for which the logged-in user is a reviewer

From the My Staff Tasks tab, select Reportees.

• State—Select from the following: Any, Assigned, Completed, Suspended (can be
resumed later), Withdrawn, Expired, Errored (while processing), Alerted, or
Information Requested.

• Search—Enter a keyword to search task titles, comments, identification keys, and the
flex string fields of tasks that qualify for the specified filter criterion.

• Advanced—Provides additional search filters.

Note:

If a task is assigned separately to multiple reportees, then, when a manager looks
at the My Staff Tasks list, the manager sees as many copies of that task as the
number of reportees that the task is assigned to.

32.3.1.1 To Filter Tasks Based on Assignee or State

Chapter 32
Customizing the Task List Page

32-9

To filter tasks based on assignee or state:

Select options from the Assignee and State lists. The task list is automatically
updated based on the filter selections.

32.3.1.2 To Filter Tasks Based on Keyword Search

To filter tasks based on keyword search:

1. Enter a keyword to search task titles, comments, identification keys, and the flex
string fields of tasks that qualify for the specified filter criterion.

2. Press Enter or click Refresh.

32.3.1.3 To Filter Tasks Based on an Advanced Search

To filter tasks based on an advanced search:

Mapped attribute labels can be used in an advanced search if you select task types for
which mapped attribute mappings have been defined.

See How To Map Attributes, for more information.

1. Click Advanced.

2. (Optional) Check Save Search As View, provide a view name, and use the
Display tab to provide other information, as shown in Figure 32-5 and Figure 32-6.

Figure 32-5 Worklist Advanced Search—Definition Tab

Chapter 32
Customizing the Task List Page

32-10

Figure 32-6 Worklist Advanced Search—Display Tab

Table 32-4 describes the advanced search view columns available in the Display tab.

Table 32-4 Advanced Search—View Columns

Column Description

Start Date The start date of the task (used with ToDo tasks).

Task Definition Name The name of the task component that defines the task instance.

Owner Role The application role (if any) that owns the task instance. Task
owners can be application roles, users, or groups. If the owner of
the task is an application role, this field is set.

Updated Date The date the task instance was last updated.

Composite Version The version of the composite that contains the task component
that defines the task instance.

Creator The name of the creator of the task.

From User The from user for the task.

Percentage Complete The percentage of the task completed (used with ToDo tasks).

Owner Group The group (if any) that owns the task instance. Task owners can be
application roles, users, or groups. If the owner of the task is a
group, this field is set.

End Date The end date of the task (used with ToDo tasks).

Composite The name of the composite that contains the task component that
defines the task instance.

Due Date The due date of the task (used with ToDo tasks).

Chapter 32
Customizing the Task List Page

32-11

Table 32-4 (Cont.) Advanced Search—View Columns

Column Description

Composite Distinguished
Name

The unique name for the particular deployment of the composite
that contains the task component that defines the task instance.

Task Display URL The URL to display the details for the task.

Updated By The user who last updated the task.

Outcome The outcome of the task, for example Approved or Rejected. This
is only set on completed task instances.

Task Namespace A namespace that uniquely defines all versions of the task
component that defines this task instance. Different versions of the
same task component can have the same namespace, but no two
task components can have the same namespace.

Approvers The approvers of the task.

Application Context The application to which any application roles associated with the
tasks (such as assignees, owners, and so on) belong.

Owner User The user (if any) that owns the task instance. Task owners can be
application roles, users, or groups. If the owner of the task is a
user, this field is set.

Identifier The (optional) custom unique identifier for the task. This is an
additional unique identifier to the standard task number.

Category The category of the task.

Acquired By The name of the user who claimed the task in the case when the
task is assigned to a group, application role, or to multiple users,
and then claimed by the user.

Component The name of the task component that defines the task instance.

Original Assignee User The name of the user who delegated the task in the case when the
user delegates a task to another user.

Assigned The date that this task was assigned.

Partition The domain to which the composite that contains the task
component that defines the task instance belongs.

Title The title of the task.

Number An integer that uniquely identifies the task instance.

Priority An integer that defines the priority of the task. A lower number
indicates a higher priority—typically numbers 1 to 5 are used.

Assignees The current task assignees (users, groups or application roles).

State The state of the task instance.

Created The date that the task instance was created.

Expires The date on which the task instance expires.

Custom Date 1 Custom flex field 1 with Date data type

Custom Date 2 Custom flex field 2 with Date data type

Custom String 1 Custom flex field 1 with String data type

Custom String 2 Custom flex field 2 with String data type

Custom Number 1 Custom flex field 1 with Number data type

Custom Number 2 Custom flex field 2 with Number data type

Chapter 32
Customizing the Task List Page

32-12

The saved view appears in the Views pane under My Views, as shown in Figure 32-7.

Note:

When a user view is created, and there are multiple versions of the same
composite deployed, then selecting the task type with a particular version, for
example, 'TestCompositeHumanTask2.0 ' does not ensure that only the tasks
corresponding to this version are filtered. Instead use the task definition id
column in the conditions, apart from selecting the task type, to get the correct
result.

Figure 32-7 Saving a View

3. Select an assignee, as shown in Figure 32-8.

Figure 32-8 Worklist Advanced Search

4. Add conditions (filters), as shown in Figure 32-9.

Chapter 32
Customizing the Task List Page

32-13

Figure 32-9 Adding Filters for an Advanced Search on Tasks

Table 32-5 describes the available conditions.

Table 32-5 Advanced Search—Conditions

Condition Description

User Conditions -

Acquired By The name of the user who claimed the task in the case when
the task is assigned to a group, application role, or to multiple
users, and then claimed by the user.

Approvers The approvers of the task.

Creator The name of the creator of the task.

From User The from user for the task.

Original Assignee User The name of the user who delegated the task in the case
when the user delegates a task to another user.

Owner Group The group (if any) that owns the task instance. Task owners
can be application roles, users, or groups. If the owner of the
task is a group, this field is set.

Owner Role The application role (if any) that owns the task instance. Task
owners can be application roles, users, or groups. If the
owner of the task is an application role, this field is set.

Owner User The user (if any) that owns the task instance. Task owners
can be application roles, users, or groups. If the owner of the
task is a user, this field is set.

Updated By The user who last updated the task.

Advanced Conditions -

Application Context The application to which any application roles associated with
the tasks (such as assignees, owners, and so on) belong.

Component The name of the task component that defines the task
instance.

Chapter 32
Customizing the Task List Page

32-14

Table 32-5 (Cont.) Advanced Search—Conditions

Condition Description

Composite The name of the composite that contains the task component
that defines the task instance.

Composite Distinguished
Name

The unique name for the particular deployment of the
composite that contains the task component that defines the
task instance.

Composite Version The version of the composite that contains the task
component that defines the task instance.

Partition The domain to which the composite that contains the task
component that defines the task instance belongs.

Task Display URL The URL to display the details for the task.

Basic Conditions -

Category The category of the task.

Identifier The (optional) custom unique identifier for the task. This is an
additional unique identifier to the standard task number.

Number An integer that uniquely identifies the task instance.

Outcome The outcome of the task, for example Approved or Rejected.
This is only set on completed task instances.

Percentage Complete The percentage of the task completed (used with ToDo
tasks).

Priority An integer that defines the priority of the task. A lower number
indicates a higher priority; typically numbers 1 to 5 are used.

State The state of the task instance.

Task Definition Name The name of the task component that defines the task
instance.

Task Namespace The namespace of the task.

Title The title of the task.

Time Conditions The category of the task.

Assigned The date that this task was assigned.

Created The date that the task instance was created.

Due Date The due date of the task (used with ToDo tasks).

End Date The end date of the task (used with ToDo tasks).

Expires The date on which the task instance expires.

Start Date The start date of the task (used with ToDo tasks).

Updated Date The date that the task instance was last updated.

Custom Conditions -

Custom Date 1 Custom flex field 1 with Date datatype

Custom Date 2 Custom flex field 2 with Date datatype

Custom String 1 Custom flex field 1 with String datatype

Custom String 2 Custom flex field 2 with String datatype

Custom Number 1 Custom flex field 1 with Number datatype

Custom Number 2 Custom flex field 2 with Number datatype

5. Select Any or All for matching multiple filters.

Chapter 32
Customizing the Task List Page

32-15

6. Add parameter values, shown in Figure 32-10.

Figure 32-10 Advanced Search

7. Specify whether to share either this view's definition or its data, and the users or
groups to share it with.

8. Click Search.

The task list appears with the tasks filtered according to your criteria.

32.3.2 How To Create, Delete, and Customize Worklist Views
The Views menu, shown in Figure 32-11, displays the following:

• Inbox—Shows all tasks that result from any filters you may have used. The default
shows all tasks.

• Standard Views—Shows standard views and views that you defined.

• My Views—Shows views that you have created.

Chapter 32
Customizing the Task List Page

32-16

Figure 32-11 Worklist Views

Use Views to create, share, and customize views.

To create a worklist view:

1. In the Views section, click Add View. The Create User View dialog box appears as
shown in figure

2. Use the Definition tab of the Create User View dialog box, shown in Figure 32-12, to do
the following:

• Name—Specify a name for your view.

• Add to Standard Views—This option applies to administrators only. Administrators
select this option to create the view as a standard view, which then appears in the
Standard Views list for all worklist users.

• Assignee—Select Me, My Group, Me & My Group, Me (Previously), Me (Review
Only), Creator, Reportees, Admin, Owner.

• Match—Select All or Any to match the conditions you added.

• Add Condition (a plus sign)—Select the conditions that apply to your view.

• Share View—You can grant access to another user to either the definition of this
view, in which case the view conditions are applied to the grantee's data, or to the
data itself, in which case the grantee can see the grantor's worklist view, including the
data. Sharing a view with another user is similar to delegating all tasks that
correspond to that view to the other user; that is, the other user can act on your
behalf. Shared views are displayed under My Views.

• Users—Specify the users (grantees) who can share your view.

• Groups—Specify the groups who can share your view.

Chapter 32
Customizing the Task List Page

32-17

Figure 32-12 Creating a Worklist View

3. Use the Display tab of the Create User View dialog, shown in Figure 32-13, to
customize the fields that appear in the view.

Figure 32-13 Displaying Fields in a Worklist View

Chapter 32
Customizing the Task List Page

32-18

• Select View Columns—Specify which columns you want to display in your task list.
They can be standard task attributes or mapped attributes that have been mapped
for the specific task type. The default columns are the same as the columns in your
inbox.

• Sort by—Select a column to sort on.

• Then by—Select a second column to sort on.

• Then by—Select a third column to sort on.

• Then by—Select a forth column to sort on.

• Sort Order—Select ascending or descending order.

4. Click OK.

The saved view appears in the Views panel under My Views

To delete a view:

Note:

If an administrator inadvertently deletes the pre-seeded standard views, then those
views do not remain permanently deleted. They are recreated when the server
restarts.

1. In the Views panel, select a view.

2. Click the Delete icon.

3. The Confirm Delete dialog box prompts you to confirm that you want to delete the view.

4. Click Yes. The view is deleted.

32.3.2.1 To Customize a Worklist View

To customize a worklist view:

1. In the Views pane, select the view you want to customize.

2. Select Edit View. The Edit User View dialog box appears.

3. Use the items in the Edit User View dialog box to customize the view, as shown in
Figure 32-14, and click OK.

Chapter 32
Customizing the Task List Page

32-19

Figure 32-14 Customizing Fields in a Worklist View

32.3.3 How To Customize the Task Status Chart
The bar chart shows tasks broken down by status, with a count of how many tasks in
each status category. The chart applies to the filtered set of tasks within the current
view.

To customize the task status chart:

1. Click the Edit icon.

2. Add or remove status states for display, as shown in Figure 32-15, and click OK.

Figure 32-15 Customizing the Task Status Chart

Chapter 32
Customizing the Task List Page

32-20

32.3.4 How To Create a ToDo Task
Use the Create ToDo Task dialog, shown in Figure 32-16, to create a top-level ToDo task for
yourself or others. This task is not associated with a business task.

Figure 32-16 The Create ToDo Task Dialog

To-Do tasks appear in the assignee's Inbox.

You can create ToDo tasks that are children of other ToDo tasks or business tasks. A ToDo
task can have only one level of child ToDo tasks. When all child ToDo tasks are 100%
complete, the parent ToDo task is also marked as completed. If the parent ToDo task is
completed, then child ToDo tasks are at 100% within the workflow system. If the parent is a
business task, the child ToDo is not marked as completed. You must set the outcome and
complete it. If you explicitly set a ToDo task to 100%, there is no aggregation on the parent
task.

ToDo tasks can be reassigned, escalated, and so on, and deleted (logical delete) and purged
(physical delete). Reassignment, escalation, and so on of the parent task does not affect the
assignment of any child ToDo tasks. The completion percentage of a ToDo task can be reset
to less than 100% after it is completed.

Assignment rules (such as vacation rules) are not applied to ToDo tasks. You cannot specify
business rules for ToDo tasks.

To create a To-Do task:

1. From the Actions list, select Create To-Do Task, as shown in Figure 32-17.

Figure 32-17 Creating a To-Do Task

2. Provide details in the Create ToDo Task dialog, shown in Figure 32-16, and click OK.

• Task Title: Enter anything that is meaningful to you.

• Category: Enter anything that is meaningful to you.

Chapter 32
Customizing the Task List Page

32-21

• Priority: Select from 1 (highest) to 5 (lowest)

• Percentage Complete: This attribute indicates how much of the task is
completed. 100% sets the attribute as completed.

• StartDate: The task start date. The start date need not be the current date.

• Due Date: The due date does not trigger an expiration. You can also see
overdue tasks.

• Assignee: You can assign yourself or someone else.

32.3.5 How to Create Subtasks in the Worklist Application
A subtask is a child of a parent task. Creating a subtask can be helpful, for example,
when a purchase order contains several line items and you need a separate approval
process for one of them.

Note:

You cannot create subtasks for ToDo tasks.

32.3.5.1 What You May Need to Know About Creating Subtasks
Here are some things to keep in mind when creating subtasks:

• If the parent is a business task and that task is completed, then the subtasks of
that task are withdrawn.

• If you are using a release of Oracle Business Process Management that is before
11g Release 1 (11.1.1.7.0), then you must re-create the task form for any task for
which you are creating a subtask. You may, however, continue to use processes
that were deployed in earlier releases.

If you do not re-create the task form, then the Actions list in the task form itself
does not provide the option to create a subtask. You can, however, create a
subtask by selecting Create Subtask from the Actions list above the worklist.

• If you are the administrator for the BPMN service engine, be aware that subtasks
do not appear in the Oracle Enterprise Manager Fusion Middleware Control.

To create a subtask:

1. In the worklist, select the task for which you want to create a subtask.

2. From the Actions list, select Create Subtask.

The Create Subtask dialog box appears.

3. In the Create Subtask dialog, define the subtask, keeping the following in mind:.

• Title is a required field.

• If there is more than one available form for this subtask, then the Form field
provides a list for your selection. Otherwise, the Form field shows the name of
the default form. You can use a task form different from the one associated
with the parent task.

• Possible routing types are:

Chapter 32
Customizing the Task List Page

32-22

– Single Approver

– Group Vote, also referred to as a parallel task. For this routing type, you are
prompted to enter multiple participants.

– Chain of Single Approvers, also referred to as a sequential task. For this routing
type, you are prompted to enter multiple participants.

• You specify participants by performing a search and selecting from the results. You
can select multiple users, groups, or application roles.

4. When you have finished specifying the subtask, in the Create Subtask dialog box, click
OK. This refreshes the task list. When you select the parent task, the Task Details page
now includes a Subtasks section displaying the details about the subtask you created for
that task.

Note:

• If you specified more than one participant for the subtask, then the Subtask
region displays a separate item for each participant.

• If a participant completes a subtask, then you must manually refresh the
task to show the details for that completed subtask.

32.4 Exporting Tasks to Microsoft Excel
You can export tasks to Excel based on a selected view.

The export downloads all rows and columns displayed in the selected view. For example, if
you select My Tasks view, you will download 16 tasks. If you select the Administrative Tasks
view, you will download 49,694 tasks, as shown in Figure 32-18:

Figure 32-18 Tasks Views

32.4.1 How to Export Tasks to Excel
Any logged-in user can export tasks.

To export tasks:

Chapter 32
Exporting Tasks to Microsoft Excel

32-23

1. Select the appropriate View from the list.

2. Click the Export button

3. Choose a folder location and enter a filename for the download and click Save.

4. Open the file in Excel to view the downloaded tasks.

32.5 Acting on Tasks: The Task Details Page
Any kind of change to the task details page, such as changing a priority or adding a
comment or attachment, requires you to save the change before you go on to make
any other changes.

Task details can be viewed inline (see the lower section in Figure 32-2) or in the same
window or a new window (Modify settings in Edit Inbox Settings.)

Figure 32-19 shows the task details page.

Figure 32-19 Task Details Page

The task details page has the following components:

• Actions—Lists the system actions that are possible for the task, such as Request
Information, Reassign, Renew, Suspend, Escalate, and Save.

• Action buttons—Displays buttons for custom actions that are defined in the human
task, such as setting task outcomes (for example, Resolved and Unresolved for a
help desk request or Approve and Reject for a loan request). For the task initiator,
manager, or administrator, Withdraw may also appear.

Chapter 32
Acting on Tasks: The Task Details Page

32-24

• Details—Displays task attributes, including the assignee, task creator, task number, state,
priority, who acquired the task, and other mapped attributes. It also displays dates related
to task creation, last update, and expiration date.

• History—Displays the approval sequence and the update history for the task. See Task
History, for more information.

Table 32-6 tells what the icons used in the Task Details History section signify.

Table 32-6 Icons for Task Action History

Icon Description

Indicates an approver in an ad hoc routing scenario.

Indicates that the task has been approved.

Indicates that the participant is an FYI participant—that is, this participant just receives a
notification task and the business process does not wait for the participant's response.
Participant cannot directly impact the outcome of a task, but in some cases can provide
comments or add attachments.

Indicates that a set of people must work in parallel. This pattern is commonly used for
voting.

Indicates that the participant belongs to a management chain.

Indicates the simple case in which a participant maps to a user, group, or role.

Chapter 32
Acting on Tasks: The Task Details Page

32-25

Table 32-6 (Cont.) Icons for Task Action History

Icon Description

Indicates that the task is untouched.

• Comments—Displays comments entered by various users who have participated
in the workflow. A newly added comment and the commenter's user name are
appended to the existing comments. A trail of comments is maintained throughout
the life cycle of the task. To add or delete a comment, you must have permission
to update the task.

• Attachments—Displays documents or reference URLs that are associated with a
task. These are typically associated with the workflow as defined in the human
task or attached and modified by any of the participants using the worklist. To add
or delete an attachment, you must have permission to update the task. When
adding file attachments, you can use an absolute path name or browse for a file.

Note:

In an environment with servers clustered for high availability purposes,
file uploading is not supported if a failover occurs. If the active server
shuts down, then the uploading process is not assumed by the other
server and the upload fails.

Comments and attachments are shared between tasks and subtasks. For example,
when you create a business task and add comments and attachments, subtasks of
this task include the same comments and attachments.

The Task Details page may appear differently depending on the tool used during
design time to develop the task form it displays.

A user can view a task when associated with the task as the current assignee (directly
or by group membership), the current assignee's manager, the creator, the owner, or a
previous actor.

A user's profile determines his group memberships and roles. The roles determine a
user's privileges. Apart from the privileges, the exact set of actions a user can perform
is also determined by the state of the task, the custom actions, and restricted actions
defined for the task flow at design time.

Note:

Certain functions, such as restricted task reassignment, are available only
when a single task is selected. If multiple tasks that use restricted
reassignment are selected, then the restricted reassignment algorithm is not
invoked. In that case, the complete list of users gets returned as though
restricted reassignment had not been specified.

Chapter 32
Acting on Tasks: The Task Details Page

32-26

The following algorithm is used to determine the actions a user can perform on a task:

1. Get the list of actions a user can perform based on the privileges granted to him.

2. Get the list of actions that can be performed in the current state of the task.

3. Create a combined list of actions that appear on the preceding lists.

4. Remove any action on the combined list that is specified as a restricted action on the
task.

The resulting list of actions is displayed in the task list page and the task details page for the
user. When a user requests a specific action, such as claim, suspend, or reassign, the
workflow service ensures that the requested action is contained in the list determined by the
preceding algorithm.

Step 2 in the preceding algorithm deals with many cases. If a task is in a final, completed
state (after all approvals in a sequential flow), an expired state, a withdrawn state, or an
errored state, then no further update actions are permitted. In any of the these states, the
task, task history, and subtasks (parent task in parallel flow) can be viewed. If a task is
suspended, then it can only be resumed or withdrawn. A task that is assigned to a group
must be claimed before any actions can be performed on it.

Note:

If you act on a task from the task details page, for example, if you approve a task,
then any unchanged task details data is saved along with the saved changes to the
task. However if you act on a task from the Actions menu, then unchanged task
details are not saved.

32.5.1 System Actions
The action bar displays system actions, which are available on all tasks based on the user's
privileges. Table 32-7 lists system actions.

Table 32-7 System Task Actions

Action Description

Claim If a task is assigned to a group or multiple users, then the task must be claimed first.
Claim is the only action available in the Task Action list for group or multiuser
assignments. After a task is claimed, all applicable actions are listed.

Escalate If you are not able to complete a task, you can escalate it and add an optional
comment in the Comments area. The task is reassigned to your manager (up one
level in a hierarchy).

Chapter 32
Acting on Tasks: The Task Details Page

32-27

Table 32-7 (Cont.) System Task Actions

Action Description

Pushback Use this action to send a task down one level in the workflow to the previous
assignee.

The pushback action overrides all other actions. For example, if a task is pushed back
and then reassigned, after the reassignee approves it, the task goes to the user who
performed the pushback. This is the expected behavior.

Note:
• If the task is aggregated, then the Pushback action is not available.
• Pushback is designed to work with single approvers and not with group votes.

Pushback from a stage with group vote (or parallel) scenario to another stage is
not allowed. Similarly, you cannot push back from a single assignee to a group
vote (or parallel) scenario.

Reassign If you are a manager, you can delegate a task to reportees.

Release If a task is assigned to a group or multiple users, it can be released if the user who
claimed the task cannot complete the task. Any of the other assignees can claim and
complete the task.

Renew If a task is about to expire, you can renew it and add an optional comment in the
Comments area. The task expiration date is extended one week. A renewal appears
in the task history. The renewal duration for a task can be controlled by an optional
parameter. The default value is P7D (seven days).

Submit Information and
Request Information

Use these actions if another user requests that you supply more information or to
request more information from the task creator or any of the previous assignees. If
reapproval is not required, then the task is assigned to the next approver or the next
step in the business process.

Suspend and Resume If a task is not relevant, you can suspend it. These options are available only to users
who have been granted the BPMWorkflowSuspend role. Other users can access the
task by selecting Previous in the task filter or by looking up tasks in the Suspended
status. A suspension is indefinite. It does not expire until Resume is used to resume
working on the task.

Withdraw If you are the creator of a task and do not want to continue with it, for example, you
want to cancel a vacation request, you can withdraw it and add an optional comment
in the Comments area. The business process determines what happens next. You
can use the Withdraw action on the home page by using the Creator task filter.

Start/Stop Task When the user chooses to start or stop work on the task the time stamp is assigned to
all the tasks selected. It is used to calculate the working durations of the task. The
user can use Start/Stop Task multiple times on the same task, for example startTask -
> stopTask -> startTask -> stopTask -> startTask -> completeTask

The total working duration is the sum of all of these time intervals.

Start/Stop Task operations are only available for tasks in Assigned or Request
Information status. Start/Stop Task is not available for Aggregated Task.

32.5.2 Task History
The task history maintains an audit trail of the actions performed by the participants in
the workflow and a snapshot of the task payload and attachments at various points in
the workflow. The short history for a task lists all versions created by the following
tasks:

• Initiate task

• Re-initiate task

Chapter 32
Acting on Tasks: The Task Details Page

32-28

• Update outcome of task

• Completion of task

• Error of task

• Expiration of task

• Withdrawal of task

• Alerting of task to the error assignee

You can include the following actions in the short history list by modifying the
shortHistoryActions element.

• Acquire

• Ad hoc route

• Auto release of task

• Delegate

• Escalate

• Information request on task

• Information submit for task

• Override routing slip

• Update outcome and route

• Push back

• Reassign

• Release

• Renew

• Resume

• Skip current assignment

• Suspend

• Update

The history provides a graphical view of a task flow, as shown in Figure 32-20.

Chapter 32
Acting on Tasks: The Task Details Page

32-29

Figure 32-20 History: Graphical View

Check Full task actions to see all actions performed, including those that do not
make changes to the task, such as adding comments, as shown in Figure 32-21.

Figure 32-21 History: Full Task Actions

Available ways to view the task history include:

• Take a task snapshot

• See future approvers

• See complete task actions

• Aggregate tasks

Chapter 32
Acting on Tasks: The Task Details Page

32-30

Note:

The history of a parent task also displays the history of any subtasks it contains.

32.5.3 How To Act on Tasks
If the human task was designed to permit ad hoc routing, or if no predetermined sequence of
approvers was defined, then the task can be routed in an ad hoc fashion in the worklist. For
such tasks, a Route button appears on the task details page. From the Route page, you can
look up one or more users for routing. When you specify multiple assignees, you can select
whether the list of assignees is for simple (group assignment to all users), sequential, or
parallel assignment.

Parallel tasks are created when a parallel flow pattern is specified for scenarios such as
voting. In this pattern, the parallel tasks have a common parent. The parent task is visible to a
user only if the user is an assignee or an owner or creator of the task. The parallel tasks
themselves (referred to as subtasks) are visible to whomever the task is assigned, just like
any other task. It is possible to view the subtasks from a parent task. In such a scenario, the
task details page of the parent task contains a View SubTasks button. The SubTasks page
lists the corresponding parallel tasks. In a voting scenario, if any of the assignees updates the
payload or comments or attachments, the changes are visible only to the assignee of that
task.

A user who can view the parent task (such as the final reviewer of a parallel flow pattern), can
navigate to the subtasks and view the updates made to the subtasks by the participants in
the parallel flow. The parent task is a container for the subtasks while they are worked on by
the assignees. The task owner must not act on or approve the parent task.

The task list does not display the actions for a task. A user has to take action from the task
details.

If a human task was set up to require a password, then when you act on it, you must provide
the password.

Note:

Any kind of change to the task details page, such as changing a priority or adding a
comment, requires you to save the change. If you add an attachment to a task, it is
automatically saved.

To reassign or delegate a task:

1. From the Actions list, select Reassign, as shown in Figure 32-22.

Chapter 32
Acting on Tasks: The Task Details Page

32-31

Figure 32-22 Reassigning a Task

2. Select Reassign or Delegate.

Delegate differs from Reassign in that the privileges of the delegatee are based
on the delegator's privileges. This function can be used by managers' assistants,
for example.

3. Provide or browse for a user or group name, as shown in Figure 32-23.

Figure 32-23 Reassigning a Task

A supervisor can always reassign tasks to any of his reportees.

4. Select the names by clicking the check box and click OK.

You can reassign to multiple users or groups. One of the assignees must claim the
task, as shown in Figure 32-24.

Chapter 32
Acting on Tasks: The Task Details Page

32-32

Figure 32-24 Claiming a Task

Note:

When task details have been upgraded from an earlier release, you can see a
"Request Failed" error when executing the Reassign action. Actually, the
reassign completes, and when you click OK again, a popup says the task is
already assigned.

To eliminate the error message, upgrade your task flow applications by opening
them in Oracle JDeveloper, then redeploy the task form.

32.5.3.1 To Request Information

To request information:

1. From the Actions list, select Request Information, as shown in Figure 32-25.

This action is available only when you enable the Allow participants to invite other
participants setting in the task definition.

Figure 32-25 Requesting Information

2. Request information from a past approver or search for a user name, or push the task
back to the previous assignee, as shown in Figure 32-26.

Chapter 32
Acting on Tasks: The Task Details Page

32-33

Figure 32-26 Requesting Information from Past Approvers or Another User,
or Pushing the Task Back

If you use the Search icon to find a user name, the Identity Browser appears, as
shown in Figure 32-27.

Figure 32-27 Identity Browser

Note:

If you are in a multi-tenancy environment, search for a user simply by the
user identifier and not by the tenant identifier. For example, if the user
identifier is jstein and the tenant identifier is company_name.jstein, you
search by using jstein.

3. Click OK.

Chapter 32
Acting on Tasks: The Task Details Page

32-34

32.5.3.2 To Route a Task

Note:

The task definition must be set to Allow participants to invite other participants
before the task can be routed.

To route a task:

1. From the Task Actions list, select Adhoc Route, as shown in Figure 32-28.

Figure 32-28 Ad Hoc Routing

2. Select an action and a routing option, as shown in Figure 32-29.

Figure 32-29 Routing a Task

Chapter 32
Acting on Tasks: The Task Details Page

32-35

• Single Approver: Use this option for a single user to act on a task. If the task
is assigned to a role or group with multiple users, then one member must
claim the task and act on it.

• Group Vote: Use this option when multiple users, working in parallel, must
act, such as in a hiring situation when multiple users vote to hire or reject an
applicant. You specify the voting percentage that is needed for the outcome to
take effect, such as a majority vote or a unanimous vote, as shown in
Figure 32-30.

Figure 32-30 Providing Consensus Information

• Chain of Single Approvers: Use this option for a sequential list of approvers.
The list can comprise any users or groups. (Users are not required to be part
of an organization hierarchy.)

3. Add optional comments for the next participant on the route.

4. Provide or search for user or group names; then move the names to the Selected
area.

5. Click OK.

32.5.3.3 To Add Comments or Attachments

Chapter 32
Acting on Tasks: The Task Details Page

32-36

To add comments or attachments:

Note:

• If you are the initiator of the task, then your comment is shared with all process
participants and not only with task assignees. The option to share with only task
participants is not available to you.

• Comments added to a parent task also appear in any subtasks of that parent.

• Click Save before you browse for or upload attachments, to ensure that any
previous changes to the task details page are saved.

• When you remove a file or URL attachment, the task is not automatically
updated. You must explicitly select Actions > Save. Otherwise, the attachment
is not removed, even though it is displayed as removed. This is the expected
behavior.

• If you add a file attachment, you do not need to explicitly select Actions >
Save.

• If you add a URL attachment, you must explicitly select Actions > Save.

• In an environment with servers clustered for high availability purposes, file
uploading is not supported if a failover occurs. If the active server shuts down,
then the uploading process is not assumed by the other server and the upload
fails.

• If you are using an ADF connection and you receive a "No Protocol" error when
attempting to add an attachment, verify that your connections.xml file is
synchronized with the correct WSDL file. The connections.xml file is located in
the directory .adf/META-INF/ in your ADF workspace.

1. In the Comments or Attachments area, click Add.

Figure 32-31 Worklist Comments and Attachments

2. Enter comment text and click OK. Comments cannot be deleted after they are added.

The date and timestamp and your user name are included with the comment.

3. For attachments, provide a file or URL attachment, as shown in Figure 32-32, and click
OK.

Chapter 32
Acting on Tasks: The Task Details Page

32-37

Figure 32-32 Adding a Worklist Attachment

If you attach a URL file in Oracle BPM Worklist (for example, http://
www.example.com/technology/products/oem/management_partners/
snmpwp6.gif), it is not sent as an email attachment. Instead, it appears as a link in
the task details of the email notification. However, if a desktop file is attached, it
can be seen as a separate attachment in the task notification.

Note:

Attachment file names that use a multibyte character set (MBCS) are not
supported.

Attachments of up to 1998K can be uploaded. You can modify this
setting by setting the context parameter in web.xml as follows:

<context-param>
 <param-name>org.apache.myfaces.trinidad.UPLOAD_MAX_DISK_SPACE</
param-name>
 <param-value>1998</param-value>
</context-param>

For more information about file uploading, see the Oracle Fusion
Middleware Web User Interface Developer's Guide for Oracle
Application.

4. From the Task Actions list, click Save.

32.5.4 How To Act on Tasks That Require a Digital Signature
The worklist supports the signature policy created in the human task:

• No signature required — Participants can send and act on tasks without
providing a signature.

• Password required — Participants mus tspecify their login passwords.

• Digital certificate (signature) required —Participants must possess a digital
certificate before being able to send and act on tasks. A digital certificate contains
the digital signature of the certificate-issuing authority so that anyone can verify
that the certificate is real. A digital certificate establishes the participant's
credentials. It is issued by a certification authority (CA). It contains your name, a
serial number, expiration dates, a copy of the certificate holder's public key (used
for encrypting messages and digital signatures), and the digital signature of the
certificate-issuing authority so that a recipient can verify that the certificate is real.

When you act on a task that has a signature policy, the Sign button appears, as shown
in Figure 32-33.

Chapter 32
Acting on Tasks: The Task Details Page

32-38

Figure 32-33 Digital Signature Task Details

The evidence store service is used for digital signature storage and nonrepudiation of digitally
signed human tasks. You can search the evidence store, as shown in Figure 32-34.

Figure 32-34 The Evidence Store

See Evidence Store Service and Digital Signatures for more information.

To provide a digital signature:

1. In the upper right corner of Oracle BPM Worklist, click Preferences.

Chapter 32
Acting on Tasks: The Task Details Page

32-39

2. Select the Certificates link.

3. Upload the certificate you want to use to sign your decision, as shown in
Figure 32-35.

When signing a task outcome using your certificate, you must upload the entire
chain of certificates through Oracle BPM Worklist as a .P7B (PKCS7 format) file,
not just the one certificate issued to you by the certificate issuer. The entire chain
can be exported through Internet Explorer. Mozilla Firefox does not let you export
the chain as a .P7B file. Therefore, you can perform the following steps:

a. Export the chain from Mozilla Firefox as a .P12 file (PKCS12 format that also
contains your private key).

b. Import the .P12 file in Internet Explorer.

c. Export it again from Internet Explorer as a .P7B file.

d. Upload it through Oracle BPM Worklist.

Figure 32-35 Uploading a Certificate

Note the following important points when providing your certificate to the system.
Otherwise, you cannot use your certificate to sign your decisions on tasks.

• The PKCS7 file format is a binary certificate format. Select this option if you
have a standalone certificate file stored on your disk.

• The PKCS12 file format is a keystore format. Select this option if you have
your certificate stored inside a keystore.

• If you want to copy and paste the contents of the certificate, select Type or
Paste Certificate Contents and paste the BASE64-encoded text into the
field. Do not paste a certificate in any other format into this field. Likewise, if
you choose to upload a certificate, do not try to upload a BASE64-encoded
certificate. Only PKCS12 and PKCS7 formatted files are supported for
uploads.

Chapter 32
Acting on Tasks: The Task Details Page

32-40

4. Return to the task list by clicking the Home link in the upper-right corner of Oracle BPM
Worklist.

5. Click a task to approve or reject.

The task details are displayed.

6. Click either Approve or Reject.

Details about the digital signature are displayed.

7. For a task that has a signature policy, click Sign.

The Text Signing Report dialog appears.

8. Select the certificate from the list to use to sign your decision.

9. Enter the master password of the web browser that you are using.

10. Click OK.

The web browser signs the string displayed in the upper half of the Text Signing Request
with the certificate you selected and invokes the action (approval or rejection) that you
selected. The task status is appropriately updated in the human workflow service.

For more information about how certificates are uploaded and used, see Evidence Store
Service and Digital Signatures.

32.6 Approving Tasks
Get an overview of types of actions that can be performed on tasks by various task
approvers.

Table 32-8 Task Actions and Approvers

Task
Action

Admin Owner (+
Owner
Group)

Assignee (+ Assignee Manager +
Assignee Group + Proxy
Assignee)

Creator Reviewer Approver

Acquire
(Claim)

No Yes Yes No No No

Custom No Yes1 Yes
1

No No No

Delegate No No Yes No No No

Delete No2 No
2

Yes
2

Yes
2

No No

Error No No Yes3 No No No

Escalate Yes4 Yes
4

Yes No No No

Info
Request

No No Yes No No No

Info Submit No No Yes No No No

Override
Routing Slip

Yes Yes No No No No

Push Back No No Yes No No No

Purge Yes
2

Yes2 No Yes No No

Reassign Yes5 Yes
5

Yes (No for proxy assignee) No No No

Release Yes Yes Yes No No No

Renew No Yes Yes No No No

Chapter 32
Approving Tasks

32-41

Table 32-8 (Cont.) Task Actions and Approvers

Task
Action

Admin Owner (+
Owner
Group)

Assignee (+ Assignee Manager +
Assignee Group + Proxy
Assignee)

Creator Reviewer Approver

Resume Yes Yes Yes No No No

Route No Yes Yes No No No

Skip
Current
Assignment

Yes Yes No No No No

Suspend Yes Yes Yes No No No

Update No Yes Yes Yes No No

Update
Attachment

Yes Yes Yes Yes Yes No

Update
Comment

Yes Yes Yes Yes Yes No

View
Process
History

Yes Yes Yes Yes No No

View Sub
Tasks

Yes Yes Yes No No No

View Task
History

Yes Yes Yes Yes Yes Yes

Withdraw Yes Yes No Yes No No

1 Not valid for ToDo tasks
2 Valid only for ToDo tasks
3 Applicable for tasks in alerted states
4 Without claim and escalate to current assignee's manager
5 Without claim

32.7 Setting a Vacation Period
You can set a vacation period so that you are removed from automatic task
assignment during the dates you specify you are on vacation.

Vacation rules are not executed for ToDo tasks. See Setting Rules for how to set a
vacation rule that is synchronized with the vacation period.

To set a vacation period:

1. Click the Preferences link.

The My Rules tab is displayed.

Chapter 32
Setting a Vacation Period

32-42

Figure 32-36 Setting a Vacation Period

2. Select Enable vacation period.

3. Provide start and end dates for your vacation

4. Click Save.

The vacation period is enabled.

32.8 Setting Rules
Rules act on tasks, either a specific task type or all the tasks assigned to a user or group.

Figure 32-37 shows the Action section where you set rules, including vacation rules (different
from the vacation period settings described in Setting a Vacation Period).

Chapter 32
Setting Rules

32-43

Figure 32-37 Creating a Rule

A rule cannot always apply in all circumstances in which it is used. For example, if a
rule applies to multiple task types, it may not be possible to set the outcome for all
tasks, since different tasks can have different outcomes.

Rules are executed in the order in which they are listed. Rules can be reordered by
using the up and down buttons in the header, as shown in Figure 32-37.

If a rule meets its filter conditions, then it is executed and no other rules are evaluated.
For your rule to execute, you must be the only user assigned to that task. If the task is
assigned to multiple users (including you), the rule does not execute.

You cannot specify business rules for ToDo tasks.

32.8.1 How To Create User Rules
Specify the following when creating a user rule:

• Rule name.

• If the rule is a vacation rule. See Setting a Vacation Period for how to set the
vacation period that is synchronized with the vacation rule.

• Which task or task type the rule applies to. If specified as blank or null, then the
rule will be skipped. If a task type is specified, then any attributes mapped for that

Chapter 32
Setting Rules

32-44

task type can be used in the rule condition. To execute the user rule action for all task
types, the task type field must be removed from the rule condition.

• When the rule applies.

• Conditions on the rule—These are filters that further define the rule, such as specifying
that a rule acts on priority 1 tasks only, or that a rule acts on tasks created by a specific
user. The conditions can be based on standard task attributes and any mapped attributes
that have been mapped for the specific tasks. See How To Map Attributes for more
information.

User rules perform the following actions:

• Reassign to—Reassigns tasks to specified subordinates or groups you manage.

• Delegate to—Delegates to any user or group. Any access rights or privileges for
completing the task are determined according to the original user who delegated the task.
(Any subsequent delegations or reassignments do not change this from the original
delegating user.)

• Set outcome to—Specifies an automatic outcome if the workflow task was designed for
those outcomes. For example, accepting or rejecting the task. The rule must be for a
specific task type. If a rule is for all task types, then this option is not displayed.

• Take no action—Prevents other more general rules from applying. For example, to
reassign all your tasks to another user while you are on vacation, except for loan
requests, for which you want no action taken, then create two rules. The first rule
specifies that no action is taken for loan requests; the second rule specifies that all tasks
are reassigned to another user. The first rule prevents reassignment for loan requests.

Note:

If user cdickens has a vacation rule set to Reassign to, Delegate to, or Set
outcome to, the vacation rule will not be triggered if a task is assigned to cdickens
through Request Information, Adhoc Route, or Escalate. In these three cases, the
task will remain assigned to cdickens.

To create a user rule:

1. Click the Preferences link.

The My Rules tab is displayed.

2. In the Rules pane, click My Rules and click Add.

3. In the My Rule area, do the following and click Save:

• Provide a name for the rule.

• Select Use as a vacation rule if you are creating a vacation rule. The start and end
dates of the rule are automatically synchronized with the vacation period.

• Select Execute rule only between these dates and provide rule execution dates.

• In the Tasks area, select All Tasks or Tasks matching these conditions. Click Add
to add rule conditions.

• Browse for task types to which the rule applies.

Chapter 32
Setting Rules

32-45

• In the Action area, select actions to be taken: Reassign to, Delegate to, Set
outcome to, or Take no action, as described above.

The new rule appears under the My Rules node.

32.8.2 How To Create Group Rules
Creating a group rule is similar to creating a user rule, with the addition of a list of the
groups that you (as the logged-in user) manage. Examples of group rules include:

• Assigning tasks from a particular customer to a member of the group

• Ensuring an even distribution of task assignments to members of a group by using
round-robin assignment

• Ensuring that high-priority tasks are routed to the least busy member of a group

Group rules do the following actions:

• Assign to member via—You can specify a criterion to determine which member
of the group gets the assignment. This dynamic assignment criterion can include
round-robin assignment, assignment to the least busy group member, or
assignment to the most productive group member. You can also add your custom
functions for allocating tasks to users in a group.

• Assign to—As with user rules, you can assign tasks to subordinates or groups
you directly manage.

• Take no action—As with user rules, you can create a rule with a condition that
prevents a more generic rule from being executed.

To create a group rule:

1. Click the Preferences link

2. Click the Other Rules tab.

3. Select Group from the list.

4. Enter a group name and click the Search icon, or enter a group name.

The Identity Browser opens for you to find and select a group.

5. Select the group name under the Group Rules node and click Add New Rule, as
shown in Figure 32-38.

Chapter 32
Setting Rules

32-46

Figure 32-38 Creating a Group Rule

6. Provide group rule information and click Save.

• Provide a name for the rule.

• Browse for task types to which the rule applies.

• Provide rule execution dates.

• In the TASKS area, add rule conditions.

• In the ACTION area, select the actions to be taken (or none) (Assign to member
via, Assign to, or Take no action), as shown in Figure 32-38.

The new rule appears under the Group Rules node.

32.8.3 Assignment Rules for Tasks with Multiple Assignees
If a task has multiple assignees, then assignment rules are not evaluated for the task, and the
task is not automatically routed. This is because each of the task's assignees can define
assignment rules, which can potentially provide conflicting actions to take on the task. Only
tasks that are assigned exclusively to a single user are routed by the assignment rules.

For example, consider the following sequence:

1. A rule is created for user cdickens to reassign all assigned requests to user jstein.

2. User jcooper reassigns the allocated tasks to cdickens and cdoyle.

3. User cdickens claims the task, and the task appears in their inbox.

Chapter 32
Setting Rules

32-47

The task is not automatically reassigned to jstein. The task is routed to jstein,
following the assignment rule set for cdickens, if user jcooper explicitly reassigns the
task only to cdickens instead of reassigning the task to multiple users (cdickens and
cdoyle).

32.8.4 How to Avoid Circular Logic in Reassigned Vacation Rules
When creating vacation rules, ensure that approval tasks are not reassigned in a
circular fashion.

For example, jstein is jcooper’s manager, and some tasks may need to go to jstein
for approval. If jstein creates a vacation rule, ensure that those tasks will not be
reassigned to jcooper.

Alternatively, you can use the Delegate option in vacation rules instead of Reassign.
For more information, see How To Create User Rules.

How To Avoid Circular Dependency

In this example, we define two rules for User2, who wants to set a vacation period and
reassign his tasks to someone else. The first rule states that if the task is not coming
from User1, then reassign it to User1. The second rule states that if the task is coming
from User1, then reassign it to User3.

The task flow is: jcooper to jstein to wfaulk. The rules are set for jstein.

1. Log in to Worklist as jstein and go to the Preferences page.

2. Ensure that the Vacation Period is disabled, as shown below:

3. Click My Rules and click Add New Rule +.

4. Enter a name for the rule, for example VacationRule1.
5. Clear the Use as vacation rule check box.

6. Check the Execute rule only between these dates check box and enter the
appropriate dates.

7. In the Tasks drop down, choose Tasks matching these conditions.

8. Click Add condition + and select User, From User.
9. In the new row, select isn't.
10. In the text box next to it, enter jcooper for the user name.

11. In the Action section, select Reassign to and enter jcooper for the user name.

12. Click Save.

Repeat the steps above to create another rule with these inputs:

Chapter 32
Setting Rules

32-48

13. Enter a name for the second rule, for example VacationRule2.

14. Select the same start and end dates as in VacationRule1.

15. Add a From User condition of is.
16. Enter jcooper for the user name.

17. In the Action section, select Reassign to and enter wfaulk for the user name.

18. Click Save.

Invoke the composite and the tasks will be assigned as expected based on these two new
rules defined for jstein.

32.9 Using the Worklist Administration Functions
Administrators who are granted the BPMWorkflowAdmin role, can use the worklist
Administration Funcations.

Administration functions include the following:

• Managing other users' or groups' rules

• Setting the worklist display (application preferences). Application preferences customize
the appearance of the worklist, including:

– The login realm label

– The resource bundle

– Where the language locale information is retrieved from

– The branding logo

– The branding title

– The branding skin

– Any external applications you want to use, for example, oracle.com, or google.com
• Specifying mapped attributes

An administrator can view and update all tasks assigned to all users. An administrator's
Assignee filter displays Admin when the Admin tab is selected.

• How To Manage Other Users' or Groups' Rules (as an Administrator)

• How to Specify the Login Page Realm Label

• How to Specify the Resource Bundle

• How to Specify the Language Locale Information

• How to Specify a Branding Logo

• How to Specify the Branding Title

• How to Choose a Skin

• How to Enable Customized Applications and Links

For information about specifying mapped attributes, see Using Mapped Attributes (Flex
Fields)

Chapter 32
Using the Worklist Administration Functions

32-49

32.9.1 How To Manage Other Users' or Groups' Rules (as an
Administrator)

This function is useful for fixing a problem with a rule. Also, for a user who no longer
works for the company, administrators can set up a rule for that user so that all tasks
assigned to the user are automatically assigned to another user or group.

To create a rule for another user or group:

1. Click the Preferences link

2. Click the Other Rules tab.

3. Search for the user or group for whom rules are to be created, as shown in
Figure 32-39.

Figure 32-39 Creating Rules for Another User or Group

4. Click a user rules node, or click a group name (for a group rule).

5. Click the Add icon to create a rule.

6. Provide rule information, as shown in Figure 32-38, and click Save.

32.9.2 How to Specify the Login Page Realm Label
If the identity service is configured with multiple realms, then, when a user logs in to
Oracle BPM Worklist, the login page displays a list of realm names.
LABEL_LOGIN_REALM specifies the resource bundle key used to look up the label to
display these realms. You can change the term realm to fit the user community—terms
such as country, company, division, or department may be more appropriate. To
change the term realm, customize the resource bundle, specify a resource bundle key
for this string, and then set the Login page realm label parameter to point to that
resource bundle key.

Figure 32-40 shows the Application Preferences page with the Login page realm
label field highlighted. You reach the Application Preferences page by clicking
Administration on the global toolbar at the very top of the Worklist Application
interface.

Chapter 32
Using the Worklist Administration Functions

32-50

Figure 32-40 Specifying the Login Page Realm Label

32.9.3 How to Specify the Resource Bundle
The resource bundle provides the strings displayed in the Worklist Application. By default, the
class path to the resource bundle is:

oracle.bpel.worklistapp.resource.WorklistResourceBundle
Figure 32-41 shows the Application Preferences page with the Resource Bundle field
highlighted. You reach the Application Preferences page by clicking Administration on the
global toolbar at the very top of the Worklist Application interface.

Chapter 32
Using the Worklist Administration Functions

32-51

Figure 32-41 Specifying the Resource Bundle

As an administrator, you can add or modify strings shown in the application by creating
a custom resource bundle. You can then use the Resource Bundle field in the
Application Preferences page to specify the class path to your custom resource
bundle.

For more information about customizing resource bundles, see Managing and
Monitoring Processes with Oracle Business Process Management.

32.9.4 How to Specify the Language Locale Information
From the Application Preferences page, you can specify how the Worklist Application
display language is determined. Information about the language locale can be derived
from either the user's browser or the identity provider that stores information on
worklist users.

Figure 32-42 shows the Applications Preferences page with the Use language settings
of options highlighted. You reach the Application Preferences page by clicking
Administration on the global toolbar at the very top of the Worklist Application
interface.

Figure 32-42 Specifying Language Local Information

Chapter 32
Using the Worklist Administration Functions

32-52

32.9.5 How to Specify User Name Format
From the Application Preferences page, you can specify how the user's name is displayed on
the screen after they have logged in. You can choose to display the userid, such as jstein,
or the user's name, John Steinbeck.

32.9.6 How to Specify a Branding Logo
A branding logo is the image displayed in the top left corner of every page of the Worklist
Application. The Oracle logo is the default, and you can change it to one of your choosing.

Note:

The ideal image size is 120px x 40px (length x width) for proper display. Although
images with high resolution and size are compressed to fit the branding logo size,
smaller images display better.

Figure 32-43 shows the Application Preferences page with the Branding Logo field
highlighted. You reach the Application Preferences page by clicking Administration on the
global toolbar at the very top of the Worklist Application interface.

Figure 32-43 Specifying the Branding Logo

To specify the branding logo:

Do one of the following:

• Refer to an external image-hosting web site. To do this task: In the Branding Logo field,
enter the URL of the image.

• Upload an image to a particular location on the server and, in the Branding Logo field,
enter its relative path, for example, /afr/my_logo.png.

Chapter 32
Using the Worklist Administration Functions

32-53

• Refer to an image from the shared library. To do this task: In the Branding Logo
field, enter the path of the logo name as found in the shared library, for example, /
my_logo.pngv.

Note:

Customizing the branding logo from either the Worklist Application or
Process Workspace changes the logo in both applications. For example, if
you change the logo from Worklist, the Workspace logo is changed
automatically.

For information about deploying images and JAR files as part of a shared library, see
Managing and Monitoring Processes with Oracle Business Process Management.

32.9.7 How to Specify the Branding Title
You can specify the title for your site, changing the default title, BPM Worklist, to one
that you choose.

Figure 32-44 shows the Application Preferences field with the Branding Title field
highlighted. You reach the Application Preferences page by clicking Administration
on the global toolbar at the very top of the Worklist Application interface.

Figure 32-44 Specifying the Branding Title

To specify the branding title:

Do one of the following:

• In the Branding Title field, enter a simple string for your title.

• In the Branding Title field, enter a label that refers to a key-value pair in the
Resource Bundle. In this way, you can internationalize your title, for example,
LABEL_WORKLIST_TITLE.

Chapter 32
Using the Worklist Administration Functions

32-54

32.9.8 How to Choose a Skin
A skin determines the look and feel of your graphical interface. You specify the skin from the
Application Preferences page. You reach the Application Preferences page by clicking
Administration on the global toolbar at the very top of the Worklist Application interface.

Figure 32-45 shows the Application Preferences page with the Choose a Skin field
highlighted.

Figure 32-45 Choosing a Skin

32.9.8.1 To Choose A Skin

To choose a skin:

Do one of the following:

• From the Choose a Skin list, select one of the default ADF skins

• Upload your own customized skin .css file in a .JAR file and deploy it as a part of shared
library. Then, when you restart your application from the console, your custom skin
appears in the Choose a Skin list.

32.9.8.2 To Create a JAR File Containing Customized Skins

To create a JAR file containing customized skins:

1. Create a directory structure similar to the following example:

C:\temp\META-INF\adf\oracle\skin\images
 META-INF\skins\custom.css
 META-INF\trinidad-skins.xml

Chapter 32
Using the Worklist Administration Functions

32-55

In this example, you can change the word custom to the name of your own
customized skin.

2. Make sure the content of trinidad-skins.xml file is as follows:

<?xml version="1.0" encoding="ISO-8859-1"?>
<skins xmlns="http://myfaces.apache.org/trinidad/skin">
 <skin>
 <id>custom.desktop</id>
 <family>custom</family>
 <extends>custom.desktop</extends>
 <render-kit-id>org.apache.myfaces.trinidad.desktop</render-kit-id>
 <style-sheet-name>skins/custom.css</style-sheet-name>
 </skin>
</skins>

3. Create the .JAR file by issuing the following command from the c:\temp directory:

jar -cvf customSkin.jar META-INF/
4. Copy this JAR file to the directory /scratch/username/sharedLib.

Note:

Refer to the images in your css file this way:

../adf/oracle/skin/images/example.gif (with the two trailing dots).

This allows the search for the META-INF root to start one directory above the
META-INF/skin directory in which the .css file is located.

For information about deploying JAR files as part of a shared library, see Managing
and Monitoring Processes with Oracle Business Process Management.

32.9.9 How to Enable Customized Applications and Links
For Process Workspace, you can create customized external applications and links
that become available in the External Applications panel. Moreover, in both Process
Workspace and the Worklist Application, you can specify the columns that appear in
the Task Details pane.

You specify a custom application by using the Application Preferences page. You
reach the Application Preferences page by clicking Administration on the global
toolbar at the very top of the Worklist Application interface.

To see the Java code for specifying a custom application, see Java Code for Enabling
Customized Applications in Oracle BPM Worklist.

To enable customized applications:

1. In the Application Preferences page, enter the class name of your custom
application in the Application customization class name field, as shown in
Figure 32-46.

Chapter 32
Using the Worklist Administration Functions

32-56

Figure 32-46 Specifying a Custom Application

2. Restart the application from the console.

Depending on your customization, you can now see its effects.

If your customization is for Process Workspace and involves either creating an external
application or specifying inbox columns in the Task Details pane or both, you see the
following:

• Your custom application listed in the External Applications panel of the Process
Workspace Home page as shown in Figure 32-47.

Figure 32-47 External Applications Panel in Process Workspace

• The columns of the Task Details inbox adjusted according to your specifications as
shown in Figure 32-48.

Figure 32-48 Customized Columns in Task Details Pane

Chapter 32
Using the Worklist Administration Functions

32-57

For more information about customizing applications in Worklist Application
and Process Workspace, see Managing and Monitoring Processes with Oracle
Business Process Management.

32.9.10 How to Specify an Image for a Task Action
If you are an administrator, then you can specify whether an action is displayed with a
red X icon or with a green check mark icon.

To specify an image for a task action:

1. Select Administration, then Application Preferences.

2. From the lists in the Map task actions to an image field, select the tasks you
want to map to either the green check mark icon or the red X icon.

3. Click Save.

32.9.11 Specifying Additional Process Workspace Settings
From the Application Preferences page, you can specify additional configuration items.
These include:

• 10g Workspace Application URL - specifies the URL for an ALBPM 10g
Workspace to view from within Process Workspace.

• Flex Field INTEGER Display.

• Activity Guide poll request interval - interval in seconds to wait between polls for
the next Activity Guide task.

• Activity Guide poll retries - maximum number of times the Activity Guide should
poll to move to the next task.

• File types to upload - Specify the extensions of the file types that can be uploaded
by a user. You can specify all file type extensions that you need. The file type
extensions that you enter in the field must be separated by a comma. For
example, txt,pdf,zip and so on.

• View task details in separate window - Choose the Enable option, if you want the
task details to be opened in a separate window.

32.10 Specifying Notification Settings
You can configure the notification settings to control how, when, and where you
receive messages in cases when you have access to multiple communication
channels (delivery types). Specifically, you can define messaging filters (delivery
preferences) that specify the channel to which a message should be delivered, and
under what circumstances.

For example, you might want to create filters for messages received from customers
with different Service Level Agreements (SLA), specifying to be notified through
business phone and SMS channels for customers with a premium SLA and by EMAIL
for customers with a nonpremium SLA.

Chapter 32
Specifying Notification Settings

32-58

32.10.1 Configuring Alias for Notification Email ID
You can configure an alias for incoming mail notifications. For example, you can configure the
sender email ID to be the department name instead of the email ID of the sender.

You can set the alias at both global level for all tasks and also for individual tasks.

Configuring Alias for all Tasks

To configure alias for all tasks:

1. Click your user or login name in the top right corner.

2. Select Administration.

3. Scroll to Notification section.

4. Select from the three options:

• Email "From:" Display Name: Provide an alias to the sender email ID in the field.
The text field is limited 90 characters.

• Submitter: Send notification using Submitter ID.

• Previous Approver: Send notification using ID of previous approver.

5. Click Save.

Configuring Alias for Individual Tasks

When you configure sender’s name for an individual task, it overrides the global sender name
configuration. To configure sender’s name for an individual task:

1. Click your user or login name in the top right corner.

2. Select Administration.

3. Click Task Configuration.

4. Select the task that you have created under Tasks to be Configured section on the left
panel.

5. Click Notifications option in the main panel.

6. Expand More.

7. Select from the three options:

• Not Applicable: Not Applicable option is selected by default. If you do not modify, the
sender name that is configured at global level is used as display name.

• Email "From:" Display Name: Provide an alias to the sender email ID in the field.
The text field is limited 90 characters.

• Previous Approver: Send notification using ID of previous approver.

8. Click the Save button next to Tasks to be Configured.

Chapter 32
Specifying Notification Settings

32-59

Note:

• If Previous Approver option is selected, display name of previous
approver is used. If display name is not available, ID is used. If there is
only first approver and no previous approver in the approval chain, the
submitter ID is used as alias name.

• If no alias is given, Previous Approver is selected by default and if
there is no previous approver, the submitter name is displayed.

• If alias is updated but the bpm-services.jar does not have permissions to
write to the MBean, alias does not appear in the mail notifications.

32.10.2 Messaging Filter Rules
A messaging filter rule consists of rule conditions and rule actions. A rule condition
consists of a rule attribute, an operator, and an associated value. A rule action is the
action to be taken if the specified conditions in a rule are true.

32.10.2.1 Data Types
Table 32-9 lists data types supported by messaging filters. Each attribute has an
associated data type, and each data type has a set of predefined comparison
operators.

Table 32-9 Data Types Supported by Messaging Filters

Data Type Comparison Operators

Date isEqual, isNotEqual, isGreaterThan, isGreaterThanOrEqual,
isLessThan, isLessThanOrEqual, Between, isWeekday, isWeekend

Time isEqual, isNotEqual, Between

Number isEqual, isNotEqual, Between, isGreaterThan, isGreaterThanOrEqual,
isLessThan, isLessThanOrEqual

String isEqual, isNotEqual, Contains, NotContains

Note:

The String data type does not support regular expressions.

32.10.2.2 Attributes
Table 32-10 lists the predefined attributes for messaging filters.

Chapter 32
Specifying Notification Settings

32-60

Table 32-10 Predefined Attributes for Messaging Filters

Attribute Data Type

Total Cost Number

From String

Expense Type String

To String

Application Type String

Duration Number

Application String

Process Type String

Status String

Subject String

Customer Type String

Time Time

Group Name String

Processing Time Number

Date Date

Due Date Date

User String

Source String

Amount Number

Role String

Priority String

Customer Name String

Expiration Date Date

Order Type String

Organization String

Classification String

Service Request Type String

32.10.3 Rule Actions
For a given rule, a messaging filter can define the following actions:

• Send No Messages: Do not send a message to any channel.

• Send Messages to All Selected Channels: Send a message to all specified channels in
the address list.

• Send to the First Available Channel: Send a message serially to channels in the
address list until one successful message is sent. This entails performing a send to the
next channel when the current channel returns a failure status. This filter action is not
supported for messages sent from the human workflow layer.

Chapter 32
Specifying Notification Settings

32-61

32.10.4 Managing Messaging Channels
In Oracle BPM Worklist, messaging channels represent both physical channels, such
as business mobile phones, and also email client applications running on desktops.
Specifically, Oracle BPM Worklist supports the following messaging channels:

• EMAIL

• IM

• MOBILE

• SMS

• WORKLIST

Note the following about message channels:

• Addresses for messaging channels are fetched from the configured identity store.

• SMS and MOBILE notifications are sent to the mobile phone number.

• No special notification is sent when the messaging channel preference is
WORKLIST. Instead, log in to Oracle BPM Worklist to view tasks.

• EMAIL is the default messaging channel preference when a preferred channel has
not been selected.

You can use Available Channels to view, create, edit, and delete messaging
channels.

32.10.4.1 Viewing Your Messaging Channels
You can display your existing messaging channels.

To view messaging channels:

1. Click the Preferences link.

2. Click the Notification tab.

3. Expand Available Channels.

The Available Channels list appears (Figure 32-49) and displays the following
information:

• Name: The name of the messaging channel.

• Type: The type of messaging channel, such as EMAIL or SMS.

• Address: The address for the channel, such as a phone number or email
address.

• Default: Specifies whether this channel is the default messaging channel.

Chapter 32
Specifying Notification Settings

32-62

Figure 32-49 Messaging Channels

4. Click View > Columns and select the columns to display or hide.

You can also click View > Reorder Columns to display a dialog to reorder the displayed
columns.

Messaging channel names and addresses are retrieved from the underlying identity
store, such as Oracle Internet Directory.

32.10.4.2 Creating, Editing, and Deleting a Messaging Channel
Oracle BPM Worklist uses an underlying identity store, such as Oracle Internet Directory, to
manage messaging channels and addresses. Therefore, you cannot directly create, modify,
or delete messaging channels using Oracle BPM Worklist.

To perform these actions, contact the system administrator responsible for managing your
organization's identity store.

32.10.5 Managing Messaging Filters
You can use Messaging Filters to define filters that specify the types of notifications you
want to receive along with the channels through which to receive these notifications. You can
do this through a combination of comparison operators (such as is equal to, is not equal to),
attributes that describe the notification type, content, or source, and notification actions,
which send the notifications to the first available messaging channels, all messaging
channels, or to no channels (effectively blocking the notification).

For example, you can create a messaging filter called Messages from Lise, that retrieves all
messages addressed to you from your boss, Lise. Notifications that match all of the filter
conditions might first be directed to your business mobile phone, for instance, and then to
your business email if the first messaging channel is unavailable.

32.10.5.1 Viewing Messaging Filters
You can display your existing messaging filters.

To view your messaging filters:

1. Click the Notification tab.

2. Expand Messaging Filters.

The Messaging Filters list appears (Figure 32-50) and displays the following information:

• Name: The name of the messaging filter

Chapter 32
Specifying Notification Settings

32-63

• Description: An optional description of the messaging filter

• Enabled: Specifies if this filter is being used in message handling

Figure 32-50 Messaging Filters

3. Click View > Columns and select the columns to display or hide.

32.10.5.2 Creating Messaging Filters

To create a messaging filter:

1. Click Create.

The Create Filter dialog box appears, as shown in Figure 32-51.

Figure 32-51 Adding a Messaging Filter

2. Specify the following information:

• Name: The name of the messaging filter.

• Description: An optional description for the messaging filter.

• Enabled: By default this option is checked. Clear if you do not want this filter
used in message handling.

3. Select whether notifications must meet all of the conditions or any of the conditions
by selecting either the Match all of the following conditions or the Match any of
the following conditions options.

Chapter 32
Specifying Notification Settings

32-64

4. Click Create.

Define the filter conditions in the Create Condition dialog box, as follows:

a. Select the attribute from the list.

b. Select the operator, such as isEqual, from the list.

c. Type the value of the condition in the Operand field.

d. Click OK to add the condition to the list.

e. Repeat these steps to add more filter conditions. To remove a filter condition, click
Delete.

5. Select from the following messaging options in the Action section:

• Do not send messages: Do not send a message to any channel.

• Send to all selected channels: Send a message to all specified channels in the
address list.

• Send to first available channel: Send a message serially to channels in the address
list until one successful message is sent. This entails performing a send to the next
channel when the current channel returns a failure status.

6. To set the delivery channel, select a channel from the Add Notification Channel list and
click Add. To remove a channel, click Delete.

7. Use the up and down arrows to prioritize channels. If available, the top-most channel
receives messages meeting the filter criteria if you select Send to the First Available
Channel.

8. Click OK.

The messaging filter appears on under Messaging Filters area. The Messaging Filters
area enables you to edit or delete the channel.

32.10.5.3 Editing a Messaging Filter
To edit a messaging filter:

1. Select the filter from the Messaging Filters area.

2. Click Edit.

3. Click OK to update the messaging filter. Click Cancel to dismiss the dialog without
modifying the filter.

32.10.5.4 Deleting a Messaging Filter
To delete a messaging filter:

1. Select the filter from the Messaging Filters area.

2. Click Delete. A confirmation dialog appears.

3. Click OK to delete the messaging filter. Click Cancel to dismiss the dialog without
deleting the filter.

Chapter 32
Specifying Notification Settings

32-65

32.11 Using Mapped Attributes (Flex Fields)
Human workflow mapped attributes (formerly referred to as flex fields) store and query
use case-specific custom attributes. These custom attributes typically come from the
task payload values.

Storing custom attributes in mapped attributes provides the following benefits:

• They can be displayed as a column in the task listing.

• They can filter tasks in custom views and advanced searches.

• They can be used for a keyword-based search.

For example the Requester, PurchaseOrderID, and Amount fields in a purchase order
request payload of a task can be stored in the mapped attributes. An approver logging
into Oracle BPM Worklist can see these fields as column values in the task list and
decide which task to access. The user can define views that filter tasks based on the
mapped attributes. For example, a user can create views for purchase order approvals
based on different amount ranges. If the user must also retrieve tasks at some point
related to a specific requester or a purchase order ID, they can specify this in the
keyword field and perform a search to retrieve the relevant tasks.

For the mapped attributes to be populated, an administrator must create mapped
attribute mappings, as follows:

1. Specify a label for the mapped attribute to be populated.

2. Map the payload attribute containing the data to the label.

These mappings are valid for a certain task type. Therefore, each task type can have
different mapped attribute mappings. After the mapping is complete and any new task
is initiated, the value of the payload is promoted to the mapped attribute. Tasks
initiated before the mapping do not contain the value in the mapped attribute. Only top-
level simple type attributes in the payload can be promoted to a mapped attribute.
Complex attributes or simple types nested inside a complex attribute cannot be
promoted. It is important to define the payload for a task in the Human Task Editor,
keeping in mind which attributes from the payload may must promoted to a mapped
attribute. All text and number mapped attributes are automatically included in the
keyword-based search.

Essentially, the Human Task Editor is used only when defining the payload for a task.
All other operations are performed at runtime.

Directory naming is not available concomitant with the flex file naming convention.

Chapter 32
Using Mapped Attributes (Flex Fields)

32-66

Note:

• Mapped attributes must be defined before instances of the business process
are generated. Only instances generated after mapped attributes are created
reflect the correct mapped attributes. Older instances of the business process
do not reflect subsequent mapped attribute changes.

• When you add a new locale, the mapped attribute labels are not automatically
translated until you have flushed the cache. You may flush the cache either by
restarting the server, or by changing a value in the workflow configuration
settings—for example, by changing the workflowCustomClasspathURL property
in the workflow configuration to some new value, then changing it back again.

32.11.1 How To Map Attributes
An administrator, or users with special privileges, can use attribute mapping, shown in
Figure 32-52, to promote data from the payload to inline mapped attributes. By promoting
data to mapped attributes, the data becomes searchable and can be displayed as columns
on the task list page.

Administrators can map public mapped attributes. Users who have been granted the
workflow.mapping.publicFlexField privilege can map public mapped attributes, and see a
Public Flex Fields node on the Administration tab.

Figure 32-52 Mapped Attribute Mapping

Chapter 32
Using Mapped Attributes (Flex Fields)

32-67

32.11.1.1 To Create Labels

To create labels:

To create a mapped attribute mapping, an administrator first defines a semantic label,
which provides a more meaningful display name for the mapped attribute. Click Add to
use the Create Label dialog, as shown in Figure 32-53.

Figure 32-53 Creating a Label

As Figure 32-53 shows, labelName is mapped to the task attribute TextAttribute3.
The payload attribute is also mapped to the label. In this example, the Text attribute
type is associated with labelName. The result is that the value of the Text attribute is
stored in the TextAttribute3 column, and labelName is the column label displayed in
the user's task list. Labels can be reused for different task types. You can delete a
label only if it is not used in any mappings.

A mapped payload attribute can also be displayed as a column in a custom view, and
used as a filter condition in both custom views and workflow rules. The display name
of the payload attribute is the attribute label that is selected when doing the mapping.

Note the following restrictions:

• Only simple type payload attributes can be mapped.

• A mapped attribute (and thus a label) can be used only once per task type.

• Data type conversion is not supported for the number or date data types. For
example, you may not map a payload attribute of type string to a label of type
number.

32.11.1.2 To Browse All Mappings

To browse all mappings:

1. Click Browse all mappings.

Chapter 32
Using Mapped Attributes (Flex Fields)

32-68

2. Select a row in the label table to display all the payload attributes mapped to a particular
label.

Figure 32-54 Browsing Mappings

32.11.1.3 To Edit Mappings by Task Type

To edit mappings by task type:

1. Click Edit mappings by task type, optionally provide a task type, and click Search.

2. Select a task type and click OK.

Chapter 32
Using Mapped Attributes (Flex Fields)

32-69

Figure 32-55 Selecting a Task Type

3. With the task type displayed in the Edit mappings by task type field, click Go.

All current mappings for the task type are displayed, as shown in Figure 32-56.

Chapter 32
Using Mapped Attributes (Flex Fields)

32-70

Figure 32-56 Selecting a Label

4. Select a mapping label and click Select.

Figure 32-57 shows a completed mapping.

Figure 32-57 Mapped Attribute Mapping Created

See Internationalization of Attribute Labels for more information.

Chapter 32
Using Mapped Attributes (Flex Fields)

32-71

32.11.2 Custom Mapped Attributes
The following mapped attributes are included in the WorkflowTask.xsd file and are
available for your use without restrictions.

Table 32-11 Custom Mapped Attributes

Attribute Data Type

customerAttributeString1 String

customerAttributeString2 String

customerAttributeNumber1 Double

customerAttributeNumber2 Double

customerAttributeDate1 Date

customerAttributeDate2 Date

Use the following Java Architecture for XML Binding (JAXB) methods to set and get
these attributes:

task.getCustomerAttributes.getCustomerAttributeString1()
task.getCustomerAttributes.setCustomerAttributeString1("String")
task.getCustomerAttributes.getCustomerAttributeNumber1()
task.getCustomerAttributes.setCustomerAttributeNumber2(9)
task.getCustomerAttributes.setCustomerAttributeDate1()
task.getCustomerAttributes.setCustomerAttributeDate2()
These fields are persisted in the database as customerAttributeString1,
customerAttributeString2, customerAttributeNumber1,
customerAttributeNumber2, customerAttributeDate1, customerAttributeDate2.

32.12 Creating Worklist Reports
Get an over view of worklist reports and various parameters in the reports.

Table 32-12 lists the worklist reports available for task analysis.

Chapter 32
Creating Worklist Reports

32-72

Table 32-12 Worklist Report Types

Report Name Description Input Parameters

Unattended
Tasks

Provides an analysis of
tasks assigned to users'
groups or reportees'
groups that have not yet
been acquired (the
"unattended" tasks).

• Assignee—This option (required) selects tasks assigned to the
user's group (My Group), tasks assigned to the reportee's
groups (Reportees), tasks where the user is a creator (Creator),
or tasks where the user is an owner (Owner).

• Creation Date—An optional date range
• Expiration Date—An optional date range
• Task State—The state (optional) can by Any, Assigned, Expired,

or Information Requested.
• Priority—The priority (optional) can be Any, Highest, High,

Normal, Low, or Lowest.

Tasks Priority Provides an analysis of
the number of tasks
assigned to a user,
reportees, or their
groups, broken down by
priority.

• Assignee—Depending on the assignee that you select, this
required option includes tasks assigned to the logged-in user
(My), tasks assigned to the user and groups that the user
belongs to (My & Group), or tasks assigned to groups to which
the user's reportees belong (Reportees).

• Creation Date—An optional date range
• Ended Date—An optional date range for the end dates of the

tasks to be included in the report
• Priority—The priority (optional) can by Any, Highest, High,

Normal, Low, or Lowest.

Tasks Cycle Time Provides an analysis of
the time taken to
complete tasks from
assignment to
completion based on
users' groups or
reportees' groups.

• Assignee—Depending on the assignee that you select, this
required option includes your tasks (My) or tasks assigned to
groups to which your reportees belong (Reportees).

• Creation Date—An optional date range
• Ended Date—An optional date range for the end dates of the

tasks to be included in the report
• Priority—The priority (optional) can by Any, Highest, High,

Normal, Low, or Lowest.

Tasks
Productivity

Provides an analysis of
assigned tasks and
completed tasks in a
given time period for a
user, reportees, or their
groups.

• Assignee—Depending on the assignee that the user selects, this
required option includes the user's tasks (My & Group) or tasks
assigned to groups to which the user's reportees belong
(Reportees).

• Creation Date (range)—An optional creation date range. The
default is one week.

• Task Type—Use the Search (flashlight) icon to select from a list
of task titles. All versions of a task are listed on the Select
Workflow Task Type page (optional).

Tasks Time
Distribution

Provides the time an
assignee takes to
perform a task.

• Assignee—Depending on the assignee that the user selects, this
required option includes the user's tasks (My & Group) or tasks
assigned to groups to which the user's reportees belong
(Reportees).

• From...to (date range)—An optional creation date range. The
default is one week.

• Task Type—Use the Search (flashlight) icon to select from a list
of task titles. All versions of a task are listed on the Select
Workflow Task Type page (optional).

32.12.1 How To Create Reports
Reports are available from the Reports link. Report results cannot be saved.

Chapter 32
Creating Worklist Reports

32-73

To create a report:

1. Click the Reports link.

2. Click the type of report you want to create.

Figure 32-58 shows the report types available.

Figure 32-58 Oracle BPM Worklist Reports

3. Provide inputs to define the search parameters of the report.

Figure 32-59 shows an example of the Unattended Tasks Report input page. The
other reports are similar. See Table 32-12 for information about input parameters
for all the report types.

Figure 32-59 Unattended Tasks Report—Input Page for Task Analysis

4. Click Run.

32.12.2 What Happens When You Create Reports
As shown in Figure 32-60, report results (for all report types) are displayed in both a
table format and a bar chart format. The input parameters used to run the report are
displayed under Report Inputs, in the lower-left corner (may require scrolling to view).

Chapter 32
Creating Worklist Reports

32-74

Figure 32-60 Report Display—Table Format, Bar Chart Format, and Report Inputs

32.12.2.1 Unattended Tasks Report
Figure 32-61 shows an example of an Unattended Tasks report.

Chapter 32
Creating Worklist Reports

32-75

Figure 32-61 Unattended Tasks Report

The report shows that the California group has 15 unattended tasks, the Supervisor
group has 7 unattended tasks, and the LoanAgentGroup has 11 unattended tasks. The
unattended (unclaimed) tasks in this report are all DocumentReview tasks. If multiple
types of unattended task exists when a report is run, all task types are included in the
report, and the various task types are differentiated by color.

32.12.2.2 Tasks Priority Report
Figure 32-62 shows an example of a Tasks Priority report.

Chapter 32
Creating Worklist Reports

32-76

Figure 32-62 Tasks Priority Report

The report shows that the California group, the Supervisor group, and the LoanAgentGroup
each have 16 tasks of normal priority. The users rsteven and jcooper have 5 and 22 tasks,
respectively, all normal priority. Priorities (highest, high, normal, low, lowest) are distinguished
by different colors in the bar chart.

32.12.2.3 Tasks Cycle Time Report
Figure 32-63 shows an example of a Tasks Cycle Time Report.

Figure 32-63 Tasks Cycle Time Report

Chapter 32
Creating Worklist Reports

32-77

The report shows that it takes 1 hour and 6 minutes on average to complete
DocumentReview tasks, and 1 hour and 28 minutes on average to complete
VacationApproval tasks. The bar chart shows the average cycle time in milliseconds.

32.12.2.4 Tasks Productivity Report
Figure 32-64 shows an example of a Tasks Productivity Report.

Figure 32-64 Tasks Productivity Report

The report shows the number of tasks assigned to the California, LoanAgentGroup,
and Supervisor groups. For individual users, the report shows that jcooper has 22
assigned tasks. In addition to his assigned tasks, jcooper has completed 2 tasks. The
report shows that mtwain and rsteven have completed 6 and 11 tasks respectively. In
the bar chart, the two task states—assigned and completed—are differentiated by
color.

Note:

The Me and Group and Reportees options have been removed from the
Productivity Report.

32.13 Accessing Oracle BPM Worklist in Local Languages
and Time Zones

A user's preferred worklist language is configured from either the identity store or the
browser and preferred time zone is configured from the identity store.

Chapter 32
Accessing Oracle BPM Worklist in Local Languages and Time Zones

32-78

If no preference information is available, then the user's preferred language and time zone
are determined by the system defaults. System defaults are based on the server settings for
language and time zone.

If the custom resource bundle class in the browser locale is not available and the custom
resource bundle class in default server locale is available, then the language is derived from
the custom resource bundle class in default server locale.If the custom resource bundle class
in the default server locale is also not available, then the language is derived from the custom
base class.

If no user language preferences are set, or if they are set to a language not supported by
Oracle BPM Worklist, then the Worklist Application defaults to English.

For more information, see the following sections for instructions on how to select Browser or
Identity Provider in the worklist interface:

• How to Specify the Login Page Realm Label for how to select Browser or Identity
Provider from the Application Preferences page

• Customizing the Task List Page and Figure 32-14

32.13.1 Strings in Oracle BPM Worklist
Most strings in the worklist come from the Worklist Application bundle. By default, this is the
class

oracle.bpel.services.workflow.resource.WorkflowResourceBundle

However, this can be changed to a custom resource bundle by setting the appropriate
application preference (see How to Specify the Resource Bundle) or by providing an updated
version of the default bundle class. See the Workflow Customizations sample for details.

For task attribute names, mapped attribute labels, and dynamic assignment function names,
the strings come from configuring the resource property file WorkflowLabels.properties.
This file exists in the wfresource subdirectory of the services config directory. See
Introduction to Human Workflow Services for information on adding entries to this file for
dynamic assignment functions and attribute labels.

For custom actions and task titles, the display names come from the message bundle
specified in the task configuration file. If no message bundle is specified, then the values
specified at design time are used. See Introduction to Human Workflow Services for
information on how to specify message bundles so that custom actions and task titles are
displayed in the preferred language.

Note:

You cannot use Korean characters in the human task name. In place of Korean
characters, Oracle recommends using only letters A-Z, a-z, 0-9, and "_" in the
human task name.

Chapter 32
Accessing Oracle BPM Worklist in Local Languages and Time Zones

32-79

32.13.2 How to Change the Preferred Language, Display Names of
Users, and Time Zone Settings if the Identity Store is LDAP-Based

If an LDAP-based provider such as Oracle Internet Directory is used, then language
settings are changed in the Oracle Internet Directory community. Connect to the
embedded LDAP server, where you can change language settings in the Oracle
Internet Directory community.

1. Start an LDAP browser (for example, openLdap browser, ldapbrowser, jXplorer,
and so on). See the documentation for your browser for instructions.

2. Connect to the LDAP server by providing the hostname, the port number on which
the server is running, and the administration user credentials with which to log in.

• For Embedded LDAP:

a. The default managed server port number is 7001.

b. The administration credential username is cn=admin.

c. The administration password credential is accessible from the Oracle
WebLogic Server Administration Console by selecting Security >
Embedded LDAP for your domain.

For instructions on changing the default password credential, see,
"Managing the Embedded LDAP Server" of Administering Security for
Oracle WebLogic Server.

• For Oracle Internet Directory:

a. The default port number is 3060.

b. The administration username is cn=orcladmin.

c. The administration password is the password for the LDAP server.

3. To change a user's preferred language, navigate to the user entry, and either add
or set the preferredLanguage attribute. See Table 32-13 for a list of supported
languages.

You can also determine the language in which user names are displayed. To do
this task, navigate to the user entry in the LDAP directory, then add or specify the
displayname attribute.

Note:

• The user name that appears in the Assignee column in the worklist
does not honor the setting of the displayname attribute.

• Display names are taken from LDAP. So even when you change the
display name, only the LDAP user name is displayed when you log
into workspace.

To change the time zone setting, either add or set the orclTimeZone attribute. The
format of the time zone string is Continent/Region. You can find the time zone
values in the $JAVA_HOME/jre/lib/zi directory. The directories specify the

Chapter 32
Accessing Oracle BPM Worklist in Local Languages and Time Zones

32-80

continent names, for example, Africa, Asia, America, and so on, while the files within the
directories specify the regions. Some regions include subregions, for example America/
Indiana/Indianapolis.

When a user logs in, the worklist pages are rendered in the user's preferred language
and time zone.

32.13.3 How to Change the Language in Which Tasks Are Displayed
For better performance, only the English language is listed for the LocaleList property in the
System MBean Browser in Oracle Enterprise Manager Fusion Middleware Control. If you
want to display the task title, category, and subcategory in other languages or add other
languages, you must change the required language locale in the System MBean Browser.

Note:

You should add all languages at the very beginning. If you add another language
later, then any tasks previously written in other languages no longer appear in the
worklist. For example, if the previously specified language was English, and you
later added French, then any tasks written before you added French no longer
appear in the worklist.

To add or change a language:

1. In Oracle Enterprise Manager Fusion Middleware Control, right-click soa-infra in the
navigator, select Administration, then select System MBean Browser.

2. Expand the following in sequence: Application Defined MBeans; then
oracle.as.soainfra.config; then Server: server_name; then WorkflowConfig.

3. Click human-workflow.

To change the language:

a. In the Name column, click LocaleList.

b. In the Value field, click the value.

c. In the Name column, click Language.

d. In the Value field, change en to the language value to use.

e. Click Apply.

To add additional languages:

a. Click the Operations tab.

b. In the Name column, click createLocale.

c. In the Value field, enter a value. For better performance, ensure that you include only
the languages that you need for task title, category, and subcategory.

d. Click Invoke.

32.13.4 How To Change the Language Preferences from a JAZN XML File
In the JAZN XML file, change the portion in bold to set the user's preferred language.

Chapter 32
Accessing Oracle BPM Worklist in Local Languages and Time Zones

32-81

<preferredLanguage>en</preferredLanguage>

Oracle BPM Worklist supports the languages shown in Table 32-13.

Table 32-13 Languages Supported in Oracle BPM Worklist

Language Format

English (en)

French (fr)

German (de)

Spanish (International) (es)

Italian (it)

Portuguese (Brazil) (pt-BR)

Japanese (ja)

Korean (ko)

Chinese (Traditional) (zh-TW)

Chinese (Simplified) (zh-CN)

Arabic (ar)

Czech (cs)

Danish (da)

Dutch (nl)

Finnish (fi)

Greek (el)

Hebrew (he)

Hungarian (hu)

Norwegian (no)

Polish (po)

Portuguese (pt)

Romanian (ro)

Russian (ru)

Slovak (sk)

Swedish (sv)

Thai (th)

Turkish (tr)

Canadian French (fr-CA)

32.13.5 What You May Need to Know Setting Display Languages in
Worklist

Oracle BPM Worklist can be configured to set the language from the browser or from
the identity store (LDAP). There are two levels to this setting: the application level and
the user level. If the user preference is set, as LDAP in the user setting, it takes
precedence in determining the worklist display language. If you do not set a language
in LDAP, worklist follows default language as server locale. However, email

Chapter 32
Accessing Oracle BPM Worklist in Local Languages and Time Zones

32-82

notifications always follow the language set in LDAP. If no language is set in LDAP, email
notifications follow server locale.

32.13.6 How To Change the Time Zone Used in the Worklist
The following is based on extracting a user's time zone from a JAZN XML file.

To change the time zone:

Change the string in bold to set the user's preferred time zone.

<timeZone>America/Los_Angeles</timeZone>

The format of the time zone string is Continent/Region. You can find the time zone values in
the $JAVA_HOME/jre/lib/zi directory. The directories specify the continent names, for
example Africa, Asia, America, and so on, while the files within the directories specify the
regions. Some regions include sub-regions, for example America/Indiana/Indianapolis.

32.14 Creating Reusable Worklist Regions
Some features available in worklist are exposed as standalone reusable components that can
be embedded in any application.

Moreover, these standalone task flows provide many customizations through parameters that
enable you to build and customize a worklist application to meet requirements. All of the task
flows are bundled in an ADF library that can be included in the embedding application.

32.14.1 How to Create an Application With an Embedded Reusable
Worklist Region

The usage of each reusable worklist region is the same with a few exceptions. The following
procedure provides the detailed steps to create an application and embed the Task List task
flow in the application. Where applicable, notes on how to use other types of reusable
worklist regions are provided.

To create an application with an embedded reusable worklist region:

1. Create new Fusion Web Application in Oracle JDeveloper. In this example, the name of
the application is TaskListTaskFlowSample. Figure 32-65 provides details.

Chapter 32
Creating Reusable Worklist Regions

32-83

Figure 32-65 Creation of Application with an Embedded Reusable Worklist
Region

2. Open the View Controller Project Properties, Libraries and Classpath section,
and click Add Library to add the following libraries in the class path:

• BPM Worklist Components Add this library to add the task flow JAR
adflibTaskListTaskFlow.jar and adflibWorklistComponents.jar, which
are required in the project's class path.

• BPM Services

• WSRP Container

Figure 32-66 provides details.

Chapter 32
Creating Reusable Worklist Regions

32-84

Figure 32-66 Libraries and Classpath Section

3. If your application runs on non-SOA server, you must perform two additional steps.

a. Install the oracle.soa.workflow shared library.

If your server has oracle.soa.workflow.wc already installed, you do not need to
install oracle.soa.workflow.

b. Configure a foreign JNDI on the server.

If you run the Task List task flow in federated mode, you do not need to do this step.
See "federatedMode" in section What You May Need to Know About Task List Task
Flow for information about how to use the task flow in federated mode.

4. Select the View Controller project and choose File > New > Current Project
Technologies > Web Tier > JSF Page to create a jspx file (for example,
testSample.jspx).

Be sure to select Create as XML document (*.jspx) in the Create JSF Page dialog.

5. Choose adflibTaskListTaskFlow.jar from the Components window. It contains the list
of all the Task Flows and Regions. Figure 32-67 provides details.

Chapter 32
Creating Reusable Worklist Regions

32-85

Figure 32-67 Components Window

6. Drag and drop one of the task flow Regions to the jspx page, and select Region in
the Create menu (for example, taskList-task-flow-definition for Task List Task
Flow).

See the following sections for details about the task flow definitions:

• What You May Need to Know About Task List Task Flow

• What You May Need to Know About Certificates Task Flow

• What You May Need to Know About the Reports Task Flow

• What You May Need to Know About Application Preferences Task Flow

• What You May Need to Know About Mapped Attributes Task Flow

• What You May Need to Know About Rules Task Flow

• What You May Need to Know About Approval Groups Task Flow

• What You May Need to Know About Task Configuration Task Flow

7. If you chose flex-fields-task-flow-definition, rules-task-flow-definition,
tasklist-reports-task-flow-definition, or taskList-task-flow-definition, pass the
task flow parameters in the Edit Task Flow Binding dialog that appears.

8. A new entry is added to the pagenamePagedef.xml file.

For example, adding the taskList-task-flow-definition results in the following new
entry:

<taskFlow id="taskListtaskflowdefinition1"
 taskFlowId="/WEB-INF/taskList-task-flow-definition.xml#taskList-
task- flow-definition"
 xmlns="http://xmlns.oracle.com/adf/controller/binding">
 <parameters>
 <parameter id="taskFlowMode" value="MODE_WORKLIST"/>
 <parameter id="showTaskDetailsPanel" value="true"/>
 <parameter id="showActionDropdown" value="true"/>
 <parameter id="showViewFilter" value="true"/>
 <parameter id="showStatusFilter" value="true"/>
 <parameter id="showSearchControl" value="true"/>
 </parameters>
</taskFlow>

9. Add the shared libraries in the weblogic-application.xml file. If you have
oracle.soa.workflow.wc installed on your server, add that library.

Chapter 32
Creating Reusable Worklist Regions

32-86

 <library-ref>
 <library-name>oracle.soa.workflow</library-name>
 </library-ref>

If the generated custom application is a module, use weblogic.xml.

 <library-ref>
 <library-name>oracle.soa.worklist.webapp</library-name>
 </library-ref>

Before deploying the application, see How to Set Up the Deployment Profile.

32.14.2 How to Set Up the Deployment Profile
Before deploying the application, you must edit the deployment profile.

To edit the deployment profile

1. Select the View Controller project and choose File > New > General > Deployment
Profiles, select WAR File, and click OK.

2. Select WEB-INF/lib > Filters, and check adflibTaskListTaskFlow.jar,
adflibWorklistComponents.jar and wsrp-container.jar.

32.14.3 How to Prepare Federated Mode Task Flows For Deployment
If you are using the task flow in federated mode, you must pass the list of federated servers
to the task flow. See "federatedMode" in section What You May Need to Know About Task
List Task Flow for details.

If the task flow is used in the federated mode, then enable global trust between the federated
servers. This is done so that the already authenticated user token is passed to all the
federated servers passed.

Do the below steps for all the federated servers and restart all the servers. It is very important
that you restart all the servers.

To restart the servers:

1. Login to the Oracle Weblogic Server console.

2. Select the domain name soainfra under Domain Structures. The domain name may be
different if a SOA server is not used.

3. Select the Security tab.

4. Select the Advanced link (near the bottom Save button).

5. Enter a password in the Credential field. (The same password must be given for all the
federated servers).

6. Click Save.

7. Restart the server.

Chapter 32
Creating Reusable Worklist Regions

32-87

32.14.4 What You May Need to Know About Task List Task Flow
The Task List task flow takes in the parameters to control the display behavior of the
embedded region. Figure 32-68 provides details.

Figure 32-68 Task List

Some of the parameters are listed below.

• federatedMode

• federatedServers

• showServerColumn

• wfCtxID

federatedMode

If this is passed as true, the task list is shown in the federated mode. To run the task
flow in federated mode, the list of federated servers must be passed to the task flow.
You can pass the federated servers list to the task flow in one of the following two
ways.

• Provide the client configuration file wf_client_config.xml in the class path (APP-
INF\classes\wf_client_config.xml at the EAR level, or the WEB-INF\classes of
the web application). The client configuration file contains all federated server
details.

• Construct a JAXB object, which contains the federated servers list. This JAXB
object can be passed to the task flow through the federatedServers parameter.
See "federatedServers" below for information about constructing the JAXB object.

Chapter 32
Creating Reusable Worklist Regions

32-88

If both the client configuration file (wf_client_config.xml) and the JAXB object were
provided to the task flow, the JAXB object takes the precedence.

federatedServers

This parameter is a JAXB object that contains the list of servers if the task flow is run in
federated mode. This parameter takes precedence over the client configuration file
(wf_client_config.xml) if it were also provided. See the code sample below for details
about constructing the JAXB object (WorkflowServicesClientConfigurationType).

Make sure that you set one of the servers as default, as shown in the code sample below.
Only one server is required to be designated as the default. Also, verify that the server you
designate as the default is excluded from the federated servers list. The relevant code for
doing this is in bold in the example.

The default server is used when you have many servers defined in wf_client_config.xml or
in the JAXB object, but the workflow client is desired for a single server. There are a few
legacy APIs that do not take a server name as a parameter. To support such legacy APIs,
your must define a single server as the default server, otherwise any legacy APIs that do not
take a server name do not work.

import oracle.bpel.services.workflow.client.config.IdentityPropagationType;
import oracle.bpel.services.workflow.client.config.PolicyReferenceType;
import oracle.bpel.services.workflow.client.config.PolicyReferencesType;
import oracle.bpel.services.workflow.client.config.RemoteClientType;
import oracle.bpel.services.workflow.client.config.ServerType;
import oracle.bpel.services.workflow.client.config.SoapClientType;
import
oracle.bpel.services.workflow.client.config.WorkflowServicesClientConfigurationType;

WorkflowServicesClientConfigurationType wscct =
 new WorkflowServicesClientConfigurationType();

List<ServerType> servers = wscct.getServer();

/**** Setting default server in the list ****/

ServerType defalutServer = new ServerType();
servers.add(defalutServer);

defalutServer.setDefault(true);
defalutServer.setExcludeFromFederatedList(true);
defalutServer.setName("default");

RemoteClientType rct = new RemoteClientType();
rct.setServerURL("t3://myhost.us.example.com:7001");
rct.setInitialContextFactory("weblogic.jndi.WLInitialContextFactory");
rct.setParticipateInClientTransaction(false);
defalutServer.setRemoteClient(rct);

SoapClientType sct = new SoapClientType();
PolicyReferencesType prts = new PolicyReferencesType();

PolicyReferenceType prt = new PolicyReferenceType();
prt.setEnabled(true);
prt.setCategory("security");
prt.setUri("oracle/wss10_saml_token_client_policy");
prts.getPolicyReference().add(prt);

IdentityPropagationType ipt = new IdentityPropagationType();

Chapter 32
Creating Reusable Worklist Regions

32-89

ipt.setMode("dynamic");
ipt.setType("saml");
ipt.setPolicyReferences(prts);

sct.setRootEndPointURL("http://myhost.us.example.com:7001");
sct.setIdentityPropagation(ipt);

defalutServer.setSoapClient(sct);

/****** Setting Federated Server 1 to the list ****/

ServerType server1 = new ServerType();
servers.add(server1);
server1.setName("Human Resource");

RemoteClientType rct1 = new RemoteClientType();
rct1.setServerURL("t3://myhost.us.example.com:7001");
rct1.setInitialContextFactory("weblogic.jndi.WLInitialContextFactory");
rct1.setParticipateInClientTransaction(false);
server1.setRemoteClient(rct1);

SoapClientType sct1 = new SoapClientType();
PolicyReferencesType prts1 = new PolicyReferencesType();

PolicyReferenceType prt1 = new PolicyReferenceType();
prt1.setEnabled(true);
prt1.setCategory("security");
prt1.setUri("oracle/wss10_saml_token_client_policy");
prts1.getPolicyReference().add(prt1);
IdentityPropagationType ipt1 = new IdentityPropagationType();
ipt1.setMode("dynamic");
ipt1.setType("saml");
ipt1.setPolicyReferences(prts1);

sct1.setRootEndPointURL("http://myhost.us.example.com:7001");
sct1.setIdentityPropagation(ipt1);

server1.setSoapClient(sct1);

/****** Setting Federated Server 2 to the list ****/

ServerType server2 = new ServerType();
servers.add(server2);
server2.setName("Financials");

RemoteClientType rct2 = new RemoteClientType();
rct2.setServerURL("t3://myhost.us.example.com:7001");
rct2.setInitialContextFactory("weblogic.jndi.WLInitialContextFactory");
rct2.setParticipateInClientTransaction(false);
server2.setRemoteClient(rct2);

SoapClientType sct2 = new SoapClientType();
PolicyReferencesType prts2 = new PolicyReferencesType();

PolicyReferenceType prt2 = new PolicyReferenceType();
prt2.setEnabled(true);
prt2.setCategory("security");
prt2.setUri("oracle/wss10_saml_token_client_policy");
prts2.getPolicyReference().add(prt2);

IdentityPropagationType ipt2 = new IdentityPropagationType();

Chapter 32
Creating Reusable Worklist Regions

32-90

ipt2.setMode("dynamic");
ipt2.setType("saml");
ipt2.setPolicyReferences(prts2);

sct2.setRootEndPointURL("http://myhost.us.example.com:7001");
sct2.setIdentityPropagation(ipt2);

server2.setSoapClient(sct2);

showServerColumn

If the task flow is run in federated mode, the server column in the task list is not shown by
default. The server column is shown if this parameter is passed as true, otherwise it is not.

wfCtxID

This is a workflow context token string. It is used to create workflow context inside the task
flow. If the application is SSO-enabled, or it is secured using ADF security, this parameter is
not required, otherwise this is a required parameter. You can get the workflow context ID as
shown in the code sample below:

IWorkflowContext wfCtx =
wfSvcClient.getTaskQueryService().authenticate(username,password,realm,null);
wfCtxID = wfCtx.getToken();

32.14.5 What You May Need to Know About Certificates Task Flow
The user can upload the certificate to use to sign a decision, as shown in the following
graphic. When signing a task outcome using your certificate, you must upload the entire
chain of certificates through Oracle BPM Worklist as a .P7B (PKCS7 format) file, not only the
one certificate issued to you by the certificate issuer.

A digital certificate contains the digital signature of the certificate-issuing authority, so that
anyone can verify that the certificate is real. A digital certificate establishes the participant's
credentials. It is issued by a certification authority (CA). It contains your name, a serial
number, expiration dates, a copy of the certificate holder's public key (used for encrypting
messages and digital signatures), and the digital signature of the certificate-issuing authority,
so that a recipient can verify that the certificate is real.

Certificates task flow does not have any parameters. Figure 32-69 provides details.

Chapter 32
Creating Reusable Worklist Regions

32-91

Figure 32-69 Digital Certificate

32.14.6 What You May Need to Know About the Reports Task Flow
Figure 32-70 shows the unattended tasks report.

Figure 32-70 Unattended Tasks Report

The following worklist reports are available for task analysis.

Unattended Tasks

Unattended Tasks provides an analysis of tasks assigned to users' groups or
reportees' groups that have not yet been acquired (the "unattended" tasks).

Chapter 32
Creating Reusable Worklist Regions

32-92

• Assignee -This option (required) selects tasks assigned to the user's group (My Group),
tasks assigned to the reportee's groups (Reportees), tasks where the user is a creator
(Creator), or tasks where the user is an owner (Owner).

• Creation Date - An optional date range

• Expiration Date - An optional date range

• Task State - The state (optional) can by Any, Assigned, Expired, or Information
Requested.

• Priority - The priority (optional) can be Any, Highest, High, Normal, Low, or Lowest.

Tasks Priority

Tasks Priority provides an analysis of the number of tasks assigned to a user, reportees, or
their groups, broken down by priority.

• Assignee - Depending on the assignee that you select, this required option includes
tasks assigned to the logged-in user (My), tasks assigned to the user and groups that the
user belongs to (My & Group), or tasks assigned to groups to which the user's reportees
belong (Reportees).

• Creation Date - An optional date range

• Ended Date - An optional date range for the end dates of the tasks to be included in the
report.

• Priority - The priority (optional) can be Any, Highest, High, Normal, Low, or Lowest.

Tasks Cycle Time

Tasks Cycle Time provides an analysis of the time taken to complete tasks from assignment
to completion based on users' groups or reportees' groups.

• Assignee - Depending on the assignee that you select, this required option includes your
tasks (My) or tasks assigned to groups to which your reportees belong (Reportees).

• Creation Date - An optional date range

• Ended Date - An optional date range for the end dates of the tasks to be included in the
report.

• Priority - The priority (optional) can be Any, Highest, High, Normal, Low, or Lowest.

Tasks Productivity

Tasks Productivity provides an analysis of assigned tasks and completed tasks in a given
time period for a user, reportees, or their groups.

• Assignee - Depending on the assignee that the user selects, this required option
includes the user's tasks (My & Group) or tasks assigned to groups to which the user's
reportees belong (Reportees).

• Creation Date (range) - An optional creation date range. The default is one week.

• Task Type - Use the Search (flashlight) icon to select from a list of task titles. All versions
of a task are listed on the Select Workflow Task Type page (optional).

Tasks Time Distribution

Tasks Time Distribution provides the time an assignee takes to perform a task.

• Assignee - Depending on the assignee that the user selects, this required option
includes the user's tasks (My & Group) or tasks assigned to groups to which the user's
reportees belong (Reportees).

Chapter 32
Creating Reusable Worklist Regions

32-93

• From...to (date range) - An optional creation date range. The default is one week.

• Task Type - Use the Search (flashlight) icon to select from a list of task titles. All
versions of a task are listed on the Select Workflow Task Type page (optional).

32.14.7 What You May Need to Know About Application Preferences
Task Flow

Application preferences customize the appearance of the worklist. Administrators can
specify the following:

• Login page realm label-If the identity service is configured with multiple realms,
then the Oracle BPM Worklist login page displays a list of realm names.
LABEL_LOGIN_REALM specifies the resource bundle key used to look up the label to
display these realms. The term realm can be changed to fit the user community.
Terms such as country, company, division, or department may be more
appropriate. Administrators can customize the resource bundle, specify a resource
key for this string, and then set this parameter to point to the resource key.

• Global branding icon-This is the image displayed in the top left corner of every
page of the worklist. (The Oracle logo is the default.) Administrators can provide
a .gif, .png, or .jpg file for the logo. This file must be in the public_html
directory.

• Resource bundle-An application resource bundle provides the strings displayed
in the worklist. By default, this is the class at
oracle.bpel.worklistapp.resource.WorklistResourceBundle. Figure 32-71
provides details.

Chapter 32
Creating Reusable Worklist Regions

32-94

Figure 32-71 Application Preferences

32.14.8 What You May Need to Know About Mapped Attributes Task Flow
Human workflow mapped attributes store and query use case-specific custom attributes.
These custom attributes typically come from the task payload values. Storing custom
attributes in mapped attributes provides the following benefits:

• They can be displayed as a column in the task listing.

• They can filter tasks in custom views and advanced searches.

• They can be used for a keyword-based search.

For example the Requester, PurchaseOrderID, and Amount fields in a purchase order
request payload of a task can be stored in the mapped attributes. An approver logging into
Oracle BPM Worklist can see these fields as column values in the task list and decide which
task to access. The user can define views that filter tasks based on the mapped attributes.

For example, a user can create views for purchase order approvals based on different
amount ranges. If the user must also retrieve tasks at some point related to a specific
requester or a purchase order ID, they can specify this in the keyword field and perform a
search to retrieve the relevant tasks. Figure 32-72 provides details.

Chapter 32
Creating Reusable Worklist Regions

32-95

Figure 32-72 Mapped Attribute Mapping

32.14.9 What You May Need to Know About Rules Task Flow
Rules act on tasks, either a specific task type, or all the tasks assigned to a user or
group. The graphic below shows where you set rules, including vacation rules.

A rule cannot always apply in all circumstances in which it is used. For example, if a
rule applies to multiple task types, it may not be possible to set the outcome for all
tasks, since different tasks can have different outcomes.

Rules are executed in the order in which they are listed. Rules can be reordered by
using the up and down buttons in the header. If a rule meets its filter conditions, then it
is executed and no other rules are evaluated. For your rule to execute, you must be
the only user assigned to that task. If the task is assigned to multiple users (including
you), the rule does not execute.

The showOtherUsersRules parameter takes a boolean value. When it is passed as
True other users' rules are displayed, and when it is passed as False other users'
rules are not shown. In addition, this user has to have required permission to view
other user rules. Figure 32-73 and Figure 32-74 provide details.

Chapter 32
Creating Reusable Worklist Regions

32-96

Figure 32-73 Vacation Period

Figure 32-74 My Rule

Chapter 32
Creating Reusable Worklist Regions

32-97

32.14.10 What You May Need to Know About Approval Groups Task
Flow

Approval groups are either a statically defined or a dynamically generated list of
approvers. Approval groups usually are configured by the process owner using the
worklist application. Typically, they are used to model subject matter experts outside
the transaction's managerial chain of authority, such as human resources or legal
counsel, that must act on a task before or after management approval.

Static approval groups are predetermined lists of approvers, while dynamic approval
groups generate approver lists at runtime. Dynamic approval groups require:

• delivery of an implementation according to the dynamic approver list interface by
the developer

• registration of the implementation as a dynamic approval group using the Oracle
BPM Worklist's UI by the IT department

• availability of the class file in a globally well-known directory that is part of the SOA
class path

32.14.11 What You May Need to Know About Task Configuration Task
Flow

Task Configuration is a web-based application in Worklist Application that enables
business users and administrators to review and modify rules that were predefined by
the workflow designer. These predefined rules can be changed for a specific customer
based on the customer's applicable corporate policies.

For example, suppose that a corporate policy requires two levels of approvals for
expense amounts greater than 1000. Suppose further that this policy is changed to
require three levels. You can use Task Configuration to change the rule rather than
having your IT department modify the rule in the underlying process and then deploy it
again. Any change to the rule is applied starting with the next instance, and instances
already in progress use the current rule definitions.

Task Configuration enables you to edit the event driven and data-driven rules
associated with an approval flow at runtime—that is, when the workflow has already
been deployed.

32.15 Java Code for Enabling Customized Applications in
Oracle BPM Worklist

Given below is the Java Code for Enabling Customized Applications in Oracle BPM
Worklist.

How to Enable Customized Applications and Links explained how to specify a custom
application by using the Application Preferences page of Oracle BPM Worklist. The
Java code for performing this specification is as follows:

package view.customisationimpl;
import java.util.ArrayList;
import java.util.HashMap;

Chapter 32
Java Code for Enabling Customized Applications in Oracle BPM Worklist

32-98

import java.util.List;
import java.util.Map;

import oracle.bpel.services.workflow.client.IWorkflowServiceClient;
import oracle.bpel.services.workflow.runtimeconfig.IRuntimeConfigService;
import oracle.bpel.services.workflow.runtimeconfig.model.AttributeLabelType;
import oracle.bpel.services.workflow.runtimeconfig.model.AttributeLabelUsageList;
import oracle.bpel.services.workflow.runtimeconfig.model.AttributeLabelUsages;
import oracle.bpel.services.workflow.verification.IWorkflowContext;
import oracle.bpm.ui.customization.CustomLink;
import oracle.bpm.ui.customization.IBPMUICustomizations;

public class WorkspaceCustomisationImpl implements IBPMUICustomizations {
 private static Map displayNameMap = new HashMap();
 public WorkspaceCustomisationImpl() {
 displayNameMap.put("instanceId", "Instance Id");
 displayNameMap.put("protectedTextAttribute1", "Business Status");
 }
 public List<CustomLink> getCustomGlobalLinks() {
 CustomLink globalLink1 =
 new CustomLink("Oracle Home Page", "www.oracle.com", null);
 CustomLink globalLink2 =
 new CustomLink("Self Services Application", "http://global-
ebusiness.example.com/",
 null);
 CustomLink globalLink3 =
 new CustomLink("BUG DB", "https://bug.example.com/", null);
 List<CustomLink> globalLinks = new ArrayList<CustomLink>();
 globalLinks.add(globalLink1);
 globalLinks.add(globalLink2);
 globalLinks.add(globalLink3);
 return globalLinks;
 }
 public String getColumnNames() {
 return "title,taskNumber,instanceId,creator,protectedTextAttribute1";
 }

 private static void initDisplayMap(IWorkflowServiceClient client,
 IWorkflowContext context) {
 // you can use service to load all label namess for text attributes
 if (displayNameMap == null) {
 synchronized (String.class) {
 if (displayNameMap == null) {
 displayNameMap = new HashMap();
 try {
 IRuntimeConfigService service =
 client.getRuntimeConfigService();
 AttributeLabelUsageList list =
 service.getAttributeLabelUsages(context, "Text");
 List<AttributeLabelUsages> list1 =
 list.getAttributeLabelUsages();
 for (AttributeLabelUsages usage : list1) {
 AttributeLabelType type = usage.getLabel();
 displayNameMap.put(type.getTaskAttribute(),
 type.getLabelName());
 }
 } catch (Exception exc) {
 }
 }
 }
 }

Chapter 32
Java Code for Enabling Customized Applications in Oracle BPM Worklist

32-99

 }

 public String getColumnDisplayName(IWorkflowServiceClient client,
 IWorkflowContext context,
 java.lang.String colName) {
 initDisplayMap(client, context);
 return (String)displayNameMap.get(colName);
 }
}

Chapter 32
Java Code for Enabling Customized Applications in Oracle BPM Worklist

32-100

33
Building a Custom Worklist Client

Learn how, starting with the sample Oracle BPM Worklist, a developer can build clients for
workflow services by using the APIs exposed by the workflow service. The APIs enable
clients to communicate with the workflow service by using remote EJBs, SOAP, and HTTP.

• Introduction to Building Clients for Workflow Services

• Packages and Classes for Building Clients

• Workflow Service Clients

• Class Paths for Clients Using SOAP

• Class Paths for Clients Using Remote EJBs

• Initiating a Task

• Changing Workflow Standard View Definitions

• Writing a Worklist Application Using the HelpDeskUI Sample

33.1 Introduction to Building Clients for Workflow Services
When creating a Java client application to call Human Workflow service, ensure that JRF is
running on the same environment as the Java client application.

The typical sequence of calls when building a simple worklist application is as follows.

To build a simple worklist application:

1. Get a handle to IWorklistServiceClient from WorkflowServiceClientFactory.

2. Get a handle to ITaskQueryService from IWorklistServiceClient.

3. Authenticate a user by passing a username and password to the authenticate method on
ITaskQueryService. Get a handle to IWorkflowContext.

4. Query the list of tasks using ITaskQueryService.

5. Get a handle to ITaskService from IWorklistServiceClient.

6. Iterate over the list of tasks returned, performing actions on the tasks using
ITaskService.

The code sample below demonstrates how to build a client for workflow services. A list of all
tasks assigned to jstein is queried. A task whose outcome has not been set is approved.

try
{
 //Create JAVA WorflowServiceClient
 IWorkflowServiceClient wfSvcClient = WorkflowServiceClientFactory.getWorkflowServiceClient(
 WorkflowServiceClientFactory.REMOTE_CLIENT);
 //Get the task query service
 ITaskQueryService querySvc = wfSvcClient.getTaskQueryService();

 //Login as jstein

33-1

 IWorkflowContext ctx = querySvc.authenticate("jstein","welcome1".toCharArry(),null);
 //Set up list of columns to query
 List queryColumns = new ArrayList();
 queryColumns.add("TASKID");
 queryColumns.add("TASKNUMBER");
 queryColumns.add("TITLE");
 queryColumns.add("OUTCOME");

 //Query a list of tasks assigned to jstein
 List tasks = querySvc.queryTasks(ctx,
 queryColumns,
 null, //Do not query additional info
 ITaskQueryService.AssignmentFilter.MY,
 null, //No keywords
 null, //No custom predicate
 null, //No special ordering
 0, //Do not page the query result
 0);
 //Get the task service
 ITaskService taskSvc = wfSvcClient.getTaskService();
 //Loop over the tasks, outputting task information, and approving any
 //tasks whose outcome has not been set...
 for(int i = 0 ; i < tasks.size() ; i ++)
 {
 Task task = (Task)tasks.get(i);
 int taskNumber = task.getSystemAttributes().getTaskNumber();
 String title = task.getTitle();
 String taskId = task.getSystemAttributes().getTaskId();
 String outcome = task.getSystemAttributes().getOutcome();
 if(outcome == null)
 {
 outcome = "APPROVE";
 taskSvc.updateTaskOutcome(ctx,taskId,outcome);
 }
 System.out.println("Task #"+taskNumber+" ("+title+") is "+outcome);
 }

}
catch (Exception e)
{
 //Handle any exceptions raised here...
 System.out.println("Caught workflow exception: "+e.getMessage());
}

33.2 Packages and Classes for Building Clients
Use the following packages and classes for building clients.

• oracle.bpel.services.workflow.metadata.config.model
The classes in this package contain the object model for the workflow
configuration in the task definition file. The ObjectFactory class can create
objects.

• oracle.bpel.services.workflow.metadata.routingslip.model
The classes in this package contain the object model for the routing slip. The
ObjectFactory class can create objects.

• oracle.bpel.services.workflow.metadata.taskdisplay.model

Chapter 33
Packages and Classes for Building Clients

33-2

The classes in this package contain the object model for the task display. The
ObjectFactory class can create objects.

• oracle.bpel.services.workflow.metadata.taskdefinition.model
The classes in this package contain the object model for the task definition file. The
ObjectFactory class can create objects.

• oracle.bpel.services.workflow.client.IWorkflowServiceClient
The interface for the workflow service client.

• oracle.bpel.services.workflow.client.WorkflowServiceClientFactory
The factory for creating the workflow service client.

• oracle.bpel.services.workflow.metadata.ITaskMetadataService
The interface for the task metadata service.

• oracle.bpel.services.workflow.task.ITaskService
The interface for the task service.

• oracle.bpel.services.workflow.task.IRoutingSlipCallback
The interface for the callback class to receive callbacks during task processing.

• oracle.bpel.services.workflow.task.IAssignmentService
The interface for the assignment service.

33.3 Workflow Service Clients
Any worklist application accesses the various workflow services through the workflow service
client. The workflow service client code encapsulates all the logic required for communicating
with the workflow services using different local and remote protocols. After the worklist
application has an instance of the workflow service client, it does not need to consider how
the client communicates with the workflow services.

The advantages of using the client are as follows:

• Hides the complexity of the underlying connection mechanisms such as SOAP/HTTP and
Enterprise JavaBeans

• Facilitates changing from using one particular invocation mechanism to another, for
example from SOAP/HTTP to remote Enterprise JavaBeans

The following class is used to create instances of the IWorkflowServiceClient interface:

oracle.bpel.services.workflow.client.WorkflowServiceClientFactory

WorkflowServiceClientFactory has several methods that create workflow clients. The
simplest method, getWorkflowServiceClient, takes a single parameter, the client type. The
client type can be one of the following:

• WorkflowServiceClientFactory.REMOTE_CLIENT—The client uses a remote Enterprise
JavaBeans interface to invoke workflow services located remotely from the client.

• WorkflowServiceClientFactory.SOAP_CLIENT—The client uses SOAP to invoke web
service interfaces to the workflow services, located remotely from the client.

Chapter 33
Workflow Service Clients

33-3

The other factory methods enable you to specify the connection properties directly
(rather than having the factory load them from the wf_client_config.xml file), and
enable you to specify a logger to log client activity.

The following enhancements to the workflow service clients are included in this
release:

• You can specify the workflow client configuration using either a JAXB object or a
map, as shown in example 1 and 2 below:

Example 1

WorkflowServicesClientConfigurationType wscct = new
WorkflowServicesClientConfigurationType();
 List<ServerType> servers = wscct.getServer();
 ServerType server = new ServerType();
 server.setDefault(true);
 server.setName(serverName);
 servers.add(server);

 RemoteClientType rct = new RemoteClientType();
 rct.setServerURL("t3://stapj73:7001");
 rct.setUserName("weblogic");
 rct.setPassword("weblogic"));
 rct.setInitialContextFactory("weblogic.jndi.WLInitialContextFactory");
 rct.setParticipateInClientTransaction(false);
 server.setRemoteClient(rct);
 IWorkflowServiceClient wfSvcClient =
WorkflowServiceClientFactory.getWorkflowServiceClient(
 WorkflowServiceClientFactory.REMOTE_CLIENT, wscct,
logger);

Example 2

Map<IWorkflowServiceClientConstants.CONNECTION_PROPERTY,java.lang.String> properties = new
 HashMap<IWorkflowServiceClientConstants.CONNECTION_PROPERTY,java.lang.String>();

properties.put(IWorkflowServiceClientConstants.CONNECTION_PROPERTY.MODE,
 IWorkflowServiceClientConstants.MODE_DYNAMIC);

properties.put(IWorkflowServiceClientConstants.CONNECTION_PROPERTY.SOAP_END_POINT_ROOT,
 "http://localhost:8888");

IWorkflowServiceClient client =

WorkflowServiceClientFactory.getWorkflowServiceClient(WorkflowServiceClientFactory.SOAP_CLIEN
T,
 properties, null);

• Clients can optionally pass in a java.util.logging.Logger where the client logs
messages. If no logger is specified, then the workflow service client code does not
log anything. The code sample below shows how a logger can be passed to the
workflow service clients:

java.util.logging.Logger logger =;

IWorkflowServiceClient client =

WorkflowServiceClientFactory.getWorkflowServiceClient(WorkflowServiceClientFactory.REMOTE_CLI
ENT,
 properties, logger);

Chapter 33
Workflow Service Clients

33-4

Through the factory, it is possible to get the client libraries for all the workflow services. See
Table 34-1 for the clients available for each of the services.

You can obtain instances of BPMIdentityService and BPMIdentityConfigService by calling
the getSOAPIdentityServiceClient and getSOAPIdentityConfigServiceClient methods on
WorkflowServiceClientFactory. You can obtain all other services through an instance of
IWorkflowServiceClient.

The client classes use the configuration file wf_client_config.xml for the service endpoints.
In the client class path, this file is in the class path directly, meaning the containing directory
is in the class path. The wf_client_config.xml file contains:

• A section for remote clients, as shown in the code sample below:

<remoteClient>
 <serverURL>t3://hostname.domain_name:7001</serverURL>
 <userName>weblogic</userName>
 <password>weblogic</password>
 <initialContextFactory>weblogic.jndi.WLInitialContextFactory
 </initialContextFactory>
 <participateInClientTransaction>false</participateInClientTransaction>
</remoteClient>

• A section for SOAP endpoints for each of the services, as shown in the code sample
below:

<soapClient>
 <rootEndPointURL>http://hostname.domain_name:7001</rootEndPointURL>
 <identityPropagation mode="dynamic" type="saml">
 <policy-references>
 <policy-reference enabled="true" category="security"
 uri="oracle/wss10_saml_token_client_policy"/>
 </policy-references>
 </identityPropagation>
</soapClient>

The workflow client configuration XML schema definition is in the wf_client_config.xsd file.

33.3.1 The IWorkflowServiceClient Interface
The IWorkflowServiceClient interface provides methods, summarized in Table 33-1, for
obtaining handles to the various workflow services interfaces.

Table 33-1 IWorkflowServiceClient Methods

Method Interface

getTaskService oracle.bpel.services.workflow.task.ITaskService

getTaskQueryService oracle.bpel.services.workflow.query.ITaskQueryService

getTaskReportService oracle.bpel.services.workflow.report.ITaskReportService

getTaskMetadataService oracle.bpel.services.workflow.metadata.ITaskMetadataService

Chapter 33
Workflow Service Clients

33-5

Table 33-1 (Cont.) IWorkflowServiceClient Methods

Method Interface

getUserMetadataService oracle.bpel.services.workflow.user.IUserMetadataService

getRuntimeConfigService oracle.bpel.services.workflow.runtimeconfig.IRuntimeConfigService

getTaskEvidenceService oracle.bpel.services.workflow.metadata.ITaskMetadataService

33.4 Class Paths for Clients Using SOAP
SOAP clients must have the following JAR files in their class path.

$SOA_HOME/soa/modules/oracle.bpm.client_11.1.1/
 oracle.bpm.bpm-services.client.jar
 oracle.bpm.bpm-services.interface.jar
 oracle.bpm.client.jar
 oracle.bpm.web-resources.jar

$SOA_HOME/soa/modules/oracle.bpm.project_11.1.1/
 oracle.bpm.project.catalog.jar
 oracle.bpm.project.draw.jar
 oracle.bpm.project.jar
 oracle.bpm.project.model.jar

$SOA_HOME/soa/modules/oracle.bpm.runtime_11.1.1/
 oracle.bpm.bpm-services.implementation.jar
 oracle.bpm.bpm-services.internal.jar
 oracle.bpm.core.jar
 oracle.bpm.lib.jar
 oracle.bpm.metadata.jar
 oracle.bpm.metadata-interface.jar
 oracle.bpm.papi.jar
 oracle.bpm.xml.jar

$SOA_HOME/soa/modules/oracle.soa.fabric_11.1.1/
 fabric-runtime.jar
 bpm-infra.jar

$SOA_HOME/soa/modules/oracle.soa.workflow_11.1.1/
 bpm-services.jar
 bpm-workflow-datacontrol.jar

$SOA_HOME/soa/modules/
 soa-startup.jar

$MW_HOME/oracle_common/modules/oracle.webservices_11.1.1/
 wsclient.jar

$MW_HOME/oracle_common/modules/oracle.jrf_11.1.1/

Chapter 33
Class Paths for Clients Using SOAP

33-6

 jrf-api.jar

$MW_HOME/wlserver_10.3/server/lib/
 wlthint3client.jar

${bea.home}/wlserver/server/lib/
 wlfullclient.jar

$ORACLE_HOME/soa/plugins/jdeveloper/external/
 oracle.external.soa.jrf-wsclient-extended.jar

${bea.home}/oracle_common/module/clients/
 com.oracle.webservices.wls.jaxws-owsm-client_12.1.3.jar

You can generate the wlfullclient.jar file using the commands shown in the code sample
below:

cd ${bea.home}/wlserver/server/lib
java -jar ../../../modules/com.bea.core.jarbuilder_2.2.0.0.jar

Note:

Client applications no longer use the system\services\config or
system\services\schema directories in the class path.

33.5 Class Paths for Clients Using Remote EJBs
Clients using remote EJBs must have the following JAR files in their class path.

• wlfullclient.jar
• oracle.external.soa.jrf-wsclient-extended.jar
• wlclient.jar
• xmlparserv2.jar
• xml.jar
• bpm-infra.jar
• bpm-services.jar
• fabric-runtime.jar

Note:

Client applications no longer use the system\services\config or
system\services\schema directories in the class path.

Chapter 33
Class Paths for Clients Using Remote EJBs

33-7

33.6 Initiating a Task
Tasks can be initiated programmatically.

Set the following task attributes:

• taskDefinitionId
• title
• payload
• priority
The following task attributes are optional, but are typically set by clients:

• creator
• ownerUser—Defaults to bpeladmin if empty

• processInfo
• identificationKey—Tasks can be queried based on the identification key from

the TaskQueryService.

33.6.1 Creating a Task
The task object model is available in the package

oracle.bpel.services.workflow.task.model

To create objects in this model, use the ObjectFactory class.

33.6.2 Creating a Payload Element in a Task
The task payload can contain multiple payload message attributes. Since the payload
is not well defined until the task definition, the Java object model for the task does not
contain strong type objects for the client payload. The task payload is represented by
the AnyType Java object. The AnyType Java object is created with an XML element
whose root is payload in the namespace

http://xmlns.oracle.com/bpel/workflow/task

The payload XML element contains all the other XML elements in it. Each XML
element defines a message attribute.

The code sample below shows how to set a task payload:

import oracle.bpel.services.workflow.task.model.AnyType;
import oracle.bpel.services.workflow.task.model.ObjectFactory;
import oracle.bpel.services.workflow.task.model.Task;
..........

Document document = //createXMLDocument
Element payloadElem = document.createElementNS("http://xmlns.oracle.com/bpel/workflow/
 task", "payload");
Element orderElem = document.createElementNS("http://xmlns.oracle.com/pcbpel/test/order",
"order");
Element child = document.createElementNS("http://xmlns.oracle.com/pcbpel/test/order", "id");

Chapter 33
Initiating a Task

33-8

 child.appendChild(document.createTextNode("1234567"));
 orderElem.appendChild(child);
 payloadElem.appendChild(orderElem);
 document.appendChild(payloadElem);

 task.setPayloadAsElement(payloadElem);

Note:

The AnyType.getContent() element returns an unmodifiable list of XML elements.
You cannot add other message attributes to the list.

33.6.3 Initiating a Task Programmatically
The code sample below shows how to initiate a vacation request task programmatically:

 // create task object
 ObjectFactory objectFactory = new ObjectFactory();
 Task task = objectFactory.createTask();

 // set title
 task.setTitle("Vacation request for jcooper");

 // set creator
 task.setCreator("jcooper");

// set taskDefinitionId. taskDefinitionId is the target
// namespace of the task
// If namespace is used, the active version of the composite corresponding
// to that of the namespace will be used.
task.setTaskDefinitionId("http://xmlns.oracle.com/VacationRequest/
Project1/Humantask1"); (Your task definition ID will be different.)

 // create and set payload
 Document document = XMLUtil.createDocument();
 Element payloadElem = document.createElementNS(TASK_NS, "payload");
 Element vacationRequestElem = document.createElementNS(VACATION_REQUEST_NS,
 "VacationRequestProcessRequest");

 Element creatorChild = document.createElementNS(VACATION_REQUEST_NS, "creator");
 creatorChild.appendChild(document.createTextNode("jcooper"));
 vacationRequestElem.appendChild(creatorChild);

 Element fromDateChild = document.createElementNS(VACATION_REQUEST_NS, "fromDate");
 fromDateChild.appendChild(document.createTextNode("2006-08-05T12:00:00"));
 vacationRequestElem.appendChild(fromDateChild);

 Element toDateChild = document.createElementNS(VACATION_REQUEST_NS, "toDate");
 toDateChild.appendChild(document.createTextNode("2006-08-08T12:00:00"));
 vacationRequestElem.appendChild(toDateChild);

 Element reasonChild = document.createElementNS(VACATION_REQUEST_NS, "reason");
 reasonChild.appendChild(document.createTextNode("Hunting"));
 vacationRequestElem.appendChild(reasonChild);

 payloadElem.appendChild(vacationRequestElem);
 document.appendChild(payloadElem);

Chapter 33
Initiating a Task

33-9

 task.setPayloadAsElement(payloadElem);

 IWorkflowServiceClient workflowServiceClient =
 WorkflowServiceClientFactory.getWorkflowServiceClient
 (WorkflowServiceClientFactory.SOAP_CLIENT);
 ITaskService taskService = workflowServiceClient.getTaskService();
 IInitiateTaskResponse iInitiateTaskResponse = taskService.initiateTask(task);
 Task retTask = iInitiateTaskResponse.getTask();
 System.out.println("Initiated: " + retTask.getSystemAttributes().getTaskNumber() + " - " +
 retTask.getSystemAttributes().getTaskId());
 return retTask;

33.7 Changing Workflow Standard View Definitions
The worklist application and the UserMetadataService API provide methods that you
can use to create, update, and delete standard views.

See User Metadata Service for more information.

33.8 Writing a Worklist Application Using the HelpDeskUI
Sample

Learn how to modify the help desk interface that is part of the HelpDeskRequest
demo.

To write a worklist application

1. Create the workflow context by authenticating the user.

// get workflow service client
 IWorkflowServiceClient wfSvcClient =
 WorkflowServiceClientFactory.getWorkflowServiceClient
 (WorkflowServiceClientFactory.REMOTE_CLIENT);

//get the workflow context
IWorkflowContext wfCtx =
wfSvcClient.getTaskQueryService().authenticate(userId, pwd, null);

This is Step 3 in Introduction to Building Clients for Workflow Services.

The login.jsp file of HelpDeskRequest uses the preceding API to authenticate
the user and create a workflow context. After the user is authenticated, the
statusPage.jsp file displays the tasks assigned to the logged-in user. This
example shows sample code from the login.jsp file.

<%@ page import="javax.servlet.http.HttpSession"
 import="oracle.bpel.services.workflow.client.IWorkflowServiceClient"
 import="oracle.bpel.services.workflow.client.WorkflowServiceClientFactory"
 import="java.util.Set"
 import="java.util.Iterator"
 import="oracle.bpel.services.workflow.verification.IWorkflowContext"
 import="oracle.tip.pc.services.identity.config.ISConfiguration"%>
<%@ page contentType="text/html;charset=windows-1252"%>

<html>
<head>

Chapter 33
Changing Workflow Standard View Definitions

33-10

<title>Help desk request login page</title>
<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1">
</head>

<body bgcolor="#F0F0F0" text="#000000" style="font: 12px verdana; line-height:18px">
<center>
<div style="width:640px;padding:15px;border-width: 10px; border-color: #87b4d9; border-style:
 solid;
background-color:white; text-align:left">

 <!-- Page Header, Application banner, logo + user status -->
 <jsp:include page="banner.jsp"/>

 <!-- Initiate Meta Information -->

 <div style="background-color:#F0F0F0; border-top:10px solid white;border-bottom:
 10px solid white;padding:10px;text-align:center" >
 Welcome to the HelpDesk application
 </div>

 <%
 String redirectPrefix = "/HelpDeskUI/";
 // Ask the browser not to cache the page
 response.setHeader("Pragma", "no-cache");
 response.setHeader("Cache-Control", "no-cache");

 HttpSession httpSession = request.getSession(false);
 if (httpSession != null) {

 IWorkflowContext ctx = (IWorkflowContext) httpSession.getAttribute("workflowContext");
 if (ctx != null) {
 response.sendRedirect(redirectPrefix + "statusPage.jsp");
 }
 else
 {
 String authFailedStr = request.getParameter("authFailed");
 boolean authFailed = false;
 if ("true".equals(authFailedStr))
 {
 authFailed = true;
 }
 else
 {
 authFailed = false;
 }

 if (!authFailed)
 {
 //Get page parameters:
 String userId="";
 if(request.getParameter("userId") != null)
 {
 userId = request.getParameter("userId");
 }
 String pwd="";
 if(request.getParameter("pwd") != null)
 {
 pwd = request.getParameter("pwd");
 }

 if(userId != null && (!("".equals(userId.trim())))

Chapter 33
Writing a Worklist Application Using the HelpDeskUI Sample

33-11

 && pwd != null && (!("".equals(pwd.trim()))))
 {
 try {
 HttpSession userSession = request.getSession(true);

 IWorkflowServiceClient wfSvcClient =
 WorkflowServiceClientFactory.getWorkflowServiceClient
 (WorkflowServiceClientFactory.REMOTE_CLIENT);
 IWorkflowContext wfCtx =
 wfSvcClient.getTaskQueryService().authenticate(userId, pwd,
null);
 httpSession.setAttribute("workflowContext", wfCtx);
 response.sendRedirect(redirectPrefix + "statusPage.jsp");
 }
 catch (Exception e)
 {
 String worklistServiceError = e.getMessage();
 response.sendRedirect(redirectPrefix + "login.jsp?authFailed=true");
 out.println("error is " + worklistServiceError);
 }
 }
 } else
 {
 out.println("Authentication failed");
 }
 }
 }
 %>

 <form action='<%= request.getRequestURI() %>' method="post">
 <div style="width:100%">
 <table cellspacing="2" cellpadding="3" border="0" width="30%" align="center">
 <tr>
 <td>Username
 </td>
 <td>
 <input type="text" name="userId"/>
 </td>
 </tr>
 <tr>
 <td>Password
 </td>
 <td>
 <input type="password" name="pwd"/>
 </td>
 </tr>
 <tr>
 <td>
 <input type="submit" value="Submit"/>
 </td>
 </tr>
 </table>
 </form>
 </div>
</div>
</center>
 </body>
</html>

2. Query tasks using the queryTask API from TaskQueryService.

Chapter 33
Writing a Worklist Application Using the HelpDeskUI Sample

33-12

//add list of attributes to be queried from the task
List displayColumns = new ArrayList();
 displayColumns.add("TASKNUMBER");
 displayColumns.add("TITLE");
 displayColumns.add("PRIORITY");
 displayColumns.add("STATE");
 displayColumns.add("UPDATEDDATE");
 displayColumns.add("UPDATEDBY");
 displayColumns.add("CREATOR");
 displayColumns.add("OUTCOME");
 displayColumns.add("CREATEDDATE");
 displayColumns.add("ASSIGNEEUSERS");
 displayColumns.add("ASSIGNEEGROUPS");
 // get the list of tasks
 List tasks = wfSvcClient.getTaskQueryService().queryTasks
 (wfCtx,
 displayColumns,
 null,
 ITaskQueryService.AssignmentFilter.MY_AND_GROUP,
 null,
 null,
 null,
 0,
 0);
 // create listing page by using above tasks
 //add href links to title to display details of the task by passing taskId
 as input parameter
 Use getTaskDetailsById(IWorkflowContext wftx, String taskId);

This is Step 4 in Introduction to Building Clients for Workflow Services.

The statusPage.jsp file of HelpDeskRequest is used to display the status of help desk
requests. The code sample below shows the statusPage.jsp.

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"
"http://www.w3.org/TR/html4/loose.dtd">
<%@ page import="oracle.tip.pc.services.identity.BPMAuthorizationService,
 oracle.bpel.services.workflow.verification.IWorkflowContext,
 oracle.tip.pc.services.common.ServiceFactory,
 oracle.bpel.services.workflow.client.IWorkflowServiceClient,
 oracle.bpel.services.workflow.client.WorkflowServiceClientFactory,
 oracle.bpel.services.workflow.query.ITaskQueryService,
 oracle.bpel.services.workflow.task.model.Task,
 oracle.bpel.services.workflow.task.model.IdentityType,
 oracle.tip.pc.services.identity.BPMUser,
 java.util.List,
 java.util.Calendar,
 java.text.SimpleDateFormat,
 java.util.ArrayList"%>
<%@ page contentType="text/html;charset=UTF-8"%>
<html>
 <head>
 <meta http-equiv="Content-Type" content="text/html; charset=UTF-8"/>
 <title>RequestPage</title>
 <style TYPE="text/css">
 Body, Form, Table, Textarea, Select, Input, Option
 {
 font-family : tahoma, verdana, arial, helvetica, sans-serif;
 font-size : 9pt;
 }
 table.banner

Chapter 33
Writing a Worklist Application Using the HelpDeskUI Sample

33-13

 {
 background-color: #eaeff5;
 }
 tr.userInfo
 {
 background-color: #eaeff5;
 }
 tr.problemInfo
 {
 background-color: #87b4d9;
 }
 </style>
 </head>
 <body bgcolor="White">
 <%
 HttpSession httpSession = request.getSession(false);
 httpSession.setAttribute("pageType","STATUSPAGE");
 %>
 <table bordercolor="#eaeff5" border="4" width="100%">
 <tr><td> <jsp:include page="banner.jsp"/> </td></tr>
 </table>
 <%
 BPMUser bpmUser = null;
 String redirectPrefix = request.getContextPath() + "/";
 IWorkflowContext ctx = null;
 if (httpSession != null) {

 ctx = (IWorkflowContext) httpSession.getAttribute("workflowContext");
 if (ctx != null) {
 bpmUser = getAuthorizationService(ctx.getIdentityContext()).
 lookupUser(ctx.getUser());
 }
 else
 {
 response.sendRedirect(redirectPrefix + "login.jsp");
 return;
 }
 }
 else
 {
 response.sendRedirect(redirectPrefix + "login.jsp");
 return;
 }
 if(bpmUser == null)
 {
 response.sendRedirect(redirectPrefix + "login.jsp");
 return;
 }
 String status = (String)httpSession.getAttribute("requeststatus");
 if(status != null && !status.equals(""))
 {
 %>
 <p></p>
 <div style="text-align:left;color:red" >
 <%= status %>
 </div>
 <%
 }
 httpSession.setAttribute("requeststatus",null);
 IWorkflowServiceClient wfSvcClient =
 WorkflowServiceClientFactory.getWorkflowServiceClient(

Chapter 33
Writing a Worklist Application Using the HelpDeskUI Sample

33-14

 WorkflowServiceClientFactory.REMOTE_CLIENT);
 List displayColumns = new ArrayList();
 displayColumns.add("TASKNUMBER");
 displayColumns.add("TITLE");
 displayColumns.add("PRIORITY");
 displayColumns.add("STATE");
 displayColumns.add("UPDATEDDATE");
 displayColumns.add("UPDATEDBY");
 displayColumns.add("CREATOR");
 displayColumns.add("OUTCOME");
 displayColumns.add("CREATEDDATE");
 displayColumns.add("ASSIGNEEUSERS");
 displayColumns.add("ASSIGNEEGROUPS");
 List tasks = wfSvcClient.getTaskQueryService().queryTasks
 (ctx,
 displayColumns,
 null,
 ITaskQueryService.ASSIGNMENT_FILTER_CREATOR,
 null,
 null,
 null,
 0,
 0);
 %>
 <p></p>
 <div style="text-align:left;color:green" >

 Previous help desk request

 </div>
 <p></p>
 <div style="text-align:center" >
 <table cellspacing="2" cellpadding="2" border="3" width="100%">
 <TR class="problemInfo">
 <TH>TaskNumber</TH>
 <TH>Title</TH>
 <TH>Priority</TH>
 <TH>CreatedDate</TH>
 <TH>Assignee(s)</TH>
 <TH>UpdatedDate</TH>
 <TH>UpdatedBy</TH>
 <TH>State</TH>
 <TH>Status</TH>
 </TR>
 <%
 SimpleDateFormat dflong = new SimpleDateFormat("MM/dd/yy hh:mm a");
 for(int i = 0 ; i < tasks.size() ; i ++)
 {
 Task task = (Task)tasks.get(i);
 int taskNumber = task.getSystemAttributes().getTaskNumber();
 String title = task.getTitle();
 int priority = task.getPriority();
 String assignee = getAssigneeString(task);
 Calendar createdDate = task.getSystemAttributes().getCreatedDate();
 Calendar updateDate = task.getSystemAttributes().getUpdatedDate();
 String updatedBy = task.getSystemAttributes().getUpdatedBy().getId();
 String state = task.getSystemAttributes().getState();
 String outcome = task.getSystemAttributes().getOutcome();
 if(outcome == null) outcome = "";
 String titleLink = "http://" + request.getServerName() +
 ":" + request.getServerPort() +

Chapter 33
Writing a Worklist Application Using the HelpDeskUI Sample

33-15

 "/integration/worklistapp/TaskDetails?taskId=" +
 task.getSystemAttributes().getTaskId();
 %>
 <tr class="userInfo">
 <td><%=taskNumber%></td>
 <td><a href="<%=titleLink%>" target="_blank"><%=title%></td>
 <td><%=priority%></td>
 <td><%=dflong.format(createdDate.getTime())%></td>
 <td><%=assignee%></td>
 <td><%=dflong.format(updateDate.getTime())%></td>
 <td><%=updatedBy%></td>
 <td><%=state%></td>
 <td><%=outcome%></td>
 <tr>
 <%
 }
 %>
 </table>
 </div>
 <%!
 private BPMAuthorizationService getAuthorizationService(String identityContext)
 {
 BPMAuthorizationService authorizationService =
 ServiceFactory.getAuthorizationServiceInstance();
 if (identityContext != null)
 authorizationService =
ServiceFactory.getAuthorizationServiceInstance(identityContext);

 return authorizationService;
 }
 private String getAssigneeString(Task task) throws Exception
 {
 List assignees = task.getSystemAttributes().getAssigneeUsers();
 StringBuffer buffer = null;
 for(int i = 0 ; i < assignees.size() ; i++)
 {
 IdentityType type = (IdentityType)assignees.get(i);
 String name = type.getId();
 if(buffer == null)
 {
 buffer = new StringBuffer();
 }
 else
 {
 buffer.append(",");
 }
 buffer.append(name).append("(U)");
 }
 assignees = task.getSystemAttributes().getAssigneeGroups();
 for(int i = 0 ; i < assignees.size() ; i++)
 {
 IdentityType type = (IdentityType)assignees.get(i);
 String name = type.getId();
 if(buffer == null)
 {
 buffer = new StringBuffer();
 }
 else
 {
 buffer.append(",");
 }

Chapter 33
Writing a Worklist Application Using the HelpDeskUI Sample

33-16

 buffer.append(name).append("(G)");
 }
 if(buffer == null)
 {
 return "";
 }
 else
 {
 return buffer.toString();
 }
 }
 %>
 </body>
</html>

Chapter 33
Writing a Worklist Application Using the HelpDeskUI Sample

33-17

34
Understanding Human Workflow Services

Human workflow services in Oracle SOA Suite perform a variety of operations in the life cycle
of a task.

• Introduction to Human Workflow Services

• Notifications from Human Workflow

• Assignment Service Configuration

• Class Loading for Callbacks and Resource Bundles

• Resource Bundles in Workflow Services

• Introduction to Human Workflow Client Integration with Oracle WebLogic Server Services

• Task States in a Human Task

• Database Views for Oracle Workflow

Note:

In earlier releases (prior to 11g (11.1.1.4)), Oracle BPM Worklist included a feature
known as flex fields, which are now known as mapped attributes.

34.1 Introduction to Human Workflow Services
Learn about human workflow services.

• SOAP, Enterprise JavaBeans, and Java Support for the Human Workflow Services

• Security Model for Services

• Task Service

• Task Query Service

• Identity Service

• Task Metadata Service

• User Metadata Service

• Task Report Service

• Runtime Config Service

• Evidence Store Service and Digital Signatures

• Task Instance Attributes

34-1

34.1.1 SOAP, Enterprise JavaBeans, and Java Support for the Human
Workflow Services

Table 34-1 lists the type of Simple Object Access Protocol (SOAP), Enterprise
JavaBeans, and Java support provided for the task services. Most human workflow
services are accessible through SOAP and remote Enterprise JavaBeans APIs. You
can use these services directly by using appropriate client proxies. Additionally, the
client libraries are provided to abstract out the protocol details and provide a common
interface for all transports.

Table 34-1 Enterprise JavaBeans, SOAP, and Java Support

Service Name Supports SOAP
Web Services

Supports
Remote
Enterprise
JavaBeans

Task Service: Provides task state management and
persistence of tasks. In addition to these services, the task
service exposes operations to update a task, complete a
task, escalate and reassign tasks, and so on.

Yes Yes

Task Query Service: Queries tasks for a user based on a
variety of search criteria such as keyword, category, status,
business process, attribute values, history information of a
task, and so on.

Yes Yes

Identity Service: Enables authentication of users and the
lookup of user properties, roles, group memberships, and
privileges.

Yes No

Task Metadata Service: Exposes operations to retrieve
metadata information related to a task.

Yes Yes

User Metadata Service: Manages metadata related to
workflow users, such as user work queues, preferences,
vacation, and delegation rules.

Yes Yes

Task Reports Service: Provides workflow report details. Yes Yes

Runtime Config Service: Provides methods for managing
metadata used in the task service runtime environment.

Yes Yes

Evidence Store Service: Supports storage and
nonrepudiation of digitally-signed workflow tasks.

Yes Yes

Table 34-2 lists the location for the SOAP Web Services Description Language
(WSDL) file for each task service.

Table 34-2 SOAP WSDL Location for the Task Services

Service name SOAP WSDL location

Task Service http://host:port/integration/services/TaskService/
TaskServicePort?WSDL

Task Query Service http://host:port/integration/services/
TaskQueryService/TaskQueryService?WSDL

Chapter 34
Introduction to Human Workflow Services

34-2

Table 34-2 (Cont.) SOAP WSDL Location for the Task Services

Service name SOAP WSDL location

Identity Service http://host:port/integration/services/
IdentityService/configuration?WSDL
http://host:port/integration/services/
IdentityService/identity?WSDL

Task Metadata Service http://host:port/integration/services/
TaskMetadataService/TaskMetadataServicePort?WSDL

User Metadata Service http://host:port/integration/services/
UserMetadataService/UserMetadataService?WSDL

Task Report Service http://host:port/integration/services/
TaskReportService/TaskReportServicePort?WSDL

Runtime Config Service http://host:port/integration/services/
RuntimeConfigService/RuntimeConfigService?WSDL

Evidence Store Service http://host:port/integration/services/
EvidenceService/EvidenceService?WSDL

Table 34-3 lists the JDNI names for the different Enterprise JavaBeans.

Table 34-3 JNDI Names for the Different Enterprise JavaBeans

Service name JNDI Names for the Different Enterprise JavaBeans

Task Service ejb/bpel/services/workflow/TaskServiceBean
Task Service Enterprise
JavaBeans participating in
client transaction

ejb/bpel/services/workflow/
TaskServiceGlobalTransactionBean

Task Metadata Service ejb/bpel/services/workflow/TaskMetadataServiceBean
Task Query Service TaskQueryService
User Metadata Service UserMetadataService
Runtime Config Service RuntimeConfigService
Task Report Service TaskReportServiceBean
Task Evidence Service TaskEvidenceServiceBean

For more information about the client library for worklist services, see Building a Custom
Worklist Client for details.

34.1.1.1 Support for Foreign JNDI Names
Human workflow services can be integrated with J2EE applications through web services and
remote method invocation (RMI). To simplify the remote lookup of Enterprise JavaBeans in
other managed servers and clusters or even other Oracle WebLogic Server domains, Oracle
WebLogic Server includes foreign JNDI providers that are configured with the remote server's
host and port to link Enterprise JavaBeans from that remote server into the local server's
JNDI trees.

Chapter 34
Introduction to Human Workflow Services

34-3

Workflow services expose the Enterprise JavaBeans listed in Table 34-3 that must all
be linked through the foreign JNDI providers to provide full support for the task query
service, ADF task flow for human task registration, and embedded worklist region use
cases.

To provide support for foreign JNDI names:

1. Log in to Oracle WebLogic Server Administration Console.

http://host:port/console
2. In the Domain Structure, select Services > JDBC > Foreign JNDI Providers.

There is one caveat when linking remote Enterprise JavaBeans names to the local
JNDI namespace through a foreign JNDI provider from a SOA server to a
managed server or cluster in the same Oracle WebLogic Server domain. The local
JNDI names are exposed to all of the managed servers within that domain. This
causes namespace collisions on the SOA server within that domain, which already
has those Enterprise JavaBeans registered from the Oracle BPM Worklist. An
alternative, which avoids collisions while keeping configuration to a minimum, is to
use JNDI suffixing. This is done by appending a consistent suffix to the end of all
the local JNDI links of the remote workflow Enterprise JavaBeans and creating a
simple wf_client_config.xml file that contains the suffix key.

There are different ways to define client properties. For more information, see
Configuration Option.

3. Append the JNDI suffix to each Enterprise JavaBeans name shown in Table 34-3
to register the foreign JNDI names.

• ejb/bpel/services/workflow/TaskServiceGlobalTransactionean_server1
• ejb/bpel/services/workflow/TaskServiceBean_server1
• ejb/bpel/services/workflow/TaskMetadataServiceBean_server1
• TaskQueryService_server1
• UserMetadataService_server1
• RuntimeConfigService_server1
• TaskReportServiceBean_server1
• TaskEvidenceServiceBean_server1

4. Define the remote name by specifying only the ejbJndiSuffix element value in
the wf_client_config.xml file, as shown in the code sample below. You can also
use the JAXB WorkflowServicesClientConfigurationType object or the
CONNECTION_PROPERTY.EJB_JNDI_SUFFIX in the Map<CONNECTION_PROPERTY,
String> properties.

<remoteClient>
 <ejbJndiSuffix>_server1</ejbJndiSuffix>
</remoteClient>

34.1.2 Security Model for Services
With the exception of the identity service, all services that use the above-mentioned
APIs (SOAP and remote Enterprise JavaBeans) require authentication to be invoked.
All the above channels support passing the user identity using the human workflow
context. The human workflow context contains either of the following:

Chapter 34
Introduction to Human Workflow Services

34-4

• Login and password

• Token

The task query service exposes the authenticate operation that takes the login and
password and returns the human workflow context used for all services. Optionally, with each
request, an administrator can pass the human workflow context with the login and password.

The authenticate operation also supports the concept of creating the context on behalf of a
user with the admin ID and admin password. This operation enables you to create the context
for a logged-in user to the Oracle BPM Worklist if the password for that user is not available.

Oracle recommends that you get the workflow context one time and use it everywhere. There
are performance implications for getting the workflow context for every request.

A realm is an identity service context from the identity configuration. The realm name can be
null if the default configuration is used.

34.1.2.1 Limitation on Propagating Identity to Workflow Services when Using SOAP
Web Services

Identity propagation is the replication of authenticated identities across multiple SOAP web
services used to complete a single transaction. SOAP web services also support web service
security. When web service security is used, the human workflow context does not need to be
present in the SOAP input. Web service security can be configured from Oracle Enterprise
Manager Fusion Middleware Control.

Note:

Human workflow SOAP clients have been enhanced to work with Security Assertion
Markup Language (SAML) token-based identity propagation when the web service
is secured.

34.1.2.2 Creating Human Workflow Context on Behalf of a User
The authenticateOnBehalfOf API method on the task query service can create the human
workflow context on behalf of a user by passing the user ID and password of an admin user
in the request. An admin user is a user with the workflow.admin privilege. This created
context is as if it was created using the password on behalf of the user.

This is useful for environments in which a back-end system acts on workflow tasks while
users act in their own system. There is no direct interaction with workflow services; the
system can use the on-behalf-of-user login to get a context for the user.

Chapter 34
Introduction to Human Workflow Services

34-5

Note:

Oracle recommends that you only use this feature for system operations.
This is because you must create an admin user context and then query for
the human workflow context created on behalf of the user. If you instead use
identity propagation, the user is already authenticated and the client can get
IWorkflowContext for the already authenticated user. For more information,
see Obtaining the Workflow Context for a User Previously Authenticated by a
JAAS Application.

In the code sample below, the human workflow context is created for user jcooper.

String adminUser = "...."
String adminPassword = "...."
String realm = "...."

IWorkflowContext adminCtx =
taskQueryService.authenticate(user,password.toCharArray(),realm);

IWorkflowContext behalfOfCtx =
 taskQueryService.authenticateOnBehalfOf(adminCtx,"jcooper");

34.1.2.3 Obtaining the Workflow Context for a User Previously Authenticated
by a JAAS Application

If the client wants to obtain the workflow context for a user previously authenticated by
a JAAS application, you can use identity propagation as shown in the code sample
below.

public IWorkflowContext getWorkflowContextForAuthenticatedUser() throws
WorkflowException;

This API returns a workflow context for the authenticated user if the client configures
the identity propagation for the appropriate client type. If the client type is remote,
Enterprise JavaBeans identity propagation is used with this method. If the client type is
SOAP, SAML token propagation is used with this method.

34.1.3 Task Service
The task service exposes operations to act on tasks. Table 34-4 describes some of the
common operations of the task service. Package
oracle.bpel.services.workflow.task corresponds to the task service.

For more information about task service, see Workflow Services Java API Reference
for Oracle SOA Suite.

Table 34-4 Task Service Methods

Method Description

acquireTask Acquire a task.

acquireTasks Acquire a set of tasks.

Chapter 34
Introduction to Human Workflow Services

34-6

Table 34-4 (Cont.) Task Service Methods

Method Description

addAttachment Add an attachment to a task.

Note: This API enables a client to call the API to add an
attachment before the creation of a task. If the task is not yet
created, then the client can call the API with taskId equals
NULL. However, because the attachment is uploaded before the
task is created, Oracle Workflow Services does not enable
multiple attachments with the same name to be added to the
pre-initiation of a task.

If a task is already created, then Oracle Workflow Services
keeps only the latest version of the attachment in case multiple
attachments have the same name.

addComment Add a comment to a task.

createToDoTask Create a to-do task.

delegateTask Delegate a task to a different user. Both the current assignee
and the user to whom the task is delegated can view and act on
the task.

delegateTasks Delegate a list of tasks to a different user. Both the current
assignee and the user to whom the list of tasks is delegated can
view and act on the tasks.

deleteTask Perform a logical deletion of a task. The task still exists in the
database.

deleteTasks Perform a logical deletion of a list of tasks. The tasks still exist
in the database.

errorTask Cause the task to error. This operation is typically used by the
error assignee.

escalateTask Escalate a task. The default escalation is to the manager of the
current user. This can be overridden using escalation functions.

escalateTasks Escalate tasks in bulk. The default escalation is to the manager
of the current user. This can be overridden using escalation
functions.

getApprovers Get the previous approvers of a task.

getFutureParticipants Get the future participants of a task. The future participants are
returned in the form of a routing slip that contains simple
participants (participant node and parallel nodes that contain
routing slips).

getUsersToRequestInfoFo
rTask

Get the users from whom a request for information can be
requested.

initiateTask Initiate a task.

mergeAndUpdateTask Merge and update a task. Use this operation when a partial task
should be updated. A partial task is one in which not all the task
attributes are present. In this partial task, only the following task
attributes are interpreted:

• Task payload
• Comments
• Task state
• Task outcome

Chapter 34
Introduction to Human Workflow Services

34-7

Table 34-4 (Cont.) Task Service Methods

Method Description

overrideRoutingSlip Override the routing slip of a task instance with a new routing
slip. The current task assignment is nullified and the new routing
slip is interpreted as its task is initiated.

purgeTask Remove a task from the persistent store.

purgeTasks Remove a list of tasks from the persistent store.

pushBackTask Push back a task to the previous approver or original assignees.
The original assignees do not need to be the approver, as they
may have reassigned the task, escalated the task, and so on.
The property PushbackAssignee in the System MBean
Browser of Oracle Enterprise Manager Fusion Middleware
Control controls whether the task is pushed back to the original
assignees or the approvers.

1. From the SOA Infrastructure menu, select
Administration > System MBean Browser.

2. Select Application Defined MBeans >
oracle.as.soainfra.config > Server: soa_server1 >
WorkflowConfig > human-workflow.

3. Click PushbackAssignee to view or change the value.

Note: Pushback is designed to work with single approvers and
not with group votes. Pushback from a stage with group vote (or
parallel) scenario to another stage is not allowed. Similarly, you
cannot push back from a single assignee to a group vote (or
parallel) scenario.

reassignTask Reassign a task.

reassignTasks Reassign tasks in bulk.

reinitiateTask Reinitiate a task. Reinitiating a task causes a previously
completed task to be carried forward so that the history,
comments, and attachments are carried forward in a new task.

releaseTask Release a previously acquired task.

releaseTasks Release a set of previously acquired tasks.

removeAttachment Remove a task attachment.

renewTask Renew a task to extend the time it takes to expire.

requestInfoForTask Request information for a task.

requestInfoForTaskWithR
eapproval

Request information for a task with reapproval. For example,
assume jcooper created a task and jstein and wfaulk
approved the task in the same order. When the next approver,
cdickens, requests information with reapproval from jcooper,
and jcooper submits the information, jstein and wfaulk
approve the task before it comes to cdickens. If cdickens
requests information with reapproval from jstein, and jstein
submits the information, wfaulk approves the task before it
comes to cdickens.

Chapter 34
Introduction to Human Workflow Services

34-8

Table 34-4 (Cont.) Task Service Methods

Method Description

resumeTask Resume a task. Operations can only be performed by the task
owners (or users with the BPMWorkflowSuspend privilege) to
remove the hold on a workflow. After a human workflow is
resumed, actions can be performed on the task.

resumeTasks Resume a set of tasks.

routeTask Allow a user to route the task in an ad hoc fashion to the next
user(s) who must review the task. The user can specify to route
the tasks in serial, parallel, or single assignment. Routing a task
is permitted only when the human workflow permits ad hoc
routing of the task.

skipCurrentAssignment Skip the current assignment and move to the next assignment
or pick the outcome as set by the previous approver if there are
no more assignees.

submitInfoForTask Submit information for a task. This action is typically performed
after the user has made the necessary updates to the task or
has added comments or attachments containing additional
information.

suspendTask Allow task owners (or users with the BPMWorkflowSuspend
privilege) to put a human workflow on hold temporarily. In this
case, task expiration and escalation do not apply until the
workflow is resumed. No actions are permitted on a task that
has been suspended (except resume and withdraw).

suspendTasks Suspend a set of tasks.

updateOutcomeOfTasks Update the outcome of a set of tasks.

updatePriority Update the priority of the task and its subtasks for the given
task ID. If UpdatePriorityType is INCREMENT then the task is
updated by incrementing the given priority by 1—that is, the
priority of the task is raised. If the UpdatePriorityType is
DECREMENT, then the task is updated by decrementing the
priority by 1—that is, the priority of the task is lowered,
otherwise the task is updated with the given priority.

updatePriorityOfTasks For bulk update of tasks. A list of tasks for which the priority
must be updated can be passed as a parameter to this API. The
priorities of the list of tasks is updated. It updates the priority of
the task and its subtasks.

updateTask Update the task.

updateTaskOutcome Update the task outcome.

updateTaskOutcomeAndRou
te

Update the task outcome and route the task. Routing a task
allows a user to route the task in an ad hoc fashion to the next
user(s) who must review the task. The user can specify to route
the tasks in serial, parallel, or single assignment. Routing a task
is permitted only when the human workflow permits ad hoc
routing of the task.

Chapter 34
Introduction to Human Workflow Services

34-9

Table 34-4 (Cont.) Task Service Methods

Method Description

withdrawTask The creator of the task can withdraw any pending task if they
are no longer interested in sending it further through the human
workflow. A task owner can also withdraw a task on behalf of
the creator. When a task is withdrawn, the business process is
called back with the state attribute of the task set to
Withdrawn.

withdrawTasks Withdraw a set of tasks.

For more information, see the following:

• Task Instance Attributes

• Workflow Services Java API Reference for Oracle SOA Suite

34.1.4 Task Query Service
The task query service queries tasks based on a variety of search criteria such as
keyword, category, status, business process, attribute values, historical information of
a task, and so on. Table 34-5 describes some of the common operations of the task
query service. Package oracle.bpel.services.workflow.query corresponds to the
task query service.

For more information about task query service, see Workflow Services Java API
Reference for Oracle SOA Suite.

Table 34-5 Task Query Service Methods

Method Description

authenticate Authenticates a user with the identity authentication service
and passes back a valid IWorkflowContext object.

authenticateOnBehalfOf Optionally makes authentication on behalf of another user.

countTasks Counts the number of tasks that match the specified query
criteria.

countViewTasks Counts the number of tasks that match the query criteria of the
specified view.

createContext Creates a valid IWorkflowContext object from a
preauthenticated HTTP request.

doesTaskExist Checks to see if any existing tasks match the specified query
criteria.

doesViewTaskExist Checks to see if any tasks exist match the query criteria of the
specified view.

getWorkflowContext Gets a human workflow context with the specified context
token.

destroyWorkflowContext Cleans up a human workflow context that is no longer needed.
This method is typically used when a user logs out.

getTaskDetailsById Gets the details of a specific task from the task's taskId
property.

Chapter 34
Introduction to Human Workflow Services

34-10

Table 34-5 (Cont.) Task Query Service Methods

Method Description

getTaskDetailsByNumber Gets the details of a specific task from the task's task number
property.

getTaskHistory Gets a list of the task versions for the specified task ID.

getTaskSequence Gets the task sequence tree of a task whose ID is a task ID, for
those type of sequences.

getTaskVersionDetails Gets the specific task version details for the specified task ID
and version number.

getWorkflowContextForAu
thenticatedUser

Gets the IWorkflowContext object for a user authenticated
by a JAAS application. Use this either with Enterprise
JavaBeans or SAML token identity propagation.

queryAggregatedTasks Executes the specified query, and aggregates a count of the
tasks returned by the query, grouped by the specified column.

queryTaskErrors Returns a list of task error objects matching the specified
predicate.

Chapter 34
Introduction to Human Workflow Services

34-11

Table 34-5 (Cont.) Task Query Service Methods

Method Description

queryTasks Returns a list of tasks that match the specified filter conditions.
Tasks are listed according to the ordering condition specified (if
any). The entire list of tasks matching the criteria can be
returned or clients can execute paging queries in which only a
specified number of tasks in the list are retrieved. The filter
conditions are as follows:

• assignmentFilter: Filters tasks according to whom the
task is assigned, or who created the task. Possible values
for the assignment filter are as follows:

ADMIN: No filtering; returns all tasks regardless of
assignment or creator.

ALL: No filtering; returns all tasks regardless of
assignment or creator.

CREATOR: Returns tasks in which the context user is the
creator.

GROUP: Returns tasks that are assigned to a group,
application role, or list of users of which the context user is
a member.

MY: Returns tasks that are assigned exclusively to the
context user.

MY_AND_GROUP: Returns tasks that are assigned
exclusively to the context user, or to a group, application
role, or list of users of which the context user is a member,
excluding any tasks that have been claimed by other
users.

MY_AND_GROUP_ALL: Returns tasks that are assigned
exclusively to the context user, or to a group, application
role, or list of users of which the context user is a member,
including any tasks that have been claimed by other users.

OWNER: Returns tasks in which the context user is the task
owner.

PREVIOUS: Returns tasks the context user previously
updated.

REPORTEES: Returns tasks that are assigned to reportees
of the context user.

REVIEWER: Returns tasks for which the context user is a
reviewer.

• keywords: An optional search string. This only returns
tasks in which the string is contained in the task title, task
identification key, or one of the task text mapped attributes
(formerly referred to as flex fields).

• predicate: An optional
oracle.bpel.services.workflow.repos.Predicate
object that allows clients to specify complex, SQL-like
query predicates.

queryViewAggregatedTask
s

Executes the query as defined in the specified view, and
aggregates the selected tasks according to the chart property
defined in the view.

Chapter 34
Introduction to Human Workflow Services

34-12

Table 34-5 (Cont.) Task Query Service Methods

Method Description

queryViewTasks Returns a list of tasks according to the criteria in the specified
view. The entire list or paged list of tasks can be returned.
Clients can specify additional filter and ordering criteria to
those in the view.

For more information, see the following:

• Task Instance Attributes

• Workflow Services Java API Reference for Oracle SOA Suite

34.1.5 Identity Service
The identity service is a thin web service layer on top of the Oracle WebLogic Server security
infrastructure, namely Oracle Identity Management and Oracle Platform Security Services
(OPSS), or any custom user repository. The identity service enables authentication of users
and the lookup of user properties, roles, group memberships, and privileges. Oracle Identity
Management is the sole identity service provider for Oracle WebLogic Server. Oracle Identity
Management handles all storage and retrieval of users and roles for various repositories,
including XML, LDAP, and so on. More specifically, Oracle Identity Management provides the
following features:

• All providers are supported through Oracle Identity Management. The OracleAS JAAS
Provider (JAZN) and LDAP providers are no longer supported. The custom provider is
deprecated and supported only for backward compatibility. All customization of providers
is performed through the custom provider to Oracle Identity Management, through
configuring Oracle Virtual Directory (OVD) as an LDAP provider to Oracle Identity
Management, or through both. OVD aggregates data across various repositories.

• The OPSS layer is used, which includes the following:

– Identity store

– Policy store

– Credential store

– Framework

For more information, see Securing Applications with Oracle Platform Security Services.
All security configuration is done through the jps-config.xml file.

• All privileges are validated against permissions, as compared to actions in previous
releases.

• The following set of application roles are defined. These roles are automatically defined
in the SOA Infrastructure application of the OPSS policy store.

– SOAAdmin: Grant this role to users who must perform administrative actions on any
SOA module. This role is also granted the BPMWorkflowAdmin and B2BAdmin roles.

– BPMWorkflowAdmin: Grant this role to users who must perform any workflow
administrative action. This includes actions such as searching and acting on any task
in the system, creating and modifying user and group rules, performing application
customization, and so on. This role is granted the BPMWorkflowCustomize role and
the following permissions:

Chapter 34
Introduction to Human Workflow Services

34-13

* workflow.mapping.protectedFlexField
* workflow.admin.evidenceStore
* workflow.admin

– BPMWorkflowCustomize: Grant this role to business users who must perform
mapped attributes (formally flex field) mapping to public mapped attributes.
This role is also granted the workflow.mapping.publicFlexField permission.

• The following workflow permissions are defined:

– workflow.admin: Controls who can perform administrative actions related to
tasks, user and group rules, and customizations.

– workflow.admin.evidenceStore: Controls who can view and search evidence
records related to digitally-signed tasks (tasks that require a signature with the
use of digital certificates).

– workflow.mapping.publicFlexField: Controls who can perform mapping of
task payload attributes to public mapped attributes.

– workflow.mapping.protectedFlexField: Controls who can perform mapping
of task payload attributes to protected mapped attributes.

Note:

You cannot specify multiple authentication providers for Oracle SOA Suite.
This is because OPSS does not support multiple providers. The provider to
use for human workflow authentication must be the first one listed in the
order of authentication providers for Oracle SOA Suite.

34.1.5.1 Identity Service Providers
Oracle Identity Management is the only supported provider for release 11g, as shown
in Figure 34-1.

Chapter 34
Introduction to Human Workflow Services

34-14

Figure 34-1 Identity Service Providers

34.1.5.1.1 Custom User Repository Plug-ins
Starting with release 11g, custom provider plug-ins in the identity service are not supported.
All identity customizations are now done in the identity store. Oracle Fusion Middleware
supports providers that enable the User and Role API to interact with custom identity stores.
For more information, visit the following URL:

http://www.oracle.com/technetwork/middleware/id-mgmt/overview/index.html

34.1.6 Task Metadata Service
The task metadata service exposes operations to retrieve metadata information related to a
task. Table 34-6 describes some of the common operations of task metadata service.
Package oracle.bpel.services.workflow.metadata corresponds to the task metadata
service.

For more information about the task metadata service, see Workflow Services Java API
Reference for Oracle SOA Suite.

Chapter 34
Introduction to Human Workflow Services

34-15

http://www.oracle.com/technetwork/middleware/id-mgmt/overview/index.html

Table 34-6 Task Metadata Service Methods

Method Description

getTaskMetadataByNames
pace

Gets the TaskMetadata object that describes the human task
service component with the specified task definition namespace
and composite version.

getOutcomes Gets the permitted outcomes of a task. The outcomes are
returned with their display values.

getResourceBundleInfo Gets the resource bundle information of the task. The resource
bundle information contains the location and the name of the
bundle.

getRestrictedActions Gets the actions that are restricted for a particular task.

getTaskAttributesForTa
skDefinitions

Gets a list of TaskAttribute objects that describe standard
task attributes and mapped attribute columns that are common
for the specified task definitions.

getTaskAttributesForTa
skNamespaces

Gets a list of TaskAttribute objects that describe standard
task attributes and mapped attribute columns that are common
for task definitions identified by the specified namespaces.

getTaskAttributes Gets the task message attributes.

getTaskAttributesForTa
skDefinition

Gets the message attributes for a particular task definition.

getTaskDefinition Gets the task definition associated with the task.

getTaskDefinitionById Gets the task definition by the task definition ID.

getTaskDefinitionOutco
me

Gets the outcomes given the task definition ID.

getTaskVisibilityRules Gets the task visibility rules.

getTaskDisplayRegion Gets the task display region for a task.

getVersionTrackedAttrs Gets the task attributes that when changed cause a task version
creation.

listTaskMetadata Lists the task definitions in the system.

34.1.7 User Metadata Service
The user metadata service provides methods for managing metadata specific to
individual users and groups. It is used for getting and setting user worklist preferences,
managing user custom views, and managing human workflow rules for users and
groups.

For most methods in the user metadata service, the authenticated user can query and
update their own user metadata. However, they cannot update metadata belonging to
other users.

In the case of group metadata (for example, human workflow rules for groups), only a
user designated as an owner of a group (or a user with the workflow.admin privilege)
can query and update the metadata for that group. However, a user with the
workflow.admin privilege can query and update metadata for any user or group.

Chapter 34
Introduction to Human Workflow Services

34-16

Table 34-7 describes some of the common operations of the user metadata service. Package
oracle.bpel.services.workflow.user corresponds to the user metadata service.

For more information about user metadata service, see Workflow Services Java API
Reference for Oracle SOA Suite.

Table 34-7 User Metadata Service Methods

Method Description

createRule Creates a new rule.

decreaseRulePriority Decreases the priority of a rule by one. This method does nothing if this
rule has the lowest priority.

deleteRule Deletes a rule.

getVacationInfo Retrieves the date range (if any) during which a user is unavailable for
the assignment of tasks.

getRuleDetail Gets the details for a particular human workflow rule.

getRuleList Retrieves a list of rules for a particular user or group.

updateRule Updates an existing rule.

increaseRulePriority Increases the priority of a rule by one. Rules for a user or group are
maintained in an ordered list of priority. Higher priority rules (those closer
to the head of the list) are executed before rules with lower priority. This
method does nothing if this rule has the highest priority.

getUserTaskViewList Gets a list of the user task views that the user owns.

getGrantedTaskViewList Gets a list of user task views that have been granted to the user by other
users. Users can use granted views for querying lists of tasks, but they
cannot update the view definition.

getStandardTaskViewLis
t

Gets a list of standard task views that ship with the human workflow
service, and are available to all users.

getUserTaskViewDetails Gets the details for a single view.

createUserTaskView Creates a new user task view.

updateUserTaskView Updates an existing user task view.

deleteUserTaskView Deletes a user task view.

updateGrantedTaskView Updates details of a view grant made to this user by another user.
Updates are limited to hiding or unhiding the view grant (hiding a view
means that the view is not listed in the main inbox page of Oracle BPM
Worklist), and changing the name and description that the granted user
sees for the view.

getUserPreferences Gets a list of user preferences for the user. User preferences are simple
name-value pairs of strings. User preferences are private to each user
(but can still be queried and updated by a user with the
workflow.admin privilege).

setUserPreferences Sets the user preference values for the user. Any preferences that were
previously stored and are not in the new list of user preferences are
deleted.

Chapter 34
Introduction to Human Workflow Services

34-17

Table 34-7 (Cont.) User Metadata Service Methods

Method Description

getPublicPreferences Gets a list of public preferences for the user. Public preferences are
similar to user preferences, except that any user can query them.
However, only the user that owns the preferences, or a user with the
workflow.admin privilege, can update them. Public preferences are
useful for storing application-wide preferences (preferences can be
stored under a dummy user name, such as MyAppPrefs).

setPublicPreferences Sets the public preferences for the user.

setVacationInfo Sets a date range over which the user is unavailable for the assignment
of tasks. (Dynamic assignment functions do not assign tasks to a user
that is on vacation.)

getStandardTaskViewDet
ails

Gets the full details for a particular standard view, identified by its
viewId.

For more information, see the following:

• Using Oracle BPM Worklist for details about the rule configuration and user
preference pages

• Workflow Services Java API Reference for Oracle SOA Suite

34.1.8 Task Report Service
The task report service executes a report and receives the results. Table 34-8 shows
the list of reports. Package oracle.bpel.services.workflow.report corresponds to
the task report service. The standard reports shown in Table 34-8 are available as part
of installation.

Table 34-8 Task Report Service

Report Description

Unattended tasks report Provides an analysis of tasks assigned to users' groups or
reportees' groups that require attention because they have not
yet been acquired.

Tasks priority report Provides an analysis of the number of tasks by priorities
assigned to a user, reportees, or their groups.

Tasks cycle time report Provides an analysis of time taken to complete tasks from
assignment to completion based on users' groups or reportees'
groups.

Tasks productivity report Provides an analysis of tasks assigned and tasks completed in a
given time period for a user, reportees, or their groups.

Tasks time distribution report Provides an analysis of time taken to complete their part of the
tasks for a given user, user's groups, or reportees in the given
time period.

Chapter 34
Introduction to Human Workflow Services

34-18

34.1.9 Runtime Config Service
The runtime config service provides methods for managing metadata used in the task service
runtime environment. It principally supports the management of task payload mapped
attribute mappings and the URIs used for displaying task details.

The task object used by the task service contains many mapped attributes, which can be
populated with information from the task payload. This allows the task payload information to
be queried, displayed in task listings, and used in human workflow rules.

The runtime config service provides methods for querying and updating the URI used for
displaying the task details of instances of a particular task definition in a client application. For
any given task definition, multiple display URIs can be supported, with different URIs being
used for different applications. The method getTaskDisplayInfo can query the URIs for a
particular task definition. The method setTaskDisplayInfo can define new URIs or update
existing ones. Only users with the workflow.admin privilege can call setTaskDisplayInfo,
but any authenticated user can call getTaskDisplayInfo.

The runtime config service allows administrators to create mappings between simple task
payload attributes and these mapped attributes.

Only a user with the workflow.mapping.publicFlexField or
workflow.mapping.protectedFlexField privilege can make updates to payload mappings
for public mapped attributes. Only a user with the workflow.mapping.protectedFlexField
privilege can make updates to payload mappings for protected mapped attributes. Any
authenticated user can use the query methods in this service.

An administrator can create attribute labels for the various mapped attributes. These attribute
labels provide a meaningful label for the attribute (for example, a label Location may be
created for the mapped attribute TextAttribute1). A given mapped attribute may have
multiple labels associated with it. This attribute label is what is displayed to users when
displaying lists of attributes for a specific task in Oracle BPM Worklist. The attribute labels for
a specific task type can be determined by calling the getTaskAttributesForTaskDefinition
method on the task metadata service.

When defining attribute labels, the following fields are automatically populated by the service.
You do not need to specify values for these attributes when creating or updating attribute
labels:

• Id
• CreatedDate
• WorkflowType
• Active
Valid values for the task attribute field for public mapped attributes are as follows:

• TextAttribute1 through TextAttribute20
• FormAttribute1 through FormAttribute10
• UrlAttribute1 through UrlAttribute10
• DateAttribute1 through DateAttribute10
• NumberAttribute1 through NumberAttribute10

Chapter 34
Introduction to Human Workflow Services

34-19

Mappings can then be created between task payload fields and the attribute labels.
For example, the payload field customerLocation can be mapped to the attribute label
Location. Different task types can share the same attribute label. This allows payload
attributes from different task types that have the same semantic meaning to be
mapped to the same attribute label.

Note:

Payload fields that are simple XML types can be mapped directly, or an
xpath expression can be specified to select a simple XML type value from a
complex payload field.

The runtime config service also provides the following:

• Methods for querying the dynamic assignment functions supported by the server

• Methods for maintaining the task display URLs used for displaying the task details
in Oracle BPM Worklist and other applications

• Methods for getting the server HTTP and JNDI URLs

Table 34-9 describes some of the common operations of the runtime config service.
Package oracle.bpel.services.workflow.runtimeconfig corresponds to the
runtime config service.

For more information about runtime config service, see Workflow Services Java API
Reference for Oracle SOA Suite.

Table 34-9 Runtime Config Service

Method Description

CreateAttributeLabel Creates a new attribute label for a particular task mapped
attribute.

createPayloadMapping Creates a new mapping between an attribute label and a task
payload field.

DeleteAttributeLabel Deletes an existing attribute label.

deletePayloadMapping Deletes an existing payload mapping.

getAttributeLabelUsage
s

Gets a list of attribute labels (either all attribute labels or labels
for a specific type of attribute) for which mapping (if any) the
labels are currently used.

getDynamicAssignmentFu
nctions

Returns a list of dynamic assignment functions that are
implemented on this server.

getTaskDisplayInfo Retrieves information relating to the URIs used for displaying
task instances of a specific task definition.

getTaskStatus Gets the status of a task instance corresponding to a particular
task definition and composite instance.

GetWorkflowPayloadMapp
ings

Gets a list of all the mapped attribute mappings for a particular
human workflow definition.

setTaskDisplayInfo Sets information relating to the URIs to be used for displaying
task instances of a specific task definition.

Chapter 34
Introduction to Human Workflow Services

34-20

Table 34-9 (Cont.) Runtime Config Service

Method Description

updateAttributeLabel Updates an existing attribute label.

For more information, see the following:

• Dynamic Assignment and Task Escalation Patterns

• Using Oracle BPM Worklist for details about mapped attribute mappings

• Workflow Services Java API Reference for Oracle SOA Suite

34.1.9.1 Internationalization of Attribute Labels
Attribute labels provide a method of attaching a meaningful label to a task mapped attribute.
It can be desirable to present attribute labels that are translated into the appropriate language
for the locale of the user.

To use a custom resource bundle, place it at the location identified by the workflow
configuration parameter workflowCustomClasspathURL (which can be a file or HTTP path).

This can be set in either of two places in Oracle Enterprise Manager Fusion Middleware
Control:

• System MBean Browser page

• Workflow Task Service Properties page

Entries for mapped attribute labels must be of the form:

FLEX_LABEL.[label name]=Label Display Name

For instance, the entry for a label named Location is:

FLEX_LABEL.Location=Location

Adding entries to these files for attribute labels is optional. If no entry is present in the file, the
name of the attribute label as specified using the API is used instead.

34.1.10 Evidence Store Service and Digital Signatures
The evidence store service is used for digital signature storage and nonrepudiation of
digitally-signed human workflows. A digital signature is an electronic signature that
authenticates the identity of a message sender or document signer. This ensures that the
original content of the message or document sent is unchanged. Digital signatures are
transportable, cannot be imitated by others, and are automatically time-stamped. The ability
to ensure that the original signed message arrived means that the sender cannot repudiate it
later. Digital signatures ensure that a human workflow document:

• Is authentic

• Has not been forged by another entity

• Has not been altered

• Cannot be repudiated by the sender

Chapter 34
Introduction to Human Workflow Services

34-21

A cryptographically-based digital signature is created when a public key algorithm
signs a sender's message with a sender's private key.

During design time, signatures are enabled for the task. During runtime in Oracle BPM
Worklist, when a user approves or rejects the task, the web browser:

• Asks the user to choose the private key to use for signing.

• Generates a digital signature using the private key and task content provided by
Oracle BPM Worklist.

Figure 34-2 provides an example.

Figure 34-2 Digital Signature and Certificate

Chapter 34
Introduction to Human Workflow Services

34-22

Note:

• The certificate refers to a Personal Information Exchange Syntax Standard
(PFX) file that includes a certificate and a private key, and is protected by a
simple text password. PFX specifies a portable format for storing or transporting
a user's private keys, certificates, miscellaneous secrets, and so on.

• The possession of a private key that corresponds to the public key of a
certificate is sufficient to sign the data, because the signature is verifiable
through the public key in the certificate. However, no attempt is made to
correlate the name of a user of a certificate with the person updating it. For
example, user jstein can sign using the private key of user cdickens if jstein
has that private key.

The following digital signature features are supported:

• PKCS7 signatures based on X.509 certificates

• Browser-based, digitally-signed content without attachments

34.1.10.1 Prerequisites
Prerequisites for using digital signatures and certificates are as follows:

• Users of the Oracle BPM Worklist must have certificates

• The administrator must specify the CAs and corresponding CRL URL whose certificates
must be trusted. Users are expected to upload only certificates issued by these CAs. This
is done by editing the System MBean Browser in Oracle Enterprise Manager Fusion
Middleware Control.

1. Log in to Oracle Enterprise Manager Fusion Middleware Control.

2. In the navigator, expand the SOA folder.

3. Right-click soa-infra, and select Administration > System Mbean Browser.

The System Mbean Browser displays on the right side of the page.

4. Expand Application Defined MBeans > oracle.as.soainfra.config > Server:
server_name > WorkflowConfig > human-workflow.

5. Click the Operations tab on the right side of the page.

6. Click addTrustedCA.

7. Provide values for caName and caURL. You must do this for each certificate in the
trust chain. For example, values provided for each invocation may look as shown in
Table 34-10.

Table 34-10 caName and caURL Values

caName caURL

CN = Intg, OU
=AppServ, O =Oracle,
C = US

http://www.oracle.com/
Integration%20CRL%20Data.crl

Chapter 34
Introduction to Human Workflow Services

34-23

Table 34-10 (Cont.) caName and caURL Values

caName caURL

CN = Intg1, OU
=AppServ, O =Oracle,
C = US

http://www.oracleindia.in.com/
Integration%20In.crl

CN = Intg2, OU
=AppServ, O =Oracle,
C = US

http://www.oracle.us.com/integration.crl

8. Click Invoke.

34.1.10.2 Interfaces and Methods
Table 34-11 through Table 34-14 describe the methods in the evidence store service.
Package oracle.bpel.services.security.evidence corresponds to the evidence
service.

Table 34-11 ITaskEvidenceService Interface

Method Description

createEvidence Creates evidence and stores it in the repository for
nonrepudiation.

getEvidence Gets a list of evidence matching the given criteria. The result
also depends on the privileges associated with the user querying
the service. If the user has been granted the
workflow.admin.evidenceStore permission (points to a
location detailing how to grant the permission), all matching
evidence is visible. Otherwise, only that evidence created by the
user is visible.

uploadCertificate Uploads certificates to be used later for signature verification.
This is a prerequisite for creating evidence using a given
certificate. A user can only upload their certificates.

updateEvidence Updates the CRL verification part of the status. This includes
verified time, status, and error messages, if any.

validateEvidenceSignat
ure

Validates the evidence signature. This essentially performs a
nonrepudiation check on the evidence. A value of true is
returned if the signature is verified. Otherwise, false is
returned.

Table 34-12 Evidence Interface

Method Description

getCertificate Gets the certificate used to sign this evidence.

getCreateDate Gets the creation date of the evidence.

getErrorMessage Gets the error message associated with the CRL validation.

getEvidenceId Gets the unique identifier associated with the evidence.

getPlainText Gets the content that was signed as part of this evidence.

Chapter 34
Introduction to Human Workflow Services

34-24

Table 34-12 (Cont.) Evidence Interface

Method Description

getPolicy Gets the signature policy of the evidence. This is either
PASSWORD or CERTIFICATE.

getSignature Gets the signature of this evidence.

getSignedDate Gets the date on which the signature was created.

getStatus Gets the CRL validation status. This can be one of the following:

• AVAILABLE: The evidence is available for CRL validation.

• FAILURE: CRL validation failed.

• SUCCESS: CRL validation succeeded.

• UNAVAILABLE: The CRL data could not be fetched.

• WAIT: CRL validation is in progress.

getTaskId Gets the unique identifier of the task with which this evidence is
associated.

getTaskNumber Gets the task number of the task with which this evidence is
associated.

getTaskPriority Gets the task priority of the task with which this evidence is
associated.

getTaskStatus Gets the task status of the task with which this evidence is
associated.

getTaskSubStatus Gets the task substatus of the task with which this evidence is
associated.

getTaskTitle Gets the title of the task with which this evidence is associated.

getTaskVersion Gets the version of the task with which this evidence is
associated.

getVerifiedDate Gets the date on which the CRL validation of the certificate used
was performed.

getWorkflowType Gets the workflow type of the task with which this evidence is
associated. This is typically BPELWF.

Table 34-13 Certificate Interface

Method Description

getCA Gets the certificate issuer's distinguished name (DN).

getCertificate Gets the certificate object that is abstracted by the interface.

getID Gets the certificate's serial number.

getIdentityContext Gets the identity context with which the uploader of this certificate is
associated.

getUserName Gets the user name with whom this certificate is associated.

isValid Returns true if the certificate is still valid.

Chapter 34
Introduction to Human Workflow Services

34-25

Table 34-14 Policy Type and Workflow Type Interface

Method Description

fromValue Constructs an object from the string representation.

value Returns the string representation of this object.

For more information, see the following:

• How to Specify a Workflow Digital Signature Policy for details about specifying
digital signatures and digital certificates in the Human Task Editor

• Designing Task Forms for Human Tasks for details about digitally signing a task
action in the Oracle BPM Worklist

34.1.11 Task Instance Attributes
A task is work that must be done by a user. When you create a task, you assign
humans to participate in and act upon the task. Table 34-15 describes the task
attributes that are commonly used and interpreted by applications.

Table 34-15 Task Attributes

Task Attribute Name Description

task/applicationContext The application with which any application roles associated
with this task (assignees, owners, and so on) belong.

task/category An optional category of the task.

task/creator The name of the creator of this task.

task/dueDate The due date for the task. This is used on to-do tasks.

task/identificationKey An optional, custom, unique identifier for the task. This can be
set as an additional unique identifier to the standard task ID
and task number. This key can retrieve a task based on
business object identifiers for which the task is created.

task/identityContext The identity realm under which the users and groups are
seeded. In a single realm environment, this defaults to the
default realm.

task/ownerGroup The group (if any) that owns this task instance. Task owners
can be application roles, users, or groups. If the owner of the
task is a group, this field is set.

task/ownerRole The application role (if any) that owns this task instance. Task
owners can be application roles, users, or groups. If the owner
of the task is an application role, this field is set.

task/ownerUser The user (if any) that owns this task instance. Task owners
can be application roles, users, or groups. If the owner of the
task is a user, this field is set.

task/payload The task payload that is captured as XML.

task/percentageComplete The percentage of the task completed. This is used on to-do
tasks.

Chapter 34
Introduction to Human Workflow Services

34-26

Table 34-15 (Cont.) Task Attributes

Task Attribute Name Description

task/priority An integer number that defines the priority of this task. A
lower number indicates a higher priority. The numbers 1 to 5
are typically used.

task/startDate The start date for the task. This is used on to-do tasks.

task/subCategory An optional subcategory of the task.

task/taskDefinitionId The task definition ID that binds the task to the task metadata.
At task initiation time, this can be either the compositeDN/
componentName string or the targetNamespace in
the .task file. If the later is used, the active version matching
the targetNamespace is used.

task/taskDisplayUrl The URL to use to display the details for this task.

task/title The title of the task.

Table 34-16 lists the attributes that capture process metadata information.

Table 34-16 Attributes Capturing Process Metadata Information

Attribute Description

task/sca/applicationName The partition to which the task component that defines this task
instance is deployed.

task/sca/componentName The name of the task component that defines this task instance.

task/sca/compositeDN A unique name for the particular deployment of the composite
that contains the task component that defines this task instance.

task/sca/compositeInstanceId The composite instance ID.

task/sca/compositeName The name of the composite that contains the task component
that defines this task instance.

task/sca/compositeVersion The version of the composite that contains the task component
that defines this task instance.

task/sca/
compositeCreatedTime

The date and time on which the composite flow to which this
task instance belongs was started.

task/sca/flowId A unique identifier for the composite flow to which this task
instance belongs.

Table 34-17 lists the attachment-related attributes.

Table 34-17 Attachment-related attributes

Attribute Description

task/attachment/content The attachment content.

task/attachment/mimeType The Multipurpose Internet Mail Extension (MIME) type of the
attachment.

task/attachment/name The name of the attachment.

Chapter 34
Introduction to Human Workflow Services

34-27

Table 34-17 (Cont.) Attachment-related attributes

Attribute Description

task/attachment/
updatedBy

The user who updated the attachment.

task/attachment/
updatedDate

The date on which the attachment was updated.

task/attachment/URI The URI if the attachment is URI-based.

Table 34-18 lists the comment-related attributes.

Table 34-18 Comment-related Attributes

Attribute Description

task/userComment/comment The user comment.

task/userComment/updatedBy The user who added the comment.

task/userComment/
updatedDate

The date on which the comment was added. This is set by
services when saving comments. If set by client when
saving the comment, it is ignored.

task/userComment/
displayNameLanguage

Set by services when reading comments. This indicates
the language in which the updatedBy displayName is
populated.

task/userComment/acl Not used.

task/userComment/
doesBelongToParent

If the comment is inherited from parent (example process
comment).

task/userComment/
isSystemComment

Set by services if the comment is set by the workflow
system (example, a comment is created if the task goes
into alerted state).

task/userComment/taskId The taskId in which the comment was created. For
example, if the scope is "BPM", the comment may be
visible in a task different than the one in which it was
created. Also, for parallel task, the current taskId and
comment taskId may be different. This is set by services.

task/userComment/
commentScope

The values - null, empty or "TASK" implies that the
comment is for that task only. The value "BPM" implies that
it is for the whole process. The value has to be set to
"BPM" when adding comment if you want the comment to
be applicable to the whole process.

task/userComment/
updatedBy/id

ID of the user who updated the comment.

task/userComment/
updatedBy/displayName

Display name of the user who updated the comment.

task/userComment/
updatedBy/type

Type of User, Group, or Role of the user who updated the
comment.

Table 34-19 lists the attributes manipulated by the workflow services system.

Chapter 34
Introduction to Human Workflow Services

34-28

Table 34-19 Attributes Manipulated by the Workflow Services System

Attribute Description

task/systemAttributes/
acquiredBy

If a task is assigned to a group, application role, or to multiple users,
and then claimed by a user, this field is set to the name of the user
who claimed the task.

task/systemAttributes/
approvers

The IDs of users who performed custom actions on the task.

task/systemAttributes/
assignedDate

The date that this task was assigned.

task/systemAttributes/
assignees

The current task assignees (can be users, groups, or application
roles).

task/systemAttributes/
createdDate

The date the task instance was created.

task/systemAttributes/
customActions

The custom actions that can be performed on the task.

task/systemAttributes/
endDate

The end date for the task. This is used on to-do tasks.

task/systemAttributes/
expirationDate

The date on which the task instance expires.

task/systemAttributes/
fromUser

The user who previously acted on the task.

task/systemAttributes/
hasSubTasks

If true, there are subtasks.

task/systemAttributes/
isGroup

If true, the task is assigned to a group.

task/systemAttributes/
originalAssigneeUser

If a user delegates a task to another user, this field is populated with
the name of the user who delegated the task.

task/systemAttributes/
outcome

The outcome of the task (for example, approved or rejected). This is
only set on completed task instances.

task/systemAttributes/
parentTaskId

This is only set on reinitiated tasks (the task ID of the previous task
that is being reinitiated).

task/systemAttributes/
parentTaskVersion

This only set on a subtask. This refers to the version of the parent
task.

task/systemAttributes/
participantName

The logical name of the participant as modeled from Oracle
JDeveloper.

task/systemAttributes/
reviewers

The reviewers of the task. This can be a user, group, or application
role.

task/systemAttributes/
rootTaskId

The ID of the root task. This is the same as the task ID for the root
task.

task/systemAttributes/
stage

The stage name that is being executed.

task/systemAttributes/
state

The current state of the task instance.

task/systemAttributes/
substate

The current substate of the task.

Chapter 34
Introduction to Human Workflow Services

34-29

Table 34-19 (Cont.) Attributes Manipulated by the Workflow Services System

Attribute Description

task/systemAttributes/
subTaskGroupInstanceId

A unique ID that is set on a subtask. This same ID is set on the parent
task's taskGroupInstanceId. This is required to identify which
subtasks were created at which time.

task/systemAttributes/
systemActions

The system actions (such as reassign, escalate, and so on) that can
be performed on a task.

task/systemAttributes/
taskDefinitionName

The name of the task component that defines this task instance.

task/systemAttributes/
taskGroupId

The ID of the immediate parent task. This only sets a subtask.

task/systemAttributes/
taskGroupInstanceId

A unique ID that is set on the parent task. This same ID is set on the
subtask's subTaskGroupInstanceId. This is required to identify
which subtasks were created at which time.

task/systemAttributes/
taskId

The unique ID of the task.

task/systemAttributes/
taskNamespace

A namespace that uniquely defines all versions of the task component
that defines this task instance. Different versions of the same task
component can have the same namespace, but no two task
components can have the same namespace.

task/systemAttributes/
taskNumber

An integer number that uniquely identifies this task instance.

task/systemAttributes/
updatedBy

The user who last updated the task.

task/systemAttributes/
updatedDate

The date this instance was last updated.

task/systemAttributes/
version

The version of the task.

task/systemAttributes/
versionReason

The reason the version was created.

task/systemAttributes/
workflowPattern

The pattern that is being executed (for example, parallel, serial, FYI,
or single).

Table 34-20 lists the mapped attributes.

Table 34-20 Mapped Attributes

Attribute Description

task/
systemMessageAttribute
s/*

The mapped attributes.

34.2 Notifications from Human Workflow
Notifications are sent to alert users of changes to the state of a task. Notifications can
be sent through any of the following channels: email, instant messaging (IM), or short

Chapter 34
Notifications from Human Workflow

34-30

message service (SMS). Notifications can be sent from a human task in a BPEL process or
directly from a BPEL process.

The human workflow email notification layer works with Oracle User Messaging Service to
alert users to changes in the state of a task. The Oracle User Messaging Service exposes
operations that can be invoked from the BPEL process or human task to send notifications
through email, IM, or SMS channels.

The Oracle User Messaging Service supports features such as:

• Sending and receiving messages and statuses

• Sending notifications to a specific address on a particular channel

• Sending notifications to a set of failover addresses

On application servers other than Oracle Fusion Middleware, the human workflow email
notification layer can be used for email notifications.

For more information about configuring the Oracle User Messaging Service, see the
following:

• Using the Notification Service

• Developing Applications with Oracle User Messaging Service

34.2.1 Contents of Notification
Each email notification can contain the following parts:

• The notification message

• The HTML content from Oracle BPM Worklist:

This is a read-only view of Oracle BPM Worklist on the task. For information on how you
can configure email notifications to include the content from Oracle BPM Worklist, see
Creating an Email Notification .

• Task attachments:

For notifications that include task attachments.

• Actionable links

Notifications through SMS and IM contain only the notification message.

The notification message is an XPath expression that can contain static text and dynamic
values. In creating the messages, only the task BPEL variable is available for dynamic
values. This restriction is because the messages are evaluated outside the context of the
BPEL process. The payload in the task variable is also strongly typed to contain the type of
the payload for XPath tree browsing. The XPath extension function
hwf:getNotificationProperty(propertyName) is available to get properties for a particular
notification. The function evaluates to corresponding values for each notification. The
propertyName can be one of the following values:

• recipient
The recipient of the notification

• recipientDisplay
The display name of the recipient

• taskAssignees

Chapter 34
Notifications from Human Workflow

34-31

The task assignees

• taskAssigneesDisplay
The display names of the task assignees

• locale
The locale of the recipient

• taskId
The ID of the task for which the notification is meant

• taskNumber
The number of the task for which the notification is meant

• appLink
The HTML link to the Oracle BPM Worklist task details page

The following example demonstrates the use of hwf:getNotificationProperty and
hwf:getTaskResourceBundle:

concat('Dear ', hwf:getNotificationProperty('recipientDisplay'), ' Task ',
/task:task/task:systemAttributes/task:taskNumber, ' is assigned to you. ',
hwf:getTaskResourceBundleString(/task:task/task:systemAttributes/task:taskId,
'CONGRATULATIONS', hwf:getNotificationProperty('locale')))

This results in a message similar to the following:

Dear Cooper, James Task 1111 is assigned to you. Congratulations

34.2.2 Error Message Support
The human workflow email notification layer is automatically configured to warn an
administrator about error occurrences in which intervention is required. Error
notifications and error response messages are persisted.

You can view messages in Oracle Enterprise Manager Fusion Middleware Control.

For more information about viewing messages, see Administering Oracle SOA Suite
and Oracle Business Process Management Suite.

34.2.3 Reliability Support
The human workflow email notification layer works with Oracle User Messaging
Service to provide the following reliability support:

• Messages are not lost:

– If the human workflow email notification layer fails after acknowledging receipt
of a message from the human workflow.

– If the human workflow email notification layer and Oracle User Messaging
Service both fail before the Oracle User Messaging Service acknowledges
receipt of a message from the human workflow.

– If the Oracle User Messaging Service is down. Message delivery is retried until
successful.

– If a notification channel is down.

Chapter 34
Notifications from Human Workflow

34-32

• Notifications that cannot be delivered are retried three times and the address is marked
as invalid. The address is also added to the bad address list. If needed, you can manually
remove these addresses from the bad address list in Oracle Enterprise Manager Fusion
Middleware Control. Outgoing notifications are not resent until the address is corrected.
To guard against any incorrect identification, the address is marked as invalid only for
about an hour. No new notifications are sent in this time.

• Incoming notification responses from an address that has been identified as a spam
source are ignored.

• Incoming notification messages are persisted.

• Incoming notification responses that indicate notification delivery failure (for example, an
unknown host mail) are not ignored. Instead, corrective actions are automatically taken
(for example, the bad address list is updated).

• Incoming notification responses can be configured to send acknowledgements indicating
notification status to the sender.

• Validation of incoming notification responses is performed by correlating the incoming
notification message with the outgoing notification message.

For more information about notifications, see the following:

• Using the Notification Service

• Administering Oracle SOA Suite and Oracle Business Process Management Suite

34.2.4 Management of Oracle Human Workflow Notification Service
An administrator can perform the following management tasks from Oracle Enterprise
Manager Fusion Middleware Control:

• View failed notifications and erroneous incoming notification responses and take
corrective actions.

• Perform corrective actions such as delete, resend, and edit on outgoing notifications and
addresses.

• View bad emails and block email addresses for incoming notification responses.

• Manage the bad email address list.

• Access runtime data of failed notifications. You can purge this data when it is no longer
needed.

For more information, see Administering Oracle SOA Suite and Oracle Business Process
Management Suite.

34.2.5 How to Configure the Notification Channel Preferences
To configure the notification channel preferences:

1. In Oracle JDeveloper, configure the notification service for email and other channels. See
Using the Notification Service for details.

2. Open the Human Task Editor in Oracle JDeveloper.

The notifications for a task can be configured during the creation of a task in the Human
Task Editor. Notifications can be sent to different types of participants for different actions.

Chapter 34
Notifications from Human Workflow

34-33

The actions for which a task notification can be sent are described in How to Notify
Recipients of Changes to Task Status.

Notifications can be sent to users involved in the task in various capacities. These
users are described in How to Notify Recipients of Changes to Task Status.

When the task is assigned to a group, each user in the group is sent a notification
if no notification endpoint is available for the group.

For more information, see the following:

• Using the Notification Service

• Specifying Participant Notification Preferences to configure task notifications in
the Human Task Editor

• Administering Oracle SOA Suite and Oracle Business Process Management
Suite for details about configuring the notification channel

3. From the messaging server pages of Oracle Enterprise Manager Fusion
Middleware Control, configure the appropriate channel (for example, email). See
Administering Oracle SOA Suite and Oracle Business Process Management Suite
for details.

4. From the Workflow Notification Properties pages of Oracle Enterprise Manager
Fusion Middleware Control, configure the notification mode parameter for the
notification service to either all channels or email.

By default, this value is set to NONE, meaning that no notifications are sent. The
possible values are:

• ALL

The email, IM, and SMS channels are configured and notification is sent
through any channel.

• EMAIL

Only the email channel is configured for sending notification messages.

• NONE

No channel is configured for sending notification messages. This is the default
setting.

34.2.6 How to Configure Notification Messages in Different Languages
A notification consists of four types of data generated from multiples sources and
internationalized differently.

To configure notification messages in different languages:

1. Use one of the following methods to internationalize messages in the notification
content:

a. To use values from the resource bundle specified during the task definition,
use the following XPath extension function:

hwf:getTaskResourceBundleString(taskId, key, locale?)

This function returns the internationalized string from the resource bundle
specified in the task definition.

Chapter 34
Notifications from Human Workflow

34-34

The locale of the notification recipient can be retrieved with the following function:

hwf:getNotificationProperty('locale')

The task ID corresponding to a notification can be retrieved with the following
function:

hwf:getNotificationProperty('taskId')
b. If a different resource bundle is used, then use the following XPath extension to

retrieve localized messages:

orcl:get-localized-string()
However, for all internationalized notifications, the locale is obtained from the BPMUser object
of the identity service.

• Prepackaged strings (action links, comments, Oracle BPM Worklist, and so on)

These strings are internationalized in the product as part of the following package:

oracle.bpel.services.workflow.resource

The user's locale is used to get the appropriate message.

• Task details attachment

The user's locale is used to retrieve the task detail HTML content.

• Task outcome strings (approve, reject, and so on)

The resource bundle for outcomes is specified when the task definition is modeled in the
Advanced Settings section of the Human Task Editor. The key to each of the outcomes
in the resource bundle is the outcome name itself.

• Notification message

For more information, see How to Specify Multilingual Settings.

34.2.7 How to Send Actionable Messages
There are several methods for sending actionable messages. This section provides an
overview of procedures.

Note:

If digital signatures are enabled for a task, actionable emails are not sent during
runtime. This is the case even if actionable emails are enabled during design time.

34.2.7.1 How to Send Actionable Emails for Human Tasks
Task actions can be performed through email if the task is set up to enable actionable email
(the same actions can also be performed from Oracle BPM Worklist). An actionable email
account is the account in which task action-related emails are received and processed.

Chapter 34
Notifications from Human Workflow

34-35

To send actionable emails for human tasks:

1. In the Advanced tab of the Notification section of the Human Task Editor, select
Make notification actionable to make email notifications actionable. This action
enables you to perform task actions through email.

If a notification is actionable, the email contains links for each of the custom
outcomes.

2. To send task attachments with the notification message, select Send task
attachments with email notifications.

When an actionable email arrives, perform the following tasks.

3. Set properties such as incoming server, outgoing mail server, outgoing user name
and password, and others from the Oracle User Messaging Service section of
Oracle Enterprise Manager Fusion Middleware Control.

4. In the Workflow Notification Properties page of Oracle Enterprise Manager Fusion
Middleware Control, set the notification mode to ALL or EMAIL.

5. Click the Approve link to invoke a new email window with approval data.
Figure 34-3 provides details.

Figure 34-3 Actionable Notifications

6. Add comments in the comments section of the approval mail. For example:

This contract has been approved based on the attached information.
7. Add attachments as needed, as shown in Figure 34-4.

Chapter 34
Notifications from Human Workflow

34-36

Figure 34-4 Attachment to an Actionable Email

8. Do not change anything in the subject or the body in this email. If you change the content
with the NID substrings, the email is not processed.

9. Click Send.

10. In the Workflow Task Service Properties page of Oracle Enterprise Manager Fusion
Middleware Control, set the actionable email account name.

For more information about the Oracle User Messaging Service section, Workflow Notification
Properties page, and Workflow Task Service Properties page of Oracle Enterprise Manager
Fusion Middleware Control, see Administering Oracle User Messaging Service and
Administering Oracle SOA Suite and Oracle Business Process Management Suite.

34.2.8 How to Send Inbound and Outbound Attachments
If the include attachments flag is checked; only email is sent. The emails include all the task
attachments as email attachments.

To send inbound and outbound attachments:

• Select Send task attachments with email notifications in the Advanced tab of the
Notification section of the Human Task Editor.

In the actionable email reply, the user can add attachments in the email. These
attachments are added as task attachments.

For more information, see How to Make Email Messages Actionable.

34.2.9 How to Send Inbound Comments
To send inbound comments:

• Add comments in the actionable email reply between Comments[[‘ and ‘]], as shown in
Figure 34-3. Those contents are added as task comments. For example,
Comments[[looks good]].

34.2.10 How to Send Secure Notifications
To send secure notifications:

• Select Make notifications secure (exclude details) in the Advanced tab of the
Notification section of the Human Task Editor. This action enables a default notification

Chapter 34
Notifications from Human Workflow

34-37

message to be used. In this case, the notification message does not include the
content of the task. Also, this notification is not actionable. The default notification
message includes a link to the task in Oracle BPM Worklist. You must log in to see
task details.

For more information, see How to Secure Notifications to Exclude Details.

34.2.11 How to Set Channels Used for Notifications
To set channels used for notifications:

• Set up preferred notification channels by using the preferences user interface in
Oracle BPM Worklist. The channel is dynamically determined by querying the user
preference store before sending the notification. If the user preference is not
specified, then the email channel is used.

34.2.12 How to Send Reminders
Tasks can be configured to send reminders, which can be based on the time the task
was assigned to a user or the expiration time of a task. The number of reminders and
the interval between the reminders can also be configured. The message used for
reminders is the message that is meant for ASSIGNEES when the task is marked as
ASSIGNED.

To send reminders:

• Set reminders in the Advanced tab of the Notification section of the Human Task
Editor. Reminder configuration involves the following parameters:

• Specify the number of times reminders are sent. The values are No
Reminders, Remind Once, Remind Twice, Remind Three Times.

• Specify when the reminder must be sent. Select the values from Day, Hour,
Minutes, and select Before Expiration or After Expiration. The values
Before Expiration or After Expiration are related to the expiration of the
task.

For more information, see How to Set Up Reminders.

34.2.13 How to Set Automatic Replies to Unprocessed Messages
The human workflow notification service sends you an automatic reply message when
it cannot process an incoming message (due to system error, exception error, user
error, and so on). You can modify the text for these messages in the global resource
bundle. The code sample below shows the WorkflowLabels.properties file. For more
information, see Global Resource Bundle – WorkflowLabels.properties.

String to be prefixed to all auto reply messages
AUTO_REPLY_PREFIX_MESSAGE=Oracle Human Workflow Service
String to be sufixed to all auto reply mesages
AUTO_REPLY_SUFFIX_MESSAGE=This message was automatically generated by Human \
 Workflow Mailer. Do not reply to this mail.

Message indicating closed status of a notified task
TaskClosed=You earlier received the notification shown below. That notification \
 is now closed, and no longer requires your response. You may \

Chapter 34
Notifications from Human Workflow

34-38

 simply delete it along with this message.

Message indicating that notification was "replied" to instead of "responded" by
using the response link.
EMailRepliedNotification=The message you sent appeared to be a reply to a \
 notification. To respond to a notification, use the \
 response link that was included with your notification.

#
EMailUnSolicited= The message you sent did not appear to be in response to a \
 notification. If you are responding to a notification \
 Use the response link that was included with your notification.

EMailUnknownContent= The message you sent did not appear to be in response to a \
 notification. If you are responding to a notification, \
 Use the response link that was included with your notification.

ResponseNotProcessed=Your response to notification could not be processed. \
 Log in to worklist application for more details.

ResponseProcessed=Your response to notification was successfully processed.

34.2.14 How to Create Custom Notification Headers
Some task participants may have access to multiple notification channels. You can use
custom notification headers to enable this type of participant to specify a single channel as
the preferred channel on which to receive notifications.

To create custom notification headers:

• In the Notification header attributes section of the Advanced tab of the Notification
section of the Human Task Editor, create custom notification headers that specify the
preferred notification channel to use (such as email, IM, or SMS). The human workflow
email notification layer provides these header values to the rule-based notification service
of the Oracle User Messaging Service for use.

For example, set the Name field to deliveryType and the Value field to SMS.

The rule-based notification service is only used to identify the preferred notification
channel to use. The address for the preferred channel is obtained from Oracle Identity
Management. The notification message is created from the information provided by both
services.

For more information, see How to Send Task Attachments with Email Notifications.

34.3 Assignment Service Configuration
Learn how to configure the assignment service with dynamic assignment functions.

• Dynamic Assignment and Task Escalation Patterns

• Dynamically Assigning Task Participants with the Assignment Service

• Custom Escalation Function

Chapter 34
Assignment Service Configuration

34-39

34.3.1 Dynamic Assignment and Task Escalation Patterns
When tasks are assigned to a group, application role, or list of users a single user
must claim a task to act on it. However, you can also automatically send work to users
by using various dispatching mechanisms.

Automatic task dispatching is done through dynamic assignment patterns. Dynamic
assignment patterns select a particular user or group from either a group or a list of
users or groups. Similarly, when a task is escalated, a task escalation pattern can be
used to determine the user to whom the task should be escalated to. Several patterns
are provided out of the box. However, you can also create your own patterns for
dynamic assignment and task escalation and register them with the workflow service.
Table 34-21 describes the three dynamic assignment patterns and one task escalation
pattern that are provided out-of-the-box.

Table 34-21 Dynamic Assignment Patterns

Assignment Pattern Type Description

LEAST_BUSY Dynamic assignment Picks the user or group with the least number of
tasks currently assigned to it.

MOST_PRODUCTIVE Dynamic assignment Picks the user or group that has completed the
most tasks over a certain time period (by default,
the last seven days).

ROUND_ROBIN Dynamic assignment Picks each user or group in turn.

MANAGERS_MANAGER Task escalation Picks the manager's manager.

These patterns all check a user's vacation status. A user that is currently unavailable is
not automatically assigned tasks.

Dynamic assignment patterns can be used when defining a task participant, as
described in How to Configure the Single Participant Type. They can also be used with
task-assignment rules allowing end-users to specify dynamic assignment of tasks to
the members of groups that they manage, as described in How To Create Group
Rules.

The dynamic assignment patterns can also be called by using an xpath function in any
xpath expression in the task definition.

The signature of the function is:

hwf:dynamicTaskAssign(patternName, participants, inputParticipantType,
targetAssigneeType, isGlobal, invocationContext, parameter1, parameter2, ...,
parameterN)

The parameters are:

• patternName: Mandatory. Name of the pattern to use

• participants: Mandatory. The participant or participants to select the assignee
from. Can be a string or element containing a participant name or a comma-
separated list of participant names, or a set of elements containing participant
names or comma-separated lists of participant names. Participants must all be of
the same type.

Chapter 34
Assignment Service Configuration

34-40

• inputParticipantType: Mandatory. The type of the input participants (user, group, or
application_role)

• targetAssigneeType: Mandatory. The type of assignee to select (user, group, or
application_role). Value must match the context in which the function is being used (for
example, must be user if dynamically selecting an owner user. If the inputParticipantType
is user, the only valid value here is user.

• isGlobal: Boolean value that indicates if the pattern should be assessed using tasks of
all types, or just tasks of the same type as the current task. Optional - defaults to false.

• invocationContext: String to uniquely identify where this function is being used. If not
specified, a default context is assigned.

• parameterN: Some dynamic assignment patterns allow parameters to be specified. The
parameter values can be specified as name-value pairs, using an “=" character as a
delimiter - for example, “TIME_PERIOD=7"

Example usages:

hwf:dynamicTaskAssign(“LEAST_BUSY","jcooper,jstein,mtwain","user","user","true","ErrorA
ssignee")

hwf:dynamicTaskAssign(“MOST_PRODUCTIVE",task:task/task:payload/
task:users,"user","user","false","OwnerUser","TIME_PERIOD=7")

hwf:dynamicTaskAssign(“LEAST_BUSY","DeveloperRole","application_role","group"):

Before 12c Release 1 (12.1.3), dynamic assignment could be achieved by using the XPath
functions wfDynamicUserAssign and wfDynamicGroupAssign. These XPath functions have
been deprecated in 12c Release 1 (12.1.3). They can still be used, but Oracle recommends
that you migrate any existing usage of these XPath functions to the new dynamicTaskAssign
function.

34.3.1.1 How to Implement a Dynamic Assignment Pattern
Follow these procedures to implement your own dynamic assignment pattern.

To implement dynamic assignment patterns:

Write a Java class that implements the following interface:

oracle.bpel.services.workflow.assignment.dynamic.IDynamicAssignmentPattern

Implementations must provide support for selecting a single assignee from a list of
participants (all of the same type) by implementing the method
getAssigneeFromParticipantList.

An implementation does not have to support all assignee types. The interface provides the
method getSupportedAssigneeType to enable the implementation to specify which types of
assignee it supports.

Implementations can accept input parameters to specify selection criteria, the Dynamic
Assignment Framework validates these input parameters, and the implementation can define
its parameters (if any) in the method getPatternParameters().

An implementation can also accept initialization parameters, which are set when the
implementation is initialized by the framework. The parameter values are defined in the
human workflow configuration (either using configMBean, or by Human Workflow Service

Chapter 34
Assignment Service Configuration

34-41

Engine configuration in Oracle Enterprise Manager Fusion Middleware Control), where
the dynamic assignment pattern is registered.

For convenience, the framework provides the class
AbstractDynamicAssignmentPattern which implements some common functionality.
Assignment pattern implementations can extend this abstract class, to save
implementing some parameter and localization support.

Before 11g (11.1.1.6.0), custom dynamic assignment patterns were implemented using
one or both of the following interfaces:

oracle.bpel.services.workflow.assignment.dynamic.IDynamicGroupAssignmentFunction
oracle.bpel.services.workflow.assignment.dynamic.IDynamicUserAssignmentFunction

These interfaces do not offer all the features available in the
IDynamicAssingmentPattern interface, and have been deprecated. The Dynamic
Assignment Framework remains backward compatible with implementations that use
the old interface, but Oracle recommends that you migrate any implementations you
have to use the new interface.

For information about the Javadoc for dynamic assignment interfaces and utilities, see
Oracle Fusion Middleware Workflow Services Java API Reference for Oracle BPEL
Process Manager.

34.3.1.2 How to Configure Dynamic Assignment Patterns
Dynamic assignment patterns are configured along with other human workflow
configuration parameters in Oracle Enterprise Manager Fusion Middleware Control.

Each dynamic assignment has two mandatory parameters:

• name:

The name of the pattern

• classpath:

The fully qualified class name of the class that implements the pattern.

In addition, each pattern can optionally have any number of properties. These
properties are simple name-value pairs that are passed as initialization parameters to
the pattern.

The property values specified in these tags are passed as a map (indexed by the
value of the name attributes) to the setInitParameters method of the dynamic
assignment patterns.

Two of the out-of-the-box patterns have initialization parameters. These are:

• ROUND_ROBIN
The parameter MAX_MAP_SIZE specifies the maximum number of sets of users or
groups for which the pattern can maintain ROUND_ROBIN counts. The dynamic
assignment pattern holds a list of users and groups in memory for each group (or
list of users and groups) on which it is asked to execute the ROUND_ROBIN pattern.

• MOST_PRODUCTIVE
The parameter DEAFULT_TIME_PERIOD specifies the length of time (in days) over
which to calculate the user's productivity. This value can be overridden when
calling the MOST_PRODUCTIVE dynamic assignment pattern.

Chapter 34
Assignment Service Configuration

34-42

34.3.1.3 How to Configure Display Names for Dynamic Assignment Patterns
The runtime config service provides methods for returning a list of available user and group
dynamic assignment patterns. These patterns return both the name of the pattern, and a
user-displayable label and description for the pattern and its parameters. The patterns
support localization of the display name, so that it displays in the appropriate language for the
context user. These patterns are used by Oracle BPM Worklist and the JDeveloper Human
Task Editor to show a list of available dynamic assignment patterns.

The dynamic assignment framework provides methods allowing pattern implementations to
provide human-readable display names and descriptions for patterns and their parameters.

The out-of-the-box pattern implementations, and custom implementations that extend the
AbstractDynamicPattern class use the WorkflowLabels.properties resource bundle file to
configure these display strings.

To configure display names for dynamic assignment patterns:

Specify display names and descriptions (and appropriate translations) for your dynamic
assignment patterns and their parameters by adding entries to the resource property file
WorkflowLabels.properties, and associated resource property files in other languages. This
file should be placed in the class path identified in the workflow configuration parameter
workflowCustomizationsClasspathURL, at the path

oracle/bpel/services/workflow/resource/WorkflowLabels.properties

Entries for dynamic assignment patterns must be of the following form:

DYN_ASSIGN_FN.[pattern name]=Pattern Display Name

DYN_ASSIGN_DESCR.[pattern name]=Function Description

DYN_ASSIGN_PARAM_LABEL.[pattern name].[parameter name]=Parameter Display Name

DYN_ASSIGN_PARAM_LABEL.[pattern name].[parameter name]=Parameter Description

For instance, the entries for the MOST_PRODUCTIVE pattern are:

DYN_ASSIGN_FN.MOST_PRODUCTIVE = Most Productive

DYN_ASSIGN_DESCR.MOST_PRODUCTIVE = Picks the user, group or application role that
has completed the highest number of tasks within a certain time period. For group
and application roles the total number of tasks completed by all the users who
are direct members of that group or role are counted. The time period to use can
be specified using the Time Period parameter. If no time period is specified,
then the default value specified in the dynamic assignment configuration for the
instance is used.

DYN_ASSIGN_PARAM_LABEL.MOST_PRODUCTIVE.TIME_PERIOD = Time Period

DYN_ASSIGN_PARAM_DESCR.MOST_PRODUCTIVE.TIME_PERIOD = The previous number of days
over which to count the number of completed tasks. If not specified, the default
value defined in the human workflow dynamic assignment configuration is used.

Adding entries to these files for dynamic assignment patterns is optional. If no entry is
present in the file, then the name of the function (for example, ROUND_ROBIN') is used instead.

Chapter 34
Assignment Service Configuration

34-43

34.3.1.4 How to Implement a Task Escalation Pattern
Task escalation functions are very similar to dynamic assignment patterns, but perform
a different function (determining to whom a task is assigned when it is escalated).
Custom implementations must implement a different interface
(IDynamicTaskEscalationPattern).

34.3.2 Dynamically Assigning Task Participants with the Assignment
Service

Human workflow participants are specified declaratively in a routing slip. The routing
slip guides the human workflow by specifying the participants and how they participate
in the human workflow (for example, management chain hierarchy, serial list of
approvers, and so on).

The Human Task Editor enables you to declaratively create the routing slip using
various built-in patterns. In addition, you can use advanced routing based on business
rules to do more complex routing. However, to do more sophisticated routing using
custom logic, you implement a custom assignment service to do routing.

To support a dynamic assignment, an assignment service is used. The assignment
service is responsible for determining the task assignees. You can also implement
your own assignment service and plug in that implementation for use with a particular
human workflow.

The assignment service determines the following task assignment details in a human
workflow:

• The assignment when the task is initiated.

• The assignment when the task is reinitiated.

• The assignment when a user updates the task outcome. When the task outcome
is updated, the task can either be routed to other users or completed.

• The assignees from whom information for the task can be requested.

• If the task supports reapproval from Oracle BPM Worklist, a user can request
information for reapproval.

• The users who reapprove the task if reapproval is supported.

The human workflow service identifies and invokes the assignment service for a
particular task to determine the task assignment.

For example, a simple assignment service iteration is as follows:

1. A client initiates an expense approval task whose routing is determined by the
assignment service.

2. The assignment service determines that the task assignee is jcooper.

3. When jcooper approves the task, the assignment service assigns the task to
jstein. The assignment service also specifies that a notification must be sent to
the creator of the task, jlondon.

4. jstein approves the task and the assignment service indicates that there are no
more users to whom to assign the task.

Chapter 34
Assignment Service Configuration

34-44

34.3.2.1 How to Implement an Assignment Service

To implement an assignment service:

• Implement the assignment service with the IAssignmentService interface. The human
workflow service passes the following information to the assignment service to determine
the task assignment:

• Task document

The task document that is executed by the human workflow. The task document
contains the payload and other task information like current state, and so on.

• Map of properties

When an assignment service is specified, a list of properties can also be specified to
correlate callbacks with back-end services that determine the task assignees.

• Task history

The task history is a list of chronologically-ordered task documents to trace the
history of the task. The task documents in this list contain a subset of attributes in the
actual task (such as state, updatedBy, outcome, updatedDate, and so on).

34.3.2.2 Example of Assignment Service Implementation

Note:

• The assignment service class cannot be stateful. This is because every time
human workflow services must call the assignment service, it creates a new
instance.

• The getAssigneesToRequestForInformation method can be called multiple
times because one of the criteria to show the request-for-information action is
that there are users to request information. Therefore, this method is called
every time the human workflow service tries to determine the permitted actions
for a task.

You can implement your own assignment service plug-in that the human workflow service
invokes during human workflow execution.

The code sample below provides a sample IAssignmentService implementation named
TestAssignmentService.java.

/* $Header: TestAssignmentService.java 24-may-2006.18:26:16 Exp $ */
/* Copyright (c) 2004, 2006, Oracle. All rights reserved. */
/*
 DESCRIPTION
 Interface IAssignmentService defines the callbacks an assignment
 service implements. The implementation of the IAssignmentService
 is called by the workflow service
 PRIVATE CLASSES
 <list of private classes defined - with one-line descriptions>
 NOTES
 <other useful comments, qualifications, etc.>

Chapter 34
Assignment Service Configuration

34-45

 MODIFIED (MM/DD/YY)

 */
/**
 * @version $Header: IAssignmentService.java 29-jun-2004.21:10:35 Exp
 $
 *
 *
 */
package oracle.bpel.services.workflow.test.workflow;
import java.util.ArrayList;
import java.util.List;
import java.util.Map;
import oracle.bpel.services.workflow.metadata.routingslip.model.*;
import oracle.bpel.services.workflow.metadata.routingslip.model.Participants;
import
oracle.bpel.services.workflow.metadata.routingslip.model.ParticipantsType.*;
import oracle.bpel.services.workflow.task.IAssignmentService;
import oracle.bpel.services.workflow.task.ITaskAssignee;
import oracle.bpel.services.workflow.task.model.Task;
public class TestAssignmentService implements
 oracle.bpel.services.workflow.task.IAssignmentService {
 static int numberOfApprovals = 0;
 static String[] users = new String[]{"jstein", "wfaulk", "cdickens"};
 public Participants onInitiation(Task task,
 Map propertyBag) {
 return createParticipant();
 }
 public Participants onReinitiation(Task task,
 Map propertyBag) {
 return null;
 }
 public Participants onOutcomeUpdated(Task task,
 Map propertyBag,
 String updatedBy,
 String outcome) {
 return createParticipant();
 }
 public Participants onAssignmentSkipped(Task task,
 Map propertyBag) {
 return null;
 }
 public List getAssigneesToRequestForInformation(Task task,
 Map propertyBag) {
 List rfiUsers = new ArrayList();
 rfiUsers.add("jcooper");
 rfiUsers.add("jstein");
 rfiUsers.add("wfaulk");
 rfiUsers.add("cdickens");
 return rfiUsers;
 }
 public List getReapprovalAssignees(Task task,
 Map propertyBag,
 ITaskAssignee infoRequestedAssignee) {
 List reapprovalUsers = new ArrayList();
 reapprovalUsers.add("jstein");
 reapprovalUsers.add("wfaulk");
 reapprovalUsers.add("cdickens");
 return reapprovalUsers;
 }
 private Participants createParticipant() {

Chapter 34
Assignment Service Configuration

34-46

 if (numberOfApprovals > 2) {
 numberOfApprovals = 0;
 return null;
 }
 String user = users[numberOfApprovals++];

 ObjectFactory objFactory = new ObjectFactory();
 Participants participants = objFactory.createParticipants();
 Participant participant = objFactory.createParticipantsTypeParticipant();
 participant.setName("Loan Agent");
 ResourceType resource2 = objFactory.createResourceType(user);
 resource2.setIsGroup(false);
 resource2.setType("STATIC");
 participant.getResource().add(resource2);

 participants.getParticipantOrSequentialParticipantOrAdhoc().
 add(participant);
 return participants;
 }

}

34.3.2.3 How to Deploy a Custom Assignment Service

To deploy a custom assignment service:

• Use one of the following methods to make an assignment service implementation class
and its related classes available in the class path of Oracle BPEL Process Manager:

• Load your classes in SCA-INF/classes directly or in SCA-INF/lib as a JAR.

• Place the class files for your custom function in a directory tree or JAR file. Then,
update the worklfowCustomClasspathURL configuration parameter to point to the JAR
or root directory in which your classes are located. As this is a URL, it is possible to
host the class files on a web server, and make them accessible to multiple Oracle
WebLogic Servers through HTTP. It is even possible to deploy the files into the
metadata repository (MDS), and use an ORAMDS URL to point to the appropriate
location.

Note:

• You cannot create different versions of the assignment service for use in
different BPEL processes unless you change package names or class
names.

• Java classes and JAR files in the suitcase are not available in the class
path and therefore cannot be used as a deployment model for the
assignment service.

• The steps must be repeated for each node in a cluster.

34.3.3 Custom Escalation Function
The custom escalation function enables you to integrate a custom rule in a human workflow.

Chapter 34
Assignment Service Configuration

34-47

To implement a custom escalation function:

1. Create a custom task escalation function and register this with the human
workflow service that uses that function in task definitions.

2. Use the Human Task Editor to integrate the rule in a human workflow.

For more information, see How to Specify Escalation Rules.

34.4 Class Loading for Callbacks and Resource Bundles
You can load classes for callbacks and resource bundles directly from the SOA project
instead of having to load classes in the oracle.soainfra.common shared library and
restarting Oracle WebLogic Server.

Callbacks

• IAssignmentService
• IRestrictedAssignmentService
• IRoutingSlipCallback
• IPercentageCompletionCallback
• INotificationCallback
• Project level resource bundles

The callback classes can be in the following locations:

• JARs in the SCA-INF/lib directory of the project

• Classes in the SCA-INF/classes directory of the project

Additionally, to support backward compatibility, the project level resource bundles can
also be in the same directory as the .task file.

34.5 Resource Bundles in Workflow Services
Get an overview of the resource bundles used in human workflow services and how
they can be customized to provide alternative resource strings.

The human workflow service APIs and Oracle BPM Worklist use the locale set in the
IWorkflowContext object to access the APIs. This is the locale of the user in the user
directory configured with the identity service. If no locale is specified for the user, then
the default locale for the Java EE server is used instead.

It is possible for API clients to override this locale by setting a new value in the
IWorkflowContext object. Oracle BPM Worklist provides a user preference option that
allows users to use their browser's locale, rather than the locale set in their user
directory.

34.5.1 Task Resource Bundles
Each human workflow component can be associated with a resource bundle. The
bundle defines the resource strings to use as display names for the task outcomes.
The resource strings are returned by the TaskMetadataService method

Chapter 34
Class Loading for Callbacks and Resource Bundles

34-48

getTaskDefinitionOutcomes, and are displayed in Oracle BPM Worklist and the task flow
task details application.

In addition, you can use the human workflow XPath function getTaskResourceBundle string
to look up resource strings for the task's resource bundle. For example, this XPath function
can be part of the XPath expression used to construct notification messages for the task.

A human workflow component is associated with a resource bundle by setting the Resource
Name and Resource Location fields of the Resource Details dialog in the Presentation
section of the Human Task Editor. The value for the Resource Location field is a URL, and
the resource bundle can be contained within a JAR file pointed to by the URL. It is possible to
share the same resource bundle between multiple human workflow components by using a
common location for the resource bundle.

If no resource bundle is specified for the human workflow component, the resource string is
looked up in the global resource bundle. (See Global Resource Bundle –
WorkflowLabels.properties.) Commonly-used task outcomes can be defined in the global
resource bundle, alleviating the need to define a resource bundle for individual human
workflow components.

If no resource string can be located for a particular outcome, then the outcome name is used
as the display value in all locales.

34.5.2 Global Resource Bundle – WorkflowLabels.properties
The following global resource bundle is used by human workflow service APIs to look up
resource strings:

oracle.bpel.services.workflow.resource.WorkflowLabels.properties

You can customize this bundle to provide alternatives for existing display strings or to add
additional strings (for example, for mapped attribute labels, standard views, or custom
dynamic assignment functions).

The global resource bundle provides resource strings for the following:

• Task attributes:

Labels for the various task attributes displayed in Oracle BPM Worklist (or other clients).
Resource string values are returned from the following TaskMetadataService methods:

– getTaskAttributes
– getTaskAttributesForTaskDefinition
– getTaskAttributesForTaskDefinitions

• Mapped attribute labels:

Mapped attribute labels created through the runtime config service. These strings are
used in Oracle BPM Worklist when displaying mapped attributes. Resource string values
are returned from the TaskMetadataService methods:

– getTaskAttributesForTaskDefinition
– getTaskAttributesForTaskDefinitions
If translated resource strings are required for mapped attribute mappings, then customize
the WorkflowLabels.properties bundle to include the appropriate strings.

• Task outcomes:

Chapter 34
Resource Bundles in Workflow Services

34-49

Default resource strings for common task outcomes. These can be overridden by
the task resource bundle, as described above. The resource strings are returned
by the TaskMetadataService method getTaskDefinitionOutcomes, if no task-
specific resource bundle has been specified. As shipped, the global resource
bundle contains resource strings for the following outcomes:

– Approve

– Reject

– Yes

– No

– OK

– Defer

– Accept

– Acknowledge

• Dynamic assignment function names:

Labels for dynamic assignment functions. These strings are returned from the
runtime config service methods getUserDynamicAssignmentFunctions and
getGroupDynamicAssignmentFunctions. The shipped resource bundle contains
labels for the standard dynamic assignment functions (ROUND_ROBIN, LEAST_BUSY,
and MOST_PRODUCTIVE). If additional custom dynamic assignment functions have
been created, then modify the WorkflowLabels.properties resource bundle to
provide resource strings for the new functions.

• Standard view names:

Labels for standard views. If you want translated resource strings for any standard
views you create, then add them here. Standard view resource strings are looked
up from the resource bundle, and are returned as the standard view name from
the UserMetadataService methods getStandardTaskViewList and
getStandardTaskViewDetails. The key for the resource string should be the name
given to the standard view when it is created. If no resource string is added for a
particular standard view, then the name as entered is used instead.

• Notification messages:

Resource strings used when the task service sends automatic notifications. These
can be customized to suit user requirements.

• Task routing error comments:

When an error is encountered in the routing of a task, the task service
automatically appends comments to the task to describe the error. The various
strings used for the comments are defined in this resource bundle.

You can customize the WorkflowLabels.properties resource bundle.

To customize the file:

1. Edit the properties file.

2. Add the customized class to the class-path used for workflow services. Ensure
that customized file is located before the default class in the class-path.

3. Save the customized file to the following directory:

Chapter 34
Resource Bundles in Workflow Services

34-50

directory_path/oracle/bpel/services/workflow/resource/WorkflowLabels.properties
4. Update the worklfowCustomClasspathURL configuration parameter to point to

directory_path. As this is a URL, it is possible to host the resource bundles on a web
server, or to store them in the MDS repository for the SOA server, and use the 'oramds'
URL protocol, and make them accessible to multiple Oracle WebLogic Servers.

34.5.3 Worklist Client Resource Bundles
The ADF worklist client application uses two resource bundles that contain all the strings
displayed in the worklist client web application.

• oracle.bpel.worklistapp.resource.WorkflowResourceBundle:

This contains strings used by both the ADF Oracle BPM Worklist, and the JSP-based
sample Oracle BPM Worklist that shipped with version 10.1.3 of Oracle SOA Suite.

• oracle.bpel.worklistapp.resource.WorklistResourceBundle:

This contains strings used only by the ADF Oracle BPM Worklist.

.

34.5.4 Task Detail ADF Task Flow Resource Bundles
The ADF task flow applications and associated data controls that get created to display the
details of a particular task type use the resource bundle
oracle.bpel.services.workflow.worklist.resource.worklist to store their resource
strings.

You can provide your own custom resource strings for a task detail ADF task flow by adding a
customized resource bundle in the task flow application.

You can localize the XML element name displayed in the task flow form through this resource
bundle. You can add keys, and use them in the task flow form contents section. The input text
label looks as follows:

#{resources.mykeyword}

34.5.5 Specifying Stage and Participant Names in Resource Bundles
You can provide translated values for stage names and participant names in the composite
resource bundle. The resource bundle should contain entries such as the following:

• stage_name=translated_value
• participant_name=translated_value

34.5.6 Case Sensitivity in Group and Application Role Names
By default, the human workflow system is case insensitive to user names. All user names are
stored in lowercase. However, group names and application role names are always case
sensitive. User name case insensitivity can be changed in Oracle Enterprise Manager Fusion
Middleware Control.

Chapter 34
Resource Bundles in Workflow Services

34-51

Caution:

Only change this setting after performing a new installation. Changing this
value on an installation that is actively processing instances, or has many
instances in the database, causes serious issues.

To change case sensitivity:

1. Log in to Oracle Enterprise Manager Fusion Middleware Control.

2. In the navigator, expand the SOA folder.

3. Right-click soa-infra, and select Administration > System Mbean Browser.

The System MBean Browser displays on the right side of the page.

4. Expand Application Defined MBeans > oracle.as.soainfra.config > Server:
server_name > WorkflowIdentityConfig > human-workflow >
WorkflowIdentityConfig.PropertyType.

5. Click caseSensitive.

6. Click the Operations tab.

7. Click setValue.

8. In the Value field, enter true, and click Invoke.

If you are upgrading from 10.1.3, which by default was case sensitive, set
caseSensitive to true for the system to be the same as with 10.1.3.

34.6 Introduction to Human Workflow Client Integration with
Oracle WebLogic Server Services

Learn how human workflow clients integrate with Oracle WebLogic Server services.

34.6.1 Human Workflow Services Clients
Human workflow services expose the following workflow services:

• Task service

• Task query service

• User metadata service

• Task evidence service

• Task metadata service

• Runtime config service

• Task report service

To use any of these services, you must use the abstract factory pattern for workflow
services. The abstract factory pattern provides a way to encapsulate a group of
individual factories that have a common theme.

Perform the following tasks:

Chapter 34
Introduction to Human Workflow Client Integration with Oracle WebLogic Server Services

34-52

• Get the IWorkflowServiceClient instance for the specific service type. The
WorkflowServiceClientFactory provides a static factory method to get
IWorkflowServiceClient according to the service type.

• Use the IWorkflowServiceClient instance to get the service instance to use.

The supported service types are Remote and Soap.

Remote clients use Enterprise JavaBeans clients (remote Enterprise JavaBeans,
accordingly). SOAP uses SOAP clients. Each type of service requires you to configure
workflow clients. The first code sample in Workflow Client Configuration File -
wf_client_config.xml provides details.

The client configuration file can contain definitions for several configurations. Each server
must have its own unique name. If the configuration file defines multiple servers, one server
must be set with the default attribute equal to true. The
workflowServicesClientConfiguration has an optional attribute named serverType that
can be set to one of the following: LOCAL, REMOTE, or SOAP. Each server can override the client
type by using the optional attribute clientType.

The second code sample in Workflow Client Configuration File - wf_client_config.xml
provides details.

In the second example, server2 uses the default clientType of REMOTE, while server1
overrides the default clientType value to use the clientType of SOAP. The same rule applies
if the JAXB WorkflowServicesClientConfigurationType object is used instead of the
wf_client_config.xml file.

If the configuration defines a client type, you can use the factory method from the
WorkflowServiceClientFactory class. See the code sample below:

public static IWorkflowServiceClient
 getWorkflowServiceClient(WorkflowServicesClientConfigurationType wscc, Logger
 logger) throws WorkflowException

If the map defines a client type with the property CONNECTION_PROPERTY.CLIENT_TYPE, the
factory method in the code sample below can be used:

public static IWorkflowServiceClient getWorkflowServiceClient(Map<CONNECTION_
PROPERTY, String> properties, String serverName, Logger logger) throws
 WorkflowException

34.6.1.1 Task Query Service Client Code
The code sample below provides an example of the task query service client code:

/**
 * WFClientSample
 */
package oracle.bpel.services.workflow.samples;

import java.util.ArrayList;
import java.util.HashMap;
import java.util.List;
import java.util.Map;

import oracle.bpel.services.workflow.IWorkflowConstants;
import oracle.bpel.services.workflow.WorkflowException;
import oracle.bpel.services.workflow.client.IWorkflowServiceClient;
import oracle.bpel.services.workflow.client.WorkflowServiceClientFactory;

Chapter 34
Introduction to Human Workflow Client Integration with Oracle WebLogic Server Services

34-53

import oracle.bpel.services.workflow.client.IWorkflowServiceClientConstants
 .CONNECTION_PROPERTY;
import oracle.bpel.services.workflow.query.ITaskQueryService;
import oracle.bpel.services.workflow.query.ITaskQueryService.AssignmentFilter;
import oracle.bpel.services.workflow.query.ITaskQueryService.OptionalInfo;
import oracle.bpel.services.workflow.repos.Ordering;
import oracle.bpel.services.workflow.repos.Predicate;
import oracle.bpel.services.workflow.repos.TableConstants;
import oracle.bpel.services.workflow.verification.IWorkflowContext;

public class WFClientSample {

 public static List runClient(String clientType) throws WorkflowException {
 try {

 IWorkflowServiceClient wfSvcClient = null;
 ITaskQueryService taskQuerySvc = null;
 IWorkflowContext wfCtx = null;

 // 1. this step is optional since configuration can be set in
wf_client_
 config.xml file
 Map<CONNECTION_PROPERTY, String> properties = new HashMap<CONNECTION_
PROPERTY, String>();
 if (WorkflowServiceClientFactory.REMOTE_CLIENT.equals(clientType)) {
 properties.put(CONNECTION_PROPERTY.EJB_INITIAL_CONTEXT_FACTORY,
 "weblogic.jndi.WLInitialContextFactory");
 properties.put(CONNECTION_PROPERTY.EJB_PROVIDER_URL,
 "t3://myhost.us.example.com:7001");
 properties.put(CONNECTION_PROPERTY.EJB_SECURITY_CREDENTIALS,
 "weblogic");
 properties.put(CONNECTION_PROPERTY.EJB_SECURITY_PRINCIPAL,
"weblogic");
 } else if (WorkflowServiceClientFactory.SOAP_CLIENT.equals(clientType))
{
 properties.put(CONNECTION_PROPERTY.SOAP_END_POINT_ROOT,
 "http://myhost:7001");
 properties.put(CONNECTION_PROPERTY.SOAP_IDENTITY_
PROPAGATION,"non-saml"); // optional
 }
 // 2. gets IWorkflowServiceClient for specified client type
 wfSvcClient =
 WorkflowServiceClientFactory.getWorkflowServiceClient(clientType, properties,
 null);

 // 3. gets ITaskQueryService instance
 taskQuerySvc = wfSvcClient.getTaskQueryService();

 // 4. gets IWorkflowContext instance
 wfCtx = taskQuerySvc.authenticate("jcooper", "welcome1".toCharArray(),
 "jazn.com");

 // 5. creates displayColumns
 List<String> displayColumns = new ArrayList<String>(8);
 displayColumns.add("TASKID");
 displayColumns.add("TASKNUMBER");
 displayColumns.add("TITLE");
 displayColumns.add("CATEGORY");

 // 6. creates optionalInfo
 List<ITaskQueryService.OptionalInfo> optionalInfo = new

Chapter 34
Introduction to Human Workflow Client Integration with Oracle WebLogic Server Services

34-54

 ArrayList<ITaskQueryService.OptionalInfo>();
 optionalInfo.add(ITaskQueryService.OptionalInfo.DISPLAY_INFO);

 // 7. creates assignmentFilter
 AssignmentFilter assignmentFilter = AssignmentFilter.MY_AND_GROUP;

 // 8. creates predicate
 List<String> stateList = new ArrayList<String>();
 stateList.add(IWorkflowConstants.TASK_STATE_ASSIGNED);
 stateList.add(IWorkflowConstants.TASK_STATE_INFO_REQUESTED);
 Predicate predicate = new Predicate(TableConstants.WFTASK_STATE_COLUMN,
 Predicate.OP_IN, stateList);

 // 9. creates ordering
 Ordering ordering = new Ordering(TableConstants.WFTASK_DUEDATE_COLUMN,
 true, false);
 ordering.addClause(TableConstants.WFTASK_CREATEDDATE_COLUMN, true,
 false);

 // 10. calls service - query tasks
 List taskList = taskQuerySvc.queryTasks(wfCtx,
 (List<String>) displayColumns,
 (List<OptionalInfo>) optionalInfo,
 (AssignmentFilter)
 assignmentFilter,
 (String) null, // keywords is
 optional (see javadoc)
 // optional
 predicate,
 ordering,
 0, // starting row
 100); // ending row for paging, 0
 if no paging

 // Enjoy result
 System.out.println("Successfuly get list of tasks for client type: " +
 clientType +
 ". The list size is " + taskList.size());
 return taskList;
 } catch (WorkflowException e) {
 System.out.println("Error occurred");
 e.printStackTrace();
 throw e;
 }
 }

 public static void main(String args[]) throws Exception {
 runClient(WorkflowServiceClientFactory.REMOTE_CLIENT);
 runClient(WorkflowServiceClientFactory.SOAP_CLIENT);
 }

}

34.6.1.2 Configuration Option
Each type of client is required to have a workflow client configuration. You can set the
configuration in the following locations:

• JAXB object

• wf_client_config.xml file

Chapter 34
Introduction to Human Workflow Client Integration with Oracle WebLogic Server Services

34-55

• Property map

The property map is always complementary to the wf_client_config.xml file. The
JAXB object or property map can overwrite the configuration attribute. The file is
optional. If it cannot be found in the application class path, then the property map is
the main source of configuration.

34.6.1.2.1 JAXB Object
You can use the JAXB object to define the client configuration. The code sample below
shows how to use the WorkflowServiceClientFactory method.

public static IWorkflowServiceClient getWorkflowServiceClient(String
clientType,WorkflowServicesClientConfigurationType wscc,Logger logger) throws
WorkflowException

34.6.1.2.2 Workflow Client Configuration File - wf_client_config.xml
The client configuration XSD schema is present in the wf_client_config.xsd file.

The server configuration should contain three types of clients:

• localClient
• remoteClient
• soapClient
Oracle recommends that you specify all clients. This is because some services (for
example, the identity service) do not have remote clients. Therefore, when you use
remote clients for other services, the identity service uses the SOAP service.

An example of a client configuration XML file is shown in the code sample below. The
configuration defines a server named default. The XML file must go into the client
application's EAR file.

<workflowServicesClientConfiguration>
server name="default" default="true">

<remoteClient>
 <serverURL>t3://myhost.us.example.com:7001</serverURL>
 <userName>weblogic</userName>
 <password>weblogic</password>
 <initialContextFactory>weblogic.jndi.WLInitialContextFactory
 </initialContextFactory>
 <participateInClientTransaction>false</participateInClientTransaction>
</remoteClient>

<soapClient>
 <rootEndPointURL>http://myhost.us.example.com:7001</rootEndPointURL>
 <identityPropagation mode="dynamic" type="saml">
 <policy-references>
 <policy-reference enabled="true" category="security"
 uri="oracle/wss10_saml_token_client_policy"/>
 </policy-references>
 </identityPropagation>
</soapClient>

</server>
</workflowServicesClientConfiguration>

Chapter 34
Introduction to Human Workflow Client Integration with Oracle WebLogic Server Services

34-56

The following code sample shows an example of a client configuration file with multiple
configuration definitions:

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<workflowServicesClientConfiguration
 xmlns="http://xmlns.oracle.com/bpel/services/client" clientType="REMOTE"
 <server name="server1" default="true" clientType="SOAP">
 <remoteClient>
 <serverURL>t3://myhost1.us.example.com:7001</serverURL>
 <initialContextFactory>weblogic.jndi.WLInitialContextFactory</
initialContextFactory>
 <participateInClientTransaction>false</participateInClientTransaction>
 </remoteClient> -->
 <soapClient>
 <rootEndPointURL>http://myhost1.us.example.com:7001</rootEndPointURL>
 <identityPropagation mode="dynamic" type="saml">
 <policy-references>
 <policy-reference enabled="true" category="security"
 uri="oracle/wss10_saml_token_client_policy"/>
 </policy-references>
 </identityPropagation>
 </soapClient>
 </server>
 <server name="server2">
 <remoteClient>
 <serverURL>t3://myhost2.us.example.com:7001</serverURL>
 <initialContextFactory>weblogic.jndi.WLInitialContextFactory</
initialContextFactory>
 <participateInClientTransaction>false</participateInClientTransaction>
 </remoteClient> -->
 <soapClient>
 <rootEndPointURL>http://myhost2us.example.com:7001</rootEndPointURL>
 <identityPropagation mode="dynamic" type="saml">
 <policy-references>
 <policy-reference enabled="true" category="security"
 uri="oracle/wss10_saml_token_client_policy"/>
 </policy-references>
 </identityPropagation>
 </soapClient>
 </server>
</workflowServicesClientConfiguration>

You can define client properties in wf_client_config.xml when
WorkflowServicesClientConfigurationType wscc is null.

The WorkflowServiceClientFactory getWorkflowServiceClient() methods always look for
wf_client_config.xml in the class path. If this file is found, the client properties are loaded.

All properties defined in either the property map or the JAXB object override values defined in
the wf_client_config.xml file.

34.6.1.2.3 Workflow Client Configuration in the Property Map
To specify the connection property dynamically, you can use a java.util.Map to specify the
properties. The properties take precedence over definitions in the configuration file.
Therefore, the values of the properties overwrite the values defined in
wf_client_config.xml. If you do not want to dynamically specify connection details to the
server, you can omit the property setting in the map and pass a null value to the factory

Chapter 34
Introduction to Human Workflow Client Integration with Oracle WebLogic Server Services

34-57

method. In that case, the configuration wf_client_config.xml is searched for in the
client application class path.

The configuration file must be in the class path only to get the configuration from the
file. It is optional to have the file if all settings from the specific client type are done
through the property map. The JAXB object is also not required to have the file, since
all settings are taken from the JAXB object. The code sample below provides details.

IWorkflowServiceClient wfSvcClient =
WorkflowServiceClientFactory.getWorkflowServiceClient(WorkflowServiceClientFactor
y
.REMOTE_CLIENT,
(Map<IWorkflowServiceClientConstants.CONNECTION_PROPERTY, String>) null, null);

If you do so, the value from wf_client_config.xml found in the class path is used by
the client to access the services. If the file is not found in the class path and you do not
provide the setting according to the service type, a workflow exception is thrown. If the
properties map is null and the file is not found, an exception is thrown. If the client
omits some properties in the map while the file is not found, the service call fails at
runtime (the properties are complementary to the file).

You can define client properties by using the WorkflowServiceClientFactory method.
The code sample below provides details.

public static IWorkflowServiceClient getWorkflowServiceClient(String
clientType,Map<CONNECTION_PROPERTY, String> properties,
Logger logger) hrows WorkflowException

If the map defines a client type with the property CONNECTION_PROPERTY type, the
factory method shown below can be used:

public static IWorkflowServiceClient getWorkflowServiceClient(Map<CONNECTION_
PROPERTY, String> properties, Logger logger) throws WorkflowException

The IWorkflowServiceClientConstants.CONNECTION_PROPERTY, which can be used in
the properties map for setting client properties, as shown below:

public enum CONNECTION_PROPERTY {
 MODE, // not supported , deprecated
 EJB_INITIAL_CONTEXT_FACTORY,
 EJB_PROVIDER_URL,
 EJB_SECURITY_PRINCIPAL,
 EJB_SECURITY_CREDENTIALS,
 // SOAP configuration
 SOAP_END_POINT_ROOT,
 SOAP_IDENTITY_PROPAGATION, // if value is 'saml' then SAML-token
 identity propagation is used
 SOAP_IDENTITY_PROPAGATION_MODE, // "dynamic'
 MANAGEMENT_POLICY_URI, // dafault value is "oracle/log_policy"
 SECURITY_POLICY_URI, // default value is "oracle/wss10_
 saml_token_client_policy"
 // REMOTE EJB
 TASK_SERVICE_PARTICIPATE_IN_CLIENT_TRANSACTION // default value is
 false
 //(task service EJB starts a new transaction)
 CLIENT_TYPE, DISCOVERY_OF_END_POINT,
 WSS_RECIPIENT_KEY_ALIAS,
 EJB_JNDI_SUFFIX // append to jndi name to used foreign jndi name
 };

Chapter 34
Introduction to Human Workflow Client Integration with Oracle WebLogic Server Services

34-58

Note:

If you use the properties map, you do not need to specify
IWorkflowServiceClientConstants.CONNECTION_PROPERTY.MODE. This property is
deprecated in 11g Release 1.

The code sample below provides an example for remote Enterprise JavaBeans clients.

Map<CONNECTION_PROPERTY,String> properties = new HashMap<CONNECTION_
PROPERTY,String>();
properties.put(CONNECTION_PROPERTY.EJB_INITIAL_CONTEXT_
FACTORY,"weblogic.jndi.WLInitialContextFactory");

properties.put(CONNECTION_PROPERTY.EJB_PROVIDER_URL,
 "t3://myhost.us.example.com:7001");
properties.put(CONNECTION_PROPERTY.EJB_SECURITY_PRINCIPAL, "weblogic");
properties.put(CONNECTION_PROPERTY.EJB_SECURITY_CREDENTIALS, "weblogic");
IWorkflowServiceClient client =
 WorkflowServiceClientFactory.getWorkflowServiceClient(
 WorkflowServiceClientFactory.REMOTE_CLIENT,
 properties, null);

The code sample below provides an example for a SOAP client.

Map<CONNECTION_PROPERTY,String> properties = new HashMap<CONNECTION_
PROPERTY,String>();
properties.put(CONNECTION_PROPERTY.SOAP_END_POINT_ROOT, "http://myhost:7001");
IWorkflowServiceClient client =
 WorkflowServiceClientFactory.getWorkflowServiceClient(
 WorkflowServiceClientFactory.SOAP_CLIENT,
 properties, null);

34.6.1.3 Client Logging
Clients can optionally pass in a java.util.logging.Logger to where the client logs
messages. If there is no logger specified, the workflow service client code does not log
anything. The code sample below shows how to pass a logger to the workflow service clients:

java.util.logging.Logger logger =;

IWorkflowServiceClient client =
WorkflowServiceClientFactory.getWorkflowServiceClient(WorkflowServiceClientFactory
.REMOTE_CLIENT, properties, logger);

34.6.1.4 Configuration Migration Utility
The client configuration schema has changed between release 10.1.3.x and 11g Release 1.
To migrate from release 10.1.3.x to 11g Release 1, use the utility shown in the code sample
below:

java -classpath wsclient_extended.jar:bpm-services.jar
 oracle.bpel.services.workflow.client.config.MigrateClientConfiguration
original_file [new_file];

Chapter 34
Introduction to Human Workflow Client Integration with Oracle WebLogic Server Services

34-59

where original_file is a wf_client_config.xml file from 10.1.3.x and new_file is
the optional name of the new configuration file. If a new name is not specified, the
utility backs up the original configuration file and overwrites the wf_client_config.xml
file.

34.6.2 Identity Propagation
This section describes how to propagate identities using Enterprise JavaBeans and
SAML-tokens for SOAP clients.

There are performance implications for getting the workflow context for every request.
This is also true for identity propagation. If you use identity propagation with SAML-
token or Enterprise JavaBeans, authenticate the client by passing null for the user and
password, get the workflow context instance, and use another service call with
workflow context without identity propagation.

34.6.2.1 Enterprise JavaBeans Identity Propagation
The client application can propagate user identity to services by using Enterprise
JavaBeans identity propagation. The client code is responsible for securing the user
identity.

34.6.2.1.1 Client Configuration
If you use identity propagation, the client code must omit the element's <userName>
and <password> under the <remoteClient> element in the wf_client_config.xml
configuration file. In addition, do not populate the following properties into
Map<IWorkflowServiceClientConstants.CONNECTION_PROPERTY,String> properties
as you did in Workflow Client Configuration in the Property Map.

• IWorkflowServiceClientConstants.CONNECTION_PROPERTY.EJB_SECURITY_PRINC
IPAL

• IWorkflowServiceClientConstants.CONNECTION_PROPERTY.EJB_SECURITY_CREDE
NTIALS

34.6.2.1.2 Requirements for Client Applications For Identity Propagation
Identity propagation only works if the application is deployed under the Oracle
WebLogic Server container and secured with container security or the client is secured
with a custom JAAS login module.

End users log in to the client application with the correct user name and password.
The users using the client application must be available in the identity store used by
the SOA application. As a best practice, configure the client to use the same identity
store as the workflow services and Oracle SOA Suite are using. This guarantees that if
the user exists on the client side, they also exist on the server side.

For information about configuring the identity store, see Securing Applications with
Oracle Platform Security Services.

For information about interacting with custom identity stores, visit:

http://www.oracle.com/technetwork/middleware/id-mgmt/overview/index.html

Chapter 34
Introduction to Human Workflow Client Integration with Oracle WebLogic Server Services

34-60

http://www.oracle.com/technetwork/middleware/id-mgmt/overview/index.html

34.6.2.2 SAML Token Identity Propagation for SOAP Client
If you use a SOAP client, you can use the SAML-token identity propagation supported by
Oracle web services.

This section assumes the application resides in and is secured by the Oracle WebLogic
Server container.

34.6.2.2.1 Client configuration
To enable identity propagation, the client configuration must specify a special propagation
mode.

34.6.2.2.1.1 Identity Propagation Mode Setting Through Properties

If properties are used, then populate the property
CONNECTION_PROPERTY.SOAP_IDENTITY_PROPAGATION with the value saml.

• Dynamic SAML token propagation mode

The SAML token policy is provided dynamically (the default). The property shown in the
code sample below is optional. If the identity propagation mode is set, you run by default
in dynamic mode.

properties.put(IWorkflowServiceClientConstants.CONNECTION_PROPERTY.SOAP_
IDENTITY_PROPAGATION_MODE , "dynamic");

By default, SAML-token constructs dynamic policy based on the following security policy URI:
oracle/wss10_saml_token_client_policy. Logging is not used. To overwrite the default
policy URI, the client can add the code shown below:

properties.put(CONNECTION_PROPERTY.SECURITY_POLICY_URI "oracle/wss10_saml_
token_client_policy");
properties.put(CONNECTION_PROPERTY.MANAGEMENT_POLICY_URI , "oracle/log_policy");

The code sample below shows the SAML token dynamic client:

Map<CONNECTION_PROPERTY,String> properties = new HashMap<ONNECTION_
PROPERTY,String>();
properties.put(CONNECTION_PROPERTY.SOAP_IDENTITY_PROPAGATION , "saml");
properties.put(CONNECTION_PROPERTY.SOAP_END_POINT_ROOT,
 "http://myhost.us.example.com:7001");
properties.put(ONNECTION_PROPERTY.SECURITY_POLICY_URI, "oracle/wss10_saml_token_
client_policy"); //optional
properties.put(CONNECTION_PROPERTY.MANAGEMENT_POLICY_URI , "oracle/log_policy");
 //optional
IWorkflowServiceClient client =
 WorkflowServiceClientFactory.getWorkflowServiceClient(
 WorkflowServiceClientFactory.SOAP_CLIENT,
properties, null);

The client reference to the policy URI must match the server policy URI. Otherwise, SAML
token propagation fails.

34.6.2.2.1.2 Identity Propagation Mode Setting in Configuration File

In the configuration file, you can define the propagation mode by using the
<identityPropagation> element in the <soapClient>, as shown below:

Chapter 34
Introduction to Human Workflow Client Integration with Oracle WebLogic Server Services

34-61

<soapClient>
 <rootEndPointURL>http://myhost.us.example.com:7001</rootEndPointURL>
 <identityPropagation mode="dynamic" type="saml">
 <policy-references>
 <policy-reference enabled="true" category="security"
 uri="oracle/wss10_saml_token_client_policy"/>
 </policy-references>
 </identityPropagation> </soapClient>

34.6.2.2.1.3 Identity Propagation Mode Setting Through the JAXB Object

You can programmatically set the identity propagation mode with the JAXB object.

34.6.2.3 Public Key Alias
You can use the
oracle.wsm.security.util.SecurityConstants.ClientConstants.WSS_RECIPIENT_K
EY_ALIAS property with the workflow client. This property sets the alias for the
recipient's public key that is used to encrypt the type outbound message. Use this
property to secure workflow services with the public key alias. This property is only
relevant when the SOAP client type uses identity propagation.

The client code must add the WSS_RECIPIENT_KEY_ALIAS value to the map if the public
key alias is defined. The code sample below provides details.

Map<CONNECTION_PROPERTY,String> properties = new HashMap<ONNECTION_
PROPERTY,String>();
properties.put(CONNECTION_PROPERTY.SOAP_IDENTITY_PROPAGATION , "saml");
properties.put(CONNECTION_PROPERTY.SOAP_END_POINT_ROOT,
 "http://myhost.us.example.com:7001");
properties.put(CONNECTION_PROPERTY.WSS_RECIPIENT_KEY_ALIAS,keyAlias);
// where keyAlias is a key alias value
properties.put(ONNECTION_PROPERTY.SECURITY_POLICY_URI, "oracle/
wss10_saml_token_
client_policy"); //optional
properties.put(CONNECTION_PROPERTY.MANAGEMENT_POLICY_URI , "oracle/
log_policy");
 //optional
IWorkflowServiceClient client =

WorkflowServiceClientFactory.getWorkflowServiceClient(
 WorkflowServiceClientFactory.SOAP_CLIENT,
 properties, null);

If the client uses the JAXB WorkflowServicesClientConfigurationType object or the
wf_client_config.xml file, an optional element called wssRecipientKeyAlias is
added under the identityPropagation element for a SOAP client. The following code
sample provides details.

<xsd:complexType name="identityPropagationType">
 <xsd:sequence>
 <xsd:element name="policy-references"
type="PolicyReferencesType"
 minOccurs="0" maxOccurs="1"/>
 <xsd:element name="wssRecipientKeyAlias" type="xsd:string"

Chapter 34
Introduction to Human Workflow Client Integration with Oracle WebLogic Server Services

34-62

minOccurs="0"
 maxOccurs="1"/> </xsd:sequence>
 <xsd:attribute name="type" type="xsd:string" default="saml"/>
 <xsd:attribute name="mode" type="xsd:string" default="dynamic"/>
</xsd:complexType>

For more information about how to create and use the public key alias in the credential store,
see Securing Web Services and Managing Policies with Oracle Web Services Manager in
Securing Web Services and Managing Policies with Oracle Web Services Manager.

34.6.3 Client JAR Files
A client application without identity propagation must have the bpm-services.jar file in its
class path. For 12c Release 1 (12.1.3), the client class path requires the files shown below:

$fmwhome/wlserver/server/lib/wlfullclient.jar
$fmwhome/wlserver/lib/weblogic.jar
$fmwhome/wlserver/server/lib/wlclient.jar
$fmwhome/oracle_common/modules/clients/com.oracle.webservices.fmw.client_
12.1.3.jar
$fmwhome/soa/soa/modules/com.oracle.webservices.fmw.client_12.1.3.jar
$fmwhome/oracle_common/modules/oracle.xdk_12.1.3/xml.jar
$fmwhome/oracle_common/modules/oracle.nlsrtl_11.2.0/orai18n-mapping.jar
$fmwhome/soa/soa/modules/oracle.soa.fabric_11.1.1/bpm-infra.jar
$fmwhome/soa/soa/modules/oracle.soa.workflow_11.1.1/bpm-services.jar
$fmwhome/soa/soa/modules/soa-startup.jar

The wlfullclient.jar file must be generated.

• Generate the wlfullclient.jar as follows:

cd $fmwhome/wlserver/server/lib
java -jar ../../modules/com.bea.core.jarbuilder_2.2.0.0.jar

34.7 Task States in a Human Task
The constants for all states are defined in IWorkflowConstants.java.

The following list identifies all the task states available in a human task.

• String TASK_STATE_ALERTED = "ALERTED";
• String TASK_STATE_ASSIGNED = "ASSIGNED";
• String TASK_STATE_COMPLETED = "COMPLETED";
• String TASK_STATE_DELETED = "DELETED";
• String TASK_STATE_ERRORED = "ERRORED";
• String TASK_STATE_EXPIRED = "EXPIRED";
• String TASK_STATE_INFO_REQUESTED = "INFO_REQUESTED";
• String TASK_STATE_OUTCOME_UPDATED = "OUTCOME_UPDATED";
• String TASK_STATE_STALE = "STALE";
• String TASK_STATE_SUSPENDED = "SUSPENDED";
• String TASK_STATE_WITHDRAWN = "WITHDRAWN";

Chapter 34
Task States in a Human Task

34-63

For more information about IWorkflowConstants.java, see Workflow Services Java
API Reference for Oracle SOA Suite.

34.8 Database Views for Oracle Workflow
Overview of database views that enable queries against the Oracle workflow services
schema to receive reports.

Table 34-22 lists the reports exposed in Oracle BPM Worklist and the database views
corresponding to these reports.

Table 34-22 Report Views

Existing Worklist Report Corresponding Database View

Unattended Tasks report WFUNATTENDEDTASKS_VIEW
Task Cycle Time report WFTASKCYCLETIME_VIEW
Task Productivity report WFPRODUCTIVITY_VIEW
Task Priority Report WFTASKPRIORITY_VIEW

34.8.1 Unattended Tasks Report View
Table 34-23 describes the WFUNATTENDEDTASKS_VIEW report view.

Table 34-23 Unattended Tasks Report View

Name Type

TASKID1 VARCHAR2(64)
TASKNAME VARCHAR2(200)
TASKNUMBER NUMBER
CREATEDDATE DATE
EXPIRATIONDATE DATE
STATE VARCHAR2(100)
PRIORITY NUMBER
ASSIGNEEGROUPS VARCHAR2(2000)

1 NOT NULL column

For example:

• Query unattended tasks that have an expiration date of next week, as shown
below:

SELECT tasknumber, taskname, assigneegroups FROM WFUNATTENDEDTASKS_VIEW
 WHERE expirationdate > current_date AND expirationdate < current_date +
 7;

• Query unattended tasks for mygroup, as shown below:

SELECT tasknumber, taskname, assigneegroups FROM WFUNATTENDEDTASKS_VIEW
 WHERE 'mygroup' IN assigneegroups;

Chapter 34
Database Views for Oracle Workflow

34-64

• Query unattended tasks created in the last 30 days, as shown below:

SELECT tasknumber, taskname, assigneegroups FROM WFUNATTENDEDTASKS_VIEW
 WHERE createddate > current_date -30;

34.8.2 Task Cycle Time Report View
Table 34-24 describes the WFTASKCYCLETIME_VIEW report view.

Table 34-24 Task Cycle Time Report View

Name Type

TASKID1 VARCHAR2(64)
TASKNAME VARCHAR2(200)
TASKNUMBER NUMBER
CREATEDDATE DATE
ENDDATE DATE
CYCLETIME NUMBER(38)

1 NOT NULL column

For example:

• Compute the average cycle time (task completion time) for completed tasks that were
created in the last 30 days, as shown below:

SELECT avg(cycletime) FROM WFTASKCYCLETIME_VIEW WHERE createddate >
 (current_date - 30);

• Query the average cycle time for all completed tasks created in the last 30 days and
group them by task name, as shown below:

SELECT taskname, avg(cycletime) FROM WFTASKCYCLETIME_VIEW WHERE
 createddate > (current_date - 30) GROUP BY taskname;

• Query the least and most time taken by each task, as shown below:

SELECT taskname, min(cycletime), max(cycletime) FROM WFTASKCYCLETIME_VIEW
 GROUP BY taskname;

• Compute the average cycle time for tasks completed in the last seven days, as shown
below:

SELECT avg(cycletime) FROM WFTASKCYCLETIME_VIEW WHERE enddate >
 (current_date - 7);

• Query tasks that took more than seven days to complete, as shown below:

SELECT taskname, avg(cycletime) FROM WFTASKCYCLETIME_VIEW WHERE cycletime
 > ((current_date +7) - current_date) GROUP BY taskname;

34.8.3 Task Productivity Report View
Table 34-25 describes the WFPRODUCTIVITY_VIEW report view.

Chapter 34
Database Views for Oracle Workflow

34-65

Table 34-25 Task Productivity Report View

Name Type

TASKNAME VARCHAR2(200)
TASKID VARCHAR2(200)
TASKNUMBER NUMBER
USERNAME VARCHAR2(200)
STATE1 VARCHAR2(100)
LASTUPDATEDDATE DATE

1 For completed tasks, the state is null. Use decode(outcome, '', 'COMPLETED', outcome) in
queries.

For example:

• Count the number of unique tasks that the user has updated in the last 30 days, as
shown below:

SELECT username, count(distinct(taskid)) FROM WFPRODUCTIVITY_VIEW WHERE
 lastupdateddate > (current_date -30) GROUP BY username;

• Count the number of tasks that the user has updated (one task may have been
updated multiple times) in the last seven days, as shown below:

SELECT username, count(taskid) FROM WFPRODUCTIVITY_VIEW WHERE
 lastupdateddate > (current_date -7) GROUP BY username;

• Count the number of tasks of each task type on which the user has worked, as
shown below:

SELECT username, taskname, count(taskid) FROM WFPRODUCTIVITY_VIEW GROUP
 BY username, taskname;

• Count the number of tasks of each task type that the user has worked on in the
last 100 days, as shown below:

SELECT username, taskname, count(taskid) FROM WFPRODUCTIVITY_VIEW WHERE
 lastupdateddate > (current_date -100) GROUP BY username, taskname;

34.8.4 Task Priority Report View
Table 34-26 describes the WFTASKPRIORITY_VIEW report view.

Table 34-26 Task Priority Report View

Name Type

TASKID1 VARCHAR2(64)
TASKNAME VARCHAR2(200)
TASKNUMBER NUMBER
PRIORITY NUMBER
OUTCOME VARCHAR2(100)
ASSIGNEDDATE DATE

Chapter 34
Database Views for Oracle Workflow

34-66

Table 34-26 (Cont.) Task Priority Report View

Name Type

UPDATEDDATE DATE
UPDATEDBY VARCHAR2(64)

1 NOT NULL column

For example:

• Query the number of tasks updated by each user in each task priority, as shown below:

SELECT updatedby, priority, count(taskid) FROM WFTASKPRIORITY_VIEW GROUP
 BY updatedby, priority;

• Query task-to-outcome distribution, as shown below:

SELECT taskname, decode(outcome, '', 'COMPLETED', outcome), count
 (taskid) FROM WFTASKPRIORITY_VIEW GROUP BY taskname, outcome;

• Query the number of tasks updated by the given user in each priority, as shown below:

SELECT priority, count(taskid) FROM WFTASKPRIORITY_VIEW WHERE
 updatedby='jstein' GROUP BY priority;

Chapter 34
Database Views for Oracle Workflow

34-67

Part VI
Using Binding Components

This section describes how to use binding components.

This part contains the following chapters:

• Getting Started with Binding Components

• Integrating REST Operations in SOA Composite Applications

• Integrating Enterprise JavaBeans with Composite Applications

• Using Direct Binding to Invoke Composite Services

35
Getting Started with Binding Components

This chapter describes the supported service and reference binding component types and
technologies that you can integrate in a SOA composite application. Supported binding
components include web services, HTTP binding, JCA adapters, Cloud adapters, Oracle
Business Activity Monitoring (BAM), Oracle B2B, Oracle Healthcare, ADF-BC services,
Enterprise JavaBeans (EJB) services, Managed File Transfer (MFT), Representational State
Transfer (REST) services, and direct binding services. Creation of tokens for use in the
binding URLs of external references is also described.
This chapter includes the following sections:

• Introduction to Binding Components

• Introduction to Integrating a Binding Component in a SOA Composite Application

• Creating Tokens for Use in the Binding URLs of External References

For more information, see Adding Service Binding Components and Adding Reference
Binding Components.

35.1 Introduction to Binding Components
Binding components establish the connection between a SOA composite application and the
external world. There are two types of binding components:

• Services

Provide the outside world with an entry point to the SOA composite application. The
WSDL file of the service advertises its capabilities to external applications. These
capabilities are used for contacting the SOA composite application components. The
binding connectivity of the service describes the protocols that can communicate with the
service (for example, SOAP/HTTP or REST binding).

• References

Enable messages to be sent from the SOA composite application to external services in
the outside world. For REST bindings, a Web Application Description Language (WADL)
file advertises the capabilities to external applications.

Figure 35-1 shows an OrderBookingComposite project in which a service
(UpdateOrderStatus) in the Exposed Services swimlane provides the entry point to the
composite and a reference (BAM_OrderDO) in the External References swimlane enables
information to be sent to an Oracle BAM Server in the outside world.

Figure 35-1 Service and Reference Binding Components

35-1

Binding components enable you to integrate the following types of technologies with
SOA composite applications:

• SOAP web services

• HTTP binding

• JCA adapters

• Oracle E-Business Suite

• Oracle BAM 11g (This adapter can only connect to an Oracle BAM 11g server.)

• Oracle B2B

• Oracle Healthcare

• Oracle Managed File Transfer (MFT)

• ADF-BC services

• EJB services

• Direct binding services

• REST binding

• Cloud adapters

These technologies are described in the following sections.

35.1.1 SOAP Web Services
This service enables you to integrate applications with a standards-based web service
using the Simple Object Access Protocol (SOAP) over HTTP. Web services are
described in the WSDL file.

Dragging a web service into a swimlane of the SOA Composite Editor invokes the
Create Web Service dialog for specifying configuration properties.

For more information about web services, see How to Define the Interface (WSDL) for
a Web Service.

For information about adding Message Transmission Optimization Mechanism
(MTOM) attachments to web services, see Sending and Receiving MTOM-Optimized
Messages to SOA Composite Applications.

35.1.1.1 WS-AtomicTransaction Support
The Create Web Service dialog also enables you to configure support for WS-
Coordination and WS-AtomicTransaction (WS-AT) transactions. WS-AT provides
transaction interoperability between Oracle WebLogic Server and other vendors'
transaction services. Interoperability is provided at two levels:

• Exporting transactions from the local Java Transaction API (JTA) environment for
a web service request.

• Importing transactions from a web service request into the local JTA environment.
This allows for distributed transaction processing between multiple nodes in the
web services environment.

Figure 35-2 shows the support for WS-AT at the bottom of the Create Web Service
dialog.

Chapter 35
Introduction to Binding Components

35-2

Figure 35-2 WS-AT Support in Create Web Service Dialog

Table 35-1 describes the WS-AT fields. For a description of the remaining fields in the Create
Web Service dialog, see How to Define the Interface (WSDL) for a Web Service.

Table 35-1 WS-AT Fields of the Create Web Service Dialog

Property Description

Transaction
Participation

Select a value. If you added the web service to the Exposed Services swimlane, this
action enables external transaction managers to coordinate resources hosted on
Oracle WebLogic Server over WS-AT. If you added the web service to the External
References swimlane, this addition enables Oracle WebLogic Server transactions to
coordinate resources hosted in external environments over WS-AT.

• Never
No transaction context is imported (for services) or exported (for references).
This is the default value if you add the web service as a service binding
component in the Exposed Services swimlane.

• Supports
If a transaction exists, a transaction context is imported (for services) or exported
(for references). This information is added to the composite.xml file.

• Mandatory
A transaction context is imported (for services) or exported (for references). This
information is added to the composite.xml file. For exports, a web service
exception message is thrown if there is no active transaction. For imports, a fault
is returned to the client if there is no transaction context in the request.

• WSDLDriven
This property only displays if you add the web service as a reference binding
component in the External References swimlane. This is the default value.

Chapter 35
Introduction to Binding Components

35-3

Table 35-1 (Cont.) WS-AT Fields of the Create Web Service Dialog

Property Description

Version Displays the WS-AT supported version (1.0, 1,1, 1,2, or default). By default, this list is
only enabled if you select Supports or Mandatory from the Transaction
Participation list.

When complete, the composite.xml file displays your WS-AT selections, as shown in
the following example:

 <service name="Service1" ui:wsdlLocation="BPELProcess1.wsdl">
 <interface.wsdl interface="http://xmlns.oracle.com/Application5_
jws/Project1/BPELProcess1#wsdl.interface(BPELProcess1)"
 callbackInterface="http://xmlns.oracle.com/Application5_
jws/Project1/BPELProcess1#wsdl.interface(BPELProcess1Callback)"/>
 <binding.ws port="http://xmlns.oracle.com/Application5_
jws/Project1/BPELProcess1#wsdl.endpoint(Service1/BPELProcess1_pt)">
 <property name="weblogic.wsee.wsat.transaction.flowOption"
 type="xs:string" many="false">SUPPORTS</property>
 <property name="weblogic.wsee.wsat.transaction.version" type="xs:string"
 many="false">WSAT11</property>
 </binding.ws>

If you want to edit your changes, you can right-click the service and select Edit or
double-click the service in the SOA Composite Editor.

After deployment, you can modify the transaction participation and version values
through the System MBean Browser. For more information, see Administering Oracle
SOA Suite and Oracle Business Process Management Suite.

For more information about WS-AT and WS-Coordination, see Developing Oracle
Infrastructure Web Services and the WS-AT and WS-Coordination specifications,
which are available at the following URL:

http://www.oasis-open.org

35.1.1.1.1 Ensuring Participation of BPEL Processes in WS-AT
In addition to setting the WS-AT participation property, if a client calls a web service
that is a BPEL process, for that web service to be enlisted in the caller's transaction,
the callee BPEL process must have the transaction property set in its composite.xml
file.

<property name="bpel.config.transaction">required</property>

This setting ensures that, if an error occurs (such as a database adapter invocation
failing due to an integrity constraint violation), a transaction rollback is successfully
completed.

For more information about setting the transaction property, see How to Add a BPEL
Process Service Component, How to Define Deployment Descriptor Properties in the
Property Inspector, and Transaction Semantics.

Chapter 35
Introduction to Binding Components

35-4

http://www.oasis-open.org

35.1.1.1.2 WS-AT Transactions are Not Supported When Optimization is Enabled
You can configure a web service binding component as either a service or reference to
support WS-AT transactions from the Transaction Participation dropdown list of the Create
Web Service dialog. WS-AT transactions are supported in composite-to-web service
environments, or vice-versa, with the oracle.webservices.local.optimization property set
to false.

WS-AT transactions are not supported in composite-to-composite calls, even with the
oracle.webservices.local.optimization property set to false.

For more information about the oracle.webservices.local.optimization property, see
Administering Oracle SOA Suite and Oracle Business Process Management Suite.

35.1.2 HTTP Binding Service
The HTTP binding service enables you to integrate SOA composite applications with HTTP
binding.

You drag the HTTP service from the Components window into a swimlane of the SOA
Composite Editor to invoke the HTTP Binding Wizard. This addition enables you to configure
HTTP binding as follows:

• As a service binding component in the Exposed Services swimlane to invoke SOA
composite applications through HTTP POST and GET operations

• As a reference binding component in the External References swimlane to invoke HTTP
endpoints through HTTP POST and GET operations

Note:

Note the following details about using HTTP binding in a SOA composite
application.

• An outbound HTTP binding reference supports only XML as a response from
an external HTTP endpoint. The response should contain the correct XML part
name according to outbound expectations.

• You cannot change the httpBinding property for the HTTP binding component
during runtime in Oracle Enterprise Manager Fusion Middleware Control.

35.1.2.1 Supported Interactions
Table 35-2 shows the supported verbs, payloads, and operations for the inbound and
outbound directions.

Table 35-2 Supported Verbs, Payloads, and Operations

Direction Verb Payload Type Operation Supported?

Inbound GET URL-encoded One-way Yes

Inbound GET URL-encoded Request-response Yes

Chapter 35
Introduction to Binding Components

35-5

Table 35-2 (Cont.) Supported Verbs, Payloads, and Operations

Direction Verb Payload Type Operation Supported?

Inbound GET XML One-way No

Inbound GET XML Request-response No

Inbound POST URL-encoded One-way Yes

Inbound POST URL-encoded Request-response Yes

Inbound POST XML One-way Yes

Inbound POST XML Request-response Yes

Outbound GET URL-encoded One-way No

Outbound GET URL-encoded Request-response Yes

Outbound GET XML One-way No

Outbound GET XML Request-response Yes

Outbound POST URL-encoded One-way No

Outbound POST URL-encoded Request-response Yes

Outbound POST XML One-way No

Outbound POST XML Request-response Yes

Table 35-3 shows the supported XSD types for the inbound and outbound directions.

Table 35-3 Supported XSDs

Direction XSD Type Supported?

Inbound Simple Yes

Inbound Complex No

Inbound Native No

Outbound Simple Yes

Outbound Complex No

Outbound Native No

The following HTTP headers are not supported in either the inbound or outbound
direction (that is, you cannot access HTTP headers in the composite and set them in
the composite):

• User-agent
• Content-type
• Content-length
• Server
• Server-port
• Referrer
• Authorization
• MIME-Version

Chapter 35
Introduction to Binding Components

35-6

• Location

35.1.2.2 How to Configure the HTTP Binding Service

To configure the HTTP binding service:

1. Invoke the HTTP Binding Wizard to configure HTTP binding by dragging the HTTP icon
from the Components window.

2. Provide appropriate responses on the Welcome, Service Name, and Adapter Interface
pages.

The HTTP Binding Component page of the wizard enables you to specify the operation
type, verb, and payload type. Figure 35-3 provides details.

Figure 35-3 Create HTTP Binding Wizard - HTTP Binding Configuration Page

3. Select the following operation types for inbound HTTP binding:

• A one-way operation that sends or receives messages to or from an HTTP endpoint

• A synchronous request-response operation that sends and receives input and output
messages to and from an HTTP endpoint

For HTTP POST request methods, you can select a payload type of either URL-encoded
(ampersand-separated name-value pairs) or XML.

For HTTP GET request methods, the payload type is URL-encoded.

For HTTP GET or POST request methods of reference binding components, you are also
prompted to specify the endpoint URL. Support for HTTP authentication and secure
socket layer (SSL) is also provided.

Chapter 35
Introduction to Binding Components

35-7

Note:

Secure HTTP (HTTPS) is supported in both the inbound and outbound
directions.

4. Click OK.

5. Browse for an existing request message schema or define your own schema with
the links to the right of the URL field on the Messages page. Figure 35-4 provides
details.

Figure 35-4 Create HTTP Binding Wizard - Messages Page

6. Click OK.

7. If you select to define your own schema, you are prompted to specify the element
names, data types, minimum occurrence value, and maximum occurrence value in
the Create Schema dialog. Figure 35-5 provides details.

Figure 35-5 Create HTTP Binding Wizard - Create Schema Page

Chapter 35
Introduction to Binding Components

35-8

8. Click OK.

At runtime, the concrete WSDL is generated with an HTTP binding and a SOAP binding.
This is because the SOAP endpoint is used to provide HTTP support.

35.1.2.3 How to Enable Basic Authentication for HTTP Binding
Inbound and outbound HTTP binding supports basic authentication. If you want to enable
basic authentication for inbound HTTP binding, you must attach a security policy. Inbound
HTTP binding can also be used without enabling basic authentication.

To enable basic authentication:

1. Right-click the created HTTP binding service in the Exposed Services swimlane and
select Configure WS Policies.

2. In the Configure SOA WS Policies dialog, click the Add icon in the Security section.

3. Select the oracle/wss_http_token_service_policy policy, and click OK.

4. In the Configure SOA WS Policies dialog, click OK.

35.1.3 JCA Adapters
JCA adapters enable you to integrate services and references with the following
technologies:

• Databases

• File systems

• FTP servers

• Message systems such as Advanced Queueing (AQ) and Java Messaging Systems
(JMS)

• IBM WebSphere MQ

• TCP/IP sockets

• Third-party adapters (SAP, JDE World, and others)

• Oracle User Messaging Service

• Lightweight Directory Access Protocol (LDAP) server

• Coherence cache

Dragging a JCA adapter into a swimlane of the SOA Composite Editor invokes the Adapter
Configuration Wizard for specifying configuration properties:

• JCA Adapter Properties

35.1.3.1 Database Adapter
The database adapter enables a BPEL process, Oracle Mediator, or Oracle Service Bus to
communicate with Oracle databases or third-party databases through JDBC.

For more information, see Oracle JCA Adapter for Database in Understanding Technology
Adapters.

Chapter 35
Introduction to Binding Components

35-9

35.1.3.2 File Adapter
The file adapter enables a BPEL process or an Oracle Mediator to exchange (read
and write) files on local file systems. The file contents can be in both XML and non-
XML data formats.

Note:

When calling the file adapter, Oracle BPEL Process Manager may process
the same file twice when run against Oracle Real Application Clusters
planned outages. This is because a file adapter is a non-XA compliant
adapter. Therefore, when it participates in a global transaction, it may not
follow the XA interface specification of processing each file only once.

For more information, see Oracle JCA Adapter for Files/FTP in Understanding
Technology Adapters.

35.1.3.3 FTP Adapter
The FTP adapter enables a BPEL process or Oracle Mediator to exchange (read and
write) files on remote file systems through use of the file transfer protocol (FTP). The
file contents can be in both XML and non-XML data formats.

For more information, see Oracle JCA Adapter for Files/FTP in Understanding
Technology Adapters.

35.1.3.4 AQ Adapter
The AQ adapter enables you to interact with a single consumer or multiconsumer
queue.

Oracle Streams AQ provides a flexible mechanism for bidirectional, asynchronous
communication between participating applications. Advanced queues are an Oracle
database feature, and are therefore scalable and reliable. Multiple queues can also
service a single application, partitioning messages in a variety of ways and providing
another level of scalability through load balancing.

For more information, see Oracle JCA Adapter for AQ in Understanding Technology
Adapters.

35.1.3.5 JMS Adapter
The JMS adapter enables an Oracle BPEL process or Oracle Mediator to interact with
a Java Messaging System (JMS).

The JMS architecture uses one client interface to many messaging servers. The JMS
model has two messaging domains:

• Point-to-point: Messages are exchanged through a queue and each message is
delivered to only one receiver.

• Publish-subscribe: Messages are sent to a topic and can be read by many
subscribed clients.

Chapter 35
Introduction to Binding Components

35-10

For more information, see Oracle JCA Adapter for JMS in Understanding Technology
Adapters.

35.1.3.6 MQ Adapter
The MQ adapter provides message exchange capabilities between BPEL processes and
Oracle Mediator and the WebSphere MQ queuing systems.

The Messaging and Queuing Series (MQ Series) is a set of products and standards
developed by IBM. The MQ Series provides a queuing infrastructure that provides
guaranteed message delivery, security, and priority-based messaging.

For more information, see Oracle JCA Adapter for MQ Series in Understanding Technology
Adapters.

35.1.3.7 Socket Adapter
The socket adapter enables you to create a client or a server socket, and establish a
connection. This adapter enables you to model standard or nonstandard protocols for
communication over TCP/IP sockets. The transported data can be text or binary in format.

For more information, see Oracle JCA Adapter for Sockets in Understanding Technology
Adapters.

35.1.3.8 Third-Party Adapter
The third-party adapter enables you to integrate third-party adapters such as PeopleSoft,
SAP, and others into a SOA composite application. These third-party adapters produce
artifacts (WSDLs and JCA files) that can configure a JCA adapter.

For more information, see Connecting with Third-Party Service Providers in Understanding
Technology Adapters.

35.1.3.9 Oracle User Messaging Service Adapter
The Oracle User Messaging Service supports messaging channels such as email, secure
messaging service (SMS), and instant messaging (IM). The Oracle User Messaging Service
provides a messaging proxy between the BPEL processes or Oracle Mediator service
component and the external world. The Oracle User Messaging Service provides two-way
messaging (inbound and outbound).

For more information, see Oracle JCA Adapter for UMS in Understanding Technology
Adapters.

35.1.3.10 LDAP Adapter
The LDAP adapter defines both asynchronous and synchronous interfaces to send requests
to and receive responses from LDAP directory servers. The LDAP adapter enables
processes to search, compare, and modify LDAP directories using the LDAP protocol.

For more information, see Oracle JCA Adapter for LDAP in Understanding Technology
Adapters.

Chapter 35
Introduction to Binding Components

35-11

35.1.3.11 Coherence Adapter
A Coherence cache is a collection of data objects that serves as an intermediary
between the database and client applications. Database data can be loaded into a
cache and made available to different applications. A Coherence cache reduces load
on the database and provides faster access to database data. Objects in the cache
can be either XML or Plain Old Java Objects (POJOs). The Coherence adapter
enables you to perform the following operations against a Coherence cache.

• Add an item

• Obtain an item

• Remove an item

• Query for an item

For more information, see Oracle JCA Adapter for Coherence in Understanding
Technology Adapters and Reading the Shipping Provider from Cache with the
Coherence Adapter in Understanding Oracle SOA Suite.

35.1.3.12 JCA Adapter Properties
For information about JCA adapter properties, see Oracle JCA Adapter Properties in
Understanding Technology Adapters.

If you are configuring newly created adapters in Reference Configuration mode, you
can modify JCA Adapter endpoint properties directly in the Adapter Configuration
Wizard. See JCA Endpoint Properties in the Adapter Configuration Wizard.

35.1.4 Oracle E-Business Suite Adapter
The Oracle applications adapter provides connectivity to Oracle Applications. The
adapter supports all modules of Oracle Applications in Release 12 and Release 11i,
including selecting custom integration interface types based on the version of Oracle
E-Business Suite.

35.1.5 Oracle BAM 11g Adapter
The Oracle BAM 11g adapter enables you to integrate Java EE applications with an
Oracle BAM 11g server to send data. This adapter can only connect to an Oracle BAM
11g server.

Dragging a BAM 11g icon into a swimlane of the SOA Composite Editor invokes the
Adapter Configuration Wizard for specifying configuration properties.

35.1.6 Oracle B2B
The Oracle B2B service enables you to browse B2B metadata in the MDS repository
and select document definitions.

Oracle B2B is an e-commerce gateway that provides for the secure and reliable
exchange of transactions between an organization and its external trading partners.
Oracle B2B and Oracle SOA Suite are designed for e-commerce business processes
that require process orchestration, error mitigation, and data translation and

Chapter 35
Introduction to Binding Components

35-12

transformation within an infrastructure that addresses the issues of security, compliance,
visibility, and management.

Dragging a B2B icon into a swimlane of the SOA Composite Editor invokes the B2B
Configuration Wizard for specifying configuration properties.

35.1.7 Oracle Healthcare Adapter
The Oracle Healthcare adapter enables you to create an end-to-end health care integration
process in a SOA composite application. The Healthcare adapter establishes the connection
between a SOA composite application and the external health care applications with which
data is shared or with an internal topic or queue, where data can be made available internally
or to other systems. You can use other Oracle SOA Suite components in your composite
application, including BPEL processes, Oracle Mediator components, a variety of adapters,
and so on.

The Healthcare Configuration Wizard in Oracle JDeveloper lets you add health care
integration binding components to a SOA composite application as follows:

• The component is used as a service (inbound) to receive messages from external
systems and deliver them to SOA composite applications. Oracle SOA Suite for health
care integration is the entry point to the SOA composite application.

• The component is used as a reference (outbound) to send messages from the SOA
composite application to external applications.

As you follow the steps in the Healthcare Configuration Wizard, you are prompted to select a
document definition created in Oracle SOA Suite for health care integration.

You can launch Oracle SOA Suite for health care integration from the wizard to create a
document definition if the right one does not already exist. This is the payload, or message,
that you are receiving from or sending to external systems.

35.1.8 Oracle MFT
Oracle MFT enables you to transfer files to and from many endpoint types, such as the
following:

• Embedded FTP or sFTP server

• Remote FTP or sFTP server

• Directories

• SOAP web service endpoints

• Oracle SOA Suite SOAP web service endpoints

• Oracle Service Bus web service endpoints

• Oracle B2B partners and Oracle Healthcare endpoints

• Oracle Data Integrator web service endpoints

35.1.9 ADF-BC Services
The ADF-BC service enables you to integrate Oracle Application Development Framework
(ADF) applications using service data objects (SDOs) with SOA composite applications.

Chapter 35
Introduction to Binding Components

35-13

Dragging an ADF-BC icon into a swimlane of the SOA Composite Editor invokes the
Create ADF-BC Service dialog for specifying configuration properties.

For more information about Oracle ADF, see the following:

• Delegating XML Data Operations to Data Provider Services

• Using Standalone SDO-based Variables

• Developing Fusion Web Applications with Oracle Application Development
Framework

• Developing Web User Interfaces with Oracle ADF Faces

35.1.10 EJB Adapter
The EJB adapter enables Enterprise JavaBeans and SOA composite applications to
interact by passing Java interfaces (does not use a WSDL file to define the interface)
or SDO parameters (uses a WSDL file to define the interface).

SDOs enable you to modify business data regardless of how it is physically accessed.
Knowledge is not required about how to access a particular back-end data source to
use SDO in a SOA composite application. Consequently, you can use static or
dynamic programming styles and obtain connected and disconnected access.

Enterprise JavaBeans are server-side domain objects that fit into a standard
component-based architecture for building enterprise applications with Java. These
objects become distributed, transactional, and secure components.

Java interfaces eliminate the need for WSDL file definitions. This type of integration
provides support with the following objects:

• Native Java objects

• Java Architecture for XML Binding (JAXB)

Dragging an EJB icon into a swimlane of the SOA Composite Editor invokes the
Create EJB Service dialog for specifying configuration properties.

For more information, see Integrating Enterprise JavaBeans with Composite
Applications .

35.1.11 Direct Binding Adapter
The direct binding adapter uses the Direct Binding Invocation API to invoke a SOA
composite application in the inbound direction and exchange messages over a remote
method invocation (RMI). This option supports the propagation of both identities and
transactions across JVMs and uses the T3-optimized path. Both synchronous and
asynchronous invocation patterns are supported.

You can also invoke an Oracle Service Bus flow or another SOA composite application
in the outbound direction.

Dragging a Direct icon into a swimlane of the SOA Composite Editor invokes the
Create Direct Binding dialog for specifying configuration properties.

For more information about direct binding, see Using Direct Binding to Invoke
Composite Services .

Chapter 35
Introduction to Binding Components

35-14

For information about the Direct Binding Invocation API, see Java API Reference for Oracle
SOA Suite Infrastructure Management.

For more information about Oracle Service Bus, see Developing Services with Oracle Service
Bus.

35.1.12 REST Binding
REST is an architecture for designing network applications. RESTful applications use HTTP
requests to post data (create and update), get data (for example, make queries), and delete
data. REST provides an alternative to using web services. A SOA composite can be REST-
enabled or invoke an existing REST service through the REST adapter.

For more information, see Integrating REST Operations in SOA Composite Applications.

35.1.13 Cloud Adapters
The cloud adapters enable you to send and receive messages from a cloud server. See the
following guides for more information:

• Using Ariba Adapter

• Using Oracle Eloqua Cloud Adapter

• Using Oracle ERP Cloud Adapter

• Using the NetSuite Adapter

• Using Oracle RightNow Cloud Adapter

• Using Oracle Sales Cloud Adapter

• Using Salesforce Adapter

• Using ServiceNow Adapter

• Using SuccessFactors Adapter

35.2 Introduction to Integrating a Binding Component in a SOA
Composite Application

You integrate a binding component with a SOA composite application by dragging it from the
Components window.

35.2.1 How to Integrate a Binding Component in a SOA Composite
Application

To integrate a binding component in a SOA composite application:

• From the Technology section of the Components window, drag a binding component to
the appropriate swimlane. The swimlane in which to drag the component is based on the
action you want to perform. Not all adapters can be dropped in both swimlanes. If an
adapter is only available for references, then you cannot drop it into the services
swimlane.

• If you want to provide the outside world with an entry point to the SOA composite
application, drag the binding component to the Exposed Services swimlane.

Chapter 35
Introduction to Integrating a Binding Component in a SOA Composite Application

35-15

• If you want to enable messages to be sent from the SOA composite
application to external services in the outside world, drag the binding
component to the External References swimlane.

Figure 35-6 shows a SOAP web service being dragged into the composite. This
action invokes a dialog for specifying various configuration properties.

Figure 35-6 Integration of a Web Service Binding Component into a Composite

For more information about adding binding components, see Adding Service Binding
Components and Adding Reference Binding Components.

35.2.2 How to Use ADF Binding to Invoke a Composite Application
from a JSP/Java Class

If a SOA composite application uses a web service binding to define an endpoint
reference, the composite cannot be invoked from a JSP/Java class. Web services
binding is defined with the binding.ws port="" location="" tag in the
composite.xml file. The following example provides details:

<service name="client_ep" ui:wsdlLocation="BPEL.wsdl">
 <interface.wsdl interface="http://xmlns.oracle.com/Application/Project/
 BPEL#wsdl.interface(BPEL)"/>
 <binding.ws port="http://xmlns.oracle.com/App/BPELProj/
 BPELProcess#wsdl.endpoint(bpel_client_ep/BPELProcess_pt)"/>
 </service>

Instead, use ADF binding for SOA composite interaction with ADF-BC Web
Application. After deployment of a composite with ADF binding, invocation from a JSP/
Java class is successful. The following example provides details:

<reference name="ADFWebService"
 ui:wsdlLocation="ADFWebService.wsdl">
 <interface.wsdl interface="http://example.com/hr/
#wsdl.interface(HRAppService)"/>
 <binding.adf serviceName="{http://example.com/hr/}HRAppService"
 registryName="hrapp_JBOServiceRegistry"/>
 </reference>

Chapter 35
Introduction to Integrating a Binding Component in a SOA Composite Application

35-16

For this example, hrapp is the ADF-BC web application name.

35.2.3 Create an Oracle Integration Connection
To create an Oracle Integration connection:

1. In the Oracle JDeveloper Resources window, click the New icon, select IDE
Connections, then select Oracle Integration Connection.

2. In the Create Oracle Integration Connection dialog, enter a name for the connection in
the Connection Name field.

3. In the URL field, enter the hostname and port number of the Oracle Integration instance.

4. Enter the User Name and Password of the Oracle Integration instance.

5. Click Test Connection and accept the security certificate.

6. Click OK.

35.3 Creating Tokens for Use in the Binding URLs of External
References

You can create tokens in Oracle JDeveloper for the HTTP protocol, host, and port values in
the binding URLs of external references. The values that you assign to the tokens are then
substituted in place of the hardcoded HTTP host and port values in the location attribute of
the binding.ws element of the composite.xml file.

For example, the following code shows the location attribute with hardcoded values for
protocol (http), host (host.us.example), and port (80).

<binding.ws
port="http://www.globalcompany.example.com/ns/CreditAuthorizationService#wsdl.
endpoint(CreditAuthorizationService/CreditAuthorizationPort)"
location="http://host.us.example:80/apps/FusionOrderDemoShared/services/
creditAuthorization/CreditAuthorizationService.wsdl">

The following example shows the location attribute after the creation of tokens.

<binding.ws
port="http://www.globalcompany.example.com/ns/CreditAuthorizationService#wsdl.
endpoint(CreditAuthorizationService/CreditAuthorizationPort)"
location="${protocol}://${host1}:${port1}/apps/FusionOrderDemoShared/services/
creditAuthorization/CreditAuthorizationService.wsdl">

Chapter 35
Creating Tokens for Use in the Binding URLs of External References

35-17

Note:

• You can only use tokens in the location attribute of the binding.ws
element of the composite.xml file.

• You cannot use tokens for the protocol, host, and port values in other
files, such as WSDL files, schema files, and so on.

• Oracle JDeveloper only updates token files on the local file system that
include the token values. If you use a local token file at design time, you
must move the tokens to the SOA server at runtime. For information
about creating tokens during runtime, see Administering Oracle SOA
Suite and Oracle Business Process Management Suite.

35.3.1 How to Create Tokens for Use in the Binding URLs of External
References

Follow the steps in this section to create tokens for use in the binding URLs of external
references.

To create tokens for use in the binding URLs of external references:

1. In Oracle JDeveloper, access the SOA composite application in which to create
tokens.

2. Above the SOA Composite Editor, click the Binding URL Tokenizer icon.
Figure 35-7 provides details.

Figure 35-7 Binding URL Tokenizer Icon

The Binding URLs dialog appears, as shown in Figure 35-8.

• Binding URLs of each external reference that has a binding.ws element with
a location attribute in the composite.xml file that starts with the following
entries are automatically displayed:

– http
– https
– ${ (for a URL that uses tokens in place of the hardcoded HTTP protocol,

host, or port values)

– callbackServerURL
• Binding URLs for REST references with the location attribute of the

binding.rest element are automatically displayed.

Chapter 35
Creating Tokens for Use in the Binding URLs of External References

35-18

Figure 35-8 Binding URLs Dialog

The Service2 reference in Figure 35-8 also includes an override of the callback location
using a reference property such as callbackServerURL:

<property name="callbackServerURL" type="xs:string" many="false">
${protocol}://${myhost1}:${myport1}/soa-infra/services/default/service/
bpelprocess1_client_ep</property>

The callbackServerURL property can be tokenized as shown in Figure 35-8.

3. Double-click a row or select the row and click the Edit icon to create tokens for the HTTP
protocol, host, and port values in the binding URLs of external references.

The Binding URL Tokenization dialog appears, as shown in Figure 35-9.

Chapter 35
Creating Tokens for Use in the Binding URLs of External References

35-19

Figure 35-9 Binding URL Tokenization Dialog

4. Provide values appropriate to your environment, as described in Table 35-4, and
click OK.

Table 35-4 Binding URL Tokenization Dialog

Field Description

Token File Perform either of the following options:

• Click the Browse button to access a dialog for selecting the token file
that includes the token names and values. The file can be on the local
file system. The names and values specified in this file replace the
hardcoded names and values for protocol, host, and port in the
binding.ws element. This field is automatically populated with your
file selection on subsequent invocations of this dialog. If you specify a
token file from the file system, it must be an XML file that follows this
format:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE properties SYSTEM
 "http://java.sun.com/dtd/properties.dtd">
<properties>
 <comment>
 URL Resolver file used by the Metadata
 manager to resolve $<variable> in URLs
 </comment>
 <entry key="protocol">oramds</entry>
 <entry key="host">MyHost</entry>
 <entry key="port">80</entry>
</properties>

• Skip this field entirely if you want to manually enter new token names
and values in the Token and Current Values fields, respectively.

Tokens that are not saved to a file are only placed in the location
attribute of the binding.ws element in the composite. It is expected
that you supply a token file at runtime that has tokens matching those
manually entered at design time.

Reference Displays the external reference you selected in Step 3.

Chapter 35
Creating Tokens for Use in the Binding URLs of External References

35-20

Table 35-4 (Cont.) Binding URL Tokenization Dialog

Field Description

Protocol Displays the field in which to specify the protocol token name.

• Click the Browse icon to select the token name to use from the Token
Picker dialog. The Token Picker dialog is populated with the token
names that appear in the token file you imported in the Token File
field. The token name you select (for example, port1) and its default
value (for example, 80) are added to the Token and Current Value
fields, respectively. If the token file is writable (meaning an
unprotected file in the file system), you can change the current value
of the token name. See Step 5 for details about accessing the Token
Picker dialog. If the file is read-only, you are warned with a message
and allowed to cancel the operation and continue.

• Manually enter the token name and value to use. You can manually
enter information in these fields regardless of whether you imported a
file in the Token File field. If you imported a file that is writable in the
Token File field and manually enter a token name, it is added to the
file if it does not already exist. The current value for the new token
name defaults to the value in the URL that is being tokenized.

Host Displays the field in which to specify the host token name. See the
description of the Protocol field for details about how to specify
information.

Port Displays the field in which to specify the port token name. See the
description of the Protocol field for details about how to specify
information.

Apply these
tokens to
other
References
which have
the same
Current
Values

Deselect this check box if you do not want other external references with
the same protocol, host, and port values to be replaced with the same
tokens.

If this check box is selected and you tokenize just one or two of the URL
objects, then the references for only those objects are modified. For
example, if you only tokenize the host (with a current value of
host1.us.oracle), all references that have that same host value are
updated.

5. If you selected the Browse button in the Protocol, Host, or Port fields, the Token Picker
is displayed, as shown in Figure 35-10. This dialog lists all the tokens that you have
defined in the file imported in the Token File field of the Binding URL Tokenization dialog.

Chapter 35
Creating Tokens for Use in the Binding URLs of External References

35-21

Figure 35-10 Token Picker Dialog

6. Select the token name to use through one of the following options:

• Scroll through the list and select the token.

• Begin entering the name in the Token field until the name is automatically
completed and the token is selected in the list.

7. Click OK.

You are returned to the Binding URL Tokenization dialog with the selected token
name and value displayed in the Token and Current Value fields, respectively.

Chapter 35
Creating Tokens for Use in the Binding URLs of External References

35-22

36
Integrating REST Operations in SOA
Composite Applications

This chapter describes how to integrate Representational State Transfer (REST) operations
as service binding components and reference binding components in SOA composite
applications. It also describes how to use a Web Application Description Language (WADL)
file during binding component configuration.
This chapter includes the following sections:

• Introduction to REST Support

• Creating REST Support in Service and Reference Binding Components

• Using JavaScript and JSON in BPEL Components

• Testing the REST Adapter with the HTTP Analyzer

• Testing and Configuring REST Reference Binding Components in Oracle Enterprise
Manager Fusion Middleware Control

For more information about using a REST adapter, see Defining a Shipping Resource with a
REST Service in Understanding Oracle SOA Suite.

36.1 Introduction to REST Support
REST is an architecture for designing network applications. RESTful applications use HTTP
requests to post data (create and update), get data (for example, make queries), update data,
and delete data. REST provides an alternative to using web services.

Starting in 12.2.1, your SOA composites can use end-to-end JSON. This means that the
REST service can receive the REST request and route it to the BPEL engine without
translating it to XML. The BPEL component can use the JavaScript action, and also use
JavaScript in conditional and iterative constructs, to work on JSON objects directly. The
REST reference can receive the REST message from the BPEL engine and route it to an
external REST endpoint without translation.

Note:

The REST interfaces and BPEL component support end-to-end JSON. However, if
you are using other service components, like the Mediator, you need to use the
12.1.3–style composite that internally maps REST resources and verbs to WSDL
operations and XML schemas, and translates the incoming payload into XML.

Oracle SOA Suite provides the following REST support:

• Support in SOA composite applications:

– Enable End-to-End JSON

– Enable REST support in new or existing services.

36-1

– Integrate with external REST APIs.

– Orchestrate a set of RESTful state transitions (RPC/Hypermedia as the
Engine of Application State (HATEOAS) approach).

– Support for XML, JavaScript Object Notation (JSON) (with automatic
translation to and from XML), text, opaque (binary), and URL-encoded payload
data.

– Generation of sample URI for REST service operations.

– Support for WADL services. The WADL can be provided by a deployed Oracle
SOA Suite or Oracle Service Bus service or a non-Oracle SOA Suite or Oracle
Service Bus service such as a Jersey REST service.

• Ease of development:

– Oracle JDeveloper wizard provides several options for modeling REST
interfaces and WSDL operation bindings:

* Manually define resource paths and REST operations to generate an
underlying WSDL that contains the mapping from the REST definition to
the WSDL.

* Select the WSDL of the service component or external reference from
which to map WSDL operations to resource paths and HTTP verbs.

* Select a WSDL from many sources (for example, the application server or
SOA-MDS) from which to automatically populate the REST adapter with
operation mappings.

– Readable API that publishes each method used upon deployment.

– Ability to browse and consume Oracle REST endpoints (including Oracle
Service Bus) from within Oracle JDeveloper.

• Oracle Web Service Manager (OWSM) policy support for REST security.

• Support for the following use cases:

– Get a list of customers

– Create a new customer

– Get customer details

– Update customer details

– Delete a customer

– Create a new address for a customer

– Get an address of a customer

– Update the address of a customer

36.2 Creating REST Support in Service and Reference
Binding Components

Oracle SOA Suite components, services, and references can be selected and exposed
as a REST service. This section describes:

• How to Configure the REST Binding Component in a SOA Composite Application

Chapter 36
Creating REST Support in Service and Reference Binding Components

36-2

• How to Consume REST-Based Integrations Created in Oracle Integration in SOA
Composite Applications

• How to Configure the REST Adapter Through Shortcuts

• How to Generate Schemas Manually

• How to Generate Schemas from Samples

• How to Use Global Token Variables

• How to Set REST Header Properties

• What You May Need to Know About REST Fault Binding

• What You May Need to Know About Converting a JSON Interchange Format to a REST
Schema

• What You May Need to Know About REST References Calling REST Services in the
Same Node

Note:

• Follow Java naming conventions for query, path, and template parameter
names while creating Inbound REST bindings (REST service). A REST
reference does not require any naming conventions as runtime does not create
a Java stub for REST references (outbound REST binding).

• You cannot attach a REST binding to an asynchronous component (for
example, an asynchronous BPEL process). If you attempt this attachment, a
message is displayed that indicates this is not supported and suggests a
workaround of placing an Oracle Mediator between the REST adapter and the
service that has a one-way interface and routing the service callback to another
(outbound) REST adapter service.

• You cannot connect a REST service binding component to a REST reference
binding component.

36.2.1 How to Configure the REST Binding Component in a SOA
Composite Application

This section describes how to add a REST binding component to a SOA composite
application. You can add the REST binding component as a service or reference binding
component.

To configure the REST adapter as a service or reference binding component in a SOA
composite application:

1. Add a REST service or reference component to the appropriate swimlane of your
composite view in JDeveloper. You can also drag a REST component from the
Components window.

• To add a REST service component, right-click the Exposed Services swimlane in
the SOA Composite Editor, and select Insert > REST. This action adds REST
support as a service binding component to interact with the appropriate service
component.

Chapter 36
Creating REST Support in Service and Reference Binding Components

36-3

• To add a REST reference component, right-click the External References
swimlane in the SOA Composite Editor, and select Insert > REST. This action
adds REST support as a reference binding component to interact with the
external REST endpoint.

The REST Binding Configuration Wizard appears.

2. Enter a Name for your REST service or reference.

The Type field displays the type of your REST binding. This is Service for a REST
service and Reference for a REST reference.

3. Optionally select the Service will invoke components using WSDL interfaces
or Reference will be invoked by components using WSDL interfaces option.

• For REST service, select Service will invoke components using WSDL
interfaces if your composite will internally use XML schemas and WSDL
operations.

• For REST reference, select Reference will be invoked by components
using WSDL interfaces if your composite will internally use XML schemas
and WSDL operations.

Starting in 12.2.1, your SOA composites can use end-to-end JSON. This means
that the REST service can receive the REST request and route it to the BPEL
engine without translating it to XML. The BPEL component can use the
JavaScript action, and also use JavaScript in conditional and iterative constructs,
to work on JSON objects directly. The REST reference can receive the REST
message from the BPEL engine and route it to an external REST endpoint without
translation.

By default, the new REST service/reference binding uses WADL. However, select
this option if you need to use the 12.1.3–style composite that internally maps
REST resources and verbs to WSDL operations and XML schemas, and
translates the incoming payload into XML. You would also want to select this

Chapter 36
Creating REST Support in Service and Reference Binding Components

36-4

checkbox if your composite uses components like the Mediator, which supports only
WSDL-based operations.

• If you select this option, then the Enforce XML Schema Ordering option appears.

Select Enforce XML Schema Ordering to enforce the ordering of the XML schema.

When selected, this reorders JSON payloads to match the order of elements in the
XML schema. This includes inbound request payloads and responses from outbound
requests. This option may add a performance overload.

Selecting this check box sets the REST service binding property
reorderJsonAsPerXmlSchema to true in the composite.xml file.

4. Click Next.

The Resources page is displayed.

Table 36-1 Resources Page

Field Description

Configuration Shortcut Provides configuration shortcuts based on the context.
• For REST Service interfaces:

– If you are creating a WADL-based REST service, you can choose to Add
resources and methods from a WADL service. This enables you to use
an existing WADL service to add resources and methods to your REST
service.

– If your service will invoke components using WSDL interfaces, you get
options to REST enable a component or service and REST enable
external web service.This means that the fault bindings for the selected
component or service is automatically generated based on faults defined in
the WSDL file.

The selected WSDL is read and the WSDL operations are mapped to
resource paths and HTTP verbs in the Operation Bindings section of the
Resources page. If an operation binding requires additional configuration
mapping, this is indicated by the value of no in the Complete column.

• For REST Reference interfaces:

Add resources and operation mappings based on WADL Service enables
you to add resources and operation mappings from a WADL resource. The
WADL resource can be in your local file system or project, in the design-time
Oracle Metadata Services Repository (MDS Repository), or on an application
server.

Description This field appears for REST services.

Enter a description for the REST service. The description is published as part of the
readable API used during deployment.

Base URI This field appears for REST references.

Base URI connection information for all resources supported by the interface. For
example: http://search.mydomain.com/search.format

Resource Path Double-click the default resources path (/) to update the resource path or click Add
to add a new resource path.

In the Relative Path field, enter the resource path (for example, /orders), and
click OK.

Chapter 36
Creating REST Support in Service and Reference Binding Components

36-5

Table 36-1 (Cont.) Resources Page

Field Description

Operation Bindings This section appears if you are creating a 12.1.3–style composite that internally
maps REST resources and verbs to WSDL operations and XML schemas, and
translates the incoming payload into XML.

Click Add to add a new operation binding.

You can also select an existing operation binding and click Edit.

When you click Add or Edit, the REST Operation Binding dialog is displayed. See
REST Operation Binding Dialog.

Methods This section appears if you are creating a WADL-based service or reference that
uses untyped payload without schemas.
Click Add to add a new method.

You can also select an existing method and click Edit.

When you click Add or Edit, the REST Method Definition dialog is displayed. See
REST Method Definition Dialog.

5. Click Finish to complete your REST binding configuration.

36.2.1.1 REST Operation Binding Dialog
Use the REST Operation Binding dialog to define REST operations for a REST service
that invokes components using WSDL interfaces. You can define resource paths and
REST operations. An underlying WSDL is generated that contains the mapping from
the REST definition to the WSDL.

Table 36-2 REST Operation Binding Dialog

Field Description

Method Displays the WSDL operation name that is being mapped. You can specify the name that
is used in the generated WSDL.

Resource Select an existing URL resource path from the list or click the Add icon to add a new
resource path.

The selected resource path is added to the URI Parameters table of the Request section
at the bottom of this dialog. If the selected resource contains a template variable, such as
{var}, the variable is added to the URI parameters.

HTTP Verb Select the operation to perform (for example, GET, PATCH, PUT, POST, DELETE).

When you pick a schema for the request, actions are taken based on the verb. URI
parameters are added if the verb does not have a payload (GET, DELETE). The URI
Parameters table is populated with mappings from the incoming REST query parameters
to the WSDL schema. The PATCH verb is used to partially update a resource, and the
PUT verb is used to replace resource entirely.

The HTTP verb for the operation is also added to the Operation Bindings section of the
Create REST Binding dialog.

Description Enter an optional description. Reference binding components have the Base URI field.

Chapter 36
Creating REST Support in Service and Reference Binding Components

36-6

Table 36-2 (Cont.) REST Operation Binding Dialog

Field Description

Request The Schema section displays the request schema being used.

• Schema URL: Displays the request schema to use. If you selected REST enable
component or reference in the Create REST Binding dialog, this field is read-only
because the schema is obtained from the service's operation WSDL. If you selected
Add operation binding in the Create REST Binding dialog, you must browse for a
schema or create a new schema from a sample using the Native Format Builder
wizard.

• Element: Displays the element to use.
The Payload section enables you to specify the format of the request payload: XML
(default selection), JSON, URL-encoded, Text, Opaque or no payload. You can choose
Other option and define custom payload type. Click Generate Sample Payload to view a
sample of the selected request payload.

The URI Parameters section enables you to specify the mapping from the REST query
parameters to the WSDL schema. This section is automatically populated when a schema
is specified (depending on the verb) in the HTTP Verb list. For GET and DELETE verbs,
the parameters are bound to the WSDL schema. For POST and PUT verbs, the inbound
payload is mapped to the WSDL schema.

1. Click the Generate Sample URL for operation icon (first icon) to generate a sample
URL based on all previously entered binding information. This option is typically
selected after all parameters are configured.

2. Click the Add parameter icon (second icon) to manually add a mapping parameter.

3. In the Style column, click a specific row to invoke a list that enables you to select
query or template. Template variables are typically used for POST and PUT
operations. Query parameters are typically used for GET and Delete operations.

4. In the Type column, select the data type of the parameter. All XSD primitive types are
supported. In most case, when the parameter is automatically generated from a
schema, the type is already set for you. If you create a new parameter, the Type
column enables you to select the type from the list.

5. In the Default Value column, you can set a default value at design time for a
parameter. If a URI parameter is missing in the REST request, the corresponding
default value is used by the REST service.

6. In the Expression column, click a specific row to invoke the Expression Builder dialog
for adding an XPath expression function. If there is no schema defined for an
operation, the Expression Builder parameter only shows property variables and no
message variables. The expression binds a parameter to a field in the WSDL schema.
In all cases in which the parameter has been automatically generated (based on an
existing or generated schema), this expression is already generated for you. You only
add an expression if you want to add a new parameter and bind it to something else,
such as a runtime property. The XPath expression specifies the location in which to
insert the particular URI parameter in the normalized message.

To assign values to query parameters:

1. Double-click the invoke action that calls the REST binding component.

2. Select Properties > To.

3. Select the query parameter from the dropdown list and assign a variable or
expression to it. For more information about the invoke activity, see Invoke Activity.

Chapter 36
Creating REST Support in Service and Reference Binding Components

36-7

Table 36-2 (Cont.) REST Operation Binding Dialog

Field Description

Response The HTTP Statuses section enables you to specify the HTTP status code. You can enter
multiple statuses, separated by spaces. For a reference, these are the possible statuses
that are interpreted as successful. For a service, these are the possible successful
statuses that can be returned (as set by a service component such as BPEL).

The Payload section enables you to specify the possible response payloads: XML
(default), JSON, URL-Encoded, Text, Opaque or no payload. You can choose Other option
and define custom payload type. The output returned at runtime depends on the incoming
requests. Click Generate Sample Payload to view a sample of the selected response
payload.

The Schema section displays the response schema being used if a possible payload type
has been selected. If no payload has been selected, this field is not displayed.

• Schema URL: Displays the response schema to use. If you have not specified a
schema, you can select to browse for an existing schema or create a new schema
from a sample with the Native Format Builder wizard. This wizard enables you to
create a schema from a JSON interchange format, XML sample, URI-encoded format,
or URI sample. For more information, see How to Generate Schemas from Samples.

• Element: Displays the element to use.
The Fault Bindings section displays the response fault name, type, status, and schema. If
fault details are defined in the WSDL file, a fault binding is automatically created in this
section. You can also manually define fault bindings.by clicking the Add icon. For more
information about faults, see What You May Need to Know About REST Fault Binding.

36.2.1.2 REST Method Definition Dialog
Use the REST Method Definition dialog to define REST methods for a SOA REST
service or reference that uses WADL and untyped payloads without schemas.

Table 36-3 REST Method Definition Dialog

Field Description

Method Enter a name for the REST method being defined.

Resource Select an existing URL resource path from the list or click the Add icon to add a new
resource path.

HTTP Verb Select the verb to be bound to the WSDL operation (for example, GET, PUT, POST, or
DELETE).

Description Enter an optional description. This is the description text to be published for the method.

Chapter 36
Creating REST Support in Service and Reference Binding Components

36-8

Table 36-3 (Cont.) REST Method Definition Dialog

Field Description

Request The Payload section enables you to specify the format of the request payload: JSON
(default selection), XML, URL-encoded, Text, Opaque, or No payload. Click Generate
Sample URL for Method to view a sample URL for the method operation.

The URI Parameters section enables you to specify the mapping from the REST query or
template parameters to the corresponding runtime property.

1. Click the Generate Sample URL for Method icon (first icon) to generate a sample
URL based on all previously entered binding information. This option is typically
selected after all parameters are configured.

2. Click the Add parameter icon (second icon) to manually add a mapping parameter.

3. Under Style, select query or template. Template variables are typically used for
POST and PUT operations. Query parameters are typically used for GET and Delete
operations.

4. Under Type, select the data type of the parameter. All XSD primitive types are
supported.

5. Under Default Value, you can set a default value at design time for a parameter. If a
URI parameter is missing in the REST request, the corresponding default value is
used by the REST service.

6. The Runtime Property displays the name of the runtime property to which the
method parameter gets mapped.

To assign values to query parameters:

1. Double-click the invoke action that calls the REST binding component.

2. Select Properties > To.

3. Select the query parameter from the dropdown list and assign a variable or
expression to it. For more information about the invoke activity, see Invoke Activity.

Response The Success and Failure sections enable you to select the response Payload and Status
for the method.

The default response payload is No Payload. The default HTTP status code for a
successful operation is 204 and that for a failed operation is 500.

36.2.1.3 Example: REST Enable an Existing Service Component
You can REST enable an existing service component by using the REST enable component
or service option from the Configuration Shortcut found in the REST Binding Configuration
Wizard.

1. Right-click the Exposed Services swimlane in the SOA Composite Editor, and select
Insert > REST

The REST Binding Configuration Wizard is displayed.

2. Select Service will invoke components using WSDL interfaces.

3. Click Next.

4. Under Configuration Shortcut, select REST enable component or service.

The Service Explorer dialog is displayed.

Chapter 36
Creating REST Support in Service and Reference Binding Components

36-9

5. Expand the navigator to select the WSDL of the service component (for this
example, a BPEL process), and click OK. This action enables you to map WSDL
operations to resource paths and HTTP verbs.

Figure 36-1 WSDL Selected to Map REST Operations to Resource Paths
and HTTP Verbs

The REST Binding Configuration Wizard Resources page is updated to appear as
shown in Resources Pages of the REST Binding Configuration Wizard.

The selected WSDL is read and the WSDL operation is mapped to resource paths
and HTTP verbs in the Operation Bindings section. Note that the Resource Path
and HTTP Verb sections require additional configuration mapping. This is also
indicated by the value of no in the Complete column.

Chapter 36
Creating REST Support in Service and Reference Binding Components

36-10

Figure 36-2 Resources Page of the REST Binding Configuration Wizard

The resource path and HTTP verb for each of the operations now require configuration.
For this example, there is only one operation. Depending upon your WSDL, multiple
operations can be displayed in the Operation column.

6. In the Resource Path table of the Resources section, double-click the default path entry
of /. You can also define the resource path before starting the operation bindings. In this
case, the selected resource is used for the new bindings.

This invokes the Update REST Resource dialog.

7. In the Relative Path field, enter the resource path (for this example, /orders), and click
OK.

Figure 36-3 Update REST Resource Dialog

Operation mappings that have the old resource path are updated with the new resource
path in the Resources section and Operation Bindings section (for this example, /
orders). If you are updating an existing component, all operations are typically updated.

You can create additional resource paths as needed by clicking the Add icon in the
Resources section to display the Create REST Resource dialog.

Chapter 36
Creating REST Support in Service and Reference Binding Components

36-11

The HTTP Verb column of the Operation Bindings section now requires
configuration.

8. In the Operation Bindings section, select an operation and click Edit.

The REST Operation Binding dialog is displayed. This dialog enables you to select
the HTTP verb for the operation and populate the URI Parameters section in
order to bind an HTTP verb and resource to a WSDL operation and map REST
parameters to the WSDL schema of the component service. See REST Operation
Binding Dialog.

9. From the Resource list, select the new resource, as needed.

The URI Parameters section is updated with your selection.

10. From the HTTP Verb list, select the operation (for this example, GET).

The URI Parameters section is updated with your selection.

The style (query or template) is automatically selected in the Style column of the
URI Parameters section.

If you select or create a new REST resource that contains a template variable,
Oracle JDeveloper attempts to create the template parameter with the same
name. If a parameter with that name already exists, it is reused (and made into a
template parameter if it was a query parameter). Duplicate parameter names are
never created. You receive an error if a duplicate parameter is manually created.

11. Click the Response tab to view HTTP status code, payload output type, schema,
and fault binding details. Since the schema was already defined in this example,
those sections are disabled from editing.

12. Double-click the fault name to invoke the REST Fault Binding dialog. For more
details about this dialog, click the Help icon or see What You May Need to Know
About REST Fault Binding.

13. Edit as necessary, and click OK.

14. Click OK to return to the Resources page. The HTTP verb you added is displayed.

15. In the Operation Bindings section, select an operation and click Edit to define
resources and HTTP verbs for any remaining operations.

16. Click OK to return to the SOA Composite Editor.

The REST service is wired to the BPEL process service component.

36.2.1.4 Example: Adding Resources and Operations from a WADL Service to
a REST Reference

You can add resources and operations to a REST reference from a WADL service
using the Configuration Shortcut found in the REST Binding Configuration Wizard.

1. Right-click the External References swimlane in the SOA Composite Editor, and
select Insert, then REST.

The REST Binding Configuration Wizard is displayed.

2. Enter a Name for your REST service or reference.

The Type field displays Reference.

3. Select Service will be invoked by components using WSDL interfaces.

Chapter 36
Creating REST Support in Service and Reference Binding Components

36-12

4. Click Next.

5. Under Configuration Shortcut, select Add resources and operation mappings based
on WADL Service.

The WADL Location dialog is displayed.

6. Specify a WADL file through one of the following methods:

• In the WADL URL field, specify the URL of the WADL file, then go to the next step.

or

a. Click the Search icon to invoke the WADL Chooser dialog for selecting the WADL
file. Options are provided for finding WADLs in the local file system or project, in the
design-time Oracle Metadata Services Repository (MDS Repository), or by
connecting to an application server to find WADLs associated with deployed Oracle
SOA Suite or Oracle Service Bus services.

Figure 36-4 WADL Chooser Dialog

b. Select the WADL file, and click OK.

7. Click OK.

8. Select copy schema artifacts into the project to copy schemas referenced in the
WADL file to the local project because they are used by the new REST adapter
reference. This is the recommended method.

9. See the table below for the next step based on the type of WADL file selected.

Chapter 36
Creating REST Support in Service and Reference Binding Components

36-13

Table 36-4 WADL File Status

If the Selected WADL
File Was Provided By...

Then... Next Step...

An Oracle SOA Suite or
Oracle Service Bus REST
service

The Resources page is
completely configured
with information from the
WADL file. All operations,
resource paths, and verbs
are displayed in the
Operation Bindings
section. A complete
configuration is indicated
by a value of yes in the
Complete column of the
Operation Bindings
section.

View the Resources page and its
contents, and click OK.

Chapter 36
Creating REST Support in Service and Reference Binding Components

36-14

Table 36-4 (Cont.) WADL File Status

If the Selected WADL
File Was Provided By...

Then... Next Step...

A non-Oracle SOA Suite
or Oracle Service Bus
REST service such as a
Jersey service.

The WADL Parsing Issues
dialog indicates that
additional configuration is
required.

a. Review the list of
recommended corrective
actions in the WADL Parsing
Issues dialog, then click OK.
The same information is
written to the Oracle
JDeveloper Log window for
later reference.

A WADL file for a non-Oracle
SOA Suite or Oracle Service
Bus service typically does not
include all required
information. You must
manually complete
configurations. In many cases,
the WADL file used does not
supply the schemas required
to bind the REST reference to
a WSDL operation. The
schemas can often be
generated using the Native
Format Builder wizard using a
sample payload provided by
the REST service provider.

Figure 36-5 WADL
Parsing Issues

The Resources page is
displayed.

Chapter 36
Creating REST Support in Service and Reference Binding Components

36-15

Table 36-4 (Cont.) WADL File Status

If the Selected WADL
File Was Provided By...

Then... Next Step...

For a REST binding that
requires further configuration,
a value of no is displayed in
the Complete column of the
Operation Bindings section.
Tool tips in the Complete
column for each no value
identify what is missing so that
you can perform corrective
actions. The OK button is
disabled as long as at least
one operation has a value of
no in the Complete column.

Note:

All error and
warnings are also
displayed in more
detail in the Log
window in Oracle
JDeveloper. For
example, the Log
window contains
entries such as the
following:

ERROR at
[resource path:
containers/
{container},
method name: PUT,
request/
response:
response,
representation
mediaType:
application/xml]
 - No schema
information is
available for
containers/
{container}.PUT
response.
Please specify a
schema.

b. Perform the corrective actions
indicated by the tool tips.
When configuration has been
successfully completed, a
value of yes is displayed for all

Chapter 36
Creating REST Support in Service and Reference Binding Components

36-16

Table 36-4 (Cont.) WADL File Status

If the Selected WADL
File Was Provided By...

Then... Next Step...

operations in the Complete
column of the Operation
Bindings section.

For more information about the
SOA design-time MDS
Repository, see Managing
Shared Data with the Design-
Time MDS Repository .

36.2.2 How to Consume REST-Based Integrations Created in Oracle
Integration in SOA Composite Applications

The REST Adapter can connect to REST-based integrations created in Oracle Integration
through the Oracle Integration Connect plugin, which allows you to browse integrations
created in Oracle Integration (in Oracle Cloud) and select them for use in on-premises SOA
composite applications.

This type of integration may be called a hybrid integration—an integration developed in the
cloud that can be used in on-premises applications. The integration must meet the following
criteria to be used in SOA composite applications:

• Have a REST endpoint

• Be deployed and activated

• Have a Swagger document for the integration

To consume an integration in a SOA composite application, perform the following tasks:

• Create an Oracle Integration Connection

• Create a REST Binding

• Configure OWSM Policies on the REST Reference

• Configure and Deploy the Application

36.2.2.1 Create an Oracle Integration Connection
To create an Oracle Integration connection:

1. In the Oracle JDeveloper Resources window, click the New icon, select IDE
Connections, then select Oracle Integration Connection.

2. In the Create Oracle Integration Connection dialog, enter a name for the connection in
the Connection Name field.

3. In the URL field, enter the hostname and port number of the Oracle Integration instance.

4. Enter the User Name and Password of the Oracle Integration instance.

5. Click Test Connection and accept the security certificate.

6. Click OK.

Chapter 36
Creating REST Support in Service and Reference Binding Components

36-17

36.2.2.2 Create a REST Binding
To create a REST binding:

1. In Oracle JDeveloper, right-click in the project design window (in the External
References swimlane), select Insert, then REST.

2. In Step 1 of the REST Binding Configuration Wizard, enter a name for the REST
binding.

3. Click Next.

4. In Step 2 of the REST Binding Configuration Wizard, select the integration in one
of two ways:

• Create a REST binding by selecting an integration:

– In the WADL or Swagger Chooser dialog, with the Oracle Integration
Connect plugin highlighted, select the connection that you created for the
Oracle Integration instance.

Chapter 36
Creating REST Support in Service and Reference Binding Components

36-18

If a connection does not exist for the Oracle Integration instance you need, you
can create a new connection. To create a connection, either click the Create new

connection icon or follow the steps in Create an Oracle Integration
Connection to open the Create Oracle Integration Connection dialog.

– Select the integration you want to use.

Click the Information icon to display details about the integration, including
name, version, description, and a View Swagger button to view the Swagger
document for the integration.

– Click OK.

– Click Finish in the wizard.

• Create a REST binding using the Swagger Document URL:

– In the WADL or Swagger Document URL field, enter the URL of the Swagger
document for the integration you want to use.

You can find this URL through the WADL method described above, where
selecting the integration shows the Swagger document URL in the Selection
field at the bottom of the wizard. You can also obtain the Swagger URL in Oracle
Integration by clicking the How to run icon next to the integration name, and
clicking the Endpoint URL link.

Chapter 36
Creating REST Support in Service and Reference Binding Components

36-19

The wizard fetches the contents of the Swagger document, converts it into
WADL, and displays the resources.

– Click Finish.

36.2.2.3 Configure OWSM Policies on the REST Reference
If the Oracle Integration endpoint has configured policies, configure appropriate SOA
OWSM policies on the REST reference:

1. Right-click the created REST business object and select Configure Policy.

2. In the Policy Configuration screen, select From OWSM Policy Store.

3. Click the + icon for the policy type you wish to configure.

4. Select the policy.

5. Click Save.

36.2.2.4 Configure and Deploy the Application
To configure and deploy your application to use the integration:

1. Complete your application by adding Inbound and BPEL Process to invoke the
REST reference.

2. Deploy your application to the SOA server.

3. Test your application.

36.2.3 How to Configure the REST Adapter Through Shortcuts
You can configure the REST adapter through several shortcuts based on WSDL or
WADL files.

36.2.3.1 To generate a REST service based on a web service deployed on an
application server:

1. From the Oracle JDeveloper main menu, select Window > Application Servers.

2. Right-click a WSDL service and select SOA > Expose as REST. Figure 36-6
provides details.

Chapter 36
Creating REST Support in Service and Reference Binding Components

36-20

Figure 36-6 Automatic REST Adapter Service Binding Component Configuration

The Create REST Binding dialog is invoked and prepopulated with operation mappings
from the selected WSDL file.

3. Complete any necessary configuration by following the procedures in How to Configure
the REST Adapter as a Service Binding Component in a SOA Composite Application.

Note:

You are prompted to make a local copy of the selected WSDL and its
dependent artifacts. If you select to make a local copy, the binding.ws section
for the SOAP reference binding component contains the original concrete
WSDL/endpoint location that was selected and the copied WSDL is used as the
abstract WSDL (in the composite import, and so on).

When configuration is complete, a REST service binding component is wired to a SOAP
reference binding component. Figure 36-7 provides details.

Figure 36-7 REST Service Binding Component and SOAP Reference Binding
Component Configuration

Chapter 36
Creating REST Support in Service and Reference Binding Components

36-21

36.2.3.2 To generate a REST reference based on a REST service deployed on
an application server:

1. From the Oracle JDeveloper main menu, select Window > Application Servers.

2. Right-click a REST/WADL service and select SOA > Generate REST Reference.
Figure 36-8 provides details.

Figure 36-8 Automatic REST Adapter Reference Binding Component
Configuration

The Create REST Binding dialog is invoked and prepopulated with information
from the selected WADL file.

3. Complete any necessary configuration by following the procedures in How to
Configure the REST Adapter as a Reference Binding Component in a SOA
Composite Application.

When configuration is complete, a REST reference binding component is
displayed, as shown in Figure 36-9.

Figure 36-9 REST Adapter Reference Component

Chapter 36
Creating REST Support in Service and Reference Binding Components

36-22

36.2.3.3 To generate a REST service based on a SOA component's WSDL service:
1. In the SOA Composite Editor, right-click a SOA component service or an external

reference, and select the Expose as REST option. Figure 36-10 provides details.

Figure 36-10 Expose as REST Option

The Create REST Binding dialog is invoked and prepopulated with information from the
selected WADL file.

2. Complete any necessary REST adapter configuration.

When configuration is complete, REST support (for this example, a service binding
component) is created and automatically wired to the interface on which you clicked.
Figure 36-11 provides details.

Figure 36-11 REST Adapter Service Binding Component

36.2.4 How to Generate Schemas Manually
If you do not have a schema or sample data to generate a schema, you can manually enter
the parameters for which to generate a schema. To manually define a schema, click the Add
icon, and select Add operation binding in the Operation Bindings section of the Create
REST Binding dialog.

Note the following guidelines:

• In the URI Parameters section of the REST Operation Binding page, enter the necessary
query or template parameters. You can select a data type for each parameter, but you do
not need to enter an expression. If there is no schema and payload specified, when you
click OK, the parameter schema is automatically generated (embedded in the WSDL).
Parameters that have an expression that is mapped to a runtime property are not
included in the generated schema.

• If there is no schema defined for an operation, the Expression Builder dialog that is
accessible from the Expression column only shows property variables and no message
variables.

For complete instructions about creating REST support, see How to Configure the REST
Adapter as a Service Binding Component in a SOA Composite Application and How to

Chapter 36
Creating REST Support in Service and Reference Binding Components

36-23

Configure the REST Adapter as a Reference Binding Component in a SOA Composite
Application.

36.2.5 How to Generate Schemas from Samples
You can generate schemas from sample files, including JSON interchange format.

1. In the Request section of the REST Operation Binding dialog, click the Define
Schema for Native Format icon to the right of the Schema URL field.
Figure 36-12 provides details.

Figure 36-12 Define Schema for Native Format Icon

The Native Format Builder wizard is displayed.

2. Proceed through the initial pages of the wizard until you access the Choose Type
page.

This page enables you to select to generate schemas from different format types.
Figure 36-13 provides details.

Figure 36-13 Types From Which to Generate Schemas

3. Select an appropriate type.

Each type provides an area in which to paste a JSON, XML, or URL sample or
select a sample file to import.

For more information about JSON interchange formats, see What You May Need
to Know About Converting a JSON Interchange Format to a REST Schema.

For complete instructions about creating REST support, see How to Configure the
REST Adapter as a Service Binding Component in a SOA Composite Application and
How to Configure the REST Adapter as a Reference Binding Component in a SOA
Composite Application.

36.2.6 How to Use Global Token Variables
You can assign global token variables for the host name, port number, and protocol in
the Base URI field of the Create REST Binding dialog.

Chapter 36
Creating REST Support in Service and Reference Binding Components

36-24

To use global token variables:

1. Above the SOA Composite Editor, click the Binding URL Tokenizer icon.

2. Select the REST external reference, and click the Edit icon.

3. Specify the mdm-url-resolver.xml file or manually enter values for host, port, and
protocol (http or https), and click OK.

The values that you assign to the tokens are then substituted in place of the hard-coded
HTTP host and port values in the location attribute of the binding.ws element of the
composite.xml file. For more information, see Creating Tokens for Use in the Binding
URLs of External References.

36.2.7 How to Set REST Header Properties
Normalized message properties are available for certain standard HTTP headers. These
properties are displayed for selection in the Properties tab of receive and reply activities in a
BPEL process in Oracle JDeveloper, as shown in Figure 36-14. These header properties are
not propagated by default across the service engines. You must manually propagate them by
providing the appropriate assignment logic.

Figure 36-14 Normalized Message Properties in Receive and Reply Activities

36.2.7.1 Inbound and Outbound Headers
For inbound cases in which an external client is interacting with a SOA REST service, you
can configure the service to send a hyperlink to the next resource with which the client
interacts. This hyperlink can be sent in the payload of the response or the HTTP link
response header. The following normalized message properties build and return the next link:

• rest.binding.requestBaseURI

This property is available on the request message. It holds the base URI of the REST
service. In the SOA composite application, this can be combined with the path of another
resource in the same REST service to build an absolute URL linking back to that
resource.

• rest.binding.http.Link

When this property is set on the response message, a link header is added to the HTTP
response. The value of this header is the value of the normalized message property.

For outbound cases in which the SOA composite application is invoking an external REST
service, the service may return a response with the next link either in the link header or the

Chapter 36
Creating REST Support in Service and Reference Binding Components

36-25

payload. The following normalized message properties are available to help get the
next link and invoke the resource located at that link:

• rest.binding.http.Link

If the HTTP response from the external REST service contains a link header, a
rest.binding.http.Link property is added to the response message. The value of
this property is the value in the link header.

• rest.binding.requestURI

The resource located at the next link can be invoked by setting the
rest.binding.requestURI property on the request message. If set, the URL in this
property overrides the URL provided at design time. It invokes the external REST
service.

There are several preconditions that must be satisfied when a SOA composite
application is invoking REST resources based on the next link it receives from the
external REST service:

• The potential resources that can be invoked must be designed in the REST
reference binding component at design time.

• The structure of the request and response must be known and modeled at design
time.

For information about setting normalized message properties in the Properties tab,
see Propagating Normalized Message Properties Through Message Headers.

36.2.7.2 Custom Header Support
REST services and references are capable of handling custom HTTP headers.
Table 36-5 provides details.

Table 36-5 Custom Header Support

Direction Service Side Reference Side

Request Any HTTP headers that come in the
request are propagated as normalized
message properties. The headers are
appended with
rest.binding.http.header-name. These
headers are available in the service
engine as part of normalized message
properties. For example, any individual
header can be obtained with the BPEL
process in the receive and reply activity
properties.

All normalized message properties
prefixed with rest.binding.http.* are
added as HTTP headers to the HTTP
request. The REST service removes the
prefix rest.binding.http. from the
header name. before attaching the
headers to the HTTP request.

Response All normalized message properties
prefixed with rest.binding.http.* are
added as HTTP headers to the HTTP
response. The REST service removes
the prefix rest.binding.http. from the
header name before attaching the
headers to the HTTP response.

Any HTTP headers coming in the
response are propagated as normalized
message properties. The headers are
appended with
rest.binding.http.header-name. These
headers are available in the service
engine as part of normalized message
properties. For example, any individual
header can be obtained with the BPEL
process in the receive and reply activity
properties.

Chapter 36
Creating REST Support in Service and Reference Binding Components

36-26

36.2.8 What You May Need to Know About REST Fault Binding
You define REST fault binding response details in the REST Fault Binding dialog, as shown
in Figure 36-15. If fault details are already defined in the WSDL file, a fault binding is
automatically created in the Fault Bindings section of the REST Operation Binding dialog.
You can also manually define fault bindings.by clicking the Add fault binding icon in the
Fault Bindings section.

Figure 36-15 REST Fault Binding Dialog

By default, the fault status is 400 when there is a fault payload and 404 when there is no fault
payload.

Fault binding details are based on your selection in the Create REST Binding dialog:

• If you selected REST enable component or reference, fault bindings are automatically
generated based on faults defined in the WSDL file.

• If you selected Add operation binding, you must configure the fault bindings to be
supported, which are added to the WSDL being generated.

The Fault Bindings section of the REST Operation Binding dialogs shows the response fault
name, type, status, and schema. Figure 36-16 provides details.

Figure 36-16 Fault Bindings Definition

36.2.9 What You May Need to Know About Converting a JSON
Interchange Format to a REST Schema

You can select to create a REST schema from a JSON interchange format sample in the
Choose Type dialog of the Native Format Builder wizard, as shown in Figure 36-13. During
schema generation, the wizard attempts to do the following:

Chapter 36
Creating REST Support in Service and Reference Binding Components

36-27

• Generate a REST schema with no namespace information

• Consume a JSON interchange format sample with no namespace information and
generate an XML with the correct namespaces

Note:

Use the JVM property soa.rest.nillable.support to turn on nillable
support for SOA REST service. Values are:

• false (default): always returns null for an empty string in the response.
For example, if the payload includes data "mileage" : "", the response
returns "mileage" : null

• true: differentiates between "" and null. For example, if the payload
includes data "mileage" : "", the response returns "mileage" : ""

To set soa.rest.nillable.support to true:

• include attribute nillable="true" in the NXSD element

• include attribute xsi:nil="true" in the XML element

Example:

When soa.rest.nillable.supported is true, the mileage element returns
"" or null, matching what is provided as input ("" or null).

{
 "sampleData" : {
 "dateTime" : "2022-04-07 10:58:30",
 "mileage" : ""
 },
 "userInfo" : {
 "user" : "Davidson",
 "ctryCode" : "IN"
 }
}

When soa.rest.nillable.supported is false (default), the mileage
element always returns null, regardless of what is provided as input ("" or
null).

{
 "sampleData" : {
 "dateTime" : "2022-04-07 10:58:30",
 "mileage" : null
 },
 "userInfo" : {
 "user" : "Davidson",
 "ctryCode" : "IN"
 }
}

Chapter 36
Creating REST Support in Service and Reference Binding Components

36-28

There are cases in which the conversion cannot be handled.

• Sibling elements with duplicate names under a sequence group element cannot be
converted because this translates to an object with duplicate keys in JSON, which is not
valid.

• Namespace information is retained to enable the JSON interchange format sample,
shown in the following example, to be converted. This is because the underlying schema
has elements and attributes from multiple namespaces.

<schema xmlns:us="http://xmlns.oracle.com/addresses/us"
xmlns:india="http://xmlns.oracle.com/addresses/india"
targetNamespace="http://xmlns.oracle.com"
xmlns="http://www.w3.org/2001/XMLSchema" elementFormDefault="qualified">
 <import ...>
 <element name="Person">
 <complexType>
 <choice>
 <element ref="us:Address"/>
 <element ref="india:Address"/>
 </choice>
 </complexType>
 </element>
</schema>
<schema targetNamespace="http://xmlns.oracle.com/addresses/us"
xmlns="http://www.w3.org/2001/XMLSchema" elementFormDefault="qualified">
 <element name="Address">
 <complexType>
 <sequence>
 <element name="Street" type="xsd:string"/>
 <element name="City" type="xsd:string"/>
 <element name="State" type="xsd:string"/>
 <element name="ZipCode" type="xsd:integer" minOccurs="0"/>
 </sequence>
 </complexType>
 </element>
</schema>
<schema targetNamespace="http://xmlns.oracle.com/addresses/india"
xmlns="http://www.w3.org/2001/XMLSchema" elementFormDefault="qualified">
 <element name="Address">
 <complexType>
 <sequence>
 <element name="Street" type="xsd:string"/>
 <element name="City" type="xsd:string"/>
 <element name="District" type="xsd:string" minOccurs="0"/>
 <element name="State" type="xsd:string"/>
 <element name="PinCode" type="xsd:integer" minOccurs="0"/>
 </sequence>
 </complexType>
 </element>
</schema>

36.2.10 What You May Need to Know About REST References Calling
REST Services in the Same Node

The SOAIncomingRequests_maxThreads property by default is configured based in the
SOADataSource data source in Oracle WebLogic Server Administration Console. This
setting may be not enough for REST services under a heavy load (for example, if you have
200 concurrent users in a scenario in which a REST reference is calling a REST service

Chapter 36
Creating REST Support in Service and Reference Binding Components

36-29

within the same node). You must increase the SOAIncomingRequests_maxThreads
value to 400 to avoid the exception error shown in the following example:

<May 2, 2014 10:16:11 AM PDT> <Error> <oracle.soa.bpel.system> <BEA-000000>
<cube engineJTA transaction is not in active state.
The transaction became inactive when executing activity "" for instance
"30,023", bpel engine can not proceed further without an active transaction.
please debug the invoked subsystem on why the transaction is not in active
status. the transaction status is "MARKED_ROLLBACK".
The reason was The execution of this instance "30023" for process
"BuyCoffeeBPELProcess" is supposed to be in an active jta transaction, the
current transaction status is "MARKED_ROLLBACK", the underlying exception is
"Service Unavailable" .
Consult the system administrator regarding this error.
, Cikey=30023, FlowId=20014, Current Activity Key=30023-BpInv0-BpSeq0.3-3,
Current Activity Label=InvokeCreateOrder,
ComponentDN=default/CoffeeShopClient!1.0*soa_19d4a881-115b-42c5-824d-1af3fa766
62d/BuyCoffeeBPELProcess
oracle.fabric.common.FabricInvocationException: Service Unavailable
 at
. . .
. . .

36.3 Using JavaScript and JSON in BPEL Components
The BPEL component can work both with XML and JSON variables. You can use
JavaScript at all places where you can use XPath expressions. JavaScript can be
used for predicates, expressions, and within the JavaScript BPEL activity.

Using JSON Variables

You can choose to create a BPEL process based on an existing REST Service and
add the methods from the REST service. This is illustrated in the following image.

Chapter 36
Using JavaScript and JSON in BPEL Components

36-30

The Receive activity of the BPEL process is automatically configured to use a JSON object
variable in order to receive the input payload data.

Chapter 36
Using JavaScript and JSON in BPEL Components

36-31

You can create additional schema-less JSON variables for your BPEL process, as
required.

Setting the Expression Language for Your BPEL Process

In BPEL Designer, right-click a blank area in the BPEL process area. The Edit Process
dialog appears. Set the Query Language and Expression Language fields, as
required. To use JavaScript you can use js.

Chapter 36
Using JavaScript and JSON in BPEL Components

36-32

Using JavaScript Expressions

You can use JavaScript at all places where you can use XPath expressions. You can use
these expressions in BPEL activities and conditional and iterative constructs. This section
provides some examples.

The following example shows a JavaScript expression used in an Assert activity. The
expression checks to see if the type of process input is an object.

Chapter 36
Using JavaScript and JSON in BPEL Components

36-33

The process variable is a global variable that is accessible to the JavaScript context
during execution.

The following code shows a JavaScript condition that might be used in a While
activity:

process.counter < 10

The following code shows a JavaScipt expression that might appear in a Wait activity:

bpel.until(process.counter + 3)

The following code shows a JavaScript expression that might appear in a branch of
the Switch activity, and helps to test for odd numbers:

process.counter % 2 == 1

Using the JavaScript Activity

You can use the JavaScript activity in a BPEL process to add JavaScript code snippets
or blocks of code. To add a JavaScript activity, drag the JavaScript icon from the
Components window to the appropriate place in your BPEL process. You can double-
click the added JavaScript activity to edit it. The following image shows JavaScript
code that calls xpath and bpel object functions.

Chapter 36
Using JavaScript and JSON in BPEL Components

36-34

xpath is a global object that binds to all XPath functions. So, for example, var o =
process.output.xpath creates a new xpath object, and o.refid = xpath.ora.getECID()
calls the getECID function for the ora namespace prefix.

The following JavaScript code might appear in a JavaScript activity to write output to the
server console and BPEL audit log:

console.log("input: ", process.input)
console.log("output: ", process.output)
audit.log("output: ", process.output)

Importing JavaScript Files in Your BPEL Process

You can import external JavaScript files, containing JavaScript functions, into your BPEL
process. The JavaScript functions contained in these files then become available to be used
within your BPEL process. The following lines use the import and include statements to
fetch the main.js and one.js files into a BPEL process:

<bpelx:js include="jslib/main.js"/>
<bpelx:js import="jslib/one.js"/>
<import location="jslib/lib.js" importType="javascript"/>

The difference between include and import is that the import statement ensures that the file
is included only once irrespective of the number of imports.

The following image shows the source window of a BPEL process with the include/import
statements. Notice where the JavaScript files appear under the project folder.

Chapter 36
Using JavaScript and JSON in BPEL Components

36-35

36.4 Testing the REST Adapter with the HTTP Analyzer
You can test the REST adapter with the HTTP Analyzer.

To test the REST adapter with the HTTP Analyzer:

1. Copy the WADL file URL from the home page of the SOA composite application in
Oracle Enterprise Manager Fusion Middleware Control, as shown in Figure 36-17.

Figure 36-17 WADL File URL in Oracle Enterprise Manager Fusion
Middleware Control

2. In the HTTP Analyzer, click the Open URL icon, enter the WADL URL copied from
Oracle Enterprise Manager Fusion Middleware Control, and press Return.

The WADL file is included with the POST method. Figure 36-18 provides details.

Figure 36-18 WADL File and POST Method

Chapter 36
Testing the REST Adapter with the HTTP Analyzer

36-36

3. Click Test.

4. Copy and paste a sample request XML payload into the Request HTTP Headers section
and click Send Request. You can also specify JSON formats. Figure 36-19 provides
details.

Figure 36-19 Request Message

After processing completes, a response message is displayed. For this example, a
message with an order status of Shipped is displayed. Figure 36-20 provides details.

Figure 36-20 Response Message

Chapter 36
Testing the REST Adapter with the HTTP Analyzer

36-37

36.5 Testing and Configuring REST Reference Binding
Components in Oracle Enterprise Manager Fusion
Middleware Control

You can initiate instances of SOA composite applications that include REST binding
components from the Test Instances page in Oracle Enterprise Manager Fusion
Middleware Control. This page enables you to test any WSDL or WADL. For more
information, see Initiating a Test Instance of a Business Flow in Administering Oracle
SOA Suite and Oracle Business Process Management Suite.

You can configure properties for REST reference binding components in Oracle
Enterprise Manager Fusion Middleware Control. For more information, see Configuring
Properties for REST Adapters in Administering Oracle SOA Suite and Oracle Business
Process Management Suite.

Chapter 36
Testing and Configuring REST Reference Binding Components in Oracle Enterprise Manager Fusion Middleware Control

36-38

37
Integrating Enterprise JavaBeans with
Composite Applications

This chapter describes how to integrate Enterprise JavaBeans with SOA composite
applications through use of Java interfaces or service data object (SDO) parameters. It
describes how to design an SDO-based Enterprise JavaBeans application, create an
Enterprise JavaBeans service in Oracle JDeveloper, design an Enterprise JavaBeans client
to invoke Oracle SOA Suite, specify Enterprise JavaBeans roles, and configure JNDI access.
This chapter includes the following sections:

• Introduction to Enterprise JavaBeans Binding Integration with SOA Composite
Applications

• Designing an SDO-Based Enterprise JavaBeans Application

• Creating an Enterprise JavaBeans Service in Oracle JDeveloper

• Designing an Enterprise JavaBeans Client to Invoke Oracle SOA Suite

• Specifying Enterprise JavaBeans Roles

• Configuring Enterprise JavaBeans Binding Support in the Credential Store Framework

Note:

Support is provided for Enterprise JavaBeans 3.0 and Enterprise JavaBeans 2.0
references (that is, when calling Enterprise JavaBeans 2.0 beans). Support is not
provided for Enterprise JavaBeans 2.0 services (that is, when being called with
Enterprise JavaBeans 2.0 beans).

37.1 Introduction to Enterprise JavaBeans Binding Integration
with SOA Composite Applications

There are two options for integrating Enterprise JavaBeans with SOA composite applications:

• Through use of Java interfaces (does not use a WSDL file to define the interface)

• Through use of SDO-based EJBs (uses a WSDL file to define the interface)

This chapter describes both options.

You can also use the spring service component to integrate Java interfaces with SOA
composite applications. For information about using the spring service component, see
Integrating the Spring Framework in SOA Composite Applications.

37-1

37.1.1 Integration Through Java Interfaces
You can integrate Enterprise JavaBeans with Oracle SOA Suite through Java
interfaces, therefore eliminating the need for WSDL file definitions. This type of
integration provides support with the following objects:

• Native Java objects

• Java Architecture for XML Binding (JAXB)

Java interfaces differ from SDO interfaces, which are defined in a WSDL file because
of the XML-centric nature of service components such as Oracle BPEL Process
Manager, Oracle Mediator, and others. No SDO parameters are required when using
Java interfaces.

You use the Create EJB Service dialog in Oracle JDeveloper to define this integration,
as described in How to Integrate Java Interface-based Enterprise JavaBeans with
SOA Composite Applications. This option does not require the use of a WSDL file.
Once complete, the interaction is defined in the composite.xml file through the
interface.java entry, as shown in the example that follows. The Java interface
classes must be compatible with the WSDL file used by the connecting components
(that is, if a message is sent to a BPEL component). BPEL services are defined with a
WSDL, and the Java interface classes must be compatible with that WSDL.

<service name="PortfolioService">
 <interface.java interface="com.bigbank.services.MyService" />
 binding.ejb uri="MyJNDI" ejb-version="EJB3"/>

The Java class must be in the project's loader to be available to the user interface. The
class must be in SCA-INF to be deployed (not all JAR files in the project class path are
deployed). This typically means that the class must be in the SCA-INF/classes
directory or in a JAR in the SCA-INF/lib directory. However, it can also be an interface
from the system class path.

For information about JAXB, see Solutions Guide for Oracle TopLink and Integrating
the Spring Framework in SOA Composite Applications.

37.1.2 Integration Through SDO-Based EJBs
SDOs enable you to modify business data regardless of how it is physically accessed.
Knowledge is not required about how to access a particular back-end data source to
use SDOs in a SOA composite application. Consequently, you can use static or
dynamic programming styles and obtain connected and disconnected access.

Enterprise JavaBeans are server-side domain objects that fit into a standard
component-based architecture for building enterprise applications with Java. These
objects become distributed, transactional, and secure components.

Many Oracle SOA Suite interfaces are described by WSDL files. Enterprise
JavaBeans interfaces are described by Java interfaces. Invocations between the two
are made possible in Oracle SOA Suite by an Enterprise JavaBeans Java interface
that corresponds to an Oracle SOA Suite WSDL interface.

Through this interface, Oracle SOA Suite provides support for the following:

• Invoking Enterprise JavaBeans with SDO parameters through an Enterprise
JavaBeans reference binding component. In this scenario, a SOA composite

Chapter 37
Introduction to Enterprise JavaBeans Binding Integration with SOA Composite Applications

37-2

application passes SDO parameters to an external Enterprise JavaBeans application.

• Invoking an Enterprise JavaBeans service binding component through Enterprise
JavaBeans with SDO parameters. In this scenario, an Enterprise JavaBeans application
passes SDO parameters into a SOA composite application.

Figure 37-1 provides an overview.

Figure 37-1 SDO and Enterprise JavaBeans Binding Integration

You use the Create EJB Service dialog in Oracle JDeveloper to define this integration, as
described in How to Integrate SDO-based Enterprise JavaBeans with SOA Composite
Applications. This option requires the use of a WSDL file. Once complete, the WSDL
interaction is defined in the composite.xml file through the interface.wsdl entry, as shown
in the following example:

<service name="PortfolioService">
 <interface.wsdl
 interface="http://bigbank.com/#wsdl.interface(PortfolioService)" />
 <binding.ejb javaInterface="java.class.ejb.com" serviceId="PortfolioService"
 jarLocation="soaejb.jar"/>

37.2 Designing an SDO-Based Enterprise JavaBeans
Application

This section provides a high-level overview of the steps for designing an Enterprise
JavaBeans application. For more information, see the following documentation:

• Developing Enterprise JavaBeans for Oracle WebLogic Server

• Developing Fusion Web Applications with Oracle Application Development Framework

• Oracle JDeveloper online help table of contents for the following topics:

– Enterprise JavaBeans

– SDO for Enterprise JavaBeans/Java Persistence API (JPA)

Access the help by selecting Help > Table of Contents in Oracle JDeveloper.

37.2.1 How to Create SDO Objects Using the SDO Compiler
Select one of the following options for creating SDO objects:

• EclipseLink is an open source, object-relational mapping package for Java developers.
EclipseLink provides a framework for storing Java objects in a relational database or
converting Java objects to XML documents.

Use EclipseLink to create SDO objects. For instructions on installing, configuring, and
using EclipseLink to create SDO objects, visit the following URL:

Chapter 37
Designing an SDO-Based Enterprise JavaBeans Application

37-3

http://wiki.eclipse.org/EclipseLink/
Installing_and_Configuring_EclipseLink

• Oracle JDeveloper enables you to create an SDO service interface for JPA
entities. While this feature is more tailored for use with the Oracle Application
Development Framework (ADF) service binding in a SOA composite application,
you can also use this feature with the Enterprise JavaBeans service binding in
SOA composite applications. The SDO service interface feature generates the
necessary WSDL and XSD files. If you use this feature, you must perform the
following tasks to work with the Enterprise JavaBeans service binding:

– Browse for and select this WSDL file in the WSDL Chooser dialog, which is
accessible from the WSDL URL field of the Create EJB Service dialog
(described in Creating an Enterprise JavaBeans Service in).

– Add the BC4J Service Runtime library to the SOA project. To add this library,
double-click the project and select Libraries and Classpath to add the library
in the Project Properties dialog. You are now ready to design the business
logic.

For more information, see the SDO for Enterprise JavaBeans/JPA topic in the
Oracle JDeveloper online help (this includes instructions on how create to an SDO
service interface).

37.2.2 How to Create a Session Bean and Import the SDO Objects
To create a session bean and import the SDO objects:

1. Create a simple session bean with the Create Session Bean wizard. For details on
using this wizard, see the Creating a Session Bean topic in the Oracle JDeveloper
online help.

2. Import the SDO objects into your project through the Project Properties dialog.

3. Add logic and necessary import and library files. In particular, you must import the
Commonj.sdo.jar file. JAR files can be added in the Libraries and Classpath
dialog. This dialog is accessible by double-clicking the project and selecting
Libraries and Classpath in the Project Properties dialog. You are now ready to
design the logic.

4. Expose the method to the remote interface.

37.2.3 How to Create a Profile and an EAR File
To create a profile and an EAR file:

1. Create an Enterprise JavaBeans JAR profile in the Project Properties dialog.

2. Create an application level EAR file in the Application Properties dialog.

37.2.4 How to Define the SDO Types with an Enterprise JavaBeans
Bean

An Enterprise JavaBeans bean must define the SDO types. The example that follows
provides details.

Chapter 37
Designing an SDO-Based Enterprise JavaBeans Application

37-4

http://wiki.eclipse.org/EclipseLink/Installing_and_Configuring_EclipseLink
http://wiki.eclipse.org/EclipseLink/Installing_and_Configuring_EclipseLink

Caution:

Where to call define can be nontrivial. You must force the types to be defined
before remote method invocation (RMI) marshalling must occur and in the right
helper context. The EclipseLink SDO implementation indexes the helper instance
with the application name or class loader.

When you invoke the Enterprise JavaBeans method, an application name is
available to the EclipseLink SDO runtime. The EclipseLink SDO looks up the
context using the application name as the key. Ensure that the types are defined
when the application name is visible. When an Enterprise JavaBeans static block is
initialized, the application name is not created. Therefore, putting the define in the
static block does not work if you are using the default application name-based
context. One way to get the application name initialized is to allocate more than two
instance beans using the weblogic-ejb-jar.xml file.

InputStreamReader reader = new InputStreamReader(url.openStream());
StreamSource source = new StreamSource(reader);
List<SDOType> list = ((SDOXSDHelper) XSDHelper.INSTANCE).define(source, null);

The weblogic-ejb-jar.xml file is the descriptor file that must be added in the deployment jar.
The weblogic-ejb-jar.xml file is automatically created when you create a session bean.
This file must be modified by adding the entries shown in the following example:

<?xml version = '1.0' encoding = 'windows-1252'?>
<weblogic-ejb-jar xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.bea.com/ns/weblogic/weblogic-ejb-jar
 http://www.bea.com/ns/weblogic/weblogic-ejb-jar/1.0/weblogic-ejb-jar.xsd"
 xmlns="http://www.bea.com/ns/weblogic/weblogic-ejb-jar">

 <weblogic-enterprise-bean>
 <ejb-name>HelloEJB</ejb-name>
 <stateless-session-descriptor>
 <pool>
 <initial-beans-in-free-pool>2</initial-beans-in-free-pool>
 </pool>
 </stateless-session-descriptor>
 </weblogic-enterprise-bean>

 </weblogic-ejb-jar>

Figure 37-2 provides a code example of a session bean with SDO logic defined.

Chapter 37
Designing an SDO-Based Enterprise JavaBeans Application

37-5

Figure 37-2 Session Bean with Defined SDO Logic

37.2.5 How to Use Web Service Annotations
To generate the WSDL file, the Enterprise JavaBeans interface must use the following
web service annotations. Use of these annotations is described in JSR 224: Java API
for XML-Based Web Services (JAX-WS) 2.0. Visit the following URL for details:

http://www.jcp.org/en/jsr/detail?id=224

In addition, only a document/literal WSDL is currently supported by the Enterprise
JavaBeans binding layer.

Table 37-1 describes the annotations to use.

Table 37-1 Annotations

Name Description

@javax.jws.WebResult;
@javax.jws.WebParam;

Customizes the mapping of an individual parameter to a web
service message part and XML element. Both annotations are
used to map SDO parameters to the correct XML element from
the normalized message payload.

Chapter 37
Designing an SDO-Based Enterprise JavaBeans Application

37-6

http://www.jcp.org/en/jsr/detail?id=224

Table 37-1 (Cont.) Annotations

Name Description

@javax.jws.Oneway; Denotes a method as a web service one-way operation that has
only an input message and no output message. The Enterprise
JavaBeans binding component does not expect any reply in this
case.

@javax.xml.ws.RequestW
rapper;
@javax.xml.ws.Response
Wrapper;

Tells the Enterprise JavaBeans binding components whether the
deserialized object must be unwrapped or whether a wrapper
must be created before serialization.

An Enterprise JavaBeans interface can be generated from an
existing WSDL or obtained by some other means. If the WSDL
does not exist, it can be generated.

@javax.xml.ws.WebFault
;

Maps WSDL faults to Java exceptions. This annotation captures
the fault element name used when marshalling the JAXB type
generated from the global element referenced by the WSDL fault
message.

@oracle.webservices.Po
rtableWebService

Specifies the targetNamespace and serviceName used for the
WSDL. For example:

@PortableWebService(
targetNamespace = "http://hello.demo.oracle/",
serviceName = "HelloService")

The serviceName is used as the WSDL file name. If it is not
specified in the annotations, the service endpoint interface (SEI)
class name is used instead.

Add appropriate method
parameter annotations

Controls how message elements and types are mapped to the
WSDL. For example, if your interface is in doc/lit/bare style,
add the following annotations to the methods.

@WebMethod
@SOAPBinding(parameterStyle =
SOAPBinding.ParameterStyle.BARE)

@SDODatabinding Adds to the interface class to use the existing schema instead of
a generated one. For example:

@SDODatabinding(schemaLocation = "etc/
HelloService.xsd")

The following example provides an example of an Enterprise JavaBeans interface with
annotations.

@Remote
@PortableWebService(targetNamespace = "http://www.example.org/customer-example",
 serviceName = "CustomerSessionEJBService")
@SDODatabinding(schemaLocation = "customer.xsd")
public interface CustomerSessionEJB {
 @WebMethod(operationName="createCustomer")
 @SOAPBinding(parameterStyle = SOAPBinding.ParameterStyle.BARE)
 @WebResult(targetNamespace = "http://www.example.org/customer-example",
 partName = "parameters", name = "customer")
 CustomerType createCustomer();
 @WebMethod(operationName="addPhoneNumber")
 @SOAPBinding(parameterStyle = SOAPBinding.ParameterStyle.BARE)

Chapter 37
Designing an SDO-Based Enterprise JavaBeans Application

37-7

 @WebResult(targetNamespace = "http://www.example.org/customer-example",
 partName = "parameters", name = "customer")
 CustomerType addPhoneNumber(@WebParam(targetNamespace =
 "http://www.example.org/customer-example", partName = "parameters", name =
 "phone-number")PhoneNumber phNumber);
}

37.2.6 How to Deploy the Enterprise JavaBeans EAR File
To deploy the EAR file from Oracle JDeveloper:

1. Select the Application context menu to the right of the application name.

2. Select Deploy and deploy the EAR file to a previously created application server
connection.

37.3 Creating an Enterprise JavaBeans Service in Oracle
JDeveloper

This section describes how to create an Enterprise JavaBeans reference binding
component or Enterprise JavaBeans service binding component in Oracle JDeveloper.
The Enterprise JavaBeans service enables the Enterprise JavaBeans application to
communicate with Oracle SOA Suite and Oracle SOA Suite to communicate with
remote Enterprise JavaBeans.

This section describes how to create the following types of integrations:

• Integration through a Java interface

• Integration through an SDO interface

37.3.1 How to Integrate Java Interface-based Enterprise JavaBeans
with SOA Composite Applications

You can create the following types of Java interface-based Enterprise JavaBeans
integrations with SOA composite applications:

• Invoke Java interface-based Enterprise JavaBeans from a SOA composite
application

• Invoke a SOA composite application from Enterprise JavaBeans using a Java
interface

To integrate Java interface-based Enterprise JavaBeans with SOA composite
applications:

1. Go to the SOA composite application in the SOA Composite Editor.

2. In the Technology section of the Components window, drag the EJB icon into the
appropriate swimlane:

• To invoke an Enterprise JavaBeans reference binding component from a SOA
composite application, drag the icon to the External References swimlane.

• To invoke a SOA composite application from an Enterprise JavaBeans service
binding component, drag the icon to the Exposed Services swimlane.

Chapter 37
Creating an Enterprise JavaBeans Service in Oracle JDeveloper

37-8

3. In the Interface section, click Java (if it is not already selected).

4. The Create EJB Service dialog displays the fields shown in Figure 37-3.

Figure 37-3 Create EJB Service for Java Interface

5. Enter the details shown in Table 37-2. The fields are the same regardless of the swimlane
in which you dragged the EJB icon.

Table 37-2 Create EJB Service Dialog

Field Value

Name Accept the default value or enter a different name.

Type Displays the following value:

• Displays Reference if you dragged this icon into the External
References swimlane.

• Displays Service if you dragged this icon into the Exposed
Services swimlane.

Version Select the version of EJB to support: EJB2 or EJB3 (the default
selection).

Note: This field only displays if you dragged the EJB Service icon
into the External References swimlane.

Interface Select Java.

JNDI Name Enter the JNDI name of your Enterprise JavaBeans.

Chapter 37
Creating an Enterprise JavaBeans Service in Oracle JDeveloper

37-9

Table 37-2 (Cont.) Create EJB Service Dialog

Field Value

Jar File Click the Search icon to select the EJB JAR file created in
Designing an SDO-Based Enterprise JavaBeans Application. The
JAR Chooser dialog searches for and displays JAR files starting in
the SCA-INF/lib subdirectory of the current project directory. The
JAR file includes the interface class and any supporting classes.

Note: If you select a JAR file outside of the current project, Oracle
JDeveloper creates a copy of the JAR file in the SCA-INF/lib
directory of the current project. When prompted, click OK to
accept.

Java Interface Select one of the following options.

• Enter the Java interface manually.
• Click the Browse for Class File icon to invoke the Class

Browser dialog for selecting the Java interface.

The class must be available in the runtime classpath. There
are several ways to make the class available in the runtime
classpath. One method is to put the class in the SCA-INF/
classes directory or in a JAR file in the SCA-INF/lib directory
at design time to ensure that it gets deployed. However, it can
also be an interface from the system class path.

There are several ways to make the class available at runtime,
but one way is to put the class or JAR into SCA-INF at design
time so that it gets deployed.

Note: If you use the Jar File field, you do not need to add a
new JAR file to the project by selecting Project Properties >
Libraries and Classpath > Add JAR/Directory from the
Application main menu.

• Click the Generate Java Interface from a WSDL icon to
select the WSDL file from which to generate the Java
interface. This option is the same as described in How to
Integrate SDO-based Enterprise JavaBeans with SOA
Composite Applications.

6. Click OK.

37.3.2 How to Integrate SDO-based Enterprise JavaBeans with SOA
Composite Applications

You can create the following types of SDO-based Enterprise JavaBeans integrations
with SOA composite applications:

• Invoke SDO-based Enterprise JavaBeans from a SOA composite application

• Invoke a SOA composite application from Enterprise JavaBeans using SDO
parameters

To integrate SDO-based Enterprise JavaBeans with SOA composite
applications:

1. Go to the SOA composite application in the SOA Composite Editor.

2. In the Technology section of the Components window, drag the EJB icon into the
appropriate swimlane, as described in Table 37-3.

Chapter 37
Creating an Enterprise JavaBeans Service in Oracle JDeveloper

37-10

Table 37-3 Swimlane for EJB Service

To Invoke... Drag the EJB Service to this Swimlane...

SDO-based Enterprise JavaBeans from a SOA
composite application

External References

A SOA composite application from Enterprise
JavaBeans using SDO parameters

Exposed Services

The Create EJB Service dialog is displayed.

3. In the Interface section, click WSDL.

4. See the step in Table 37-4 based on the swimlane in which you dragged the EJB service.

Table 37-4 Swimlane Location

If You Dragged the EJB Service to this Swimlane... Then Go To...

External References 44.a

Exposed Services 44.b

a. View the Create EJB Service dialog that displays in the External References
swimlane, as shown in Figure 37-4.

Figure 37-4 Create EJB Service in External References Swimlane

b. View the Create EJB Service dialog that displays in the Exposed Services
swimlane, as shown in Figure 37-5.

Chapter 37
Creating an Enterprise JavaBeans Service in Oracle JDeveloper

37-11

Figure 37-5 Create EJB Service in Exposed Services Swimlane

5. Enter values appropriate to your environment. The fields that display differ based
on the swimlane in which you dragged the EJB Service icon. Table 37-5 provides
details.

Table 37-5 Create EJB Service Dialog

Field Value

Name Accept the default value or enter a different name.

Type Displays the following value:

• Displays Reference if you dragged this icon into the
External References swimlane.

• Displays Service if you dragged this icon into the
Exposed Services swimlane.

Version Note: This field only displays if you dragged the EJB Service
icon into the External References swimlane.

Select the version of EJB to support: EJB2 or EJB3 (the
default selection). If you select WSDL from the Interface list,
only EJB3 is available for selection.

Interface Select WSDL.

JNDI Name Note: This field only displays if you dragged the EJB Service
icon into the External References swimlane.

Enter the JNDI name of your Enterprise JavaBeans.

Chapter 37
Creating an Enterprise JavaBeans Service in Oracle JDeveloper

37-12

Table 37-5 (Cont.) Create EJB Service Dialog

Field Value

Jar File Click the Search icon to select the EJB JAR file created in
Designing an SDO-Based Enterprise JavaBeans Application.
The JAR Chooser dialog searches for and displays JAR files
starting in the SCA-INF/lib subdirectory of the current project
directory. The JAR file includes the interface class and any
supporting classes.

Note: If you select a JAR file outside of the current project,
Oracle JDeveloper creates a copy of the JAR file in the SCA-
INF/lib directory of the current project. When prompted, click
OK to accept.

Java Interface Click the Browse icon to invoke the Class Browser dialog for
selecting the fully qualified Java class name of the previously
created Enterprise JavaBeans interface. This class must exist
in the selected JAR file. If a JAR file is not specified, it is
assumed that the class is in the /SCA-INF/classes
subdirectory of the current project directory.

Note: If you use the Jar File field, you do not need to add a
new JAR file to the project by selecting Project Properties >
Libraries and Classpath > Add JAR/Directory from the
Application main menu.

WSDL URL Note: Ensure that you have created the annotations for the
Enterprise JavaBeans interface before generating the WSDL
file, as described in How to Use Web Service Annotations.

Click the second icon to the right to generate a WSDL file that
represents the Enterprise JavaBeans interface.

If you created SDO objects through Oracle JDeveloper, as
described in How to Create SDO Objects Using the SDO
Compiler, ensure that you select the WSDL file that was
automatically generated with this option.

Port Type Select the port type.

Callback Port Type Select the callback port type (for asynchronous services).

6. Click OK.

37.4 Designing an Enterprise JavaBeans Client to Invoke Oracle
SOA Suite

This section describes how to design an Enterprise JavaBeans client to invoke Oracle SOA
Suite.

37.4.1 How to Create a Java Interface-Based Client to Invoke Oracle SOA
Suite

Use the standard Enterprise JavaBeans client. The following example provides details:

InitialContext ic = new InitialContext(jndiProps);
SimpleEjb svc = (SimpleEjb) ic.lookup("PassthroughRef");
String result = svc.addBreadCrumb("RemoteTest");

Chapter 37
Designing an Enterprise JavaBeans Client to Invoke Oracle SOA Suite

37-13

37.4.2 How to Invoke an SDO-Enterprise JavaBeans Service
To invoke an SDO - Enterprise JavaBeans service from Enterprise JavaBeans, you
must use the client library. Follow these guidelines to design an Enterprise JavaBeans
client.

• Look up the SOAServiceInvokerBean from the JNDI tree.

• Get an instance of SOAServiceFactory and ask the factory to return a proxy for the
Enterprise JavaBeans service interface.

• You can include a client side Enterprise JavaBeans invocation library
($FMW_HOME/soa/soa/modules/oracle.soa.fabric_11.1.1/fabric-client.jar or
the fabric-runtime.jar file located in the Oracle JDeveloper home directory or
Oracle WebLogic Server) in the Enterprise JavaBeans client application. For
example, the fabric-runtime.jar file can be located in the
JDev_Home\jdeveloper\soa\modules\oracle.soa.fabric_11.1.1 directory.

If the Enterprise JavaBeans application is running in a different JVM than Oracle
SOA Suite, the Enterprise JavaBeans application must reference the ejbClient
library. The code that follows provides an example.

You must specify the complete path of the service ID with the MyTestEJBService
parameter of serviceFactory.createService (for example, "default/
MyTestProject!1.0/MyTestEJBService"). If the complete path is not specified,
you receive an EJBException- Could not locate the service error.

Properties props = new Properties();
 props.put(Context.INITIAL_CONTEXT_FACTORY,
 "weblogic.jndi.WLInitialContextFactory");
 props.put(Context.PROVIDER_URL, "t3://" + HOSTNAME + ":" + PORT);
 InitialContext ctx = new InitialContext(props);
 SOAServiceInvokerBean invoker =
 (SOAServiceInvokerBean)

ctx.lookup("SOAServiceInvokerBean#oracle.integration.platform.blocks.sdox.ejb.api
.
SOAServiceInvokerBean");

 //-- Create a SOAServiceFactory instance
 SOAServiceFactory serviceFactory =
SOAServiceFactory.newInstance(invoker);

 //-- Get a dynamice proxy that is essentially a remote reference
 HelloInterface ejbRemote =
 serviceFactory.createService("complete_path/MyTestEJBService",
HelloInterface.class);

 //-- Invoke methods
 Item item = (Item) DataFactory.INSTANCE.create(Item.class);
 item.setNumber(new BigInteger("32"));
 SayHello sayHello = (SayHello)
 DataFactory.INSTANCE.create(SayHello.class);
 sayHello.setItem(item);

 SayHelloResponse response = ejbRemote.sayHello(sayHello);
 Item reply = response.getResult();

Chapter 37
Designing an Enterprise JavaBeans Client to Invoke Oracle SOA Suite

37-14

37.5 Specifying Enterprise JavaBeans Roles
To specify role names required to invoke SOA composite applications from any Java EE
application, you add the roles names in the Enterprise JavaBeans service configuration. The
Enterprise JavaBeans service checks to see if the caller principal has the security role. The
following example provides details:

<service name="EJBService" ui:wsdlLocation="BPELEJBProcess.wsdl">
 <interface.wsdl
interface="http://xmlns.oracle.com/EJBApplication/EJBProject/BPELEJBProcess#wsdl.int
erface(BPELProcess1)"callbackInterface="http://xmlns.oracle.com/EJBApplication/
EJBProject/BPELEJBProcess#
wsdl.interface(BPELEJBProcessCallback)"/>
<property name="rolesAllowed">Superuser, Admin</property>
 <binding.ejb javaInterface="java.class.ejb.com" serviceId="EJBService"
 jarLocation="soaejb.jar"/>
</service>

37.6 Configuring Enterprise JavaBeans Binding Support in the
Credential Store Framework

This section describes how to configure Enterprise JavaBeans binding support in the
credential store framework.

37.6.1 How to Configure Enterprise JavaBeans Binding Support in the
Credential Store Framework

All Enterprise JavaBeans bindings support using the Credential Store Framework (CSF) to
store JNDI user access credentials, and not just service data object (SDO) Enterprise
JavaBeans bindings.

You can edit the following Enterprise JavaBeans binding JNDI properties in Oracle Enterprise
Manager Fusion Middleware Control:

• java.naming.factory.initial
• java.naming.provider.url
• java.naming.dns.url
• java.naming.factory.url.pkgs
• java.naming.factory.url.pkgs
• java.naming.security.authentication
• java.naming.security.protocol
• java.naming.security.principal
• java.naming.security.crendentials
• oracle.jps.credstore.map
• oracle.jps.credstore.key

Chapter 37
Specifying Enterprise JavaBeans Roles

37-15

37.6.1.1 To configure Enterprise JavaBeans binding support in the credential
store framework:

To edit these properties, perform the following steps in Oracle Enterprise Manager
Fusion Middleware Control:

1. Right-click the SOA composite application that includes the Enterprise JavaBeans
binding component.

2. Select Service/Reference Properties.

3. Select the Enterprise JavaBeans binding component.

4. Click the Properties tab.

5. Set the appropriate properties.

37.6.1.2 To specify the oracle.jps.credstore.map and oracle.jps.credstore.key
properties

Oracle recommends that you store the JNDI lookup principal/credentials in the CSF
map by specifying the properties oracle.jps.credstore.map and
oracle.jps.credstore.key. Storing the user name/password directly as properties is
not secure.

1. In Oracle Enterprise Manager Fusion Middleware Control, navigate to one of the
following to display the Credentials page.

a. Domain > Security > Credentials (if the application is deployed on Oracle
WebLogic Server).

or

b. Cell > Security > Application Policies (if it is deployed on WebSphere
Application Server).

2. To add a new map, select Create Map.

3. Click the map to add a key entry for oracle.jps.credstore.map.

4. Repeat Steps 2 and 3 to add oracle.jps.credstore.key.

37.6.1.3 To grant SOA infrastructure runtime access to the CSF map store
After completing these steps, you must grant SOA Infrastructure runtime access to the
CSF map store.

1. Expand the WebLogic Domain.

2. Right-click soa-infra, and select Security > System Policies.

3. Search for type CodeBase, which includes the name fabric-runtime.

4. Select the entry and edit it to add a credential store access permission.

5. Grant at least the read action to the map.

Chapter 37
Configuring Enterprise JavaBeans Binding Support in the Credential Store Framework

37-16

38
Using Direct Binding to Invoke Composite
Services

This chapter describes the Direct Binding Invocation API and how to invoke a SOA composite
application. It describes how to create an inbound direct binding service, how to create an
outbound direct binding reference, and how to set an identity for Java 2 Platform, Standard
Edition (J2SE) clients invoking direct binding. Samples of using the Direct Binding Invocation
API are also provided.
This chapter includes the following sections:

• Introduction to Direct Binding

• Introduction to the Direct Binding Invocation API

• Exception Handling with SOA Direct Transport

• Invoking a SOA Composite Application in Oracle JDeveloper with the Invocation API

• Samples Using the Direct Binding Invocation API

38.1 Introduction to Direct Binding
A common way to invoke a composite is to use SOAP over HTTP. This is enabled by creating
a SOAP service for your composite using web service binding. However, you can also use
direct binding, which provides a tighter integration alternative. Direct binding enables Java
clients to directly invoke composite services, bypassing the intermediate conversion to XML
required with web service binding.

Direct binding provides two types of invocation styles:

• Inbound direct binding

The direct service binding component allows an external client to send messages using
the Direct Binding Invocation API, where the Direct Binding Invocation API takes the
JNDI connection parameters and creates a connection object on behalf of the client.

• Outbound direct binding (or direct reference binding)

The direct reference binding component provides support for sending SOA messages
directly to external services over a remote method invocation (RMI). These external
services must implement the SOA invocation API (the same as the direct inbound
invocation API).

In the case of direct outbound binding, the connection object is created with the JNDI
name of the external service bean configured for the binding.

Direct binding must be associated with the interface.wsdl, providing the interface clause
and, optionally, the callbackInterface clause. The associated WSDL must be imported into
the composite.

The service binding component also publishes a modified version of the WSDL that
advertises the direct binding.

38-1

38.1.1 Direct Service Binding Component
A sample configuration using the direct service binding component is shown in the
following example:

<service name="direct2">
 <interface.wsdl
interface="http://xmlns.oracle.com/
asyncNonConvDocLit#wsdl.interface(asyncNonConvD
ocLit)"
callbackInterface="http://xmlns.oracle.com/
asyncNonConvDocLit#wsdl.interface(async
NonConvDocLitCallback)" xmlns:ns="http://xmlns.oracle.com/sca/1.0"/>
 <binding.direct/>
</service>

38.1.2 Direct Reference Binding Component
The direct reference binding component requires the following information to connect
to a user-provided SOA invoker:

• Properties:

A set of properties that defines the DirectConnection for the end service (see
oracle.soa.management.facade.Locator).

• ConnectionFactory class name (see oracle.soa.management.facade.Locator).

The ConnectionFactory class must implement the
oracle.soa.api.invocation.DirectConnectFactory interface.

If the ConnectionFactory class name is not specified, the default
oracle.soa.api.JNDIDirectConnectionFactory is used. To use the default
connection factory, you must supply the lookup name for the EJB.

• Address used by the external service:

This address value is not processed by the binding component, but is passed on
to the service bean during invocation.

• addressingVersion (optional):

The default addressing version used is 2005/08.
• useSSLForCallback:

Use a secure socket layer (SSL) for the callback JNDI connection. If this flag is set
to true, then the WS-Addressing replyTo header instructs the service to call back
at an SSL JNDI port.

A sample configuration is shown in the following example:

<reference name="HelloReference" ui:wsdlLocation="HelloService.wsdl">
 <interface.wsdl
 interface="http://hello.demo.oracle/#wsdl.interface(HelloInterface)"/>
 <binding.direct connection-factory="oracle.soa.api.JNDIDirectConnectionFactory"
 addressingVersion="http://www.w3.org/2005/08/addressing"
 address="soadirect://syncOut"
 useSSLForCallback="false">
 <property

Chapter 38
Introduction to Direct Binding

38-2

name="oracle.soa.api.invocation.direct.bean">MyDirectTestServiceBean#directEjb.Tes
tInvoker</property>
 <property
 name="java.naming.factory.initial">weblogic.jndi.WLInitialContextFactory</property
>
 <property name="java.naming.provider.url">t3://@host:@port</property>
 </binding.direct>
</reference>

The direct binding components support both synchronous and asynchronous invocation
patterns. Figure 38-1 describes a sample synchronous invocation pattern and Figure 38-2
describes a sample asynchronous invocation pattern.

Figure 38-1 Sample Synchronous Invocation Patterns

Chapter 38
Introduction to Direct Binding

38-3

Figure 38-2 Sample Asynchronous Invocation Pattern

38.2 Introduction to the Direct Binding Invocation API
The different packages used in the Direct Binding Invocation API are as follows:

• oracle.soa.management.facade.Locator
The oracle.soa.management.facade.Locator interface exposes a method,
createConnection, which returns a direct connection. The Locator exposes the
method shown in the following example for returning the DirectConnection.

import java.util.Map;
public interface DirectConnectionFactory {
 DirectConnection createDirectConnection(CompositeDN compositeDN,
 String serviceName) throws Exception;

You can use the LocatorFactory implementation to obtain the DirectConnection,
as shown in the following example:

Hashtable jndiProps = new Hashtable();
jndiProps.put(Context.PROVIDER_URL, "t3://" + hostname + ':' + portname + "/
soa-infra");
jndiProps.put(Context.INITIAL_CONTEXT_FACTORY,"weblogic.jndi.WLInitialContext
Factory");
jndiProps.put(Context.SECURITY_PRINCIPAL,"weblogic");
jndiProps.put(Context.SECURITY_CREDENTIALS,"welcome1");
jndiProps.put("dedicated.connection","true");
Locator locator = LocatorFactory.createLocator(jndiProps);
CompositeDN compositedn = new CompositeDN(domainName, compositename,
version);

Chapter 38
Introduction to the Direct Binding Invocation API

38-4

String serviceName = "HelloEntry";
return locator.createDirectConnection(compositedn, serviceName);

• oracle.soa.api.invocation.DirectConnection
The DirectConnection interface invokes a composite service using direct binding. For
more information, see Java API Reference for Oracle SOA Suite Infrastructure
Management.

• oracle.soa.api.message.Message
The Message interface encapsulates the data exchanged. For more information, see Java
API Reference for Oracle SOA Suite Infrastructure Management.

38.2.1 Synchronous Direct Binding Invocation
Direct binding also supports the synchronous direct invocation with use of the method shown
in the following example:

<T> Message<T> request(String operationName, Message<T> message)
 throws InvocationException, FaultException

38.2.2 Asynchronous Direct Binding Invocation
Asynchronous invocation relies on the WS-Addressing headers set on the message instance.
All headers must adhere to the WS-Addressing specification.

The Direct Binding Invocation API allows the clients to specify the WS-Addressing ReplyTo
SOAP header to communicate a destination by which they can receive responses.

Note:

The supported addressing version includes:

• http://www.w3.org/2005/08/addressing
• http://schemas.xmlsoap.org/ws/2004/08/addressing
• http://schemas.xmlsoap.org/ws/2003/03/addressing

An example of the WS-Addressing header used for asynchronous invocation is shown below:

<wsa:MessageID>D6202742-D9D9-4023-8167-EF0AB81042EC</wsa:MessageID>
 <wsa:ReplyTo xmlns:wsa="http://www.w3.org/2005/08/addressing">
 <wsa:Address>sb://testserver:9001/callback</wsa:Address>
 <wsa:ReferenceParameters>
 <soa:callback xmlns:soa="http://xmlns.oracle.com/soa/direct"
 connection-factory="mytest.MyDirectionConnectionFactory">
 <soa:property name="oracle.soa.api.invocation.direct.bean"
 value="myTest.MyDirectConnectionBean"/>
 <soa:property name="java.naming.provider.url" value="t3://test:8001"/>
 <soa:property name="java.naming.factory.initial"
 value="weblogic.jndi.WLInitialContextFactory"/>
 </soa:callback>
 </wsa:ReferenceParameters>
 </wsa:ReplyTo>

Chapter 38
Introduction to the Direct Binding Invocation API

38-5

http://www.w3.org/2005/08/addressing
http://schemas.xmlsoap.org/ws/2004/08/addressing
http://schemas.xmlsoap.org/ws/2003/03/addressing

Note:

You must qualify the callback and its property elements properly with the
SOA direct namespace.

The direct binding component is responsible for parsing the addressing headers set on
the message instance. In this example, there are two headers: wsa:MessageID and
wsa:ReplyTo. The service binding component makes the following properties available
for the internal SOA components:

• replyToAddress = sb://testserver:9001/callback
• replyToReferenceParameter: element of WSA:ReferenceParameters

38.2.3 Required JAR Files for Compiling and Running the Direct
Binding Java Client Code

The following JAR file is required for compiling the direct binding Java client code:

• $FMWHOME/soa/soa/modules/oracle.soa.mgmt_11.1.1/soa-infra-mgmt.jar
The following JAR files are required for running the direct binding Java client code:

• $FMWHOME/wlserver/server/lib/wlthint3client.jar
• $FMWHOME/soa/soa/modules/oracle.soa.fabric_11.1.1/oracle-soa-client-

api.jar

38.2.4 SOA Direct Address Syntax
The service paths used with the Direct Binding Invocation API follow the SOA direct
address pattern:

• soadirect:/CompositeDN/serviceName, where CompositeDN stands for composite
distinguished name

In the SOA direct address, the CompositeDN has the following form (label is optional):

domainName/compositeName[!compositeVersion[*label]]

38.2.5 SOA Transaction Propagation
Direct binding supports the SOA transaction propagation feature. You can invoke this
feature from the client in the following ways:

• Begin the Java transaction from the client and, after performing all the database
operations, perform a commit. You should commit the database operations after a
successful commit from the client side.

• Begin the Java transaction from the client side. If a fault is thrown during any
operation in the SOA composite, then roll back the transaction from the client side.
This rolls back all the database operations.

Chapter 38
Introduction to the Direct Binding Invocation API

38-6

38.3 Exception Handling with SOA Direct Transport
For Oracle BPEL to be able to catch SOAP faults thrown using the SOA-Direct binding, the
SOAP Fault has to follow some guidelines. Suppose your service is defined by the following
WSDL port and has a namespace of http://www.example.org/MyService:

<wsdl:portType name="MyServicePortType">
<wsdl:operation name="Execute">
<wsdl:input message="exp:ExecuteRequestMsg"/>
<wsdl:output message="exp:ExecuteResponseMsg"/>
<wsdl:fault name="executeFault" message="exp:ExecuteFaultMsg"/>
<wsdl:fault name="genericFault" message="exp:GenericFaultMsg"/>
</wsdl:operation>
</wsdl:portType>

When throwing a SOAP Fault, you must include the qualified name of the fault as declared in
the WSDL port. For SOAP 1.1 messages, the QName of the WSDL port fault should be
included in the faultcode element as seen bellow:

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/">
 <soapenv:Body>
 <soapenv:Fault xmlns:ns0="http://www.example.org/MyService">
 <faultcode>ns0:genericFault</faultcode>
 <faultstring/>
 <faultactor/>
 <detail>
 <GenericFault xmlns="http://www.example.org/FaultInfo">
 <FaultInfo>
 <ErrorDescription>Error - soap1.1</ErrorDescription>
 </FaultInfo>
 </GenericFault>
 </detail>
 </soapenv:Fault>
 </soapenv:Body>
</soapenv:Envelope>

For SOAP 1.2 messages, the QName of the WSDL port fault should be included in the Code/
Subcode/Value element as seen below:

<soap:Envelope xmlns:soap="http://www.w3.org/2003/05/soap-envelope">
 <soap:Header xmlns:exem="http://www.example.org/MyService"/>
 <soap:Body xmlns:exem="http://www.example.org/MyService">
 <soap:Fault>
 <soap:Fault>
 <soap:Value>soap:Receiver</soap:Value>
 <soap:Subcode>
 <soap:Value xmlns:ns1=" soap:value>"="" target="_blank">http://
www.example.org/MyService">ns1:genericFault</soap:Value>
 </soap:Subcode>
 </soap:Code>

Chapter 38
Exception Handling with SOA Direct Transport

38-7

http://schemas.xmlsoap.org/soap/envelope/
http://www.example.org/MyService
http://www.example.org/FaultInfo
http://www.w3.org/2003/05/soap-envelope
http://www.example.org/MyService
http://www.example.org/MyService
http://www.example.org/MyService
http://www.example.org/MyService

 <soap:Reason>
 <soap:Text xml:lang="pt">Failure calling partner.</
soap:Text>
 </soap:Reason>
 <soap:Node>...</soap:Node>
 <soap:Detail>
 <err:GenericFault xmlns:err="http://www.example.org/FaultInfo">
 <err:FaultInfo>
 <err:ErrorDescription>Error Desc</
err:ErrorDescription>
 </err:FaultInfo>
 </err:GenericFault>
 </soap:Detail>
 </soap:Fault>

 </soap:Body>
</soap:Envelope>

38.4 Invoking a SOA Composite Application in Oracle
JDeveloper with the Invocation API

The Direct icon in the Components window in Oracle JDeveloper, as shown in
Figure 38-3, provides support for exchanging SOA messages with SOA over RMI.

Figure 38-3 Direct Binding Option

Oracle JDeveloper supports creating a direct service binding and a direct reference
binding that invokes either an Oracle Service Bus or another SOA composite.

Note:

For a client to invoke composite services over direct binding, its class path
must include both soa-infra-mgmt.jar, wlthint3client.jar, and oracle-
soa-client-api.jar.

For more information about the Direct Binding Invocation API, see Introduction to the
Direct Binding Invocation API.

Chapter 38
Invoking a SOA Composite Application in Oracle JDeveloper with the Invocation API

38-8

http://www.example.org/FaultInfo

38.4.1 How to Create an Inbound Direct Binding Service
You can invoke a SOA composite application using the Direct icon in the Components
window in Oracle JDeveloper.

To create an inbound direct binding service:

1. Open Oracle JDeveloper.

2. From the Components window, select SOA.

3. From the Technology list, drag the Direct icon into the Exposed Services swimlane.
The Create Direct Binding dialog appears.

4. Enter the details shown in Table 38-1.

Table 38-1 Create Direct Binding Dialog Fields and Values

Field Value

Name Enter a name.

Type Select Service from the list.

Reference Target This field is disabled when defining this service in the Exposed
Services swimlane.

WSDL URL The URL location of the WSDL file. If you have an existing WSDL,
then click the Find Existing WSDLs option. Otherwise, click
Generate WSDL from schema(s).

Port Type The port type of the WSDL file. You must select a port from the list.

Callback Port Type The callback port type for asynchronous processes.

Use SSL For Callback Select to use SSL for the callback.

Address This field is automatically populated when the WSDL is concrete
and it has at least one binding that is direct.

Provider URL This field is automatically populated when the WSDL is concrete
and it has at least one binding that is direct.

Use local JNDI Provider Select to use the local JNDI provider.

copy wsdl and its
dependent artifacts into the
project

Deselect this check box. If you select this check box, the local
copies of the WSDL file may result in synchronization issues if a
remote WSDL is updated.

When complete, the Create Direct Binding dialog appears as shown in Figure 38-4.

Chapter 38
Invoking a SOA Composite Application in Oracle JDeveloper with the Invocation API

38-9

Figure 38-4 Create Direct Binding Dialog

5. Click OK.

The direct binding service displays in the SOA Composite Editor shown in
Figure 38-5. The single arrow in a circle indicates that this is a synchronous, one-
way, direct binding component.

Figure 38-5 Direct Binding Service

38.4.2 How to Create an Outbound Direct Binding Reference
You can create an outbound direct binding reference using the Direct icon in the
Components window in Oracle JDeveloper to either invoke a SOA composite
application or an Oracle Service Bus.

Chapter 38
Invoking a SOA Composite Application in Oracle JDeveloper with the Invocation API

38-10

Note:

When Oracle SOA Suite and Oracle Service Bus are in different domains, you must
enable trust between the domains.

To create an outbound direct binding reference:

1. Open Oracle JDeveloper.

2. From the Components window, select SOA.

3. From the Technology list, drag the Direct icon into the External References swimlane.
The Create Direct Binding dialog appears.

4. Enter the details shown in Table 38-2.

Table 38-2 Create Direct Binding Dialog Fields and Values

Field Value

Name Enter a name.

Type Select Reference from the list.

Reference Target Select the reference target on which you want the direct binding
service to operate:

• Oracle SOA Composite: Creates a direct binding with a SOA
composite application as a reference target.

• Oracle Service Bus: Creates a direct binding with an Oracle
Service Bus as a reference target.

WSDL URL The URL location of the WSDL file. If you have an existing WSDL,
then click the Find Existing WSDLs option.

Port Type The port type of the WSDL file. You must select a port from the list.

Callback Port Type The callback port type for asynchronous processes.

Use SSL For Callback Select to use SSL for the callback.

Address This field is automatically populated when you select a concrete
WSDL URL and port type. However, you must manually populate
this field if a nonconcrete WSDL is provided.

Provider URL This field is automatically populated when you select a concrete
WSDL URL and port type. However, you must manually populate
this field if a nonconcrete WSDL is provided.

Use local JNDI Provider Select to use the local JNDI provider.

copy wsdl and its
dependent artifacts into the
project

Deselect this check box. If you select this check box, the local
copies of the WSDL file may result in synchronization issues if a
remote WSDL is updated.

When complete, the Create Direct Binding dialog appears as shown in Figure 38-6. For
more information about using the Oracle SOA Suite services with Oracle Service Bus,
see Chapter "Oracle SOA Suite Transport (SOA-DIRECT)" of Developing Services with
Oracle Service Bus.

Chapter 38
Invoking a SOA Composite Application in Oracle JDeveloper with the Invocation API

38-11

Figure 38-6 Create Direct Binding Dialog

5. Click OK.

The direct binding reference displays in the designer shown in Figure 38-7. The
single arrow in a circle indicates that this is a synchronous, one-way direct binding
reference component.

Figure 38-7 Direct Binding Reference

Chapter 38
Invoking a SOA Composite Application in Oracle JDeveloper with the Invocation API

38-12

38.4.3 How to Set an Identity for J2SE Clients Invoking Direct Binding
A user identity can be established when authenticating to the server during the process of
JNDI lookup by passing the JNDI security credential, as shown in the following example:

public static void main(String[] args) throws Exception {
 String operation = "process";

 // This is the request message XML
 String ns = "http://xmlns.oracle.com/DirectBinding_jws/EchoBPEL/BPELProcess1";
 String payloadXML = "<ns1:process xmlns:ns1=\"" + ns + "\">\n" +
 " <ns1:input>wew</ns1:input>\n" +
 "</ns1:process>";

 String serviceAddress = "soadirect:/default/EchoBPEL!1.0/DService1";

 // Specify the direct binding connection properties
 Map<String, Object> props = new HashMap<String, Object>();
 props.put(Context.INITIAL_CONTEXT_FACTORY,
"weblogic.jndi.WLInitialContextFactory");
 props.put(Context.PROVIDER_URL, "t3://" + hostname + ':' + portname);
 props.put(Context.SECURITY_PRINCIPAL,username);
 props.put(Context.SECURITY_CREDENTIALS, password);

 // Create the direct binding connection, using those context properties
 DirectConnectionFactory factory = JNDIDirectConnectionFactory.newInstance();

 try {
 DirectConnection dc = factory.createConnection(serviceAddress, props);

 // Parse the XML request message
 DocumentBuilderFactory dbf = DocumentBuilderFactory.newInstance();
 Document doc =
 dbf.newDocumentBuilder().parse(new InputSource(new
StringReader(payloadXML)));

 // Prepare the payload for inclusion in the Message object
 Map<String, Element> payload = new HashMap<String, Element>();
 payload.put("payload", doc.getDocumentElement());

 Message<Element> request =
XMLMessageFactory.getInstance().createMessage(payload);

 Message<Element> response = dc.request(operation, request);
 } finally {
 dc.close();
 }
}

38.4.4 What You May Need to Know About Invoking SOA Composites on
Hosts with the Same Server and Domain Names

If one SOA composite application invokes another SOA composite application on another
host through direct binding, and both composites are on hosts with the same server name
and domain name, the invocation fails.

Chapter 38
Invoking a SOA Composite Application in Oracle JDeveloper with the Invocation API

38-13

This is because the Oracle WebLogic Server transaction subsystem requires the
domain names and server names to be different for transaction management to work
properly. The transaction subsystem uses these names to track the location of a server
related to a transaction. If the two servers in the invocation have the same name, the
transaction subsystem can mistakenly confuse the two servers.

Ensure that you use hosts with separate server names and domain names.

38.5 Samples Using the Direct Binding Invocation API
This section provides some examples of how the API is used. It describes how the
connection parameter can invoke SOA composite applications over direct binding and
how message objects can be modified to invoke a direct binding invocation.

// The JNDIDirectConnectionFactory can be used to establish SOA instance
// connections for exchanging messages over the direct binding.
DirectConnectionFactory dcFactory = JNDIDirectConnectionFactory.newInstance();

// Connections are created based on the configuration, which is a map of standard
// naming properties, which will be used for the underlying connection lookup.
Map<String, Object> properties = new HashMap<String, Object>();
properties.put(Context.INITIAL_CONTEXT_FACTORY, jndi.WLInitialContextFactory");
properties.put(Context.PROVIDER_URL, "t3://HOST:PORT");
properties.put(Context.SECURITY_PRINCIPAL, USERNAME);
properties.put(Context.SECURITY_CREDENTIALS, PASSWORD);
DirectConnection conn =
 dcFactory.createConnection("soadirect:/default/MyComposite!1.0/MyService",
 properties);

// Messages are created using the MessageFactory
// Message objects are subsequently modified to be used for an invocation.
Message<Element> request = XMLMessageFactory.getInstance().createMessage();

// Define a Map of WSDL part names to matching XML Element objects
Map<String, Element> partData;

Payload<Element> payload = PayloadFactory.createXMLPayload(partData);
request.setPayload(payload);

// One-way invocation
conn.post("onewayoperation", request);

// Request-reply invocation
Message<Element> response = conn.request("requestreplyoperation", request);

Hashtable jndiProps = new Hashtable();
jndiProps.put(Context.PROVIDER_URL, "t3://" + HOST + ':' + PORT);
jndiProps.put(Context.INITIAL_CONTEXT_FACTORY,
 "weblogic.jndi.WLInitialContextFactory");
jndiProps.put(Context.SECURITY_PRINCIPAL,USERNAME);
jndiProps.put(Context.SECURITY_CREDENTIALS, PASSWORD);
Locator locator = LocatorFactory.createLocator(jndiProps);
CompositeDN compositedn = new CompositeDN(domainName, compositename, version);
String serviceName = "HelloEntry";
DirectConnection conn = locator.createDirectConnection(compositedn, serviceName);

Chapter 38
Samples Using the Direct Binding Invocation API

38-14

Part VII
Sharing Functionality Across Service
Components

This part describes functionality that can be used by multiple service components.

This part contains the following chapters:

• Oracle SOA Suite Templates and Reusable Subprocesses

• Creating Transformations with the XSLT Map Editor

• Creating Transformations with the XQuery Mapper

• Using Business Events and the Event Delivery Network

• Working with Cross References

• Working with Domain Value Maps

• Using with Domain Value Maps

39
Oracle SOA Suite Templates and Reusable
Subprocesses

This chapter describes how to create and use Oracle SOA Suite templates in SOA projects,
service components, and BPEL scope activities and how to create and reuse standalone and
inline BPEL subprocesses within other processes.
This chapter includes the following sections:

• Introduction to Oracle SOA Suite Templates

• Introduction to Standalone and Inline BPEL Subprocess Invocations

• Differences Between Oracle SOA Suite Templates and Reusable Subprocesses

• Creating Oracle SOA Suite Templates

• Creating Standalone and Inline BPEL Subprocesses in a BPEL Process

39.1 Introduction to Oracle SOA Suite Templates
A template is a reusable part of an Oracle SOA Suite project that you can use to create new
projects. There are three types of templates, as described in Table 39-1.

Table 39-1 Template Types

Template Type Description

SOA project A complete SOA project packaged and used to start new projects. You
can create new SOA composite applications using this template.

Service component A service component, such as a BPEL 2.0 process (including
sensors) packaged for import into other projects. All dependent
components and wires are also packaged. It appears as a custom
service component in the SOA composite application's Components
window.

Custom BPEL scope activity A scope activity of a BPEL process packaged as a custom activity in
the Components window and ready for import into other BPEL
projects. This custom activity can potentially surface in the BPEL
activity palette of the Components window.

Oracle SOA Suite templates provide the following benefits:

• Share common code (subpart of a process or a scope) between applications,
composites, and processes. You create once, then share with others. The template can
be reused multiple times.

• Store and reuse templates from the Oracle Metadata Services Repository (MDS
Repository).

• Fully editable upon consumption.

• Automatically discover templates in Oracle JDeveloper. Once the template is saved, it is
displayed in the Components window.

39-1

• No inheritance, meaning that future changes to source templates are not visible to
applications. If you make changes to the source template, a current user of the
template does not see the change.

• Custom icons are provided for component scope templates.

• No versioning in templates. To differentiate between versions, you specify the
version number in the template name.

• Support for templates in both the BPEL versions 1.1 and 2.0.

Changes made to a specific template are not propagated to projects previously
created using this template. This functionality is achievable through layered
customization.

A new annotation is added to the composites/BPEL processes to identify the
relationship to a template.

For information about using templates, see Creating and Using a SOA Project
Template, Creating and Using a Service Component Template, and Creating and
Using a BPEL Scope Activity Template.

39.2 Introduction to Standalone and Inline BPEL
Subprocess Invocations

BPEL provides limited support for modularizing business process logic for reusability.
The only method is to package reusable process logic as completely separate
processes, which are utilized by the parent process (the process utilizing the reusable
process logic) in a method identical to using a web service (through the invoke
activity).

To address this challenge, Oracle SOA Suite provides a subprocess extension to
BPEL. A subprocess is a fragment of BPEL code that can be reused within a particular
processor by separate processes. The subprocess extension provides the following
benefits:

• BPEL process code reusability, which reduces the need to create the same
activities multiple times to perform the same tasks.

• Code modularity.

• Code maintenance (changes are propagated, which eliminates the need to
implement updates in multiple places every time a change is necessary).

• Less overhead than invoke activities.

• Memory footprint reduction, which can be considerable in a complex process.

Chapter 39
Introduction to Standalone and Inline BPEL Subprocess Invocations

39-2

Note:

• Subprocesses are only supported with BPEL version 2.0. There is no support
with BPEL version 1.1.

• Correlation sets are not supported in subprocesses. If you create a correlation
set in an inline or standalone subprocess, it fails during runtime.

• Subprocesses cannot be shared between multiple composites.

• Monitor view is not supported from inside a subprocess. Monitor view is
accessible from a BPEL process by selecting the Change to Monitor view icon
above Oracle BPEL Designer.

Oracle SOA Suite provides support for two types of subprocesses, as described in
Table 39-2.

Table 39-2 Subprocess Types

Standalone Subprocess Inline Subprocess

• A BPEL call activity invokes the subprocess. • A BPEL call activity invokes the subprocess.

• Supports subprocesses in the same
composite only.

• Part of the parent BPEL process code and not
visible in the composite view.

• Visible in the Components window. • Visible in the Components window.

• Does not have an interface and can only be
called from another BPEL process. It can
include partner links.

• Subprocess code is re-entrant and reusable
at runtime:. Only one copy is stored in
memory, even if called many times.

• A fragment of a BPEL process that includes a
number of activities that are reused across
other BPEL processes.

• For groups of activities that are reused within
one BPEL process.

• In the composite view, the wire to a
subprocess is shown as a dotted line to
indicate that this is not a wire between actual
components.

• Can either define parameters to set or can
use the process parameters.

Not Applicable. • Activities must be in a scope activity to be
converted into a subprocess.

For information about creating a standalone
subprocess, see How to Create a Standalone
BPEL Subprocess.

For information about creating an inline
subprocess, see How to Create an Inline
Subprocess.

39.2.1 Introduction to a Standalone Subprocess
A standalone subprocess is defined, as shown in the following example, in a file with the
extension .sbpel (subprocess BPEL extension).

<!-- A subprocess is defined in a SBPEL file, containing a bpelx:subProcess
 ! document
 ! The bpelx:subProcess is similar to a standard bpel:process, with
 ! differences asnoted below.
-->

<bpelx:subProcess name="NCName" targetNamespace="anyURI"
 xmlns="http://docs.oasis-open.org/wsbpel/2.0/process/executable"

Chapter 39
Introduction to Standalone and Inline BPEL Subprocess Invocations

39-3

 xmlns:bpelx="http://schemas.oracle.com/bpel/extension" ...>

 <!-- Partner links and variables serve as sub-process arguments -->
 <partnerLinks>?
 <partnerLink name="NCName" partnerLinkType="QName" myRole="NCName"?
 partnerRole="NCName"?
 bpelx:argumentRequired=["yes"|"no"]? />
 <partnerLinks>
 <variables>?
 <variable name="BPELVariableName" messageType="QName"? type="QName"?
 element="QName"?
 bpelx:argumentRequired=["yes"|"no"]?>
 from-spec?
 </variable>
 </variables>

 <!-- Standard process definition here, except no <receive> or <pick> with -->
 <!-- createInstance="yes" -->
 /activity/
</bpelx:subProcess>

The <subProcess> element is an extension of the WS-BPEL 2.0 language. The
<subProcess> element is the root element for a subprocess definition. The namespace
for this element is as follows:

http://schemas.oracle.com/bpel/extension

The <subProcess> activity must be embedded in an <extensionActivity>, as
specified in section 10.9 of the Web Services Business Process Execution Language
Specification Version 2.0.

A subprocess is of type tProcess, as defined in the following WS-BPEL target
namespace:

http://docs.oasis-open.org/wsbpel/2.0/process/executable

It differs from tProcess in the following ways:

• Variables and partner links immediately under the <subProcess> element can
serve as arguments for the subprocess. Required arguments are marked by
setting the attribute argumentRequired to yes (the default value is no). The
subprocess's required arguments are the minimum set of arguments the caller
must pass to it.

• A variable defined with an inline from-spec initializer serves as an optional
argument with a default value. If the caller passes this argument, the caller-
supplied value for the argument overrides the default value.

• Validation reports an error if a variable is referenced prior to setting the value if it is
not a required argument.

• The first activity in the subprocess cannot be a receive or pick activity with
createInstance set to yes. This is because no instance of a given subprocess
type is created; the subprocess is logically part of an existing process instance.

The subprocess /@name attribute defines the name of the subprocess that is unique
within the composite in which it is deployed.

The subprocess is self-contained. That is, all the variable and partner link references
in the process snippet resolve to local definitions or arguments. This contrasts with the

Chapter 39
Introduction to Standalone and Inline BPEL Subprocess Invocations

39-4

<inlineSubProcess> element, which allows unresolved references to variables and partner
links that are in-scope at the call activity.

In a typical scenario, more than one variable is exchanged between the parent and a
subprocess. If they are large documents, copying them is expensive. Because of this,
passing by reference is an option.

A subprocess can converse with partners synchronously (InOut) or asynchronously (InOnly).
The partner link for these interactions can be passed as an argument from a parent process
or configured within the subprocess. For asynchronous requests, the conversation ID for WS-
Addressing/normalized messages is set with the parent process instance ID. This enables
routing of callback messages to the correct process instance.

Subprocesses in a SOA composite application are enumerated in the composite.xml file. The
component element definition associates a subprocess's name with the sbpel file in which it
is defined. During deployment, the subprocess components are delegated to the BPEL
process service engine. The BPEL process service engine validates the process definition
and builds a map with the subprocess target name as the key and the subprocess definition
as the value. At most, only one instance of a subprocess exists in the service engine
independent of consumer count. For optimizing memory, it may lazily load the process or
unload the process if it is not actively used.

For information about creating a standalone subprocess, see How to Create a Standalone
BPEL Subprocess.

39.2.2 Introduction to an Inline Subprocess
An inline subprocess can be defined as part of a BPEL 2.0 process at the <process> level.
The syntax is shown in the following example:

<process name="NCName" targetNamespace="anyURI"
 xmlns="http://docs.oasis-open.org/wsbpel/2.0/process/executable" ...>
 <!--
 ! All sub-process definitions must appear prior to the WS-BPEL artifacts of
 ! the process definition.
 -->

 <!-- Inline sub-process definition at process scope -->
 <bpelx:inlineSubProcess xmlns:bpelx="http://schemas.oracle.com/bpel/extension"
 name="NCName">*
 ...
 <!-- Partner links and variables serve as sub-process arguments -->
 <partnerLinks>?
 <partnerLink name="NCName" partnerLinkType="QName" myRole="NCName"?
 partnerRole="NCName"?
 bpelx:argumentRequired=["yes"|"no"]? />+
 <partnerLinks>
 ...
 <variables>?
 <variable name="BPELVariableName" messageType="QName"? type="QName"?
 element="QName"?
 bpelx:argumentRequired=["yes"|"no"]?>+
 from-spec?
 </variable>
 </variables>
 ...
 <!--
 ! Standard process activity graph here, except that no <receive> or <pick>
 ! activities with createInstance = "yes" are allowed.

Chapter 39
Introduction to Standalone and Inline BPEL Subprocess Invocations

39-5

 -->
 activity
 </bpelx:inlineSubprocess>

 <!--
 ! BPEL code stripped for brevity
 -->
</process>

When a BPEL process instance is first created, all subprocess references are
resolved. When the process executes a particular call activity, it uses the subprocess
resolved at instance creation time. Therefore, two different instances of the same
process may use different versions of subprocesses referenced if, for example, the
default composite revision for a subprocess changes.

When the BPEL process instance executes the call activity, it is executed within the
process's execution space, sharing its state. The call activity transfers control to the
subprocess, at which time the subprocess scope is initialized with the argument
variables:

• Each parameter is copied (by reference or value, as specified) from the call activity
to the subprocess's scope.

• Optional parameters (those with default values) that are not referred to in the call
activity's parameter list are initialized with their default values.

• All required parameters must be supplied by the call activity.

• All values supplied by the call activity's parameters must be type-compatible with
the corresponding variable (or partner link) defined in the subprocess.

• Each variable (or partner link) in the subprocess can be set only once in a call
activity's parameter list.

On completion of the subprocess, control is returned to the parent process. In the
normal case, execution continues with the next activity after the call activity. In the
case of abnormal subprocess completion, the parent process evolves the process
according to the standard life cycle rules of WS-BPEL.

From the monitoring and management view, there is no new process instance for the
subprocess created. It is represented by a call activity in the parent process instance.
Expanding the activity (navigate) shows subprocess execution details.

To minimize linking errors during runtime, upon deployment of the process and
subprocess, references are resolved. Parameter lists are validated as a
postdeployment activity. Preprocessing for creating a new process instance validates
all subprocess references in the process. If any reference is not resolved, the instance
is not created. Instead, an error message is returned, meaning essentially the
following:

HTTP Status Code 503, "service not available

Upon a linking error, if the service consumer is waiting, an error message is sent to the
consumer that is inline with exit activity handling. Otherwise, the instance is
suspended with the reason set as linkage error. If a suitable subprocess is deployed
and the reference is resolvable, suspended instances can then be recovered and
resume normal execution by automatic recovery.

For information about creating an inline subprocess, see How to Create an Inline
Subprocess.

Chapter 39
Introduction to Standalone and Inline BPEL Subprocess Invocations

39-6

39.3 Differences Between Oracle SOA Suite Templates and
Reusable Subprocesses

When determining whether templates or reusable subprocesses are the best solution for your
business use case, it is important to understand the differences:

• Templates

A template is a customizable, skeletal project, service component, or scope activity. You
can drag and drop a template into a SOA composite application or a BPEL process and
make additional changes. You essentially are copying and pasting a template. For
example, if there are 50 lines of code in a template and you copy it twice to use, the code
increases by 100 lines.

• Reusable subprocesses

A subprocess is a BPEL code snippet intended for a specific purpose. A subprocess that
is defined earlier can be called and used as it is. An inline subprocess of 50 lines can be
called twice and the parent process code remains at 50 lines, and not 100. Subprocesses
perform better and have a smaller memory foot print than templates.

39.4 Creating Oracle SOA Suite Templates
You can create the following types of templates:

• SOA project

• Service component

• Custom BPEL scope activity

For conceptual information about templates, see Introduction to Templates and Differences
Between Oracle SOA Suite Templates and Reusable Subprocesses.

39.4.1 Creating and Using a SOA Project Template
This section describes how to create and use a SOA project as a template.

Note:

Use of templates is not supported in the Oracle JDeveloper Customization role.

39.4.1.1 How To Create a SOA Project Template

To create a SOA project template:

1. Open a SOA composite application.

2. In the Applications window, right-click either of the following:

• The composite_name

• The project name

Chapter 39
Differences Between Oracle SOA Suite Templates and Reusable Subprocesses

39-7

3. Select Create SOA Template.

This invokes the Create SOA Template wizard. Default names and the location for
saving the template based on the composite name are automatically included.
Figure 39-1 provides details.

Figure 39-1 Create SOA Template Wizard - Specify Template Information
Page

4. Change the default values and enter a description, as necessary, and click Next.
The Browse icon for the Save in field enables you to save the template in the file
system or the Oracle SOA Suite design time section of the MDS Repository.

The Create SOA Template Wizard - Files to Bundle page is displayed. Figure 39-2
provides details. This page shows all the files packaged as part of this template.

You can also manually select measurements (business indicators) and test suites
to include. If your composite includes domain value maps (DVMs) (for example, a
DVM function is referenced in a BPEL scope activity), they are also included in the
template.

For information about business indicators, see Configuring BPEL Process
Analytics. For information about test suites, see Introduction to the Composite Test
Framework.

Chapter 39
Creating Oracle SOA Suite Templates

39-8

Figure 39-2 Create SOA Template Wizard - Files to Bundle Page

5. View the files to package and select additional files, and click Finish.

6. Click OK when prompted to acknowledge that the template was successfully created.

39.4.1.2 How to Use a Composite Template in Another SOA Composite
This section describes how to use the composite template created in How To Create a SOA
Project Template in another SOA composite application.

To use a composite template in another SOA composite

1. Create a new SOA composite application in Oracle JDeveloper.

2. On the Create SOA Application wizard - Configure SOA Settings page, select SOA
Template. Figure 39-3 provides details.

Chapter 39
Creating Oracle SOA Suite Templates

39-9

Figure 39-3 Custom Template Selection

The list of available templates is displayed. Figure 39-4 provides details.

Figure 39-4 SOA Templates Available for Selection

3. Select a template from the list, or click Add to select additional templates.

4. Click Finish.

Chapter 39
Creating Oracle SOA Suite Templates

39-10

The SOA Composite Editor is displayed with the custom template. The files of the
template are displayed in the Applications window.

You can rename components as necessary, such as renaming the binding components
and process names.

5. Right-click and select Rename.

39.4.2 Creating and Using a Service Component Template
This section describes how to create and use a service component template.

39.4.2.1 How to Create a Service Component Template

To create a service component template:

1. From the Oracle JDeveloper main menu, select File > New.

2. Select SOA Project, and click OK.

3. Enter a project name, and click Next.

4. Select a BPEL project, and click Finish.

5. Design a SOA composite application.

6. In the SOA Composite Editor, right-click the service component from which to create a
template.

7. Select Create Component Template.

This launches the Create Component Template wizard.

8. Provide appropriate responses, including optionally selecting an icon for the partner link,
and click Next. Figure 39-5 provides details.

Chapter 39
Creating Oracle SOA Suite Templates

39-11

Figure 39-5 Create Component Template Wizard - Specify Template
Information Page

The Create Component Template wizard - Files to Bundle Page is displayed.

9. View the files packaged and select additional files (such as adapters and
measurements), as required, and click Finish.

10. Click OK when prompted to acknowledge that the template was successfully
created.

The service component template is added to the Component Templates section
of the Components window. Figure 39-6 provides details.

Chapter 39
Creating Oracle SOA Suite Templates

39-12

Figure 39-6 Service Component Template in Component Templates Section of
Components Window

39.4.2.2 How to Use a Service Component Template in Another SOA Composite
This section describes how to use the packaged service component template created in How
to Create a Service Component Template in another SOA composite application.

To use a service component template in another SOA composite:

1. Create an empty SOA composite application in Oracle JDeveloper.

2. In the SOA Composite Editor, select SOA Templates from the SOA list. Figure 39-7
provides details.

Figure 39-7 SOA Templates Option in SOA Menu

3. Drag the service component template into the SOA Composite Editor.

This invokes the Create SOA Component from Component Template dialog, as shown in
Figure 39-8. This dialog shows the template name, description, and files included in the
template.

Chapter 39
Creating Oracle SOA Suite Templates

39-13

Figure 39-8 Create SOA Component from Component Template Dialog

4. Click OK.

The service component template is displayed in the SOA composite application.

5. View the Applications window and note that files such as schemas and WSDLs
are displayed in the SOA composite application.

6. If you attempt to apply the service component template a second time to the same
SOA composite application, the Create SOA Component from Component
Template dialog is displayed and indicates that there is a conflict because schema
and BPEL files are already in the composite. Figure 39-9 provides details.

Chapter 39
Creating Oracle SOA Suite Templates

39-14

Figure 39-9 Create SOA Component from Component Template Dialog

7. Click Next.

8. In the Resolve Conflicts page, select to skip or overwrite all files or specific files that are
in conflict. Figure 39-10 provides details.

Figure 39-10 File Names in Conflict

9. When complete, click Finish.

Chapter 39
Creating Oracle SOA Suite Templates

39-15

39.4.3 Creating and Using a BPEL Scope Activity Template
This section describes how to create and use a BPEL scope activity template.

39.4.3.1 How to Create a BPEL Scope Activity Template

To create a BPEL scope activity template:

1. In Oracle BPEL Designer, drag a scope activity into a BPEL process.

2. Design the contents of the scope activity to include activities, event handlers, and
catch and catch all branches that include fault variables, as necessary.

3. Create a template from the scope.

a. Right-click the scope and select Create Custom Activity Template.

or

a. Expand the scope and select Create Custom Activity Template, as shown in
Figure 39-11.

Figure 39-11 Scope Template Creation

The Create Custom Activity Template wizard - Specify Template Information page
is displayed, as shown in Figure 39-12.

Chapter 39
Creating Oracle SOA Suite Templates

39-16

Figure 39-12 Create Custom Activity Template Wizard - Specify Template
Information Page

4. Specify details, and click Next.

The Create Custom Activity Template wizard - Variables page is displayed. Figure 39-13
provides details. This page is displayed if variables are used in the scope. This page is
not displayed if you have an empty scope or a scope that does not use variables.

Figure 39-13 Create Custom Activity Template Wizard - Variable Page

Chapter 39
Creating Oracle SOA Suite Templates

39-17

5. Select to convert your variables to local variables. This conversion is not
recommended if this variable is used outside of the scope activity in receive and
reply activities. If the variables are used only inside this scope, the check boxes
are selected by default.

6. Enter an optional description of the variables, and click Next.

The Create Custom Activity Template wizard - Files to Bundle page is displayed as
shown previously in Figure 39-2. This page shows all the files packaged as part of
this template. You can also manually select test suites to include.

7. Select files, and click Finish.

39.4.3.2 How to Use a BPEL Scope Activity Template in Another BPEL Process
This section describes how to use a BPEL scope activity template in another BPEL
process.

To use a BPEL scope activity template in another BPEL process

1. Create a new or open an existing BPEL process.

2. From the Custom Activity Templates section in the Components window, drag
the scope activity template created in How to Create a BPEL Scope Activity
Template into the BPEL process. Figure 39-14 provides details.

Note:

Only scope activity templates that are compatible with the BPEL service
component version are available. For example, if this is a BPEL 2.0
service component, only scope activity templates for BPEL 2.0 are
available for selection. No BPEL version 1.1 scope activity templates are
displayed.

Figure 39-14 Scope Activity Template

Any error handling you designed such as catch and catch all activities and any
scope variables you created are also copied into the BPEL process.

The Create Custom Activity from Template page is displayed, as shown in
Figure 39-15.

Chapter 39
Creating Oracle SOA Suite Templates

39-18

Figure 39-15 Create Custom Activity from Template Wizard

3. Click Next.

If there are conflicts, the Create Custom Activity from Template wizard - Resolve Conflicts
page is displayed, as shown in Figure 39-16.

Figure 39-16 Create Custom Activity from Template Wizard - Resolve Conflicts
Page

Chapter 39
Creating Oracle SOA Suite Templates

39-19

4. Select to skip all or individual file conflicts, and click Next.

The Create Custom Activity from Template wizard - Variables page is displayed, as
shown in Figure 39-17.

If you selected to convert your variables to local variables on the Create Custom
Activity Template Wizard - Variable Page in Step 5 of How to Create a BPEL
Scope Activity Template, they do not require special processing and are not
displayed on this page. Only variables that were not converted to local variables
are displayed on the Create Custom Activity from Template wizard - Variable
Bindings page.

Figure 39-17 Create Custom Activity from Template wizard - Variable
Bindings Page

5. If the template and the project both include this variable, you can choose to reuse
the variable or bind to a new variable from the list in the BPEL Variable column.

a. If you selected to bind to a new variable, enter a name and select whether to
create the variable locally for the template scope or globally for the BPEL
process, then click OK. Figure 39-18 provides details.

Figure 39-18 Bind to New Variable Dialog

Chapter 39
Creating Oracle SOA Suite Templates

39-20

If you drop an activity template inside of Scope A that is inside of Scope B, then
Scope A and Scope B also are in the list. This enables you to select among all
locations where variables can be declared.

6. Click Next.

7. If a scope uses partner links, the Create Custom Activity Template Wizard - Partner Links
Page is displayed.

8. Click Finish.

39.4.4 Managing Templates
You can manage all available template types from the Preferences dialog.

To manage templates:

1. From the Oracle JDeveloper main menu, select Tools > Preferences > SOA >
Templates.

The Preference dialog is displayed, as shown in Figure 39-19.

Figure 39-19 SOA Template Preferences

Templates can be stored in two locations:

• Folders: Templates are stored in the file system.

• SOA-MDS: Templates are stored in the MDS Repository and can be shared.

2. Right-click a folder to display a list of management tasks, as shown in Figure 39-20.

Chapter 39
Creating Oracle SOA Suite Templates

39-21

Figure 39-20 Management Tasks

Table 39-3 describes the management tasks you can perform.

Table 39-3 Template Management Tasks

Element Description

Browse Browses for a specific template name.

The Browse option uses Windows Explorer on Windows or the file
browser on Linux for the storage folder. Templates are stored as
files, so you may want to operate with them as with files (that is,
upload with FTP, send by email, copy to another folder to back up,
and so on).

Refresh Refreshes the list of templates.

Add Storage Adds existing templates to the Preferences - SOA Templates dialog.

Remove Deletes the folder and its templates only from the Preferences - SOA
Templates dialog. The templates are not physically deleted from the
file system or MDS Repository. You can add them to this dialog
again by selecting Add Storage or clicking the Add icon. The
template context menu contains a Delete option that physically
deletes a template.

All Templates Displays all templates.

Project Templates Displays only SOA project templates.

Component
Templates

Displays only service component templates.

Activity Templates Displays only BPEL scope activity templates.

3. If you want to import a template to the jdeveloper/integration/templates
directory, select File > Import > SOA Template. The file can then be added to the
Preferences dialog by clicking the Add icon or right-clicking a folder and selecting
Add Storage.

Chapter 39
Creating Oracle SOA Suite Templates

39-22

39.5 Creating Standalone and Inline BPEL Subprocesses in a
BPEL Process

You can create standalone subprocesses in a SOA composite and inline BPEL subprocesses
in a BPEL process. A subprocess is a fragment of BPEL code that can be reused within a
particular processor by separate processes.

For conceptual information about subprocesses, see Introduction to Standalone and Inline
BPEL Subprocess Invocations and Differences Between Oracle SOA Suite Templates and
Reusable Subprocesses.

Note:

• There is no restriction on one BPEL subprocess calling itself recursively. You
must determine if you want to recursively call the same BPEL subprocess and
the number of times the subprocess calls occur.

• You can create and successfully deploy a SOA composite application that
contains only a standalone subprocess. For example, create a SOA composite
application and add a standalone subprocess in which you define two
parameters for the subprocess and define an assign activity in the subprocess
to swap the values of both parameters. However, while a SOA composite
application that contains only a standalone subprocess and no other
components can be deployed, it has no practical purpose.

• A standalone subprocess cannot be shared in the MDS Repository. However, a
BPEL process with call activities for calling the subprocess can be shared in the
MDS Repository

39.5.1 How to Create a Standalone BPEL Subprocess
This section provides an example of how to create a simple application that uses a
standalone subprocess.

Note:

A standalone subprocess can include an inline subprocess.

To create a standalone BPEL subprocess:

1. Create a SOA composite application that includes a BPEL 2.0 process. For this example,
a synchronous BPEL 2.0 process is created.

2. Design a BPEL 2.0 process. For this example, the following process is designed:

• A variable of type string is created (for this example, named variable1) to pass in as
a parameter.

• An assign activity is created in which the client input string is mapped to variable1.

Chapter 39
Creating Standalone and Inline BPEL Subprocesses in a BPEL Process

39-23

Figure 39-21 shows the BPEL process design.

Figure 39-21 BPEL 2.0 Process Design

3. Click the composite_name link above Oracle BPEL Designer to access the SOA
Composite Editor.

4. Right-click inside the SOA Composite Editor, and select Insert > Subprocess or
drag a Subprocess icon from Components window into the composite.

The Create Subprocess dialog is displayed.

5. Enter appropriate values or accept the default values, and click OK to create the
standalone subprocess. Figure 39-22 provides details. For this example, the
subprocess name provided is Subprocess1.

Figure 39-22 Create Subprocess Dialog

6. Right-click the subprocess in the SOA Composite Editor, and select Edit.

7. Create a variable of type string in the subprocess (for this example, the variable is
named p1), and click OK,

You now design simple process logic in the standalone subprocess.

Chapter 39
Creating Standalone and Inline BPEL Subprocesses in a BPEL Process

39-24

8. From the Components window, drag an Assign activity into the process.

9. In the Target section of the Copy Rules tab of the assign activity, drag the Expression
Builder icon onto the p1 variable.

10. Create a concat expression to read the value out of the parameter in the subprocess and
update variable p1 with that value.

concat($p1,",from subprocess")
11. Save the composite or select Save All, and exit the BPEL 2.0 process.

12. In the SOA Composite Editor, right-click the BPEL process and select Edit.

13. From the Oracle Extensions subsection, drag a call activity below the assign activity in
Oracle BPEL Designer.

14. Right-click the call activity and select Edit.

This invokes the Edit Call dialog. Note that variable p1 is displayed in the Name column
after the selected Subprocess1.

15. Click inside the Value column to invoke the Variable Chooser dialog.

16. Select variable1, and click OK. This maps variable p1 from the standalone subprocess
to variable variable1 of the initial BPEL 2.0 process that you created.

17. Leave the Copy By Value check box deselected.

Leaving this check box deselected copies the variable by reference. Only variables or
partner links are accepted for variables, not XPath function queries. Copy by reference
supports both input and output variables. Copy by value supports only input values.

18. From the Components window, drag a second Assign activity below the call activity.

19. In the Copy Rules tab of the assign activity, update the output message with variable1,
and click OK. Figure 39-23 provides details.

Figure 39-23 Edit Assign Dialog

Chapter 39
Creating Standalone and Inline BPEL Subprocesses in a BPEL Process

39-25

Figure 39-24 shows the BPEL 2.0 process with the subprocess. In this BPEL 2.0
process, the following logic is designed:

• The string value in the input message in Assign1 is taken and assigned to
variable1 in the call activity, to be passed by reference.

• assign2 takes variable1 and creates the response. The variable1 value is
updated by the subprocess.

Figure 39-24 BPEL 2.0 Process

20. Go to the SOA Composite Editor and note that the BPEL subprocess is now
connected to the BPEL 2.0 process because of the call activity.

You are now ready to deploy the SOA composite application and create a
business flow instance in Oracle Enterprise Manager Fusion Middleware Control.

When you access the audit trail for the created business flow instance in Oracle
Enterprise Manager Fusion Middleware Control, note that the call activity and its
contents are displayed.

For more information about standalone BPEL subprocesses, see Section "Using
Templates and Standalone Subprocesses to Update the Order Status in the
Database" of Understanding Oracle SOA Suite.

39.5.2 How to Create an Inline Subprocess
An inline subprocess is similar to a standalone subprocess, except that the inline
subprocess is embedded in the parent process. For example, you may have a BPEL
2.0 process that includes assign and invoke activities within a scope activity that
update the status of a customer order. You may have a business need for repeating

Chapter 39
Creating Standalone and Inline BPEL Subprocesses in a BPEL Process

39-26

these same activities later in the same process. One method is to physically repeat the same
assign and invoke activities of the scope activity later in the process, but this can be error
prone. In addition, every time a change is necessary, it must be implemented in both scopes.
As an alternative to repeating the activities, you can use an inline subprocess.

Note:

Creating an inline subprocess within an existing inline subprocess is not supported.

To create an inline subprocess:

1. Go to the scope activity in the BPEL 2.0 process that includes the assign and invoke
activities that update the status of a customer order.

Note:

Inline subprocesses can also be created in a BPEL process by selecting Inline
Subprocesses from the Property Structure menu above Oracle BPEL
Designer, selecting the Inline Subprocesses folder, and clicking Add.

2. Collapse the scope activity. Figure 39-25 provides details.

Figure 39-25 Scope Activity

3. Right-click the scope activity, and select Convert to a Subprocess.

The Create Inline Subprocess dialog is displayed, as shown in Figure 39-26.

Chapter 39
Creating Standalone and Inline BPEL Subprocesses in a BPEL Process

39-27

Figure 39-26 Create Inline Subprocess Dialog

4. Enter values appropriate to your environment, then click OK.

Table 39-4 Create Inline Subprocess Dialog

Element Description

Name Enter a name or accept the default value, which defaults to the
scope name.

Replace scope with
subprocess call

Select to automatically replace the scope with a BPEL call activity
(the default selection). If you want to create an inline subprocess
and keep the selected scope in the process, you can deselect this
check box.

Label Optionally enter a description.

Comment Optimally enter a comment.

Image Select to replace the standard call activity icon with a unique
image.

The scope activity is converted to a call activity in the BPEL 2.0 process, as shown
in Figure 39-27.

Chapter 39
Creating Standalone and Inline BPEL Subprocesses in a BPEL Process

39-28

Figure 39-27 Call Activity

The new inline subprocess is also displayed in the Subprocess section of the
Components window. Figure 39-28 provides details.

Figure 39-28 Inline Subprocess in Components Window

5. Above Oracle BPEL Designer, select Subprocess - updateOrderStatusSP to display
the contents of the subprocess (the same contents as the initial scope activity).
Figure 39-29 provides details.

Figure 39-29 Subprocess Selection Above Oracle BPEL Designer

The contents of the inline subprocess are displayed. Figure 39-30 provides details.

Chapter 39
Creating Standalone and Inline BPEL Subprocesses in a BPEL Process

39-29

Figure 39-30 Inline Subprocess Contents

6. Make changes to the subprocess, if required, such as adding additional invoke
activities.

You can add the subprocess to the same BPEL 2.0 process, as necessary.

7. From the Subprocess section of the Components window, drag the inline
subprocess into an appropriate section of the BPEL 2.0 process. Figure 39-31
provides details.

Figure 39-31 Subprocess Added to Same BPEL 2.0 Process

The subprocess name is automatically changed to Callnumber as shown in
Figure 39-32.

Figure 39-32 Subprocess Name Changed

Chapter 39
Creating Standalone and Inline BPEL Subprocesses in a BPEL Process

39-30

For more information about using inline BPEL subprocesses, see Section "Updating Order
Status with an Inline BPEL Subprocess" of Understanding Oracle SOA Suite.

39.5.3 How to Create a Standalone Subprocess that Takes a Partner Link
as a Parameter

This section describes how a subprocess takes a partner link as a parameter and uses it to
call the partner and return the result. You are essentially using a partner link from subprocess
to subprocess.

To create a standalone subprocess that takes a partner link as a parameter:

1. Create a SOA composite application that includes a BPEL 2.0 process. For this example,
a synchronous BPEL 2.0 process is created.

2. Go to the SOA composite application in the SOA Composite Editor.

3. Right-click and select Insert > Subprocess.

The Create Subprocess dialog is displayed.

4. Accept the default values (for this example, the default name is Subprocess1), and click
OK.

You now create a second process to use as the partner link.

5. Create a second synchronous BPEL 2.0 process in the SOA composite application for
this example, named BPELProcess2). This is the process to call.

6. From the Components window, drag an Assign activity into the second BPEL 2.0
process.

7. In the Target section of the Copy Rules tab, drag the Expression Builder icon onto the
result variable. Figure 39-33 provides details.

Figure 39-33 Edit Assign Dialog

8. Build an XPath expression, and click OK.

string("hello from process2")
9. Save the second BPEL 2.0 process, and return to the subprocess.

10. Click the Partner Links icon, as shown in Figure 39-34.

Chapter 39
Creating Standalone and Inline BPEL Subprocesses in a BPEL Process

39-31

Figure 39-34 Partner Link Creation

The Partner Links dialog is displayed.

11. Click the Add icon.

The Create Partner Link dialog is displayed. You now define this partner link as a
parameter.

12. Design the partner link (for this example, named PartnerLink1), and click OK.
Figure 39-35 provides details. The role of the partner link is as the provider.

Figure 39-35 Partner Link Creation

The Partner Links dialog looks as shown in Figure 39-36.

Figure 39-36 Partner Links Dialog

Chapter 39
Creating Standalone and Inline BPEL Subprocesses in a BPEL Process

39-32

Figure 39-37 shows the contents of the subprocess.

Figure 39-37 Subprocess Contents

13. Drag a Scope activity into the subprocess.

14. Click the Variables icon in the scope activity, and create request and response message
type variables. Figure 39-38 provides details.

Figure 39-38 Request and Response Message Type Variable Creation

15. Drag a Sequence activity into the subprocess.

16. Drag an Invoke activity into the subprocess for invoking the partner link.

17. Design the invoke activity to invoke the partner link in the subprocess, as shown in
Figure 39-39. The design includes the output variable (Variable2).

Chapter 39
Creating Standalone and Inline BPEL Subprocesses in a BPEL Process

39-33

Figure 39-39 Edit Invoke Dialog

Figure 39-40 shows the subprocess.

Figure 39-40 BPEL Subprocess

18. Click the Variables icon in the subprocess to create a string variable to return the
result.

The Variables dialog is displayed.

19. Click the Add icon to invoke the Create Variable dialog.

20. Create a string variable (for this example, named result).

21. Drag an assign activity into the subprocess.

22. Map the result of the partner link invocation to the result variable, and click OK, as
shown in Figure 39-41.

Chapter 39
Creating Standalone and Inline BPEL Subprocesses in a BPEL Process

39-34

Figure 39-41 Edit Assign Activity

Subprocess design is now complete.

23. Return to the main BPEL 2.0 process in Oracle BPEL Designer (BPELProcess1).

24. Click the Variables icon in the process.

25. Click the Add icon to create a string variable to contain the result configured in Step 22
and passed back (for this example, named Variable1). Figure 39-42 provides details.

Figure 39-42 Variables Dialog

26. Add an assign activity to assign the string value to Variable1.

27. Drag a call activity below the assign activity in Oracle BPEL Designer. Figure 39-43
provides details.

Figure 39-43 Subprocess Added to Main BPEL 2.0 Process

28. Right-click the Partner Links swimlane, and select Create Partner Link.

29. Design a partner link to invoke BPELProcess2, as shown in Figure 39-44.

Chapter 39
Creating Standalone and Inline BPEL Subprocesses in a BPEL Process

39-35

Figure 39-44 Create Partner Link Dialog

30. Right-click the Call activity, and click Edit.

The Edit Call dialog shows the partner link created earlier in the subprocess.

31. In the result row, click the Value column to invoke the Variable Chooser dialog.

32. Select Variable1, and click OK.

33. In the PartnerLink1 row, click the Value column to invoke the Partner Link
Chooser dialog.

34. Select PartnerLink1, and click OK. Figure 39-45 shows the Edit Call dialog with
design complete. Since the variables are sent by reference, if the subprocess does
something to change the partner link (such as copying in another partner link), that
impacts the calling process's partner link. This is the same process as with
variables.

Figure 39-45 Edit Call Dialog

35. Drag an Assign activity below the Call activity to return the result.

36. In the Copy Rules tab, map Variable1 to result to return the result to the caller.
Figure 39-46 provides details.

Chapter 39
Creating Standalone and Inline BPEL Subprocesses in a BPEL Process

39-36

Figure 39-46 Edit Assign Dialog

37. Deploy the SOA composite application.

39.5.4 What You May Need to Know About Renaming a Subprocess
When you rename a subprocess, it is not updated in the invoking call activity. You must
manually update the subprocess name in the call activity.

Assume you perform the following steps:

1. Create an asynchronous BPEL 2.0 process.

2. Right-click the SOA Composite Editor, and select Insert > Subprocess.

3. Create a subprocess named SubProcessNew.

4. Right-click SubProcessNew, and click Edit.

5. From the Components window, drag an Empty activity into the subprocess.

6. Open the asynchronous BPEL 2.0 process.

7. From the Components window, drag a Call activity into the process.

8. Invoke the SubProcessNew subprocess from the call activity.

9. Return to the SOA Composite Editor, and rename the SubProcessNew subprocess to
SubProcessRenamed.

10. Open the call activity in the asynchronous BPEL 2.0 process, and note that the
Subprocess field is now empty.

11. In the Subprocess field, manually enter the updated name of SubProcessRenamed.

Chapter 39
Creating Standalone and Inline BPEL Subprocesses in a BPEL Process

39-37

40
Creating Transformations with the XSLT Map
Editor

This chapter describes how to use the XSLT Map Editor in JDeveloper to create, design, and
test data transformations between source schema elements and target schema elements.

This chapter includes the following sections:

• Introduction to the XSLT Map Editor

• Creating an XSLT Map

• Editing an XSLT Map in Map View

• Editing an XSLT Map in XSLT View

• Using XPath Expressions

• Using Auto Map to Map Complex Nodes

• Checking the Completion Status of the Map

• Testing the Map

• Importing an External XSLT Map

• Using Variables and Parameters

• Substituting Elements and Types

• Using Named Templates

• Using Template Rules

• Using the Execution View

• Debugging the XSLT Map

• Troubleshooting Memory Issues

• Setting XSL Map Preferences

40.1 Introduction to the XSLT Map Editor
The XSLT Map Editor enables you to edit XSLT stylesheets using a graphical editor. It also
provides the feature to directly edit the XSLT source.

Figure 40-1 shows the XSLT Map Editor. You can switch between the graphical editor and the
source view using the tabs at the bottom of the editor. Click Design to edit using the
graphical editor. Click Source to edit using the source editor.

40-1

Figure 40-1 XSLT Map Editor

You can move back and forth between the Source and Design tabs. Any change
made under one tab is reflected in the other tab. A History tab is also available to
enable you to view the revision history, and revert to any point in the edit history.

The XSLT Map Editor fully supports XSLT 1.0 and XPath 1.0.

If you want to use XSLT 2.0, then you can change the XSLT version in the source view
and restart JDeveloper.

All XSLT 2.0-specific constructs must be added in the source view. You can then
choose to switch to the design view, and continue to edit the map. XSLT 2.0-specific
constructs are shown in design view, but can be modified only in the source view.
XPath 2.0 constructs can also be added in the design view. However, XPath 2.0
constructs are not parsed into separate graphical elements in the design view. You
must edit the full XPath statement in text form. XPath 2.0 functions will be displayed in
the Components Window when the XSLT Version is set to 2.0 in the source and
JDeveloper is restarted.

The XSLT Map Editor provides the following edit views under the design view:

• Map View

• XSLT View

You can switch between the two views using the buttons at the top right hand corner of
the XSLT editor. Click Map to use the traditional Map View of the XSLT editor. Click
XSLT to use the XSLT View for more complex XSLT maps.

Chapter 40
Introduction to the XSLT Map Editor

40-2

40.1.1 Using the Map View
Figure 40-1 shows the Map View of the XSLT Map Editor. The left pane contains the source
tree representing the incoming source XML document. The source tree can be created from
an XSD schema file or a sample XML file.

The center pane, or the canvas, is the place where you drop XPath expressions and
functions that can be mapped to XSLT elements.

The right pane is the target pane representing a merged view of the XSLT being created, and
the target tree that represents the target schema. The target tree can be created from an
XSD schema file or a sample XML file.

The grayed nodes, in italics, in the target tree represent nodes that haven't been mapped yet.
These nodes are not part of the XSLT, and are displayed for convenience. Once a grayed
node is mapped, it appears in regular font, and gets represented in the XSLT map.

Map View supports drag-and-drop mappings from source tree to target tree. Map View also
supports XPath function calls and XSLT statements such as xsl:if and xsl:for-each.
As Map View does not separate the XSLT statements from the target tree, it is limited to the
following:

• Only one XSLT template rule with the match='/' attribute is supported.

• The following XSLT statements are supported: xsl:for-each, xsl:value-of,
xsl:text, xsl:if, xsl:choose/when, xsl:variable and xsl:param.

Use the XSLT View for complex XSLT statements that require separating the XSLT
statements from the target tree.

40.1.2 Using the XSLT View
The XSLT View is a more advanced mode that enables you to separate the XSLT statements
from the target tree document. This enables you to create complex XSLT statements without
leaving the design view. Source and target schemas are optional in the XSLT View.

The XSLT View includes the same panes as the Map View, except that the right target pane
is divided into two panes. The top pane is called the XSLT pane and the lower pane is called
the target pane. If no target schema is defined, then the lower pane is not shown. If no source
schema is defined, the source pane is still displayed to enable you to add parameters and
variables, whose values can be referenced by the XSLT.

In XSLT View, you can create any series of XSLT statements without having to intersperse
these statements around target tree nodes. For instance, in the 11g mapper, all xsl:if
statements had to contain a single target output node. In XSLT View, the xsl:if statement
can be used anywhere, and can contain any other XSLT statement.

The XSLT View supports all XSLT 1.0 statements. The XSLT View also supports multiple
template rules with or without source and target schemas. The XSLT View enables you to
graphically display and edit any XSLT stylesheet, irrespective of the complexity involved.

40.1.3 Using the Components Window
The Components window contains all the XPath functions and XSLT elements and templates
that you can use in your XSLT map.

Chapter 40
Introduction to the XSLT Map Editor

40-3

The Components window is located at the upper right-hand corner of Oracle
JDeveloper, by default. If the Components window does not appear, click
Components under the Window menu to display the Components window. You can
optionally choose to drag the Components window to any convenient location in the
JDeveloper window. You can also resize the Components window, as desired.

The Components window organizes these functions, elements, and templates under
the following categories:

• Advanced XPath:

• General XPath:

• XML:

• XSLT Elements:

• XSLT Templates:

• All Pages:

• User Defined:

• My Components:

40.1.4 Using the Properties Window
The Properties window shows the content and properties of the item selected in the
XSLT Map Editor. Some of these properties can also be edited.

The Properties window is located below the XSLT Map Editor, by default. If the
Properties window does not appear, click Properties under the Window menu to
display the Properties window. You can optionally choose to drag the Properties
window to any convenient location within the JDeveloper window. You can also resize
the Properties window, as desired.

The Properties window, in general, can be used to display and edit the properties of
the following items:

Selected Element in
Editor

What is Shown in Properties Window Whether
Editable
(Yes/No)

Source tree node Schema Information for the selected element or
attribute.

No

Target tree node Schema information for the selected element or
attribute.

No

XSLT tree node: XSLT
element

XSLT element attributes and their values Yes

XSLT tree node: literal
element or attribute

Literal element or attribute name and namespace Yes

XPath expression folder in
Canvas pane

Full text XPath expression Yes

Function icon within
expression folder in Canvas
pane

XPath field for each parameter of the function Yes

Line connecting source and
target node

Full text XPath expression Yes

Chapter 40
Introduction to the XSLT Map Editor

40-4

40.2 Creating an XSLT Map
XSLT maps can be created from scratch, or from other editors such as BPEL, BPM, and
Mediator.

40.2.1 How to Create an XSLT Map
To create an XSLT Map:

1. From the File main menu, select New > XSL Map. Alternatively, right-click the project
folder and select New > XSL Map.

The Create XSL Map File dialog appears.

2. Under File Name, specify a name for your .xsl map file.

3. Under Directory name, select the destination directory for the .xsl file.

4. Under Sources, select Use Source Schema(s) to specify a source schema for the map.

5. Under Primary Source, click Browse to select the source schema. The Select Schema
dialog box appears.

6. Choose Select Schema if you want to use an XSD schema file or WSDL file for the
source schema.

Note:

You can alternatively use a sample XML file as the schema source.

Select Generate from XML to generate the schema from an XML file. Select
the sample file and click Open. Go to Step 9.

7. Click Browse to select a schema file and element for the source schema. The Type
Chooser dialog appears.

8. Select the schema file and the corresponding element from the project schema files or
project WSDL files tree. Click OK.

If the schema or wsdl file that you need is not available in the tree, you may import a
schema or wsdl file by clicking the Import Schema File or Import WSDL File button at
the top right corner of the dialog.

9. Click OK in the Select Schema dialog.

Note:

Under Additional Sources, you can click the Add Schema button identified by
the green plus icon (+) to add any additional sources in the form of
parameters.

10. Select Use target schema to specify a target schema for your XSL map.

11. Click Browse to select the target schema. The Select Schema dialog appears.

Chapter 40
Creating an XSLT Map

40-5

12. After selecting the target schema, click OK in the Select Schema dialog.

Note:

When a Target Schema is used, initial element and attribute nodes may
be generated in the XSLT pane depending upon the current Preferences
setting.

The default setting is to generate a root template with a match=''/''
attribute followed by all required elements and attributes in the target
schema.

13. Click OK to create the XSL map file.

Note:

• Once the XSLT map is created you may add or replace source and
target schemas by selecting the appropriate option from the context
menu in the canvas pane.

For example, you may add additional sources as parameters by
selecting Add Parameter from the context menu on the source
pane.

• You may edit a source or target schema file that is being used by an
XSLT Map, using JDeveloper. Upon saving the schema file, the
source or target tree in the XSLT editor is automatically updated.

40.2.2 How to Create an XSL Map File in Oracle BPEL Process
Manager

An XSLT Transform activity enables you to create a transformation using the XSLT
Map Editor in Oracle BPEL Process Manager. This tool enables you to map one or
more source elements to target elements. For example, you can map incoming source
purchase order schema data to outgoing invoice schema data.

To create an XSL map file in Oracle BPEL Process Manager:

1. From the Components window, drag an XSLT Transform activity into your BPEL
process diagram. Figure 40-2 provides an example.

Chapter 40
Creating an XSLT Map

40-6

Figure 40-2 Transform Activity

2. Double-click the XSLT Transform activity.

The Transform dialog shown in Figure 40-3 appears.

Figure 40-3 Transform Dialog

3. Specify the following information:

a. Add source variables from which to map elements by clicking the Add icon and
selecting the variable and part of the variable as needed (for example, a payload
schema consisting of a purchase order request).

Chapter 40
Creating an XSLT Map

40-7

Note:

You can select multiple input variables. The first variable defined
represents the main XML input to the XSL map. Additional variables
that are added here are defined in the XSL map as input parameters.

b. Add target variables to which to map elements.

Note:

Figure 40-3 shows the Edit Transformation dialog for BPEL 2.0. The
Edit Transformation dialog for BPEL 1.1 is slightly different. In the
Edit Transformation dialog for BPEL 1.1, you can select the Target
Variable from the list of variables.

c. Add the target part of the variable (for example, a payload schema consisting
of an invoice) to which to map.

4. In the Mapper File field, specify a map file name or accept the default name. You
create your mappings in the map file using the XSLT Map Editor.

5. Click the Add icon (second icon to the right of the Mapper File field) to create a
mapping. If the file exists, click the Edit icon (third icon) to edit the mapping.

The XSLT Map Editor appears.

Note:

If you select a file with a.xslt extension such as xform.xslt, it opens
the XSLT Map Editor to create an XSL file named xform.xslt.xsl, even
though your intention was to use the existing xform.xslt file. A .xsl
extension is appended to any file that does not have a .xsl extension,
and you must create the mappings in the new file. As a work around,
ensure that your files first have an extension of .xsl. If the XSL file has
an extension of .xslt, then rename it to .xsl.

6. Go to Introduction to the XSLT Map Editor for an overview of using the XSLT Map
Editor.

40.2.3 How to Create an XSL Map File from Imported Source and
Target Schema Files in Oracle BPEL Process Manager

The following steps provide a high level overview of how to create an XSL map in
Oracle BPEL Process Manager using a po.xsd file and invoice.xsd file.

To create an XSL map file from imported source and target schema files in
Oracle BPEL Process Manager:

1. In Oracle JDeveloper, select the application project in which you want to create the
new XSL map.

Chapter 40
Creating an XSLT Map

40-8

2. Import the po.xsd and invoice.xsd files into the project. For example:

a. In the Structure window of Oracle JDeveloper, right-click Schemas.

b. Select Import Schemas.

3. Right-click the selected project and select New.

The New Gallery dialog appears.

4. In the Categories tree, expand SOA Tier and select Transformations.

5. In the Items list, double-click XSL Map.

The Create XSL Map File dialog appears. This dialog enables you to create an XSL map
file that maps a root element of a source schema file or Web Services Description
Language (WSDL) file to a root element of a target schema file or WSDL file. Note the
following details:

• – WSDL files that have been added to the project appear under Project WSDL
Files.

– Schema files that have been added to the project appear under Project Schema
Files.

– Schema files that are not part of the project can be imported using the Import
Schema File facility. Click the Import Schema File icon (first icon to the right
and above the list of schema files).

– WSDL files that are not part of the project can be imported using the Import
WSDL File facility. Click the Import WSDL File icon (second icon to the right and
above the list of schema files).

6. In the File Name field, enter a name for the XSL map file.

7. Select the root element for the source and target trees. In the example in Figure 40-4, the
PurchaseOrder element is selected for the source root element and the Invoice element
is selected for the target root element.

Chapter 40
Creating an XSLT Map

40-9

Figure 40-4 Expanded Target Section

8. Click OK.

A new XSL map is created, as shown in Figure 40-5.

Figure 40-5 New XSL Map

9. Save and close the file now or begin to design your transformation. Information on
using the XSLT Map Editor is provided in Introduction to the XSLT Map Editor.

10. From the Components window, drag a transform activity into your BPEL process.

11. Double-click the transform activity.

12. Specify the following information:

a. Add source variables from which to map elements by clicking the Add icon
and selecting the variable and part of the variable as needed (for example, a
payload schema consisting of a purchase order request).

Chapter 40
Creating an XSLT Map

40-10

Note:

You can select multiple input variables. The first variable defined represents
the main XML input to the XSL map. Additional variables that are added
here are defined in the XSL map as input parameters.

b. Add target variables to which to map elements.

c. Add the target part of the variable (for example, a payload schema consisting of an
invoice) to which to map.

13. To the right of the Mapper File field, click the Search icon (first icon) to browse for the
map file name you specified in Step 6.

14. Click Open.

15. Click OK.

The XSLT Map Editor displays your XSL map file.

16. Go to Introduction to the XSLT Map Editor for an overview of using the XSLT Map Editor.

40.2.4 How to Create an XSL Map File in Oracle Mediator
The XSLT Map Editor enables you to create an XSL file to transform data from one XML
schema to another in Oracle Mediator. After you define an XSL file, you can reuse it in
multiple routing rule specifications. This section provides an overview of creating a
transformation map XSL file with the XSLT Map Editor.

The XSLT Map Editor is available from the Applications window in Oracle JDeveloper by
clicking an XSL file or from the Mediator Editor by clicking the transformation icon, as
described in the following steps. You can either create a new transformation map or update
an existing one.

To launch the XSLT Map Editor from the Mediator Editor and create or update a data
transformation XSL file, follow these steps.

To create an XSL map file in the Mediator Editor:

1. Open the Mediator Editor.

2. To the left of Routing Rules, click the + icon to open the Routing Rules panel.

The transformation map icon is visible in the routing rules panel.

3. To the right of the Transform Using field shown in Figure 40-6, click the appropriate
transformation map icon to open the Transformation Map dialog.

Chapter 40
Creating an XSLT Map

40-11

Figure 40-6 Routing Rules

The appropriate Transformation Map dialog displays with options for selecting an
existing transformation map (XSL) file or creating a new map file. For example, if
you select the transformation map icon in the Synchronous Reply section, the
dialog shown in Figure 40-7 appears.

Figure 40-7 Reply Transformation Map Dialog

If the routing rule includes a synchronous reply or fault, the Reply Transformation
Map dialog or Fault Transformation Map dialog contains the Include Request in
the Reply Payload option. When you enable this option, you can obtain
information from the request message. The request message and the reply and
fault message can consist of multiple parts, meaning you can have multiple source
schemas. Callback and callback time-out transformations can also consist of
multiple parts.

Each message part includes a variable. For a reply transformation, the reply
message includes a schema for the main part (the first part encountered) and an
in.partname variable for each subsequent part. The include request message
includes an initial.partname variable for each part.

Chapter 40
Creating an XSLT Map

40-12

For example, assume the main reply part is the out1.HoustonStoreProduct schema
and the reply also includes two other parts that are handled as variables,
in.HoustonStoreProduct and in.HoustonStoreProduct2. The request message
includes three parts that are handled as the variables initial.expense, initial.expense2,
and initial.expense3. Figure 40-8 provides an example.

Figure 40-8 Reply Part

4. Choose one of the following options:

• Click the Search icon to browse for an existing XSLT map file (or accept the default
value).

• Click the Add icon, to create a new XSLT map file, and then enter a name for the file
(or accept the default value).

If the source message in the WSDL file has multiple parts, variables are used for
each part, as mentioned in Step 3. When the target of a transformation has multiple
parts, multiple transformation files map to these targets. In this case, Oracle
Mediator's transformation dialog has a separate panel for each target part. For
example, Figure 40-9 shows a request in which the target has three parts:

Figure 40-9 Request Transformation Map Dialog

Chapter 40
Creating an XSLT Map

40-13

5. Click OK.

If you chose to create a new XSLT map, the XSLT Map Editor opens to enable you
to correlate source schema elements to target schema elements.

6. Go to Introduction to the XSLT Map Editor for an overview of using the XSLT Map
Editor.

40.2.5 What You May Need to Know About Creating an XSL Map File
XSL file errors do not display during a transformation at runtime if you manually
remove all existing mapping entries from an XSL file except for the basic format data.
Ensure that you always specify mapping entries. For example, assume you perform
the following actions:

1. Create a transformation mapping of input data to output data in the XSLT Map
Editor.

2. Design the application to write the output data to a file using the file adapter.

3. Manually modify the XSL file and remove all mapping entries except the basic
format data. For example:

<?xml version="1.0" encoding="UTF-8" ?>
<xsl:stylesheet version="1.0"
xmlns:xp20="http://www.oracle.com/XSL/Transform/java/
oracle.tip.pc.services.fu
nctions.Xpath20"
xmlns:bpws="http://schemas.xmlsoap.org/ws/2003/03/business-process/"
xmlns:ns0="http://xmlns.oracle.com/pcbpel/adapter/file/MediaterDemo/
Validation
UsingSchematron/WriteAccounInfoToFile/"
xmlns:orcl="http://www.oracle.com/XSL/Transform/java/
oracle.tip.pc.services.fu
nctions.ExtFunc"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:dvm="http://www.oracle.com/XSL/Transform/java/
oracle.tip.dvm.LookupValue
"
xmlns:hwf="http://xmlns.oracle.com/bpel/workflow/xpath"
xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
xmlns:mhdr="http://www.oracle.com/XSL/Transform/java/
oracle.tip.mediator.servi
ce.common.functions.GetRequestHeaderExtnFunction"
xmlns:ids="http://xmlns.oracle.com/bpel/services/IdentityService/xpath"
xmlns:imp1="http://www.mycompany.com/MyExample/NewAccount"
xmlns:tns="http://oracle.com/sca/soapservice/MediaterDemo/
ValidationUsingSchem
atron/CreateNewCustomerService"
xmlns:xref="http://www.oracle.com/XSL/Transform/java/
oracle.tip.xref.xpath.XRe
fXPathFunctions"
xmlns:plt="http://schemas.xmlsoap.org/ws/2003/05/partner-link/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:ora="http://schemas.oracle.com/xpath/extension"
xmlns:inp1="http://www.mycompany.com/MyExample/NewCustomer"
exclude-result-prefixes="xsi xsl tns xsd inp1 ns0 imp1 plt xp20 bpws orcl
dvm
hwf mhdr ids xref ora">
</xsl:stylesheet>

Chapter 40
Creating an XSLT Map

40-14

While the file can still be compiled, the XSL mapping is now invalid.

4. Deploy and create an instance of the SOA composite application.

During instance creation, an exception error occurs when the write operation fails
because it did not receive any input. However, no errors are displayed during XSL
transformation.

40.2.6 What Happens at Runtime If You Pass a Payload Through Oracle
Mediator Without Creating an XSL Map File

If you design a SOA composite application to pass a payload through Oracle Mediator
without defining any transformation mapping or assigning any values, Oracle Mediator
passes the payload through.

However, for the payload to be passed through successfully, the source and target message
part names must be the same, and of the same type. Otherwise, the SOA project fails to
compile. For projects that have been upgraded from 11g, the project compiles, but the target
reference may fail to execute with error messages such as Input source like Null or Part
not found.

40.2.7 What Happens If You Receive an Empty Namespace Tag in an
Output Message

The XML representation from an XSL file may differ from that used in a scenario in which a
message is passed through with a transformation being performed or in which an assign
activity is used, even though the XMLs are syntactically and semantically the same. For
example, if you use an Oracle Mediator service component to map an inbound payload that
includes an element without a namespace to an outbound payload, you may receive an
empty namespace tag in the output message.

<Country xmlns="">US</Country>

This is the correct behavior. A blank namespace, xmlns="", is automatically added.

40.3 Editing an XSLT Map in Map View
This section discusses basic functionality available in Map View. The remaining sections
discuss editing in the XSLT View with notes on restrictions that might apply to Map View for
the specific activity being discussed.

40.3.1 How to Perform a Value Copy by Linking Nodes
To copy the value of an attribute or leaf-element in the source to an attribute or leaf-element
in the target, drag a line from the source node to the target node. A green highlighted line
appears as you are dragging and dropping. When you complete the drop, a line is drawn
connecting the source and target nodes.

Figure 40-10 shows the map view where the PurchaseOrder/ID source element is mapped
to the Invoice/ID target element. Notice that a line connects the source and target nodes.
Also, the ID element in the target tree is no longer grayed, and appears in normal font. This
means that the ID element has been added to the XSLT map.

Chapter 40
Editing an XSLT Map in Map View

40-15

Figure 40-10 Copying a Leaf Node in Map View

40.3.2 How to Create an Empty Node in the Output Document
To create an empty node in the output document:

1. Select the grayed node in the target pane.

2. Right-click the node, and select Create Node in XSLT from the context menu.

40.3.3 How to Set a Literal Text Value for a Target Node
To set a literal text value on an output/target node:

1. Right-click the node in the target pane. Select Edit Text Value from the context
menu that appears.

The Set Text dialog appears.

2. Enter the text value to be assigned to the node. Do not enclose the text in
quotation marks.

3. Click OK.

A yellow T icon appears next to the node indicating that a text value has been set
for the item. If you move the mouse cursor over the node, the corresponding text
appears. If the node was grayed earlier, it no longer appears gray, as the node has
been added to the XSLT map.

40.3.4 How to Add an XSLT Statement
You can add XSLT statements to handle constructs such as conditional statements (if-
then-else) and iterations (for-each).

40.3.4.1 To Add an XSLT Statement:
1. Right-click the target node, and select Add XSL Instruction from the context

menu that appears. A submenu appears with the various XSL statements that you
can add.

2. Select the desired XSL statement, such as if, choose, or for-each, from the
submenu.

The xsl:text and xsl:variable XSLT statements can only be added for existing
nodes.

Chapter 40
Editing an XSLT Map in Map View

40-16

40.3.4.2 To Add an xsl:text or xsl:variable Statement:
1. Make sure that the target node exists in the XSLT.

If the target node appears gray, right-click the target node and select Create Node in
XSLT from the context menu that appears. The node no longer appears gray, and is
added to the XSLT map.

2. Right-click the target node, and select Add XSL Instruction from the context menu that
appears. A submenu appears with the various XSL statements that you can add.

3. Select text or variable from the submenu.

Note:

The xsl:copy-of statement is not supported in Map View. It is supported in
XSLT View.

You can also choose to drag and drop XSLT statements from the Components window.

40.3.4.3 To Drag and Drop an XSLT statement to a Target Node:
1. Select the XSLT Elements page from the Components Window. A list of statement

categories appear.

2. Locate a supported statement, for Map View, from a category. For example, the for-each
statement appears under the Flow Control category.

The Map View supports only a subset of XSLT statements. These statements are
discussed individually in the sections that follow.

3. Drag the statement to the desired target node until green highlighting appears over the
node, indicating that the statement can be dropped.

4. Drop the statement to insert it into the XSLT map.

The following sections enumerate the different XSLT statements that you can add using the
map view:

• How to Add Conditional Processing Using xsl:if

• How to Add Conditional Processing Using xsl:choose

• How to Add Loops Using xsl:for-each

• How to Add xsl:sort for an xsl:for-each Statement

• How to Duplicate XSLT Instructions

40.3.4.4 How to Add Conditional Processing Using xsl:if
If a source and target node are optional in their respective schemas, the xsl:if statement is
often used to test for the existence of the source node before creating the corresponding
target node.

In Figure 40-11, the Comment node is optional for both the source and the target. The square
brackets around the Comment nodes indicate that they are optional nodes.

Chapter 40
Editing an XSLT Map in Map View

40-17

Figure 40-11 Optional Nodes in Source and Target Trees

If the source Comment node does not exist in the source document at runtime, its
value is empty. This creates a Comment node in the target document and sets its
value to empty.

To prevent creating an empty node when the source node is not there, add an xsl:if
statement above the target Comment node. The xsl:if statement tests for the
existence of the source node before creating the target node.

40.3.4.4.1 To add an xsl:if statement using the context menu:
1. Right-click the target node and select Add XSL Instruction -> if from the context

menu that appears. An xsl:if node is added as the parent node of the target
node.

2. To set the condition for the xsl:if node, drag and drop the source node to the
xsl:if node.

Figure 40-12 Dragging the Source Node to the xsl:if Node

Chapter 40
Editing an XSLT Map in Map View

40-18

40.3.4.4.2 To add an xsl:if statement using drag and drop:
1. In the Components window, select the XSLT Elements page.

2. Expand the Flow Control section. You can click the plus sign (+) next to Flow Control to
expand the section.

3. Drag the if icon to the right side of the target node until you can see the green
highlighting, as shown in Figure 40-13.

Figure 40-13 Adding an xsl:if Statement

4. Drop the if icon while the green highlighting is visible. An xsl:if node is added as the
parent node of the target node.

5. To set the condition for the xsl:if node, drag and drop the source node to the xsl:if
node.

When viewed in source view, the xsl:if statement looks similar to the following:

<xsl:if test="/ns0:PurchaseOrder/ns0:Comment">
 <tns1:Comment>
 <xsl:value-of select="/ns0:PurchaseOrder/ns0:Comment"/>
 </tns1:Comment>
</xsl:if>

The preceding xsl:if statement ensures that the target node is created only if the source
node exists.

40.3.4.5 How to Add Conditional Processing Using xsl:choose
The xsl:choose statement is similar to the xsl:if construct. You can use the xsl:choose
XSLT statement if there are multiple conditions to evaluate.

Figure 40-14 shows the XSLT Map Editor containing sample source and target schemas. The
source schema has an xsd:choice construct defined. The source schema can contain either
an HQAccount or a BranchAccount node, but not both. The target schema has a
BilledToAccount/AccountNumber node that must be defined.

If the HQAccount node exists, you must copy its AccountNumber to BilledToAccount/
AccountNumber in the target. If the HQAccount node does not exist, you must copy the
AccountNumber from the BranchAccount node. You can use the xsl:choose statement to
accomplish this task.

Chapter 40
Editing an XSLT Map in Map View

40-19

Figure 40-14 XSLT Map Editor Containing Sample Source and Target Schemas

40.3.4.5.1 To add an xsl:choose statement using the context menu:
1. Right-click the target node and select Add XSL Instruction -> choose from the

context menu that appears.

A choose statement is added as the parent node of the target node along with an
xsl:when statement. Figure 40-15 shows the result of adding the xsl:choose
statement to the AccountNumber node.

Figure 40-15 Adding an xsl:choose Statement

An xsl:choose statement can contain multiple xsl:when statements followed by
an optional xsl:otherwise statement.

2. To add an xsl:otherwise node to the xsl:choose node, right-click xsl:choose in
the target tree and select Add XSL Instruction -> otherwise from the context
menu that appears.

Figure 40-16 shows the result of adding the xsl:otherwise statement to the
xsl:choose statement. Note that the AccountNumber node is copied to each
section of the xsl:choose statement.

Figure 40-16 Adding an xsl:otherwise Statement to an xsl:choose
Statement

Chapter 40
Editing an XSLT Map in Map View

40-20

3. Map the xsl:when node to the source node whose existence is to be tested. In our
current example, you drag a line from the HQAccount node in the source to the
xsl:when node in the target.

4. Map the xsl:when and xsl:otherwise cases. In the current example, you drag a line from
the HQAccount/AccountNumber node to the xsl:choose/xsl:when/AccountNumber
node. Similarly, you drag a line from the BranchAccount/AccountNumber node to the
xsl:choose/xsl:otherwise/AccountNumber node.

Figure 40-17 shows the completed xsl:choose construct.

Figure 40-17 Sample xsl:choose Construct

40.3.4.5.2 To add an xsl:choose statement using drag and drop:
1. In the Components window, select the XSLT Elements page.

2. Expand the Flow Control section. You can click the plus sign (+) next to Flow Control to
expand the section.

3. Drag the choose icon to the right side of the target node until you can see the green
highlighting, as shown in Figure 40-18.

Figure 40-18 Dragging the choose Icon to the Target Node

4. Drop the choose icon while the green highlighting is visible. An xsl:choose node is
added as the parent node of the target node. The xsl:choose node contains a child
xsl:when node.

5. To create the otherwise clause, drag the otherwise icon from the Components Window
to the left of the xsl:choose node until you can see the green highlighting, as shown in
Figure 40-19.

Chapter 40
Editing an XSLT Map in Map View

40-21

Figure 40-19 Dragging the otherwise Icon to the xsl:choose Node

6. Drop the otherwise icon while the green highlighting is visible. An xsl:otherwise
node is added as the child node of the xsl:choose node.

7. Map the xsl:when node to the source node whose existence is to be tested. In our
current example, you drag a line from the HQAccount node in the source to the
xsl:when node in the target.

8. Map the xsl:when and xsl:otherwise cases. In our current example, you drag a line
from the HQAccount/AccountNumber node to the xsl:choose/xsl:when/
AccountNumber node. Similarly, you drag a line from the BranchAccount/
AccountNumber node to the xsl:choose/xsl:otherwise/AccountNumber node.

Figure 40-17 shows the completed xsl:choose construct.

When viewed in source view, the xsl:choose statement looks similar to the following:

<BilledToAccount>
 <xsl:choose>
 <xsl:when test="/ns0:PurchaseOrder/HQAccount">
 <AccountNumber>
 <xsl:value-of select="/ns0:PurchaseOrder/HQAccount/AccountNumber"/>
 </AccountNumber>
 </xsl:when>
 <xsl:otherwise>
 <AccountNumber>
 <xsl:value-of select="/ns0:PurchaseOrder/BranchAccount/AccountNumber"/>
 </AccountNumber>
 </xsl:otherwise>
 </xsl:choose>
</BilledToAccount>

40.3.4.6 How to Add Loops Using xsl:for-each
The xsl:for-each statement can be used to loop over a source node-set, or set of
nodes, and to create output nodes for each node in the source node-set.

40.3.4.6.1 To add an xsl:for-each statement using the context menu:
1. Right-click the target node and select Add XSL Instruction -> for-each from the

context menu that appears. An xsl:for-each statement is added as the parent
node of the target node.

2. To set the source node-set to loop over, drag and drop the source node to the
xsl:for-each statement.

Figure 40-20 shows an example of creating the xsl:for-each statement. The
source PurchaseOrder document contains the Item node. The Item node is a
repeating node, as represented by its icon. For each Item node in the source

Chapter 40
Editing an XSLT Map in Map View

40-22

document, an Item node is created in the target document using the xsl:for-each
statement.

Figure 40-20 Creating an xsl:for-each Statement

40.3.4.6.2 To add an xsl:for-each statement using drag and drop:
1. In the Components window, select the XSLT Elements page.

2. Expand the Flow Control section. You can click the plus sign (+) next to Flow Control to
expand the section.

3. Drag the for-each icon to the right side of the target node until you can see the green
highlighting, as shown in Figure 40-21.

Figure 40-21 Dragging the for-each Icon to the Target Node

4. Drop the for-each icon while the green highlighting is visible. An xsl:for-each node is
added as the parent node of the target node.

5. To set the source node-set to loop over, drag and drop the source node to the xsl:for-
each statement, as shown in Figure 40-20.

When viewed in the source view, the xsl:for-each statement looks similar to the following:

<ShippedItems>
 <xsl:for-each select="/ns0:PurchaseOrder/Items/HighPriorityItems/Item">

Chapter 40
Editing an XSLT Map in Map View

40-23

 <Item/>
 </xsl:for-each>
</ShippedItems>

Note that the Item node, created inside the xsl:for-each statement, is an empty node.
You can map elements under the target Item node to set values for them.

For example, as shown in Figure 40-22, if you drag and drop Qty to Quantity, the value
of the Qty element is copied to the Quantity element in the output.

Figure 40-22 Mapping Qty to Quantity

The following example shows the resulting code in source view. It also shows a
sample source document and output document snippet.

<ShippedItems>
 <xsl:for-each select="/ns0:PurchaseOrder/Items/HighPriorityItems/Item">
 <Item>
 <Quantity>
 <xsl:value-of select="Qty"/>
 </Quantity>
 </Item>
 </xsl:for-each>
</ShippedItems>

The following snippet shows some sample values for the source document:

<HighPriorityItems>
 <Item PartNum="000-AA">
 <Qty>20</Qty>
 </Item>
 <Item PartNum="000-AB">
 <Qty>24</Qty>
 </Item>
</HighPriorityItems>

The following snippet shows the output values corresponding to the preceding source
document:

<ShippedItems>
 <Item>
 <Quantity>20</Quantity>
 </Item>
 <Item>
 <Quantity>24</Quantity>
 </Item>
</ShippedItems>

Within an xsl:for-each statement, XPath expressions are usually relative to the node
selected by the xsl:for-each statement. For instance, in the preceding example Qty

Chapter 40
Editing an XSLT Map in Map View

40-24

is relative to the current Item node /ns0:PurchaseOrder/Items/HighPriorityItems/Item:
 <xsl:for-each select="/ns0:PurchaseOrder/Items/HighPriorityItems/Item">
 <Item>
 <Quantity>
 <xsl:value-of select="Qty"/>
 </Quantity>
 </Item>
 </xsl:for-each>

Using absolute paths within the xsl:for-each statement can result in unintended results. For
example, if were to use absolute path in the preceding example instead of relative path, the
code looks as follows:

<ShippedItems>
 <xsl:for-each select="/ns0:PurchaseOrder/Items/HighPriorityItems/Item">
 <Item>
 <Quantity>
 <xsl:value-of
 select="/ns0:PurchaseOrder/Items/HighPriorityItems/Item/Qty"/>
 </Quantity>
 </Item>
 </xsl:for-each>
</ShippedItems>

The resultant output document looks like the following:

<ShippedItems>
 <Item>
 <Quantity>20</Quantity>
 </Item>
 <Item>
 <Quantity>20</Quantity> <!-- repeating incorrect value! -->
 </Item>
</ShippedItems>

The absolute path always selects the first Qty element in the Item node-set and you see a
repeating value placed into each output Item element.

The XSLT Map Editor creates relative paths when mapping nodes under a for-each
statement, if possible. It is recommended that you create the xsl:for-each statement before
mapping the nodes that appear under the for-each. If you map nodes such as Quantity
before adding the for-each, the editor shows a warning and attempts to refactor the absolute
XPath expressions to relative path expressions when you map the node-set to the for-each.

Chapter 40
Editing an XSLT Map in Map View

40-25

Note:

• Executing an auto map automatically inserts the xsl:for-each
statement, where required.

• Ensure that your design does not include infinite loops. Infinite loops can
result in errors similar to the following during deployment and invocation
of your application:

ORAMED-04001:
. . .
oracle.tip.mediator.service.BaseActionHandler requestProcess
SEVERE:
failed reference BPELProcess1.bpelprocess1_client operation =
process

40.3.4.7 How to Add xsl:sort for an xsl:for-each Statement
The xsl:sort statement can be added to an xsl:for-each statement to specify a field
based on which sorting is performed. The xsl:sort instruction causes xsl:for-each
to loop over the defined node-set in a particular order.

40.3.4.7.1 To add an xsl:sort statement using the context menu:
1. Right-click the xsl:for-each node and select Add XSL Instruction -> sort from

the context menu that appears.

The Set Attributes dialog appears.

2. Optionally specify attributes for the xsl:sort statement. Click OK.

The Set Attributes dialog enables you to set attributes for the xsl:sort statement.
Attributes control the way in which the sort is executed. For example, if you select
the 'order' Attribute, you can then select ascending or descending for the sort
order. Select the attributes desired for the sort.

Note:

The default values for attributes are pre-selected in the Set Attributes
dialog. These values are used in the absence of any selected attribute.

For instance, the default for sort order is ascending. You do not have to
explicitly select 'order' Attribute to turn on ascending order.

The xsl:sort statement is added just below the xsl:for-each statement and
before any other nodes under the for-each.

3. To set the element to sort with, drag and drop a node from under the source node-
set to the xsl:sort node. For instance, to sort on USPrice, drag the USPrice node
from under the node-set element Item to the xsl:sort node, as shown in
Figure 40-23.

Chapter 40
Editing an XSLT Map in Map View

40-26

Figure 40-23 Connecting the Source Node-Set to the xsl:sort Node

40.3.4.7.2 To add an xsl:sort statement using drag and drop:
1. In the Components window, select the XSLT Elements page.

2. Expand the Flow Control section. You can click the plus sign (+) next to Flow Control to
expand the section.

3. Drag the sort icon to the top of the element below the for-each node until you can see
the green highlighting, as shown in Figure 40-24.

Figure 40-24 Adding sort to for-each

4. Drop the sort icon while the green highlighting is visible. An xsl:sort node is added as
the sibling node of the highlighted node. In the example shown in Figure 40-24, the
xsl:sort node is added as a sibling of the Item element.

5. To set the element to sort with, drag and drop a node from under the source node-set to
the xsl:sort node. For instance, to sort on USPrice, drag the USPrice node from under
the node-set element Item to the xsl:sort node, as shown in Figure 40-23.

When viewed in the source view, the xsl:sort statement looks similar to the following:

<xsl:for-each select="/ns0:PurchaseOrder/Items/HighPriorityItems/Item">
 <xsl:sort select="USPrice"/>
 <Item>
 <Quantity>
 <xsl:value-of select="Qty"/>
 </Quantity>
 </Item>
</xsl:for-each>

Chapter 40
Editing an XSLT Map in Map View

40-27

40.3.4.8 How to Duplicate XSLT Instructions
Sometimes, you must duplicate XSLT instructions in the target tree. For example, you
may create two for-each statements next to one another to loop over two node-sets in
the source document, or possibly to loop over the same node-set twice.

Other XSLT instructions, such as xsl:if and xsl:sort, can also be duplicated. This
section illustrates creating duplicate instructions using the xsl:for-each statement.
The same process applies to other XSLT instructions.

To duplicate an xsl:for-each statement:

1. Right-click the xsl:for-each node in the target tree and select Duplicate from the
context menu that appears.

The node is duplicated together with its children and mappings. Figure 40-25
shows the duplicate nodes.

Figure 40-25 Duplicating the xsl:for-each Statement

2. Optionally modify the mapping for the xsl:for-each node or change mappings for
nodes below the xsl:for-each node.

40.3.4.8.1 Example: Modifying the Mapping by Changing the XPath Expression
In this example, you modify the duplicate xsl:for-each statement to loop over the
Item nodes under the LowPriorityItems node in the source document. There are
several ways to modify the mappings. The following example discusses one way to
modify the mappings.

If you edit the XPath expression associated with a for-each statement, all relative
mappings under the for-each are automatically updated. Use the following steps to
modify the XPath expression associated with the duplicate for-each statement:

Chapter 40
Editing an XSLT Map in Map View

40-28

1. To edit the XPath expression, double-click the line connected to the second for-each.
This is the blue line in Figure 40-25.

The Edit XPath dialog appears. The XPath Expression field displays the XPath
expression corresponding to the map.

2. Change HighPriorityItems to LowPriorityItems in the XPath Expression. Click OK.

The xsl:for-each statement and all its children now reference the LowPriorityItems/
Item node-set.

40.3.4.8.2 Example: Modifying the Mapping by Deleting and Re-Creating It
To modify the mapping for the for-each statement, you can also choose to remove the
mapping and re-create it. The following steps illustrate the process to modify the mappings
for the duplicate for-each statement:

1. Right-click the duplicate xsl:for-each node and select Delete Mapping from the context
menu that appears.

The Refactor XPaths dialog appears asking if you want to refactor the XPath expressions
under the for-each statement.

2. Click No to refactoring. This keeps the relative paths, as you plan to apply these relative
paths to a different loop. After you click No, the lines underneath the for-each statement
become temporarily disconnected from the source tree.

Chapter 40
Editing an XSLT Map in Map View

40-29

In the preceding figure, the relative XPath expression assigned to the Quantity
field is Qty. Without the XPath expression on the for-each statement, the relative
path has no Item node to be relative to, and consequently, no reference is found in
the source tree.

Note:

In general, XPath expressions that cannot be resolved to nodes in the
source tree are represented in the center panel. This can sometimes
indicate an issue, as in the preceding case. There is a relative path that
cannot be resolved because of a missing for-each expression above it.

An XPath expression can also be represented in the center pane if the
expression is too complex to determine a source reference node at
design time.

3. Drag and drop a line from the LowPriorityItems/Item node in the source tree to
the duplicate xsl:for-each statement.

The mapping to the Quantity field automatically reconnects to the Qty field under
the LowPriorityItems/Item node, as shown in the following figure.

Chapter 40
Editing an XSLT Map in Map View

40-30

40.3.5 How to Duplicate an Element
In order to duplicate a target node in Map view, the node must have been defined as a
repeating node in the target schema. For certain cases, you can create repeating nodes
using for-each loops, as discussed in the preceding section. In other cases, you may need to
create several independent instances of a node and map data to them through different areas
of the source document.

To duplicate a repeating target node:

1. If the target node text is grayed, and in italics, right-click the node and select Create
Node in XSLT from the context menu that appears.

Figure 40-26 Creating Node in XSLT

2. Right-click the node again and select Duplicate from the context menu that appears. The
node is duplicated.

Figure 40-27 Duplicate Contact Nodes

3. Map the appropriate fields from the source document to the two duplicate elements.

In the following figure, the duplicate Contact nodes in the target tree are mapped to
different areas of the source document. The first Contact node is mapped to the ShipTo
data. The second Contact node is mapped to the BillTo data.

Chapter 40
Editing an XSLT Map in Map View

40-31

40.3.6 How to Delete an Element or Attribute
To delete an element or attribute from the current XSLT Map, the element or attribute
must first exist in the XSLT. Nodes in the target tree that are not grayed, and not in
italics, are nodes that exist in the XSLT. Nodes that are grayed, and in italics, are not
part of the XSLT. Such grayed nodes represent candidate elements and attributes from
the target schema, and cannot be deleted from the display.

To delete a target node that exists in the XSLT, do one of the following:

• Click the target node to select it. Press the Delete key.

• Right-click the target node and select Delete from the context menu that appears.

The node is removed from the XSLT and any mapping to the node is also removed.
The deleted node is not removed from the display. The deleted node becomes gray
and italicized indicating that it is now just a possible target node from the target
schema, and is no longer part of the XSLT. However, if the deleted node was a
duplicate node, or was in a position non-compliant with the target schema, then the
node is removed from the display.

The following figure shows two comment nodes that are part of the XSLT map.

Chapter 40
Editing an XSLT Map in Map View

40-32

If you right-click the second Comment node and select Delete from the context menu, the
duplicate node is removed from the XSLT and the display, as shown in the figure below.

Next, you right-click and remove the remaining Comment node. The node is not removed
from the display, but is removed from the XSLT and its appearance changes to gray and
italicized, as shown in the following figure.

40.3.7 How to Remove Mappings from an Element or Attribute
To remove the mapping to any target node, right-click the node in the target tree and select
Delete Mapping from the context menu that appears. Alternatively, you can select the line
representing the mapping, and press the Delete key.

When you remove a mapping in Map View, the node that was mapped to is not removed from
the XSLT. To remove the node, right-click and select Delete from the context menu that
appears. If only the mappings are removed and the node is not, the XSLT generates an
empty node when executed.

40.4 Editing an XSLT Map in XSLT View
This section discusses basic editing using the XSLT pane in XSLT View. The following list
includes the major differences between editing in XSLT View and editing in Map View:

• XSLT View does not provide a merged view of the XSLT nodes and the target schema.
The right target pane is divided into two panes. The top pane is called the XSLT pane
and the lower pane is called the target pane. If no target schema is defined, then the
lower pane is not shown.

• In order to map to target nodes, these nodes must be explicitly added to the XSLT pane
before they can be mapped. The editor provides several ways to do this. These are
discussed in the subsequent sections.

Chapter 40
Editing an XSLT Map in XSLT View

40-33

• The complete range of XSLT 1.0 instructions is available in XSLT View. These
instructions can be added anywhere within the XSLT panel, so long as their
position is consistent with the XSLT specification.

• A number of advanced features are available in XSLT View, such as template rules
(matched templates), named templates, import/include, and so on. These
advanced features are discussed later in this chapter.

40.4.1 How to Add a Target Element or Attribute Before Mapping
Before mapping to target elements and attributes, the element or attribute must be
explicitly added to the XSLT pane. This section contains the following topics:

• How to Add Elements and Attributes from the Target Schema

• How to Add Literal Elements and Attributes When No Target Schema Is Present

• How to Create an Empty Node in the Output Document

40.4.1.1 How to Add Elements and Attributes from the Target Schema
If the target schema is present, you can add elements and attributes from the target
tree to the XSLT pane.

You can either use the context menu for an XSLT element or attribute to add a related
element/attribute, or drag and drop the desired element/attribute from the target tree to
the XSLT tree.

If elements are placed in positions that are inconsistent with the target schema, or if
the editor cannot yet determine if the element is valid at the location due to an
incomplete XSLT map, then a question mark is shown over the element's icon. The
following figure shows an XSLT tree where the Item element is marked with a question
mark.

40.4.1.1.1 To add elements and attributes when target schema is present:
1. Right-click the element, in the XSLT pane, that is to contain the child element(s) or

attribute(s). A context menu appears.

Chapter 40
Editing an XSLT Map in XSLT View

40-34

Note:

This action can also be executed from Map View if the selected node exists in
the XSLT.

In Map View, you can also add an empty XSLT node by choosing Create Node
in XSLT. See How to Create an Empty Node in the Output Document for more
details.

2. Select Add Children From Schema. A submenu appears with choices that are
consistent with the target schema. Figure 40-28 shows the Add Children From Schema
submenu.

Figure 40-28 Selecting Child Elements/Attributes to Add

3. Select the element name or attribute name to add. To add all child elements or attributes,
select All Elements or All Attributes. Select All Required to add all required child
elements or attributes.

40.4.1.1.2 To drag and drop elements and attributes from the target schema tree:
• To insert an element as a child of an existing element:

Drag the target element, or a selected range of elements, from the target pane to the left
of the desired element in the XSLT tree. A green highlight appears to indicate that the
element is being inserted as a child. Upon drop, the child is appended to the list of
children.

If the green highlight does not appear at a particular position, then it means it is invalid to
insert the element at that position.

Chapter 40
Editing an XSLT Map in XSLT View

40-35

• To insert an element as a sibling after an existing element:

Drag the target element, or a selected range of elements, from the target pane to
the bottom of the existing element in the XSLT tree. A green highlight appears to
indicate that the element is being inserted as a sibling. Upon drop, the sibling is
appended after the existing element.

• To insert an element as a sibling before an existing element:

Drag the target element, or a selected range of elements, from the target pane to
the top of the existing element in the XSLT tree. A green highlight appears to
indicate that the element is being inserted as a sibling. Upon drop, the sibling is
appended before the existing element.

• To insert an element as a parent of an existing element:

Drag the target element, or a selected range of elements, from the target pane to
the right of the existing element in the XSLT tree. A green highlight appears to
indicate that the element is being inserted as a parent. Upon drop, the element is
inserted as the parent of the existing element.

40.4.1.2 How to Add Literal Elements and Attributes When No Target Schema
Is Present

This section applies to both XSLT and Map views.

40.4.1.2.1 To add a literal element when there is no target schema:
1. Right-click an element in the XSLT pane. The context menu for the element

appears.

Chapter 40
Editing an XSLT Map in XSLT View

40-36

2. Select the relative position of the new literal element relative to the existing element. You
can create the literal element as the child, sibling, or parent of the existing element.
Figure 40-29 shows the available options (Append Child, Insert Parent, Insert Sibling
Before, Insert Sibling After).

Figure 40-29 Adding a Literal Element to the XSLT Pane

3. Select Literal Element from the submenu. The Define Element dialog appears.

4. Under Local Name, enter a name for the literal element. You can optionally specify a
namespace for the element.

5. Click OK to close the Define Element dialog.

40.4.1.2.2 To add a literal attribute when there is no target schema:
1. Right-click an existing literal element in the XSLT pane. The context menu for the literal

element appears.

2. Select Append Child > Literal Attribute. The Define Element dialog appears.

3. Under Local Name, enter a name for the literal attribute. You can optionally specify a
namespace for the attribute.

4. Click OK to close the Define Attribute dialog.

40.4.1.3 How to Create an Empty Node in the Output Document
When you use the methods discussed under the preceding sections (How to Add Elements
and Attributes from the Target Schema and How to Add Literal Elements and Attributes When
No Target Schema Is Present) to add nodes to the XSLT pane, these nodes are created as
empty nodes unless you map them to source nodes. Also, when you add a complex node to
the XSLT pane, all required nodes under the complex node are created automatically.

You can also set the XSL Map Initialization Options in the XSL Maps: XSL Editor
preferences page to generate empty nodes when a map is created. See How to Set the XSL
Editor Preferences for more information.

Chapter 40
Editing an XSLT Map in XSLT View

40-37

40.4.2 How to Perform a Value Copy by Linking Nodes
To copy the value of an attribute or leaf-element in the source to an attribute or leaf-
element in the XSLT pane, drag a line from the source node to the XSLT node. A
green highlighted line appears as you are dragging and dropping. When you complete
the drop, a line is drawn connecting the source and target nodes.

Figure 40-30 shows the XSLT view where the PurchaseOrder/ID source element is
mapped to the Invoice/ID XSLT element. A line connects the source and XSLT node.

Figure 40-30 Performing a Value Copy

40.4.3 How to Insert an xsl:valueof Statement
When you map a source element to an XSLT element, as described in the preceding
section, an implicit xsl:valueof statement is created in the XSLT.

In XSLT View, you can explicitly create multiple xsl:valueof elements for an XSLT
element. The resultant value of the XSLT element is the concatenation of the individual
xsl:valueof values.

To create an xsl:valueof element for an XSLT element:

1. Right-click the literal element in the XSLT pane. The context menu appears.

2. Select Append Child > XSL > value-of from the context menu. The Set Attributes
dialog box appears.

3. Optionally select 'disable output escaping' Attribute. Click OK.

The xsl:value-of element is inserted.

4. Map the xsl:value-of element to a source element just as you map a literal
element. This is described in the preceding section.

If an xsl:value-of element is added to a literal element that has no mapping, the
xsl:value-of statement appears under the literal element until it is mapped. After you
map the xsl:value-of element, the editor hides the xsl:value-of statement under
the literal element and shows only the line indicating the mapping.

Chapter 40
Editing an XSLT Map in XSLT View

40-38

If you add multiple xsl:value-of statements to the literal element, then all xsl:value-of
statements are explicitly shown under the literal element, and mapping lines can be
separately drawn to each xsl:value-of element.

40.4.4 How to Set a Literal Text Value for an XSLT Node
To set a literal text value for an XSLT node:

1. Right-click the node in the XSLT pane. Select Edit Text Value from the context menu that
appears.

The Set Text dialog appears.

2. Enter the text value to be assigned to the node. Do not enclose the text in quotation
marks.

3. Click OK.

A yellow T icon appears next to the node indicating that a text value has been set for the
item. If you move the mouse cursor over the node, the corresponding text appears.

40.4.5 How to Set a Literal Text Value Using an xsl:text Instruction
To set the value for a literal element using the xsl:text instruction:

1. Right-click the literal element in the XSLT pane. The context menu appears.

2. Select Append Child > XSL > text from the context menu. The Set Attributes dialog box
appears.

3. Optionally select 'disable output escaping' Attribute. Click OK.

The xsl:text element is inserted.

4. Right-click the newly inserted xsl:text element and select Edit Text Value from the
context menu that appears.

The Set Text dialog box appears.

5. Enter the text value to be assigned Do not enclose the text in quotation marks.

6. Click OK.

A yellow T icon appears next to the xsl:text node indicating that a text value has been
set for the element. If you move the mouse cursor over the node, the corresponding text
appears.

7. To change the text value at any time, right-click the xsl:text element again and select
Edit Text Value from the context menu that appears.

40.4.6 How to Add XSLT Statements
This procedure applies to XSLT View only. XSLT statements can be added using the
Components window or context menu.

40.4.6.1 To add an XSLT element using the context menu:
1. Right-click an element in the XSLT pane. The context menu for the element appears.

Chapter 40
Editing an XSLT Map in XSLT View

40-39

2. Select the relative position of the new element relative to the existing element. You
can create the literal element as the child, sibling, or parent of the existing
element. The available options are Append Child, Insert Parent, Insert Sibling
Before, and Insert Sibling After.

3. Select XSL from the submenu. A list of available XSLT elements valid for the
position is displayed. Figure 40-31 shows a sample XSL selection.

Figure 40-31 Inserting an XSLT Element

4. Select the desired XSLT element.

Depending on the element selected, a dialog may prompt you for attribute values.
If so, then enter the attribute values, and click OK.

5. The XSLT element gets added to the tree.

The attributes of the added element are not explicitly shown in the XSLT tree.
Hover your mouse over the element to see its attributes in the tooltip text.
Alternatively, select the XSLT element to view and edit the element properties in
the Properties window.

40.4.6.2 To add XSLT elements from the Components window:
1. Make sure that the Components window is visible. The default location is the top

right hand corner of Oracle JDeveloper.

2. If the Components window is not visible, select Components from the Window
menu.

3. Select the XSLT Elements page.

4. Select the desired section under XSLT Elements. Drag the desired XSLT element
to the XSLT pane.

Chapter 40
Editing an XSLT Map in XSLT View

40-40

• To insert the XSLT element as a child of an existing element:

Drag the XSLT element from the Components window to the left of the existing
element in the XSLT tree. A green highlight appears to indicate that the XSLT
element is being inserted as a child. Upon drop, the XSLT element is appended to
the end of any existing children.

If the green highlight does not appear at a particular position, then it means it is
invalid to insert the element at that position.

• To insert the XSLT element as a sibling after an existing element:

Drag the XSLT element from the Components window to the bottom of the existing
element in the XSLT tree. A green highlight appears to indicate that the XSLT
element is being inserted as a sibling. Upon drop, the XSLT element is appended
after the existing element.

• To insert the XSLT element as a sibling before an existing element:

Drag the XSLT element from the Components window to the top of the existing
element in the XSLT tree. A green highlight appears to indicate that the XSLT
element is being inserted as a sibling. Upon drop, the XSLT element is appended
before the existing element.

• To insert the XSLT element as a parent of an existing element:

Drag the XSLT element from the Components window to the right of the existing
element in the XSLT tree. A green highlight appears to indicate that the XSLT
element is being inserted as a parent. Upon drop, the XSLT element is added as the
parent of the existing element.

Chapter 40
Editing an XSLT Map in XSLT View

40-41

Depending on the XSLT element selected, a dialog may prompt you for attribute
values. If so, then enter the attribute values, and click OK.

5. The XSLT element gets added to the tree.

The attributes of the added element are not explicitly shown in the XSLT tree.
Hover your mouse over the element to see its attributes in the tooltip text.
Alternatively, select the XSLT element to view and edit the element properties in
the Properties window.

40.4.7 How to Set the Value of an XSLT Expression Attribute
Many XSLT instructions contain special attributes that are interpreted as XPath
expressions. These expression attributes are generally named select or test. For
example, the xsl:for-each element contains a select attribute and the xsl:if
element contains the test attribute.

Such attributes can be defined by XPath expressions. You can set the values for these
attributes using drag and drop to the XSLT element in the XSLT pane (in XSLT View)
or target pane (in Map View).

To set the value of an XSLT expression attribute using drag and drop from the source
tree, drag a line from the desired node in the source tree to the desired XSLT element
in the XSLT pane. A line appears connecting the source tree node to the XSLT
element.

The appropriate expression attribute is inserted for the XSLT instruction in the source
view. For example:

<xsl:if test="/ns0:PurchaseOrder/BillTo/Address/@country">

The preceding example code is formed by dragging the country attribute in the source
schema to the xsl:if statement in the XSLT tree. The code causes the if condition to
test for the presence of the country attribute in the source schema.

40.4.8 How to Duplicate an Element
To duplicate a literal element in the XSLT pane that is defined as a repeating node in
the target schema, use the instructions under How to Duplicate an Element. The
instructions are same as those for the Map View.

If no target schema is defined, you can duplicate any node in XSLT View, except the
root node.

If a node needs to be duplicated, but the node is not defined as a repeating node in
the target schema, you can create a duplicate node by explicitly creating a literal
element as follows:

To duplicate a literal element that is not defined as a repeating node in the target
schema:

1. In the XSLT pane, right-click the element to be duplicated. The context menu
appears.

2. Select Insert Sibling After -> Literal Element from the context menu. The Define
Element dialog appears.

3. Enter the element name and namespace of the node to be duplicated. Click OK.

Chapter 40
Editing an XSLT Map in XSLT View

40-42

40.4.9 How to Delete an Element or Attribute
This feature is available in both the XSLT and Map views. When using Map View, the action
is to be performed in the target pane.

To delete a target node that exists in the XSLT, do one of the following:

• Right-click the node in the XSLT pane. Select Delete from the context menu that
appears.

• Click the node in the XSLT pane to select it. Press the Delete key.

The node is removed from the XSLT pane together with any mappings to the node.

40.4.10 How to Move an Element
You can move an element by dragging it from one position and dropping it to another position
in the XSLT pane. The element can be moved to become a sibling, parent, or child of another
element. You cannot move an element in Map View.

In Figure 40-32, the AccountNumber element is at an incorrect location in the XSLT pane. To
make it consistent with the target schema, you must move the AccountNumber element under
the BilledToAccount element.

Figure 40-32 AccountNumber Element

Drag the AccountNumber node in the XSLT pane to the left of the BilledToAccount node until
the green highlight appears, as shown in Figure 40-33. The green highlight indicates that the
AccountNumber element is dropped as a child of BilledToAccount.

Chapter 40
Editing an XSLT Map in XSLT View

40-43

Figure 40-33 Dragging the AccountNumber Node

Drop the element while the green highlight is visible. The AccountNumber node is
repositioned under the BilledToAccount node, as shown in Figure 40-34.

Figure 40-34 Repositioned AccountNumber Node

40.4.11 How to Remove Mappings from an Element or Attribute
To remove the mapping to any XSLT node, right-click the node and select Delete
Mapping from the context menu. Alternatively, you can select the line representing the
mapping, and press the Delete key. You can use the preceding methods in both the
Map and XSLT views.

40.5 Using XPath Expressions
How to Perform a Value Copy by Linking Nodes and How to Perform a Value Copy by
Linking Nodes discussed how to use the drag and drop action to create a mapping
between a source and target element or attribute. The drag and drop action creates an
XPath expression in the XSLT that references specific nodes in the source document.

For example, the following XSLT code is generated by mapping a source element to a
target element:

<ID>
 <xsl:value-of select="/ns0:PurchaseOrder/ID"/>
</ID>

The preceding code contains an xsl:value-of statement. The select attribute for this
statement contains an XPath expression (/ns0:PurchaseOrder/ID)that references the
source node being mapped.

This XPath expression represents a location path expression. XPath expressions can
also be complex and include XPath functions and operators.

Chapter 40
Using XPath Expressions

40-44

For example, the following code concatenates the value of the source element /
PurchaseOrder/ID to the value of the attribute, /PurchaseOrder/@PONumber. It then assigns
the result to the target element, <ID>.
<ID>
 <xsl:value-of select="concat(/ns0:PurchaseOrder/ID,/ns0:PurchaseOrder/@PONumber)"/>
</ID>

In the preceding code, the value in the select attribute is the XPath expression. The XPath
expression uses the concat function to concatenate two source node values.

The XSLT Map Editor provides a number of ways to enter more complex XPath expressions
than those that are created by simple drag and drop actions. The following methods for
creating XPath expressions are available in both Map and XSLT View.

40.5.1 How to Modify an Existing Source to Target Mapping
You can modify the XPath expression for a mapping created from a drag and drop action
between a source and target node.

40.5.1.1 To edit an XPath expression using the Edit XPath dialog
1. Double-click the line representing the source to target mapping. The Edit XPath dialog

appears.

2. Edit the XPath Expression, as needed.

For example, if you want the Description field to contain the first Comment that occurs
in the source, you add a predicate to the expression with the index of the first Comment.

Chapter 40
Using XPath Expressions

40-45

Click Help if you need more information on editing the XPath expression.

3. Click OK in the Edit XPath dialog.

40.5.1.2 To edit an existing XPath expression using the Properties window
1. If the Properties window is not visible, select Window > Properties from the

Oracle JDeveloper menu bar.

The default location of the Properties window is below the XSLT Map Editor.

2. Click to select the line representing the source to target mapping. The Properties
window shows the XPath expression corresponding to the selected map line.

3. Edit the XPath Expression, as needed.

For example, if you want the Description field to contain the first Comment that
occurs in the source, you add a predicate to the expression with the index of the
first Comment.

Chapter 40
Using XPath Expressions

40-46

Click the Help icon in the Properties window, if you need more information on editing the
XPath expression.

4. To update the XSLT with the changes, click the Apply Changes icon in the upper left
corner of the Properties window. Alternatively, click anywhere in the XSLT Map Editor.

40.5.1.3 How to Add an XPath Function to an Existing XPath Expression
You can drag and drop a function onto an existing source to target mapping. When you drop
a function on a map, the existing location path expression is used to populate the first
parameter of the function that is dropped.

In the following steps, you change the expression you edited in the preceding section (How to
Modify an Existing Source to Target Mapping). You use the concat function to concatenate
the first Comment in the source with the Description in the source.

To add an XPath function to an existing XPath expression

1. If the Components window is not visible, select Window > Components from the Oracle
JDeveloper menu bar.

2. In the Components window, select General XPath. Expand the String Functions section
by clicking the plus sign (+) next to it.

3. Drag the concat function icon from the String Functions section to the line representing
the existing map that you want to modify. The line turns green, indicating that you can
drop the function.

4. Drop the concat function on the line. The function is inserted into the map, and the first
parameter of the concat function is set to the value of the existing XPath expression.

Chapter 40
Using XPath Expressions

40-47

Note:

If a function does not get added to the map, the function may not have
any parameters. For example, if you drag and drop the xp20:current-
date function onto the existing line, it has no effect because the
xp20:current-date function takes no parameters.

40.5.2 How to Modify an Existing Function XPath Expression in the
Canvas Pane

XPath functions are shown in the canvas panel and can be edited in several ways.
Continuing our example from the previous section (How to Add an XPath Function to
an Existing XPath Expression), you set the value of the second parameter of the
concat function in several ways.

40.5.2.1 To set a function parameter using drag and drop:
1. Drag a line from the Description element in the source tree to the left side of the

concat function icon in the canvas pane. A pop-up panel appears with connectors
for each possible parameter in the function.

2. Drop the line on the desired connector. In the preceding figure, you drop the line
on the second connector, which represents the second required parameter. You
can also choose to drop the line on the third optional parameter, and fill in the
second parameter value later.

The parameter is added to the function. The warning icon disappears after all
required parameters have been added.

Chapter 40
Using XPath Expressions

40-48

40.5.2.2 To delete a function parameter:
To delete a function parameter, select the line representing the input to the function
parameter and press the Delete key. Alternatively, you can right-click the line and select
Delete from the context menu.

40.5.2.3 How to Edit a Function as a Full XPath Expression
You can edit an XPath function as a textual XPath Expression using the XPath Edit dialog or
the XPath Edit panel in the Properties Window.

40.5.2.3.1 To edit a function as a textual XPath expression using the XPath Edit dialog:
1. Double-click the expression folder in the canvas pane, in the area bordering the function

icon. The Edit XPath dialog appears.

If you double-click the center icon instead, it brings up the Edit Function dialog.

2. Edit the XPath Expression, as desired. To add the XPath location path for the
Description node, for example, place the cursor after the first parameter. Press Ctrl +
Space and double-click /ns0:PurchaseOrder to select it.

Chapter 40
Using XPath Expressions

40-49

/ns0:PurchaseOrder is inserted in the expression and the drop-down menu is
populated with the possible children of the /ns0:PurchaseOrder node.

3. Double-click the Description entry to select it. You can also put the mouse cursor
on an entry, and press the Enter key to select it.

4. Click OK in the Edit XPath dialog.

40.5.2.3.2 To edit a function as a textual XPath expression using the Properties Window:
1. If the Properties window is not visible, select Window > Properties from the

Oracle JDeveloper menu bar.

The default location of the Properties window is below the XSLT Map Editor.

2. Click the expression folder in the canvas pane, in the area bordering the function
icon. The full XPath Expression for the function appears in the right pane of the
Properties window.

3. Edit the XPath Expression, as desired. You can also refer to Steps 2 to 3 in the
preceding procedure.

4. To update the XSLT with the changes, click the Apply Changes icon in the upper
left corner of the Properties window. Alternatively, click anywhere in the XSLT Map
Editor.

Chapter 40
Using XPath Expressions

40-50

40.5.2.4 How to Edit Individual Function Parameters
The XSLT Map Editor can parse a function into its corresponding parameters, so that the
XPath for each parameter can be edited in a separate XPath Expression field.

40.5.2.4.1 To edit the parameters of a function using the Edit Function dialog:
1. Double-click the function icon in the canvas pane. The Edit Function dialog appears.

Make sure you double-click the center function icon. Double-clicking the area bordering
the function icon brings up the Edit XPath dialog.

2. Edit the function parameters individually, as desired. Optionally click Help for more
information about editing the parameters.

3. Click the Add icon, represented by the green plus sign (+), to optionally add a new
parameter.

4. Click OK after you finish editing the parameters.

40.5.2.4.2 To edit the parameters of a function using the Properties window:
1. If the Properties window is not visible, select Window > Properties from the Oracle

JDeveloper menu bar.

The default location of the Properties window is below the XSLT Map Editor.

2. Click the center area of the function icon in the canvas pane. The function parameters
appear in the right pane of the Properties window.

3. Edit the function parameters, as desired. Optionally click the Help icon for more
information about editing the parameters.

4. Click the Add icon, represented by the green plus sign (+), to optionally add a new
parameter.

5. To update the XSLT with the changes, click the Apply Changes icon in the upper left
corner of the Properties window. Alternatively, click anywhere in the XSLT Map Editor.

Chapter 40
Using XPath Expressions

40-51

40.5.3 How to Create a New Function in the Canvas Pane
There are several ways to create a new function in the XSLT canvas pane. These are
described in the sections that follow.

40.5.3.1 To create an XPath Function using the canvas context menu
1. Right-click a blank area in the center canvas pane. Select Create XPath from the

context menu that appears.

2. Select the desired function from the Create XPath submenu. For example, select
the current-date function from the Date Functions category.

An Information dialog may appear, prompting you to connect the function to a
target node. Click OK.

The function icon appears on the canvas pane.

3. Map the function to a target node by dragging a line from the function to the target
node.

Chapter 40
Using XPath Expressions

40-52

4. If the function requires parameters, edit the parameters using one of the methods
discussed in How to Modify an Existing Function XPath Expression in the Canvas Pane.

40.5.3.2 To create an XPath function using the Components window
1. If the Components window is not visible, select Window > Components from the Oracle

JDeveloper menu bar.

2. In the Components window, select General XPath or Advanced XPath. Select a
category of functions, for example, String Functions.

3. Drag the desired function from the Components window to the center canvas pane of the
XSLT Map Editor.

4. Map the function to a target node by dragging a line from the function to the target node.

5. If the function requires parameters, edit the parameters using one of the methods
discussed in How to Modify an Existing Function XPath Expression in the Canvas Pane.

40.5.3.3 To create an XPath function using the target tree context menu
1. Right-click the target tree node (Map View) or the XSLT tree node (XSLT View) to which

the XPath function needs to be assigned. The context menu appears.

2. Select Create XPath. Select the desired XPath function from the submenu that appears.

The function is created in the canvas pane and linked to the target/XSLT node for which it
was created.

3. If the function requires parameters, edit the parameters using one of the methods
discussed in How to Modify an Existing Function XPath Expression in the Canvas Pane.

40.5.3.4 To create an XPath function by dragging it to the target tree
1. If the Components window is not visible, select Window > Components from the Oracle

JDeveloper menu bar.

2. In the Components window, select General XPath or Advanced XPath. Select a
category of functions, for example, String Functions.

3. Drag the desired function from the Components window to the target tree node (Map
View), or XSLT tree node (XSLT View), to which the function is to be assigned. A green
highlight appears to the left of the target/XSLT tree node.

Chapter 40
Using XPath Expressions

40-53

4. Drop the function while the green highlight is visible.

The function is created in the canvas pane and linked to the target/XSLT node
where the function was dropped.

5. If the function requires parameters, edit the parameters using one of the methods
discussed in How to Modify an Existing Function XPath Expression in the Canvas
Pane.

40.5.4 How to Chain Functions Together
To chain one function to another:

Complex expressions can be built by chaining functions (that is, mapping the output of
one function to the input of another). For example, to remove all leading and trailing
spaces from the output of the concat function, perform the following steps:

1. Drag the left-trim and right-trim functions into the border area of the concat
function.

2. Chain them as shown in Figure 40-35 by dragging lines from the output side of
one function to the input side of the next function.

Chaining can also be performed by dragging and dropping a function onto a
connecting link.

Figure 40-35 Chaining Functions

40.5.5 How to Remove an XPath Expression
To remove an XPath Expression:

1. Select the XPath expression/function icon in the Canvas pane.

2. Right-click the icon and select Delete from the context menu.

Chapter 40
Using XPath Expressions

40-54

40.5.6 How to Import User-Defined Functions
You can create and import a user-defined Java function if you have complex functionality that
cannot be performed in XSLT or with XPath expressions.

Follow these steps to create and use your own functions. External, user-defined functions
can be necessary when logic is too complex to perform within the XSL map.

To import user-defined functions:

1. Code and build your functions.

The XSLT Map Editor extension functions are coded differently than the Oracle BPEL
Process Manager extension functions. Two examples are provided in the
SampleExtensionFunctions.java file of the mapper-107-extension-functions sample
scenario. You can download this and other samples on the Sample Code site.

Each function must be declared as a static function. Input parameters and the returned
value must be declared as one of the following types:

• java.lang.String
• int
• float
• double
• boolean
• oracle.xml.parser.v2.XMLNodeList
• oracle.xml.parser.v2.XMLDocumentFragment
The text for these functions is as follows:

// SampleExtensionFunctions.java
package oracle.sample;
/*
This is a sample XSLT Map Editor User Defined Extension Functions implementation
class.
*/
public class SampleExtensionFunctions
{
 public static Double toKilograms(Double lb)
 {
 return new Double(lb.doubleValue()*0.45359237);
 }
 public static String replaceChar(String inputString, String oldChar, String
 newChar)
 {
 return inputString.replace(oldChar.charAt(0), newChar.charAt(0));
 }
}

2. Create an XML extension function configuration file. This file defines the functions and
their parameters.

This file must have the name ext-mapper-xpath-functions-config.xml. See Creating
User-Defined XPath Extension Functions for more information on the format of this file.
The following syntax represents the functions toKilograms and replaceChar as they are
coded in Step 1.

Chapter 40
Using XPath Expressions

40-55

<?xml version="1.0" encoding="UTF-8"?>
<soa-xpath-functions version="11.1.1"
 xmlns="http://xmlns.oracle.com/soa/config/xpath" xmlns:sample=
"http://www.oracle.com/XSL/Transform/java/
oracle.sample.SampleExtensionFunctions"
 >
 <function name="sample:toKilograms">
 <className>oracle.sample.SampleExtensionFunctions</className>
 <return type="number"/>
 <params>
 <param name="pounds" type="number"/>
 </params>
 <desc>Converts a value in pounds to kilograms</desc>
 </function>
 <function name="sample:replaceChar">
 <className>oracle.sample.SampleExtensionFunctions</className>
 <return type="string"/>
 <params>
 <param name="inputString" type="string"/>
 <param name="oldChar" type="string"/>
 <param name="newChar" type="string"/>
 </params>
 <desc>Returns a new string resulting from replacing all
occurrences
 of oldChar in this string with newChar</desc>
 </function>
</soa-xpath-functions>

Some additional rules apply to the definitions of XSLT extension functions:

• The functions need a namespace prefix and a namespace. In this sample,
they are sample and http://www.oracle.com/XSL/Transform/java/
oracle.sample.Sam pleExtensionFunctions.

• The function namespace must start with http://www.oracle.com/XSL/
Transform/java/ for extension functions to work with the Oracle XSLT
processor.

• The last portion of the namespace, in this sample
oracle.sample.SampleExtensionFunctions, must be the fully qualified name
of the Java class that implements the extension functions.

• The types and their equivalent Java types can be used for parameter and
return values:

XML Configuration File Type Name Java Type

string java.lang.String
boolean boolean
number int, float, double
node-set oracle.xml.parser.v2.XMLNodeList
tree oracle.xml.parser.v2.XMLDocumentFrag

ment

3. Create a JAR file containing both the XML configuration file and the compiled
classes. The configuration file must be contained in the META-INF directory for the
JAR file. For the example in this section, the directory structure is as follows with
the oracle and META-INF directories added to a JAR file:

Chapter 40
Using XPath Expressions

40-56

• oracle
– sample (contains the class file)

• META-INF
– ext-mapper-xpath-functions-config.xml

The JAR file must then be registered with Oracle JDeveloper.

4. Go to Tools > Preferences > SOA.

5. Click the Add button and navigate to and select your JAR file.

6. Restart Oracle JDeveloper.

New functions appear in the Components window under the User Defined page in the
User Defined Extension Functions group.

7. To make the functions available in the runtime environment, see How to Deploy User-
Defined Functions to Runtime for details.

40.6 Using Auto Map to Map Complex Nodes
When you map a non-leaf source element to a non-leaf target element, the Auto Map feature
assists you by automatically matching the child source elements to their corresponding target
elements. Auto Map looks at the element names, types, and paths to come up with the
correct mappings. Auto map can also insert xsl:if statements for optional nodes, depending
on your preferences.

The Auto Map feature is available only when a target schema is used. You can use Auto Map
in both Map View and XSLT View.

40.6.1 How to Set Auto Map Preferences
You can specify the behavior of the Auto Map feature using the Preferences dialog. Select
Preferences from the Tool menu. In the navigation tree on the left, select Auto Map under
XSL Maps. Figure 40-36 shows the default settings for the Auto Map preferences.

Chapter 40
Using Auto Map to Map Complex Nodes

40-57

Figure 40-36 Auto Map Preferences

The following list describes the various Auto Map Preference settings that you can
configure:

• Confirm Auto Map Results: If you select this option, Auto Map displays a list of
matching source and target elements prior to automatically mapping these
elements. You can choose the matches that you'd like to be applied.

• Prompt for Preferences before Auto Map: If you select this option, the Auto Map
Preferences dialog appears every time you try to map two complex nodes.

• Mode: Determines whether the Auto Map executes in Basic or Advanced mode.
The mode selection determines the rest of the options that appear in this dialog.

The following are the rest of the options available when Basic Mode is selected:

• Match Elements with Similar Names: Elements with similar names are matched.

• Match Elements with Exact Names: Elements with exactly same names are
matched.

• Match Elements with Exact Types: Only elements with exactly same data types
are matched.

• Match Elements Considering Their Ancestor Names: Element path is
considered along with the element name when matching.

• Insert xsl:if: Determines if xsl:if statements are automatically inserted. The
following settings are used:

– Never: xsl:if statements are not inserted automatically.

– Check source node exists: An xsl:if statement is inserted to check for the
existence of the source node before the node is created in the output.

– Check source node is not empty: An xsl:if statement is inserted to check
that the source node is not empty before creating the node in the output.

Chapter 40
Using Auto Map to Map Complex Nodes

40-58

The following are the rest of the options available when Advanced Mode is selected:

• Ancestor Weight: A number between 0 and 5 indicating the emphasis to be placed on
matching of ancestors. The number 0 corresponds to turning the Match Elements
Considering Their Ancestor Names option off in Basic mode. The number 5 corresponds
to turning the Match Elements Considering Their Ancestor Names option on in Basic
mode.

• Linguistic Weight: A number between 0 and 5 indicating the emphasis to be placed on
matching of element names. The number 0 indicates that the element names need not
match. The number 5 indicates that the element names must be an exact match.

• Type Weight: A number between 0 and 5 indicating the emphasis to be placed on
matching of element names. The number 0 indicates that the element types need not
match. The number 5 indicates that the element types must be an exact match.

• Match Threshold (%): The Auto Map computes a percentage match for each map
(Ancestor, Linguistic, Type), and selects the highest percentage amongst these. If the
highest match is above the threshold percentage, then a match is made.

• Dictionaries: Enables you to add existing dictionaries to the Auto Map. Dictionaries can
be defined from existing maps and used in subsequent maps.

40.6.2 How to Execute an Auto Map
To execute an Auto Map:

1. Drag and drop a complex source node to the target element in the XSLT pane. If you are
using Map View, then you'd drop the source node to a node in the target pane.

2. Depending on your Auto Map Preferences, the Preferences dialog might appear. Select
your Auto Map preferences, and click OK.

3. Depending on your Auto Map Preferences, the Auto Map dialog might appear. Verify the
matches created by the Auto Map, and click OK.

40.7 Checking the Completion Status of the Map
If you are using a target schema for your map, you can check the completion status of the
map at any time. You can do this in both Map View and XSLT View. The completion status
check flags the following:

• All unmapped target elements and attributes. A flag indicates if the target element is a
required element in the target schema.

• Target elements mapped with incomplete XPath expressions. For instance, an XPath
function, mapped to a target node, might be missing a parameter.

• All missing target elements and attributes. A flag indicates if the missing target element is
a required element in the target schema.

To check the completion status of a map, right-click the Canvas (center) pane, and select
Completion Status from the context menu. The Completion Status dialog appears showing
all incomplete target nodes. Clicking a row in the Completion Dialog status selects the
corresponding node location in the XSLT/target tree. Figure 40-37 shows the Completion
Status dialog with a missing node highlighted.

Chapter 40
Checking the Completion Status of the Map

40-59

Figure 40-37 Completion Status Dialog

40.8 Testing the Map
The XSLT Map Editor provides a tool to test the map. To invoke the test tool, right-click
the Canvas pane, and select Test from the context menu. You can use the test tool in
both Map View and XSLT View.

Figure 40-38 demonstrates launching the Test XSL Map dialog.

Figure 40-38 Invoking the Test Dialog

Chapter 40
Testing the Map

40-60

40.8.1 How to Test the Transformation Mapping Logic
The Test XSL Map dialog shown in Figure 40-39 enables you to test the transformation
mapping logic you designed with the XSLT Map Editor. The test settings you specify are
stored and do not need to be entered again the next time you test. Test settings must be
entered again if you close and reopen Oracle JDeveloper.

Figure 40-39 Test XSL Map Dialog

To test the transformation mapping logic:

1. In the Source XML File field, choose to allow a sample source XML file to be generated
for testing or click Browse to specify a different source XML file.

When you click OK, the source XML file is validated. If validation passes, transformation
occurs, and the target XML file is created.

If validation fails, no transformation occurs and a message displays on-screen.

2. Select the Generate Source XML File check box to create a sample XML file based on
the map source XSD schema.

3. Select the Show Source XML File check box to display the source XML files for the test.
The source XML files display in an Oracle JDeveloper XML editor.

If the map has defined parameters, the Parameters With Schema or Parameters
Without Schema table can appear.

Chapter 40
Testing the Map

40-61

a. If the Parameters With Schema table appears, you can specify an input XML
file for the parameter using the Browse button. Select the Generate File
check box to generate a file.

b. If the Parameters Without Schema table appears, you can specify a value by
selecting the Specify Value check box and making appropriate edits to the
Type and Value columns.

4. In the Target XML File field, enter a file name or browse for a file name in which to
store the resulting XML document from the transformation.

5. Select the Show Target XML File check box to display the target XML file for the
test. The target XML file displays in an Oracle JDeveloper XML editor.

6. If you select to show both the source and target XML, you can customize the
layout of your XML editors. Select Enable Auto Layout in the upper right corner
and click one of the patterns.

7. Click OK.

The test results shown in Figure 40-40 appear.

For this example, the source XML and target XML display side-by-side with the
XSL map underneath (the default setting). Additional source XML files
corresponding to the Parameters With Schema table are displayed as tabs in the
same area as the main source file. You can right-click an editor and select
Validate XML to validate the source or target XML against the map source or
target XSD schema.

Figure 40-40 Test Results

Chapter 40
Testing the Map

40-62

40.8.1.1 How to Test XSLT Maps that Use DVM Lookup Functions
You can test an XSLT map that contains DVM lookup functions. If your map uses DVM
lookup functions that reference local files or files in the MDS, and these files are accessible
from your JDeveloper environment, then you need not perform any additional steps.

If your map uses DVM lookup functions that reference files not accessible in your JDeveloper
environment, then you can create local DVM files for testing without requiring to modify the
DVM references in your XSLT. Use the following steps:

1. If you have not already run the XSLT test, execute the test tool once. The test tool
generates the file UnitTestURLs.dvm in the XSLNonDeployedFiles folder, located in the
same folder as your XSLT file.

The UnitTestURLs.dvm file contains mappings between the DVM references in your
XSLT file and DVM references to local test files. For example, if the XSLT file that you are
testing has a reference to the file, oramds:/apps/AIAMetaData/dvm/
CUSTOMERPARTY_STATUSCODE.dvm, but you do not have access to this file in JDeveloper,
then you can create a local DVM lookup file against which the test is performed.

2. Open the UnitTestURLs.dvm file, located in the XSLNonDeployedFiles folder, in
JDeveloper.

3. Under the serverURL column, add the reference for the DVM file that you reference in
your XSLT.

4. Under the testURL column, add the reference to a local file to be used for testing.

5. Save the UnitTestURLs.dvm file.

6. Populate your test DVM file with test data.

7. Execute the test tool. The lookup is performed against the local file. You do not need to
modify your XSLT to point to the local file. The test uses the UnitTestURLs.dvm file to
look up the correct test file for the reference defined in the serverURL column.

40.8.1.2 How to Test XSLT Maps that Use XREF Functions
You can use the local dvm lookup file, called UnitTestXrefFunctionReturn.dvm to emulate the
test. This file is automatically generated when you run the XSLT test for the first time.

The UnitTestXrefFunctionReturn.dvm file includes default responses for all the XREF
functions. This simulates the expected responses when the functions execute correctly. You
may modify the default responses. You can also create different return values for different
calls of the same function when the parameter values are different.

Chapter 40
Testing the Map

40-63

The following figure shows the initial DVM file.

Figure 40-41 The UnitTestXrefFunctionReturn.dvm File

The functionName column specifies the name of the function. To start with, there is
only one entry for each function with the default behavior defined. All XREF functions
execute with this default information. You can optionally create more entries for a given
function, and enter different return values for the function based on the input
parameters.

The returnValue column specifies the return value from the function. This defines
what you would like to see returned from the function.

The other columns define qualifiers that you can use to differentiate one function call
from another, based on the value of a given parameter. Each of these columns define
a parameter available in a given function call. Not all parameters are available in all
functions. When a parameter is not available, it is marked as NA (Not Available) in the
original table.

40.8.1.2.1 Working with returnValue:
The returnValue column can either be defined as a text value, such as SBL_001, or
may be defined by a parameter name. For instance, if we look at the first function,
lookupXRef, this function has a return value of RefColumnValue. As this is the name
of a parameter (RefColumnValue), the value of this parameter is the return value of
the function to the XSLT.

For example, if the call to the lookupXRef function looks like the following:

lookupXRef(oramds:/apps/AIAMetaData/xref/CUSTOMERPARTY_PARTYLOCATIONID.xref",
"COMMON_ID", "COMMON_001", "SBL_ID", false())

Then the value COMMON_001 is returned, as this is the value of the RefColumnValue
parameter that was passed.

For the markForDelete function, the value true is returned, converted to Boolean.

For the lookupXRef1M and lookupPopulatedColumns functions, a node-set is
returned by the function. This node-set contains elements of the following form:

<column name="columnNameHere">columnValueHere</column>

As shown in Figure 40-41, the default value for the lookupXRef1M function is:

Chapter 40
Testing the Map

40-64

:RefColumnName:RefColumnValue:ColumnName:RefColumnValue

This encodes the column names and values for two column nodes that are returned in a
node-set from the function. The first character defines the delimiter to be used in parsing the
information. If your data contains a colon (:), you can use any character as the delimiter that
is not in your test data, by putting that character as the first character and using it to delimit
the data (say, #abc:def#abc:ghi).

For example, if we have the following function call to lookupXRef1M:

lookupXRef1M ("oramds:/mydata", "COMMON_ID", "COMMON_001", "SAP_ID", false())

Then using the default definition, for a return value
of :RefColumnName:RefColumnValue:ColumnName:RefColumnValue, you would receive back
two column elements:

<column name="COMMON_ID">COMMON_001</column>
<column name="SAP_ID">COMMON_001</column>

If you change the line in the DVM to have a returnValue
of :SAP_ID:SAP_001:SBL_ID:SBL_001:ORCL_ID:ORCL_001, then the function returns three
column nodes:

<column name="SAP_ID">SAP_001</column>
<column name="SBL_ID">SBL_001</column>
<column name="ORCL_ID">ORCL_001</column>

40.8.1.2.2 Adding Additional Rows:
You can also add additional rows to the DVM file. You can add additional rows for a function
by providing different input values for the parameters resulting in different return values.

For example, if we have several lookups against the same XREF file, but want to get different
values back from each lookup, we could add the following lines for lookupXRef to the DVM
file:

In determining the correct return value, the design time emulator finds the first matching set
of parameter values by starting at the bottom of the DVM table. The return value
corresponding to the first matching row is returned.

As illustrated in the preceding figure, a call to lookupXRef("oramds:/apps/AIAMetaData/
xref/CUSTOMERPARTY_PARTYLOCATIONID.xref", "COMMON_ID", "COMMON_001", "SBL_ID",
false()), for example, would return the value, SBL_001.

Chapter 40
Testing the Map

40-65

A call to lookupXRef("oramds:/apps/AIAMetaData/xref/
CUSTOMERPARTY_PARTYLOCATIONID.xref", "COMMON_ID", "COMMON_002", "SBL_ID",
false()), on the other hand, does not match any of the last three rows, and returns
the default value COMMON_002 (the value of the parameter, RefColumnValue).

40.8.2 How to Generate Reports
You can generate an HTML report with the following information:

• XSL map file name, source and target schema file names, their root element
names, and their root element namespaces

• Target document mappings

• Target fields not mapped (including mandatory fields)

• Sample transformation map execution

Follow these instructions to generate a report.

• In the Canvas (center) pane, right-click and select Generate Report for XSLT
Map.

The Generate Report dialog appears, as shown in Figure 40-42. If the map has
defined parameters, the appropriate parameter tables appear.

Figure 40-42 The Generate Report Dialog

For more information about the fields, see the online Help for the Generate Report
dialog.

Chapter 40
Testing the Map

40-66

40.8.3 How to Customize Sample XML Generation
You can customize sample XML generation by specifying the following parameters. Select
Preferences > XSL Maps in the Tools main menu of Oracle JDeveloper to display the
Preferences dialog. You can modify the following settings under Sample XML Generation:

• Number of repeating elements

Specifies how many occurrences of an element are created if the element has the
attribute maxOccurs set to a value greater than 1. If the specified value is greater than the
value of the maxOccurs attribute for a particular element, the number of occurrences
created for that particular element is the maxOccurs value, not the specified number.

• Generate optional elements

If selected, any optional element (its attribute minOccurs set to a value of 0) is generated
the same way as any required element (its attribute minOccurs set to a value greater than
0).

• Maximum depth

To avoid the occurrence of recursion in sample XML generation caused by optional
elements, specify a maximum depth in the XML document hierarchy tree beyond which
no optional elements are generated.

40.9 Importing an External XSLT Map
If you have an XSLT map that has been developed with an editor other than JDeveloper, you
can import it into JDeveloper.

To import an external map:

1. From the File main menu, select New > From Gallery.

2. Under Categories, select General > XML. Under Items, select XSL Map from XSL
Stylesheet. Click OK. The XSLT Chooser dialog appears.

3. Select the XSLT file to be imported. Click OK. The file is opened and a default header is
inserted with no source or target schema definition.

4. To create source and target schema definitions, right-click the Canvas (center) pane, and
select Replace/Add Source Schema to set the source schema. Select Replace/Add
Target Schema to set the target schema.

Note:

Imported maps can use Map View only if both the source and target schemas
are defined and there are no XSLT features not supported in Map View.

All maps can use the XSLT View.

40.10 Using Variables and Parameters
You can add variables and parameters to the XSLT map. These are available in both Map
View and XSLT View.

Chapter 40
Importing an External XSLT Map

40-67

40.10.1 How to Add Global Variables
Global variables can be used in both Map View and XSLT View.

To create a global variable:

1. Right-click any node in the source pane and select Add Global Variable from the
context menu. Alternatively, click the Add icon, identified by the green plus sign in
the XSLT toolbar and select Add Global Variable. This option is also available on
the canvas context menu under the Create option.

The Variable dialog appears.

2. Enter a name for the variable, and an optional namespace and prefix if desired.

3. Click OK.

The variable node appears at the top of the XSLT pane or target pane depending
on whether you are using the XSLT View or Map View.

The variable also appears in the source tree within the Variables folder. This
enables you to map from the variable to XPath expressions or nodes in the target
tree.

Note:

You cannot define a structure for the variable in the current release. If the
variable you are referencing represents a complex structure, you can
reference nodes within the structure by entering the appropriate XPath
expression manually.

40.10.2 How to Add Local Variables in Map View
To add a local variable in Map View:

1. Right-click an existing node in the target tree (not grayed/italicized) and select Add
XSL Instruction > variable from the context menu that appears.

The Variable dialog appears.

2. Enter a name for the variable, and an optional namespace and prefix if desired.

3. Click OK.

The variable is added to the target tree, just above the node that you selected.

The variable also appears in the source tree within the Variables folder. This
enables you to map from the variable to XPath expressions or nodes in the target
tree.

To determine if the variable is in scope for a particular XSLT node or XPath
expression, select the target tree node or XPath expression. If the variable is in
scope for the target tree node or XPath expression, then the variable appears in
bold in the source tree. If the variable is not in scope for the selected target tree
node or XPath expression, then the variable appears disabled in the source tree.

Chapter 40
Using Variables and Parameters

40-68

Only scalar variables can be defined. You cannot define the structure of a variable. If the
variable you are referencing represents a complex structure, you can reference nodes
within the structure by entering the appropriate XPath expression manually.

40.10.3 How to Add Local Variables in XSLT View
In XSLT View, local variables are added in the same manner as other XSLT elements. See
How to Add XSLT Statements for details about adding XSLT elements using the context
menu or Components window.

So, for example, if you select Insert Sibling Before > XSL > Variable from the context menu
of an XSLT node, you get the Variable dialog box. Enter the name of the variable, optionally
specify a namespace, and click OK.

The variable appears at the appropriate place in the XSLT/target pane. You can choose to
map XPath expressions to the variable to set the value of the variable.

The variable also appears in the source tree under the Variables folder. This enables you to
map from the variable to other XPath expressions or XSLT nodes.

To determine if the variable is in scope for a particular XSLT node or XPath expression, select
the XSLT node or XPath expression. If the variable is in scope for the XSLT node or XPath
expression, then the variable appears in bold in the source tree. If the variable is not in scope
for the selected XSLT node or XPath expression, then the variable appears disabled in the
source tree.

Only scalar variables can be defined. You cannot define the structure of a variable. If the
variable you are referencing represents a complex structure, you can reference nodes within
the structure by entering the appropriate XPath expression manually.

Note:

If you are using XSLT 1.0, and using a complex variable, it might be necessary to
wrap the variable in the ora:node-set function before an XPath expression can be
used to access nodes within the variable.

For example, say the myVar variable has the following structure:

<xsl:variable name="myVar">
 <A>
 sometext

</xsl:variable>

The text in B can be referenced as ora:node-set($myVar)/A/B. The node-set
function is not necessary in XSLT 2.0.

40.10.4 How to Add Global Parameters
Parameters can be added to the XSLT map editor both as global parameters and named
template parameters.

You can add global parameters when creating an XSLT map. See How to Create an XSLT
Map for more details. You can also add global parameters to an existing map.

Chapter 40
Using Variables and Parameters

40-69

To add a global parameter to an existing map:

1. Right-click any node in the source pane, and select Add Global Parameter from
the context menu.

Alternatively, click the Add icon, identified by the green plus sign, in the XSLT
toolbar, and select Add Global Parameter. Figure 40-43 shows the XSLT toolbar,
which resides at the top of the XSLT Map Editor.

Figure 40-43 Adding Global Parameter from the XSLT Toolbar

You can also right-click anywhere on the canvas (center) pane, and select Create
> Add Global Parameter from the context menu.

The Add Parameter dialog appears. Figure 40-44 shows the Add Parameter
dialog.

Figure 40-44 Add Parameter Dialog

2. Enter a Local Name for the parameter and optionally specify a namespace.

If the parameter is a complex parameter, you can specify a schema and an
element definition for the parameter. Click the Help button in the dialog to get
more information on the individual fields.

Chapter 40
Using Variables and Parameters

40-70

3. Click OK in the Add Parameter dialog to create the parameter.

The parameter node appears at the appropriate place in the target pane (for Map View) or
XSLT pane (for the XSLT View). This enables you to map XPath expressions to the
parameter to set the parameter's default value.

The parameter also appears in the source tree. This enables you to map the parameter to
XPath expressions or nodes in the XSLT tree.

Note:

You can also add parameters like other XSLT elements. See How to Add XSLT
Statements for details about adding XSLT elements using the context menu or
Components window.

40.11 Substituting Elements and Types
You can substitute elements and types in the source and target trees.

Use element substitution when:

• An element is defined as the head of a substitution group in the underlying schema. The
element may or may not be abstract. Any element from the substitution group can be
substituted for the original element.

• An element is defined as an any element. Any global element defined in the schema can
be substituted.

Use type substitution when:

• A global type is available in the underlying schema that is derived from the type of an
element in the source or target tree. The global type can then be substituted for the
original type of the element. Any type derived from an abstract type can be substituted for
that abstract type.

• An element in the source or target tree is defined to be of the type anyType. Any global
type defined in the schema can then be substituted.

Type substitution is supported by use of the xsi:type attribute in XML.

To substitute an element or type in the source and target trees:

1. In the source or target tree, right-click the element for which substitution applies. If you
are working in the XSLT pane, the element you select must exist in the XSLT before
substitution.

2. From the context menu, select Substitute Element or Type. If this option is disabled, no
possible substitutions exist for the element or its type in the underlying schema.

The Substitute Element or Type dialog shown in Figure 40-45 appears.

Chapter 40
Substituting Elements and Types

40-71

Figure 40-45 Substitute Element or Type Dialog

3. Select either Substitute an element or Substitute a type (only one may be
available depending upon the underlying schema).

A list of global types or elements that can be substituted displays in the dialog.

4. Select the type or element to substitute.

5. Click OK.

The element or type is substituted for the originally selected element. This
selection displays differently depending upon the type of substitution and where
the substitution is done, as described in the following sections:

• For Type Substitutions

– Type substitutions in the source tree

The xsi:type attribute is added beneath the original element, as shown in
the preceding figure. An S icon is displayed against the element to
indicate that the node was substituted. You can map from any structural
elements in the substituted type, including the xsi:type attribute.

Note:

Unlike element substitution, only one type substitution at a time
can be displayed in the source tree. However, this does not
prevent you from writing a map that allows the source to switch
between the original type and the substituted type.

If a node is not visible in the source tree, and the node is
mapped to an XPath expression, the XPath expression mapped
to the node is still displayed in the center canvas pane.

Chapter 40
Substituting Elements and Types

40-72

– Type substitutions in the Map View target tree

The xsi:type attribute is added beneath the original element, as shown in the
preceding figure. The attribute is disabled in Map View, and set to the type value
that was selected. An S icon is displayed against the element to indicate that the
node was substituted. You can map to any structural elements in the substituted
type, except the xsi:type attribute.

– Type substitutions in the XSLT pane of the XSLT View

The xsi:type attribute is added beneath the original element. It's value is set to
the type value that was selected, but may be mapped to. An S icon is displayed
against the element to indicate that the node was substituted. You can add any
structural elements through the Add Children From Schema context menu
option.

In some cases, it may be necessary to set the value of the xsi:type field
dynamically using an XPath statement. If you need to dynamically set the value
of the xsi:type, you can use type substitution to temporarily provide access to
the structural elements that are needed for the expected value at runtime.

Add the elements that are needed, then map the desired XPath statement to the
xsi:type attribute to set the value dynamically. As the runtime value for xsi:type
is not available at design time, question-mark icons (?)are displayed on elements
that depend upon the type value, if it is set dynamically.

Chapter 40
Substituting Elements and Types

40-73

– Type substitutions in the target pane of the XSLT View

You can also make substitutions in the target pane of the XSLT View. This
pane represents the target schema document. After you make a type
substitution in the target pane, the xsi:type attribute is added beneath the
original element along with any structural elements associated with that
type, as shown in the following figure.

You can select these elements and drop them into the XSLT pane, as
needed. These elements also show up in the Add Children From
Schema context menu option available in the XSLT pane.

For example, in the following figure, we select all children of a substituted
element (Item).

We then drop the new Item node as a child of the Items node in the XSLT
pane, as shown in the following figure.

Chapter 40
Substituting Elements and Types

40-74

The Item node and its children are added as children of the Items node. You can
similarly create different structures from different substitutions in the target pane.

• For Element Substitutions

– Element substitutions in the source tree

Both the original element and the substituted element are displayed in the source
tree, and are connected by a blue bracket. An S icon is displayed against the
node that is substituted. You can map from any structural elements in the
substituted element.

In the preceding figure, the ns1:ShipFutureDate is substituted for the any
element.

You can also substitute multiple elements at the same time, as shown in the
following figure.

Chapter 40
Substituting Elements and Types

40-75

– Element substitutions in the Map View target tree

As shown in the preceding figure, both the original element and the
substituted element are connected with a blue bracket. An S icon is
displayed against the node that was substituted. You may map to any
structural elements in the substituted element.

– Element substitutions in the XSLT pane of the XSLT View

In order to substitute an element in the XSLT pane, the original element
must be one that can appear in the XSLT. Any elements cannot appear in
the XSLT pane, and must be substituted in the XSLT View target pane, as
discussed in the next section. Abstract elements can be added to the
XSLT pane temporarily, but should not be used as final output. Elements
that are the head of a substitution group and are not abstract can be used
as normal elements, and also be substituted.

In the following figure, the ns0:attachment element is an abstract element
that is also the head of a substitution group. When a substitution is made
for this in the XSLT pane, the element is replaced with the substitution.

After substitution, the abstract element is replaced with the selected
element. The S icon indicates the substitution. You can add child elements
to the substituted element using the Add Children From Schema context
menu. This is depicted in the following figure.

Chapter 40
Substituting Elements and Types

40-76

– Element substitutions in the target pane of the XSLT View

You can also make substitutions in the target pane of the XSLT View. The target
pane represents the target schema document. After making an element
substitution in the target pane, the elements substituted are added beneath the
original element along with any structural elements associated with that type, as
shown in the following figure.

You can select these elements and drop them into the XSLT pane, as needed.
These elements also show up in the Add Children From Schema context menu
option available in the XSLT pane.

6. To remove a substituted node, right-click any node with an S icon and select Remove
Substitution from the context menu.

7. To see all possible nodes where substitution is allowed, right-click the source or target
tree and select Show Substitution Node Icons.

All nodes where substitution is possible are marked with an * icon, as shown in
Figure 40-46.

Chapter 40
Substituting Elements and Types

40-77

Figure 40-46 All Possible Substitutions

8. To hide the icons, right-click and select Hide Substitution Node Icons.

40.12 Using Named Templates
You can add named templates to the XSLT map. These templates can be edited within
the XSLT Map Editor. You can invoke named templates by using the xsl:call-
template instruction.

Named templates can only be used with the XSLT View. Once you add a named
template in an XSLT map, the map can only be opened in XSLT View.

40.12.1 How to Create a Named Template
To create a new named template:

1. Right-click a blank area in the XSLT pane, and select New Named Template from
the context menu. Alternatively:

• Right-click a blank area in the canvas (center) pane, and select Create >New
Named Template from the context menu.

• Right-click any source node in the source pane, and select New Named
Template from the context menu.

• Select the Add button, identified by the green plus (+) icon, in the XSLT
toolbar, and select New Named Template.

The Add Named Template dialog appears.

2. Enter a name for the template. Optionally, set a namespace.

You can click Help to display help on the available options in the dialog.

3. Optionally click the Add button, identified by the green plus (+) icon, to add a
parameter. The Add Parameter dialog appears.

4. Enter a name for the parameter. Optionally, set a namespace.

If the parameter is a complex parameter, you can specify a schema and an
element definition for the parameter. Click the Help button in the dialog to get
more information on the individual fields.

5. Click OK in the Add Parameter dialog to add the parameter.

6. Add any more parameters required for the named template.

7. Click OK in the Add Named Template dialog to create the named template.

Chapter 40
Using Named Templates

40-78

40.12.2 How to Edit a Named Template
When a named template is first created, it is opened for editing in the XSLT Map Editor. You
can switch between editing the named template and editing the XSLT map by using the drop-
down list in the XSLT toolbar.

Figure 40-47 shows a named template being edited in the XSLT Map Editor. The top-left hand
corner has a drop-down list that lets you choose between the XSLT map and the named
template (createStreet).

The source tree, any global parameters, and the named template parameters appear in the
source pane on the left. The XSLT pane on the upper right represents the XSLT associated
with the named template. If a target schema is used, then the target tree appears at the
bottom-right corner of the editor.

Figure 40-47 Editing a Named Template

40.12.3 How to Add Parameters to an Existing Named Template
To add parameters to an existing named template:

1. Ensure that the named template appears in the XSLT Map Editor. To switch to the named
template, select the name of the named template from the drop-down list in the XSLT
toolbar. See Figure 40-47 for an example.

2. Right-click a source node and select Add Parameter from the context menu.
Alternatively:

• Right-click in a blank area on the canvas (center) pane, and select Create > Add
Parameter from the context menu.

• Click the Add button, identified by the green plus (+) icon, on the XSLT toolbar. Select
Add Parameter from the drop-down list that appears.

3. Specify a name for the parameter, and other details, in the Add Parameter dialog. Click
the Help button in the dialog to get more information on the individual fields.

Chapter 40
Using Named Templates

40-79

4. Click OK in the Add Parameter dialog to add the parameter.

40.12.4 How to Invoke a Named Template
A named template is invoked using the xsl:call-template instruction. You can add
the xsl:call-template instruction as a node in the XSLT pane.

To invoke a named template:

1. Add the xsl:call-template instruction as an XSLT node. You can add the
xsl:call-template instruction from the context menu or the Component window.
See How to Add XSLT Statements for details about adding XSLT elements.

The Set Attribute dialog appears.

2. Select the named template to be invoked. Click OK.

The xsl:call-template instruction is added to the XSLT tree.The parameters
(xsl:use-param instructions) are added as child nodes.

3. Map values to the xsl:with-param XSLT nodes to set the values for the
parameters.

40.13 Using Template Rules
Template rules are xsl:template statements with match attributes. Template rules are
supported by the XSLT Map Editor. You can use template rules in the XSLT View only.
Template rules are not supported in the Map View.

The XSLT Map Editor enables you to add template rules in various ways. You can
insert the template rule manually, or refactor an existing mapping to create a template
rule.

When adding the template rule manually, you also need to insert an apply-templates
statement to invoke the template at the appropriate place in the XSLT. When
refactoring an existing map to create a template rule, the apply-templates statement
is inserted automatically.

40.13.1 How to Create a Template Rule
1. Use one of the following methods to invoke the New Template Rule dialog:

• Right-click the node in the source pane that is to serve as the match node.
Select New Template Rule from the context menu that appears.

• Right-click a node in the target pane. Select New Template Rule from the
context menu that appears.

• Right-click a node in the XSLT pane. Select New Template Rule from the
context menu that appears.

• Right-click a blank area in the canvas (center) pane. Select Create > New
Template Rule from the context menu that appears.

• Click the Add icon, identified by the green plus (+) sign, on the XSLT toolbar.
Select New Template Rule from the list of options that appears.

The New Template Rule dialog appears. Figure 40-48 shows the New Template
Rule dialog.

Chapter 40
Using Template Rules

40-80

Figure 40-48 New Template Rule Dialog

The New Template Rule dialog contains the following fields:

• Match Node: Specifies the value for the match attribute in the xsl:template
definition.

The match attribute contains a pattern used to match a node in the input XML
document. The XSLT processor executes the instructions within a template when the
node it is processing matches the pattern defined in the template match attribute.

• Initialization Section: Used to determine the content of the new template rule.

You can choose to select Create empty template to create an xsl:template
instruction with no content. Alternatively, you can select Select nodes to generate in
template to view and select target schema nodes that you would like to create when
the template is executed.

The Select nodes to generate in template option is available only if a target
schema is being used.

• Search by local name: If the Select nodes to generate in template option is
selected, a tree representing the target schema is displayed. This option enables you
to search for a node in the target schema tree using its local name.

The New Template Rule dialog box may have automatically populated fields, depending
on the mode you choose to invoke the dialog. Table 40-1 lists the pre-populated fields
corresponding to each choice. If the method of invocation is not listed, then no fields are
pre-populated.

Chapter 40
Using Template Rules

40-81

Table 40-1 Methods of Invoking the New Template Rule Dialog

Invoked From Automatically Populated Information

A node in the source pane The Match Node is populated with the absolute path to the
source node. You can edit this value, if required.

The Create Emty Template option is pre-selected in the
Initialization section. You may change this selection, if
required.

A node in the target pane The Select nodes to generate in template option is pre-
selected in the Initialization section and the target schema
tree is displayed. The target schema node used to invoke the
New Template Rule dialog is pre-selected in the target tree.
You may change this selection, if desired.

The Match Node field must be populated with the desired
match pattern for the template.

2. Set the Match Node as desired. Here are some common examples:

• /ns0:PurchaseOrder/ns0:ShipToContact/ns0:Region: The template
executes when the processor is processing the node with this path.

• Item: The template executes when the processor is processing any node with
the name Item.

• HighPriorityItems/Items/Item: The template executes when the processor
is processing any Item node that is a child of an Items node that in turn is a
child of a HighPriorityItems node.

3. Select the content desired in the Initialization section. If you know the output nodes
that you would like the template to create, select the Select nodes to generate in
template option, and select the output nodes from the target schema tree that is
displayed. You can use the Search by local name field to search within the target
schema tree. You can select multiple nodes in the target tree by clicking each
desired node while holding down the Shift key.

4. Click OK in the New Template Rule dialog to create the template. A new
xsl:template statement is inserted at the end of the XSLT.

5. If you do not have pre-existing apply-templates statement that invokes the
template rule, then insert an appropriate apply-templates statement to invoke the
template rule.

If an apply-templates statement is not present, you can see a warning icon
against the xsl:template statement and question-mark (?) icons against any
nodes within the template. The following figure shows an example:

Chapter 40
Using Template Rules

40-82

In general, the apply-templates statement is inserted at the position where you would
like to generate the nodes contained in the template. For example, in the preceding
figure, the apply-templates statement needs to be inserted at the point where the
Address node and its children need to be created.

After you insert the apply-templates statement to invoke the template rule, the warning
icon and the question mark (?) icons disappear.

40.13.1.1 Example: Creating a Template Rule
As an example, let us create a template rule for an existing map, as shown below:

This example seeks to create a single template that processes the Address information in
the source ShipTo and BillTo elements to create the Address in the ShippedTo and
BilledTo elements in the target. The following steps illustrate the process:

1. Right-click the Address node under the ShipTo or BillTo node in the source pane, and
select New Template Rule from the context menu that appears.

The New Template Rule dialog appears. The Match Node is pre-populated with the path
to the Address node that you selected in the source pane. This match string is specific to
the Address element under ShipTo, but we need to create a template that will process
any Address field in the source document.

Chapter 40
Using Template Rules

40-83

2. Modify the Match Node string to contain only the name Address. This will match
all Address nodes in the source document irrespective of where they appear in
the document.

3. Select the Select nodes to generate in template option. The target schema tree
appears.

When the template rule is invoked, we would like to create the Address element in
the target, along with its children.

4. Select the Address node under the ShippedTo or the BilledTo element, as both
elements have identical structures.

5. To select the children of the Address node, press and hold down the Shift key, and
click the Zip element, which is the last child of the Address element. This selects
the Address element and all its children.

Chapter 40
Using Template Rules

40-84

6. Click OK to create the template rule.

As the rule is not yet invoked anywhere in the map, a warning icon appears against the
template, and the nodes that the template creates have question mark (?) icons against
them.

40.13.1.1.1 Invoking the Template
Next, we need to invoke the template for both the ShipTo and BillTo Address elements in
the source to create the ShippedTo and BilledTo Address elements in the target. We need
to create apply-templates statements in the XSLT at the places where we would like to
create these Address elements. The following steps describe the process.

1. Right-click the Invoice node in the XSLT pane, and select Add Children From Schema
> BilledTo from the context menu that appears. The BilledTo node is inserted along with
its required child nodes.

2. Right-click the Invoice node in the XSLT pane, and select Add Children From Schema
> ShippedTo from the context menu that appears. The ShippedTo node is inserted
along with its required child nodes.

Chapter 40
Using Template Rules

40-85

3. Right-click the ShippedTo/Address node and select Delete. Repeat the same for
the BilledTo/Address node. We would create the Address nodes using the
template rule that we created.

4. Right-click the ShippedTo node and select Append Child > XSL > apply-
templates from the context menu that appears. The xsl:apply-templates
statement is added.

5. Right-click the BilledTo node and select Append Child > XSL > apply-templates
from the context menu that appears. The xsl:apply-templates statement is
added.

6. Drag a line from the ShipTo/Address node in the source pane to the ShippedTo/
apply-templates node in the XSLT pane. This sets the select attribute of the
apply-templates statement, so that only the ShipTo/Address node is processed
by the xsl:apply-templates statement.

7. Drag a line from the BillTo/Address node in the source pane to the BilledTo/
apply-templates node in the XSLT pane. This sets the select attribute of the
apply-templates statement, so that only the BillTo/Address node is processed
by the xsl:apply-templates statement.

At this point, the warning icon on the template rule disappears, as we have defined
the template invocation. If you click the template rule, the two source Address
nodes processed by the template are highlighted, as illustrated in the following
figure.

Chapter 40
Using Template Rules

40-86

Next, the nodes below the template rule can be mapped.

8. Drag and drop lines from the elements under the BillTo/Address node, or the ShipTo/
Address node, to the appropriate elements under the Address template rule.

As you drag from either source Address (BillTo or ShipTo), lines are drawn to both
source addresses. This is because both BillTo/Address and ShipTo/Address are
context nodes for the template.

The source code for the template now appears as follows:

 <xsl:template match="Address">
 <Address country="{@country}">
 <Street>
 <xsl:value-of select="concat (Street1, ', ' , Street2)"/>
 </Street>
 <City>
 <xsl:value-of select="City"/>
 </City>
 <State>
 <xsl:value-of select="State"/>
 </State>
 <Zip>
 <xsl:value-of select="Zipcode"/>
 </Zip>
 </Address>
 </xsl:template>

Chapter 40
Using Template Rules

40-87

40.13.2 How to Refactor an Existing Map to Create a Template Rule
You can refactor code from an existing template to create a new template rule. This is
useful if the template rule that is created can be reused in multiple places, as was the
case with the Address template rule created in the previous section.

The Create in Template option enables you to refactor a section of XSLT instructions
into a separate template that can be invoked from multiple places.

In the following example, we refactor an existing mapping to create a template rule.

In the following map, the XSLT that processes each Address element in the source is
repeated for each Address node. For easier maintenance, you may want to
consolidate redundant code into reusable templates. This way, if the code is later
updated, you would not have to update multiple copies.

In the preceding map, if the XPath concat expression that creates Street from Street1
and Street2 needs to be modified, there are two copies that would have to be
modified. However, if the concat function exists in a single template that is reused to
produce both Address elements, then only one concat statement needs to be
modified in future.

In the following steps, we refactor the existing mapping to create a single template that
processes the Address elements:

1. Make sure that you are in the XSLT View. You can click XSLT in the top right
corner of the XSLT Map Editor to switch to the XSLT View.

2. Right-click the ShippedTo/Address element in the XSLT pane and select Create
in Template from the context menu that appears.

Chapter 40
Using Template Rules

40-88

The New Template Rule dialog appears.

The Match Node is pre-populated with a suggested match pattern derived from XPath
expressions contained under the selected node in the XSLT pane. The elements selected
in the target schema tree are the Address node and its children. These elements would
be moved to a new template rule.

3. Click OK.

A new template rule is created and an apply-templates statement is inserted in place of
the Address node. The XPath expressions defined for the elements under the Address
node in the XSLT pane are updated to contain relative paths to the Address node
(context node) for the new template.

Chapter 40
Using Template Rules

40-89

Next, we use this template for both the ShipTo and BillTo Address elements.

4. Double-click the new template node. The Set Attributes dialog appears.

5. Under Enter Pattern, enter Address.

6. Click OK.

7. Delete the BilledTo/Address element in the XSLT pane.

8. Right-click the BilledTo node and select Add Child > XSL > apply-templates.
This creates an xsl:apply-templates statement in place of the Address node.

9. Drag a line from the BillTo/Address node in the source pane to the new BilledTo/
apply-templates node in the XSLT pane.

Chapter 40
Using Template Rules

40-90

Both BilledTo and ShippedTo Address elements are now created using a single
template rule.

40.14 Using the Execution View
The Execution View displays the order of execution of your XSLT statements. When creating
complex XSLT that uses named templates and template rules, it can get difficult to determine
the order of execution of XSLT templates. The Execution View helps you troubleshoot issues
by creating an execution tree for your XSLT.

The execution tree shows when the output nodes are created, and shows exactly which
templates are invoked at various points during the XSLT execution.

40.14.1 How to Use Execution View to Prevent or Troubleshoot Runtime
Errors

To launch the Execution View dialog, right-click the canvas (center) pane, and select
Execution View. Alternatively, click the Execution View for XSLT Map button on the XSLT
toolbar.

The Execution View is available in both the Map and XSLT views. However, it is most useful
when the map contains multiple templates and the user needs to figure out as to where the
templates are being invoked.

Figure 40-49 shows the Execution View dialog for an XSLT map that contains multiple
templates. As per the execution view, the root template with match='/' executes first. This is
followed by the creation of the Invoice, Description, and ID nodes. An apply-templates
statement then invokes the ShipTo template followed by an apply-templates statement that
invokes the BillTo template. Other nodes and templates are then created.

Chapter 40
Using the Execution View

40-91

Figure 40-49 Execution View Dialog and Corresponding XSLT Tree

If you click an element in the Execution View tree, the corresponding element is
highlighted in the XSLT tree. For example, as shown in Figure 40-49, if you want to
locate the apply-templates node that invokes the BillTo template, select the apply-
templates node in the Execution View and the corresponding apply-templates
statement is highlighted in the XSLT pane.

Execution View also shows calls to named templates. When you select a node inside a
named template call in the Execution View tree, the XSLT editor view is refreshed to
show the selected node in the named template implementation.

Execution View helps you understand the overall flow of an XSLT stylesheet. Using the
Execution View, you can locate issues related to templates that are not invoked, or
apply-templates statements that are invoking incorrect templates.

When using imported named templates or template rules, Execution View shows the
corresponding calls, and you can use Execution View to troubleshoot problems like
import precedence. However, Execution View cannot navigate to the external XSLT
files.

40.14.1.1 Searching for Nodes
The Execution View dialog has a search facility that enables you to search for specific
nodes in the Execution View tree. Click in the Search local names field, and type a
name to search.

40.14.1.2 Setting Display Options
You can choose to show or hide certain XSLT elements in the execution tree. Click
Options to bring up the Execution View Options dialog. Figure 40-50 shows the default
selections in Execution View Options.

Chapter 40
Using the Execution View

40-92

Figure 40-50 Default Execution View Options

40.15 Debugging the XSLT Map
Starting in 12.2.1, you can debug your XSLT maps using the SOA Debugger. You can add
breakpoints at strategic locations in the XSLT map. When debugging, the debugger halts
execution at the breakpoints, enabling you to verify the data and output.

XSLT maps can be complex, making them difficult to debug. For example, you may have a
Java function or other functionality that is best tested in the application server. Also, you
might find it easier to debug in the application environment, as the XSLT may be invoked from
many different applications in the server. The SOA debugger provides remote debugging
capability for XSLT maps that have been deployed in the application server.

You can debug any XSLT transformation used in a BPEL process or Mediator. When the
BPEL process or Mediator is invoked in the composite, the debugger pauses at the
breakpoints defined in the map. The XSLT map opens in JDeveloper and user data
corresponding to the XSLT processing appears in the Data window.

You can also use the debugger with your Oracle Service Bus projects. For more details on
using the debugger with Service Bus projects, see Debugging Oracle Service Bus
Applications.

40.15.1 Setting Breakpoints in the XSLT Map Editor
You can set breakpoints in the Design view of the XSLT Map Editor. This enables you to
debug your XSLT map at runtime, using test data or payload.

Breakpoints may be set in either the Map or XSLT View. Breakpoints are marked with red
dots in the breakpoint bar, which is to the right of the target or XSLT pane.
Before you can set breakpoints, make sure that the XSLT map is open and the Design tab is
selected.

Use one of the following methods to set a breakpoint:

• Click the breakpoint bar to the right of an XSLT element or node.

• Right-click the breakpoint bar to the right of an XSLT element, or node, and select Toggle
Breakpoint from the context menu that appears.

• Right-click an XSLT element, and select Debug > Toggle Breakpoint from the context
menu that appears.

Chapter 40
Debugging the XSLT Map

40-93

Note:

You can also use the preceding steps to remove existing breakpoints.
You can also choose to disable a breakpoint by selecting Disable
Breakpoint from the context menus mentioned above. Disabled breakpoints
show as gray icons in the breakpoint bar.

The following image shows a breakpoint set against the ponumber node.

40.15.2 Running the Debugger on the XSLT Map

Initiating a Debugging Session

After setting the breakpoints for your XSLT map, follow these instructions to start the
SOA debugger:

Debugging a SOA Composite Application

Note:

For the debugger to step into the XSLT map, the map must be invoked by a
mediator or BPEL process in your SOA composite.

Working with the Debugger in the XSLT Map Editor

After you run the debugger, and when the debugger comes across a breakpoint in the
XSLT map, the debugger stops execution at the breakpoint. A blue arrow to the left of
the breakpoint bar indicates the current position of the debugger. Also, a flashing blue
icon appears against the corresponding XSLT element or node.

When the debugger is stepping through the XSLT map, all valid breakpoints in the
XSLT editor change to red and green dots. Breakpoints that remain a solid red are
currently invalid and are ignored by the debugger.

Chapter 40
Debugging the XSLT Map

40-94

Note:

Some processes that invoke the XSLT map have time-out limits. If the debugger
ends unexpectedly after exiting an XSLT map, the invoking process may have a
time-out value defined. This time-out value may need to be redefined to support
debugging the full process. Check server log files for information in the event of the
debugger unexpectedly aborting.

The following example image shows breakpoints, as they appear during runtime. The
breakpoints appear against the tID and Item elements. The debugger is currently at the Item
node, as indicated by the blue arrow and flashing icon.

You can use the Step Over button in the main JDeveloper toolbar to step through the
execution. The Step In button can be used to step into loops, call-template, apply-
template, and apply-imports.The Step Out button can be used to step out of call-
template, apply-template and apply-imports to the next XSLT statement.

At any point during the execution, you can look at the current values of parameters and
variables in the Debugger Data window. The Data window also shows you the Context Node,
Context Position, Context Size, and the Output Document being built by the XSLT
processing. You can also choose to add any item visible in the Debugger Data window to the
Watches window.

The following image shows sample debugger data, as it appears in the Data window on the
right.

Chapter 40
Debugging the XSLT Map

40-95

You can choose to edit the XSLT when debugging. You would need to redeploy the
project before you can debug again.

40.15.3 Viewing Breakpoints
Breakpoints appear on the breakpoint bar along the right edge of the XSLT Map Editor.
You can choose to see a list of all breakpoints in the XSLT map or the SOA project.

Viewing a List of All Breakpoints in the XSLT Map

Use one of the following methods to see all breakpoints in the current XSLT map:

• Right-click anywhere in the center canvas pane and select Breakpoints from the
context menu that appears.

• Right-click anywhere on the breakpoint bar and select Breakpoints from the
context menu that appears.

• Click Breakpoints in the XSLT toolbar.

The Breakpoints dialog appears, listing all breakpoints in the XSLT map. If a
breakpoint is currently hidden in the XSLT pane, you can navigate to it by clicking the
breakpoint in the Breakpoints dialog.

You can also use the Breakpoints dialog to disable or delete one or more breakpoints.
A disabled breakpoint would appear as a grey dot on the breakpoint bar.

Chapter 40
Debugging the XSLT Map

40-96

The Valid column indicates if a breakpoint is currently valid. Breakpoints can become invalid if
edits to the XSLT map makes them invalid. You can choose to delete invalid breakpoints.
Alternatively, invalid breakpoints can become valid again if you undo the changes made to
the XSLT map.

Viewing all Breakpoints in the Current Project

The JDeveloper Breakpoints window shows all breakpoints in the current project. Select
Breakpoints from the Window menu to see the Breakpoints window. You can double-click a
breakpoint in the Breakpoints Window to navigate to that breakpoint in the project. You can
also edit or delete breakpoints from the Breakpoints window. However, you cannot add a
breakpoint from the Breakpoints window.

40.15.4 Setting Conditions for XSLT Breakpoints
You can set conditions for breakpoints, so that the execution is halted only when the
breakpoint condition evaluates to true.

Use the following steps to set conditions for an XSLT breakpoint:

If the Breakpoints window is not visible, you can select Breakpoints from the JDeveloper
Window menu.

1. Right-click the breakpoint in the Breakpoints window. Select Edit from the context menu
that appears.

The Edit XSLT Breakpoint dialog appears.

2. Under the Conditions tab, enter a conditional expression using javascript syntax.

For example, the breakpoint below will break when the PartNum attribute in the $Part
variable equals p1.

3. You can also choose to set a Pass Count for the condition. The pass count tells the
debugger to ignore the breakpoint until it has been passed a certain number of times.
After the pass count is met, the debugger breaks execution at the breakpoint.

4. Click OK to set the conditions.

40.16 Troubleshooting Memory Issues
If you work with large schema documents, you may sometimes encounter an out-of-memory
error during auto-mapping, or during test and report generation. If you receive an out-of-
memory error when using the XSLT Map Editor, you must increase the heap size of the JVM
to resolve the problem.

To increase the JVM heap size:

1. Locate the config file for your application installation.

Chapter 40
Troubleshooting Memory Issues

40-97

Locate the shared Oracle JDeveloper product.conf file or the optional tool-
specific .conf file located in the user's home directory. The location of these files
depends on the host platform.

• For Windows Platforms:

The location of user/product files is often configured during installation, but
may be found here:

%APPDATA%\JDeveloper\product-version\product.conf
%APPDATA%\JDeveloper\product-version\jdev.conf

• For UNIX Platforms:

$HOME/.jdeveloper/product-version/product.conf
$HOME/.jdeveloper/product-version/jdev.conf

2. Edit the file to change the AddVMOption to the desired value. For example:

AddVMOption -Xmx1024M

Note:

The AddVMOption value can be large for 64-bit machines. Setting it close
to the amount of RAM provided by the machine provides better
performance.

40.17 Setting XSL Map Preferences
Use the Preferences dialog to set preferences related to XSLT maps, such as
expansion depth, and the XSLT Map Editor, such as initialization options.

40.17.1 How to Set XSLT Map Preferences
To set XSLT map preferences, select Preferences from the Tools menu. Click XSL
Maps in the navigation tree that appears in the left pane of the Preferences dialog.
Figure 40-51 shows the XSL Maps dialog that appears.

Chapter 40
Setting XSL Map Preferences

40-98

Figure 40-51 XSL Maps Preferences

You can set various options such as the expansion depth of the source and target trees. You
can click the Help button for more information on each field.

40.17.2 How to Set the XSL Editor Preferences
To set XSLT map preferences, select Preferences from the Tools menu. In the navigation
tree that appears in the left pane of the Preferences dialog, click the plus sign (+) next to XSL
Maps. This expands the XSL Maps node. Select XSL Editor. Figure 40-52 shows the XSL
Editor Preferences dialog.

Chapter 40
Setting XSL Map Preferences

40-99

Figure 40-52 XSL Editor Preferences

You can set various preferences for the XSLT Map Editors, such as the initialization
mode. Click Help for more information on each field.

40.17.3 How to Import a Customization File to Specify Display
Preferences in the XSLT Map Editor

You can specify a customization file containing display preferences for the XSLT Map
Editor. In the XSL Editor Preferences dialog (Figure 40-52), click the Browse button to
the right of the Custom Display Options Config File field. Select the file to import.

The customization file is an XML file that must conform to the XSLTEditorOptions.xsd
schema located in the bpm-ide-common.jar file at:

oracle/tip/tools/ide/common/resource/XSLTEditorOptions.xsd
The following example shows a sample customization file. The important elements in
the file are described following the example.

<?xml version="1.0" encoding="UTF-8" ?>
 <customizeXSLTeditor>
 <selectedArea>HL7</selectedArea>
 <abbreviationLists>
 <abbreviationList name="Siebel">
 <abbreviation long="Account" short="Acct"/>
 </abbreviationList>
 <abbreviationList name="SalesGeneral">
 <abbreviation long="SalesOrder" short="SO"/>
 <abbreviation long="PurchaseOrder" short="PO"/>
 <abbreviation long="BillOfMaterial" short="BOM"/>

Chapter 40
Setting XSL Map Preferences

40-100

 <abbreviation long="CreateEngineeringChangeOrderList" short="CECOL"/>
 </abbreviationList>
 </abbreviationLists>
 <customization area="HL7">
 <showFixedValueInElementName>
 <path>@LongName</path>
 <path>@LongName2</path>
 <path>@Name</path>
 </showFixedValueInElementName>
 <abbreviations>
 <apply display="treeLabels">
 <hideText part="matchValue" maxLength="13" hide="left"/>
 <hideText part="namedTemplateName" maxLength="15" hide="left"/>
 <hideText part="importHref" maxLength="20" hide="left"/>
 </apply>
 <apply display="dropDownLists">
 <hideText part="namedTemplateName" maxLength="40" hide="center"/>
 </apply>
 </abbreviations>
 </customization>
 <customization area="AIA">
 <abbreviations>
 <applyAbbreviations list="Siebel"/>
 <applyAbbreviations list="SalesGeneral"/>
 <apply display="treeLabels">
 <hideText part="matchValue" maxLength="13" hide="left"/>
 <hideText part="namedTemplateName" maxLength="15" hide="left"/>
 <hideText part="importHref" maxLength="20" hide="left"/>
 </apply>
 <apply display="dropDownLists">
 <hideText part="namedTemplateName" maxLength="40" hide="center"/>
 </apply>
 </abbreviations>
 </customization>
 </customizeXSLTeditor>

The following list describes the important elements in the preceding example:

• <selectedArea>: Selects the customization area to be used by the editor. A list of
customization areas may be defined in the file.

• <abbreviationList name="listName">: Defines an abbreviation list that can be
referenced by a customization area.

• <abbreviation name="Account" short="Acct">: Defines a specific abbreviation to use
in an abbreviation list.

• <abbreviations>: Used within a customization area to define abbreviations and cut-off
lengths for text in the editor.

• <applyAbbreviations>: Selects an abbreviation list or lists to use in this customization
area.

• <apply display="treeLabels" | "dropDownLists">: Selects an area where text cut-
offs occur.

• <hideText>: Selects specific text fields to cut-off when they are too long.

• @part: Either "matchValue", "namedTemplateName", or "importHref".
• @maxLength: Text value length limit.

Chapter 40
Setting XSL Map Preferences

40-101

• @hide: Specifies portion of the text to hide, "left" truncates the text on the left
side, "right" truncates the text on the right side, "center" removes text in the
center replacing it with '…'.

• <showFixedValueInElementName>: Used within a customization area. This
element selects fixed value attributes that contain the long name or other text that
the user wants to see displayed as part of the element name in the editor source
or target tree.

For example:

<showFixedValueInElementName>
 <path>@LongName</path>
 <path>@LongName2</path>
 <path>@Name</path>
</showFixedValueInElementName>

In the preceding example, the first fixed attribute found on any element in the
XSLT Map Editor trees with the name LongName, LongName2, or Name is shown as
part of the element tree name.

The fixed attribute value is shown in parentheses to the right of the actual element
name in the tree. This is particularly useful for HL7 schemas where descriptive
names are added as fixed attribute values in the schema.

Chapter 40
Setting XSL Map Preferences

40-102

41
Creating Transformations with the XQuery
Mapper

This chapter describes how to create, edit, and test XQuery transformations using the
XQuery Mapper in JDeveloper. The XQuery Mapper enables you to transform data between
various XML and non-XML types, enabling you to integrate heterogeneous applications
rapidly. You can use the XQuery (.xqy) files created using XQuery Mapper as resources in
Oracle BPEL Process Manager, Oracle Mediator, or Oracle Service Bus.
This chapter includes the following sections:

• Introduction to the XQuery Mapper

• Creating an XQuery Map File

• Using the XQuery Mapper

• Using XQuery Functions

• Using Library Modules

• Working with Zones and FLWOR Constructs

• Using Type Annotations to Improve XQuery Performance

• Testing Your XQuery Map

41.1 Introduction to the XQuery Mapper
The XQuery Mapper supports XQuery 1.0. The older XQuery 2004 is also supported.

The XQuery Mapper includes the following views:

• XQuery Mapper Graphical View

• XQuery Mapper Source Editor

Note:

The XQuery Mapper graphical view is not supported for XQuery 2004 files. Only the
source view is supported for this older XQuery version.

When you create a new XQuery file, it opens in the graphical view by default. The graphical
view can also be accessed by clicking the XQuery Mapper tab at the bottom of the XQuery
map.

Figure 41-1 shows the graphical view of the XQuery mapper.

41-1

Figure 41-1 XQuery Mapper

The left pane of the XQuery Mapper includes the input sources or parameters for the
XQuery function. If your XQuery file has multiple functions, you can choose the
function to display using the toolbar over the mapper panes.

The right pane includes the target schema tree, which corresponds to the XQuery
function's result type. The center pane helps you map the source and the target
schema elements using XQuery functions.

41.1.1 About the Source and Target Trees
The left pane of the XQuery Mapper shows the source tree, and the right pane shows
the target tree. Tree nodes can be XML elements, attributes, and some other XQuery
constructs.

XML elements are identified by the <> icon. Attributes use a different icon, and
attribute names are prefixed with the @ symbol, as they appear in an XPath
expression. The element or attribute multiplicity is shown using the following standard
suffixes:

• ?: Zero or one occurrence of an element/attribute.

• +: One or more occurrences of an element/attribute.

• *: Zero or more occurrences of an element/attribute.

The source tree shows the input sources or parameters for the selected XQuery
function. The root level elements represent the input parameters for the function. If a
root node is a complex element, then its child elements and attributes appear under
the root node.

Chapter 41
Introduction to the XQuery Mapper

41-2

The target tree can include XML elements, attributes, and some programming control
structures. The elements and attributes can appear in the following forms:

• Grayed Font: An element that is part of the target schema, but not defined yet. Once you
map a grayed element to a source element, it appears in normal font.

• Normal Font: An element that either corresponds to an element constructor in the source,
or copied implicitly from the source data.

• Underlined Font: An element that is incompatible with the specified target schema. This
element may appear because of an incorrect element name used in an element
constructor, or because of a sequence assignment with an incorrect schema type.

The target tree can also contain programming control structures like If-Then-Else, Union
operator, and comma operator:

• If-Then-Else Operator: The If-Then-Else operator shows up as a node called Conditional.
The Conditional node has nested branches for If Then and Else. You can choose the
Make Conditional option from the context menu of a node to make it conditional.

• Union Operator (and other sequence combining operators): These cannot be created in
the graphical view of the XQuery Mapper. However, if the source view contains such an
operator, it is represented in the target tree with a node called All, and the operands are
represented as subnodes of the all node.

• Comma Operator: The comma operator shows up as a node called List. The subnodes
represent the comma-limited operands of the comma operator. You can choose the
Clone option from the context menu of target tree node to apply a comma operator.

41.1.2 Using the XQuery Mapper Toolbar
The XQuery Mapper toolbar is located above the XQuery Mapper panes. The toolbar
contains various tools to work with the graphical mapper. Figure shows the XQuery Mapper
toolbar.

Figure 41-2 XQuery Mapper Toolbar

The XQuery Mapper toolbar contains the following tools:

• Function Selector: The function selector box is identified by a green icon with the letter f
on it. You can use the Function Selector to select the function to display in the source
pane. This is useful if your XQuery map contains multiple functions.

• Add New Function: The Add New Function button is identified by the green plus (+)
sign. Use Add New Function to add a new function to the XQuery map file.

• Rename Function: The Rename Function button is to the right of the Add New Function
button. Use the Rename Function button to rename a function in the XQuery map file.

• Delete Function: The Delete Function is identified by a red cross (X) sign. Use Delete
Function to delete a function from the XQuery map file.

• Import Library Module: The Import Library Module button is to the right of the Delete
Function button. Use Import Library Module to import a library XQuery function into the
map. You must specify the library module files to be imported.

Chapter 41
Introduction to the XQuery Mapper

41-3

• Mapping Mode: The XQuery mapper can use different mapping modes. These
modes affect the XQuery expressions created when the user drags and drops a
line from a source node to a target node. The next three buttons are used to select
the corresponding mapping mode:

– Value Mapping: Constructs target XML elements and attributes from the input
source, and copies the input source values, using XML constructors. For
example:

<ID>{fn:data($pParam1/ID)}</ID>
The above code creates the ID element in the target from the ID element in
the input source parameter.

Value mapping is the default mapping mode.

– Overwrite Mapping: The XML elements from the input source parameters are
copied to the result sequence. Any existing mapping are replaced with the new
mapping. For example:

{
$pParam1/Items
}

The above code copies the Items subtree, together with its child elements and
attributes, to the target tree.

– Append Mapping: This mode works like overwrite mapping, except that any
existing mappings are not overwritten. New additional mapping are created.

See Using the XQuery Mapper for more information on using the mapping modes.

• Show/Hide Target Type Differences: Use the Show/Hide Target Type
Differences button to manage the visibility of XML elements and attributes in the
right target tree. You can choose to hide elements and attributes that haven't been
mapped yet.

• Search: Use the Search field to search for elements, attributes, data types, and so
on in the source and target trees. Use the Up and down arrows to look for the next
and previous items respectively.

41.1.3 Using the Properties Window
The Properties window displays the XQuery expression for the node selected in the
target tree. XQuery expressions created using drag and drop can be edited in the
Properties window. The Properties window can also be used to create more complex
XQuery expressions.

The Properties window is located below the XQuery Mapper, by default. If the
Properties window is not visible, click Properties under the JDeveloper Window menu
to display the Properties window.

Chapter 41
Introduction to the XQuery Mapper

41-4

Tip:

When working with the XQuery Mapper, you might want to move the Properties
window from the bottom right hand corner of the screen to the bottom of the screen,
directly below the mapper window. A larger Properties window makes it easy to edit
XQuery expressions and view the variable tree.

You can directly edit the XQuery expression, for the selected target node, in the Properties
window. You can also drag XQuery functions, constructs, and operators from the
Components window into your XQuery expression in the Properties window. The
Components window is located to the right of the XQuery Mapper, by default. If you cannot
see the Components window, select Window > Components from the Oracle JDeveloper
menu bar.

To save the changes, click the Commit button in the top left corner of the Properties window.
The XQuery is recompiled, and the XQuery Mapper view is updated.

If you make an error when editing the XQuery expression, click Revert to mapper sources,
in the top left area of the Properties window, to undo the changes and start again.

The Properties window also includes a variable tree on the left hand side. The variable tree
shows all variables, both local variables and XQuery function parameters, that are visible in
the current scope. The scope is determined by the node highlighted in the target tree pane.
You can drag and drop nodes from the variable tree into your XQuery expression in the right
pane.

Figure 41-3 shows the Properties window. The Properties window is highlighted in red. The
comment node is shown selected in the target tree. The corresponding variable tree and
XQuery expression (fn:data($pParam1/Comment)) appears in the Properties window.

Figure 41-3 Properties Window

Chapter 41
Introduction to the XQuery Mapper

41-5

41.1.4 Using the Components Window
The Components window contains all the XQuery functions and operators that you can
use in your XQuery maps. These functions and operators can be dragged and
dropped to the center pane of the XQuery Mapper. You can also drag and drop a
function onto a target tree node, if the target tree node has already been created using
the Insert context menu option.

Note:

You can also drag functions and operators to an XQuery expression in the
Properties window, as described in the preceding section.

When a function is dragged and dropped on an existing link between a source and
target node, for example, it becomes a part of the expression corresponding to that
link. Some functions without parameters must be dragged to an empty area of the
center pane, and associated with a target node. Functions can also be chained
together.

The Components window organizes the XQuery function and operators into the
following categories:

• XQuery Functions: Includes various categories of XQuery functions, like
aggregate functions, date functions, mathematical functions, string functions, and
so on.

• XQuery Constructs: Includes standard XQuery constructs like If-Then-Else and
FLWOR constructs.

• XQuery Operators: Includes various categories of XQuery operators, like logical
operators, node comparison operators, and so on.

• User-Defined Functions: Includes all the functions that you have defined in the
current XQuery map file, and any functions from imported library modules.

• My Components: Includes your favorite components that you can add to this
category. It also includes the recently used functions.

41.1.5 Source Editor
The source editor enables you to edit the XQuery map directly, and also allows you to
perform tasks that cannot be directly performed in the graphical view.

Click the XQuery Source tab at the bottom left of the XQuery Mapper graphical view to
display the source editor. Figure 41-4 shows the XQuery Mapper source editor.

Chapter 41
Introduction to the XQuery Mapper

41-6

Figure 41-4 XQuery Mapper Source Editor

The XQuery source view provides code editing features like code highlighting, code
completion, error highlighting, and code folding. You can also use Ctrl + click (click the left
mouse button while holding down the Ctrl key) on a function name, variable name, schema,
or schema element to navigate to the corresponding declaration for the function, variable,
schema, or schema element respectively.

41.2 Creating an XQuery Map File
Use Oracle JDeveloper to create XQuery maps. XQuery maps are included in the project
as .xqy files.

XQuery maps can be created as main modules and library modules. A main module is an
executable XQuery file. A library module is used to group and store XQuery functions. When
you import a library module into a main module, all functions in the library module become
available in the main module.

41.2.1 How to Create an XQuery Main/Library Module
To create an XQuery Main/Library Module:

1. Click the File menu. Select one of the following:

• To create an XQuery main module, select New > XQuery File ver 1.0. The Create
XQuery Map Main Module dialog box appears.

Chapter 41
Creating an XQuery Map File

41-7

Figure 41-5 Create Main Module Dialog

• To create an XQuery library module, select New > XQuery Library ver 1.0.
The Create XQuery Map Library Module dialog box appears.

Chapter 41
Creating an XQuery Map File

41-8

Figure 41-6 Create Library Module Dialog

2. Under File Name, enter the name for the XQuery map file to be created. The file must
have a .xqy extension.

3. Under Directory Name, specify the directory in which the map file should be created.
This is usually the Transformations directory in your project folder. You can click the tree
icon on the right to browse and select the directory of your choice.

4. If you are creating a library module, select the target namespace for the library module
under Target Namespace URI. Optionally edit the Prefix for the namespace.

Every function defined in a library module automatically uses the library's target
namespace.

5. Select Generate Function to create a function in the XQuery file. If you do not select
this, an empty XQuery file is created, and you can add functions later.

6. Under Function Name, enter the name of the function to be created in the XQuery file.

7. If you are creating a main module, select these additional fields for the function:

• NS URI specifies the namespace for the function. NS URI is automatically populated.
You can also select a different namespace.

• Prefix specifies the namespace prefix of the function. Prefix is populated
automatically. You can also edit the suggested namespace prefix.

8. Add parameters for the function under the Sources section. To add a parameter, click the
Add Source button identified by the green plus sign (+). The Function Parameter
dialog box appears.

Chapter 41
Creating an XQuery Map File

41-9

Figure 41-7 Function Parameter Dialog

9. Under Name, enter the name of the function parameter.

10. Select Set a Namespace to specify a namespace for the function parameter:

Under NS URI, select the namespace for the function parameter. The namespace
prefix appears in the Prefix field. You can optionally edit this.

11. Under Sequence Type, click the button identified by the pencil icon to specify the
data type for the parameter. The Function Parameter Type dialog box appears.

Figure 41-8 Function Parameter Type Dialog

Use the XML Schema tab to specify an XML schema type as the data type for the
function parameter. The Untyped tab can be used to specify an untyped (non-
XML schema based) form of the parameter. You use an XML schema type in this
procedure.

Chapter 41
Creating an XQuery Map File

41-10

12. In the Function Parameter Type dialog, click the button to the right of Schema Object
Reference (identified by the tree icon) to select a schema object as the data type.

This brings up the Type Chooser dialog box. You can choose from Project Schema
Files, XML Schema Simple Types, and schemas embedded in Project WSDL Files.
Navigate to the desired XML type and click OK to close the Type Chooser dialog box.

13. In the Function Parameter Type dialog, the Possible Sequence Type Form, Schema
Location, and Prefix are automatically populated depending on your choice of Schema
Object Reference. Optionally change any values if required.

14. Under Occurrence, optionally change the multiplicity of the parameter. The resultant
XQuery expression appears under Result XQuery Expression.

15. Click OK to close the Function Parameter Type dialog box.

16. Click OK to close the Function Parameter dialog box.

17. In the Create XQuery Map Main Module/Library Module dialog, specify the function's
result data type under the Target section. Click the button, with the pencil icon, to the
right of the Target field.

The Function Result Type dialog box appears. This dialog box is identical to the Function
Parameter Type dialog box. Use instructions under Steps 12 to 14 to specify the
function's result data type.

18. Click OK to close the Function Result Type dialog box.

19. In the Create XQuery Map Main Module/Library Module dialog box, under the Options
section, select Generate XQuery version line to generate a standard line at the
beginning of the XQuery file.

For example, the following line might be generated at the beginning of the file:

xquery version "1.0" encoding "utf-8";
20. Select Use schema type annotations to create a weak-typed XQuery file that uses type

annotations in place of schema object references. This may improve the XQuery
performance for certain scenarios.

If you deselect this option, XQuery generates a strong-typed XQuery file that can contain
references to schema objects.

See Using Type Annotations to Improve XQuery Performance for more information on
type annotations.

21. Click OK. The newly created XQuery map opens up in the XQuery Mapper graphical
view. If you want to see the XQuery source editor, click XQuery Source.

41.3 Using the XQuery Mapper
This section contains the following topics:

• How to Use Value Mapping to Copy a Leaf Element Value to a Target Leaf Element

• How to Use Overwrite Mapping to Copy an Element Subtree to the Target Tree

• How to Use Append Mapping to Copy an Element Subtree to the Target Tree

• How to Perform Multiple Value Mappings with One Drag and Drop Action

Chapter 41
Using the XQuery Mapper

41-11

41.3.1 How to Use Value Mapping to Copy a Leaf Element Value to a
Target Leaf Element

To create a value map for a leaf element:

1. Make sure that Value Mapping mode is selected in the XQuery toolbar.

2. Select the source leaf element whose value needs to be copied.

3. Hold down the left mouse button, and drag the mouse pointer to the target leaf
element. Release the left mouse button.

A solid line connecting the source and target leaf node appears. The source leaf
element is now value-mapped to the target leaf element.

41.3.2 How to Use Overwrite Mapping to Copy an Element Subtree to
the Target Tree

To create an overwrite map for an element subtree

1. Make sure that Overwrite Mapping mode is selected in the XQuery toolbar.

2. Select the source element. The element can have child elements, or can also be a
leaf element.

3. Hold down the left mouse button, and drag the mouse pointer to the target
element. Release the left mouse button.

The source element subtree gets copied to the specified location in the target tree.
A solid line connects the root of the copied source subtree to the target subtree. If
there are no type mismatches with the target schema, then the copied element
and its child elements appear in normal font. If there is a mismatch, the elements
show up in underlined font.

41.3.3 How to Use Append Mapping to Copy an Element Subtree to
the Target Tree

To create an append map for an element subtree

1. Make sure that Append Mapping mode is selected in the XQuery toolbar.

2. Select the source element. The element can have child elements, or can also be a
leaf element.

3. Hold down the left mouse button, and drag the mouse pointer to the target
element. Release the left mouse button.

The source element subtree gets appended as the child of the selected element in
the target tree. A solid line connects the root of the source subtree to the root of
the appended subtree in the target. If there are no type mismatches with the target
schema, then the copied element and its child elements appear in normal font. If
there is a mismatch, the elements show up in underlined font.

Chapter 41
Using the XQuery Mapper

41-12

41.3.4 How to Perform Multiple Value Mappings with One Drag and Drop
Action

To create multiple value mapping with one drag and drop action

1. Make sure that Value Mapping mode is selected in the XQuery toolbar.

2. Select the non-leaf source element.

3. Hold down the left mouse button, and drag the mouse pointer to the target element.
Release the left mouse button.

If the source and target elements have the same schema types, individual mappings are
created for all the child elements of the source element and target element. A mapping is
also created between the source and target element.

If an element has multiple occurrences, then a FLOWR cycle is automatically created for
the element. For example, the code segment below copies each Item iteratively:

for $Item in $pParam1/Items/Item
 return <Item PartNum="{fn:data($Item/@PartNum)}">
 <ProductName>{fn:data($Item/ProductName)}</ProductName>
 <Quantity>{fn:data($Item/Quantity)}</Quantity>
 <Price>{fn:data($Item/Price)}</Price>
 <Currency>{fn:data($Item/Currency)}</Currency>
 </Item>

41.4 Using XQuery Functions
You can add XQuery functions to your existing XQuery map. The Components window
contains a list of XQuery functions that you can drag and drop into the source editor or the
center pane of the XQuery mapper.

The Components window also includes a set of XQuery constructs, like FLWOR, and XQuery
operators, like logical AND. These constructs and operators can only be dragged and
dropped into the source editor.

41.4.1 How to Add an XQuery Function in the XQuery Mapper
You can drag and drop an XQuery function from the Components window to the center pane
of the XQuery mapper.

41.4.1.1 To add an XQuery function:
1. Make sure that the Components Window is visible. The default location is the top right

hand corner of Oracle JDeveloper.

If the Components Window is not visible, select Components from the Window menu.

2. In the Component Window, select the XQuery Functions page.

3. Click the Category that contains your function. For example, to add the concat function,
click String Functions.

4. Drag the desired function from the Components window to the center pane of the XQuery
mapper. When you drag the function to the center pane, the output of the function
connects to different target nodes, as you move along.

Chapter 41
Using XQuery Functions

41-13

Figure 41-9 shows a function being dragged to the center pane of the XQuery
Mapper.

Figure 41-9 Dragging a Function to the Center Pane of the XQuery Mapper

5. Drop the function on the center pane when the function output is shown connected
to the desired target node.

Note:

You can also drop a function to an existing map line in the center pane of
the XQuery mapper.

The function gets connected to both the source (input) and target
(output) nodes.

6. If the function requires additional input parameters, then a Warning icon appears
on the function icon. Drag a line from a source node to the left end of the function
to specify an input parameter.

7. Repeat the previous step for any more source nodes that you must add as input
parameters.

41.4.1.2 To edit a function's parameters:
1. Click the function icon in the center pane. The expression corresponding to the

function appears in the Properties window.

The Properties window is located at the lower right-hand corner of Oracle
JDeveloper, by default. If the Properties window does not appear, click Properties
under the Window menu to display the Properties window. You can optionally
choose to drag the Properties window to any convenient location within the
JDeveloper window. You can also resize the Properties window, as desired.

2. Edit the expression that appears in the right pane of the Properties window.

The left pane of the Properties window shows the variable tree that includes all
variables visible in the current scope. You can drag and drop variables to the
expression on the right to help build your function definition.

3. Click Commit at the top left corner of the Properties window to save the changes.
Alternatively, click Revert to mapper sources to revert changes made in the
Properties window.

Chapter 41
Using XQuery Functions

41-14

41.5 Using Library Modules
How to Create an XQuery Main/Library Module discusses the process of creating a library
module file. To use a library module, you can import the library module into the main module.
This makes all the library module functions available in the main module.

41.5.1 How to Import a Library Module
You can import a library module from the source editor of your main module.

To import a library module:

1. Make sure that your XQuery main module map file is open in the XQuery Mapper.

2. Click the XQuery Source tab at the bottom left of the XQuery Mapper window to switch
to the source editor.

3. Right-click anywhere in the source editor window. A context menu appears.

4. Select Import library module from the context menu. The Select XQuery Library Files
dialog appears.

5. Browse and select the XQuery library module file to be imported. Click OK.

An import statement, corresponding to the library module, is added to the main module
source view.

41.6 Working with Zones and FLWOR Constructs
You can create FLWOR (For, Let, Where, Order By, Return) expressions in the Source View.
FLWOR expressions are represented as zones in the XQuery Mapper target tree.

Zones identify areas in the target tree that are associated with FLOWR constructs or If-Then-
Else conditional constructs. Zones are represented by yellow brackets to the left of the target
tree.

If you move the mouse over a yellow line representing a zone, the line turns blue. For
FLWOR zones, additional buttons appear, corresponding to the For-Let, Where, and Order By
clauses. Figure 41-10 shows a sample XQuery with zones.

Chapter 41
Using Library Modules

41-15

Figure 41-10 Zones and FLWOR Zones in XQuery Mapper

41.6.1 How to Edit a FLWOR Construct
You can edit a FLWOR construct directly in the source view. You can also perform
limited editing of a FLOWR construct in the XQuery Mapper.

To edit a FLWOR construct in XQuery Mapper:

1. Click on the yellow bracket representing the FLWOR zone to select the zone. The
yellow bracket turns blue, and additional buttons appear. These buttons
correspond to the different clauses of the FLWOR construct.

2. Click the FL button to edit the For-Let properties for the FLWOR construct. The
Properties window shows the For-Let clause properties.

Click the Help icon in the Properties window to display help on editing the For-Let
properties.

3. Click the W button to edit the Where properties for the FLWOR construct.

The Properties window enables you to directly edit the Where expression. You can
also drag and drop variables from the left pane of the Properties window.

4. Click the O button to edit the Order By properties for the FLWOR construct.

The Properties window enables you to directly edit the Order By expression. You
can also drag and drop variables from the left pane of the Properties window.

Chapter 41
Working with Zones and FLWOR Constructs

41-16

41.7 Using Type Annotations to Improve XQuery Performance
When an XQuery is run, the XQuery engine performs schema type validations in the XQuery
file before running the XQuery. This may cause performance overheads for certain
applications.

If you must optimize your XQuery for performance, you can use type annotations to specify
schema information in the XQuery file. Type annotations enable you to hide the schema type
definitions from the XQuery execution engine. The schema definitions are still visible to the
Xquery Mapper, which enables you to edit your XQuery map in the usual fashion.

To use type annotations in your XQuery file, select Use Schema Type Annotations in the
Create XQuery Map Main/Library Module dialog when creating a new XQuery file. See How
to Create an XQuery Main/Library Module for more information on creating an XQuery file.

Type annotations, in an XQuery file, look similar to standard XQuery comments. While
standard XQuery comments are delimited by the parentheses and colon, type annotations
use parentheses and double colons. So, for example:

(: This is an XQuery comment :)
(:: This is a type annotation ::)

An XQuery file that uses type annotations has the following version annotation at the
beginning of the file, immediately following the version declaration:

(:: OracleAnnotationVersion "1.0" ::)

The following example compares a few XQuery constructs with and without the type
annotations.

• Schema import (without type annotation):

import schema namespace ns1="http://www.oracle.com/pcbpel/po" at "../Schemas/
PurchaseOrder.xsd";

Schema import (with type annotation):

declare namespace ns1="http://www.oracle.com/pcbpel/po";
(:: import schema at "../Schemas/PurchaseOrder.xsd" ::)

• Variable declaration (without type annotation):

declare variable $test_param as schema-element(ns1:PurchaseOrder) external;

Variable declaration (with type annotation):

declare variable $test_param as element()
(:: schema-element(ns1:PurchaseOrder) ::) external;

41.8 Testing Your XQuery Map
You can test run your XQuery map from within Oracle JDeveloper. Testing the XQuery at
design time helps prevent runtime errors.

41.8.1 How to Test an XQuery Map
You must be in the Source Editor view to test the XQuery map.

Chapter 41
Using Type Annotations to Improve XQuery Performance

41-17

To Test an XQuery Map:

1. Make sure that the XQuery main module is open in the XQuery Mapper.

2. If you are not in the Source Editor view, click the XQuery Source tab at the bottom
of the XQuery Mapper window to switch to the source editor.

3. Right-click anywhere in the source editor. Select Run XQuery from the context
menu that appears.

The Run XQuery dialog appears. Figure 41-11 shows the Run XQuery dialog.

Figure 41-11 Run XQuery Dialog

4. Specify values for all source variables that appear in the Source variables section.

For simple data types, you can specify a value directly under the Value field. If
your source variable uses a complex schema, click the ellipses (. . .) button to
bring up the Edit Variable dialog. You can use an existing XML file to specify test
data for the variable, or create an XML file with test data. Click Help for additional
help with completing the Edit Variable dialog.

5. Select Open result in a new tab in JDeveloper if you want to use a new tab to
display test results. Select Save target file to save the result file. You must select
one, or both, of these options.

6. Click the Save icon to the right of Target filename to specify a result file into which
the result data is saved.

You must specify a Target filename even if you haven't selected Save target file
in the preceding step.

7. Optionally select Autosave configuration to automatically save the configuration
settings when the XQuery is run. The next time you try to run the XQuery, the
configuration settings are retrieved.

8. If you want to save the settings made in the Run XQuery dialog, click Save
Configuration.

Chapter 41
Testing Your XQuery Map

41-18

9. If you want to delete any previously saved configuration settings, click Delete
Configuration.

10. Click Run to run the XQuery.

Chapter 41
Testing Your XQuery Map

41-19

42
Using Business Events and the Event
Delivery Network

This chapter describes how to subscribe to or publish business events from Oracle Mediator
or a BPEL process in a SOA composite application. Business events are published to the
Event Delivery Network (EDN) and consist of message data sent as the result of an
occurrence in a business environment. When a business event is published, other service
components can subscribe to it.
This chapter includes the following sections:

• Introduction to Business Events

• Creating Business Events in Oracle JDeveloper

• Subscribing to or Publishing a Business Event from an Oracle Mediator Service
Component

• Subscribing to or Publishing a Business Event from a BPEL Process Service Component

• How to Integrate Oracle ADF Business Component Business Events with Oracle
Mediator

For information about creating composite sensors on service components that subscribe to
business events, see Defining Composite Sensors .

For information about troubleshooting business events, including specifying the number of
threads, stopping event delivery, and specifying the maximum number of deliveries, see
Troubleshooting Oracle SOA Suite and Oracle BPM Suite in Administering Oracle SOA Suite
and Oracle Business Process Management Suite.

For information about managing business events from Oracle Enterprise Manager Fusion
Middleware Control, see Managing Business Events in Administering Oracle SOA Suite and
Oracle Business Process Management Suite.

42.1 Introduction to Business Events
You can raise business events when a situation of interest occurs. For example, in a loan flow
scenario, a BPEL process service component executing a loan process can raise a loan
completed event at the completion of the process. Other systems within the infrastructure of
this application can listen for these events and, upon receipt of one instance of an event:

• Use the event context to derive business intelligence or dashboard data.

• Signal to a mail department that a loan package must be sent to a customer.

• Invoke another business process.

• Send information to Oracle Business Activity Monitoring (BAM).

Business events are typically a one-way, fire-and-forget, asynchronous way to send a
notification of a business occurrence. The business process does not:

• Rely on any service component receiving the business event to complete.

42-1

• Care if any other service components receive the business event.

• Need to know where subscribers (if any) are and what they do with the data.

These are important distinctions between business events and direct service
invocations that rely on the Web Services Description Language (WSDL) file contract
(for example, a SOAP service client). If the author of the event depends on the
receiver of the event, then messaging typically must be accomplished through service
invocation rather than through a business event. Unlike direct service invocation, the
business event separates the client from the server.

A business event is defined using the event definition language (EDL). The EDL is a
schema used to build business event definitions. Applications work with instances of
the business event definition.

The EDL consists of the following:

• Defined events

One or more event definitions (event-definition element) with the same
namespace (targetNamespace attribute of definitions root element), each having
a local name (name attribute of the event-definition element). The namespace
and local name constitute an event name (QName).

• Payload definition

The most common use for a definition is an XML Schema (XSD). The payload of a
business event is defined in an XSD that is imported (through the schema-import
element) into the EDL. Each defined event (that is, event-definition element)
can have a reference to an imported payload XSD element (the element attribute
of the content element). The schema URI is contained in the root element of the
payload.

The following example shows an EDL file with two business events in the BugReport
event definition: bugUpdated and bugCreated. The namespace (/model/events/edl/
BugReport) and associated schema file (BugReport.xsd) are referenced.

<?xml version = '1.0' encoding = 'UTF-8'?>
<definitions targetNamespace="/model/events/edl/BugReport"
 xmlns:ns0="/model/events/schema/BugReport"
 xmlns="http://schemas.oracle.com/events/edl">
 <schema-import namespace="/model/events/schema/BugReport"
 location="BugReport.xsd"/>

 <event-definition name="bugCreated">
 <content element="ns0:bugCreatedInfo"/>
 </event-definition>

 <event-definition name="bugUpdated">
 <content element="ns0:bugUpdatedInfo"/>
 </event-definition>
</definitions>

These two events are available for subscription in Oracle Mediator and a BPEL
process.

Business events are deployed to the Oracle Metadata Services Repository (MDS
Repository). Deploying a business event to the MDS Repository along with its artifacts
(for example, the XSDs) is known as publishing the EDL (or event definition). This
action transfers the EDL and its artifacts to a shared area in the MDS Repository. An
object in an MDS Repository shared area is visible to all applications in the Resources

Chapter 42
Introduction to Business Events

42-2

window of Oracle JDeveloper. After an EDL is published, it can be subscribed to by SOA
components such as Oracle Mediator or a BPEL process.

A subscription is for a specific qualified name (QName) (for example, x.y.z/newOrders). A
QName is a tuple (URI, localName) that may be derived from a string prefix:localName with
a namespace declaration such as xmlns:prefix=URI or a namespace context. In addition,
subscriptions can be further narrowed down by using content-based filters.

Business events are published to the EDN. The EDN runs within every Oracle SOA Suite
instance. Raised events are delivered by EDN to the subscribing service components. Oracle
Mediator service components and BPEL process service components can subscribe to and
publish events.

The EDN is based on a standard JMS messaging infrastructure that supports business event-
based interactions among Oracle SOA Suite components and non-Oracle SOA Suite
components. The EDN provides two JMS-based types:

• Oracle WebLogic Server JMS: By default, all business events use a single, default Oracle
WebLogic Server JMS topic.

• Oracle Advanced Queueing (AQ) JMS

You can create additional JMS topics (Oracle WebLogic Server JMS or AQ JMS) and map
different event types to these additional JMS topics in Oracle Enterprise Manager Fusion
Middleware Control.

42.1.1 EDN Integration with Oracle SOA Suite
Oracle SOA Suite EDN provides the following features:

• A standard JMS-based messaging infrastructure that provides the following:

– A JMS-based event publish and subscribe architecture for Oracle SOA Suite and
non-Oracle SOA Suite clients.

– Support for bidirectional interactions (can both publish to and subscribe from Oracle
SOA Suite and non-Oracle SOA Suite clients).

– Support for both the Oracle AQ JMS and Oracle WebLogic Server JMS providers. An
Oracle WebLogic Server JMS topic (default) and an AQ JMS topic are automatically
configured for EDN use after installation. The default JMS type can be switched from
Oracle WebLogic Server JMS (default) to AQ JMS in Oracle Enterprise Manager
Fusion Middleware Control. For more information, see "Mapping Business Events to
JMS Topic Destinations on the Business Events Page" of Administering Oracle SOA
Suite and Oracle Business Process Management Suite.

– EDN support as a lightweight manager above both JMS providers.

– A plain JMS API and an Oracle SOA Suite, value-added EDN API for remote, non-
Oracle SOA Suite clients to use for integrating with Oracle SOA Suite. For more
information, see Java API Reference for Oracle SOA Suite Event Delivery Network.

– JMS transactions to guarantee EDN delivery (for both the one-and-only-one (OAOO)
and guaranteed consistency methods).

– Durable and persistent publishing delivery options to prevent message loss. These
default options are beneficial for interactions with remote, non-Oracle SOA Suite
clients.

Chapter 42
Introduction to Business Events

42-3

– A JMS adapter used internally for implementing many JMS features. For
information about the JMS adapter, see the "Oracle JCA Adapter for JMS"
chapter of Understanding Technology Adapters.

– No duplicate event processing in a multinode cluster.

• Scalability at a fine-grained level. This enables different events to map to different
JMS topic destinations, thereby eliminating the need for a single location to handle
all events. This reduces potential bottlenecks. Mapping is performed by an
administrator in Oracle Enterprise Manager Fusion Middleware Control. For more
information, see the "Mapping Business Events to JMS Topic Destinations" section
of Administering Oracle SOA Suite and Oracle Business Process Management
Suite.

• Support for the following publish and subscribe scenarios:

– Publish and subscribe to events across the same composite or different
composites.

* Use the default EDN Oracle WebLogic Server JMS topic automatically
provided.

* Use the custom event-to-JMS-topic mapping provided in Oracle Enterprise
Manager Fusion Middleware Control.

– Publish and subscribe to events with remote, non-Oracle SOA Suite
participants through one of the following APIs:

* Plain JMS API (for J2SE client environments)

* EDI API EdnJmsConnection (for J2SE and J2EE client environments)

• Instance tracking and fault recovery support in the Error Hospital. For more
information, see Administering Oracle SOA Suite and Oracle Business Process
Management Suite.

• The storage of EDL files in the MDS Repository. This makes the files available for
browsing in the Resources window in Oracle JDeveloper. For more information,
see Managing Shared Data with the Design-Time .

Note:

For memory recommendations on sending large payloads in the event
delivery network (EDN) with Oracle AQ JMS, see JVM Memory Sizing
Recommendations for SOA Composite Applications.

42.1.2 Business Event API Support for Remote Clients
For remote clients to publish and subscribe to events in Oracle SOA Suite, there are
several API options. Table 42-1 provides details.

Chapter 42
Introduction to Business Events

42-4

Table 42-1 Remote API Options

Option Description Supported By Advantages/Disadvantages

Plain JMS API Use to directly interact with EDN
JMS topics. This is typically a
J2SE client with raw JMS access.

The remote client must configure
JNDI properties to point to the
SOA server.

• Oracle WebLogic
Server JMS

• AQ JMS

The advantages are:

• Supports the standard JMS
API, meaning you can use
many JMS software tools.

The disadvantages are:

• Service level degradation.
• Requires manual discovery of

mapped JMS and
configuration of JNDI.

• Requires extra coding,
including handling of the
internal EDN event structure,
filter translation, subject
propagation, transaction, error
handling, and so on.

EDN API -
EdnJmsConnec
tion

For a J2SE client, such as Oracle
Event Processing. This option
provides all standard publish and
subscribe options.

The remote client must perform the
following tasks:

• Configure JNDI properties to
point to the SOA server.

• Invoke the EDN helper
method
findRelevantBEConnFacto
ry to return an appropriate
connection factory. This
enables you to use a JMS
connection for publishing and
subscribing to events.

• Oracle WebLogic
Server JMS

• AQ JMS

The advantages are:

• No client JNDI configuration or
JMS adapter deployment

• Handles JMS mapping,
conversion, and translation.

The disadvantages are:

• Based on the plain JMS
connection factory and topic.

For information about the JMS
adapter, see the "Oracle JCA
Adapter for JMS" chapter of
Understanding Technology
Adapters.

For more information about the EDN APIs, see Java API Reference for Oracle SOA Suite
Event Delivery Network.

42.1.2.1 Guidelines for Manually Setting Event Delivery Network Properties When
Invoking the BusinessEvent.setProperty API

When publishing an event delivery network (EDN) business event, most properties cannot be
manually set by invoking the BusinessEvent.setProperty(String name, Object value)
API.

42.1.2.1.1 Properties That Cannot Be Manually Set

Do not set the following EDN business event properties. The values for these properties are
internally set and used by EDN.

• General properties:

– BusinessEvent.EVENT_ID ("id")

Chapter 42
Introduction to Business Events

42-5

– BusinessEvent.PARENT_ID ("parent-id")
– BusinessEvent.PUBLISHED_TIME ("published-time")
– BusinessEvent.OWNER ("owner")
– BusinessEvent.SOURCE ("source")
– BusinessEvent.MODE ("mode")

• All tracking properties, for example:

– BusinessEvent.PROPERTY_ECID ("tracking.ecid")
– BusinessEvent.PROPERTY_COMPOSITE_INSTANCE_ID

("tracking.compositeInstanceId")
– BusinessEvent.PROPERTY_PARENT_COMPONENT_INSTANCE_ID

("tracking.parentComponentInstanceId")
– BusinessEvent.PROPERTY_CONVERSATION_ID ("tracking.conversationId")
– tracking.compositeInstanceCreatedTime"

42.1.2.1.2 Properties That Can Be Manually Set

You can set the following properties:

• BusinessEvent.PRIORITY ("priority")
• BusinessEvent.CONTEXT ("context")

42.1.3 Local and Remote Event Connections
A single SOA composite application instance can reside in a single container or can be
clustered across multiple containers. Another application (for example, an Oracle
Application Development Framework (ADF) Business Component application) can be
configured to run in the same container as the SOA composite application instance or
in a different container.

Raising an event from a Java EE application can be done through a local event
connection or a remote event connection:

• Local event connection

If the publisher resides on the same Oracle WebLogic Server as the application
and the publisher uses a local business event connection factory, the event is
raised through a local event connection.

• Remote event connection

If the caller resides in a different container (different JVM) then the application, the
event is raised through a remote event connection.

If another application (for example, an Oracle ADF Business Component application)
is configured to run in the same container as the SOA composite application, it is
optimized to use local event connections.

Chapter 42
Introduction to Business Events

42-6

42.2 Creating Business Events in Oracle JDeveloper
This section provides a high-level overview of how to create and subscribe to a business
event.

42.2.1 How to Create a Business Event
To create a business event:

1. Create a SOA project as an empty composite.

2. Launch the Create Event Definition wizard in either of the following ways:

a. From the File main menu, select New > Event Definition.

b. From the File main menu, select New > Application > SOA Tier > Service
Components > Event Definition.

The Create Event Definition dialog appears.

3. Enter the details described in Table 42-2.

Table 42-2 Create Event Definition Dialog Fields and Values

Field Value

Name Enter a name or accept the default name of
EventDefinitionnumber. The name you enter here becomes
the EDL file name in the Applications window.

Note: Do not enter a forward slash (/) as the event name. This
creates an event definition file consisting of only an extension for a
name (.edn).

Directory Displays the directory path in which to create the event definition
file.

Namespace Accept the default namespace or enter a value for the namespace
in which to place the event. This enables the subscriber to receives
events of the indicated namespace.

4. Click the Add icon to add an event.

The Create Event dialog appears.

5. Click the Search icon to select the payload, and click OK. Figure 42-1 provides details.

Chapter 42
Creating Business Events in Oracle JDeveloper

42-7

Figure 42-1 Select the Payload

You are returned to the Create Event dialog.

6. In the Name field, enter a name.

7. Click OK.

The added event now appears in the Events section. Figure 42-2 provides details.

Figure 42-2 Create Event Definition

8. Above the editor, click the cross icon (x) next to event_definition_name.edl to
close the editor.

Chapter 42
Creating Business Events in Oracle JDeveloper

42-8

9. Click Yes when prompted to save your changes. If you do not save your changes, the
event is not created and cannot be selected in the Event Chooser window.

The business event is published to the MDS Repository and you are returned to the SOA
Composite Editor. The business event displays for browsing in the Resources window.

42.3 Subscribing to or Publishing a Business Event from an
Oracle Mediator Service Component

This section describes how to subscribe to a business event or publish a business event from
an Oracle Mediator service component.

42.3.1 How to Subscribe to a Business Event
To subscribe to a business event:

1. From the Components window, drag a Mediator service component into the SOA
Composite Editor. This service component enables you to subscribe to the business
event.

2. In the Name field, enter a name.

3. From the Template list, select Subscribe to Events.

The dialog is refreshed to display an events table.

4. Click the Add icon to select an event.

The Event Chooser dialog appears.

5. Select an existing event or click the Add icon to create a new event, and click OK.

You are returned to the Create Mediator dialog.

6. Complete the remaining fields of the dialog. Table 42-3 provides details.

Chapter 42
Subscribing to or Publishing a Business Event from an Oracle Mediator Service Component

42-9

Table 42-3 Events Table of Create Mediator Dialog

Element Description

Consistency Click inside the Consistency column to select a level of delivery
consistency for the event.

• one and only one
Events are delivered to the subscriber in its own global (that is,
JTA) transaction. Any changes made by the subscriber within that
transaction are committed after the event processing is complete. If
the subscriber fails, the transaction is rolled back. Failed events
with retriable exceptions are automatically retried a configured
number of times before they are moved to the Error Hospital for
recovery (that is, subject to manual retries). Failed events with
nonretriable exceptions are moved to the Error Hospital without
automatic retries, and are not recoverable.

• guaranteed
Events are delivered to the subscriber in a local JMS transaction.
The subscriber can choose to create its own local transaction for
processing, but it is committed independently of the rest of event
processing. The guaranteed consistency level is a lower quality of
service option than one and only one, because a local transaction
is used instead of a global transaction. Failed events with retriable
exceptions are automatically retried a configured number of times
before they are moved to the Error Hospital where they are
recoverable, (that is, subject to manual retries. Failed events with
nonretriable exceptions are moved to the Error Hospital without
automatic retries, and are not recoverable.

For information about the Error Hospital, see Section "Recovering
From Faults in the Error Hospital" of Administering Oracle SOA
Suite and Oracle Business Process Management Suite.

Durable Durable subscriptions prevent against message loss caused by
different life cycles of publishers, subscribers, and the framework.
Select an option:

• yes: Events are retained if the subscriber is not running. This is the
default selection.

• no: Events are dropped if the subscriber is not running.

Run as
Publisher

Select a security publishing option:

• yes: The subscriber has the event publisher's security identity. This
is the default selection.

• no: The subscriber does not have the event publisher's security
identity.

Filter If you want to filter the event, double-click the Filter column of the
selected event or select the event and click the filter icon (first icon)
above the table. This displays the Expression Builder dialog. This
dialog enables you to specify an XPath filter expression. A filter
expression specifies that the contents (payload or headers) of a
message be analyzed before any service is invoked. For example, you
can apply a filter expression that specifies that a service be invoked
only if the message includes a customer ID.

When the expression logic is satisfied, the event is accepted for
delivery.

For more information about filters, see How to Specify an Expression
for Filtering Messages.

Figure 42-3 shows the Create Mediator dialog.

Chapter 42
Subscribing to or Publishing a Business Event from an Oracle Mediator Service Component

42-10

Figure 42-3 Create Mediator Dialog

7. Click OK.

Figure 42-4 shows an icon on the left side that indicates that Oracle Mediator is
configured for an event subscription.

Figure 42-4 Configuration for Event Subscription

42.3.2 How to Publish a Business Event
You can create a second Oracle Mediator to publish the event that you subscribed to in How
to Subscribe to a Business Event. While not shown here, you can also create a BPEL
component to publish the event.

To publish a business event:

1. Create a second Oracle Mediator service component that publishes the event to which
the first Oracle Mediator subscribes.

2. Return to the first Oracle Mediator service component.

3. In the Routing Rules section, click the Add icon.

4. Click Service when prompted by the Target Type window.

5. Select the second Oracle Mediator service component.

6. From the File main menu, select Save All.

Chapter 42
Subscribing to or Publishing a Business Event from an Oracle Mediator Service Component

42-11

42.3.3 What Happens When You Create and Subscribe to a Business
Event

The source code in the following example provides details about the subscribed event
of the Oracle Mediator service component.

<component name="OrderPendingEvent">
 <implementation.mediator src="OrderPendingEvent.mplan"/>
 <business-events>
 <subscribe
 xmlns:sub1="/oracle/fodemo/storefront/entities/events/edl/OrderEO"
 name="sub1:NewOrderSubmitted" consistency="oneAndOnlyOne"
 durable="true" runAsRoles="$publisher"/>
</business-events>
</component>

While not explicitly demonstrated in this example, you can define XPath filters on
events. In the following example, the event is accepted for delivery only if the initial
deposit is greater than 50000:

 <business-events>
 . . .
 . . .
 <filter>
 <xpath xmlns:be="http://oracle.com/fabric/businessEvent"
 xmlns:ns1="http://xmlns.oracle.com/singleString"
 <xpath expression= "/be:business-event/be:content/
 sub1:AccountInfo/Details[@initialDeposit > 50000]" />
 </filter>
 . . .
 . . .
 </business-events>

42.3.4 What Happens When You Publish a Business Event
Two Oracle Mediator service components appear in the following example. One
service component (OrderPendingEvent) subscribes to the event and the other service
component (PublishOrderPendingEvent) publishes the event.

<component name="PublishOrderPendingEvent">
 <implementation.mediator src="PublishOrderPendingEvent.mplan"/>
 <business-events>
 <publishes xmlns:sub1="/oracle/fodemo/storefront/entities/events/edl/
OrderEO"
 name="pub1:NewOrderSubmitted" persistent="true" priority="7"
 timeToLive="36000000"/>
 </business-events>
 </component>

<component name="OrderPendingEvent">
 <implementation.mediator src="OrderPendingEvent.mplan"/>
 <business-events>
 <subscribe
 xmlns:sub1="/oracle/fodemo/storefront/entities/events/edl/OrderEO"
 name="sub1:NewOrderSubmitted" consistency="oneAndOnlyOne"
 durable="true" runAsRoles="$publisher"/>

Chapter 42
Subscribing to or Publishing a Business Event from an Oracle Mediator Service Component

42-12

</business-events>
</component>

42.3.5 What You May Need to Know About Subscribing to a Business
Event

Only subscribers in default revisions of the SOA composite applications can receive business
events. For example, note the following behavior.

To subscribe to a business event:

1. Create a composite application with an initial Oracle Mediator service component named
M1 that publishes an event and a second Oracle Mediator service component named M2
that subscribes to the event. The output is written to a directory.

2. Deploy the composite application as revision 1.

3. Modify the composite application by adding a third Oracle Mediator service component
named M3 that subscribes to the same event and writes the output to a different
directory.

4. Deploy the composite application as revision 2 (the default).

5. Invoke revision 2 of the composite application.

Oracle Mediator M2 writes the output to one file in the directory. As expected, Oracle
Mediator M3 picks up the event and writes the output successfully to another directory.
However, Oracle Mediator M2 (from revision 1) is not picking up the published event from
revision 2 of the composite application.

42.3.6 What You May Need to Know About Publishing Events Across
Domains Using SAF

When publishing events across domains using Store-and-Forward (SAF), local subscribers
cannot subscribe to the event. For example, assume you have the following subscribers:

• Local subscriber (deployed on the same domain as the event publisher)

• Remote subscriber (deployed on a domain external to the event publisher)

Both subscribe to the same event (for this example, named E), which has been configured to
listen to the SAF topic. In this environment, only the remote subscriber can subscribe to the
event. The local subscriber cannot subscribe to the event.

The JMS topic for EDN must be provisioned as a physical JMS topic instead of as an
imported SAF topic. This is because an imported SAF topic has its own rules of context
lookup and security checking that EDN does not natively support.

42.3.6.1 Workaround for Local Subscribers
As a workaround, you must perform the following procedures:

1. Create a local JMS topic that the publisher can locate. For example, in local domain A,
which the event publisher can locate, you provision a regular Oracle WebLogic Server
JMS topic (for example, named Ta) to which to publish events, and a subscriber (local in
domain A) to listen for this topic.

Chapter 42
Subscribing to or Publishing a Business Event from an Oracle Mediator Service Component

42-13

2. In remote domain B, which a remote subscriber can locate, you create an imported
SAF topic (for example, named safTb) that maps to topic Ta from domain A, and
have the remote subscriber listen to safTb.

As an alternative to Step 2, you can provision another JMS topic (for example, named
Tb) in domain B to which a remote subscriber listens, and create a JMS bridge that
bridges source topic Ta to destination topic Tb.

42.3.7 How to Configure a Foreign JNDI Provider to Enable
Administration Server Applications to Publish Events to the SOA
Server

This section describes how to configure a foreign JNDI provider when the publishing
application (for example, an ADF EAR file) is deployed on the administration server
instead of the SOA server.

To configure a foreign JNDI provider to enable administration server
applications to publish events to the SOA Server:

1. Log in to the Oracle WebLogic Server Administration Console.

http://host:port/console
2. In the Domain Structure section, expand Services > Foreign JNDI Providers.

3. Click Lock & Edit.

4. Click New.

5. In the Name field, enter a name (for example, SOA_JNDI), and click Next.

6. Select the AdminServer check box, and click Finish.

7. In the Name column, click the provider name you entered in Step 5.

8. Enter the details shown in Table 42-4, and click Save.

Table 42-4 Configuration Details

Field Description

Initial Context Factory Enter weblogic.jndi.WLInitialContextFactory.

Provider URL Enter t3://hostname:soa_server_port.

User Enter the Oracle WebLogic Server user name.

Password and Confirm
Password

Enter the password for the Oracle WebLogic Server user
name.

9. Click Links > New.

10. Enter the details shown in Table 42-5, and click OK.

Table 42-5 Configuration Details

Field Description

Name Enter SOA_EDNDataSource.

Local Name Enter jdbc/EDNDataSource.

Chapter 42
Subscribing to or Publishing a Business Event from an Oracle Mediator Service Component

42-14

Table 42-5 (Cont.) Configuration Details

Field Description

Remote Name Enter jdbc/EDNDataSource.

11. Click New.

12. Enter the details shown in Table 42-6, and click OK.

Table 42-6 Configuration Details

Field Description

Name Enter SOA_EDNLocalTxDataSource.

Local Name Enter jdbc/EDNLocalTxDataSource.

Remote Name Enter jdbc/EDNLocalTxDataSource.

13. Click OK.

14. Click Activate Changes.

15. Modify the FMW_Home/user_projects/domains/domain_name/bin/setDomainEnv.sh file
for Linux (or setDomainEnv.bat file for Windows) as follows:

WLS_JDBC_REMOTE_ENABLED="-Dweblogic.jdbc.remoteEnabled=true"
16. Restart the server.

42.3.8 How to Configure the Connection Factory When the Oracle
WebLogic Server JMS Runs in the Same Local JVM as the JMS Adapter

If Oracle WebLogic Server JMS is running in the local JVM (the same JVM as the JMS
adapter), you must correctly configure the isTransacted connector factory property. For your
servlet client, which is locally colocated with the Oracle WebLogic Server JMS server to work,
perform the following steps:

1. Log in to Oracle WebLogic Server Administration Console, and select Deployments >
JmsAdapter > Configuration -> Outbound Connection Pools.

2. Expand groups and instances, and select both eis/wls/EDNLocalTxDurableTopic and
eis/wls/EDNLocalTxTopic.

3. Set isTransacted to false.

4. Save and restart the SOA server.

For more information, see Section "Synchronous/Asynchronous Request Reply
Interaction Pattern" of Understanding Technology Adapters.

42.4 Subscribing to or Publishing a Business Event from a
BPEL Process Service Component

This section describes how to subscribe to a business event or publish a business event from
a BPEL process service component.

Chapter 42
Subscribing to or Publishing a Business Event from a BPEL Process Service Component

42-15

42.4.1 How to Subscribe to a Business Event
To subscribe to a business event:

1. From the Components window, drag a BPEL Process service component into the
SOA Composite Editor.

2. In the Name field, enter a name. Do not change any other default option and click
OK.

The BPEL process service component is created.

3. Double-click the BPEL process service component. Oracle BPEL Designer is
opened. Alternatively, you can also right-click the BPEL process service
component and click Edit.

4. Drag a Receive activity from the Components window into the SOA Composite
Editor, below the receiveInput activity.

Note:

The onMessage branch of a pick activity can also be set up to receive
events from the EDN. For more information about the onMessage
branch, see Selecting Between Continuing or Waiting on a Process with
a Pick Activity.

5. Double-click the Receive activity. The Receive dialog opens. Alternatively, you can
also right-click the Receive activity and click Edit.

6. In the Name field, enter a name.

7. From the Interaction Type list, select Event. The layout of the Receive dialog
changes.

8. Click the Browse Events icon to the right of the Event field. The Subscribed
Events dialog appears, as shown in Figure 42-5.

Figure 42-5 Subscribed Events Dialog

9. Click the Add icon to select an event.

The Event Chooser dialog appears, as shown in Figure 42-6.

Chapter 42
Subscribing to or Publishing a Business Event from a BPEL Process Service Component

42-16

Figure 42-6 Event Chooser Dialog

10. Select the event you created and click OK.

You are returned to the Subscribed Events dialog.

11. Select a level of delivery consistency for the event. Table 42-7 provides details.

Table 42-7 Events Table of Subscribed Events Dialog

Element Description

Consistency Click inside the Consistency column to select a level of delivery consistency
for the event.

• one and only one
Events are delivered to the subscriber in its own global (that is, JTA)
transaction. Any changes made by the subscriber within that transaction
are committed after the event processing is complete. If the subscriber
fails, the transaction is rolled back. Failed events with retriable
exceptions are automatically retried a configured number of times before
they are moved to the Error Hospital for recovery (that is, subject to
manual retries). Failed events with nonretriable exceptions are moved to
the Error Hospital without automatic retries, and are not recoverable.

• guaranteed
Events are delivered to the subscriber in a local JMS transaction. The
subscriber can choose to create its own local transaction for processing,
but it is committed independently of the rest of event processing. The
guaranteed consistency level is a lower quality of service option than
one and only one, because a local transaction is used instead of a
global transaction. Failed events with retriable exceptions are
automatically retried a configured number of times before they are
moved to the Error Hospital where they are recoverable, (that is, subject
to manual retries. Failed events with nonretriable exceptions are moved
to the Error Hospital without automatic retries, and are not recoverable.

For information about the Error Hospital, see Section "Recovering From
Faults in the Error Hospital" of Administering Oracle SOA Suite and
Oracle Business Process Management Suite.

Chapter 42
Subscribing to or Publishing a Business Event from a BPEL Process Service Component

42-17

Table 42-7 (Cont.) Events Table of Subscribed Events Dialog

Element Description

Durable Durable subscriptions prevent against message loss caused by different life
cycles of publishers, subscribers, and the framework. Select an option:

• yes: Events are retained if the subscriber is not running. This is the
default selection.

• no: Events are dropped if the subscriber is not running.

Run as Publisher Select a security publishing option:

• yes: The subscriber has the event publisher's security identity. This is the
default selection.

• no: The subscriber does not have the event publisher's security identity.

Filter If you want to filter the event, double-click the Filter column of the selected
event or select the event and click the filter icon (first icon) above the table.
This displays the Expression Builder dialog. This dialog enables you to
specify an XPath filter expression. A filter expression specifies that the
contents (payload or headers) of a message be analyzed before any service
is invoked. For example, you can apply a filter expression that specifies that a
service be invoked only if the message includes a customer ID.

When the expression logic is satisfied, the event is accepted for delivery.

For more information about filters, see How to Specify an Expression for
Filtering Messages.

12. Click OK to close the Subscribed Events dialog.

You are returned to the Receive dialog.

Note:

Optionally, you can select the Create Instance check box, if this receive
activity is the initiating receive activity that starts the BPEL process
service component instance. This action enables creation of a new BPEL
process service component instance for every invocation.

If this receive activity is a midprocess receive activity in which the BPEL
instance is already started, then this receive activity waits for another
event to continue the execution of this BPEL instance.

13. Click OK.

Figure 42-7 shows a BPEL process service component that is configured for event
subscription.

Figure 42-7 BPEL Process Service Component Configuration for Event
Subscription

Chapter 42
Subscribing to or Publishing a Business Event from a BPEL Process Service Component

42-18

42.4.2 How to Publish a Business Event
To publish a business event:

1. Drag an Invoke activity from the Components window into the SOA Composite Editor,
below the Receive activity created in How to Subscribe to a Business Event.

2. Double-click the Invoke activity. The Invoke dialog opens. Alternatively, you can also
right-click the Invoke activity and click Edit.

3. In the Name field, enter a name.

4. From Interaction Type list, select Event. The layout of the Invoke dialog changes.

5. To the right of the Event field, click the Browse Events icon. The Event Chooser dialog
appears.

6. Select the event you created and click OK.

You are returned to the Invoke dialog.

7. Click OK.

Figure 42-8 shows a BPEL process service component that is configured for an event
subscription and publication. The blue lightning bolt in the circle on the left side indicates
event subscription. The yellow lightning bolt in the circle on the right side indicates event
publication. Clicking the blue arrow inside the title changes it to display the title of the
published event.

Figure 42-8 BPEL Process Service Component Configuration for Event
Subscription and Publishing

42.4.3 What Happens When You Subscribe to and Publish a Business
Event

The source code in the following example shows how the composite.xml source changes for
the subscribed and published events of a BPEL process service component.

<component name="EventBPELProcess">
 <implementation.bpel src="EventBPELProcess.bpel"/>
 <property name="configuration.monitorLocation" type="xs:string"
 many="false">EventBPELProcess.monitor</property>
 <business-events>
 <subscribe xmlns:sub1="http://mycompany.com/events/orders"
 name="sub1:OrderReceivedEvent" consistency="oneAndOnlyOne"
 durable="true" runAsRoles="$publisher"/>
 <publishes xmlns:pub1="http://mycompany.com/events/orders"
 name="pub1:ProductSoldAlert" persistent="true" priority="7"
 timeToLive="36000000"/>/>

Chapter 42
Subscribing to or Publishing a Business Event from a BPEL Process Service Component

42-19

 </business-events>
</component>

 <business-events>
 <publishes xmlns:sub1="/oracle/fodemo/storefront/entities/events/edl/
OrderEO"
 name="pub1:NewOrderSubmitted" persistent="true" priority="7"
 timeToLive="36000000"/>
 </business-events>
 </component>

While not explicitly demonstrated in this example, you can define XPath filters on
events. A filter is typically present in event subscriptions. The subscribe element limits
the type of event to which this service component is subscribed, and the filter
section further limits the event to specific content in which the component is interested.
In the following example, the event is accepted for delivery only if the initial deposit is
greater than 50000.

 <business-events>
 . . .
 . . .
 <filter>
 <xpath xmlns:be="http://oracle.com/fabric/businessEvent"
 xmlns:ns1="http://xmlns.oracle.com/singleString"
 <xpath expression= "/be:business-event/be:content/
 sub1:AccountInfo/Details[@initialDeposit > 50000]" />
 </filter>
 . . .
 . . .
 </business-events>

The standard BPEL activities such as receive, invoke, onMessage, and onEvent (in
BPEL 2.0) are extended with an extra attribute bpelx:eventName, so that the BPEL
process service component can receive events from the EDN event bus. The schema
for the eventName attribute is shown in the following example:

<xs:attribute name="eventName" type="xs:QName">
 <xs:annotation>
 <xs:appinfo>
 <tns:parent>
 <bpel11:onMessage/>
 <bpel11:receive/>
 <bpel11:invoke/>
 </tns:parent>
 </xs:appinfo>
 </xs:annotation>
 </xs:attribute>

The following example shows how the eventName attribute is used in the BPEL source
file:

<receive name="OrderPendingEvent" createInstance="yes"
 bpelx:eventName="ns1:OrderReceivedEvent"/>
<invoke name="Invoke_1" bpelx:eventName="ns1:ProductSoldAlert"/>

If the bpelx:eventName attribute is used in a receive, invoke, onMessage, or onEvent
(in BPEL 2.0) activity, then the standard attributes such as partnerLink, operation, or
portType are not present. This is because the existence of the bpelx:eventName

Chapter 42
Subscribing to or Publishing a Business Event from a BPEL Process Service Component

42-20

attribute shows that the activity is only interested in receiving events from the EDN event bus
or publishing events to the EDN event bus.

The XSD file for the BPEL process service component is slightly modified, so that the
partnerLink, operation, and portType attributes are no longer mandatory. The Oracle
JDeveloper validation logic enforces the presence of either the bpelx:eventName attribute or
the partnerLink, operation, and portType attributes, but not both. The following example
shows the modified schema definition of a BPEL receive activity:

<complexType name="tReceive">
 <complexContent>
 <extension base="bpws:tExtensibleElements">
 <sequence>
 <element name="correlations" type="bpws:tCorrelations"
minOccurs="0"/>
 <group ref="bpws:activity"/>
 </sequence>
 <!- BPEL mandatory attributes relaxed to optional for supporting BPEL-
EDN ->
 <attribute name="partnerLink" type="NCName" use="optional"/>
 <attribute name="portType" type="QName" use="optional"/>
 <attribute name="operation" type="NCName" use="optional"/>
 <attribute name="variable" type="NCName" use="optional"/>
 </extension>
 </complexContent>
 </complexType>

The schema definition for the invoke and onMessage activities are modified similarly.

42.5 How to Integrate Oracle ADF Business Component
Business Events with Oracle Mediator

This section provides a high-level overview of how to integrate Oracle ADF Business
Component event conditions with SOA components. The SOA components include Oracle
Mediator service components and BPEL process service components.

To integrate Oracle ADF Business Component business events with SOA components:

1. Create a business component project.

2. Add a business event definition to the project. This action generates an EDL file and an
XSD file. The XSD file contains the definition of the payload. Ensure also that you specify
that the event be raised by the Oracle ADF Business Component upon creation.

For more information about creating and publishing Oracle ADF Business Component
business events, see Developing Fusion Web Applications with Oracle Application
Development Framework.

3. Create a SOA composite application and manually copy the EDL and XSD schema files
to the root directory of the SOA project. For example:

JDeveloper/mywork/SOA_application_name/SOA_project_name
4. Place schema files at the proper relative location from the EDL file based on the import.

5. Create an Oracle Mediator service component as described in How to Subscribe to a
Business Event.

Chapter 42
How to Integrate Oracle ADF Business Component Business Events with Oracle Mediator

42-21

6. In the Event Chooser window, select the EDL file of the event, as described in
How to Subscribe to a Business Event.

7. Create a BPEL process service component in the same SOA composite
application for Oracle Mediator to invoke. Ensure that you select the payload of the
Business Component business event XSD created in Step 2.

8. Double-click the BPEL process service component.

9. Drag an Email activity into the BPEL process service component.

10. Use the payload of the business event XSD to complete the Subject and Body
fields.

11. Return to the Oracle Mediator service component in the SOA Composite Editor.

12. Design a second service component to publish the event, such as a BPEL process
service component or a second Oracle Mediator service component.

SOA composite application design is now complete.

Chapter 42
How to Integrate Oracle ADF Business Component Business Events with Oracle Mediator

42-22

43
Working with Cross References

This chapter describes how to use the cross referencing feature of Oracle SOA Suite to
associate identifiers for equivalent entities created in different applications. It includes a
reference of the XRef functions you can use to populate, view, and maintain entries in the
cross reference tables.
This chapter includes the following sections:

• Introduction to Cross References

• Introduction to Cross Reference Tables

• Oracle Data Integrator Support for Cross Referencing

• Creating and Modifying Cross Reference Tables

• Populating Cross Reference Tables

• Looking Up Cross Reference Tables

• Deleting a Cross Reference Table Value

• Creating and Running the Cross Reference Use Case

• Creating and Running Cross Reference for 1M Functions

43.1 Introduction to Cross References
Cross references enable you to dynamically map values for equivalent entities created in
different applications.

Note:

The cross referencing feature enables you to dynamically integrate values between
applications, whereas domain value maps enable you to specify values at design
time and edit values at runtime. For more information about domain value maps,
see Working with Domain Value Maps and Using Oracle SOA Composer with
Domain Value Maps .

When you create or update objects in one application, you may also want to propagate the
changes to other applications. For example, when a new customer is created in an SAP
application, you may want to create an entry for the same customer in your Oracle E-
Business Suite application named EBS. However, the applications that you are integrating
may be using different entities to represent the same information. For example, for each new
customer in an SAP application, a new row is inserted in its Customer database with a unique
identifier such as SAP_001. When the same information is propagated to an Oracle E-
Business Suite application and a Siebel application, the new row should be inserted with
different identifiers such as EBS_1001 and SBL001. In such cases, you need some type of
functionality to map these identifiers with each other so that they can be interpreted by

43-1

different applications to be referring to the same entity. This can be done by using
cross references.

43.2 Introduction to Cross Reference Tables
Cross references are stored in the form of tables. Table 43-1 shows a cross reference
table containing information about customer identifiers in different applications.

Table 43-1 Cross Reference Table Sample

SAP EBS SBL

SAP_001 EBS_1001 SBL001
SAP_002 EBS_1002 SBL002

The identifier mapping is also required when information about a customer is updated
in one application and the changes must be propagated to other applications. You can
integrate different identifiers by using a common value integration pattern, which maps
to all identifiers in a cross reference table. For example, you can add one more column
named Common to the cross reference table shown in Table 43-1. The updated cross
reference table then appears, as shown in Table 43-2.

Table 43-2 Cross Reference Table with Common Column

SAP EBS SBL Common

SAP_001 EBS_1001 SBL001 CM001
SAP_002 EBS_1002 SBL002 CM002

Figure 43-1 shows how you can use common value integration patterns to map
identifiers in different applications.

Chapter 43
Introduction to Cross Reference Tables

43-2

Figure 43-1 Common Value Integration Pattern Example

A cross reference table consists of two parts: metadata and actual data. The metadata is
saved as the .xref file created in Oracle JDeveloper, and is stored in the Metadata Services
(MDS) repository as an XML file. By default, the actual data is stored in the XREF_DATA table
of the database in the SOA Infrastructure database schema. You can also generate a custom
database table for each cross reference entity. The database table depends on the metadata
of the cross reference entity.

Consider the following two cross reference entities:

• ORDER with cross reference columns SIEBEL, COMMON, and EBS, as shown in Table 43-3

• CUSTOMER with cross reference columns EBS, COMMON, and PORTAL, as shown in Table 43-4

Table 43-3 ORDER Table

Column Name SIEBEL COMMON EBS

Column Value SBL_101 COM_100 EBS_002
Column Value COM_110 EBS_012

Table 43-4 CUSTOMER Table

Column Name EBS COMMON PORTAL

Column Value EBS_201 COM_200 P2002

If you chose to save all the runtime data in one generic table, then the data is stored in the
XREF_DATA table, as shown in Table 43-5.

Chapter 43
Introduction to Cross Reference Tables

43-3

Table 43-5 XREF_DATA Table

XREF_TABLE_N
AME

XREF_COLUMN
_NAME

ROW_NUMBER VALUE IS_DELETED

ORDER SIEBEL 100012345 SBL_101 N
ORDER COMMON 100012345 COM_100 N
ORDER EBS 100012345 EBS_002 N
ORDER COMMON 110012345 COM_110 N
ORDER EBS 110012345 EBS_012 N
CUSTOMER EBS 200212345 EBS_201 N
CUSTOMER COMMON 200212345 COM_200 N
CUSTOMER PORTAL 200212345 P2002 N

This approach has the following advantages:

• The process of adding, removing, and modifying the columns of the cross
reference entities is simple.

• The process of creating and deleting cross reference entities from an application is
straightforward.

However, this approach has the following disadvantages:

• A large number of rows are generated in the database because each cross
reference cell is mapped to a different row in the database. This reduces the
performance of the queries.

• In the generic table, the data for the columns XREF_TABLE_NAME and
XREF_COLUMN_NAME is repeated across a large number of rows.

To overcome these problems, you can generate a custom database table for each
cross reference entity. The custom database tables depend on the metadata of the
cross reference entities. For example, for the XREF_ORDER table and XREF_CUSTOMER
table, you can generate the custom database tables shown in Table 43-6 and
Table 43-7.

Table 43-6 XREF_ORDER Table

ROW_ID SIEBEL COMMON EBS

100012345 SBL_101 COM_100 EBS_002
110012345 COM_110 EBS_012

Table 43-7 XREF_CUSTOMER Table

ROW_ID EBS COMMON PORTAL

200212345 EBS_201 COM_200 P2002

This approach requires you to execute Data Definition Language (DDL) scripts to
generate the custom database tables. For more information about custom database
tables, see How to Create Custom Database Tables.

Chapter 43
Introduction to Cross Reference Tables

43-4

43.3 Oracle Data Integrator Support for Cross Referencing
Oracle Data Integrator (ODI) achieves data integration through an E-LT (extract, load,
transform) model. You can use ODI to help with your cross-referencing needs. ODI provides
three Knowledge Modules for handling SOA cross references that perform the following
functions: Populate the cross-reference table, create a common ID for the target table, push
the common ID and the source primary key to the cross-reference table, and create and push
a unique row number that creates the cross reference between the source primary key and
the common ID. With the modules, you can create an integration interface that both loads a
target table from several source tables and handles cross-references between one of the
sources and the target.

For more information about ODI and cross referencing, see Oracle SOA Suite Cross
References in Connectivity and Knowledge Modules Guide for Oracle Data Integrator
Developer's Guide.

43.4 Creating and Modifying Cross Reference Tables
You can create cross references tables in a SOA composite application and then use it with a
BPEL process service component or an Oracle Mediator service component during
transformations.

Note:

You can also create cross-reference tables in Service Bus projects and use them in
message flows during transformations.

43.4.1 How to Create Cross Reference Metadata
To create cross reference metadata:

1. In Oracle JDeveloper, select the SOA project in which you want to create the cross
reference.

2. Right-click the project and select New.

The New Gallery dialog is displayed.

3. Select SOA Tier from the Categories section, and then select Transformations.

4. Select Cross Reference(XREF) from the Items section.

5. Click OK.

The Create Cross Reference(XREF) File dialog is displayed.

6. In the File Name field, specify the name of the cross reference file. For example, specify
Customer.

A cross reference name is used to uniquely identify a cross reference table. Two cross
reference tables cannot have same name in the cross reference repository. The cross
reference file name is the name of the cross reference table with an extension of .xref.

7. In the Description field, enter a description for the cross reference. For example:

Chapter 43
Oracle Data Integrator Support for Cross Referencing

43-5

Cross reference of Customer identifiers.
8. In the End System fields, enter the end system names.

The end systems map to the cross reference columns in a cross reference table.
For example, you can change the first end system name to SAP and the second
end system name to EBS. Each end system name must be unique within a cross
reference

A sample Create Cross Reference(XREF) File dialog is displayed in Figure 43-2.

Figure 43-2 Create Cross Reference(XREF) File Dialog

9. Click OK.

The Cross Reference Editor is displayed, as shown in Figure 43-3. You can use
this editor to modify the cross reference.

Chapter 43
Creating and Modifying Cross Reference Tables

43-6

Figure 43-3 Cross Reference Editor

43.4.2 What Happens When You Create a Cross Reference
A file with extension .xref gets created and appears in the Applications window. All .xref
files are based on the schema definition (XSD) file shown in the following example:

<?xml version="1.0" encoding="UTF-8" ?>
<schema xmlns="http://www.w3.org/2001/XMLSchema"
 targetNamespace="http://xmlns.oracle.com/xref"
 xmlns:tns="http://xmlns.oracle.com/xref" elementFormDefault="qualified">
 <element name="xref" type="tns:xrefType"/>
 <complexType name="xrefType">
 <sequence>
 <element name="table">
 <complexType>
 <sequence>
 <element name="description" type="string" minOccurs="0"
 maxOccurs="1"/>
 <element name="columns" type="tns:columnsType" minOccurs="0"
 maxOccurs="1"/>
 <element name="rows" type="tns:rowsType" maxOccurs="1"
 minOccurs="0"/>
 </sequence>
 <attribute name="name" type="string" use="required"/>
 </complexType>
 </element>
 </sequence>
 </complexType>

 <complexType name="columnsType">
 <sequence>
 <element name="column" minOccurs="1" maxOccurs="unbounded">
 <complexType>
 <attribute name="name" type="string" use="required"/>

Chapter 43
Creating and Modifying Cross Reference Tables

43-7

 </complexType>
 </element>
 </sequence>
 </complexType>

 <complexType name="rowsType">
 <sequence>
 <element name="row" minOccurs="1" maxOccurs="unbounded">
 <complexType>
 <sequence>
 <element name="cell" minOccurs="1" maxOccurs="unbounded">
 <complexType>
 <attribute name="colName" type="string" use="required"/>
 </complexType>
 </element>
 </sequence>
 </complexType>
 </element>
 </sequence>
 </complexType>
</schema>

43.4.3 How to Create Custom Database Tables
As mentioned previously, all the runtime data by default gets stored in the XREF_DATA
table. If you want to create custom database tables, then perform the following steps.

To create custom database tables:

1. From the Optimize list, select Yes in the Cross Reference Editor.

The name of the custom database table to be generated is displayed in the Table
Name field, as shown in Figure 43-4.

Chapter 43
Creating and Modifying Cross Reference Tables

43-8

Figure 43-4 Generating Custom Database Tables

The Table Name field is editable and you can change the name of the custom table. The
custom database table name should be prefixed with xref_. If you do not prefix your
table name with xref_, then while generating the table, you receive the following error
message:

Table name should begin with 'xref_' and cannot be 'xref_data' or
'xref_deleted_data' which are reserved table names for XREF runtime.

2. Click Generate Table DDL. The Optimize XREF dialog is displayed.

3. Select the Generate Drop DDL check box to drop the table and associated indexes, if a
table with the same name already exists. If you select this option and click Run, then the
Running Drop DDL Warning dialog is displayed with the following message:

Running the Drop DDL will remove the table and indexes, do you want to
continue?

4. Click Run. The Run Table DDL dialog is displayed.

5. From the Connection list, select the database connection to use.

If there is no available connection, then click Create a new database connection to
open the Create Database Connection dialog, as shown in Figure 43-5. If you want to
edit an existing connection, then select the connection and click Edit selected database
connection to open the Edit Database Connection dialog.

Chapter 43
Creating and Modifying Cross Reference Tables

43-9

Figure 43-5 Create Database Connection Dialog

6. Enter all the required details and click OK. The Connection list of the Run Table
DDL dialog is now populated.

Note:

Create the database table in the soainfra schema of the database.

7. Click OK on the Run Table DDL dialog to run the DDL script.

The Table DDL Run Results dialog displays the execution status of your DDL
scripts.

For custom database tables, two additional attributes, namely mode and dbtable, are
added to the schema definition mentioned in What Happens When You Create a Cross
Reference. They are added for the table element in the following way:

 <attribute name="mode" type="string" default="generic" />
 <attribute name="dbtable" type="string" default="xref_data"/>

43.4.4 How to Add an End System to a Cross Reference Table
To add an end system to a cross reference table:

1. Click Add.

A new row is added.

2. Double-click the newly-added row.

Chapter 43
Creating and Modifying Cross Reference Tables

43-10

3. Enter the end system name. For example, SBL.

43.5 Populating Cross Reference Tables
You can create a cross reference table in a SOA composite application in Oracle JDeveloper
and then use it to look up column values at runtime. However, before using a cross reference
to look up a particular value, you must populate it at runtime. You can use the cross reference
XPath functions to populate the cross-reference tables. The XPath functions enable you to
populate a cross reference column, perform lookups, and delete a column value. These
XPath functions can be used in the Expression Builder dialog to create an expression or in
the XSLT Mapper to create transformations. For example, you can use the
xref:populateXRefRow function to populate a cross reference column with a single value and
the xref:populateXRefRow1M function to populate a cross reference column with multiple
values.

You can access the Expression Builder dialog through an assign activity, an XSL
transformation, or the filtering functionality of a BPEL process service component or an
Oracle Mediator service component. Figure 43-6 shows how you can select the cross
reference functions in the Expression Builder dialog.

Figure 43-6 Expression Builder Dialog with Cross Reference Functions

The XSLT Mapper is displayed when you create an XSL file to transform data from one XML
schema to another. Figure 43-7 shows how you can select the cross reference functions in
the XSLT Mapper.

Chapter 43
Populating Cross Reference Tables

43-11

Figure 43-7 XSLT Mapper Dialog with Cross Reference Functions

A cross reference table must be populated at runtime before using it. By default, the
data is stored in the XREF_DATA table under the SOA Infrastructure database schema.
You can use the xref:populateXRefRow function to populate a cross reference column
with a single value and the xref:populateXRefRow1M function to populate a cross
reference column with multiple values.

Note:

You can also store the data in a different database schema by configuring a
data source in the following way:

• The JNDI name of the data source should be jdbc/xref.

• The ORACLE_HOME/rcu/integration/soainfra/sql/xref/
createschema_xref_oracle.sql file should be loaded to create the
XREF_DATA table in this data source.

43.5.1 About the xref:populateXRefRow Function
The xref:populateXRefRow function populates a cross reference column with a single
value. The xref:populateXRefRow function returns a string value, which is the cross
reference value being populated. For example, as shown in Table 43-8, the Order
table has the following columns: EBS, Common, and SBL with values E100, 100, and
SBL_001 respectively.

Chapter 43
Populating Cross Reference Tables

43-12

Table 43-8 Cross Reference Table with Single Column Values

EBS Common SBL

E100 100 SBL_001

Note:

If you find you have concurrency issues when using this function, you can also use
the populateLookupXRefRow function. The populateLookupXRefRow function should
only be used in cases where simultaneous updates are being made, resulting in
unique constraint violations. This function is described under About the
xref:populateLookupXRefRow Function.

The syntax of the xref:populateXRefRow function is shown in the following example:

xref:populateXRefRow(xrefLocation as string, xrefReferenceColumnName as string,
 xrefReferenceValue as string, xrefColumnName as string, xrefValue as string, mode
 as string) as string

Parameters

• xrefLocation: The cross reference table URI.

• xrefReferenceColumnName: The name of the reference column.

• xrefReferenceValue: The value corresponding to the reference column name.

• xrefColumnName: The name of the column to be populated.

• xrefValue: The value to be populated in the column.

• mode: The mode in which the xref:populateXRefRow function populates the column. You
can specify any of the following values: ADD, LINK, or UPDATE. Table 43-9 describes these
modes.

Table 43-9 xref:populateXRefRow Function Modes

Mode Description Exception Reasons

ADD Adds the reference value and the value to be
added.

For example, the following mode:

xref:populateXRefRow("customers.xref"
,"EBS","EBS100", "Common","CM001",
"ADD")

Adds the reference value EBS100 in the ESB
reference column and the value CM001 in the
Common column.

Exceptions can occur for the following
reasons:

• The specified cross reference
table is not found.

• The specified columns are not
found.

• The values provided are empty.
• The value being added is not

unique across that column for that
table.

• The column for that row already
contains a value.

• The reference value exists.

Chapter 43
Populating Cross Reference Tables

43-13

Table 43-9 (Cont.) xref:populateXRefRow Function Modes

Mode Description Exception Reasons

LINK Adds the cross reference value corresponding
to the existing reference value.

For example, the following mode:

xref:populateXRefRow("customers.xref"
,"Common","CM001","SBL","SBL_
001","LINK")

Links the value CM001 in the Common column to
the SBL_001 value in the SBL column.

Exceptions can occur for the following
reasons:

• The specified cross reference
table is not found.

• The specified columns are not
found.

• The values provided are empty.
• The reference value is not found.
• The value being linked exists in

that column for that table.

UPDATE Updates the cross reference value
corresponding to an existing reference column-
value pair.

For example, the following mode:

xref:populateXRefRow("customers.xref"
,"SBL","SBL_001", "SBL","SBL_
1001","UPDATE")

Updates the value SBL_001 in the SBL column
to the value SBL_1001.

Exceptions can occur for the following
reasons:

• The specified cross reference
table is not found.

• The specified columns are not
found.

• The values provided are empty.
• Multiple values are found for the

column being updated.
• The reference value is not found.
• The column for that row does not

have a value.

Note:

The mode parameter values are case-sensitive and should be specified in
upper case only, as shown in Table 43-9.

Table 43-10 describes the xref:populateXRefRow function modes and exception
conditions for these modes.

Table 43-10 xref:populateXRefRow Function Results with Different Modes

Mode Reference Value Value to be Added Result

ADD Absent
Present
Present

Absent
Absent
Present

Success

Exception

Exception

LINK Absent
Present
Present

Absent
Absent
Present

Exception

Success

Exception

UPDATE Absent
Present
Present

Absent
Absent
Present

Exception

Exception

Success

Chapter 43
Populating Cross Reference Tables

43-14

43.5.2 About the xref:populateLookupXRefRow Function
Like the xref:populateXRefRow function, the xref:populateLookupXRefRow function
populates a cross reference column with a single value. Unlike the xref:populateXRefRow
function, the xref:populateLookupXRefRow function does not throw a unique constraint
violation error when records with the same ID are added simultaneously. Instead, it behaves
as a lookup and returns the existing source value that caused the error and does not stop the
processing flow. Use this function to resolve any concurrency issues that could arise when
using the xref:populateXRefRow function.

The xref:populateLookupXRefRow function returns a string value, which is the cross
reference value being populated or, with a unique constraint violation, the cross reference
value that was already populated by the first committed thread. For example, as shown in
Table 43-8, the XREF_CUSTOMER_DATA table has the following columns: EBS, Common, and SBL.
The xref:populateLookupXRefRow function is invoked by two threads in parallel with
following values:

• Thread One: xref: populateLookupXRefRow ("default/xref/example.xref", "EBS",
"EBS100", "Common" "CM001", "ADD")

• Thread Two: xref: populateLookupXRefRow ("default/xref/example.xref", "EBS",
"EBS100", "Common" "CM002", "ADD")

The table is populated as shown in Table 43-11. Since thread one is committed first, thread
two returns "CM001" to the caller.

Table 43-11 Cross Reference Table Populated by xref:populateLookupXRefRow

EBS Common SBL

EBS100 CM001

The syntax of the xref:populateLookupXRefRow function is shown in the following example:

xref:populateLookupXRefRow(xrefMetadataURI as string, xrefReferenceColumnName as
 string, xrefReferenceValue as string, xrefColumnName as string, xrefValue as
 string, mode as string) as string

Parameters

• xrefMetadataURI: The cross reference table URI.

• xrefReferenceColumnName: The name of the reference column.

• xrefReferenceValue: The value corresponding to the reference column name.

• xrefColumnName: The name of the column to be populated.

• xrefValue: The value to be populated in the column.

• mode: The mode in which the xref:populateXRefRow function populates the column. You
can specify ADD or LINK. Table 43-10 describes these modes and exception conditions for
the modes.

Chapter 43
Populating Cross Reference Tables

43-15

Note:

The mode parameter values are case-sensitive and should be specified in
upper case only.

Table 43-12 xref:populateLookupXRefRow Function Results with Different
Modes

Mode Reference Value Value to be Added Result

ADD Absent
Present
Present

Absent
Absent
Present

Success

Exception (Success
only when Exception
is Unique constraint
violation)

Exception (Success
only when Exception
is Unique constraint
violation)

LINK Absent
Present
Present

Absent
Absent
Present

Exception

Success

Exception

Usage Notes

• When using a custom table approach, you must add the primary constraint on the
columns that must be unique in the cross-reference table. Using Table 43-11 as an
example, the SQL statement is similar to the following:

alter table xref_customer_data add constraint xref_vnx_data_pk
 primary key (common, ebs);

Populate the primary constraint columns first and then populate the remaining
columns in subsequent calls.

• This function should not be used for inserting cross references for primary objects,
since this could mask data inconsistency issues. Only use the function for
secondary objects to a main dependent object. For example, do not use the
function to determine whether an account already exists when creating customer
accounts; but do use it if the addresses in those customer accounts are being
synchronized.

43.5.3 About the xref:populateXRefRow1M Function
Two values in an end system can correspond to a single value in another system. In
such a scenario, you should use the xref:populateXRefRow1M function to populate a
cross reference column with a value. For example, as shown in Table 43-13, the
SAP_001 and SAP_0011 values refer to one value of the EBS and SBL applications. To
populate columns such as SAP, you can use the xref:populateXRefRow1M function.

Chapter 43
Populating Cross Reference Tables

43-16

Table 43-13 Cross Reference Table with Multiple Column Values

SAP EBS SBL

SAP_001
SAP_0011

EBS_1001 SBL001

SAP_002 EBS_1002 SBL002

The syntax of the xref:populateXRefRow1M function is shown in the following example:

xref:populateXRefRow1M(xrefLocation as string, xrefReferenceColumnName as string,
 xrefReferenceValue as string, xrefColumnName as string, xrefValue as string, mode
 as string) as string

Parameters

• xrefLocation: The cross reference URI.

• xrefReferenceColumnName: The name of the reference column.

• xrefReferenceValue: The value corresponding to the reference column name.

• xrefColumnName: The name of the column to be populated.

• xrefValue: The value to be populated in the column.

• mode: The mode in which the xref:populateXRefRow function populates the column. You
can specify either of the following values: ADD or LINK. Table 43-14 describes these
modes:

Table 43-14 xref:populateXRefRow1M Function Modes

Mode Description Exception Reasons

ADD Adds the reference value and the value to be
added.

For example, the following mode:

xref:populateXRefRow1M("customers.xref","
EBS","EBS_1002", "SAP","SAP_0011","ADD")

Adds the reference value EBS_1002 in the reference
column EBS and the value SAP_0011 in the SAP
column.

Exceptions can occur for the
following reasons:

• The specified cross reference
table is not found.

• The specified columns are
not found.

• The values provided are
empty.

• The value being added is not
unique across that column for
that table.

• The reference value exists.

Chapter 43
Populating Cross Reference Tables

43-17

Table 43-14 (Cont.) xref:populateXRefRow1M Function Modes

Mode Description Exception Reasons

LINK Adds the cross reference value corresponding to the
existing reference value.

For example, the following mode:

xref:populateXRefRow1M("customers.xref","
EBS","EBS_1002", "SAP","SAP_002","LINK")

Links the value SAP_002 in the SAP column to the
EBS_1002 value in the EBS column.

Exceptions can occur for the
following reasons:

• The specified cross reference
table is not found.

• The specified columns are
not found.

• The values provided are
empty.

• The reference value is not
found.

• The value being added is not
unique across the column for
that table.

Table 43-15 describes the xref:populateXRefRow1M function modes and exception
conditions for these modes.

Table 43-15 xref:populateXRefRow1M Function Results with Different Modes

Mode Reference Value Value to be Added Result

ADD Absent
Present
Present

Absent
Absent
Present

Success

Exception

Exception

LINK Absent
Present
Present

Absent
Absent
Present

Exception

Success

Exception

43.5.4 How to Populate a Column of a Cross Reference Table
To populate a column of a cross reference table:

1. In the XSLT Mapper, expand the trees in the Source and Target panes.

2. Drag and drop a source element to a target element.

3. In the Components window, select Advanced.

4. Select XREF Functions.

5. Drag and drop the populateXRefRow function to the line that connects the source
object to the target object.

A populateXRefRow icon appears on the connecting line.

6. Double-click the populateXRefRow icon.

The Edit Function – populateXRefRow dialog is displayed, as shown in
Figure 43-8.

Chapter 43
Populating Cross Reference Tables

43-18

Figure 43-8 Edit Function – populateXRefRow Dialog

7. Specify the following values for the fields in the Edit Function – populateXRefRow dialog:

a. In the xrefLocation field, enter the location URI of the cross reference file.

Click Browse to the right of the xrefLocation field to select the cross reference file.
You can select an already-deployed cross reference from MDS and also from a
shared location in MDS using the Resource Palette.

b. In the referenceColumnName field, enter the name of the cross reference column.

Click Browse to the right of the referenceColumnName field to select a column
name from the columns defined for the cross reference you previously selected.

c. In the referenceValue field, you can manually enter a value or press Ctrl-Space to
launch the XPath Building Assistant. Press the up and down keys to locate an object
in the list and press Enter to select that object.

d. In the columnName field, enter the name of the cross reference column.

Click the Browse icon to the right of the columnName field to select a column name
from the columns defined for the cross reference you previously selected.

e. In the value field, you can manually enter a value or press Ctrl-Space to launch the
XPath Building Assistant.

f. In the mode field, enter a mode in which you want to populate the cross reference
table column. For example, enter ADD.

You can also click Browse to select a mode. The Select Populate Mode dialog is
displayed from which you can select a mode.

8. Click OK.

A populated Edit Function – populateXRefRow dialog is shown in Figure 43-9.

Chapter 43
Populating Cross Reference Tables

43-19

Figure 43-9 Populated Edit Function – populateXRefRow Dialog

43.6 Looking Up Cross Reference Tables
After populating the cross reference table, you can use it to look up a value. The
xref:lookupXRef and xref:lookupXRef1M functions enable you to look up a cross
reference for single and multiple values, respectively.

43.6.1 About the xref:lookupXRef Function
You can use the xref:lookupXRef function to look up a cross reference column for a
value that corresponds to a value in a reference column. For example, the following
function looks up the Common column of the cross reference tables described in
Table 43-2 for a value corresponding to the SAP_001 value in the SAP column.

xref:lookupXRef("customers.xref","SAP","SAP_001","Common",true())

The syntax of the xref:lookupXRef function is shown in the following example:

xref:lookupXRef(xrefLocation as string, xrefReferenceColumnName as string,
xrefReferenceValue as string, xrefColumnName as string, needAnException as
boolean) as string

Parameters

• xrefLocation: The cross reference URI.

• xrefReferenceColumnName: The name of the reference column.

• xrefReferenceValue: The value corresponding to the reference column name.

• xrefColumnName: The name of the column to be looked up for the value.

• needAnException: When the value is set to true, an exception is thrown if the
value is not found. Otherwise, an empty value is returned.

Exception Reasons

At runtime, an exception can occur for the following reasons:

Chapter 43
Looking Up Cross Reference Tables

43-20

• The cross reference table with the given name is not found.

• The specified column names are not found.

• The specified reference value is empty.

• Multiple values are found.

43.6.2 About the xref:lookupXRef1M Function
You can use the xref:lookupXRef1M function to look up a cross reference column for multiple
values corresponding to a value in a reference column. The xref:lookupXRef1M function
returns a node-set containing multiple nodes. Each node in the node-set contains a value.

For example, the following function looks up the SAP column of Table 43-13 for multiple
values corresponding to the EBS_1001 value in the EBS column:

xref:lookupXRef1M("customers.xref","EBS","EBS_1001","SAP",true())

The syntax of the xref:lookupXRefRow1M function is shown in the following example:

xref:lookupXRef1M(xrefLocation as String, xrefReferenceColumnName as String,
 xrefReferenceValue as String, xrefColumnName as String, needAnException as
 boolean) as node-set

Parameters

• xrefLocation: The cross reference URI.

• xrefReferenceColumnName: The name of the reference column.

• xrefReferenceValue: The value corresponding to the reference column name.

• xrefColumnName: The name of the column to be looked up for the value.

• needAnException: If this value is set to true, an exception is thrown when the referenced
value is not found. Otherwise, an empty node-set is returned.

Example of the xref:lookupXRefRow1M Function

Consider the Order table shown in Table 43-16 with the following three columns: Siebel,
Billing1, and Billing2.

Table 43-16 Order Table

Siebel Billing1 Billing2

100 101 102
110 111

112

For 1:1 mapping, the xref:lookupPopulatedColumns("Order","Siebel","100","false")
method returns the values shown in the following example:

<column name="BILLING1">101</column>
<column name="BILLING2">102</column>

In this case, both the columns, Billing1 and Billing2, are populated.

Chapter 43
Looking Up Cross Reference Tables

43-21

For 1:M mapping, the
xref:lookupPopulatedColumns("Order","Siebel","110","false") method returns
the values shown in the following example:

<column name="BILLING2">111</column>
<column name="BILLING2">112</column>

In this case, Billing1 is not populated.

Exception Reasons

An exception can occur for the following reasons:

• The cross reference table with the given name is not found.

• The specified column names are not found.

• The specified reference value is empty.

43.6.3 About the xref:lookupPopulatedColumns Function
You can use the xref:lookupPopulatedColumns function to look up all the populated
columns for a given cross reference table, a cross reference column, and a value. The
xref:lookupPopulatedColumns function returns a node-set with each node containing
a column name and the corresponding value.

The syntax of the xref:LookupPopulatedColumns function is shown in the following
example:

xref:LookupPopulatedColumns(xrefTableName as String,xrefColumnName as
 String,xrefValue as String,needAnException as boolean)as node-set

Parameters

• xrefTableName: The name of the reference table.

• xrefColumnName: The name of the reference column.

• xrefValue: The value corresponding to the reference column name.

• needAnException: If this value is set to true, then an exception is thrown when no
value is found in the referenced column. Otherwise, an empty node-set is
returned.

Exception Reasons

An exception can occur for the following reasons:

• The cross reference table with the given name is not found.

• The specified column names are not found.

• The specified reference value is empty.

43.6.4 How to Look Up a Cross Reference Table for a Value
To look up a cross reference table column:

1. In the XSLT Mapper, expand the trees in the Source and Target panes.

2. Drag and drop the source element to the target element.

Chapter 43
Looking Up Cross Reference Tables

43-22

3. In the Components window, select Advanced.

4. Select XREF Functions.

5. Drag and drop the lookupXRef function to the line that connects the source object to the
target object.

A lookupXRef icon appears on the connecting line.

6. Double-click the lookupXRef icon.

The Edit Function – lookupXRef dialog is displayed, as shown in Figure 43-10.

Figure 43-10 Edit Function – lookupXRef Dialog

7. Specify the following values for the fields in the Edit Function – lookupXRef dialog:

a. In the xrefLocation field, enter the location URI of the cross reference file.

Click Browse to the right of the xrefLocation field to select the cross reference file.
You can select an already deployed cross reference from MDS and also from a
shared location in MDS by using the Resource Palette.

b. In the referenceColumnName field, enter the name of the cross reference column.

Click Browse to the right of the referenceColumnName field to select a column
name from the columns defined for the cross reference you previously selected.

c. In the referenceValue field, you can manually enter a value or press Ctrl-Space to
use the XPath Building Assistant. Press the up and down keys to locate an object in
the list and press Enter to select that object.

d. In the columnName field, enter the name of the cross reference column.

Click Browse to the right of the columnName field to select a column name from the
columns defined for the cross reference you previously selected.

e. Click Browse to the right of needException field. The Need Exception dialog is
displayed. Select Yes to raise an exception if no value is found. Otherwise, select No.

8. Click OK.

A populated Edit Function – lookupXRef dialog is shown in Figure 43-11.

Chapter 43
Looking Up Cross Reference Tables

43-23

Figure 43-11 Populated Edit Function – lookupXRef Dialog

43.7 Deleting a Cross Reference Table Value
You can use the xref:markForDelete function to delete a value in a cross reference
table. The row, containing the column value passed to the function, is deleted from the
XREF_DATA table and moved to the XREF_DELETED_DATA table. This function returns
true if the deletion is successful. Otherwise, it returns false.

A cross reference table row should have at least two mappings. If you have only two
mappings in a row and you mark one value for deletion, then the value in another
column is also deleted.

The syntax for the xref:markForDelete function is shown in the following example:

xref:markForDelete(xrefTableName as string, xrefColumnName as string,
xrefValueToDelete as string) return as boolean

Parameters

• xrefTableName: The cross reference table name.

• xrefColumnName: The name of the column that contains the value to be deleted.

• xrefValueToDelete: The value to be deleted.

Exception Reasons

An exception can occur for the following reasons:

• The cross reference table with the given name is not found.

• The specified column name is not found.

• The specified value is empty.

• The specified value is not found in the column.

• Multiple values are found.

Chapter 43
Deleting a Cross Reference Table Value

43-24

43.7.1 How to Delete a Cross Reference Table Value
To delete a cross reference table value:

1. In the XSLT Mapper, expand the trees in the Source and Target panes.

2. Drag and drop the source element to the target element.

3. In the Components window, select Advanced.

4. Select XREF Functions.

5. Drag and drop the markForDelete function to the line that connects the source object to
the target object.

A markForDelete icon appears on the connecting line.

6. Double-click the markForDelete icon.

The Edit Function – markForDelete dialog is displayed, as shown in Figure 43-12.

Figure 43-12 Edit Function – markForDelete Dialog

7. Specify the following values for the fields in the Edit Function – markForDelete dialog:

a. In the xrefLocation field, enter the location URI of the cross reference file.

Click the Search icon to the right of the xrefLocation field to select the cross
reference file. You can select an already deployed cross reference from MDS and
also from a shared location in MDS by using the Resource Palette.

b. In the columnName field, enter the name of cross reference table column.

Click the Search icon to the right of the columnName field to select a column name
from the columns defined for the cross reference you previously selected.

c. In the Value field, manually enter a value or press Ctrl-Space to launch the XPath
Building Assistant. Press the up and down keys to locate an object in the list and
press Enter to select that object.

A populated Edit Function – markForDelete dialog is shown in Figure 43-13.

Chapter 43
Deleting a Cross Reference Table Value

43-25

Figure 43-13 Populated Edit Function – markForDelete Dialog

8. Click OK.

43.8 Creating and Running the Cross Reference Use Case
This cross reference use case implements an integration scenario between Oracle
EBS, SAP, and Siebel instances. In this use case, when an insert, update, or delete
operation is performed on the SAP_01 table, the corresponding data is inserted or
updated in the EBS and SBL tables. Figure 43-14 provides an overview of this use case.

Figure 43-14 XrefCustApp Use Case in SOA Composite Editor

Chapter 43
Creating and Running the Cross Reference Use Case

43-26

43.8.1 How to Create the Use Case
This section provides the design-time tasks for creating, building, and deploying your SOA
Composite application. These tasks should be performed in the order in which they are
presented.

43.8.1.1 Task 1: How to Configure the Oracle Database and Database Adapter

To configure the Oracle database and database adapter:

1. You need the SCOTT database account with password TIGER for this use case. You must
ensure that the SCOTT account is unlocked.

You can log in as SYSDBA and then run the setup_user.sql script available in the
XrefOrderApp1M/sql directory to unlock the account.

2. Run the create_schema.sql script available in the XrefOrderApp1M/sql directory to
create the tables required for this use case.

3. Run the create_app_procedure.sql script available in the XrefOrderApp1M/sql directory
to create a procedure that simulates the various applications participating in this
integration.

4. Run the createschema_xref_oracle.sql script available in the OH/rcu/integration/
soainfra/sql/xref/ directory to create a cross reference table to store runtime cross
reference data.

5. Copy the ra.xml and weblogic-ra.xml files from $BEAHOME/META-INF to the newly
created directory called META-INF on your computer.

6. Edit the weblogic-ra.xml file available in the $BEAHOME/META-INF directory as follows:

• Modify the property to xADataSourceName as follows:

<property>
 <name>xADataSourceName</name>
 <value>jdbc/DBConnection1</value>
</property>

• Modify the jndi-name as follows:

<jndi-name> eis/DB/DBConnection1</jndi-name>
This sample uses eis/DB/DBConnection1 to poll the SAP table for new messages and to
connect to the procedure that simulates Oracle EBS and Siebel instances.

7. Package the ra.xml and weblogic-ra.xml files as a RAR file and deploy the RAR file by
using Oracle WebLogic Server Administration Console.

8. Create a data source using the Oracle WebLogic Server Administration Console with the
following values:

• jndi-name=jdbc/DBConnection1
• user=scott
• password=tiger
• url=jdbc:oracle:thin:@host:port:service
• connection-factory factory-class=oracle.jdbc.pool.OracleDataSource

Chapter 43
Creating and Running the Cross Reference Use Case

43-27

9. Create a data source using the Oracle WebLogic Server Administration Console
with the following values:

• jndi-name=jdbc/xref
• user=scott
• password=tiger
• url=jdbc:oracle:thin:@host:port:service
• connection-factory factory-class=oracle.jdbc.pool.OracleDataSource

43.8.1.2 Task 2: How to Create an Oracle JDeveloper Application and a Project

To create an Oracle JDeveloper application and a project:

1. In Oracle JDeveloper, click File and select New.

The New Gallery dialog appears.

2. In the New Gallery, expand the General node, and select the Applications
category.

3. In the Items list, select SOA Application and click OK.

The Create SOA Application wizard appears.

4. In the Application Name field, enter XrefCustApp, and then click Next.

The Name your SOA project page appears.

5. In the Project Name field, enter XrefCustApp and click Next.

The Configure SOA settings page appears.

6. From the Composite Template list, select Empty Composite and then click
Finish.

The Applications window of Oracle JDeveloper is updated with the new application
and project and the SOA Composite Editor contains a blank composite.

7. From the File menu, select Save All.

43.8.1.3 Task 3: How to Create a Cross Reference
After creating an application and a project for the use case, you must create a cross
reference table.

To create a cross reference table:

1. In the Applications window, right-click the XrefCustApp project and select New.

2. In the New Gallery dialog, expand the SOA Tier node, and then select the
Transformations category.

3. In the Items list, select Cross Reference(XREF) and click OK.

The Create Cross Reference(XREF) File dialog is displayed.

4. In the File Name field, enter customer.xref.

5. In the End System fields, enter SAP_01 and EBS_i76.

Chapter 43
Creating and Running the Cross Reference Use Case

43-28

6. Click OK.

The Cross Reference Editor is displayed.

7. Click Add.

A new row is added.

8. Enter SBL_78 as the end system name in the newly added row.

9. Click Add and enter Common as the end system name.

The Cross Reference Editor appears, as shown in Figure 43-15.

Figure 43-15 Customer Cross Reference

10. From the File menu, select Save All and close the Cross Reference Editor.

43.8.1.4 Task 4: How to Create a Database Adapter Service

To create a database adapter service:

1. In the Oracle JDeveloper Components window, select SOA.

2. Select Database and drag it to the Exposed Services swimlane.

The Adapter Configuration wizard Welcome page is displayed.

3. Click Next.

The Service Name page is displayed.

4. In the Service Name field, enter SAP.

5. Click Next.

The Service Connection page is displayed.

6. In the Application Connection field, select DBConnection1.

7. In the JNDI Name field, enter eis/DB/DBConnection1.

8. Click Next.

Chapter 43
Creating and Running the Cross Reference Use Case

43-29

The Operation Type page is displayed.

9. Select Poll for New or Changed Records in a Table and click Next.

The Select Table page is displayed.

10. Click Import Tables.

The Import Tables dialog is displayed.

11. Select Scott from Schema.

12. In the Name Filter field, enter %SAP% and click Query.

The Available field is populated with SAP_01 table name.

13. Double-click SAP_01.

The selected field is populated with SAP_01.

14. Click OK.

The Select Table page now contains the SAP_01 table.

15. Select SAP_01 and click Next.

The Define Primary Key page is displayed.

16. Select ID as the primary key and click Next.

The Relationships page is displayed.

17. Click Next.

The Attribute Filtering page is displayed.

18. Click Next.

The After Read page is displayed.

19. Select Update a Field in the [SAP_01] Table (Logical Delete) and click Next.

The Logical Delete page is displayed.

20. In the Logical Delete field, select LOGICAL_DEL.

21. In the Read Value field, enter Y.

22. In the Unread Value field, enter N.

Figure 43-16 shows the Logical Delete page of the Adapter Configuration wizard.

Chapter 43
Creating and Running the Cross Reference Use Case

43-30

Figure 43-16 Logical Delete Page: Adapter Configuration Wizard

23. Click Next.

The Polling Options page is displayed.

24. Click Next.

The Define Selection Criteria page is displayed.

25. Click Next.

The Finish page is displayed.

26. Click Finish.

A database adapter service named SAP is created, as shown in Figure 43-17.

Figure 43-17 SAP Database Adapter Service in SOA Composite Editor

27. From the File menu, select Save All.

Chapter 43
Creating and Running the Cross Reference Use Case

43-31

43.8.1.5 Task 5: How to Create EBS and SBL External References

To create EBS and SBL external references:

1. In the Components window, select SOA.

2. Select Database Adapter and drag it to the External References swimlane.

The Adapter Configuration wizard Welcome page is displayed.

3. Click Next.

The Service Name page is displayed.

4. In the Service Name field, enter EBS.

5. Click Next.

The Service Connection page is displayed.

6. In the Application Connection field, select DBConnection1.

7. In the JNDI Name field, enter eis/DB/DBConnection1.

8. Click Next.

The Operation Type page is displayed.

9. Select Call a Stored Procedure or Function and click Next.

The Specify Stored Procedure page is displayed.

10. Select Scott from Schema.

11. Click Browse.

The Stored Procedures dialog is displayed.

12. Select POPULATE_APP_INSTANCE, as shown in Figure 43-18.

Chapter 43
Creating and Running the Cross Reference Use Case

43-32

Figure 43-18 Stored Procedure Dialog

13. Click OK.

The Specify Stored Procedure page appears, as shown in Figure 43-19.

Figure 43-19 Specify Stored Procedure Page of Adapter Configuration Wizard

14. Click Next.

The Finish page is displayed.

Chapter 43
Creating and Running the Cross Reference Use Case

43-33

15. Click Finish.

Figure 43-20 shows the EBS reference in the SOA Composite Editor.

Figure 43-20 EBS Reference in SOA Composite Editor

16. From the File menu, select Save All.

17. Repeat Step 2 through Step 16 to create another external reference named SBL.

After completing this task, the SOA Composite Editor appears, as shown in
Figure 43-21.

Figure 43-21 SBL Reference in SOA Composite Editor

43.8.1.6 Task 6: How to Create the Logger File Adapter External Reference

To create the Logger file adapter external reference:

1. From the Components window, select SOA.

2. Select File Adapter and drag it to the External References swimlane.

The Adapter Configuration wizard Welcome page is displayed.

Chapter 43
Creating and Running the Cross Reference Use Case

43-34

3. Click Next.

The Service Name page is displayed.

4. In the Service Name field, enter Logger.

5. Click Next.

The Operation page is displayed.

6. In the Operation Type field, select Write File.

7. Click Next.

The File Configuration page is displayed.

8. In the Directory for Outgoing Files (physical path) field, enter the name of the
directory in which you want to write the files.

9. In the File Naming Convention field, enter output.xml and click Next.

The Messages page is displayed.

10. Click Search.

The Type Chooser dialog is displayed.

11. Navigate to Type Explorer > Project Schema Files >
SCOTT_POPULATE_APP_INSTANCE.xsd, and then select OutputParameters.

12. Click OK.

13. Click Next.

The Finish page is displayed.

14. Click Finish.

Figure 43-22 shows the Logger reference in the SOA Composite Editor.

Figure 43-22 Logger Reference in SOA Composite Editor

15. From the File menu. select Save All.

Chapter 43
Creating and Running the Cross Reference Use Case

43-35

43.8.1.7 Task 7: How to Create an Oracle Mediator Service Component

To create an Oracle Mediator service component:

1. Drag and drop a Mediator icon from the Components window to the Components
section of the SOA Composite Editor.

The Create Mediator dialog is displayed.

2. From the Template list, select Define Interface Later.

3. Click OK.

An Oracle Mediator with name Mediator1 is created.

4. Connect the SAP service to the Mediator1, as shown in Figure 43-23.

Figure 43-23 SAP Service Connected to Mediator1

5. From the File menu, select Save All.

6. Drag and drop another Mediator icon from the Components window to the
Components section of the SOA Composite Editor.

The Create Mediator dialog is displayed.

7. From the Template list, select Interface Definition From WSDL.

8. Deselect Create Composite Service with SOAP Bindings.

9. To the right of the WSDL File field, click Find Existing WSDLs.

10. Navigate to and then select the Common.wsdl file. The Common.wsdl file is
available in the Samples folder.

11. Click OK.

12. Click OK.

An Oracle Mediator with name Common is created.

Chapter 43
Creating and Running the Cross Reference Use Case

43-36

43.8.1.8 Task 8: How to Specify Routing Rules for an Oracle Mediator Service
Component

You must specify routing rules for the following operations:

• Insert

• Update

• UpdateID

• Delete

43.8.1.8.1 To create routing rules for an insert operation:

1. Double-click the Mediator1 Oracle Mediator.

The Mediator Editor is displayed.

2. In the Routing Rules section, click the Create a new Routing Rule icon.

The Target Type dialog is displayed.

3. Select Service.

The Target Services dialog is displayed.

4. Navigate to XrefCustApp > Mediators > Common, Services > Common.

5. Select Insert and click OK.

6. Click the Filter icon.

The Expression Builder dialog is displayed.

7. In the Expression field, enter the following expression:

$in.Sap01Collection/top:Sap01Collection/top:Sap01/top:operation='INSERT'
8. Click OK.

9. Next to the Transform Using field, click the Transformation icon.

The Request Transformation map dialog is displayed.

10. Select Create New Mapper File and enter SAP_TO_COMMON_INSERT.xsl.

11. Click OK.

An SAP_TO_COMMON_INSERT.xsl file is displayed in the XSLT Mapper.

12. Drag and drop the top:SAP01 source element to the inp1:Customer target element.

The Auto Map Preferences dialog is displayed.

13. From the During Auto Map options, deselect Match Elements Considering their
Ancestor Names.

14. Click OK.

The transformation is created, as shown in Figure 43-24.

Chapter 43
Creating and Running the Cross Reference Use Case

43-37

Figure 43-24 SAP_TO_COMMON_INSERT.xsl Transformation

15. From the Components window, select Advanced.

16. Select XREF Functions.

17. Drag and drop the populateXRefRow function from the Components window to
the line connecting the top:id and inp1:id elements.

18. Double-click the populateXRefRow icon.

The Edit Function-populateXRefRow dialog is displayed.

19. Click Search to the right of the xrefLocation field.

The SOA Resource Lookup dialog is displayed.

20. Select customer.xref and click OK.

21. In the referenceColumnName field, enter "SAP_01" or click Search to select the
column name.

22. In the referenceValue column, enter /top:Sap01Collection/top:Sap01/top:id.

23. In the columnName field, enter "Common" or click Search to select the column
name.

24. In the value field, enter oraext:generate-guid().

25. In the mode field, enter "Add" or click Search to select this mode.

Figure 43-25 shows the populated Edit Function – populateXRefRow dialog.

Chapter 43
Creating and Running the Cross Reference Use Case

43-38

Figure 43-25 Edit Function – populateXRefRow Dialog: XrefCustApp Use Case

26. Click OK.

27. From the File menu, select Save All and close the SAP_TO_COMMON_INSERT.xsl file.

The Routing Rules section appears, as shown in Figure 43-26.

Figure 43-26 Routing Rules Section with Insert Operation

43.8.1.8.2 To create routing rules for an update operation:

1. In the Routing Rules section, click the Create a new Routing Rule icon.

The Target Type dialog is displayed.

2. Select Service.

The Target Services dialog is displayed.

3. Navigate to XrefCustApp > Mediators > Common, Services > Common.

4. Select Update and click OK.

5. Click the Filter icon.

The Expression Builder dialog is displayed.

Chapter 43
Creating and Running the Cross Reference Use Case

43-39

6. In the Expression field, enter the following expression:

$in.Sap01Collection/top:Sap01Collection/top:Sap01/top:operation='UPDATE'
7. Click OK.

8. Next to the Transform Using field, click the Transformation icon.

The Request Transformation map dialog is displayed.

9. Select Create New Mapper File and enter SAP_TO_COMMON_UPDATE.xsl.

10. Click OK.

An SAP_TO_COMMON_UPDATE.xsl file is displayed.

11. Drag and drop the top:Sap01 source element to the inp1:Customer target
element.

The Auto Map Preferences dialog is displayed.

12. Click OK.

13. From the Components window, select Advanced.

14. Select XREF Functions.

15. Drag and drop the lookupXRef function from the Components window to the line
connecting the top:id and inp1:id elements.

16. Double-click the lookupXRef icon.

The Edit Function-lookupXRef dialog is displayed.

17. To the right of the xrefLocation field, click Search.

The SOA Resource Lookup dialog is displayed.

18. Select customer.xref and click OK.

19. In the referenceColumnName field, enter "SAP_01" or click Search to select the
column name.

20. In the referenceValue column, enter /top:Sap01Collection/top:Sap01/top:id.

21. In the columnName field, enter "COMMON" or click Search to select the column
name.

22. In the needException field, enter true() or click Search to select this mode.

Figure 43-27 shows the populated Edit Function – looupXRef dialog.

Chapter 43
Creating and Running the Cross Reference Use Case

43-40

Figure 43-27 Edit Function – lookupXRef Dialog: XrefCustApp Use Case

23. Click OK.

24. From the File menu, select Save All and close the SAP_TO_COMMON_UPDATE.xsl
file.

The Routing Rules section appears, as shown in Figure 43-28.

Figure 43-28 Insert Operation and Update Operation

43.8.1.8.3 To create routing rules for an updateID operation:

Perform the following tasks to create routing rules for an updateID operation:

1. In the Routing Rules section, click the Create a new Routing Rule icon.

The Target Type dialog is displayed.

2. Select Service.

The Target Services dialog is displayed.

3. Navigate to XrefCustApp > Mediators > Common, Services > Common.

4. Select updateid and click OK.

5. Click the Filter icon.

Chapter 43
Creating and Running the Cross Reference Use Case

43-41

The Expression Builder dialog is displayed.

6. In the Expression field, enter the following expression:

$in.Sap01Collection/top:Sap01Collection/top:Sap01/top:operation = 'UPDATEID'
7. Click OK.

8. Next to the Transform Using field, click the Transformation icon.

The Request Transformation map dialog is displayed.

9. Select Create New Mapper File and enter SAP_TO_COMMON_UPDATEID.xsl.

10. Click OK.

An SAP_TO_COMMON_UPDATEID.xsl file is displayed.

11. Drag and drop the top:Sap01 source element to the inp1:Customer target
element.

The Auto Map Preferences dialog is displayed.

12. Click OK.

13. From the Components window, select Advanced.

14. Select XREF Functions.

15. Drag and drop the populateXRefRow function from the Components window to
the line connecting the top:id and inp1:id elements.

16. Double-click the populateXRefRow icon.

The Edit Function-populateXRefRow dialog is displayed.

17. To the right of the xrefLocation field, click Search.

The SOA Resource Lookup dialog is displayed.

18. Select customer.xref and click OK.

19. In the referenceColumnName field, enter "SAP_01" or click Search to select the
column name.

20. In the referenceValue column, enter /top:Sap01Collection/top:Sap01/
top:refId.

21. In the columnName field, enter "SAP_01" or click Search to select the column
name.

22. In the value field, enter /top:Sap01Collection/top:Sap01/top:Id.

23. In the mode field, enter "UPDATE" or click Search to select this mode.

Figure 43-29 shows a populated Edit Function – populateXRefRow dialog.

Chapter 43
Creating and Running the Cross Reference Use Case

43-42

Figure 43-29 Edit Function – populateXRefRow Dialog: XrefCustApp Use Case

24. Drag and drop the lookupXRef function from the Components window to the line
connecting the top:id and inp1:id elements.

25. Double-click the lookupXRef icon.

The Edit Function-lookupXRef dialog is displayed.

26. To the right of the xrefLocation field, click Search.

The SOA Resource Lookup dialog is displayed.

27. Select customer.xref and click OK.

28. In the referenceColumnName field, enter "SAP_01" or click Search to select the column
name.

29. In the referenceValue column, enter the following:

xref:populateXRefRow("customer.xref","SAP_
01",/top:Sap01Collection/top:Sap01/top:refId,"SAP_
01",/top:Sap01Collection/top:Sap01/top:id,"UPDATE").

30. In the columnName field, enter "COMMON" or click Search to select the column name.

31. In the needException field, enter false() or click Search to select this mode.

Figure 43-30 shows a populated Edit Function – lookupXRef dialog.

Chapter 43
Creating and Running the Cross Reference Use Case

43-43

Figure 43-30 Edit Function – lookupXRef Dialog: XrefCustApp Use Case

32. Click OK.

33. From the File menu, select Save All and close the
SAP_TO_COMMON_UPDATEID.xsl file.

The Routing Rules section appears, as shown in Figure 43-31.

Figure 43-31 Insert, Update, and UpdateID Operations

43.8.1.8.4 To create routing rules for a delete operation:

1. In the Routing Rules section, click the Create a new Routing Rule icon.

The Target Type dialog is displayed.

2. Select Service.

The Target Services dialog is displayed.

3. Navigate to XrefCustApp > Mediators > Common, Services > Common.

Chapter 43
Creating and Running the Cross Reference Use Case

43-44

4. Select delete and click OK.

5. Click the Filter icon.

The Expression Builder dialog is displayed.

6. In the Expression field, enter the following expression:

$in.Sap01Collection/top:Sap01Collection/top:Sap01/top:operation = 'DELETE'
7. Click OK.

8. Next to the Transform Using field, click the Transformation icon.

The Request Transformation map dialog is displayed.

9. Select Create New Mapper File and enter SAP_TO_COMMON_DELETE.xsl.

10. Click OK.

A SAP_TO_COMMON_DELETE.xsl file is displayed.

11. Right-click <sources> and select Add Parameter.

The Add Parameter dialog is displayed.

12. In the Local Name field, enter COMMONID.

13. Select Set Default Value.

14. Select Expression.

15. In the XPath Expression field, enter

xref:lookupXRef("customer.xref","SAP_
01",/top:Sap01Collection/top:Sap01/top:id,"COMMON",false()).

16. Click OK.

17. Drag and drop the top:Sap01 source element to the inp1:Customer target element.

The Auto Map Preferences dialog is displayed.

18. Click OK.

19. Delete the line connecting top:id and inp1:id.

20. Connect COMMONID to inp1:id.

21. Right-click inp1:id and select Add XSL node and then if.

A new node if is inserted between inp1:customer and inp1:id.

22. Connect top:id to the if node.

23. From the Components window, select Advanced.

24. Select XREF Functions.

25. Drag and drop the markForDelete function from the Components window to the line
connecting top:id and the if node.

26. Double-click the markForDelete icon.

The Edit Function-markForDelete dialog is displayed.

27. Click Search to the right of the xrefLocation field.

The SOA Resource Lookup dialog is displayed.

28. Select customer.xref and click OK.

Chapter 43
Creating and Running the Cross Reference Use Case

43-45

29. In the columnName field, enter "SAP_01" or click Search to select the column
name.

30. In the value field, enter /top:Sap01Collection/top:Sap01/top:Id.

Figure 43-32 shows a populated Edit Function – markForDelete dialog.

Figure 43-32 Edit Function – markForDelete Dialog: XrefCustApp Use Case

31. Click OK.

The SAP_TO_COMMON_DELETE.xsl file appears, as shown in Figure 43-33.

Figure 43-33 SAP_TO_COMMON_DELETE.xsl

32. From the File menu, select Save All and close the
SAP_TO_COMMON_DELETE.xsl file.

The Routing Rules section appears, as shown in Figure 43-34.

Chapter 43
Creating and Running the Cross Reference Use Case

43-46

Figure 43-34 Insert, Update, UpdateID, and Delete Operations

43.8.1.9 Task 9: How to Specify Routing Rules for the Common Oracle Mediator
You must specify routing rules for the following operations of the Common Oracle Mediator:

• Insert

• Delete

• Update

• UpdateID

43.8.1.9.1 To create routing rules for the insert operation:

1. Double-click the Common Oracle Mediator.

The Mediator Editor is displayed.

2. In the Routing Rules section, click the Create a new Routing Rule icon.

The Target Type dialog is displayed.

3. Select Service.

The Target Services dialog is displayed.

4. Navigate to XrefCustApp > References > SBL.

5. Select SBL and click OK.

6. Next to the Transform Using field, click the Transformation icon.

The Request Transformation map dialog is displayed.

7. Select Create New Mapper File and enter COMMON_TO_SBL_INSERT.xsl.

8. Click OK.

Chapter 43
Creating and Running the Cross Reference Use Case

43-47

A COMMON_TO_SBL_INSERT.xsl file is displayed.

9. Drag and drop the inp1:Customers source element to the db:InputParameters
target element.

The Auto Map Preferences dialog is displayed.

10. Click OK.

The transformation is created, as shown in Figure 43-35.

Figure 43-35 COMMON_TO_SBL_INSERT.xsl Transformation

11. From the File menu, select Save All and close the
COMMON_TO_SBL_INSERT.xsl file.

12. In the Synchronous Reply section, click Browse for target service operations.

The Target Type dialog is displayed.

13. Select Service.

The Target Services dialog is displayed.

14. Navigate to XrefCustApp > References > Logger.

15. Select Write and click OK.

16. Next to the Transform Using field, click the Transformation icon.

The Reply Transformation map dialog is displayed.

17. Select Create New Mapper File and enter SBL_TO_COMMON_INSERT.xsl.

18. Select Include Request in the Reply Payload.

19. Click OK.

A SBL_TO_COMMON_INSERT.xsl file is displayed.

20. Connect the inp1:Customers source element to db:X:APP_ID.

21. Drag and drop the populateXRefRow function from the Components window to
the connecting line.

22. Double-click the populateXRefRow icon.

The Edit Function-populateXRefRow dialog is displayed.

23. Enter this information in the following fields:

• xrefLocation: "customer.xref"
• referenceColumnName: "Common"
• referenceValue: $initial.Customers/inp1:Customers/inp1:Customer/

inp1:Id

Chapter 43
Creating and Running the Cross Reference Use Case

43-48

• columnName: "SBL_78"
• value: /db:OutputParameters/db:X_APP_ID
• mode: "LINK"

24. Click OK.

The SBL_TO_COMMON_INSERT.xsl file appears, as shown in Figure 43-36.

Figure 43-36 SBL_TO_COMMON_INSERT.xsl Transformation

25. From the File menu, select Save All and close the SBL_TO_COMMON_INSERT.xsl file.

26. In the Synchronous Reply section, click the Assign Values icon.

The Assign Values dialog is displayed.

27. Click Add.

The Assign Value dialog is displayed.

28. In the From section, select Expression.

29. Click the Invoke Expression Builder icon.

The Expression Builder dialog is displayed.

30. In the Expression field, enter the following expression and click OK.

concat('INSERT-',$in.OutputParameters/db:OutputParameters/db:X_APP_ID,'.xml')
31. In the To section, select Property.

32. Select the jca.file.FileName property and click OK.

33. Click OK.

The insert operation section appears, as shown in Figure 43-37.

Figure 43-37 Insert Operation with SBL Target Service

Chapter 43
Creating and Running the Cross Reference Use Case

43-49

34. From the File menu, select Save All.

35. Repeat Step 2 through Step 34 to specify another target service named EBS and
its routing rules.

Figure 43-38 shows the insert operation section with SBL and EBS target
services.

Figure 43-38 Insert Operation with SBL and EBS Target Services

43.8.1.9.2 To create routing rules for a delete operation:

Perform the following tasks to create the routing rules for a delete operation.

1. In the Routing Rules section, click the Create a new Routing Rule icon.

The Target Type dialog is displayed.

2. Select Service.

The Target Services dialog is displayed.

3. Navigate to XrefCustApp > References > SBL.

4. Select SBL and click OK.

5. Next to the Transform Using field, click the Transformation icon.

The Request Transformation map dialog is displayed.

6. Select Create New Mapper File and enter COMMON_TO_SBL_DELETE.xsl.

7. Click OK.

A COMMON_TO_SBL_DELETE.xsl file is displayed.

8. Drag and drop the inp1:Customers source element to the db:InputParameters
target element.

Chapter 43
Creating and Running the Cross Reference Use Case

43-50

The Auto Map Preferences dialog is displayed.

9. Click OK.

The transformation is created, as shown in Figure 43-39.

Figure 43-39 COMMON_TO_SBL_DELETE.xsl Transformation

10. Drag and drop the lookupXRef function from the Components window to the line
connecting inp1:id and db:XCUSTOMER_ID.

11. Double-click the lookupXRef icon.

The Edit Function: lookupXRef dialog is displayed.

12. Enter this information in the following fields:

• xrefLocation: "customer.xref"
• referenceColumnName: "Common"
• referenceValue: /inp1:Customers/inp1:Customer/inp1:Id
• columnName: "SBL_78"
• needException: false()

13. Click OK.

14. From the File menu, select Save All and close the COMMON_TO_SBL_DELETE.xsl
file.

15. In the Synchronous Reply section, click Browse for target service operations.

The Target Type dialog is displayed.

16. Select Service.

The Target Services dialog is displayed.

17. Navigate to XrefCustApp > References > Logger.

18. Select Write and click OK.

19. Next to the Transform Using field, click the Transformation icon.

The Reply Transformation map dialog is displayed.

20. Select Create New Mapper File and enter SBL_TO_COMMON_DELETE.xsl.

21. Click OK.

The SBL_TO_COMMON_DELETE.xsl file is displayed.

22. Connect the db:X_APP_ID source element to the db:X:APP_ID target.

23. Drag and drop the markForDelete function from the Components window to the
connecting line.

Chapter 43
Creating and Running the Cross Reference Use Case

43-51

24. Double-click the markForDelete icon.

The Edit Function-markForDelete dialog is displayed.

25. Enter this information in the following fields:

• xrefLocation: "customer.xref"
• columnName: "SBL_78"
• value: /db:OutputParameters/db:X_APP_ID

26. Click OK.

27. From the File menu, select Save All and close the
SBL_TO_COMMON_DELETE.xsl file.

28. In the Synchronous Reply section, click the Assign Values icon.

The Assign Values dialog is displayed.

29. Click Add.

The Assign Value dialog is displayed.

30. In the From section, select Expression.

31. Click the Invoke Expression Builder icon.

The Expression Builder dialog is displayed.

32. In the Expression field, enter the following expression, and click OK.

concat('DELETE-',$in.OutputParameters/db:OutputParameters/db:X_APP_ID,'.xml')
33. In the To section, select Property.

34. Select the jca.file.FileName property and click OK.

35. Click OK.

The delete operation section appears, as shown in Figure 43-40.

Figure 43-40 Delete Operation with SBL Target Service

36. From the File menu, select Save All.

37. Repeat Step 1 through Step 36 to specify another target service named EBS and
specify the routing rules.

Figure 43-41 shows the delete operation section with SBL and EBS target
services.

Chapter 43
Creating and Running the Cross Reference Use Case

43-52

Figure 43-41 Delete Operation with SBL and EBS Target Service

43.8.1.9.3 To create routing rules for the update operation:

Perform the following tasks to create routing rules for the update operation.

1. In the Routing Rules section, click the Create a new Routing Rule icon.

The Target Type dialog is displayed.

2. Select Service.

The Target Services dialog is displayed.

3. Navigate to XrefCustApp, References > SBL.

4. Select SBL and click OK.

5. Click the Transformation icon next to the Transform Using field.

The Request Transformation map dialog is displayed.

6. Select Create New Mapper File and enter COMMON_TO_SBL_UPDATE.xsl.

7. Click OK.

A COMMON_TO_SBL_UPDATE.xsl file is displayed.

8. Drag and drop the inp1:Customers source element to the db:InputParameters target
element.

The Auto Map Preferences dialog is displayed.

9. Click OK.

The transformation is created, as shown in Figure 43-39.

10. Drag and drop the lookupXRef function from the Components window to the line
connecting inp1:id and db:XCUSTOMER_ID.

11. Double-click the lookupXRef icon.

Chapter 43
Creating and Running the Cross Reference Use Case

43-53

The Edit Function: lookupXRef dialog is displayed.

12. Enter this information in the following fields:

• xrefLocation: "customer.xref"
• referenceColumnName: "Common"
• referenceValue: /inp1:Customers/inp1:Customer/inp1:Id
• columnName: "SBL_78"
• needException: true()

13. Click OK.

14. From the File menu, select Save All and close the
COMMON_TO_SBL_UPDATE.xsl file.

15. In the Synchronous Reply section, click Browse for target service operations.

The Target Type dialog is displayed.

16. Select Service.

The Target Services dialog is displayed.

17. Navigate to XrefCustApp > References > Logger.

18. Select Write and click OK.

19. Next to the Transform Using field, click the Transformation icon.

The Reply Transformation map dialog is displayed.

20. Select Create New Mapper File and enter SBL_TO_COMMON_UPDATE.xsl.

21. Click OK.

A SBL_TO_COMMON_UPDATE.xsl file is displayed.

22. Connect the db:X:APP_ID source element to db:X:APP_ID.

23. From the File menu, select Save All and close the
SBL_TO_COMMON_UPDATE.xsl file.

24. In the Synchronous Reply section, click the Assign Values icon.

The Assign Values dialog is displayed.

25. Click Add.

The Assign Value dialog is displayed.

26. In the From section, select Expression.

27. Click the Invoke Expression Builder icon.

The Expression Builder dialog is displayed.

28. In the Expression field, enter the following expression and click OK.

concat('UPDATE-',$in.OutputParameters/db:OutputParameters/db:X_APP_ID,'.xml')
29. In the To section, select Property.

30. Select the jca.file.FileName property and click OK.

31. Click OK.

The update operation section appears, as shown in Figure 43-42.

Chapter 43
Creating and Running the Cross Reference Use Case

43-54

Figure 43-42 Update Operation with SBL Target Service

32. From the File menu, select Save All.

33. Repeat Step 1 through Step 32 to specify another target service named EBS and its
routing rules.

Figure 43-43 shows the update operation section with SBL and EBS target services.

Figure 43-43 Update Operation with SBL and EBS Target Service

43.8.1.9.4 To create routing rules for the UpdateID operation:

Perform the following tasks to create routing rules for the UpdateID operation.

1. In the Routing Rules section, click the Create a new Routing Rule icon.

The Target Type dialog is displayed.

2. Select Service.

The Target Services dialog is displayed.

Chapter 43
Creating and Running the Cross Reference Use Case

43-55

3. Navigate to XrefCustApp > References > SBL.

4. Select SBL and click OK.

5. Next to the Transform Using field, click the Transformation icon.

The Request Transformation map dialog is displayed.

6. Select Create New Mapper File and enter COMMON_TO_SBL_UPDATEID.xsl.

7. Click OK.

The COMMON_TO_SBL_UPDATEID.xsl file is displayed.

8. Drag and drop the inp1:Customers source element to the db:InputParameters
target element.

The Auto Map Preferences dialog is displayed.

9. Click OK.

The transformation is created, as shown in Figure 43-39.

10. Drag and drop the lookupXRef function from the Components window to the line
connecting inp1:id and db:X_CUSTOMER_ID.

11. Double-click the lookupXRef icon.

The Edit Function: lookupXRef dialog is displayed.

12. Enter this information in the following fields:

• xrefLocation: customer.xref
• referenceColumnName: Common
• referenceValue: /inp1:Customers/inp1:Customer/inp1:Id
• columnName: SBL_78
• needException: false()

13. Click OK.

14. From the File menu, select Save All and close the
COMMON_TO_SBL_UPDATEID.xsl file.

15. In the Synchronous Reply section, click Browse for target service operations.

The Target Type dialog is displayed.

16. Select Service.

The Target Services dialog is displayed.

17. Navigate to XrefCustApp > References > Logger.

18. Select Write and click OK.

19. Next to the Transform Using field, click the Transformation icon.

The Reply Transformation map dialog is displayed.

20. Select Include Request in the Reply Payload.

21. Click OK.

The SBL_TO_COMMON_UPDATEID.xsl file is displayed.

22. Connect inp1:Customers source element to the db:X:APP_ID.

Chapter 43
Creating and Running the Cross Reference Use Case

43-56

23. Drag and drop the populateXRefRow function from the Components window to the
connecting line.

24. Double-click the populateXRefRow icon.

The Edit Function-populateXRefRow dialog is displayed.

25. Enter this information in the following fields:

• xrefLocation: customer.xref
• referenceColumnName: Common
• referenceValue: $initial.Customers/inp1:Customers/inp1:Customer/inp1:Id
• columnName: SBL_78
• value: /db:OutputParameters/db:X_APP_ID
• mode: UPDATE

26. Click OK.

27. From the File menu, select Save All and close the SBL_TO_COMMON_UPDATEID.xsl
file.

28. In the Synchronous Reply section, click the Assign Values icon.

The Assign Values dialog is displayed.

29. Click Add.

The Assign Value dialog is displayed.

30. In the From section, select Expression.

31. Click the Invoke Expression Builder icon.

The Expression Builder dialog is displayed.

32. In the Expression field, enter the following expression and click OK.

concat('UPDATEID-',$in.OutputParameters/db:OutputParameters/db:X_APP_ID,'.xml')
33. In the To section, select Property.

34. Select the jca.file.FileName property and click OK.

35. Click OK.

The updateid operation section appears, as shown in Figure 43-44.

Figure 43-44 Updateid Operation with SBL Target Service

Chapter 43
Creating and Running the Cross Reference Use Case

43-57

36. From the File menu, select Save All.

37. Repeat Step 1 through Step 36 to specify another target service named EBS and
specify the routing rules.

Figure 43-45 shows the updateid operation section with the SBL and EBS target
services.

Figure 43-45 Updateid Operation with SBL and EBS Target Service

43.8.1.10 Task 10: How to Configure an Application Server Connection
An application server connection is required for deploying your SOA composite
application. For information on creating an application server connection, see Creating
an Application Server Connection.

43.8.1.11 Task 11: How to Deploy the Composite Application
Deploying the XrefCustApp composite application consists of the following steps:

• Creating an application deployment profile

• Deploying the application to the application server

For detailed information about these steps, see How to Deploy a Single SOA
Composite in Oracle JDeveloper.

43.8.2 How to Run and Monitor the XrefCustApp Application
After deploying the XrefCustApp application, you can run it by using any command
from the insert_sap_record.sql file present in the XrefCustApp/sql folder. On
successful completion, the records are inserted or updated in the EBS and SBL tables
and the Logger reference writes the output to the output.xml file.

Chapter 43
Creating and Running the Cross Reference Use Case

43-58

For monitoring the running instance, you can use the Oracle Enterprise Manager Fusion
Middleware Control at the following URL:

http://hostname:port_number/em

where hostname is the host on which you installed the Oracle SOA Suite infrastructure and
port_number is the port running the service.

43.9 Creating and Running Cross Reference for 1M Functions
The cross reference use case implements an integration scenario between two end-system
Oracle EBS and SAP instances. In this use case, the order passes from SAP to EBS. SAP
represents the orders with a unique ID, whereas EBS splits the order into two orders: ID1 and
ID2. This scenario is created using database adapters. When you poll the SAP table for
updated or created records, an SAP instance is created. In EBS, the instance is simulated by
a procedure and the table is populated. Figure 43-46 provides an overview of this use case.

Figure 43-46 XrefOrderApp Use Case in SOA Composite Editor

43.9.1 How to Create the Use Case
This section provides the design-time tasks for creating, building, and deploying your SOA
composite application. These tasks should be performed in the order in which they are
presented.

43.9.1.1 Task 1: How to Configure the Oracle Database and Database Adapter

To configure the Oracle database and database adapter:

1. You need the SCOTT database account with password TIGER for this use case. You must
ensure that the SCOTT account is unlocked.

You can log in as SYSDBA and then run the setup_user.sql script available in the
XrefOrderApp1M/sql folder to unlock the account.

Chapter 43
Creating and Running Cross Reference for 1M Functions

43-59

2. Run the create_schema.sql script available in the XrefOrderApp1M/sql folder to
create the tables required for this use case.

3. Run the create_app_procedure.sql script available in the XrefOrderApp1M/sql
folder to create a procedure that simulates the various applications participating in
this integration.

4. Run the createschema_xref_oracle.sql script available in the Oracle_Home/rcu/
integration/soainfra/sql/xref/ folder to create a cross reference table to store
runtime cross reference data.

5. Copy the ra.xml and weblogic-ra.xml files from $BEAHOME/META-INF to the newly
created directory called META-INF on your computer.

6. Edit the weblogic-ra.xml file, which is available in the $BEAHOME/src/
oracle/tip/adapter/db/test/deploy/weblogic/META-INF folder for your SOA
application, as follows:

• Modify the property to xADataSourceName as follows:

<property>
 <name>xADataSourceName</name>
 <value>jdbc/DBConnection1</value>
</property>

• Modify the jndi-name as follows:

<jndi-name> eis/DB/DBConnection1</jndi-name>
This sample uses eis/DB/DBConnection1 to poll the SAP table for new messages
and to connect to the procedure that simulates Oracle EBS and Siebel instances.

7. Package the ra.xml and weblogic-ra.xml files as a RAR file and deploy the RAR
file by using Oracle WebLogic Server Administration Console.

8. Create a data source using the Oracle WebLogic Server Administration Console
with the following values:

• jndi-name=jdbc/DBConnection1
• user=scott
• password=tiger
• url=jdbc:oracle:thin:@host:port:service
• connection-factory factory-class=oracle.jdbc.pool.OracleDataSource

9. Create a data source using the Oracle WebLogic Server Administration Console
with the following values:

• jndi-name=jdbc/xref
• user=scott
• password=tiger
• url=jdbc:oracle:thin:@host:port:service
• connection-factory factory-class=oracle.jdbc.pool.OracleDataSource

43.9.1.2 Task 2: How to Create an Oracle JDeveloper Application and a Project

To create an Oracle JDeveloper application and a project:

Chapter 43
Creating and Running Cross Reference for 1M Functions

43-60

1. In Oracle JDeveloper, click File and select New.

The New Gallery dialog appears.

2. In the New Gallery, expand the General node, and select the Applications category.

3. In the Items list, select SOA Application and click OK.

The Create SOA Application wizard appears.

4. In the Application Name field, enter XRefOrderApp, and then click Next.

The Name your project page appears.

5. In the Project Name field, enter XRefOrderApp and click Next.

The Configure SOA Settings page appears.

6. In the Composite Template list, select Empty Composite and then click Finish.

The Applications window of Oracle JDeveloper is updated with the new application and
project and the SOA Composite Editor contains a blank project.

7. From the File menu, select Save All.

43.9.1.3 Task 3: How to Create a Cross Reference
After creating an application and a project for the use case, you must create a cross
reference table.

To create a cross reference table:

1. In the Applications window, right-click the XRefOrderApp project and select New.

2. In the New Gallery dialog, expand the SOA Tier node, and then select the
Transformations category.

3. In the Items list, select Cross Reference(XREF) and click OK.

The Create Cross Reference(XREF) File dialog is displayed.

4. In the File Name field, enter order.xref.

5. In the End System fields, enter SAP_05 and EBS_i75.

6. Click OK.

The Cross Reference Editor is displayed.

7. Click Add.

A new row is added.

8. Enter COMMON as the End System name.

The Cross Reference Editor appears, as shown in Figure 43-47.

Chapter 43
Creating and Running Cross Reference for 1M Functions

43-61

Figure 43-47 Customer Cross Reference

9. From the File menu, select Save All and close the Cross Reference Editor.

43.9.1.4 Task 4: How to Create a Database Adapter Service

To create a database adapter service:

1. In the Components window, select SOA.

2. Select Database Adapter and drag it to the Exposed Services swimlane.

The Adapter Configuration wizard Welcome page is displayed.

3. Click Next.

The Service Name page is displayed.

4. In the Service Name field, enter SAP.

5. Click Next.

The Service Connection page is displayed.

6. In the Connection field, select DBConnection1.

7. In the JNDI Name field, enter eis/DB/DBConnection1.

8. Click Next.

The Operation Type page is displayed.

9. Select Poll for New or Changed Records in a Table and click Next.

The Select Table page is displayed.

10. Click Import Tables.

The Import Tables dialog is displayed.

11. Select Scott from the Schema.

12. In the Name Filter field, enter %SAP% and click Query.

The Available field is populated with the SAP_05 table name.

13. Double-click SAP_05.

The selected field is populated with SAP_05.

Chapter 43
Creating and Running Cross Reference for 1M Functions

43-62

14. Click OK.

The Select Table page now contains the SAP_05 table.

15. Select SAP_05 and click Next.

The Define Primary Key page is displayed.

16. Select ID as the primary key and click Next.

The Relationships page is displayed.

17. Click Next.

The Attribute Filtering page is displayed.

18. Click Next.

The After Read page is displayed.

19. Select Update a Field in the [SAP_05] Table (Logical Delete) and click Next.

The Logical Delete page is displayed.

20. In the Logical Delete field, select LOGICAL_DEL.

21. In the Read Value field, enter Y.

22. In the Unread Value field, enter N.

Figure 43-16 shows the Logical Delete page of the Adapter Configuration wizard.

23. Click Next.

The Polling Options page is displayed.

24. Click Next.

The Define Selection Criteria page is displayed.

25. Click Next.

The Advanced Options page is displayed.

26. Click Next.

The Finish page is displayed.

27. Click Finish.

A database adapter service named SAP is created, as shown in Figure 43-48.

Chapter 43
Creating and Running Cross Reference for 1M Functions

43-63

Figure 43-48 SAP Database Adapter Service in SOA Composite Editor

28. From the File menu, select Save All.

43.9.1.5 Task 5: How to Create an EBS External Reference

To create an EBS external reference:

1. In the Components window, select SOA.

2. Select Database Adapter and drag it to the External References swimlane.

The Adapter Configuration wizard Welcome page is displayed.

3. Click Next.

The Service Name page is displayed.

4. In the Service Name field, enter EBS.

5. Click Next.

The Service Connection page is displayed.

6. In the Connection field, select DBConnection1.

7. In the JNDI Name field, enter eis/DB/DBConnection1.

8. Click Next.

The Operation Type page is displayed.

9. Select Call a Stored Procedure or Function and click Next.

The Specify Stored Procedure page is displayed.

10. Select Scott from the Schema.

11. Click Browse.

The Stored Procedures dialog is displayed.

12. Select POPULATE_APP_INSTANCE_IM, as shown in Figure 43-49.

Chapter 43
Creating and Running Cross Reference for 1M Functions

43-64

Figure 43-49 Stored Procedure Dialog

13. Click OK.

The Specify Stored Procedure page appears, as shown in Figure 43-50.

Figure 43-50 Specify Stored Procedure Page of Adapter Configuration Wizard

14. Click Next.

The Advanced Options page is displayed.

Chapter 43
Creating and Running Cross Reference for 1M Functions

43-65

15. Click Next.The Finish page is displayed.

16. Click Finish.

Figure 43-51 shows the EBS reference in the SOA Composite Editor.

Figure 43-51 EBS Reference in SOA Composite Editor

17. From the File menu, select Save All.

43.9.1.6 Task 6: How to Create a Logger File Adapter External Reference

To create a Logger file adapter external reference:

1. From the Components window, select SOA.

2. Select File Adapter and drag it to the External References swimlane.

The Adapter Configuration wizard Welcome page is displayed.

3. Click Next.

The Service Name page is displayed.

4. In the Service Name field, enter Logger.

5. Click Next.

The Adapter Interface page is displayed.

6. Click Define from operation and schema (specified later).

The Operation page is displayed.

7. In the Operation Type field, select Write File.

8. Click Next.

The File Configuration page is displayed.

9. In the Directory for Outgoing Files (physical path) field, enter the name of the
directory in which you want to write the files.

10. In the File Naming Convention field, enter output.xml and click Next.

The Messages page is displayed.

Chapter 43
Creating and Running Cross Reference for 1M Functions

43-66

11. Click Search.

The Type Chooser dialog is displayed.

12. Navigate to Type Explorer > Project Schema Files >
SCOTT_POPULATE_APP_INSTANCE_1M.xsd, and then select OutputParameters.

13. Click OK.

14. Click Next.

The Finish page is displayed.

15. Click Finish.

Figure 43-52 shows the Logger reference in the SOA Composite Editor.

Figure 43-52 Logger Reference in SOA Composite Editor

16. From the File menu. select Save All.

43.9.1.7 Task 7: How to Create an Oracle Mediator Service Component

To create an Oracle Mediator service component:

1. Drag and drop a Mediator icon from the Components window to the Components
swimlane.

The Create Mediator dialog is displayed.

2. From the Template list, select Define Interface Later.

3. Click OK.

An Oracle Mediator with name Mediator2 is created.

4. Connect the SAP service to Mediator2, as shown in Figure 43-53.

Chapter 43
Creating and Running Cross Reference for 1M Functions

43-67

Figure 43-53 SAP Service Connected to Mediator2

5. From the File menu. select Save All.

6. Drag and drop a Mediator icon from the Components window to the Components
section of the SOA Composite Editor.

The Create Mediator dialog is displayed.

7. From the Template list, select Interface Definition From WSDL.

8. Deselect Create Composite Service with SOAP Bindings.

9. To the right of the WSDL File field, click Find Existing WSDLs.

10. Navigate to and then select the Common.wsdl file. The Common.wsdl file is
available in the Samples folder.

11. Click OK.

12. Click OK.

An Oracle Mediator named Common is created.

43.9.1.8 Task 8: How to Specify Routing Rules for an Oracle Mediator
Component

You must specify routing rules for following operations:

• Insert

• Update

43.9.1.8.1 To create routing rules for the insert operation:

1. Double-click the Mediator2 Oracle Mediator.

The Mediator Editor is displayed.

2. In the Routing Rules section, click the Create a new Routing Rule icon.

The Target Type dialog is displayed.

3. Select Service.

The Target Services dialog is displayed.

4. Navigate to XrefOrderApp > Mediators > Common, Services > Common.

Chapter 43
Creating and Running Cross Reference for 1M Functions

43-68

5. Select Insert and click OK.

6. Click the Filter icon.

The Expression Builder dialog is displayed.

7. In the Expression field, enter the following expression:

$in.Sap05Collection/top:Sap05Collection/top:Sap05/top:operation='INSERT'
8. Click OK.

9. Next to the Using Transformation field, click the Transformation icon.

The Request Transformation map dialog is displayed.

10. Select Create New Mapper File and enter SAP_TO_COMMON_INSERT.xsl.

11. Click OK.

An SAP_TO_COMMON_INSERT.xsl file is displayed.

12. Drag and drop the top:SAP05 source element to the inp1:Order target element.

The Auto Map Preferences dialog is displayed.

13. From the During Auto Map options list, deselect Match Elements Considering their
Ancestor Names.

14. Click OK.

The transformation is created, as shown in Figure 43-54.

Figure 43-54 SAP_TO_COMMON_INSERT.xsl Transformation

15. From the Components window, select Advanced.

16. Select XREF Functions.

17. Drag and drop the populateXRefRow1M function from the Components window to the
line connecting the top:id and inp1:id elements.

18. Double-click the populateXRefRow1M icon.

The Edit Function-populateXRefRow dialog is displayed.

19. To the right of the xrefLocation field, click Search.

The SOA Resource Lookup dialog is displayed.

20. Select Order.xref and click OK.

21. In the referenceColumnName field, enter "SAP_05" or click Search to select the column
name.

22. In the referenceValue column, enter /top:Sap05Collection/top:Sap05/top:id.

Chapter 43
Creating and Running Cross Reference for 1M Functions

43-69

23. In the columnName field, enter "Common" or click Search to select the column
name.

24. In the value field, enter orcl:generate-guid().

25. In the mode field, enter "Add" or click Search to select this mode.

Figure 43-55 shows the populated Edit Function – populateXRefRow1M dialog.

Figure 43-55 Edit Function – populateXRefRow1M Dialog: XrefOrderApp
Use Case

26. Click OK.

27. From the File menu, select Save All and close the
SAP_TO_COMMON_INSERT.xsl file.

The Routing Rules section appears, as shown in Figure 43-56.

Figure 43-56 Routing Rules Section with Insert Operation

43.9.1.8.2 To create routing rules for the update operation:

Chapter 43
Creating and Running Cross Reference for 1M Functions

43-70

Perform the following tasks to create routing rules for the update operation.

1. In the Routing Rules section, click the Create a new Routing Rule icon.

The Target Type dialog is displayed.

2. Select Service.

The Target Services dialog is displayed.

3. Navigate to XrefOrderApp > Mediators > Common, Services > Common.

4. Select Update and click OK.

5. Click the Filter icon.

The Expression Builder dialog is displayed.

6. In the Expression field, enter the following expression:

$in.Sap05Collection/top:Sap05Collection/top:Sap05/top:operation='UPDATE'
7. Click OK.

8. Next to the Transform Using field, click the Transformation icon.

The Request Transformation map dialog is displayed.

9. Select Create New Mapper File and enter SAP_TO_COMMON_UPDATE.xsl.

10. Click OK.

An SAP_TO_COMMON_UPDATE.xsl file is displayed.

11. Drag and drop the top:Sap05 source element to the inp1:Order target element.

The Auto Map Preferences dialog is displayed.

12. Click OK.

13. From the Components window, select Advanced.

14. Select XREF Functions.

15. Drag and drop the lookupXRef function from the Components window to the line
connecting the top:id and inp1:id elements.

16. Double-click the lookupXRef icon.

The Edit Function-lookupXRef dialog is displayed.

17. To the right of the xrefLocation field, click Search.

The SOA Resource Lookup dialog is displayed.

18. Select customer.xref and click OK.

19. In the referenceColumnName field, enter "SAP_05" or click Search to select the column
name.

20. In the referenceValue column, enter /top:Sap05Collection/top:Sap05/top:id.

21. In the columnName field, enter "COMMON" or click Search to select the column name.

22. In the needException field, enter true() or click Search to select this mode.

Figure 43-57 shows the populated Edit Function – looupXRef dialog.

Chapter 43
Creating and Running Cross Reference for 1M Functions

43-71

Figure 43-57 Edit Function – looupXRef Dialog: XRefOrderApp Use Case

23. Click OK.

24. From the File menu, select Save All and close the
SAP_TO_COMMON_UPDATE.xsl file.

The Routing Rules section appears, as shown in Figure 43-58.

Figure 43-58 Insert Operation and Update Operation

43.9.1.9 Task 9: How to Specify Routing Rules for the Common Oracle
Mediator

You must specify routing rules for the following operations of the Common Oracle
Mediator:

• Insert

Chapter 43
Creating and Running Cross Reference for 1M Functions

43-72

• Update

43.9.1.9.1 To create routing rules for the insert operation:

1. Double-click the Common Oracle Mediator.

The Mediator Editor is displayed.

2. In the Routing Rules section, click the Create a new Routing Rule icon.

The Target Type dialog is displayed.

3. Select Service.

The Target Services dialog is displayed.

4. Navigate to XrefOrderApp > References > EBS.

5. Select EBS and click OK.

6. Next to the Transform Using field, click the Transformation icon.

The Request Transformation map dialog is displayed.

7. Select Create New Mapper File and enter COMMON_TO_EBS_INSERT.xsl.

8. Click OK.

A COMMON_TO_EBS_INSERT.xsl file is displayed.

9. Drag and drop the inp1:Order source element to the db:InputParameters target
element.

The Auto Map Preferences dialog is displayed.

10. Set the value of the db:X_APP_INSTANCE node on the right side to EBS_i75.

Click OK.

The transformation is created, as shown in Figure 43-59.

Figure 43-59 COMMON_TO_EBS_INSERT.xsl Transformation

11. From the File menu, select Save All and close the COMMON_TO_EBS_INSERT.xsl file.

12. In the Synchronous Reply section, click Browse for target service operations.

The Target Type dialog is displayed.

13. Select Service.

The Target Services dialog is displayed.

14. Navigate to XrefOrderApp > References > Logger.

15. Select Write and click OK.

Chapter 43
Creating and Running Cross Reference for 1M Functions

43-73

16. Next to the Transform Using field, click the Transformation icon.

The Reply Transformation map dialog is displayed.

17. Select Create New Mapper File and enter EBS_TO_COMMON_INSERT.xsl.

18. Select Include Request in the Reply Payload.

19. Click OK.

An EBS_TO_COMMON_INSERT.xsl file is displayed.

20. Connect the inp1:Order source element to db:X:APP_ID.

21. Drag and drop the populateXRefRow function from the Components window to
the connecting line.

22. Double-click the populateXRefRow icon.

The Edit Function-populateXRefRow dialog is displayed.

23. Enter this information in the following fields:

• xrefLocation: order.xref
• referenceColumnName: Common
• referenceValue: $initial.Customers/inp1:Customers/inp1:Order/inp1:Id
• columnName: EBS_75
• value: /db:OutputParameters/db:X_APP_ID
• mode: LINK

24. Click OK.

The EBS_TO_COMMON_INSERT.xsl file appears, as shown in Figure 43-60.

Figure 43-60 EBS_TO_COMMON_INSERT.xsl Transformation

25. From the File menu, select Save All and close the
EBS_TO_COMMON_INSERT.xsl file.

26. In the Synchronous Reply section, click the Assign Values icon.

The Assign Values dialog is displayed.

27. Click Add.

The Assign Value dialog is displayed.

28. In the From section, select Expression.

29. Click the Invoke Expression Builder icon.

The Expression Builder dialog is displayed.

30. In the Expression field, enter the following expression and click OK.

Chapter 43
Creating and Running Cross Reference for 1M Functions

43-74

concat('INSERT-',$in.OutputParameters/db:OutputParameters/db:X_APP_ID,'.xml')
31. In the To section, select Property.

32. Select the jca.file.FileName property and click OK.

33. Click OK.

The insert operation section appears, as shown in Figure 43-61.

Figure 43-61 Insert Operation with EBS Target Service

34. From the File menu, select Save All.

43.9.1.9.2 To create routing rules for the update operation:

Perform the following tasks to create routing rules for the update operation.

1. In the Routing Rules section, click the Create a new Routing Rule icon.

The Target Type dialog is displayed.

2. Select Service.

The Target Services dialog is displayed.

3. Navigate to XrefOrderApp > References > EBS.

4. Select EBS and click OK.

5. Click the Transformation icon next to the Transform Using field.

The Request Transformation map dialog is displayed.

6. Select Create New Mapper File and enter COMMON_TO_EBS_UPDATE.xsl.

7. Click OK.

The COMMON_TO_EBS_UPDATE.xsl file is displayed.

8. Drag and drop the inp1:Orders source element to the db:InputParameters target
element.

The Auto Map Preferences dialog is displayed.

Chapter 43
Creating and Running Cross Reference for 1M Functions

43-75

9. Click OK.

The transformation is created, as shown in Figure 43-39.

10. Drag and drop the lookupXRef function from the Components window to the line
connecting inp1:id and db:X_APP_ID.

11. Double-click the lookupXRef icon.

The Edit Function: lookupXRef dialog is displayed.

12. Enter this information in the following fields:

• xrefLocation: order.xref
• referenceColumnName: Common
• referenceValue: /inp1:Customers/inp1:Order/inp1:Id
• columnName: EBS_i75
• needException: true()

13. Click OK.

14. From the File menu, select Save All and close the
COMMON_TO_EBS_UPDATE.xsl file.

15. In the Synchronous Reply section, click Browse for target service operations.

The Target Type dialog is displayed.

16. Select Service.

The Target Services dialog is displayed.

17. Navigate to XrefOrderApp > References > Logger.

18. Select Write and click OK.

19. Next to the Transform Using field, click the Transformation icon.

The Reply Transformation map dialog is displayed.

20. Select Create New Mapper File and enter EBS_TO_COMMON_UPDATE.xsl.

21. Click OK.

The EBS_TO_COMMON_UPDATE.xsl file is displayed.

22. Connect the db:X:APP_ID source element to db:X:APP_ID.

23. From the File menu, select Save All and close the
EBS_TO_COMMON_UPDATE.xsl file.

24. In the Synchronous Reply section, click the Assign Values icon.

The Assign Values dialog is displayed.

25. Click Add.

The Assign Value dialog is displayed.

26. In the From section, select Expression.

27. Click the Invoke Expression Builder icon.

The Expression Builder dialog is displayed.

28. In the Expression field, enter the following expression, and click OK.

concat('UPDATE-',$in.OutputParameters/db:OutputParameters/db:X_APP_ID,'.xml')

Chapter 43
Creating and Running Cross Reference for 1M Functions

43-76

29. In the To section, select Property.

30. Select the jca.file.FileName property and click OK.

31. Click OK.

The update operation section appears, as shown in Figure 43-62.

Figure 43-62 Update Operation with EBS Target Service

32. From the File menu, select Save All.

43.9.1.10 Task 10: How to Configure an Application Server Connection
An application server connection is required for deploying your SOA composite application.
For information about creating an application server connection, see Creating an Application
Server Connection.

43.9.1.11 Task 11: How to Deploy the Composite Application
Deploying the XrefOrderApp composite application to the application server consists of the
following steps:

• Creating an application deployment profile

• Deploying the application to the application server

For detailed information about these steps, see How to Deploy a Single SOA Composite in
Oracle JDeveloper.

Chapter 43
Creating and Running Cross Reference for 1M Functions

43-77

44
Working with Domain Value Maps

This chapter describes how to create and use domain value maps to map the terms used by
different domains to describe the same entity, allowing you to map values used by one
domain for specific fields to the values used by other domains for the same fields. This
chapter also describes the XPath functions used for domain value lookups.
This chapter includes the following sections:

• Introduction to Domain Value Maps

• Creating Domain Value Maps

• Editing a Domain Value Map

• Using Domain Value Map Functions

• Creating a Domain Value Map Use Case for a Hierarchical Lookup

• Creating a Domain Value Map Use Case For Multiple Values

44.1 Introduction to Domain Value Maps
When information is transmitted between different domains, each domain might use different
terminology or processing codes to describe the same entity. For example, one domain might
use complete city names in its messages (Boston), while another domain uses a code to
indicate the city (BO). Rather than requiring each domain to standardize their data to one set
of terminology, you can use domain value maps to map the terms used in one domain to the
terms used in other domains. Domain value maps operate on the actual data values in the
messages that are transmitted through an application at runtime.

While each domain value map typically defines the mapping for only one field or category, a
single SOA composite can require mappings for multiple categories. Thus, one SOA
composite might contain several domain value maps. For example, you might have one
domain value map that defines city name mapping, one that defines state name mapping,
and one that defines country name mapping.

A direct mapping of values between two or more domains is known as point-to-point
mapping. Table 44-1 shows a point-to-point mapping for cities between two domains:

Table 44-1 Point-to-Point Mapping

CityCode CityName

BELG_MN_STLouis BelgradeStLouis
BELG_NC BelgradeNorthCarolina
BO Boston
NP Northport
KN_USA KensingtonUSA
KN_CAN KensingtonCanada

44-1

Domain value map values are static. You specify the domain value map values at
design time using Oracle JDeveloper, and then at runtime the application performs a
lookup for the values in the domain value maps. For information about editing domain
value maps at runtime with Oracle SOA Composer, see Using Oracle SOA Composer
with Domain Value Maps .

Note:

To dynamically integrate values between applications, you can use the cross
referencing feature of Oracle SOA Suite. For information about cross
references, see Working with Cross References .

44.1.1 Domain Value Map Features
Oracle SOA Suite domain value maps let you further refine the performance and
results of the domain value map lookups that are performed at runtime. For example,
you can specify qualifying information that provides additional information to assist
with mapping. Domain value maps also support one-to-many mappings.

44.1.1.1 Qualifier Domains
Qualifier domains contain information solely to clarify the mapping. A mapping might
be ambiguous unless this additional information is defined. For example, a domain
value map that defines a city name mapping could have multiple mappings from KN to
Kensington because Kensington is a city in both Canada and the USA. Therefore, this
mapping requires a qualifier (USA or Canada) to indicate which mapping to use. An
example of this is shown in Table 44-2.

Table 44-2 Qualifier Support Example

Country (Qualifier) CityCode CityName

USA BO Boston
USA BELG_NC Belgrade
USA BELG_MN_Streams Belgrade
USA NP Northport
USA KN Kensington
Canada KN Kensington

A domain value map can contain multiple qualifier domains. For example, as shown in
Table 44-3, the mappings are also qualified with a state name.

Table 44-3 Multiple Qualifier Support Example

Country (Qualifier) State (Qualifier) CityCode CityName

USA Massachusetts BO Boston
USA North Carolina BELG Belgrade

Chapter 44
Introduction to Domain Value Maps

44-2

Table 44-3 (Cont.) Multiple Qualifier Support Example

Country (Qualifier) State (Qualifier) CityCode CityName

USA Minnesota BELG Belgrade
USA Alabama NP Northport
USA Kansas KN Kensington
Canada Prince Edward

Island
KN Kensington

Qualifiers are used only to qualify the mappings. Therefore, the qualifier values cannot be
looked up.

44.1.1.2 Qualifier Hierarchies
When there are multiple qualifier domains, you can specify a qualifier order to indicate how
they are used during runtime lookups. The order of a qualifier varies from highest to lowest
depending on the role of the qualifier in defining a more exact match. In Table 44-3, the state
qualifier is probably given a higher order than the country qualifier because a matching state
indicates a more precise match.

Domain value maps support hierarchical lookup. If you specify a qualifier value during a
lookup and no exact match is found, then the lookup mechanism tries to find a more
generalized match by setting the higher order qualifiers to empty quotes (""). It proceeds until
a match is found, or until a the lookup is exhausted and no match is found. Figure 44-1
describes the steps of a hierarchical lookup performed for the following lookup (based on the
values in Table 44-3):

State=Arkansas, Country=Canada, CityCode=KN_USA

In this example, the State qualifier has a qualifier order of 1 and the Country qualifier has a
qualifier order of 2. As shown in Figure 44-1, the lookup mechanism sets the higher order
qualifier State to the exact lookup value Arkansas and uses Canada|"" for the lower order
qualifier Country.

Figure 44-1 Hierarchical Lookup Example

If no match is found, the lookup mechanism sets the higher order qualifier State to a value of
"" and sets the next higher qualifier Country to an exact value of Canada. If no match is
found, the lookup mechanism sets the value of the previous higher order qualifier Country to

Chapter 44
Introduction to Domain Value Maps

44-3

a value of "". One matching row is found where CityCode is KN_USA and Kensington is
returned as a value.

Table 44-4 provides a summary of these steps.

Table 44-4 Domain Value Map Lookup Result

State Country Short Value Lookup Result

Arkansas CANADA|" " KN_USA No Match
" " CANADA KN_USA No Match
" " " " KN_USA Kensington

44.1.1.3 One-to-Many Mappings
One value can be mapped to multiple values in a domain value map. For example, a
domain value map for payment terms can contain a mapping of payment terms to
multiple values, such as discount percentage, discount period, and net credit period,
as shown in Table 44-5.

Table 44-5 One-to-Many Mapping Support

Payment Term Discount
Percentage

Discount Period Net Credit
Period

GoldCustomerPaymentTerm 10 20 30
SilverCustomerPaymentTerm 5 20 30
RegularPaymentTerm 2 20 30

44.2 Creating Domain Value Maps
You can create one or more domain value maps in a SOA composite application in
Oracle JDeveloper, and then use the maps to look up the mapped values at runtime.
Creating a domain value map creates a file with a .dvm extension in the application file
structure.

44.2.1 How to Create Domain Value Maps
Create and configure domain value maps using the Create Domain Value Map(DVM)
File dialog in Oracle JDeveloper. This dialog lets you define two domains, each with
one value. Upon completion, the Domain Value Map Editor appears so you can define
additional domains and corresponding values.

To create a domain value map:

1. In the Applications window, right-click the project in which you want to create a
domain value map and select New.

The New Gallery dialog appears.

2. Expand the SOA Tier node, and then select the Transformations category.

3. In the Items list, select Domain Value Map(DVM) and click OK.

Chapter 44
Creating Domain Value Maps

44-4

The Create Domain Value Map(DVM) File dialog appears.

4. In the File Name field, enter a unique and descriptive name for the domain value map
file. The file name must have an extension of .dvm.

5. In the Description field, enter a description for the domain value map. This field is
optional.

6. In the Domain Name field, enter a name for each domain. These names are the column
names for the domain value map, and each represents a fields in a different domain.

Note:

Domain names must be of the type NCName (non-colonized name), which is a
valid XML element name with no colons. Each domain name must be unique in
a domain value map. You can add more domains later.

7. In the Domain Value field, enter a value corresponding to each domain. For example,
enter BO for a CityCode domain and Boston for a CityName domain, as shown in
Figure 44-2.

Figure 44-2 Populated Create Domain Value Map File Dialog

8. Click OK.

The Domain Value Map Editor appears with the new domain value map displayed.

44.2.2 What Happens When You Create a Domain Value Map
A file with the extension .dvm is created in the project file structure and appears in the
Applications window, as shown in Figure 44-3.

Chapter 44
Creating Domain Value Maps

44-5

Figure 44-3 A Domain Value Map File in Applications Window

All .dvm files are based on the schema definition (XSD) file shown in the following
example:

<?xml version="1.0" encoding="UTF-8" ?>
<!-- Copyright (c) 2006, Oracle. All rights reserved. -->
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 targetNamespace="http://xmlns.oracle.com/dvm"
 xmlns:tns="http://xmlns.oracle.com/dvm"
 elementFormDefault="qualified"
 attributeFormDefault="unqualified">

<xsd:element name="dvm">
 <xsd:annotation>
 <xsd:documentation>The Top Level Element
 </xsd:documentation>
 </xsd:annotation>
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="description" minOccurs="0" type="xsd:string">
 <xsd:annotation>
 <xsd:documentation>The DVM Description. This is optional
 </xsd:documentation>
 </xsd:annotation>
 </xsd:element>
 <xsd:element name="columns">
 <xsd:annotation>
 <xsd:documentation>This element holds DVM's column List.
 </xsd:documentation>
 </xsd:annotation>
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="column" minOccurs="2" maxOccurs="unbounded">
 <xsd:annotation>
 <xsd:documentation>This represents a DVM Column
 </xsd:documentation>
 </xsd:annotation>
 <xsd:complexType>
 <xsd:attribute name="name" use="required" type="xsd:string"/>
 <xsd:attribute name="qualifier" default="false"

Chapter 44
Creating Domain Value Maps

44-6

type="xsd:boolean"
 use="optional"/>
 <xsd:attribute name="order" use="optional"
type="xsd:positiveInteger"/>
 </xsd:complexType>
 </xsd:element>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 <xsd:element name="rows" minOccurs="0">
 <xsd:annotation>
 <xsd:documentation>This represents all the DVM Rows.
 </xsd:documentation>
 </xsd:annotation>
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="row" minOccurs="1" maxOccurs="unbounded">
 <xsd:annotation>
 <xsd:documentation>
 Each DVM row of values
 </xsd:documentation>
 </xsd:annotation>
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="cell" minOccurs="2" maxOccurs="unbounded"
 type="xsd:string">
 <xsd:annotation>
 <xsd:documentation>This is the value for this row and for
 each column in the same order as defined in Columns.
 </xsd:documentation>
 </xsd:annotation>
 </xsd:element>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 </xsd:sequence>
 <xsd:attribute name="name" use="required" type="xsd:string"/>
 </xsd:complexType>
 </xsd:element>
 <xsd:annotation>
 <xsd:documentation>This Schema is used to validate the DVM Document got for
 creation and
 update of a DVM.
 </xsd:documentation>
 </xsd:annotation>
</xsd:schema>

44.3 Editing a Domain Value Map
After you create the framework for a domain value map, you can add domains and
corresponding domain values to the map using the Domain Value Map Editor.

44.3.1 How to Add Domains to a Domain Value Map
You can define additional domains to map, which are represented as columns in the domain
value map. You can also specify whether each new domain contains values to be included in

Chapter 44
Editing a Domain Value Map

44-7

the lookups at runtime or if it is only used to qualify the mapping. Note that domain
(column) names must be of the type NCName (non-colonized name), which is a valid
XML element name with no colons.

To add a domain to a domain value map:

1. If the map file is not open in the Domain Value Map Editor, double-click the DVM
file in the Applications window.

2. In the Map Table, click Add and then select Add Domain.

The Create Domain dialog appears.

3. In the Name field, enter a column name.

4. In the Qualifier field, select True to set this column as a qualifier. Otherwise,
select False.

Tip:

For more information about qualifier domains and qualifier order, see
Qualifier Domains and Qualifier Hierarchies.

5. In the Qualifier Order field, enter a number indicating the priority of the qualifier
domain.

This field is enabled only if you selected True in the Qualifier field.

Figure 44-4 Domain Value Map - Create Domain Dialog

6. Click OK.

A new column appears in the Map Table.

44.3.2 How to Edit a Domain
Once you add a domain to a domain value map, you can change the name, change
whether it is a qualifier domain, and change the qualifier order.

To edit a domain

1. In the Domain Value Map Editor, select the name of the domain you want to
modify.

Chapter 44
Editing a Domain Value Map

44-8

2. Click Edit Domain/Values.

The Edit Domain dialog appears.

Figure 44-5 Domain Value Map - Edit Domain Dialog

3. Change any of the fields on the dialog, and then click OK.

Note:

Domain names must be of the type NCName (non-colonized name), which is a
valid XML element name with no colons.

44.3.3 How to Add Domain Values to a Domain Value Map
Domain values are displayed in rows in the domain value map, with each row containing the
values to be mapped for each domain. You can add as many domain values as required to
fully define the mapping between domains.

To add domain values to a domain value map:

1. In the Domain Value Map Editor, click Add and then select Add Domain Values.

A new row appears beneath the existing rows in the Map Table.

2. Enter the values for each domain in the new row.

3. Repeat the above steps to create additional rows. When you are done making changes,
click Save All on the Oracle JDeveloper toolbar.

44.3.4 How to Edit Domain Values
Once you add domain values to a domain value map, you can modify the values if needed.

To modify domain values

1. In the Domain Value Map Editor, select the row containing the values you want to modify.

2. Click Edit Domain/Values.

The Edit Domain Values dialog appears.

Chapter 44
Editing a Domain Value Map

44-9

Figure 44-6 Domain Value Map - Edit Domain Values

3. Modify any of the fields on the dialog, and then click OK.

44.4 Using Domain Value Map Functions
After creating a domain value map, you can use the XPath functions of the domain
value map to look up appropriate values and populate the targets for the applications
at runtime.

44.4.1 Understanding Domain Value Map Functions
The dvm:lookupValue and dvm:lookupValue1M XPath functions look up a domain
value map for a single value or multiple values at runtime.

44.4.1.1 dvm:lookupValue
The dvm:lookupValue function returns a string by looking up the value for the target
column in a domain value map, where the source column contains the given source
value.

• The following code shows an example of dvm:lookupValue function syntax.

dvm:lookupValue(dvmMetadataURI as string, SourceColumnName as string,
 SourceValue as string, TargetColumnName as string, DefaultValue as string)
as
 string

The following code provides an example of dvm:lookupValue function use.

dvm:lookupValue('cityMap.dvm','CityCodes','BO', 'CityNames',
'CouldNotBeFound')

• The following code shows another example of dvm:lookupValue function syntax:

dvm:lookupValue(dvmMetadataURI as string, SourceColumnName as string,
SourceValue as string, TargetColumnName as string, DefaultValue as string,
(QualifierSourceColumn as string, QualifierSourceValue as string)*) as string

The following code provides another example of dvm:lookupValue function use:

dvm:lookupValue ('cityMap.dvm','CityCodes','BO','CityNames',
 'CouldNotBeFound', 'State', 'Massachusetts')

Chapter 44
Using Domain Value Map Functions

44-10

Arguments

• dvmMetadataURI - The domain value map URI.

• SourceColumnName - The source column name.

• SourceValue - The source value (an XPath expression bound to the source document of
the XSLT transformation).

• TargetColumnName - The target column name.

• DefaultValue - If the value is not found, then the default value is returned.

• QualifierSourceColumn: The name of the qualifier column.

• QualifierSourceValue: The value of the qualifier.

44.4.1.2 dvm:lookupValue1M
The dvm:lookupValue1M function returns an XML document fragment containing values for
multiple target columns of a domain value map, where the value for the source column is
equal to the source value. The following example provides details:

dvm:lookupValue1M(dvmMetadataURI as string, SourceColumnName as string,
 SourceValue as string,(TargetColumnName as string)?)as nodeset

Arguments

• dvmMetadataURI - The domain value map URI.

• SourceColumnName - The source column name.

• SourceValue - The source value (an XPath expression bound to the source document of
the XSLT transformation).

• TargetColumnName - The name of the target columns. At least one column name should
be specified. The question mark symbol (?) indicates that you can specify multiple target
column names.

The following code shows an example of dvm:lookupValue1M function use.

dvm:lookupValue1M ('cityMap.dvm','CityCode','BO','CityName',
'CityNickName')

The result is shown in the following example:

<CityName>Boston</CityName>
<CityNickName>BeanTown</CityNickName>

44.4.2 How to Use Domain Value Map Functions in Transformations
The domain value map functions can be used for transformations with a BPEL process
service component or a Mediator service component. Transformations are performed by
using the XSLT Mapper, which appears when you create an XSL file to transform the data
from one XML schema to another.

For information about the XSLT Mapper, see Creating Transformations with the XSLT Map
Editor .

Chapter 44
Using Domain Value Map Functions

44-11

To use the lookupValue1M function in a transformation:

1. In the Applications window, double-click an XSL file to open the XSLT Mapper.

2. In the XSLT Mapper, expand the trees in the Source and Target panes.

3. In the Components window, click the down arrow, and then select Advanced.

4. Select DVM Functions, as shown in Figure 44-7.

Figure 44-7 Domain Value Map Functions in the Components Window

5. Drag and drop lookupValue1M onto the line that connects the source to the
target.

A dvm:lookupValue1M icon appears on the connecting line.

6. Double-click the lookupValue1M icon.

The Edit Function – lookupValue1M dialog appears, as shown in Figure 44-8.

Chapter 44
Using Domain Value Map Functions

44-12

Figure 44-8 Edit Function – lookupValue1M Dialog

7. Specify values for the following fields in the Edit Function – lookupValue1M dialog:

a. In the dvmLocation field, enter the location URI of the domain value map file or click
Browse to the right of the dvmLocation field to select a domain value map file. You
can select an already deployed domain value map from the metadata service (MDS)
and also from the shared location in MDS. This can be done by selecting the
Resource Palette.

b. In the sourceColumnName field, enter the name of the domain value map column
that is associated with the source element value, or click Browse to select a column
name from the columns defined for the domain value map you previously selected.

c. In the sourceValue field, enter a value or press Ctrl-Space to use the XPath Building
Assistant. Press the up and down arrow keys to locate an object in the list, and press
Enter to select an item.

d. In the targetColumnName field, enter the name of the domain value map column
that is associated with the target element value, or click Browse to select the name
from the columns defined for the domain value map you previously selected.

e. Click Add to add another column as the target column and then enter the name of
the column.

A populated Edit Function - lookupValue1M dialog is shown in Figure 44-9.

Chapter 44
Using Domain Value Map Functions

44-13

Figure 44-9 Populated Edit Function – lookupValue1M Dialog

8. Click OK.

The XSLT Mapper appears with the lookupValue1M function icon.

9. From the File menu, select Save All.

For more information about selecting deployed domain value maps, see How to
Deploy and Use Shared Data Across Multiple SOA Composite Applications in Oracle
JDeveloper .

44.4.3 How to Use Domain Value Map Functions in XPath
Expressions

You can use the domain value map functions to create XPath expressions in the
Expression Builder dialog. You can access the Expression Builder dialog through the
Filter Expressions or the Assign Values functionality of an Oracle Mediator service
component.

For information about the Assign Values functionality, see How to Assign Values.

To use the lookupValue function in the Expression Builder dialog:

1. In the Functions list, select DVM Functions.

2. Double-click the dvm:lookupValue function to add it to the expression field.

3. Specify the various arguments of the lookupValue function. For example:

dvm:lookupValue('citymap.dvm','CityCodes',$in.Customer/inp1:Customer/
Address/Ci
ty,'CityNames','NotFound')

Chapter 44
Using Domain Value Map Functions

44-14

This expression, also shown in Figure 44-10, looks up a domain value map for the city
name equivalent of a city code. The value of the city code depends on the value specified
at runtime.

Figure 44-10 Domain Value Map Functions in the Expression Builder Dialog

44.4.4 What Happens at Runtime
At runtime, a BPEL process service component or a Mediator service component uses the
domain value map to look up appropriate values.

44.5 Creating a Domain Value Map Use Case for a Hierarchical
Lookup

This section provides a tutorial for using domain value maps in a SOA composite. This use
case demonstrates the hierarchical lookup feature of domain value maps. The hierarchical
lookup use case consists of the following steps:

1. Files are retrieved from a directory by an adapter service named ReadOrders.

2. The ReadOrders adapter service sends the file data to a Mediator named
ProcessOrders.

3. The ProcessOrders Mediator then transforms the message to the structure required by
the adapter reference. During transformation, Mediator looks up the UnitsOfMeasure
domain value map for an equivalent value of the Common domain.

Chapter 44
Creating a Domain Value Map Use Case for a Hierarchical Lookup

44-15

4. The ProcessOrders Mediator sends the message to an external reference named
WriteOrders.

5. The WriteOrders reference writes the message to a specified output directory.

To download the sample files mentioned in this section, see the Oracle SOA Suite
samples page.

44.5.1 How to Create the HierarchicalValue Use Case
This section provides the design-time tasks for creating, building, and deploying your
SOA composite application. These tasks must be performed in the order in which they
are presented.

44.5.1.1 Task 1: How to Create an Oracle JDeveloper Application and a Project

To create an Oracle JDeveloper application and a project:

1. In Oracle JDeveloper, click File and select New.

The New Gallery dialog appears.

2. In the New Gallery, expand the General node, and select the Applications
category.

3. In the Items list, select SOA Application and click OK.

The Create SOA Application wizard appears.

4. In the Application Name field, enter Hierarchical and then click Next.

The Name your project page appears.

5. In the Project Name field, enter HierarchicalValue and click Next.

The Configure SOA settings page appears.

6. In the Composite Template list, select Empty Composite and then click Finish.

The Applications window of Oracle JDeveloper is populated with the new
application and the project, and the SOA Composite Editor contains a blank
composite.

7. From the File menu, select Save All.

44.5.1.2 Task 2: How to Create a Domain Value Map
After creating an application and a project for the use case, create a domain value
map.

To create a domain value map:

1. In the Applications window, right-click the HierarchicalValue project and select
New.

2. In the New Gallery dialog, expand the SOA Tier node, and then select the
Transformations category.

3. In the Items list, select Domain Value Map(DVM) and click OK.

The Create Domain Value Map(DVM) File dialog appears.

Chapter 44
Creating a Domain Value Map Use Case for a Hierarchical Lookup

44-16

4. In the File Name field, enter UnitsOfMeasure.dvm.

5. In the Domain Name fields, enter Siebel and Common.

6. In the Domain Value field corresponding to the Siebel domain, enter Ea.

7. In the Domain Value field corresponding to the Common domain, enter Each.

8. Click OK.

The Domain Value Map Editor appears.

9. Click Add and then select Add Column.

The Create DVM Column dialog appears.

10. In the Name field, enter TradingPartner.

11. In the Qualifier list, select true.

12. In the QualifierOrder field, enter 1 and click OK.

13. Repeat Step 9 through Step 12 to create another qualifier named StandardCode with a
qualifier order value of 2.

14. Click Add and then select Add Domain Values.

Repeat this step to add two more rows.

15. Enter the information shown in Table 44-6 in the newly added rows of the domain value
map table.

Table 44-6 Information for Rows of Domain Value Map Table

Siebel Common TradingPartner StandardCode

EC Each OAG
E-RN Each A.C.Networks RN
EO Each ABC Inc RN

The Domain Value Map Editor appears, as shown in Figure 44-11.

Chapter 44
Creating a Domain Value Map Use Case for a Hierarchical Lookup

44-17

Figure 44-11 UnitsOfMeasure Domain Value Map

16. From the File menu, select Save All and close the Domain Value Map Editor.

44.5.1.3 Task 3: How to Create a File Adapter Service
After creating the domain value map, create a file adapter service named ReadOrders
to read the XML files from a directory.

Note:

Oracle Mediator may process the same file twice when run against Oracle
Real Application Clusters (Oracle RAC) planned outages. This is because a
file adapter is a non-XA compliant adapter. Therefore, when it participates in
a global transaction, it may not follow the XA interface specification of
processing each file only once.

To create a file adapter service:

1. From the Components window, select SOA.

2. Select File Adapter and drag it to the Exposed Services swimlane.

3. If the Adapter Configuration wizard Welcome page appears, click Next.

The Service Name page appears.

4. In the Service Name field, enter ReadOrders and then click Next.

The Operation page appears.

5. In the Operation Type field, select Read File and then click Next.

The File Directories page appears.

6. In the Directory for Incoming Files (physical path) field, enter the directory from
which you want to read the files.

Chapter 44
Creating a Domain Value Map Use Case for a Hierarchical Lookup

44-18

7. Click Next.

The File Filtering page appears.

8. In the Include Files with Name Pattern field, enter *.xml and then click Next.

The File Polling page appears.

9. Change the Polling Frequency field value to 10 seconds and then click Next.

The Messages page appears.

10. Click Search.

The Type Chooser dialog appears.

11. Click Import Schema File.

The Import Schema File dialog appears.

12. Click Search and select the Order.xsd file in the Samples folder.

13. Click OK.

14. Expand the navigation tree to Type Explorer > Imported Schemas > Order.xsd.

15. Select listOfOrder and click OK.

16. Click Next.

The Finish page appears.

17. Click Finish.

18. From the File menu, click Save All.

Figure 44-12 shows the ReadOrders service in the SOA Composite Editor.

Figure 44-12 ReadOrders Service in the SOA Composite Editor

44.5.1.4 Task 4: How to Create ProcessOrders Mediator Component

To create a Mediator named ProcessOrders:

1. Drag and drop a Mediator icon from the Components window to the Components
section of the SOA Composite Editor.

The Create Mediator dialog appears.

Chapter 44
Creating a Domain Value Map Use Case for a Hierarchical Lookup

44-19

2. In the Name field, enter ProcessOrders.

3. From the Template list, select Define Interface Later.

4. Click OK.

A Mediator with name ProcessOrders is created.

5. In the SOA Composite Editor, connect the ReadOrders service to the
ProcessOrders Oracle Mediator, as shown in Figure 44-13.

This specifies the file adapter service to invoke the ProcessOrders Mediator while
reading a file from the input directory.

Figure 44-13 ReadOrders Service Connected to the ProcessOrders
Mediator

6. From the File menu, select Save All.

44.5.1.5 Task 5: How to Create a File Adapter Reference

To create a file adapter reference:

1. From the Components window, select SOA.

2. Select File Adapter and drag it to the External References swimlane.

The Adapter Configuration wizard Welcome page appears.

3. Click Next.

The Service Name page appears.

4. In the Service Name field, enter WriteCommonOrder.

5. Click Next.

The Operation page appears.

6. In the Operation Type field, select Write File.

7. Click Next.

The File Configuration page appears.

8. In the Directory for Outgoing Files (physical path) field, enter the name of the
directory in which you want to write the files.

9. In the File Naming Convention field, enter common_order_%SEQ%.xml and click
Next.

Chapter 44
Creating a Domain Value Map Use Case for a Hierarchical Lookup

44-20

The Messages page appears.

10. Click Search.

The Type Chooser dialog appears.

11. Navigate to Type Explorer > Project Schema Files > Order.xsd, and then select
listOfOrder.

12. Click OK.

13. Click Next.

The Finish page appears.

14. Click Finish.

Figure 44-14 shows the WriteCommonOrder reference in the SOA Composite Editor.

Figure 44-14 WriteCommonOrder Reference in the SOA Composite Editor

15. From the File menu, select Save All.

44.5.1.6 Task 6: How to Specify Routing Rules
You must specify the path that messages take from the ReadOrders adapter service to the
external reference.

To specify routing rules:

1. Connect the ProcessOrders Oracle Mediator to the WriteCommonOrder reference, as
shown in Figure 44-15.

Chapter 44
Creating a Domain Value Map Use Case for a Hierarchical Lookup

44-21

Figure 44-15 ProcessOrders Mediator Connected to the
WriteCommonOrder Reference

2. Double-click the ProcessOrders Oracle Mediator.

3. To the right of the Transform Using field, click the icon.

The Request Transformation Map dialog appears.

4. Select Create New Mapper File and click OK.

A listOfOrder_To_listOfOrder.xsl file appears in the XSLT Mapper.

5. Drag and drop the imp1:listOfOrder source element onto the imp1:listOfOrder
target element.

The Auto Map Preferences dialog appears.

6. From the During Auto Map options, deselect Match Elements Considering their
Ancestor Names.

7. Click OK.

The listOfOrder_To_listOfOrder.xsl file appears, as shown in Figure 44-16.

Figure 44-16 imp1:listOfOrder To imp1:listOfOrder Transformation

8. In the Components window, select Advanced.

9. Click DVM Functions.

10. Drag and drop lookupValue on the line connecting the unitsOfMeasure
elements, as shown in Figure 44-17.

Chapter 44
Creating a Domain Value Map Use Case for a Hierarchical Lookup

44-22

Figure 44-17 Adding lookupValue Function to imp1:listOfOrder To
imp1:listOfOrder.xsl

11. Double-click the lookupvalue icon.

The Edit Function-lookupValue dialog appears.

12. To the right of the dvmLocation field, click Search.

The SOA Resource Lookup dialog appears.

13. Select UnitsofMeasure.dvm and click OK.

14. To the right of the sourceColumnName field, click Search.

The Select DVM Column dialog appears.

15. Select Siebel and click OK.

16. In the sourceValue column, enter the following:

/imp1:listOfOrder/imp1:order/imp1:baseData/imp1:unitOfMeasure
17. To the right of the targetColumnName field, click Search.

The Select DVM Column dialog appears.

18. Select Common and click OK.

19. In the defaultValue field, enter "No_Value_Found".

20. Click Add.

A qualifierColumnName row is added.

21. In the qualifierColumnName field, enter "StandardCode".

22. Click Add.

A qualifierValue row is added.

23. In the qualifierValue field, enter the following:

/imp1:listOfOrder/imp1:order/imp1:baseData/imp1:standard.

24. Click Add to insert another qualifierColumnName row.

25. In the qualifierColumnName field, enter "TradingPartner".

26. Click Add to insert another qualifierValue row.

27. In the qualifierValue field, enter the following:

Chapter 44
Creating a Domain Value Map Use Case for a Hierarchical Lookup

44-23

/imp1:listOfOrder/imp1:order/imp1:baseData/imp1:tp.

The Edit Function-lookupValue dialog appears, as shown in Figure 44-18.

Figure 44-18 Edit Function-lookupValue Function Dialog: Hierarchical
Lookup Use Case

28. Click OK.

The transformation appears, as shown in Figure 44-19.

Figure 44-19 Complete imp1:listOfOrder To imp1:listOfOrder
Transformation

29. From the File menu, select Save All and close the
listOfOrder_To_listOfOrder.xsl file at the top.

Chapter 44
Creating a Domain Value Map Use Case for a Hierarchical Lookup

44-24

44.5.1.7 Task 7: How to Configure an Application Server Connection
An application server connection is required for deploying your SOA composite application.
For information on creating an application server connection, see Creating an Application
Server Connection.

44.5.1.8 Task 8: How to Deploy the Composite Application
Deploying the HierarchicalValue composite application to an application server consists of
the following steps:

• Creating an application deployment profile.

• Deploying the application to the application server.

For detailed information about these steps, see How to Deploy a Single SOA Composite in
Oracle JDeveloper.

44.5.2 How to Run and Monitor the HierarchicalValue Application
After deploying the HierarchicalValue application, you can run it by copying the input XML
file sampleorder.xml to the input folder. This file is available in the samples folder. On
successful completion, a file named common_order_1.xml is written to the specified output
directory.

For monitoring the running instance, you can use Oracle Enterprise Manager Fusion
Middleware Control at the following URL:

http://hostname:port/em

where hostname is the host on which you installed the Oracle SOA Suite infrastructure.

For detailed information about these steps, see How to Deploy a Single SOA Composite in
Oracle JDeveloper.

44.6 Creating a Domain Value Map Use Case For Multiple
Values

This section provides a tutorial demonstrating how to create a domain value map with
multiple values to look up. This use case demonstrates the integration scenario for using a
domain value map lookup between two endpoints to look up multiple values. For example, if
the inbound value is State, then the outbound values are Shortname of State, Language, and
Capital. The multivalue lookup use case consists of the following steps:

1. Files are retrieved from a directory by an adapter service named readFile.

2. The readFile adapter service sends the file data to an Oracle Mediator named
LookupMultiplevaluesMediator.

3. The LookupMultiplevaluesMediator Oracle Mediator then transforms the message to the
structure required by the adapter reference. During transformation, Oracle Mediator looks
up the multivalue domain value map for an equivalent value of the Longname and
Shortname domains.

Chapter 44
Creating a Domain Value Map Use Case For Multiple Values

44-25

4. The LookupMultiplevaluesMediator Oracle Mediator sends the message to an
external reference named writeFile.

5. The writeFile reference writes the message to a specified output directory.

To download the sample files mentioned in this section, see Oracle SOA Suite
samples page.

44.6.1 How to Create the Multivalue Use Case
This section provides the design-time tasks for creating, building, and deploying your
SOA composite application. Perform these tasks in the order in which they are
presented.

44.6.1.1 Task 1: How to Create an Oracle JDeveloper Application and Project

To create an Oracle JDeveloper application and project:

1. In Oracle JDeveloper, click File and select New.

The New Gallery dialog appears.

2. In the New Gallery, expand the General node, and select the Applications
category.

3. In the Items list, select SOA Application and click OK.

The Create SOA Application wizard appears.

4. In the Application Name field, enter Multivalue and then click Next.

The Name your project page appears.

5. In the Project Name field, enter Multivalue and click Next.

The Configure SOA settings page appears.

6. From the Composite Template list, select Empty Composite and then click
Finish.

The Applications window of Oracle JDeveloper is populated with the new
application and project, and the SOA Composite Editor contains a blank
composite.

7. From the File menu, select Save All.

44.6.1.2 Task 2: How to Create a Domain Value Map
After creating an application and a project for the use case, create the domain value
map.

To create a domain value map:

1. In the Applications window, right-click the Multivalue project and select New.

2. In the New Gallery dialog, expand the SOA Tier node, and then select the
Transformations category.

3. In the Items list, select Domain Value Map(DVM) and click OK.

The Create Domain Value Map(DVM) File dialog appears.

Chapter 44
Creating a Domain Value Map Use Case For Multiple Values

44-26

4. In the File Name field, enter multivalue.dvm.

5. In the Domain Name fields, enter Longname, Shortname, Language, and Capital.

6. In the Domain Value field corresponding to the Longname domain, enter Karnataka.

7. In the Domain Value field corresponding to the Shortname domain, enter KA.

8. In the Domain Value field corresponding to the Language domain, enter Kannada.

9. In the Domain Value field corresponding to the Capital domain, enter Bangalore.

10. Click OK.

The Domain Value Map Editor appears.

11. Click Add and then select Add Row.

Repeat this step to add two more rows.

12. Enter the information shown in Table 44-7 in the newly added rows of the domain value
map table:

Table 44-7 Information for Rows of Domain Value Map Table

Longname Shortname Language Capital

Karnataka KA Kannada Bangalore
Tamilnadu TN Tamil Chennai
Andhrapradesh AP Telugu Hyderbad
Kerala KL Malayalam Trivandram

The Domain Value Map Editor appears, as shown in Figure 44-20.

Figure 44-20 Multivalue Domain Value Map

13. From the File menu, select Save All and close the Domain Value Map Editor.

44.6.1.3 Task 3: How to Create a File Adapter Service
After creating the domain value map, create a file adapter service named readFile to read the
XML files from a directory.

Chapter 44
Creating a Domain Value Map Use Case For Multiple Values

44-27

Note:

Mediator may process the same file twice when run against Oracle RAC
planned outages. This is because a file adapter is a non-XA compliant
adapter. Therefore, when it participates in a global transaction, it may not
follow the XA interface specification of processing each file only once.

To create a file adapter service:

1. From the Components window, select SOA.

2. Select File Adapter and drag it to the Exposed Services swimlane.

3. If the Adapter Configuration wizard Welcome page appears, click Next.

The Service Name page appears.

4. In the Service Name field, enter readFile and then click Next.

The Adapter Interface page appears.

5. Click Define from operation and schema (specified later) and then click Next.

The Operation page appears.

6. In the Operation Type field, select Read File and then click Next.

The File Directories page appears.

7. In the Directory for Incoming Files (physical path) field, enter the directory from
which you want to read the files.

8. Click Next.

The File Filtering page appears.

9. In the Include Files with Name Pattern field, enter *.xml and then click Next.

The File Polling page appears.

10. Change the Polling Frequency field value to 1 second and then click Next.

The Messages page appears.

11. Click Search.

The Type Chooser dialog appears.

12. Click Import Schema File.

The Import Schema File dialog appears.

13. Click Search and select the input.xsd file in the Samples folder.

14. Click OK.

15. Expand the navigation tree to Type Explorer > Imported Schemas > input.xsd.

16. Select Root-Element and click OK.

17. Click Next.

The Finish page appears.

18. Click Finish.

Chapter 44
Creating a Domain Value Map Use Case For Multiple Values

44-28

19. From the File menu, select Save All.

Figure 44-21 shows the readFile service in the SOA Composite Editor.

Figure 44-21 readFile Service in the SOA Composite Editor

44.6.1.4 Task 4: How to Create the LookupMultiplevaluesMediator Mediator

To create the LookupMultiplevaluesMediator Mediator:

1. Drag and drop a Mediator icon from the Components window to the Components
section of the SOA Composite Editor.

The Create Mediator dialog appears.

2. In the Name field, enter LookupMultiplevaluesMediator.

3. From the Template list, select Define Interface Later.

4. Click OK.

An Oracle Mediator with the name LookupMultiplevaluesMediator is created.

5. In the SOA Composite Editor, connect the readFile service to the
LookupMultiplevaluesMediator Oracle Mediator, as shown in Figure 44-22.

This specifies the file adapter service to invoke the LookupMultiplevaluesMediator
Oracle Mediator while reading a file from the input directory.

Chapter 44
Creating a Domain Value Map Use Case For Multiple Values

44-29

Figure 44-22 readFile Service Connected to the
LookupMultiplevaluesMediator Mediator

6. From the File menu, select Save All.

44.6.1.5 Task 5: How to Create a File Adapter Reference

To create a file adapter reference:

1. From the Components window, select SOA.

2. Select File Adapter and drag it to the External References swimlane.

The Adapter Configuration wizard Welcome page appears.

3. Click Next.

The Service Name page appears.

4. In the Service Name field, enter writeFile and then click Next.

The Adapter Interface page appears.

5. Click Define from operation and schema (specified later) and then click Next.

The Operation page appears.

6. Click Next.

The Operation page appears.

7. In the Operation Type field, select Write File.

8. Click Next.

The File Configuration page appears.

9. In the Directory for Outgoing Files (physical path) field, enter the name of the
directory where you want to write the files.

10. In the File Naming Convention field, enter multivalue_%SEQ%.xml and click
Next.

The Messages page appears.

11. Click Search.

The Type Chooser dialog appears.

12. Navigate to Type Explorer > Project Schema Files > output.xsd, and then
select Root-Element.

Chapter 44
Creating a Domain Value Map Use Case For Multiple Values

44-30

13. Click OK.

14. Click Next.

The Finish page appears.

15. Click Finish.

Figure 44-23 shows the writeFile reference in the SOA Composite Editor.

Figure 44-23 writeFile Reference in SOA Composite Editor

16. From the File menu, select Save All.

44.6.1.6 Task 6: How to Specify Routing Rules
You must specify the path that messages take from the readFile adapter service to the
external reference.

To specify routing rules

1. Connect the LookupMultiplevaluesMediator Mediator to the writeFile reference, as
shown in Figure 44-24.

Figure 44-24 LookupMultiplevaluesMediator Mediator Connected to the writeFile
Reference

2. Double-click the LookupMultiplevaluesMediator Mediator.

Chapter 44
Creating a Domain Value Map Use Case For Multiple Values

44-31

3. To the right of the Transform Using field, click the icon.

The Request Transformation Map dialog appears.

4. Select Create New Mapper File and click OK.

An Input_To_Output_with_multiple_values_lookup.xsl file appears in the XSLT
Mapper.

5. Drag and drop the imp1:Root-Element source element to the ns2:Root-Element
target element.

The Auto Map Preferences dialog appears.

6. From the During Auto Map options list, deselect Match Elements Considering
their Ancestor Names.

7. Click OK.

The Input_To_Output_with_multiple_values_lookup.xsl file appears in the
XSLT Mapper, as shown in Figure 44-25.

Figure 44-25 imp1:Root-Element To ns2:Root-Element Transformation

8. In the Components window, select Advanced.

9. Click DVM Functions.

10. Drag and drop lookupValue1M in the center panel, as shown in Figure 44-26.

Figure 44-26 Adding lookupValue Function to imp1:Root-Element to
ns2:Root-Element

11. Double-click the lookupvalue1M icon.

The Edit Function-lookupValue1M dialog appears.

12. To the right of the dvmLocation field, click Search.

The SOA Resource Lookup dialog appears.

13. Select multivalue.dvm and click OK.

Chapter 44
Creating a Domain Value Map Use Case For Multiple Values

44-32

14. To the right of the sourceColumnName field, click Search.

The Select DVM Column dialog appears.

15. Select Longname and click OK.

16. In the sourceValue column, enter the following:

/imp1:Root-Element/imp1:Details/imp1:Longname.

17. To the right of the targetColumnName field, click Search.

The Select DVM Column dialog appears.

18. Select Shortname and click OK.

19. Click Add.

A targetColumnName row is added.

20. In the targetColumnName field, enter "Language".

21. Click Add to insert another targetColumnName row.

22. In the targetColumnName field, enter "Capital".

The Edit Function-lookupValue dialog appears, as shown in Figure 44-27.

Figure 44-27 Edit Function-lookupValue Function Dialog: Multiple Value Lookup
Use Case

23. Click OK.

The Transformation appears, as shown in Figure 44-28.

Chapter 44
Creating a Domain Value Map Use Case For Multiple Values

44-33

Figure 44-28 Complete imp1:Root-Element To ns2:Root-Element
Transformation

24. From the File menu, select Save All and close the
Input_To_Output_with_multiple_values_lookup.xsl file.

44.6.1.7 Task 7: How to Configure an Application Server Connection
An application server connection is required for deploying your SOA composite
application. For information on creating an application server connection, see Creating
an Application Server Connection.

44.6.1.8 Task 8: How to Deploy the Composite Application
Deploying the Multivalue composite application to an application server consists of the
following steps:

• Creating an application deployment profile.

• Deploying the application to the application server.

For detailed information about these steps, see How to Deploy a Single SOA
Composite in Oracle JDeveloper.

44.6.2 How to Run and Monitor the Multivalue Application
After deploying the Multivalue application, you can run it by copying the input XML file
sampleinput.xml to the input folder. This file is available in the samples folder. On
successful completion, a file with name multivalue_1.xml is written to the specified
output directory.

For monitoring the running instance, you can use Oracle Enterprise Manager Fusion
Middleware Control at the following URL:

http://hostname:port/em

where hostname is the host on which you installed the Oracle SOA Suite infrastructure.

In Oracle Enterprise Manager Fusion Middleware Control, you can click Multivalue to
see the project dashboard.

To view the detailed execution trail, click the instance ID in the instance column. The
Flow Trace page appears.

Chapter 44
Creating a Domain Value Map Use Case For Multiple Values

44-34

44.7 Preloading DVM Cache for Faster First-Use
When a DVM is first called into use, the DVM gets loaded into the cache from the MDS.
Subsequent lookups are faster, as the DVM is picked from the cache.

If you have a lot of records in your DVMs, you may want to preload the DVMs into the cache
during server startup, so that the DVMs are readily available for first use.

You can choose to preload the DVM cache at server startup using the MBean property
LoadDVMsAtStartup in the System MBean Browser of Oracle Enterprise Manager Fusion
Middleware Control. Setting LoadDVMsAtStartup to true loads all the DVMs into the cache
at server startup. The default value for LoadDVMsAtStartup is false.

44.7.1 How to Preload DVM Cache at Server Startup
To preload DVM cache at server startup:

1. Log in to Oracle Enterprise Manager Fusion Middleware Control.

2. From the SOA Infrastructure menu, select SOA Administration > Common
Properties.

3. At the bottom of the SOA Infrastructure Common Properties page, click More SOA Infra
Advanced Configuration Properties.

4. Click LoadDVMsAtStartup.

5. In the Value field, select true.
6. Click Apply.

7. Click Return.

Chapter 44
Preloading DVM Cache for Faster First-Use

44-35

45
Using Oracle SOA Composer with Domain
Value Maps

This chapter describes how to modify domain value maps for an Oracle SOA Suite project at
runtime using Oracle SOA Composer. Domain value maps let you map values from one
vocabulary used in a given domain to another vocabulary used in a different domain.
In earlier releases, for editing a domain value map at runtime, you first had to make the
changes in Oracle JDeveloper, and then redeploy the domain value map in the application
server. Oracle SOA Composer now offers support for editing domain value maps at runtime.

This chapter includes the following sections:

• Introduction to Oracle SOA Composer

• Viewing Domain Value Maps at Runtime

• Editing Domain Value Maps at Runtime

• Publishing Changes at Runtime

• Detecting Conflicts

For more information about domain value maps, see Working with Domain Value Maps .

45.1 Introduction to Oracle SOA Composer
Oracle SOA Composer is an EAR file that is installed as part of the Oracle SOA Suite
installation. Oracle SOA Composer enables you to manage deployed domain value maps
during runtime without needing to redeploy the project that uses the domain value maps.
Domain value map metadata can be associated either with a SOA composite application, or it
can be shared across different composite applications. Figure 45-1 shows how Oracle SOA
Composer lets you access a domain value map from the Metadata Service (MDS) repository.

Figure 45-1 Oracle SOA Composer High-Level Deployment Topology

45-1

45.1.1 How to Sign In to Oracle SOA Composer
To sign in to Oracle SOA Composer:

1. Enter the following URL in your web browser:

http://hostname:port/soa/composer

The Oracle SOA Composer Sign In page is displayed.

Figure 45-2 Oracle SOA Composer Sign In Page

2. Enter your credentials in the User Name and Password fields, then click Sign In.

After you sign in to Oracle SOA Composer, the Oracle SOA Composer home page is
displayed.

Chapter 45
Introduction to Oracle SOA Composer

45-2

Figure 45-3 Oracle SOA Composer Home Page

You must have the SOADesigner application role to access Oracle SOA Composer metadata.
By default, all users with Oracle Enterprise Manager Fusion Middleware Control administrator
privileges have this role. If you log in to Oracle SOA Composer without this role, you see the
following message:

Currently logged in user is not authorized to modify SOA metadata.

For information about adding the SOADesigner application role to users without administrator
privileges, see Administering Oracle SOA Suite and Oracle Business Process Management
Suite.

45.2 Viewing Domain Value Maps at Runtime
You can view domain value maps at runtime. Perform the following steps to open and view a
domain value map.

45.2.1 How To View Domain Value Maps at Runtime
To view domain value maps at runtime:

1. Select Types View in the Applications window panel on the left.

2. Expand Domain Value Maps folder by clicking the right arrow icon before it.

3. Select the domain value map file (.dvm) that you want to view or edit.

4. Click the Open icon to open the domain value map.

5. From the Open menu, select Open DVM. The DVM details appear in view mode.

Chapter 45
Viewing Domain Value Maps at Runtime

45-3

Figure 45-4 shows a sample domain value map in SOA Composer.

Figure 45-4 Domain Value Map in SOA Composer

Note:

To get a direct link to the selected domain value map, click Bookmark.

45.3 Editing Domain Value Maps at Runtime
You can edit domain value maps while the applications using the domain value map
are running.

Note:

When you update a DVM using SOA Composer, the DVM cache also gets
updated with the updated DVM.

45.3.1 How to Edit Domain Value Maps at Runtime
By default, domain value maps open in view mode. Once you change to edit mode,
you can modify row information. When you finish making changes, be sure to save
and commit them as described in Publishing Changes at Runtime.

Chapter 45
Editing Domain Value Maps at Runtime

45-4

45.3.1.1 Changing to Edit Mode

To change to edit mode:

1. Open the domain value map for viewing, as described in How To View Domain Value
Maps at Runtime.

2. Click Create Session in the top right section of the SOA Composer window. If you have
a previously active session, you must click Edit Session.

The domain value map opens in edit mode.

45.3.1.2 Adding Rows

To add rows to the current domain value map:

1. Click Add Domain Values.

2. In the dialog, enter values and click OK.

The entered values are added to the domain value map.

3. Click the Save icon.

45.3.1.3 Editing Rows

To edit rows in the current domain value map:

1. Select the row to edit.

2. Click Edit Domain Values.

3. In the dialog, edit the values as required and click OK.

4. Click the Save icon.

45.3.1.4 Deleting Rows

To delete rows from the current domain value map:

1. Select the rows to delete.

2. Click Delete Domain Values.

3. Click the Save icon.

45.4 Publishing Changes at Runtime
Every time a domain value map is opened in an edit session, a sandbox is created per
domain value map, per user. If you save your changes, then the changes are saved in your
sandbox.

You must publish the changes you make to have them picked up by the runtime and be
saved permanently to the MDS repository. In a session, you can also save your changes
without publishing them. In such a case, the domain value map remains in the saved state.
You can reopen the domain value map and publish the changes later.

Chapter 45
Publishing Changes at Runtime

45-5

45.4.1 How to Publish Changes at Runtime
To publish changes at runtime:

1. Click Publish in the top right section of SOA Composer. A confirmation dialog
appears.

2. Enter an optional description for the changes made in the session. Click OK.

45.4.2 How to Discard Changes at Runtime
You can also choose to discard any changes made to the DVM in the session.

To discard changes at runtime:

1. Click Discard in the top right section of SOA Composer. A confirmation dialog
appears.

2. Click OK to discard changes made in the session. This includes any changes that
you might have saved to the sandbox.

45.5 Detecting Conflicts
Oracle SOA Composer detects conflicts that can occur among concurrent users. If you
open a domain value map that is being edited by another user, then you see a dialog
asking you to confirm whether you want to go ahead with the edit.

If you still want to edit the domain value map, you can click Yes and make the
modifications.

If the other user makes changes to the domain value map and commits the changes,
you receive a notification message while trying to commit your changes.

If you click Yes and commit your changes, then the changes made by the other user
are overwritten by your changes.

Chapter 45
Detecting Conflicts

45-6

Part VIII
Completing Your Application

This part describes how to complete design of your application.

This part contains the following chapters:

• Enabling Security with Policies and Message Encryption

• Deploying SOA Composite Applications

• Using the Development Maven Plug-In

• Debugging and Auditing SOA Composite Applications

• Automating Testing of SOA Composite Applications

46
Enabling Security with Policies and Message
Encryption

This chapter describes how to attach policies to binding components and service components
during design-time in SOA composite applications and encrypt and decrypt specific fields of
messages. Policies apply security to the delivery of messages. This chapter also describes
how to override policy configuration property values.
This chapter includes the following sections:

• Introduction to Policies

• Attaching Policies to Binding Components and Service Components

• Encrypting and Decrypting Specific Fields of Messages

46.1 Introduction to Policies
Oracle Fusion Middleware uses a policy-based model to manage and secure Web services
across an organization. Policies apply security to the delivery of messages. Policies can be
managed by both developers in a design-time environment and system administrators in a
runtime environment.

Policies are comprised of one or more assertions. A policy assertion is the smallest unit of a
policy that performs a specific action. Policy assertions are executed on the request message
and the response message, and the same set of assertions is executed on both types of
messages. The assertions are executed in the order in which they appear in the policy.

Table 46-1 describes the supported policy categories.

Table 46-1 Supported Policy Categories

Category Description

Message Transmission
Optimization Mechanism
(MTOM)

Ensures that attachments are in MTOM format. This format enables binary
data to be sent to and from web services. This reduces the transmission
size on the wire.

Reliability Supports the WS-Reliable Messaging protocol. This guarantees the end-to-
end delivery of messages.

Addressing Verifies that simple object access protocol (SOAP) messages include WS-
Addressing headers in conformance with the WS-Addressing specification.
Transport-level data is included in the XML message rather than relying on
the network-level transport to convey this information.

Security Implements the WS-Security 1.0 and 1.1 standards. They enforce
authentication and authorization of users. identity propagation, and
message protection (message integrity and message confidentiality).

Management Logs request, response, and fault messages to a message log.
Management policies can also include custom policies.

46-1

Within each category there are one or more policy types that you can attach. For
example, if you select the reliability category, the following types are available for
selection:

• oracle/no_reliable_messaging_policy

Supports the disabling of reliable messaging configured at a higher scope

• oracle/no_wsrm_policy

Supports the disabling of a globally attached Web Services Reliable Messaging
policy

• oracle/reliable_messaging_policy

Supports the enabling of Web services reliable messaging

• oracle/wsrm10_policy

Supports version 1.0 of the Web Services Reliable Messaging protocol

• oracle/wsrm11_policy

Supports version 1.1 of the Web Services Reliable Messaging protocol

For more information about available policies, details about which ones to use in your
environment, and global policies, see Securing Web Services and Managing Policies
with Oracle Web Services Manager.

46.2 Attaching Policies to Binding Components and Service
Components

You can attach or detach policies to and from service binding components, service
components, and reference binding components in a SOA composite application. Use
Oracle JDeveloper to attach policies for testing security in a design-time environment.
When your application is ready for deployment to a production environment, you can
attach or detach runtime policies in Oracle Enterprise Manager Fusion Middleware
Control.

For more information about runtime management of policies, see Administering Oracle
SOA Suite and Oracle Business Process Management Suite.

46.2.1 How to Attach Policies to Binding Components and Service
Components

To attach policies to binding components and service components:

1. In the SOA Composite Editor, right-click a service binding component or reference
binding component.

2. Select Configure SOA WS Policies.

Depending upon the interface definition of your SOA composite application, you
may be prompted with an additional menu of options.

• If the selected service or reference is interfacing with a synchronous BPEL
process or Oracle Mediator service component, a single policy is used for both
request and response messages. The Configure SOA WS Policies dialog
immediately appears. Go to Step 4.

Chapter 46
Attaching Policies to Binding Components and Service Components

46-2

• If the service or reference is interfacing with an asynchronous BPEL process or
Oracle Mediator service component, the policies must be configured separately for
request and response messages. The policy at the callback is used for the response
sent from service to client. An additional menu is displayed. Go to Step 3.

3. Select the type of binding to use:

• For Request:

Select the request binding for the service component with which to bind. You can only
select a single request binding. This action enables communication between the
binding component and the service component.

When request binding is configured for a service in the Exposed Services swimlane,
the service acts as the server. When request binding is configured for a reference in
the External References swimlane, the reference acts as the client.

• For Callback: (only for interactions with asynchronous processes)

Select the callback binding for the service component with which to bind. This action
enables message communication between the binding component and the service
component. You can only select a single callback binding.

When callback binding is configured for a service in the Exposed Services
swimlane, the service acts as the client. When callback binding is configured for a
reference in the External References swimlane, the reference acts as the server.

The Configure SOA WS Policies dialog shown in Figure 46-1 appears. For this example,
the For Request option was selected for a service binding component. The same types
of policy categories are also available if you select For Callback.

Chapter 46
Attaching Policies to Binding Components and Service Components

46-3

Figure 46-1 Configure SOA WS Policies Dialog

4. Click the Add icon next to the type of policy to attach:

• MTOM

• Reliability

• Addressing

• Security

• Management

For this example, Security is selected. The dialog shown in Figure 46-2 is
displayed.

Chapter 46
Attaching Policies to Binding Components and Service Components

46-4

Figure 46-2 Security Policies

5. Click the icon to the right of the policy name to display a description of policy capabilities.

6. Select the type of policy to attach.

7. Click OK.

You are returned to the Configure SOA WS Policies dialog shown in Figure 46-3. The
attached security policy displays in the Security section.

Figure 46-3 Attached Security Policy

Chapter 46
Attaching Policies to Binding Components and Service Components

46-5

8. If necessary, add additional policies.

You can temporarily disable a policy by clicking the Disable selected policies
icon. Figure 46-4 provides details. This action does not detach the policy.

Figure 46-4 Disable Selected Policies Icon

9. To enable the policy again, click the Enable selected policies icon to the left.

10. To detach a policy, click the Delete icon.

11. When complete, click OK in the Configure SOA WS Policies dialog.

You are returned to the SOA Composite Editor.

12. Place your cursor over the icon on the service binding component to display
details about the attached policy. Figure 46-5 provides details.

Figure 46-5 Policy Description Icon

46.2.1.1 To attach a policy to a service component:
1. Right-click a service component.

2. Select Configure SOA WS Policies.

The Configure SOA WS Policies dialog shown in Figure 46-6 appears.

Figure 46-6 Configure SOA WS Policies Dialog

Chapter 46
Attaching Policies to Binding Components and Service Components

46-6

3. Click the Add icon next to the type of policy to attach.

• Security

• Management

The dialog for your selection appears.

4. Select the type of policy to attach.

5. Click OK.

6. If necessary, add additional policies.

7. When complete, click OK in the Configure SOA WS Policies dialog.

For information about attaching policies during runtime in Oracle Enterprise Manager Fusion
Middleware Control, see Administering Oracle SOA Suite and Oracle Business Process
Management Suite.

46.2.2 How to Override Policy Configuration Property Values
Your environment may include multiple clients or servers with the same policies. However,
each client or server may have their own specific policy requirements. You can override the
policy property values based on your runtime requirements.

46.2.2.1 Overriding Client Configuration Property Values
You can override the default values of client policy configuration properties on a per client
basis without creating new policies for each client. In this way, you can override client policies
that define default configuration values and customize those values based on your runtime
requirements.

1. Right-click one of the following binding components:

• A service binding component in the Exposed Services swimlane, and select For
Callback.

• A reference binding component in the External References swimlane, and select
For Request.

2. Go to the Security and Management sections. These instructions assume you
previously attached policies in these sections.

The Edit icon is enabled for both sections. Figure 46-7 provides details.

Figure 46-7 Client Policy Selection

Chapter 46
Attaching Policies to Binding Components and Service Components

46-7

3. Click the Edit icon.

4. In the Override Value column, enter a value to override the default value shown in
the Value column. Figure 46-8 provides details.

Figure 46-8 Client Policy Override Value

5. Click OK to exit the Config Override Properties dialog.

6. Click OK to exit the Configure SOA WS Policies dialog.

For more information about overriding policy settings, see Securing Web Services and
Managing Policies with Oracle Web Services Manager.

46.2.2.2 Overriding Server Configuration Property Values
You can override the default values of server policy configuration properties on a per
server basis without creating new policies for each server. In this way, you can
override server policies that define default configuration values and customize those
values based on your runtime requirements.

To override server configuration property values:

1. Right-click one of the following binding components:

• A service binding component in the Exposed Services swimlane, and select
For Request.

• A reference binding component in the External References swimlane, and
select For Callback.

2. Go to the Security or Management section. These instructions assume you
previously attached policies in these sections.

The Edit icon is not enabled by default for both sections. You must explicitly select
a policy to enable this icon. This is because you can override fewer property
values for the server. Figure 46-9 provides details.

Chapter 46
Attaching Policies to Binding Components and Service Components

46-8

Figure 46-9 Server Policy Selection

3. Select an attached policy that permits you to override its value, and click the Edit icon.

4. In the Override Value column, enter a value to override the default value shown in the
Value column. Figure 46-10 provides details. If the policy store is unavailable, the words
no property store found in the store display in red in the Value column.

Figure 46-10 Server Policy Override Value

5. Click OK to exit the Config Override Properties dialog.

6. Click OK to exit the Configure SOA WS Policies dialog.

For more information about overriding policy settings, see Securing Web Services and
Managing Policies with Oracle Web Services Manager.

46.3 Encrypting and Decrypting Specific Fields of Messages
You can encrypt and decrypt fields of a message to protect sensitive data (known as
personally identifiable information (PII)) flowing in web services and JCA adapters in Oracle
SOA Suite and Oracle Service Bus. This feature provides for the obfuscation of certain fields
(for example, SSNs) to prevent this data from appearing in administration consoles in clear
text.

Figure 46-11 shows an incoming message being encrypted when entering the SOA
composite application in a service binding component and an outgoing message being
decrypted when exiting the SOA composite application in a reference binding component.
Messages outside the composite can be protected with other message protection policies
(WS-Security/SSL).

Chapter 46
Encrypting and Decrypting Specific Fields of Messages

46-9

Figure 46-11 Message Encryption and Decryption in a SOA Composite Application

The following code shows an example of an unencrypted message. The PII fields are
name and driversLicense.

<person>
 <name>John</name>
 <driversLicense>B1234</driversLicense>
 <ssn>123-456-789</ssn>
</person>

The following code shows an example of the encrypted message with the name and
driversLicense fields in encrypted format.

<person>
 <name>John</name>
 <driversLicense>encrypted:fdslj[lmsfwer09fsn;keyname=pii-csf-key</
driversLicense>
 <ssn>encrypted:gdf45md%mfsd103k;keyname=pii-csf-key</ssn>
</person>

The encryption format is as follows:

encrypted:<CIPHER_TEXT>;keyname:<CSF_KEY_NAME>

Note:

If both a PII policy and authorization policy are attached to a SOA composite
application, the authorization policy is executed before the PII policy. This is
because the PII policy may encrypt the field used for authorization.

If the authorization policy is attached to a component and it requires an
already-encrypted field, authorization fails.

Chapter 46
Encrypting and Decrypting Specific Fields of Messages

46-10

46.3.1 How to Encrypt and Decrypt Specific Fields of Messages

Note:

• You must decrypt PIIs when an encrypted message leaves the composite. If
you attach a PII policy to a service binding component and do not attach a PII
policy to a reference binding component, PIIs in the outbound message are not
decrypted. This is not a recommended practice, and you receive a runtime
error.

• PIIs encrypted in one SOA composite application cannot be decrypted in
another SOA composite application.

To encrypt and decrypt specific fields of messages:

1. Right-click a service binding component, and select Protect Sensitive Data > Encrypt
Request Data.

The PII Configuration dialog is displayed, as shown in Figure 46-12.

You must now perform the initial encryption on the incoming message.

Figure 46-12 PII Configuration Dialog for Encryption

2. Click the Edit icon to identify the elements in the schema to encrypt.

The Input tab of the Select fields to encrypt dialog is displayed.

3. Click the Add icon to create an XPath expression that identifies the fields of the request
message to encrypt (for example, a user's name, credit card number, or social security
number).

4. Click the CSF tab.

5. Select the credential store framework (CSF) key to use. The credential store is used for
the secure storage of credential keys.

After encryption is complete, the message proceeds through the service components of
the SOA composite application.

When the message reaches a reference binding component and is ready to exit the SOA
composite application, you must decrypt the encrypted message.

Chapter 46
Encrypting and Decrypting Specific Fields of Messages

46-11

6. Right-click the reference binding component, and select Decrypt Sensitive Data.
Figure 46-13 provides details.

Figure 46-13 PII Configuration Dialog for Decryption

7. Click the Edit icon.

The Input tab of the Select fields to decrypt dialog is displayed. For asynchronous
processes, there are two steps: one for the input message and one for the output
message.

8. Click the Add icon to invoke the Expression Builder dialog for creating an XPath
expression that identifies the fields to decrypt (for example, a credit card number
or driver's license field).

9. Click OK when complete.

After configuring composites with oracle/pii_security_policy, you must add keys
and user credentials to the credential store.

10. Use the createCred WLST command to create entries in the
oracle.wsm.security credential map for any csf-key user credentials.

connect("weblogic","password","t3://myAdminServer.example.com:7001")

wls:/DefaultDomain/serverConfig> createCred(map="oracle.wsm.security",
key="pii-csf-key", user="weblogic", password="password", desc="Key for
pii_security_policy")

If you do not perform this task, the following error occurs:

oracle.wsm.security.SecurityException: WSM-00016 : The
username/password credentials or certificates pii-csf-key are missing.

Chapter 46
Encrypting and Decrypting Specific Fields of Messages

46-12

47
Deploying SOA Composite Applications

This chapter describes how to deploy SOA composite applications. You can deploy single
composites, multiple composites, and composites using shared data such as WSDLs, XSDs,
and other file types with Oracle JDeveloper and the ant scripting tool, and create
configuration plans for moving SOA composite applications to and from different
environments.

This chapter includes the following sections:

• Introduction to Deployment

• Deployment Prerequisites

• Understanding the Packaging Impact

• Anatomy of a Composite

• Preparing the Target Environment

• Customizing Your Application for the Target Environment Before Deployment

• Deploying SOA Composite Applications or Projects in Oracle JDeveloper

• Deploying and Managing SOA Composite Applications with the WLST Utility

• Deploying and Managing SOA Composite Applications with ant Scripts

• Deploying SOA Composite Applications from Oracle Enterprise Manager Fusion
Middleware Control

• Deploying SOA Composite Applications with No Servers Running

• Importing XSLT Customizations into a Deployed SOA Composite Application

• Postdeployment Configuration

• Testing and Troubleshooting

• Patching Running Instances of a SOA Composite

See Administering Oracle SOA Suite and Oracle Business Process Management Suite for
instructions about deploying SOA composite applications from Oracle Enterprise Manager
Fusion Middleware Control and WLST Command Reference for SOA Suite for instructions
about deploying SOA composite applications with the WLST utility.

47.1 Introduction to Deployment
This chapter describes the following deployment life cycle topics:

• Deployment prerequisites

• Packaging details

• Anatomy of a composite

• Target environment preparation

• Target environment configuration tasks

47-1

• Composite deployment

• Postdeployment configuration tasks

• Testing and troubleshooting composite applications

For more information about the deployment life cycle, see Administering Oracle Fusion
Middleware.

47.2 Deployment Prerequisites
This section describes the basic prerequisites required for creating and deploying a
SOA composite application.

47.2.1 Creating the Oracle SOA Suite Schema
Oracle SOA Suite components require schemas that must be installed in the Oracle or
Microsoft SQL Server database. You create and load these schemas in your database
with the Repository Creation Utility (RCU). For information about installing and
configuring your schemas, see Installing and Configuring Oracle SOA Suite and
Business Process Management and Creating Schemas with the Repository Creation
Utility.

If you use the Oracle SOA Suite Quick Start installation in a development environment,
the schema is automatically created in the Java database for you. For more
information, see Installing SOA Suite and Business Process Management Suite Quick
Start for Developers.

47.2.2 Creating a SOA Domain
After installation, you use the Oracle Fusion Middleware Configuration Wizard to
create and configure a new Oracle WebLogic Server domain, and choose products
such as Oracle SOA Suite to configure in that domain. This new domain contains the
administration server and other managed servers, depending on the products you
choose to configure. For more information, see Installing and Configuring Oracle SOA
Suite and Business Process Management.

If you install the Oracle SOA Suite Quick Start, you can configure the Integrated
WebLogic Server's default domain in Oracle JDeveloper. For information, see
Installing SOA Suite and Business Process Management Suite Quick Start for
Developers.

47.2.3 Configuring a SOA Cluster
You can deploy a SOA composite application into a clustered environment. For more
information on creating and configuring a clustered environment, see High Availability
Guide.

47.3 Understanding the Packaging Impact
You can separately package all required artifact files within the project of a SOA
composite application into a SOA archive (SAR) JAR file though use of the following
tools:

• Oracle JDeveloper

Chapter 47
Deployment Prerequisites

47-2

During deployment on the Deployment Action page, you select the Generate SAR File
option. For more information, see Deploying the Profile.

• ant scripts

Use the ant-sca-package script to package your artifacts. For more information, see How
to Use ant to Package a SOA Composite Application into a Composite SAR File.

• WLST commands

Use the sca_package script to package your artifacts. For more information, see WLST
Command Reference for SOA Suite.

• Maven plug-in

Use the Maven plug-in to compile, package, deploy, test, and undeploy a SOA composite
application in a Maven environment. For more information, see Using the Oracle SOA
Suite Development Maven Plug-In.

A SAR file is a special JAR file that requires a prefix of sca_ (for example,
sca_HelloWorld_rev1.0.jar).

In addition, when you deploy a SOA composite application with the Deploy to Application
Server option on the Deployment Action page in Oracle JDeveloper, all required artifact files
within a project are automatically packaged into one of the following files:

• A self-contained JAR file (for single SOA composite applications)

For more information about self-contained composites, see How to Deploy a Single SOA
Composite in Oracle JDeveloper and How to Deploy Multiple SOA Composite
Applications in Oracle JDeveloper.

• A ZIP file of multiple SOA composite applications that share metadata with one another

You can deploy and use shared data across SOA composite applications. Shared data is
deployed to the SOA Infrastructure on the application server as an Oracle Metadata
Services (MDS) Repository archive JAR file. The archive file contains all shared
resources. For more information, see How to Deploy and Use Shared Data Across
Multiple SOA Composite Applications in Oracle JDeveloper .

47.4 Anatomy of a Composite
When you deploy a SOA composite application in Oracle JDeveloper, the composite is
packaged in a JAR file (for a single composite application) or a ZIP file (for multiple SOA
composite applications). These files can include the following artifacts:

• Binding components and service components.

• References to Oracle B2B agreements, Oracle Web Service Manager (OWSM) policies,
and human workflow task flows.

• Shared data such as WSDL and XSD files. All shared data is deployed to an existing
SOA Infrastructure partition on the server. This data is deployed under the /apps
namespace. When you refer to this artifact in Oracle JDeveloper using a SOA-MDS
connection, the URL is prefixed with oramds.

47.5 Preparing the Target Environment
The target environment is the SOA Infrastructure environment to which you want to deploy
your SOA composite application. This is typically a development, test, or production

Chapter 47
Anatomy of a Composite

47-3

environment. Depending upon the components, identity service provider, and security
policies you are using in your composite application, additional configuration steps
may be required as you move your application from one target environment to another.
This section describes these tasks.

47.5.1 How to Create Data Sources and Queues
A Java Database Connectivity (JDBC) data source is an object bound to the Java
Naming and Directory Interface (JNDI) tree that includes a pool of JDBC connections.
Applications can look up a data source in the JNDI tree and then reserve a database
connection from the data source. You create queues in which to enqueue outgoing
messages or dequeue incoming messages. The Oracle JCA adapters listed in
Table 47-1 require JDBC data sources and queues to be configured before
deployment.

Table 47-1 Oracle JCA Adapter Tasks

Adapter Configuration Task See Section...

Database adapter JDBC data source “Deployment" of Understanding Technology
Adapters

AQ adapter JDBC data source “Configuring the Data Sources in the Oracle
WebLogic Server Administration Console" of
Understanding Technology Adapters

JMS adapter Queue “Using the Adapter Configuration Wizard to
Configure Oracle JMS Adapter" of Understanding
Technology Adapters

47.5.1.1 Script for Creation of JMS Resource and Redeployment of JMS
Adapter

The following example provides a script for creating the JMS resource and redeploying
the JMS adapter:

Note:

This script is for demonstration purposes. You may need to modify this script
based on your environment.

lookup the JMSModule
 jmsSOASystemResource = lookup("SOAJMSModule","JMSSystemResource")

 jmsResource = jmsSOASystemResource.getJMSResource()

 cfbean = jmsResource.lookupConnectionFactory('DemoSupplierTopicCF')
 if cfbean is None:
 print "Creating DemoSupplierTopicCF connection factory"
 demoConnectionFactory =
 jmsResource.createConnectionFactory('DemoSupplierTopicCF')
 demoConnectionFactory.setJNDIName('jms/DemoSupplierTopicCF')
 demoConnectionFactory.setSubDeploymentName('SOASubDeployment')

Chapter 47
Preparing the Target Environment

47-4

 topicbean = jmsResource.lookupTopic('DemoSupplierTopic')
 if topicbean is None:
 print "Creating DemoSupplierTopic jms topic"
 demoJMSTopic = jmsResource.createTopic("DemoSupplierTopic")
 demoJMSTopic.setJNDIName('jms/DemoSupplierTopic')
 demoJMSTopic.setSubDeploymentName('SOASubDeployment')

try:
 save()
 # activate the changes
 activate(block="true")
 print "jms topic and factory for SOA Fusion Order Demo successfully created"
except:
 print "Error while trying to save and/or activate!!!"
 dumpStack()

print "Creating jms adapter connection factory information"
try:
 redeploy('JmsAdapter', '@deployment.plan@', upload='true', stageMode='stage')

except:
 print "Error while modifying jms adapter connection factory"

For information about JMS queues and topics and connection factories, see Section
"Configuring Basic JMS System Resources" of Administering JMS Resources for Oracle
WebLogic Server.

47.5.1.2 Script for Creation of the Database Resource and Redeployment of the
Database Adapter

The following example provides a script for creating the database resource and redeploying
the database adapter.

Note:

This script is for demonstration purposes. You may need to modify this script based
on your environment.

import os
connect(userName,passWord,'t3://'+wlsHost+':'+adminServerListenPort)
edit()
startEdit()

soaJDBCSystemResource1 = create('DBAdapterTestDataSource',"JDBCSystemResource")
soaJDBCResource1 = soaJDBCSystemResource1.getJDBCResource()
soaJDBCResource1.setName('DBAdapterDataSource')

soaConnectionPoolParams1 = soaJDBCResource1.getJDBCConnectionPoolParams()
soaConnectionPoolParams1.setTestTableName("SQL SELECT 1 FROM DUAL")

soaConnectionPoolParams1.setInitialCapacity(10)
soaConnectionPoolParams1.setMaxCapacity(100)

soaDataSourceParams1 = soaJDBCResource1.getJDBCDataSourceParams()
soaDataSourceParams1.addJNDIName('jdbc/dbSample')
soaDriverParams1 = soaJDBCResource1.getJDBCDriverParams()

Chapter 47
Preparing the Target Environment

47-5

soaDriverParams1.setUrl('jdbc:oracle:thin:@'+db_host_name+':'+db_port+':'+db_sid)
soaDriverParams1.setDriverName('oracle.jdbc.xa.client.OracleXADataSource')
soaDriverParams1.setPassword('my_password')

soaDriverProperties1 = soaDriverParams1.getProperties()
soaProperty1 = soaDriverProperties1.createProperty("user")
soaProperty1.setValue('scott')

varSOAServerTarget = '/Servers/'+serverName
soaServerTarget = getMBean(varSOAServerTarget)

soaJDBCSystemResource1.addTarget(soaServerTarget)

dumpStack()

try :

save()

activate(block="true")

except:
 print "Error while trying to save and/or activate!!!"
 dumpStack()

print "Creating DB adapter resource information"
try:
 redeploy('DBAdapter', '@deployment.plan@', upload='true',
stageMode='stage')

except:
 print "Error while modifying db adapter connection factory"

For information about JDBC data sources, see Section "Configuring JDBC Data
Sources" of Administering JDBC Data Sources for Oracle WebLogic Server.

47.5.2 How to Create Connection Factories and Connection Pooling
The Oracle JCA adapters are deployed as JCA 1.5 resource adapters in an Oracle
WebLogic Server container. Adapters are packaged as Resource Adapter Archive
(RAR) files using a JAR format. When adapters are deployed, the RAR files are used
and the adapters are registered as connectors with the Oracle WebLogic Server or
middle-tier platform. The RAR file contains the following:

• The ra.xml file, which is the deployment descriptor XML file containing
deployment-specific information about the resource adapter

• Declarative information about the contract between Oracle WebLogic Server and
the resource adapter

Adapters also package the weblogic-ra.xml template file, which defines the
endpoints for connection factories.

For information about creating connection factories and connection pools, see
Understanding Technology Adapters.

Chapter 47
Preparing the Target Environment

47-6

47.5.3 How to Enable Security
If you are using an identity service provider with human workflow or attaching authentication
and authorization policies, you must perform additional setup tasks.

• Identity service provider for human workflow

By default, the identity service uses the embedded LDAP server in Oracle WebLogic
Server as the default authentication provider. If you are using human workflow, you can
configure Oracle WebLogic Server to use an alternative identity service provider, such as
Oracle Internet Directory, Microsoft Active Directory, or Oracle iPlanet. For more
information, see Administering Oracle SOA Suite and Oracle Business Process
Management Suite. The embedded LDAP server is not supported in clustered
environments.

• Authentication provider (OWSM policies)

Policies that use certain types of tokens (for example, the username, X.509, and SAML
tokens) require an authentication provider. For information about selecting and
configuring an authentication provider, see Securing Web Services and Managing
Policies with Oracle Web Services Manager.

• Authorization provider (OWSM policies)

After a user is authenticated, you must verify that the user is authorized to access a web
service with an authorization policy. You can create an authorization policy with several
types of assertion templates. For information about authorization policies and which
resources to protect, see Securing Web Services and Managing Policies with Oracle Web
Services Manager.

47.5.4 How to Set the Business Flow Instance Name or Composite
Instance Name at Design Time

You can set the business flow instance name or composite instance name of a SOA
composite application during design time for Oracle Mediator and Oracle BPEL Process
Manager. The name appears in the Name column on the Flow Instances page of a SOA
composite application in Oracle Enterprise Manager Fusion Middleware Control. When you
specify a search criteria on the Flow Instances page of a SOA composite application, a
partition, or the SOA Infrastructure in Oracle Enterprise Manager Fusion Middleware Control,
you can specify this name in the Name field.

47.5.4.1 Setting the Business Flow Instance Name in Oracle Mediator

To set the business flow instance name in Oracle Mediator:

Use the XPath expression function oraext:setFlowInstanceTitle() in an assign activity.
For example:

<assign>
 <copy
 target="$out.property.tracking.setFlowInstanceTitle"
 expression="oraext:setFlowInstanceTitle("sample")"
 xmlns:med="http://schemas.oracle.com/mediator/xpath"/>
</assign>

Chapter 47
Preparing the Target Environment

47-7

47.5.4.2 Setting the Business Flow Instance Name in a BPEL Process
A business flow instance corresponds to an end-to-end business transaction. Business
flows consist of a single SOA composite application or multiple SOA composite
applications connected together to fulfill a specific business process.

To set the business flow instance name in a BPEL process:

• Use the Java BPEL exec extension bpelx:exec. This extension includes the built-
in method setFlowInstanceTitle(String title)for setting the business flow
instance name.

For more information about business flow instances, see Chapter "Tracking
Business Flow Instances" of Administering Oracle SOA Suite and Oracle Business
Process Management Suite.

47.5.4.3 Setting the Composite Instance Name in a BPEL Process
The setCompositeInstanceTitle method is provided for backward compatibility. The
composite instance name is different from the business flow instance name. More than
one composite instance can participate in a single business flow instance. There is a
one-to-many relationship between the flow instance name and the composite instance
name.

To set the composite instance name in a BPEL process:

• Use the Java BPEL exec extension bpelx:exec. This extension includes the built-
in method setCompositeInstanceTitle(String title)for setting the instance
name.

For more information, see Administering Oracle SOA Suite and Oracle Business
Process Management Suite.

47.5.5 How to Deploy Trading Partner Agreements and Task Flows
If you are using Oracle B2B or a human task, you must perform additional setup tasks.

To deploy trading partner agreements and task flows:

• Deploying trading partner agreements

A trading partner agreement defines the terms that enable two trading partners,
the initiator and the responder, to exchange business documents. It identifies the
trading partners, trading partner identifiers, document definitions, and channels.
You must deploy the agreement from the design-time repository to the run-time
repository. For more information, see Using Oracle B2B.

• Deploying the task flow

You must deploy the task flow to use it in Oracle BPM Worklist. For more
information, see Deploying the Profile.

Chapter 47
Preparing the Target Environment

47-8

47.5.6 How to Create an Application Server Connection
To deploy a SOA composite application that does not share data with another composite, use
the Create Application Server Connection wizard to create an application server connection.
For more information, see Creating an Application Server Connection.

47.5.7 How to Create a SOA-MDS Connection
To deploy a SOA composite application that shares data with other composites, use the
Create SOA-MDS Connection wizard to create a connection to a database-based Oracle
MDS Repository server. For more information, see Creating a SOA-MDS Connection.

47.5.7.1 What You May Need to Know About Opening the composite.xml File
Through a SOA-MDS Connection

If you create a SOA-MDS connection in Oracle JDeveloper, expand the connection, and
attempt to open the composite.xml file of a composite from the Resources window, the file
may not load correctly. Only open a composite from the Applications window.

For information about the Oracle MDS Repository, see Administering Oracle Fusion
Middleware.

47.6 Customizing Your Application for the Target Environment
Before Deployment

Not all customization tasks must be manually performed as you move to and from
development, test, and production environments. This section describes how to use a
configuration plan to automatically configure your SOA composite application for the next
target environment.

47.6.1 How to Use Configuration Plans to Customize SOA Composite
Applications for the Target Environment

As you move projects from one environment to another (for example, from testing to
production), you typically must modify several environment-specific values, such as JDBC
connection strings, hostnames of various servers, and so on. Configuration plans enable you
to modify these values using a single text (XML) file. The configuration plan is created in
either Oracle JDeveloper or with WLST commands. During process deployment, the
configuration plan searches the SOA project for values that must be replaced to adapt the
project to the next target environment.

47.6.1.1 Introduction to Configuration Plans
This section provides an overview of creating and attaching a configuration plan:

• You create and edit a configuration plan file in which you can replace the following
attributes and properties:

– Any composite, service component, reference, service, and binding properties in the
SOA composite application file (composite.xml)

Chapter 47
Customizing Your Application for the Target Environment Before Deployment

47-9

– Attribute values for bindings (for example, the location for binding.ws)

– schemaLocation attribute of an import in a WSDL file

– location attribute of an include in a WSDL file

– schemaLocation attribute of an include, import, and redefine in an XSD file

– Any properties in JCA adapter files

– Policy references for the following:

* Service component

* Service and reference binding components

Note:

The configuration plan does not alter XSLT artifacts in the SOA
composite application. To modify any XSL, use the XSLT Map Editor.
Using a configuration plan is not useful. For example, you cannot change
references in XSL using the configuration plan file. Instead, they must be
changed manually in the XSLT Map Editor in Oracle JDeveloper when
moving to and from test, development, and production environments.
This ensures that the XSLT Map Editor opens without any issues in
design time. However, leaving the references unchanged does not
impact runtime behavior. For more information about transformations
and the XSLT Map Editor, see Creating Transformations with the XSLT
Map Editor .

• You attach the configuration plan file to a SOA composite application JAR file or
ZIP file (if deploying a SOA bundle) during deployment with one of the following
tools:

– Oracle JDeveloper

For more information, see Deploying the Profile.

– ant scripts

For more information, see How to Use ant to Deploy a SOA Composite
Application.

– WLST commands

For more information, see WLST Command Reference for SOA Suite.

• During deployment, the configuration plan file searches the composite.xml,
WSDL, and XSD files in the SOA composite application JAR or ZIP file for values
that must be replaced to adapt the project to the next target environment.

47.6.1.2 Introduction to a Configuration Plan File
The following example shows a configuration plan in which you modify the following:

• An inFileFolder property for composite FileAdaptorComposite is replaced with
mytestserver/newinFileFolder.

• A hostname (myserver17) is replaced with test-server and port 8888 is replaced
with 8198 in the following locations:

Chapter 47
Customizing Your Application for the Target Environment Before Deployment

47-10

– All import WSDLs

– All reference binding.ws locations

The composite.xml file looks as shown in the following example:

<composite>
 <import namespace="http://example.com/hr/"
 location="http://myserver17.us.example.com:8888/hrapp/HRAppService?WSDL"
 importType="wsdl"/>
 <service name="readPO">
 <interface.wsdl
interface="http://xmlns.oracle.com/pcbpel/adapter/file/readPO/#wsdl.interface(Read
_ptt)"/>
 <binding.jca config="readPO_file.jca"/>
 <property name="inFileFolder" type="xs:string" many="false"
 override="may">/tmp/inFile</property>
 </service>
 <reference name="HRApp">
 <interface.wsdl
 interface="http://example.com/hr/#wsdl.interface(HRAppService)"/>
 <binding.ws
port="http://example.com/hr/#wsdl.endpoint(HRAppService/HRAppServiceSoapHttpPort)"
 location="http://myserver17.us.example.com:8888/hrapp/HRAppService?WSDL"/>
 <binding.java serviceName="{http://example.com/hr/}HRAppService"
 registryName="HRAppCodeGen_JBOServiceRegistry"/>
 </reference>
</composite>

The configuration plan file looks as shown in the following example:

<?xml version="1.0" encoding="UTF-8"?>
<SOAConfigPlan
 xmlns:jca="http://platform.integration.oracle/blocks/adapter/fw/metadata"
 xmlns:wsp="http://schemas.xmlsoap.org/ws/2004/09/policy"
 xmlns:orawsp="http://schemas.oracle.com/ws/2006/01/policy"
 xmlns:edl="http://schemas.oracle.com/events/edl"
 xmlns="http://schemas.oracle.com/soa/configplan">
 <composite name="FileAdaptorComposite">
 <service name="readPO">
 <binding type="*">
 <property name="inFileFolder">
 <replace>/mytestserver/newinFileFolder</replace>
 </property>
 </binding>
 </service>
 </composite>
 <!-- For all composite replace host and port in all imports wsdls -->
 <composite name="*">
 <import>
 <searchReplace>
 <search>myserver17</search>
 <replace>test-server</replace>
 </searchReplace>
 <searchReplace>
 <search>8888</search>
 <replace>8198</replace>
 </searchReplace>
 </import>
 <reference name="*">
 <binding type="ws">
 <attribute name="location">

Chapter 47
Customizing Your Application for the Target Environment Before Deployment

47-11

 <searchReplace>
 <search>myserver17</search>
 <replace>test-server</replace>
 </searchReplace>
 <searchReplace>
 <search>8888</search>
 <replace>8198</replace>
 </searchReplace>
 </attribute>
 </binding>
 </reference>
 </composite>
</SOAConfigPlan>

A policy is replaced if a policy for the same URI is available. Otherwise, it is added.
This is different from properties, which are modified, but not added.

47.6.1.3 Introduction to Use Cases for a Configuration Plan
The following steps provide an overview of how to use a configuration plan when
moving from development to testing environments:

1. User A creates SOA composite application Foo.

2. User A deploys Foo to a development server, fixes bugs, and refines the process
until it is ready to test in the staging area.

3. User A creates and edits a configuration plan for Foo, which enables the URLs
and properties in the application to be modified to match the testing environment.

4. User A deploys Foo to the testing server using Oracle JDeveloper or a series of
command-line scripts (can be WLST-based). The configuration plan created in
Step 3 modifies the URLs and properties in Foo.

5. User A deploys SOA composite application Bar in the future and applies the same
plan during deployment. The URLs and properties are also modified.

47.6.1.3.1 How to Use a Configuration Plan when Creating Environment-Independent
Processes

The following steps provide an overview of how to use a configuration plan when
creating environment-independent processes:

Note:

This use case is useful for users that have their own development server and
a common development and testing server if they share development of the
same process. Users that share the same deployment environment (that is,
the same development server) may not find this use case as useful.

1. User A creates SOA composite application Foo.

2. User A deploys Foo to their development server, fixes bugs, and refines the
process until it is ready to test in the staging area.

Chapter 47
Customizing Your Application for the Target Environment Before Deployment

47-12

3. User A creates a configuration plan for Foo, which enables the URLs and properties in
the process to be modified to match the settings for User A's environment.

4. User A checks in Foo and the configuration plan created in Step 3 to a source control
system.

5. User B checks out Foo from source control.

6. User B makes a copy of the configuration plan to match their environment and applies
the new configuration plan onto Foo's artifacts.

7. User B imports the application into Oracle JDeveloper and makes several changes.

8. User B checks in both Foo and configuration plan B (which matches user B's
environment).

9. User A checks out Foo again, along with both configuration plans.

47.6.1.4 How to Create a Configuration Plan in Oracle JDeveloper
This section describes how to create and use a configuration plan. In particular, this section
describes the following:

• Creating and editing a configuration plan

• Attaching the configuration plan to a SOA composite application JAR file

• Validating the configuration plan

• Deploying the SOA composite application JAR or ZIP file in which the configuration plan
is included

To create a configuration plan in Oracle JDeveloper:

1. Open Oracle JDeveloper.

2. In the Applications window, right-click the composite_name file (also known as the
composite.xml file) of the project in which to create a configuration plan, and select
Generate Config Plan. Figure 47-1 provides details.

Chapter 47
Customizing Your Application for the Target Environment Before Deployment

47-13

Figure 47-1 Generate a Configuration Plan

The Composite Configuration Plan Generator dialog appears, as shown in
Figure 47-2.

Figure 47-2 Composite Configuration Plan Generator Dialog

3. Create a configuration plan file for editing, as shown in Table 47-2.

Chapter 47
Customizing Your Application for the Target Environment Before Deployment

47-14

Table 47-2 Generate a Configuration Plan

Field Description

Specify the file name (.xml)
for the configuration plan

Enter a specific name or accept the default name for the
configuration plan. The file is created in the directory of the project
and packaged with the SOA composite application JAR or ZIP file.

Note: During deployment, you can specify a different configuration
file when prompted in the Deploy Configuration page of the
deployment wizard. For more information, see Deploying the
Profile.

Overwrite existing file Click to overwrite an existing configuration plan file with a different
file in the project directory.

4. Click OK.

This creates and opens a single configuration plan file for editing. You can modify URLs
and properties for the composite.xml, WSDL, and schema files of the SOA composite
application. Figure 47-3 provides details.

Figure 47-3 Configuration Plan Editor

5. Add values for server names, port numbers, and so on to the existing syntax. You can
also add replacement-only syntax when providing a new value. You can add multiple
search and replacement commands in each section.

6. From the File menu, select Save All.

7. Above the editor, click the x to the right of the file name to close the configuration plan
file.

8. In the Applications window, right-click the composite_name file again, and select
Validate Config Plan.

The Composite Configuration Plan Validator appears, as shown in Figure 47-4.

Chapter 47
Customizing Your Application for the Target Environment Before Deployment

47-15

Figure 47-4 Validate the Configuration Plan

9. Select the configuration plan to validate. This step identifies all search and
replacement changes to be made during deployment. Use this option for
debugging only.

10. Note the directory in which a report describing validation results is created, and
click OK.

The Log window in Oracle JDeveloper indicates if validation succeeded and lists
all search and replacement commands to perform during SOA composite
application deployment. This information is also written to the validation report.

Note:

The old composite.xml, WSDL, and XSD files are not replaced with files
containing the new values for the URLs and properties appropriate to the
next environment. Replacement occurs only when the SOA composite
application is deployed.

11. Deploy the SOA composite application by following the instructions in one of the
following sections:

• How to Deploy a Single SOA Composite in

• How to Deploy Multiple SOA Composite Applications in

• How to Deploy and Use Shared Data Across Multiple SOA Composite
Applications in

During deployment in Oracle JDeveloper, the Deploy Configuration page shown in
Step 4 of Deploying the Profile prompts you to select the configuration plan to
include in the SOA composite application archive.

12. Select the configuration plan to include with the SOA composite application.

13. Click OK.

47.6.1.5 How to Create a Configuration Plan with the WLST Utility
As an alternative to using Oracle JDeveloper, you can use the WLST command line
utility to perform the following configuration plan management tasks:

Chapter 47
Customizing Your Application for the Target Environment Before Deployment

47-16

• Generate a configuration plan for editing:

sca_generatePlan(configPlan, sar, composite, overwrite, verbose)
• Attach the configuration plan file to the SOA composite application JAR file:

sca_attachPlan(sar, configPlan, overwrite, verbose)
• Validate the configuration plan:

sca_validatePlan(reportFile, configPlan, sar, composite, overwrite, verbose)
• Extract a configuration plan packaged with the JAR file for editing:

sca_extractPlan(sar, configPlan, overwrite, verbose)
For information about using these commands, see WLST Command Reference for SOA
Suite.

47.6.1.6 How to Attach a Configuration Plan with ant Scripts
As an alternative to using Oracle JDeveloper, you can use ant scripts to attach the
configuration plan file to the SOA composite application JAR or ZIP file during deployment.
For instructions, see How to Use ant to Deploy a SOA Composite Application.

47.6.1.7 How to Create Global Token Variables
You can define global token variables for specific URIs in SOA composite applications. For
example, instead of updating the SOA composite application name in ten different
configuration plans, you can set the name globally. The value is retrieved and replaces the
value of the global token variable for the composite name in the composite.xml file of the
deployed SOA composite application.

For more information, see Administering Oracle SOA Suite and Oracle Business Process
Management Suite.

47.7 Deploying SOA Composite Applications or Projects in
Oracle JDeveloper

This section describes how to deploy SOA composite applications or projects in JDeveloper
in the following topics:

• How to Deploy a Single SOA Composite in Oracle JDeveloper

• How to Deploy Multiple SOA Composite Applications in Oracle JDeveloper

• How to Deploy and Use Shared Data Across Multiple SOA Composite Applications in
Oracle JDeveloper

• How to Deploy an Existing SOA Archive in Oracle JDeveloper

Chapter 47
Deploying SOA Composite Applications or Projects in Oracle JDeveloper

47-17

Note:

Oracle recommends that you deploy SOA projects that are developed in
Reference Configuration mode to a server that is in a Reference
Configuration domain. Contact your server administrator to move the server
into a Reference Configuration domain. If the SOA project is developed in
Classic mode and the server to which it is deployed is in a Reference
Configuration domain, or vice versa, JDeveloper displays a Mismatch
notification in the Deploy Composite Wizard. You can click OK and deploy
the SOA project even when there is a configuration mismatch. In this case,
deployment will proceed as normal and any Reference Configuration
property settings will be ignored by the domain.

Note that the integrated WebLogic server in JDeveloper does not support a Reference
Configuration domain.

47.7.1 How to Deploy a Single SOA Composite in Oracle JDeveloper
Oracle JDeveloper requires the use of profiles for SOA projects and applications to be
deployed to Oracle WebLogic Server.

47.7.1.1 Creating an Application Server Connection
You must create a connection to the application server to which to deploy a SOA
composite application. The following instructions describe how to create a connection
to Oracle WebLogic Server. For information about using the
IntegratedWebLogicServer connection available with the Oracle SOA Suite Quick
Start installation, see Installing SOA Suite and Business Process Management Suite
Quick Start for Developers.

Note:

You can also create an application server connection by selecting Window >
Application Servers, then right-clicking the Application Servers node in
the Applications window and selecting New Application Server. This option
prompts you to create a standalone server connection or Integrated
WebLogic Server connection.

To create an application server connection:

1. From the File main menu, select New.

2. In the General list, select Connections.

3. Select Application Server Connection, and click OK.

The Name and Type page appears.

4. In the Connection Name field, enter a name for the connection.

5. In the Connection Type list, select WebLogic 12.x to create a connection to
Oracle WebLogic Server.

Chapter 47
Deploying SOA Composite Applications or Projects in Oracle JDeveloper

47-18

6. Click Next.

The Authentication page appears.

7. In the Username field, enter the user authorized for access to the application server.

8. In the Password field, enter the password for this user.

9. Click Next.

The Configuration page appears.

10. In the Weblogic Hostname (Administration Server) field, enter the host on which the
Oracle WebLogic Server is installed.

11. In the Port and SSL Port fields, enter appropriate port values or accept the default
values.

12. If you want to use secure socket layer (SSL), select the Always use SSL check box.
Table 47-3 describes what occurs when you select this check box.

Table 47-3 Deployment to HTTPS and HTTP Servers

If This Check Box Is... Then...

Selected An HTTPS server URL must exist to deploy the composite with SSL.
Otherwise, deployment fails.

If the server has only an HTTP URL, deployment also fails. This option
enables you to ensure that SSL deployment must not go through a non-
SSL HTTP URL, and must only go through an HTTPS URL.

Not selected An HTTP server URL must exist to deploy to a non-SSL environment.
Otherwise, deployment fails.

If the server has both HTTPS and HTTP URLs, deployment occurs
through a non-SSL connection. This option enables you to force a non-
SSL deployment from Oracle JDeveloper, even though the server is SSL-
enabled.

13. In the WebLogic Domain field, enter the Oracle SOA Suite domain. For additional
details about specifying domains, click Help. Figure 47-5 provides details.

Chapter 47
Deploying SOA Composite Applications or Projects in Oracle JDeveloper

47-19

Figure 47-5 Server Name and Domain Selection

14. Click Next.

15. Click Test Connection to test your server connection.

16. If the connection is successful, click Finish. Otherwise, click Back to make
corrections in the previous dialogs. Even if the connection test is unsuccessful, a
connection is created. Figure 47-6 provides details.

Figure 47-6 Application Server Connection Test

Chapter 47
Deploying SOA Composite Applications or Projects in Oracle JDeveloper

47-20

47.7.1.2 Optionally Creating a Project Deployment Profile
A required deployment profile is automatically created for your project. The application profile
includes the JAR files of your SOA projects. If you want, you can create additional profiles.

To create a project deployment profile:

1. In the Applications window, right-click the SOA project.

2. Select Project Properties.

The Project Properties dialog appears.

3. Click Deployment.

4. Click the New Profile icon.

The Create Deployment Profile dialog appears.

5. Enter the values shown in Table 47-4.

Table 47-4 Create Deployment Profile Dialog Fields and Values

Field Description

Profile Type Select SOA-SAR File.

A SAR is a deployment unit that describes the SOA composite
application. The SAR packages service components such as BPEL
processes, business rules, human tasks, and Oracle Mediator
routing services into a single application. The SAR file is
analogous to the BPEL suitcase archive of previous releases, but
at the higher composite level and with any additional service
components that your application includes (for example, human
tasks, business rules, and Oracle Mediator routing services).

Deployment Profile Name Enter a deployment profile name.

Description Enter a description for the profile name.

6. Click OK.

The SAR Deployment Profile Properties dialog appears, as shown in Figure 47-7.

Chapter 47
Deploying SOA Composite Applications or Projects in Oracle JDeveloper

47-21

Figure 47-7 SAR Deployment Profile Properties

7. Optionally specify the target folder in which to save the SAR file.

8. Click OK to close the SAR Deployment Profile Properties dialog.

The deployment profile shown in Figure 47-8 displays in the Project Properties
dialog.

Figure 47-8 Project Profile

Chapter 47
Deploying SOA Composite Applications or Projects in Oracle JDeveloper

47-22

47.7.1.3 Deploying the Profile
You now deploy the project profile to Oracle WebLogic Server. Deployment requires the
creation of an application server connection. You can create a connection during deployment
by clicking the Add icon in Step 10 or before deployment by following the instructions in
Creating an Application Server Connection.

To deploy the profile:

1. In the Applications window, right-click the SOA project.

2. Select Deploy > project_name.

The value for project_name is the SOA project name.

The Deployment Action page of the Deploy Project_Name wizard appears. Figure 47-9
provides an example.

Figure 47-9 Deployment Action Page

3. Select one of the following deployment options:

• Deploy to Application Server

Creates a JAR file for the selected SOA project and deploys it to an application
server such as Oracle WebLogic Server.

• Generate SAR File

Creates a SAR (JAR) file of the selected SOA project, but does not deploy it to an
application server such as Oracle WebLogic Server. This option is useful for
environments in which:

– Oracle WebLogic Server may not be running, but you want to create the artifact
JAR file.

Chapter 47
Deploying SOA Composite Applications or Projects in Oracle JDeveloper

47-23

– You want to deploy multiple JAR files to Oracle WebLogic Server from a
batch script. This option offers an alternative to opening all project profiles
(which you may not have) and deploying them from Oracle JDeveloper.

The page that displays differs based on your selection.

4. Select the deployment option appropriate for your environment. Table 47-5
provides details.

Table 47-5 Deployment Target

If You Select... Go to...

Deploy to Application
Server

Step 44.a

Generate SAR File Step 44.b

a. View the Deploy Configuration page shown in Figure 47-10.

Figure 47-10 Deploy Configuration Page for Application Server
Deployment

b. View the Deploy Configuration page shown in Figure 47-11.

Chapter 47
Deploying SOA Composite Applications or Projects in Oracle JDeveloper

47-24

Figure 47-11 Deploy Configuration Page for Generate SAR File Deployment

5. Provide values appropriate to the deployment option you selected in Step 4, as described
in Table 47-6. If you selected to deploy to an application server, additional fields are
displayed.

Table 47-6 SOA Deployment Configuration Dialog

Field Description

Composite Revision ID Expand to display details about the project.

• Project Displays the project name.

• Current Revision ID Displays the current revision ID of the project.

• New Revision ID Optionally change the revision ID of the SOA composite
application. You can specify a new value or continue to use the
current value. This revision ID becomes the value for the $
{composite.revision_id} variable in the application name. For
example, if you enter 2.0 as the new revision ID for a composite
named OrderBooking, ${composite.revision_id} is replaced
with _rev2.0 (sca_OrderBooking_rev2.0.jar).

SOA Configuration Plan Expand to display details about the configuration plan.

The configuration plan enables you to define the URL and property
values to use in different environments. During process
deployment, the configuration plan is used to search the SOA
project for values that must be replaced to adapt the project to the
next target environment.

• Do not attach Select to not include a configuration plan with the SOA composite
application JAR file. If you have not created a configuration plan,
this field is disabled. This is the default selection.

Chapter 47
Deploying SOA Composite Applications or Projects in Oracle JDeveloper

47-25

Table 47-6 (Cont.) SOA Deployment Configuration Dialog

Field Description

• Configuration_plan.xml Select the specific plan. A configuration plan must already exist in
the SOA project for this selection to be available.

See How to Use Configuration Plans to Customize SOA
Composite Applications for the Target Environment for instructions
on creating a configuration plan.

BPEL Monitor Expand to display details about BPEL monitors.

• Ignore BPEL Monitor
deployment errors

Note: This check box only
appears if there is at least
one .monitor file in the
application.

Deselect this check box to display BPEL Monitor deployment
errors. This check box corresponds to the ignoreErrors property
in the monitor.config BPEL project file. This file defines runtime
and deployment properties needed to connect with Oracle BAM
Server to create the Oracle BAM data objects and dashboards.If
Oracle BAM Server is unreachable, and ignoreErrors is set to
true, deployment of the composite does not stop. If set to false
and Oracle BAM Server is unavailable, deployment fails.

Mark composite revision as
default

If you do not want the new revision to be the default, you can
deselect this box. By default, a newly deployed composite revision
is the default. This revision is instantiated when a new request
comes in.

This option only displays if you selected Deploy to Application
Server on the Deployment Action page.

Overwrite any existing
composites with the same
revision ID

Select to overwrite any existing SOA composite application of the
same revision value.

This option only displays if you selected Deploy to Application
Server on the Deployment Action page.

Keep running instances on
after redeployment

Note: This option is displayed if Oracle BPM Suite is installed in
Oracle JDeveloper, and only supported for the deployment of
Oracle BPM composites. Do not select this option if you are
deploying:

• A SOA composite application from an Oracle JDeveloper
environment in which Oracle BPM Suite is also installed.

• An Oracle BPM composite that includes a durable BPEL
process, regardless of whether that process has been
modified. Durable BPEL processes are those that take time to
complete execution. Examples of durable BPEL processes are
asynchronous processes (which are always durable) and
synchronous processes that include a durable activity such as
a wait activity.

If you select this option and attempt to redeploy a durable
BPEL process, then deployment fails.

Select to enable existing instances of the overwritten revision to
continue running instead of being aborted. These instances run
side by side with any new instances that you create with the new
revision of the Oracle BPM composite application.

Chapter 47
Deploying SOA Composite Applications or Projects in Oracle JDeveloper

47-26

Table 47-6 (Cont.) SOA Deployment Configuration Dialog

Field Description

Force deployment of
incompatible processes

This option is only displayed for Oracle BPM Suite composites.

If Keep running instances on after redeployment is checked,
this option is displayed. Select this check box to force deployment
of incompatible BPM processes. When a composite with BPM
processes is overwritten, the system checks to see if the BPM
processes being overwritten are compatible with the processes
being deployed. If they are compatible, running instances of these
processes are not marked as aborted and deployment is
successful. If they are incompatible, deployment fails unless you
select this check box.

Use the following SOA
configuration plan for all
composites

Click Browse to select the same configuration plan to use for all
composite applications. This option is used when deploying
multiple composite applications.

6. When finished, click Next.

7. If the SOA project you selected for deployment includes a task flow project defined for a
human task, you are prompted with the Task Flow Deployment dialog, as shown in
Figure 47-12.

Otherwise, go to Step 10.

You create or configure an Enterprise Resource Archive (EAR) file for the task flow forms
of human tasks. The EAR file consists of a Web Resource Archive (WAR) profile that you
select in the Deployable Taskflow Projects table of this dialog.

Figure 47-12 Task Flow Deployment Page

8. Provide values appropriate to your environment, as described in Table 47-7.

Chapter 47
Deploying SOA Composite Applications or Projects in Oracle JDeveloper

47-27

Table 47-7 Task Flow Deployment Dialog

Field Description

Application Name Select the EAR file to include in the deployment. This list
displays all available EAR profiles in the current Oracle
JDeveloper application. These EAR profiles are used as a
template to create an EAR profile to deploy based on the
WAR profiles selected in the Deployable Taskflow Projects
table. You can also enter any EAR profile name to deploy.

Deploy to specific
composite revision &
partition

Select to append the revision number of the composite to the
EAR file name. If selected, this check box includes the
composite revision in the EAR name, WAR profile, and
context root. This option enables you to deploy an application
specific to a composite revision.

Add generated profiles to
application

Select to add the generated EAR profile to the current SOA
composite application's EAR deployment profile list. The
application may have to be saved to persist the generated
EAR profile. Once the deployment profile is available, you can
deploy the EAR profile by selecting Application > Deploy.
This option enables you to avoid using the SOA deployment
wizard, if only task flow application deployment is necessary.

Overwrite Existing
Application

Select to overwrite the existing version of the EAR file on the
server.

Deployable Taskflow
Projects

Select the task flow project WAR profiles to include in the
EAR file. The task flow project WAR profiles are grouped in
accordance with the composites that include the human task
related to the task flow project. The context root of the WAR
changes if the Add generated profiles to application check
box is selected.

Note: If you do not select a WAR profile, no task flows are
deployed.

• Projects Select from the list of deployable task flow projects or select
the Projects check box to choose all available task flows. The
task flows that display are based on the composites included
in the SOA project or bundle selected for deployment.

• WAR Profiles Select the task flow project WAR files. Only the most recently
created or modified task flow of the human task is available
for selection.

• App Context Root Displays the application context root directory based on your
selection for the WAR profile.

When you deploy a task form for a human task, as part of notification, the task
form details are included in an email. For dynamic payloads, this email includes
the content of the payload as it appears at that particular time.

For information about deploying SOA composite applications with task flows to
multiple partition environments, see What You May Need to Know About
Deploying Human Task Composites with Task Flows to Partitions.

9. Click Next.

10. If you selected to deploy to an application server in Step 3, the Select Server page
appears for selecting an existing connection to an application server such as
Oracle WebLogic Server from the list or clicking the Add icon to create a
connection to a server. Figure 47-13 provides details.

Chapter 47
Deploying SOA Composite Applications or Projects in Oracle JDeveloper

47-28

If you selected to generate a SAR file in Step 3, go to Step 15.

Figure 47-13 Select Server Page

11. Click Next.

12. Select the target SOA servers to which to deploy this archive. If there are multiple servers
or cluster nodes, select to deploy to one or more servers or nodes. Figure 47-14 provides
details.

13. Select the partition in which to deploy this archive. If the server contains no partitions, you
cannot deploy this archive. Also, if the server is not in a running state, you cannot deploy
this archive. By default, a partition named default is automatically included with Oracle
SOA Suite. You create partitions in the Manage Partitions page of Oracle Enterprise
Manager Fusion Middleware Control.

Note:

Human workflow artifacts such as task mapped attributes (previously known as
flex field mappings) and rules (such as vacation rules) are defined based on the
namespace of the task definition. Therefore, the following issues are true when
the same SOA composite application with a human workflow task is deployed
into multiple partitions:

• For the same task definition type, mapped attributes defined in one partition
are visible in another partition.

• Rules defined on a task definition in one partition can apply to the same
definition in another partition.

Chapter 47
Deploying SOA Composite Applications or Projects in Oracle JDeveloper

47-29

Figure 47-14 SOA Servers Page

14. Click Next.

15. Review the archive details on the Summary page shown in Figure 47-15, and click
Finish.

Figure 47-15 Summary Page

16. If you selected to deploy to an application server in Step 3, view the messages
that display in the Deployment log window at the bottom of Oracle JDeveloper.

Chapter 47
Deploying SOA Composite Applications or Projects in Oracle JDeveloper

47-30

17. Enter the user name and password, and click OK.

If deployment is successful, the following actions occur:

• A JAR file for the SOA project is created with a naming convention of
sca_composite_name_revrevision_number.jar.

• The project is displayed in the Resources window under
application_server_connection_name > SOA > SOA_server_name >
partition_name.

• The project is displayed in the Application Servers window under
application_server_connection_name > SOA > SOA_server_name >
partition_name.

You are now ready to monitor your application from Oracle Enterprise Manager Fusion
Middleware Control. See Administering Oracle SOA Suite and Oracle Business Process
Management Suite for details.

If deployment is unsuccessful, view the messages that display in the Deployment log
window and take corrective actions. For more information, see Testing and
Troubleshooting.

For information about creating partitions, see the following documentation:

• Deploying and Managing SOA Composite Applications with ant Scripts

• Administering Oracle SOA Suite and Oracle Business Process Management Suite

• WLST Command Reference for SOA Suite

Note:

If you want to redeploy the same version of a SOA composite application, you
cannot change the composite name. You can deploy with the same revision
number if you selected the Overwrite any existing composites with the
same revision ID check box on the Deploy Configuration page.

47.7.1.4 What You May Need to Know About Deploying Human Task Composites
with Task Flows to Partitions

To deploy a SOA composite application with a task flow from Oracle JDeveloper to a multiple
partition environment, select the task flows to be deployed to the same partition in which the
SOA composite application is being deployed.

When the task flow is deployed using only the EAR profile (deploying the task flow using the
EAR deployer), the task flow is not partition-aware. Therefore, you must modify the
hwtaskflow.xml file to include the partition name in the generated EAR file (the project
version of the file remains unchanged). This file is located under the TaskForm project
adfmsrc directory (for example, HelpDeskRequestTaskFlow\adfmsrc\hwtaskflow.xml). The
following example provides details:

<hwTaskFlows
 xmlns="http://xmlns.oracle.com/bpel/workflow/hwTaskFlowProperties">
 <ApplicationName>worklist</ApplicationName>
 <LookupType>LOCAL</LookupType>
 <TaskFlowDeploy>false</TaskFlowDeploy>
 <PartitionName>partition2</PartitionName>

Chapter 47
Deploying SOA Composite Applications or Projects in Oracle JDeveloper

47-31

If you want to deploy the task flow for the SOA composite application on all partitions,
leave PartitionName blank. If you want to use different task flows for the composites
on different partitions, then PartitionName must be specified.

In addition, if you want to reuse the same task flow project for another partition, you
must change the web context root.

47.7.2 How to Deploy Multiple SOA Composite Applications in Oracle
JDeveloper

You can deploy multiple SOA composite applications to an application server such as
Oracle WebLogic Server at the same time by using the SOA bundle profile. This profile
enables you to include one or more SAR profiles in the bundle and deploy the bundle
to an application server.

Note:

• This section assumes you have created an application server
connection. If not, see Creating an Application Server Connection for
instructions.

• You cannot deploy multiple SOA applications that are dependent upon
one another in the same SOA bundle profile. For example, if application
A calls application B, then you must first deploy application B separately.

To deploy multiple SOA composite applications:

1. From the Application menu, select Application Properties, as shown in
Figure 47-16.

Figure 47-16 Application Properties

2. In the Application Properties dialog, click Deployment.

3. Click New.

The Create Deployment Profile dialog appears.

Chapter 47
Deploying SOA Composite Applications or Projects in Oracle JDeveloper

47-32

4. In the Archive Type list, select SOA Bundle.

5. In the Name field, enter a name.

Figure 47-17 provides details.

Figure 47-17 Select the SOA Bundle

6. Click OK.

7. In the navigator on the left, select the Dependencies node.

8. Select the SARs you want to include in this bundle, as shown in Figure 47-18.

Figure 47-18 Select the SAR

9. Click OK.

10. Click OK to close the Application Properties dialog.

Chapter 47
Deploying SOA Composite Applications or Projects in Oracle JDeveloper

47-33

11. Select the Application menu again, then select Deploy > SOA_Bundle_Name.

This invokes the deployment wizard.

12. See Step 3 for details about responses to provide.

47.7.3 How to Deploy and Use Shared Data Across Multiple SOA
Composite Applications in Oracle JDeveloper

This section describes how to deploy and use shared data such as WSDLs, XSDs,
and other file types across multiple SOA composite applications.

Shared data is deployed to the SOA Infrastructure on the application server as a JAR
file. The JAR file should contain all the resources to share. In Oracle JDeveloper, you
can create a JAR profile for creating a shared artifacts archive.

All shared data is deployed to an existing SOA Infrastructure partition on the server.
This data is deployed under the /apps namespace. For example, if you have a
MyProject/xsd/MySchema.xsd file in the JAR file, then this file is deployed under the /
apps namespace on the server. When you refer to this artifact in Oracle JDeveloper
using a SOA-MDS connection, the URL becomes oramds:/apps/MyProject/xsd/
MySchema.xsd.

Note:

• You always deploy to the /apps location. The directory hierarchy must
exist in the JAR file to deploy. Do not create the directory hierarchy in the
Oracle MDS Repository first and then deploy the JAR file to that location.
For example, to deploy to /apps/demo/credit card, the JAR file must
include the demo/credit card directory hierarchy inside it.

• Files that begin with a period (for example, .designer) cannot be shared
across SOA composite applications.

This section describes how to perform the following tasks:

• Create a JAR profile and include the artifacts to share

• Create a SOA bundle that includes the JAR profile

• Deploy the SOA bundle to the application server

47.7.3.1 Create a JAR Profile and Include the Artifacts to Share

To create a JAR profile and include the artifacts to share:

1. In the Applications window, right-click the SOA project.

2. Select Project Properties.

The Project Properties dialog appears.

3. Click Deployment in the navigational tree on the left.

4. Click New.

Chapter 47
Deploying SOA Composite Applications or Projects in Oracle JDeveloper

47-34

The Create Deployment Profile dialog appears.

5. From the Archive Type list, select JAR File.

6. In the Name field, enter a name (for this example, shared_archive is entered).

The Create Deployment Profile dialog looks as shown in Figure 47-19.

Figure 47-19 JAR File Selection

7. Click OK.

The JAR Deployment Profile Properties dialog appears.

8. Select JAR Options from the navigational tree on the left.

9. Deselect Include Manifest File (META-INF/MANIFEST.MF), as shown in Figure 47-20.

This prevents the archive generator from adding the manifest file (META-INF/
MANIFEST.MF) into the JAR file.

Chapter 47
Deploying SOA Composite Applications or Projects in Oracle JDeveloper

47-35

Figure 47-20 JAR File Options

10. Select File Groups > Project Output > Contributors from the navigational tree
on the left.

11. Deselect the Project Output Directory and Project Dependencies options, as
shown in Figure 47-21.

This prevents the archive generator from adding the contents of the project output
and project dependencies into the archive.

Chapter 47
Deploying SOA Composite Applications or Projects in Oracle JDeveloper

47-36

Figure 47-21 Contributors

12. Click Add to add a new contributor.

The Add Contributor dialog appears. This dialog enables you to add artifacts to your
archive.

13. Click Browse.

14. Select the folder in which your artifacts reside, as shown in Figure 47-22. This selection
also determines the hierarchy of artifacts in the archive.

Chapter 47
Deploying SOA Composite Applications or Projects in Oracle JDeveloper

47-37

Figure 47-22 Artifact Selection

15. Click Select to close the Choose Directory dialog.

16. Click OK to close the Add Contributor dialog.

17. Select File Groups > Project Output > Filters from the navigational tree on the
left.

18. Select only the artifacts to include in the archive, as shown in Figure 47-23. For
this example, the archive contains the following XSD files:

• SOADemoComposite/xsd/DemoProcess.xsd

• SOADemoComposite/xsd/Quote.xsd

• SOADemoComposite/xsd/VacationRequest.xsd

Chapter 47
Deploying SOA Composite Applications or Projects in Oracle JDeveloper

47-38

Figure 47-23 Artifacts to Include in the Archive

19. Click OK to save changes to the JAR deployment profile.

20. Click OK to save the new deployment profile.

21. From the File main menu, select Save All.

47.7.3.2 Create a SOA Bundle that Includes the JAR Profile

To create a SOA bundle that includes the JAR profile:

1. From the Application Menu, select Application Properties > Deployment.

2. Click New to create a SOA bundle profile.

The Create Deployment Profile dialog appears.

3. From the Archive Type list, select SOA Bundle. A bundle is a collection of multiple SOA
composite applications.

4. In the Name field, enter a name (for this example, sharedArtifactBundle is entered).
Figure 47-24 provides details.

Chapter 47
Deploying SOA Composite Applications or Projects in Oracle JDeveloper

47-39

Figure 47-24 SOA Bundle Creation

5. Click OK.

6. Select Dependencies from the navigational tree on the left.

7. Select the JAR file and SOA-SAR profiles you previously created (for this
example, named shared_archive and sharedArtifactBundle, respectively). You
have the option of a JAR, a SOA-SAR, or both. Figure 47-25 provides details.

Figure 47-25 Deployment Profile Dependencies

Chapter 47
Deploying SOA Composite Applications or Projects in Oracle JDeveloper

47-40

8. Click OK to save the SOA bundle deployment profile changes.

9. Click OK to save the new deployment profile.

10. From the File main menu, select Save All.

47.7.3.3 Deploy the SOA Bundle with Oracle JDeveloper

To deploy the SOA bundle with Oracle JDeveloper:

1. Right-click the Application menu and select Deploy > SOA_Bundle_Name.

This invokes the deployment wizard.

2. See Step 3 of Deploying the Profile for details about responses to provide.

This deploys the SOA bundle to the application server (shared artifacts are deployed to
the Oracle MDS Repository database of Oracle SOA Suite).

47.7.3.3.1 To deploy the SOA bundle with ant:
See How to Use ant to Deploy a SOA Composite Application.

47.7.3.4 Use Shared Data
This section describes how to browse and select the shared data you created in How to
Deploy and Use Shared Data Across Multiple SOA Composite Applications in Oracle
JDeveloper .

47.7.3.4.1 Creating a SOA-MDS Connection

To create a SOA-MDS connection:

1. From the File menu, select New > Application > Connections > SOA-MDS
Connection.

The Create SOA-MDS Connection dialog shown in Figure 47-26 is displayed.

Chapter 47
Deploying SOA Composite Applications or Projects in Oracle JDeveloper

47-41

Figure 47-26 Create SOA-MDS Connection Dialog

2. Provide values appropriate to your environment, as shown in Table 47-8.

Table 47-8 Create SOA-MDS Connection Dialog

Field Description

Create Connection In: Ensure that IDE Connection is selected. This option enables
the connection to display in the Resources window and be
available to multiple applications.

You cannot create a connection with the Application
Resources option. This selection is disabled.

Connection Name Enter a connection name. Upon successful completion of this
connection creation, this name displays under SOA-MDS in
the Resources window.

Chapter 47
Deploying SOA Composite Applications or Projects in Oracle JDeveloper

47-42

Table 47-8 (Cont.) Create SOA-MDS Connection Dialog

Field Description

Connection Type Select a connection type. An Oracle MDS Repository can be
file-based or database-based. The dialog is refreshed based
on your selection.

• DB Based MDS
For most production environments, you use a database-
based repository. Most components, such as Oracle SOA
Suite, require that a schema be installed in a database,
necessitating the use of a database-based repository. To
use a database-based repository, you must first create it
with the Repository Creation Utility.

• File Based MDS

Choose a database
connection

Select an existing connection or create a new connection to
the Oracle SOA Suite database with the MDS schema.

Select MDS Partition Select the MDS partition (for example, soa-infra).

Test Connection Click to test the SOA-MDS connection.

Note: Even if the connection test fails, a connection is
created.

Status Displays status of the connection test.

3. Click OK.

You can now browse the connection in the Resources window and view shared artifacts
under the /apps node.

47.7.3.4.2 Creating a BPEL Process
You can now browse and use the shared data from a different SOA composite application.
For this example, you create a BPEL process service component in a different application.

To create a BPEL process:

1. Create a new BPEL process service component in a different application.

2. In the Create BPEL Process dialog, click the Browse icon to the right of the Input field.

The Type Chooser dialog appears.

3. In the upper right corner, click the Import Schema File icon.

The Import Schema File dialog appears.

4. To the right of the URL field, click the Browse icon.

The SOA Resource Browser dialog appears.

5. At the top of the dialog, select SOA-MDS.

6. Select shared data. For this example, the Quote.xsd file that you selected to include in
the archive in Step 18 of "Create a JAR Profile and Include the Artifacts to Share is
selected.

7. Click OK.

8. In the Import Schema File dialog, click OK.

9. In the Type Chooser dialog, select a node of Quote.xsd (for this example,
QuoteRequest), and click OK.

Chapter 47
Deploying SOA Composite Applications or Projects in Oracle JDeveloper

47-43

10. In the Create BPEL Process dialog, click OK to complete creation.

11. In the Applications window, select the WSDL file for the BPEL process.

12. Click Source.

The WSDL file includes the following definition.

<wsdl:types>
 <schema xmlns="http://www.w3.org/2001/XMLSchema">
 <import namespace="http://www.mycompany.com/ns/salesquote"
 schemaLocation="oramds:/apps/SOADemoComposite/xsd/Quote.xsd" />
 </schema>
</wsdl:types>

13. Continue modeling the BPEL process as necessary.

14. Deploy the SOA composite application that includes the BPEL process.

The Type Chooser dialog includes a Recent Files folder in which information is
kept for the duration of the Oracle JDeveloper session. For example, if you create
a new BPEL process and want to define the input variable from a schema in the
SOA Design-Time MDS Repository, you go there once. When you want to define
the output variable from the same schema, the schema remains visible in the
Recent Files folder.

47.7.4 How to Deploy an Existing SOA Archive in Oracle JDeveloper
You can deploy an existing SOA archive from the Application Servers window in
Oracle JDeveloper.

Note:

• The archive must exist. You cannot create an archive in the Deploy SOA
Archive dialog.

• These instructions assume you have created an application server
connection to an Oracle WebLogic Administration Server or another
supported application server on which the SOA Infrastructure is
deployed. Creating a connection to an Oracle WebLogic Administration
Server enables you to browse for SOA composite applications deployed
in the same domain. From the File main menu, select New >
Application > Connections > Application Server Connection to
create a connection.

To deploy an existing SOA archive from Oracle JDeveloper:

1. From the Window menu, select Application Servers.

2. In the Applications window, expand your connection name.

3. Right-click the SOA folder.

4. Select Deploy SOA Archive.

Chapter 47
Deploying SOA Composite Applications or Projects in Oracle JDeveloper

47-44

Figure 47-27 SOA Archive Deployment from the Applications Window

The Deploy SOA Archive dialog shown in Figure 47-28 appears.

Figure 47-28 Deploy SOA Archive Dialog

5. Provide responses appropriate to your environment, as described in Table 47-9.

Table 47-9 Deploy SOA Archive Dialog Fields and Values

Field Description

SOA Server Select the SOA server to which to deploy the archive.

Partition Select the partition in which to deploy the archive. If the
server contains no partitions, you cannot deploy this
archive. By default, a partition named default is
automatically included with Oracle SOA Suite.

Status Displays the status of the server. If the server is not in a
running state, you cannot deploy this archive.

Server URL Displays the URL of the server.

Chapter 47
Deploying SOA Composite Applications or Projects in Oracle JDeveloper

47-45

Table 47-9 (Cont.) Deploy SOA Archive Dialog Fields and Values

Field Description

Archive Location Click Browse to select a prebuilt SOA composite
application archive. The archive consists of a JAR file of a
single application or a SOA bundle ZIP file containing
multiple applications.

Configuration Plan (Optional) Click Browse to select a configuration plan to attach to
the SOA composite application archive. The configuration
plan enables you to define the URL and property values
to use in different environments. During process
deployment, the configuration plan is used to search the
SOA project for values that must be replaced to adapt the
project to the next target environment.

For information about creating configuration plans, see
How to Create a Configuration Plan in or How to Create a
Configuration Plan with the WLST Utility.

Mark composite revision as default If you do not want the new revision to be the default, you
can deselect this box. By default, a newly deployed
composite revision is the default. This revision is
instantiated when a new request comes in.

Overwrite any existing composites
with the same revision ID

Select to overwrite (redeploy) an existing SOA composite
application with the same revision ID. The consequences
of this action are as follows:

• A new version 1.0 of the SOA composite application
is redeployed, overwriting a previously deployed 1.0
version.

• The older, currently-deployed version of this revision
is removed (overwritten).

• If the older, currently-deployed version of this revision
has running instances, the state of those instances is
changed to aborted.

6. Click OK.

For more information on deploying and testing SOA composite applications from the
Application Servers window, see Managing and Testing a SOA Composite Application.

47.8 Deploying and Managing SOA Composite Applications
with the WLST Utility

You can manage SOA composite applications with the WLST utility. This utility is well-
suited for automation and can be easily integrated into existing release processes. For
instructions, see WLST Command Reference for SOA Suite.

47.9 Deploying and Managing SOA Composite Applications
with ant Scripts

You can manage SOA composite applications with the ant utility. ant is a Java-based
build tool used by Oracle SOA Suite for managing SOA composite applications. The
configuration files are XML-based and call out a target tree where various tasks are

Chapter 47
Deploying and Managing SOA Composite Applications with the WLST Utility

47-46

executed. The ant utility is well-suited for automation and can be easily integrated into
existing release processes.

Note:

Before using the Oracle SOA Suite ant scripts, you must first run the
setDomainEnv.sh script (for Linux) or setDomainEnv.cmd script (for Windows). This
script adds the necessary JAR files for using ant to the classpath.

Table 47-10 lists the ant scripts available in the Middleware_Home\SOA_Suite_Home\bin
directory.

Table 47-10 ant Management Scripts

Script Description

ant-sca-test.xml Automates the testing of SOA composite applications.

ant-sca-compile.xml Compiles a SOA composite application.

ant-sca-package.xml Packages a SOA composite application into a composite SAR file.

ant-sca-deploy.xml Deploys a SOA composite application.

ant-sca-deploy.xml
undeploy

Undeploys a SOA composite application.

ant-sca-deploy.xml
exportComposite

Exports a composite into a SAR file.

ant-sca-deploy.xml
exportUpdates

Exports postdeployment changes of a composite into a JAR file.

ant-sca-deploy.xml
importUpdates

Imports postdeployment changes of a composite.

ant-sca-deploy.xml
exportSharedData

Exports shared data of a given pattern into a JAR file.

ant-sca-deploy.xml
removeSharedData

Removes a top-level shared data folder.

ant-sca-mgmt.xml
startComposite

Starts a SOA composite application.

ant-sca-mgmt.xml
stopComposite

Stops a SOA composite application.

ant-sca-mgmt.xml
activateComposite

Activates a SOA composite application.

ant-sca-mgmt.xml
retireComposite

Retires a SOA composite application.

ant-sca-mgmt.xml
assignDefaultComposite

Assigns a default revision version.

ant-sca-mgmt.xml
listDeployedComposites

Lists deployed SOA composite applications.

ant-sca-mgmt.xml
listPartitions

Lists all available partitions in the SOA Infrastructure.

Chapter 47
Deploying and Managing SOA Composite Applications with ant Scripts

47-47

Table 47-10 (Cont.) ant Management Scripts

Script Description

ant-sca-mgmt.xml
listCompositesInPartitio
n

Lists all composites in a partition.

ant-sca-mgmt.xml
createPartition

Creates a partition in the SOA Infrastructure.

ant-sca-mgmt.xml
deletePartition

Undeploys all composites in a partition before deleting the partition.

ant-sca-mgmt.xml
startCompositesInPartiti
on

Starts all composites in a partition.

ant-sca-mgmt.xml
stopCompositesInPartitio
n

Stops all composites in a partition.

ant-sca-mgmt.xml
activateCompositesInPart
ition

Activates all composites in a partition.

ant-sca-mgmt.xml
retireCompositesInPartit
ion

Retires all composites in a partition.

ant-sca-upgrade.xml Migrates BPEL and Oracle Enterprise Service Bus (ESB) release
10.1.3 metadata to release 11g.

Note: If any Java code is part of the project, you must manually
modify the code to pass compilation with an 11g compiler. For BPEL
process instance data, active data used by the 10.1.3 Oracle BPEL
Server is not migrated.

For additional information about ant, visit the following URL:

http://ant.apache.org

47.9.1 How to Use ant to Automate the Testing of a SOA Composite
Application

The following provides an example of executing a test case. Test cases enable you to
automate the testing of SOA composite applications:

ant -f ant-sca-test.xml -Dscatest.input=MyComposite
-Djndi.properties=/home/jdoe/jndi.properties

Table 47-11 describes the syntax.

Chapter 47
Deploying and Managing SOA Composite Applications with ant Scripts

47-48

http://ant.apache.org

Table 47-11 ant Testing Commands

Argument Definition

scatest Possible inputs are as follows:

• java.passed.home
The script picks this from the environment value of JAVA_HOME. Provide
this input to override.

• wl_home
This is the location of Oracle WebLogic Server home (defaults to
Oracle_Home/.../wlserver_10.3).

• scatest.input
The name of the composite to test.

• scatest.format
The format of the output file (defaults to native; the other option is
junit).

• scatest.result
The result directory in which to place the output files (defaults to
temp_dir/out).

• jndi.properties.input
The jndi.properties file to use.

jndi. properties Absolute path to the JNDI property file. This is a property file that contains
JNDI properties for connecting to the server. For example:

java.naming.factory.initial=weblogic.jndi.WLInitialContextFactory
java.naming.provider.url=t3://myserver.us.example.com:8001/soa-
infra
java.naming.security.principal=weblogic
dedicated.connection=true
dedicated.rmicontext=true

Since a composite test (in a test suite) is executed on the SOA Infrastructure,
this properties file contains the connection information. For this example,
these properties create a connection to the SOA Infrastructure hosted in
myserver.us.example.com, port 8001 and use a user name of weblogic.
You are prompted to specify the password.

You typically create one jndi.properties file (for example, in /home/
myhome/jndi.properties) and use it for all test runs.

For more information on creating and running tests on SOA composite applications, see
Automating Testing of SOA Composite Applications and Administering Oracle SOA Suite and
Oracle Business Process Management Suite.

47.9.2 How to Use ant to Compile a SOA Composite Application
The following provides an example of compiling a SOA composite application, which
validates it for structure and syntax:

ant -f ant-sca-compile.xml
-Dscac.input=/myApplication/myComposite/composite.xml

Table 47-12 describes the syntax.

Chapter 47
Deploying and Managing SOA Composite Applications with ant Scripts

47-49

Table 47-12 ant Compiling Commands

Argument Definition

scac Possible inputs are as follows:

• java.passed.home
The script picks this from the environment value of JAVA_HOME.
Provide this input to override.

• wl_home
This is the location of Oracle WebLogic Server home.

• scac.input
The composite.xml file to compile.

• scac.output
The output file with scac results (defaults to temp_dir/out.xml).

• scac.error
The file with scac errors (defaults to temp_dir/out.err).

• scac.application.home
The Oracle JDeveloper application home directory of the SOA
composite application being compiled that contains the .adf
directory in it. This argument is optional only when you compile the
SOA composite application from within the project directory.

• scac.displayLevel
Controls the level of logs written to scac.output file. The value
can be 1, 2, or 3 (this defaults to 1).

47.9.3 How to Use ant to Package a SOA Composite Application into
a Composite SAR File

The following provides an example of packaging a SOA composite application into a
composite SAR file. The outcome of this command is a SOA archive. Check the output
of the command for the exact location of the resulting file.

ant -f ant-sca-package.xml
-DcompositeDir=C:\demo\end2end-105-
POProcessing\po\solutions\ch9\POProcessing\POPr
ocessing
-DcompositeName=POProcessing
-Drevision=6-cmdline
-Dsca.application.home=C:\demo\end2end-105-POProcessing\po\solutions\ch9\POProces
sing

Table 47-13 describes the syntax.

Table 47-13 ant Packaging Commands

Argument Definition

compositeDir Absolute path of a directory that contains composite artifacts.

compositeName Name of the composite.

Chapter 47
Deploying and Managing SOA Composite Applications with ant Scripts

47-50

Table 47-13 (Cont.) ant Packaging Commands

Argument Definition

revision Revision ID of the composite.

sca.application.
home

Absolute path of the application home directory. This property is
required if your SOA composite application accesses shared artifacts in
the MDS Repository. If not, it is optional.

oracle.home Optional. The oracle.home property.

47.9.4 How to Use ant to Deploy a SOA Composite Application
The following provides an example of deploying a SOA composite application. You can also
use this command to deploy shared data such as WSDLs, XSDs, and other file types across
SOA composite applications. For information about shared data, see How to Deploy and Use
Shared Data Across Multiple SOA Composite Applications in Oracle JDeveloper .

ant -f ant-sca-deploy.xml
-DserverURL=http://localhost:8001
-DsarLocation=C:\demo\end2end-105-POProcessing\po\solutions\ch9\POProcessing\POPro
cessing\deploy\sca_POProcessing_rev6-cmdline.jar
-Doverwrite=true
-Duser=weblogic
-DforceDefault=true
-Dconfigplan=C:\demo\end2end-105-POProcessing\po\solutions\ch9\POProcessing\POProc
 essing\demed_cfgplan.xml
-Dscac.user.classpath=C:\jarfolder\custom.jar
-Dpartition=partition.name

Note:

After specifying the user name, enter the password when prompted.

Table 47-14 describes the syntax.

Table 47-14 ant Deployment Commands

Argument Definition

serverURL URL of the server that hosts the SOA Infrastructure application (for example,
http://myhost10:8001).

sarLocation Absolute path to one the following:

• SAR file.
• ZIP file that includes multiple SARs.

overwrite Optional. Indicates whether to overwrite an existing SOA composite
application on the server.

• false (default): Does not overwrite the file.

• true: Overwrites the file.

Chapter 47
Deploying and Managing SOA Composite Applications with ant Scripts

47-51

Table 47-14 (Cont.) ant Deployment Commands

Argument Definition

user Optional. User name to access the composite deployer servlet when basic
authentication is configured.

password Optional. Password to access the composite deployer servlet when basic
authentication is configured.

If you enter the user name, you are prompted to enter the password if you do
not provide it here.

forceDefault Optional. Indicates whether to set the version being deployed as the default
version for that composite application.

• true (default): Makes it the default composite.

• false: Does not make it the default composite.

configplan Absolute path of a configuration plan to be applied to a specified SAR file or
to all SAR files included in the ZIP file.

sysPropFile Passes in a system properties file that is useful for setting extra system
properties, for debugging, for SSL configuration, and so on.

If you specify a file name (for example, tmp-sys.properties), you can
define properties such as the following:

javax.net.debug=all

scac.user.classpat
h

Optional. The name of the external custom library. If you have a SOA
composite application with a BPEL process service component that refers to
a custom JAR file, set this property.

partition Optional. The name of the partition in which to deploy the SOA composite
application. The default value is default. If you do not specify a partition,
the composite is automatically deployed into the default partition.

Note:

Human workflow artifacts such as task mapped attributes (previously known
as flex field mappings) and rules (such as vacation rules) are defined based
on the namespace of the task definition. Therefore, the following issues are
true when the same SOA composite application with a human workflow task
is deployed into multiple partitions:

• For the same task definition type, mapped attributes defined in one
partition are visible in another partition.

• Rules defined on a task definition in one partition can apply to the same
definition in another partition.

47.9.5 How to Use ant to Undeploy a SOA Composite Application
The following provides an example of undeploying a SOA composite application.

ant -f ant-sca-deploy.xml undeploy
-DserverURL=http://localhost:8001
-DcompositeName=POProcessing
-Drevision=rev6-cmdline

Chapter 47
Deploying and Managing SOA Composite Applications with ant Scripts

47-52

-Duser=weblogic
-Dpartition=partition.name

Note:

After specifying the user name, enter the password when prompted.

Table 47-15 describes the syntax.

Table 47-15 ant Undeployment Commands

Argument Definition

serverURL URL of the server that hosts the SOA Infrastructure application (for example,
http://myhost10:7001).

compositeName Name of the SOA composite application.

revision Revision ID of the SOA composite application.

user Optional. User name to access the composite deployer servlet when basic
authentication is configured.

If you enter the user name, you are prompted to enter the corresponding
password.

password Optional. Password to access the composite deployer servlet when basic
authentication is configured.

partition Optional. The name of the partition in which the SOA composite application is
located. The default value is default. If you do not specify a partition, the
default partition is searched for the SOA composite application. However,
no other partitions are searched.

47.9.6 How to Use ant to Export a Composite into a SAR File
The following provides an example of exporting a composite into a SAR file.

ant -f ant-sca-deploy.xml exportComposite -DserverURL=server.url
 -DupdateType=update.type -DsarFile=sar.file
 -DcompositeName=composite.name -Drevision=revision -Duser=user

Note:

After specifying the user name, enter the password when prompted.

Table 47-16 describes the syntax.

Table 47-16 ant Export Commands

Argument Definition

serverURL The URL of the server that hosts the SOA Infrastructure application (for
example, http://myhost:8001).

Chapter 47
Deploying and Managing SOA Composite Applications with ant Scripts

47-53

Table 47-16 (Cont.) ant Export Commands

Argument Definition

updateType The type of postdeployment changes to be included:

• none: No postdeployment changes are included.

• all: All postdeployment changes are included.

• property: Property changes are included (binding component
properties, composite properties such as audit level settings and payload
validation status, and policy attachments).

• runtime: Postdeployment runtime changes are included (rules
dictionary and domain value maps (DVMs)).

sarFile The absolute path of the SAR file to be generated.

compositeName The name of the composite to be exported.

revision The revision of the composite to be exported.

user Optional. The user name for accessing the server when basic configuration is
configured.

password Optional. The password for accessing the server when basic configuration is
configured.

The following example shows how to export a composite without including any
postdeployment changes:

ant -f ant-sca-deploy.xml exportComposite -DserverURL=http://myhost:8001
 -DupdateType=none
 -DsarFile=/tmp/sca_HelloWorld_rev1.0.jar -DcompositeName=HelloWorld
 -Drevision=1.0

The following example shows how to export a composite with all postdeployment
changes:

ant -f ant-sca-deploy.xml exportComposite -DserverURL=http://myhost:8001
 -DupdateType=all
 -DsarFile=/tmp/sca_HelloWorld_rev1.0-all.jar -DcompositeName=HelloWorld
 -Drevision=1.0

The following example shows how to export a composite with property postdeployment
updates:

ant -f ant-sca-deploy.xml exportComposite -DserverURL=http://myhost:8001
 -DupdateType=property
 -DsarFile=/tmp/sca_HelloWorld_rev1.0-prop.jar -DcompositeName=HelloWorld
 -Drevision=1.0

The following example shows how to export a composite with runtime/metadata
postdeployment updates:

ant -f ant-sca-deploy.xml exportComposite -DserverURL=http://myhost:8001
 -DupdateType=runtime
 -DsarFile=/tmp/sca_HelloWorld_rev1.0-runtime.jar
 -DcompositeName=HelloWorld -Drevision=1.0

Chapter 47
Deploying and Managing SOA Composite Applications with ant Scripts

47-54

47.9.7 How to Use ant to Export Postdeployment Changes of a Composite
into a JAR File

The following provides an example of exporting postdeployment changes of a composite into
a JAR file.

ant -f ant-sca-deploy.xml exportUpdates -DserverURL=server.url
 -DupdateType=update.type -DjarFile=jar.file
 -DcompositeName=composite.name -Drevision=revision -Duser=user

Note:

After specifying the user name, enter the password when prompted.

Table 47-17 describes the syntax.

Table 47-17 ant Postdeployment Export Commands

Argument Definition

serverURL The URL of the server that hosts the SOA Infrastructure application (for
example, http://myhost:8001).

updateType The type of postdeployment changes to be exported.

• all: Includes all postdeployment changes.

• property: Includes only property postdeployment changes (binding
component properties, composite properties such as audit level settings
and payload validation status, and policy attachments).

• runtime: Includes only runtime (rules dictionary and domain value maps
(DVMs)).

jarFile The absolute path of the JAR file to be generated.

compositeName The name of the composite to be exported.

revision The revision of the composite to be exported.

user Optional. The user name for accessing the server when basic configuration is
configured.

password Optional. The password for accessing the server when basic configuration is
configured.

The following example shows how to export all postdeployment updates:

ant -f ant-sca-deploy.xml exportUpdates -DserverURL=http://myhost:8001
 -DupdateType=all
 -DjarFile=/tmp/all-HelloWorld_rev1.0.jar -DcompositeName=HelloWorld
 -Drevision=1.0

The following example shows how to export property postdeployment updates:

ant -f ant-sca-deploy.xml exportUpdates -DserverURL=http://myhost:8001
 -DupdateType=property
 -DjarFile=/tmp/prop-HelloWorld_rev1.0.jar -DcompositeName=HelloWorld
 -Drevision=1.0

Chapter 47
Deploying and Managing SOA Composite Applications with ant Scripts

47-55

The following example shows how to export runtime/metadata postdeployment
updates.

ant -f ant-sca-deploy.xml exportUpdates -DserverURL=http://myhost:8001
 -DupdateType=runtime
 -DjarFile=/tmp/runtime-HelloWorld_rev1.0.jar -DcompositeName=HelloWorld
 -Drevision=1.0

47.9.8 How to Use ant to Import Postdeployment Changes of a
Composite

The following provides an example of importing postdeployment changes of a
composite.

ant -f ant-sca-deploy.xml importUpdates -DserverURL=server.url -DjarFile=jar.file
 -DcompositeName=composite.name -Drevision=revision -Duser=user

Note:

After specifying the user name, enter the password when prompted.

Table 47-18 describes the syntax.

Table 47-18 ant Postdeployment Import Commands

Argument Definition

serverURL The URL of the server that hosts the SOA Infrastructure application (for
example, http://myhost:8001).

jarFile The absolute path of the JAR file that contains postdeployment
changes.

compositeName The name of the composite into which the postdeployment changes are
imported.

revision The revision of the composite to which the postdeployment changes are
imported.

user Optional. The user name for accessing the server when basic
configuration is configured.

password Optional. The password for accessing the server when basic
configuration is configured.

The following example shows how to import postdeployment changes of a composite:

ant -f ant-sca-deploy.xml importUpdates -DserverURL=http://myhost:8001
 -DjarFile=/tmp/prop-HelloWorld_rev1.0.jar -DcompositeName=HelloWorld
 -Drevision=1.0

47.9.9 How to Use ant to Export Shared Data of a Given Pattern into a
JAR File

The following provides an example of exporting shared data of a given pattern into a
JAR file.

Chapter 47
Deploying and Managing SOA Composite Applications with ant Scripts

47-56

ant -f ant-sca-deploy.xml exportSharedData -DserverURL=server.url
 -DjarFile=jar.file -Dpattern=pattern -Duser=user

Note:

After specifying the user name, enter the password when prompted.

Table 47-19 describes the syntax.

Table 47-19 ant Shared Data Export Commands

Argument Definition

serverURL The URL of the server that hosts the SOA Infrastructure application (for
example, http://myhost:8001).

jarFile The absolute path of the JAR file to be generated.

pattern The file pattern supported by Oracle MDS Repository transfer APIs. Use the
semicolon delimiter (;) if multiple patterns are specified. Exclude the shared
data namespace /apps in the pattern. For example:

/Project1/**;/Project2/**

This example exports all documents under /apps/Project1 and /apps/
Project2.

user Optional. The user name for accessing the server when basic configuration is
configured.

password The password for accessing the server when basic configuration is
configured. This parameter is optional.

The following example shows how to export shared data of a given pattern into a JAR file.

ant -f ant-sca-deploy.xml exportSharedData -DserverURL=http://myhost:8001
 -DjarFile=/tmp/MySharedData.jar
 -Dpattern="/Project1/**"

47.9.10 How to Use ant to Remove a Top-level Shared Data Folder
The following provides an example of removing a top-level shared data folder, even if there
are composites deployed in the service engine:

ant -f ant-sca-deploy.xml removeSharedData -DserverURL=server.url
 -DfolderName=folder.name -Duser=user

Note:

After specifying the user name, enter the password when prompted.

Table 47-20 describes the syntax.

Chapter 47
Deploying and Managing SOA Composite Applications with ant Scripts

47-57

Table 47-20 ant Shared Data Folder Removal Commands

Argument Definition

serverURL URL of the server that hosts the SOA Infrastructure application (for
example, http://myhost10:8001).

foldername The name of the top-level shared data folder to remove.

user Optional. The user name for accessing the server when basic
configuration is configured.

password Optional. The password for accessing the server when basic
configuration is configured.

The following example shows how to remove a top-level shared data folder named
Project1:

ant -f ant-sca-deploy.xml removeSharedData -DserverURL=http://myhost:8001
 -DfolderName=Project1

47.9.11 How to Use ant to Start a SOA Composite Application
The following provides an example of starting a SOA composite application:

ant -f ant-sca-mgmt.xml startComposite -Dhost=myhost -Dport=8001 -Duser=weblogic
 -DcompositeName=HelloWorld -Drevision=1.0 -Dpartition=partition.name

Note:

After specifying the user name, enter the password when prompted.

Table 47-21 describes the syntax.

Table 47-21 ant SOA Composite Application Startup Commands

Argument Definition

host Hostname of the Oracle WebLogic Server (for example, myhost).

port Port of the Oracle WebLogic Server (for example, 7001).

user User name for connecting to the running server to get MBean
information (for example, weblogic).

password Password for the user name.

compositeName Name of the SOA composite application.

revision Revision of the SOA composite application.

label Optional. Label of the SOA composite application. The label identifies
the MDS artifacts associated with the application. If the label is not
specified, the system finds the latest one.

partition Optional. The name of the partition in which the SOA composite
application is located. The default value is default. If you do not
specify a partition, the default partition is searched for the SOA
composite application. However, no other partitions are searched.

Chapter 47
Deploying and Managing SOA Composite Applications with ant Scripts

47-58

47.9.12 How to Use ant to Stop a SOA Composite Application
The following provides an example of stopping a SOA composite application:

ant -f ant-sca-mgmt.xml stopComposite -Dhost=myhost -Dport=8001 -Duser=weblogic
-DcompositeName=HelloWorld -Drevision=1.0 -Dpartition=partition.name

Note:

After specifying the user name, enter the password when prompted.

Table 47-22 describes the syntax.

Table 47-22 ant SOA Composite Application Stop Commands

Argument Definition

host Hostname of the Oracle WebLogic Server (for example, myhost).

port Port of the Oracle WebLogic Server (for example, 7001).

user User name for connecting to the running server to get MBean information (for
example, weblogic).

password Password for the user name.

compositeName Name of the SOA composite application.

revision Revision of the SOA composite application.

label Optional. Label of the SOA composite application. The label identifies the
MDS artifacts associated with the application. If the label is not specified, the
system finds the latest one.

partition Optional. The name of the partition in which the SOA composite application is
located. The default value is default. If you do not specify a partition, the
default partition is searched for the SOA composite application. However,
no other partitions are searched.

47.9.13 How to Use ant to Activate a SOA Composite Application
The following provides an example of activating a SOA composite application.

ant -f ant-sca-mgmt.xml activateComposite -Dhost=myhost -Dport=8001
-Duser=weblogic-DcompositeName=HelloWorld -Drevision=1.0 -Dpartition=partition.name

Note:

After specifying the user name, enter the password when prompted.

Table 47-23 describes the syntax.

Chapter 47
Deploying and Managing SOA Composite Applications with ant Scripts

47-59

Table 47-23 ant SOA Composite Application Activation Commands

Argument Definition

host Hostname of the Oracle WebLogic Server (for example, myhost).

port Port of the Oracle WebLogic Server (for example, 7001).

user User name for connecting to the running server to get MBean
information (for example, weblogic).

password Password for the user name.

compositeName Name of the SOA composite application.

revision Revision of the SOA composite application.

label Optional. Label of the SOA composite application. The label identifies
the MDS artifacts associated with the application. If the label is not
specified, the system finds the latest one.

partition Optional. The name of the partition in which the SOA composite
application is located. The default value is default. If you do not
specify a partition, the default partition is searched for the SOA
composite application. However, no other partitions are searched.

47.9.14 How to Use ant to Retire a SOA Composite Application
The following provides an example of retiring a SOA composite application:

ant -f ant-sca-mgmt.xml retireComposite -Dhost=myhost -Dport=8001 -Duser=weblogic
-DcompositeName=HelloWorld -Drevision=1.0 -Dpartition=partition.name

Note:

After specifying the user name, enter the password when prompted.

Table 47-24 describes the syntax.

Table 47-24 ant SOA Composite Application Retirement Commands

Argument Definition

host Hostname of the Oracle WebLogic Server (for example, myhost).

port Port of the Oracle WebLogic Server (for example, 7001).

user User name for connecting to the running server to get MBean
information (for example, weblogic).

password Password for the user name.

compositeName Name of the SOA composite application.

revision Revision of the SOA composite application.

label Optional. Label of the SOA composite application. The label identifies
the MDS artifacts associated with the application. If the label is not
specified, the system finds the latest one.

Chapter 47
Deploying and Managing SOA Composite Applications with ant Scripts

47-60

Table 47-24 (Cont.) ant SOA Composite Application Retirement Commands

Argument Definition

partition Optional. The name of the partition in which the SOA composite
application is located. The default value is default. If you do not
specify a partition, the default partition is searched for the SOA
composite application. However, no other partitions are searched.

47.9.15 How to Use ant to Assign the Default Version to a SOA Composite
Application

The following provides an example of assigning the default version to a SOA composite
application.

ant -f ant-sca-mgmt.xml assignDefaultComposite -Dhost=myhost -Dport=8001
-Duser=weblogic -DcompositeName=HelloWorld -Drevision=1.0 -Dpartition=partition.name

Note:

After specifying the user name, enter the password when prompted.

Table 47-25 describes the syntax.

Table 47-25 ant SOA Composite Application Default Version Assignment Commands

Argument Definition

host Hostname of the Oracle WebLogic Server (for example, myhost).

port Port of the Oracle WebLogic Server (for example, 7001).

user User name for connecting to the running server to get MBean information (for
example, weblogic).

password Password for the user name.

compositeName Name of the SOA composite application.

revision Revision of the SOA composite application.

partition Optional. The name of the partition in which the SOA composite application is
located. The default value is default. If you do not specify a partition, the
default partition is searched for the SOA composite application. However,
no other partitions are searched.

47.9.16 How to Use ant to List the Deployed SOA Composite Applications
The following provides an example of listing the deployed SOA composite applications.

ant -f ant-sca-mgmt.xml listDeployedComposites -Dhost=myhost -Dport=8001
-Duser=weblogic

Chapter 47
Deploying and Managing SOA Composite Applications with ant Scripts

47-61

Note:

After specifying the user name, enter the password when prompted.

Table 47-26 describes the syntax.

Table 47-26 ant SOA Composite Application Deployment List Commands

Argument Definition

host Hostname of the Oracle WebLogic Server (for example, myhost).

port Port of the Oracle WebLogic Server (for example, 7001).

user User name for connecting to the running server to get MBean
information (for example, weblogic).

password Password for the user name.

47.9.17 How to Use ant to List All Available Partitions in the SOA
Infrastructure

The following provides the syntax for listing all available partitions in the SOA
Infrastructure.

ant -f ant-sca-mgmt.xml listPartitions -Dhost=host -Dport=port -Duser=user

Note:

After specifying the user name, enter the password when prompted.

Table 47-27 describes the syntax.

Table 47-27 ant SOA Infrastructure Partitioning List Commands

Argument Definition

host Hostname of the Oracle WebLogic Server (for example, myhost).

port Port of the Oracle WebLogic Server (for example, 7001).

user User name for connecting to the running server to get MBean
information (for example, weblogic).

password Password for the user name.

The following provides an example of listing all available partitions in the SOA
Infrastructure:

ant -f ant-sca-mgmt.xml listPartitions -Dhost=myhost10 -Dport=8001

Chapter 47
Deploying and Managing SOA Composite Applications with ant Scripts

47-62

47.9.18 How to Use ant to List All Composites in a Partition
The following provides the syntax for listing all composites in a partition.

ant -f ant-sca-mgmt.xml listCompositesInPartition -Dhost=host -Dport=port -Duser=user -
Dpartition=partition.name

Note:

After specifying the user name, enter the password when prompted.

Table 47-28 describes the syntax.

Table 47-28 ant Composite Partitioning List Commands

Argument Definition

host Hostname of the Oracle WebLogic Server (for example, myhost).

port Port of the Oracle WebLogic Server (for example, 7001).

user User name for connecting to the running server to get MBean information (for
example, weblogic).

password Password for the user name.

partition The name of the partition.

The following provides an example of listing all composites in a partition named myPartition.

ant -f ant-sca-mgmt.xml listCompositesInPartition -Dhost=myhost10 -Dport=8001 -
Dpartition=myPartition

47.9.19 How to Use ant to Create a Partition in the SOA Infrastructure
The following provides the syntax for creating a partition in the SOA Infrastructure.

ant -f ant-sca-mgmt.xml createPartition -Dhost=host -Dport=port -Duser=user
-Dpartition=partition.name

Note:

After specifying the user name, enter the password when prompted.

Table 47-29 describes the syntax.

Table 47-29 ant Partition Creation Commands

Argument Definition

host Hostname of the Oracle WebLogic Server (for example, myhost).

Chapter 47
Deploying and Managing SOA Composite Applications with ant Scripts

47-63

Table 47-29 (Cont.) ant Partition Creation Commands

Argument Definition

port Port of the Oracle WebLogic Server (for example, 7001).

user User name for connecting to the running server to get MBean information (for
example, weblogic).

password Password for the user name.

partition The name of the partition to create.

The following provides an example of creating a partition in the SOA Infrastructure
named myPartition:

ant -f ant-sca-mgmt.xml createPartition -Dhost=myhost10 -Dport=8001
-Dpartition=myPartition

47.9.20 How to Use ant to Delete a Partition in the SOA Infrastructure
The following provides the syntax for deleting a partition in the SOA Infrastructure.
This command undeploys all composites in the partition before deleting the partition.

ant -f ant-sca-mgmt.xml deletePartition -Dhost=host -Dport=port -Duser=user
-Dpartition=partition.name

Note:

After specifying the user name, enter the password when prompted.

Table 47-30 describes the syntax.

Table 47-30 ant Partition Deletion Commands

Argument Definition

host Hostname of the Oracle WebLogic Server (for example, myhost).

port Port of the Oracle WebLogic Server (for example, 7001).

user User name for connecting to the running server to get MBean
information (for example, weblogic).

password Password for the user name.

partition The name of the partition to delete.

The following provides an example of deleting a partition in the SOA Infrastructure
named myPartition:

ant -f ant-sca-mgmt.xml deletePartition -Dhost=myhost10 -Dport=8001
-Dpartition=myPartition

Chapter 47
Deploying and Managing SOA Composite Applications with ant Scripts

47-64

47.9.21 How to Use ant to Start All Composites in the Partition
The following provides the syntax for starting all composites in the partition:

ant -f ant-sca-mgmt.xml startCompositesInPartition -Dhost=host -Dport=port
-Duser=user -Dpartition=partition.name

Note:

After specifying the user name, enter the password when prompted.

Table 47-31 describes the syntax.

Table 47-31 ant Partition Startup Commands

Argument Definition

host Hostname of the Oracle WebLogic Server (for example, myhost).

port Port of the Oracle WebLogic Server (for example, 7001).

user User name for connecting to the running server to get MBean information (for
example, weblogic).

password Password for the user name.

partition The name of the partition.

The following provides an example of starting all composites in the partition named
myPartition:

ant -f ant-sca-mgmt.xml startCompositesInPartition -Dhost=myhost10 -Dport=8001
-Dpartition=myPartition

47.9.22 How to Use ant to Stop All Composites in the Partition
The following provides the syntax for stopping all composites in the partition:

ant -f ant-sca-mgmt.xml stopCompositesInPartition -Dhost=host -Dport=port
-Duser=user -Dpartition=partition.name

Note:

After specifying the user name, enter the password when prompted.

Table 47-32 describes the syntax.

Chapter 47
Deploying and Managing SOA Composite Applications with ant Scripts

47-65

Table 47-32 ant Partition Composite Stop Commands

Argument Definition

host Hostname of the Oracle WebLogic Server (for example, myhost).

port Port of the Oracle WebLogic Server (for example, 7001).

user User name for connecting to the running server to get MBean
information (for example, weblogic).

password Password for the user name.

partition The name of the partition.

The following provides an example of stopping all composites in the partition named
myPartition:

ant -f ant-sca-mgmt.xml stopCompositesInPartition -Dhost=myhost10 -Dport=8001
-Dpartition=myPartition

47.9.23 How to Use ant to Activate All Composites in the Partition
The following provides the syntax for activating all composites in the partition.

ant -f ant-sca-mgmt.xml activateCompositesInPartition -Dhost=host -Dport=port
-Duser=user -Dpartition=partition.name

Note:

After specifying the user name, enter the password when prompted.

Table 47-33 describes the syntax.

Table 47-33 ant Partition Composite Activation Commands

Argument Definition

host Hostname of the Oracle WebLogic Server (for example, myhost).

port Port of the Oracle WebLogic Server (for example, 7001).

user User name for connecting to the running server to get MBean
information (for example, weblogic).

password Password for the user name.

partition The name of the partition.

The following provides an example of activating all composites in the partition named
myPartition:

ant -f ant-sca-mgmt.xml activateCompositesInPartition -Dhost=myhost10 -Dport=8001
-Dpartition=myPartition

Chapter 47
Deploying and Managing SOA Composite Applications with ant Scripts

47-66

47.9.24 How to Use ant to Retire All Composites in the Partition
The following provides the syntax for retiring all composites in the partition:

ant -f ant-sca-mgmt.xml retireCompositesInPartition -Dhost=host -Dport=port
 -Duser=user -Dpartition=partition.name

Note:

After specifying the user name, enter the password when prompted.

Table 47-34 describes the syntax.

Table 47-34 ant Partition Composite Retirement Commands

Argument Definition

host Hostname of the Oracle WebLogic Server (for example, myhost).

port Port of the Oracle WebLogic Server (for example, 7001).

user User name for connecting to the running server to get MBean information (for
example, weblogic).

password Password for the user name.

partition The name of the partition.

The following provides an example of retiring all composites in the partition named
myPartition:

ant -f ant-sca-mgmt.xml retireCompositesInPartition -Dhost=myhost10 -Dport=8001
-Dpartition=myPartition

47.9.25 How to Use ant to Manage SOA Composite Applications
You can use ant scripts to compile, package, and deploy the application. You can create the
initial ant build files by selecting New > Application > Ant > Buildfile from Project from the
File main menu.

Figure 47-29 shows the build.properties and build.xml files that display in the Applications
window after creation.

Figure 47-29 ant Build Files

Chapter 47
Deploying and Managing SOA Composite Applications with ant Scripts

47-67

• build.properties

A file that you edit to reflect your environment (for example, specifying Oracle
home and Java home directories, setting server properties such as hostname and
port number to use for deployment, specifying the application to deploy, and so
on).

• build.xml

Used by ant to compile, build, and deploy composite applications to the server
specified in the build.properties file.

1. Modify the build.properties file to reflect your environment.

2. From the Build menu, select Run Ant on project_name.

This builds targets defined in the current project's build file.

47.10 Deploying SOA Composite Applications from Oracle
Enterprise Manager Fusion Middleware Control

You can deploy SOA composite applications from Oracle Enterprise Manager Fusion
Middleware Control. You must first create a deployable archive in Oracle JDeveloper
or through the ant or WLST command line tools. The archive can consist of a single
SOA composite application revision in a JAR file or multiple composite application
revisions (known as a SOA bundle) in a ZIP file. For more information, see
Administering Oracle SOA Suite and Oracle Business Process Management Suite.

47.11 Deploying SOA Composite Applications with No
Servers Running

You can deploy SOA composite applications and shared data (for example, WSDL and
XSD files) with no managed SOA servers or administration servers running (known as
offline deployment mode). When the servers are restarted, the SOA composite
applications and shared data are deployed.

Offline deployment is beneficial for the following use cases:

• Shared data and new SOA composite applications (for example, the system is
new and does not have any deployed composites).

• One-off patches that may contain a single SOA composite application (new or
patched) or a resource bundle of shared data.

Note the following guidelines when using offline deployment:

• The SOA composite applications and shared data are available in read-only format
in the Oracle home directory. You cannot delete or update the composites.

• The same SOA composite application or shared data file can be included in one or
all of the supported use cases when offline deployment occurs. However, for a
particular SOA composite application, only one composite SAR or shared data file
is in the data location relative to the product data root directory. All cases must
point to the same root product data directory. The same composite data is
overwritten by the order of applied use cases.

Chapter 47
Deploying SOA Composite Applications from Oracle Enterprise Manager Fusion Middleware Control

47-68

• You cannot redeploy or undeploy the SOA composite application through offline
deployment.

• Shared data (resource bundle) redeployment is supported since there is no revision
concept with shared data.

• WLST commands are provided for adding and removing individual SOA composite
applications and shared data to and from offline deployments. For information, see SOA
Composite Application Offline Management Deployment in WLST Command Reference
for SOA Suite.

• Configuration plans are not supported with offline deployments.

For information about SAR file naming conventions, see Deployed Service Archives.

For information about shared data, see How to Deploy and Use Shared Data Across Multiple
SOA Composite Applications in Oracle JDeveloper .

Note:

• You cannot deploy ZIP files in offline mode. This is because ZIP files contain
other archives.

• You can only deploy a particular composite SAR file into one partition through
offline deployment.

47.11.1 Offline Deployment Configuration Files
Two configuration files control offline deployment:

• soa-configuration.xml (offline deployment configuration list file).

• composite-offline-deployments-version_number.xml (offline deployment configuration
file). The version_number can be any value, but the composite-offline-deployments-
part is fixed and required.

47.11.1.1 Offline Deployment Configuration List File
The offline deployment configuration list file identifies the location from which to read the
offline deployment configuration files. The file is named soa-configuration.xml and appears
in the $DOMAIN/config/fmwconfig directory. The offline deployment process uses this
configuration file to generate a consolidated configuration list to use in offline deployment.
The following example shows a soa-configuration.xml file in which two directory locations
are listed:

<?xml version="1.0" encoding="UTF-8"?>
<soa-configuration xmlns="http://xmlns.oracle.com/config/soa">
 <soa-directories>
<soa-directory>/scratch/aime/appTop/common/soa-composiste/soa1</soa-directory>
<soa-directory>/scratch/aime/appTop/common/soa-composiste/soa2</soa-directory>
 </soa-directories>
</soa-configuration>

Chapter 47
Deploying SOA Composite Applications with No Servers Running

47-69

47.11.1.2 Offline Deployment Configuration File
The offline deployment configuration file specifies the following elements for offline
deployments.

• Partitions are created, as necessary, before the SOA composite applications and
shared resources are deployed. Note the following order of precedence for
partition use:

– The partition specified in the <partition> element is created.

– If a partition used in <composite-deployment> is not specified in the
<partition> element, it is created implicitly.

– If the partition attribute is not specified in the <composite-deployment>
element, the composite is deployed into the default partition.

• Shared resources

Shared resources are deployed before the SOA composite applications.

• SOA composite applications

You can list multiple SOA composite applications in the file. However, they are not
deployed in the order in which they are listed in the file.

The file naming convention is composite-offline-deployments-version_number.xml,
where version_number can be any value, but the composite-offline-deployments-
part is fixed and required.

The following example shows the structure of the offline deployment file. The file is
divided into the three sections to represent partitions, SOA composite applications,
and shared data.

<offline-configuration>
 <partitions>?
 <partition name="partition_name"/>*
 </partitions>
 <composite-deployments>?
 <composite-deployment location="/some/path" partition="partition_name"?>*
 </composite-deployments>
 <shared-resources>?
 <shared-resource location="/some/path"/>*
 </shared-resources>
</offline-configuration>

The following example shows an offline deployment configuration file in which the
following is defined:

• Partition one and two are created.

• The composite SAR file /some/path/sca_composite1.jar is deployed into
partition one.

• The composite SAR file /another/path/sca_composite2.jar is deployed into
partition two.

• The composite SAR file /yet/another/path/sca_composite3.jar is deployed into
the default partition.

Chapter 47
Deploying SOA Composite Applications with No Servers Running

47-70

• The shared data JAR files /some/path/shareddata1.jar and /another/path/
shareddata2.jar are deployed into the shared data location.

<offline-configuration>
 <composite-deployments>
 <composite-deployment location="/some/path/sca_composite1.jar"
 partition="one">
 <composite-deployment location="/another/path/sca_composite2.jar"/
 partition="two">
 <composite-deployment location="/yet/another/path/sca_composite3.jar"/>
 </composite-deployments>
 <shared-resources>
 <shared-resource location="/some/path/shareddata1.jar"/>
 <shared-resource location="/another/path/shareddata2.jar"/>
 </shared-resources>
</offline-configuration>

The following example shows an offline configuration deployment file in which the following
occurs:

• The shared data JAR file named shareddata.jar is deployed.

• The composite SAR file named sca_soaApp1.jar is deployed into the myPartition
partition.

• The composite SAR file named sca_soaApp2.jar is deployed by default into the default
partition because no partition is explicitly defined.

<offline-configuration>
 <composite-deployments>
 <composite-deployment
 location="/scratch/aime/appTop/soa1/sca_soaApp1.jar“
 partition=“myPartition“/>
 <composite-deployment
 location="/scratch/aime/appTop/soa1/sca_soaApp2.jar“/>
 </composite-deployments>
 <shared-resources>
 <shared-resource location="/scratch/aime/appTop/soa1/shareddata.jar"/>
 </shared-resources>
</offline-configuration>

The following example shows an offline deployment configuration file in which only shared
data located in the two defined directories is deployed:

<offline-configuration>
 <shared-resources>
 <shared-resource location="/some/path/shareddata1.jar"/>
 <shared-resource location= "/another/path/shareddata2.jar"/>
 </shared-resources>
</offline-configuration>

The following example shows an offline deployment file in which partition one and two are
created. No SOA composite applications or shared data are deployed:

<offline-configuration>
 <partitions>
 <partition name="one"/>
 <partition name="two"/>
 </partitions>
</offline-configuration>

Chapter 47
Deploying SOA Composite Applications with No Servers Running

47-71

47.11.1.3 Relative Configuration File Paths
Relative paths are also supported in the offline deployment configuration file. The
following example shows the soa-configuration.xml file:

<?xml version="1.0" encoding="UTF-8"?>
<soa-configuration xmlns="http://xmlns.oracle.com/config/soa">
 <soa-directories>
<soa-directory>/scratch/aime/appTop/common/soa-composiste/soa1</soa-directory>
 </soa-directories>
</soa-configuration>

The following example shows the offline deployment composite-offline-
deployments-1.0.xml file. The two composite SAR files and one shared data JAR file
are all located in the soa1 directory shown in the preceding example.

<offline-configuration>
 <composite-deployments>
 <composite-deployment location="sca_soaApproval.jar" >
 <composite-deployment location="sca_soaNotification.jar">
 </composite-deployments>
 <shared-resources>
 <shared-resource location="soashareddata.jar"/>
 </shared-resources>
</offline-configuration>

47.11.1.4 Order of Deployment
Offline deployments are processed in the following order:

• The soa-configuration.xml offline deployment configuration list file is read to
identify the location of the offline deployment configuration files (composite-
offline-deployments-version.xml).

• The composite-offline-deployments-version.xml files are read and a
consolidated list is created based on the file location. The consolidated list
contains the partitions, shared data files, and SOA composite application files.

• The consolidated list is processed in the following order:

– Partitions

– Shared data files

– SOA composite application files

47.11.2 How to Deploy SOA Composite Applications and Shared Data
with No Server Running

This section provides an overview of the procedures for deploying SOA composite
applications and shared data with no server running.

To deploy SOA composite applications and shared data with no server running:

1. Create an offline deployment configuration list file. This file identifies the location
from which to read the offline deployment configuration files. For examples of the
contents of this file, see Offline Deployment Configuration List File.

Chapter 47
Deploying SOA Composite Applications with No Servers Running

47-72

2. Create offline deployment configuration files. This file specifies the elements to include in
the offline deployment (partitions, shared data, or SOA composite applications). For
examples of the contents of this file, see Offline Deployment Configuration File.

3. Restart the SOA servers.

The composites are deployed and displayed in the Deployed Composites tab of the
SOA Infrastructure in Oracle Enterprise Manager Fusion Middleware Control. For more
information, see "Managing the State of All Applications at the SOA Infrastructure Level"
of Administering Oracle SOA Suite and Oracle Business Process Management Suite.

If troubleshooting is required, you can view deployment results in the SOA server
diagnostic log file.

47.11.3 What You May Need to Know About Offline Composite Deployment
in a Cluster Environment

When the server starts up during offline composite deployment, the SOA composite
application is deployed to all nodes in the cluster. The registration files are supported in one
physical domain location, rather than synchronizing the files across all physical domain
locations in the cluster. If the cluster is configured where the domain location is present on
different physical hosts, select the domain directory on one host and use that as the offline
registration location.

47.11.4 What You May Need to Know About Deploying SOA Composite
Applications that Reference Shared Data That is Not in the MDS
Repository

Offline deployment enables a SOA composite application that references shared artifacts in
the MDS Repository to be deployed when the shared data is not present in the MDS
Repository.

This is the expected behavior. To save time during server startup, offline deployment uses
lazy loading by default. With lazy loading, you do not see a deployment error when the
composite is deployed during server startup if the composite is referencing nonexistent
shared data. However, you do see the failure when you invoke the composite for the first
time. The composite fails if it references non-existent, shared data. With lazy loading, the
failure point is different; it is not in the deployment, but in the first invocation.

47.12 Importing XSLT Customizations into a Deployed SOA
Composite Application

Use WLST commands to update XSLT customizations in an existing SOA composite
application.

To import XSLT customizations into an existing SOA composite application:

1. Start WLST:

sh FMW_HOME/oracle_common/common/bin/wlst.sh
2. Use the sca_exportUpdates command to export the customizations to a .jar file.

For example:

Chapter 47
Importing XSLT Customizations into a Deployed SOA Composite Application

47-73

sca_exportUpdates('http://soa_server_host:soa_server_port', 'all',
'/tmp/test/sca_SupplierMaintenance_updates.jar', 'SupplierMaintenance',
'1.0', user='weblogic', password='weblogic1')

Note:

If there are no previous customizations, this command will not create
a .jar file. In this case, simply create a dummy .jar file using zip. For
example, /tmp/test/sca_SupplierMaintenance_updates.jar.

3. Connect to the SOA server.

connect('weblogic','weblogic1','t3://soa_server_host:soa_server_port')
4. Use the exportMetadata command to export the existing XSLT (.xsl) file.

exportMetadata(application='soa-infra',server='soa_server1',toLocation='/tmp/
test/',docs='/deployed-composites/default/SupplierMaintenance_rev1.0/
Transformations/Transformation_InitializeBusinessRule.xsl')

5. Edit the .xsl with required updates.

6. Add the updates to the .jar file.
For example:

zip -r sca_SupplierMaintenance_updates.jar Transformations/*

Now the .jar file includes the updated .xsl file under the same directory
structure.

7. Use the sca_importUpdates command to import the update back into the SOA
composite application to save the customization.
For example:

 sca_importUpdates('http://soa_server_host:soa_server_port', '/tmp/test/
sca_SupplierMaintenance_updates.jar', 'SupplierMaintenance', '1.0',
user='weblogic', password='weblogic1')

8. Use the sca_exportUpdates command to export the updates again and confirm
the changes are in place.
For example:

 sca_exportUpdates('http://soa_server_host:soa_server_port', 'all', '/tmp/
test/sca_SupplierMaintenance_updates.jar', 'SupplierMaintenance', '1.0',
user='weblogic', password='weblogic1')

47.13 Postdeployment Configuration
This section describes postdeployment configuration tasks.

47.13.1 Security
For information about securing SOA composite applications, see Administering Oracle
SOA Suite and Oracle Business Process Management Suite.

Chapter 47
Postdeployment Configuration

47-74

47.13.2 Updating Connections
Ensure that any connections that you created to the application server or MDS Repository
are recreated to point to servers applicable to the next target environment. For more
information, see Creating an Application Server Connection and Creating a SOA-MDS
Connection.

47.13.3 Updating Data Sources and Queues
Ensure that all JDBC data source, queue, and connection factory locations that you
previously configured are applicable to the next target environment. For more information,
see How to Create Data Sources and Queues and How to Create Connection Factories and
Connection Pooling.

47.13.4 Attaching Policies
You can attach policies to a deployed SOA composite application during runtime in Oracle
Enterprise Manager Fusion Middleware Control. For more information, see Administering
Oracle SOA Suite and Oracle Business Process Management Suite.

47.14 Testing and Troubleshooting
This section describes how to test and troubleshoot your SOA composite application.

47.14.1 Verifying Deployment
You can verify that you have successfully deployed your SOA composite application to the
SOA Infrastructure. If successful, the deployed composite displays in the Deployed
Composites tab of the SOA Infrastructure page of Oracle Enterprise Manager Fusion
Middleware Control. For more information, see Administering Oracle SOA Suite and Oracle
Business Process Management Suite.

47.14.2 Initiating an Instance of a Deployed Composite
You can initiate an instance of a deployed SOA composite application from the Test Web
Service page in Oracle Enterprise Manager Fusion Middleware Control. For more
information, see Administering Oracle SOA Suite and Oracle Business Process Management
Suite.

47.14.3 Automating the Testing of Deployed Composites
You can create, deploy, and run test cases that automate the testing of SOA composite
applications. Test cases enable you to simulate the interaction between a SOA composite
application and its web service partners before deployment in a production environment. You
create test cases in Oracle JDeveloper and include them in a SOA composite application that
is then deployed and run from either Oracle JDeveloper or Oracle Enterprise Manager Fusion
Middleware Control.

For information about creating and running test cases from Oracle JDeveloper, see
Automating Testing of SOA Composite Applications.

Chapter 47
Testing and Troubleshooting

47-75

For information about running test cases from Oracle Enterprise Manager Fusion
Middleware Control, see Administering Oracle SOA Suite and Oracle Business
Process Management Suite.

47.14.4 Recompiling a Project After Receiving a Deployment Error
If you receive the error shown in the following example when deploying a SOA
composite application from Oracle JDeveloper, recompile the project and redeploy the
composite. This error is intermittent and should not occur again.

Error deploying BPEL suitcase.
error while attempting to deploy the BPEL component file
"/scratch/aime1/work/mw9507/user_projects/domains/WLS_SOAWC/deployed-composites
/ManagementChainParticipantRuleComposite_rev1.0/sca_ManagementChainParticipantR
uleComposite_rev1.0/soa_59d10d76-08a5-41f0-ba89-32dcc2250002";
the exception reported is: java.lang.Exception: BPEL 1.1 compilation failed

This error contained an exception thrown by the underlying deployment module.
Verify the exception trace in the log (with logging level set to debug mode).

at
com.collaxa.cube.engine.deployment.DeploymentManager.deployComponent(Deployment
Manager.java:197)
at
com.collaxa.cube.ejb.impl.CubeServerManagerBean._deployOrLoadComponent(CubeServ
erManagerBean.java:820)
at
com.collaxa.cube.ejb.impl.CubeServerManagerBean.deployComponent(CubeServerManag
erBean.java:119)

47.14.5 Reducing Java Code Size to Resolve Java Compilation Errors
If you receive the Java compilation error shown in the following example in your server
log files, you may have too much code in your Java classes.

Failed to compile bpel generated classes.
failure to compile the generated BPEL classes for BPEL process
"Review_Supply_Plan_ProcessProcess" of composite "default/Review_Supp
ly_Plan_Process!1.0*a9ca2907-8540-4375-b672-ceb560d7b826"
The class path setting is incorrect.
Ensure that the class path is set correctly. If this happens on the server
side, verify that the custom classes or jars which this BPEL process is
depending on are deployed correctly. Also verify that the runtime is using
the same release/version.
. . .
. . .
 at
com.collaxa.cube.lang.compiler.template.CubeProcessGenerator.compile(CubeProce
ssGenerator.java:304)
 at
com.collaxa.cube.lang.compiler.template.CubeProcessGenerator.generate(CubeProc
essGenerator.java:164)
 at
com.collaxa.cube.lang.compiler.BPEL1Processor.transform(BPEL1Processor.java:25
7)
 at
com.collaxa.cube.lang.compiler.BPEL1Processor.process(BPEL1Processor.java:161)

Chapter 47
Testing and Troubleshooting

47-76

To reduce Java code size to resolve Java compilation errors:

1. Open the $MIDDLEWARE_HOME/user_projects/domains/domain_name/bin/
SetDomainEnv.sh file (for Linux) or SetDomainEnv.bat file (for Windows).

2. Locate the EXTRA_JAVA_PROPERTIES="-Dorabpel.codegen.density" property in this file.
If this property is not explicitly set, it defaults to values of 64,32.

3. Reduce the values:

EXTRA_JAVA_PROPERTIES="-Dorabpel.codegen.density=32,16"

By reducing these two values, you increase the number of classes and methods that are
generated for the compiled process map. As a best practice, if the process fails to
compile using the default settings, set the property with smaller values. The following
values are good combinations to try:

32,16
16,8
8,4
4,2

4. Save your changes.

5. Restart the server.

6. Recompile your SOA composite application.

47.14.6 Troubleshooting Common Deployment Errors
This section describes how to troubleshoot common deployment errors.

For information about general composite application troubleshooting issues, see
Administering Oracle SOA Suite and Oracle Business Process Management Suite.

47.14.6.1 Common Oracle JDeveloper Deployment Issues
This section provides a list of common deployment issues to check.

• If you are deploying a single composite application, ensure that you are deploying from
the Project menu. Right-click the project name in the Applications window, and select
Deploy > SOA_profile_name.

• If you are deploying multiple composite applications, ensure that you are deploying from
the Application menu. (Right-click the application name in the Applications window, and
select Deploy > SOA_bundle_profile_name).

• Once you click Deploy and select the profile name, ensure that the Deployment Action
page of the deployment wizard is displayed.

• Optionally enter a new revision ID (optional) and select the configuration plan (if any).

• If the composite application you are deploying is already located on the server with the
same revision ID, then check the Overwrite any existing composites with the same
revision ID check box in the Deploy Configuration page of the deployment wizard.
Without selecting this option, deployment fails.

• If compilation fails, a compiler error occurred, and not a deployment error. You only see
this error when you compile your project.

Chapter 47
Testing and Troubleshooting

47-77

• If compiler messages are not obvious, check the compiler log. A link to this log file
(scac.log) is displayed in the Messages tab. The message looks similar to that
shown in the following example.

Compilation of project 'FirstComposite.jpr' finished. Check '/scratch/myhome/
jdevWorkarea/mywork/Application11/FirstComposite/SCA-INF/classes/scac.log'
for
details.

• After compilation is successful, a SAR/SOA bundle archive is built for the
composite. For a SAR archive, the message shown in the following example is
displayed in the Deployment tab.

Wrote Archive Module to
/scratch/myhome/jdevWorkarea/mywork/Application11/FirstComposite/deploy/sca_
FirstComposite_rev1.0.jar

For a SOA bundle archive, the message shown in the following example is
displayed in the Deployment tab.

Wrote Archive Module to
/scratch/myhome/jdevWorkarea/mywork/Application11/SecondComposite/deploy/sca_
SecondComposite_rev1.0.jar
Wrote Archive Module to
/scratch/myhome/jdevWorkarea/mywork/Application11/FirstComposite/deploy/sca_
FirstComposite_rev1.0.jar
Wrote Archive Module to
/scratch/myhome/jdevWorkarea/mywork/Application11/deploy/soabundle1.zip

• Ensure that all SAR file URLs look as follows:

sca_CompositeName_revRevisionID.jar

For example, sca_FirstComposite_rev1.0.jar.

• After this occurs, Oracle JDeveloper sends the archive binaries to the server. The
following message is displayed in the Deployment tab. At this point, Oracle
JDeveloper's deployment role ends and the server (SOA Infrastructure) takes
control of deployment.

Deploying sca_FirstComposite_rev1.0.jar to myhost19:7001
• Upon successful deployment, you see the message shown in the following

example in the Deployment tab.

Received HTTP response from the server, response code=200 Successfully
deployed
archive soa_bundle_name.zip to soa_server_name

• If deployment fails, the message shown in the following example is displayed in
the Deployment tab with an error message (if any) from the server.

Error deploying the archive. Check server log for more details.
Connection refused.
Elapsed time for deployment: 8 seconds

• In most cases, the server provides some information about the error that occurred
on the server. If you do not receive any error message from the server, then check
soa_server1-diagnostic.log on the server to find additional information (where
soa_server1 is the name of the managed server). This file is located on the server
in domain_home/servers/soa_server1/logs.

Chapter 47
Testing and Troubleshooting

47-78

47.14.6.2 Common Configuration Plan Issues
This section provides a list of common configuration plan issues to check.

• If you selected a configuration plan to deploy, and it is not taking effect on the server,
open the SAR file containing the configuration plan. You can find the file location from the
Deployment tab in Oracle JDeveloper. The following example provides details.

Wrote Archive Module to
/scratch/myhome/jdevWorkarea/mywork/Application11/FirstComposite/deploy/sca_
FirstComposite_rev1.0.jar

• Open the JAR file and ensure that it contains the soaconfigplan.xml file. This file is
generated during deployment based on the configuration plan you selected.

• If this file is not present, try deploying the composite application again to ensure that you
have correctly selected the configuration plan in the Deploy Configuration page of the
deployment wizard.

47.14.6.3 Deploying to a Managed Oracle WebLogic Server
If you start a managed Oracle WebLogic Server without starting an Oracle WebLogic
Administration Server (known as running in independence mode) and attempt to deploy a
SOA composite application from Oracle JDeveloper, you receive the following error:

Deployment cannot continue! No SOA Configured target servers found

The Oracle WebLogic Administration Server must be running. Deployment uses the Oracle
WebLogic Administration Server connection to identify the servers running Oracle SOA Suite.
In addition, do not create an application server connection to a Managed Server; only create
connections to an Oracle WebLogic Administration Server.

You can also receive a similar error if the condition of the SOA-configured Oracle WebLogic
Server is not healthy. This condition displays in the Health column of the Servers page of
Oracle WebLogic Server Administration Console.

You can use WLST to deploy SOA composite applications to a managed Oracle WebLogic
Server without starting an Oracle WebLogic Administration Server. See Deploying and
Managing SOA Composite Applications with the WLST Utility for details.

47.14.6.4 Deploying to a Two-Way, SSL-Enabled Oracle WebLogic Server
Deployment from Oracle JDeveloper to a two-way, SSL-enabled Oracle WebLogic Server is
not supported.

47.14.6.5 Deploying with an Unreachable Proxy Server
You can receive an error similar to that shown in Figure 47-30 during SOA composite
application deployment if you have a proxy server set in Oracle JDeveloper that is not
reachable from your host.

Chapter 47
Testing and Troubleshooting

47-79

Figure 47-30 Deployment Error Message

A valid proxy setting is necessary for accessing a SOA Infrastructure (for example,
soa_server1) outside the network. If the SOA Infrastructure is within the network,
perform one of the following actions:

To change the proxy setting:

1. From the Tools menu, select Preferences > Web Browser and Proxy.

2. Perform one of the following tasks if the SOA server is within the network:

a. Deselect Use HTTP Proxy Server if you can directly access the SOA
Infrastructure without any proxy.

b. In the Exceptions field, enter the hostname of the unreachable SOA server.

47.14.6.6 Releasing Locks to Resolve ADF Task Form EAR File Deployment
Errors

If you deploy a SOA composite application JAR file and ADF task form EAR file, and
the SOA JAR file is deployed successfully, but while deploying the EAR file, the
following errors are displayed:

[wldeploy] weblogic.management.ManagementException: [Deployer:149163]The
domain edit lock is owned by another session in non-exclusive mode - this
deployment operation requires exclusive access to the edit lock and hence
cannot proceed. If you are using "Automatically Aquire Lock and Activate
Changes" in the console, then the lock will expire shortly so retry this
operation.

This error means you must first release the lock from Oracle WebLogic Server
Administration Console to successfully deploy the EAR file.

To release locks to resolve ADF task form EAR file deployment errors:

1. Log in to the Oracle WebLogic Server Administration Console.

2. Below the console banner at the top of the page, click Preferences > User
Preferences.

3. Deselect Automatically Acquire Lock and Activate Changes.

4. Click Save and note that buttons such as Lock and Edit and Release
Configuration are visible.

Note the following description that is displayed in the Oracle WebLogic Server
Administration Console:

Automatically acquire the lock that enables configuration editing and
automatically activate changes as the user modifies, adds and deletes items

Chapter 47
Testing and Troubleshooting

47-80

 (for example, when the user clicks the 'Save' button). This feature is not
 available in production mode.

This error can occur regardless of the deployment method you are using (for example,
deploying through Oracle JDeveloper or through ant scripts).

47.14.6.7 Increasing Memory to Recover from Compilation Errors
If you receive out-of-memory errors during compilation of a SOA composite application,
perform the following step to increase memory.

1. Open the ant-sca-compile.xml file in the $ORACLE_HOME/bin directory.

2. Under the scac element, increase the memory setting. For example:

<jvmarg value="-Xmx512M"/>

47.14.6.8 Oracle JDeveloper Compilation Error When Property Alias Definition is
Missing for a Receive Activity with a Correlation Set

When a property alias definition is missing for a receive activity with a correlation set, the
Oracle JDeveloper compiler fails with SCAC-50012 error.

47.14.6.9 ADF Binding Service Names Must Be Unique Across All Deployed SOA
Composite Applications

All ADF bindings must have a unique service name across all deployed SOA composite
applications.

For example, assume you perform the following steps:

1. Build and successfully deploy a SOA composite application that includes multiple
composites to the SOA server.

2. Change one of the composites in the SOA composite application by adding new
components and an outbound external reference.

3. Compile and successfully build the updated SOA composite application as revision 2.0.

4. Deploy the updated SOA composite application to the same partition or a different
partition.

You can receive the following error:

<Oct 7, 2013 11:52:01 AM EDT> <Error> <ServletContext-/soa-infra>
<BEA-000000> <Error during deployment
oracle.fabric.common.FabricException: Deployment Failed: The serviceName
attribute "OrderProcessorService" has already been used. ServiceName must
be unique among all deployed composites. The new service will overwrite the
old one.
 at
oracle.integration.platform.blocks.deploy.StandaloneCompositeDeploymentCoordin
atorImpl.coordinateCompositeDeployment(StandaloneCompositeDeploymentCoordinato
rImpl.java:99)
. . .
. . .

This error occurred because all ADF bindings must have a unique service name across
all deployed SOA composite applications.

Chapter 47
Testing and Troubleshooting

47-81

5. As a workaround, you must edit the composite.xml file and assign a different
name for the service in the.adf binding.adf section. For example:

<binding.adf serviceName="OrderProcessorService_v2" registryName=""/>
 <!-- exposed for using via direct binding api -->

47.15 Patching Running Instances of a SOA Composite
Oracle SOA Suite 12c (12.2.1) supports Composite Instance Patching, which enables
you to patch running instances of a composite and recover faulted instances after
patching the runtime. You can only include those fixes in the patch that are compatible
with Composite Instance Patching. Use the SOA Patch Developer role in Oracle
JDeveloper to make the fixes and create the patch.

Composite Instance Patching enables you to deliver urgent composite fixes that can
be picked up by long running instances. You can make compatible/allowed changes
without aborting in-flight instances. If a patched running instance comes across a
business process that has been fixed by the patch, say a BPEL transformation, then it
picks up the fixes applied to the business process.

Note:

This SOA Suite feature is part of Oracle Integration Continuous Availability.
Please refer to the Oracle Fusion Middleware Licensing Information for more
details on Oracle SOA Suite for Middleware Options.

When designing the patch, the SOA Patch Developer mode in JDeveloper
automatically disables changes that cannot be made to the patch. Some of the
compatible changes that you can make include:

• Non-schema related XSLT changes, changes to fault policy, sensor data, and
analytics data.

• Compatible BPEL changes such as transformation activity, assign operations, etc.

• JCA Adapter configuration properties.

You do not specify any composite version during deployment. The composite revision
that you create the patch for, in Oracle JDeveloper, is the composite revision to which
the patch is deployed.

You can validate the patch before deploying.

Use the following steps to create and deploy the patch to runtime.

1. Use the SOA Patch Developer role in Oracle JDeveloper to make changes to your
composite and create the patch.

See Using the SOA Patch Developer Mode in JDeveloper for details.

2. Validate and deploy the patch using the WLST command-line utility.

See Verifying and Deploying the Patch Using WLST for details.
If the patch contains fixes to your composite, you can recover faulted instances in
Enterprise Manager Fusion Middleware Control after deploying the patch.

Chapter 47
Patching Running Instances of a SOA Composite

47-82

47.15.1 Using the SOA Patch Developer Mode in JDeveloper
Use the SOA Patch Developer mode in Oracle JDeveloper to create a patch, containing fixes,
for your deployed composite. The patch created in this mode can be applied to the currently
deployed composite without changing the version number of the deployed composite. You
can apply the patch to runtime even if the composite has running instances.

To use the SOA Patch Developer mode in JDeveloper:

• If you already have your project open in JDeveloper, you need to switch to the SOA
Patch Developer mode. Select Tools > Switch Roles > SOA Patch Developer from the
Oracle JDeveloper menu bar.

The Confirm Restart dialog appears.

The dialog reminds you of the fact that you can make only limited edits in the SOA Patch
Developer mode. Click OK to restart JDeveloper.

• If you do not have Oracle JDeveloper open, start JDeveloper and select the SOA Patch
Developer role in the Select Role dialog.

Chapter 47
Patching Running Instances of a SOA Composite

47-83

After JDeveloper starts in the SOA Patch Developer mode, you’d notice that the
composite editor has the SOA Patch mode label. This reminds you that you can only
make edits that are compatible with the patch mode.

Also, when you are editing a BPEL component, for example, the BPEL editor has the
Patch mode label.

Chapter 47
Patching Running Instances of a SOA Composite

47-84

Only certain activities in the BPEL process are available for editing, the rest of them appear in
gray. Also, notice that the Components window shows only those components that are
available for use in the SOA Patch Developer mode. A number of properties appear in read-
only mode.

47.15.1.1 Generating the Patch XML File
When you make changes to your composite in the SOA Patch Developer mode of Oracle
JDeveloper, and save the changes, a patch.xml file is automatically generated. The
patch.xml file indicates the changes that you have made to the composite.

The following steps discuss creating and viewing the patch.xml file in JDeveloper

Make sure that you are in the SOA Patch Developer mode and your SOA composite is open
for editing.

1. Affect the changes, or fixes, required to the composite.

Only limited changes are allowed in the SOA Patch Developer mode. These are changes
that can be deployed to the runtime without affecting running instances.

For example, you might want to make fixes to an XSLT map associated with a BPEL
transformation activity.

2. Save all your files in JDeveloper.

You can click on the Save All button in the JDeveloper main toolbar, for example.

A patch.xml file is automatically created under project_directory/SOA/SCA-INF
directory. The patch.xml file gets updated every time you make and save changes to
your composite in the SOA Patch Developer mode.

3. Optionally view the patch.xml file.

You can select Application > Overview from the main menu bar and select patch.xml
under XML Files. Click Edit to open the patch.xml file.

The following image shows a sample patch.xml file. You can see that an XSL
transformation and a BPEL process have been patched.

Chapter 47
Patching Running Instances of a SOA Composite

47-85

Note:

The patch also includes any sensor information. This ensures that any
Design-Time at Runtime (DT@RT) related changes are retained.

47.15.1.2 Creating a Sparse Deployment Profile
After creating a patch in the SOA Patch Developer mode, create a sparse deployment
profile for deploying the changes to runtime. This creates a patch jar file in the deploy
directory that you can deploy to runtime.

Use the following steps to create a sparse deployment profile using JDeveloper.

1. Right-click the project name in the Applications window, and select Deploy >
Your_Project_Name.

You can also choose to create a new deployment profile.

The Deploy Project_Name wizard appears.

2. Complete the wizard steps, as you would do to deploy a project.

Notice that the Deploy Configuration screen does not allow you to create a new
version, or overwrite an existing version. This is because the patch would be
deployed to runtime without creating another version, and without affecting running
instances.

Chapter 47
Patching Running Instances of a SOA Composite

47-86

The Summary screen shows you the name and path of the
sca_projectname_patch.jar file that is created in the deploy directory.

3. Click Finish to create the patch jar file.

The project_name/deploy directory should now contain the patch jar in addition to
the original project jar.
You can open the patch jar to view the components included in it. The patch jar contains
only those components that you modified in the SOA Patch Developer mode.

47.15.2 Verifying and Deploying the Patch Using WLST
You can validate and deploy the patch jar file using the WLST command-line tool. Use the
sca_validatePatch and sca_patchComposite commands to validate and deploy the path file
respectively.

Use the following steps to verify and deploy the packaged jar (composite SAR) to runtime.

1. Use the sca_validatePatch command to validate your patch jar file.

You can use help(‘sca_validatePatch’) to get detailed information on the
sca_validatePatch command syntax and arguments.

For example:

sca_validatePatch('http://my_soa_server:8001', 'weblogic', 'welcome', '/
home/sca_HelloWorld_patch.jar')

The preceding command validates if the sca_HelloWorld_patch.jar patch file can
be successfully deployed to the my_soa_server SOA server runtime.

Chapter 47
Patching Running Instances of a SOA Composite

47-87

The following message indicates that the patch was successfully validated:

Composite patch has been validated successfully.

2. Use the sca_patchComposite command to deploy your patch jar file to runtime.

You can use help(‘sca_patchComposite’) to get detailed information on the
sca_patchComposite command syntax and arguments.

For example:

sca_patchComposite('http://my_soa_server:8001', 'weblogic',
'welcome', '/home/sca_HelloWorld_patch.jar')

The preceding command uses the sca_HelloWorld_patch.jar patch file to
patch the HelloWorld composite on the my_soa_server runtime.

The following message indicates that the patch was successfully applied:

Composite has been patched successfully.

You have successfully patched the composite on runtime. If you had any previously
faulted flow instances in Enterprise Manager Fusion Middleware Control that can be
recovered after applying this patch, you may attempt to recover them now.

47.15.3 Deleting the Patch File
If you try to open a SOA project in JDeveloper using a role other than SOA Patch
Developer, and if the composite has a previously existing patch file, you get a warning
stating that you should delete the patch.xml file before you can edit the project.

If you have already applied the patch, you can safely choose the option to delete the
patch.xml file.

You can now continue to edit the SOA project.

Chapter 47
Patching Running Instances of a SOA Composite

47-88

48
Using the Oracle SOA Suite Development
Maven Plug-In

This chapter describes how to use the Oracle SOA Suite development Maven plug-in to build
and manage SOA composite application projects. The Oracle SOA Suite development Maven
plug-in enables you to compile, package, deploy, test, and undeploy a SOA composite
application in a Maven environment.
This chapter includes the following sections:

• Introduction to the Oracle SOA Suite Maven Plug-in

• Installing the Oracle SOA Suite Maven Plug-in

• Using the Oracle SOA Suite Maven Archetype

For more information about using Maven with Oracle Fusion Middleware, see Developing
Applications Using Continuous Integration and Using the WebLogic Maven Plug-In in
Developing Applications for Oracle WebLogic Server.

For detailed information on using Maven to build applications and projects, see http://
maven.apache.org/users/index.html.

48.1 Introduction to the Oracle SOA Suite Maven Plug-in
Maven is a build automation tool that enables you to create and manage runtime projects.
Using the Oracle SOA Suite Maven plug-in, you can build and manage a SOA composite
application. Maven relies on an artifact repository for all of its dependencies. All the installed
Oracle libraries are propagated into the Maven repository. This enables Maven to recognize
them as artifacts and address them in the Project Object Model (POM) file.

48.1.1 POM Files and Archetypes
Maven projects are configured using a POM file. The POM file describes dependencies such
as the SOA Infrastructure tools that are required to build the composites.

An archetype is a template for creating a project. Archetypes are provided to create a new
SOA application containing a single SOA project, or to add an additional SOA project to an
existing SOA application. These archetypes provide for the ability to compile, package,
deploy, test, and undeploy a SOA composite application.

The following shows a sample Maven POM file for Oracle SOA Suite:

<?xml version="1.0" encoding="UTF-8"?>
<project xsi:schemaLocation="http://maven.apache.org/POM/4.0.0
 http://maven.apache.org/xsd/maven-4.0.0.xsd"
 xmlns="http://maven.apache.org/POM/4.0.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <modelVersion>4.0.0</modelVersion>
 <groupId>com.test</groupId>
 <artifactId>MyComposite</artifactId>
 <version>1.0-SNAPSHOT</version>

48-1

http://maven.apache.org/users/index.html
http://maven.apache.org/users/index.html

 <packaging>sar</packaging>

 <!--
 This POM was generated from the SOA Maven Archetype.
 Comments in this POM guide you how to use it with your project.
 This POM relates to this SOA Composite, i.e. the one in this same
 directory. There is another POM in the SOA Application directory (up
 one) which handles the whold SOA Application, which may contain
 additional projects.

 The parent points to the common SOA parent POM. That is a special POM
 that is shipped by Oracle as a point of customization (only). You can
 add default values for properties like serverUrl, etc. to the SOA
 common parent POM, so that you do not have to specify them over and
 over in every project POM.
 -->
 <parent>
 <groupId>com.oracle.soa</groupId>
 <artifactId>soa-project-common</artifactId>
 <version>12.2.1-4-0</version>
 </parent>

 <properties>
 <!-- these parameters are used by the compile goal -->
 <scac.input.dir>${project.basedir}/SOA/</scac.input.dir>
 <scac.output.dir>${project.basedir}/target</scac.output.dir>
 <scac.input>${scac.input.dir}/composite.xml</scac.input>
 <scac.output>${scac.output.dir}/out.xml</scac.output>
 <scac.error>${scac.output.dir}/error.txt</scac.error>
 <scac.displayLevel>1</scac.displayLevel>
 <!-- if you are using a config plan, uncomment the following line and
 update to point to your config plan -->
 <!--<configplan>${scac.input.dir}/configplan.xml</configplan>-->

 <!-- these parameters are used by the deploy and undeploy goals -->
 <composite.name>${project.artifactId}</composite.name>
 <composite.revision>${project.version}</composite.revision>
 <composite.partition>default</composite.partition>
 <serverUrl>serverUrl</serverUrl>
 <user>user</user>
 <password>password</password>
 <overwrite>true</overwrite>
 <forceDefault>true</forceDefault>
 <regenerateRulebase>false</regenerateRulebase>
 <keepInstancesOnRedeploy>false</keepInstancesOnRedeploy>

 <!-- these parameters are used by the test goal -->
 <!-- if you are using the sca-test (test) goal, you need to uncomment the
 following line and point it to your jndi.properties file. -->
 <jndi.properties.input>${basedir}/jndi.properties</jndi.properties.input>
 <scatest.result>${scac.output.dir}/testResult</scatest.result>
 <!-- input is the name of the composite to run test suties against -->
 <input>MyComposite</input>
 </properties>

 <!--
 These refer to the properties defined above. You should probably not
 need to make any changes beflow this point - these just point to the
 properties above.
 -->
 <build>

Chapter 48
Introduction to the Oracle SOA Suite Maven Plug-in

48-2

 <plugins>
 <plugin>
 <groupId>com.oracle.soa.plugin</groupId>
 <artifactId>oracle-soa-plugin</artifactId>
 <version>12.2.1-4-0</version>
 <configuration>
 <compositeName>MyComposite</compositeName>
 <composite>${scac.input}</composite>
 <sarLocation>${scac.output.dir}/sca_${project.artifactId}_
 rev${composite.revision}.jar</sarLocation>
 <serverUrl>${serverUrl}</serverUrl>
 <!-- note: compositeRevision is needed to package, revision is
 needed to undeploy -->
 <compositeRevision>${composite.revision}</compositeRevision>
 <revision>${composite.revision}</revision>
 <scacInputDir>${scac.input.dir}</scacInputDir>
 <!-- note: if this composite contains a component that depends
 on MDS to build, e.g. a Human Task or Business Rule, then
 you will need to uncomment the next line, and edit it to
 point to your application directory (which contains
 .adf/adf-config.xml file with MDS configuration in it -->
 <!--<appHome>${project.basedir}/..</appHome>-->
 <!-- If you have a composite which contains a component that
 depends on MDS (eg. Human Task, Business Rule) AND you
 want to use a file-based MDS repository, then you
 need to do either:
 1. update the .adf/META-INF/adf-config.xml to point to
 the correct location of the file based repository,
 i.e. remove the reference to ${oracle.home} in that
 file, or
 2. define oracleHome here and leave the adf-config.xml
 file as is. Note that the correct value is the path
 to your SOA Quickstart or JDeveloper install
 directory, with "/soa" appended to it.
 -->
 <!--<oracleHome>JDEV_HOME/soa</oracleHome>-->
 <user>${user}</user>
 <password>${password}</password>
 <input>${input}</input>
 </configuration>
 <!-- extensions=true is needed to use the custom sar packaging
 type -->
 <extensions>true</extensions>
 </plugin>
 </plugins>
 </build>
</project>

Chapter 48
Introduction to the Oracle SOA Suite Maven Plug-in

48-3

Note:

If you are using a component in your composite that depends on MDS, such
as Human Tasks or Business rules, you must uncomment the <appHome>$
{project.basedir}/..</appHome> line and edit it to point to your application
directory.

If you are using a component that depends on MDS and you want to use a
file-based MDS, such as the one referenced in the default adf-config.xml
file, you must also uncomment the <oracleHome>JDEV_HOME/soa</
oracleHome> line and edit it to point to your SOA Quickstart or JDeveloper
install directory, with /soa appended to it.

The following shows the archetype coordinates in the POM file for creating an Oracle
SOA Suite Application:

<groupId>com.oracle.soa.archetype</groupId>
<artifactId>oracle-soa-application</artifactId>
<version>12.2.1-4-0</version>

48.1.2 Maven Plug-in Goals
Goals are associated with different phases of the composite life cycle.

When you invoke a goal associated with a life cycle phase, Maven executes all goals
mapped to all phases up to and including the goal you name. For example, if you
execute the test goal, the compile, package, and deploy goals are executed before the
test goal. The description of each goal in this section lists the actions performed when
each goal is invoked.

To support the life cycle of building and deploying a SOA composite application, the
following executable plug-in goals are provided.

• compile (scac)

• package (sar)

• deploy

• test (sca-test)

• undeploy

Before executing a goal, ensure that you have provided all of the necessary
parameters for that goal in the POM file. See POM Files and Archetypes for a sample
POM file.

Note:

If you have changed the name of the project, composite, or project directory,
ensure that you update the POM file with the new names before executing
any of these goals.

Chapter 48
Introduction to the Oracle SOA Suite Maven Plug-in

48-4

The following example shows the groupId, artifactId, and version coordinates for Oracle
SOA Suite plug-ins in the POM file.

<groupId>com.oracle.soa.plugin</groupId>
<artifactId>oracle-soa-plugin</artifactId>
<version>12.2.1-4-0</version>

48.1.2.1 compile
The compile goal compiles a SOA composite application. Oracle SOA Suite provides a native
Maven implementation for this goal. The following command compiles the SOA composite
application:

mvn compile

48.1.2.2 package
The package goal packages the artifacts of a SOA composite application into a SOA archive
(SAR) file. The following command compiles and packages the SOA composite application:

mvn package

48.1.2.3 deploy
The deploy goal deploys the SOA composite application. Oracle SOA Suite provides a native
Maven implementation for this goal. The following command compiles the SOA composite
application, packages the composite into a SAR file, and deploys the SAR file to the server.

mvn pre-integration-test

48.1.2.4 test
The test goal performs a test of a SOA composite application. Oracle SOA Suite provides a
native Maven implementation for this goal.

You must first create tests in Oracle JDeveloper before running the test goal. For more
information about creating tests using JDeveloper, see Automating Testing of SOA
Composite Applications.

You must also include a jndi.properites file before running the test goal. Edit the following
line in the POM file to point to a jndi.properties file: <jndi.properties.input>${basedir}/
jndi.properties</jndi.properties.input>

The following shows a sample jndi.properties file:

 java.naming.factory.initial=weblogic.jndi.WLInitialContextFactory
 java.naming.provider.url=t3://servername:7103/soa-infra
 java.naming.security.principal=weblogic
 java.naming.security.credentials=welcome1
 dedicated.connection=true
 dedicated.rmicontext=true

The following command compiles the composite, packages the composite into a SAR file,
deploys the SAR file to the server, and tests the composite.

mvn verify

Chapter 48
Introduction to the Oracle SOA Suite Maven Plug-in

48-5

48.1.2.5 undeploy
The undeploy goal undeploys the SOA composite application. Oracle SOA Suite
provides a native Maven implementation for this goal. The following command
undeploys the composite.

Note:

The undeploy goal is not mapped to a life cycle phase. You must explicitly
invoke it by name.

mvn com.oracle.soa.plugin:oracle-soa-plugin:undeploy

48.1.3 Using Maven Online Help
Maven online help provides you with a list of goals and their associated commands.
For example, enter the following command to obtain online help for the Maven test
goal:

mvn help:describe -Ddetail=true -Dplugin=com.oracle.soa.plugin:oracle-soa-
plugin:12.2.1-4-0 -Dgoal=test

This command displays the following help details:

oracle-soa:test
Description: Description: To execute SCA Test Suites.
Implementation: com.oracle.soa.plugin.SoaTest
Language: java
Bound to phase: verify
Goal Prefix: oracle-soa

Available parameters:

 format (Default: native)
 User property: format
 The format of the output - 'native' or 'junit'.

 input
 Required: true
 User property: input
 The name of the composite to execute tests against.

 jndiPropertiesInput
 Required: true
 User property: jndi.properties.input
 Path to JNDI properties file required for SCA Test execution.
 This file should contain contents similar to the following:
 java.naming.factory.initial=weblogic.jndi.WLInitialContextFactory
 java.naming.provider.url=t3://servername:7103/soa-infra
 java.naming.security.principal=weblogic
 java.naming.security.credentials=welcome1
 dedicated.connection=true
 dedicated.rmicontext=true

 partition (Default: default)

Chapter 48
Introduction to the Oracle SOA Suite Maven Plug-in

48-6

 User property: partition
 Which SOA partition the composite is deployed in.

 result (Default: ${java.io.tmpdir}/out)
 User property: result
 Where to place the results.

 timeout (Default: 300)
 User property: timeout
 How long to wait for tests to complete before timing out.

48.2 Installing the Oracle SOA Suite Maven Plug-in
A distribution of Maven 3.0.5 is included with Oracle Fusion Middleware in the following
location:

Middleware_Home/Oracle_Home/oracle_common/modules/org.apache.maven_3.0.5

For information about installing Maven for Oracle Fusion Middleware, see Installing and
Configuring Maven for Build Automation and Dependency Management in Developing
Applications Using Continuous Integration.

48.2.1 How to Configure the Oracle SOA Suite Maven Plug-In
Before you can use the Oracle SOA Suite Maven plug-in you must populate the Maven
repository with Oracle artifacts. For more information about populating the repository, see
Populating the Maven Repository Manager in Developing Applications Using Continuous
Integration for more information. The steps below link to specific sections of this guide.

To configure the Oracle SOA Suite development Maven plug-in:

1. Navigate to ORACLE_HOME/oracle_common/plugins/maven/com/oracle/maven/oracle-
maven-sync/12.2.1.

2. Run the following command to install the Maven sync plug-in:

mvn install:install-file -DpomFile=oracle-maven-sync-12.2.1.pom -Dfile=oracle-
maven-sync-12.2.1.jar

For more options, see "Installing Oracle Maven Synchronization Plug-In."

3. Run the following command to seed the Oracle SOA Suite development Maven plug-in
into the Maven repository:

mvn com.oracle.maven:oracle-maven-sync:push -DoracleHome=ORACLE_HOME

Where ORACLE_HOME is the full path to your Oracle Fusion Middleware installation. For
more options, see "Running the Oracle Maven Synchronization Plug-In."

4. Validate whether you have successfully installed the plug-in using the Maven
help:describe goal.

mvn help:describe -DgroupId=com.oracle.soa.plugin
-DartifactId=oracle-soa-plugin -Dversion=12.2.1-4-0

The following is an excerpt of the information that confirms installation of the Oracle SOA
Suite plug-in:

Name: Oracle SOA Maven Plugin
Description: This plugin allows users to compile, package, deploy, test and

Chapter 48
Installing the Oracle SOA Suite Maven Plug-in

48-7

undeploy SOA composites.
Group Id: com.oracle.soa.plugin
Artifact Id: oracle-soa-plugin
Version: 12.2.1-4-0
Goal Prefix: oracle-soa
This plugin has 6 goals:
oracle-soa:compile

48.3 Using the Oracle SOA Suite Maven Archetype
Use the Oracle SOA Suite archetype to generate a POM file for a SOA application.
Run the following command from the parent directory into which you want to add a
SOA application. The SOA application is created in a subdirectory named from the
value of the artifactId property.

Note:

SOA Applications created using the Oracle SOA Suite Maven archetype are
the same as those created in Oracle JDeveloper using the Create SOA
Application wizard.

mvn archetype:generate
 -DarchetypeGroupId=com.oracle.soa.archetype
 -DarchetypeArtifactId=oracle-soa-application
 -DarchetypeVersion=12.2.1-4-0
 -DarchetypeRepository=local
 -DgroupId=org.my.test
 -DartifactId=test-soa-application
 -DprojectName=test-soa-project
 -Dversion=1.0-SNAPSHOT

Where:

Property Description

archetypeGroupId Enter the group ID of the archetype to use
(com.oracle.soa.archetype).

archetypeArtifactId Enter the artifact ID of the archetype to use (oracle-soa-
application).

archetypeVersion Enter the archetype version (12.2.1-4-0).

archetypeRepository Enter the Maven repository to use. (Optional)

groupId Enter the group ID of the project to build (for this example,
org.my.test).

artifactId Enter the artifact ID of the project to build. This becomes the
name of the subdirectory (for this example, test-soa-
project) in the current directory. The SOA application and
the first SOA project are created in this subdirectory.

projectName Enter the name for the SOA Project to be created inside the
SOA application This is also the name of the composite.

package Enter the name for the SOA Project to be created inside the
SOA application. (Optional)

Chapter 48
Using the Oracle SOA Suite Maven Archetype

48-8

Property Description

version Enter the version of the project to build (for this example,
1.0-SNAPSHOT)

Chapter 48
Using the Oracle SOA Suite Maven Archetype

48-9

49
Debugging and Auditing SOA Composite
Applications

This chapter describes how to debug SOA composite applications with the SOA debugger in
Oracle JDeveloper, test HTTP requests and response messages in the HTTP Analyzer, and
configure auditing for BPEL process activities in a SOA composite application.
This chapter includes the following sections:

• Introduction to the SOA Debugger

• Debugging a SOA Composite Application

• Testing SOA Composite Applications with the HTTP Analyzer

• Auditing SOA Composite Applications at the BPEL Activity Level

49.1 Introduction to the SOA Debugger
You can test and debug SOA composite applications with the SOA debugger in Oracle
JDeveloper. The SOA debugger reduces the development cycle for a SOA composite
application by providing a troubleshooting environment within Oracle JDeveloper. This
eliminates the lengthy process of building a SOA composite application in Oracle JDeveloper,
deploying it to the SOA Infrastructure, starting Oracle Enterprise Manager Fusion Middleware
Control to test or view audit trails and flow traces, and then returning to Oracle JDeveloper to
repeat the exercise. Instead, you can set breakpoints in Oracle JDeveloper for
troubleshooting on the following components:

• Binding components and service components in SOA composite applications

• Synchronous and asynchronous BPEL processes

• Oracle BPM processes

• Oracle Service Bus pipelines (see Debugging Oracle Service Bus Applications in
Developing Services with Oracle Service Bus)

Note the following guidelines when using the SOA debugger:

• The SOA composite application name and the Oracle JDeveloper project name must be
the same.

• Any SOA composite application encountered during a debugging session must reside in
the currently active workspace in Oracle JDeveloper.

• Debugging is limited to design view in Oracle JDeveloper. You cannot run the SOA
debugger in Oracle Enterprise Manager Fusion Middleware Control.

• Debugging is a localized user experience. If you want to switch to other tasks (for
example, search for instances or initiate new instances of the same composite from
Oracle Enterprise Manager Fusion Middleware Control), close the debugging session.

• You cannot set breakpoints on REST services.

49-1

• The breakpoints that you create for debugging in a SOA composite application in
one installation of Oracle JDeveloper are not available to other Oracle JDeveloper
installations. You must create the breakpoints again for debugging.

• During a debugging session in which you are using the embedded Integrated
WebLogic Server, you cannot use the version of Oracle Enterprise Manager
Fusion Middleware Control included with the embedded server to generate new
instances or query instances. For information about the Integrated WebLogic
Server, see Installing SOA Suite and Business Process Management Suite Quick
Start for Developers.

• You cannot debug cross-language features, such as a Java exec activity, XSLT
and XQuery transformations, and so on.

• You can debug SOA composite applications on servers on which Oracle SOA
Suite is installed. For example, if Oracle SOA Suite runs on managed servers,
clients must connect using the managed server host and port.

• Only one client at a time can connect to the SOA debugger.

• You cannot debug multiple instances of the same SOA composite application at a
given time even though Oracle JDeveloper does not restrict you from this action.
This is not the correct approach. The SOA debugger is a development tool. It is
your responsibility to ensure that only a single instance is debugged at any given
time.

• Adapter endpoint errors are not displayed in the SOA debugger in Oracle
JDeveloper. Those errors are logged in the log file.

• You can only debug if the server is in development mode. Debugging in production
mode is not supported.

• Oracle B2B and Oracle SOA for Healthcare service and reference binding
components cannot be debugged with the SOA debugger even though you can
set debugging points on both components.

• SOA composite application-to-SOA composite application debugging is not
supported.

49.2 Debugging a SOA Composite Application
This section describes how to create breakpoints and debug SOA composite
applications in Oracle JDeveloper.

Note:

Do not attempt to debug SOA composite applications with very large
payloads. Attempting to do so results in the SOA debugger breakpoints
hanging in the outbound direction.

49.2.1 How to Start the SOA Debugger
To start the SOA debugger:

1. Start the Integrated WebLogic Server. For information about starting the Integrated
WebLogic Server with the Start Server Instance option, see Section "Installing

Chapter 49
Debugging a SOA Composite Application

49-2

Oracle SOA Suite Quick Start for Developers" of Installing SOA Suite and Business
Process Management Suite Quick Start for Developers.

2. Start the SOA debugger in either of the following ways. This is limited to single composite
debugging.

a. Click the debugger icon above the SOA Composite Editor, as shown in Figure 49-1.

Figure 49-1 Debugger Icon in SOA Composite Editor

b. Right-click the SOA composite application in the Applications window, and select
Debug. Figure 49-2 provides details.

Figure 49-2 Debug Menu Option for a SOA Composite Application in the
Applications Window

The SOA Debugger Connection Settings dialog is displayed, as shown in Figure 49-3.
This dialog enables you to define the SOA debugging server to use.

Chapter 49
Debugging a SOA Composite Application

49-3

Figure 49-3 SOA Debugger Connection Settings Dialog

3. Enter values appropriate to your environment, and click OK. Table 49-1 provides
details.

Table 49-1 SOA Debugger Connection Setting Dialog

Field Description

Host Select the debugging server to which to connect. By default, the name of
the local host is displayed. This is the embedded Integrated WebLogic
Server in Oracle JDeveloper. You can also enter a remote server. When
a project is imported from a different host, the host that was used there
is displayed here.

Port Enter the port on which the debugging agent listens. The default value is
5004. Debugging is automatically enabled in development environments
when you install the Oracle SOA Suite Developer Quick Install. The
debugger cannot be enabled in production mode or when the server is
part of a cluster. For development environments, the debugger can be
overridden by adding the following property settings in the
setDomainEnv.sh file.

export SOA_DEBUG_FLAG="true"
export SOA_DEBUG_PORT="5004"

Timeout Specify in minutes how long the client should wait while attempting to
establish a debugging session before stopping. The default value is 5
minutes. For synchronous processes, you can increase the default value:

• Increase the SyncMaxWaitTime property in Oracle Enterprise
Manager Fusion Middleware Control. For more information, see
How To Specify Transaction Timeout Values.

• Increase the Idle Timeout and Transaction Timeout values for the
Enterprise JavaBeans property BPELDeliveryBean in Oracle
WebLogic Server Administration Console. For information about
accessing these properties, see the "Long Running, Synchronous
Calls To Remote Web Services Error Out or Asynchronous
Transactions Return with an Error after a Long Time" section of
Administering Oracle SOA Suite and Oracle Business Process
Management Suite.

• Increase the Java Transaction API (JTA) timeout value located under
the JTA link on the Oracle WebLogic Server Administration Console
home page.

Skip this dialog
next time

Select to skip this dialog the next time you begin a debugger session.
The settings you previously defined are used.

You can display this dialog again by right-clicking the project in the
Applications window. Select Project Properties > Run/Debug > Edit >
Tool Settings > Debugger > Remote, and select the Show Dialog Box
Before Connecting Debugger check box.

Chapter 49
Debugging a SOA Composite Application

49-4

Note:

You can also edit these properties by right-clicking the project in the
Applications window, and selecting Project Properties > Run/Debug > Edit >
Tool Settings > Debugger > Remote.

A check is made to determine if the SOA composite application selected for debugging is
deployed. Table 49-2 provides details.

Table 49-2 Check to Determine if the SOA Composite Application is Deployed

If the SOA Composite Application Is... Then...

Deployed The following message is displayed on the right handle
of the service binding component:

Use context menu to initiate WS debugging

See Figure 49-5 for an example of this message.

You are ready to begin debugging. Go to How to Set
Breakpoints and Initiate Debugging.

• Not deployed
• Deployed, but there has been a

design change in the composite
since it was deployed.

Note: Composites deployed a
second time with the Overwrite any
existing composites with the
same revision ID check box
selected do not require an additional
redeployment.

• Deployed, but you removed the
Oracle JDeveloper system folder.
The system folder is identified by
selecting Help > About >
Properties, and searching for
ide.system.dir.

• Deployed in one Oracle JDeveloper,
but the ZIP file of the SOA
composite application was opened in
a different installation of Oracle
JDeveloper.

The Deployment Action page of the Deploy
Project_Name wizard is displayed, and you must
deploy the composite.

a. Select Deploy to Application Server.

b. Follow the pages of the wizard to deploy the SOA
composite application to an application server.

For information about deploying SOA composite
applications, see Deploying the Profile.

c. When deployment is complete, go to How to Set
Breakpoints and Initiate Debugging.

You are ready to begin a debugging session when the following message is displayed in
the Log window:

Debugger attempting to connect to remote process at host_name 5004
Debugger connected to remote process at host_name 5004
Debugger process virtual machine is SOA Debugger.

49.2.2 How to Set Breakpoints and Initiate Debugging
Breakpoints are the intentional pausing locations in a SOA composite application that you set
for debugging purposes. You can set breakpoints on the following components:

Chapter 49
Debugging a SOA Composite Application

49-5

• Service binding components

• Inbound and outbound parts of BPEL process activities and BPM process service
components

• Reference binding components such as web services and JCA adapters

• Oracle Service Bus services (see "Debugging Oracle Service Bus Applications" of
Developing Services with Oracle Service Bus)

Components on which breakpoints are set are designated with red request (outbound)
icons, reply (inbound) icons, or request-reply (outbound-inbound) icons. Figure 49-4
provides an example of a SOA composite application in which breakpoint icons have
been set.

Figure 49-4 SOA Composite Application with Breakpoints Set

To set breakpoints and initiate debugging:

1. Select the component on which to set the breakpoint, as shown in Table 49-3.

Table 49-3 Components on Which to Set Breakpoints

To Set a Breakpoint on a... Go to Step...

Service binding component 2

Reference binding component 3

Service component such as a
BPEL process or BPM process

4

2. To set a breakpoint on a service binding component.

a. Right-click the right handle of the service on which the following message is
displayed.

Use context menu to initiate WS debugging

This action invokes the context menu shown in Figure 49-5.

Chapter 49
Debugging a SOA Composite Application

49-6

Figure 49-5 SOA Debugger Breakpoint Menu Options

b. Select the appropriate breakpoint interaction option shown in Table 49-4.

Table 49-4 Breakpoint Interaction Options

Option Description

Create Breakpoints Pair Set for a request-reply (outbound-inbound) interaction. This is
useful for scenarios in which both the request and reply are
important.

Create Request
Breakpoint

Set for a request (outbound) interaction. This is useful for
scenarios in which only the request is important.

Create Reply Breakpoint Set for a reply (inbound) interaction. This is useful for scenarios
in which only the reply is important.

Initiate WS Debugging Initiate a debugging session. For example, the debugging
session encompasses an initiating SOAP request from a web
service to a BPEL process to an adapter reference binding
component.

Red icons representing your interaction choice are added.

For example, if you select Create Breakpoints Pair, request and reply breakpoint
icons are added. Figure 49-6 provides details.

Figure 49-6 Request and Reply Breakpoint Icons on a Service Binding
Component

c. Go to Step 5.

3. To set a breakpoint on a reference binding component.

a. Right-click the applicable reference binding component (for example, a web service
or a database adapter), and select one of the breakpoint options described in
Table 49-4.

For example, if you select Create Breakpoints Pair for several references, request
and reply breakpoint icons are added. Figure 49-7 provides details.

Chapter 49
Debugging a SOA Composite Application

49-7

Figure 49-7 Breakpoints Set on Reference Binding Components

b. Go to Step 5.

4. To set a breakpoint on a service component (for this example, a BPEL process is
selected).

a. Select Edit, as shown in Figure 49-8.

Figure 49-8 Request and Reply Breakpoint Icons on a BPEL Process

This opens the BPEL process in Oracle BPEL Designer.

b. Right-click the BPEL activity on which to set a breakpoint, and select Toggle
Breakpoint. Figure 49-9 provides details.

Figure 49-9 Breakpoint Setting for a BPEL Process

An icon is added to the activity. These breakpoint icons are only red dots
because the flow is always in one direction. It is recommended that you

Chapter 49
Debugging a SOA Composite Application

49-8

always set a breakpoint on the first activity within an asynchronous BPEL process.

c. To disable the breakpoint, right-click and select Toggle Breakpoint again. The red
dot is removed. To display a list of all breakpoints set in the BPEL process, right-click
the activity and select Breakpoints. You can also enable and disable breakpoints
from this dialog.

d. Go to Step 5.

5. To begin debugging of the SOA composite application, right-click the right handle of the
service binding component shown in Figure 49-5, and select Initiate WS Debugging
from the menu.

This invokes the HTTP Analyzer.

6. Enter the request message data to send, and click Send Request or click HTTP Content
to copy and paste the contents from an XML file. You can either enter data field-by-field
or copy and paste an XML document. Figure 49-10 provides details.

Figure 49-10 SOA Debugger Message Data

The debugger stops at the first breakpoint you set (for this example, on the service
binding component).

7. In the Log window at the bottom of Oracle JDeveloper, click Data.

8. Expand the message contents. Figure 49-11 provides details. You can double-click a
value to change it. For non-XML variables, right-click and choose View value (for
example, the return message from a database adapter).

Chapter 49
Debugging a SOA Composite Application

49-9

Figure 49-11 Message Contents After Debugger Invocation

49.2.3 How to Step Through a Debugging Session
When you create a breakpoint, a corresponding frame is created in the Structure
window, as shown in Figure 49-12. This frame was created for the request-reply entry
point on the service binding component.

A frame is a location. A stack of frames is a bread crumb trail of the locations that lead
you to your current location. This is equivalent to a stack trace. It shows you where
you are and how you got there. Frames are created independent of breakpoints. When
you stop at a breakpoint, all frames that have been created in the Structure window
are displayed. A stack frame also contains the data that existed at that point of time.
Clicking a different stack frame in the Structure pane also updates the Data tab.

For example, if you have a web service connected to a BPEL process connected to a
reference, if you set a breakpoint on the reference, you see a stack that generally
looks as follows:

• Reference

• BPEL invoke

• BPEL scope

• Web service

If you click the web service frame, the SOAP payload in the Data tab is displayed. If
you then click the BPEL invoke frame, the various BPEL variables and other details
are displayed in the Data tab.

You can step over the frame and begin debugging at a different location, such as a
different breakpoint (for this example, the LoanProcess BPEL process). As you
proceed with debugging, the following frames are created. Frames are where variables
are located.

• Scope frame: Contains scope variables.

• Process frame: Contains global variables.

Variables are visible to a process from the top frame through the bottom frame.
Frames are displayed in the Structure window.

Chapter 49
Debugging a SOA Composite Application

49-10

Figure 49-12 Frames in Structure Window

To step through a debugging session:

1. Go to the tool bar in Oracle JDeveloper. The step options are shown in Figure 49-13.

Figure 49-13 Step Options in Oracle JDeveloper

Table 49-5 describes each option.

Table 49-5 Step Options in Oracle JDeveloper Main Menu

Icon Description

Ends or detaches from a debugging session.

Chapter 49
Debugging a SOA Composite Application

49-11

Table 49-5 (Cont.) Step Options in Oracle JDeveloper Main Menu

Icon Description

Steps over a frame.

This places you at the next breakpoint (for example, the receive activity in the BPEL
process on which a breakpoint was set in Figure 49-9). If there are no breakpoints,
it steps over all the frames and goes back to the first frame.

You can also press F8 to step over a frame.

Steps into the next valid location.

This can be a new frame or the same frame, but in a different location.

You can also press F7 to step into a frame.

Steps out of a frame.

This option is only used to process a BPEL scope or sequence activity. After
completion of scope processing, it pauses at the next scope or activity in the
process. You can also press Shift-F7.

Resumes a step operation.

You can also press F9 to resume.

2. If you selected the Step Over option, it stops at the receive activity.

3. In the Log window, click Data and expand the contents to view the variables
defined in the BPEL process, as shown in Figure 49-14. You can edit BPEL
process variables during debugging. The payload is empty for the example shown
in Figure 49-14.

Figure 49-14 Empty Payload

This is because the breakpoint on the receive activity has not been executed, as
shown in Figure 49-15.

Chapter 49
Debugging a SOA Composite Application

49-12

Figure 49-15 Empty Payload Before Receive Activity Breakpoint Execution

4. Click the Step Into option, as described in Table 49-5.

This executes the receive activity shown in Figure 49-16.

Figure 49-16 Populated Payload After Receive Activity Breakpoint Execution

5. Expand the payload.

The payload is populated with the data you entered in Step 6 of How to Set Breakpoints
and Initiate Debugging. Figure 49-17 provides details.

Figure 49-17 Expanded Payload

6. Select the Step Over option, as described in Table 49-5. This causes the debugger to
pause at the next breakpoint (for this example, a web service reference binding
component, as shown in Figure 49-7).

The contents of the request message to the web service call are shown in Figure 49-18.

Chapter 49
Debugging a SOA Composite Application

49-13

Figure 49-18 Request Message Payload Contents

7. Select the Step Over option.

8. Expand the payload to view the message reply. Figure 49-19 provides details.

Figure 49-19 Request Message Payload Contents

9. Proceed with debugging.

If you step through the copy rules of an assign activity, the SOA debugger displays
a window showing which copy rule it is on within the assign activity. The window
has a table showing all the copy rules and there is a breakpoint icon next to the
copy rule at which the debugger is stopped.

Note:

If you set a breakpoint on an adapter (for example, a database adapter),
the SOA debugger steps out of the BPEL process service component
and goes to the SOA Composite Editor.

49.2.4 How to End or Detach from a Debugging Session
To end or detach from a debugging session:

1. Click the button in the tools menu to end a debugging session. Figure 49-20
provides details.

Figure 49-20 End or Detach from a Debugging Session

The Terminate Debugger Process dialog is displayed.

2. Select an option. Table 49-6 provides details.

Chapter 49
Debugging a SOA Composite Application

49-14

Table 49-6 Breakpoint Menu Options

Option Description

Detach Removes the debugger without ending the debugging process.

Terminate Ends the debugging process.

3. If you selected Detach, click the debugger icon above the SOA Composite Editor shown
in Figure 49-1 to resume debugging.

4. If you selected Terminate, right-click and select Initiate WS Debugging to reinitiate the
debugger and start a new debugging session.

49.2.5 How to Remove Breakpoints
You can remove individual breakpoints or all breakpoints.

To remove breakpoints:

1. To remove an individual breakpoint, perform the following:

• Right-click an activity on which a breakpoint has been set and select Toggle
Breakpoint.

• Click the Breakpoints icon above Oracle BPEL Designer and select the activity on
which to remove a breakpoint in the Breakpoints dialog.

2. To remove all breakpoints, right-click in the SOA composite application, and select
Remove All Breakpoints.

3. Click the icon above the BPEL process in Oracle BPEL Designer, as shown in
Figure 49-21.

Figure 49-21 Breakpoints Icon in Oracle BPEL Designer

This invokes the Breakpoints dialog, as shown in Figure 49-22.

Figure 49-22 Breakpoints Dialog

Chapter 49
Debugging a SOA Composite Application

49-15

4. In the Enable check boxes, select BPEL process breakpoints to disable.

49.2.6 How to View Adapter Properties
You can view adapter properties under the Data tab in the Log window.

To view adapter properties:

1. Click the Step Over icon until you stop at a breakpoint on a reference binding
component such as a database adapter. Figure 49-23 provides details.

Figure 49-23 JCA Adapter Properties

The process is stopped to check on the existence of the customer. Adapter
endpoint properties are displayed. Figure 49-24 provides details. The SQL syntax
to be executed is also displayed.

Figure 49-24 Adapter Output

2. Right-click a property and select View Whole Value to view the data being passed
to the customer (for this example, nativePayload is selected). Figure 49-25 shows
the customer ID being passed. View Whole Value is also useful for non-XML
BPEL variables.

Chapter 49
Debugging a SOA Composite Application

49-16

Figure 49-25 Request Message Contents Being Passed

3. Click the Step Over icon to execute the database adapter.

4. Right-click a property and select View Whole Value to view the customer reply message
data. For this example, the value of 1 indicates that the customer exists. Figure 49-26
provides details.

Figure 49-26 Reply Message Contents Being Returned

5. To change a value, right-click a property and select Modify Value.

49.2.7 How to View Threads
A process instance is always run by a single logical thread, whether it is a synchronous or
asynchronous process (the process ID can be thought of as the thread). The SOA debugger
sees and uses the logical thread. If a process has a flow or flowN activity, then several logical
threads run the flow or flowN activity.

To view threads:

1. From the main menu, select Window > Debugger > Threads.

The Threads tab is displayed in the Structure window.

2. Step into the service binding component of the BPEL process to begin debugging.

The thread value for the request is 40, as shown in the Structure window in Figure 49-27.

Chapter 49
Debugging a SOA Composite Application

49-17

Figure 49-27 Request Thread Value

3. Step into the receive activity of the asynchronous BPEL process.

The thread value for the reply is 41, as shown in Figure 49-28.

Figure 49-28 Reply Thread Value

49.3 Testing SOA Composite Applications with the HTTP
Analyzer

You can test HTTP requests and responses in a SOA composite application with the
HTTP Analyzer in Oracle JDeveloper. The HTTP Analyzer enables you to examine the
content of HTTP request/response package pairs. You can edit the content of a
request package, resend it, and observe the response packet returned. For more
information about the HTTP Analyzer, see the "Auditing and Monitoring Java Projects"
chapter of Developing Applications with Oracle JDeveloper.

To test the SOA composite application with the HTTP Analyzer:

1. From the Window main menu, select Application Servers.

2. In the Application Servers window, expand the SOA composite application.

3. Right-click the component to test (for this example, a web service binding
component), and select Test Web Service. Figure 49-29 provides details.

Chapter 49
Testing SOA Composite Applications with the HTTP Analyzer

49-18

Figure 49-29 Component to Test in the Application Servers Window

The HTTP Analyzer is displayed.

4. Enter the request message data to send, and click Send Request or click HTTP Content
to copy and paste the contents from an XML file. Figure 49-30 provides details.

Figure 49-30 HTTP Analyzer

Chapter 49
Testing SOA Composite Applications with the HTTP Analyzer

49-19

If successful, output similar to that shown in Figure 49-31 is displayed in the right
pane.

Figure 49-31 Response HTTP Headers

You can also use the Test Web Service page to perform testing. For more information,
see Section "Initiating a Test Instance of a Business Flow" of Administering Oracle
SOA Suite and Oracle Business Process Management Suite.

49.4 Auditing SOA Composite Applications at the BPEL
Activity Level

Audit trail data often accounts for a large percentage of the state data persisted to the
database. To reduce the amount of persisted state data, you can specify finer-grained
levels of auditing at the BPEL process activity level. These settings take precedence
over the audit trail settings configured at the service component, SOA composite
application, BPEL process service engine, and SOA Infrastructure levels.

You perform the following procedures:

• Create and configure an audit policy XML file that defines the level of auditing to
perform on BPEL activities in the SOA composite application.

• Create and configure an audit policy binding XML file that binds the audit policy to
the BPEL process.

• Place the files in the same directory location as the composite.xml file or in a
separate directory that you identify with properties in the composite.xml file.

Chapter 49
Auditing SOA Composite Applications at the BPEL Activity Level

49-20

• Deploy the SOA composite application to the SOA Infrastructure.

• View the audit trail of the BPEL process activities in the flow trace of the SOA composite
application in Oracle Enterprise Manager Fusion Middleware Control.

Note the following guidelines:

• The audit policy supports the auditing of both standard BPEL 1.1 and 2.0 activities and
scopes and BPEL extension activities, such as emails, notifications, and all others. Within
a parent scope, you can configure specific child scopes to be audited, and other child
scopes to not be audited.

• The supported auditing levels are shown in Table 49-7.

Table 49-7 Auditing Levels

Level Description

Inherit Logging matches the SOA Infrastructure audit level that you set on the SOA
Infrastructure Common Properties page in Oracle Enterprise Manager Fusion
Middleware Control. This is the default setting.

Production Minimal information for business flow instances is collected. For example, the
BPEL process service engine does not capture the payload. Therefore, the
payload details are not available in the flow audit trails. This level is optimal for
most standard operations and testing.

Development Complete information for BPEL process activities is collected. This option allows
both composite instance tracking and payload tracking. This setting may have an
impact on performance because the payload is stored at each step in the
message flow. This setting is useful for debugging purposes.

Off No logging is performed. Composite instance tracking information and payload
tracking information are not collected.

• Support is provided for wild-card matching of process names and revision numbers in the
fault policy binding file. For example:

– Entering Order* applies to BPEL process service components included in the
composite named OrderProcess, OrderRejected, and OrderConfirmed:

<process auditPolicy="noLoops" name="Order*"/>
– Entering 1* applies to composite revisions 1.0, 1.1, and 1.2:

<process auditPolicy="noAssign" name="*" revision="1.*"/>
The following example shows the audit policy schema to use:

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema targetNamespace="http://schemas.oracle.com/bpel/auditpolicy"
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns:tns="http://schemas.oracle.com/bpel/auditpolicy"
 elementFormDefault="qualified">
 <!-- activity can have a type or a name as optional attribute.-->
 <!-- Audit rules apply to all activities if no specific type or name is -->
 <!-- provided -->
 <xs:complexType name="Activity">
 <xs:attribute name="type" type="xs:QName" use="optional"/>
 <xs:attribute name="name" type="tns:idType" use="optional"/>
 <xs:attribute name="auditLevel" type="tns:auditLevelType" use="required"/>
 </xs:complexType>
 <xs:simpleType name="idType">
 <xs:restriction base="xs:string">

Chapter 49
Auditing SOA Composite Applications at the BPEL Activity Level

49-21

 <xs:minLength value="1"/>
 </xs:restriction>
 </xs:simpleType>
 <xs:simpleType name="auditLevelType">
 <xs:restriction base="xs:string">
 <xs:enumeration value="off"/>
 <xs:enumeration value="minimal"/>
 <xs:enumeration value="production"/>
 <xs:enumeration value="development"/>
 </xs:restriction>
 </xs:simpleType>
 <xs:element name="auditPolicy">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="activity" type="tns:Activity" minOccurs="0"
 maxOccurs="unbounded"/>
 </xs:sequence>
 <xs:attribute name="id" type="tns:idType" use="required"/>
 <xs:attribute name="version" type="xs:string" default="1.0"/>
 </xs:complexType>
 <!-- we restrict users to provide mulitple rules for same activity -->
 <xs:key name="UniqueActivity">
 <xs:selector xpath="tns:activity"/>
 <xs:field xpath="@type"/>
 <xs:field xpath="@name"/>
 </xs:key>
 </xs:element>
</xs:schema>

The following example shows the audit policy binding schema to use.

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema targetNamespace="http://schemas.oracle.com/bpel/auditpolicyBinding"
 xmlns:tns="http://schemas.oracle.com/bpel/auditpolicy"
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 elementFormDefault="qualified">
 <xs:complexType name="Process">
 <xs:attribute name="auditPolicyId" type="tns:idType"
use="optional"/>
 <xs:attribute name="name" type="tns:idType" use="optional"/>
 <xs:attribute name="revision" type="tns:idType" use="optional"/>
 </xs:complexType>
 <xs:simpleType name="idType">
 <xs:restriction base="xs:string">
 <xs:minLength value="1"/>
 </xs:restriction>
 </xs:simpleType>
 <xs:element name="auditPolicyBinding">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="process" type="tns:Process"
 minOccurs="0" maxOccurs="unbounded"/>
 </xs:sequence>
 <xs:attribute name="version" type="xs:string"
 default="1.0"/>
 </xs:complexType>
 <xs:key name="UniqueActivity">
 <xs:selector xpath="tns:process"/>
 <xs:field xpath="@name"/>
 <xs:field xpath="@revision"/>
 </xs:key>

Chapter 49
Auditing SOA Composite Applications at the BPEL Activity Level

49-22

 </xs:element>
</xs:schema>

49.4.1 How to Audit SOA Composite Applications at the BPEL Activity
Level

This section describes how to create and configure the audit policy and audit policy binding
files.

To audit SOA composite applications at the BPEL activity level:

1. Create and configure an audit policy file (for example, named audit-policy.xml) that
defines the audit level settings for the BPEL activities. The file can have any name and
must follow the schema described in the preceding section.

<auditPolicies xmlns="http://schemas.oracle.com/bpel/auditpolicy"
xmlns:bpel="http://schemas.xmlsoap.org/ws/2003/03/business-process/"
xmlns:bpelx="http://schemas.oracle.com/bpel/extension" version="1.0">
 <auditPolicy name="whilePolicy">
 <!-- enabling this will cause all assign activities to not log -->
 <!-- anything to the audit trail -->
 <activity type="bpel:assign" auditLevel="production"/>

 <!-- enabling this will cause all scope activities and all -->
 <!-- enclosed activities to not log anything to the audit trail -->
 <activity type="bpel:scope" auditLevel="production"/>
 <!-- enabling this will cause all while activities to log with -->
 <!-- minimak level -->
 <activity type="bpel:while" auditLevel="production"/>
 <activity type="bpel:reply" auditLevel="production"/>
 <activity type="bpel:flow" auditLevel="production"/>
 <activity type="bpel:switch" auditLevel="off"/>
 <activity type="bpel:terminate" auditLevel="production"/>
 <activity type="bpel:empty" auditLevel="development"/>
 <activity type="bpel:wait" auditLevel="production"/>
 <activity type="bpel:throw" auditLevel="off"/>
 <activity type="bpel:catchAll" auditLevel="production"/>
 <activity type="bpel:sequence" auditLevel="off"/>
 <activity type="bpel:receive" auditLevel="production"/>
 </auditPolicy>
</auditPolicies>

Note:

To enable BPEL extensions to be audited, enter bpelx:exec with an
appropriate auditing level (for example, production).

<activity type="bpelx:exec" auditLevel="production"/>

2. Create and configure an audit policy binding XML file (for example, named audit-
binding.xml) that binds the audit policy to the BPEL process. The file can have any
name and must follow the schema described in the previous section. This example uses
the wildcard option to enable all BPEL processes that begin with myProcess to be
audited. Several other auditing options have been commented out.

Chapter 49
Auditing SOA Composite Applications at the BPEL Activity Level

49-23

<auditPolicyBindings xmlns="http://schemas.oracle.com/bpel/
auditpolicyBinding"
 version="1.0">
 <!-- enabling this will cause all processes in the domain to use this -->
 <!-- policy audit -->
 <!-- <process auditPolicyName="whilePolicy" name="BPELProcess*"/> -->
 <!-- enabling this will cause all processes that start with the name -->
 <!-- myProcess to use the audit policy 'noLoops' -->
 <process auditPolicyName="noLoops" name="myProcess*"/>
 <!-- enabling this will cause all processes -->
 <!-- process auditPolicyName="noAssign" name="*"/> -->
</auditPolicyBindings>

3. Place the XML file in the same directory as the composite.xml file.

4. Define the audit-policy.xml and audit-binding.xml files in the composite.xml
file.

<property name="oracle.composite.bpelAuditPolicyFile">audit-policy.xml</
property>
<property
name="oracle.composite.bpelAuditBindingFile">audit-binding.xml</property>

5. Deploy the SOA composite application.

Chapter 49
Auditing SOA Composite Applications at the BPEL Activity Level

49-24

50
Automating Testing of SOA Composite
Applications

This chapter describes how to create, deploy, and run test cases that automate the testing of
SOA composite applications. You can also create test cases for testing BPEL process service
components included in the SOA composite application. Test cases enable you to simulate
the interaction between a SOA composite application and its web service partners before
deployment in a production environment. This helps to ensure that a process interacts with
web service partners as expected when it is ready for deployment to a production
environment.
This chapter includes the following sections:

• Introduction to the Composite Test Framework

• Introduction to the Components of a Test Suite

• Creating Test Suites and Test Cases with the Create Composite Test Wizard

• Editing the Contents of Test Cases in Test Mode in the SOA Composite Editor

• Testing BPEL Process Service Components

• Deploying and Running a Test Suite

50.1 Introduction to the Composite Test Framework
Oracle SOA Suite provides an automated test suite framework for creating and running
repeatable tests on a SOA composite application.

The test suite framework provides the following features:

• Simulates web service partner interactions

• Validates process actions with test data

• Creates reports of test results

50.1.1 Test Cases Overview
The test framework supports testing at the SOA composite application level. In this type of
testing, wires, service binding components, service components (such as BPEL processes
and Oracle Mediator service components), and reference binding components are tested.

For more information, see Creating Test Suites and Test Cases with the Create Composite
Test Wizard.

50.1.2 Overview of Test Suites
Test suites consist of a logical collection of one or more test cases. Each test case contains a
set of commands to perform as the test instance is executed. The execution of a test suite is
known as a test run. Each test corresponds to a single SOA composite application instance.

50-1

For more information, see the following:

• Creating Test Suites and Test Cases with the Create Composite Test Wizard

• Editing the Contents of Test Cases in Test Mode in the SOA Composite Editor

50.1.3 Overview of Emulations
Emulations enable you to simulate the behavior of the following components with
which your SOA composite application interacts during execution:

• Internal service components inside the composite

• Binding components outside the composite

Instead of invoking another service component or binding component, you can specify
a response from the component or reference.

For more information, see the following:

• Emulations

• Editing the Contents of Test Cases in Test Mode in the SOA Composite Editor

50.1.4 Overview of Assertions
Assertions enable you to verify variable data or process flow. You can perform the
following types of assertions:

• Entire XML document assertions:

Compare the element values of an entire XML document to the expected element
values. For example, compare the exact contents of an entire loan request XML
document to another document. The XMLTestCase class in the XMLUnit package
includes a collection of methods for performing assertions between XML files. For
more information about these methods, visit the following URL:

http://xmlunit.sourceforge.net
• Part section of message assertions:

Compare the values of a part section of a message to the expected values. An
example is a payload part of an entire XML document message.

• Nonleaf element assertions:

Compare the values of an XML fragment to the expected values. An example is a
loan application, which includes leaf elements SSN, email, customerName, and
loanAmount.

• Leaf element assertions:

Compare the value of a selected string or number element or a regular expression
pattern to an expected value. An example is the SSN of a loan application.

For more information about asserts, see Assertions.

Chapter 50
Introduction to the Composite Test Framework

50-2

http://xmlunit.sourceforge.net

50.2 Introduction to the Components of a Test Suite
This section describes and provides examples of the test components that comprise a test
case. Methods for creating and importing these tests into your process are described in
subsequent sections of this chapter.

50.2.1 Process Initiation
You first define the operation of your process in a binding component service such as a
SOAP web service. The following example defines the operation of initiate to initiate the
TestFwk SOA composite application. The initiation payload is also defined in this section:

<?xml version="1.0" encoding="UTF-8" ?>
<!-- Generated by Oracle SCA Test Modeler version 1.0 at [6/13/07 10:50 AM]. -->
<compositeTest compositeDN="TestFwk"
 xmlns="http://xmlns.oracle.com/sca/2006/test">
 <about></about>
 <initiate serviceName="client" operation="initiate" isAsync="true">
 <message>
 <part partName="payload">
 <content>
 <loanApplication xmlns="http://www.autoloan.com/ns/autoloan">
 <SSN>111222333</SSN>
 <email>joe.smith@example.com</email>
 <customerName>Joe Smith</customerName>
 <loanAmount>20000</loanAmount>
 <carModel>Camry</carModel>
 <carYear>2007</carYear>
 <creditRating>800</creditRating>
 </loanApplication>
 </content>
 </part>
 </message>
 </initiate>
</compositeTest>

50.2.2 Emulations
You create emulations to simulate the message data that your SOA composite application
receives from web service partners.

In the test code in the following example, the loan request is initiated with an error. A fault
message is received in return from a web service partner:

<?xml version="1.0" encoding="UTF-8" ?>
<!-- Generated by Oracle SCA Test Modeler version 1.0 at [7/3/07 3:29 PM]. -->
<compositeTest compositeDN="CompositeTest"
 xmlns="http://xmlns.oracle.com/sca/2006/test">
 <about></about>
 <initiate serviceName="client" operation="initiate" isAsync="true">
 <message>
 <part partName="payload">
 <filePath>loanApplication.xml</filePath>
 </part>
 </message>
 </initiate>
 <wireActions wireSource="LoanBroker/CreditRatingService" operation="process">

Chapter 50
Introduction to the Components of a Test Suite

50-3

 <emulate duration="PT0S">
 <fault faultName="ser:NegativeCredit" xmlns:ser="http://services.otn.com">
 <message>
 <part partName="payload">
 <filePath>creditRatingFault.xml</filePath>
 </part>
 </message>
 </fault>
 </emulate>
 </wireActions>
</compositeTest>

Two message files, loanApplication.xml and creditRatingFault.xml, are invoked
in this emulation. If the loan application request in loanApplication.xml contains a
social security number beginning with 0, the creditRatingFault.xml file returns the
fault message shown in the following example:

<error xmlns="http://services.otn.com">
 Invalid SSN, SSN cannot start with digit '0'.
</error>

For more information, see Editing the Contents of Test Cases in Test Mode in the SOA
Composite Editor.

50.2.3 Assertions
You create assertions to validate an entire XML document, a part section of a
message, a nonleaf element, or a leaf element at a point during SOA composite
application execution. The following example instructs Oracle SOA Suite to ensure
that the content of the customerName variable matches the content specified.

<?xml version="1.0" encoding="UTF-8" ?>
<!-- Generated by Oracle SCA Test Modeler version 1.0 at [6/13/07 10:51 AM]. -->
<compositeTest compositeDN="TestFwk"
 xmlns="http://xmlns.oracle.com/sca/2006/test">
 <about></about>
 <initiate serviceName="client" operation="initiate" isAsync="true">
 <message>
 <part partName="payload">
 <content>
 <loanApplication xmlns="http://www.autoloan.com/ns/autoloan">
 <SSN>111222333</SSN>
 <email>joe.smith@example.com</email>
 <customerName>Joe Smith</customerName>
 <loanAmount>20000</loanAmount>
 <carModel>Camry</carModel>
 <carYear>2007</carYear>
 <creditRating>800</creditRating>
 </loanApplication>
 </content>
 </part>
 </message>
 </initiate>
 <wireActions wireSource="client" operation="initiate">
 <assert comparisonMethod="string">
 <expected>
 <location key="input" partName="payload"
 xpath="/s1:loanApplication/s1:customerName"
 xmlns:s1="http://www.autoloan.com/ns/autoloan"/>

Chapter 50
Introduction to the Components of a Test Suite

50-4

 <simple>Joe Smith</simple>
 </expected>
 </assert>
 </wireActions>
</compositeTest>

For more information, see Editing the Contents of Test Cases in Test Mode in the SOA
Composite Editor.

50.2.4 Message Files
Message instance files provide a method for simulating the message data received back from
web service partners. You can manually enter the received message data into this XML file or
load a file through the test mode of the SOA Composite Editor. For example, the following
message file simulates a credit rating result of 900 returned from a partner:

<rating xmlns="http://services.otn.com">900</rating>

For more information about loading message files into test mode, see Editing the Contents of
Test Cases in Test Mode in the SOA Composite Editor.

50.3 Creating Test Suites and Test Cases with the Create
Composite Test Wizard

This section describes how to create test suites and their test cases for a SOA composite
application. The test cases consist of sets of commands to perform as the test instance is
executed.

You can create test suites and test cases in either of two ways:

• In the Applications window

• From the Oracle JDeveloper main menu

Both options invoke the Create Composite Test wizard, which enables you to define the
initiating operation, callback operation, and input and output messages.

Note:

Do not enter a multibyte character string as a test suite name or test case name.
Doing so causes an error to occur when the test is executed from Oracle Enterprise
Manager Fusion Middleware Control.

1. Perform one of the following steps to create a new test suite or create a new composite
test in an existing test suite. Table 50-1 provides details.

Chapter 50
Creating Test Suites and Test Cases with the Create Composite Test Wizard

50-5

Table 50-1 Test Suite Creation or Selection

From the... Perform...

Oracle JDeveloper main menu a. Select File > New > Application > SOA Tier >
Tests > Composite Test Suite.

The Create Test Suite dialog is displayed.

b. Enter a test suite name, and click OK.

or

a. Select File > From Gallery > SOA Tier > Tests >
Composite Test Suite.

The Create Test Suite dialog is displayed.

b. Enter a test suite name, and click OK.

Applications window a. Right-click the testsuites folder and select Create
Test Suite.

The Create Test Suite dialog is displayed.

b. Enter a test suite name, and click OK.

Structure window a. Right-click Test Suites and select Create Test
Suite.

The Create Test Suite dialog is displayed.

b. Enter a test suite name, and click OK.

Oracle JDeveloper main menu a. Select File > New > Application > SOA Tier >
Tests > Composite Test.

or

a. Select File > New > Composite Test.

Note: Both selections provide the option of creating a
new test suite or selecting an existing test suite in which
to include the new composite test.

The Create Composite Test Wizard - Test Name and Suite page appears, as
shown in Figure 50-1.

Chapter 50
Creating Test Suites and Test Cases with the Create Composite Test Wizard

50-6

Figure 50-1 Create Composite Test Wizard - Test Name and Suite Page

This wizard enables you to create simple tests without manually creating test details in
test mode in the SOA Composite Editor, as described in Editing the Contents of Test
Cases in Test Mode in the SOA Composite Editor. You only must manually use this editor
in test mode if you want to add additional test metadata such as emulations.

2. Provide values appropriate to your environment, as described in Table 50-2, and click
Next.

Table 50-2 Create Composite Test Wizard - Test Name and Suite Page

Field Description

Test Name Enter a name for the test.

Description Enter an optional description of the test. The description is displayed in the
Description column of the Test Cases page of the Unit Tests tab in
Oracle Enterprise Manager Fusion Middleware Control.

Test Suite Select an existing test suite to include this test or click the icon to create a
new test suite in the Create Test Suite dialog.

The Create Composite Test Wizard - Service and Operation page appears, as shown in
Figure 50-2.

Chapter 50
Creating Test Suites and Test Cases with the Create Composite Test Wizard

50-7

Figure 50-2 Create Composite Test Wizard - Service and Operation Page

3. Provide values appropriate to your environment, as described in Table 50-3, and
click Next.

Table 50-3 Create Composite Test Wizard - Service and Operation Page

Field Description

Service Select the SOA composite application to test.

Operator Select the operation.

Callback
Operation

Optionally select the callback (response) operation.

The Create Composite Test Wizard - Input Message page appears, as shown in
Figure 50-3. This page enables you to specify the input message to test the
operation.

Chapter 50
Creating Test Suites and Test Cases with the Create Composite Test Wizard

50-8

Figure 50-3 Create Composite Test Wizard - Input Message Page

Provide values appropriate to your environment, as described in Table 50-4, and click
Next.

Table 50-4 Create Composite Test Wizard - Input Message Page

Field Description

Part Select the message part containing the input (for example, payload). If the
operation input message has multiple parts, then specify each message
part by changing the part name, one by one.

For each message part, you can either enter the XML document contents
manually or you can load the document from an XML file.

Value Create a simulated input message to send to a web service partner:

• Enter Manually Click to manually enter message data in the Enter Value field. A Generate
Sample button enables you to automatically generate a sample file from
the message part schema for testing. Click Save As to save the sample
file for later use by the same test or other tests in the same test suite.

• Load From File Click the Browse icon to load message data from a file. The file is added
to the messages folder in the Applications window.

The Create Composite Test Wizard - Output Message page appears, as shown in
Figure 50-4. This page specifies the output message expected from the operation or
callback operation.

Chapter 50
Creating Test Suites and Test Cases with the Create Composite Test Wizard

50-9

Figure 50-4 Create Composite Test Wizard - Output Message Page

Provide values appropriate to your environment, as described in Table 50-5, and
click Finish.

Table 50-5 Create Composite Test Wizard - Output Message Page

Field Description

From Select the external web service from which to receive the message.

Part Select the message part containing the output (for example,
payload). If the operation input message has multiple parts, then
specify each message part by changing the part name, one by one.

For each message part, you can either enter the XML document
contents manually or you can load the document from an XML file.

Value Create a simulated output message to return from a web service
partner:

• Enter
Manually

Click to manually enter message data in the Enter Value field. A
Generate Sample button enables you to automatically generate a
sample file for testing. Click Save As to save the sample file.

• Load From
File

Click the Browse icon to load message data from a file. The file is
added to the messages folder in the Applications window.

The test suite is created, and the test mode of the SOA Composite Editor is
displayed to show the test. Figure 50-5 provides details. You can add additional
test metadata such as emulations, if necessary. If the current test is complete, you
can continue to create another test by clicking the test image button on the toolbar.
If you want to run the test, you can press the green arrow button.

Chapter 50
Creating Test Suites and Test Cases with the Create Composite Test Wizard

50-10

Figure 50-5 Test Suite Creation

A test is created in the Applications window, along with the following subfolders:

• componenttests

• includes

• messages

Contains message test files that you load into this directory through the test mode
user interface.

• tests

Contains the XML file for the test suite.

A folder named after the test suite also displays in the Structure window. This indicates
that you are in the test mode of the SOA Composite Editor. You can create test initiations,
assertions, and emulations in test mode. No other modifications, such as editing the
property dialogs of service components or dropping service components into the editor,
can be performed in test mode.

The following operating system test suite directory is also created:

C:\JDeveloper\mywork\application_name\project_name\testsuites\test_suite_name
4. If you want to exit test mode and return to design mode in the SOA Composite Editor,

click the last icon above the designer. Figure 50-6 provides details.

Figure 50-6 Test Mode Exit

5. Save your changes when prompted.

6. Under the testsuites folder in the Applications window, double-click the XML file name to
return to test mode. Figure 50-7 provides details.

Chapter 50
Creating Test Suites and Test Cases with the Create Composite Test Wizard

50-11

Figure 50-7 Test Mode Access

Note:

• Do not edit the filelist.xml files that display under the subfolders of
the testsuites folder. These files are automatically created during
design time and used during runtime to calculate the number of test
cases.

• You cannot create test suites within other test suites. However, you
can organize a test suite into subdirectories.

50.4 Editing the Contents of Test Cases in Test Mode in the
SOA Composite Editor

After creating the basic contents of test suites and test cases with the Create
Composite Test Wizard, you can make additional updates in the test mode of the SOA
Composite Editor.

Test cases consist of process initiations, emulations, and assertions. You create
process initiations to initiate client inbound messages into your SOA composite
application. You create emulations to simulate input or output message data, fault
data, callback data, or all of these types that your SOA composite application receives
from web service partners. You create assertions to validate entire XML documents,
part sections of messages, nonleaf elements, and leaf elements as a process is
executed.

Note:

You can also edit test case contents in the Property Inspector. Single-click
the component or wire to edit to invoke the Property Inspector at the bottom
of the page for editing.

Chapter 50
Editing the Contents of Test Cases in Test Mode in the SOA Composite Editor

50-12

50.4.1 How to Initiate Inbound Messages
To initiate inbound messages:

You must first initiate the sending of inbound client messages to the SOA composite
application.

1. Go to the SOA Composite application in test mode.

2. Double-click the service binding component shown in Figure 50-8.

Figure 50-8 Service Binding Component Access

The Initiate Messages dialog appears.

3. Enter the details shown in Table 50-6:

Table 50-6 Initiate Messages Dialog Fields and Values

Field Value

Service Displays the name of the binding component service (client).

Operation Displays the operation type of the service binding component
(initiate).

Part Select the type of inbound message to send (for example,
payload).

Value Create a simulated message to send from a client:

• Enter Manually Click to manually enter message data in the Enter Value field. A
Generate Sample button enables you to automatically generate a
sample file for testing. Click Save As to save the sample file.

• Load From File Click the Browse icon to load message data from a file. The file is
added to the messages folder in the Applications window.

Figure 50-9 shows this dialog:

Chapter 50
Editing the Contents of Test Cases in Test Mode in the SOA Composite Editor

50-13

Figure 50-9 Initiate Messages Dialog

The inbound process initiation message from a client looks as follows:

<?xml version="1.0" encoding="UTF-8" ?>
<!-- Generated by Oracle SCA Test Modeler version 1.0 at [7/12/07 8:36 AM].
-->
<compositeTest compositeDN="CompositeTest"
 xmlns="http://xmlns.oracle.com/sca/2006/test">
 <about/>
 <initiate serviceName="client" operation="initiate" isAsync="true">
 <message>
 <part partName="payload">
 <filePath>loanApplication.xml</filePath>
 </part>
 </message>
 </initiate>
. . .
. . .

The loanApplication.xml referenced in the process initiation file contains a loan
application payload:

<loanApplication xmlns="http://www.autoloan.com/ns/autoloan">
 <SSN>111222333</SSN>
 <email>joe.smith@example.com</email>
 <customerName>Joe Smith</customerName>
 <loanAmount>20000</loanAmount>
 <carModel>Camry</carModel>
 <carYear>2007</carYear>
 <creditRating>800</creditRating>
</loanApplication>

4. Click OK.

Chapter 50
Editing the Contents of Test Cases in Test Mode in the SOA Composite Editor

50-14

50.4.2 How to Emulate Outbound Messages
To emulate outbound messages:

Note:

The creation of multiple emulations in an instance in a test case is supported only if
one emulation is for an output message and the other is for a callback message.

You can simulate a message returned from a synchronous web service partner.

1. Go to the SOA composite application in test mode.

2. Beneath the testsuites folder in the Applications window, double-click a test case.
Figure 50-10 provides details.

Figure 50-10 Test Case Access

The SOA composite application in the SOA Composite Editor is refreshed to display in
test mode. This mode enables you to define test information.

3. Double-click the wire of the SOA composite application area to test. For the example
shown in Figure 50-11, the wire between the LoanBroker process and the synchronous
CreditRating web service is selected.

Figure 50-11 Wire Access

This displays the Wire Actions dialog shown in Figure 50-12, from which you can design
emulations and assertions for the selected part of the SOA composite application.

Chapter 50
Editing the Contents of Test Cases in Test Mode in the SOA Composite Editor

50-15

Figure 50-12 Wire Actions Dialog

4. Click the Emulates tab.

5. Click the Add icon.

6. Click Emulate Output.

7. Enter the details described in Table 50-7:

Table 50-7 Emulate Output Message Dialog Fields and Values

Field Value

Part Select the message part containing the output (for example,
payload).

Value Create a simulated output message to return from a web
service partner:

• Enter Manually Click to manually enter message data in the Enter Value
field. A Generate Sample button enables you to automatically
generate a sample file for testing. Click Save As to save the
sample file.

• Load From File Click the Browse icon to load message data from a file. The
file is added to the messages folder in the Applications
window.

Duration Enter the maximum amount of time to wait for the message to
be delivered from the web service partner.

Figure 50-13 shows this dialog:

Chapter 50
Editing the Contents of Test Cases in Test Mode in the SOA Composite Editor

50-16

Figure 50-13 Emulate Dialog with Emulate Output Selected

A simulated output message from a synchronous web service partner that you enter
manually or load from a file looks as follows:

<?xml version="1.0" encoding="UTF-8" ?>
<!-- Generated by Oracle SCA Test Modeler version 1.0 at [7/3/07 3:26 PM]. -->
<compositeTest compositeDN="CompositeTest"
 xmlns="http://xmlns.oracle.com/sca/2006/test">
 <about></about>
 <initiate serviceName="client" operation="initiate" isAsync="true">
 <message>
 <part partName="payload">
 <filePath>loanApplication.xml</filePath>
 </part>
 </message>
 </initiate>
 <wireActions wireSource="LoanBroker/CreditRatingService" operation="process">
 <emulate duration="PT0S">
 <message>
 <part partName="payload">
 <filePath>creditRatingResult.xml</filePath>
 </part>
 </message>
 </emulate>
 </wireActions>
</compositeTest>

The creditRatingResult.xml message file referenced in the output message provides
details about the credit rating result.

<rating xmlns="http://services.otn.com">900</rating>

Chapter 50
Editing the Contents of Test Cases in Test Mode in the SOA Composite Editor

50-17

8. Click OK.

50.4.3 How to Emulate Callback Messages
To emulate callback messages:

Note:

The creation of multiple emulations in an instance in a test case is supported
only if one emulation is for an output message and the other is for a callback
message.

You can simulate a callback message returned from an asynchronous web service
partner.

1. Access the Wire Actions dialog by following Step 1 through Step 3 of How to
Emulate Outbound Messages.

2. Click the Emulates tab.

3. Click the Add icon.

4. Click Emulate Callback. This field is only enabled for asynchronous processes.

5. Enter the details described in Table 50-8:

Table 50-8 Emulate Callback Message Fields

Field Value

Callback Operation Select the callback operation (for example, onResult).

Callback Message Displays the callback message name of the asynchronous
process.

Part Select the message part containing the callback (for example,
payload).

Value Create a simulated callback message to return from an
asynchronous web service partner:

• Enter Manually Click to manually enter message data in the Enter Value
field. A Generate Sample button enables you to automatically
generate a sample file for testing. Click Save As to save the
sample file.

• Load From File Click the Browse icon to load message data from a file. The
file is added to the messages folder in the Applications
window.

Duration Enter the maximum amount of time to wait for the callback
message to be delivered from the web service partner.

Figure 50-14 shows this dialog:

Chapter 50
Editing the Contents of Test Cases in Test Mode in the SOA Composite Editor

50-18

Figure 50-14 Emulate Dialog with Emulate Callback Selected

The simulated callback message from a web service partner looks as follows. You enter
this message manually or load it from a file:

<?xml version="1.0" encoding="UTF-8" ?>
<!-- Generated by Oracle SCA Test Modeler version 1.0 at [7/3/07 3:27 PM]. -->
<compositeTest compositeDN="CompositeTest"
 xmlns="http://xmlns.oracle.com/sca/2006/test">
 <about></about>
 <initiate serviceName="client" operation="initiate" isAsync="true">
 <message>
 <part partName="payload">
 <filePath>loanApplication.xml</filePath>
 </part>
 </message>
 </initiate>
 <wireActions wireSource="LoanBroker/LoanService" operation="initiate">
 <emulate callbackOperation="onResult" duration="PT0S">
 <message>
 <part partName="payload">
 <filePath>loanOffer.xml</filePath>
 </part>
 </message>
 </emulate>
 </wireActions>
</compositeTest>

The loanOffer.xml message file referenced in the callback message provides details
about the credit rating approval.

Chapter 50
Editing the Contents of Test Cases in Test Mode in the SOA Composite Editor

50-19

<loanOffer xmlns="http://www.autoloan.com/ns/autoloan">
 <providerName>Bank Of America</providerName>
 <selected>false</selected>
 <approved>true</approved>
 <APR>1.9</APR>
</loanOffer>

6. Click OK.

50.4.4 How to Emulate Fault Messages
To emulate fault messages:

You can simulate a fault message returned from a web service partner. This simulation
enables you to test fault handling capabilities in your process.

1. Access the Wire Actions dialog by following Step 1 through Step 3 of How to
Emulate Outbound Messages.

2. Click the Emulates tab.

3. Click the Add icon.

4. Click Emulate Fault.

5. Enter the details described in Table 50-9:

Table 50-9 Emulate Fault Message Fields

Field Value

Fault Select the fault type to return from a partner (for example,
NegativeCredit).

Fault Message Displays the message name.

Part Select the message part containing the fault (for example,
payload).

Value Create a simulated fault message to return from a web
service partner:

• Enter Manually Click to manually enter message data in the Enter Value
field. A Generate Sample button enables you to automatically
generate a sample file for testing. Click Save As to save the
sample file.

• Load From File Click the Browse icon to load message data from a file. The
file is added to the messages folder in the Applications
window.

Duration Enter the maximum amount of time to wait for the fault
message to be delivered from the web service partner.

Figure 50-15 shows this dialog:

Chapter 50
Editing the Contents of Test Cases in Test Mode in the SOA Composite Editor

50-20

Figure 50-15 Emulate Dialog with Emulate Fault Selected

An example of a simulated fault message from a web service partner that you enter
manually or load from a file is shown in Emulations.

6. Click OK.

50.4.5 How to Create Assertions
To create assertions:

You perform assertions to verify variable data or process flow. Assertions enable you to
validate test data in an entire XML document, a part section of a message, a nonleaf
element, or a leaf element as a process is executed. This is done by extracting a value and
comparing it to an expected value.

1. Access the Wire Actions dialog by following the steps in How to Emulate Outbound
Messages.

2. Click the Asserts tab.

Figure 50-16 shows this dialog:

Chapter 50
Editing the Contents of Test Cases in Test Mode in the SOA Composite Editor

50-21

Figure 50-16 Wire Actions Dialog with Asserts Tab Selected

3. Click the Add icon.

The Create Assert dialog appears.

4. Select the type of assertion to perform at the top of the dialog, as shown in
Table 50-10. If the operation supports only input messages, the Assert Input
button is enabled. If the operation supports both input and output messages, the
Assert Input and Assert Output buttons are both enabled.

Table 50-10 Assertion Types

Type Description

Assert Input Select to create an assertion in the inbound direction.

Assert Output Select to create an assertion in the outbound direction.

Assert Callback Select to create an assertion on a callback.

Assert Fault Select to assert a fault into the application flow.

5. See the section shown in Table 50-11 based on the type of assertion you want to
perform.

Table 50-11 Assertion Types

For an Assertion on... See...

• A part section of a
document

• A nonleaf element
• An entire XML

document

Creating Assertions on a Part Section, Nonleaf Element, or
Entire XML Document

A leaf element Creating Assertions on a Leaf Element

50.4.5.1 Creating Assertions on a Part Section, Nonleaf Element, or Entire XML
Document

To create assertions on a part section, nonleaf element, or entire XML
document:

This test compares the values to the expected values.

Chapter 50
Editing the Contents of Test Cases in Test Mode in the SOA Composite Editor

50-22

Note:

If the message contains multiple parts (for example, payload1, payload2, and
payload3), you must create separate assertions for each part.

1. Click Browse to select the target part section, nonleaf element, or entire XML document
to assert.

The Select Assert Target dialog appears.

2. Select a value, and click OK. For example, select a variable such as payload to perform
a part section assertion.

Figure 50-17 shows this dialog. While this example shows how to perform a part section
assertion, selecting LoanBrokerRequestMessage is an example of an entire XML
document assertion and selecting loanApplication is an example of a nonleaf assertion.

Figure 50-17 Select a Part Section of a Message

The Create Assert dialog refreshes based on your selection of a variable.

3. Enter details in the remaining fields, as shown in Table 50-12:

Table 50-12 Create Assert Dialog Fields and Values

Field Value

Fault Select the type of fault to assert (for example, NegativeCredit).
This field only displays if you select Assert Fault in Step 4.of How
to Create Assertions.

Assert Target Displays the assert target you selected in Step 2.

Chapter 50
Editing the Contents of Test Cases in Test Mode in the SOA Composite Editor

50-23

Table 50-12 (Cont.) Create Assert Dialog Fields and Values

Field Value

Compare By Specify the strictness of the comparison.

• xml-identical: Used when the comparison between the
elements and attributes of the XML documents must be exact.
If there is any difference between the two XML documents, the
comparison fails. For example, the comparison fails if one
document uses an element name of purchaseOrder, while
the other uses an element name of invoice. The comparison
also fails if the child attributes of two elements are the same,
but the attributes are ordered differently in each element.

• xml-similar: Used when the comparison must be similar in
content, but does not need to exactly match. For example, the
comparison succeeds if both use the same namespace URI,
but have different namespace prefixes. The comparison also
succeeds if both contain the same element with the same
child attributes, but the attributes are ordered differently in
each element.

In both of these examples, the differences are considered
recoverable, and therefore similar.

For more information about comparing the contents of XML files,
see the XMLUnit web site:

http://xmlunit.sourceforge.net/userguide/html/
ar01s03.html#The%20Difference%20Engine

Part Select the message part containing the XML document (for
example, payload).

Value Create an XML document whose content is compared to the assert
target content:

• Enter Manually Click to manually enter message data in the Enter Value field. A
Generate Sample button enables you to automatically generate a
sample file for testing. Click Save As to save the sample file.

• Load From File Click the Browse icon to load message data from a file. The file is
added to the messages folder in the Applications window.

Description Enter an optional description.

Figure 50-18 shows this dialog with Assert Input selected:

Chapter 50
Editing the Contents of Test Cases in Test Mode in the SOA Composite Editor

50-24

http://xmlunit.sourceforge.net/userguide/html/ar01s03.html#The%20Difference%20Engine
http://xmlunit.sourceforge.net/userguide/html/ar01s03.html#The%20Difference%20Engine

Figure 50-18 Create Assert Dialog with Assert Input Selected

4. Click OK.

The Wire Actions dialog shown in Figure 50-19 displays your selection.

Figure 50-19 Wire Actions Dialog with Asserts Tab Selected

5. Click OK.

50.4.5.2 Creating Assertions on a Leaf Element

To create assertions on a leaf element:

This test compares the value to an expected value.

1. Click Browse to select the leaf element to assert.

The Select Assert Target dialog appears.

2. Select a leaf element, and click OK. For example, select loanAmount to perform an
assertion. Figure 50-20 provides details.

Chapter 50
Editing the Contents of Test Cases in Test Mode in the SOA Composite Editor

50-25

Figure 50-20 Selection of a Leaf Element

The Create Assert dialog refreshes based on your selection of an entire XML
document.

3. Enter details in the remaining fields, as shown in Table 50-13:

Table 50-13 Create Assert Dialog Fields and Values

Field Value

Fault Select the type of fault to assert (for example,
NegativeCredit). This field only displays if you select Assert
Fault in Step 4 of How to Create Assertions.

Callback Operation Select the type of callback to assert (for example, onResult).
This field only displays if you select Assert Callback in Step
4 of How to Create Assertions.

Assert Target Displays the variable assert target you selected in Step 2.

Compare By Select the type of comparison:

• string: Compares string values.
• number: Compares numeric values.
• pattern-match: Compares a regular expression pattern

(for example, [0-9]*). Java Development Kit (JDK)
regular expression (regexp) constructs are supported.
For example, entering a pattern of ab[0-9]*cd means
that a value of ab123cd or ab456cd is correct. An
asterisk (*) indicates any number of occurrences.

Assert Value Enter the value you are expecting. This value is compared to
the value for the assert target.

Description Enter an optional description.

Figure 50-21 shows this dialog with Assert Input selected:

Chapter 50
Editing the Contents of Test Cases in Test Mode in the SOA Composite Editor

50-26

Figure 50-21 Create Assert Dialog

4. Click OK.

The Wire Actions dialog shown in Figure 50-22 displays your selection.

Figure 50-22 Wire Actions Dialog with Asserts Tab Selected

50.4.6 What You May Need to Know About Assertions
When a test is executed, and the response type returned is different from the type expected,
the assertion is skipped. For example, you are expecting a fault (RemoteFault) to be returned
for a specific message, but a response (BpelResponseMessage) is instead returned.

As a best practice, always assert and emulate the expected behavior.

50.5 Testing BPEL Process Service Components
After creating the basic contents of test suites and test cases with the Create Composite Test
Wizard, you can automate the testing of an individual BPEL process service component
included in a new or existing SOA composite application test suite. These test cases enable

Chapter 50
Testing BPEL Process Service Components

50-27

you to simulate the interaction between a BPEL process and its web service partners
before deployment in a production environment. This helps to ensure that a BPEL
process interacts with web service partners as expected by the time it is ready for
deployment to a production environment.

The following provides an example of a SOA composite application test suite that
includes a component test for the LoanBroker BPEL process service component.

<compositeTest compositeDN="TestFwk"
 xmlns="http://xmlns.oracle.com/sca/2006/test">
 <about></about>
 <initiate serviceName="client" operation="initiate" isAsync="true">
 <message>
 <part partName="payload">
 <content>
 <loanApplication xmlns="http://www.autoloan.com/ns/autoloan">
 <SSN>111222333</SSN>
 <email>joe.smith@example.com</email>
 <customerName>Joe Smith</customerName>
 <loanAmount>20000</loanAmount>
 <carModel>Camry</carModel>
 <carYear>2007</carYear>
 <creditRating>800</creditRating>
 </loanApplication>
 </content>
 </part>
 </message>
 </initiate>
 <componentTest componentName="LoanBroker" filePath="assert.xml"/>
</compositeTest>

The assert.xml test shown in the preceding example specifies assertions for variables
and faults.

Note:

You cannot automate the testing of business rule, human task, Oracle
Mediator, or spring service components.

50.5.1 Overview of Assertions on BPEL Process Activities
You can create variable and fault assertions on BPEL process activities. The following
example instructs the BPEL process to ensure that the contents of textVar and
crOutput match the contents specified:

 <bpelTest xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns="http://xmlns.oracle.com/sca/2006/test"
 componentName="LoanBroker">
 <activityActions activityName="elementAssign">
 <assert comparisonMethod="number">
 <description>Some other assertion.</description>
 <expected>
 <location key="textVar"
 xmlns:loan="http://www.autoloan.com/ns/autoloan"/>
 <simple>111222333</simple>
 </expected>

Chapter 50
Testing BPEL Process Service Components

50-28

 </assert>
 </activityActions>
 <activityActions activityName="invokeCR">
 <assert comparisonMethod="number">
 <description>Make sure we got the output.</description>
 <expected>
 <location key="crOutput" partName="payload" xpath="/tns:rating"
 xmlns:tns="http://services.otn.com"/>
 <simple>560</simple>
 </expected>
 </assert>
 </activityActions>
</bpelTest>

For more information about creating assertions on BPEL process activities, see How to
Create Assertions.

50.5.2 Overview of a Fast Forward Action on a Wait Activity
A wait activity allows a process to wait for a given time period or until a time limit has been
reached. When testing a BPEL process service component, you may want to bypass the wait
activity to continue with testing. A fast forward action enables you to specify the amount of
time for which to bypass a wait activity and move forward in the test scenario. The following
example instructs the BPEL process to bypass the wait activity for 1 second.

<bpelTest xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://xmlns.oracle.com/sca/2006/test
 TestFwk.xsd"
 xmlns="http://xmlns.oracle.com/sca/2006/test"
 componentName="LoanBroker">
 <activityActions activityName="wait1">
 <fastForward duration="PT1S"/>
 </activityActions>
</bpelTest>

For more information about creating fast forward actions on wait activities, see How to
Bypass a Wait Activity.

50.5.3 Overview of Assert Activity Execution
You can specify and validate the number of times an activity is executed in a BPEL process.
The following example instructs the BPEL process to execute the invoke, elementAssign,
invokeCR, and replyOutput activities one time each.

<bpelTest xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns="http://xmlns.oracle.com/sca/2006/test"
 componentName="LoanBroker">
 <assertActivityExecuted activityName="invoke" executionCount="1"/>
 <assertActivityExecuted activityName="elementAssign" executionCount="1"/>
 <assertActivityExecuted activityName="invokeCR" executionCount="1"/>
 <assertActivityExecuted activityName="replyOutput" executionCount="1"/>
</bpelTest>

For more information about creating assert activity executions, see How to Specify the
Number of Times to Execute an Activity.

Chapter 50
Testing BPEL Process Service Components

50-29

50.5.4 How to Create BPEL Process Service Component Tests
To create BPEL process service component tests:

1. Double-click a BPEL process in a test suite (for this example, LoanBroker).

If you have not yet created a test suite, see Creating Test Suites and Test Cases
with the Create Composite Test Wizard. The BPEL process service component
test that you create is included in the overall test suite for the SOA composite
application.

The Create Component Test dialog is displayed, as shown in Figure 50-23.

Figure 50-23 Create Component Test Dialog

2. Accept the default name or enter a different name, as shown in Figure 50-23.

3. Click OK.

The BPEL process in test mode is displayed, as shown in Figure 50-24.

In the lower left section, the Structure window displays the Asserts, Fast
Forwards, and Assert Execution Counts folders. You can right-click these
folders to create assertions, fast forwards (to bypass executions of wait activities),
and assertion execution counts, respectively.

Above the designer, the following buttons are displayed:

• BPEL: Click to access the BPEL process service component in design mode
of Oracle BPEL Designer (that is, in nontest mode). This button is currently
enabled in Figure 50-24 because you are in test mode for the BPEL process.

• Monitor: Click to configure BPEL process monitors in Oracle BPEL Designer.
BPEL process monitors can send data to Oracle BAM for analysis and
graphical display through the Oracle BAM adapter.

• Test: This button is currently disabled because you are in test mode for the
BPEL process service component. This button is enabled when you click the
BPEL button to enter design mode in Oracle BPEL Designer.

• Analytics: Click to create a uniform measurement mechanism across Oracle
SOA Suite components such as Oracle BPMN, human workflow, and BPEL
processes for collecting disparate data.

Chapter 50
Testing BPEL Process Service Components

50-30

Figure 50-24 BPEL Process Service Component in Test Mode

50.5.5 How to Create Assertions
You can create assertions for variables and faults in BPEL process activities.

To create assertions:

1. Select the activity on which to create an assertion through one of the following methods:

a. In the Structure window, right-click the Asserts folder and select Create, or select the
Asserts folder and click the Add button.

The Assert dialog is displayed.

b. In the Activity Name field, click the Browse icon to select an activity.

or

a. Right-click a specific BPEL activity in the designer, and select Edit Activity Test
Data.

b. Click the Asserts tab.

c. Click the Add icon.

The activity you selected is displayed in the Activity Name field.

2. Enter details in the remaining fields, as shown in Table 50-14.

Table 50-14 Assertions on BPEL Activities

Field Value

Assert Variable Select to assert a variable.

Assert Fault Select to assert a fault.

Chapter 50
Testing BPEL Process Service Components

50-31

Table 50-14 (Cont.) Assertions on BPEL Activities

Field Value

Target Select a target to assert:

• If you selected Assert Variable, click the Browse icon to select the
type of variable to assert (for example, /autoloan:loanApplication/
autoloan:SSN).

• If you selected Assert Fault, click the Browse icon to select the type
of fault to assert (for example, NegativeCredit).

Compare By If comparing XML documents, specify the strictness of the comparison:

• XML Identical: Use when the comparison between the elements and
attributes of the XML documents must be exact. If there is any
difference between the two XML documents, the comparison fails.
For example, the comparison fails if one document uses an element
name of purchaseOrder, while the other uses an element name of
invoice. The comparison also fails if the child attributes of two
elements are the same, but the attributes are ordered differently in
each element.

• XML Similar: Use when the comparison must be similar in content,
but does not need to exactly match. For example, the comparison
succeeds if both use the same namespace URI, but have different
namespace prefixes. The comparison also succeeds if both contain
the same element with the same child attributes, but the attributes
are ordered differently in each element.

In both of these examples, the differences are considered
recoverable, and therefore similar.

If comparing variables, specify the type:

• String: Select to compare string values.
• Pattern Match Using Java Regular Expressions: Select to

compare a regular expression pattern (for example, [0-9]*). Java
Development Kit (JDK) regular expression (regexp) constructs are
supported. For example, entering a pattern of ab[0-9]*cd means
that a value of ab123cd or ab456cd is correct. An asterisk (*)
indicates any number of occurrences.

• Number: Select to compare numeric values.

Parts Select the message part containing the XML document (for example,
payload).

Value Create an XML document whose content is compared to the assert target
content:

• Enter Manually Click to manually enter message data in the Enter Value field. A
Generate Instance Sample icon enables you to automatically generate a
sample file for testing. Click the Save As icon to save the sample file.

• Load From File Click the Browse icon to load message data from a file. The file is added
to the messages folder in the Applications window.

Description Enter an optional description.

3. Click OK.

Expand the Assert folder in the Structure window to view the activities on which
you have created asserts. Figure 50-25 provides details.

Chapter 50
Testing BPEL Process Service Components

50-32

Figure 50-25 Assert Folder in Structure Window

50.5.6 How to Bypass a Wait Activity
You can specify the amount of time for which to bypass a wait activity and move forward in
the test scenario. Once the time limit expires, the wait activity is processed.

To bypass a wait activity:

1. Select the wait activity to bypass through one of the following methods:

a. In the Structure window, right-click the Fast Forwards folder and select Create, or
select the Fast Forwards folder and click the Add button.

The Fast Forward dialog is displayed.

b. In the Activity Name field, click the Browse icon to select the wait activity.

or

a. Right-click a specific wait activity in the designer, and select Edit Activity Test Data.

b. Click the Fast Forward tab. This tab is only displayed if there are wait activities in the
BPEL process.

c. Click the Add icon.

The wait activity you selected is displayed in the Activity Name field.

2. In the Duration list, specify a time period for which to bypass the wait activity (for
example, 1 second).

3. Click OK.

Chapter 50
Testing BPEL Process Service Components

50-33

4. Expand the Fast Forwards folder in the Structure window to view the amount of
time for which to bypass the wait activity and move forward in the test scenario.
Figure 50-26 provides details.

Figure 50-26 Fast Forwards Folder in Structure Window

For more information about wait activities, see Setting an Expiration Time with a Wait
Activity .

50.5.7 How to Specify the Number of Times to Execute an Activity
You can specify to execute an activity a specified number of times. This provides a
method for verifying that an activity executes the correct number of times in a process
flow (for example, ensuring that a while activity executes the correct number of times).

To specify the number of times an activity is executed:

1. Select the activity to execute through one of the following methods:

a. In the Structure window, right-click the Assert Execution Counts folder and
select Create, or select the Assert Execution Counts folder and click the
Add button.

The Assert Execution Count dialog is displayed.

b. In the Activity Name field, click the Browse icon to select the activity to
execute.

or

a. Right-click a specific BPEL activity in the designer, and select Edit Activity
Test Data.

b. Click the Assert Execution Count tab.

c. Click the Add icon.

The activity you selected is displayed in the Activity Name field.

Chapter 50
Testing BPEL Process Service Components

50-34

2. In the Count list, select a value.

3. Click OK.

The Activity Test Data dialog looks as shown in Figure 50-27.

Figure 50-27 Activity Test Data Dialog

4. Expand the Assert Execution Counts folder in the Structure window to view execution
counts assigned to activities. Figure 50-28 provides details.

Figure 50-28 Assert Execution Counts Folder in the Structure Window

50.6 Deploying and Running a Test Suite
After creating a test suite of test cases, you deploy the suite as part of a SOA composite
application. You then run the test suites from Oracle JDeveloper, Oracle Enterprise Manager
Fusion Middleware Control, an Oracle WebLogic Scripting Tool (WLST) script, or an ant
command.

Chapter 50
Deploying and Running a Test Suite

50-35

50.6.1 How to Deploy and Run a Test Suite from Oracle JDeveloper
You can run a test suite from Oracle JDeveloper. After test suites are created, you can
select multiple test suites to run, an individual test suite to run, or an individual test in a
test suite to run.

To deploy and run a test suite from Oracle JDeveloper:

1. Perform the appropriate task shown in Table 50-15.

Table 50-15 Test Suite Execution Options

To... In the Applications Window...

Run the test suite currently
open in test mode in the
SOA Composite Editor.

a. Click the Run Test icon above the SOA Composite
Editor.

Run all test suites. a. Right-click the testsuites folder, and select Run Test
Suites.

Run an individual test
suite.

a. Right-click the test suite name, and select Run Test
Suite.

Chapter 50
Deploying and Running a Test Suite

50-36

Table 50-15 (Cont.) Test Suite Execution Options

To... In the Applications Window...

Run an individual test in a
test suite.

a. Right-click the individual test in the tests folder, and
select Run Test.

If you have not configured the test server to use, the Specify Test Server dialog is
displayed.

2. Enter the test server host name and optionally select the Do not ask again, save it in
Tools-> Preferences-> SOA check box. This prevents this dialog from being displayed
again until you go to Tools > Preferences > SOA and change the configuration.

3. Click OK.

The Test Run dialog is displayed.

4. Perform the following steps:

a. Specify the test run name.

b. Select or deselect tests to run.

c. Specify the timeout value in seconds for running tests on the test server.

d. Click OK.

Figure 50-29 provides details.

Chapter 50
Deploying and Running a Test Suite

50-37

Figure 50-29 Test Run Dialog

A check is made to see if the SOA composite application (including the tests) has
ever been deployed on the test server. You must first deploy the composite before
you can run tests on the test server.

5. Perform the steps shown in Table 50-16 based on the deployment status of the
SOA composite application.

Table 50-16 Check to Determine if the SOA Composite Application is
Deployed

If the SOA Composite
Application ...

Then ...

Is deployed. Go to Step 6.

• Has never been deployed on the
test server.

• Has been deployed on the test
server, but the composite
(including the tests) has been
changed since the last
deployment.

The Confirm to Deploy Composite dialog is
displayed.

a. Click OK to deploy the SOA composite
application.

The Deployment Action page of the Deploy
Project_Name wizard is displayed.

b. Select Deploy to Application Server.

c. Follow the pages of the wizard to deploy the
SOA composite application to an application
server.

For information about deploying SOA
composite applications, see Deploying the
Profile.

d. When deployment is complete, go to Step 6.

After deployment has completed, the tests run on the test server.

Chapter 50
Deploying and Running a Test Suite

50-38

6. View the test results. Figure 50-30 provides details. The Test Results dialog is per test
server and composite DN. The test server URL (the SOA server host name and port
number) and composite DN are displayed in the top right corner to indicate the context.
You can run tests as many times as you want, and can select different test combinations
to run on the same test server or different test servers.

Figure 50-30 Test Results Dialog

Test results are displayed in three collapsible tables, from master to details. Table 50-17
provides details.

Chapter 50
Deploying and Running a Test Suite

50-39

Table 50-17 Test Results Tables

Test Runs Test Cases Assert Results

Shows the current test run
and its status summary if you
just submitted a test run. If
you just queried the test
server for test runs, the table
shows all test runs matching
your query criteria.

• Name of the test run
that you entered in the
Test Run dialog.

• Status of the test run:
either passed or failed.
The status is passed if
all test cases in the test
run passed. Otherwise,
the status is failed,
which means at least
one test case failed.

• Success percentage of
the test run.

• Total number of test
cases.

• Number of passed,
failed, in error, and
running test cases.

• Start and end times for a
test run.

Shows all test cases and the
statuses of the selected test
run from the Test Runs
table. Click the Refresh
button to refresh the test
case statuses.

• Test file name of the test
case. Click to access its
test editor.

• Status of the test case,
either passed or failed.
The status is passed if
all assertions in the test
case passed. Otherwise,
the status is failed,
which means at least
one assertion failed.

• Test suite of the test
case.

Shows all assertion results of
the selected test case from
the Test Cases table.

• Assertion location. This
is the wire source
(service or reference) for
a wire assert and the
component (BPEL
process) activity name
for a component assert.
This is a hyperlink to the
location of the assert in
its test editor.
Figure 50-31 provides
details.

• Assertion status:
Passed or failed. The
status is passed if the
actual value matches
the expected value.

• Expected and actual
values of the assert.
This is a simple value if
it is a simple value
assert and a hyperlink to
a popup to show the
XML value if it is an XML
value assert.

• Error message if the
status is failed.

• Assertion type: either
wire or component. Wire
means to assert on a
composite wire.
Component means to
assert within a
component (BPEL
process).

• Assertion description
that you entered for the
assertion when created.

Chapter 50
Deploying and Running a Test Suite

50-40

Figure 50-31 Assertion XML Results

7. Perform the following additional tasks in the Test Runs table in Figure 50-30:

a. Click the Search icon above the Test Runs table to query test runs from the test
server by specifying search criteria.

b. Click the Refresh icon above the Test Runs table to refresh the status of test runs.

8. Perform the following additional tasks in the Test Cases table in Figure 50-30:

a. Click the Refresh icon above the Test Cases table to refresh the test case statuses.

9. Perform the following additional tasks in the Asserts Results table in Figure 50-30:

a. Select the Show Failures Only check box above the Asserts Results table to show
failed asserts only.

50.6.2 How to Deploy and Run a Test Suite from Oracle Enterprise
Manager Fusion Middleware Control

For information about deploying a SOA composite application and running a test suite from
Oracle Enterprise Manager Fusion Middleware Control, see Administering Oracle SOA Suite
and Oracle Business Process Management Suite.

50.6.3 How to Deploy and Run a Test Suite with a WLST Command
For information about using the sca_test WLST command to execute a test suite, see
Section "sca_test" of WLST Command Reference for SOA Suite.

Chapter 50
Deploying and Running a Test Suite

50-41

50.6.4 How to Deploy and Run a Test Suite with an ant Script
For information about using the ant-sca-test.xml ant script to execute a test suite,
see How to Use ant to Automate the Testing of a SOA Composite Application.

Chapter 50
Deploying and Running a Test Suite

50-42

Part IX
Advanced Topics

This part describes advanced topics.

This part contains the following chapters:

• Managing Large Documents and Large Numbers of Instances

• Customizing SOA Composite Applications

• Defining Composite Sensors

• Creating Dynamic Business Processes

• Integrating the Spring Framework in SOA Composite Applications

51
Managing Large Documents and Large
Numbers of Instances

This chapter describes the best practices for managing large documents and metadata and
managing environments with large numbers of instances in Oracle SOA Suite. It also
describes use cases for handling large documents, limitations on concurrent processing of
large documents, and tuning recommendations.
This chapter includes the following sections:

• Best Practices for Handling Large Documents

• Best Practices for Handling Large Metadata

• Best Practices for Handling Large Numbers of Instances

For more information about Oracle SOA Suite tuning and performance, see Tuning
Performance.

For information about troubleshooting Oracle SOA Suite issues, see Chapter
"Troubleshooting Oracle SOA Suite and Oracle BPM Suite" of Administering Oracle SOA
Suite and Oracle Business Process Management Suite.

For information about using Oracle Data Integrator to perform fast bulk data movement and
handle complex data transformations, visit the following URL:

http://www.oracle.com/technetwork/middleware/data-integrator

51.1 Best Practices for Handling Large Documents
This section describes the following scenarios for handling large documents and the best
practice approach for each scenario. Oracle recommends that you follow these best practices
before developing and executing large payloads.

51.1.1 Use Cases for Handling Large Documents
This section describes use cases for handling large documents.

51.1.1.1 Passing Binary Objects as Base64-Encoded Text in XML Payloads
This section describes use cases for passing binary objects as Base64-encoded text in the
XML payload.

51.1.1.1.1 SOAP Inline

In this use case, the binary attachments (for example, an image) are Base64-encoded as text
and then passed inline in the XML document. Table 51-1 provides details.

51-1

http://www.oracle.com/technetwork/middleware/data-integrator

Table 51-1 Capabilities

Capability Description

Security Supported.

Filter/Transformation/Assign Use of transformations may lead to slower performance, out-
of-memory errors, or both.

Fanout Supported.

Binding WS binding sends it as a document object model (DOM).

Oracle BPEL Process
Manager/Oracle Mediator

Can be decoded in a BPEL process using Java exec.

51.1.1.1.2 SOAP MTOM

In this use case, the binary attachments (for example, an image) are Base64-encoded
as text and then passed as a Message Transmission Optimization Mechanism
(MTOM) document. Table 51-2 provides details.

Table 51-2 Capabilities

Capability Description

Security Supported.

Filter/Transformation/Assign Assign activities are supported.

Fanout Supported.

Binding WS binding materializes the attachment sent as MTOM and
puts it inside in Base64-encoded format (streaming is not
supported).

Oracle BPEL Process
Manager/Oracle Mediator

No additional work is required.

51.1.1.1.3 Opaque Passed by File/FTP Adapters

In this use case, the binary attachments (for example, an image) are Base64-encoded
as text and then passed inline in the XML document. Table 51-3 provides details.

Table 51-3 Capabilities

Capability Description

Security Not supported.

Filter/Transformation/Assign Pass through.

Fanout Supported.

Binding Adapter encodes it to Base64 format.

Oracle BPEL Process
Manager/Oracle Mediator

Supported. Opaque content cannot be manipulated in an
assign or a transform activity.

Chapter 51
Best Practices for Handling Large Documents

51-2

51.1.1.1.4 Opaque Passed by Oracle B2B

In this use case, the binary attachments (for example, an image) are Base64-encoded as text
encoded. Table 51-4 provides details.

Table 51-4 Capabilities

Capability Description

Security Not supported.

Filter/Transformation/Assign Pass through.

Fanout Supported.

Oracle B2B Oracle B2B encodes the native payload to Base64 format. For this
scenario, you must configure the Oracle B2B binding document
definition handling to be opaque.

51.1.1.2 End-to-End Streaming with Attachments
This section describes use cases for end-to-end streaming of attachments.

Note:

Direct Internet Message Encapsulation (DIME) attachments are not supported.

51.1.1.2.1 SOAP with Attachments

In this use case, the binary attachments (for instance, an image) are passed end-to-end as a
stream. Table 51-5 provides details.

Table 51-5 Capabilities

Capability Description

Security Not supported.

Filter/Transformation/Assign Pass through. You must use an XPath extension function in Oracle
BPEL Process Manager.

Binding WS binding creates stream iterators for the SOAP attachment.

Oracle BPEL Process Manager/
Oracle Mediator

Oracle Mediator can perform a pass through without materializing it.
Oracle BPEL Process Manager persists it.

Tuning Manage the database tablespace when using with Oracle BPEL
Process Manager.

WSDL code for defining SOAP
with attachments

<mime:part>
 <mime:content part="bin" type=“image/jpeg"/>
</mime:part>

Chapter 51
Best Practices for Handling Large Documents

51-3

Note:

• You cannot stream attachments as part of a web service callback
response.

• The spring service component does not support processing MIME
attachments. Only MTOM attachments are supported.

• You can use various binding components such as direct binding, web
services, and so on to process large attachments. However, processing
large attachments with direct binding is not recommended and results in
out-of-memory errors.

51.1.1.2.2 Working with Streaming Attachments
Oracle Fusion Middleware web services enable you to pass large attachments as a
stream. Unlike the JAX-RPC API, which treats attachments as if they are entirely in
memory, streams make the programming model more efficient to use. Streams also
enhance performance and scalability because there is no need to load the attachment
into memory before service execution.

As with embedded attachments, streamed attachments conform to the multipart MIME
binary format. Embedded attachments refer to inlined/encoded attachments.

On the wire, messages with streamed attachments are identical to any other SOAP
message with attachments.

The following example provides a sample message with a streamed attachment. The
first part in the message is the SOAP envelope (<SOAP-ENV:Envelope...). The second
part is the attachment (for this example, myImage.gif).

MIME-Version: 1.0
Content-Type: Multipart/Related; boundary=MIME_boundary; type=text/xml;
Content-Description: This is the optional message description.

--MIME_boundary
Content-Type: text/xml; charset=UTF-8
Content-Transfer-Encoding: 8bit
Content-ID: NotSure/DoesntMatter

<?xml version='1.0' ?>
<SOAP-ENV:Envelope
xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">
<SOAP-ENV:Body>
. . .
<DocumentName>MyImage.gif</DocumentName>
. . .
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

--MIME_boundary
Content-Type: image/gif
Content-Transfer-Encoding: binary
Content-ID: AnythingYoudLike

...binary GIF image...
--MIME_boundary--

Chapter 51
Best Practices for Handling Large Documents

51-4

51.1.1.2.3 Creating Composites that Use MIME Attachments
Perform the following procedures to create composites that use MIME attachments.

To create composites that use MIME attachments:

1. Create a composite using a payload schema (for example, an inbound web service wired
to an Oracle Mediator wired to an outbound web service).

2. Within the WSDL file of Oracle Mediator, perform the following steps:

a. From the WSDL designer, open the Oracle Mediator WSDL file.

b. Drag and drop bindings into the middle swimlane.

c. Select the RPC binding.

d. Enter a name.

e. Go to Source view of the WSDL and modify the WSDL input and WSDL output with
MIME multiparts.

<wsdl:input>
 <mime:multipartRelated>
 <mime:part>
 <soap:body parts="payload" use="literal"/>
 </mime:part>
 <mime:part>
 <mime:content part="bin" type="application/octet-stream"/>
 </mime:part>
 </mime:multipartRelated>
</wsdl:input>

f. Add the MIME part in the request/response message.

<wsdl:message name="BPELProcess1RequestMessage">
 <wsdl:part name="payload" element="ns1:purchaseOrder" />
 <!--add below part-->
 <wsdl:part name="bin" type="xsd:base64Binary"/>
</wsdl:message>

g. Add a namespace in the WSDL definitions.

xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:mime="http://schemas.xmlsoap.org/wsdl/mime/">

When complete, the WSDL that references a MIME attachment is displayed.

<wsdl:definitions
 name="PhotoCatalogService"
 targetNamespace="http://examples.com/PhotoCatalog"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:types="http://examples.com/PhotoCatalog/types"
 xmlns:mime="http://schemas.xmlsoap.org/wsdl/mime/"
 xmlns:tns="http://examples.com/PhotoCatalog">
 <wsdl:message name="addPhotoRequest">
 <wsdl:part name="photo" type="xsd:hexBinary"/>
 </wsdl:message>
 <wsdl:message name="addPhotoResponse">
 <wsdl:part name="status" type="xsd:string"/>
 </wsdl:message>
 <wsdl:message name="replacePhotoRequest">

Chapter 51
Best Practices for Handling Large Documents

51-5

 <wsdl:part name="oldPhoto" type="xsd:string"/>
 <wsdl:part name="newPhoto" type="xsd:hexBinary"/>
 </wsdl:message>
 <wsdl:message name="replacePhotoResponse">
 <wsdl:part name="status" type="xsd:string"/>
 </wsdl:message>
 <wsdl:portType name="PhotoCatalog">
 <wsdl:operation name="addPhoto">
 <wsdl:input message="tns:addPhotoRequest"/>
 <wsdl:output message="tns:addPhotoResponse"/>
 </wsdl:operation>
 <wsdl:operation name="replacePhoto">
 <wsdl:input message="tns:replacePhotoRequest"/>
 <wsdl:output message="tns:replacePhotoResponse"/>
 </wsdl:operation>
 </wsdl:portType>
 <wsdl:binding name="PhotoCatalogBinding" type="tns:PhotoCatalog">
 <soap:binding style="document"
transport="http://schemas.xmlsoap.org/soap/http"/>
 <wsdl:operation name="addPhoto">
 <wsdl:input>
 <mime:multipartRelated>
 <mime:part>
 <soap:body use="literal"/>
 </mime:part>
 <mime:part>
 <mime:content part="photo"
 type="image/jpeg"/>
 </mime:part>
 </mime:multipartRelated>
 </wsdl:input>
 <wsdl:output>
 <mime:multipartRelated>
 <mime:part>
 <soap:body use="literal"/>
 </mime:part>
 <mime:part>
 <mime:content part="status" type="text/plain"/>
 <mime:content part="status" type="text/xml"/>
 </mime:part>
 </mime:multipartRelated>
 </wsdl:output>
 </wsdl:operation>
 <wsdl:operation name="replacePhoto">
 <wsdl:input>
 <mime:multipartRelated>
 <mime:part>
 <soap:body parts="oldPhoto" use="literal"/>
 </mime:part>
 <mime:part>
 <mime:content part="newPhoto"
 type="image/jpeg"/>
 </mime:part>
 </mime:multipartRelated>
 </wsdl:input>
 <wsdl:output>
 <soap:body parts="status" use="literal"/>
 </wsdl:output>
 </wsdl:operation>
 </wsdl:binding>
</wsdl:definitions>

Chapter 51
Best Practices for Handling Large Documents

51-6

51.1.1.2.4 Performance Overhead and Pass Through Attachments
Because Oracle Mediator is stateless, there is no performance overhead with pass through
attachments. However, Oracle BPEL Process Manager dehydrates attachments and has
performance overhead, even for pass through attachments. When using Oracle BPEL
Process Manager for attachments over a period, the SOA Infrastructure schema can grow to
its maximum size and encounter memory issues. It is recommended that you extend the
database tablespace appropriately for the SOA Infrastructure schema to accommodate large
attachments. Simultaneously, you can use purge scripts to purge completed instances along
with the attachments table.

For information about purge scripts, see Administering Oracle SOA Suite and Oracle
Business Process Management Suite.

For information about extending tablespaces, see Section "Extending Tablespaces to Avoid
Problems at Runtime" of Administering Oracle SOA Suite and Oracle Business Process
Management Suite.

In scenarios in which one BPEL process calls a second BPEL process within the same
composite, the second BPEL process does not dehydrate the same attachment again.

In scenarios in which one BPEL process from composite 1 invokes a second BPEL process
from composite 2 and optimization is disabled, composite 1 makes a SOAP call to composite
2. The second BPEL process does dehydrate attachments.

51.1.1.2.5 Properties for Streaming Attachments
To stream attachments, add the following properties in the composite.xml file. If optimization
is enabled, then a native call is used instead of a SOAP call. The following example provides
details.

<binding.ws
port="http://services.otn.com#wsdl.endpoint(MIMEService/MIMEService)"
xmlns:ns="http://xmlns.oracle.com/sca/1.0"
streamIncomingAttachments="true" streamOutgoingAttachments="true">
<!--Add this prop to reference bindings to make a SOAP call. -->
<property name="oracle.webservices.local.optimization">false</property>
</binding.ws>

For information about the oracle.webservices.local.optimization property, see Policy
Attachments and Local Optimization in Composite-to-Composite Invocations and Configuring
Local Optimization in Administering Oracle SOA Suite and Oracle Business Process
Management Suite.

Note:

Oracle Web Services Manager (OWSM) does not inspect or enforce policies on
streamed attachments. For more information about OWSM, see Administering Web
Services.

Chapter 51
Best Practices for Handling Large Documents

51-7

51.1.1.2.6 Streaming Attachments from the SOA Web Service Binding Layer
You can receive the error shown in the following example when steaming attachments
from the SOA web service (WS) binding layer.

java.lang.OutOfMemoryError: Java heap space
 at java.util.Arrays.copyOf(Arrays.java:2271)
 at java.io.ByteArrayOutputStream.grow(ByteArrayOutputStream.java:113)
 at
java.io.ByteArrayOutputStream.ensureCapacity(ByteArrayOutputStream.java:93)
 at
java.io.ByteArrayOutputStream.write(ByteArrayOutputStream.java:140)
 at

To resolve this error, add the following properties in the composite.xml file for service
and reference binding components.

• streamIncomingAttachments="true"
• streamOutgoingAttachments="true"
See the preceding section for information about setting these properties.

51.1.1.2.7 Reading and Encoding SOAP Attachment Content
The ora:getAttachmentContent function reads SOAP attachment content and
encodes that data in Base64 format in a BPEL process by providing the BPEL variable
as an argument, which has an href of the SOAP attachment. The following example
shows how to use this function:

<copy>
 <from expression="ora:getAttachmentContent('input','bin')"/>
 <to variable="initiateTaskInput" part="payload"
 query="/taskservice:initiateTask/task:task/task:attachment/task:content"/>
</copy>

The preceding example copies the attachment content, which has its href stored in
the "input/bin" variable, to the content variable in Base64-encoded format.

51.1.1.2.8 Sending Attachment Streams
Oracle BPEL Process Manager supports sending the attachment stream to multiple
receivers. For Oracle BPEL Process Manager to send a stream to multiple receivers, it
must read the attachment stream from the database using the readBinaryFromFile
XPath function and pass the stream to the appropriate targets.

With the default configuration, Oracle Mediator can pass an attachment stream to only
one target receiver, which can be another component or a web service/adapter. The
second target cannot receive the attachment. When you define the
persistStreamAttachment property for the Oracle Mediator component, Oracle
Mediator can pass an attachment stream to multiple target receivers.

Oracle Mediator requires the persistStreamAttachment property for streaming
attachments where the source message that contains the attachment is shared by
multiple target receivers. Set this property to true in composite.xml to enable the
streaming of attachments to multiple targets. The following example provides details.

Chapter 51
Best Practices for Handling Large Documents

51-8

component name="Mediator1">
 <implementation.mediator src="Mediator1.mplan"/>
 <property name="persistStreamAttachment">true</property>
</component>

51.1.1.2.9 Overriding Pass Through Settings for Attachments in Oracle Mediator
Oracle Mediator automatically propagates attachments to target receivers for Oracle Mediator
components that are pass through (that is, they do not contain a transformation or assign
rule), and it does not propagate attachments for Oracle Mediator components that are not
pass through. The passThroughAttachment property lets you override the pass through
settings just for attachments. Setting this property to true copies all attachments to the target
receiver implicitly.

Use this property to propagate attachments when the Oracle Mediator component is not a
pass through, or use it to block attachments when the Oracle Mediator component is pass
through. To implement the pass through attachment override, add the property to the project's
composite.xml file in the component element for the Oracle Mediator component. Set the
property to true to override an Oracle Mediator component that is not pass through. Set it to
false to override a pass through component. The following example provides details:

<component name="Mediator">
 <implementation.mediator src="Mediator.mplan"/>
 <property name="passThroughAttachment">true</property>
</component>

51.1.1.2.10 Sharing Attachments Using Synchronous Flows
When Oracle BPEL Process Manager-based composites share attachments using
synchronous flows, it is necessary to use the same end-to-end transaction. This is applicable
to composites that are colocated and use local/optimized calls. This can be achieved by
setting the property shown in the following example on all the called BPEL components
(callees) in the call chain:

<property name="bpel.config.transaction" many="false"
type="xs:string">required</property>

If such composites do not execute as part of the same transaction context, the attachment
data saved by the first BPEL component in the call chain is not visible to the other BPEL
components in the call chain. In addition, they incur database locking and timeout exceptions:

"ORA-02049: timeout: distributed transaction waiting for lock"

51.1.1.2.11 Attachment Options of File/FTP Adapters

In this use case, the adapter streams the binary data to a database store and publishes an
href to the service engine (Oracle BPEL Process Manager or Oracle Mediator). Table 51-6
provides details.

Table 51-6 Capabilities

Capability Description

Security N/A.

Filter/Transformation/Assign Filters and transformations on the attachment are not supported.

Chapter 51
Best Practices for Handling Large Documents

51-9

Table 51-6 (Cont.) Capabilities

Capability Description

Fanout Supported.

Binding The adapter streams the non-XML to the database as a binary large
object (BLOB) and passes the key to the service engines.

Oracle BPEL Process Manager/
Oracle Mediator

Supported.

Tuning • Extend the database tablespace for the Oracle SOA Suite
schema.

• Delete the attachments after message processing completion.

Documentation See Understanding Technology Adapters.

Writing Attachments Using an Outbound File Adapter

The following example shows a sample schema that can be used by the file adapter to
write attachments to disk:

<?xml version="1.0" encoding="windows-1252" ?>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns="http://xmlns.oracle.com/attachment"
 targetNamespace="http://xmlns.oracle.com/attachment"
 elementFormDefault="qualified">
 <xsd:element name="attach">
 <xsd:complexType>
 <xsd:attribute name="href" type="xsd:string"/>
 </xsd:complexType>
 </xsd:element>
</xsd:schema>

Use Oracle Mediator in the flow to map the attachment part from the source (Oracle
Mediator) to the target (file adapter) using an Oracle Mediator assign.

If you use Oracle BPEL Process Manager, the attachment is written to the dehydration
store, which slows down the process.

Transforming Attachments with the ora:doStreamingTranslate XPath Function

Use of the ora:doStreamingTranslate XPath function is only recommended while
transforming attachments within an Oracle BPEL Process Manager or Oracle Mediator
service component. This function expects the attachment location to be a relative path
on the server. This function cannot translate incoming attachment streams.

For more information about this function, see doStreamingTranslate.

51.1.1.2.12 Oracle B2B Attachment

In this use case, Oracle B2B stores the binary data to a database and publishes an
href to the service engine (Oracle BPEL Process Manager or Oracle Mediator) based
on an Oracle B2B-defined XSD. Oracle B2B protocols define the attachment.
Table 51-7 provides details.

Chapter 51
Best Practices for Handling Large Documents

51-10

Table 51-7 Capabilities

Capability Description

Security N/A.

Filter/Transformation/Assign Filters and transformations on the attachment are not supported.

Fanout Supported.

Binding Oracle B2B passes it as an href key to service engines.

Tuning Extend the database tablespace for the Oracle SOA Suite schema.

51.1.1.3 Sending and Receiving MTOM-Optimized Messages to SOA Composite
Applications

Within a SOA composite application, you must attach the Oracle WS-MTOM policy to service
and reference binding components to receive and send MTOM (MIME binary) optimized
messages. When a service binding component (defined under binding.ws in the
composite.xml file) is configured with an Oracle WS-MTOM policy, Oracle SOA Suite's
MTOM message handling feature is used. When a reference binding component (also
defined under binding.ws in the composite.xml file) is configured with an Oracle MTOM
policy, Oracle SOA Suite sends MTOM-optimized messages.

Note the following issues with MTOM attachments:

• When attachments are inline and encoded, Oracle recommends that you not use the file
adapter to write attachments to a file.

• The default mtomThreshold value is 1024 bytes and cannot be modified. If an attachment
is less than 1024 bytes, for outbound configurations, Oracle SOA Suite sends it as an
inline attachment. If the size is greater than 1024 bytes, then the attachment is sent as an
attachment part with an href attribute in the message, and is sent as a WSDL-defined
format on the wire. However, if the incoming request (for example, from a different web
services provider) has an xop href node for small binary data (that is, size is less than
1024 bytes), Oracle SOA Suite uses the same href attribute in the payload in the flow
trace. For example:

<xop:Include xmlns:xop="http://www.w3.org/2004/08/xop/include"
 href="cid:e29caf23dc8045908451fdfaafa26dce" />

• If a service binding component of a composite does not include an Oracle WS-MTOM
policy reference, this indicates that the service can accept non-MTOM messages. This
indicates that the calling composite (the appropriate reference binding) does not have an
Oracle WS-MTOM policy reference and can send out non-MTOM messages to that
service.

• MTOM streaming of attachments is not supported by Oracle SOA Suite.

• MTOM attachments are supported only with web service bindings. Other bindings (for
example, HTTP bindings) are not supported.

• Oracle Mediator pass through scenarios are supported. If Oracle Mediator does not
contain any transformation or assign statements, it is known as a pass through Oracle
Mediator. The message and attachment received are propagated to the target without
modifying the payload and attachment. Likewise, multiple MTOM attachments in the
same message can be sent and received by Oracle SOA Suite.

Chapter 51
Best Practices for Handling Large Documents

51-11

• Oracle recommends that you not use both streaming and the MTOM message
handling feature for sending and receiving attachments. Use either streaming or
the MTOM message handling feature.

Note:

If the input is of type text/xml, there is no significant decrease in file
size when sending files in MTOM format.

• As a best practice, Oracle recommends that you not use the XSLT Map Editor to
propagate binary data. Instead, use an assign activity. If you must use a style
sheet to propagate binary data, it is recommended that you use the xsl:copy-of
instruction (copy-of copies everything, including attributes) or use custom
functions to copy attributes from source to target.

• MTOM attachments should not be gigabytes in size. Instead, use the SOAP with
attachments streaming feature for very large attachments. For more information,
see SOAP with Attachments.

51.1.1.3.1 Scenarios for Storing SwA and MTOM-Optimized Attachments to the Database

When a SOA composite application with a BPEL process receives an MTOM-
optimized SOAP message, the attachment contents of each of the MTOM-optimized
elements (the ones with an <xop href="">) are stored in the dehydration store.
Similarly, when receiving a SOAP message with attachments (SwA) message with one
or more attachments, each attachment is stored in the dehydration store. These
attachments can then be passed around by reference using an href attribute that
identifies them in the database. In fact, all of the text content of these attachment
elements is removed and replaced by this href attribute. For MTOM-optimized
messages, the same value of the incoming href attribute from the <xop> element is
reused. Similarly, for SwA, the href attributes of the attachment elements are reused.

The attachments are stored in the dehydration store when the message is delivered to
the BPEL process service engine. (when the incoming message is saved into the
DLV_MESSAGE table). Therefore, it is applicable only for one-way and asynchronous
BPEL processes with bpel.config.oneWayDeliveryPolicy set to async.persist (the
default value) in the composite.xml file.

Attachments are not persisted in the following use cases:

• If the SOAP message was received by a synchronous BPEL process or a one-
way/asynchronous BPEL process with bpel.config.oneWayDeliveryPolicy set to
sync or async.cache.

• Contents of all elements within the SOAP request with inline binary content are not
persisted, but passed as-is. (That is, they do not have a child element
<xop:Include>, but do have a base64 encoded string as a child.) An MTOM-
optimized message can be a mix of one or more elements that have inline base64
data, and one or more elements that are XOP-packaged, at any level.

Chapter 51
Best Practices for Handling Large Documents

51-12

Note:

Even if the service binding component is MTOM-enabled, it does not automatically
indicate that the service receives MTOM-optimized messages. The calling service/
application must send MTOM-optimized messages over the wire to ensure the
message is received. MTOM-enabled bindings can also receive ordinary non-
MTOM messages. Therefore, when it receives one, the SOAP requests arriving into
the service can have nonoptimized inline binary data elements that are not be
persisted into the database.

Even though the content of the MTOM-optimized elements or SwA attachments have their
value replaced by an href attribute at runtime, their design-time WSDLs still remain
unaltered. You do not see these changes in Oracle JDeveloper. Their element type definitions
do not change from hexBinary, base64Binary, and so on to that of an empty content with an
href attribute.

However, this is transparent to you. For instance, when you use an assign activity to copy
across their content, the href values are copied over at runtime. Similarly, when invoking an
outbound reference such as a web service or an adapter, Oracle SOA Suite automatically
resolves the href attribute to the actual data and executes the invocation.

51.1.1.4 Processing Large XML with Repeating Constructs
This section describes use cases for processing large XML with repeating constructs.

51.1.1.4.1 Debatching with the File/FTP Adapter

In this use case, the inbound adapter splits a source document into multiple batches of
records, each of which initiates a composite instance. Table 51-8 provides details.

Table 51-8 Capabilities

Capability Description

Security N/A.

Filter/Transformation/Assign Supported.

Fanout Supported.

Binding The file/FTP adapter debatches it to a small chunk based on the
native XSD (NXSD) definition.

Oracle BPEL Process Manager/
Oracle Mediator

Supported.

Tuning For repeating structures, XSLT is supported for scenarios in which
the repeating structure is of smaller payloads compared to the
overall payload size. Substitution with assign activities is preferred,
as it performs a shadow copy.

Documentation See Understanding Technology Adapters.

51.1.1.4.2 Chunking with the File/FTP Adapters

Chapter 51
Best Practices for Handling Large Documents

51-13

In this use case, a loop within a BPEL process reads a chunk of records at a time and
process (that is, cursor). Table 51-9 provides details.

Table 51-9 Capabilities

Capability Description

Security Supported.

Filter/Transformation/Assign Supported.

Fanout Supported.

Oracle BPEL Process
Manager/Oracle Mediator

Supported only from Oracle BPEL Process Manager.

Documentation See Understanding Technology Adapters.

51.1.1.5 Processing Large XML Documents with Complex Structures
This section describes use cases for processing very large XML documents with
complex structures.

51.1.1.5.1 Streaming with the File/FTP Adapters

In this use case, very large XML files are streamed through Oracle SOA Suite.
Table 51-10 provides details.

Table 51-10 Capabilities

Capability Description

Security N/A.

Filter/Transformation/Assign Supported, but must optimize to avoid issues.

Fanout Supported.

Binding The adapter streams the payload to a database as an SDOM
and passes the key to the service engines.

Documentation See Understanding Technology Adapters.

51.1.1.5.2 Oracle B2B Streaming

In this use case, large XML files are passed by Oracle B2B to Oracle SOA Suite as an
SDOM. This only occurs when a large payload size is defined in the Oracle B2B user
interface. Table 51-11 provides details.

Table 51-11 Capabilities

Capability Description

Security N/A.

Filter/Transformation/Assign Supported, but must optimize to avoid issues.

Fanout Supported.

Chapter 51
Best Practices for Handling Large Documents

51-14

Table 51-11 (Cont.) Capabilities

Capability Description

Binding Oracle B2B streams the payload to a database as SDOM and
passes the key to the service engines.

Oracle BPEL Process
Manager/Oracle Mediator

Can use an XPath extension function to manipulate the
payload.

51.1.2 Limitations on Concurrent Processing of Large Documents
This section describes the limitations on concurrent processing of large documents.

51.1.2.1 Opaque Schema for Processing Large Payloads
There is a limitation when you use an opaque schema for processing large payloads. The
entire data for the opaque translator is converted to a single Base64-encoded string. An
opaque schema is generally used for smaller data. For large data, use the attachments
feature instead of the opaque translator.

51.1.3 JVM Memory Sizing Recommendations for SOA Composite
Applications

Sending messages with payloads that are 100 MB or larger in size can exceed JVM heap
size limits if not correctly tuned.

For example, when sending large payloads in the event delivery network (EDN) with Oracle
advanced queueing (AQ) JMS, ensure that you set the maximum memory value by first
testing with a typical message payload size and a maximum potential message size. Using a
lesser memory value can result in an ORACLE.JMS.AQJMSEXCEPTION error. For example, to
send a payload of 100 MB, it is recommended that you change the JTA time out and
maximum memory to 5 GB.

For more information about tuning the JVM heap size, see General Tuning
Recommendations and Section "Java HotSpot VM Heap Size Options" of Tuning
Performance of Oracle WebLogic Server.

51.1.4 General Tuning Recommendations
This section provides general tuning recommendations.

For more information about Oracle SOA Suite tuning and performance, see Tuning
Performance.

51.1.4.1 General Recommendations
This section provides general tuning recommendations.

• Increase the JTA transaction timeout to 500 seconds in Oracle WebLogic Server
Administration Console. For instructions, see section "Resolving Connection Timeouts" of
Administering Oracle SOA Suite and Oracle Business Process Management Suite.

Chapter 51
Best Practices for Handling Large Documents

51-15

• In Oracle Enterprise Manager Fusion Middleware Control, set the audit level to Off
or Production at the SOA composite application level. See Setting Audit Levels
from for Large Payload Processing for additional information.

• Uncomment the following line in setDomainEnv.sh (for Linux) or
setDomainEnv.bat (for Windows) for JAVA_OPTIONS, and restart the server. If this
line does not exist, add it. Without this setting, large payload scenarios fail with a
ResourceDisabledException error for the dehydration data source.

-Dweblogic.resourcepool.max_test_wait_secs=30
• Update the heap size in setSOADomainEnv.sh or setDomainEnv.bat as follows:

DEFAULT_MEM_ARGS="-Xms1024m -Xmx2048m"
• Use optimized translation functions, which are available while performing

transformations and translations of large payloads (for example,
ora:doTranslateFromNative, ora:doTranslateToNative,
ora:doStreamingTranslate, and so on).

For information about these functions, see XPath Extension Functions.

• Extend data files for handling large attachments.

• Increase the HTTP POST timeout for SocketException: Broken pipe errors in
Oracle WebLogic Server Administration Console. See Increasing the HTTP POST
Timeout

• If you are processing large documents and run into timeout errors, perform the
following tasks:

– Increase the timeout property value.

– Increase the Stuck Thread Max Time property value.

For more information, see Increasing the Timeout Value.

51.1.4.1.1 Increasing the HTTP POST Timeout
Increase the HTTP POST timeout for SocketException: Broken pipe errors in Oracle
WebLogic Server Administration Console.

1. From the Domain Structure, select soainfra > servers > server_name >
Protocols > HTTP.

2. In the Post Timeout field, enter 120 (maximum).

51.1.4.1.2 Increasing the Timeout Value
Increase the timeout property value as follows:

1. Log in to Oracle Web Services Manager Administration Console.

2. Navigate to Deployments > soa-infra > EJBs.

3. Click each of the following beans, select Configuration, and increase the timeout
value:

• BpelEngineBean

• BpelDeliveryBean

• CompositeMetaDataServiceBean

Chapter 51
Best Practices for Handling Large Documents

51-16

To increase the Stuck Thread Max Time property value:

Follow the instructions in Chapter "Using the WebLogic 8.1 Thread Pool Model" of Tuning
Performance of Oracle WebLogic Server.

51.1.4.2 Setting Audit Levels from Oracle Enterprise Manager for Large Payload
Processing

For large payload processing, turn off audit level logging for the specific composite. You can
set the composite audit level option to Off or Production in Oracle Enterprise Manager
Fusion Middleware Control. If you set the composite audit level option to Development, it
serializes the entire large payload into an in-memory string, which can lead to an out-of-
memory error.

For more information about setting audit levels, see Administering Oracle SOA Suite and
Oracle Business Process Management Suite.

51.1.4.3 Using the Assign Activity in Oracle BPEL Process Manager and Oracle
Mediator

When using the assign activity in Oracle BPEL Process Manager or Oracle Mediator to
manipulate large payloads, do not assign the complete message. Instead, assign only the
part of the payload that you need.

In addition, when using the assign activity in Oracle BPEL Process Manager, Oracle
recommends using local variables instead of process variables, wherever possible. Local
variables are limited to the scope of the BPEL process. These get deleted from memory and
from the database after you close the scope. However, the life cycle of a global variable is
tied with the instance life cycle. These variables stay in memory or remain on disk until the
instance completes. Thus, local variables are preferred to process or global variables.

51.1.4.4 Using XSLT Transformations on Large Payloads (For Oracle BPEL Process
Manager)

Until 11g Release 1 11.1.1.3, for XSLT operations in Oracle BPEL Process Manager, the
result was cached into memory as a whole document in binary XML format. For large
document processing, this caused out-of-memory errors. Starting with 11g Release 1
11.1.1.4, a the streamResultToTempFile property was added. This property enables XSLT
results to be streamed to a temporary file and then loaded from the temporary file. Set
streamResultToTempFile to yes when processing large payload using XSLT. The default
value is no.

This property is applicable when using the following BPEL XPath functions:

• ora:processXSLT('template','input','properties'?)
• ora:doXSLTransformForDoc('template','input','name', 'value')

To configure large XML documents to be processed using XSLT:

1. Create a BPEL common properties schema. For example:

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema targetNamespace ="http://schemas.oracle.com/service/bpel/common"

Chapter 51
Best Practices for Handling Large Documents

51-17

 xmlns:common = "http://schemas.oracle.com/service/bpel/common"
 xmlns:xs = "http://www.w3.org/2001/XMLSchema"
 elementFormDefault="qualified" blockDefault="#all">

 <xs:element name="serviceProperties" type="common:PropertiesType"/>
 <xs:element name="anyProperties"
type="common:ArrayOfNameAnyTypePairType"/>
 <xs:complexType name="NameValuePairType">
 <xs:sequence>
 <xs:element name="name" type="xs:string"/>
 <xs:element name="value" type="xs:string"/>
 </xs:sequence>
 </xs:complexType>
 <xs:complexType name="ArrayOfNameValuePairType">
 <xs:sequence>
 <xs:element name="item" type="common:NameValuePairType"
 maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:complexType>
 <xs:complexType name="NameAnyTypePairType">
 <xs:sequence>
 <xs:element name="name" type="xs:string"/>
 <xs:element name="value" type="xs:anyType"/>
 </xs:sequence>
 </xs:complexType>
 <xs:complexType name="ArrayOfNameAnyTypePairType">
 <xs:sequence>
 <xs:element name="item" type="common:NameAnyTypePairType"
 maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:complexType>
 <xs:complexType name="PropertiesType">
 <xs:sequence>
 <xs:element name="property" type="common:NameValuePairType"
 maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:complexType>
 <xs:complexType name="ArrayOfAnyTypeType">
 <xs:sequence>
 <xs:element name="item" type="xs:anyType" maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:complexType>
</xs:schema>

2. Within a BPEL process, add the namespace in the import section:

xmlns:common = "http://schemas.oracle.com/service/bpel/common"
3. Create a global variable (for this example, named propertiesXMLVar):

<variable name="propertiesXMLVar" element="common:anyProperties"/>
4. Set the streamResultToTempFile property to yes. This assign activity should exist

before performing an XSLT transformation.

<assign name="Assign_xsltprop">
 <copy>
 <from>
 <common:anyProperties>
 <common:item>
 <common:name>streamResultToTempFile</common:name>
 <common:value>yes</common:value>
 </common:item>

Chapter 51
Best Practices for Handling Large Documents

51-18

 </common:anyProperties>
 </from>
 <to variable="propertiesXMLVar"/>
 </copy>
</assign>

51.1.4.5 Using XSLT Transformations on Large Payloads (For Oracle Mediator)
Until 11g Release 1 11.1.1.3, for XSLT operations in Oracle Mediator, the result was cached
into memory as a whole document in binary XML format. For large document processing, this
caused out-of-memory errors. Starting with 11g Release 1 11.1.1.4, the
streamResultToTempFile property was added. This property enables XSLT results to be
streamed to a temporary file and then loaded from the temporary file. Set
streamResultToTempFile to yes when processing large payloads using XSLT. The default
value is no.

Note:

This property is recommended only for processing large payloads. Enabling this
property could reduce performance for normal payloads.

To configure large XML documents to be processed using XSLT:

1. Create an Oracle SOA Suite project with an Oracle Mediator component.

2. Open the composite.xml file for the project in Source view.

3. In the composite.xml file, scroll to the component element that defines the Oracle
Mediator component to process large XML documents, and add the
streamResultToTempFile property. Set the property to yes as shown below.

<component name="Mediator1">
 <implementation.mediator src="Mediator1.mplan"/>
 <property name="streamResultToTempFile">yes</property>
</component>

4. Save and close the file.

51.1.4.6 Using XSLT Transformations for Repeating Structures
In scenarios in which the repeating structure is of smaller payloads compared to the overall
payload size, Oracle recommends using XSLT transformations because the current XSLT
implementation materializes the entire DOM in memory. For example, use
PurchaseOrder.LineItem.Supplier (a subpart of a large payload).

You can also substitute it with the assign activity, as it performs a shadow copy. Although a
shadow copy does not materialize DOM, it creates a shadow node to point to the source
document.

You can also use the following optimized translation functions while performing
transformations/translations of large payloads:

• ora:doTranslateFromNative or med:doTranslateFromNative
• ora:doTranslateToNative or med:doTranslateToNative

Chapter 51
Best Practices for Handling Large Documents

51-19

• ora:doStreamingTranslate or med:doStreamingTranslate
For more information about these functions, see XPath Extension Functions and
Understanding Technology Adapters.

51.1.4.7 Processing Large Documents in Oracle B2B
For processing large documents in Oracle B2B, tune the following parameters:

• mdsCache
• Cache Size
• Protocol Message Size
• Number of threads
• Stuck Thread Max Time
• Tablespace
• Large payload size

The following sections describe the parameters you must set for processing large
documents in Oracle B2B. For more information, see Section "Using Document
Streams to Handle Large Payloads" of Using Oracle B2B.

51.1.4.7.1 MDSInstance Cache Size

To set the Oracle Metadata Services (MDS) Repository instance cache size, use
Oracle Enterprise Manager Fusion Middleware Control. This property depends on the
size of the metadata. Specify a value based on the metadata/endpoint count. The
default value is 100000. For information, see Section "Setting B2B Configuration
Properties in Fusion Middleware Control" of Using Oracle B2B.

51.1.4.7.2 Protocol Message Size

If Oracle B2B wants to send or receive more than 10 MB of message or the import/
export configuration is more than 10 MB, then change the following setting accordingly
at the Oracle WebLogic Server Administration Console:

To configure the protocol message size:

1. In the Domain Structure, select Environment > Servers.

2. In the Name column of the table, select soa_server.

3. Select the Protocols tab.

4. Change the value for Maximum Message Size.

This setting can also be added/modified in the $DOMAIN_HOME/config/config.xml file
next to the server name configuration, as shown in the following example:

<name>soa_server1</name>
<max-message-size>150000000</max-message-size>

Chapter 51
Best Practices for Handling Large Documents

51-20

Note:

By default, max-message-size is not available in the config.xml file.

51.1.4.7.3 Number of Threads

This parameter improves the message processing capability of Oracle B2B and must be set
in the Oracle Enterprise Manager Fusion Middleware Control. For more information, see
Section "Configuring Oracle B2B Server Properties" of Administering Oracle SOA Suite and
Oracle Business Process Management Suite.

• b2b.inboundThreadCount

• b2b.inboundSleepTime

• b2b.outboundThreadCount

• b2b.outboundSleepTime

• b2b.defaultThreadCount

51.1.4.7.4 Stuck Thread Max Time Parameter

The Stuck Thread Max Time parameter checks the number of seconds that a thread must
continually work before the server considers the thread stuck. You must change the following
setting in the Oracle WebLogic Server Administration Console:

To configure the Stuck Thread Max Time parameter:

1. In the Domain Structure, select Environment > Servers.

2. In the Name column of the table, select soa_server.

3. Select the Tuning tab.

4. Change the value for Stuck Thread Max Time.

51.1.4.7.5 Tablespace

If you must store more than a 150 MB configuration in the data file, then you must extend or
add the data file to increase the tablespace size, as shown in the following example:

ALTER TABLESPACE sh_mds add DATAFILE 'sh_mds01.DBF' SIZE 100M autoextend on next
 10M maxsize unlimited;
ALTER TABLESPACE sh_ias_temp add TEMPFILE 'sh_ias_temp01.DBF' SIZE 100M autoextend
 on next 10M maxsize unlimited;

51.1.4.8 Setting a Size Restriction on Inbound Web Service Message Size
If you want to set a size restriction on inbound web service message size, configure the
binding component property max-message-size in the composite.xml file. The property value
is made available to the underlying web service infrastructure, which uses the value to test
against the incoming message size. If the value specified is exceeded, an exception is thrown
indicating that the message size is too large and the transaction is not processed. The
following example provides details:

Chapter 51
Best Practices for Handling Large Documents

51-21

<composite name="LrgMsg" revision="1.0" label="2011-09-08_22-53-53_259"
 mode="active" state="on">
 <import namespace="http://xmlns.oracle.com/LargeMsg/LrgMsg/BPELProcess1"
 location="BPELProcess1.wsdl" importType="wsdl"/>
 <service name="bpelprocess1_client_ep" ui:wsdlLocation="BPELProcess1.wsdl">
 <interface.wsdl
 interface="http://xmlns.oracle.com/LargeMsg/LrgMsg/BPELProcess1# wsdl.interface
(BPELProcess1)"/>

<binding.ws port="http://xmlns.oracle.com/LargeMsg/LrgMsg/BPELProcess1
 #wsdl.endpoint(bpelprocess1_client_ep/BPELProcess1_pt)">
 <property name="max-message-size" type="xs:integer" many="false"
 override="may">4</property>
</binding.ws>
</service>

 <component name="BPELProcess1" version="1.1">
 <implementation.bpel src="BPELProcess1.bpel"/>
 </component>

 <wire>
 <source.uri>bpelprocess1_client_ep</source.uri>
 <target.uri>BPELProcess1/bpelprocess1_client</target.uri>
 </wire>
</composite>

51.1.4.9 Using XPath Functions to Write Large XSLT/XQuery Output to a File
System

You can use the following functions to write the results of large XSLT/XQuery
operations to a temporary file in a directory system. The document is then loaded from
the temporary file when needed. This eliminates the need for caching an entire
document as binary XML in memory.

• ora:processXSLT
• ora:doXSLTransformForDoc
With the ora:processXSLT function, you use the properties argument to enable this
functionality.

ora:processXSLT('template','input','properties'?)

You retrieve the value of this argument within your XSLT in a way similar to extracting
data from XSL variables. The properties argument is an XML element of the structure
shown in the example that follows. For large payload results (for example, above 10
MB), set streamResultToTempFile to yes. For small payload results in which you do
not need to write results to a temporary file, leave this property set to its default value
of no.

<propertiesXMLVar>
 <common:item xmlns:common="http://schemas.oracle.com/service/bpel/common">
 <common:name>streamResultToTempFile</common:name>
 <common:value>yes</common:value>
 </common:item>
</propertiesXMLVar>

Within the XSLT, the parameters are accessible through the name of
streamResultToTempFile and its value of yes.

Chapter 51
Best Practices for Handling Large Documents

51-22

In Oracle BPEL Process Manager, a literal assign is performed to populate the properties for
ora:processXSLT('template','input','properties'?).

For more information about using this function, see processXSLT.

With the ora:doXSLTransformForDoc function, you set the name and value properties to
enable this functionality.

ora:doXSLTransformForDoc('template','input','name', 'value')

With this function, the name of streamResultToTempFile and the value of yes are passed.

For more information about using the function, see doXSLTransformForDoc.

51.2 Best Practices for Handling Large Metadata
This section provides recommendations for handling large metadata.

51.2.1 Boundary on the Processing of Large Numbers of Activities in a
BPEL Process

There is a limit to the number of activities that can be executed in a BPEL process. When you
exceed this limit, system memory fills up, which can cause timeouts to occur. For example,
with the following parameters, two fault instances occur due to a timeout:

• 100 threads

• 1 second of think time

• 1000 incoming request messages

Keep the number of incoming request messages at a proper level to ensure system memory
stability.

51.2.2 Using Large Numbers of Activities in BPEL Processes (Without
FlowN)

To deploy BPEL processes that have a large number of activities (for example, 50,000), the
following settings are required:

MEM_ARGS: -Xms512m -Xmx1024m -XX:PermSize = 128m -XX:MaxPermSize = 256m
Number of Concurrent Threads = 20
Number of Loops = 5 Delay = 100 ms

The above settings enable you to deploy and execute BPEL processes, which use only while
loops without the flowN activities, successfully.

51.2.3 Using Large Numbers of Activities in BPEL Processes (With FlowN)
To deploy BPEL processes that have a large number of activities (for example, 50,000), the
following settings are required:

USER_MEM_ARGS: -Xms2048m -Xmx2048m -XX:PermSize=128m -XX:MaxPermSize=256m
Number of Concurrent Threads= 10
Number of Loops=5 Delay=100 ms

Chapter 51
Best Practices for Handling Large Metadata

51-23

Set the StatsLastN property to -1 in the System MBean Browser of Oracle Enterprise
Manager Fusion Middleware Control.

The above settings enable you to deploy and execute BPEL processes, which use the
flowN activities, successfully.

For more information, see Customizing the Number of Flow Activities with the flowN
Activity in BPEL 1.1 and Section "Configuring BPEL Process Service Engine
Properties" of Administering Oracle SOA Suite and Oracle Business Process
Management Suite.

51.2.4 Using a Flow With Multiple Sequences
BPEL processes that have up to 7000 activities can be deployed and executed
successfully with the following settings:

USER_MEM_ARGS: -Xms2048m -Xmx2048m -XX:PermSize=128m -XX:MaxPermSize=256m

Note:

If you deploy BPEL processes with more than 8000 activities, Oracle BPEL
Process Manager compilation throws errors.

51.2.5 Using a Flow with One Sequence
BPEL processes that have up to 7000 activities can be deployed and executed
successfully with the following settings:

USER_MEM_ARGS: -Xms2048m -Xmx2048m -XX:PermSize=128m -XX:MaxPermSize=512m

Note:

If you deploy BPEL processes with more than 10,000 activities, the process
compilation fails.

51.2.6 Using a Flow with No Sequence
You can deploy and execute BPEL processes that have a large number of activities
(for example, up to 5000) successfully.

There is a probability that the BPEL process compilation may fail for 6000 activities.

51.2.7 Large Numbers of Oracle Mediators in a Composite
Oracle recommends that you not have more than 50 Oracle Mediators in a single
composite. Increase the JTA Transaction timeout to a high value based on the
environment.

Chapter 51
Best Practices for Handling Large Metadata

51-24

51.2.8 Importing Large Data Sets in Oracle B2B
Oracle recommends that you do not use browsers for large data set imports, and that you
use the command line utility. The following utility commands are recommended for large data
configuration:

• purge: Purges the entire repository.

• import: Imports the specified ZIP file.

• deploy: Deploys an agreement with whichever name is specified. If no name is specified,
then all the agreements are deployed.

However, the purgeimportdeploy option is not recommended for transferring or deploying
the Oracle B2B configuration.

For more information, see Using Oracle B2B.

51.3 Best Practices for Handling Large Numbers of Instances
This section provides recommendations for handling large numbers of instance and fault
metrics.

51.3.1 Instance and Rejected Message Deletion with the Purge Script or
Oracle Enterprise Manager Fusion Middleware Control

You can delete thousands of instances and rejected messages with the PL/SQL purge script
or from the Auto Purge page in Oracle Enterprise Manager Fusion Middleware Control.

For more information, see Administering Oracle SOA Suite and Oracle Business Process
Management Suite.

Chapter 51
Best Practices for Handling Large Numbers of Instances

51-25

52
Customizing SOA Composite Applications

This chapter describes how to customize SOA composite applications with the customization
feature available with a BPEL process service component. It describes how to create a
customizable application, customize the vertical version of the application, and customize the
customer version of the application. It also describes how to upgrade to the next version of
the application.
This chapter includes the following sections:

• Introduction to Customizing SOA Composite Applications

• Creating the Customizable Composite

• Customizing the Vertical Application

• Customizing the Customer Version

• Upgrading the Composite

52.1 Introduction to Customizing SOA Composite Applications
This section describes the life cycle for customizing SOA composite applications. For
example, assume the following organizations require use of the same composite, but with
slight modifications:

• A core applications development team

• A vertical applications team

• A customer

The core applications development team creates a base customizable composite and
delivers it to a vertical applications team that customizes it for a certain industry (for example,
telecommunications). The tailored solution is then sold to a telecommunications customer
that further customizes the composite for their specific geographic business needs.
Essentially, there is a base composite and several layers of customized composites. At a later
time in the composite life cycle, the core applications development team creates the next
version of the base composite, triggering an upgrade cycle for the vertical applications team
and the customer.

Layer values are the values for a given customization layer. It is a one-to-many relationship
from a layer to its layer values. You select a layer value from a layer to perform
customizations. For example, assume you specify a customization class representing a
customization layer called Country. You can then specify countries for its values, such as
USA, China, and India. When you restart Oracle JDeveloper in the Customization
Developer role to perform customizations, you must select one of the layer values (that is, a
country) of the layer from the Oracle JDeveloper Customization Context window such as USA,
which means you want to create the customization for that country.

52-1

52.2 Creating the Customizable Composite
This section provides an overview of the steps required for creating the customizable,
base SOA composite application.

52.2.1 How to Create Customization Classes
This section describes how to create customization classes. In this example, you
create a class for a customization layer named MyCustomizationLayer.

To create customization classes:

1. Invoke the Create Java Class Wizard in Oracle JDeveloper by selecting File >
From Gallery > General > Java.

2. Create a Java class extending from the following class:

oracle.tip.tools.ide.fabric.custom.GenericSOACustomizationClass
3. Provide the following content for the customization class.

package myCustomizationPackage;

import oracle.tip.tools.ide.fabric.custom.GenericSOACustomizationClass;

public class MyCustomizationClass extends GenericSOACustomizationClass {

 public MyCustomizationClass() {
 super();

 // set the customization layer name
 setName("MyCustomizationLayer");
 }
}

For the customization class to have the correct customization layer, the
customization layer name must be set by adding the following to the constructor
without parameters:

 // set the customization layer name
 setName("MyCustomizationLayer");

You can also optionally remove the constructor with parameters.

The Create Java Class Wizard automatically generates the following content:

package myCustomizationPackage;

import oracle.tip.tools.ide.fabric.custom.GenericSOACustomizationClass;

public class MyCustomizationClass extends GenericSOACustomizationClass {
 public MyCustomizationClass(String string, String string1) {
 super(string, string1);
 }

 public MyCustomizationClass() {
 super();
 }
}

Chapter 52
Creating the Customizable Composite

52-2

To make the customization class effective, compile the customization class by building
the SOA project.

4. In the Applications window, right-click the SOA project and select Build
SOA_project_name.jpr.

5. Ensure that the build succeeds by reviewing the output in the Log window at the bottom
of Oracle JDeveloper.

52.2.2 How to Create the Customizable Composite
To create the customizable composite:

1. Start Oracle JDeveloper and select the Default Role.

2. From the File menu, select New > Applications > SOA Application, and click OK.

3. Follow the steps in the Create SOA Application wizard.

4. In the Configure SOA Settings dialog of the Create SOA Application wizard (Step 3 of 3),
select both Composite With BPEL Process and the Customizable check box, and click
Finish.

5. Design the BPEL process.

Note:

If you design a transformation, note the following customization restrictions in
the XSLT Map Editor:

• The Create in Template option that is displayed by right-clicking a node in
the target panel is disabled.

• The Test XSL Map option is disabled for the call templates and apply
templates for imported XSL files. This option works for named templates,
but not for template rules with a match attribute.

6. Customize the BPEL process by creating a scope activity. This action is required
because by default the BPEL process is not customizable.

Note:

You can only customize the composite.xml file, .bpel file (for Oracle BPEL
Process Manager), .xsl map file, and .mplan file (for Oracle Mediator) when
logged into Oracle JDeveloper with the Customization Developer role.

7. Right-click the scope and select Customizable. If you expand the scope and right-click it,
you do not see the Customizable option.

8. In the Applications window, expand Application Resources > Descriptors > ADF
META_INF.

9. Open the adf-config.xml file and select the MDS tab.

10. Click the Add icon to add the required customization classes, as shown in Figure 52-1.

Chapter 52
Creating the Customizable Composite

52-3

In real environments, the customization classes are provided by the core
applications team, as described in the example scenario in Introduction to
Customizing SOA Composite Applications. When you use your own customization
classes, you must add your customization class JAR file to your project to make
the classes available for the adf-config.xml file.

Figure 52-1 Customization Classes

11. Right-click the SOA project and select Deploy.

Note:

You can receive a compilation error if your scope activity is empty. You
can drag an empty activity into the scope activity to pass compilation.

12. On the Deployment Action page, select Generate SAR File. This creates a JAR
file package. This JAR is also known as a SOA archive (SAR).

13. Check the application into a source code control system. The file is now ready for
delivery to the vertical applications team.

For information on how to write customization classes, see Developing Fusion Web
Applications with Oracle Application Development Framework.

52.2.3 How to Add an XSD or WSDL File
To add an XSD or WSDL file:

You can add an XML schema or WSDL document in Oracle JDeveloper when logged
in with the Customization Developer role.

Chapter 52
Creating the Customizable Composite

52-4

1. Right-click the Oracle SOA Suite project in the Applications window.

2. Select SOA.

3. Select the artifact to create:

• Create XML Schema

Invokes the Create XML Schema dialog for adding a new XML schema file in the
project. When complete, the new schema file automatically opens.

• Create WSDL Document

Invokes the Create WSDL dialog to add a new WSDL file in the project.

52.2.4 How to Search for Customized Activities in a BPEL Process
You can search for customized activities in a BPEL process in Oracle JDeveloper.

To search for customized activities:

1. Access Oracle JDeveloper using the Customization Developer role.

2. In the Search menu for the BPEL process at the top of the designer, select
Customization Search, as shown in Figure 52-2.

Figure 52-2 Customization Search Option

The search results display in the Search for Customizations tab of the Log window at
the bottom of the designer.

52.2.5 What You May Need to Know About Resolving Validation Errors in
Oracle JDeveloper

In the customization role, the Oracle Metadata Services (MDS) Repository merges
customizations with the base metadata. The merging can result in an invalid XML document
against its schema. MDS Repository merging does not invoke a schema validation to ensure
that the merging always creates a valid XML document. This can cause a problem for MDS
clients that rely on the validity of the metadata to render their metadata UI editors.

Whenever a SOA file such as composite.xml becomes invalid, you must switch to Source
view in Oracle JDeveloper to directly fix the XML source. If Source view is not editable (for
example, you have accessed Oracle JDeveloper using the Customization Developer role),
you must use the Structure window in Oracle JDeveloper to fix the XML source.

For example, assume you created a base SOA composite application with a BPEL process
that included a customizable scope. The SAR file for the base application was then imported

Chapter 52
Creating the Customizable Composite

52-5

into a new application in which the following components were added when accessing
Oracle JDeveloper with the Customization Developer role:

• An outbound file adapter

• An invoke activity (added to the customizable scope) for invoking the file adapter

When version two of the base SOA composite application was created, a synchronous
Oracle Mediator service component was added, which caused the routing rules to the
BPEL process service component to be updated.

The SAR file for version two of the base application was then imported into the
customized application. When the user accessed Oracle JDeveloper with the
Customization Developer role, an invalid composite error was displayed. The
composite.xml file in the Structure window showed the following invalid structure for
the sequence of service components and reference binding components. The
following example provides details:

<component> </component>
<reference> </reference>
<component> </component>

The <reference> component (in this case, the outbound file adapter added when the
user accessed Oracle JDeveloper with the Customization Developer role in version
one of the base application) should have displayed last. The following example
provides details.

<component> </component>
<component> </component>
<reference> </reference>

To resolve this error, go to the Structure window and copy and paste these
components into the correct order. This action resolves the composite validation error.

52.2.6 What You May Need to Know About Resolving a Sequence
Conflict

This section provides an example of how to resolve a sequence conflict.

To resolve a sequence complex:

1. Customize version 1 of a SOA composite application.

For example, while logged into Oracle JDeveloper with the Customization
Developer role, you add new activities into a customizable scope activity of the
BPEL process. The BPEL process creates a sequence activity into which the new
activities are added.

2. Create version 2 of the SOA composite application.

In the version 2 composite, if new activities are added into the same customizable
scope, a new sequence activity is created.

3. Import version 2 of the SOA composite application into a customized application.

4. Open Oracle JDeveloper in the Customization Developer role.

The following error is displayed:

Sequence element is not expected

Chapter 52
Creating the Customizable Composite

52-6

52.2.6.1 To resolve the conflict:
1. Go to the Structure window.

2. Expand the sequence.

3. Copy each component and paste it into another sequence.

4. Delete the components in the sequence from which they were copied.

5. Delete the sequence when it is empty.

52.2.7 What You May Need to Know About Compiling and Deploying a
Customized Application

When you deploy or compile a customized application at the core application, vertical
application, or customer level, warning messages describing unexpected ID attributes are
displayed, as shown in the following example. You can safely ignore these messages. These
messages display because the schema definition does not include these simple-type
elements, which is expected behavior. These messages do not prevent the customized
composite from being successfully deployed.

[scac] warning: in
 /scratch/qizhong/my-jdev/mywork/CompositeTestApp2/Project2/composite.xml(22,32):
 Schema validation failed for
 /scratch/qizhong/my-jdev/mywork/CompositeTestApp2/Project2/composite.xml<Line 22,
 Column 32>: XML-24535: (Error) Attribute
 'http://www.w3.org/XML/1998/namespace:id' not expected.
 [scac] warning: in
 /scratch/qizhong/my-jdev/mywork/CompositeTestApp2/Project2/composite.xml(23,32):
 Schema validation failed for
 /scratch/qizhong/my-jdev/mywork/CompositeTestApp2/Project2/composite.xml<Line 23,
 Column 32>: XML-24535: (Error) Attribute
 'http://www.w3.org/XML/1998/namespace:id' not expected.

52.3 Customizing the Vertical Application
This section provides an overview of the steps required for customizing the vertical SOA
composite application.

Note:

Do not customize the same SOA composite application for different layer values.
Layer values are the customizations made to the base composite, as described in
Introduction to Customizing SOA Composite Applications. Only a single layer value
for customization is supported. If you must support another layer value, always
import the base composite into a different project and change the composite name
to be specific to the layer value you want to customize. This approach is also useful
for deployments in which you do not want to deploy different layer values with the
same composite name.

Chapter 52
Customizing the Vertical Application

52-7

52.3.1 How to Customize the Vertical Application
To customize the vertical application:

1. Add the layer values for the customization layers through either of the following
methods:

a. To add application-specific layer values, click the Configure Design Time
Customization Layer Values link, as shown in Figure 52-3.

Figure 52-3 Configure Design Time Customization Layer Values Link

b. Add the layer values.

After you specify the values and save the file, the
CustomizationLayerValues.xml file is displayed in the MDS DT folder under
Application Resources. The customization class provides the layer name and
the CustomizationLayerValues.xml file provides the layer values. Both are
required. You can double-click the file in this location to open an editor for
making additional modifications.

or

a. To add global values applicable to all applications, open the
CustomizationLayerValues.xml file in $JDEV_HOME/jdeveloper/jdev and add
the layer values for the customization layers. For example, add the value
Communications to the industry layer.

<cust-layers xmlns="http://xmlns.oracle.com/mds/dt">
 <cust-layer name="industry">
 <cust-layer-value value="communications" display-
name="Communications"/>
 </cust-layer>
</cust-layers>

2. Start Oracle JDeveloper and select the Default Role.

3. Create a new SOA application with a different name than the core application.

4. From the File menu, select Import > SOA Archive Into SOA Project.

5. Click Browse to select the composite archive JAR file created by the core
application team in Creating the Customizable Composite.

6. In the Composite Name field, enter a different name than the core SOA project.

Chapter 52
Customizing the Vertical Application

52-8

Note:

Do not select any SOA project. You must create a new SOA project for the JAR
file that you import.

7. Select the Import for Customization check box.

8. In the Applications window, right-click the project, and select SOA > Customizable.

9. Restart Oracle JDeveloper.

The Customization Context dialog displays the available customization layers and layer
values.

10. Select a layer and value to customize, as shown in Figure 52-4 (for this example, layer
industry and value Communications are selected).

Figure 52-4 Customization Context

11. In the SOA Composite Editor, double-click the BPEL process to access Oracle BPEL
Designer.

You can only edit scope activities that have been set to customizable. In the example
shown in Figure 52-5, the core applications team set only one scope to be customizable.
The other activities in the BPEL process are disabled and cannot be edited.

Chapter 52
Customizing the Vertical Application

52-9

Figure 52-5 One Customizable Scope

12. Right-click the SOA project in the Applications window and select Deploy to create
a JAR file of the customized composite (SAR).

Since deployment is invoked with the customization role enabled, the base
composite with the appropriate layers based on the current customization context
is automatically merged.

13. Check in the application to a source code control system.

The JAR file contains a merged composite that in turn acts as a base process for
the next level of customization. The JAR file can now be delivered to the customer.

Note:

You can create WSDL and XSD files while logged into Oracle JDeveloper
with the Customization Developer role. In the Applications window, right-
click the project name and select SOA > Create WSDL Document or SOA >
Create XML Schema.

52.4 Customizing the Customer Version
This section provides an overview of the steps required for customizing the customer
version of the SOA composite application.

Chapter 52
Customizing the Customer Version

52-10

52.4.1 How to Customize the Customer Version
How to customize the customer version:

1. Add the layer values for the customization layers through either of the following methods:

a. To add application-specific layer values, click the Configure Design Time
Customization Layer Values link, as shown in Step 1 of Customizing the Vertical
Application.

b. Add the layer values.

After you specify the values and save the file, the CustomizationLayerValues.xml
file is displayed in the MDS DT folder under Application Resources. You can double-
click the file in this location to open an editor for making additional modifications.

or

a. To add global values applicable to all applications, open the
CustomizationLayerValues.xml file in $JDEV_HOME/jdeveloper/jdev and add the
layer values for the customization layers. For example, add the values North
America and Asia Pacific to the site layer.

<cust-layers xmlns="http://xmlns.oracle.com/mds/dt">
 <cust-layer name="site">
 <cust-layer-value value="communications" display-name="North America"/>
 <cust-layer-value value="communications" display-name="Asia Pacific"/>
 </cust-layer>
</cust-layers>

2. Start Oracle JDeveloper and select the Default Role.

3. Create a new SOA application with a different name than the core application or
customized application.

4. From the File menu, select Import > SOA Archive Into SOA Project.

5. Click Browse to select the composite archive JAR file created by the vertical applications
team in Customizing the Vertical Application.

6. Select the Import for Customization check box.

7. From the Tools menu, select Switch Roles > Customization Developer.

8. Restart Oracle JDeveloper.

The Customization Context dialog displays the available customization layers and layer
values.

9. Select a layer and value to customize, as shown in Figure 52-6 (for this example, the
layer site and value North America are selected).

Figure 52-6 Customization Context

Chapter 52
Customizing the Customer Version

52-11

10. Customize the BPEL process.

11. Right-click the SOA project and select Deploy to create a JAR file (SAR) for the
North American region.

12. Check the application into a source code control system.

52.5 Upgrading the Composite
This section provides an overview of the steps required for upgrading the SOA
composite application to the next version.

52.5.1 How to Upgrade the Core Application Team Composite
The core application team fixes bugs, makes product enhancements. and creates the
next version of the composite.

To upgrade the core application team composite:

1. Check out the application created in Creating the Customizable Composite from
source control.

2. Start Oracle JDeveloper and select the Default Role.

3. Make bug fixes and product enhancements.

4. Deploy the composite to create the next revision of the JAR file.

5. Deliver the JAR file to the vertical applications team.

52.5.2 How to Upgrade the Vertical Applications Team Composite
The vertical applications team customizes the new base composite to create a version
of the JAR file.

To upgrade the vertical applications team composite:

1. Check out the application created in Customizing the Vertical Application from
source control.

2. Start Oracle JDeveloper and select the Default Role.

3. Open the checked-out application.

4. Select the project node in the Applications window to set the current project
context. This is important because the import command in the next step imports
the SOA archive into the selected project to upgrade the base.

5. From the File menu in Oracle JDeveloper, import the new revision of the JAR file
created in How to Upgrade the Core Application Team Composite.

6. From the Tools menu, select Switch Roles > Customization Developer.

7. Restart Oracle JDeveloper.

8. In the Customization Context dialog, select a layer and value to customize (for
example, select the layer industry and value Communications).

9. Open the BPEL process to see if the new base composite can be merged with
layers for the above selected context.

10. Review the Log window for potential warnings and errors.

Chapter 52
Upgrading the Composite

52-12

11. If required, fix errors and warnings by modifying the process. This edits the layers behind
the scenes.

12. Deploy the composite to create the next revision of the customized JAR file and deliver it
to the customer for an upgrade.

52.5.3 How to Upgrade the Customer Composite
The customer follows the same procedures as the vertical applications team in How to
Upgrade the Vertical Applications Team Composite to apply their layers to the new base
composite.

Chapter 52
Upgrading the Composite

52-13

53
Defining Composite Sensors

This chapter describes how to define composite sensors that provide a method for
implementing trackable fields on messages in a SOA composite application. It describes how
to define sensors on binding components and on service components that have subscribed to
business events. It also describes restrictions on using composite sensors and how to
manage composite sensors during runtime in Oracle SOA Composer.
This chapter includes the following sections:

• Introduction to Composite Sensors

• Adding Composite Sensors

• Monitoring Composite Sensor Data During Runtime

• Creating and Managing Composite Sensors During Runtime from Oracle SOA Composer

For information about activity, fault, and variable sensors in a BPEL process, see Using
Sensors and Analytics .

For examples of using composite sensors in business scenarios, see Understanding Oracle
SOA Suite.

53.1 Introduction to Composite Sensors
Composite sensors provide a method for implementing trackable fields on messages.
Composite sensors enable you to perform the following tasks:

• Monitor incoming and outgoing messages.

• Specify composite sensor details in the search utility of the Flow Instances pages for the
SOA Infrastructure, partition, and SOA composite application in Oracle Enterprise
Manager Fusion Middleware Control. This action enables you to display details about a
particular instance with a composite sensor.

• Publish JMS data computed from incoming and outgoing messages.

• Track composite instances initiated through business event subscriptions.

You define composite sensors on service and reference binding components or on service
components that have business event subscriptions in Oracle JDeveloper. This functionality
is similar to variable sensors in BPEL processes. During runtime, composite sensor data is
persisted in the database.

You can also define composite sensors during runtime in Oracle SOA Composer. Oracle SOA
Composer changes are picked up immediately by the runtime, whereas changes made using
Oracle JDeveloper require SOA composite application redeployment.

For information about searching for composite sensors in Oracle Enterprise Manager Fusion
Middleware Control, see Section "Tracking Business Flow Instances at the SOA
Infrastructure or Partition Level" of Administering Oracle SOA Suite and Oracle Business
Process Management Suite.

53-1

53.1.1 Restrictions on Use of Composite Sensors
Note the following restrictions on the use of composite sensors:

• Functions in XPath expressions cannot be used with properties.

• Any composite sensor that is defined by an expression always captures values as
strings. This causes the sensor type to always be a string. This action makes the
search possible.

Capturing values as strings may be useful when dealing with XML types derived
from a string. The following example provides details:

<xs:element name="CardNum">
 <xs:simpleType>
 <xs:restriction base="xs:string">
 <xs:length value="16"/>
 </xs:restriction>
 </xs:simpleType>
</xs:element>

Even if the expression is a number, it is captured as a string. You cannot use other
logical operators such as <, >, =, or any combination of these.

• Any composite sensor that is defined by a variable uses the variable type to
determine the sensor type. Sensors can be one of the following types:

– STRING
– NUMBER
– DATE
– DATE_TIME
– Complex XML

• Composite sensors only support two types of sensor actions: Enterprise Manager
and JMS.

• Header-based sensors are only supported for web service bindings.

• Sensor actions for Oracle B2B, service data objects (SDOs), web services
invocation framework (WSIF), and Oracle Business Activity Monitoring bindings
are not supported.

• When creating an XPath expression for filtering, all functions that return a node set
must be explicitly cast as a string:

xpath20:upper-case(string($in.request/inp1:updateOrderStatus/
inp1:orderStatus)) = "PENDING"

• Sensors cannot be configured on service components that publish business
events.

• Sensors based on business event headers are not allowed (only payloads are
allowed).

• PL/SQL subscriptions are not supported.

Chapter 53
Introduction to Composite Sensors

53-2

53.2 Adding Composite Sensors
You add sensors to the following components of a SOA composite application in the SOA
Composite Editor:

• Service or reference binding components

• Service components such as a BPEL process or Oracle Mediator that have subscribed to
business events

53.2.1 How to Add Composite Sensors
To add composite sensors:

1. Use one of the following options to add a composite sensor in the SOA Composite Editor:

• Option 1:

a. Right-click a specific service or reference binding component in the Exposed
Services or External References swimlane or a service component that has a
subscribed business event. A service component that has a subscribed business
event includes the word Subscribed on it.

b. Select Configure Sensors.

Note:

The service component must already have a subscribed business event
for the Configure Sensors option to be displayed.

If you selected a binding component, the Composite Sensors dialog displays the
details shown in Figure 53-1. For this example, a service binding component is
selected.

Chapter 53
Adding Composite Sensors

53-3

Figure 53-1 Composite Sensors Dialog for the Selected Binding
Component

If you selected a service component, the Composite Sensors dialog
displays the details shown in Figure 53-2.

Figure 53-2 Composite Sensors Dialog for the Selected Service
Component

c. Select the binding component or service component in the dialog, and
click the Add icon.

• Option 2:

a. Click the Composite Sensor icon above the SOA Composite Editor, as
shown in Figure 53-3.

Chapter 53
Adding Composite Sensors

53-4

Figure 53-3 Composite Sensor Icon

The Composite Sensors dialog for the SOA composite application appears, as
shown in Figure 53-4. This option displays all the service and reference binding
components and service components with subscribed business events in the
SOA composite application.

Figure 53-4 Composite Sensors Dialog

b. Select the specific service, reference, or business event to which to add a
composite sensor, then click the Add icon.

If you selected a binding component such as a service, the Create Composite Sensor
dialog appears as shown in Figure 53-5.

Chapter 53
Adding Composite Sensors

53-5

Figure 53-5 Create Composite Sensor Dialog for a Service Binding
Component

If you selected a service component that has a business event subscription, the
Create Composite Sensor dialog appears as shown in Figure 53-6.

Figure 53-6 Create Composite Sensor Dialog for a Service Component

Chapter 53
Adding Composite Sensors

53-6

2. Enter the details shown in Table 53-1.

Table 53-1 Create Composite Sensor Dialog

Name Description

Name Enter a name for the composite sensor. You must enter a name to enable the
Edit icon of the Expression field.

Service Displays the name of the service. This field is only displayed if you are
creating a composite sensor for a service binding component. This field
cannot be edited.

Service sensors monitor the messages that the service receives from the
external world or from another composite application.

Reference Displays the name of the reference. This field is only displayed if you are
creating a composite sensor for a reference binding component. This field
cannot be edited.

Reference sensors monitor the messages that the reference sends to the
external world or to another composite application.

Operation Select the operation for the port type of the service or reference. This field
only displays for service or reference binding components.

Event Displays the name of the service component. This field is only displayed if
you are creating a composite sensor for a service component. This field
cannot be edited.

Event sensors track composite instances initiated through a business event.
You can create multiple sensors per business event.

Event Type Displays the Subscribe business event type. This field cannot be edited. The
publish business event type is not supported.

Expression Click the Edit icon to display a dropdown list for selecting the type of
expression to create:

• Variables: Select to create an expression value for a variable. See How
to Add a Variable.

• Expression: Select to open the Expression Builder dialog for creating
an XPath expression. This action always captures values as strings. See
How to Add an Expression.

• Properties: Select to create an expression value for a normalized
message header property. These are the same properties that display
under the Properties tab of the invoke activity, receive activity, reply
activity, OnEvent branch of a scope activity (in BPEL 2.0), and
OnMessage branch of a pick activity and scope activity (in BPEL 2.0).
See How to Add a Property.

Filter Click the Edit icon to open the Expression Builder dialog to create an XPath
filter for the expression. You must first create an expression to enable this
field.

For example, you may create an expression for tracking purchase order
amounts over 10,000:

$in.inDict/tns:inDict/ns2:KeyValueOfstringstring/ns2:Value >
10000.00

Chapter 53
Adding Composite Sensors

53-7

Table 53-1 (Cont.) Create Composite Sensor Dialog

Name Description

Composite
Sensor Actions

Displays the supported sensor actions. This feature enables you to store
runtime sensor data. You can select both Enterprise Manager and either
JMS Queue or JMS Topic.

• Enterprise Manager
Select to make runtime sensor data searchable in the Flow Instances
tab of a SOA composite application in Oracle Enterprise Manager
Fusion Middleware Control. This selection is the same as the
DBSensorAction selection of previous releases.

Note: When Enterprise Manager is selected, sensor data is sent to the
trackable fields tables. When it is not selected, data is not sent. However,
in both cases, Oracle Enterprise Manager Fusion Middleware Control
still displays the fields that enable you to search for composite instances
based on that sensor.

For more information, see Administering Oracle SOA Suite and Oracle
Business Process Management Suite.

• JMS Queue
Select to store composite sensor data (XML payload) in a JMS queue.
You must specify the JMS connection factory and queue name.

• JMS Topic
Select to store composite sensor data (XML payload) in a JMS topic.
You must specify the JMS connection factory and topic name.

Notes: The JMS Queue and JMS Topic selections enable the composite
sensor data (XML payload) to be used by other consumers, including Oracle
Business Activity Monitoring (BAM) and Oracle Complex Event Processing.
Both selections use the native JMS support provided with Oracle WebLogic
Server, and not the Oracle SOA Suite JMS adapter described in
Understanding Technology Adapters. You can view JMS messages in the
Oracle WebLogic Server Administration Console.

3. Click OK.

For a service or reference binding component, a composite sensor icon displays
in the upper right corner, as shown in Figure 53-7.

Figure 53-7 Sensor Icon on Binding Component

For a service component, a composite sensor icon also displays in the upper
right corner, as shown in Figure 53-8.

Figure 53-8 Sensor Icon on Service Component

Chapter 53
Adding Composite Sensors

53-8

4. Place your cursor over the composite sensor icon to display details about the composite
sensor.

53.2.1.1 How to Add a Variable
The Select XPath Expression dialog shown in Figure 53-9 enables you to select an element
for tracking.

To add a variable:

1. Expand the tree and select the element to track (for this example, an order ID).

Figure 53-9 Variables

2. Click OK when complete.

53.2.1.2 How to Add an Expression
The Expression Builder dialog shown in Figure 53-10 enables you to create an expression for
tracking.

For more information, see Building XPath Expressions in the Expression Builder in Oracle
JDeveloper.

To add an expression:

1. Build an XPath expression of an element to track.

Chapter 53
Adding Composite Sensors

53-9

Figure 53-10 Expression

2. Click OK when complete.

Note:

For variables, Expression Builder inserts $in/variablename. If you are using
payload arguments in your expression, you must manually update this syntax
to $in.payload/variablename. For example:
concat($in.payload/element, '_', $in.payload/element2)

53.2.1.3 How to Add a Property
The Select Property dialog shown in Figure 53-11 enables you to select a normalized
message header property for tracking.

To add a property:

1. Select a normalized message header property to track.

Chapter 53
Adding Composite Sensors

53-10

Figure 53-11 Properties

2. Click OK when complete.

For more information about normalized messages, see Propagating Normalized Message
Properties Through Message Headers.

53.2.2 What You May Need to Know About Duplicate Composite Sensor
Names

Note the following details when using duplicate names for composite sensors.

• If you create composite sensors with duplicate names, the entire contents of their
definitions are compared. Duplicate names are permitted where one or more additional
parameters are different (for example, either different configuration types or different
expressions, filters, operation names, and so on). Something must be different in the
definitions for duplicate names to be permitted.

• If you have duplicate sensor definitions, only the last executed sensor value is persisted.
Therefore, you can use this type of configuration for mutually exclusive paths (for
example, a composite can be invoked through service 1 or service 2). Therefore, you can
define the same sensor name on both the services. However, if you define the same
names for service 1 and reference 1, only the sensor value from reference 1 (the last
executed sensor) is stored.

• You typically use multiple sensors with the same name to point to the same logical entity
extracted from different sources (for example, Oracle Enterprise Manager Fusion
Middleware Control displays the final sensor value). Therefore, it can be confusing if the
same sensor name is used to extract an email value and a social security value from
different sources.

• Sensor actions apply to all occurrences of the same sensor name. This situation means
the sensor actions on the most recently defined sensor with the same name take
precedence.

Chapter 53
Adding Composite Sensors

53-11

For the scenario shown in sensor.xml in the following example:

• The first two sensors named Service1 are identical. In addition, the configuration
type for both is serviceConfig (composite sensors defined on a service binding
component). Therefore, the sensors become one entry (the second one is
ignored).

• The third sensor named Service1 has a different configuration type of
eventConfig (a composite sensor defined on a business event). Therefore, this
sensor is represented with a separate entry.

• The two sensors named PurchaseOrder Id have different configuration types
(eventConfig and serviceConfig). Therefore, they are represented with separate
entries.

• The two sensors named PurchaseOrder have the same configuration type
(eventConfig), but different expressions. Therefore, they are represented with
separate entries.

<sensors xmlns="http://xmlns.oracle.com/bpel/sensor">
 <sensor sensorName="Service1" kind="service" target="undefined" filter="">
 <serviceConfig service="OrderPublisher_ep"
 expression="$in.property.tracking.ecid" operation="execute"
 outputDataType="string" outputNamespace="http://www.w3.org/2001/XMLSchema"/>
 </sensor>
 <sensor sensorName="Service1" kind="service" target="undefined" filter="">
 <serviceConfig service="OrderPublisher_ep"
 expression="$in.property.tracking.ecid" operation="execute"
 outputDataType="string" outputNamespace="http://www.w3.org/2001/XMLSchema"/>
 </sensor>
 <sensor sensorName="Service1" kind="event" target="undefined" filter=""
 xmlns:po="http://www.mycompany.com/ns/order">
 <eventConfig component="EventMediator"
 expression="$in/po:PurchaseOrder/po:OrderID"
 event="{http://mycompany.com/events/orders}OrderReceivedEvent"
 outputDataType="string" outputNamespace="http://www.w3.org/2001/XMLSchema"/>
 <sensor sensorName="Event1" kind="event" target="undefined" filter="">
 <eventConfig component="EventMediator" actionType="Subscribe"
 expression="$in.property.tracking.ecid"
 event="{http://mycompany.com/events/orders}OrderReceivedEvent"
 outputDataType="string" outputNamespace="http://www.w3.org/2001/XMLSchema"/>
 </sensor>
 <sensor sensorName="PurchaseOrder Id" kind="event" target="undefined"
filter=""
 xmlns:po="http://www.mycompany.com/ns/order">
 <eventConfig component="EventMediator"
 expression="$in/po:PurchaseOrder/po:OrderID"
 event="{http://mycompany.com/events/orders}OrderReceivedEvent"
 outputDataType="string" outputNamespace="http://www.w3.org/2001/XMLSchema"/>
 </sensor>
 <sensor sensorName="PurchaseOrder Id" kind="service" target="undefined"
 filter="">
 <serviceConfig service="OrderPublisher_ep"
 expression="$in.property.tracking.ecid" operation="execute"
 outputDataType="string" outputNamespace="http://www.w3.org/2001/XMLSchema"/>
 </sensor>
 <sensor sensorName="PurchaseOrder" kind="event" target="undefined" filter=""
 xmlns:po="http://www.mycompany.com/ns/order">
 <eventConfig component="EventMediator" expression="$in/po:PurchaseOrder"
 event="{http://mycompany.com/events/orders}OrderReceivedEvent"
 outputDataType="PurchaseOrder"

Chapter 53
Adding Composite Sensors

53-12

 outputNamespace="http://mycompany.com/events/orders"/>
 </sensor>
 <sensor sensorName="PurchaseOrder" kind="event" target="undefined" filter=""
 xmlns:po="http://www.mycompany.com/ns/order">
 <eventConfig component="EventMediator"
 expression="$in/po:PurchaseOrder/po:OrderID"
 event="{http://mycompany.com/events/orders}OrderReceivedEvent"
 outputDataType="string" outputNamespace="http://www.w3.org/2001/XMLSchema"/>
 </sensor>
 </sensor>
</sensors>

53.3 Monitoring Composite Sensor Data During Runtime
During runtime, composite sensor data can be monitored in Oracle Enterprise Manager
Fusion Middleware Control:

• Composite sensor data displays in the flow trace of a SOA composite application.

• Composite sensor data can be searched for on the Flow Instances page at the SOA
Infrastructure, individual partition, and SOA composite application levels.

For more information about searching for composite sensors in Oracle Enterprise Manager
Fusion Middleware Control, see Section "Monitoring and Deleting SOA Composite
Application Instances at the SOA Infrastructure Level" and Section "Monitoring and Deleting
SOA Composite Application Instances from the Application Home Page" of Administering
Oracle SOA Suite and Oracle Business Process Management Suite.

53.4 Creating and Managing Composite Sensors During
Runtime from Oracle SOA Composer

You can create, update, and delete composite sensors during runtime from Oracle SOA
Composer without having to redeploy a SOA composite application. The following example
describes how to create a composite sensor. Changes to composite sensors can be carried
to new revisions of the composite through patching.

Ensure that you understand the issues around using duplicate names for composite sensors.
For more information, see What You May Need to Know About Duplicate Composite Sensor
Names.

To create and manage composite sensors during runtime from Oracle SOA Composer:

1. Log in to Oracle SOA Composer.

http://host:soa_server_port/soa/composer
2. Expand the navigator on the left and double-click the composite in which to make

changes. Figure 53-12 provides details.

Chapter 53
Monitoring Composite Sensor Data During Runtime

53-13

Figure 53-12 Oracle SOA Composer

3. Click Create Session.

The page is refreshed to display the Add, Edit, and Delete icons.

4. Click the Add icon and select an option:

• Create Service Sensor: Data is coming from a service binding component
call.

• Create Reference Sensor: Data is coming from a reference binding
component call.

• Create Event Sensor: Data is coming from a service component that has
subscribed to a business event.

For this example, Create Service Sensor is selected because the data is coming
from a service binding component call. Figure 53-13 provides details.

Figure 53-13 Composite Sensor Creation

The Create Composite Sensor dialog is displayed.

5. Click the Edit icon in the Expression section, and select an option:

• Variables: Select to create an expression value for a variable.

• Expression: Select to invoke the Expression Builder dialog for creating an
XPath expression. This action always captures values as strings.

• Properties: Select to create an expression value for a normalized message
header property. These are the same properties that display under the
Properties tab of the invoke activity, receive activity, reply activity, OnEvent
branch of a scope activity (in BPEL 2.0), and OnMessage branch of a pick
activity and scope activity (in BPEL 2.0).

For this example, Expression is selected to build an XPath expression.

Figure 53-14 provides details.

Chapter 53
Creating and Managing Composite Sensors During Runtime from Oracle SOA Composer

53-14

Figure 53-14 XPath Expression Selection of Create Composite Sensor Dialog

The selections of variables, expressions, and header properties are the same as with the
Create Composite Sensor dialog in Oracle JDeveloper, as described in Table 53-1.

The Expression Builder dialog is displayed.

6. Build an XPath expression and click OK. You can also select custom XPath expressions
that you created.

You are returned to the Create Composite Sensor dialog.

7. Select the Enterprise Manager check box in Figure 53-15 to make this composite
sensor a searchable, trackable field from the Flow Instances page of a SOA composite
application in Oracle Enterprise Manager Fusion Middleware Control, and click OK. If you
do not select this check box, the composite sensor is not searchable.

Figure 53-15 Create Composite Sensor

The new composite sensor is displayed, including the sensor name, the type and name
of the component in which the sensor is defined, any XPath expression or filter defined
on the sensor, the storage location for runtime sensor data (Enterprise Manager or a JMS
queue and topic), and any JMS targets. Figure 53-16 provides details.

Chapter 53
Creating and Managing Composite Sensors During Runtime from Oracle SOA Composer

53-15

Figure 53-16 Composite Sensors in Oracle SOA Composer

8. Click Save.

9. In the upper right corner, click Publish to publish this session. Figure 53-17
provides details.

Figure 53-17 Publish Button

10. Enter an optional description for the session when prompted, then click OK.

The composite sensor is now running automatically in the deployed SOA
composite application.

11. Go to the Test Web Service page in Oracle Enterprise Manager Fusion
Middleware Control to invoke a new instance. For information about the Test Web
Service page, see "Initiating a SOA Composite Application Test Instance" of
Administering Oracle SOA Suite and Oracle Business Process Management Suite.

12. Create a new instance of the SOA composite application that includes the
composite sensor (for this example, named loanAmount), and click Invoke.

13. Go to the Flow Instances page of the SOA Infrastructure.

14. In the Sensor Name field of the Flow Instance part of the Search Options
section, specify the composite sensor you added. Figure 53-18 provides details.

Chapter 53
Creating and Managing Composite Sensors During Runtime from Oracle SOA Composer

53-16

Figure 53-18 Searchable Field

15. Click Search.

16. In the Search Results table, select the instance of the SOA composite sensor and click
Show Details.

Instance details are displayed in the Faults, Composite Sensor Values, Composites,
and Resequencing Groups tabs at the bottom of the page.

17. Click the Composite Sensor Values tab.

This tab displays the values of composite sensors detected in the selected business flow.

• Name: Displays the composite sensor name (for this example, loanAmount).

• Value: Displays the value assigned to the composite sensor.

• Location: Displays the service or reference binding component or service
component in which the composite sensor is defined.

• Composite: Displays the SOA composite application in which the composite sensor
is defined.

18. If you want to edit or delete the composite sensor, return to Oracle SOA Composer, as
shown in Figure 53-16, and click Create Session.

The page is refreshed to again display the Add, Edit, and Delete icons.

19. If you set the oracle.soacomposer.composite.showSensorXmlFiles Oracle WebLogic
Server startup script system property, the Show Sensor XML button appears at the
bottom of the page.

20. Click this property to show sensor.xml and sensor-action.xml content. This helps you
to test both to see that they are what you expect them to be.

If you later import this SOA composite application in to Oracle JDeveloper, the composite
sensors created during runtime in Oracle SOA Composer are displayed.

Chapter 53
Creating and Managing Composite Sensors During Runtime from Oracle SOA Composer

53-17

53.4.1 What You May Need to Know About Viewing Composite Sensor
Changes in Oracle SOA Composer

When you add or remove composite sensors in Oracle SOA Composer, you must
close and reopen the project tab above the Composite Sensors table to see the
changes. For example:

1. Create and deploy a SOA composite application with a composite sensor (for this
example, named p1).

2. Log in to Oracle SOA Composer, and select the composite in the navigator.

The p1 composite sensor is displayed.

3. Create an additional composite sensor (for this example, named p2) in the
composite and redeploy it.

4. In the navigator tree of Oracle SOA Composer, click the Refresh button, and
select the composite.

Only composite sensor p1 is displayed, and not p2.

5. Close the project tab above the Composite Sensors page, as shown in
Figure 53-19, and reopen it by selecting the composite in the navigator.

Figure 53-19 Composite Tab in Composite Sensors Page

This enables composite sensors p1 and p2 to be displayed.

Chapter 53
Creating and Managing Composite Sensors During Runtime from Oracle SOA Composer

53-18

54
Creating Dynamic Business Processes

This chapter describes how to use two-layer Business Process Management (BPM). Two-
layer BPM enables you to create dynamic business processes whose execution, rather than
being predetermined at design time, depends on elements of the context in which the
process executes. Such elements can include, for example, the type of customer, the
geographical location, or the channel.
To illustrate further, assume you have an application that performs multichannel banking
using various processes. In this scenario, the execution of each process depends on the
channel for each particular process instance.

This chapter includes the following sections:

• Introduction to Two-Layer Business Process Management

• Creating a Phase Activity

• Creating the Dynamic Routing Decision Table

54.1 Introduction to Two-Layer Business Process Management
Two-layer BPM enables you to model business processes using a layered approach. In that
model, a first level is a very abstract specification of the business process. Activities of a first-
level process delegate the work to processes or services in a second level. Figure 54-1
illustrates this behavior.

Figure 54-1 Two-Layer BPM

In Figure 54-1, the phase I activity of the business process can delegate its work to one of the
corresponding layer II processes: Task 1.1, Task 1.2, or Task 1.3.

54-1

The two-layer BPM functionality enables you to create the key element (namely, the
phase activity) declaratively.

By using the design time and runtime functionality of Oracle Business Rules, you can
add more channels dynamically without having to redeploy the business process.
Design time at runtime enables you to add rules (columns) to the dynamic routing
decision table at runtime. Then, during runtime, business process instances consider
those new rules and eventually route the requests to a different channel.

The design time at runtime functionality of Oracle Business Rules also enables you to
modify the endpoint reference of a service that is invoked from a phase activity,
pointing that reference to a different service.

Note:

You can use the design time at runtime functionality of Oracle Business
Rules through Oracle SOA Composer and the Oracle Business Rules SDK.

For information about using Oracle SOA Composer and the Oracle Business
Rules SDK, see:

• Designing Business Rules with Oracle Business Process Management

• Java API Reference for Oracle Business Rules

54.2 Creating a Phase Activity
In two-layer BPM, a phase is a level-1 activity in the BPEL process. It complements
the existing higher-level Oracle Business Rules and human task BPEL activities.

You add a phase activity to a process declaratively in Oracle BPEL Designer by
dragging and dropping it from the Oracle Extensions section of the Components
window to the process model. Figure 54-2 provides details.

Figure 54-2 Phase Activity in Oracle BPEL Designer

Chapter 54
Creating a Phase Activity

54-2

Note:

The reference WSDL (layer 2 or called references) must have the same abstract
WSDL as that for the phase reference that gets automatically created.

54.2.1 How to Create a Phase Activity
You create the phase activity for your composite application after you have created the
necessary variables.

To create a phase activity:

1. Double-click the Phase activity.

2. In the Name field, enter a value.

3. In the Input and Output Variables section, select the Add icon to add input and output
variables.

4. Select Add Input Variable. The dialog for selecting a variable appears.

5. Select an existing variable or select the Variables folder and click the Add icon to create
a new variable.

6. Click OK. The Phase dialog is displayed with the variable populated.

7. From the Input and Output Variables icon, select Add Output Variable. The dialog for
selecting a variable appears.Select an existing variable or select the Variables folder and
click the Add icon to create a new variable.

8. Click OK. The Phase dialog is displayed with the input and output variable names
populated.Click OK. The Oracle BPEL Designer displays the BPEL process.

9. From the File menu, select Save All.

10. Close the BPEL process.

11. Click the composite_name link (that is, the composite.xml file) above Oracle BPEL
Designer. The SOA Composite Editor appears.

54.2.2 What Happens When You Create a Phase Activity
When you create a phase activity, the artifacts described in Table 54-1 are created.

Table 54-1 Artifacts Created with a Phase Activity

Artifact Description

BPEL scope At the location where the user dropped the phase activity in the BPEL process,
a new BPEL scope is created and inserted into the BPEL process. The scope
has the name of the phase activity. Within the scope, several standard BPEL
activities are created. The most important ones are one invoke activity to an
Oracle Mediator and one receive activity from the Oracle Mediator.

Chapter 54
Creating a Phase Activity

54-3

Table 54-1 (Cont.) Artifacts Created with a Phase Activity

Artifact Description

Oracle Mediator
component

With the SOA composite application of the BPEL process service component, a
new Oracle Mediator service component is created. The Oracle Mediator
service component is wired to the phase activity of the BPEL component that
comprises the level-1 BPEL process where the phase activity has been dropped
into the process model. The input and output of the Oracle Mediator service
component is defined by the input and output of the phase activity.

The Oracle Mediator plan (the processing instructions of the Oracle Mediator
service component) is very simple; it delegates creation of the processing
instructions to the Oracle Business Rules service component.

Oracle Business
Rules component

Within the SOA composite application of the BPEL process service component,
a new Oracle Business Rules service component is created and wired to the
Oracle Mediator component associated with the phase activity of the BPEL
process service component. The Oracle Business Rules service component
includes a rule dictionary. The rule dictionary contains metadata for such Oracle
Business Rules engine artifacts as fact types, rulesets, rules, decision tables,
and similar artifacts. As part of creating the Oracle Business Rules service
component, the rule dictionary is preinitialized with the following data:

• Fact Type Model: The data model used for modeling rules. The rule
dictionary is populated with a fact type model that corresponds to the input
of the phase activity with some fixed data model that is required as part of
the contract between the Oracle Mediator and Oracle Business Rules
service components.

• Ruleset: A container of rules used as a grouping mechanism for rules. A
ruleset can be exposed as a service. One ruleset is created within the rule
dictionary.

• Decision Table: From an Oracle Business Rules perspective, a decision
table is a collection of rules with the same fact type model elements in the
condition and action part of the rules so that the rules can be visualized in a
tabular format. The new decision table is created within the ruleset.

• Decision Service: A decision service is created that exposes the ruleset as
a service of the Oracle Business Rules service component. The service
interface is used by Oracle Mediator to evaluate the decision table.

54.2.3 What Happens at Runtime When You Create a Phase Activity
At runtime, the input of the phase activity is used to evaluate the dynamic routing
decision table. This is performed by a specific decision component of the phase
activity. The result of this evaluation is an instruction for the Oracle Mediator. The
Oracle Mediator routes the request to a service based on instructions from the
decision component.

Note:

In the current release, an asynchronous phase activity is supported. A
synchronous or one-way phase activity is not supported.

Chapter 54
Creating a Phase Activity

54-4

54.2.4 What You May Need to Know About Creating a Phase Activity
When creating a phase activity, you must know the following:

• Rules that you must either configure or create in the decision service. This is based on
data from the payload that you use to evaluate a rule.

• For each rule created in the decision service, you must know the corresponding endpoint
URL that must be invoked when a rule evaluates to true. This endpoint URL is used by
the Oracle Mediator to invoke the service in layer 2.

Note:

No transformation, assignment, or validation can be performed on a payload.

54.3 Creating the Dynamic Routing Decision Table
A Dynamic Routing Decision Table is a decision table evaluated by Oracle Business Rules.
Conditions are evaluated on the input data of a phase activity. The result of the evaluation is
a routing instruction for the Oracle Mediator.

54.3.1 How to Create the Dynamic Routing Decision Table
After you have created the phase activity, the wizard launches the Oracle Business Rules
Designer in Oracle JDeveloper for you to edit the Dynamic Routing Decision Table.
Figure 54-3 shows a sample decision table within the Oracle Business Rules Designer.

Figure 54-3 Sample Decision Table

You can leave the information empty while modeling the level-2 process phases and
complete it after the level-1 process is being deployed using Oracle SOA Composer.

Chapter 54
Creating the Dynamic Routing Decision Table

54-5

Once you have created and edited the Dynamic Routing Decision Table, the new
level-1 phase activity appears in the BPEL process in Oracle JDeveloper, as shown in
Figure 54-4.

Figure 54-4 Completed Level-1 Phase in Oracle JDeveloper

54.3.2 What Happens When You Create the Dynamic Routing
Decision Table

By creating the Dynamic Routing Decision Table, you are configuring the decision
service to dynamically evaluate the conditions applied to the incoming payload and
give the corresponding routing rules to Oracle Mediator. Oracle Mediator then
executes these rules when invoking the service in layer 2.

More specifically, here is what happens at design time when you create the Dynamic
Routing Decision Table:

• A new decision component is created in the composite of the project.

• A new rule dictionary is created in the composite project directory.

• The rule dictionary is populated with a data model that reflects the data model of
the phase input; that is, the XML schema of the phase input is imported into the
rule dictionary.

Chapter 54
Creating the Dynamic Routing Decision Table

54-6

55
Integrating the Spring Framework in SOA
Composite Applications

This chapter describes how to use the spring framework to integrate components that use
Java interfaces into SOA composite applications. Oracle SOA Suite uses the spring
framework functionality provided by the WebLogic Service Component Architecture (SCA) of
Oracle WebLogic Server. This chapter also describes how to integrate components that use
Java interfaces with components that use WSDL files in the same SOA composite
application. It also describes using Java Architecture for XML Binding (JAXB) and the
EclipseLink O/X-Mapper (OXM) to map Java classes to XML data.
This chapter includes the following sections:

• Introduction to the Spring Service Component

• Integration of Java and WSDL-Based Components in the Same SOA Composite
Application

• Creating a Spring Service Component in Oracle JDeveloper

• Defining Custom Spring Beans Through a Global Spring Context

• Using the Predefined Spring Beans

• JAXB and OXM Support

• Configuring Groovy and Aspectj Classes with the Spring Service Component

• Troubleshooting Spring Errors

For more information about the WebLogic SCA functionality used by Oracle SOA Suite, see
Developing WebLogic SCA Applications for Oracle WebLogic Server.

For samples about how to use the spring framework, see the Oracle SOA Suite samples site.

55.1 Introduction to the Spring Service Component
The spring framework is a lightweight container that makes it easy to use different types of
services. Lightweight containers can accept any JavaBean, instead of specific types of
components.

WebLogic SCA enables you to use the spring framework to create Java applications using
plain old Java objects (POJOs) and expose components as SCA services and references. In
SCA terms, a WebLogic spring framework SCA application is a collection of POJOs plus a
spring SCA context file that wires the classes with SCA services and references.

You can use the spring framework to create service components and wire them within a SOA
composite application using its dependency injection capabilities. SCA can extend spring
framework capabilities as follows:

• Publish spring beans as SCA component services that can be accessed by other SCA
components or by remote clients

• Provide spring beans for service references wired to services of other components

55-1

As with all service components, spring components are defined in the composite.xml
file. The spring component defined in the composite.xml file has service and reference
elements with binding.java.

Services are implemented by beans and are targeted in the spring context file.
References are supplied by the runtime as implicit (or virtual) beans in the spring
context file.

You can also integrate Enterprise JavaBeans (EJB) with SOA composite applications
through use of Java interfaces (with no requirement for SDO parameters). For
information, see Integrating Enterprise JavaBeans with Composite Applications .

55.2 Integration of Java and WSDL-Based Components in
the Same SOA Composite Application

You can integrate components using Java interfaces and WSDL files in a SOA
composite application in the SOA Composite Editor. As an example, this integration
enables a spring service component to invoke an Oracle BPEL Process Manager or
an Oracle Mediator service component to invoke an EJB, and so on.

The following types of component integrations are supported:

• Java components to WSDL components

If you drag a wire from a Java interface (for example, EJB service or spring service
component) to a component that does not support Java interfaces (for example,
Oracle Mediator, Oracle BPEL Process Manager, or others), a compatible WSDL
is generated for the component interfaces.

• WSDL components to Java components

If you drag a wire from a WSDL interface to a component that does not support
WSDL files (for example, a spring service component), a compatible Java
interface is automatically generated. It is also possible to wire an existing WSDL
interface to an existing Java interface. In this case, there is no checking of the
compatibility between the WSDL and Java interfaces. You must ensure that it is
correct.

• Java components to Java components

If you create a spring service component, you can automatically configure it with
Java interface-based EJB service and reference binding components. No WSDL
files are required.

55.2.1 Java and WSDL-Based Integration Example
When wiring any two service components (or a service component with a binding
component), each end of the wire has an interface defined. With XML, those interfaces
must have the same WSDL definition, and are defined with interface.wsdl in the
composite.xml file.

From the JAX-WS point of view, when wiring a Java interface (which is defined by
interface.java) to a WSDL interface, it is assumed that the two interfaces are
compatible. This is typically enforced and automated by Oracle JDeveloper.

Chapter 55
Integration of Java and WSDL-Based Components in the Same SOA Composite Application

55-2

Note:

Only use Oracle JDeveloper in Design view to create and modify the
composite.xml and spring context files described in this section. Do not directly edit
these files in Source view. These examples are provided to show you how Java
interfaces and WSDL files are integrated in a SOA composite application. Use of
Oracle JDeveloper to achieve this functionality is described in subsequent sections
of this chapter.

For example, assume you have a Java interface for a service, as shown in the following
example:

public interface PortfolioService {
 public double getPorfolioValue(String portfolioId);
}

Assume the implementation can use an additional StockQuote service that is implemented by
another component that may be an external web service, or an EJB. The following example
provides details:

public interface StockQuote {
 public double getQuote (String symbol);
}

The composite.xml file for the spring framework lists the PortfolioService service and the
StockQuote service with the interface.java definitions. The following example provides
details.

<component name="PortfolioComp">
 <implementation.spring src="Spring/PortfolioComp.xml"/>
 <componentType>
 <service name="PortfolioService">
 <interface.java interface="com.bigbank.PortfolioService"/>
 </service>
 <reference name="StockService">
 <interface.java interface="com.bigbank.StockQuote"/>
 </reference>
 </componentType>
 </component>

The implementation class implements the service interface and provides a setter for the
reference interface. The following example provides details:

public class PortfolioServiceImpl implements PortfolioService {
 StockQuote stockQuoteRef;

 public void setStockService (StockQuote ref) {
 stockQuoteRef = ref;
 }

 public double getPorfolioValue(String portfolioId) {
 //-- use stock service
 //-- return value
 }
}

Chapter 55
Integration of Java and WSDL-Based Components in the Same SOA Composite Application

55-3

The spring context file calls out the services and references and binds them to the
implementation. The following example provides details:

<beans ...>
 <sca:service name="PortfolioService" type="com.bigbank.PortfolioService"
 target="impl">
 </sca:service>

 <sca:reference name="StockService" type="com.bigbank.StockQuote">
 </sca:reference>

 <bean id ="impl" class ="com.bigbank.PortfolioServiceImpl">
 <property name="stockService" ref="StockService"/>
 </bean>
</beans>

55.2.2 Using Callbacks with the Spring Framework
Oracle SOA Suite uses callbacks for both interface.wsdl and interface.java.
However, the concept of callbacks does not exist in the spring framework. For Oracle
SOA Suite services and references, a callback is specified (in the metadata) as a
second port type for interface.wsdl or a second Java name for interface.java. The
spring metadata has only sca:services and sca:references and no way to specify a
callback.

To design a callback with spring, you must provide sca:services and sca:references
with a specific name. If you create both a sca:service and sca:reference using the
naming conventions of someService and someServiceCallback, Oracle SOA Suite
recognizes this convention and creates a single service or reference with a callback.

For example, assume you create the syntax shown in the following example in the
spring context file with the spring editor in Oracle JDeveloper:

<sca:service name="StockService"
 type="oracle.integration.platform.blocks.java.callback.StockService"
 target="impl" />
 <sca:reference name="StockServiceCallback"
 type="oracle.integration.platform.blocks.java.callback.StockServiceReply" />

Oracle SOA Suite automatically creates a single service as shown in the following
example:

 <service name="StockService">
 <interface.java
 interface="oracle.integration.platform.blocks.java.callback.StockService"

callbackInterface="oracle.integration.platform.blocks.java.callback.StockServiceR
e
ply"/>
 </service>

In the SOA Composite Editor, if a spring interface.java with a callback interface is
dragged to a WSDL component (for example, Oracle BPEL Process Manager, Oracle
Mediator, or others), a WSDL with two port types is generated (technically, a wrapper
WSDL, which is a WSDL that imports two other WSDLs, each having a single port
type).

If you drag a WSDL or Java interface that has a callback to a spring service
component, a single interface is displayed in the SOA Composite Editor. However,

Chapter 55
Integration of Java and WSDL-Based Components in the Same SOA Composite Application

55-4

inside the spring editor, you find both a sca:service and sca:reference that have the same
naming conventions (someService and someServiceCallback).

55.3 Creating a Spring Service Component in Oracle
JDeveloper

This section describes how to create a spring service component and wire the component as
follows in Oracle JDeveloper:

• To Java interface-based EJB services and references (Java-to-Java integration)

• To an Oracle Mediator service component (Java-to-WSDL integration)

55.3.1 How to Create a Spring Service Component in Oracle JDeveloper
To create a spring service component in Oracle JDeveloper:

1. From the Components window, drag a Spring service component into the SOA
Composite Editor, as shown in Figure 55-1.

Figure 55-1 Spring Context Service Component

The Create Spring dialog is displayed.

2. In the Name field, enter a name for the spring service component. The name becomes
both the component name and the spring context file name. Figure 55-2 provides details.

You can also select Use Existing Context and click Browse to select an existing spring
file. For example, you may want to import a spring context that was created in Oracle
JDeveloper, but outside of Oracle SOA Suite. If you browse and select a spring context
from another project, it is copied to the SOA project.

Chapter 55
Creating a Spring Service Component in Oracle JDeveloper

55-5

Figure 55-2 Create Spring Dialog

Note:

A standalone spring version of WebLogic SCA is also available for use.
This version is typically used outside of Oracle SOA Suite. This version
is accessible by selecting Spring 2.5 JEE from the Components window
while inside the spring editor.

3. Click OK.

A spring icon is displayed in the SOA Composite Editor.

4. If the contents are not automatically displayed, double-click the icon to display the
contents of the spring context in the spring editor.

5. From the Components window, select Weblogic SCA from the dropdown list.

The list is refreshed to display the selections shown in Figure 55-3.

Figure 55-3 WebLogic SCA Menu

6. Drag a Service icon into the spring editor.

The Insert Service dialog appears.

7. Complete the fields shown in Table 55-1 to define the target bean and Java
interface.

Chapter 55
Creating a Spring Service Component in Oracle JDeveloper

55-6

Table 55-1 Insert Service Dialog

Field Description

name Enter a name.

target Enter the target bean. This action enables you to expose the bean
as a service.

Note: Ensure that this target exists. There is no validation support
that checks for the existence of this target.

type Enter the Java interface.

When complete, the Insert Service dialog looks as shown in Figure 55-4.

Figure 55-4 Insert Service Dialog

8. Click OK.

The target bean becomes the service interface in the spring context.

<?xml version="1.0" encoding="UTF-8" ?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:util="http://www.springframework.org/schema/util"
 xmlns:jee="http://www.springframework.org/schema/jee"
 xmlns:lang="http://www.springframework.org/schema/lang"
 xmlns:aop="http://www.springframework.org/schema/aop"
 xmlns:tx="http://www.springframework.org/schema/tx"
 xmlns:sca="http://xmlns.oracle.com/weblogic/weblogic-sca"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans.xsd
 http://www.springframework.org/schema/tool
 http://www.springframework.org/schema/tool/spring-tool.xsd
 http://www.springframework.org/schema/util
 http://www.springframework.org/schema/util/spring-util.xsd
 http://www.springframework.org/schema/aop
 http://www.springframework.org/schema/aop/spring-aop.xsd
 http://www.springframework.org/schema/cache
 http://www.springframework.org/schema/cache/spring-cache.xsd
 http://www.springframework.org/schema/context
 http://www.springframework.org/schema/context/spring-context.xsd
 http://www.springframework.org/schema/task
 http://www.springframework.org/schema/task/spring-task.xsd
 http://www.springframework.org/schema/jee
 http://www.springframework.org/schema/jee/spring-jee.xsd
 http://www.springframework.org/schema/lang
 http://www.springframework.org/schema/lang/spring-lang.xsd
 http://www.springframework.org/schema/tx
 http://www.springframework.org/schema/tx/spring-tx.xsd
 http://www.springframework.org/schema/jdbc
 http://www.springframework.org/schema/jdbc/spring-jdbc.xsd

Chapter 55
Creating a Spring Service Component in Oracle JDeveloper

55-7

 http://www.springframework.org/schema/jms
 http://www.springframework.org/schema/jms/spring-jms.xsd
 http://www.springframework.org/schema/oxm
 http://www.springframework.org/schema/oxm/spring-oxm.xsd
 http://www.springframework.org/schema/mvc
 http://www.springframework.org/schema/mvc/spring-mvc.xsd
 http://xmlns.oracle.com/weblogic/weblogic-sca META-INF/weblogic-sca.xsd">
 <!--Spring Bean definitions go here-->
 <sca:service name="scaserv1" target="cp"
 type="oracle.mypackage.myinterface"/>
</beans>

If you close the spring editor and return to the SOA Composite Editor, you see that
a handle has been added to the left side of the spring service component, as
shown in Figure 55-5.

Figure 55-5 Service Handle

9. Return to the spring editor.

10. Drag a Reference icon from the list shown in Figure 55-3 into the spring editor.

The Insert Reference dialog is displayed.

11. Complete the dialog, as shown in Table 55-2, and click OK.

Table 55-2 Insert Reference Dialog

Field Description

name Enter a name.

type Enter the Java interface.

When complete, the spring context displays the service and reference in the spring
editor.

<?xml version="1.0" encoding="UTF-8" ?>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:util="http://www.springframework.org/schema/util"
 xmlns:jee="http://www.springframework.org/schema/jee"
xmlns:lang="http://www.springframework.org/schema/lang"
 xmlns:aop="http://www.springframework.org/schema/aop"
xmlns:tx="http://www.springframework.org/schema/tx"
 xmlns:sca="http://xmlns.oracle.com/weblogic/weblogic-sca"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd
http://www.springframework.org/schema/tool
http://www.springframework.org/schema/tool/spring-tool.xsd

Chapter 55
Creating a Spring Service Component in Oracle JDeveloper

55-8

http://www.springframework.org/schema/util
http://www.springframework.org/schema/util/spring-util.xsd
http://www.springframework.org/schema/aop
http://www.springframework.org/schema/aop/spring-aop.xsd
http://www.springframework.org/schema/cache
http://www.springframework.org/schema/cache/spring-cache.xsd
http://www.springframework.org/schema/context
http://www.springframework.org/schema/context/spring-context.xsd
http://www.springframework.org/schema/task
http://www.springframework.org/schema/task/spring-task.xsd
http://www.springframework.org/schema/jee
http://www.springframework.org/schema/jee/spring-jee.xsd
http://www.springframework.org/schema/lang
http://www.springframework.org/schema/lang/spring-lang.xsd
http://www.springframework.org/schema/tx
http://www.springframework.org/schema/tx/spring-tx.xsd
http://www.springframework.org/schema/jdbc
http://www.springframework.org/schema/jdbc/spring-jdbc.xsd
http://www.springframework.org/schema/jms
http://www.springframework.org/schema/jms/spring-jms.xsd
http://www.springframework.org/schema/oxm
http://www.springframework.org/schema/oxm/spring-oxm.xsd
http://www.springframework.org/schema/mvc
http://www.springframework.org/schema/mvc/spring-mvc.xsd
http://xmlns.oracle.com/weblogic/weblogic-sca META-INF/weblogic-sca.xsd">
 <!--Spring Bean definitions go here-->
 <sca:service name="scaserv1" target="cp"
type="oracle.mypackage.myinterface"/>
 <sca:reference name="scaref1" type="external.bean.myInterface"/>
</beans>

12. Close the spring context file, as shown in Figure 55-6.

Figure 55-6 Spring Context File

A handle is added to the right side of the spring service component, as shown in
Figure 55-7.

Figure 55-7 Reference Handle

Chapter 55
Creating a Spring Service Component in Oracle JDeveloper

55-9

13. Drag the left handle into the Exposed Services swimlane to create a service
binding component, as shown in Figure 55-8.

Figure 55-8 Service Binding Component

You are prompted to select to expose the service as either a web service or as an
EJB service, as shown in Figure 55-9.

Figure 55-9 Service Type To Create

• EJB: This exposes the EJB service through a Java interface; this selection
does not require the use of a WSDL file.

• Web Service: This exposes the web service through a SOAP WSDL interface.
If you select this option, a WSDL is generated from the Java Interface for
compatibility with the spring service component.

14. Select to expose this service as either an EJB or web service. A service is
automatically created in the Exposed Services swimlane and wired to the spring
service component (for this example, EJB is selected). Figure 55-10 provides
details.

Chapter 55
Creating a Spring Service Component in Oracle JDeveloper

55-10

Figure 55-10 EJB Service Binding Component Wired to the Spring Service
Component

15. Double-click the EJB service to display the automatically completed configuration, as
shown in Figure 55-11. The configuration details were created from the values you
entered in the Insert Service dialog in Step 7.

Figure 55-11 EJB Service Dialog in Exposed Services Swimlane

16. Replace the default JNDI name that was automatically generated with the name
applicable to your environment.

17. Close the dialog.

18. Drag the right handle of the spring service component into the External References
swimlane to create a reference binding component.

You are prompted with the same spring type option message as shown in Step 13.

19. Select an option to expose this reference. A reference is automatically created in the
External References swimlane and wired to the spring service component (for this
example, EJB is selected). Figure 55-12 provides details.

Chapter 55
Creating a Spring Service Component in Oracle JDeveloper

55-11

Figure 55-12 EJB Reference Binding Component Wired to the Spring
Service Component

20. Double-click the EJB reference to display the automatically completed
configuration, as shown in Figure 55-13. The configuration details were created
from the values you entered in the Insert Reference dialog in Step 11.

Figure 55-13 EJB Reference Dialog in External References Swimlane

21. Close the dialog and return to the SOA Composite Editor, as shown in
Figure 55-14.

Chapter 55
Creating a Spring Service Component in Oracle JDeveloper

55-12

Figure 55-14 Java Interface-Based EJB Service and Reference Binding
Components

22. Place the cursor over both the right handle of the service (as shown in Figure 55-15) and
the left handle of the spring service component (as shown in Figure 55-16). The Java
interface is displayed.

Figure 55-15 Java Interface of Service

Figure 55-16 Java Interface of Spring Service Component

23. Perform the same action on the right handle of the spring service component and the left
handle of the reference binding component to display its Java interface.

24. Select Source view for the composite.xml file to display similar details.

<?xml version="1.0" encoding="UTF-8" ?>
<!-- Generated by Oracle SOA Modeler version 12.1.3.0.0 at [5/16/14 3:05 AM].
 -->
<composite name="Project1"
. . .
. . .
<service name="scaserv1">
 <interface.java interface="oracle.mypackage.myinterface"/>
 <binding.ejb uri="scaserv1_ejb_ep" ejb-version="EJB3"/>
</service>
<property name="productVersion" type="xs:string"
 many="false">12.1.3.0.0</property>
<property name="compositeID" type="xs:string"
 many="false">4c07dbf0-5c01-450e-bde6-8c3866f45edc</property>
<component name="MySpring">

Chapter 55
Creating a Spring Service Component in Oracle JDeveloper

55-13

 <implementation.spring src="Spring/MySpring.xml"/>
 <componentType>
 <service name="scaserv1">
 <interface.java interface="oracle.mypackage.myinterface"/>
 </service>
 <reference name="scaref1">
 <interface.java interface="external.bean.myInterface"/>
 </reference>
 </componentType>
</component>
<reference name="scaref1">
 <interface.java interface="external.bean.myInterface"/>
 <binding.ejb uri="scaref1_ejb_ep" ejb-version="EJB3"/>
</reference>
<wire>
 <source.uri>scaserv1</source.uri>
 <target.uri>MySpring/scaserv1</target.uri>
</wire>
<wire>
 <source.uri>MySpring/scaref1</source.uri>
 <target.uri>scaref1</target.uri>
</wire>
</composite>

25. If you wire the right handle of the spring service component to an XML-based
component such as Oracle Mediator instead of the Java interface-based EJB
reference, a Java interface is generated from the Oracle Mediator's existing WSDL
interface. The following steps provide details.

a. Drag the right handle of the spring service component to the Oracle Mediator,
as shown in Figure 55-17.

Figure 55-17 Integration of Spring Service Component and Oracle
Mediator

b. Click OK when prompted to acknowledge that a compatible interface was
created from the Oracle Mediator WSDL file.

Chapter 55
Creating a Spring Service Component in Oracle JDeveloper

55-14

Figure 55-18 Java File Creation from the Oracle Mediator WSDL File

If you drag a wire between a Java interface and a WSDL-based component, and the
WSDL file with the default name (based on the Java Interface name) already exists,
you are prompted with four options. Click Cancel to cancel creation of the wire.
Figure 55-19 provides details.

Figure 55-19 Existing WSDL File

c. Place the cursor over both the right handle of the spring service component (as
shown in Figure 55-20) and the left handle of the Oracle Mediator (as shown in
Figure 55-21) to display the compatible interface.

Figure 55-20 Spring Service Component Interface

Chapter 55
Creating a Spring Service Component in Oracle JDeveloper

55-15

Figure 55-21 Oracle Mediator Interface

d. Double-click the spring service component to display the contents of the spring
context file in the spring editor.

<?xml version="1.0" encoding="windows-1252" ?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:util="http://www.springframework.org/schema/util"
 xmlns:jee="http://www.springframework.org/schema/jee"
 xmlns:lang="http://www.springframework.org/schema/lang"
 xmlns:aop="http://www.springframework.org/schema/aop"
 xmlns:tx="http://www.springframework.org/schema/tx"
 xmlns:sca="http://xmlns.oracle.com/weblogic/weblogic-sca"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans-2.5.xsd
 http://www.springframework.org/schema/util
 http://www.springframework.org/schema/util/spring-util-2.5.xsd
 http://www.springframework.org/schema/aop
 http://www.springframework.org/schema/aop/spring-aop-2.5.xsd
 http://www.springframework.org/schema/jee
 http://www.springframework.org/schema/jee/spring-jee-2.5.xsd
 http://www.springframework.org/schema/lang
 http://www.springframework.org/schema/lang/spring-lang-2.5.xsd
 http://www.springframework.org/schema/tx
 http://www.springframework.org/schema/tx/spring-tx-2.5.xsd
 http://www.springframework.org/schema/tool
 http://www.springframework.org/schema/tool/spring-tool-2.5.xsd
 http://xmlns.oracle.com/weblogic/weblogic-sca META-INF/weblogic-
sca.xsd">
 <!--Spring Bean defintions go here-->
 <sca:service name="scaserv1" target="ep"
type="oracle.mypackage.myinterface"/>
 <sca:reference
type="mediator1.project1.application4.com.oracle.xmlns.Execute_
ptt" name="Mediator1.Mediator1"/>
</beans>

Note:

• When integrating a component that uses a Java interface with a
component that uses a WSDL file in the SOA Composite Editor, if a
specific interface class is not found in the classpath (including the JAR
files in the SCA-INF/lib directory), but the source file does exist in the
SOA project, you are prompted to automatically compile the source.

• You can also create BPEL process partner links with services that use
Java interfaces. You select this type of service in the Service Explorer
dialog when creating a partner link. For more information, see
Introduction to Partner Links.

Chapter 55
Creating a Spring Service Component in Oracle JDeveloper

55-16

55.3.2 What You May Need to Know About Java Class Errors During Java-
to-WSDL Conversions

When a Java-to-WSDL conversion fails because of a bad Java class and you modify the
Java code to correct the problem, you must restart Oracle JDeveloper. Not doing so results in
a Java-to-WSDL conversion failure because the new class is not reloaded.

55.4 Defining Custom Spring Beans Through a Global Spring
Context

You can define custom spring beans through a global spring context definition. This
configuration enables you to define these beans only once, at the global level.

55.4.1 How to Define Custom Spring Beans Through a Global Spring
Context

To define custom spring beans through a global spring context:

1. Add the custom spring bean definitions into the following file:

SOA_HOME/soa/modules/oracle.soa.ext_11.1.1/classes/
springse-extension-global-beans.xml

2. Add the corresponding classes in either the lib directory (as a JAR file) or the classes
directory (as extracted files of the JAR file).

SOA_HOME/soa/modules/oracle.soa.ext_11.1.1/lib | classes
For more information, see the readme.txt file located in the following directory:

SOA_HOME/soa/modules/oracle.soa.ext_11.1.1

Note:

A server restart is required to pick up newly added spring beans.

55.5 Using the Predefined Spring Beans
Oracle SOA Suite provides the following predefined spring beans:

• headerHelperBean: For getting and setting header properties.

• instanceHelperBean: For getting the following information:

– The instance ID of the flow instance currently running.

– The instance ID of the component instance currently running.

– The composite distinguished name (DN) containing the component.

– The name of the spring service component.

Chapter 55
Defining Custom Spring Beans Through a Global Spring Context

55-17

• loggerBean: For providing context-aware logging messages.

The predefined spring beans are automatically injected into the spring service
component. However, you must explicitly integrate the predefined spring beans into a
SOA composite application by providing a reference to the bean in the spring context
file.

For an example of how to reference loggerBean and headerHelperBean in a spring
context file, see How to Reference Predefined Spring Beans in the Spring Context
File.

55.5.1 IHeaderHelperBean.java Interface for headerHelperBean
The following example shows the IHeaderHelperBean.java interface for the
headerHelperBean bean:

package oracle.soa.platform.component.spring.beans;
/**
 * Interface for getting and setting header properties.
 * These properties will be set on the normalized message - and passed on
 * to the respective reference that the local reference is wired to on
 * composite level.
 *

 * To use this bean from within your context, declare property
 * with ref="headerHelperBean". E.g.
 * <property name="headerHelper" ref="headerHelperBean"/>
 */
public interface IHeaderHelperBean
{
 /**
 * Get a property from the normalized message header. Note that these
 * properties are defined, and are the same ones, one can get/set via
 * mediator or bpel process
 * @param pKey the property key, case sensitive
 * @return the value, or null in case not found
 */
 public String getHeaderProperty (String pKey);
 /**
 * Set a property on the normalized message header. Note that these
 * properties are defined, and are the same ones, one can get/set via
 * mediator or bpel process
 * @param pKey the property key, case sensitive
 * @param pValue the value to be set
 */
 public void setHeaderProperty (String pKey, String pValue);
}

55.5.2 IInstanceHelperBean.java Interface for instancerHelperBean
The following example shows the IInstanceHelperBean.java interface for the
instanceHelperBean bean:

package oracle.soa.platform.component.spring.beans;

import oracle.integration.platform.instance.engine.ComponentInstanceContext;
/**
 * Instancehelper Bean, gives access to composite / component + instance
 information
 *

Chapter 55
Using the Predefined Spring Beans

55-18

 * To use this bean from within your context, declare property
 * with ref="instanceHelperBean". E.g.
 * <property name="instanceHelper" ref="instanceHelperBean"/>
 */
public interface IInstanceHelperBean
{
 /**
 * Returns the instance id of the composite instance currently running
 * @return the composite instance id
 */
 public String getCompositeInstanceId ();

 /**
 * Returns the instance id of the component instance currently running
 * @return the component instance id
 */
 public String getComponentInstanceId ();

 /**
 * Returns the composite dn containing this component
 * @return the composite dn
 */
 public String getCompositeDN ();

 /**
 * Returns the name of this spring component
 * @return the component name
 */
 public String getComponentName ();

}

55.5.3 ILoggerBean.java Interface for loggerBean
The following example shows the ILoggerBean.java interface for the loggerBean bean:

package oracle.soa.platform.component.spring.beans;

import java.util.logging.Level;

/**
 * Logger bean interface, messages will be logged as
 * [<composite instance id>/<component instance id>] <message>
 *

 * To use this bean from within your context, declare property
 * with ref="loggerBean". E.g.
 * <property name="logger" ref="loggerBean"/>
 */
public interface ILoggerBean
{

 /**
 * Log a message, with Level.INFO
 * @param message
 */
 public void log (String message);

 /**
 * Log a message with desired level
 * @param pLevel the log level

Chapter 55
Using the Predefined Spring Beans

55-19

 * @param message the message to log
 */
 public void log (Level pLevel, String message);

 /**
 * Log a throwable with the desired level
 * @param level the level to log with
 * @param message the message
 * @param th the exception (throwable) to log
 */
 public void log (Level level, String message, Throwable th);

}

55.5.4 How to Reference Predefined Spring Beans in the Spring
Context File

You create references to the predefined beans in the spring context file.

To reference predefined spring beans in the spring context file:

1. Open the spring context file in Source view in Oracle JDeveloper.

2. Add references to the loggerBean and headerHelperBean predefined beans.

<?xml version="1.0" encoding="windows-1252" ?>
. . .
. . .
 <!--
 The below sca:service(s) corresponds to the services exposed by the
 component type file: SpringPartnerSupplierMediator.componentType
 -->
 <!-- expose the InternalPartnerSupplierMediator + EJB as service
 <service name="IInternalPartnerSupplier">
 <interface.java

interface="com.otn.sample.fod.soa.internalsupplier.IInternalPartnerSupplier"/
>
 </service>
 -->
 <sca:service name="IInternalPartnerSupplier"
 target="InternalPartnerSupplierMediator"
type="com.otn.sample.fod.soa.internalsupplier.IInternalPartnerSupplier"/>
 <!-- expose the InternalPartnerSupplierMediator + Mock as service
 <service name="IInternalPartnerSupplierSimple">
 <interface.java

interface="com.otn.sample.fod.soa.internalsupplier.IInternalPartnerSupplier"/
>
 </service>
 -->
 <sca:service name="IInternalPartnerSupplierSimple"
 target="InternalPartnerSupplierMediatorSimple"
type="com.otn.sample.fod.soa.internalsupplier.IInternalPartnerSupplier"/>
 <!-- the partner supplier mediator bean with the mock ep -->
 <bean id="InternalPartnerSupplierMediatorSimple"
class="com.otn.sample.fod.soa.internalsupplier.InternalSupplierMediator"
 scope="prototype">
 <!-- inject the external partner supplier bean -->
 <property name="externalPartnerSupplier"

Chapter 55
Using the Predefined Spring Beans

55-20

 ref="IExternalPartnerSupplierServiceMock"/>
 <!-- inject the quoteWriter -->
 <property name="quoteWriter" ref="WriteQuoteRequest"/>
 <!-- context aware logger, globally available bean [ps3] -->
 <property name="logger" ref="loggerBean"/>
 <!-- headerHelper bean -->
 <property name="headerHelper" ref="headerHelperBean"/>
 </bean>
 <!-- the partner supplier mediator bean with the ejb -->
 <bean id="InternalPartnerSupplierMediator"
class="com.otn.sample.fod.soa.internalsupplier.InternalSupplierMediator"
 scope="prototype">
 <!-- inject the external partner supplier bean -->
 <property name="externalPartnerSupplier"
 ref="IExternalPartnerSupplierService"/>
 <!-- inject the quoteWriter -->
 <property name="quoteWriter" ref="WriteQuoteRequest"/>
 <!-- context aware logger, globally available bean [ps3] -->
 <property name="logger" ref="loggerBean"/>
 <!-- headerHelper bean -->
 <property name="headerHelper" ref="headerHelperBean"/>
 </bean>
. . .
. . .

55.6 JAXB and OXM Support
Oracle Fusion Middleware provides support for using JAXB and EclipseLink OXM to map
Java classes to XML data. You can store and retrieve data in memory in any XML format
without implementing a specific set of XML routines for the program's class structure. This
support enables you to perform the following:

• Map Java objects to XML data

• Map XML data back to Java objects

For design information about external metadata for JAXB mappings, visit the following URL:

http://wiki.eclipse.org/EclipseLink/DesignDocs/277920

For information about JAXB OXM and the OXM mapping file (eclipselink-oxm.xsd), visit the
following URLs:

http://wiki.eclipse.org/EclipseLink/FAQ/WhatIsMOXy

http://wiki.eclipse.org/EclipseLink/Examples/MOXy

http://wiki.eclipse.org/Category:XML

You can also map Java classes to XML data when integrating an EJB with SOA composite
applications. For more information, see Integrating Enterprise JavaBeans with Composite
Applications .

55.6.1 Extended Mapping Files
Oracle SOA Suite extends JAXB and OXM file support through use of an extended mapping
(EXM) file. If an EXM file is present in the class path of the design time project, then it can be
used for Java-to-WSDL conversions. The EXM file provides data binding metadata in the
following situations:

Chapter 55
JAXB and OXM Support

55-21

http://wiki.eclipse.org/EclipseLink/DesignDocs/277920
http://wiki.eclipse.org/EclipseLink/FAQ/WhatIsMOXy
http://wiki.eclipse.org/EclipseLink/Examples/MOXy
http://wiki.eclipse.org/Category:XML

• When you cannot add the JAXB annotations into the Java source and must
specify them separately

• When scenarios are not covered by JAXB (for example, with top level elements
like method return types or parameter types)

The external JAXB annotations can be specified either directly in the EXM file or
included in the separate TopLink JAXB mapping OXM file that can be referred to from
the EXM file.

The EXM file name must match the Java class name and reside in the same package
location. For example, if the Java class is named
pack1.pack2.myJavaInterface.class, the EXM file must be named pack1/pack2/
myJavaInterface.exm.

Oracle SOA Suite design time supports placing the EXM file in either the source path
(SCA-INF/src) or the class path (SCA-INF/classes or a JAR in SCA-INF/lib).

Placing the EXM file in the source path (SCA-INF/src) enables you to edit the EXM
using Oracle JDeveloper (files in the class path do not appear in the Applications
window in Oracle JDeveloper). When project compilation is complete, the EXM file
(and any XML files that it imports) is copied to the class path (SCA-INF/classes) for
deployment. If the EXM file is in the source path, it must still be in the same
corresponding directory structure.

If you place the EXM (and OXM) files in SCA-INF/src, ensure that your Oracle
JDeveloper project is configured so that SCA-INF/src is the default source directory
(right-click the project name, and select Project Properties > Java Source Paths).
EXM files can also be found in JAR files that are in the project's class path.

When you drag and drop a Java interface (Enterprise JavaBeans) to a BPEL process,
Oracle SOA Suite checks to see if the EXM file exists. If it does, it is passed to the web
services java2wsdl API.

After the WSDL file is generated, an informational message is displayed. If an EXM file
was used, the message displayed takes the following format:

The WSDL file {0} was generated based on the JAVA class {1} using extended
mapping file {2}

The following provides an example of an EXM file:

 <java-wsdl-mapping name="com.hello.sei.MyServiceEndpointInterface"
 xmlns="http://xmlns.oracle.com/weblogic/weblogic-wsee-databinding"
 xmlns:oxm="http://www.eclipse.org/eclipselink/xsds/persistence/oxm"
 databinding="toplink.jaxb">
 <xml-schema-mapping>
 <toplink-oxm-file java-package="com.hello.foo" file-path="./foo-
oxm.xml"/>
 <toplink-oxm java-package="com.hello.coo">
 <xml-bindings
 xmlns="http://www.eclipse.org/eclipselink/xsds/persistence/oxm">
 <xml-schema
 element-form-default="QUALIFIED"
 attribute-form-default="UNQUALIFIED"
 namespace="urn:customer">
 <xml-ns prefix="ns1" namespace-uri="urn:customer" />
 </xml-schema>
 <java-types>
 <java-type name="Person" xml-transient="true">

Chapter 55
JAXB and OXM Support

55-22

 <java-attributes>
 <xml-transient java-attribute="id"/>
 </java-attributes>
 </java-type>
 <java-type name="Customer">
 <xml-see-also>org.example.employee.Employee</xml-see-also>
 </java-type>
 </java-types>
 </xml-bindings>
 </toplink-oxm>
 </xml-schema-mapping>
. . .
</java-wsdl-mapping>

The EXM schema file for external mapping metadata for the data binding framework is
available at the following URL:

http://www.oracle.com/technology/weblogic/weblogic-wsee-databinding/1.1/
weblogic-wsee-databinding.xsd

The data defines the attributes of a particular Java web service endpoint. This schema
defines three types of XML constructs:

• Constructs that are analogous to JAX-WS or JSR-181 that override or define attributes
on the service endpoint interface (SEI) and JAXB annotations for the value types used in
the interfaces of the SEI.

• Additional mapping specifications not available using standard JAX-WS or JAXB
annotations, primarily for use with the java.util.Collections API.

• References to external JAXB mapping metadata from a Toplink OXM file.

When a construct is the direct analog of a JAX-WS, JSR-181, or JAXB annotation, the
comment in the schema contains a notation such as:

Corresponding Java annotation: javax.jws.WebParam.Mode

55.7 Configuring Groovy and Aspectj Classes with the Spring
Service Component

If you configure a Groovy or Aspectj class in the spring configuration file, you must follow
these conventions:

• Use the classpath protocol:

script-source="classpath:"

Using a relative file path is not possible because the SCA package is not treated as a
regular JAR file for the class loader. For example, the following classpath protocol
indicates to find the Groovy file from the class path.

script-source="classpath:service/GroovyGreeter.groovy"
• Add Groovy and Aspectj files in any of the following directories when using the classpath

protocol. No other directories are possible.

– SCA-INF/classes
– SCA-INF/lib

Chapter 55
Configuring Groovy and Aspectj Classes with the Spring Service Component

55-23

http://www.oracle.com/technology/weblogic/weblogic-wsee-databinding/1.1/weblogic-wsee-databinding.xsd
http://www.oracle.com/technology/weblogic/weblogic-wsee-databinding/1.1/weblogic-wsee-databinding.xsd

– Shared SOA lib
If your build scripts are configured to clean the classes directory, either put the
Groovy files in the SCA-INF/lib directory or design your build scripts to prevent
cleaning.

• Add spring extension JAR file libraries for Groovy or Aspectj to the class path of
the managed server's setDomainENV.sh or setDomainENV.bat file and restart the
server. This ensures that deployment is successful. The restart is required
because spring uses Java reflection to instantiate aspect-oriented programming
(AOP). The use of reflection restricts the search for classes to the system class
loader. Any changes to the system class loader require a server restart.

55.8 Troubleshooting Spring Errors
This section describes how to troubleshoot errors with the spring service component.

55.8.1 Spring Bean Interface to Invoke Cannot Be Found
Assume you have a SOA composite application in which a BPEL process invokes a
spring context. However, the spring bean interface to invoke cannot be found. The
administration server diagnostic log file displays the error shown in the following
example:

[2012-04-09T10:30:07.499-07:00] [AdminServer] [NOTIFICATION] [SOA-31704]
[oracle.integration.platform.blocks.java] [tid: [ACTIVE].ExecuteThread: '2' for
queue: 'weblogic.kernel.Default (self-tuning)'] [userId: <anonymous>] [ecid:
11d1def534ea1be0:2058db3f:1369787a1b8:-8000-0000000000002be6,0:2] [WEBSERVICE_
PORT.name: SOACohSpringBPELProcess_pt] [APP: soa-infra] [composite_name:
SOACohSpringProj] [component_name: SOACohSpringBPELProcess] [component_instance_
id: 270006] [J2EE_MODULE.name: fabric] [WEBSERVICE.name: soacohspringbpelprocess_
client_ep] [J2EE_APP.name: soa-infra] No mapping found for class
SOACohSpringProj.CohEJBInterface.

Ensure that you deploy the JAR file containing the class into the SCA-INF/lib directory
or the classes into the SCA-INF/classes directory of the SAR file.

55.8.2 Unable to Add a Spring Service Component in the SOA
Composite Editor

The Oracle SOA Suite Quick Start installation automatically includes the spring
extension files for invoking the spring editor. This enables you to successfully add a
spring service component in the SOA Composite Editor and invoke the Create Spring
dialog, as described in How to Create a Spring Service Component in Oracle
JDeveloper.

If you use the standard Oracle JDeveloper installation outside of Oracle SOA Suite,
you must install the spring editor by selecting Check for Updates from the Help main
menu in Oracle JDeveloper, then selecting the spring extension files in the Update
Center. Otherwise, you cannot successfully add a spring service component into the
SOA Composite Editor and invoke the Create Spring dialog. Instead, you receive the
error shown in Figure 55-22.

Chapter 55
Troubleshooting Spring Errors

55-24

Figure 55-22 Spring Unavailability Error

Chapter 55
Troubleshooting Spring Errors

55-25

Part X
Appendices

This part describes Oracle SOA Suite appendixes.

This part contains the following appendixes:

• BPEL Process Activities and Services

• XPath Extension Functions

• Deployment Descriptor Properties

• Understanding Sensor Public Views and the Sensor Actions XSD

• Propagating Normalized Message Properties Through Message Headers

• Interfaces Implemented By Rules Dictionary Editor Task Flow

• Oracle SOA Suite Configuration Properties Road Map

A
BPEL Process Activities and Services

This appendix describes the BPEL process activities and services that you use when
designing a BPEL process in a SOA composite application.
This appendix includes the following sections:

• Introduction to Activities and Components

• Introduction to BPEL 1.1 and 2.0 Activities

• Introduction to BPEL Services

A.1 Introduction to Activities and Components
When you expand SOA Components in the Components window of Oracle BPEL Designer,
service components are displayed. Figure A-1 shows the service components that display for
a BPEL 2.0 or 1.1 process.

Figure A-1 SOA Components

See the following sections for additional details about service components.

• BPEL process

See Using the BPEL Process Service Component

• Oracle Mediator

See Using the Oracle Mediator Service Component

• Business rule

See Using the Business Rules Service Component

• Human task

Using the Human Workflow Service Component

• Spring

A-1

Integrating the Spring Framework in SOA Composite Applications

For information about Oracle BPEL Designer, see Getting Started with Oracle BPEL
Process Manager .

A.2 Introduction to BPEL 1.1 and 2.0 Activities
This section provides a brief overview of BPEL activities and provides references to
other documentation that describes how to use these activities.

Oracle BPEL Designer includes BPEL 1.1 and BPEL 2.0 activities that can be added
to a BPEL process. These activities enable you to perform specific tasks within a
process. Some activities are available in both BPEL 1.1 and BPEL 2.0. Others are
available in only BPEL 1.1 or BPEL 2.0.

To access these activities, go to the Components window of Oracle BPEL Designer.
The activities display in the following categories:

• BPEL Constructs: Displays core activities (also known as constructs) provided by
standard BPEL 1.1 and 2.0 functionality. The activities in this category are
displayed under additional subcategories of Web Service, Activities, and
Structured Activities in BPEL 1.1 and Web Service, Basic Activities, and
Structured Activities in BPEL 2.0.

• Subprocesses: Displays any created subprocesses. If no subprocesses have
been created, this category is empty. For more information about subprocesses,
see Introduction to Standalone and Inline BPEL Subprocess Invocations.

• Oracle Extensions: Displays extension activities that add value and ease of use
to BPEL 1.1 and 2.0 functionality.

• SOA Components: Displays the business rules, human tasks, and Oracle
Mediator service components that can be added to a BPEL process.

• BPEL Services: Displays the partner links that can be added to a BPEL process,
including JCA adapters (AQ, file, FTP, database, JMS, MQ, Oracle User
Messaging Service, socket, JDE World, SAP, LDAP server, Coherence cache, and
third-party), Oracle BAM 11g binding component, Oracle Healthcare binding
component, Oracle B2B binding component, EJB binding component, ADF-BC
binding component, Oracle E-Business Suite adapter, direct binding component,
HTTP binding component, and Oracle Managed File Transfer (MFT) adapter.

• Custom Activity Templates: Displays any created custom scope activity
templates. For more information about templates, see Introduction to Templates.

Table A-1 lists the available activities.

Table A-1 BPEL 1.1 and 2.0 Constructions and Extensions

Activity Display Under... Supported in
BPEL 1.1

Supported in BPEL 2.0 For More Information

Assign BPEL Constructs Yes Yes Assign Activity

Assert Oracle Extensions Yes Yes Assert Activity

Bind Entity Oracle Extensions Yes No Bind Entity Activity

Call Oracle Extensions No Yes Call Activity

Compensate BPEL Constructs Yes Yes Compensate Activity

Appendix A
Introduction to BPEL 1.1 and 2.0 Activities

A-2

Table A-1 (Cont.) BPEL 1.1 and 2.0 Constructions and Extensions

Activity Display Under... Supported in
BPEL 1.1

Supported in BPEL 2.0 For More Information

CompensateScop
e

BPEL Constructs No Yes CompensateScope
Activity

Create Entity Oracle Extensions Yes No Create Entity Activity

Dehydrate Oracle Extensions Yes Yes Dehydrate Activity

Dynamic Partner
Link

BPEL Constructs Yes No Dynamic Partner Link
Activity

Email Oracle Extensions Yes Yes Email Activity

Empty BPEL Constructs Yes Yes Empty Activity

Exit BPEL Constructs No Yes

Note: Replaces the
terminate activity in
BPEL 2.0.

Exit Activity

Flow BPEL Constructs Yes Yes Flow Activity

FlowN Oracle Extensions Yes No

Note: Replaced by the
forEach activity in BPEL
2.0

FlowN Activity

forEach BPEL Constructs No Yes

Note: Replaces the
FlowN activity in BPEL
2.0.

forEach Activity

If BPEL Constructs No Yes

Note: Replaces the
switch activity in BPEL
2.0.

If Activity

IM Oracle Extensions Yes Yes IM Activity

Invoke BPEL Constructs Yes Yes Invoke Activity

Java Embedding Oracle Extensions Yes Yes Java Embedding Activity

Partner Link BPEL Constructs Yes Yes Partner Link Activity

Phase Oracle Extensions Yes Yes Phase Activity

Pick BPEL Constructs Yes Yes Pick Activity

Receive BPEL Constructs Yes Yes Receive Activity

Receive Signal Oracle Extensions Yes Yes Receive Signal Activity

Remove Entity Oracle Extensions Yes No Remove Entity Activity

RepeatUntil BPEL Constructs No Yes RepeatUntil Activity

Replay Oracle Extensions Yes Yes Replay Activity

Reply BPEL Constructs Yes Yes Reply Activity

Rethrow BPEL Constructs No Yes Rethrow Activity

Schedule Job Oracle Extensions Yes Yes Schedule Job

Scope BPEL Constructs Yes Yes Scope Activity

Sequence BPEL Constructs Yes Yes Sequence Activity

Appendix A
Introduction to BPEL 1.1 and 2.0 Activities

A-3

Table A-1 (Cont.) BPEL 1.1 and 2.0 Constructions and Extensions

Activity Display Under... Supported in
BPEL 1.1

Supported in BPEL 2.0 For More Information

Signal Oracle Extensions Yes Yes Signal Activity

SMS Oracle Extensions Yes Yes SMS Activity

Switch BPEL Constructs Yes No

Note: Replaced by the if
activity in BPEL 2.0.

Switch Activity

Terminate BPEL Constructs Yes No

Note: Replaced by the
exit activity in BPEL 2.0

Terminate Activity

Throw BPEL Constructs Yes Yes Throw Activity

Translate Oracle Extensions Yes Yes Translate Activity

User Notification Oracle Extensions Yes Yes User Notification Activity

Validate Oracle Extensions
(in BPEL 1.1)

BPEL Constructs
(in BPEL 2.0)

Yes Yes Validate Activity

Wait BPEL Constructs Yes Yes Wait Activity

While BPEL Constructs Yes Yes While Activity

XQuery Transform Oracle Extensions Yes Yes XQuery Transform Activity

XSLT Transform Oracle Extensions Yes Yes XSLT Transform Activity

For more information about activities, see the Business Process Execution Language
for Web Services Specification or the Web Services Business Process Execution
Language Specification Version 2.0 by visiting the following URL:

http://www.oasis-open.org

A.2.1 Tabs Common to Many Activities
While each activity performs specific tasks, many activities include tabs that enable
you to perform similar tasks. This section describes these common tabs.

A.2.1.1 Annotations Tab
The Annotations tab displays on all activities and enables you to provide descriptions
in activities in the form of code comments and name-and-pair value assignments.

The Annotations tab does not provide a method for changing the order of
annotations. As a work around, change the order of annotations in the Source view of
the project's BPEL file in Oracle BPEL Designer.

A.2.1.2 Assertions Tab
The Assertions tab displays in invoke, receive, reply, and the onMessage branches of
pick and scope activities. A set of assertions are executed upon receipt of a callback
message at a request-response operation in these activities. The assertions specify an

Appendix A
Introduction to BPEL 1.1 and 2.0 Activities

A-4

http://www.oasis-open.org

XPath expression that, when evaluated to false, causes a BPEL fault to be thrown from the
activity. This provides an alternative to using a potentially large number of switch, assign, and
throw activities after a partner callback.

You can select when to execute a condition:

• Preassert: This condition is executed before the invoke or reply activity send out the
outbound message.

• Postassert: This condition is executed after an invoke activity, receive activity, or
onMessage branch receives the inbound message.

For more information, see the online help for this tab and Throwing Faults with Assertion
Conditions.

A.2.1.3 Correlations Tab
The Correlations tab displays in invoke, receive, and reply activities, the onMessage branch
of pick activities, and the OnMessage branch of scope activities. Correlation sets address
complex interactions between a process and its partners by providing a method for explicitly
specifying correlated groups of operations within a service instance. A set of correlation
tokens is defined as a set of properties shared by all messages in the correlated group.

For more information, see the online help for this tab and Introduction to Correlation Sets in
an Asynchronous Service.

A.2.1.4 Documentation Tab
The Documentation tab enables you to embed human documentation in the activities of a
BPEL file. These comments only display in the source code of the BPEL file. The following
example provides details.

<invoke>
. . .
 <documentation>
 Invokes the credit rating service partner link
 </documentation>
. . .

Note:

This tab is only available in BPEL 2.0 projects.

A.2.1.5 Headers Tab
The Headers tab displays in invoke, receive, and reply activities, and the onMessage branch
of pick and scope (for BPEL 1.1) activities. You create header variables for use with adapters,
such as Advanced Queuing (AQ), file, FTP, MQ, and Java Message Service (JMS).

For more information, see the online help for this tab and Understanding Technology
Adapters

Appendix A
Introduction to BPEL 1.1 and 2.0 Activities

A-5

A.2.1.6 Properties Tab
The Properties tab displays in invoke, receive, and reply activities, and the
onMessage branch of pick and scope activities. You can define normalized message
header properties for components such as Oracle BPEL Process Manager, Oracle
Mediator, Oracle JCA adapters, REST adapters, and Oracle B2B.

For more information, see the online help for this tab and Propagating Normalized
Message Properties Through Message Headers.

A.2.1.7 Skip Condition Tab
The Skip Condition tab displays in most activities and enables you to specify an
XPath expression that, when evaluated to true, causes the activity to be skipped. This
extension provides an alternative to the case pattern of a switch activity that you use to
make an activity conditional.

For more information, see the online help for this tab and Specifying XPath
Expressions to Bypass Activity Execution.

A.2.1.8 Sources and Targets Tabs
The Sources and Targets tabs enable you to define the source and target activities to
execute in a flow activity. This feature enables you to synchronize the execution of
activities within a flow activity to ensure that a target activity only executes after a
source activity has completed.

For more information, see the online help for this tab and Synchronizing the Execution
of Activities in a Flow Activity.

A.2.1.9 Timeout Tab
The Timeout tab displays in receive activities and provides a timeout setting for
request-response operations. This provides an alternative to the onMessage and
onAlarm branches of a pick activity that you must use when you want to specify a time
out duration for partner callbacks.

For more information, see the online help for this tab and Setting Timeouts for
Request-Reply and In-Only Operations in Receive Activities.

A.2.2 Using the Native Format Builder Wizard Outside of Adapter
Configuration

The Native Format Builder wizard enables you to create a native XSD schema file. You
can now invoke the Native Format Builder wizard outside of adapter creation to create
new schemas and edit existing schemas.

A.2.2.1 To create a native format schema from the Applications Window:
1. From the Oracle JDeveloper main menu, select File > New.

2. From the Categories list, select SOA Tier > Interfaces.

3. Click NXSD Schema to invoke the Native Format Builder wizard.

Appendix A
Introduction to BPEL 1.1 and 2.0 Activities

A-6

4. On the Welcome page, click Next.

5. On the File Name and Directory page, specify the file name of the schema (for example,
addresses_schema.xsd) and directory path.

6. Follow the remaining pages of the wizard to create the native format schema.

For more information about the Native Format Builder wizard, see Chapter "Native Format
Builder Wizard" of Understanding Technology Adapters.

A.2.2.2 To edit an existing native format schema from the Applications Window:
You can access the Native Format Builder wizard for schema editing from the Applications
window. The context menu option Edit NXSD is available for selection if the schema file is
detected to be a native format schema file.

1. In the Applications window, right-click a native format schema file (for example,
addresses.xsd).

2. Select Edit NXSD.

For more information about the Native Format Builder wizard, see Chapter "Native Format
Builder Wizard" of Understanding Technology Adapters.

A.2.3 Assign Activity
This activity provides a method for data manipulation, such as copying the contents of one
variable to another. Copy operations enable you to transfer information between variables,
expressions, endpoints, and other elements.

Figure A-2 shows the Copy Rules tab of the Assign dialog for BPEL 1.1. You create a
mapping between source and target nodes in the tree in either of the following ways:

• Drag the source node to the target node to create a BPEL copy rule from the source to
the target node. This action creates a line that connects the source and target types.

• Select the source node, select the target node, and then click the Add icon above the
table at the bottom of the dialog. The mapping is then added to the table and the
connecting line between the nodes is drawn in the tree.

The copy rule is displayed in the From and To sections at the bottom of the dialog.

Appendix A
Introduction to BPEL 1.1 and 2.0 Activities

A-7

Figure A-2 Copy Rules Tab of Edit Assign Dialog

The Select Insertion Mode list above the source node section enables you to insert
the next copy rule you create either after or before the rule selected at the bottom of
the dialog.

Icons display above the target node that enable you to perform the following tasks
(from left to right) on target nodes. By default, the center canvas is open. If it is closed,
drag the bars open to display the center canvas.

• Expression icon: Drag this icon to a target node to invoke the Expression Builder
dialog for assigning an XPath expression to that node. You can also drag this icon
to the center canvas to invoke this dialog, specify the expression, save and close
the dialog, and then drag the icon to the target node.

• Literal (BPEL 2.0 specification) icon or XML Fragment (BPEL 1.1 specification)
icon: Drag this icon to a target node to invoke a dialog for assigning a literal (if the
BPEL project supports the BPEL 2.0 specification) or XML fragment (if the BPEL
project supports the BPEL 1.1 specification) to that target node. You can also drag
this icon to the center canvas to invoke this dialog, specify the value, save and
close the dialog, and then drag the icon to the target node.

• Remove icon: Drag this icon to a target node to create a bpelx:remove extension
rule. You can also drag this icon to the center canvas to invoke this dialog, specify
the rule, save and close the dialog, and then drag the icon to the target node.

• Rename icon: Drag this icon to rename a target node. This adds a bpelx:rename
extension rule with an elementTo attribute. You can also drag this icon to the
center canvas to invoke a dialog, specify the rule, save and close the dialog, and
then drag the icon to the target node.

• Recast icon: Drag this icon to recast a target node. This adds a bpelx:rename
extension rule with a typeCastTo attribute. This results in an xsi:type attribute in
the XML output. You can also drag this icon to the center canvas to invoke a
dialog, specify the rule, save and close the dialog, and then drag the icon to the
target node.

Appendix A
Introduction to BPEL 1.1 and 2.0 Activities

A-8

You can also change a selected copy rule to a bpelx extension type (bpelx:copyList,
bpelx:insertAfter, bpelx:insertBefore, or bpelx:append).

The method of selection differs between BPEL 1.1 and BPEL 2.0.

Figure A-3 shows how you select an extension type in BPEL 1.1. You select a copy rule,
select the Copy dropdown list, and then select the appropriate extension.

Figure A-3 Copy Rule Converted to bpelx Extension in BPEL 1.1

Figure A-4 shows how you select an extension type in BPEL 2.0. You right-click a copy rule,
select Change rule type, and then select the appropriate extension.

Appendix A
Introduction to BPEL 1.1 and 2.0 Activities

A-9

Figure A-4 Copy Rule Converted to bpelx Extension in BPEL 2.0

For more information about manipulating XML data with bpelx extensions, see
Manipulating XML Data with bpelx Extensions.

In the From and To XPath fields, you can also place your cursor over the icon to the
left of the source type to display the operation being performed (for example, copy,
append, and so on). Each operation type is represented by a different icon. You can
also right-click a copy rule to display a list of actions to perform:

• Edit 'From' expression or Edit 'To' expression: Select this option to edit XPath
expression values when the created copy rule contains a query for the source or
target node. This selection invokes the Expression Builder dialog. The menu
option that displays is based on the current content of your copy rule selection.

• ignoreMissingFromData: Select this option to toggle the ignoreMissingFromData
attribute on the copy rule on and off. When toggled on, this suppresses any
bpel:selectionFailure standard faults. For more information, see
ignoreMissingFromData Attribute.

• insertMissingToData: Select this option to toggle the insertMissingToData
attribute on the copy rule on and off. For more information, see Section
insertMissingToData Attribute.

• keepSrcElementName (in BPEL 2.0 projects only): Select this option to toggle the
keepSrcElementName attribute on the copy rule on and off. This option enables you
to replace the element name of the destination (as selected by the to-spec) with
the element name of the source.

• Change Rule Type (in BPEL 2.0 projects only): Select this option to change the
type of the selected rule to one of the BPEL extension rules: bpelx:copyList,
bpelx:insertAfter, bpelx:insertBefore, or bpelx:append.

• Delete rule: Select this option to delete the selected rule.

For more information about the ignoreMissingFromData, insertMissingToData, and
keepSrcElementName attributes, see How to Use Assign Extension Attributes.

Appendix A
Introduction to BPEL 1.1 and 2.0 Activities

A-10

The icons above the To section enable you to add, delete, move up, and move down a
selected copy rule.

For more information about the assign activity, see the online Help for the Copy Rules dialog
and Manipulating XML Data in a BPEL Process.

Note:

If an assign activity contains multiple bpelx:append settings, it must be split into two
assign activities. Otherwise, bpelx:append is moved to the end of the list each time,
which can cause problems. As a work around, move it manually.

A.2.4 Assert Activity
This activity enables you to perform an assertion on a specified expression.

This is a standalone activity in which to specify assertions. This activity can be placed
anywhere in the BPEL process flow. You can also specify assertions in message exchange
activities from the Assertions tab in invoke activities, reply activities, receive activities, and
the onMessage branch of pick and scope activities.

Figure A-5 shows the Assert dialog.

Figure A-5 Assert Dialog

For more information about the standalone assert activity, see Assertion Conditions in a
Standalone Assert Activity and What Happens When You Create Assertion Conditions.

Appendix A
Introduction to BPEL 1.1 and 2.0 Activities

A-11

A.2.5 Bind Entity Activity
This activity enables you to select the entity variable to act as the data handle to
access and plug in different data provider service technologies.

The entity variable can be used with an Oracle Application Development Framework
(ADF) Business Component data provider service using service data object (SDO)-
based data. The entity variable enables you to specify BPEL data operations to be
performed by an underlying data provider service. The data provider service performs
the data operations in a data store behind the scenes and without use of other data
store-related features provided by Oracle BPEL Process Manager (for example, the
database adapter). This action enhances Oracle BPEL Process Manager runtime
performance and incorporates native features of the underlying data provider service
during compilation and runtime.

Figure A-6 shows the Bind Entity dialog.

Figure A-6 Bind Entity Dialog

A.2.6 Call Activity
This activity enables you to execute referenced subprocess code in standalone and
inline subprocesses in BPEL 2.0. A subprocess is a fragment of BPEL code that can
be reused within a particular processor by separate processes.

Figure A-7 shows the Edit Call dialog.

Appendix A
Introduction to BPEL 1.1 and 2.0 Activities

A-12

Figure A-7 Edit Call Dialog

For more information about the call activity, see Introduction to Standalone and Inline BPEL
Subprocess Invocations and Creating Standalone and Inline BPEL Subprocesses in a BPEL
Process.

A.2.7 Compensate Activity
This activity invokes compensation on an inner scope activity that has successfully
completed. This activity can be invoked only from within a fault handler or another
compensation handler. Compensation occurs when a process cannot complete several
operations after completing others. The process must return and undo the previously
completed operations. For example, assume a process is designed to book a rental car, a
hotel, and a flight. The process books the car and the hotel, but cannot book a flight for the
correct day. In this case, the process performs compensation by unbooking the car and the
hotel.The compensation handler is invoked with the compensate activity, which names the
scope on which the compensation handler is to be invoked.

Figure A-8 shows the Compensate dialog in BPEL 1.1. You can perform the following tasks:

• Click the General tab to provide the activity with a meaningful name.

• Select the scope activity on which to invoke the compensation handler.

Appendix A
Introduction to BPEL 1.1 and 2.0 Activities

A-13

Figure A-8 Compensate Dialog

In BPEL 2.0, the Compensate dialog includes a Documentation tab.

For more information about the compensate activity, see Using Compensation After
Undoing a Series of Operations.

A.2.8 CompensateScope Activity
This activity enables you to start compensation on a specified inner scope that has
already completed successfully. Only use this activity from within a fault handler,
another compensation handler, or a termination handler.

Note:

This activity is only supported in BPEL 2.0 projects.

Figure A-9 shows the CompensateScope dialog.

Appendix A
Introduction to BPEL 1.1 and 2.0 Activities

A-14

Figure A-9 CompensateScope Dialog

For more information about the compensateScope activity, see Using Compensation After
Undoing a Series of Operations.

A.2.9 Create Entity Activity
This activity enables you to create an entity variable. The entity variable can be used with an
Oracle ADF Business Component data provider service using SDO-based data.

Figure A-10 shows the Create Entity dialog.

Figure A-10 Create Entity Dialog

Appendix A
Introduction to BPEL 1.1 and 2.0 Activities

A-15

For more information, see Delegating XML Data Operations to Data Provider Services.

A.2.10 Dehydrate Activity
By default, dehydration points are set on activities such as a receive, onMessage,
onAlarm, and wait. The dehydrate activity enables you to explicitly specify a
dehydration point. This activity acts as a dehydration point to automatically maintain
long-running asynchronous processes and their current state information in a
database while they wait for asynchronous callbacks. Storing the process in a
database preserves the process and prevents any loss of state or reliability if a system
shuts down or a network problem occurs. This feature increases both BPEL process
reliability and scalability.

The bpelx:dehydrate extension implements dehydration. For BPEL projects that
support BPEL version 1.1, the syntax is as follows:

<bpelx:dehydrate name="DehydrateInstance"/>

For BPEL projects that support BPEL version 2.0, the syntax is as shown in the
following example:

<extensionActivity>
 <bpelx:dehydrate name="DehydrateInstance"/>
 </extensionActivity>

Figure A-11 shows the Dehydrate dialog in BPEL 2.0.

Figure A-11 Dehydrate Dialog

A.2.11 Dynamic Partner Link Activity
This activity enables you to dynamically assign an endpoint reference to a partner link
for use at runtime in BPEL version 1.1.

Appendix A
Introduction to BPEL 1.1 and 2.0 Activities

A-16

Figure A-12 shows the Dynamic Partner Link dialog in BPEL 1.1.

Figure A-12 Dynamic Partner Link Dialog

For more information, see Creating a Dynamic Partner Link at Design Time for Use at
Runtime.

A.2.12 Email Activity
This activity enables you to send an email notification about an event.

For example, an online shopping business process of an online bookstore sends a courtesy
email message to you after the items are shipped. The business process calls the notification
service with your user ID and notification message. The notification service gets the email
address from Oracle Internet Directory.

Figure A-13 shows the Email dialog in BPEL 2.0.

Appendix A
Introduction to BPEL 1.1 and 2.0 Activities

A-17

Figure A-13 Email Dialog

For more information about the email activity, see How To Configure the Email
Notification Channel.

A.2.13 Empty Activity
This activity enables you to insert a no-operation instruction into a process. This
activity is useful when you must use an activity that does nothing (for example, when a
fault must be caught and suppressed).

Figure A-14 shows the Empty dialog in BPEL 2.0.

Figure A-14 Empty Dialog

Appendix A
Introduction to BPEL 1.1 and 2.0 Activities

A-18

For more information about the empty activity, see How to Insert No-Op Instructions into a
Business Process with an Empty Activity.

A.2.14 Exit Activity
This activity enables you to immediately end all currently running activities on all parallel
branches without involving any termination handling, fault handling, or compensation
handling mechanisms.

Note:

This activity replaces the terminate activity in BPEL 2.0 projects.

Figure A-15 shows the Exit dialog.

Figure A-15 Exit Dialog

For more information about the exit activity, see Immediately Ending a Business Process
Instance with the Exit Activity in BPEL 2.0.

A.2.15 Flow Activity
This activity enables you to specify one or more activities to be performed concurrently. A
flow activity completes when all activities in the flow have finished processing. Completion of
a flow activity includes the possibility that it can be skipped if its enabling condition is false.

For example, assume you use a flow activity to enable two loan offer providers (United Loan
service and Star Loan service) to start in parallel. In this case, the flow activity contains two
parallel activities – the sequence to invoke the United Loan service and the sequence to

Appendix A
Introduction to BPEL 1.1 and 2.0 Activities

A-19

invoke the Star Loan service. Each service can take an arbitrary amount of time to
complete their loan processes.

Figure A-16 shows an initial flow activity with its two panels for parallel processing. You
drag activities into both panels to create parallel processing. When complete, a flow
activity looks as shown in Figure A-17.

Figure A-16 Flow Dialog (At Time of Creation)

Figure A-17 Flow Dialog (After Design Completion)

You can also synchronize the execution of activities within a flow activity. This ensures
that certain actives only execute after other activities have completed.

Note:

Oracle's BPEL implementation executes flows in the same, single execution
thread of the BPEL process, and not in separate threads.

For more information about the flow activity, see Creating a Parallel Flow.

Appendix A
Introduction to BPEL 1.1 and 2.0 Activities

A-20

A.2.16 FlowN Activity
This activity enables you to create multiple flows equal to the value of N, which is defined at
runtime based on the data available and logic within the process. An index variable
increments each time a new branch is created, until the index variable reaches the value of N.

Note:

This activity is replaced by the forEach activity in BPEL 2.0 projects.

Figure A-18 shows the FlowN dialog.

Figure A-18 FlowN Dialog

For more information about the flowN activity, see Customizing the Number of Flow Activities
with the flowN Activity in BPEL 1.1.

A.2.17 forEach Activity
This activity enables you to process multiple sets of activities sequentially or in parallel. The
forEach activity executes its contained (child) scope activity exactly N+1 times, where N
equals the final counter value minus the starting counter value that you specify in the
Counter Values tab of the For Each dialog. While other structured activities such as a flow
activity can have any type of activity as its contained activity, the forEach activity can only use
a scope activity.

Appendix A
Introduction to BPEL 1.1 and 2.0 Activities

A-21

Note:

This activity replaces the flowN activity in BPEL 2.0 projects.

Figure A-19 shows a forEach activity with its contained scope.

Figure A-19 forEach Activity

For more information about the forEach activity, see Processing Multiple Sets of
Activities with the forEach Activity in BPEL 2.0.

A.2.18 If Activity
This activity enables you to define conditional behavior for specific activities to decide
between two or more branches. Only one activity is selected for execution from a set
of branches.

Note:

This activity replaces the switch activity in BPEL 2.0 projects.

Figure A-20 shows an if activity with the following defined if, elseif, and else branches.

Appendix A
Introduction to BPEL 1.1 and 2.0 Activities

A-22

Figure A-20 If Activity

For more information about the if activity, see Defining Conditional Branching with the If
Activity in BPEL 2.0.

A.2.19 IM Activity
This activity enables you to send an automatic, asynchronous instant message (IM)
notification to a user, group, or destination address. Figure A-21 shows the IM dialog.

Figure A-21 IM Dialog

For more information, see How to Configure the IM Notification Channel.

A.2.20 Invoke Activity
This activity enables you to specify an operation you want to invoke for the service (identified
by its partner link). The operation can be one-way or request-response on a port provided by

Appendix A
Introduction to BPEL 1.1 and 2.0 Activities

A-23

the service. You can also automatically create variables in an invoke activity. An invoke
activity invokes a synchronous web service or initiates an asynchronous web service.

The invoke activity opens a port in the process to send and receive data. It uses this
port to submit required data and receive a response. For synchronous callbacks, only
one port is needed for both the send and receive functions.

Figure A-22 shows the Invoke dialog in BPEL 2.0. You can perform the following tasks:

• Provide the activity with a meaningful name.

• Select the partner link for which to specify an operation.

• Select the operation to perform.

• Automatically create a variable or select an existing variable in which to transport
the data (payload).

Figure A-22 Invoke Dialog

For more information about the invoke activity, see the following:

• Introduction to Interaction Patterns in a BPEL Process

• Mapping WSDL Message Parts in BPEL 2.0

• Invoke Activity for Performing a Request

• Adding an Invoke Activity

Appendix A
Introduction to BPEL 1.1 and 2.0 Activities

A-24

• How to Return a Fault in an Asynchronous Interaction

• Throwing Faults with Assertion Conditions

A.2.21 Java Embedding Activity
This activity enables you to add custom Java code to a BPEL process using the Java BPEL
extension bpelx:exec. This is useful when you have Java code that can perform a function,
and want to use this existing code instead of starting over. In BPEL 2.0 projects, the
bpelx:exec extension and Java code are wrapped in an <extensionActivity> element.

Figure A-23 shows the Edit Java Embedding dialog in BPEL 2.0.

Figure A-23 Edit Java Embedding Dialog

For more information about the Java embedding activity, see Incorporating Java and Java EE
Code in a BPEL Process.

A.2.22 Partner Link Activity
This activity enables you to define the external services with which your process interacts. A
partner link type characterizes the conversational relationship between two services by
defining the roles played by each service in the conversation and specifying the port type
provided by each service to receive messages within the conversation. For example, if you
create a process to interact with a Credit Rating Service and two loan provider services
(United Loan and Star Loan), you create partner links for all three services.

Appendix A
Introduction to BPEL 1.1 and 2.0 Activities

A-25

Figure A-24 shows the Partner Link dialog in BPEL 2.0. You provide the following
details:

• A meaningful name for the service.

• The web services description language (WSDL) file of the external service.

• The actual service type (defined as Partner Link Type).

• The role of the service (defined as Partner Role).

• The role of the process requesting the service (defined as My Role).

Figure A-24 Partner Link Activity

For more information about partner links, see Invoking an Asynchronous Web Service
from a BPEL Process.

A.2.23 Phase Activity
This activity creates Oracle Mediator and business rules service components for
integration with a BPEL process. You create message request input and message
response output variables and design business rules for evaluating variable content for
the BPEL process.

When you complete these tasks, the following activities and service components are
created:

• An assign activity that includes the message request input and message response
output variables.

• An invoke activity that is automatically designed to invoke an Oracle Mediator
partner link in the BPEL process.

• An Oracle Mediator partner link that is automatically designed to route the
message request input variable to the business rules service component in the
SOA composite application of which this BPEL process is a part. The business

Appendix A
Introduction to BPEL 1.1 and 2.0 Activities

A-26

rules service component displays in the SOA Composite Editor. Oracle Mediator also
displays as a service component in the SOA Composite Editor.

• A business rules service component that evaluates the content of the message request
input variable and returns the results in the message response output variable to Oracle
Mediator. Oracle Mediator then makes a routing decision and routes the message to the
correct target destinations.

Figure A-25 shows the Phase dialog in BPEL 2.0.

Figure A-25 Phase Dialog

For more information, see Creating Dynamic Business Processes .

A.2.24 Pick Activity
This activity waits for the occurrence of one event in a set of events and performs the activity
associated with that event. The occurrence of events is often mutually exclusive (the process
either receives an acceptance or rejection message, but not both). If multiple events occur,
the selection of the activity to perform depends on which event occurred first. If the events
occur nearly simultaneously, there is a race and the choice of activity to be performed is
dependent on both timing and implementation.

The pick activity provides an OnMessage branch. When you double-click the OnMessage
icon in BPEL 2.0, the dialog shown in Figure A-26 appears.

Appendix A
Introduction to BPEL 1.1 and 2.0 Activities

A-27

Figure A-26 OnMessage Dialog

The two branches of the pick activity are as follows:

• OnMessage (Automatically displays below the Pick activity icon.)

Contains the code for receiving a reply, for example, from a loan service.

• OnAlarm (Does not automatically display; you must manually add this branch by
selecting the Pick activity icon and clicking the Add OnAlarm icon.)

Contains the code for a timeout, for example, after one minute.

Whichever branch completes first is executed; the other branch is not executed. The
branch that has its condition satisfied first is executed.

Figure A-27 shows the OnAlarm dialog of the pick activity in BPEL 2.0.

Appendix A
Introduction to BPEL 1.1 and 2.0 Activities

A-28

Figure A-27 OnAlarm Branch Dialog of a Pick Activity

Note:

You can also create OnMessage branches in BPEL 1.1 scope activities and
OnAlarm branches in BPEL 1.1 and 2.0 scope activities. Expand the Scope activity
in Oracle JDeveloper, and browse the icons on the left side to find the branch you
want to add.

If you add correlations to an OnMessage branch, the correlations syntax is placed after the
assign activity syntax. The correlation syntax must go before the assign activity.

A.2.24.1 To put the correlation syntax before the assign activity:
1. Create a correlation set in Oracle JDeveloper.

2. Assign this to the OnMessage branch.

3. Complete the remaining design tasks.

4. Before making or deploying the BPEL process, move the correlation syntax before the
assign activity in the BPEL source code.

For more information about the pick activity, see the following:

• Introduction to Interaction Patterns in a BPEL Process

• Mapping WSDL Message Parts in BPEL 2.0

• Throwing Faults with Assertion Conditions

• Selecting Between Continuing or Waiting on a Process with a Pick Activity

Appendix A
Introduction to BPEL 1.1 and 2.0 Activities

A-29

• Setting Timeouts for Durable Synchronous Processes

A.2.25 Receive Activity
This activity specifies the partner link from which to receive information and the port
type and operation for the partner link to invoke. This activity waits for an
asynchronous callback response message from a service, such as a loan application
approval service. While the BPEL process is waiting, it is dehydrated (compressed and
stored) until the callback message arrives. The contents of this response are stored in
a response variable in the process.

Figure A-28 shows the Receive dialog in BPEL 2.0. You can perform the following
tasks:

• Provide a meaningful name.

• Select the partner link service for which to specify an operation.

• Select the operation to be performed.

• Automatically create a variable or select an existing variable in which to transport
the callback response.

Figure A-28 Receive Dialog

For more information about the receive activity, see the following:

• Introduction to Interaction Patterns in a BPEL Process

Appendix A
Introduction to BPEL 1.1 and 2.0 Activities

A-30

• Mapping WSDL Message Parts in BPEL 2.0

• Adding a Receive Activity

• Throwing Faults with Assertion Conditions

• Setting Timeouts for Request-Reply and In-Only Operations in Receive Activities

A.2.26 Receive Signal Activity
Use this activity in detail processes to wait for the notification signal from the master process
to begin processing and in a master process to wait for the notification signal from all detail
processes indicating that processing has completed.

Figure A-29 shows the Edit Receive Signal dialog.

Figure A-29 Receive Signal Dialog

For more information, see Coordinating Master and Detail Processes .

A.2.27 Remove Entity Activity
This activity enables you to remove an entity variable. This action removes the row.

Figure A-30 shows the Remove Entity dialog.

Appendix A
Introduction to BPEL 1.1 and 2.0 Activities

A-31

Figure A-30 Remove Entity Dialog

A.2.28 RepeatUntil Activity
Use this activity if the body of an activity must be performed at least once. The XPath
expression condition in the repeatUntil activity is evaluated after the body of the
activity completes. The condition is evaluated repeatedly (and the body of the activity
processed) until the provided boolean condition is true. Figure A-31 shows the Repeat
Until dialog.

Note:

This activity is only supported in BPEL 2.0 projects.

Appendix A
Introduction to BPEL 1.1 and 2.0 Activities

A-32

Figure A-31 Repeat Until Dialog

For more information about the repeatUntil activity, see, Defining Conditional Branching with
the repeatUntil Activity.

A.2.29 Replay Activity
This activity enables you to re-execute the activities inside a selected scope.

Figure A-32 shows the Replay dialog in BPEL 2.0.

Figure A-32 Replay Dialog

Appendix A
Introduction to BPEL 1.1 and 2.0 Activities

A-33

For more information about the replay activity, see Re-executing Activities in a Scope
Activity with the Replay Activity.

A.2.30 Reply Activity
This activity allows the process to send a message in reply to a message that was
received through a receive activity. The combination of a receive activity and a reply
activity forms a request-response operation on the WSDL port type for the process.

Figure A-33 shows the Reply dialog in BPEL 2.0.

Figure A-33 Reply Dialog

For more information about the reply activity, see the following:

• Introduction to Interaction Patterns in a BPEL Process

• Mapping WSDL Message Parts in BPEL 2.0

• How to Return a Fault in a Synchronous Interaction

A.2.31 Rethrow Activity
This activity enables you to rethrow a fault originally captured by the immediately
enclosing fault handler.

Appendix A
Introduction to BPEL 1.1 and 2.0 Activities

A-34

Note:

This activity is only supported in BPEL 2.0 projects.

Figure A-34 shows a rethrow activity within a fault handler (catch activity).

Figure A-34 Rethrow Activity

For more information about rethrowing faults, see Rethrowing Faults with the Rethrow
Activity.

A.2.32 Schedule Job
This activity enables you to schedule an Oracle Enterprise Scheduler job in a BPEL process.
Figure A-35 shows the Schedule Job dialog.

Appendix A
Introduction to BPEL 1.1 and 2.0 Activities

A-35

Figure A-35 Schedule Job Dialog

For more information, see Invoking an Oracle Enterprise Scheduler Job in a BPEL
Process.

A.2.33 Scope Activity
This activity consists of a collection of nested activities that can have their own local
variables, fault handlers, compensation handlers, and so on. A scope activity is
analogous to a { } block in a programming language.

Each scope has a primary activity that defines its behavior. The primary activity can be
a complex structured activity, with many nested activities within it of arbitrary depth.
The scope is shared by all the nested activities.

Figure A-36 shows the Scope dialog in BPEL 2.0. Define appropriate activities inside
the scope activity.

Appendix A
Introduction to BPEL 1.1 and 2.0 Activities

A-36

Figure A-36 Scope Dialog

Fault handling is associated with a scope activity. The goal is to undo the incomplete and
unsuccessful work of a scope activity in which a fault has occurred. You define catch activities
in a scope activity to create a set of custom fault-handling activities. Each catch activity is
defined to intercept a specific type of fault.

Figure A-37 shows the Add Catch icon inside a scope activity. Figure A-38 shows the catch
activity area that appears when you click the Add Catch icon. Within the area defined as
Drop Activity Here, you drag additional activities to create fault handling logic to catch and
manage exceptions.

For example, a client provides a social security number to a credit rating service when
applying for a loan. This number is used to perform a credit check. If a bad credit history is
identified or the social security number is identified as invalid, an assign activity inside the
catch activity notifies the client of the loan offer rejection. The entire loan application process
is terminated with a terminate activity.

Figure A-37 Creating a Catch Branch

Appendix A
Introduction to BPEL 1.1 and 2.0 Activities

A-37

Figure A-38 Catch Activity Icon

For more information about the scope activity and fault handling, see the following:

• Introduction to Interaction Patterns in a BPEL Process

• Mapping WSDL Message Parts in BPEL 2.0

• Managing a Group of Activities with a Scope Activity

A.2.34 Sequence Activity
This activity enables you to define a collection of activities to perform in sequential
order. For example, you may want the following activities performed in a specific order:

• A customer request is received in a receive activity.

• The request is processed inside a flow activity that enables concurrent behavior.

• A reply message with the final approval status of the request is sent back to the
customer in a reply activity.

A sequence activity makes the assumption that the request can be processed in a
reasonable amount of time, justifying the requirement that the invoker wait for a
synchronous response (because this service is offered as a request-response
operation).

When this assumption cannot be made, it is better to define the customer interaction
as a pair of asynchronous message exchanges.

When you double-click the Sequence icon, the activity area shown in Figure A-39
appears. Drag and define appropriate activities inside the sequence activity.

Figure A-39 Sequence Activity

For more information about the sequence activity, see the following:

Appendix A
Introduction to BPEL 1.1 and 2.0 Activities

A-38

• Introduction to Interaction Patterns in a BPEL Process

• Creating a Parallel Flow

A.2.35 Signal Activity
This activity is used in a master process to notify detail processes to perform processing at
runtime and used in detail processes to notify a master process that processing has
completed. Figure A-40 shows the Edit Signal dialog.

Figure A-40 Signal Dialog

For more information, see Coordinating Master and Detail Processes .

A.2.36 SMS Activity
This activity enables you to send a short message system (SMS) notification about an event.

Figure A-41 shows the SMS dialog in BPEL 2.0.

Appendix A
Introduction to BPEL 1.1 and 2.0 Activities

A-39

Figure A-41 SMS Dialog

For more information about the SMS activity, see How to Configure the SMS
Notification Channel.

A.2.37 Switch Activity
This activity consists of an ordered list of one or more conditional branches defined in
a case branch, followed optionally by an otherwise branch. The branches are
considered in the order in which they appear. The first branch whose condition is true
is taken and provides the activity performed for the switch. If no branch with a
condition is taken, then the otherwise branch is taken. If the otherwise branch is not
explicitly specified, then an otherwise branch with an empty activity is assumed to be
available. The switch activity is complete when the activity of the selected branch
completes.

A switch activity differs in functionality from a flow activity. For example, a flow activity
enables a process to gather two loan offers at the same time, but does not compare
their values. To compare and make decisions on the values of the two offers, a switch
activity is used. The first branch is executed if a defined condition (inside the case
branch) is met. If it is not met, the otherwise branch is executed.

Note:

This activity is replaced by the if activity in BPEL 2.0 projects.

Figure A-42 shows a switch activity with the following defined branches.

Appendix A
Introduction to BPEL 1.1 and 2.0 Activities

A-40

Figure A-42 Switch Activity

For more information about the switch activity, see the following:

• Introduction to Interaction Patterns in a BPEL Process

• Defining Conditional Branching with the Switch Activity in BPEL 1.1

A.2.38 Terminate Activity
This activity enables you to end the tasks of an activity (for example, the fault handling tasks
in a catch branch). For example, if a client's bad credit history is identified or a social security
number is identified as invalid, a loan application process is terminated, and the client's loan
application document is never submitted to the service loan providers.

Note:

• The terminate activity is replaced by the exit activity in BPEL 2.0 projects.

• Do not use the terminate activity with a synchronous BPEL process because it
can lead to timeouts.

Figure A-43 shows several terminate activities in the otherwise branch of a switch activity.

Figure A-43 Terminate Activity

Appendix A
Introduction to BPEL 1.1 and 2.0 Activities

A-41

For more information about the terminate activity, see Stopping a Business Process
Instance with the Terminate Activity in BPEL 1.1.

A.2.39 Throw Activity
This activity generates a fault from inside the business process.

Figure A-44 shows the Throw dialog in BPEL 2.0.

Figure A-44 Throw Dialog

For more information about the throw activity, see Throwing Internal Faults with the
Throw Activity.

A.2.40 Translate Activity
This activity enables you to configure an inbound (with automatic use of the
doTranslateFromNative function) translation or outbound (with automatic use of the
doTranslateToNative function) translation.

• Inbound translation consists of native format to XML and opaque to XML.

• Outbound translation consists of XML to native format and large XML to an
attachment in a directory.

This activity is supported in both BPEL 1.1. and 2.0. Figure A-45 shows the Translate
dialog.

Appendix A
Introduction to BPEL 1.1 and 2.0 Activities

A-42

Figure A-45 Translate Dialog

For more information, see Translating Between Native Data and XML.

A.2.41 User Notification Activity
This activity enables you to design a BPEL process in which you do not explicitly select a
notification channel during design time, but simply indicate that a notification must be sent.
The channel to use for sending notifications is resolved at runtime based on preferences
defined by the end user in the User Messaging Preferences user interface of the Oracle User
Messaging Service. This moves the responsibility of notification channel selection from
Oracle BPEL Designer to the end user. If the end user does not select a preferred channel or
rule, email is used by default for sending notifications to that user. Figure A-46 provides
details.

Appendix A
Introduction to BPEL 1.1 and 2.0 Activities

A-43

Figure A-46 User Notification Dialog

For more information about user notifications, see Allowing the End User to Select
Notification Channels.

For more information about the Oracle User Messaging Service, see Administering
Oracle User Messaging Service and Developing Applications with Oracle User
Messaging Service.

A.2.42 Validate Activity
This activity enables you to validate variables in the list. The variables are validated
against their XML schema.

Figure A-47 shows the Validate dialog in BPEL 2.0.

Appendix A
Introduction to BPEL 1.1 and 2.0 Activities

A-44

Figure A-47 Validate Dialog

For more information about the validate activity, see Validating XML Data.

A.2.43 Wait Activity
This activity allows a process to specify a delay for a certain period or until a certain deadline
is reached. A typical use of this activity is to invoke an operation at a certain time. This
activity enables you to wait for a given time period or until a certain time has passed. Exactly
one of the expiration criteria must be specified.

Figure A-48 shows the Wait dialog in BPEL 2.0.

Appendix A
Introduction to BPEL 1.1 and 2.0 Activities

A-45

Figure A-48 Wait Dialog

For more information about the wait activity, see Setting an Expiration Time with a Wait
Activity .

A.2.44 While Activity
This activity supports repeated performance of a specified iterative activity. The
iterative activity is repeated until the given while condition is no longer true.

Figure A-49 shows the While dialog in BPEL 2.0. You can enter expressions in this
dialog.

Appendix A
Introduction to BPEL 1.1 and 2.0 Activities

A-46

Figure A-49 While Dialog

For more information about the while activity, see Defining Conditional Branching with the
While Activity.

A.2.45 XQuery Transform Activity
This activity enables you to create an XQuery transformation that maps source elements to
target elements (for example, incoming purchase order data into outgoing purchase order
acknowledgment data).

Figure A-50 shows the XQuery dialog in BPEL 2.0. This dialog enables you to perform the
following tasks:

• Define the source and target variables and parts to map.

• Specify the XQuery mapper file.

• Click the second icon (the Add icon) to the right of the Mapper File field to access the
XQuery Mapper for creating a new XQuery file for graphically mapping source and target
elements. Click the Edit icon (third icon) to edit an existing XQuery file.

Appendix A
Introduction to BPEL 1.1 and 2.0 Activities

A-47

Figure A-50 XQuery Dialog

For more information, see Creating Transformations with the XQuery Mapper.

A.2.46 XSLT Transform Activity
This activity enables you to create an XSL transformation that maps source elements
to target elements (for example, incoming purchase order data into outgoing purchase
order acknowledgment data).

Figure A-51 shows the Transform dialog in BPEL 2.0. This dialog enables you to
perform the following tasks:

• Define the source and target variables and parts to map.

• Specify the transformation mapper file.

• Click the second icon (the Add icon) to the right of the Mapper File field to access
the XSLT Map Editor for creating a new XSL file for graphically mapping source
and target elements. Click the Edit icon (third icon) to edit an existing XSL file.

Appendix A
Introduction to BPEL 1.1 and 2.0 Activities

A-48

Figure A-51 Transform Dialog

For more information about the transform activity, see Creating Transformations with the
XSLT Map Editor .

A.3 Introduction to BPEL Services
BPEL processes can communicate with web-based applications and clients through SOAP
web services, Oracle ADF Business Component (BC) services, JCA adapters, Oracle B2B
services, Oracle Healthcare services, Oracle Business Activity Monitoring 11g, HTTP binding,
direct binding, EJB services, REST adapters, Oracle E-Business Suite, JDE World, SAP,
cloud adapters, and partner links.

To access BPEL services:

1. In the Components window of Oracle BPEL Designer, expand BPEL Services to display
the services.

2. Drag and drop the service to the appropriate swimlane. Table A-2 lists the available
services and provides references to documentation that describes these services.

Table A-2 BPEL Services

BPEL Service For More Information, See...

ADF-BC services ADF-BC Services

AQ adapter • AQ Adapter
• Understanding Technology Adapters

Oracle B2B • Oracle B2B
• Using Oracle B2B

Oracle Business Activity
Monitoring (BAM) 11g

• Oracle BAM 11g Adapter
• Monitoring Business Activity with Oracle BAM

Appendix A
Introduction to BPEL Services

A-49

Table A-2 (Cont.) BPEL Services

BPEL Service For More Information, See...

Coherence Cache • Coherence Adapter
• Understanding Technology Adapters

Database adapter • Database Adapter
• Understanding Technology Adapters

Direct binding service • Direct Binding Adapter
• Using Direct Binding to Invoke Composite Services

Oracle E-Business Suite
adapter

• Oracle E-Business Suite Adapter

EJB service • EJB Adapter
• Integrating Enterprise JavaBeans with Composite Applications

File adapter • File Adapter
• Understanding Technology Adapters

FTP adapter • FTP Adapter
• Understanding Technology Adapters

Healthcare adapter • Oracle Healthcare Adapter
• olink:HFPUG1732Using Oracle SOA Suite for Healthcare

Integration

HTTP binding HTTP Binding Service

JDE World adapter http://www.oracle.com/technetwork/middleware/adapters/
documentation/index.html

JMS adapter • JMS Adapter
• Understanding Technology Adapters

LDAP • LDAP Adapter
• Using Oracle Managed File Transfer

Oracle MFT • Oracle MFT
• Using Oracle Managed File Transfer

MQ adapter • MQ Adapter
• Understanding Technology Adapters

REST service Integrating REST Operations in SOA Composite Applications

Cloud adapters Cloud Adapters

SAP adapter http://www.oracle.com/technetwork/middleware/adapters/
documentation/index.html

SOAP • Adding Service Binding Components
• SOAP Web Services

Socket adapter • Socket Adapter
• Understanding Technology Adapters

Third-party adapter • Third-Party Adapter
• Understanding Technology Adapters

Oracle User Messaging
Service

• Oracle User Messaging Service Adapter
• Understanding Technology Adapters

Appendix A
Introduction to BPEL Services

A-50

http://www.oracle.com/technetwork/middleware/adapters/documentation/index.html
http://www.oracle.com/technetwork/middleware/adapters/documentation/index.html
http://www.oracle.com/technetwork/middleware/adapters/documentation/index.html
http://www.oracle.com/technetwork/middleware/adapters/documentation/index.html

B
XPath Extension Functions

This appendix describes the XPath extension functions that are displayed in the Expression
Builder dialog in Oracle JDeveloper. It also describes how to build XPath expressions in the
Expression Builder and how to create user-defined XPath extension functions. Oracle
provides XPath functions that use the capabilities built into Oracle SOA Suite and XPath
standards for adding new functions.
This appendix includes the following sections:

• Advanced Functions

• BPEL Extension Functions

• BPEL XPath Extension Functions

• Conversion Functions

• DVM Functions

• Database Functions

• Date Functions

• Identity Service Functions

• Logical Functions

• Mathematical Functions

• Node Set Functions

• String Functions

• Workflow Service Functions

• XREF Functions

• Building XPath Expressions in the Expression Builder in Oracle JDeveloper

• Creating User-Defined XPath Extension Functions

For additional information about XPath functions, visit the following URL:

http://www.w3.org

B.1 Advanced Functions
This section describes the advanced functions.

B.1.1 batchProcessActive
This function returns the number of active processes in the batch.

Signature:

ora:batchProcessActive(String rootId, String processId)
Arguments:

B-1

http://www.w3.org

• rootId: The ID of the root.

• processId: The ID of the process.

Property IDs:

• namespace-uri:http://schemas.oracle.com/xpath/extension
• namespace-prefix: ora

B.1.2 batchProcessCompleted
This function returns the number of completed processes in the batch.

Signature:

ora:batchProcessCompleted(String rootId, String processId)
Arguments:

• rootId: The ID of the root.

• processId: The ID of the process.

Property IDs:

• namespace-uri:http://schemas.oracle.com/xpath/extension
• namespace-prefix: ora

B.1.3 copyList

Note:

While the copyList function is still available for use, Oracle recommends
that you use the bpelx:copyList extension to copy a node list or a node. For
more information, see How to Use bpelx:copyList.

This function copies a node list or a node. The node list to be copied to should not be
null or empty.

Signature:

ora:copyList('variableName', 'partName'?, 'locationPath'?, Object)
Arguments:

• variableName: The source variable for the data.

• partName: The part to select from the variable (optional).

• locationPath: Provides an absolute location path (with / meaning the root of the
document fragment representing the entire part) to identify the root of a subtree
within the document fragment representing the part (optional).

• Object: The object can be either a list or a single item. If the object is a list, each
item in the list is copied. Each item to be copied is either an element, or an
element with the string value of the node created.

Appendix B
Advanced Functions

B-2

Property IDs:

• deprecated
Use the bpelx:copyList extension activity to append to a list.

• namespace-uri: http://schemas.oracle.com/xpath/extension
• namespace-prefix: ora

B.1.4 create-nodeset-from-delimited-string
This function takes a delimited string and returns a nodeSet.

Signature:

oraext:create-nodeset-from-delimited-string(qname, delimited-string, delimiter)
Arguments:

• qname: The qualified name in which each node in the node set must be created. The
QName can be represented in two forms:

– task:assignee
– {http://mytask/task}assignee

• delimited-string: The sting of elements separated by the delimiter.

• delimiter: The character that separates the items in the input string; for example, a
comma or a semicolon.

Property IDs:

• namespace-uri: http://www.oracle.com/XSL/Transform/java/
oracle.tip.pc.services.functions.ExtFunc

• namespace-prefix: oraext

B.1.5 createDelimitedString
This function creates a delimited string from the passed-in arguments.

Signature:

ora:createDelimitedString(delimiter as string, nodeList)
Arguments:

• delimiter as string: The character that separates the items in the input string (for
example, a comma or a semicolon).

• nodeList: Provides an ordered collection of nodes.

Property IDs:

• namespace-uri:
• namespace-prefix:ora

Appendix B
Advanced Functions

B-3

B.1.6 createEssParameter
This function creates a parameter for a job in Oracle Enterprise Scheduler.

Signature:

ess:createEssParameter(dataType,name,scope,value)
Arguments:

• dataType
• name
• scope
• value
Property IDs:

• namespace-uri:
• namespace-prefix:ess
For more information about Oracle Enterprise Scheduler, see Developing Applications
for Oracle Enterprise Scheduler.

B.1.7 doStreamingTranslate
This function translates using the streaming XPath APIs. It uses batching so that the
transformation engine does not materialize the result of the transformation into
memory. Therefore, it can handle arbitrarily large payloads of the order of gigabytes.
However, it can only handle forward-only XSL constructs such as for-each. The
targetType can be SDOM or ATTACHMENT.

Signature:

med:doStreamingTranslate('input','streaming xpath
context','targetType','attachment element'?)
Arguments:

• input: The input data of the XPath function. This can be an SDOM or attachment
element.

• streaming xpath context
• targetType: Determines how the XPath function translates the native data into

XML.

• attachment element: The attachment for the returned XML. This parameter is
optional.

Property IDs:

• namespace-uri: http://schemas.oracle.com/xpath/extension
• namespace-prefix: med
Example:

Appendix B
Advanced Functions

B-4

med.doStreamingTranslate($in.request/inp1:request/
inp1:sourceAttachmentElement,$in.request/inp1:request/inp1:streamingcontext,
'ATTACHMENT', $in.request/inp1:request/inp1:targetAttachmentElement)

B.1.8 doTranslateFromNative
This function translates the input data to XML, where the input can be a string to translate, a
file or FTP adapter attachment, an attachment, or an element that contains Base64-encoded
data. The targetType can be DOM, ATTACHMENT or SDOM.

Signature:

med:doTranslateFromNative('input','nxsdTemplate','nxsdRoot','targetType','attach
ment element'?)
Arguments:

• input: The input data of the XPath function. The data is in a native format, such as
comma-separated values (CSV).

• nxsdTemplate: The NXSD schema to use to translate the input data to XML format.

• nxsdRoot: The root element in the NXSD schema.

• targetType: Determines how the XPath function translates the native data into XML.

• attachment element: The attachment for the returned XML. This parameter is optional.

Property IDs:

• namespace-uri: http://schemas.oracle.com/xpath/extension
• namespace-prefix: med
Example:

med:doTranslateFromNative(string($in.request/inp1:request/inp1:source),'xsd/
address_csv.xsd','Root-Element','DOM')

B.1.9 doTranslateToNative
This function translates the input DOM to a string or attachment. The targetType can be a
STRING or ATTACHMENT.

Signature:

med:doTranslateToNative('input','nxsdTemplate','nxsdRoot','targetType','attachme
nt element'?)
Arguments:

• input: The input data of the XPath function. The data can either be DOM or SDOM data
that must be translated to a native format such as comma-separated values (CSV).

The input node is usually the root element of the incoming DOM, as shown in the
following example:

med:doTranslateToNative($in.request/inp1:Root-Element, 'xsd/address_csv.xsd',
 @ 'Root-Element','STRING')"

Appendix B
Advanced Functions

B-5

However, the input node can also be a subelement and not the root element of the
incoming DOM, as shown in the following example:

med:doTranslateToNative($in.request/inp1:requestToNative/ns1:Root-Element,
 'xsd/address_csv.xsd', 'Root-Element','ATTACHMENT',
 $in.request/inp1:requestToNative/inp1:attachment)

In this case, you must set the useArrayIdenitifer property to true in the schema
node of the NXSD, as shown below.

nxsd:useArrayIdentifiers="true"

This setting can adversely impact the performance of this function for very large
inputs. You can use the dostreamingxlate function in this case.

• nxsdTemplate: The NXSD schema to use to translate the input data to XML
format.

• nxsdRoot: The root element in the NXSD schema.

• targetType: Determines how the XPath function translates the native data into
XML.

• attachment element: The attachment for the returned XML. This parameter is
optional.

Property IDs:

• namespace-uri: http://schemas.oracle.com/xpath/extension
• namespace-prefix: med
Example:

med:doTranslateToNative($in.request/inp1:Root-Element,'xsd/
address_csv.xsd','Root-Element','STRING')

B.1.10 format
This function formats a message using Java's message format.

Signature:

ora:format(formatStrings, args+)
Arguments:

• formatStrings: The string of data to be formatted.

• args+: The arguments referenced by the format specifiers in the format string. If
there are more arguments than format specifiers, the extra arguments are ignored.
The number of arguments is variable and may be zero.

Property IDs:

• namespace-uri: http://schemas.oracle.com/xpath/extension
• namespace-prefix: ora

B.1.11 genEmptyElem
This function generates a list of empty elements for the given QName.

Appendix B
Advanced Functions

B-6

Signature:

ora:genEmptyElem('ElemQName',size?, 'TypeQName'?, xsiNil?)
Arguments:

• ElemQName: The first argument is the QName of the empty elements.

• size: The second optional integer argument for the number of empty elements. If
missing, the default size is 1.

• TypeQName: The third optional argument is the QName, which is the xsi:type of the
generated empty name. This xsi:type pattern matches SOAPENC:Array. If missing or an
empty string, the xsi:type attribute is not generated.

• xsiNil: The fourth optional boolean argument is to specify whether the generated empty
elements are XSI - nil, provided the element is XSD-nillable. The default is false. If
missing or false, xsi:nil is not generated.

Property IDs:

• namespace-uri: http://schemas.oracle.com/xpath/extension
• namespace-prefix: ora
For more information about this function, see Generating Functionality Equivalent to an Array
of an Empty Element.

B.1.12 generate-guid
This function generates a unique GUID.

Signature:

oraext:generate-guid()
Arguments:

There are no arguments for this function.

Property IDs:

• namespace-uri: http://www.oracle.com/XSL/Transform/java/
oracle.tip.pc.services.functions.ExtFunc

• namespace-prefix: oraext

B.1.13 get-content-from-file-function
This function parses the file in the specified native format. Use this function when designing
assign activities in BPEL processes.

Signature:

oraext:get-content-from-file-function(fileName, nxsdTemplate?, nxsdRoot?)
Example:

oraext:get-content-from-file-function("file:/c:/Ftab.txt",
"file:/c:/Ftab_1.xsd","root")

Appendix B
Advanced Functions

B-7

Arguments:

• fileName: The name of the file.

• nxsdTemplate: The native XSD (NXSD) template for the output.

• nxsdRoot: The NXSD root.

Property IDs:

• namespace-uri: http://www.oracle.com/XSL/Transform/java/
oracle.tip.pc.services.functions.ExtFunc

• namespace-prefix: oraext

B.1.14 getApplicationName
This function returns the partition/folder name.

Signature:

ora:getApplicationName()
Arguments:

There are no arguments for this function.

Property IDs:

• namespace-uri: http://schemas.oracle.com/xpath/extension
• namespace-prefix: ora

B.1.15 getAttachmentContent
This function gets the attachment content from an href function.

Signature:

ora:getAttachmentContent(varName[, partName[, query]])
Arguments:

• varName: Specifies the source variable for the data.

• partName: (Optional) Specifies the part to select from the variable.

• query: (Optional) Specifies an absolute location path (with / meaning the root of
the document fragment representing the entire part) to identify the root of a
subtree within the document fragment representing the part.

Property IDs:

• namespace-uri: http://schemas.oracle.com/xpath/extension
• namespace-prefix: ora
For more information, see Reading and Encoding SOAP Attachment Content.

Appendix B
Advanced Functions

B-8

B.1.16 getAttachmentProperty
Gets a SOAP attachment property from an href that is stored in varName, partName, and
query.

Signature: ora:getAttachmentProperty(propertyName, varName[, partName[, query]])
Arguments:

• varName: Specifies the source variable for the data.

• partName: (Optional) Specifies the part to select from the variable.

• query: (Optional) Specifies an absolute location path (with / meaning the root of the
document fragment representing the entire part) to identify the root of a subtree within the
document fragment representing the part.

Property IDs:

• namespace-uri: http://schemas.oracle.com/xpath/extension
• namespace-prefix: ora

B.1.17 getChildElement
This function gets a child element for the given element.

Signature:

ora:getChildElement(element, index)
Arguments:

• element: The source for the data.

• index: The integer value of the child element index.

Property IDs:

• namespace-uri: http://schemas.oracle.com/xpath/extension
• namespace-prefix: ora

B.1.18 getComponentInstanceID
This function returns the component instance ID.

Signature:

ora:getComponentInstanceID()
Arguments:

There are no arguments for this function.

Property IDs:

• namespace-uri: http://schemas.oracle.com/xpath/extension
• namespace-prefix: ora

Appendix B
Advanced Functions

B-9

B.1.19 getComponentName
This function returns the component name.

Signature:

mdhr:getComponentName()
Arguments:

There are no arguments for this function.

Property IDs:

• namespace-uri: http://schemas.oracle.com/xpath/extension
• namespace-prefix: mdhr

B.1.20 getCompositeInstanceID

Note:

This function is deprecated in 12c Release 1 (12.1.3) and is not displayed in
the Expression Builder.

This function returns the composite instance ID.

Signature:

ora:getComponentInstanceId()
Arguments:

There are no arguments for this function.

Property IDs:

• namespace-uri: http://schemas.oracle.com/xpath/extension
• namespace-prefix: ora

B.1.21 getCompositeName
This function returns the composite name.

Signature:

ora:getCompositeName()
Arguments:

There are no arguments for this function.

Property IDs:

• namespace-uri: http://schemas.oracle.com/xpath/extension

Appendix B
Advanced Functions

B-10

• namespace-prefix: ora

B.1.22 getCompositeURL
This function returns the composite URL.

Signature:

ora:getCompositeURL()
Arguments:

There are no arguments for this function.

Property IDs:

• namespace-uri: http://schemas.oracle.com/xpath/extension
• namespace-prefix: ora

B.1.23 getECID
This function returns the execution context ID (ECID).

Signature:

ora:getECID()
Arguments:

There are no arguments for this function.

Property IDs:

• namespace-uri: http://schemas.oracle.com/xpath/extension
• namespace-prefix: ora

B.1.24 getFaultAsString
This function returns the fault as a string value.

Signature:

ora:getFaultAsString()
Arguments:

There are no arguments for this function.

Property IDs:

• namespace-uri: http://schemas.oracle.com/xpath/extension
• namespace-prefix: ora
For more information, see Getting Fault Details with the getFaultAsString XPath Extension
Function.

Appendix B
Advanced Functions

B-11

B.1.25 getFaultAsXML
This function returns the fault as an XML element.

Signature:

ora:getFaultAsXML()
Arguments:

There are no arguments for this function.

Property IDs:

• namespace-uri: http://schemas.oracle.com/xpath/extension
• namespace-prefix:ora

B.1.26 getFaultName
This function returns the fault name.

Signature:

ora:getFaultName()
Arguments:

There are no arguments for this function.

Property IDs:

• namespace-uri: http://schemas.oracle.com/xpath/extension
• namespace-prefix: ora

B.1.27 getMilestoneName
This function returns the milestone name.

Signature:

ora:getMilestoneName
Arguments:

There are no arguments for this function.

Property IDs:

• namespace-uri: http://schemas.oracle.com/xpath/extension
• namespace-prefix: ora

B.1.28 getOwnerDocument
This function returns the document object associated with the node.

Signature:

Appendix B
Advanced Functions

B-12

ora:getOwnerDocument(node)
Arguments:

• node: Specifies the XML node.

Property IDs:

• namespace-uri: http://schemas.oracle.com/xpath/extension
• namespace-prefix: ora

B.1.29 getParentComponentInstanceID
This function returns the BPEL process instance parent component instance ID.

Signature:

ora:getParentComponentInstanceID()
Arguments:

There are no arguments for this function.

Property IDs:

• namespace-uri: http://schemas.oracle.com/xpath/extension
• namespace-prefix: ora

B.1.30 getRevision
This function does not take any arguments and returns the current revision of the composite
from which it is invoked.

Signature:

ora:getRevision
Arguments:

There are no arguments for this function.

Property IDs:

• namespace-uri: http://schemas.oracle.com/xpath/extension
• namespace-prefix: ora

B.1.31 getTaskReminderDuration
This function computes the next reminder to be sent for the task.

Signature:

ora:getTaskReminderDuration(taskId)
Argument:

• taskId: The task ID of the task.

Property IDs:

Appendix B
Advanced Functions

B-13

• namespace-uri: http://schemas.oracle.com/xpath/extension
• namespace-prefix: ora

B.1.32 instanceOf
This function extracts arbitrary values from BPEL variables.

Signature:

ora:instanceOf(an_xpath_expression, 'typeQName')
Arguments:

• an_xpath_expression: An XPath expression that returns an element.

• typeQName: The QName of a globally-declared XSD type.

Property IDs:

• namespace-uri: http://schemas.oracle.com/xpath/extension
• namespace-prefix: ora

B.1.33 lookup-xml
This function returns the string value of an element defined by lookupXPath in an XML
file (docURL) given its parent XPath (parentXPath), the key XPath (keyXPath), and the
value of the key (key).

Example:

oraext:lookup-xml('file:/d:/country_data.xml', '/Countries/Country',
'Abbreviation', 'FullName', 'UK') returns the value of the element FullName child
of /Countries/Country, where Abbreviation = 'UK' is in the file
D:\country_data.xml.

Signature:

oraext:lookup-xml(docURL, parentXPath, keyXPath, lookupXPath, key)
Arguments:

• docURL: The XML file.

• parentXPath: The parent XPath.

• keyXPath: The key XPath.

• lookupXPath: The lookup XPath.

• key: The key value.

Property IDs:

• namespace-uri: http://www.oracle.com/XSL/Transform/java/
oracle.tip.pc.services.functions.ExtFunc

• namespace-prefix: oraext

Appendix B
Advanced Functions

B-14

B.1.34 parseEscapedXML
This function parses a string to a DOM.

Note:

This function is also displayed for selection under the BPEL XPath Extension
Functions option.

Signature:

oraext:parseEscapedXML(contentString)
Arguments:

• contentString: The string that this function parses to a DOM.

Property IDs:

• namespace-uri: http://schemas.oracle.com/xpath/extension
• namespace-prefix: oraext
For more information about this function, see How To Convert from a String to an XML
Element.

B.1.35 parseXML
This function parses a string to a DOM element.

Signature:

oraext:parseXML(contentString)
Arguments:

• contentString: The string that this function parses to a DOM element.

Property IDs:

• namespace-uri: http://www.oracle.com/XSL/Transform/java/
oracle.tip.pc.services.functions.ExtFunc

• namespace-prefix: oraext

B.1.36 processScalableDocumentToNative
This function transforms the scalable document directly to the output stream.

Signature:

ora:processScalableDocumentToNative(template, input, outputFilePath, nxsd, root,
batchsize, properties)
Arguments:

Appendix B
Advanced Functions

B-15

• template
• input
• outputFilePath
• nxsd
• root
• batchsize
• properties

B.1.37 processXSLTAttachmentFromNativeToNative
This function translates the inbound native data (for example, comma-separated value
to XML) and then applies the user-supplied XSL to the translated content. The result of
the XSL transformation is then translated to a native file (for example. comma-
separated value). The input to this XPath function can either be an attachment or href.
It uses batching so that the transformation engine does not put the result of the
transformation into memory. Therefore, it can handle arbitrarily large payloads of the
order of gigabytes. The XPath function translates the inbound native data to XML, runs
the transformation on the XML, and then translates the transformed XML to native
format.

Signature:

ora:processXSLTAttachmentFromNativeToNative(template, input href, output
href, input nxsd path, input root element name, output nxsd path, output
root element name. batch size)

B.1.38 processXSLTAttachmentFromNativeToStream
This function translates the inbound native data (for example, customer-separated
value to XML) and then applies the user-supplied XSL to the translated content. The
output of the transformation is streamed to the output file.The input to this XPath
function can either be an attachment or href. It uses batching so that the
transformation engine does not put the result of the transformation into memory.
Therefore, it can handle arbitrarily large payloads of the order of gigabytes. However, it
can only handle forward-only XSL constructs such as for-each.

Signature:

ora:processXSLTAttachmentFromNativeToStream(template,input href, output
href, input nxsd path, nxsd root element name, batchsize,properties)

B.1.39 processXSLTAttachmentToNativeStream
This function transforms the inbound XML by applying the user-supplied XSL and then
translates the transformed XML into a native file (for example, comma-separated
value). The input to this XPath function can either be an attachment or href. It uses
batching so that the transformation engine does not put the result of the transformation
into memory. Therefore, it can handle arbitrarily large payloads of the order of
gigabytes. This function first transforms the incoming XML data by applying the XSL
and then translates the transformed XML into native data.

Signature:

Appendix B
Advanced Functions

B-16

ora:processXSLTAttachmentToNativeStream(template, input href, output href, nxsd
schema, nxsd root element, batch size)

B.1.40 processXSLTAttachmentToStream
This function directly streams the result of XSLT transformation to the output file. The input to
this XPath function can either be an attachment or href. It uses batching so that the
transformation engine does not put the result of the transformation into memory. Therefore, it
can handle arbitrarily large payloads of the order of gigabytes. However, it can only handle
forward-only XSL constructs such as for-each.

Signature:

ora:processXSLTAttachmentToStream(template, input href, output href, batchsize,
properties)

B.1.41 processXSLTForScalableDocument
This function returns a scalable document after an XSLT transformation.

Signature:

ora:processXSLTForScalableDocument(template, input, batchsize, properties)

B.1.42 setCompositeInstanceTitle
This function sets the composite instance title and returns it.

Signature:

ora:setCompositeInstanceTitle(title)
Arguments:

• title: The composite instance title.

B.2 BPEL Extension Functions
This section describes the BPEL extension functions.

B.2.1 BPEL Extension Functions in BPEL 1.1 and BPEL 2.0
This section describes BPEL extension functions.

Table B-1 lists the BPEL extension functions supported by either version 1.1 or version 2.0 of
the BPEL specification. If a function is supported by a specific version, it displays for selection
in the BPEL Extension Functions list of the Expression Builder dialog in Oracle JDeveloper.
Otherwise, it does not appear. BPEL version 1.1 functions use the namespace prefix bpws.
BPEL version 2.0 functions use the namespace prefix bpel.

Table B-1 BPEL Extension Functions Supported in BPEL 1.1 or BPEL 2.0

Function Supported in BPEL 1.1? Supported in BPEL 2.0?

bpws:getLinkStatus Yes No

Appendix B
BPEL Extension Functions

B-17

Table B-1 (Cont.) BPEL Extension Functions Supported in BPEL 1.1 or BPEL 2.0

Function Supported in BPEL 1.1? Supported in BPEL 2.0?

bpws:getVariableData Yes No

getVariableProperty Yes No

bpel:getVariableProperty No Yes

bpel:doXslTransform No Yes

B.2.1.1 getLinkStatus
This function returns a boolean value indicating the status of the link. If the status of
the link is positive, the value is true. Otherwise, the value is false. This function can
only be used in a join condition.

The linkName argument refers to the name of an incoming link for the activity
associated with the join condition.

Signature:

bpws:getLinkStatus ('linkName')
Arguments:

• variableName: The source variable for the data.

• propertyName: The QName of the property.

Property IDs:

• namespace-uri: http://schemas.xmlsoap.org/ws/2003/03/business-process/
• namespace-prefix: bpws

B.2.1.2 getVariableData
This function extracts arbitrary values from BPEL variables.

When only the first argument is present, the function extracts the value of the variable,
which must be defined using an XML schema simple type or element. Otherwise, the
return value of this function is a node set containing the single node representing
either an entire part of a message type (if the second argument is present and the third
argument is absent) or the result of the selection based on the locationPath (if both
optional arguments are present).

Signature:

bpws:getVariableData ('variableName', 'partName'?, 'locationPath'?)
Arguments:

• variableName: The source variable for the data.

• partName: The part to select from the variable (optional).

Appendix B
BPEL Extension Functions

B-18

• locationPath: Provides an absolute location path (with / meaning the root of the
document fragment representing the entire part) to identify the root of a subtree within the
document fragment representing the part (optional).

Property IDs:

• namespace-uri: http://schemas.xmlsoap.org/ws/2003/03/business-process/
• namespace-prefix: bpws

B.2.1.2.1 selectionFailure Fault is Thrown if the Result Node Set is a Size Other Than One
During Execution

According to the Business Process Execution Language for Web Services Specification, if the
locationPath argument selects a node set of a size other than one during execution, the
standard fault bpws:selectionFailure must be thrown by a compliant implementation.

For example, the count() function shown in the following code does not work if there are
multiple entries of product elements under StoreRequest; this causes a selectionFailure
fault to be thrown:

count(bpws:getVariableData('inputVariable',
 'payload','/ns2:StoreRequest/ns2:product'))

To make this work, change the syntax to the following:

"count($inputVariable.payload/ns2:product)"

B.2.1.3 getVariableProperty (For BPEL 1.1)
This function extracts arbitrary values from BPEL variables. The first argument specifies the
source variable for the data and the second argument identifies the QName of the property to
select from that variable. If the given property selects a node set of a size other than one
during execution, the standard fault bpws:selectionFailure is thrown.

Signature:

bpws:getVariableProperty ('variableName', 'propertyname')
Arguments:

• variableName: The source variable for the data.

• propertyName: The QName of the property.

Property IDs:

• namespace-uri: http://schemas.xmlsoap.org/ws/2003/03/business-process/
• namespace-prefix: bpws

B.2.1.4 getVariableProperty (For BPEL 2.0)
This function extracts arbitrary values from BPEL variables. The first argument specifies the
source variable for the data and the second argument identifies the QName of the property to
select from that variable. If the given property selects a node set of a size other than one
during execution, the standard fault bpws:selectionFailure is thrown.

Signature:

Appendix B
BPEL Extension Functions

B-19

bpel:getVariableProperty ('variableName', 'propertyname')
Arguments:

• variableName: The source variable for the data.

• propertyName: The QName of the property. If the given property selects a node set
of a size other than one during execution, the standard fault selectionFailure is
thrown.

Property IDs:

• namespace-uri: http://schemas.xmlsoap.org/ws/2003/03/business-process/
• namespace-prefix: bpel

B.2.1.5 doXslTransform (For BPEL 2.0)
This function returns the result of XSLT transformation with multiple sources.

Note:

If the input is meant to be an XML document, call ora:getOwnerDocument to
wrap the input or use function ora:doXSLTransformForDoc instead of this
function.

Signature:

bpel:doXslTransform(template,input, [paramQName, paramValue]*)

B.3 BPEL XPath Extension Functions
This section describes the BPEL XPath extension functions.

B.3.1 addQuotes
This function returns the content of a string with single quotes added.

Signature:

ora:addQuotes(string)
Arguments:

• string: The string to which this function adds quotes.

Property IDs:

• namespace-uri: http://schemas.oracle.com/xpath/extension
• namespace-prefix: ora

B.3.2 authenticate
This function authenticates an LDAP user and returns true or false.

Appendix B
BPEL XPath Extension Functions

B-20

The authenticate, listUsers, lookupUser, and search XPath functions provide the lookup
and search functionality to obtain information from the LDAP server (typically, the LDAP user
details).

These XPath functions use a configuration file to obtain server access information for the
JNDI (for example, context factory, LDAP server provider URL, authenticate type, and so on).
The configuration file is named directories.xml and must be placed in the same directory in
which the .bpel file for the BPEL project is located. To call these XPath functions, you must
provide this file.

The following example shows the format of the directories.xml file:

<?xml version="1.0" ?>
<directories>
<directory name='people'>
<property name="java.naming.provider.url">ldap://servername:port</property>
<property
name="java.naming.factory.initial">com.sun.jndi.ldap.LdapCtxFactory</property>
<property name="java.naming.security.principal">[username]</property>
<property name="java.naming.security.authentication">simple</property>

<property name="java.naming.security.credentials">[passord]</property>
<property name="entryDN">[entry dn]</property>

</directory>
</directories>

The following shows an example of the directories.xml file:

<?xml version="1.0" ?>
<directories>
<directory name='people'>
<property
name="java.naming.provider.url">ldap://myhost.us.example.com:7001</property>
<property
name="java.naming.factory.initial">com.sun.jndi.ldap.LdapCtxFactory</property>
<property name="java.naming.security.principal">cn=admin</property>
<property name="java.naming.security.credentials">weblogic</property>
<property name="java.naming.security.authentication">simple</property>
<property name="entryDN">ou=people,ou=myrealm,dc=soainfra</property>
</directory>
</directories>

• Signature:

ldap:authenticate('directoryName','userId','password')
• Parameters:

– directoryName: The directory name specified in the directories.xml file.

– userId: The LDAP server login user ID.

– password: The LDAP server login password.

• Return:

true or false
Example:

ldap:authenticate('people','weblogic','weblogic')

Appendix B
BPEL XPath Extension Functions

B-21

For this XPath function, only two properties must be specified in the
directories.xml file:

– java.naming.provider.url
– java.naming.factory.initial

B.3.3 countNodes

Note:

While the countNodes function is still available for use, Oracle recommends
that you use version 1.0 of the XPath count() function to return the size of
the elements as an integer.

This function returns the size of the elements as an integer.

Signature:

ora:countNodes('variableName', 'partName'?, 'locationPath'?)
Arguments:

• variableName: The source variable for the data.

• partName: The part to select from the variable (optional).

• locationPath: Provides an absolute location path (with / meaning the root of the
document fragment representing the entire part) to identify the root of a subtree
within the document fragment representing the part (optional).

Property IDs:

• namespace-uri: http://schemas.oracle.com/xpath/extension
• namespace-prefix: ora

B.3.4 doXSLTransform
This function implements the WS-BPEL 2.0's doXSLTransform function that supports
multiple parameters of XSLT. When using this function, the XSL template match must
not be set to root (which is /). It must be the root element.

Signature:

ora:doXSLTransform('url_to_xslt',input,['paramQname',paramValue]*)
Arguments:

• url_to_xslt: Specifies the XSL style sheet URL.

• input: Specifies the input variable name.

• paramQname: Specifies the parameter QName.

• paramValue: Specifies the value of the parameter.

Property IDs:

Appendix B
BPEL XPath Extension Functions

B-22

• namespace-uri: http://schemas.oracle.com/xpath/extension
• namespace-prefix: ora

B.3.5 doXSLTransformForDoc
This function is a complementary XPath function to doXSLTransform(). It aims to perform the
transformation when the XSLT template matches the document.

The following example shows the doXSLTransformForDoc function:

<function name="ora:doXSLTransformForDoc">
 <className>com.collaxa.cube.xml.xpath.functions.xml.DoXSLTransformForDocument
 </className>
 <return type="node-set"/>
 <params>
 <param name="template" type="string"/>
 <param name="input" type="string"/>
 <param name="properties" type="string" minOccurs="0" maxOccurs="unbounded"/>
 </params>
 <desc resourceKey="PI_FUNCTION_DESC_DOXSLTRANSFORM_FOR_DOC"></desc>
 <detail resourceKey="PI_FUNCTION_DESC_LONG_DOXSLTRANSFORM_FOR_DOC">
 This function is a complement xpath function to doXSLTransform(). It aims
 to do the transformation when the xslt template matching the
document. The signature of this function is <i>ora:doXSLTransformForDoc('url_to_
xslt',input,['paramQname',paramValue]*)</i>.
 </detail>
 <group>BPEL XPath Extension Functions</group>
 </function>

Signature:

ora:doXSLTransformForDoc('url_to_xslt',input,['paramQname',paramValue]*)
Arguments:

• url_to_xslt: Specifies the XSL style sheet URL.

• input: Specifies the input variable name.

• paramQname: Specifies the parameter QName.

• paramValue: Specifies the value of the parameter.

Property IDs:

• namespace-uri: http://schemas.oracle.com/xpath/extension
• namespace-prefix: ora
You can use the ora:doXSLTransformForDoc function to write the results of large XSLT/
XQuery operations to a temporary file in a directory system. The document is then loaded
from the temporary file when needed. This eliminates the need for caching an entire
document as binary XML in memory.

For more information, see Using XPath Functions to Write Large XSLT/XQuery Output to a
File System.

B.3.6 doc
This function returns the content of an XML file.

Appendix B
BPEL XPath Extension Functions

B-23

Signature:

ora:doc('fileName','xpath'?)
Arguments:

• fileName: The name of the XML file.

• xpath: A part of an XML file (for example, the node set, node list, or leaf node).

Property IDs:

• namespace-uri: http://schemas.oracle.com/xpath/extension
• namespace-prefix: ora

B.3.7 formatDate
This function converts standard XSD date formats to characters suitable for output.

Signature:

ora:formatDate('dateTime','format')
Arguments:

• dateTime: Contains a date-related value in XSD format. For nonstring arguments,
this function behaves as if a string() function were applied. If the argument is not
a date, the output is an empty string. If it is a valid XSD date and some fields are
empty, this function attempts to fill unspecified fields. For example,
2003-06-10T15:56:00.

• format: Contains a string formatted according to java.text.SimpleDateFormat
format.

Property IDs:

• namespace-uri: http://schemas.oracle.com/xpath/extension
• namespace-prefix: ora

B.3.8 generateGUID
Generates a unique GUID.

Signature:

ora:generateGUID()
Arguments:

There are no arguments for this function.

Property IDs:

• namespace-uri: http://schemas.oracle.com/xpath/extension
• namespace-prefix: ora

Appendix B
BPEL XPath Extension Functions

B-24

B.3.9 getConfigProperty
This function gets the component property value.

Signature:

ora:getConfigProperty(propertyName)
Argument:

• propertyName: The property name.

B.3.10 getContentAsString
This function returns the content of an element as an XML string.

Signature:

ora:getContentAsString(element elementAsNodeList)
Arguments:

• element: The element (source of the data).

• elementAsNodeList: The element as the node list.

Property IDs:

• namespace-uri: http://schemas.oracle.com/xpath/extension
• namespace-prefix: ora

B.3.11 getConversationId
This function returns the conversation ID.

Signature:

ora:getConversationId()
Arguments:

There are no arguments for this function.

Property IDs:

• namespace-uri: http://schemas.oracle.com/xpath/extension
• namespace-prefix: ora

B.3.12 getCreator
This function returns the instance creator.

Signature:

ora:getCreator()
Arguments:

Appendix B
BPEL XPath Extension Functions

B-25

There are no arguments for this function.

Property IDs:

• namespace-uri: http://schemas.oracle.com/xpath/extension
• namespace-prefix: ora

B.3.13 getCurrentDate
This function returns the current date as a string.

Signature:

ora:getCurrentDate('format'?)
Argument:

• format: (Optional) Specifies a string formatted according to
java.text.SimpleDateFormat format (optional).

Property IDs:

• namespace-uri: http://schemas.oracle.com/xpath/extension
• namespace-prefix: ora
For more information, see How to Assign a Date or Time.

B.3.14 getCurrentDateTime
This function returns the current date time as a string.

Signature:

ora:getCurrentDateTime('format'?)
Argument:

• format: (Optional) Specifies a string formatted according to
java.text.SimpleDateFormat format (optional).

Property IDs:

• namespace-uri: http://schemas.oracle.com/xpath/extension
• namespace-prefix: ora

B.3.15 getCurrentTime
This function returns the current time as a string.

Signature:

ora:getCurrentTime('format'?)
Argument:

• format: (Optional) Specifies a string formatted according to
java.text.SimpleDateFormat format (optional).

Property IDs:

Appendix B
BPEL XPath Extension Functions

B-26

• namespace-uri: http://schemas.oracle.com/xpath/extension
• namespace-prefix: ora

B.3.16 getElement
This function returns an element using an index from the array of elements.

Signature:

ora:getElement('variableName', 'partName', 'locationPath', index)
Arguments:

• variableName: The source variable for the data.

• partName: The part to select from the variable (required).

• locationPath: Provides an absolute location path (with / meaning the root of the
document fragment representing the entire part) to identify the root of a subtree within the
document fragment representing the part (required).

• index: Dynamic index value. The index of the first node is 1.

Property IDs:

• namespace-uri: http://schemas.oracle.com/xpath/extension
• namespace-prefix: ora

B.3.17 getInstanceId
This function returns the instance ID.

Signature:

ora:getInstanceId()
Arguments:

There are no arguments for this function.

Property IDs:

• namespace-uri: http://schemas.oracle.com/xpath/extension
• namespace-prefix: ora

B.3.18 getNodeValue
This function returns the value of a DOM node as a string.

Signature:

ora:getNodeValue(node)
Arguments:

• node: The DOM node.

Property IDs:

Appendix B
BPEL XPath Extension Functions

B-27

• namespace-uri: http://schemas.oracle.com/xpath/extension
• namespace-prefix: ora

B.3.19 getNodes
This function gets a node list. This is implemented as an alternate to
bpws:getVariableData, which does not return a node list.

Signature:

ora:getNodes('variableName', 'partName'?, 'locationPath'?)
Arguments:

• variableName: The source variable for the data.

• partName: The part to select from the variable (optional).

• locationPath: Provides an absolute location path (with / meaning the root of the
document fragment representing the entire part) to identify the root of a subtree
within the document fragment representing the part (optional).

Property IDs:

• namespace-uri: http://schemas.oracle.com/xpath/extension
• namespace-prefix: ora

B.3.20 getPreference
This function returns the value of a property specified in the preferences section of the
BPEL suitcase descriptor.

Signature:

ora:getPreference(preferenceName)
Arguments:

• preferenceName: The name of the preference as specified in the BPEL suitcase
descriptor.

Property IDs:

• namespace-uri: http://schemas.oracle.com/xpath/extension
• namespace-prefix: ora

B.3.21 getProcessId
This function returns the ID of the current BPEL process.

Signature:

ora:getProcessId()
Arguments:

There are no arguments for this function.

Appendix B
BPEL XPath Extension Functions

B-28

Property IDs:

• namespace-uri: http://schemas.oracle.com/xpath/extension
• namespace-prefix: ora

B.3.22 getProcessOwnerId
This function returns the ID of the user who owns the process, if specified in the
TaskServiceAliases section of the BPEL suitcase descriptor.

Signature:

ora:getProcessOwnerId()
Arguments:

There are no arguments for this function.

Property IDs:

• namespace-uri: http://schemas.oracle.com/xpath/extension
• namespace-prefix: ora

B.3.23 getProcessURL
This function returns the root URL of the current BPEL process.

Signature:

ora:getProcessURL()
Arguments:

There are no arguments for this function.

Property IDs:

• namespace-uri: http://schemas.oracle.com/xpath/extension
• namespace-prefix: ora

B.3.24 getProcessVersion
This function returns the current process version.

Signature:

ora:getProcessVersion()
Arguments:

There are no arguments for this function.

Property IDs:

• namespace-uri: http://schemas.oracle.com/xpath/extension
• namespace-prefix: ora

Appendix B
BPEL XPath Extension Functions

B-29

B.3.25 integer
This function returns the content of the node as an integer.

Signature:

ora:integer(node)
Arguments:

• node: The input node.

Property IDs:

• namespace-uri: http://schemas.oracle.com/xpath/extension
• namespace-prefix: ora

B.3.26 listUsers
This function returns a list of LDAP users.

Signature:

ldap:listUsers('directoryName',filter')
Arguments:

• directoryName: The directory name specified in the directories.xml file. For
information about the directories.xml file, see authenticate.

• filter: The filter expression to use for the search; this value cannot be null.

Returns:

An XML element that contains a list of users.For this XPath function, all properties
must be specified in the directories.xml file.

Example:

ldap:listUsers('people','ou=people');

The following provides an example of the output:

<users xmlns="http://schemas.oracle.com/bpel/ldap">
 <user dn="uid=weblogic">
 <uid>weblogic</uid>
 <userpassword>
Unknown macro: {ssha}

bHDVJRfWVt/Uwlzb4TKU+QTOLB4FLySO</userpassword>

 <objectclass>inetOrgPerson</objectclass>
 <objectclass>organizationalPerson</objectclass>
 <objectclass>person</objectclass>
 <objectclass>top</objectclass>
 <objectclass>wlsUser</objectclass>
 <description>This user is the default administrator.</description>
 <wlsMemberOf>cn=Administrators,ou=groups,ou=myrealm,dc=soainfra</wlsMember
Of>
 <orclguid>8AC1B6206FDD11DEBF9A7F3D47003274</orclguid>

Appendix B
BPEL XPath Extension Functions

B-30

 <sn>weblogic</sn>
 <cn>weblogic</cn>
 </user>
</users>

B.3.27 lookupUser
This function returns LDAP user information.

:Signature:

ldap:lookupUser('directoryName','userId')
Arguments:

• directoryName: The directory name specified in the directories.xml file. For
information about the directories.xml file, see authenticate.

• userId: The user ID to be searched.

Returns:

An XML element that contains the user information.

For this XPath function, all properties must be specified in the directories.xml file.

Example:

ldap:lookupUser('people','ou=people');
The following provides an example of the output:

<user dn="" xmlns="http://schemas.oracle.com/bpel/ldap">
<ou>people</ou>
<objectclass>organizationalUnit</objectclass>
<objectclass>top</objectclass>
<orclguid>8ABB9BA06FDD11DEBF9A7F3D47003274</orclguid>
</user>

B.3.28 parseEscapedXML
This function parses an XML string to an XML element.

Note:

This function is also displayed for selection under the Advanced Functions option.

Signature:

ora:parseEscapedXML(xmlString)
Arguments:

• xmlString: The string that this function parses to a DOM.

Property IDs:

• namespace-uri: http://schemas.oracle.com/xpath/extension

Appendix B
BPEL XPath Extension Functions

B-31

• namespace-prefix: ora
For more information about this function, see How To Convert from a String to an XML
Element.

B.3.29 processXQuery
It is advisable to use processXQuery10 instead.

This function returns the result of an XQuery transformation.

Signature:

ora:processXQuery('query','context'?)
Arguments:

• query: The XQuery.

• input: The input data to be transformed.

Property IDs:

• namespace-uri: http://schemas.oracle.com/xpath/extension
• namespace-prefix: ora

B.3.30 processXQuery10
This function returns the result of an XQuery 1.0 transformation.

Signature: ora:processXQuery10(<path to xquery> [, <xquery external
variable name>, <value>]*)

B.3.31 processXQuery2004
This function is deprecated. Use processXQuery10 instead.

This function returns the result of an XQuery 2004 transformation.

Signature: ora:processXQuery2004(query,context?)

B.3.32 processXSLT
This function returns the result of an XSLT transformation using the Oracle XDK XSLT
processor.

The following example shows the 12c version of processXSLT:

<function name="ora:processXSLT">

<className>com.collaxa.cube.xml.xpath.functions.xml.GetElementFromXDKXSLTFunction
 </className>
 <return type="node-set"/>
 <params>
 <param name="template" type="string"/>
 <param name="input" type="string"/>
 <param name="properties" type="string" minOccurs="0" maxOccurs="unbounded"/>
 </params>
 <desc resourceKey="PI_FUNCTION_DESC_PROCESSXSLT"></desc>

Appendix B
BPEL XPath Extension Functions

B-32

 <detail resourceKey="PI_FUNCTION_DESC_LONG_PROCESSXSLT">
 This function returns result of XSLT transformation by using Oracle XDK
 XSLT processor.
 </detail>
 <group>BPEL XPath Extension Functions</group>
 </function>

Signature:

• 12c version of the signature:

ora:processXSLT('template','input','properties'?)
Arguments:

• template: The XSLT template. Both HTTP and file URLs are supported.

• input: The input data to be transformed.

• properties: The properties that translate to XSL parameters that can be accessed within
the XSL map using the construct <xsl:param name="paramName"/>. The properties are
defined as follows:

1. Create a params.xsd file to define the name-value pair (every property is a name-
value pair). For example:

<?xml version="1.0" encoding="windows-1252" ?>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns="http://schemas.oracle.com/service/bpel/common"
 targetNamespace="http://schemas.oracle.com/service/bpel/common"
 elementFormDefault="qualified">
 <!-- Root Element for Parameters -->
 <xsd:element name="parameters">
 <xsd:complexType>
 <xsd:sequence>
 <!-- Each Parameter is represented by an "item" node that contains
 one unique name and a string value
 -->
 <xsd:element name="item" minOccurs="1" maxOccurs="unbounded">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="name" type="xsd:string"/>
 <xsd:element name="value" type="xsd:string"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
</xsd:schema>

2. Create a SetParams.xsl file to populate the properties. Within the XSLT, the
parameters are accessible through their names. For this example, the parameter
names are userName and location, and the values are jsmith and CA, respectively.

<?xml version="1.0" encoding="UTF-8" ?>
<?oracle-xsl-mapper
 <mapSources>
 <source type="XSD">
 <schema location="TestXSLParams.xsd"/>
 <rootElement name="TestXSLParamsProcessRequest"
 namespace="http://xmlns.oracle.com/TestXSLParams"/>
 </source>

Appendix B
BPEL XPath Extension Functions

B-33

 </mapSources>
 <mapTargets>
 <target type="XSD">
 <schema location="params.xsd"/>
 <rootElement name="ArrayOfNameAnyTypePairType"
 namespace="http://schemas.oracle.com/service/bpel/common"/>
 </target>
 </mapTargets>
 <!-- GENERATED BY ORACLE XSL MAPPER 10.1.3.1.0(build 061009.0802) AT
[WED
 APR 18 14:35:04 PDT 2007]. -->
?>
<xsl:stylesheet version="1.0"
 xmlns:ns2="http://schemas.oracle.com/service/bpel/common"
xmlns:xp20="http://www.oracle.com/XSL/Transform/java/
oracle.tip.pc.services
.functions.Xpath20"

 xmlns:bpws="http://schemas.xmlsoap.org/ws/2003/03/
business-process/"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:ora="http://schemas.oracle.com/xpath/extension"
xmlns:ehdr="http://www.oracle.com/XSL/Transform/java/
oracle.tip.esb.server.
headers.ESBHeaderFunctions"
 xmlns:ns0="http://www.w3.org/2001/XMLSchema"
 xmlns:orcl="http://www.oracle.com/XSL/Transform/java/
oracle.tip.pc.services
.functions.ExtFunc"
 xmlns:ids="http://xmlns.oracle.com/bpel/services/
IdentityService/xpath"
 xmlns:hwf="http://xmlns.oracle.com/bpel/workflow/xpath"
 xmlns:ns1="http://xmlns.oracle.com/TestXSLParams"
 exclude-result-prefixes="xsl ns0 ns1 ns2 xp20 bpws ora
ehdr
 orcl ids hwf">
 <xsl:template match="/">
 <ns2:parameters>
 <ns2:item>
 <ns2:name>
 <xsl:value-of select="'userName'"/>
 </ns2:name>
 <ns2:value>
 <xsl:value-of select="'jsmith'"/>
 </ns2:value>
 </ns2:item>
 <ns2:item>
 <ns2:name>
 <xsl:value-of select="'location'"/>
 </ns2:name>
 <ns2:value>
 <xsl:value-of select="'CA'"/>
 </ns2:value>
 </ns2:item>
 </ns2:parameters>
 </xsl:template>
</xsl:stylesheet>

3. Invoke SetParams.xsl from the .bpel file. For example:

Appendix B
BPEL XPath Extension Functions

B-34

– Within assign activity initializeXSLParameters, you initialize the parameter
variable from the specific BPEL variable whose information you want to access
from within the XSLT.

– Within assign activity executeXSLT, you invoke the XSLT with the parameters as
the properties (third) argument of the function processXSLT.

For example:

<process name="TestXSLParams"
 . . .
 . . .
 <sequence name="main">
 <receive name="receiveInput" partnerLink="client"
 portType="client:TestXSLParams" operation="initiate"
 variable="inputVariable" createInstance="yes"/>
 <assign name="initializeXSLParameters">
 <bpelx:annotation>
 <bpelx:pattern>transformation</bpelx:pattern>
 </bpelx:annotation>
 <copy>
 <from expression="ora:processXSLT ('SetParams.xsl',
 bpws:getVariableData('inputVariable','payload'))"/>
 <to variable="propertiesXMLVar"/>
 </copy>
 </assign>
 <assign name="executeXSLT">
 <bpelx:annotation>
 <bpelx:pattern>transformation</bpelx:pattern>
 </bpelx:annotation>

 <copy>
 <from expression="ora:processXSLT('TestXSLParams.xsl',
 bpws:getVariableData('inputVariable','payload'),
 bpws:getVariableData('propertiesXMLVar'))"/>
 <to variable="outputVariable" part="payload"/>
 </copy>
 </assign>
 <invoke name="callbackClient" partnerLink="client"
 portType="client:TestXSLParamsCallback"
 operation="onResult"
 inputVariable="outputVariable"/>
 </sequence>
</process>

4. In a BPEL process, you use the properties to process the XSLT function.

Property IDs:

• namespace-uri: http://schemas.oracle.com/xpath/extension
• namespace-prefix: ora (for 12c)

You can use the ora:processXSLT function to write the results of large XSLT/XQuery
operations to a temporary file in a directory system. The document is then loaded from the
temporary file when needed. This eliminates the need for caching an entire document as
binary XML in memory.

For more information, see Using XPath Functions to Write Large XSLT/XQuery Output to a
File System.

Appendix B
BPEL XPath Extension Functions

B-35

B.3.33 readBinaryFromFile
This function reads data from a file.

Signature:

ora:readBinaryFromFile(fileName)
Arguments:

• fileName: The file name from which to read data.

Property IDs:

• namespace-uri:http://schemas.oracle.com/xpath/extension
• namespace-prefix: ora
For more information, see Sending Attachment Streams.

B.3.34 readBinaryFromFileWithMimeHeaders
This function returns the content of a binary file with MIME headers.

Signature:

ora:readBinaryFromFileWithMimeHeaders(fileName, contentId, contentType,
contentDisposition, contentTransferEncoding, contentDescription,
contentLanguage)

B.3.35 readFile
This function returns the content of the file.

Signature:

ora:readFile('fileName','nxsdTemplate'?,'nxsdRoot'?)
Arguments:

• fileName: The name of the file. This argument can also be an HTTP URL.

This function by default reads files relative to the suitcase JAR file for the process.
If the file to read is located in a different directory path, you must specify an extra
directory slash (/) to indicate that this is an absolute path. For example:

ora:readFile('file:///c:/temp/test.doc')

If you specify only two directory slashes (//), you receive an error similar to that
shown in the following example:

XPath expression failed to execute.
Error while processing xpath expression,
the expression is "ora:readFile("file://c:/temp/test.doc")",
the reason is c. Verify the xpath query.

• nxsdTemplate: The NXSD template for the output.

• nxsdRoot -The NXSD root.

Property IDs:

Appendix B
BPEL XPath Extension Functions

B-36

• namespace-uri: http://schemas.oracle.com/xpath/extension
• namespace-prefix: ora

Note:

Currently, the readFile function does not support the functionality to access files on
a web server that requires authorization. If you tried to access such a file, then you
get the following error:

java.io.IOException: Server returned HTTP response code: 401 for URL

B.3.36 search
This function returns a list of LDAP entries.

Signature:

ldap:search('directoryName','filter','scope')
Parameters:

• directoryName: The directory name specified in the directories.xml file. For
information about the directories.xml file, see authenticate.

• filter: The filter expression to use for the search; this value cannot be null.

• scope: The scope of the search. It must be one of the following values: 1: one level, 2:
subtree, or 0: named object. This parameter is optional. By default, its value is 2.

Returns:

An XML element that contains the list of entries.For this XPath function, all properties must
be specified in the directories.xml file.

Example

ldap:search('people','cn=weblogic');

The following provides an example of the output:

 <searchResult xmlns="http://schemas.oracle.com/bpel/ldap">
 <searchResultEntry dn="uid=weblogic" xmlns="urn:oasis:names:tc:DSML:2:0:core">
 <attr name="uid">
 <value>weblogic</value>
 </attr>
 <attr name="userpassword">
 <value>
Unknown macro: {ssha}

bHDVJRfWVt/Uwlzb4TKU+QTOLB4FLySO</value>

 </attr>

 <attr name="objectclass">
 <value>inetOrgPerson</value>
 <value>organizationalPerson</value>
 <value>person</value>

Appendix B
BPEL XPath Extension Functions

B-37

 <value>top</value>
 <value>wlsUser</value>
 </attr>
 <attr name="description">
 <value>This user is the default administrator.</value>
 </attr>
 <attr name="wlsMemberOf">
 <value>cn=Administrators,ou=groups,ou=myrealm,dc=soainfra</value>
 </attr>
 <attr name="orclguid">
 <value>8AC1B6206FDD11DEBF9A7F3D47003274</value>
 </attr>
 <attr name="sn">
 <value>weblogic</value>
 </attr>
 <attr name="cn">
 <value>weblogic</value>
 </attr>
 </searchResultEntry>
 <searchResultEntry xmlns="urn:oasis:names:tc:DSML:2:0:core"/>
</searchResult>

B.3.37 toCDATA
This function returns a DOM node as a CDATA section.

Signature:

ora:toCDATA(node)

B.3.38 tryToCastToBoolean
This function returns a boolean value if the input is a string of true, false, 1, or 0.

Signature:

ora:tryToCastToBoolean(string)
Argument:

• string: String value to attempt to convert to a boolean value.

B.3.39 writeBinaryToFile
This function writes the binary bytes of a variable (or part of the variable) to a file of the
given file name.

Signature:

ora:writeBinaryToFile(varName[, partName[, query]])
Arguments:

• varName: The name of the variable.

• partName: The name of the part in the messageType variable.

• query: The query string to a child of the root element.

Property IDs:

Appendix B
BPEL XPath Extension Functions

B-38

• namespace-uri:http://schemas.oracle.com/xpath/extension
• namespace-prefix: ora

B.3.40 getGroupIdsFromGroupAlias
This function returns a list of user IDs for a group alias specified in the TaskServiceAliases
section of the BPEL suitcase descriptor.

Signature:

ora:getGroupIdsFromGroupAlias(String aliasName)
Arguments:

• aliasName: The alias for a list of users or groups.

Property IDs:

• namespace-uri: http://schemas.oracle.com/xpath/extension
• namespace-prefix: ora

B.3.41 getUserIdsFromGroupAlias
This function returns a list of user IDs for a group alias specified in the TaskServiceAliases
section of the BPEL suitcase descriptor.

Signature:

ora:getUserIdsFromGroupAlias(String aliasName)
Arguments:

• aliasName: Alias name of the group.

Property IDs:

• namespace-uri: http://schemas.oracle.com/xpath/extension
• namespace-prefix: ora

B.4 Conversion Functions
This section describes the conversion functions.

B.4.1 boolean
This function converts the input to a boolean. A number is true only if it is neither positive or
negative zero or NaN. A node-set is true only if it is nonempty. A string is true only if its length
is nonzero.

Signature:

boolean(input as any)
Arguments

• input as any: Any value.

Appendix B
Conversion Functions

B-39

For example:

boolean('false') returns true.

Property IDs:

• namespace-uri:

B.4.2 number
This function converts the input to a number. A string that consists of optional white
space, followed by an optional minus sign, followed by a number, followed by white
space is converted to the IEEE 754 number that is nearest (according to the IEEE 754
round-to-nearest rule) to the mathematical value represented by the string. Any other
string is converted to a NaN. A boolean true is converted to 1. A boolean false is
converted to 0. A node-set is first converted to a string as if by a call to the string
function and then converted in the same way as a string parameter.

Signature:

number(input as string or boolean or node-set)
Arguments

• input as string or boolean or node-set: Value to convert.

For example:

number('12.3') returns 12.3.

B.4.3 string
This function converts an object to a string.

Signature:

string(input as any)
Arguments

• input as any: The object to convert.

For example:

string(12.3) returns '12.3'.

Property IDs:

• namespace-uri:
• namespace-prefix:

B.5 DVM Functions
This section describes the domain value map (DVM) functions.

Appendix B
DVM Functions

B-40

B.5.1 lookupValue
This function returns a string by looking up the value for the target column in a domain value
map, where the source column contains the given source value.

Signature:

dvm:lookupValue(dvmLocation,sourceColumnName,sourceValue,targetColumnName,defaul
tValue)
Arguments:

• dvmLocation: The domain value map URI.

• sourceColumnName: The source column name.

• sourceValue: The source value (an XPath expression bound to the source document of
the XSLT transformation).

• targetColumnName: The target column name.

• defaultValue: If the value is not found, then the default value is returned.

• QualifierSourceColumn: The name of the qualifier column.

• QualifierSourceValue: The value of the qualifier.

Property IDs:

• namespace-uri: http://www.oracle.com/XSL/Transform/java/
oracle.tip.dvm.LookupValue

• namespace-prefix: dvm
For more information, see dvm:lookupValue.

B.5.2 lookupValue1M
This function returns an XML document fragment containing values for multiple target
columns of a domain value map, where the value for the source column equals the source
value.

Signature:

dvm:lookupValue1M(dvmLocation,sourceColumnName,sourceValue,targetColumnName1,tar
getColumnName2...)
Arguments:

• dvmMetadataURI: The domain value map URI.

• SourceColumnName: The source column name.

• SourceValue: The source value (an XPath expression bound to the source document of
the XSLT transformation).

• TargetColumnName: The name of the target columns. You must specify at least one
column name. The question mark symbol (?) indicates that you can specify multiple
target column names.

Property IDs:

Appendix B
DVM Functions

B-41

• namespace-uri: http://www.oracle.com/XSL/Transform/java/
oracle.tip.dvm.LookupValue

• namespace-prefix:dvm
For more information, see dvm:lookupValue1M.

B.6 Database Functions
This section describes the database functions.

B.6.1 lookup-table
This function returns a string based on the SQL query generated from the parameters.

The string is obtained by executing:

SELECT outputColumn FROM table WHERE inputColumn = key

You execute it against the data source that can be either a JDBC connect string
(jdbc:oracle:thin:username/password@host:port:sid) or a data source JNDI
identifier. Only the Oracle thin driver is supported if the JDBC connect string is used.

Example:

oraext:lookup-
table('employee','id','1234','last_name','jdbc:oracle:thin:xyz/
xyz@localhost:1521:ORCL')
Signature:

oraext:lookup-table(table, inputColumn, key, outputColumn, data source)
Arguments:

• table: The table from which to draw the data.

• inputColumn: The column within the table.

• key: The key value of the input column.

• outputColumn: The column to output the data.

• data source: The source of the data.

Property IDs:

• namespace-uri: http://www.oracle.com/XSL/Transform/java/
oracle.tip.pc.services.functions.ExtFunc

• namespace-prefix: oraext

B.6.2 query-database
This function returns a node set by executing the SQL query against the specified
database.

Signature:

oraext:query-database(sqlquery as string, rowset as boolean, row as
boolean, data source as string)

Appendix B
Database Functions

B-42

Arguments:

• sqlquery: The SQL query to perform.

• rowset: Indicates if the rows should be enclosed in an element.

• row: Indicates if each row should be enclosed in an element.

• data source: Either a JDBC connect string (jdbc:oracle:thin:username/
password@host:port:sid) or a JNDI name for the database.

Property IDs:

• namespace-uri: http://www.oracle.com/XSL/Transform/java/
oracle.tip.pc.services.functions.ExtFunc

• namespace-prefix: oraext

B.6.3 sequence-next-val
Returns the next value of an Oracle sequence.

The next value is obtained by executing the following:

SELECT sequence.nextval FROM dual

You execute it against a data source that can be either a JDBC connect string
(jdbc:oracle:thin:username/password@host:port:sid) or a data source JNDI identifier.
Only the Oracle thin driver is supported if a JDBC connect string is used.

Example:

oraext:sequence-next-val('employee_id_sequence','jdbc:oracle:thin:xyz/
xyz@localhost:1521:ORCL')
Signature:

oraext:sequence-next-val(sequence as string, data source as string)
Arguments:

• sequence: The sequence number in the database.

• data source: Either a JDBC connect string or a data source JNDI identifier.

Property IDs:

• namespace-uri: http://www.oracle.com/XSL/Transform/java/
oracle.tip.pc.services.functions.ExtFunc

• namespace-prefix: oraext

B.7 Date Functions
This section describes the date functions.

B.7.1 add-dayTimeDuration-to-dateTime
This function returns a new date time value adding dateTime to the given duration.

If the duration value is negative, then the resulting value precedes dateTime.

Appendix B
Date Functions

B-43

Signature:

xpath20:add-dayTimeDuration-from-dateTime(dateTime as string, duration as
string)
Arguments:

• dateTime as string: The dateTime to which the function adds the duration, in
string format.

• duration as string: The duration to add to the dateTime, or subtract if the
duration is negative, in string format.

Property IDs:

• namespace-uri: http://www.oracle.com/XSL/Transform/java/
oracle.tip.pc.services.functions.Xpath20

• namespace-prefix: xpath20

B.7.2 current-date
This function returns the current date in the ISO format of YYYY-MM-DD.

Signature:

xpath20:current-date(object)
Arguments:

• Object: The time in standard format.

Property IDs:

• namespace-uri: http://www.oracle.com/XSL/Transform/java/
oracle.tip.pc.services.functions.Xpath20

• namespace-prefix: xpath20

B.7.3 current-dateTime
This function returns the current datetime value in the ISO format of CCYY-MM-
DDThh:mm:ss.sTZD (where s denotes the time in milliseconds).

For example, if the time is 6 hours, 17 minutes, 15 seconds, 125 milliseconds in the
evening (PM) of May 12, 2004 in time zone Z, current-dateTime returns a value of:

2004-05-12T18:17:15.125Z

If com.oracle.soa.xpath.datetimeWithoutMillis is set to true in the setDomainEnv
file, this function returns the current datetime value in the following format (where ss
denotes the time in seconds):

CCYY-MM-DDThh:mm:ss.TZD

Signature:

xpath20:current-dateTime(object)
Arguments:

Appendix B
Date Functions

B-44

• object: The time in standard format.

Property IDs:

• namespace-uri: http://www.oracle.com/XSL/Transform/java/
oracle.tip.pc.services.functions.Xpath20

• namespace-prefix: xpath20

B.7.3.1 To display the datetime value in seconds:
1. Open the following file:

• On UNIX operating systems, open $MIDDLEWARE_HOME/user_projects/domains/
domain_name/bin/setDomainEnv.sh.

• On Window operating systems, open
MIDDLEWARE_HOME\user_projects\domains\domain_name\bin\setDomainEnv.bat.

2. Add com.oracle.soa.xpath.datetimeWithoutMillis with a value of true in the
JAVA_OPTIONS section. For example, JAVA_OPTIONS is currently set as follows:

JAVA_OPTIONS="${JAVA_OPTIONS} ${JAVA_PROPERTIES}
-Dwlw.iterativeDev=${iterativeDevFlag} -Dwlw.testConsole=${testConsoleFlag}
-Dwlw.logErrorsToConsole=${logErrorsToConsoleFlag} "

After modification, JAVA_OPTIONS appears as follows:

 JAVA_OPTIONS="${JAVA_OPTIONS} ${JAVA_PROPERTIES}
-Dwlw.iterativeDev=${iterativeDevFlag} -Dwlw.testConsole=${testConsoleFlag}
-Dwlw.logErrorsToConsole=${logErrorsToConsoleFlag}
-Dcom.oracle.soa.xpath.datetimeWithoutMillis=true"

3. Restart the server.

B.7.4 current-time
This function returns the current time in ISO format. The format is hh:mm:ssTZD.

Signature:

xpath20:current-time(object)
Arguments:

• object: The time in standard format.

Property IDs:

• namespace-uri: http://www.oracle.com/XSL/Transform/java/
oracle.tip.pc.services.functions.Xpath20

• namespace-prefix: xpath20

B.7.5 day-from-dateTime
This function returns the day from dateTime. The default day is 1.

Signature:

Appendix B
Date Functions

B-45

xpath20:day-from-dateTime(object)
Arguments:

• object: The time in standard format as a string.

Property IDs:

• namespace-uri: http://www.oracle.com/XSL/Transform/java/
oracle.tip.pc.services.functions.Xpath20

• namespace-prefix: xpath20

B.7.6 format-dateTime
This function returns the formatted string of dateTime using the format provided. For
examples of date and time formatting strings, see the W3C XSL Transformations
documentation; for example, [Y0001]-[M01]-[D01].

Signature:

xpath20:format-dateTime(dateTime as string, format as string)
Arguments:

• dateTime: The dateTime to be formatted.

• format: The format for the output.

Property IDs:

• namespace-uri: http://www.oracle.com/XSL/Transform/java/
oracle.tip.pc.services.functions.Xpath20

• namespace-prefix: xpath20

B.7.7 hours-from-dateTime
This function returns the hour from dateTime. The default hour is 0.

Signature:

xpath20:hours-from-dateTime(dateTime as string)
Arguments:

• dateTime: The string with the date and time.

Property IDs:

• namespace-uri: http://www.oracle.com/XSL/Transform/java/
oracle.tip.pc.services.functions.Xpath20

• namespace-prefix: xpath20

B.7.8 minutes-from-dateTime
This function returns the minutes from dateTime. The default minute is 0.

Signature:

Appendix B
Date Functions

B-46

xpath20:minutes-from-dateTime(dateTime as string)
Arguments:

• dateTime as string: The date and time.

Property IDs:

• namespace-uri: http://www.oracle.com/XSL/Transform/java/
oracle.tip.pc.services.functions.Xpath20

• namespace-prefix: xpath20

B.7.9 month-from-dateTime
This function returns the month from dateTime. The default month is 1 (January).

Signature:

xpath20:month-from-dateTime(dateTime as string)
Arguments:

• dateTime as string: The dateTime to be formatted.

Property IDs:

• namespace-uri: http://www.oracle.com/XSL/Transform/java/
oracle.tip.pc.services.functions.Xpath20

• namespace-prefix: xpath20

B.7.10 seconds-from-dateTime
This function returns the seconds from dateTime. The default second is 0.

Signature:

xpath20:seconds-from-dateTime(dateTime as string)
Arguments:

• dateTime as a string: The dateTime as a string.

Property IDs:

• namespace-uri: http://www.oracle.com/XSL/Transform/java/
oracle.tip.pc.services.functions.Xpath20

• namespace-prefix: xpath20

B.7.11 subtract-dayTimeDuration-from-dateTime
This function returns a new dateTime value after subtracting the duration from dateTime.

If the duration value is negative, then the resulting dateTime value follows input-dateTime
value.

Signature:

Appendix B
Date Functions

B-47

xpath20:subtract-dayTimeDuration-from-dateTime(dateTime as string,
duration as string)
Arguments:

• dateTime as string: The dateTime from which the function subtracts the
duration, in string format.

• duration as string: The duration to subtract from the dateTime, or to add if the
duration is negative, in string format.

Property IDs:

• namespace-uri: http://www.oracle.com/XSL/Transform/java/
oracle.tip.pc.services.functions.Xpath20

• namespace-prefix: xp20

B.7.12 timezone-from-dateTime
This function returns the time zone from dateTime. The default time zone is GMT+00:00.

Signature:

xpath20:timezone-from-dateTime(dateTime as string)
Arguments:

• dateTime as string: The dateTime for which this function returns a time zone.

Property IDs:

• namespace-uri: http://www.oracle.com/XSL/Transform/java/
oracle.tip.pc.services.functions.Xpath20

• namespace-prefix: xpath20

B.7.13 year-from-dateTime
This function returns the year from dateTime.

Signature:

xpath20:year-from-dateTime(dateTime as string)
Arguments:

• dateTime: The dateTime as a string.

Property IDs:

• namespace-uri: http://www.oracle.com/XSL/Transform/java/
oracle.tip.pc.services.functions.Xpath20

• namespace-prefix: xpath20

B.8 Identity Service Functions
This section describes the identity service functions.

Appendix B
Identity Service Functions

B-48

B.8.1 getDefaultRealmName
This function returns the default realm name.

Signature:

ids:getDefaultRealmName()
Arguments:

There are no arguments for this function.

Property IDs:

• namespace-uri: http://xmlns.oracle.com/bpel/services/IdentityService/xpath
• namespace-prefix: ids

B.8.2 getGroupProperty
This function returns the property value for the given group. If the group or attribute does not
exist, it returns null.

Signature:

ids:getGroupProperty(groupName, attributeName, realmName)
Arguments:

• groupName: String or element containing the group whose attribute must be retrieved.

• attributeName: String or element containing the name of the group attribute.

If the identity service uses the LDAP providerType or JAZN LDAP-based providers,
configure the LDAP server to enable searching by those attributes.

• realmName: The realm name. This is optional. If not specified, the default realm is
assumed.

Property IDs:

• namespace-uri: http://xmlns.oracle.com/bpel/services/IdentityService/xpath
• namespace-prefix: ids

B.8.3 getManager
This function gets the manager of a given user. If the user does not exist or there is no
manager for this user, it returns null.

Signature:

ids:getManager(userName, realmName)
Arguments:

• userName: The user name.

• realmName: The realm name. This is optional. If not specified, the default realm is
assumed.

Appendix B
Identity Service Functions

B-49

Property IDs:

• namespace-uri:http://xmlns.oracle.com/bpel/services/IdentityService/
xpath

• namespace-prefix: ids

B.8.4 getManagerFromManagementChain
This function gets the management chain for a given user based on upToUserName,
upToTitle, and upToLevel. If the user does not exist or if there is no manager for the
user, it returns null. Regular expressions can be used in upToTitle and upToUser
parameters.

Signature:

ids:getManagerFromManagementChain()

B.8.5 getReportees
This function gets the reportees of the user. If the user does not exist, it returns null.
This function returns a list of nodes. Each node in the list is called user.

Signature:

ids:getReportees(userName, upToLevel, realmName)
Arguments:

• userName: The user name.

• upToLevel- Defines the levels of indirect reportees to be included in the result. If
the value is 1, it returns only direct reportees. If the value is -1, it returns all levels
of reportees. It can be either an element with value xsd:number or a string, for
example '1'.

• realmName: The realm name. This is optional and, if not specified, the default
realm is assumed.

Property IDs:

• namespace-uri:http://xmlns.oracle.com/bpel/services/IdentityService/
xpath

• namespace-prefix: ids

B.8.6 getSupportedRealmNames
This function returns the supported realm names.

Signature:

ids:getSupportedRealms()
Property IDs:

• namespace-uri: http://xmlns.oracle.com/bpel/services/IdentityService/
xpath

• namespace-prefix: ids

Appendix B
Identity Service Functions

B-50

B.8.7 getUserProperty
This function returns the property of the user. If the user does not exist, it returns null. Use
custom attributes if the desired attribute does not exist.

Signature:

ids:getUserProperty(userName, attributeName, realmName)
Arguments:

• userName: String or element containing the user whose attribute must be retrieved.

• attributeName: The name of the user attribute.

If the identity service uses the LDAP providerType or JAZN LDAP-based providers,
configure the LDAP server to enable searching by those attributes.

• realmName: The realm name. This is optional. If not specified, the default realm name is
assumed.

Property IDs:

• namespace-uri: http://xmlns.oracle.com/bpel/services/IdentityService/xpath
• namespace-prefix: ids
For more information, see How to Select Email Addresses and Telephone Numbers
Dynamically.

B.8.8 getUserRoles
This function gets the user roles. This function returns a list of objects, either application roles
or groups, depending on the roleType. If the user or role does not exist, it returns null.

Signature:

ids:getUserRoles(userName, roleType, direct)
Arguments:

• userName: String or element containing the user whose roles are to be retrieved.

• roleType: The role type that takes one of three values: ApplicationRole,
EnterpriseRole, or AnyRole.

• direct: A string or element indicating if direct or indirect roles must be fetched. This is
optional. If not specified, only direct roles are fetched. This is either xsd:boolean or
string true/false.

Property IDs:

• namespace-uri:http://xmlns.oracle.com/bpel/services/IdentityService
• namespace-prefix: ids

B.8.9 getUsersInAppRole
This function returns the list of users who are granted this application role. If either the
application role name or the application name provided as input is null, then it returns null.

Appendix B
Identity Service Functions

B-51

Signature: ids:getUsersInAppRole(appRoleName, appName, direct, realmName)
Arguments:

• appRoleName: String or element containing the application role whose members
should be retrieved.

• appName: Application name within which the application role is created.

• direct: String or element indicating if only direct grantees or all users should be
fetched.

• realmName: String or element containing the realm name. This is optional and, if
not specified, the default realm is used.

B.8.10 getUsersInGroup
This function gets the users in a group. If the group does not exist, it returns null. This
function returns a list of nodes. Each node in the list is called user.

Signature:

ids:getUsersInGroup(groupName, direct, realmName)
Arguments:

• groupName: The group name.

• direct: A boolean flag. If true, this function returns direct user grantees;
otherwise, all user grantees are returned. It can be either an element with value
xsd:boolean or string 'true'/'false'.

• realmName: The realm name. This is optional. If not specified, the default realm
name is assumed.

Property IDs:

• namespace-uri: http://xmlns.oracle.com/bpel/services/IdentityService/
xpath

• namespace-prefix: ids

B.8.11 isUserInAppRole
This function verifies if a user has a specific application role.

Signature:

ids:isUserInAppRole(userName, appRoleName, appName, realmName)
Arguments:

• userName: String or element containing the user whose participation in the role
must be verified.

• appRoleName: The application role name.

• appName: The application name (for example, OracleBPMProcessRolesApp,
OracleBPMComposerRolesApp, and so on).

• realmName: The realm name. This is optional. If not specified, the default realm is
assumed. This function returns a boolean true or false.

Appendix B
Identity Service Functions

B-52

B.8.12 isUserInRole
This function verifies if a user has a specific role.

Signature:

ids:isUserInRole(userID, roleName, realmName)
Arguments:

• userID: A string or element containing the user whose participation in the role must be
verified.

• roleName: The role name.

• realmName: The realm name. This is optional. If not specified, the default realm name is
assumed.

Property IDs:

• namespace-uri:http://xmlns.oracle.com/bpel/services/IdentityService/xpath
• namespace-prefix: ids

B.8.13 lookupGroup
This function gets the group. If the group does not exist, it returns null.

Signature:

ids:lookupGroup(groupName, realmName)
Arguments:

• groupName: The group name.

• realmName: The realm name. This is optional. If not specified, the default realm name is
assumed.

Property IDs:

• namespace-uri:http://xmlns.oracle.com/bpel/services/IdentityService/xpath
• namespace-prefix: ids

B.8.14 lookupUser
This function gets the user object. If the user does not exist, it returns null.

Signature:

ids:lookupUser(userName, realmName)
Arguments:

• userName: The user name.

• realmName: The realm name. This is optional. If not specified, the default realm name is
assumed.

Property IDs:

Appendix B
Identity Service Functions

B-53

• namespace-uri: http://xmlns.oracle.com/bpel/services/IdentityService/
xpath

• namespace-prefix: ids

B.9 Logical Functions
This section describes the logical function.

B.9.1 and
This function returns true if both parameters evaluate to true. Otherwise, it returns
false.

Signature:

a-boolean and another-boolean
Arguments:

• a-boolean: One boolean value to evaluate.

• another-boolean: The other boolean value to evaluate.

B.9.2 equals
This function returns true if the two parameters are equal. Otherwise, it returns false.

Signature:

parameter1 = parameter2
Arguments:

• parameter1: One parameter to evaluate.

• parameter2: The other parameter to evaluate.

B.9.3 false
This function returns a boolean value of false.

Signature:

false()

B.9.4 greater
This function returns true if the first parameter is greater than the second parameter.
Otherwise, it returns false.

Signature:

parameter1 > parameter2
Arguments:

• parameter1: First parameter to evaluate.

Appendix B
Logical Functions

B-54

• parameter2: Second parameter to evaluate.

B.9.5 greater equals
This function returns true if the first parameter is greater than or equal to the second
parameter. Otherwise, it returns false.

Signature:

parameter1 >= parameter2

B.9.6 less
This function returns true if the first parameter is less than the second parameter. Otherwise,
it returns false.

Signature:

parameter1 < parameter2
Arguments:

• parameter1: First parameter to evaluate.

• parameter2: Second parameter to evaluate.

B.9.7 less equals
This function returns true if the first parameter is less than or equal to the second parameter.
Otherwise, it returns false.

Signature:

parameter1 <= parameter2
Arguments:

• parameter1: First parameter to evaluate.

• parameter2: Second parameter to evaluate.

B.9.8 not
This function returns the negation of the parameter.

Signature:

unobtainable as boolean)
Argument:

• input as boolean: The value to evaluate.

B.9.9 not equals
This function returns true if the two parameters are not equal. Otherwise, it returns false.

Signature:

Appendix B
Logical Functions

B-55

parameter1!= parameter2
Arguments:

• parameter1: First parameter to evaluate.

• parameter2: Second parameter to evaluate.

B.9.10 or
This function returns true if either parameter evaluates to true. Otherwise, it returns
false.

Signature:

a-boolean or another-boolean
Arguments:

• a-boolean: First parameter to evaluate.

• another-boolean: Second parameter to evaluate.

B.9.11 true
This function returns a boolean value of true.

Signature:

true()
Property IDs:

• namespace-uri:

• namespace-prefix:

B.10 Mathematical Functions
This section describes the mathematical functions.

B.10.1 abs
This function returns the absolute value of inputNumber.If the inputNumber is not
negative, the inputNumber is returned. If the inputNumber is negative, the negation of
inputNumber is returned.

Example:

abs(-1) returns 1.

Signature:

xpath20:abs(inputNumber as number)
Arguments:

• inputNumber as number: The number for which the function returns an absolute
value.

Appendix B
Mathematical Functions

B-56

Property IDs:

• namespace-uri: http://www.oracle.com/XSL/Transform/java/
oracle.tip.pc.services.functions.Xpath20

• namespace-prefix: xpath20

B.10.2 add
This function adds two numbers.

Example:

2 + 2 = 4

B.10.3 ceiling
This function returns the smallest (closest to negative infinity) number that is not less than the
input number and is an integer.

Example:

ceiling(1.6) returns 2.0.

B.10.4 count
This function returns the number of nodes in the input node set.

Example:

count(inputNodeSet as node-set)
Argument:

• inputNodeSet: The input node set.

B.10.5 divide
This function returns the first number divided by the second number.

Example:

2 div 2 = 1

B.10.6 floor
This function returns the largest (closest to positive infinity) number that is not greater than
the input number and is an integer.

Signature:

floor(1.6) returns 1.0

Appendix B
Mathematical Functions

B-57

B.10.7 max-value-among-nodeset
This function returns the maximum value from a list of input numbers, the node set
inputNumber. The node set inputNumber can be a collection of text nodes or elements
containing text nodes. In the case of elements, the first text node's value is considered.

Signature:

oraext:max-value-among-nodeset(inputNumber as node-set)
Arguments:

• inputNumber: The node set of input numbers.

Property IDs:

• namespace-uri: http://www.oracle.com/XSL/Transform/java/
oracle.tip.pc.services.functions.ExtFunc

• namespace-prefix: oraext

B.10.8 min-value-among-nodeset
This function returns the minimum value from a list of input numbers, the node set
inputNumbers. The node set can be a collection of text nodes or elements containing
text nodes. In the case of elements, the first text node's value is considered.

Signature:

oraext:min-value-among-nodeset(inputNumbers as node-set)
Arguments:

• inputNumber: The node set of input numbers.

Property IDs:

• namespace-uri: http://www.oracle.com/XSL/Transform/java/
oracle.tip.pc.services.functions.ExtFunc

• namespace-prefix: oraext

B.10.9 mod
This function returns the remainder from a truncating division.

Example:

5 mod 2 returns 1

B.10.10 multiply
This function multiplies two numbers.

Example:

2 * 2 = 4

Appendix B
Mathematical Functions

B-58

B.10.11 round
This function returns the number that is closest to the input number and is an integer. If there
are two numbers, the one that is closest to positive infinity is returned.

Example:

round(1.5) returns 2.0.

B.10.12 square-root
This function returns the square root of inputNumber.

Example:

oraext:square-root(25) returns 5
Signature:

oraext:square-root(inputNumber as number)
Arguments:

• inputNumber: The input number for which the function calculates the square root.

Property IDs:

• namespace-uri: http://www.oracle.com/XSL/Transform/java/
oracle.tip.pc.services.functions.ExtFunc

• namespace-prefix: oraext

B.10.13 subtract
This function subtracts the second number from the first number.

Example:

2 - 2 = 0

B.10.14 sum
This function returns the sum of all nodes in numbers.

Signature:

sum(numbers as node-set-set)
Argument:

• numbers as node-set-set: Total number of node sets.

Property IDs:

• namespace-uri:

• namespace-prefix:

Appendix B
Mathematical Functions

B-59

B.10.15 unary
This function multiplies a number by -1.

Signature:

-(-1) = 1

B.11 Node Set Functions
This section describes the node set functions.

B.11.1 last
This function returns the context size.

Signature:

last()

B.11.2 local-name
This function returns the local part of the name of a node.

Signature:

local-name([inputNodeSet as node-set])
Arguments:

• inputNodeSet as node-set: The name of the node set.

B.11.3 name
This function returns the QName of a node.

Signature:

name([inputNodeSet as node-set])
Argument:

• inputNodeSet as node-set: The name of the node set.

B.11.4 namespace-uri
This function returns the URI namespace of a node.

Signature:

namespace-uri([inputNodeSet as node])
Argument:

• inputNodeSet as node-set: The name of the node set.

Appendix B
Node Set Functions

B-60

B.11.5 position
This function returns the context position.

Signature:

position()

B.11.6 union
This function computes the union of its operands, which must be node sets.

Signature:

node-set | node-set

B.12 String Functions
This section describes the string functions.

B.12.1 compare
This function returns the lexicographical difference between inputString and compareString
by comparing the unicode value of each character of both the strings.

This function returns -1 if inputString lexicographically precedes the compareString.

This function returns 0 if both inputString and compareString are equal.

This function returns 1 if inputString lexicographically follows the compareString.

Example:

xpath20:compare('Audi', 'BMW') returns -1
Signature:

xpath20:compare(inputString as string, compareString as string)
Arguments:

• variableName: The source variable for the data.

• propertyName: The qualified name (QName) of the property.

Property IDs:

• namespace-uri: http://www.oracle.com/XSL/Transform/java/
oracle.tip.pc.services.functions.Xpath20

• namespace-prefix: xpath20

B.12.2 compare-ignore-case
This function returns the lexicographical difference between inputString and compareString
while ignoring case and comparing the unicode value of each character of both the strings.
Table B-2 provides details.

Appendix B
String Functions

B-61

Table B-2 Values Returned

This Function Returns... If...

-1 inputString lexicographically precedes the compareString.

0 Both inputString and compareString are equal.

1 inputString lexicographically follows the compareString.

Example:

oraext:compare-ignore-case('Audi','bmw') returns -1
Signature:

xp:compare-ignore-case(inputString as string, compareString as string)
Arguments:

• inputString: The string of data to be searched.

• CompareString: The string to compare against the input string.

Property IDs:

• namespace-uri: http://www.oracle.com/XSL/Transform/java/
oracle.tip.pc.services.functions.Xpath20

• namespace-prefix: oraext

B.12.3 concat
This function returns the concatenation of its string parameters.

Signature:

concat(string1 as string, string2 as string, ...)
Arguments:

• string1: String value to concatenate.

• string2: String value to concatenate.

B.12.4 contains
This function returns true if inputString contains searchString. Otherwise, it returns
false.

Signature:

contains(inputString as string,searchString as string)
For example:

contains('Michael Kay','Michael') returns true.

Appendix B
String Functions

B-62

B.12.5 create-delimited-string
This function returns a delimited string created from a nodeSet delimited by a delimiter.

Signature:

oraext:create-delimited-string(nodeSet as node-set, delimiter as string)
Arguments:

• nodeSet: The node set to convert into a delimited string.

• delimiter: The character that separates the items in the output string (for example, a
comma or a semicolon).

Property IDs:

• namespace-uri: http://www.oracle.com/XSL/Transform/java/
oracle.tip.pc.services.functions.ExtFunc

• namespace-prefix: oraext

B.12.6 ends-with
This function returns true if inputString ends with searchString.

Example:

xpath20:ends-with('XSL Map','Map') returns true
Signature:

xpath20:ends-with(inputString as string, searchString as string)
Arguments:

• inputString: The string of data to be searched.

• searchString: The string for which the function searches.

Property IDs:

• namespace-uri: http://www.oracle.com/XSL/Transform/java/
oracle.tip.pc.services.functions.Xpath20

• namespace-prefix: xpath20

B.12.7 format-string
This function returns the message formatted with the arguments passed. At least one
argument is required and supports up to a maximum of 10 arguments.

Example:

oraext:format-string('{0} + {1} = {2}','2','2','4') returns '2 + 2 = 4'
Signature:

oraext:format-string(string,string,string...)
Arguments:

Appendix B
String Functions

B-63

• string: One of the strings to use in the formatted output.

Property IDs:

• namespace-uri: http://www.oracle.com/XSL/Transform/java/
oracle.tip.pc.services.functions.ExtFunc

• namespace-prefix: oraext

B.12.8 get-content-as-string
This function returns the XML representation of the input element.

Signature:

oraext:get-content-as-string(element as node-set)
Arguments:

• element as node-set: The input element that the function returns as an XML
representation.

Property IDs:

• namespace-uri: http://www.oracle.com/XSL/Transform/java/
oracle.tip.pc.services.functions.ExtFunc

• namespace-prefix: oraext

B.12.9 get-localized-string
This function returns the locale-specific string for the key. This function uses language,
country, variant, and resource bundle to identify the correct resource bundle. All
parameters must be in string format. Use the string() function to convert any
parameter values to strings before sending them to get-localized-string.

The resource bundle is obtained by resolving resourceLocation against the
resourceBaseURL. The URL is assumed to be a directory only if it ends with /.

Usage: oraext:get-localized-string(resourceBaseURL as string,
resourceLocation as string, resource bundle as string, language as string,
country as string, variant as string, key as string)
Example: oraext:get-localized-
string('file:/c:/','','MyResourceBundle','en','US','','MSG_KEY') returns a
locale-specific string from a resource bundle 'MyResourceBundle' in the C:\ directory.

Signature:

oraext:get-localized-
string(resourceURL,resourceLocation,resourceBundleName,language,country,va
riant,messageKey)
Arguments:

• resourceURL: The URL of the resource.

• resourceLocation: The subdirectory location of the resource.

• resourceBundleName: The name of the ZIP file containing the resource bundle.

Appendix B
String Functions

B-64

• language: The language of the localized output.

• country: The country of the localized output.

• variant: The language variant of the localized output.

• messageKey: The message key in the resource bundle.

Property IDs:

• namespace-uri: http://www.oracle.com/XSL/Transform/java/
oracle.tip.pc.services.functions.ExtFunc

• namespace-prefix: oraext

B.12.10 index-within-string
This function returns the zero-based index of the first occurrence of searchString within the
inputString.

This function returns -1 if searchString is not found.

Example:

oraext:index-within-string('ABCABC, 'B') returns 1
Signature:

oraext:index-within-string(inputString as string, searchString as string)
Arguments:

• inputString: The string of data to be searched.

• searchString: The string for which the function searches in inputString.

Property IDs:

• namespace-uri: http://www.oracle.com/XSL/Transform/java/
oracle.tip.pc.services.functions.ExtFunc

• namespace-prefix: oraext

B.12.11 last-index-within-string
This function returns the zero-based index of the last occurrence of searchString within
inputString.

This function returns -1 if searchString is not found.

Example:

oraext:last-index-within-string('ABCABC', 'B') returns 4
Signature:

oraext:last-index-within-string(inputString as string, searchString as string)
Arguments:

• inputString: The string of data to be searched.

• searchString: The string for which the function searches in the inputString.

Appendix B
String Functions

B-65

Property IDs:

• namespace-uri: http://www.oracle.com/XSL/Transform/java/
oracle.tip.pc.services.functions.ExtFunc

• namespace-prefix: oraext

B.12.12 left-trim
This function returns the value of inputString after removing all the leading white
spaces.

Example:

oraext:left-trim(' account ') returns 'account '
Signature:

oraext:left-trim(inputString)
Arguments:

• inputString: The string to be left-trimmed.

Property IDs:

• namespace-uri: http://www.oracle.com/XSL/Transform/java/
oracle.tip.pc.services.functions.ExtFunc

• namespace-prefix: oraext

B.12.13 lower-case
This function returns the value of inputString after translating every character to its
lower-case correspondent.

Example:

xpath20:lower-case('ABc!D') returns 'abc!d'
Signature:

xpath20:lower-case(inputString)
Arguments:

• inputString: The string of data that is in lowercase.

Property IDs:

• namespace-uri: http://www.oracle.com/XSL/Transform/java/
oracle.tip.pc.services.functions.Xpath20

• namespace-prefix: xpath20

B.12.14 matches
This function returns true if intputString matches the regular expression pattern
regexPattern.

Example:

Appendix B
String Functions

B-66

xpath20:matches('abracadabra', '^a.*a$') returns true
Signature:

xpath20:matches(intputString, regexPattern)
Arguments:

• inputString: The string of data that must be matched.

• regexPattern: The regular expression pattern.

Property IDs:

• namespace-uri: http://www.oracle.com/XSL/Transform/java/
oracle.tip.pc.services.functions.Xpath20

• namespace-prefix: xpath20

B.12.15 normalize-space
This function returns the input string with white space normalized by stripping leading and
trailing white space and replacing sequences of white space characters with a single space.

Signature:

normalize-space([inputString as string])
Arguments:

• inputString: The input string.

For example:

normalize-space(' book title ') returns 'book title'.

B.12.16 right-trim
This function returns the value inputString after removing all the trailing white spaces.

Example:

oraext:right-trim(' account ') returns ' account'
Signature:

oraext:right-trim(inputString as string)
Arguments:

• inputString: The input string to be right-trimmed.

Property IDs:

• namespace-uri: http://www.oracle.com/XSL/Transform/java/
oracle.tip.pc.services.functions.ExtFunc

• namespace-prefix: oraext

Appendix B
String Functions

B-67

B.12.17 starts-with
This function returns true if the input string starts with a search string. Otherwise, it
returns false.

Signature:

starts-with(inputString as string,searchString as string)
Arguments:

• inputString: The input string.

• searchString: The search string.

For example:

starts-with('data type','data') returns true.

B.12.18 string-length
This function returns the number of characters in the input string.

Signature:

string-length([inputString as string])
Argument:

• inputString: The input string.

For example,

string-length('xml') returns 3.

Property IDs:

• namespace-uri:

• namespace-prefix:

B.12.19 substring
This function returns the substring of the input string starting at the position specified in
the starting location with the length specified in length.

Signature:

substring(inputString as string,startingLoc as number,[length as number])
Arguments:

• inputString: The input string.

• startingLoc: The starting location.

• length as number: The length as a number.

For example:

substring('12345',2) returns '2345'.

Appendix B
String Functions

B-68

B.12.20 substring-after
This function returns the substring of the input string that follows the first occurrence of the
search string, or the empty string if the input string does not contain the search string.

Signature:

substring-after(inputString as string,searchString as string)
Arguments:

• inputString: The input string.

• searchString: The string for which to search.

For example,

substring-after('1999/04/01','/') returns '04/01.

B.12.21 substring-before
This function returns the substring of the input string that precedes the first occurrence of the
search string or the empty string if the input string does not contain the search string.

Signature:

substring-before(inputString as string,searchString as string)
Arguments:

• inputString: The input string.

• searchString: The string for which to search.

For example:

substring-before('1999/04/01','/') returns '1999'.

B.12.22 translate
Signature:

translate(inputString as string,fromString as string,toString as string)
Arguments:

• inputString: The input string.

• fromString: The from string.

• toString: The to string.

For example,

translate('--aaa--','abc-','ABC') returns 'AAA'.

B.12.23 upper-case
This function returns the value of inputString after translating every character to its
uppercase correspondent.

Appendix B
String Functions

B-69

Example:

xpath20:upper-case('abCd0') returns 'ABCD0'
Signature:

xpath20:upper-case(inputString as string)
Arguments:

• inputString: The string of data that is in uppercase.

Property IDs:

• namespace-uri: http://www.oracle.com/XSL/Transform/java/
oracle.tip.pc.services.functions.Xpath20

• namespace-prefix: xpath20

B.13 Workflow Service Functions
This section describes the workflow service functions.

B.13.1 clearTaskAssignees
This function clears the current task assignees.

Signature:

hwf:clearTaskAssignees(taskID)
Arguments:

• task: The task ID of the task.

Property IDs:

• namespace-uri: http://xmlns.oracle.com/bpel/workflow/xpath
• namespace-prefix: hwf

B.13.2 createWordMLDocument
This function creates a Microsoft Word ML document as a base 64-encoded string.

Signature:

hwf:createWordMLDocument(node, xsltURI)
Arguments:

• node: The node is an XML node that is an input to the transformation.

• xsltURI: The XSLT used to transform the node (the first argument) to Microsoft
Word ML.

Property IDs:

• namespace-uri: http://xmlns.oracle.com/bpel/workflow/xpath
• namespace-prefix: hwf

Appendix B
Workflow Service Functions

B-70

B.13.3 dynamicTaskAssign
This function selects an assignee of the specified type from the input, using the specified
pattern, in the context of the current task.

This function can only be used in the context of a human task.

Signature:

hwf:dynamicTaskAssign(patternName, participants, inputParticipantType,
targetAssigneeType, isGlobal, invocationContext, parameter1, parameter2, ...,
parameterN)
Arguments:

• patternName: (Mandatory) Name of the pattern to use. The patterns ROUND_ROBIN,
LEAST_BUSY, and MOST_PRODUCTIVE are automatically provided. It is possible to configure
the SOA server with custom patterns.

• participants: (Mandatory) The participant or participants from which to select the
assignee. This can be a string or element containing a participant name or a comma-
separated list of participant names, or a set of elements containing participant names or
comma-separated lists of participant names. Participants must all be of the same type.

• inputParticipantType: (Mandatory) The type of the input participants (user, group, or
application_role).

• targetAssigneeType: (Mandatory) The type of assignee to select (user, group, or
application_role). The value must match the context in which the function is used (for
example, it must be a user if dynamically selecting an owner user. Note that if
inputParticipantType is the user, the only valid value here is the user.

• isGlobal: A boolean value that indicates to access the pattern using tasks of all types or
tasks of the same type as the current task. This is optional. It defaults to false.

• invocationContext: The string to uniquely identify where this function is used. If not
specified, a default context is assigned.

• parameterN : Some dynamic assignment patterns enable parameters to be specified. The
parameter values can be specified as name-value pairs, using an ?=? character as a
delimiter (for example, ?TIME_PERIOD=7?).

Examples:

hwf:dynamicTaskAssign(?LEAST_BUSY?,?jcooper,jstein,mtwain?,?user?,?user?,?
true?,?ErrorAssignee?)
hwf:dynamicTaskAssign(?ROUND_ROBIN?,?LoanAgentGroup?,?group?,?user?,?false?,?
OwnerUser?)
hwf:dynamicTaskAssign(?MOST_PRODUCTIVE?,task:task/task:payload/task:users,?
user?,?user?,?false?,?OwnerUser?,?TIME_PERIOD=7?)
hwf:dynamicTaskAssign(?LEAST_BUSY?,?DeveloperRole?,?application_role?,?group?)

Appendix B
Workflow Service Functions

B-71

B.13.4 getNotificationProperty
This function retrieves a notification property. This function evaluates to corresponding
values for each notification. Only use this function in the notification content XPath
expression. If used elsewhere, it returns null.

Signature:

hwf:getNotificationProperty(propertyName)
Arguments:

• propertyName: The name of the notification property. It can be one of the following
values:

– recipient: The recipient of the notification.

– recipientDisplay: The display name of the recipient.

– taskAssignees: The task assignees.

– taskAssigneesDisplay: The display names of the task assignees.

– locale: The locale of the recipient.

– taskId: The task ID of the task for which the notification is meant.

– taskNumber: The task number of the task for which the notification is meant.

– appLink: The HTML link to the Oracle BPM Worklist task details page.

Property IDs:

• namespace-uri: http://xmlns.oracle.com/bpel/workflow/xpath
• namespace-prefix: hwf

B.13.5 getNumberOfTaskApprovals
This function computes the number of times the task was approved.

Signature:

hwf:getNumberOfTaskApprovals(taskId)
Arguments:

• taskId: The ID of the task.

Property IDs:

• namespace-uri: http://xmlns.oracle.com/bpel/workflow/xpath
• namespace-prefix: hwf

B.13.6 getPreviousTaskApprover
This function retrieves the previous task approver.

Signature:

hwf:getPreviousTaskApprover(taskId)

Appendix B
Workflow Service Functions

B-72

Arguments:

• taskId: The ID of the task.

Property IDs:

• namespace-uri: http://xmlns.oracle.com/bpel/workflow/xpath
• namespace-prefix: hwf

B.13.7 getTaskAttachmentByIndex
This function retrieves the task attachment at the specified index.

Signature:

hwf:getTaskAttachmentByIndex(taskId, attachmentIndex)
Arguments:

• taskId: The task ID of the task.

• attachmentIndex: The index of the attachment. The index begins at 1. The
attachmentIndex argument can be a node whose value evaluates to the index number
as a string (all node values are strings). If specified statically, it can be specified as '1'.

Property IDs:

• namespace-uri: http://xmlns.oracle.com/bpel/workflow/xpath
• namespace-prefix: hwf

B.13.8 getTaskAttachmentByName
This function retrieves the task attachment by the attachment name.

Signature:

hwf:getTaskAttachmentByName(taskId, attachmentName)
Arguments:

• taskId: The task ID of the task.

• attachmentName: The name of the attachment.

Property IDs:

• namespace-uri: http://xmlns.oracle.com/bpel/workflow/xpath
• namespace-prefix: hwf

B.13.9 getTaskAttachmentContents
This function retrieves the task attachment contents by the attachment name.

Signature:

hwf:getTaskAttachmentContents(taskId, attachmentName)
Arguments:

Appendix B
Workflow Service Functions

B-73

• taskId: The task ID of the task.

• attachmentName: The name of the attachment.

Property IDs:

• namespace-uri:http://xmlns.oracle.com/bpel/workflow/xpath
• namespace-prefix: hwf

B.13.10 getTaskAttachmentsCount
This function retrieves the number of task attachments.

Signature:

hwf:getTaskAttachmentsCount(taskId)
Arguments:

• taskId: The task ID of the task.

Property IDs:

• namespace-uri: http://xmlns.oracle.com/bpel/workflow/xpath
• namespace-prefix: hwf

B.13.11 getTaskResourceBundleString
This function returns the internationalized resource value from the resource bundle
associated with a task definition.

Signature:

hwf:getTaskResourceBundleString(taskId, key, locale?)
Arguments:

• taskId: The task ID of the task.

• key: The key to the resource.

• locale: (Optional) The locale. This value defaults to system locale. This returns a
resourceString XML element in the namespace http://xmlns.oracle.com/
bpel/services/taskService, which contains the string from the resource bundle.

Property IDs:

• namespace-uri: http://xmlns.oracle.com/bpel/workflow/xpath
• namespace-prefix: hwf

B.14 XREF Functions
This section describes the cross reference (XREF) functions.

Appendix B
XREF Functions

B-74

B.14.1 lookupPopulatedColumns
This function looks up a cross-reference column for a single value or multiple values
corresponding to a value in a reference column.

Signature:

xref:lookupPopulatedColumns(tableName,columnName,value,needAnException)
Arguments:

• xrefTableName: The name of the reference table.

• xrefColumnName: The name of the reference column.

• xrefValue: The value corresponding to the reference column name.

• needAnException: If this value is set to true, then an exception is thrown when no value
is found in the referenced column. Otherwise, an empty node set is returned.

Property IDs:

• namespace-uri:http://www.oracle.com/XSL/Transform/java/
oracle.tip.xref.xpath.XRefXPathFunctions

• namespace-prefix: xref

B.14.2 lookupXRef
This function looks up a cross-reference column for a value that corresponds to a value in a
reference column.

Signature:

xref:lookupXRef(tableName,referenceColumnName,referenceValue,columnName,needAnEx
ception)
Arguments:

• xrefLocation: The cross-reference URI.

• xrefReferenceColumnName: The name of the reference column.

• xrefReferenceValue: The value corresponding to the reference column name.

• xrefColumnName: The name of the column to be looked up for the value.

• needAnException: When the value is set to true, an exception is thrown if the value is not
found. Otherwise, an empty value is returned.

Property IDs:

• namespace-uri:http://www.oracle.com/XSL/Transform/java/
oracle.tip.xref.xpath.XRefXPathFunctions

• namespace-prefix: xref
For more information, see About the xref:lookupXRef Function.

Appendix B
XREF Functions

B-75

B.14.3 lookupXRef1M
This function looks up a cross-reference column for multiple values corresponding to a
value in a reference column.

Signature:

xref:lookupXRef1M(tableName,referenceColumnName,referenceValue,columnName,
needAnException)
Arguments:

• xrefLocation: The cross-reference URI.

• xrefReferenceColumnName: The name of the reference column.

• xrefReferenceValue: The value corresponding to the reference column name.

• xrefColumnName: The name of the column to be looked up for the value.

• needAnException: If this value is set to true, then an exception is thrown when the
referenced value is not found. Otherwise, an empty node set is returned.

Property IDs:

• namespace-uri:http://www.oracle.com/XSL/Transform/java/
oracle.tip.xref.xpath.XRefXPathFunctions

• namespace-prefix: xref
For more information, see About the xref:lookupXRef1M Function.

B.14.4 markForDelete
This function deletes a value in a cross-reference table. The row, containing the
column value passed to the function, is deleted from the XREF_DATA table and moved
to the XREF_DELETED_DATA table. This function returns true if the deletion is
successful. Otherwise, it returns false.

Signature:

xref:markForDelete(tableName,columnName,value)
Arguments:

• xrefTableName: The cross-reference table name.

• xrefColumnName: The name of the column that contains the value to be deleted.

• xrefValueToDelete: The value to be deleted.

Property IDs:

• namespace-uri:http://www.oracle.com/XSL/Transform/java/
oracle.tip.xref.xpath.XRefXPathFunctions

• namespace-prefix: xref
For more information, see How to Delete a Cross Reference Table Value.

Appendix B
XREF Functions

B-76

B.14.5 populateLookupXRefRow
This function populates the column value in the cross-reference table (XREF) in which the
reference column has the reference value. Depending on the mode, the reference value may
also be populated. Unlike the xref:populateXRefRow function, the
xref:populateLookupXRefRow function does not throw a unique constraint violation error
when records with the same ID are added simultaneously. Instead, it behaves as a lookup
and returns the existing source value that caused the error and does not stop the processing
flow. Use this function to resolve any concurrency issues that can arise when using the
xref:populateXRefRow function.

Signature:

xref:populateLookupXRefRow(xrefLocation as string, referenceColumnName as
string, referenceValue as string, columnName as string, value as string, mode as
string)
For example:

xref:populateLookupXRefRow("C:\xrefs\customer-id.xref", "Oracle System" ,
"ORCL_100", "SAP System", "SAP_001", "ADD")

B.14.6 populateXRefRow
This function populates the column name in the cross-reference table (XREF) in which the
reference column has the reference value.

Signature:

xref:populateXRefRow(tableName,referenceColumnName,referenceValue,columnName,val
ue,mode)
Arguments:

• xrefLocation: The cross-reference URI.

• xrefReferenceColumnName: The name of the reference column.

• xrefReferenceValue: The value corresponding to the reference column name.

• xrefColumnName: The name of the column to be looked up for the value.

• xrefvalue: The value corresponding to the reference column name.

• xrefmode: The name of the XREF population mode.

Property IDs:

• namespace-uri:http://www.oracle.com/XSL/Transform/java/
oracle.tip.xref.xpath.XRefXPathFunctions

• namespace-prefix: xref
For more information, see About the xref:populateXRefRow Function.

B.14.7 populateXRefRow1M
This function populates the column with multiple values in the cross-reference table (XREF)
in which the reference column has the reference value.

Appendix B
XREF Functions

B-77

Signature:

xref:populateXRefRow1M(tableName,referenceColumnName,referenceValue,column
Name,value,mode)
Arguments:

• xrefLocation: The cross-reference URI.

• xrefReferenceColumnName: The name of the reference column.

• xrefReferenceValue: The value corresponding to the reference column name.

• xrefColumnName: The name of the column to be looked up for the value.

• xrefvalue: The value corresponding to the reference column name.

• xrefmode: The name of the XREF population mode.

Property IDs:

• namespace-uri:http://www.oracle.com/XSL/Transform/java/
oracle.tip.xref.xpath.XRefXPathFunctions

• namespace-prefix: xref
For more information, see About the xref:populateXRefRow1M Function.

B.15 Building XPath Expressions in the Expression Builder
in Oracle JDeveloper

You can use the Expression Builder dialog and the XPath Building Assistant to create
XPath expressions. You can visually design XPath expressions in a BPEL process,
human workflow, or Oracle Mediator service component in the Expression Builder
dialog.

B.15.1 How to Use the Expression Builder
To use the Expression Builder:

1. In the Functions list, select the function category to use (for example, Identity
Service Functions).

2. Select the function (for example, getManager).

3. Click Insert Into Expression, as shown in Figure B-1.

Appendix B
Building XPath Expressions in the Expression Builder in Oracle JDeveloper

B-78

Figure B-1 Expression Builder Dialog

This inserts the function into the Expression field at the top.

4. In the Expression field, place the cursor between the parentheses of the function, as
shown in Figure B-2.

Figure B-2 Placement of Cursor

5. In the Schema section, expand the schema path to make your selection, as shown in
Figure B-3.

Appendix B
Building XPath Expressions in the Expression Builder in Oracle JDeveloper

B-79

Figure B-3 Selection of Schema

6. Click Insert Into Expression.

The expression is inserted into the function, as shown in Figure B-4.

Figure B-4 XPath Expression Creation

B.15.2 Introduction to the XPath Building Assistant
Several dialogs enable you to specify XPath expressions with the XPath Building
Assistant, including:

• Expression field of the Expression Builder dialog

• Expression field of the Initialize tab of the Create Variable dialog in BPEL 2.0

• Edit XPath Expression and Edit Function dialogs of the XSLT Map Editor

Manually specifying long and complex expressions is supported, but can be a
cumbersome and error-prone process. The XPath Building Assistant provides the
following set of features that simplify this process:

• Automatic completion of the following:

– Elements and attributes

– Functions

– BPEL variables and parts

• Function parameter tool tips

• Syntactic and semantic validation of XPaths

B.15.3 How to Use the XPath Building Assistant
This section provides an example of using the XPath Building Assistant to build an
expression in the Expression field of the Expression Builder dialog.

Appendix B
Building XPath Expressions in the Expression Builder in Oracle JDeveloper

B-80

To use the XPath Building Assistant:

1. Click inside the Expression field and press Ctrl and then the space bar. The menu of
available selections is displayed.

2. Make a selection from the list in either of the following ways:

• Scroll down the list and double-click a function.

• Enter the beginning letter (for example, c) to display only items starting with that
letter, and double-click the appropriate function.

Figure B-5 provides details.

Figure B-5 List of Values for Building an Expression

This value is added to the Expression field. The list automatically displays again with
different options and prompts you to enter the next portion of the XPath expression.

3. Select and double-click the next portion. Figure B-6 provides details.

Figure B-6 Invocation of Next Portion of Function

This value is added to the Expression field. The list automatically displays again and
prompts you to enter the next portion of the XPath expression.

4. Continue this process to build the remaining parts of the XPath expression.

5. Manually add text as appropriate. Figure B-7 provides details.

Figure B-7 Manual Addition of Text

Appendix B
Building XPath Expressions in the Expression Builder in Oracle JDeveloper

B-81

Note:

Instead of double-clicking selections in the XPath Building Assistant popups,
you can also use the Enter key to make the selection. If your expression is
complete, but you are still being prompted to enter information, press Esc.
This closes the list.

B.15.4 Using the XPath Building Assistant in the XSLT Mapper
This section provides an example of using the XPath Building Assistant to build an
expression in the Edit XPath Expression dialog of the XSLT Mapper.

To use the XPath Building Assistant in the XSLT Mapper:

1. Go to the XSLT Map Editor.

2. From the Component Palette list, select Advanced Functions.

3. Scroll down the list to the xpath-expression function.

4. Drag and drop the xpath-expression function into the XSLT Map Editor, as shown
in Figure B-8.

Figure B-8 xpath-expression

5. Double-click the function to display the Edit XPath Expression dialog.

6. Click the cursor inside the XPath Expression field.

7. Press Ctrl and then the space bar to display a list of values for building an
expression, as shown in Figure B-9.

Appendix B
Building XPath Expressions in the Expression Builder in Oracle JDeveloper

B-82

Figure B-9 List of Values for Building an Expression

8. Make a selection from the list (for this example, concat(String) as String) in either of the
following ways:

• Scroll down the list and double-click concat(String) as String.

• Enter the letter c to display only items starting with that letter, then select and double-
click concat(String) as String.

Figure B-10 provides details.

Figure B-10 Expression List Selection

This selection is added to the XPath Expression field. The list automatically displays
again with different options and prompts you to enter the next portion of the XPath
expression.

9. Continue this process to build the remaining parts of the XPath expression.

10. Click OK to close the Edit XPath Expression dialog when complete.

B.15.5 Function Parameter Tool Tips
Function parameter tool tips display the expected arguments of a chosen XPath function. For
example, if you manually enter the function concat, and then enter (, the parameter tool tip
appears and displays the expected arguments of the concat function. The current argument
name of the function is highlighted in bold. Figure B-11 provides details.

Appendix B
Building XPath Expressions in the Expression Builder in Oracle JDeveloper

B-83

Figure B-11 Current Argument Name of the Function

Once you finish specifying one argument, and enter a comma to move to the next
argument, the tool tip updates itself to highlight the second argument name in bold,
and so on. While editing existing XPaths that contain functions, you can re-invoke
parameter tool tips by positioning the cursor within the function and then pressing a
combination of the Ctrl, Shift, and space bar keys.

B.15.6 Syntactic and Semantic Validation
Within Oracle JDeveloper, an XPath expression is considered syntactically valid if it
conforms to the XPath 1.0 specification. The XPath Building Assistant warns you
about syntactically incorrect XPath functions (for example, a missing parenthesis or
apostrophe) by underlining the erroneous area in red. Drag the mouse pointer over
this area. The error message displays as a tool tip. The red underlining error
disappears after you make corrections. Figure B-12 provides details.

Figure B-12 Syntactically Incorrect XPaths

Syntactically valid XPath functions may be semantically invalid. This can cause
unexpected errors at runtime. For example, you can misspell the name of an element,
variable, function, or part. The XPath Building Assistant warns you about semantic
errors by underlining the erroneous area in blue. Drag the mouse pointer over this
area. The error message displays as a tool tip. The blue underlining error disappears
after you make corrections. Figure B-13 provides details.

Figure B-13 Semantically Incorrect XPaths

B.15.7 Creating Expressions with Free Form Text and XPath
Expressions

You can mix free form text with XPath expressions in some dialogs.

Appendix B
Building XPath Expressions in the Expression Builder in Oracle JDeveloper

B-84

1. Place your cursor over the field to display a popup message that describes this
functionality. Figure B-14 provides details.

Figure B-14 Functionality Description Menu

2. Enter free form text (in this example, 'Hello, your telephone number'). Figure B-15
provides details.

Figure B-15 Free Form Text

3. Enter <% when you are ready to invoke the XPath Building Assistant. Figure B-16
provides details.

Figure B-16 XPath Building Assistant Invocation Preparation

A red underline appears, which indicates that you are being prompted to add information.

4. Press Ctrl and then the space bar to invoke the XPath Building Assistant. Figure B-17
provides details.

Figure B-17 XPath Building Assistant Invocation

5. Scroll down the list and double-click the value you want.

6. Continue this process to build the remaining parts of the expression.

Appendix B
Building XPath Expressions in the Expression Builder in Oracle JDeveloper

B-85

B.15.8 Using Double Slashes for Directory Paths in XPath Functions
on Windows Can Cause Errors

The use of slashes to represent directory paths in XPath extension functions on
Windows operating systems can be interpreted in two ways:

• With double slashes. For example, file://c:/Ftab.txt.

• With single slashes. For example, file:/c:/Ftab.txt.

If you specify double slashes and receive an error message, try specifying single
slashes.

For example, the following use of double slashes does not work:

oraext:get-content-from-file-function("file://c:/Ftab.txt","file:
//c:/Ftab_1.xsd","root")

Whereas, the following use of single slashes works correctly:

oraext:get-content-from-file-function("file:/c:/Ftab.txt","file:
/c:/Ftab_1.xsd","root")

B.16 Creating User-Defined XPath Extension Functions
You can create user-defined (custom) XPath extension functions for use in Oracle
SOA Suite. These functions can be created for the following components:

• Oracle BPEL Process Manager

• Oracle Mediator

• XSLT Mapper

• Human workflow

• Shared by all of these components

XPath extension functions in Oracle SOA Suite adhere to the following standards:

• A single schema defines the configuration syntax for both system functions and
user-defined functions.

• XPath functions are categorized based on usage (Oracle BPEL Process Manager,
Oracle Mediator, human workflow, XSLT Mapper, and those commonly used by
all).

• System functions are separated from user-defined functions.

• A repository hosts both system function configuration files and user-defined
function configuration files.

• A repository hosts user-defined function implementation JAR files and
automatically makes them available for the Java Virtual Machine (JVM) (class
loaders).

As a best practice, follow these conventions for creating functions:

• If possible, write functions that can be shared across all components. Functions
shared by all components can be created in a configuration file named ext-soa-
xpath-functions-config.xml. You must implement XSLT Mapper functions

Appendix B
Creating User-Defined XPath Extension Functions

B-86

differently than Oracle BPEL Process Manager, Oracle Mediator, and human workflow
functions.

For more information about these implementation differences, see How to Implement
User-Defined XPath Extension Functions.

• If you create a function for one component that cannot be used by others (for example, a
function for Oracle BPEL Process Manager that cannot be used by Oracle Mediator or
human workflow), then create that function in the configuration file specific to that
component. For this example, the Oracle BPEL Process Manager function must be
created in a configuration file named ext-bpel-xpath-functions-config.xml.

The types and their equivalent Java types can be used for parameter and return values:

XML Configuration File Type Name Java Type

string java.lang.String
boolean boolean
number int, float, double
node-set oracle.xml.parser.v2.XMLNodeList
tree oracle.xml.parser.v2.XMLDocumentFragment

The following example shows the function schema used by system and user-defined
functions:

<?xml version="1.0" encoding="UTF-8"?>
<schema xmlns="http://www.w3.org/2001/XMLSchema"
 xmlns:tns="http://xmlns.oracle.com/soa/config/xpath"
 targetNamespace="http://xmlns.oracle.com/soa/config/xpath"
 elementFormDefault="qualified">
 <element name="soa-xpath-functions" type="tns:XpathFunctionsConfig"/>
 <element name="function" type="tns:XpathFunction"/>
 <complexType name="XpathFunctionsConfig">
 <sequence>
 <element ref="tns:function" minOccurs="1" maxOccurs="unbounded"/>
 </sequence>
 <attribute name="resourceBundle" type="string"/>
 <attribute name="version" type="string"/>
 </complexType>

 <complexType name="XpathFunction">
 <sequence>
 <element name="className" type="string"/>
 <element name="return">
 <complexType>
 <attribute name="type" type="tns:XpathType"
 use="required"/>
 </complexType>
 </element>
 <element name="params" type="tns:Params" minOccurs="0"
 maxOccurs="1"/>
 <element name="desc">
 <complexType>
 <simpleContent>
 <extension base="string">
 <attribute name="resourceKey"
 type="string"/>
 </extension>

Appendix B
Creating User-Defined XPath Extension Functions

B-87

 </simpleContent>
 </complexType>
 </element>
 <element name="detail" minOccurs="0">
 <complexType>
 <simpleContent>
 <extension base="string">
 <attribute name="resourceKey"
 type="string"/>
 </extension>
 </simpleContent>
 </complexType>
 </element>
 <element name="icon" minOccurs="0">
 <complexType>
 <simpleContent>
 <extension base="string">
 <attribute name="resourceKey"
 type="string"/>
 </extension>
 </simpleContent>
 </complexType>
 </element>
 <element name="helpURL" minOccurs="0">
 <complexType>
 <simpleContent>
 <extension base="string">
 <attribute name="resourceKey"
 type="string"/>
 </extension>
 </simpleContent>
 </complexType>
 </element>
 <element name="group" minOccurs="0">
 <complexType>
 <simpleContent>
 <extension base="string">
 <attribute name="resourceKey" type="string"/>
 </extension>
 </simpleContent>
 </complexType>
 </element>
 <element name="wizardClass" type="string" minOccurs="0"/>
</sequence>
<attribute name="name" type="string" use="required"/>
 <attribute name="deprecated" type="boolean" use="optional"/>
</complexType>

 <complexType name="Params">
 <sequence>
 <element name="param" minOccurs="1" maxOccurs="unbounded">
 <complexType>
 <attribute name="name" type="string" use="required"/>
 <attribute name="type" type="tns:XpathType"
 use="required"/>
 <attribute name="minOccurs" type="string"
 default="1"/>
 <attribute name="maxOccurs" type="string"
 default="1"/>
 <attribute name="wizardEnabled" type="boolean"
 default="false"/>

Appendix B
Creating User-Defined XPath Extension Functions

B-88

 </complexType>
 </element>
 </sequence>
 </complexType>
 <simpleType name="XpathType">
 <restriction base="string">
 <enumeration value="string"/>
 <enumeration value="boolean"/>
 <enumeration value="number"/>
 <enumeration value="node-set"/>
 <enumeration value="tree"/>
 </restriction>
 </simpleType>
</schema>

B.16.1 How to Implement User-Defined XPath Extension Functions
This section describes how to implement user-defined XPath extension functions for Oracle
SOA Suite components.

B.16.1.1 How to Implement Functions for the XSLT Mapper
Implementation of user-defined XPath extension functions for the XSLT Map Editor is
different than for other components:

• Each XSLT Map Editor function requires a corresponding public static method from a
public static class. The function name and method name must match.

• XSLT Map Editor function namespaces must take the form http://www.oracle.com/XSL/
Transform/java/mypackage.MyFunctionClass, where mypackage.MyFunctionClass is
the fully-qualified class name of the public static class containing the public static
methods for the functions.

B.16.1.2 How to Implement Functions for All Other Components
For Oracle BPEL Process Manager, Oracle Mediator, and human workflow functions, you
must implement either the oracle.fabric.common.xml.xpath.IXPathFunction interface
(defined in the fabric-runtime.jar file) or javax.xml.xpath.XPathFunction.

To implement functions for all other components:

• Implement the oracle.fabric.common.xml.xpath.IXPathFunction interface for your
XPath function. The IXPathFunction interface has one method named call(context,
args). The signature of this method is as shown in the following example:

 package oracle.fabric.common.xml.xpath;
 public interface IXPathFunction
 {
 /** Call this function.
 *
 * @param context The context at the point in the
 * expression when the function is called.
 * @param args List of arguments provided during
 * the call of the function.
 */
 public Object call(IXPathContext context, List args) throws
 XPathFunctionException;
 }

Appendix B
Creating User-Defined XPath Extension Functions

B-89

where:

• context: The context at the point in the expression when the function is called.

• args: The list of arguments provided during the call of the function.

For the following example, a function named getNodeValue(arg1) is implemented
that gets a value of w3c node:

package com.collaxa.cube.xml.xpath.dom.functions;
 import oracle.fabric.common.xml.xpath.IXPathFunction;
 import oracle.fabric.common.xml.xpath.IXPathFunction
 . . .

 public class GetNodeValue implements IXPathFunction {
 Object call(IXPathContext context, List args) throws
XPathFunctionException
 {
 org.w3c.dom.Node node = (org.w3c.dom.Node) args.get(0);
 return node.getNodeValue()
 }
 }

B.16.2 How to Configure User-Defined XPath Extension Functions
To configure user-defined XPath extension functions:

1. Create an XPath extension configuration file in which to define the function. The
following example shows a sample configuration file that follows the function
schema shown in Creating User-Defined XPath Extension Functions. In this
example, two functions are created: mf:myFunction1 and mf:myFunction2.

<?xml version="1.0" encoding="UTF-8"?>
<soa-xpath-functions resourceBundle="myPackage.myResourceBundle"
 xmlns="http://xmlns.oracle.com/soa/config/xpath"
 xmlns:mf="http://www.my-functions.com">
 <function name="mf:myFunction1">
 <className>myPackage.myFunctionClass1</className>
 <return type="node-set"/>
 <params>
 <param name="p1" type="node-set" wizardEnabled="true"/>
 <param name="p2" type="string"/>
 <param name="p3" type="number" minOccurs="0"/>
 <param name="p4" type="boolean" minOccurs="0" maxOccurs="3"/>
 </params>
 <desc resourceKey="func1-desc-key">this is my first function</desc>
 <detail resourceKey="func2-long-desc-key">my first function does ... </
detail>
 <icon>myPackage/resource/image/myFunction1.png</icon>
 <group resourceKey="func-group-key">My Function Group</group>
 <wizardClass>myPackage.myWizardClass1</wizardClass>
 </function>
 <function name="mf:myFunction2">
 <className>myPackage.myFunctionClass2</className>
 <return type="string"/>
 <params>
 <param name="p1" type="node-set" wizardEnabled="true"/>
 <param name="p2" type="string"/>
 <param name="p3" type="number" minOccurs="0"/>
 <param name="p4" type="boolean" minOccurs="0" maxOccurs="unbounded"/>
 </params>

Appendix B
Creating User-Defined XPath Extension Functions

B-90

 <desc resourceKey="func2-desc-key">this is my second function</desc>
 <detail resourceKey="func2-long-desc-key">my second function does ...</detail>
 <icon>myPackage/resource/image/myFunction2.png</icon>
 <group resourceKey="func-group-key">My Function Group</group>
 <wizardClass>myPackage.myWizardClass2</wizardClass>
 </function>
</soa-xpath-functions>

Table B-3 describes the elements of the configuration file. Each function configuration file
uses soa-xpath-functions as its root element. The root element has an optional
resourceBundle attribute. The resourceBundle value is the fully qualified class name of
the resource bundle class providing national language support (NLS) for all function
configurations.

Table B-3 Function Schema Elements

Element Description

className The fully qualified class name of the function implementation class.

return The return type of the function. This can be one of the following types supported by XPath and
XSLT: string, number, boolean, node-set, and tree. For equivalent Java types, see the table
at the beginning of this section (Creating User-Defined XPath Extension Functions.

params The parameters of the function. A function can have no parameters. A parameter has the
following attributes:

• name: The name of the parameter.

• type: The type of the parameter. This can be one of the following types supported by XPath
and XSLT: string, number, boolean, node-set, and tree. For equivalent Java types, see
the table at the beginning of this section (Creating User-Defined XPath Extension Functions.

• minOccurs: The minimum occurrences of the parameter. If set to 0, the parameter is
optional. If set to 1, the parameter is required. The current restriction is that this attribute
must only take a value of either 0 or 1 and that optional parameters must be defined after the
required parameters. The default value is 1 if this attribute is absent.

• maxOccurs: The maximum occurrences of the parameter. If set to unbounded, the
parameter can repeat anytime. This can support functions such as XPath 1.0 function
concat(), which can take unlimited parameters. The current restriction is that no
parameters except the last parameter of the function can have maxOccurs greater than 1 or
unbounded. The default value is 1 if this attribute is absent.

• wizardEnabled: Indicates whether to enable a wizard to enter the parameter value. This
supports a user interface where the parameter value must be entered. If set to true, a
wizard launch button is rendered next to the parameter value field. The wizard launch button,
when pressed, launches a popup wizard to help the user enter the parameter value. The
wizard class must be specified later. The default value is false if this attribute is absent,
meaning there is no wizard support for the parameter by default.

desc An optional description of the function. If the resourceKey is present, the description is retrieved
from the resource bundle specified earlier on the root element.

detail An optional longer (detailed) description of the function. If the resourceKey is present, the
description is retrieved from the resource bundle specified earlier on the root element.

icon An optional icon URL of the function. If the resourceKey is present, the icon URL is retrieved
from the resource bundle specified earlier on the root element. This is to support a user interface
in which the function must be displayed.

helpURL An optional help HTML URL of the function. If the resourceKey is present, the help URL is
retrieved from the resource bundle specified earlier on the root element. This is to support a user
interface in which the function help link must be displayed.

Appendix B
Creating User-Defined XPath Extension Functions

B-91

Table B-3 (Cont.) Function Schema Elements

Element Description

group An optional group name of the function. If the resourceKey is present, the group name is
retrieved from the resource bundle specified earlier on the root element. This is to support a user
interface where functions must be grouped. If no group name is specified, the function falls into a
built-in advanced functions group when being grouped in a user interface.

wizardClass The fully qualified class name of the wizard class for all parameters that are wizard-enabled. This
is to support a user interface in which parameter values must be entered. This wizard class is
invoked by wizard launch buttons to help you enter parameter values. If there is no wizard-
enabled parameter, this element must be absent.

Note: This element is not supported for user-defined functions. Only system functions currently
support this feature.

2. Name your user-defined XPath extension configuration file based on the
component type with which to use the function. Table B-4 describes the naming
conventions to use for user-defined configuration files.

Table B-4 User-Defined Configuration Files

To Use with This Component... Use This Configuration File Name...

Oracle BPEL Process Manager ext-bpel-xpath-functions-config.xml
Oracle Mediator ext-mediator-xpath-functions-config.xml
XSLT Mapper ext-mapper-xpath-functions-config.xml
Human workflow ext-wf-xpath-functions-config.xml
All components ext-soa-xpath-functions-config.xml

3. Place the configuration file inside a JAR file along with the compiled classes.
Within the JAR file, the configuration file must be located in the META-INF directory.
The JAR file does not need to reside in a specific directory.

Note:

The customXpathFunction JAR must be added explicitly as it is not part
of the SOA composite.

4. In Oracle JDeveloper, go to Tools > Preferences > SOA.

5. Click the Add button and select your JAR file.

6. Restart Oracle JDeveloper for the changes to take effect.

The JAR file is automatically added to the JVM's class path to make it available for
use.

B.16.3 How to Deploy User-Defined Functions to Runtime
The soa/modules/oracle.soa.ext_11.1.1 directory is provided for adding custom
JAR files and classes. For information, see Adding Custom Classes and JAR Files.

Appendix B
Creating User-Defined XPath Extension Functions

B-92

C
Deployment Descriptor Properties

This appendix describes how to define deployment descriptor configuration and partner link
properties for BPEL process service components used at runtime by Oracle WebLogic
Server, Oracle Enterprise Manager Fusion Middleware Control, or both.
This appendix includes the following section:

• Introduction to Deployment Descriptor Properties

For more information about deployment descriptor properties, see Chapter "Oracle BPEL
Process Manager Performance Tuning" of Tuning Performance.

C.1 Introduction to Deployment Descriptor Properties
Deployment descriptors are BPEL process service component properties used at runtime by
Oracle WebLogic Server, Oracle Enterprise Manager Fusion Middleware Control, or both.
There are two types of properties:

• Configuration

• Partner link binding

Table C-1 lists the configuration deployment descriptor properties.

When you define configuration properties, you must add a prefix of bpel.config to the
property name. For example, the property inMemoryOptimization must be defined as
bpel.config.inMemoryOptimization. For information on defining properties in the Property
Inspector in Oracle JDeveloper, see How to Define Deployment Descriptor Properties in the
Property Inspector.

Table C-1 Properties for the configurations Deployment Descriptors

Property Name Description

completionPersistPolicy This property configures how the instance data is saved. It can only be set at the
BPEL service component level. The following values are available:

• on (default): The completed instance is saved normally.

• deferred: The completed instance is saved, but with a different thread and
in another transaction.

• faulted: Only The faulted instances are saved.

Note: When an unhandled fault occurs, regardless of these flags, audit
information for instances is persisted within the CUBE_INSTANCE table.

• off: No instances of this process are saved.

disableAsserts This property, when set to true, disables assertions in BPEL projects.

globalTxMaxRetry If using outbound adapters in an asynchronous BPEL process, specify the
maximum number of retries for a remote fault.

globalTxRetryInterval If using outbound adapters in an asynchronous BPEL process, specify the time
interval in milliseconds between retries for a remote fault.

C-1

Table C-1 (Cont.) Properties for the configurations Deployment Descriptors

Property Name Description

inMemoryOptimization Default value is false. This property can only be set to true if it does not have
dehydration points. Activities like wait, receive, onMessage, and onAlarm create
dehydration points in the process. If this property is set to true, in-memory
optimization is attempted on the instances of this process on to-spec queries.

keepGlobalVariables Specify whether the server can keep global variable values in the instance store
when the instance completes:

• false (default): Global variable values are deleted when the instance
completes.

• true: Global variable values are not deleted.

oneWayDeliveryPolicy This property sets the persistence policy of the process in the delivery layer. The
possible values are:

• async.persist: Messages are persisted in the database. With this setting,
reliability is obtained with some performance impact on the database. In
some cases, overall system performance can be impacted.

• async.cache: Incoming delivery messages are kept only in the in-memory
cache. If performance is preferred over reliability, consider this setting. When
set to async.cache, if the rate at which one-way messages arrive is much
higher than the rate at which they are delivered, or if the server fails,
messages can be lost. In addition, the system can become overloaded
(messages become backlogged in the scheduled queue) and you can
receive out-of-memory errors. Consult your own use case scenarios to
determine if this setting is appropriate.

When you set oneWayDeliveryPolicy to async.cache in high availability
environments, invoke and callback messages in the middle of execution at
the time of a server crash may be lost or duplicated. Server failover is not
supported for async.cache.

• sync: Direct invocation occurs on the same thread. The scheduling of
messages in the invoke queue is bypassed, and the BPEL instance is
invoked synchronously. In some cases this setting can improve database
performance.

For information about setting this property during BPEL process creation, see
How to Add a BPEL Process Service Component.

reenableAggregationOnComp
lete

This property controls the number of instances to create and use to route
messages. The possible values are:

• true: Creates a new instance to handle the messages of the same
correlation.

• false: Creates only one instance for handling messages.

For more information, see Routing Messages to the Same Instance.

sensorActionLocation The location of the sensor action XML file. The sensor action XML file configures
the action rule for the events.

sensorLocation The location of the sensor XML file. The sensor XML file defines the list of
sensors into which events are logged.

Appendix C
Introduction to Deployment Descriptor Properties

C-2

Table C-1 (Cont.) Properties for the configurations Deployment Descriptors

Property Name Description

transaction This property configures the transaction behavior of the BPEL instance for
initiating calls.

• requiresNew: A new transaction is created for the execution, and the
existing transaction (if there is one) is suspended. This behavior is true for
both request/response (initiating) environments and one-way, initiating
environments in which bpel.config.oneWayDeliveryPolicy is set to
sync.

• required: In request/response (initiating) environments, this setting joins a
caller's transaction (if there is one) or creates a new transaction (if there is
no transaction). In one-way, initiating environments in which
bpel.config.oneWayDeliveryPolicy is set to sync, the invoke
message is processed using the same thread in the same transaction.

• notSupported: Executes a business process without the need for a
transaction. For more information, see Executing a Business Process
Without a Transaction.

Note: This property does not apply for midprocess receive activities. In those
cases, another thread in another transaction is used to process the message.
This is because a correlation is needed and it is always done asynchronously.

For information about setting this property during BPEL process creation, see
How to Add a BPEL Process Service Component.

Table C-2 lists the partner link binding deployment descriptor properties.

When you define partner link binding properties, you must add a prefix of
bpel.partnerLink.partner_link_name to the property name. For example, the property
nonBlockingInvoke must be defined as
bpel.partnerLink.partner_link_name.nonBlockingInvoke. For information on defining
properties in the Property Inspector in Oracle JDeveloper, see How to Define Deployment
Descriptor Properties in the Property Inspector.

Table C-2 Properties for the partnerLinkBinding Deployment Descriptors

Property Name Description

idempotent An idempotent activity is an activity that can be retried (for example, an assign
activity or an invoke activity). The instance is saved after a nonidempotent
activity. This property is applicable to both durable and transient processes.

• true (default): If the server fails, it performs the activity again after
restarting. This is because the server does not dehydrate immediately after
the invoke and no record exists that the activity executed.

• false: Activity is dehydrated immediately after execution and recorded in
the dehydration store. When idempotent is set to false, it provides better
failover protection, but may impact performance if the BPEL process
accesses the dehydration store frequently.

For information about using fault handling with the idempotent property set
to false, see What You May Need to Know About the idempotent Property
and Fault Handling.

For more information about the idempotent property, see Managing
Idempotence at the Partner Link Operation Level.

Appendix C
Introduction to Deployment Descriptor Properties

C-3

Table C-2 (Cont.) Properties for the partnerLinkBinding Deployment Descriptors

Property Name Description

nonBlockingInvoke Default value is false. When this is set to true, a separate thread is spawned
to perform the invocation so that the invoke activity does not block the instance.

For more information, see What You May Need to Know About the Execution of
Parallel Flow Branches in a Single Thread.

validateXML Enables message boundary validation. When set to true, the XML message is
validated against the XML schema during a receive activity and an invoke activity
for this partner link. If the XML message is invalid, then a
bpelx:invalidVariables runtime fault is thrown. This overrides the domain
level validateXML property.

C.1.1 How to Define Deployment Descriptor Properties in the Property
Inspector

You define configuration and partner link binding deployment descriptor properties and
values in the Property Inspector of Oracle JDeveloper. When complete, the properties
are displayed in the BPEL process service component section of the composite.xml
file.

1. In the SOA Composite Editor, select the BPEL process service component, as
shown in Figure C-1.

Figure C-1 Selected BPEL Process Service Component

2. Go to the Property Inspector in the lower right corner of Oracle JDeveloper.

3. In the Properties section, click the Add icon, as shown in Figure C-2.

For this example, the oneWayDeliveryPolicy property is already defined because
the Delivery option was selected in the Create BPEL Process dialog during BPEL
process creation. For more information about setting this property during BPEL
process creation, see How to Add a BPEL Process Service Component.

Appendix C
Introduction to Deployment Descriptor Properties

C-4

Figure C-2 Property Inspector

The Create Property dialog is displayed.

4. In the Name field, enter the deployment descriptor property. For this example, the
configuration deployment descriptor property oneWayDeliveryPolicy is defined.
Therefore, a prefix of bpel.config is required. For more information about configuration
deployment descriptor properties, see Table C-1.

If you instead add a partner link binding property, a prefix of
bpel.partnerLink.partner_link_name is required, where partner_link_name is the
name of the partner link (for example, LoanService). For more information about partner
link binding deployment descriptor properties, see Table C-2.

5. In the Value field, enter an applicable value for this property (for example,
async.persist).

6. Click OK.

The Property Inspector displays the added deployment descriptor property.

7. Click Source in the SOA Composite Editor.

The oneWayDeliveryPolicy configuration property with the bpel.config prefix is
displayed in the composite.xml file, as shown in the following example:

<component name="LoanApproval" version="2.0">
. . .
 <componentType>
 . . .
 . . .
 <property name="bpel.config.oneWayDeliveryPolicy" type="xs:string"
 many="false">async.persist</property>
 </componentType>
</component>

If you instead define a partner link binding deployment descriptor property in the Property
Inspector (for example, the nonBlockingInvoke partner link binding property), it is displayed
in the composite.xml file, as shown in the example that follows. Note the prefix of
bpel.partnerLink.partner_link_name, which is required for this type of property.

<component name="myBPELServiceComponent" version="2.0">
 . . .
 <componentType>
 . . .
 . . .

Appendix C
Introduction to Deployment Descriptor Properties

C-5

 <property name="bpel.partnerLink.partner_link_name.nonBlockingInvoke">
false</property>
 </componentType>
</component>

C.1.2 How to Get the Value of a Preference within a BPEL Process
The value of a property can be read by a BPEL process using the XPath extension
function ora:getPreference(myPref). This gets the value of
bpel.preference.myPref.

This function can be used as part of a simple assign statement, used in condition
expressions, or used as part of a more complex XPath expression.

Appendix C
Introduction to Deployment Descriptor Properties

C-6

D
Understanding Sensor Public Views and the
Sensor Actions XSD

This appendix describes the available sensor public views and the sensor actions XSD file
that you can import into Oracle BPEL Designer.
This appendix includes the following sections:

• Introduction to Sensor Public Views and the Sensor Actions XSD File

• Sensor Public Views

• Sensor Actions XSD File

For more information, see Using Sensors and Analytics .

D.1 Introduction to Sensor Public Views and the Sensor Actions
XSD File

A set of public views is exposed to allow SQL access to sensor values from literally any
application interested in the data. In addition, a sample sensor action schema is provided for
importing into Oracle BPEL Designer.

D.2 Sensor Public Views
The sensor framework of Oracle BPEL Process Manager provides the functionality to persist
sensor values created by processing BPEL instances in a relational schema stored in the
dehydration store of Oracle BPEL Process Manager. The data is used to display the sensor
values of a process instance in Oracle Enterprise Manager Fusion Middleware Control.

D.2.1 Schema
The database publisher persists the sensor data in a predefined relational schema in the
database. The following public views can be used from a client (Oracle Warehouse, portals,
and so on) to query the sensor values using SQL.

Note:

In Table D-1 through Table D-4, the Indexed or Unique? column provides unique
index names and the order of the attributes. For example, U1,2 means that the
attribute is the second one in a unique index named U1. PK means primary key.

D-1

D.2.1.1 BPEL_PROCESS_INSTANCES
Table D-1 provides an overview of all the process instances of Oracle BPEL Process
Manager and Oracle Mediator.

Table D-1 BPEL_PROCESS_INSTANCES View

Attribute Name SQL Type Attribute
Size

Indexed or
Unique?

Null? Comment

INSTANCE_KEY NUMBER -- PK N Unique instance ID

APPLICATION_N
AME

VARCHAR2 500 -- N User-defined application name

COMPOSITE_NAM
E

VARCHAR2 500 -- N User-defined composite name

REVISION VARCHAR2 50 -- N User-defined revision number

LABEL VARCHAR2 500 -- N User-defined label

COMPONENT_NAM
E

VARCHAR2 500 -- N User-defined component name

TITLE NVARCHAR2 200 -- Y User-defined title of the BPEL process

STATE NUMBER -- -- Y State of the BPEL process instance

STATE_TEXT VARCHAR2 21 -- Y Text presentation of the state attribute

PRIORITY NUMBER -- -- Y User-defined priority of the BPEL
process instance

STATUS NVARCHAR2 200 -- Y User-defined status of the BPEL
process

STAGE VARCHAR2 100 -- Y User-defined stage property of a BPEL
process

CONVERSATION_
ID

VARCHAR2 256 -- Y User-defined conversation ID of a
BPEL process

CREATION_DATE TIMESTAMP 6 -- N Creation time stamp of the process
instance

MODIFY_DATE TIMESTAMP 6 -- Y Time stamp when the process instance
was modified

TS_DATE DATE -- -- Y Date portion of modify_date
TS_HOUR NUMBER -- -- Y Hour portion of modify_date
EVAL_TIME NUMBER -- -- Y Evaluation time of the process instance

in milliseconds

D.2.1.2 BPEL_ACTIVITY_SENSOR_VALUES
Table D-2 contains all the activity sensor values of the monitored BPEL processes.

Appendix D
Sensor Public Views

D-2

Table D-2 BPEL_ACTIVITY_SENSOR_VALUES View

Attribute Name SQL Type Attribute
Size

Indexed or
Unique?

Null? Comment

SENSOR_NAME NVARCHAR2 200 U1,2 N The name of the sensor that fired

SENSOR_TARGET NVARCHAR2 512 -- N The target of the fired sensor

ACTION_NAME NVARCHAR2 200 U1,3 N The name of the sensor action

ACTION_FILTER NVARCHAR2 512 -- Y The filter of the action

CREATION_DATE TIMESTAMP 6 -- N The creation date of the activity sensor
value

MODIFY_DATE TIMESTAMP 6 -- Y The time stamp of last modification

TS_DATE DATE -- -- Y Date portion of modify_date
TS_HOUR NUMBER -- -- Y Hour portion of modify_date
CRITERIA_SATI
SFIED

VARCHAR2 1 -- Y NULL, Y, or N

ACTIVITY_NAME NVARCHAR2 200 -- N The name of the BPEL activity

ACTIVITY_TYPE VARCHAR2 30 -- N The type of the BPEL activity

ACTIVITY_STAT
E

VARCHAR2 30 -- Y The state of the BPEL activity

EVAL_POINT VARCHAR2 30 -- N The evaluation point of the activity
sensor

ERROR_MESSAGE NCLOB -- -- Y An error message

RETRY_COUNT NUMBER -- -- Y The number of retries of the activity

EVAL_TIME NUMBER -- -- Y Evaluation time of the activity in
milliseconds

ID NUMBER -- PK N Unique ID

INSTANCE_KEY NUMBER -- U1,1 N BPEL process ID

APPLICATION_N
AME

VARCHAR2 500 -- N User-defined application name

COMPOSITE_NAM
E

VARCHAR2 500 -- N User-defined composite name

REVISION VARCHAR2 50 -- N User-defined revision number

LABEL VARCHAR2 500 -- N User-defined label

COMPONENT_NAM
E

VARCHAR2 500 -- N User-defined component name

D.2.1.3 BPEL_FAULT_SENSOR_VALUES
Table D-3 contains all the fault sensor values.

Appendix D
Sensor Public Views

D-3

Table D-3 BPEL_FAULT_SENSOR_VALUES View

Attribute Name SQL Type Attribute
Size

Indexed or
Unique?

Null? Comment

ID NUMBER -- PK N Unique ID

INSTANCE_KEY NUMBER -- U1,1 N BPEL process ID

APPLICATION_N
AME

VARCHAR2 500 -- N User-defined application name

COMPOSITE_NAM
E

VARCHAR2 500 -- N User-defined composite name

REVISION VARCHAR2 50 -- N User-defined revision number

LABEL VARCHAR2 500 -- N User-defined label

COMPONENT_NAM
E

VARCHAR2 500 -- N User-defined component name

SENSOR_NAME NVARCHAR2 200 U1,2 N The name of the sensor that fired

SENSOR_TARGET NVARCHAR2 512 -- N The target of the fired sensor

ACTION_NAME NVARCHAR2 200 U1,3 N The name of the sensor action

ACTION_FILTER NVARCHAR2 512 -- Y The filter of the action

CREATION_DATE TIMESTAMP 6 -- N The creation date of the activity sensor
value

MODIFY_DATE TIMESTAMP 6 -- Y The time stamp of last modification

TS_DATE DATE -- -- Y Date portion of modify_date
TS_HOUR NUMBER -- -- Y Hour portion of modify_date
CRITERIA_SATI
SFIED

VARCHAR2 1 -- Y NULL if no action filter specified; Y if
action filter is specified and evaluates
to true; N otherwise

ACTIVITY_NAME NVARCHAR2 200 -- N The name of the BPEL activity

ACTIVITY_TYPE VARCHAR2 30 -- N The type of the BPEL activity

MESSAGE CLOB -- -- Y The fault message

D.2.1.4 BPEL_VARIABLE_SENSOR_VALUES
Table D-4 contains all the variable sensor values.

Table D-4 BPEL_VARIABLE_SENSOR_VALUES View

Attribute Name SQL Type Attribute
Size

Indexed or
Unique?

Null? Comment

ID NUMBER -- PK N Unique ID

INSTANCE_KEY NUMBER -- U1,1 N BPEL process ID

APPLICATION_N
AME

VARCHAR2 500 -- N User-defined application name

COMPOSITE_NAM
E

VARCHAR2 500 -- N User-defined composite name

Appendix D
Sensor Public Views

D-4

Table D-4 (Cont.) BPEL_VARIABLE_SENSOR_VALUES View

Attribute Name SQL Type Attribute
Size

Indexed or
Unique?

Null? Comment

REVISION VARCHAR2 50 -- N User-defined revision number

LABEL VARCHAR2 500 -- N User-defined label

COMPONENT_NAM
E

VARCHAR2 500 -- N User-defined component name

SENSOR_NAME NVARCHAR2 200 U1,2 N Name of the sensor that fired

SENSOR_TARGET NVARCHAR2 512 -- N Target of the sensor

ACTION_NAME NVARCHAR2 200 U1,3 N Name of the action

ACTION_FILTER NVARCHAR2 512 -- Y Filter of the action

ACTIVITY_SENS
OR

NUMBER -- -- Y ID of the corresponding activity sensor
value

CREATION_DATE TIMESTAMP 6 -- N Creation date

TS_DATE DATE -- -- N Date portion of creation_date
TS_HOUR NUMBER -- -- N Hour portion of creation_date
VARIABLE_NAME NVARCHAR2 512 -- N The name of the BPEL variable

EVAL_POINT VARCHAR2 30 -- Y Evaluation point of the corresponding
activity sensor

CRITERIA_SATI
SFIED

VARCHAR2 1 -- Y NULL, Y, or N

TARGET NVARCHAR2 512 -- -- --

UPDATER_NAME NVARCHAR2 200 -- N The name of the activity or event that
updated the variable

UPDATER_TYPE NVARCHAR2 200 -- N The type of the BPEL activity or event

SCHEMA_NAMESP
ACE

NVARCHAR2 512 -- Y Namespace of variable sensor value

SCHEMA_DATATY
PE

NVARCHAR2 512 -- Y Data type of the variable sensor value

VALUE_TYPE NUMBER -- -- N The value type of the variable
(corresponds to java.sql.Types
values)

VARCHAR2_VALU
E

NVARCHAR2 4000 -- Y The value of string-like variables

NUMBER_VALUE NUMBER -- -- Y

DATE_VALUE TIMESTAMP 6 -- Y User-defined date

DATE_VALUE_TZ VARCHAR2 10 -- Y User-defined time zone

BLOB_VALUE BLOB -- -- Y

CLOB_VALUE CLOB -- -- Y

Appendix D
Sensor Public Views

D-5

D.3 Sensor Actions XSD File
The following example provides a sample sensor action schema that you can import
into Oracle BPEL Designer. This schema is also relevant to custom data publishers.

<?xml version="1.0" encoding="utf-8"?>
<!--
 This schema contains the sensor definition. Sensors monitor data
 and execute callbacks appropriately.

 BPEL designer uses this file as a template to generate to generate
 SensorActionData.xsd. It does this by replacing special tags.
 Do not modify these special tags. For details, see comments in the file.
 The replacement is done using a simple text replacement, so the white
 spaces too should be preserved as indicated in comments.
-->
<xsd:schema blockDefault="#all" elementFormDefault="qualified"
 targetNamespace="http://xmlns.oracle.com/bpel/sensor"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:sensor="http://xmlns.oracle.com/bpel/sensorDataPlaceHolder"
 xmlns:nxsd="http://xmlns.oracle.com/pcbpel/nxsd"
 xmlns:tns="http://xmlns.oracle.com/bpel/sensor"
 nxsd:encoding="UTF-8">

<!-- *** The following line is a place holder. Do not remove it. It must remain
as
 is, including any whitespace. If you change this, please let BAM sensor action
 developer know. -->
<!-- $importSensorVar -->

 <xsd:simpleType name="tSensorActionPublishType">
 <xsd:annotation>
 <xsd:documentation>
 This enumeration lists the possibe publishing types for probes.
 </xsd:documentation>
 </xsd:annotation>
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="BpelReportsSchema"/>
 <xsd:enumeration value="JMSQueue"/>
 <xsd:enumeration value="JMSTopic"/>
 <xsd:enumeration value="BAM"/>
 <xsd:enumeration value="LogFile"/>
 <xsd:enumeration value="Custom"/>
 </xsd:restriction>
 </xsd:simpleType>

 <xsd:complexType name="tSensorActionProperty">
 <xsd:simpleContent>
 <xsd:extension base="xsd:string">
 <xsd:attribute name="name" use="required" type="xsd:string"/>
 </xsd:extension>
 </xsd:simpleContent>
 </xsd:complexType>

 <!--
 Attributes of a sensor action
 -->
 <xsd:attributeGroup name="tSensorActionAttributes">
 <xsd:attribute name="name" type="xsd:string" use="optional"/>

Appendix D
Sensor Actions XSD File

D-6

 <xsd:attribute name="enabled" type="xsd:boolean" use="optional"
 default="true"/>
 <xsd:attribute name="filter" type="xsd:string"/>
 <xsd:attribute name="publishName" type="xsd:string" use="required"/>
 <xsd:attribute name="publishType" type="tns:tSensorActionPublishType"
 use="required"/>
 <!--
 the name of the JMS Queue/Topic or custom java API, ignored for other
 publishTypes
 -->
 <xsd:attribute name="publishTarget" type="xsd:string" use="optional"/>
 </xsd:attributeGroup>

 <!--
 The sensor action type. A sensor action consists:
 + unique name
 + effective date
 + expiration date - Optional. If not defined, the probe is active
 indefinitely.
 + filter (to potentially suppress data publishing even if a sensor marks
 it as interesting). - Optional. If not defined, no filter is
 used.
 + publishName A name of a publisher
 + publishType What to do with the sensor data?
 + publishTarget Name of a JMS Queue/Topic or custom publisher.
 + potentially many sensors.
 -->
 <xsd:complexType name="tSensorAction">
 <xsd:sequence>
 <xsd:element name="sensorName" type="xsd:string" minOccurs="1"
 maxOccurs="unbounded"/>
 <xsd:element name="property" minOccurs="0" maxOccurs="unbounded"
 type="tns:tSensorActionProperty"/>
 </xsd:sequence>
 <xsd:attributeGroup ref="tns:tSensorActionAttributes"/>
 </xsd:complexType>

 <!--
 define a listing of sensor actions in a single document. It might be a good
 idea to
 have one sensor action list per business process.
 -->
 <xsd:complexType name="tSensorActionList">
 <xsd:sequence>
 <xsd:element name="action" type="tns:tSensorAction" minOccurs="0"
 maxOccurs="unbounded"/>
 </xsd:sequence>
 </xsd:complexType>

 <xsd:simpleType name="tSensorKind">
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="fault"/>
 <xsd:enumeration value="variable"/>
 <xsd:enumeration value="activity"/>
 <xsd:enumeration value="service"/>
 <xsd:enumeration value="reference"/>
 <xsd:enumeration value="event"/>
 </xsd:restriction>
 </xsd:simpleType>

 <xsd:complexType name="tActivityConfig">

Appendix D
Sensor Actions XSD File

D-7

 <xsd:annotation>
 <xsd:documentation>
 The configuration part of an activity sensor comprises of a mandatory
 'evalTime' attribute
 and an optional list of variable configurations
 </xsd:documentation>
 </xsd:annotation>
 <xsd:complexContent>
 <xsd:extension base="tns:tSensorConfig">
 <xsd:sequence>
 <xsd:element name="variable" type="tns:tActivityVariableConfig"
 maxOccurs="unbounded" minOccurs="0"/>
 </xsd:sequence>
 <xsd:attribute name="evalTime" type="xsd:string" use="required"/>
 </xsd:extension>
 </xsd:complexContent> </xsd:complexType>

 <xsd:complexType name="tVariableConfig">
 <xsd:complexContent>
 <xsd:extension base="tns:tSensorConfig">
 <xsd:attribute name="outputDataType" use="required" type="xsd:string"/>
 <xsd:attribute name="outputNamespace" use="required" type="xsd:string"/>
 <xsd:attribute name="queryName" use="optional" type="xsd:string"/>
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>

 <xsd:complexType name="tActivityVariableConfig">
 <xsd:complexContent>
 <xsd:extension base="tns:tVariableConfig">
 <xsd:attribute name="target" type="xsd:string" use="required"/>
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>

 <xsd:complexType name="tFaultConfig">
 <xsd:complexContent>
 <xsd:extension base="tns:tSensorConfig"/>
 </xsd:complexContent>
 </xsd:complexType>

 <xsd:complexType name="tSensorConfig"/>

 <xsd:complexType name="tExpressionConfig">
 <xsd:complexContent>
 <xsd:extension base="tns:tVariableConfig">
 <xsd:attribute name="expression" use="required" type="xsd:string">
 <xsd:annotation>
 <xsd:documentation>
 expresion="$in/$payload/$partName/xpathExpression |
 $in/$header/xpathExpression |
 $in/$property/name |
 $out/$payload/$partName/xpathExpression |
 $out/$header/xpathExpression |
 $out/$property/name |
 $fault/$payload/$partName/xpathExpression |
 $fault/$header/xpathExpression |
 $fault/$property/name"

 Where
 $in - The input/request message to the operation/event

Appendix D
Sensor Actions XSD File

D-8

 $out - The output/Response message from the operation
 $fault - The fault message from the operation
 </xsd:documentation>
 </xsd:annotation>
 </xsd:attribute> </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>

 <xsd:complexType name="tOperationConfig">
 <xsd:complexContent>
 <xsd:extension base="tns:tExpressionConfig">
 <xsd:attribute name="operation" use="required" type="xsd:string">
 <xsd:annotation>
 <xsd:documentation>
 The name of the operation in the service/reference on which the
 sensor is defined.
 </xsd:documentation>
 </xsd:annotation>
 </xsd:attribute>
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>

 <xsd:complexType name="tServiceConfig">
 <xsd:complexContent>
 <xsd:extension base="tns:tOperationConfig">
 <xsd:attribute name="service" use="required" type="xsd:string">
 <xsd:annotation>
 <xsd:documentation>
 The name of the service on which the sensor is defined.
 </xsd:documentation>
 </xsd:annotation>
 </xsd:attribute>
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>

 <xsd:complexType name="tReferenceConfig">
 <xsd:complexContent>
 <xsd:extension base="tns:tOperationConfig">
 <xsd:attribute name="reference" use="required" type="xsd:string">
 <xsd:annotation>
 <xsd:documentation>
 The name of the reference on which the sensor is defined.
 </xsd:documentation>
 </xsd:annotation>
 </xsd:attribute>
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>

 <xsd:complexType name="tEventConfig">
 <xsd:complexContent>
 <xsd:extension base="tns:tExpressionConfig"> <xsd:attribute
name="component" type="xsd:string" use="required">
 <xsd:annotation>
 <xsd:documentation>
 The name of the component which raises or receives the event.
 </xsd:documentation>
 </xsd:annotation>
 </xsd:attribute>

Appendix D
Sensor Actions XSD File

D-9

 <xsd:attribute name="event" use="required" type="xsd:string">
 <xsd:annotation>
 <xsd:documentation>
 The name of the event that the component raises or receives.
 </xsd:documentation>
 </xsd:annotation>
 </xsd:attribute>
 <xsd:attribute name="actionType" use="required">
 <xsd:simpleType>
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="Publish"/>
 <xsd:enumeration value="Subscribe"/> </
xsd:restriction>
 </xsd:simpleType>
 </xsd:attribute> </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>

 <xsd:complexType name="tSensor">
 <xsd:sequence>
 <xsd:element name="activityConfig" type="tns:tActivityConfig"
 minOccurs="0"/>
 <xsd:element name="faultConfig" type="tns:tFaultConfig" minOccurs="0"/>
 <xsd:element name="variableConfig" type="tns:tVariableConfig"
 minOccurs="0"/>
 <xsd:element name="serviceConfig" type="tns:tServiceConfig" minOccurs="0"/>
 <xsd:element name="referenceConfig" type="tns:tReferenceConfig"
 minOccurs="0"/>
 <xsd:element name="eventConfig" type="tns:tEventConfig" minOccurs="0"/>
 </xsd:sequence>
 <xsd:attribute name="sensorName" use="required" type="xsd:string"/>
 <xsd:attribute name="kind" use="required" type="tns:tSensorKind"/>
 <xsd:attribute name="target" use="required" type="xsd:string"/>
 <xsd:attribute name="filter" type="xsd:string"/>
 </xsd:complexType>

 <xsd:complexType name="tSensorList">
 <xsd:sequence>
 <xsd:element name="sensor" type="tns:tSensor" minOccurs="0"
 maxOccurs="unbounded"/>
 </xsd:sequence>
 </xsd:complexType>

 <xsd:complexType name="tProperty">
 <xsd:simpleContent>
 <xsd:extension base="xsd:string">
 <xsd:attribute name="name" use="required" type="xsd:string"/>
 </xsd:extension>
 </xsd:simpleContent>
 </xsd:complexType>

 <xsd:complexType name="tHeaderInfo">
 <xsd:sequence>
 <xsd:element name="applicationName" type="xsd:string"/>
 <xsd:element name="compositeName" type="xsd:string"/>
 <xsd:element name="compositeInstanceId" type="xsd:string"/>
 <xsd:element name="compositeRevision" type="xsd:string"/>
 <xsd:element name="compositeLabel" type="xsd:string"/>
 <xsd:element name="componentName" type="xsd:string"/>
 <xsd:element name="processName" type="xsd:string"/>
 <xsd:element name="processRevision" type="xsd:string"/>

Appendix D
Sensor Actions XSD File

D-10

 <xsd:element name="domain" type="xsd:string"/>
 <xsd:element name="instanceId" type="xsd:integer"/>
 <xsd:element name="midTierInstance" type="xsd:string"/>
 <xsd:element name="timestamp" type="xsd:dateTime"/>
 <xsd:element name="sensor" type="tns:tSensor"/>
 <xsd:element name="property" minOccurs="0" maxOccurs="unbounded"
 type="tns:tProperty"/>
 </xsd:sequence>
 </xsd:complexType>

 <xsd:complexType name="tSensorData">
 <xsd:sequence>
 <xsd:element name="activityData" type="tns:tActivityData" minOccurs="0"/>
 <xsd:element name="faultData" type="tns:tFaultData" minOccurs="0"/>
 <xsd:element name="variableData" type="tns:tVariableData" minOccurs="0"
 maxOccurs="unbounded"/>
 <xsd:element name="serviceData" type="tns:tServiceData" minOccurs="0"
 maxOccurs="unbounded"/>
 <xsd:element name="referenceData" type="tns:tReferenceData" minOccurs="0"
 maxOccurs="unbounded"/>
 <xsd:element name="eventData" type="tns:tEventData" minOccurs="0"
 maxOccurs="unbounded"/>
 </xsd:sequence>
 </xsd:complexType>

 <xsd:complexType name="tFaultData">
 <xsd:sequence>
 <xsd:element name="activityName" type="xsd:string"/>
 <xsd:element name="activityType" type="xsd:string"/>
 <xsd:element name="faultName" type="xsd:QName"/>
 <!-- *** The following line is a place holder. Do not remove it. It must
 remain as is, including any whitespace. If you change this, please let BAM
 sensor action developer know. -->
 <xsd:element name="data" type="xsd:anyType" minOccurs="0"/> <!-- DO NOT
 MODIFY: fault data type -->
 </xsd:sequence>
 </xsd:complexType>

 <!--
 xml type that will be provided to sensors for variable Datas. Note the
 any element represents variable data.
 -->
 <xsd:complexType name="tVariableData">
 <xsd:sequence>
 <xsd:element name="dataType" type="xsd:integer"/>
 <!-- *** The following line is a place holder. Do not remove it. It must
 remain as is, including any whitespace. If you change this, please let BAM
 sensor action developer know. -->
 <xsd:element name="data" type="xsd:anyType"/> <!-- DO NOT MODIFY: sensor
 variable data type -->
 <xsd:element name="queryName" type="xsd:string"/>
 <xsd:element name="target" type="xsd:string"/>
 <xsd:element name="updaterName" type="xsd:string" minOccurs="1"/>
 <xsd:element name="updaterType" type="xsd:string" minOccurs="1"/>
 </xsd:sequence>
 </xsd:complexType>

 <xsd:complexType name="tServiceData">
 <xsd:sequence>
 <xsd:element name="sensorName" type="xsd:string"/>

Appendix D
Sensor Actions XSD File

D-11

 <xsd:element name="data" type="xsd:anyType"/>
 <xsd:element name="dataType" type="xsd:integer"/>
 </xsd:sequence>
 </xsd:complexType>

 <xsd:complexType name="tReferenceData">
 <xsd:sequence>
 <xsd:element name="sensorName" type="xsd:string"/>
 <xsd:element name="data" type="xsd:anyType"/>
 <xsd:element name="dataType" type="xsd:integer"/>
 </xsd:sequence>
 </xsd:complexType>

 <xsd:complexType name="tEventData">
 <xsd:sequence>
 <xsd:element name="sensorName" type="xsd:string"/>
 <xsd:element name="data" type="xsd:anyType"/>
 <xsd:element name="dataType" type="xsd:integer"/>
 </xsd:sequence>
 </xsd:complexType>

 <xsd:complexType name="tActivityData">
 <xsd:sequence>
 <xsd:element name="activityType" type="xsd:string"/>
 <xsd:element name="evalPoint" type="xsd:string"/>
 <xsd:element name="durationInSeconds" minOccurs="0" type="xsd:double"/>
 <xsd:element name="duration" type="xsd:duration" minOccurs="0"/>
 <xsd:element name="errorMessage" nillable="true" minOccurs="0"
 type="xsd:string"/>
 </xsd:sequence>
 </xsd:complexType>

 <!--
 The header of the document contains some metadata.
 -->
 <!--
 Sensor Action data is presented in the form of a header and potentially many
 data
 elements depending on how many sensors associated to the sensor action marked
 the
 data as interesting.
 -->
 <xsd:complexType name="tSensorActionData">
 <xsd:sequence>
 <xsd:element name="header" type="tns:tHeaderInfo"/>
 <xsd:element name="payload" type="tns:tSensorData" minOccurs="1"
 maxOccurs="1"/>
 </xsd:sequence>
 </xsd:complexType>

<!--
 <xsd:simpleType name="tActivityEvalPoint">
 <xsd:restriction>
 <xsd:enumeration value="start"/>
 <xsd:enumeration value="complete"/>
 <xsd:enumeration value="fault"/>
 <xsd:enumeration value="compensate"/>
 <xsd:enumeration value="retry"/>
 </xsd:restriction>
 </xsd:simpleType>

Appendix D
Sensor Actions XSD File

D-12

-->

 <!--
 The process sensor value header comprises of a timestamp
 where the sensor was triggered and the sensor metadata
 -->
 <xsd:complexType name="tProcessSensorValueHeader">
 <xsd:sequence>
 <xsd:element name="timestamp" type="xsd:dateTime"/>
 <xsd:element ref="tns:sensor"/>
 </xsd:sequence>
 </xsd:complexType>
 <!--
 Extend tActivityData to include more elements
 -->
 <xsd:complexType name="tProcessActivityData">
 <xsd:complexContent>
 <xsd:extension base="tns:tActivityData">
 <xsd:sequence>
 <xsd:element name="creationDate" type="xsd:dateTime" minOccurs="0"
 maxOccurs="1"/>
 <xsd:element name="modifyDate" type="xsd:dateTime" minOccurs="0"
 maxOccurs="1"/>
 <xsd:element name="evalTime" type="xsd:long" minOccurs="0"
 maxOccurs="1"/>
 <xsd:element name="retryCount" type="xsd:int" minOccurs="0"
 maxOccurs="1"/>
 </xsd:sequence> </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>

 <!--
 Extend tVariableData to include more elements
 -->
 <xsd:complexType name="tProcessVariableData">
 <xsd:complexContent>
 <xsd:extension base="tns:tVariableData">
 <xsd:sequence>
 <xsd:element name="creationDate" type="xsd:dateTime" minOccurs="0"
 maxOccurs="1"/>
 <xsd:element name="modifyDate" type="xsd:dateTime" minOccurs="0"
 maxOccurs="1"/>
 </xsd:sequence> </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>

 <!--
 Extend tFaultData to include more elements
 -->
 <xsd:complexType name="tProcessFaultData">
 <xsd:complexContent>
 <xsd:extension base="tns:tFaultData">
 <xsd:sequence>
 <xsd:element name="creationDate" type="xsd:dateTime" minOccurs="0"
 maxOccurs="1"/>
 <xsd:element name="modifyDate" type="xsd:dateTime" minOccurs="0"
 maxOccurs="1"/>
 </xsd:sequence> </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>

Appendix D
Sensor Actions XSD File

D-13

 <!--
 Copy of tSensorData type with some modified types.
 -->
 <xsd:complexType name="tProcessSensorData">
 <xsd:sequence>
 <xsd:element name="activityData" type="tns:tProcessActivityData"
 minOccurs="0"/>
 <xsd:element name="faultData" type="tns:tProcessFaultData" minOccurs="0"/>
 <xsd:element name="variableData" type="tns:tProcessVariableData"
 minOccurs="0" maxOccurs="unbounded"/>
 </xsd:sequence>
 </xsd:complexType>

 <!--
 A single process sensor value comprises of the sensor value metadata
 (sensor and timestamp) and the payload (the value) of the sensor
 -->
 <xsd:complexType name="tProcessSensorValue">
 <xsd:sequence>
 <xsd:element name="header" type="tns:tProcessSensorValueHeader"/>
 <xsd:element name="payload" type="tns:tProcessSensorData"/>
 </xsd:sequence>
 </xsd:complexType>

 <!--
 Process instance header.
 -->
 <xsd:complexType name="tProcessInstanceInfo">
 <xsd:sequence>
 <xsd:element name="processName" type="xsd:string"/>
 <xsd:element name="processRevision" type="xsd:string"/>
 <xsd:element name="domain" type="xsd:string"/>
 <xsd:element name="instanceId" type="xsd:integer"/>
 </xsd:sequence>
 </xsd:complexType>

 <!--
 The list of sensor values comprises of a process header describing the
 BPEL process with name, cube instance id etc. and a list of sensor values
 comprising of sensor metadata information and sensor values.
 -->
 <xsd:complexType name="tProcessSensorValueList">
 <xsd:sequence>
 <xsd:element name="process" type="tns:tProcessInstanceInfo" minOccurs="1"
 maxOccurs="1"/>
 <xsd:element name="sensorValue" type="tns:tProcessSensorValue"
minOccurs="0"
 maxOccurs="unbounded"/>
 </xsd:sequence>
 </xsd:complexType>

 <!-- The sensor list is the root element of the sensor.xml document in the
 bpel process suitcase and is used to define sensors. -->
 <xsd:element name="sensors" type="tns:tSensorList"/>

 <!-- A sensor is used to monitor a particular aspect of a bpel process -->
 <xsd:element name="sensor" type="tns:tSensor"/>

 <!-- The actions element is the root element of the sensorAction.xml document
 in the bpel process suitcase and is used to define sensor actions.
 Sensor actions define how to publish data captured by sensors -->

Appendix D
Sensor Actions XSD File

D-14

 <xsd:element name="actions" type="tns:tSensorActionList"/>

 <!-- actionData elements are produced by the sensor framework and sent to the
 appropriate data publishers when sensors 'fire' -->
 <xsd:element name="actionData" type="tns:tSensorActionData"/>

 <!-- This element is used when the client API is used to query sensor values
 stored in the default reports schema -->
 <xsd:element name="sensorValues" type="tns:tProcessSensorValueList"/>
</xsd:schema>

Appendix D
Sensor Actions XSD File

D-15

E
Propagating Normalized Message Properties
Through Message Headers

This appendix describes how to set normalized message properties that enable you to
propagate these properties through message headers.
This appendix includes the following sections:

• Introduction to Normalized Messages

• Manipulating Normalized Message Properties with bpelx Extensions

E.1 Introduction to Normalized Messages
Header manipulation and propagation is a key business integration messaging requirement.
Components such as Oracle BPEL Process Manager, Oracle Mediator, Oracle JCA adapters,
REST adapters, and Oracle B2B rely extensively on header support to solve customers'
integration needs. For example, you can preserve a file name from the source directory to the
target directory by propagating it through message headers. In Oracle BPEL Process
Manager and Oracle Mediator, you can access, manipulate, and set headers with varying
degrees of user interface support.

A normalized message is simplified to have only two parts, properties and payload.

Typically, properties are name-value pairs of scalar types. To fit the existing complex headers
into properties, properties are flattened into scalar types.

The user experience is simplified while manipulating headers in design time, because the
complex properties are predetermined. In the Mediator Editor or Oracle BPEL Designer, you
can manipulate the headers with some reserved key words.

However, this method does not address the properties that are dynamically generated based
on your input. Based on your choice, the header definitions are defined. These definitions are
not predetermined and therefore cannot be accounted for in the list of predetermined property
definitions. You cannot design header manipulation of the dynamic properties before they are
defined. To address this limitation, you must generate all the necessary services (composite
entry points) and references. This restriction applies to services that are expected to generate
dynamic properties. Once dynamic properties are generated, they must be stored for each
composite. Only then can you manipulate the dynamic properties in the Mediator Editor or
Oracle BPEL Designer.

For information about normalized message properties in JCA adapters and Oracle B2B, see
Understanding Technology Adapters and Using Oracle B2B.

E.1.1 Oracle Web Services Addressing Properties
Table E-1 lists the predetermined properties of a normalized message for Web Services
Addressing (WS-Addressing). The WS-Addressing headers from incoming SOAP requests
are propagated within Oracle SOA Suite through the normalized message properties.
However, overriding of WS-Addressing headers in the outbound SOAP message through use
of these normalized message properties is not supported.

E-1

Table E-1 Properties for Oracle Web Services Addressing

Property Name Propagatable
(Yes/No)

Direction
(Inbound /
Outbound)

Data Type Range of
Valid Values

Description

wsa.messageId No Inbound String URI format This property specifies
the identifier for the
message and the
endpoint to which
replies to this message
should be sent as an
endpoint reference.

wsa.relatesTo No Inbound String URI format This optional
(repeating) element
information item
contributes one abstract
relationship property
value, in the form of an
(IRI, IRI) pair. The
content of this element
(of type xs:anyURI)
conveys the message
ID of the related
message.

wsa.replyToAddress No Inbound String URI format Represents a contract
between two
components
communicating
asynchronously.

wsa.replyToPortType No Inbound QName Any QName This value is passed to
the web service to
configure the portType
on the service's
callback. It is translated
to the WS-Addressing
callback endpoint
reference's PortType
element.

wsa.replyToService No Inbound QName Any QName This value is passed to
the web service to
configure service on the
service's callback. It is
translated to the WS-
Addressing callback
endpoint reference's
ServiceName element.

wsa.action No Inbound String URI format This required element
(whose content is of
type xs:anyURI)
conveys the value of the
action property.

Appendix E
Introduction to Normalized Messages

E-2

Table E-1 (Cont.) Properties for Oracle Web Services Addressing

Property Name Propagatable
(Yes/No)

Direction
(Inbound /
Outbound)

Data Type Range of
Valid Values

Description

wsa.to No Inbound String URI format This optional element
(whose content is of
type xs:anyURI)
provides the value for
the destination property.
If this element is not
present, then the value
of the (destination)
property is http://
www.w3.org/
2005/08/
addressing/
anonymous.

E.1.2 How to Set Normalized Message Properties in Message Headers
To set normalized message properties in message headers:

1. In the dialog of the selected activity, click the Properties tab.

2. For BPEL 2.0 projects, perform the following tasks:

a. Click the Add icon.

b. From the Name list, select the property. Figure E-1 provides details.

Figure E-1 Properties Tab for Normalized Messages Header Properties

c. Select the value of the property:

Appendix E
Introduction to Normalized Messages

E-3

http://www.w3.org/2005/08/addressing/anonymous
http://www.w3.org/2005/08/addressing/anonymous
http://www.w3.org/2005/08/addressing/anonymous
http://www.w3.org/2005/08/addressing/anonymous
http://www.w3.org/2005/08/addressing/anonymous

If You Select... Perform the Following Steps...

Expression i. Click Search to invoke the XPath Expression Builder dialog.

ii. Create the XPath expression, and click OK.

iii. Click OK.

Variable i. Click Search to invoke the Variable XPath Builder dialog.

ii. Select the variable, and click OK.

iii. Click OK.

The defined property is displayed.

3. For BPEL 1.1 projects, perform the following tasks:

a. Scroll down and select the property.

b. In the Value column, double-click to display the ellipses.

c. Click the ellipses.

The Adapter Property Value dialog is displayed.

d. Enter the variable name as the value, and click OK.

e. For activities with a Type column (for example, invoke activities), click the row
of the property.

f. From the list that is displayed, select input or output for the message
direction.

g. Click Apply, then OK.

E.2 Manipulating Normalized Message Properties with bpelx
Extensions

Oracle BPEL Process Manager uses bpelx extensions to manipulate normalized
message properties in message exchange operations. The syntax is different based
on whether your BPEL project supports BPEL version 1.1 or 2.0.

E.2.1 BPEL 2.0 bpelx Extensions Syntax
The following example shows bpelx extensions syntax in BPEL 2.0:

<invoke ...>
 <bpelx:fromProperties>?
 <bpelx:fromProperty name="NCName" .../>+
 </bpelx:fromProperties>
 <bpelx:toProperties>?
 <bpelx:toProperty name="NCName" .../>+
 </bpelx:toProperties>
</invoke>

<receive ...>
 <bpelx:fromProperties>?
 <bpelx:fromProperty name="NCName" .../>+
 </bpelx:toProperties>
</receive>

Appendix E
Manipulating Normalized Message Properties with bpelx Extensions

E-4

<onEvent ...>
 <bpelx:fromProperties>?
 <bpelx:fromProperty name="NCName" .../>+
 </bpelx:fromProperties>
</onEvent>

<reply...>
 <bpelx:toProperties>?
 <bpelx:toProperty name="NCName" .../>+
 </bpelx:toProperties>
</reply>

<reply ...>
 <bpelx:toProperties>
 <bpelx:toProperty name="NCName" .../>
 </bpelx:toProperties>
</reply>

Note the following details:

• The toProperty is a from-spec. This copies a value from the from-spec to the property
of the given name.

• The fromProperty is a to-spec. This copies a value from the property to the to-spec.

E.2.2 BPEL 1.1 bpelx Extensions Syntax
The following example shows bpelx extensions syntax in BPEL 1.1:

<invoke ...>
 <bpelx:inputProperty name="NCName" expression="string" variable="NCName"
 part="NCName" query="string"/>*
 <bpelx:outputProperty name="NCName" expression="string" variable="NCName"
 part="NCName" query="string"/>*
</invoke>

<receive ...>
 <bpelx:property name="NCName" expression="string" variable="NCName"
 part="NCName" query="string"/>*
</receive>

<onMessage...>
 <bpelx:property name="NCName" expression="string" variable="NCName"
 part="NCName" query="string"/>*
</onMessage>

<reply ...>
 <bpelx:property name="NCName" expression="string" variable="NCName"
 part="NCName" query="string"/>*
</reply>

Appendix E
Manipulating Normalized Message Properties with bpelx Extensions

E-5

F
Interfaces Implemented By Rules Dictionary
Editor Task Flow

This appendix describes the Oracle Business Rules Dictionary Editor Task Flow, which
implements the MetadataDetails and NLSPrefrences interfaces when creating an ADF-
based Web application. The interfaces are defined in the soaComposerTemplates.jar file.
This appendix includes the following sections:

• The MetadataDetails Interface

• The NLSPreferences Interface

F.1 The MetadataDetails Interface
The MetadataDetails interface is a part of the
oracle.integration.console.metadata.model.share package and is defined in the
soaComposerTemplates.jar file.

The MetadataDetails interface defines three methods, as shown below:

public interface MetadataDetails {
 /**
 * Retrieve the details of the metadata document
 * @return document in string format.
 */
 String getDocument();

 /**
 * Get related document.
 */
 String getRelatedDocument(final RelatedMetadataPath relatedPath);

 /**
 * Update the metadata document.
 * @param doc represents the updated document.
 */
 void setDocument(String doc) throws Exception;
}

F.1.1 The getDocument Method
This method is used to retrieve the rules file in a string format. For doing this action, you must
connect to the Oracle Metadata Repository (MDS) or a file system, and return the rules file in
a string format.

The code sample below shows how to get the file from a local file system:

private static final String RULES_FILE1 =
"file:///C:/scratch/<username>/system/mywork/linkedD/AutoAppProj/oracle/rules/credit/
CreditRatingRules.rules";

F-1

 public String getDocument() {
 URL url = null;
 try {
 url = new URL(RULES_FILE1);
 return readFile(url);
 } catch (IOException e) {
 System.err.println(e);
 }
 return "";
 }

 private String readFile(URL dictURL) {
 InputStream is;
 try {
 is = dictURL.openStream();
 } catch (IOException e) {
 System.err.println(e);
 return "";
 }
 BufferedReader reader;
 try {
 reader = new BufferedReader(new InputStreamReader(is, "UTF-8"));
 } catch (UnsupportedEncodingException e) {
 System.err.println(e);
 return "";
 }
 String line = null;
 StringBuilder stringBuilder = new StringBuilder();
 String ls = System.getProperty("line.separator");
 try {
 while ((line = reader.readLine()) != null) {
 stringBuilder.append(line);
 stringBuilder.append(ls);
 }
 } catch (IOException e) {
 System.err.println(e);
 return "";
 } finally {
 try {
 reader.close();
 } catch (IOException e) {
 System.err.println(e);
 }
 }
 return stringBuilder.toString();
 }

F.1.2 The getRelatedDocument Method
This method is required when you work with linked dictionaries. You must connect to
MDS, find the related dictionary file, and then return it in a string format. The code
sample below shows how to find the path of the linked dictionaries that are stored
within the ../oracle/rules directory in a local file system:

public String getRelatedDocument(RelatedMetadataPath relatedMetadataPath) {
 String currPath = RULES_FILE1.substring(0, RULES_FILE1.indexOf("oracle/
rules"));
 String relatedDoc = currPath + "oracle/rules/" +
relatedMetadataPath.getValue();

Appendix F
The MetadataDetails Interface

F-2

 URL url = null;
 try {
 url = new URL(relatedDoc);
 return readFile(url);
 } catch (IOException e) {
 System.err.println(e);
 }
 return "";
 }

F.1.3 The setDocument Method
This method is used to store the rules file. It returns a String doc value, which is the name of
the updated dictionary based on user edits performed by using Rules Dictionary Editor Task
Flow. You must store the rules file in MDS or a file system. The code sample below shows
how to save the document in the local file system:

public void setDocument(String string) {
 URL url = null;

 try {
 url = new URL(RULES_FILE1);
 } catch (MalformedURLException e) {
 System.err.println(e);
 return;
 }
 Writer writer = null;
 try {
 //os = new FileWriter(url.getPath());
 writer =
 new OutputStreamWriter(new FileOutputStream(url.getPath()),
 "UTF-8");
 } catch (FileNotFoundException e) {
 System.err.println(e);
 return;
 } catch (IOException e) {
 System.err.println(e);
 return;
 }
 try {
 writer.write(string);
 } catch (IOException e) {
 System.err.println(e);
 } finally {
 if (writer != null) {
 try {
 writer.close();
 } catch (IOException ioe) {
 System.err.println(ioe);
 }
 }
 }
 }

F.2 The NLSPreferences Interface
The NLSPrefrences interface defines four methods as shown below:

Appendix F
The NLSPreferences Interface

F-3

public interface NLSPreferences
{
 /**
 * Returns the locale to be used.
 **/
 Locale getLocale();

 /**
 * Return the timezone to be used.
 **/
 TimeZone getTimeZone();

 /**
 * Return the dateformat to be used.
 */
 String getDateFormat();

 /**
 * Return the time format to be used.
 */
 String getTimeFormat();

 /**
 * Returns the grouping seperator.
 */
 char getGroupingSeparator();

 /**
 * Returns the grouping seperator.
 */
 char getDecimalSeparator();
}

The code sample below shows a sample implementation of the NLSPreferences
interface:

public class MyNLSPreferences implements NLSPreferences {
 private static final String DATE_STYLE = "yyyy-MM-dd";
 private static final String TIME_STYLE = "HH-mm-ss";
 private static final char G_SEP = ',';
 private static final char D_SEP = '.';

 public Locale getLocale() {
 return Locale.FRENCH;
 }

 public TimeZone getTimeZone() {
 return TimeZone.getTimeZone("America/Los_Angeles");
 }

 public String getDateFormat() {
 return DATE_STYLE;
 }

 public String getTimeFormat() {
 return TIME_STYLE;
 }

 public char getGroupingSeparator() {
 return G_SEP;
 }

Appendix F
The NLSPreferences Interface

F-4

 public char getDecimalSeparator() {
 return D_SEP;
 }
 }

Appendix F
The NLSPreferences Interface

F-5

G
Oracle SOA Suite Configuration Properties
Road Map

This appendix describes the locations of Oracle SOA Suite design time and runtime
configuration properties and provides references to documentation that describes how to
configure these properties.
This appendix includes the following sections:

• Deployment Descriptor Properties

• Normalized Message Header Properties

• SOA Composite Application Properties

• Fault Policy and Adapter Rejected Message Properties

• Oracle B2B System Properties

• Oracle Healthcare Properties

• Oracle Business Activity Monitoring Properties

• Property Pages

• System MBean Browser Advanced Properties

G.1 Oracle BPEL Process Manager Deployment Descriptor
Properties

Deployment descriptors are BPEL process service component properties used at runtime by
Oracle WebLogic Server, Oracle Enterprise Manager Fusion Middleware Control, or both.
You set these properties during design time in the composite.xml file of the SOA composite
application. Examples of deployment descriptor properties include
completionPersistPolicy, inMemoryOptimization, oneWayDeliveryPolicy, transaction,
nonBlockingInvoke, and others.

For more information about available deployment descriptor properties, see How to Define
Deployment Descriptor Properties in the Property Inspector and Transaction and Fault
Propagation Semantics in BPEL Processes.

G.2 Normalized Message Header Properties
Header manipulation and propagation are key business integration messaging requirements.
You can set normalized message header properties during design time in the Properties tab
of receive activities, invoke activities, OnMessage branches of pick and (for BPEL 1.1) scope
activities, and reply activities. You can set properties for the following components:

• Oracle JCA adapters

• Oracle BPEL Process Manager

• Oracle Web Services Addressing

G-1

• Oracle B2B

• REST adapters

For more information, see Propagating Normalized Message Properties Through
Message Headers.

G.2.1 Oracle JCA Adapter Message Header Properties
Oracle JCA adapters expose the underlying back-end operation-specific properties as
header elements and allow for manipulation of these elements within a business
process.

For more information about available Oracle JCA adapter message header properties,
see the following guide:

Appendix A, "Oracle JCA Adapter Properties" of Understanding Technology Adapters
for JCA adapter properties

G.2.2 Oracle BPEL Process Manager and Oracle Web Services
Addressing Message Header Properties

Oracle BPEL Process Manager and Oracle Web Services Addressing rely extensively
on header support to solve customers' integration needs.

For more information about available Oracle BPEL Process Manager and Oracle Web
Services Addressing message header properties, see Propagating Normalized
Message Properties Through Message Headers.

G.2.3 Oracle B2B Message Header Properties
In Oracle B2B, you can manipulate headers with reserved key words.

For more information about available Oracle B2B message header properties, see
Appendix, “Back-End Applications Interface" of Using Oracle B2B.

G.3 SOA Composite Application Properties
While most updates you make to the composite.xml file are performed from within the
dialogs of the SOA Composite Editor during design time, other properties must be
added manually to this file from within Source view. Table G-1 lists these properties
and provides references to documentation that describes how to configure these
properties.

Table G-1 Oracle SOA Suite Properties

Property Description See...

endpointURI Specifies multiple partner link
endpoint locations. This capability is
useful for failover purposes if the
first endpoint is down.

Multiple Runtime Endpoint
Locations

Appendix G
SOA Composite Application Properties

G-2

Table G-1 (Cont.) Oracle SOA Suite Properties

Property Description See...

oracle.composite.fa
ultPolicyFile

Specifies the location of the fault
policy file if it is different from the
default location. This option is useful
if a fault policy must be used by
multiple SOA composite
applications.

Handling Faults with the Fault
Management Framework

oracle.composite.fa
ultBindingFile

Specifies the location of the fault
binding file if it is different from the
default location. This option is useful
if a fault policy must be used by
multiple SOA composite
applications.

Handling Faults with the Fault
Management Framework

passThroughHeader By default, SOAP headers are not
passed through by Oracle Mediator.
To pass SOAP headers, add this
property to the corresponding
Oracle Mediator routing service.

How to Assign Values

How to Access Headers for
Filters and Assignments

rolesAllowed Specifies role names required to
invoke SOA composite applications
from any Java EE application.

Specifying Enterprise
JavaBeans Roles

streamIncomingAttac
hments
and

streamOutgoingAttac
hments

Specify these properties to stream
attachments with SOAP.

SOAP with Attachments

oracle.webservices.
local.optimization

Specifies to override a local
optimization setting for a policy.

SOAP with Attachments

and

Administering Oracle SOA
Suite and Oracle Business
Process Management Suite

oracle.soa.local.op
timization.force

You can override the
oracle.webservices.local.opt
imization property and force
optimization.

Administering Oracle SOA
Suite and Oracle Business
Process Management Suite

one.way.returns.fau
lt

Controls how faults and one-way
messages are handled for one-way
interface SOAP calls.

One-way Message Exchange
Patterns

mtomThreshold Specifies the attachment size in
bytes.

Sending and Receiving
MTOM-Optimized Messages
to SOA Composite
Applications

G.4 Fault Policy and Adapter Rejected Message Properties
A fault policy file defines fault conditions and their corresponding fault recovery actions. Each
fault condition specifies a particular fault or group of faults, which it attempts to handle, and
the corresponding action for it.

Appendix G
Fault Policy and Adapter Rejected Message Properties

G-3

You can enter fault policy properties automatically through the Fault Policy Editor or
manually in a fault policy framework file. Table G-2 lists these properties and provides
references to documentation that describes how to configure these properties.

Table G-2 Oracle SOA Suite Fault Policy Properties

Property Description See...

retryInterval Provides a delay
between retries of an
activity (in seconds).

Manually Creating a Fault Policy File
for Automated Fault Recovery

retryCount Retries an activity a
specified number of
times.

How to Design a Fault Policy for
Automated Fault Recovery with the
Fault Policy Wizard or Manually
Creating a Fault Policy File for
Automated Fault Recovery

org.quartz.scheduler.i
dleWaitTime

Specifies a time in
seconds for the
scheduler to wait before
retrying.

How to Design a Fault Policy for
Automated Fault Recovery with the
Fault Policy Wizard or Actions

You can also enter adapter rejected message properties in the fault policy framework
file during design time.

For more information, see Section "Error Handling" of Understanding Technology
Adapters.

G.5 Oracle B2B System Properties
You can set most Oracle B2B properties on the Configuration tab of the Oracle B2B
interface. These settings override property settings performed at Oracle Enterprise
Manager Fusion Middleware Control.

For more information about available Oracle B2B properties, see Chapter "Configuring
B2B System Parameters" of Using Oracle B2B.

G.6 Oracle Healthcare Properties
You can configure Oracle Healthcare runtime and user interface, workflow notification,
and normalized message header properties.

For more information about available Oracle Healthcare properties, see Using Oracle
SOA Suite for Healthcare Integration.

G.7 Oracle Business Activity Monitoring Properties
You can configure Oracle Business Activity Monitoring (BAM) business view
properties.

For more information about Oracle BAM properties, see Monitoring Business Activity
with Oracle BAM.

Appendix G
Oracle B2B System Properties

G-4

G.8 Oracle Enterprise Manager Fusion Middleware Control
Property Pages

You can configure properties for the following components during runtime in the property
pages of Oracle Enterprise Manager Fusion Middleware Control:

• SOA Infrastructure

• Oracle BPEL Process Manager

• Human workflow notification and task service

• Oracle Mediator

• Cross references

• Oracle B2B

• Service and reference binding components (JCA adapters, web services, REST
adapters, and Oracle Service Registry)

• Global token variables and automatic database purging

G.8.1 SOA Infrastructure Properties
You can configure properties for the SOA Infrastructure on the SOA Infrastructure Common
Properties page. These property settings can apply to all SOA composite applications
running in the SOA Infrastructure. The following types of properties can be set:

• Audit level

• Payload validation

• Time duration during which to retrieve instances and faults data

• Universal Description, Discovery, and Integration (UDDI) registry

• Callback server and server URLs

• BPM Analytics, BPEL sensors, and composite sensors

• Java Naming and Directory Interface (JNDI) data source

• Web service binding properties

• Advanced configuration properties

For more information about available SOA Infrastructure properties, see Chapter "Configuring
the SOA Infrastructure" of Administering Oracle SOA Suite and Oracle Business Process
Management Suite.

G.8.2 Oracle BPEL Process Manager Properties
You can configure BPEL process service engine properties on the BPEL Service Engine
Properties page. These properties are used by the BPEL process service engine during
processing of BPEL service components. The following types of properties can be set:

• Audit trail level

• Audit trail and large document thresholds

Appendix G
Oracle Enterprise Manager Fusion Middleware Control Property Pages

G-5

• Payload schema validation

• BPEL monitor and sensor enabling

• Advanced configuration properties

For more information about available Oracle BPEL Process Manager properties, see
Chapter "Configuring BPEL Process Service Components and Engines" of
Administering Oracle SOA Suite and Oracle Business Process Management Suite.

G.8.3 Human Workflow Notification and Task Service Properties
You can configure human workflow notification and task service properties on the
Mailer and Task tabs of the Workflow Notification Properties page. These properties
are used by the human workflow service engine during processing of human workflow
service components. The following types of properties can be set:

• The notification mode for messages

• The actionable addresses

• The actionable email account name

• The workflow session time out and custom class path URL values

• The dynamic assignment and task escalation functions of the assignment service

• Advanced configuration properties

For more information about available human workflow notification and task service
properties, see Chapter "Configuring Human Workflow Service Components and
Engines" of Administering Oracle SOA Suite and Oracle Business Process
Management Suite.

G.8.4 Oracle Mediator Properties
You can configure Oracle Mediator properties. These properties are used by the
Oracle Mediator service engine during processing of Oracle Mediator service
components. The following types of properties can be set:

• Audit level and metrics level

• Parallel maximum rows retrieved

• Parallel locker thread sleep

• Custom configuration parameters

• Container ID refresh time and container ID lease timeout

• Resequencer locker thread sleep and maximum groups locked

• Advanced configuration properties

For more information about available Oracle Mediator properties, see Chapter
"Configuring Oracle Mediator Service Components and Engines" of Administering
Oracle SOA Suite and Oracle Business Process Management Suite.

G.8.5 Cross Reference Properties
You can configure cross references to dynamically map values for equivalent entities
created in different applications.

Appendix G
Oracle Enterprise Manager Fusion Middleware Control Property Pages

G-6

For more information about available cross reference properties, see Chapter "Managing
Cross-References" of Administering Oracle SOA Suite and Oracle Business Process
Management Suite.

G.8.6 Oracle B2B Properties
You can enable Oracle B2B Dynamic Monitoring Service (DMS) metrics and configure
advanced properties.

For more information about available Oracle B2B properties, see Chapter "Configuring Oracle
B2B" of Administering Oracle SOA Suite and Oracle Business Process Management Suite.

G.8.7 Service and Reference Binding Component Properties
You can configure the following service and reference binding component properties:

• Activation specification (for services), interaction specification (for references), and
endpoint properties (such as time outs, thresholds, maximum intervals, and others) for
the JCA adapters

• Web services properties such as enabling REST; enabling the WSDL, metadata
exchange, and endpoint of the web service; and others

For more information about available service and reference binding component properties,
see Chapter "Configuring Service and Reference Binding Components" of Administering
Oracle SOA Suite and Oracle Business Process Management Suite.

G.8.8 Global Token Variables and Automatic Database Purging Properties
You can configure additional properties in Oracle Enterprise Manager Fusion Middleware
Control:

• Define global token variables for specific URIs in SOA composite applications.

• Enable automatic purging of large numbers of instances from the database.

For more information about token configurations, see the "Managing Global Token Variables
for Multiple SOA Composite Applications" section of Administering Oracle SOA Suite and
Oracle Business Process Management Suite.

For more information, see the "Deleting Large Numbers of Instances with Oracle Enterprise
Manager Fusion Middleware Control" section of Administering Oracle SOA Suite and Oracle
Business Process Management Suite.

G.9 System MBean Browser Advanced Properties
The System MBean Browser of Oracle Enterprise Manager Fusion Middleware Control
enables you to modify advanced properties that do not display in the property pages
described in Property Pages. These advanced properties display beneath a link at the bottom
of properties pages for the following components:

• SOA Infrastructure

• Oracle BPEL Process Manager

• Oracle Mediator

• Human workflow notification and task service

Appendix G
System MBean Browser Advanced Properties

G-7

• Oracle B2B

Note:

In addition to advanced properties, the same properties that display for
modifying in the property pages described in Property Pages also display for
modifying in the System MBean Browser.

G.9.1 SOA Infrastructure Advanced Properties
The More SOA Infra Advanced Configuration Properties link at the bottom of the
SOA Infrastructure Common Properties page enables you to display System MBean
Browser advanced properties for the SOA Infrastructure. Properties that display for
modifying include, but are not limited to, the following:

• The maximum number of times an invocation exception can be retried

• The number of seconds between retries for an invocation exception

• The HTTP proxy authentication realm

• The HTTP proxy authentication type

• The HTTP proxy host

• The password for HTTP proxies that require authentication

• The HTTP proxy port number

• The user name for HTTP proxies that require authentication

• The HTTP protocol URL published as part of the SOAP address of a process in
the WSDL file

• The HTTPS protocol URL published as part of the SOAP address of a process in
the WSDL file

• The path to the Oracle SOA Suite keystore

For more information about available SOA Infrastructure System MBean Browser
properties, see Chapter "Configuring the SOA Infrastructure" of Administering Oracle
SOA Suite and Oracle Business Process Management Suite.

G.9.2 Oracle BPEL Process Manager Advanced Properties
The More BPEL Configuration Properties link at the bottom of the BPEL Service
Engine Properties page enables you to display System MBean Browser properties for
the BPEL process. Properties that display for modifying include, but are not limited to,
the following:

• The extra BPEL class path to include when compiling BPEL-generated Java
sources

• The maximum number of times a failed expiration call (wait/onAlarm) is retried
before failing

• The delay between expiration retries

Appendix G
System MBean Browser Advanced Properties

G-8

• The size of the block of instance IDs to allocate from the dehydration store during each
fetch

• The number of invoke messages stored in in-memory cache

• Whether one-way invocation messages are delivered

For more information about available Oracle BPEL Process Manager System MBean
Browser properties, see Chapter "Configuring BPEL Process Service Components and
Engines" of Administering Oracle SOA Suite and Oracle Business Process Management
Suite.

G.9.3 Oracle Mediator Advanced Properties
The More Mediator Configuration Properties link at the bottom of the Mediator Service
Engine Properties page enables you to display System MBean Browser properties for Oracle
Mediator. Most of the System MBean Browser properties that display for Oracle Mediator can
also be modified on the Mediator Service Engine Properties page.

For more information about available Oracle Mediator System MBean Browser properties,
see Chapter "Configuring Oracle Mediator Service Components and Engines" of
Administering Oracle SOA Suite and Oracle Business Process Management Suite.

G.9.4 Human Workflow Notification and Task Service Advanced Properties
The More Workflow Notification Configuration Properties link at the bottom of the
Workflow Notification Properties page and the More Workflow Task Service Configuration
Properties link at the bottom of the Workflow Task Service Properties page enables you to
display System MBean Browser properties for human workflow. Properties that display for
modifying include, but are not limited to, the following:

• The address at which to receive incoming instant messages (IMs)

• Whether to return custom notification service property names

For more information about available human workflow notification and task service System
MBean Browser properties, see Chapter "Configuring Human Workflow Service Components
and Engines" of Administering Oracle SOA Suite and Oracle Business Process Management
Suite.

G.9.5 Oracle B2B Advanced Properties
The More B2B Configuration Properties link at the bottom of the B2B Server Properties
page enables you to display System MBean Browser properties for Oracle B2B. Properties
that display for modifying include, but are not limited to, Oracle B2B payload obfuscation.

For more information about available Oracle B2B properties, see Chapter "Configuring Oracle
B2B" of Administering Oracle SOA Suite and Oracle Business Process Management Suite.

Appendix G
System MBean Browser Advanced Properties

G-9

H
Working with Large Schemas in the XSLT
Editor

The XSLT Editor displays source and target trees that provide an XML representation of the
input and output documents for the XSLT map that is being edited. The editor creates these
trees from the XSD schema documents after you select a root element definition.
These schema trees can become large and difficult to work with in a graphical mapping tool,
such as the XSLT Editor. Some schema documents define hundreds of child nodes for each
parent node. Expanding a few parent nodes like this, in the tree, can generate thousands of
tree nodes to scroll through when trying to create an XSLT Map.

If the mapping is sparse, i.e. there are only a few mapped target nodes even though the
schema is very large, the user needs to constantly scroll through nodes that do not need to
be mapped. On the other hand, if the mapping is not sparse, and many mappings exist, the
user faces a lot of crisscrossing lines that make it difficult to make sense out of the mappings.

This appendix discusses strategies for both sparse and non-sparse maps, as well as ways to
reduce clutter.

H.1 Sparse Mappings
Schemas are often created to handle a large range of possibilities. When schemas of this
type are used to produce source and target trees, the trees can contain hundreds of
thousands, or even millions of nodes. However, in many cases, the user is only interested in
using or populating a small portion of the nodes defined in the schema.

There are various ways of handling sparse mappings.

Using Sample XML to Generate a Schema

The 12c XSLT Editor has the ability to create schemas from XML documents that can then be
used as schema documents for a source or target tree. If you have a sample XML document
for your source and/or target, this document can be used to build small schema documents
that contain only those nodes that you need for the map.

To create an XSLT map using sample source and target XML documents, select the
Generate from XML option while selecting the schema for a source or target in a new XSL
map.

H-1

A schema is generated and placed in the Schemas folder. This schema will be used to
create the source and target trees for your mapping, and consequently will contain
only the nodes that exist in your original sample XML document.

If you wish to switch back and forth from the small sample schema to the larger
schema that you might be avoiding, you can select Replace/Add Source or Target
Schema from the canvas context menu. Then select either the small sample schema
from the Schemas folder or the larger schema.

Appendix H
Sparse Mappings

H-2

Using XSLT View

The 12c editor contains a new view available within the Design View tab. This is the XSLT
View. It can be reached by clicking the XSLT button on the top right of the XSLT editor
toolbar.

XSLT View shows the existing statements in the XSLT file. Users who have previously edited
XSLT in a source xml editor may appreciate this view. It is organized in the same way as
statements would appear in the XSLT source. Using this view will provide a condensed look
at the mappings you are creating. For instance, here is a map against a large target schema
document in Map View. Note that some lines run off the bottom of the display as they map to
nodes that appear in the schema later in the tree.

Appendix H
Sparse Mappings

H-3

Here is the same mapping in XSLT view:

You can now see all of your mappings clearly without unused target nodes taking up
space. If you need to add a new target element from the schema, use the Add
Children From Schema option on the context menu.

From the context menu on any parent node select the Add Children From Schema
option and a list of possible child nodes will appear that can be selected and added.
You also have the option to select All Attributes/All Elements/All Required from this
menu for any parent node.

Appendix H
Sparse Mappings

H-4

As an added bonus, when nodes are added this way, all required children of any node you
insert will be added automatically for you. In the example above, when we select the
ns2:records element to be added, it is inserted at its correct place in the tree and its required
ns1:id node is automatically added for you.

If you are used to editing in Source view, an option was added in 12.2.1.0.0 to allow you to
move easily back and forth from source to design view. Right-click any node in the XSLT
panel and select Locate in Source View.

Appendix H
Sparse Mappings

H-5

The source view opens and the node is selected:

To navigate back to any node in Design view, you can select the Locate in Design
View option while in Source View.

XSLT view can also be used to insert any XSLT statement and allows the use of
named and matched templates (template rules). See Editing an XSLT Map in XSLT
View for more information on XSLT view.

H.1.1 Quick Start for XSLT View
You can set the Preference settings to always start the XSLT Editor in XSLT view.
These settings also control the automatic creation of target nodes to get you started.
To set the preferences for XSLT View, select Tools > Preferences to bring up the
Preferences dialog. Then select XSL Maps > XSL Editor.

Appendix H
Sparse Mappings

H-6

To start in XSLT View, select the XSLT View Initialization option with the desired options. If
you are working with a large schema, it is a good idea to set a limit to the number of levels of
children to be generated.

Then, when you create your XSLT map these options will be used. In addition, these options
are used anytime you select the Clear XSLT Map option from the canvas context menu.

Appendix H
Sparse Mappings

H-7

If you do not like your preference settings for a particular map, you can make changes
to the preferences and regenerate the initial map by selecting Clear XSLT Map.

H.2 Non-Sparse Mappings
Sometimes, it is necessary to create or modify existing maps that contain large
numbers of target elements and consequently large numbers of mappings. When
editing a map like this, it can be difficult to keep track of what is going on. For such
situations, the 12c XSLT Editor has a new feature that enables the user to set the
scope of the mapping to show only mappings below a selected target node.

For instance, the following is a non-sparse mapping.

We can set the scope of the mapping to an area in the target tree we would like to
work in. Right-click a target node, and select Set Display Scope.

The display is scoped to the target node selected. All lines indicating mappings outside
of this area are not drawn and the source tree becomes condensed, showing only
nodes that are mapped.

Appendix H
Non-Sparse Mappings

H-8

You can then continue to work in the scoped area.

Hidden areas in the source tree can be expanded to show nodes that might be needed for
additional mapping. Right-click on any Hidden item in the Source tree to see a popup menu
with options for searching within the tree and selecting nodes to be shown.

Any search done from this popup will wrap through the tree beyond the currently selected
Hidden area, so that you do not have to select the correct Hidden area for the node you are
looking for.

There are also options on the main context menu that will hide and expand areas of the
source tree. If you right-click on any non-Hidden node in the tree, there are options to show
and hide siblings and children of the selected node.

Appendix H
Non-Sparse Mappings

H-9

In the target tree, you can add nodes from the schema by using the Add Children
from Schema option.

Appendix H
Non-Sparse Mappings

H-10

To exit the scoped display, click on a target node outside of the scoped area or select Exit
Display Scope from the context menu in the target tree.

H.3 Reducing Textual Clutter
The 12c XSLT Editor provides the ability to abbreviate node names and other information in
the source and target trees. If you select the Abbreviate Text option from the canvas context
menu, prefixes will be hidden and the text for certain types of nodes will be abbreviated.

Before abbreviation:

Appendix H
Reducing Textual Clutter

H-11

After abbreviation:

You may also create a Custom Display Options Config file where abbreviations for
node name text may be defined. For instance, in the example above, the phrase
CustomerPartyList appears in many node names. This could be abbreviated to CPL
using a Custom Display Options Config file. Then node names such
as $EscapedSyncCustomerPartyListEBM will appear as $EscapedSyncCPLEBM in the
tree.

Appendix H
Reducing Textual Clutter

H-12

This does not change the node name in the XSLT or in any XPath statements generated. It
only applies to the name that appears on the tree node and can help to reduce overall clutter
when schema node definitions use verbose names.

A Custom Display Options Config file can be loaded under XSL Editor preferences. See How
to Import a Customization File to Specify Display Preferences in the XSLT Map Editor for
more details.

H.4 Searching Trees
When searching through large schemas for element names, the search can take long. In
12.1.3, the search does not have a cancel option. This has been added in 12.2.1.

If the search is taking too long, the tree size can be truncated by reducing the Expansion
Depth for the trees in preferences. Go to Tools > Preferences. Select XSL Maps from the
navigator. Click the Show Advanced Options button and change the Expansion Depth for
the XML Schema Maximum Expansion Depth option to a much smaller value. For trees
that have hundreds of children at a single level, this value needs to be around 10 levels. This
will mean that the search will not go below the level set here, but some trees can contain
millions of nodes and the search can take long in that event.

H.5 Copying and Modifying a Large Input Document
A user may be tempted to try to copy an input XML document by using the automap feature
of the XSLT editor. However, automap generates specific XSLT statements for every node in
the schema. On large schemas, this is not an efficient way to copy an input document. This
can generate XSLT files that are many MBs in size, and these will be slow to load and difficult
to edit. In addition, if the user’s mapping is sparse, generating thousands of lines of XSLT to
execute against nodes that are defined in the schema, but will never exist at runtime is
inefficient.

The 12c XSLT Editor now supports the creation of matched templates (template rules). In
particular, you can now add an identity template that can copy all nodes in the source tree.
Use the following steps:

1. Switch to XSLT view.

2. Select XSLT Templates from the Components Window.

3. Drag and drop the Identity Template from the Miscellaneous Templates section to the left
side of the xsl:stylesheet node. You will see a green highlight when the drop is in the
correct position indicating that the template will be added as a child of the stylesheet
node.

4. Delete the original root match=”/” template from the XSLT.

Your display would look something like the following:

Appendix H
Searching Trees

H-13

Every node in the input document will be processed by the identity template. This
is indicated by the bubble highlighting on each node of the source tree that
indicates the context nodes for the selected template. When each node is
processed, the xsl:copy statement will execute to copy the node to the output.
The apply-templates statement tells the processor to continue processing any
child nodes of the current context node being processed. This will then copy the
entire input document.

Additional templates can then be added to make modifications to the tree while it
is being copied. For instance, suppose we need to simply remove a node from the
input tree. We can do this by adding an empty template for the node we want to
remove from the output. In other words, when we process this node, we will output
nothing, which will effectively remove the node from the tree.

To add an empty template for a node, right-click the source node and select New
Template Rule.

Click OK on the New Template Dialog that follows. The template is added. Note
the difference in the display for the node when the identity template is selected. It
is no longer bubble highlighted, indicating it is no longer processed by the identity
template.

Appendix H
Copying and Modifying a Large Input Document

H-14

Selecting the new empty template will now highlight this node, showing that this template
will process the node and output nothing when it is processed.

Now, suppose we also want to upper-case some text in another node. We can create
another template to explicitly process that node to perform the upper-case. We create a
template with the New Template Rule option selected from the BrokenPlace node in the
source tree. When the New Template Rule dialog appears, we select the node we want to
create in the template.

Click OK and the template and the node will be created. We then assign an upper-case
function to the node.

Appendix H
Copying and Modifying a Large Input Document

H-15

When this node is created in the output, its text will be upper-cased.

In this manner, you can copy and modify a large input XML with very few XSLT
statements.

H.6 Generating Test Files with Element and Type
Substitutions

It is possible in the XSLT editor to perform element and type substitutions based on
derived types and substitution groups defined in the XSD. Many schemas contain
abstract elements or types that can be overloaded with elements from substitution
groups or elements from derived types using xsi:type.
The test tool in the XSLT editor does not currently support generation of input XML
documents that contain substituted elements. So, when you invoke an XSLT map
where substitutions have been made in the source tree, the following warning occurs.

The user then has to modify the input document generated or provide their own test
input document. This can become problematic, as the user must make the
substitutions themselves in the input document with the correct syntax for the
xsi:type definition or element substitution needed. This can be more problematic in
large schemas where multiple substitutions have been made.

Using the XSLT editor, we can generate an input document that contains the correctly
substituted elements with all of the appropriate namespaces/prefixes defined for us.
This will provide us with a template for the input test document.

Appendix H
Generating Test Files with Element and Type Substitutions

H-16

In the mapping above there are two substitutions done in the source tree. The first is a
substituted element CommentList from a substitution group defined the schema document.
The second is an Item type substitution for a derived item type defined in the schema
document.

We would like to write a small XSLT map that will generate a document we can use as a test
input file for testing this map. It has to contain the correct xsi:type and element substitution
information defined in our source document.

We create a new map, selecting no schema document for the source and selecting the
PurchaseOrder schema for the target, as we want to output a PurchaseOrder document we
can use as test input for the PurchaseOrder source in our existing map.

By using Add Child From Schema and performing the same substitutions on the
PurchaseOrder target that we have on our PurchaseOrder source, we can create a map that
looks like the following:

We then execute this XSLT with the test tool to create our PurchaseOrder template
document.

Appendix H
Generating Test Files with Element and Type Substitutions

H-17

This generates a template for our test input document with the correct substitutions for
our test.

Appropriate test data can then be entered in the fields defined. Alternatively, you can
define data values in the XSLT that generates the test file to pre-populate the test file.

Appendix H
Generating Test Files with Element and Type Substitutions

H-18

Index

Index-1

	Contents
	Preface
	Audience
	Documentation Accessibility
	Diversity and Inclusion
	Related Documents
	Conventions

	What's New in This Guide
	Part I Getting Started with Oracle SOA Suite
	1 Introduction to Building Applications with Oracle SOA Suite
	1.1 Introduction to Oracle SOA Suite
	1.1.1 Service-Oriented Architecture
	1.1.2 Services
	1.1.3 Oracle SOA Suite
	1.1.4 Standards Used by Oracle SOA Suite to Enable SOA
	1.1.5 Service Component Architecture within SOA Composite Applications
	1.1.5.1 Service Components
	1.1.5.2 Binding Components
	1.1.5.3 Wires

	1.1.6 Runtime Behavior of a SOA Composite Application
	1.1.6.1 Service Infrastructure
	1.1.6.2 Service Engines
	1.1.6.3 Deployed Service Archives

	1.1.7 Approaches for Designing SOA Composite Applications

	1.2 Getting Started with Oracle SOA Suite
	1.3 Setting Accessibility Options
	1.3.1 Setting Accessibility Options in Oracle JDeveloper
	1.3.2 Setting Accessibility Options in Oracle SOA Composer and Oracle BPM Worklist
	1.3.2.1 How to Set Accessibility Features Before Logging In
	1.3.2.2 How to Set Accessibility Options After Logging In

	2 Getting Started with Developing SOA Composite Applications
	2.1 Developing SOA Projects in Reference Configuration Mode
	2.2 Creating a SOA Application
	2.2.1 Create a SOA Application and Project
	2.2.2 What Happens When You Create a SOA Application and Project

	2.3 Adding Service Components
	2.3.1 How to Add a Service Component
	2.3.2 What You May Need to Know About Adding and Deleting a Service Component
	2.3.3 How to Edit a Service Component

	2.4 Adding Service Binding Components
	2.4.1 How to Add a Service Binding Component
	2.4.2 How to Define the Interface (WSDL) for a Web Service
	2.4.2.1 Defining a New WSDL Using a Schema
	2.4.2.2 Selecting an Existing WSDL
	2.4.2.3 Automatically Defining a Service Interface WSDL from a Component

	2.4.3 How to View Schemas
	2.4.4 How to Edit a Service Binding Component
	2.4.5 What You May Need to Know About Adding and Deleting Services
	2.4.6 What You May Need to Know About Using the Same Namespace in Different WSDL Files in the Same Composite
	2.4.7 What You May Need to Know About Multiple Schema Elements in a WSDL Types Section
	2.4.8 What You May Need to Know About WSDL Browsing in the Resources Window When the SOA Infrastructure Uses Both Internal and External Oracle HTTP Servers

	2.5 Adding Reference Binding Components
	2.5.1 How to Add a Reference Binding Component
	2.5.2 What You May Need to Know About Adding and Deleting References
	2.5.3 What You May Need to Know About WSDL References
	2.5.4 What You May Need to Know About Mixed Message Types in a WSDL File
	2.5.5 What You May Need to Know About Invoking the Default Revision of a Composite

	2.6 Adding Wires
	2.6.1 How to Wire a Service and a Service Component
	2.6.2 How to Wire a Service Component and a Reference
	2.6.3 What You May Need to Know About Adding and Deleting Wires

	2.7 Adding Descriptions to SOA Composite Applications
	2.7.1 How to Add Descriptions to SOA Composite Applications

	2.8 Renaming, Deleting, and Moving Components and Artifacts
	2.8.1 How to Rename and Delete Components in the SOA Composite Editor
	2.8.2 How to Rename, Move, and Delete Artifacts in the Applications Window

	2.9 Viewing Component Details in the Property Inspector
	2.10 Adding Security Policies
	2.11 Deploying a SOA Composite Application
	2.11.1 How to Invoke Deployed SOA Composite Applications

	2.12 Managing and Testing a SOA Composite Application
	2.12.1 How to Manage Deployed SOA Composite Applications in Oracle JDeveloper
	2.12.2 How to Test and Debug a Deployed SOA Composite Application

	3 Managing Shared Data with the Design-Time MDS Repository
	3.1 Introduction to SOA Design-Time MDS Repository Management
	3.1.1 Introduction to the Default SOA Design-Time MDS Repository Connection

	3.2 Changing the Default SOA-MDS Location
	3.2.1 How to Change the Default SOA-MDS Location

	3.3 Sharing Data with the SOA Design-Time MDS Repository
	3.3.1 How to Share Data with the SOA Design-Time MDS Repository

	3.4 Creating and Deleting Subfolders Under the /apps Folder
	3.4.1 How to Create and Delete Subfolders Under the /apps Folder

	3.5 Exporting the Selected Contents of the /apps Folder to a JAR File
	3.5.1 How to Export the Selected Contents of the /apps Folder to a JAR File

	3.6 Importing the Contents of the JAR File into the /apps Folder
	3.6.1 How to Import the Contents of the JAR File into the /apps Folder

	3.7 Transferring the Selected Contents of the /apps Folder to Another MDS Repository
	3.7.1 How to Transfer the Selected Contents of the /apps Folder to Another MDS Repository

	3.8 Exporting an Existing Release 11g MDS Repository to a JAR File
	3.8.1 How to Export an Existing Release 11g MDS Repository to a JAR File

	3.9 Browsing for Files in the SOA Design-Time MDS Repository

	Part II Using the BPEL Process Service Component
	4 Getting Started with Oracle BPEL Process Manager
	4.1 Introduction to the BPEL Process Service Component
	4.1.1 How to Add a BPEL Process Service Component
	4.1.2 How to Validate a BPEL Process Service Component

	4.2 Introduction to Activities
	4.2.1 How to Edit BPEL Activities in the Property Inspector
	4.2.2 How to Copy and Paste Activities in BPEL Projects
	4.2.3 How to Add a Description of Actions to BPEL Process Activities

	4.3 Introduction to Partner Links
	4.4 Creating a Partner Link
	4.4.1 How to Create a Partner Link
	4.4.1.1 Partner Links for an Outbound Adapter
	4.4.1.2 Partner Links for an Inbound Adapter
	4.4.1.3 Partner Links from an Abstract WSDL to Call a Service
	4.4.1.4 Partner Links from an Abstract WSDL to Implement a Service
	4.4.1.5 Partner Links and Human Tasks or Business Rules
	4.4.1.6 Partner Links from an Existing Human Task, Business Rule, or Oracle Mediator

	4.5 Introduction to Adapters
	4.6 Introduction to BPEL Process Monitors

	5 Introduction to Interaction Patterns in a BPEL Process
	5.1 Introduction to One-Way Messages
	5.1.1 BPEL Process Service Component as the Client
	5.1.2 BPEL Process Service Component as the Service

	5.2 Introduction to Synchronous Interactions
	5.2.1 BPEL Process Service Component as the Client
	5.2.2 BPEL Process Service Component as the Service
	5.2.3 Synchronous BPEL Process Invoking an Asynchronous Process

	5.3 Introduction to Asynchronous Interactions
	5.3.1 BPEL Process Service Component as the Client
	5.3.2 BPEL Process Service Component as the Service

	5.4 Introduction to Asynchronous Interactions with a Timeout
	5.4.1 BPEL Process Service Component as the Client
	5.4.2 BPEL Process Service Component as the Service

	5.5 Introduction to Asynchronous Interactions with a Notification Timer
	5.5.1 BPEL Process Service Component as the Client
	5.5.2 BPEL Process Service Component as the Service

	5.6 Introduction to One Request, Multiple Responses
	5.6.1 BPEL Process Service Component as the Client
	5.6.2 BPEL Process Service Component as the Service

	5.7 Introduction to One Request, One of Two Possible Responses
	5.7.1 BPEL Process Service Component as the Client
	5.7.2 BPEL Process Service Component as the Service

	5.8 Introduction to One Request, a Mandatory Response, and an Optional Response
	5.8.1 BPEL Process Service Component as the Client
	5.8.2 BPEL Process Service Component as the Service

	5.9 Introduction to Partial Processing
	5.9.1 BPEL Process Service Component as the Client
	5.9.2 BPEL Process Service Component as the Service

	5.10 Introduction to Multiple Application Interactions

	6 Manipulating XML Data in a BPEL Process
	6.1 Introduction to Manipulating XML Data in BPEL Processes
	6.1.1 XML Data in BPEL Processes
	6.1.2 Data Manipulation and XPath Standards in Assign Activities

	6.2 Delegating XML Data Operations to Data Provider Services
	6.2.1 How to Create an Entity Variable
	6.2.1.1 Understanding How SDO Works in the Inbound Direction
	6.2.1.2 Understanding How SDO Works in the Outbound Direction
	6.2.1.3 Creating an Entity Variable and Choosing a Partner Link
	6.2.1.4 Creating a Binding Key

	6.3 Translating Between Native Data and XML
	6.3.1 How to Translate Native Data to XML Data
	6.3.2 How to Translate XML Data to Native Data
	6.3.3 How to Translate Inbound Native Data to XML Stored as an Attachment

	6.4 Using Standalone SDO-based Variables
	6.4.1 How to Declare SDO-based Variables
	6.4.2 How to Convert from XML to SDO

	6.5 Initializing a Variable with Expression Constants or Literal XML
	6.5.1 How To Assign a Literal XML Element

	6.6 Copying Between Variables
	6.6.1 How to Copy Between Variables
	6.6.2 How to Initialize Variables with an Inline from-spec in BPEL 2.0

	6.7 Moving and Copying Variables in the Structure Window
	6.7.1 To Move Variables in the Structure Window:
	6.7.2 To Copy Variables in the Structure Window:

	6.8 Accessing Fields in Element and Message Type Variables
	6.8.1 How to Access Fields Within Element-Based and Message Type-Based Variables

	6.9 Assigning Numeric Values
	6.9.1 How to Assign Numeric Values

	6.10 Using Mathematical Calculations with XPath Standards
	6.10.1 How To Use Mathematical Calculations with XPath Standards

	6.11 Assigning String Literals
	6.11.1 How to Assign String Literals

	6.12 Concatenating Strings
	6.12.1 How to Concatenate Strings

	6.13 Assigning Boolean Values
	6.13.1 How to Assign Boolean Values

	6.14 Assigning a Date or Time
	6.14.1 How to Assign a Date or Time

	6.15 Manipulating Attributes
	6.15.1 How to Manipulate Attributes

	6.16 Manipulating XML Data with bpelx Extensions
	6.16.1 How to Use bpelx:append
	6.16.1.1 bpelx:append in BPEL 1.1
	6.16.1.2 bpelx:append in BPEL 2.0

	6.16.2 How to Use bpelx:insertBefore
	6.16.2.1 bpelx:insertBefore in BPEL 1.1
	6.16.2.2 bpelx:insertBefore in BPEL 2.0

	6.16.3 How to Use bpelx:insertAfter
	6.16.3.1 bpelx:insertAfter in BPEL 1.1
	6.16.3.2 bpelx:insertAfter in BPEL 2.0

	6.16.4 How to Use bpelx:remove
	6.16.4.1 bpelx:remove in BPEL 1.1
	6.16.4.2 bpelx:remove in BPEL 2.0

	6.16.5 How to Use bpelx:rename and XSD Type Casting
	6.16.5.1 bpelx:rename in BPEL 1.1
	6.16.5.2 bpelx:rename in BPEL 2.0

	6.16.6 How to Use bpelx:copyList
	6.16.6.1 bpelx:copyList in BPEL 1.1
	6.16.6.2 bpelx:copyList in BPEL 2.0

	6.16.7 How to Use Assign Extension Attributes
	6.16.7.1 ignoreMissingFromData Attribute
	6.16.7.2 insertMissingToData Attribute
	6.16.7.3 keepSrcElementName Attribute

	6.17 Validating XML Data
	6.17.1 How to Validate XML Data in BPEL 2.0
	6.17.1.1 Validate XML in an Assign Activity
	6.17.1.2 Validate XML in a Standalone, Extended Validate Activity

	6.17.2 How to Validate XML Data in BPEL 1.1
	6.17.2.1 Validate XML in an Assign Activity
	6.17.2.2 Validate XML in a Standalone, Extended Validate Activity

	6.18 Using Element Variables in Message Exchange Activities in BPEL 2.0
	6.19 Mapping WSDL Message Parts in BPEL 2.0
	6.19.1 How to Map WSDL Message Parts

	6.20 Importing Process Definitions in BPEL 2.0
	6.21 Manipulating XML Data Sequences That Resemble Arrays
	6.21.1 How to Statically Index into an XML Data Sequence That Uses Arrays
	6.21.2 How to Use SOAP-Encoded Arrays
	6.21.2.1 SOAP-Encoded Arrays in BPEL 2.0
	6.21.2.2 Declaring a SOAP Array Using a wsdl:arrayType Attribute Inside a Schema

	6.21.3 How to Determine Sequence Size
	6.21.4 How to Dynamically Index by Applying a Trailing XPath to an Expression
	6.21.4.1 Applying a Trailing XPath to the Result of getVariableData
	6.21.4.2 Using the bpelx:append Extension to Append New Items to a Sequence
	6.21.4.3 Merging Data Sequences
	6.21.4.4 Generating Functionality Equivalent to an Array of an Empty Element

	6.21.5 What You May Need to Know About Using the Array Identifier

	6.22 Converting from a String to an XML Element
	6.22.1 How To Convert from a String to an XML Element

	6.23 Understanding Document-Style and RPC-Style WSDL Differences
	6.23.1 How To Use RPC-Style Files

	6.24 Manipulating SOAP Headers in BPEL
	6.24.1 How to Receive SOAP Headers in BPEL
	6.24.2 How to Send SOAP Headers in BPEL

	6.25 Declaring Extension Namespaces in BPEL 2.0
	6.25.1 How to Declare Extension Namespaces
	6.25.2 What Happens When You Create an Extension

	7 Invoking a Synchronous Web Service from a BPEL Process
	7.1 Introduction to Invoking a Synchronous Web Service
	7.2 Invoking a Synchronous Web Service
	7.2.1 How to Invoke a Synchronous Web Service
	7.2.1.1 How Does the BPEL Process Work

	7.2.2 What Happens When You Invoke a Synchronous Web Service
	7.2.2.1 Partner Link in the BPEL Code
	7.2.2.2 Partner Link Type and Port Type in the BPEL Code
	7.2.2.3 Invoke Activity for Performing a Request
	7.2.2.4 Synchronous Invocation in BPEL Code

	7.3 Specifying Transaction Timeout Values in Durable Synchronous Processes
	7.3.1 How To Specify Transaction Timeout Values
	7.3.2 What You May Need to Know About SyncMaxWaitTime and Durable Synchronous Requests Not Timing Out

	7.4 Calling a One-Way Mediator with a Synchronous BPEL Process

	8 Invoking an Asynchronous Web Service from a BPEL Process
	8.1 Introduction to Invoking an Asynchronous Web Service
	8.2 Invoking an Asynchronous Web Service
	8.2.1 How to Invoke an Asynchronous Web Service
	8.2.1.1 Adding a Partner Link for an Asynchronous Service
	8.2.1.2 Adding an Invoke Activity
	8.2.1.3 Adding a Receive Activity
	8.2.1.4 Performing Additional Activities

	8.2.2 What Happens When You Invoke an Asynchronous Web Service
	8.2.2.1 portType Section of the WSDL File
	8.2.2.2 partnerLinkType Section of the WSDL File
	8.2.2.3 Partner Links Section in the BPEL File
	8.2.2.4 Composite Application File
	8.2.2.5 Invoke and Receive Activities
	8.2.2.6 createInstance Attribute for Starting a New Instance
	8.2.2.7 Dehydration Points for Maintaining Long-Running Asynchronous Processes
	8.2.2.8 Multiple Runtime Endpoint Locations

	8.2.3 What You May Need to Know About Midprocess Receive Activities Consuming Messages After Timing Out
	8.2.4 What You May Need to Know About Multiple Client Components Invoking a Composite
	8.2.5 What You May Need to Know About Limitations on BPEL 2.0 IMA Support
	8.2.6 What Happens When You Specify a Conversation ID
	8.2.6.1 bpelx:conversationId in BPEL 1.1
	8.2.6.2 bpelx:conversationId in BPEL 2.0

	8.3 Routing Callback Messages to the Correct Endpoint when Multiple Receive or Pick Activities Use the Same Partner Link
	8.3.1 How to Route Callback Messages to the Correct Endpoint when Multiple Receive and Pick Activities Use the Same Partner Link

	8.4 Managing Idempotence at the Partner Link Operation Level
	8.4.1 How to Manage Idempotence at the Partner Link Operation Level

	8.5 Creating a Dynamic Partner Link at Design Time for Use at Runtime
	8.5.1 How To Create a Dynamic Partner Link at Design Time for Use at Runtime

	8.6 Overriding Security Certificates when Invoking Dynamic Partner Links
	8.7 Overriding WSDL Files of Dynamic Partner Links
	8.8 Using WS-Addressing in an Asynchronous Service
	8.8.1 How to Use WS-Addressing in an Asynchronous Service
	8.8.1.1 Using TCP Tunneling to View Messages Exchanged Between Programs
	8.8.1.1.1 Setting Up a TCP Listener for Synchronous Services
	8.8.1.1.2 Setting Up a TCP Listener for Asynchronous Services

	9 Using Correlation Sets and Message Aggregation
	9.1 Introduction to Correlation Sets in an Asynchronous Service
	9.1.1 Scenarios for Using Correlation Sets
	9.1.2 Understanding Correlation Set Contents and Concepts
	9.1.3 Overview of Correlation Set Creation

	9.2 Creating Correlation Sets in Oracle JDeveloper
	9.2.1 How to Create a Correlation Set with the Correlation Wizard
	9.2.2 How to Manually Create Correlation Sets From the Correlations Tab
	9.2.2.1 Step 1: Creating a Project
	9.2.2.2 Step 2: Configuring Partner Links and File Adapter Services
	9.2.2.2.1 Creating an Initial Partner Link and File Adapter Service
	9.2.2.2.2 Creating a Second Partner Link and File Adapter Service
	9.2.2.2.2.1 Creating a Third Partner Link and File Adapter Service

	9.2.2.3 Step 3: Creating Three Receive Activities
	9.2.2.3.1 Creating an Initial Receive Activity
	9.2.2.3.2 Creating a Second Receive Activity
	9.2.2.3.2.1 Creating a Third Receive Activity

	9.2.2.4 Step 4: Creating Correlation Sets
	9.2.2.4.1 Creating an Initial Correlation Set
	9.2.2.4.2 Creating a Second Correlation Set

	9.2.2.5 Step 5: Associating Correlation Sets with Receive Activities
	9.2.2.5.1 Associating the First Correlation Set with a Receive Activity
	9.2.2.5.2 Associating the Second Correlation Set with a Receive Activity
	9.2.2.5.3 Associating the Third Correlation Set with a Receive Activity

	9.2.2.6 Step 6: Creating Property Aliases
	9.2.2.6.1 Creating Property Aliases for NameCorr
	9.2.2.6.2 Creating Property Aliases for IDCorr

	9.2.2.7 Step 7: Reviewing WSDL File Content

	9.2.3 What You May Need to Know About Conversion IDs and Different Composite Revisions
	9.2.4 What You May Need to Know About Setting Correlations for an IMA Using a fromParts Element With Multiple Parts

	9.3 Routing Messages to the Same Instance
	9.3.1 How to Configure BPEL Process Instance Creation
	9.3.2 How to Use the Same Operation in Entry and Midprocess Receive Activities
	9.3.3 How to Route a Message to a New or Existing Instance when Using Correlation Sets

	10 Using Parallel Flow in a BPEL Process
	10.1 Introduction to Parallel Flows in BPEL Processes
	10.1.1 What You May Need to Know About the Execution of Parallel Flow Branches in a Single Thread

	10.2 Creating a Parallel Flow
	10.2.1 How to Create a Parallel Flow
	10.2.2 What Happens When You Create a Parallel Flow
	10.2.3 Synchronizing the Execution of Activities in a Flow Activity
	10.2.4 How to Create Synchronization Between Activities Within a Flow Activity
	10.2.5 What Happens When You Create Synchronization Between Activities Within a Flow Activity
	10.2.6 What You May Need to Know About Join Conditions in Target Activities

	10.3 Customizing the Number of Parallel Branches
	10.3.1 Processing Multiple Sets of Activities with the forEach Activity in BPEL 2.0
	10.3.1.1 How to Create a forEach Activity
	10.3.1.2 What Happens When You Create a forEach Activity

	10.3.2 Customizing the Number of Flow Activities with the flowN Activity in BPEL 1.1
	10.3.2.1 How to Create a flowN Activity
	10.3.2.2 What Happens When You Create a FlowN Activity

	11 Using Conditional Branching in a BPEL Process
	11.1 Introduction to Conditional Branching
	11.2 Defining Conditional Branching with the If or Switch Activity
	11.2.1 Defining Conditional Branching with the If Activity in BPEL 2.0
	11.2.1.1 How to Create an If Activity
	11.2.1.2 What Happens When You Create an If Activity

	11.2.2 Defining Conditional Branching with the Switch Activity in BPEL 1.1
	11.2.2.1 How to Create a Switch Activity
	11.2.2.2 What Happens When You Create a Switch Activity

	11.3 Defining Conditional Branching with the While Activity
	11.3.1 How To Create a While Activity
	11.3.2 What Happens When You Create a While Activity

	11.4 Defining Conditional Branching with the repeatUntil Activity
	11.4.1 How to Create a repeatUntil Activity
	11.4.2 What Happens When You Create a repeatUntil Activity

	11.5 Specifying XPath Expressions to Bypass Activity Execution
	11.5.1 How to Specify XPath Expressions to Bypass Activity Execution
	11.5.2 What Happens When You Specify XPath Expressions to Bypass Activity Execution

	12 Using Fault Handling in a BPEL Process
	12.1 Introduction to a Fault Handler
	12.2 Introduction to BPEL Standard Faults
	12.2.1 BPEL 1.1 Standard Faults
	12.2.2 BPEL 2.0 Standard Faults
	12.2.2.1 Fault Handling Order of Precedence in BPEL 2.0

	12.3 Introduction to the Business and Runtime Fault Categories of BPEL Faults
	12.3.1 Business Faults
	12.3.2 Runtime Faults
	12.3.2.1 bindingFault
	12.3.2.2 remoteFault
	12.3.2.3 replayFault

	12.3.3 How to Add and Propagate Fault Handling in a Synchronous BPEL Process
	12.3.3.1 Edit the Schema and WSDL Files
	12.3.3.2 Add a Fault Handler
	12.3.3.3 Create a Fault Response Variable
	12.3.3.4 Add an Assign Activity to the Catch Activity Branch
	12.3.3.5 Add a Reply Activity to the Catch Activity Branch

	12.4 Handling Faults with the Fault Management Framework
	12.4.1 Understanding How the Fault Policy Binding Resolution Works
	12.4.2 How to Design a Fault Policy for Automated Fault Recovery with the Fault Policy Wizard
	12.4.2.1 Step 1: Defining Property Sets
	12.4.2.2 Step 2: Defining Alerts
	12.4.2.3 Step 3: Defining Actions
	12.4.2.4 Step 4: Defining Fault Names and Policies
	12.4.2.5 Step 5: Defining the Fault Policy Bindings for the Fault Policy

	12.4.3 How to Manually Design a Fault Policy for Automated Fault Recovery
	12.4.3.1 Manually Creating a Fault Policy File for Automated Fault Recovery
	12.4.3.2 Associating a Fault Policy with Fault Policy Binding
	12.4.3.3 Additional Fault Policy and Fault Policy Binding File Samples
	12.4.3.4 Designing a Fault Policy with Multiple Rejection Handlers

	12.4.4 How to Execute a Fault Policy
	12.4.5 How to Use a Java Action Fault Policy
	12.4.6 How to Design Fault Policies for Oracle BPM Suite
	12.4.7 What You May Need to Know About Designing a Fault Policy in a Synchronous BPEL Process
	12.4.8 What You May Need to Know About Fault Management Behavior When the Number of Instance Retries is Exceeded
	12.4.9 What You May Need to Know About Binding Level Retry Execution Within Fault Policy Retries

	12.5 Catching BPEL Runtime Faults
	12.5.1 How to Catch BPEL Runtime Faults

	12.6 Getting Fault Details with the getFaultAsString XPath Extension Function
	12.6.1 How to Get Fault Details with the getFaultAsString XPath Extension Function

	12.7 Throwing Internal Faults with the Throw Activity
	12.7.1 How to Create a Throw Activity
	12.7.2 What Happens When You Create a Throw Activity

	12.8 Rethrowing Faults with the Rethrow Activity
	12.8.1 How to Create a Rethrow Activity
	12.8.2 What Happens When You Rethrow Faults

	12.9 Returning External Faults
	12.9.1 How to Return a Fault in a Synchronous Interaction
	12.9.2 How to Return a Fault in an Asynchronous Interaction

	12.10 Managing a Group of Activities with a Scope Activity
	12.10.1 How to Create a Scope Activity
	12.10.2 How to Add Descriptive Notes and Images to a Scope Activity
	12.10.3 What Happens After You Create a Scope Activity
	12.10.4 What You May Need to Know About Scopes
	12.10.5 How to Use a Fault Handler Within a Scope
	12.10.6 What You May Need to Know About the idempotent Property and Fault Handling
	12.10.7 How to Create a Catch Activity in a Scope
	12.10.8 What Happens When You Create a Catch Activity in a Scope
	12.10.9 How to Insert No-Op Instructions into a Business Process with an Empty Activity
	12.10.10 What Happens When You Create an Empty Activity

	12.11 Re-executing Activities in a Scope Activity with the Replay Activity
	12.11.1 How to Create a Replay Activity
	12.11.2 What Happens When You Create a Replay Activity

	12.12 Using Compensation After Undoing a Series of Operations
	12.12.1 Using a Compensate Activity
	12.12.2 How to Create a Compensate Activity
	12.12.3 What Happens When You Create a Compensate Activity
	12.12.4 Using a compensateScope Activity in BPEL 2.0
	12.12.5 How to Create a compensateScope Activity
	12.12.6 What Happens When You Create a compensateScope Activity

	12.13 Stopping a Business Process Instance with a Terminate or Exit Activity
	12.13.1 Immediately Ending a Business Process Instance with the Exit Activity in BPEL 2.0
	12.13.1.1 How to Create an Exit Activity
	12.13.1.2 What Happens When You Create an Exit Activity

	12.13.2 Stopping a Business Process Instance with the Terminate Activity in BPEL 1.1
	12.13.2.1 How to Create a Terminate Activity
	12.13.2.2 What Happens When You Create a Terminate Activity

	12.14 Throwing Faults with Assertion Conditions
	12.14.1 How to Create Assertion Conditions
	12.14.1.1 To create assertion conditions in invoke activities, receive activities, reply activities, and OnMessage branches:
	12.14.1.2 To create an assertion condition in standalone assert activities:

	12.14.2 How to Disable Assertions
	12.14.3 What Happens When You Create Assertion Conditions
	12.14.4 What You May Need to Know About Assertion Conditions
	12.14.4.1 bpelx:postAssert and bpelx:preAssert Extensions
	12.14.4.2 Use of faultName and message Attributes
	12.14.4.3 Multiple Assertions
	12.14.4.4 Use of Built-in and Custom XPath Functions and ⁠$variable References
	12.14.4.5 Assertion Condition Evaluation Logging of Events to the Instance Audit Trail
	12.14.4.6 Expressions Not Evaluating to an XML Schema Boolean Type Throw a Fault
	12.14.4.7 Assertion Conditions in a Standalone Assert Activity

	12.14.5 What You May Need to Know About Postassertion and Preassertion Condition Schemas and Syntax

	12.15 Classifying SOAP Faults as Retriable

	13 Transaction and Fault Propagation Semantics in BPEL Processes
	13.1 Introduction to Transaction Semantics
	13.1.1 Oracle BPEL Process Manager Transaction Semantics
	13.1.1.1 BPELCaller Process Calls a BPELCallee Process That Has bpel.config.transaction Set to requiresNew
	13.1.1.2 BPELCaller Process Calls a BPELCallee Process That Has bpel.config.transaction Set to required

	13.2 Introduction to Execution of One-Way Invocations
	13.3 Executing a Business Process Without a Transaction
	13.3.1 When Should I Use a BPEL Process Without a Transaction?
	13.3.2 Guidelines for Executing Without a Transaction
	13.3.3 How to Create a Synchronous BPEL Process Without a Transaction
	13.3.4 How to Create an Asynchronous BPEL Process Without a Transaction

	13.4 Using In-Memory SOA to Improve System Performance
	13.4.1 Persistence Settings for In-Memory Flow Instances
	13.4.2 Steps to Enable In-Memory SOA
	13.4.2.1 Enabling the In-Memory SOA Flag
	13.4.2.2 Designing Your Business Process to Run In-Memory
	13.4.2.2.1 Setting an Existing Business Process to Be Non-Transactional
	13.4.2.2.2 Setting the Completion Persist Policy for an Existing BPEL Process

	14 Incorporating Java and Java EE Code in a BPEL Process
	14.1 Introduction to Java and Java EE Code in BPEL Processes
	14.2 Incorporating Java and Java EE Code in BPEL Processes
	14.2.1 How to Wrap Java Code as a SOAP Service
	14.2.2 What You May Need to Know About Wrapping Java Code as a SOAP Service
	14.2.3 How to Embed Java Code Snippets into a BPEL Process with the bpelx:exec Tag
	14.2.4 How to Embed Java Code Snippets in a BPEL 2.0 Process
	14.2.5 How to Use an XML Facade to Simplify DOM Manipulation
	14.2.6 How to Use bpelx:exec Built-in Methods
	14.2.7 How to Use Java Code Wrapped in a Service Interface

	14.3 Adding Custom Classes and JAR Files
	14.3.1 How to Add Custom Classes and JAR Files
	14.3.1.1 To Add JARs to BpelcClasspath:
	14.3.1.2 To Add Custom Classes:
	14.3.1.3 To Add Custom JARs:

	14.4 Using Java Embedding in a BPEL Process in Oracle JDeveloper
	14.4.1 How To Use Java Embedding in a BPEL Process in Oracle JDeveloper
	14.4.2 What You May Need to Know About Using thread.sleep() in a Java Embedding Activity

	14.5 Embedding Service Data Objects with bpelx:exec
	14.6 Sharing a Custom Implementation of a Class with Oracle BPEL Process Manager
	14.6.1 How to Configure the BPEL Connection Manager Class to Take Precedence

	15 Using Events and Timeouts in BPEL Processes
	15.1 Introduction to Event and Timeout Concepts
	15.2 Selecting Between Continuing or Waiting on a Process with a Pick Activity
	15.2.1 How To Create a Pick Activity
	15.2.2 What Happens When You Create a Pick Activity
	15.2.3 What You May Need to Know About Simultaneous onMessage Branches in BPEL 2.0

	15.3 Setting Timeouts for Request-Reply and In-Only Operations in Receive Activities
	15.3.1 How to Set Timeouts in Receive Activities
	15.3.2 What Happens When You Set Timeouts in Receive Activities
	15.3.3 What You May Need to Know About Setting Timeouts for Request-Reply and In-Only Operations
	15.3.3.1 Timeout Settings Relative from When the Activity is Invoked
	15.3.3.2 Timeout Settings as an Absolute Date Time
	15.3.3.3 Timeout Settings Computed Dynamically with an XPath Expression
	15.3.3.4 bpelx:timeout Fault Thrown During an Activity Timeout
	15.3.3.5 Event Added to the BPEL Instance Audit Trail During an Activity Timeout
	15.3.3.6 Recoverable Timeout Activities During a Server Restart (Refresh Expiration Alarm Table)

	15.4 Setting an Expiration Time with a Wait Activity
	15.4.1 How To Specify the Minimum Wait Time
	15.4.2 How to Create a Wait Activity
	15.4.3 What Happens When You Create a Wait Activity

	15.5 Specifying Events to Wait for Message Arrival with an OnEvent Branch in BPEL 2.0
	15.5.1 How to Create an onEvent Branch in a Scope Activity
	15.5.2 What Happens When You Create an OnEvent Branch

	15.6 Setting Timeouts for Durable Synchronous Processes
	15.7 Invoking an Oracle Enterprise Scheduler Job in a BPEL Process
	15.7.1 How to Create Oracle Database and SOA-MDS Connections
	15.7.2 How to Create a Schedule Job Activity
	15.7.3 How to Attach Security Policies to the Service and Reference Binding Components

	16 Coordinating Master and Detail Processes
	16.1 Introduction to Master and Detail Process Coordinations
	16.1.1 BPEL File Definition for the Master Process
	16.1.1.1 Correlating a Master Process with Multiple Detail Processes

	16.1.2 BPEL File Definition for Detail Processes

	16.2 Defining Master and Detail Process Coordination in Oracle JDeveloper
	16.2.1 How to Create a Master Process
	16.2.2 How to Create a Detail Process
	16.2.3 How to Create an Invoke Activity

	17 Using the Notification Service
	17.1 Introduction to the Notification Service
	17.2 Introduction to Notification Channel Setup
	17.3 Selecting Notification Channels During BPEL Process Design
	17.3.1 How To Configure the Email Notification Channel
	17.3.1.1 Setting Email Attachments
	17.3.1.2 Formatting the Body of an Email Message as HTML
	17.3.1.3 Using Dynamic HTML for Message Content Requires a CDATA Function

	17.3.2 How to Configure the IM Notification Channel
	17.3.3 How to Configure the SMS Notification Channel
	17.3.4 How to Select Email Addresses and Telephone Numbers Dynamically
	17.3.5 How to Select Notification Recipients by Browsing the User Directory

	17.4 Allowing the End User to Select Notification Channels
	17.4.1 How to Allow the End User to Select Notification Channels
	17.4.1.1 How to Create and Send Headers for Notifications

	18 Using Oracle BPEL Process Manager Sensors and Analytics
	18.1 Introduction to Oracle BPEL Process Manager Sensors
	18.1.1 Composite Sensors

	18.2 Configuring Sensors and Sensor Actions in Oracle JDeveloper
	18.2.1 How to Access Sensors and Sensor Actions
	18.2.2 How to Configure Activity, Variable, and Fault Sensors
	18.2.2.1 To Configure an Activity Sensor:
	18.2.2.2 To Configure a Variable Sensor:
	18.2.2.3 To Configure a Fault Sensor:

	18.2.3 How to Configure Sensor Actions
	18.2.4 How to Publish to Remote Topics and Queues
	18.2.5 How to Create a Custom Data Publisher
	18.2.6 How to Register the Sensors and Sensor Actions in the composite.xml File

	18.3 Viewing Sensors and Sensor Action Definitions in Oracle Enterprise Manager Fusion Middleware Control
	18.4 Configuring BPEL Process Analytics
	18.4.1 Introduction to Business Indicators
	18.4.2 Introduction to Standard Sampling Points
	18.4.3 Introduction to User-Defined Sampling Points
	18.4.4 How to Access Analytics View
	18.4.4.1 How to Define Business Indicators
	18.4.4.1.1 Defining Counters
	18.4.4.1.2 Defining Dimensions
	18.4.4.1.3 Defining Measures

	18.4.4.2 How to Define Measurements
	18.4.4.2.1 How to Define a Counter Mark
	18.4.4.2.2 How to Define an Interval Start
	18.4.4.2.3 How to Define an Interval Stop
	18.4.4.2.4 How to Define a Single Mark

	18.4.4.3 How to Configure Composite-Level Analytic Sampling Points
	18.4.4.4 How to Configure Process-Level Analytic Sampling Points

	18.4.5 How to Edit Business Indicators in the Business Indicator Overview Editor
	18.4.6 Deploying BPEL Analytics
	18.4.7 Viewing BPEL Analytics at Runtime

	Part III Using the Oracle Mediator Service Component
	19 Getting Started with Oracle Mediator
	19.1 Introduction to Oracle Mediator
	19.2 Mediator Functionality
	19.2.1 Content-Based and Header-Based Routing
	19.2.2 Synchronous and Asynchronous Interactions
	19.2.3 Sequential and Parallel Routing of Messages
	19.2.4 Message Resequencing
	19.2.5 Data Transformation
	19.2.6 Payload Validation
	19.2.7 Java Callouts
	19.2.8 Event Handling
	19.2.9 Dynamic Routing
	19.2.10 Error Handling
	19.2.11 Sending Messages Back to the Caller (Echo)
	19.2.12 Multiple Part Messages

	19.3 Creating a Mediator
	19.3.1 How to Create a Mediator
	19.3.1.1 To create a composite application with a Mediator:
	19.3.1.2 To create a Mediator in an existing composite application:
	19.3.1.3 To create a new project with a Mediator:
	19.3.1.4 To create a Mediator in an existing project:

	19.4 Introduction to the Mediator Editor Environment
	19.5 Configuring the Mediator Interface Definition
	19.5.1 How to Configure the Mediator Interface Definition
	19.5.2 What Happens When You Create a Mediator
	19.5.2.1 Without an Interface Definition
	19.5.2.2 With a WSDL-Based Interface
	19.5.2.3 With a One-Way Interface Definition
	19.5.2.4 With a Synchronous Interface Definition
	19.5.2.5 With an Asynchronous Interface Definition
	19.5.2.6 With an Event Subscription

	19.6 Defining an Interface for a Mediator
	19.6.1 How to Define an Interface for a Mediator
	19.6.1.1 To Subscribe to Events:
	19.6.1.2 To Define Services for a Mediator Using a Wire:
	19.6.1.3 To Define Services for a Mediator in the Mediator Editor:

	19.7 Generating a WSDL File
	19.7.1 How to Generate a WSDL File
	19.7.1.1 To generate a WSDL file for a one-way interface from an XSD file:
	19.7.1.2 To generate a WSDL file for a synchronous interface from an XSD file:
	19.7.1.3 To generate a WSDL file for an asynchronous interface from an XSD file:

	19.8 Specifying Validation and Priority Properties
	19.9 Modifying a Mediator Service Component
	19.9.1 How To Modify Mediator Operations
	19.9.2 How To Modify Mediator Event Subscriptions

	20 Creating Oracle Mediator Routing Rules
	20.1 Introduction to Routing Rules
	20.1.1 Static Routing Rules
	20.1.1.1 Types of Static Rules
	20.1.1.2 Static Routing Rule Components

	20.1.2 Dynamic Routing Rules
	20.1.3 Sequential and Parallel Execution
	20.1.3.1 Basic Principles of Sequential Routing Rules
	20.1.3.2 Basic Principles of Parallel Routing Rules
	20.1.3.3 Finer Control Over Thread Allocation in Parallel Routing

	20.2 Resequencing Rules
	20.3 Defining Routing Rules
	20.3.1 How To Access the Routing Rules Section
	20.3.1.1 From the SOA Composite Editor:
	20.3.1.2 From the Applications window:

	20.3.2 How to Create Static Routing Rules
	20.3.2.1 How to Specify Mediator Services or Events
	20.3.2.1.1 To invoke a service:
	20.3.2.1.2 To trigger an event:
	20.3.2.1.3 To echo a service:

	20.3.2.2 What You May Need to Know About Echoing a Service
	20.3.2.3 How to Specify Sequential or Parallel Execution
	20.3.2.4 How to Configure Response Messages
	20.3.2.5 How to Handle Premature Callbacks
	20.3.2.6 How to Handle Multiple Callbacks
	20.3.2.7 How to Handle Faults
	20.3.2.7.1 To define an additional fault routing:
	20.3.2.7.2 To remove a fault routing section:

	20.3.2.8 How to Specify an Expression for Filtering Messages
	20.3.2.8.1 To specify an expression for filtering messages:
	20.3.2.8.2 To specify a filter expression on a message payload:

	20.3.2.9 How to Translate Between Native XSD Formats and XML Formats
	20.3.2.10 How to Use Inbound Translation
	20.3.2.11 How to Use Outbound Translation
	20.3.2.12 How to Create XSLT Transformations
	20.3.2.12.1 To create a transformation:
	20.3.2.12.2 To add user-defined extension functions:

	20.3.2.13 How to Create XQuery Transformations
	20.3.2.13.1 To create an XQuery transformation:
	20.3.2.13.2 To edit an XQuery transformation:

	20.3.2.14 How to Assign Values
	20.3.2.14.1 To copy a source node to a target node:
	20.3.2.14.2 To assign complex expressions:
	20.3.2.14.3 To assign constant values and XML fragments:

	20.3.2.15 What You May Need to Know About the Assign Activity
	20.3.2.16 How to Access Headers for Filters and Assignments
	20.3.2.16.1 Manual Expression Building for Accessing Headers for Filters and Assignments
	20.3.2.16.2 Manual Expression Building for Accessing Properties for Filters and Assignments

	20.3.2.17 How to Use Semantic Validation
	20.3.2.18 How to Work with Attachments
	20.3.2.19 How to Use Java Callouts
	20.3.2.19.1 To make Java callout classes available:
	20.3.2.19.2 To enter the Java class for the callout:
	20.3.2.19.3 To set the payload root element (when using a filter expression):
	20.3.2.19.4 To enable domain value map and cross reference functions:
	20.3.2.19.5 Mediator Java Callout API
	20.3.2.19.6 Sample Java Callout Class

	20.3.3 How to Create Dynamic Routing Rules
	20.3.3.1 How to Dynamically Override a Static Routing Rule Using a DVM
	20.3.3.1.1 To override a static route using DVM:
	20.3.3.1.2 To add a new domain to the DVM:
	20.3.3.1.3 To add a new row to the DVM:
	20.3.3.1.4 To delete a domain from the DVM:
	20.3.3.1.5 To delete a row from the DVM:

	20.3.3.2 How to Dynamically Override a Static Routing Rule Using a Decision Component
	20.3.3.2.1 To override a static route using a Decision Component:
	20.3.3.2.2 To edit a decision component:

	20.3.3.3 How to Remove an Existing Dynamic Routing Rule

	20.3.4 What You May Need to Know About Using Dynamic Routing Rules
	20.3.5 How to Define Default Routing Rules
	20.3.5.1 Default Rule Scenarios
	20.3.5.2 Default Rule Target
	20.3.5.3 Default Rule: Validation, Transformation, and Assign Functionality
	20.3.5.4 Default Rule: Java Callouts
	20.3.5.5 Default Rule: Mediator .mplan File

	21 Working with Multiple Part Messages in Oracle Mediator
	21.1 Introduction to Mediator Multipart Message Support
	21.2 Working with Multipart Request Messages
	21.2.1 How to Specify Filter Expressions for Multipart Request Messages
	21.2.2 How to Add Validations for Multipart Request Messages
	21.2.3 How to Create Transformations for Multipart Request Messages
	21.2.4 How to Assign Values for Multipart Request Messages
	21.2.5 How to Work with Multipart Reply, Fault, and Callback Source Messages
	21.2.6 How to Work with Multipart Target Messages

	22 Using Oracle Mediator Error Handling
	22.1 Introduction to Mediator Error Handling
	22.1.1 Fault Policies
	22.1.1.1 Conditions
	22.1.1.2 Actions
	22.1.1.2.1 Retry Action
	22.1.1.2.2 Rethrow Action
	22.1.1.2.3 Human Intervention Action
	22.1.1.2.4 Abort Action
	22.1.1.2.5 Java Code Action

	22.1.2 Fault Bindings
	22.1.3 Error Groups in Mediator

	22.2 Using Error Handling with Mediator
	22.2.1 How to Use Error Handling for a Mediator Service Component
	22.2.2 What Happens at Runtime

	22.3 Fault Recovery Using Oracle Enterprise Manager Fusion Middleware Control
	22.4 Error Handling XML Schema Definition Files
	22.4.1 Schema Definition File for fault-policies.xml
	22.4.2 Schema Definition File for fault-bindings.xml

	23 Resequencing in Oracle Mediator
	23.1 Introduction to the Resequencer
	23.1.1 Groups and Sequence IDs
	23.1.2 Identification of Groups and Sequence IDs

	23.2 Resequencing Order
	23.2.1 Standard Resequencer
	23.2.1.1 Overview of the Standard Resequencer
	23.2.1.2 Information Required for Standard Resequencing
	23.2.1.3 Example of the Standard Resequencer

	23.2.2 FIFO Resequencer
	23.2.2.1 Overview of the FIFO Resequencer
	23.2.2.2 Information Required for FIFO Resequencing
	23.2.2.3 Example of the FIFO Resequencer

	23.2.3 Best Effort Resequencer
	23.2.3.1 Overview of the Best Effort Resequencer
	23.2.3.2 Best Effort Resequencer Message Selection Strategies
	23.2.3.2.1 Maximum Rows Selected
	23.2.3.2.2 Time Window

	23.2.3.3 Best Effort Resequencer Message Delivery
	23.2.3.4 Information Required for Best Effort Resequencing
	23.2.3.5 Example of Best Effort Resequencing Based on Maximum Rows
	23.2.3.6 Example of Best Effort Resequencing Based on a Time Window

	23.3 Configuring the Resequencer
	23.3.1 How to Specify the Resequencing Level
	23.3.2 How to Configure the Resequencing Strategy
	23.3.2.1 To configure a standard resequencer:
	23.3.2.2 To configure a FIFO resequencer:
	23.3.2.3 To configure a best effort resequencer:

	24 Understanding Message Exchange Patterns of an Oracle Mediator
	24.1 One-way Message Exchange Patterns
	24.1.1 The one.way.returns.fault Property
	24.1.1.1 To add the one.way.returns.fault property:

	24.2 Request-Reply Message Exchange Patterns
	24.3 Request-Reply-Fault Message Exchange Patterns
	24.4 Request-Callback Message Exchange Patterns
	24.5 Request-Reply-Callback Message Exchange Patterns
	24.6 Request-Reply-Fault-Callback Message Exchange Patterns

	Part IV Using the Business Rules Service Component
	25 Getting Started with Oracle Business Rules
	25.1 Introduction to the Business Rule Service Component
	25.1.1 Integrating BPEL Processes, Business Rules, and Human Tasks

	25.2 Overview of Rules Designer Editor Environment
	25.2.1 Applications Window
	25.2.2 Rules Designer Window
	25.2.3 Structure Window
	25.2.4 Business Rule Validation Log Window

	25.3 Introduction to Creating and Editing Business Rules
	25.3.1 How to Create Business Rules Components
	25.3.2 Working with Business Rules in Rules Designer

	25.4 Adding Business Rules to a BPEL Process
	25.4.1 How to Add Inputs for Business Rule
	25.4.2 How to Add Outputs for Business Rule
	25.4.3 How to Set Options and Create Decision Service and Business Rule Dictionary
	25.4.4 What Happens When You Add Business Rules to a BPEL Process
	25.4.5 What Happens When You Create a Business Rules Dictionary
	25.4.6 What You May Need to Know About Invoking Business Rules in a BPEL Process
	25.4.7 What You May Need to Know About Decision Component Stateful Operation

	25.5 Adding Business Rules to a SOA Composite Application
	25.5.1 How to Add Business Rules to a SOA Composite Application
	25.5.1.1 How to Add Inputs to a Business Rule
	25.5.1.2 How to Add Output to a Business Rule
	25.5.1.3 How to Set Options and Create Decision Service and Business Rules Dictionary

	25.5.2 How to Select and Modify a Decision Function in a Business Rule Component

	25.6 Running Business Rules in a Composite Application
	25.6.1 What You May Need to Know About Testing a Standalone Decision Service Component

	25.7 Using Business Rules with Oracle ADF Business Components Fact Types

	26 Using Declarative Components and Task Flows
	26.1 Introduction to Declarative Components and Task Flows
	26.2 Introduction to the Oracle Business Rules Editor Declarative Component
	26.2.1 Using the Oracle Business Rules Editor Component
	26.2.2 How to Create and Run a Sample Application by Using the Rules Editor Component
	26.2.2.1 How to Create the RuleSetModel Object
	26.2.2.2 How to Create the .jspx File
	26.2.2.3 How to Refer to the Oracle Rules Shared Libraries
	26.2.2.4 How to Run the Sample Application

	26.2.3 How to Deploy a Rules Editor Application to a Standalone WLS
	26.2.4 What You May Need to Know About the Custom Permissions for the Rules Editor Component
	26.2.5 What You May Need to Know About the Supported Tags of the Rules Editor Component

	26.3 Introduction to the Oracle Business Rules Dictionary Editor Declarative Component
	26.3.1 Using the Oracle Business Rules Dictionary Component
	26.3.2 How to Create and Run a Sample Application by Using the Rules Dictionary Editor Component
	26.3.2.1 How to Create the RuleDictionaryModel Object
	26.3.2.2 How to Create .jspx File for the Rules Dictionary Editor Component
	26.3.2.3 How to Refer the oracle.rules and the oracle.soa.rules_dict_dc.webapp Shared Libraries
	26.3.2.4 How to Run the Sample Rules Dictionary Editor Application

	26.3.3 How to Deploy a Rules Dictionary Application to a Standalone Oracle WebLogic Server
	26.3.4 What You May Need to Know About the Supported Attributes of the Rules Dictionary Editor Component

	26.4 Introduction to the Oracle Business Rules Dictionary Editor Task Flow
	26.4.1 Using the Oracle Business Rules Dictionary Task Flow
	26.4.2 How to Create and Run a Sample Application By Using the Rules Dictionary Editor Task Flow
	26.4.2.1 How to Add a Rule Dictionary Editor Task Flow
	26.4.2.2 How to Edit the pagedef.xml File
	26.4.2.3 How to Refer to oracle.rules and oracle.soa.rules_dict_dc.webapp Shared Libraries
	26.4.2.4 How to Run the Sample Task Flow Application

	26.4.3 How to Deploy a Rules Dictionary Editor Task Flow Application to a Standalone Oracle WebLogic Server

	26.5 Localizing the ADF-Based Web Application
	26.6 Working with Translations
	26.6.1 Enabling Translations for Consumer of Reusable Rules UI ADF Task Flow Component
	26.6.1.1 Sample Code to Pass an Implementation of IRelatedMetadataDetails

	26.6.2 Enabling Translations for Consumer of Rules Web UI Application
	26.6.2.1 Sample Code for Creating an Instance of resourceManager

	Part V Using the Human Workflow Service Component
	27 Getting Started with Human Workflow
	27.1 Introduction to Human Workflow
	27.2 Introduction to Human Workflow Concepts
	27.2.1 Introduction to Design and Runtime Concepts
	27.2.1.1 Task Assignment and Routing
	27.2.1.1.1 Participant
	27.2.1.1.2 Participant Type
	27.2.1.1.3 Participant Assignment
	27.2.1.1.4 Ad Hoc Routing
	27.2.1.1.5 Outcome-based Completion of Routing Flow

	27.2.1.2 Static, Dynamic, and Rule-Based Task Assignment
	27.2.1.2.1 Static Task Assignment
	27.2.1.2.2 Dynamic Task Assignment
	27.2.1.2.3 Assign tasks with Business Rules

	27.2.1.3 Task Stakeholders
	27.2.1.4 Task Deadlines
	27.2.1.5 Notifications
	27.2.1.6 Task Forms
	27.2.1.7 Advanced Concepts
	27.2.1.8 Reports and Audit Trails

	27.2.2 Introduction to the Stages of Human Workflow Design

	27.3 Introduction to Human Workflow Use Cases
	27.3.1 Task Assignment to a User or Role
	27.3.2 Use of the Various Participant Types
	27.3.3 Escalation, Expiration, and Delegation
	27.3.4 Automatic Assignment and Delegation
	27.3.5 Dynamic Assignment of Users Based on Task Content

	27.4 Introduction to Human Workflow Architecture
	27.4.1 Human Workflow Services
	27.4.2 Use of Human Task
	27.4.3 Service Engines

	27.5 Human Workflow and Business Rule Differences Between Oracle SOA Suite and Oracle BPM Suite

	28 Creating Human Tasks
	28.1 Introduction to Human Tasks
	28.1.1 Introduction to Creating a Human Task Definition
	28.1.2 Introduction to Associating the Human Task Definition with a BPEL Process
	28.1.3 Introduction to Generating the Task Form

	28.2 Creating Human Tasks
	28.2.1 How to Create a Human Task Using the SOA Composite Editor
	28.2.2 How to Create a Human Task Using Oracle BPEL Designer
	28.2.3 What Happens When You Create a Human Task

	28.3 Configuring Human Tasks
	28.4 Exiting the Human Task Editor and Saving Your Changes
	28.5 Associating Human Tasks with BPEL Processes
	28.5.1 How to Associate a Human Task with a BPEL Process
	28.5.2 What You May Need to Know About Deleting a Wire Between a Human Task and a BPEL Process
	28.5.3 How to Define the Human Task Activity Title, Initiator, Priority, and Parameter Variables
	28.5.3.1 Specifying the Task Title
	28.5.3.2 Specifying the Task Initiator and Task Priority
	28.5.3.3 Specifying Task Parameters

	28.5.4 How to Define the Human Task Activity Advanced Features
	28.5.4.1 Specifying a Scope Name and a Global Task Variable Name
	28.5.4.2 Specifying a Task Owner
	28.5.4.3 Specifying an Identification Key
	28.5.4.4 Specifying an Identity Context
	28.5.4.5 Specifying an Application Context
	28.5.4.6 Including the Task History of Other Human Tasks

	28.5.5 How to View the Generated Human Task Activity
	28.5.5.1 Invoking BPEL Callbacks

	28.5.6 What You May Need to Know About Changing the Generated Human Task Activity
	28.5.7 What You May Need to Know About Deleting a Partner Link Generated by a Human Task
	28.5.8 How to Define Outcome-Based Modeling
	28.5.8.1 Specifying Payload Updates
	28.5.8.2 Using Case Statements for Other Task Conclusions

	28.5.9 What You May Need to Know About Encoding an Attachment

	29 Configuring Human Tasks
	29.1 Accessing the Sections of the Human Task Editor
	29.2 Specifying the Title, Description, Outcome, Priority, Category, Owner, and Application Context
	29.2.1 How to Specify a Task Title
	29.2.2 How to Specify a Task Description
	29.2.3 How to Specify a Task Outcome
	29.2.4 How to Specify a Task Priority
	29.2.5 How to Specify a Task Category
	29.2.6 How to Specify a Task Owner
	29.2.6.1 Specifying a Task Owner Statically Through the User Directory or a List of Application Roles
	29.2.6.2 Specifying a Task Owner Dynamically Through an XPath Expression

	29.2.7 How To Specify an Application Context

	29.3 Specifying the Task Payload Data Structure
	29.3.1 How to Specify the Task Payload Data Structure

	29.4 Assigning Task Participants
	29.4.1 How to Specify a Stage Name and Add Parallel and Sequential Blocks
	29.4.2 How to Assign Task Participants
	29.4.3 How to Configure the Single Participant Type
	29.4.3.1 Creating a Single Task Participant List
	29.4.3.1.1 Creating Participant Lists Consisting of Value-Based Names and Expressions
	29.4.3.1.2 Creating Participant Lists Consisting of Value-Based Management Chains
	29.4.3.1.3 Creating Participant Lists Consisting of Rulesets
	29.4.3.1.3.1 Viewing the Rule Dictionary

	29.4.3.2 Specifying a Time Limit for Acting on a Task
	29.4.3.3 Inviting Additional Participants to a Task
	29.4.3.4 Bypassing a Task Participant

	29.4.4 How to Configure the Parallel Participant Type
	29.4.4.1 Specifying the Voting Outcome
	29.4.4.2 Creating a Parallel Task Participant List
	29.4.4.3 Specifying a Time Limit for Acting on a Task
	29.4.4.4 Inviting Additional Participants to a Task
	29.4.4.5 Bypassing a Task Participant

	29.4.5 How to Configure the Serial Participant Type
	29.4.5.1 Creating a Serial Task Participant List
	29.4.5.2 Specifying a Time Limit for Acting on a Task
	29.4.5.3 Inviting Additional Participants to a Task
	29.4.5.4 Bypassing a Task Participant

	29.4.6 How to Configure the FYI Participant Type
	29.4.6.1 Creating an FYI Task Participant List

	29.5 Selecting a Routing Policy
	29.5.1 How to Customize Tasks Routing
	29.5.1.1 Exclude Task Creator from Approval List
	29.5.1.2 Allow All Participants to Invite Other Participants or Edit New Participants
	29.5.1.3 Allow Initiator to Add Participants
	29.5.1.4 Stopping Routing of a Task to Further Participants
	29.5.1.4.1 Enabling Early Completion in Parallel Subtasks
	29.5.1.4.2 Completing Parent Subtasks of Early Completing Subtasks

	29.5.2 How to Specify Advanced Task Routing Using Business Rules
	29.5.2.1 Introduction to Advanced Task Routing Using Business Rules
	29.5.2.2 Facts
	29.5.2.3 Action Types
	29.5.2.4 Sample Ruleset
	29.5.2.5 Linked Dictionary Support
	29.5.2.6 Creating Advanced Routing Rules

	29.5.3 How to Use External Routing
	29.5.4 How to Configure the Error Assignee and Reviewers
	29.5.4.1 How to Change Server Settings

	29.6 Specifying Multilingual Settings and Style Sheets
	29.6.1 How to Specify WordML and Other Style Sheets for Attachments
	29.6.2 How to Specify Multilingual Settings

	29.7 Specifying What to Show in Task Details in the Worklist
	29.8 Escalating, Renewing, or Ending the Task
	29.8.1 Introduction to Escalation and Expiration Policy
	29.8.2 How to Specify a Policy to Never Expire
	29.8.3 How to Specify a Policy to Expire
	29.8.4 How to Extend an Expiration Policy Period
	29.8.5 How to Escalate a Task Policy
	29.8.6 How to Specify Escalation Rules
	29.8.7 How to Specify a Due Date

	29.9 Specifying Participant Notification Preferences
	29.9.1 How to Notify Recipients of Changes to Task Status
	29.9.2 How to Edit the Notification Message
	29.9.3 How to Set Up Reminders
	29.9.4 How to Change the Character Set Encoding
	29.9.5 How to Secure Notifications to Exclude Details
	29.9.6 How to Display the Oracle BPM Worklist URL in Notifications
	29.9.7 How to Make Email Messages Actionable
	29.9.8 How to Send Task Attachments with Email Notifications
	29.9.9 How to Send Email Notifications to Groups and Application Roles
	29.9.10 How to Customize Notification Headers

	29.10 Specifying Access Policies and Task Actions on Task Content
	29.10.1 Introduction to Access Rules
	29.10.2 Specifying User Privileges for Acting on Task Content
	29.10.3 Specifying Actions for Acting Upon Tasks
	29.10.4 How to Specify a Workflow Digital Signature Policy
	29.10.4.1 Specifying a Certificate Authority

	29.11 Specifying Restrictions on Task Assignments
	29.11.1 How to Specify Restrictions on Task Assignments

	29.12 Specifying Java or Business Event Callbacks
	29.12.1 Specifying Java Callbacks
	29.12.2 Specifying Business Event Callbacks
	29.12.3 How to Specify Task and Routing Customizations in BPEL Callbacks
	29.12.4 How to Disable BPEL Callbacks

	30 Designing Task Forms for Human Tasks
	30.1 Introduction to the Task Form
	30.1.1 What You May Need to Know About Task Forms: Time Zone Conversion

	30.2 Associating the Task Flow with the Task Service
	30.3 Creating an ADF Task Flow Based on a Human Task
	30.3.1 How To Create an ADF Task Flow from the Human Task Editor
	30.3.2 How To Create an ADF Task Flow Based on a Human Task
	30.3.3 What Happens When You Create an ADF Task Flow Based on a Human Task
	30.3.4 What You May Need to Know About Having Multiple ADF Task Flows That Contain the Same Element with Different Meta-attributes

	30.4 Creating a Task Form
	30.4.1 How To Create an Autogenerated Task Form
	30.4.2 How to Register the Library JAR File for Custom Page Templates
	30.4.3 How To Create a Task Form Using the Custom Task Form Wizard
	30.4.4 How To Create a Task Form Using the Complete Task with Payload Drop Handler
	30.4.4.1 Complete Task with Payload
	30.4.4.2 Complete Task without Payload
	30.4.4.3 Task Details for Email
	30.4.4.4 Task Header
	30.4.4.5 Task Actions
	30.4.4.6 Task History
	30.4.4.7 Task Comments and Attachments

	30.4.5 How To Create Task Form Regions Using Individual Drop Handlers
	30.4.6 How To Add the Payload to the Task Form
	30.4.7 What Happens When You Create a Task Form

	30.5 Refreshing Data Controls When the Task XSD Changes
	30.6 Securing the Task Flow Application
	30.7 Creating an Email Notification
	30.7.1 How To Create an Email Notification
	30.7.1.1 Creating a Task Flow with a Router
	30.7.1.2 Creating an Email Notification Page

	30.7.2 What Happens When You Create an Email Notification Page

	30.8 Deploying a Composite Application with a Task Flow
	30.8.1 How To Deploy a Composite Application with a Task Flow
	30.8.2 How To Redeploy the Task Form
	30.8.3 How To Deploy a Task Flow as a Separate Application
	30.8.4 How To Deploy a Task Form to a non-SOA Oracle WebLogic Server
	30.8.4.1 Before Deploying the Task Form: Port Changes
	30.8.4.2 Configuring Unique Cookie Context Paths for the Session Tracking Cookies
	30.8.4.3 Deploying oracle.soa.workflow.jar to a non-SOA Oracle WebLogic Server
	30.8.4.4 Defining the Foreign JNDI Provider on a non-SOA Oracle WebLogic Server
	30.8.4.5 Defining the Foreign JNDI Provider Links on a non-SOA Oracle WebLogic Server
	30.8.4.6 Including a Grant for bpm-services.jar
	30.8.4.7 Deploying the Application

	30.8.5 What Happens When You Deploy the Task Form
	30.8.6 What You May Need to Know About Undeploying a Task Flow

	30.9 Displaying a Task Form in the Worklist
	30.10 Displaying a Task in an Email Notification
	30.10.1 Changing the Text for the Worklist Application in Task Notifications
	30.10.2 Changing the URL of the Worklist Application in Task Notifications

	30.11 Reusing the Task Flow Application with Multiple Human Tasks
	30.11.1 How To Reuse the Task Flow Application with Multiple Human Tasks
	30.11.2 How to Reuse the Task Flow Application with Different Actions

	31 Human Workflow Tutorial
	31.1 Introduction to the Human Workflow Tutorial
	31.2 Prerequisites
	31.3 Creating an Application and a Project with a BPEL Process
	31.4 Creating the Human Task Service Component
	31.5 Designing the Human Task
	31.6 Associating the Human Task and BPEL Process Service Components
	31.7 Creating a Task Form Project
	31.8 Deploying the Task Form
	31.9 Creating an Application Server Connection
	31.10 Deploying the SOA Composite Application
	31.11 Initiating the Process Instance
	31.12 Acting on the Task in Oracle BPM Worklist

	32 Using Oracle BPM Worklist
	32.1 Introduction to Oracle BPM Worklist
	32.2 Logging In to Oracle BPM Worklist
	32.2.1 How to Log In to the Worklist
	32.2.1.1 Enabling the weblogic User for Logging in to the Worklist

	32.2.2 What Happens When You Log In to the Worklist
	32.2.3 What Happens When You Change a User's Privileges While They are Logged in to Oracle BPM Worklist

	32.3 Customizing the Task List Page
	32.3.1 How To Filter Tasks
	32.3.1.1 To Filter Tasks Based on Assignee or State
	32.3.1.2 To Filter Tasks Based on Keyword Search
	32.3.1.3 To Filter Tasks Based on an Advanced Search

	32.3.2 How To Create, Delete, and Customize Worklist Views
	32.3.2.1 To Customize a Worklist View

	32.3.3 How To Customize the Task Status Chart
	32.3.4 How To Create a ToDo Task
	32.3.5 How to Create Subtasks in the Worklist Application
	32.3.5.1 What You May Need to Know About Creating Subtasks

	32.4 Exporting Tasks to Microsoft Excel
	32.4.1 How to Export Tasks to Excel

	32.5 Acting on Tasks: The Task Details Page
	32.5.1 System Actions
	32.5.2 Task History
	32.5.3 How To Act on Tasks
	32.5.3.1 To Request Information
	32.5.3.2 To Route a Task
	32.5.3.3 To Add Comments or Attachments

	32.5.4 How To Act on Tasks That Require a Digital Signature

	32.6 Approving Tasks
	32.7 Setting a Vacation Period
	32.8 Setting Rules
	32.8.1 How To Create User Rules
	32.8.2 How To Create Group Rules
	32.8.3 Assignment Rules for Tasks with Multiple Assignees
	32.8.4 How to Avoid Circular Logic in Reassigned Vacation Rules

	32.9 Using the Worklist Administration Functions
	32.9.1 How To Manage Other Users' or Groups' Rules (as an Administrator)
	32.9.2 How to Specify the Login Page Realm Label
	32.9.3 How to Specify the Resource Bundle
	32.9.4 How to Specify the Language Locale Information
	32.9.5 How to Specify User Name Format
	32.9.6 How to Specify a Branding Logo
	32.9.7 How to Specify the Branding Title
	32.9.8 How to Choose a Skin
	32.9.8.1 To Choose A Skin
	32.9.8.2 To Create a JAR File Containing Customized Skins

	32.9.9 How to Enable Customized Applications and Links
	32.9.10 How to Specify an Image for a Task Action
	32.9.11 Specifying Additional Process Workspace Settings

	32.10 Specifying Notification Settings
	32.10.1 Configuring Alias for Notification Email ID
	32.10.2 Messaging Filter Rules
	32.10.2.1 Data Types
	32.10.2.2 Attributes

	32.10.3 Rule Actions
	32.10.4 Managing Messaging Channels
	32.10.4.1 Viewing Your Messaging Channels
	32.10.4.2 Creating, Editing, and Deleting a Messaging Channel

	32.10.5 Managing Messaging Filters
	32.10.5.1 Viewing Messaging Filters
	32.10.5.2 Creating Messaging Filters
	32.10.5.3 Editing a Messaging Filter
	32.10.5.4 Deleting a Messaging Filter

	32.11 Using Mapped Attributes (Flex Fields)
	32.11.1 How To Map Attributes
	32.11.1.1 To Create Labels
	32.11.1.2 To Browse All Mappings
	32.11.1.3 To Edit Mappings by Task Type

	32.11.2 Custom Mapped Attributes

	32.12 Creating Worklist Reports
	32.12.1 How To Create Reports
	32.12.2 What Happens When You Create Reports
	32.12.2.1 Unattended Tasks Report
	32.12.2.2 Tasks Priority Report
	32.12.2.3 Tasks Cycle Time Report
	32.12.2.4 Tasks Productivity Report

	32.13 Accessing Oracle BPM Worklist in Local Languages and Time Zones
	32.13.1 Strings in Oracle BPM Worklist
	32.13.2 How to Change the Preferred Language, Display Names of Users, and Time Zone Settings if the Identity Store is LDAP-Based
	32.13.3 How to Change the Language in Which Tasks Are Displayed
	32.13.4 How To Change the Language Preferences from a JAZN XML File
	32.13.5 What You May Need to Know Setting Display Languages in Worklist
	32.13.6 How To Change the Time Zone Used in the Worklist

	32.14 Creating Reusable Worklist Regions
	32.14.1 How to Create an Application With an Embedded Reusable Worklist Region
	32.14.2 How to Set Up the Deployment Profile
	32.14.3 How to Prepare Federated Mode Task Flows For Deployment
	32.14.4 What You May Need to Know About Task List Task Flow
	32.14.5 What You May Need to Know About Certificates Task Flow
	32.14.6 What You May Need to Know About the Reports Task Flow
	32.14.7 What You May Need to Know About Application Preferences Task Flow
	32.14.8 What You May Need to Know About Mapped Attributes Task Flow
	32.14.9 What You May Need to Know About Rules Task Flow
	32.14.10 What You May Need to Know About Approval Groups Task Flow
	32.14.11 What You May Need to Know About Task Configuration Task Flow

	32.15 Java Code for Enabling Customized Applications in Oracle BPM Worklist

	33 Building a Custom Worklist Client
	33.1 Introduction to Building Clients for Workflow Services
	33.2 Packages and Classes for Building Clients
	33.3 Workflow Service Clients
	33.3.1 The IWorkflowServiceClient Interface

	33.4 Class Paths for Clients Using SOAP
	33.5 Class Paths for Clients Using Remote EJBs
	33.6 Initiating a Task
	33.6.1 Creating a Task
	33.6.2 Creating a Payload Element in a Task
	33.6.3 Initiating a Task Programmatically

	33.7 Changing Workflow Standard View Definitions
	33.8 Writing a Worklist Application Using the HelpDeskUI Sample

	34 Understanding Human Workflow Services
	34.1 Introduction to Human Workflow Services
	34.1.1 SOAP, Enterprise JavaBeans, and Java Support for the Human Workflow Services
	34.1.1.1 Support for Foreign JNDI Names

	34.1.2 Security Model for Services
	34.1.2.1 Limitation on Propagating Identity to Workflow Services when Using SOAP Web Services
	34.1.2.2 Creating Human Workflow Context on Behalf of a User
	34.1.2.3 Obtaining the Workflow Context for a User Previously Authenticated by a JAAS Application

	34.1.3 Task Service
	34.1.4 Task Query Service
	34.1.5 Identity Service
	34.1.5.1 Identity Service Providers
	34.1.5.1.1 Custom User Repository Plug-ins

	34.1.6 Task Metadata Service
	34.1.7 User Metadata Service
	34.1.8 Task Report Service
	34.1.9 Runtime Config Service
	34.1.9.1 Internationalization of Attribute Labels

	34.1.10 Evidence Store Service and Digital Signatures
	34.1.10.1 Prerequisites
	34.1.10.2 Interfaces and Methods

	34.1.11 Task Instance Attributes

	34.2 Notifications from Human Workflow
	34.2.1 Contents of Notification
	34.2.2 Error Message Support
	34.2.3 Reliability Support
	34.2.4 Management of Oracle Human Workflow Notification Service
	34.2.5 How to Configure the Notification Channel Preferences
	34.2.6 How to Configure Notification Messages in Different Languages
	34.2.7 How to Send Actionable Messages
	34.2.7.1 How to Send Actionable Emails for Human Tasks

	34.2.8 How to Send Inbound and Outbound Attachments
	34.2.9 How to Send Inbound Comments
	34.2.10 How to Send Secure Notifications
	34.2.11 How to Set Channels Used for Notifications
	34.2.12 How to Send Reminders
	34.2.13 How to Set Automatic Replies to Unprocessed Messages
	34.2.14 How to Create Custom Notification Headers

	34.3 Assignment Service Configuration
	34.3.1 Dynamic Assignment and Task Escalation Patterns
	34.3.1.1 How to Implement a Dynamic Assignment Pattern
	34.3.1.2 How to Configure Dynamic Assignment Patterns
	34.3.1.3 How to Configure Display Names for Dynamic Assignment Patterns
	34.3.1.4 How to Implement a Task Escalation Pattern

	34.3.2 Dynamically Assigning Task Participants with the Assignment Service
	34.3.2.1 How to Implement an Assignment Service
	34.3.2.2 Example of Assignment Service Implementation
	34.3.2.3 How to Deploy a Custom Assignment Service

	34.3.3 Custom Escalation Function

	34.4 Class Loading for Callbacks and Resource Bundles
	34.5 Resource Bundles in Workflow Services
	34.5.1 Task Resource Bundles
	34.5.2 Global Resource Bundle – WorkflowLabels.properties
	34.5.3 Worklist Client Resource Bundles
	34.5.4 Task Detail ADF Task Flow Resource Bundles
	34.5.5 Specifying Stage and Participant Names in Resource Bundles
	34.5.6 Case Sensitivity in Group and Application Role Names

	34.6 Introduction to Human Workflow Client Integration with Oracle WebLogic Server Services
	34.6.1 Human Workflow Services Clients
	34.6.1.1 Task Query Service Client Code
	34.6.1.2 Configuration Option
	34.6.1.2.1 JAXB Object
	34.6.1.2.2 Workflow Client Configuration File - wf_client_config.xml
	34.6.1.2.3 Workflow Client Configuration in the Property Map

	34.6.1.3 Client Logging
	34.6.1.4 Configuration Migration Utility

	34.6.2 Identity Propagation
	34.6.2.1 Enterprise JavaBeans Identity Propagation
	34.6.2.1.1 Client Configuration
	34.6.2.1.2 Requirements for Client Applications For Identity Propagation

	34.6.2.2 SAML Token Identity Propagation for SOAP Client
	34.6.2.2.1 Client configuration
	34.6.2.2.1.1 Identity Propagation Mode Setting Through Properties
	34.6.2.2.1.2 Identity Propagation Mode Setting in Configuration File
	34.6.2.2.1.3 Identity Propagation Mode Setting Through the JAXB Object

	34.6.2.3 Public Key Alias

	34.6.3 Client JAR Files

	34.7 Task States in a Human Task
	34.8 Database Views for Oracle Workflow
	34.8.1 Unattended Tasks Report View
	34.8.2 Task Cycle Time Report View
	34.8.3 Task Productivity Report View
	34.8.4 Task Priority Report View

	Part VI Using Binding Components
	35 Getting Started with Binding Components
	35.1 Introduction to Binding Components
	35.1.1 SOAP Web Services
	35.1.1.1 WS-AtomicTransaction Support
	35.1.1.1.1 Ensuring Participation of BPEL Processes in WS-AT
	35.1.1.1.2 WS-AT Transactions are Not Supported When Optimization is Enabled

	35.1.2 HTTP Binding Service
	35.1.2.1 Supported Interactions
	35.1.2.2 How to Configure the HTTP Binding Service
	35.1.2.3 How to Enable Basic Authentication for HTTP Binding

	35.1.3 JCA Adapters
	35.1.3.1 Database Adapter
	35.1.3.2 File Adapter
	35.1.3.3 FTP Adapter
	35.1.3.4 AQ Adapter
	35.1.3.5 JMS Adapter
	35.1.3.6 MQ Adapter
	35.1.3.7 Socket Adapter
	35.1.3.8 Third-Party Adapter
	35.1.3.9 Oracle User Messaging Service Adapter
	35.1.3.10 LDAP Adapter
	35.1.3.11 Coherence Adapter
	35.1.3.12 JCA Adapter Properties

	35.1.4 Oracle E-Business Suite Adapter
	35.1.5 Oracle BAM 11g Adapter
	35.1.6 Oracle B2B
	35.1.7 Oracle Healthcare Adapter
	35.1.8 Oracle MFT
	35.1.9 ADF-BC Services
	35.1.10 EJB Adapter
	35.1.11 Direct Binding Adapter
	35.1.12 REST Binding
	35.1.13 Cloud Adapters

	35.2 Introduction to Integrating a Binding Component in a SOA Composite Application
	35.2.1 How to Integrate a Binding Component in a SOA Composite Application
	35.2.2 How to Use ADF Binding to Invoke a Composite Application from a JSP/Java Class
	35.2.3 Create an Oracle Integration Connection

	35.3 Creating Tokens for Use in the Binding URLs of External References
	35.3.1 How to Create Tokens for Use in the Binding URLs of External References

	36 Integrating REST Operations in SOA Composite Applications
	36.1 Introduction to REST Support
	36.2 Creating REST Support in Service and Reference Binding Components
	36.2.1 How to Configure the REST Binding Component in a SOA Composite Application
	36.2.1.1 REST Operation Binding Dialog
	36.2.1.2 REST Method Definition Dialog
	36.2.1.3 Example: REST Enable an Existing Service Component
	36.2.1.4 Example: Adding Resources and Operations from a WADL Service to a REST Reference

	36.2.2 How to Consume REST-Based Integrations Created in Oracle Integration in SOA Composite Applications
	36.2.2.1 Create an Oracle Integration Connection
	36.2.2.2 Create a REST Binding
	36.2.2.3 Configure OWSM Policies on the REST Reference
	36.2.2.4 Configure and Deploy the Application

	36.2.3 How to Configure the REST Adapter Through Shortcuts
	36.2.3.1 To generate a REST service based on a web service deployed on an application server:
	36.2.3.2 To generate a REST reference based on a REST service deployed on an application server:
	36.2.3.3 To generate a REST service based on a SOA component's WSDL service:

	36.2.4 How to Generate Schemas Manually
	36.2.5 How to Generate Schemas from Samples
	36.2.6 How to Use Global Token Variables
	36.2.7 How to Set REST Header Properties
	36.2.7.1 Inbound and Outbound Headers
	36.2.7.2 Custom Header Support

	36.2.8 What You May Need to Know About REST Fault Binding
	36.2.9 What You May Need to Know About Converting a JSON Interchange Format to a REST Schema
	36.2.10 What You May Need to Know About REST References Calling REST Services in the Same Node

	36.3 Using JavaScript and JSON in BPEL Components
	36.4 Testing the REST Adapter with the HTTP Analyzer
	36.5 Testing and Configuring REST Reference Binding Components in Oracle Enterprise Manager Fusion Middleware Control

	37 Integrating Enterprise JavaBeans with Composite Applications
	37.1 Introduction to Enterprise JavaBeans Binding Integration with SOA Composite Applications
	37.1.1 Integration Through Java Interfaces
	37.1.2 Integration Through SDO-Based EJBs

	37.2 Designing an SDO-Based Enterprise JavaBeans Application
	37.2.1 How to Create SDO Objects Using the SDO Compiler
	37.2.2 How to Create a Session Bean and Import the SDO Objects
	37.2.3 How to Create a Profile and an EAR File
	37.2.4 How to Define the SDO Types with an Enterprise JavaBeans Bean
	37.2.5 How to Use Web Service Annotations
	37.2.6 How to Deploy the Enterprise JavaBeans EAR File

	37.3 Creating an Enterprise JavaBeans Service in Oracle JDeveloper
	37.3.1 How to Integrate Java Interface-based Enterprise JavaBeans with SOA Composite Applications
	37.3.2 How to Integrate SDO-based Enterprise JavaBeans with SOA Composite Applications

	37.4 Designing an Enterprise JavaBeans Client to Invoke Oracle SOA Suite
	37.4.1 How to Create a Java Interface-Based Client to Invoke Oracle SOA Suite
	37.4.2 How to Invoke an SDO-Enterprise JavaBeans Service

	37.5 Specifying Enterprise JavaBeans Roles
	37.6 Configuring Enterprise JavaBeans Binding Support in the Credential Store Framework
	37.6.1 How to Configure Enterprise JavaBeans Binding Support in the Credential Store Framework
	37.6.1.1 To configure Enterprise JavaBeans binding support in the credential store framework:
	37.6.1.2 To specify the oracle.jps.credstore.map and oracle.jps.credstore.key properties
	37.6.1.3 To grant SOA infrastructure runtime access to the CSF map store

	38 Using Direct Binding to Invoke Composite Services
	38.1 Introduction to Direct Binding
	38.1.1 Direct Service Binding Component
	38.1.2 Direct Reference Binding Component

	38.2 Introduction to the Direct Binding Invocation API
	38.2.1 Synchronous Direct Binding Invocation
	38.2.2 Asynchronous Direct Binding Invocation
	38.2.3 Required JAR Files for Compiling and Running the Direct Binding Java Client Code
	38.2.4 SOA Direct Address Syntax
	38.2.5 SOA Transaction Propagation

	38.3 Exception Handling with SOA Direct Transport
	38.4 Invoking a SOA Composite Application in Oracle JDeveloper with the Invocation API
	38.4.1 How to Create an Inbound Direct Binding Service
	38.4.2 How to Create an Outbound Direct Binding Reference
	38.4.3 How to Set an Identity for J2SE Clients Invoking Direct Binding
	38.4.4 What You May Need to Know About Invoking SOA Composites on Hosts with the Same Server and Domain Names

	38.5 Samples Using the Direct Binding Invocation API

	Part VII Sharing Functionality Across Service Components
	39 Oracle SOA Suite Templates and Reusable Subprocesses
	39.1 Introduction to Oracle SOA Suite Templates
	39.2 Introduction to Standalone and Inline BPEL Subprocess Invocations
	39.2.1 Introduction to a Standalone Subprocess
	39.2.2 Introduction to an Inline Subprocess

	39.3 Differences Between Oracle SOA Suite Templates and Reusable Subprocesses
	39.4 Creating Oracle SOA Suite Templates
	39.4.1 Creating and Using a SOA Project Template
	39.4.1.1 How To Create a SOA Project Template
	39.4.1.2 How to Use a Composite Template in Another SOA Composite

	39.4.2 Creating and Using a Service Component Template
	39.4.2.1 How to Create a Service Component Template
	39.4.2.2 How to Use a Service Component Template in Another SOA Composite

	39.4.3 Creating and Using a BPEL Scope Activity Template
	39.4.3.1 How to Create a BPEL Scope Activity Template
	39.4.3.2 How to Use a BPEL Scope Activity Template in Another BPEL Process

	39.4.4 Managing Templates

	39.5 Creating Standalone and Inline BPEL Subprocesses in a BPEL Process
	39.5.1 How to Create a Standalone BPEL Subprocess
	39.5.2 How to Create an Inline Subprocess
	39.5.3 How to Create a Standalone Subprocess that Takes a Partner Link as a Parameter
	39.5.4 What You May Need to Know About Renaming a Subprocess

	40 Creating Transformations with the XSLT Map Editor
	40.1 Introduction to the XSLT Map Editor
	40.1.1 Using the Map View
	40.1.2 Using the XSLT View
	40.1.3 Using the Components Window
	40.1.4 Using the Properties Window

	40.2 Creating an XSLT Map
	40.2.1 How to Create an XSLT Map
	40.2.2 How to Create an XSL Map File in Oracle BPEL Process Manager
	40.2.3 How to Create an XSL Map File from Imported Source and Target Schema Files in Oracle BPEL Process Manager
	40.2.4 How to Create an XSL Map File in Oracle Mediator
	40.2.5 What You May Need to Know About Creating an XSL Map File
	40.2.6 What Happens at Runtime If You Pass a Payload Through Oracle Mediator Without Creating an XSL Map File
	40.2.7 What Happens If You Receive an Empty Namespace Tag in an Output Message

	40.3 Editing an XSLT Map in Map View
	40.3.1 How to Perform a Value Copy by Linking Nodes
	40.3.2 How to Create an Empty Node in the Output Document
	40.3.3 How to Set a Literal Text Value for a Target Node
	40.3.4 How to Add an XSLT Statement
	40.3.4.1 To Add an XSLT Statement:
	40.3.4.2 To Add an xsl:text or xsl:variable Statement:
	40.3.4.3 To Drag and Drop an XSLT statement to a Target Node:
	40.3.4.4 How to Add Conditional Processing Using xsl:if
	40.3.4.4.1 To add an xsl:if statement using the context menu:
	40.3.4.4.2 To add an xsl:if statement using drag and drop:

	40.3.4.5 How to Add Conditional Processing Using xsl:choose
	40.3.4.5.1 To add an xsl:choose statement using the context menu:
	40.3.4.5.2 To add an xsl:choose statement using drag and drop:

	40.3.4.6 How to Add Loops Using xsl:for-each
	40.3.4.6.1 To add an xsl:for-each statement using the context menu:
	40.3.4.6.2 To add an xsl:for-each statement using drag and drop:

	40.3.4.7 How to Add xsl:sort for an xsl:for-each Statement
	40.3.4.7.1 To add an xsl:sort statement using the context menu:
	40.3.4.7.2 To add an xsl:sort statement using drag and drop:

	40.3.4.8 How to Duplicate XSLT Instructions
	40.3.4.8.1 Example: Modifying the Mapping by Changing the XPath Expression
	40.3.4.8.2 Example: Modifying the Mapping by Deleting and Re-Creating It

	40.3.5 How to Duplicate an Element
	40.3.6 How to Delete an Element or Attribute
	40.3.7 How to Remove Mappings from an Element or Attribute

	40.4 Editing an XSLT Map in XSLT View
	40.4.1 How to Add a Target Element or Attribute Before Mapping
	40.4.1.1 How to Add Elements and Attributes from the Target Schema
	40.4.1.1.1 To add elements and attributes when target schema is present:
	40.4.1.1.2 To drag and drop elements and attributes from the target schema tree:

	40.4.1.2 How to Add Literal Elements and Attributes When No Target Schema Is Present
	40.4.1.2.1 To add a literal element when there is no target schema:
	40.4.1.2.2 To add a literal attribute when there is no target schema:

	40.4.1.3 How to Create an Empty Node in the Output Document

	40.4.2 How to Perform a Value Copy by Linking Nodes
	40.4.3 How to Insert an xsl:valueof Statement
	40.4.4 How to Set a Literal Text Value for an XSLT Node
	40.4.5 How to Set a Literal Text Value Using an xsl:text Instruction
	40.4.6 How to Add XSLT Statements
	40.4.6.1 To add an XSLT element using the context menu:
	40.4.6.2 To add XSLT elements from the Components window:

	40.4.7 How to Set the Value of an XSLT Expression Attribute
	40.4.8 How to Duplicate an Element
	40.4.9 How to Delete an Element or Attribute
	40.4.10 How to Move an Element
	40.4.11 How to Remove Mappings from an Element or Attribute

	40.5 Using XPath Expressions
	40.5.1 How to Modify an Existing Source to Target Mapping
	40.5.1.1 To edit an XPath expression using the Edit XPath dialog
	40.5.1.2 To edit an existing XPath expression using the Properties window
	40.5.1.3 How to Add an XPath Function to an Existing XPath Expression

	40.5.2 How to Modify an Existing Function XPath Expression in the Canvas Pane
	40.5.2.1 To set a function parameter using drag and drop:
	40.5.2.2 To delete a function parameter:
	40.5.2.3 How to Edit a Function as a Full XPath Expression
	40.5.2.3.1 To edit a function as a textual XPath expression using the XPath Edit dialog:
	40.5.2.3.2 To edit a function as a textual XPath expression using the Properties Window:

	40.5.2.4 How to Edit Individual Function Parameters
	40.5.2.4.1 To edit the parameters of a function using the Edit Function dialog:
	40.5.2.4.2 To edit the parameters of a function using the Properties window:

	40.5.3 How to Create a New Function in the Canvas Pane
	40.5.3.1 To create an XPath Function using the canvas context menu
	40.5.3.2 To create an XPath function using the Components window
	40.5.3.3 To create an XPath function using the target tree context menu
	40.5.3.4 To create an XPath function by dragging it to the target tree

	40.5.4 How to Chain Functions Together
	40.5.5 How to Remove an XPath Expression
	40.5.6 How to Import User-Defined Functions

	40.6 Using Auto Map to Map Complex Nodes
	40.6.1 How to Set Auto Map Preferences
	40.6.2 How to Execute an Auto Map

	40.7 Checking the Completion Status of the Map
	40.8 Testing the Map
	40.8.1 How to Test the Transformation Mapping Logic
	40.8.1.1 How to Test XSLT Maps that Use DVM Lookup Functions
	40.8.1.2 How to Test XSLT Maps that Use XREF Functions
	40.8.1.2.1 Working with returnValue:
	40.8.1.2.2 Adding Additional Rows:

	40.8.2 How to Generate Reports
	40.8.3 How to Customize Sample XML Generation

	40.9 Importing an External XSLT Map
	40.10 Using Variables and Parameters
	40.10.1 How to Add Global Variables
	40.10.2 How to Add Local Variables in Map View
	40.10.3 How to Add Local Variables in XSLT View
	40.10.4 How to Add Global Parameters

	40.11 Substituting Elements and Types
	40.12 Using Named Templates
	40.12.1 How to Create a Named Template
	40.12.2 How to Edit a Named Template
	40.12.3 How to Add Parameters to an Existing Named Template
	40.12.4 How to Invoke a Named Template

	40.13 Using Template Rules
	40.13.1 How to Create a Template Rule
	40.13.1.1 Example: Creating a Template Rule
	40.13.1.1.1 Invoking the Template

	40.13.2 How to Refactor an Existing Map to Create a Template Rule

	40.14 Using the Execution View
	40.14.1 How to Use Execution View to Prevent or Troubleshoot Runtime Errors
	40.14.1.1 Searching for Nodes
	40.14.1.2 Setting Display Options

	40.15 Debugging the XSLT Map
	40.15.1 Setting Breakpoints in the XSLT Map Editor
	40.15.2 Running the Debugger on the XSLT Map
	40.15.3 Viewing Breakpoints
	40.15.4 Setting Conditions for XSLT Breakpoints

	40.16 Troubleshooting Memory Issues
	40.17 Setting XSL Map Preferences
	40.17.1 How to Set XSLT Map Preferences
	40.17.2 How to Set the XSL Editor Preferences
	40.17.3 How to Import a Customization File to Specify Display Preferences in the XSLT Map Editor

	41 Creating Transformations with the XQuery Mapper
	41.1 Introduction to the XQuery Mapper
	41.1.1 About the Source and Target Trees
	41.1.2 Using the XQuery Mapper Toolbar
	41.1.3 Using the Properties Window
	41.1.4 Using the Components Window
	41.1.5 Source Editor

	41.2 Creating an XQuery Map File
	41.2.1 How to Create an XQuery Main/Library Module

	41.3 Using the XQuery Mapper
	41.3.1 How to Use Value Mapping to Copy a Leaf Element Value to a Target Leaf Element
	41.3.2 How to Use Overwrite Mapping to Copy an Element Subtree to the Target Tree
	41.3.3 How to Use Append Mapping to Copy an Element Subtree to the Target Tree
	41.3.4 How to Perform Multiple Value Mappings with One Drag and Drop Action

	41.4 Using XQuery Functions
	41.4.1 How to Add an XQuery Function in the XQuery Mapper
	41.4.1.1 To add an XQuery function:
	41.4.1.2 To edit a function's parameters:

	41.5 Using Library Modules
	41.5.1 How to Import a Library Module

	41.6 Working with Zones and FLWOR Constructs
	41.6.1 How to Edit a FLWOR Construct

	41.7 Using Type Annotations to Improve XQuery Performance
	41.8 Testing Your XQuery Map
	41.8.1 How to Test an XQuery Map

	42 Using Business Events and the Event Delivery Network
	42.1 Introduction to Business Events
	42.1.1 EDN Integration with Oracle SOA Suite
	42.1.2 Business Event API Support for Remote Clients
	42.1.2.1 Guidelines for Manually Setting Event Delivery Network Properties When Invoking the BusinessEvent.setProperty API
	42.1.2.1.1 Properties That Cannot Be Manually Set
	42.1.2.1.2 Properties That Can Be Manually Set

	42.1.3 Local and Remote Event Connections

	42.2 Creating Business Events in Oracle JDeveloper
	42.2.1 How to Create a Business Event

	42.3 Subscribing to or Publishing a Business Event from an Oracle Mediator Service Component
	42.3.1 How to Subscribe to a Business Event
	42.3.2 How to Publish a Business Event
	42.3.3 What Happens When You Create and Subscribe to a Business Event
	42.3.4 What Happens When You Publish a Business Event
	42.3.5 What You May Need to Know About Subscribing to a Business Event
	42.3.6 What You May Need to Know About Publishing Events Across Domains Using SAF
	42.3.6.1 Workaround for Local Subscribers

	42.3.7 How to Configure a Foreign JNDI Provider to Enable Administration Server Applications to Publish Events to the SOA Server
	42.3.8 How to Configure the Connection Factory When the Oracle WebLogic Server JMS Runs in the Same Local JVM as the JMS Adapter

	42.4 Subscribing to or Publishing a Business Event from a BPEL Process Service Component
	42.4.1 How to Subscribe to a Business Event
	42.4.2 How to Publish a Business Event
	42.4.3 What Happens When You Subscribe to and Publish a Business Event

	42.5 How to Integrate Oracle ADF Business Component Business Events with Oracle Mediator

	43 Working with Cross References
	43.1 Introduction to Cross References
	43.2 Introduction to Cross Reference Tables
	43.3 Oracle Data Integrator Support for Cross Referencing
	43.4 Creating and Modifying Cross Reference Tables
	43.4.1 How to Create Cross Reference Metadata
	43.4.2 What Happens When You Create a Cross Reference
	43.4.3 How to Create Custom Database Tables
	43.4.4 How to Add an End System to a Cross Reference Table

	43.5 Populating Cross Reference Tables
	43.5.1 About the xref:populateXRefRow Function
	43.5.2 About the xref:populateLookupXRefRow Function
	43.5.3 About the xref:populateXRefRow1M Function
	43.5.4 How to Populate a Column of a Cross Reference Table

	43.6 Looking Up Cross Reference Tables
	43.6.1 About the xref:lookupXRef Function
	43.6.2 About the xref:lookupXRef1M Function
	43.6.3 About the xref:lookupPopulatedColumns Function
	43.6.4 How to Look Up a Cross Reference Table for a Value

	43.7 Deleting a Cross Reference Table Value
	43.7.1 How to Delete a Cross Reference Table Value

	43.8 Creating and Running the Cross Reference Use Case
	43.8.1 How to Create the Use Case
	43.8.1.1 Task 1: How to Configure the Oracle Database and Database Adapter
	43.8.1.2 Task 2: How to Create an Oracle JDeveloper Application and a Project
	43.8.1.3 Task 3: How to Create a Cross Reference
	43.8.1.4 Task 4: How to Create a Database Adapter Service
	43.8.1.5 Task 5: How to Create EBS and SBL External References
	43.8.1.6 Task 6: How to Create the Logger File Adapter External Reference
	43.8.1.7 Task 7: How to Create an Oracle Mediator Service Component
	43.8.1.8 Task 8: How to Specify Routing Rules for an Oracle Mediator Service Component
	43.8.1.8.1 To create routing rules for an insert operation:
	43.8.1.8.2 To create routing rules for an update operation:
	43.8.1.8.3 To create routing rules for an updateID operation:
	43.8.1.8.4 To create routing rules for a delete operation:

	43.8.1.9 Task 9: How to Specify Routing Rules for the Common Oracle Mediator
	43.8.1.9.1 To create routing rules for the insert operation:
	43.8.1.9.2 To create routing rules for a delete operation:
	43.8.1.9.3 To create routing rules for the update operation:
	43.8.1.9.4 To create routing rules for the UpdateID operation:

	43.8.1.10 Task 10: How to Configure an Application Server Connection
	43.8.1.11 Task 11: How to Deploy the Composite Application

	43.8.2 How to Run and Monitor the XrefCustApp Application

	43.9 Creating and Running Cross Reference for 1M Functions
	43.9.1 How to Create the Use Case
	43.9.1.1 Task 1: How to Configure the Oracle Database and Database Adapter
	43.9.1.2 Task 2: How to Create an Oracle JDeveloper Application and a Project
	43.9.1.3 Task 3: How to Create a Cross Reference
	43.9.1.4 Task 4: How to Create a Database Adapter Service
	43.9.1.5 Task 5: How to Create an EBS External Reference
	43.9.1.6 Task 6: How to Create a Logger File Adapter External Reference
	43.9.1.7 Task 7: How to Create an Oracle Mediator Service Component
	43.9.1.8 Task 8: How to Specify Routing Rules for an Oracle Mediator Component
	43.9.1.8.1 To create routing rules for the insert operation:
	43.9.1.8.2 To create routing rules for the update operation:

	43.9.1.9 Task 9: How to Specify Routing Rules for the Common Oracle Mediator
	43.9.1.9.1 To create routing rules for the insert operation:
	43.9.1.9.2 To create routing rules for the update operation:

	43.9.1.10 Task 10: How to Configure an Application Server Connection
	43.9.1.11 Task 11: How to Deploy the Composite Application

	44 Working with Domain Value Maps
	44.1 Introduction to Domain Value Maps
	44.1.1 Domain Value Map Features
	44.1.1.1 Qualifier Domains
	44.1.1.2 Qualifier Hierarchies
	44.1.1.3 One-to-Many Mappings

	44.2 Creating Domain Value Maps
	44.2.1 How to Create Domain Value Maps
	44.2.2 What Happens When You Create a Domain Value Map

	44.3 Editing a Domain Value Map
	44.3.1 How to Add Domains to a Domain Value Map
	44.3.2 How to Edit a Domain
	44.3.3 How to Add Domain Values to a Domain Value Map
	44.3.4 How to Edit Domain Values

	44.4 Using Domain Value Map Functions
	44.4.1 Understanding Domain Value Map Functions
	44.4.1.1 dvm:lookupValue
	44.4.1.2 dvm:lookupValue1M

	44.4.2 How to Use Domain Value Map Functions in Transformations
	44.4.3 How to Use Domain Value Map Functions in XPath Expressions
	44.4.4 What Happens at Runtime

	44.5 Creating a Domain Value Map Use Case for a Hierarchical Lookup
	44.5.1 How to Create the HierarchicalValue Use Case
	44.5.1.1 Task 1: How to Create an Oracle JDeveloper Application and a Project
	44.5.1.2 Task 2: How to Create a Domain Value Map
	44.5.1.3 Task 3: How to Create a File Adapter Service
	44.5.1.4 Task 4: How to Create ProcessOrders Mediator Component
	44.5.1.5 Task 5: How to Create a File Adapter Reference
	44.5.1.6 Task 6: How to Specify Routing Rules
	44.5.1.7 Task 7: How to Configure an Application Server Connection
	44.5.1.8 Task 8: How to Deploy the Composite Application

	44.5.2 How to Run and Monitor the HierarchicalValue Application

	44.6 Creating a Domain Value Map Use Case For Multiple Values
	44.6.1 How to Create the Multivalue Use Case
	44.6.1.1 Task 1: How to Create an Oracle JDeveloper Application and Project
	44.6.1.2 Task 2: How to Create a Domain Value Map
	44.6.1.3 Task 3: How to Create a File Adapter Service
	44.6.1.4 Task 4: How to Create the LookupMultiplevaluesMediator Mediator
	44.6.1.5 Task 5: How to Create a File Adapter Reference
	44.6.1.6 Task 6: How to Specify Routing Rules
	44.6.1.7 Task 7: How to Configure an Application Server Connection
	44.6.1.8 Task 8: How to Deploy the Composite Application

	44.6.2 How to Run and Monitor the Multivalue Application

	44.7 Preloading DVM Cache for Faster First-Use
	44.7.1 How to Preload DVM Cache at Server Startup

	45 Using Oracle SOA Composer with Domain Value Maps
	45.1 Introduction to Oracle SOA Composer
	45.1.1 How to Sign In to Oracle SOA Composer

	45.2 Viewing Domain Value Maps at Runtime
	45.2.1 How To View Domain Value Maps at Runtime

	45.3 Editing Domain Value Maps at Runtime
	45.3.1 How to Edit Domain Value Maps at Runtime
	45.3.1.1 Changing to Edit Mode
	45.3.1.2 Adding Rows
	45.3.1.3 Editing Rows
	45.3.1.4 Deleting Rows

	45.4 Publishing Changes at Runtime
	45.4.1 How to Publish Changes at Runtime
	45.4.2 How to Discard Changes at Runtime

	45.5 Detecting Conflicts

	Part VIII Completing Your Application
	46 Enabling Security with Policies and Message Encryption
	46.1 Introduction to Policies
	46.2 Attaching Policies to Binding Components and Service Components
	46.2.1 How to Attach Policies to Binding Components and Service Components
	46.2.1.1 To attach a policy to a service component:

	46.2.2 How to Override Policy Configuration Property Values
	46.2.2.1 Overriding Client Configuration Property Values
	46.2.2.2 Overriding Server Configuration Property Values

	46.3 Encrypting and Decrypting Specific Fields of Messages
	46.3.1 How to Encrypt and Decrypt Specific Fields of Messages

	47 Deploying SOA Composite Applications
	47.1 Introduction to Deployment
	47.2 Deployment Prerequisites
	47.2.1 Creating the Oracle SOA Suite Schema
	47.2.2 Creating a SOA Domain
	47.2.3 Configuring a SOA Cluster

	47.3 Understanding the Packaging Impact
	47.4 Anatomy of a Composite
	47.5 Preparing the Target Environment
	47.5.1 How to Create Data Sources and Queues
	47.5.1.1 Script for Creation of JMS Resource and Redeployment of JMS Adapter
	47.5.1.2 Script for Creation of the Database Resource and Redeployment of the Database Adapter

	47.5.2 How to Create Connection Factories and Connection Pooling
	47.5.3 How to Enable Security
	47.5.4 How to Set the Business Flow Instance Name or Composite Instance Name at Design Time
	47.5.4.1 Setting the Business Flow Instance Name in Oracle Mediator
	47.5.4.2 Setting the Business Flow Instance Name in a BPEL Process
	47.5.4.3 Setting the Composite Instance Name in a BPEL Process

	47.5.5 How to Deploy Trading Partner Agreements and Task Flows
	47.5.6 How to Create an Application Server Connection
	47.5.7 How to Create a SOA-MDS Connection
	47.5.7.1 What You May Need to Know About Opening the composite.xml File Through a SOA-MDS Connection

	47.6 Customizing Your Application for the Target Environment Before Deployment
	47.6.1 How to Use Configuration Plans to Customize SOA Composite Applications for the Target Environment
	47.6.1.1 Introduction to Configuration Plans
	47.6.1.2 Introduction to a Configuration Plan File
	47.6.1.3 Introduction to Use Cases for a Configuration Plan
	47.6.1.3.1 How to Use a Configuration Plan when Creating Environment-Independent Processes

	47.6.1.4 How to Create a Configuration Plan in Oracle JDeveloper
	47.6.1.5 How to Create a Configuration Plan with the WLST Utility
	47.6.1.6 How to Attach a Configuration Plan with ant Scripts
	47.6.1.7 How to Create Global Token Variables

	47.7 Deploying SOA Composite Applications or Projects in Oracle JDeveloper
	47.7.1 How to Deploy a Single SOA Composite in Oracle JDeveloper
	47.7.1.1 Creating an Application Server Connection
	47.7.1.2 Optionally Creating a Project Deployment Profile
	47.7.1.3 Deploying the Profile
	47.7.1.4 What You May Need to Know About Deploying Human Task Composites with Task Flows to Partitions

	47.7.2 How to Deploy Multiple SOA Composite Applications in Oracle JDeveloper
	47.7.3 How to Deploy and Use Shared Data Across Multiple SOA Composite Applications in Oracle JDeveloper
	47.7.3.1 Create a JAR Profile and Include the Artifacts to Share
	47.7.3.2 Create a SOA Bundle that Includes the JAR Profile
	47.7.3.3 Deploy the SOA Bundle with Oracle JDeveloper
	47.7.3.3.1 To deploy the SOA bundle with ant:

	47.7.3.4 Use Shared Data
	47.7.3.4.1 Creating a SOA-MDS Connection
	47.7.3.4.2 Creating a BPEL Process

	47.7.4 How to Deploy an Existing SOA Archive in Oracle JDeveloper

	47.8 Deploying and Managing SOA Composite Applications with the WLST Utility
	47.9 Deploying and Managing SOA Composite Applications with ant Scripts
	47.9.1 How to Use ant to Automate the Testing of a SOA Composite Application
	47.9.2 How to Use ant to Compile a SOA Composite Application
	47.9.3 How to Use ant to Package a SOA Composite Application into a Composite SAR File
	47.9.4 How to Use ant to Deploy a SOA Composite Application
	47.9.5 How to Use ant to Undeploy a SOA Composite Application
	47.9.6 How to Use ant to Export a Composite into a SAR File
	47.9.7 How to Use ant to Export Postdeployment Changes of a Composite into a JAR File
	47.9.8 How to Use ant to Import Postdeployment Changes of a Composite
	47.9.9 How to Use ant to Export Shared Data of a Given Pattern into a JAR File
	47.9.10 How to Use ant to Remove a Top-level Shared Data Folder
	47.9.11 How to Use ant to Start a SOA Composite Application
	47.9.12 How to Use ant to Stop a SOA Composite Application
	47.9.13 How to Use ant to Activate a SOA Composite Application
	47.9.14 How to Use ant to Retire a SOA Composite Application
	47.9.15 How to Use ant to Assign the Default Version to a SOA Composite Application
	47.9.16 How to Use ant to List the Deployed SOA Composite Applications
	47.9.17 How to Use ant to List All Available Partitions in the SOA Infrastructure
	47.9.18 How to Use ant to List All Composites in a Partition
	47.9.19 How to Use ant to Create a Partition in the SOA Infrastructure
	47.9.20 How to Use ant to Delete a Partition in the SOA Infrastructure
	47.9.21 How to Use ant to Start All Composites in the Partition
	47.9.22 How to Use ant to Stop All Composites in the Partition
	47.9.23 How to Use ant to Activate All Composites in the Partition
	47.9.24 How to Use ant to Retire All Composites in the Partition
	47.9.25 How to Use ant to Manage SOA Composite Applications

	47.10 Deploying SOA Composite Applications from Oracle Enterprise Manager Fusion Middleware Control
	47.11 Deploying SOA Composite Applications with No Servers Running
	47.11.1 Offline Deployment Configuration Files
	47.11.1.1 Offline Deployment Configuration List File
	47.11.1.2 Offline Deployment Configuration File
	47.11.1.3 Relative Configuration File Paths
	47.11.1.4 Order of Deployment

	47.11.2 How to Deploy SOA Composite Applications and Shared Data with No Server Running
	47.11.3 What You May Need to Know About Offline Composite Deployment in a Cluster Environment
	47.11.4 What You May Need to Know About Deploying SOA Composite Applications that Reference Shared Data That is Not in the MDS Repository

	47.12 Importing XSLT Customizations into a Deployed SOA Composite Application
	47.13 Postdeployment Configuration
	47.13.1 Security
	47.13.2 Updating Connections
	47.13.3 Updating Data Sources and Queues
	47.13.4 Attaching Policies

	47.14 Testing and Troubleshooting
	47.14.1 Verifying Deployment
	47.14.2 Initiating an Instance of a Deployed Composite
	47.14.3 Automating the Testing of Deployed Composites
	47.14.4 Recompiling a Project After Receiving a Deployment Error
	47.14.5 Reducing Java Code Size to Resolve Java Compilation Errors
	47.14.6 Troubleshooting Common Deployment Errors
	47.14.6.1 Common Oracle JDeveloper Deployment Issues
	47.14.6.2 Common Configuration Plan Issues
	47.14.6.3 Deploying to a Managed Oracle WebLogic Server
	47.14.6.4 Deploying to a Two-Way, SSL-Enabled Oracle WebLogic Server
	47.14.6.5 Deploying with an Unreachable Proxy Server
	47.14.6.6 Releasing Locks to Resolve ADF Task Form EAR File Deployment Errors
	47.14.6.7 Increasing Memory to Recover from Compilation Errors
	47.14.6.8 Oracle JDeveloper Compilation Error When Property Alias Definition is Missing for a Receive Activity with a Correlation Set
	47.14.6.9 ADF Binding Service Names Must Be Unique Across All Deployed SOA Composite Applications

	47.15 Patching Running Instances of a SOA Composite
	47.15.1 Using the SOA Patch Developer Mode in JDeveloper
	47.15.1.1 Generating the Patch XML File
	47.15.1.2 Creating a Sparse Deployment Profile

	47.15.2 Verifying and Deploying the Patch Using WLST
	47.15.3 Deleting the Patch File

	48 Using the Oracle SOA Suite Development Maven Plug-In
	48.1 Introduction to the Oracle SOA Suite Maven Plug-in
	48.1.1 POM Files and Archetypes
	48.1.2 Maven Plug-in Goals
	48.1.2.1 compile
	48.1.2.2 package
	48.1.2.3 deploy
	48.1.2.4 test
	48.1.2.5 undeploy

	48.1.3 Using Maven Online Help

	48.2 Installing the Oracle SOA Suite Maven Plug-in
	48.2.1 How to Configure the Oracle SOA Suite Maven Plug-In

	48.3 Using the Oracle SOA Suite Maven Archetype

	49 Debugging and Auditing SOA Composite Applications
	49.1 Introduction to the SOA Debugger
	49.2 Debugging a SOA Composite Application
	49.2.1 How to Start the SOA Debugger
	49.2.2 How to Set Breakpoints and Initiate Debugging
	49.2.3 How to Step Through a Debugging Session
	49.2.4 How to End or Detach from a Debugging Session
	49.2.5 How to Remove Breakpoints
	49.2.6 How to View Adapter Properties
	49.2.7 How to View Threads

	49.3 Testing SOA Composite Applications with the HTTP Analyzer
	49.4 Auditing SOA Composite Applications at the BPEL Activity Level
	49.4.1 How to Audit SOA Composite Applications at the BPEL Activity Level

	50 Automating Testing of SOA Composite Applications
	50.1 Introduction to the Composite Test Framework
	50.1.1 Test Cases Overview
	50.1.2 Overview of Test Suites
	50.1.3 Overview of Emulations
	50.1.4 Overview of Assertions

	50.2 Introduction to the Components of a Test Suite
	50.2.1 Process Initiation
	50.2.2 Emulations
	50.2.3 Assertions
	50.2.4 Message Files

	50.3 Creating Test Suites and Test Cases with the Create Composite Test Wizard
	50.4 Editing the Contents of Test Cases in Test Mode in the SOA Composite Editor
	50.4.1 How to Initiate Inbound Messages
	50.4.2 How to Emulate Outbound Messages
	50.4.3 How to Emulate Callback Messages
	50.4.4 How to Emulate Fault Messages
	50.4.5 How to Create Assertions
	50.4.5.1 Creating Assertions on a Part Section, Nonleaf Element, or Entire XML Document
	50.4.5.2 Creating Assertions on a Leaf Element

	50.4.6 What You May Need to Know About Assertions

	50.5 Testing BPEL Process Service Components
	50.5.1 Overview of Assertions on BPEL Process Activities
	50.5.2 Overview of a Fast Forward Action on a Wait Activity
	50.5.3 Overview of Assert Activity Execution
	50.5.4 How to Create BPEL Process Service Component Tests
	50.5.5 How to Create Assertions
	50.5.6 How to Bypass a Wait Activity
	50.5.7 How to Specify the Number of Times to Execute an Activity

	50.6 Deploying and Running a Test Suite
	50.6.1 How to Deploy and Run a Test Suite from Oracle JDeveloper
	50.6.2 How to Deploy and Run a Test Suite from Oracle Enterprise Manager Fusion Middleware Control
	50.6.3 How to Deploy and Run a Test Suite with a WLST Command
	50.6.4 How to Deploy and Run a Test Suite with an ant Script

	Part IX Advanced Topics
	51 Managing Large Documents and Large Numbers of Instances
	51.1 Best Practices for Handling Large Documents
	51.1.1 Use Cases for Handling Large Documents
	51.1.1.1 Passing Binary Objects as Base64-Encoded Text in XML Payloads
	51.1.1.1.1 SOAP Inline
	51.1.1.1.2 SOAP MTOM
	51.1.1.1.3 Opaque Passed by File/FTP Adapters
	51.1.1.1.4 Opaque Passed by Oracle B2B

	51.1.1.2 End-to-End Streaming with Attachments
	51.1.1.2.1 SOAP with Attachments
	51.1.1.2.2 Working with Streaming Attachments
	51.1.1.2.3 Creating Composites that Use MIME Attachments
	51.1.1.2.4 Performance Overhead and Pass Through Attachments
	51.1.1.2.5 Properties for Streaming Attachments
	51.1.1.2.6 Streaming Attachments from the SOA Web Service Binding Layer
	51.1.1.2.7 Reading and Encoding SOAP Attachment Content
	51.1.1.2.8 Sending Attachment Streams
	51.1.1.2.9 Overriding Pass Through Settings for Attachments in Oracle Mediator
	51.1.1.2.10 Sharing Attachments Using Synchronous Flows
	51.1.1.2.11 Attachment Options of File/FTP Adapters
	51.1.1.2.12 Oracle B2B Attachment

	51.1.1.3 Sending and Receiving MTOM-Optimized Messages to SOA Composite Applications
	51.1.1.3.1 Scenarios for Storing SwA and MTOM-Optimized Attachments to the Database

	51.1.1.4 Processing Large XML with Repeating Constructs
	51.1.1.4.1 Debatching with the File/FTP Adapter
	51.1.1.4.2 Chunking with the File/FTP Adapters

	51.1.1.5 Processing Large XML Documents with Complex Structures
	51.1.1.5.1 Streaming with the File/FTP Adapters
	51.1.1.5.2 Oracle B2B Streaming

	51.1.2 Limitations on Concurrent Processing of Large Documents
	51.1.2.1 Opaque Schema for Processing Large Payloads

	51.1.3 JVM Memory Sizing Recommendations for SOA Composite Applications
	51.1.4 General Tuning Recommendations
	51.1.4.1 General Recommendations
	51.1.4.1.1 Increasing the HTTP POST Timeout
	51.1.4.1.2 Increasing the Timeout Value

	51.1.4.2 Setting Audit Levels from Oracle Enterprise Manager for Large Payload Processing
	51.1.4.3 Using the Assign Activity in Oracle BPEL Process Manager and Oracle Mediator
	51.1.4.4 Using XSLT Transformations on Large Payloads (For Oracle BPEL Process Manager)
	51.1.4.5 Using XSLT Transformations on Large Payloads (For Oracle Mediator)
	51.1.4.6 Using XSLT Transformations for Repeating Structures
	51.1.4.7 Processing Large Documents in Oracle B2B
	51.1.4.7.1 MDSInstance Cache Size
	51.1.4.7.2 Protocol Message Size
	51.1.4.7.3 Number of Threads
	51.1.4.7.4 Stuck Thread Max Time Parameter
	51.1.4.7.5 Tablespace

	51.1.4.8 Setting a Size Restriction on Inbound Web Service Message Size
	51.1.4.9 Using XPath Functions to Write Large XSLT/XQuery Output to a File System

	51.2 Best Practices for Handling Large Metadata
	51.2.1 Boundary on the Processing of Large Numbers of Activities in a BPEL Process
	51.2.2 Using Large Numbers of Activities in BPEL Processes (Without FlowN)
	51.2.3 Using Large Numbers of Activities in BPEL Processes (With FlowN)
	51.2.4 Using a Flow With Multiple Sequences
	51.2.5 Using a Flow with One Sequence
	51.2.6 Using a Flow with No Sequence
	51.2.7 Large Numbers of Oracle Mediators in a Composite
	51.2.8 Importing Large Data Sets in Oracle B2B

	51.3 Best Practices for Handling Large Numbers of Instances
	51.3.1 Instance and Rejected Message Deletion with the Purge Script or Oracle Enterprise Manager Fusion Middleware Control

	52 Customizing SOA Composite Applications
	52.1 Introduction to Customizing SOA Composite Applications
	52.2 Creating the Customizable Composite
	52.2.1 How to Create Customization Classes
	52.2.2 How to Create the Customizable Composite
	52.2.3 How to Add an XSD or WSDL File
	52.2.4 How to Search for Customized Activities in a BPEL Process
	52.2.5 What You May Need to Know About Resolving Validation Errors in Oracle JDeveloper
	52.2.6 What You May Need to Know About Resolving a Sequence Conflict
	52.2.6.1 To resolve the conflict:

	52.2.7 What You May Need to Know About Compiling and Deploying a Customized Application

	52.3 Customizing the Vertical Application
	52.3.1 How to Customize the Vertical Application

	52.4 Customizing the Customer Version
	52.4.1 How to Customize the Customer Version

	52.5 Upgrading the Composite
	52.5.1 How to Upgrade the Core Application Team Composite
	52.5.2 How to Upgrade the Vertical Applications Team Composite
	52.5.3 How to Upgrade the Customer Composite

	53 Defining Composite Sensors
	53.1 Introduction to Composite Sensors
	53.1.1 Restrictions on Use of Composite Sensors

	53.2 Adding Composite Sensors
	53.2.1 How to Add Composite Sensors
	53.2.1.1 How to Add a Variable
	53.2.1.2 How to Add an Expression
	53.2.1.3 How to Add a Property

	53.2.2 What You May Need to Know About Duplicate Composite Sensor Names

	53.3 Monitoring Composite Sensor Data During Runtime
	53.4 Creating and Managing Composite Sensors During Runtime from Oracle SOA Composer
	53.4.1 What You May Need to Know About Viewing Composite Sensor Changes in Oracle SOA Composer

	54 Creating Dynamic Business Processes
	54.1 Introduction to Two-Layer Business Process Management
	54.2 Creating a Phase Activity
	54.2.1 How to Create a Phase Activity
	54.2.2 What Happens When You Create a Phase Activity
	54.2.3 What Happens at Runtime When You Create a Phase Activity
	54.2.4 What You May Need to Know About Creating a Phase Activity

	54.3 Creating the Dynamic Routing Decision Table
	54.3.1 How to Create the Dynamic Routing Decision Table
	54.3.2 What Happens When You Create the Dynamic Routing Decision Table

	55 Integrating the Spring Framework in SOA Composite Applications
	55.1 Introduction to the Spring Service Component
	55.2 Integration of Java and WSDL-Based Components in the Same SOA Composite Application
	55.2.1 Java and WSDL-Based Integration Example
	55.2.2 Using Callbacks with the Spring Framework

	55.3 Creating a Spring Service Component in Oracle JDeveloper
	55.3.1 How to Create a Spring Service Component in Oracle JDeveloper
	55.3.2 What You May Need to Know About Java Class Errors During Java-to-WSDL Conversions

	55.4 Defining Custom Spring Beans Through a Global Spring Context
	55.4.1 How to Define Custom Spring Beans Through a Global Spring Context

	55.5 Using the Predefined Spring Beans
	55.5.1 IHeaderHelperBean.java Interface for headerHelperBean
	55.5.2 IInstanceHelperBean.java Interface for instancerHelperBean
	55.5.3 ILoggerBean.java Interface for loggerBean
	55.5.4 How to Reference Predefined Spring Beans in the Spring Context File

	55.6 JAXB and OXM Support
	55.6.1 Extended Mapping Files

	55.7 Configuring Groovy and Aspectj Classes with the Spring Service Component
	55.8 Troubleshooting Spring Errors
	55.8.1 Spring Bean Interface to Invoke Cannot Be Found
	55.8.2 Unable to Add a Spring Service Component in the SOA Composite Editor

	Part X Appendices
	A BPEL Process Activities and Services
	A.1 Introduction to Activities and Components
	A.2 Introduction to BPEL 1.1 and 2.0 Activities
	A.2.1 Tabs Common to Many Activities
	A.2.1.1 Annotations Tab
	A.2.1.2 Assertions Tab
	A.2.1.3 Correlations Tab
	A.2.1.4 Documentation Tab
	A.2.1.5 Headers Tab
	A.2.1.6 Properties Tab
	A.2.1.7 Skip Condition Tab
	A.2.1.8 Sources and Targets Tabs
	A.2.1.9 Timeout Tab

	A.2.2 Using the Native Format Builder Wizard Outside of Adapter Configuration
	A.2.2.1 To create a native format schema from the Applications Window:
	A.2.2.2 To edit an existing native format schema from the Applications Window:

	A.2.3 Assign Activity
	A.2.4 Assert Activity
	A.2.5 Bind Entity Activity
	A.2.6 Call Activity
	A.2.7 Compensate Activity
	A.2.8 CompensateScope Activity
	A.2.9 Create Entity Activity
	A.2.10 Dehydrate Activity
	A.2.11 Dynamic Partner Link Activity
	A.2.12 Email Activity
	A.2.13 Empty Activity
	A.2.14 Exit Activity
	A.2.15 Flow Activity
	A.2.16 FlowN Activity
	A.2.17 forEach Activity
	A.2.18 If Activity
	A.2.19 IM Activity
	A.2.20 Invoke Activity
	A.2.21 Java Embedding Activity
	A.2.22 Partner Link Activity
	A.2.23 Phase Activity
	A.2.24 Pick Activity
	A.2.24.1 To put the correlation syntax before the assign activity:

	A.2.25 Receive Activity
	A.2.26 Receive Signal Activity
	A.2.27 Remove Entity Activity
	A.2.28 RepeatUntil Activity
	A.2.29 Replay Activity
	A.2.30 Reply Activity
	A.2.31 Rethrow Activity
	A.2.32 Schedule Job
	A.2.33 Scope Activity
	A.2.34 Sequence Activity
	A.2.35 Signal Activity
	A.2.36 SMS Activity
	A.2.37 Switch Activity
	A.2.38 Terminate Activity
	A.2.39 Throw Activity
	A.2.40 Translate Activity
	A.2.41 User Notification Activity
	A.2.42 Validate Activity
	A.2.43 Wait Activity
	A.2.44 While Activity
	A.2.45 XQuery Transform Activity
	A.2.46 XSLT Transform Activity

	A.3 Introduction to BPEL Services

	B XPath Extension Functions
	B.1 Advanced Functions
	B.1.1 batchProcessActive
	B.1.2 batchProcessCompleted
	B.1.3 copyList
	B.1.4 create-nodeset-from-delimited-string
	B.1.5 createDelimitedString
	B.1.6 createEssParameter
	B.1.7 doStreamingTranslate
	B.1.8 doTranslateFromNative
	B.1.9 doTranslateToNative
	B.1.10 format
	B.1.11 genEmptyElem
	B.1.12 generate-guid
	B.1.13 get-content-from-file-function
	B.1.14 getApplicationName
	B.1.15 getAttachmentContent
	B.1.16 getAttachmentProperty
	B.1.17 getChildElement
	B.1.18 getComponentInstanceID
	B.1.19 getComponentName
	B.1.20 getCompositeInstanceID
	B.1.21 getCompositeName
	B.1.22 getCompositeURL
	B.1.23 getECID
	B.1.24 getFaultAsString
	B.1.25 getFaultAsXML
	B.1.26 getFaultName
	B.1.27 getMilestoneName
	B.1.28 getOwnerDocument
	B.1.29 getParentComponentInstanceID
	B.1.30 getRevision
	B.1.31 getTaskReminderDuration
	B.1.32 instanceOf
	B.1.33 lookup-xml
	B.1.34 parseEscapedXML
	B.1.35 parseXML
	B.1.36 processScalableDocumentToNative
	B.1.37 processXSLTAttachmentFromNativeToNative
	B.1.38 processXSLTAttachmentFromNativeToStream
	B.1.39 processXSLTAttachmentToNativeStream
	B.1.40 processXSLTAttachmentToStream
	B.1.41 processXSLTForScalableDocument
	B.1.42 setCompositeInstanceTitle

	B.2 BPEL Extension Functions
	B.2.1 BPEL Extension Functions in BPEL 1.1 and BPEL 2.0
	B.2.1.1 getLinkStatus
	B.2.1.2 getVariableData
	B.2.1.2.1 selectionFailure Fault is Thrown if the Result Node Set is a Size Other Than One During Execution

	B.2.1.3 getVariableProperty (For BPEL 1.1)
	B.2.1.4 getVariableProperty (For BPEL 2.0)
	B.2.1.5 doXslTransform (For BPEL 2.0)

	B.3 BPEL XPath Extension Functions
	B.3.1 addQuotes
	B.3.2 authenticate
	B.3.3 countNodes
	B.3.4 doXSLTransform
	B.3.5 doXSLTransformForDoc
	B.3.6 doc
	B.3.7 formatDate
	B.3.8 generateGUID
	B.3.9 getConfigProperty
	B.3.10 getContentAsString
	B.3.11 getConversationId
	B.3.12 getCreator
	B.3.13 getCurrentDate
	B.3.14 getCurrentDateTime
	B.3.15 getCurrentTime
	B.3.16 getElement
	B.3.17 getInstanceId
	B.3.18 getNodeValue
	B.3.19 getNodes
	B.3.20 getPreference
	B.3.21 getProcessId
	B.3.22 getProcessOwnerId
	B.3.23 getProcessURL
	B.3.24 getProcessVersion
	B.3.25 integer
	B.3.26 listUsers
	B.3.27 lookupUser
	B.3.28 parseEscapedXML
	B.3.29 processXQuery
	B.3.30 processXQuery10
	B.3.31 processXQuery2004
	B.3.32 processXSLT
	B.3.33 readBinaryFromFile
	B.3.34 readBinaryFromFileWithMimeHeaders
	B.3.35 readFile
	B.3.36 search
	B.3.37 toCDATA
	B.3.38 tryToCastToBoolean
	B.3.39 writeBinaryToFile
	B.3.40 getGroupIdsFromGroupAlias
	B.3.41 getUserIdsFromGroupAlias

	B.4 Conversion Functions
	B.4.1 boolean
	B.4.2 number
	B.4.3 string

	B.5 DVM Functions
	B.5.1 lookupValue
	B.5.2 lookupValue1M

	B.6 Database Functions
	B.6.1 lookup-table
	B.6.2 query-database
	B.6.3 sequence-next-val

	B.7 Date Functions
	B.7.1 add-dayTimeDuration-to-dateTime
	B.7.2 current-date
	B.7.3 current-dateTime
	B.7.3.1 To display the datetime value in seconds:

	B.7.4 current-time
	B.7.5 day-from-dateTime
	B.7.6 format-dateTime
	B.7.7 hours-from-dateTime
	B.7.8 minutes-from-dateTime
	B.7.9 month-from-dateTime
	B.7.10 seconds-from-dateTime
	B.7.11 subtract-dayTimeDuration-from-dateTime
	B.7.12 timezone-from-dateTime
	B.7.13 year-from-dateTime

	B.8 Identity Service Functions
	B.8.1 getDefaultRealmName
	B.8.2 getGroupProperty
	B.8.3 getManager
	B.8.4 getManagerFromManagementChain
	B.8.5 getReportees
	B.8.6 getSupportedRealmNames
	B.8.7 getUserProperty
	B.8.8 getUserRoles
	B.8.9 getUsersInAppRole
	B.8.10 getUsersInGroup
	B.8.11 isUserInAppRole
	B.8.12 isUserInRole
	B.8.13 lookupGroup
	B.8.14 lookupUser

	B.9 Logical Functions
	B.9.1 and
	B.9.2 equals
	B.9.3 false
	B.9.4 greater
	B.9.5 greater equals
	B.9.6 less
	B.9.7 less equals
	B.9.8 not
	B.9.9 not equals
	B.9.10 or
	B.9.11 true

	B.10 Mathematical Functions
	B.10.1 abs
	B.10.2 add
	B.10.3 ceiling
	B.10.4 count
	B.10.5 divide
	B.10.6 floor
	B.10.7 max-value-among-nodeset
	B.10.8 min-value-among-nodeset
	B.10.9 mod
	B.10.10 multiply
	B.10.11 round
	B.10.12 square-root
	B.10.13 subtract
	B.10.14 sum
	B.10.15 unary

	B.11 Node Set Functions
	B.11.1 last
	B.11.2 local-name
	B.11.3 name
	B.11.4 namespace-uri
	B.11.5 position
	B.11.6 union

	B.12 String Functions
	B.12.1 compare
	B.12.2 compare-ignore-case
	B.12.3 concat
	B.12.4 contains
	B.12.5 create-delimited-string
	B.12.6 ends-with
	B.12.7 format-string
	B.12.8 get-content-as-string
	B.12.9 get-localized-string
	B.12.10 index-within-string
	B.12.11 last-index-within-string
	B.12.12 left-trim
	B.12.13 lower-case
	B.12.14 matches
	B.12.15 normalize-space
	B.12.16 right-trim
	B.12.17 starts-with
	B.12.18 string-length
	B.12.19 substring
	B.12.20 substring-after
	B.12.21 substring-before
	B.12.22 translate
	B.12.23 upper-case

	B.13 Workflow Service Functions
	B.13.1 clearTaskAssignees
	B.13.2 createWordMLDocument
	B.13.3 dynamicTaskAssign
	B.13.4 getNotificationProperty
	B.13.5 getNumberOfTaskApprovals
	B.13.6 getPreviousTaskApprover
	B.13.7 getTaskAttachmentByIndex
	B.13.8 getTaskAttachmentByName
	B.13.9 getTaskAttachmentContents
	B.13.10 getTaskAttachmentsCount
	B.13.11 getTaskResourceBundleString

	B.14 XREF Functions
	B.14.1 lookupPopulatedColumns
	B.14.2 lookupXRef
	B.14.3 lookupXRef1M
	B.14.4 markForDelete
	B.14.5 populateLookupXRefRow
	B.14.6 populateXRefRow
	B.14.7 populateXRefRow1M

	B.15 Building XPath Expressions in the Expression Builder in Oracle JDeveloper
	B.15.1 How to Use the Expression Builder
	B.15.2 Introduction to the XPath Building Assistant
	B.15.3 How to Use the XPath Building Assistant
	B.15.4 Using the XPath Building Assistant in the XSLT Mapper
	B.15.5 Function Parameter Tool Tips
	B.15.6 Syntactic and Semantic Validation
	B.15.7 Creating Expressions with Free Form Text and XPath Expressions
	B.15.8 Using Double Slashes for Directory Paths in XPath Functions on Windows Can Cause Errors

	B.16 Creating User-Defined XPath Extension Functions
	B.16.1 How to Implement User-Defined XPath Extension Functions
	B.16.1.1 How to Implement Functions for the XSLT Mapper
	B.16.1.2 How to Implement Functions for All Other Components

	B.16.2 How to Configure User-Defined XPath Extension Functions
	B.16.3 How to Deploy User-Defined Functions to Runtime

	C Deployment Descriptor Properties
	C.1 Introduction to Deployment Descriptor Properties
	C.1.1 How to Define Deployment Descriptor Properties in the Property Inspector
	C.1.2 How to Get the Value of a Preference within a BPEL Process

	D Understanding Sensor Public Views and the Sensor Actions XSD
	D.1 Introduction to Sensor Public Views and the Sensor Actions XSD File
	D.2 Sensor Public Views
	D.2.1 Schema
	D.2.1.1 BPEL_PROCESS_INSTANCES
	D.2.1.2 BPEL_ACTIVITY_SENSOR_VALUES
	D.2.1.3 BPEL_FAULT_SENSOR_VALUES
	D.2.1.4 BPEL_VARIABLE_SENSOR_VALUES

	D.3 Sensor Actions XSD File

	E Propagating Normalized Message Properties Through Message Headers
	E.1 Introduction to Normalized Messages
	E.1.1 Oracle Web Services Addressing Properties
	E.1.2 How to Set Normalized Message Properties in Message Headers

	E.2 Manipulating Normalized Message Properties with bpelx Extensions
	E.2.1 BPEL 2.0 bpelx Extensions Syntax
	E.2.2 BPEL 1.1 bpelx Extensions Syntax

	F Interfaces Implemented By Rules Dictionary Editor Task Flow
	F.1 The MetadataDetails Interface
	F.1.1 The getDocument Method
	F.1.2 The getRelatedDocument Method
	F.1.3 The setDocument Method

	F.2 The NLSPreferences Interface

	G Oracle SOA Suite Configuration Properties Road Map
	G.1 Oracle BPEL Process Manager Deployment Descriptor Properties
	G.2 Normalized Message Header Properties
	G.2.1 Oracle JCA Adapter Message Header Properties
	G.2.2 Oracle BPEL Process Manager and Oracle Web Services Addressing Message Header Properties
	G.2.3 Oracle B2B Message Header Properties

	G.3 SOA Composite Application Properties
	G.4 Fault Policy and Adapter Rejected Message Properties
	G.5 Oracle B2B System Properties
	G.6 Oracle Healthcare Properties
	G.7 Oracle Business Activity Monitoring Properties
	G.8 Oracle Enterprise Manager Fusion Middleware Control Property Pages
	G.8.1 SOA Infrastructure Properties
	G.8.2 Oracle BPEL Process Manager Properties
	G.8.3 Human Workflow Notification and Task Service Properties
	G.8.4 Oracle Mediator Properties
	G.8.5 Cross Reference Properties
	G.8.6 Oracle B2B Properties
	G.8.7 Service and Reference Binding Component Properties
	G.8.8 Global Token Variables and Automatic Database Purging Properties

	G.9 System MBean Browser Advanced Properties
	G.9.1 SOA Infrastructure Advanced Properties
	G.9.2 Oracle BPEL Process Manager Advanced Properties
	G.9.3 Oracle Mediator Advanced Properties
	G.9.4 Human Workflow Notification and Task Service Advanced Properties
	G.9.5 Oracle B2B Advanced Properties

	H Working with Large Schemas in the XSLT Editor
	H.1 Sparse Mappings
	H.1.1 Quick Start for XSLT View

	H.2 Non-Sparse Mappings
	H.3 Reducing Textual Clutter
	H.4 Searching Trees
	H.5 Copying and Modifying a Large Input Document
	H.6 Generating Test Files with Element and Type Substitutions

	Index

