Oracle® Fusion Middleware
Developing Custom Technology Adapters for
Oracle Fusion Middleware

12¢ (12.2.1.4.0)
E95668-01
September 2019

ORACLE"

Oracle Fusion Middleware Developing Custom Technology Adapters for Oracle Fusion Middleware, 12¢
(12.2.1.4.0)

E95668-01
Copyright © 2014, 2019, Oracle and/or its affiliates. All rights reserved.
Primary Author: Oracle Corporation

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify,
license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means.
Reverse engineering, disassembly, or decompilation of this software, unless required by law for
interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users are
"commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-
specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the
programs, including any operating system, integrated software, any programs installed on the hardware,
and/or documentation, shall be subject to license terms and license restrictions applicable to the programs.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron,
the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro
Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be
responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

Preface
Audience v
Documentation Accessibility v
Related Documents \Y
Conventions v
1 Primary Considerations for Developing Custom Technology
Adapters
1.1 Preliminary Decision: Uni-Directional or Bidirectional Adapter? 1-1
1.2 Purpose 1-2
2 Custom Adapter Screens Typical Appearance
3 Developing a Custom Adapter Using Oracle JDeveloper
3.1 Understanding the JCA Adapter Wizard Framework and Overview 3-1
3.1.1 Implementing the SCA Endpoint Interface 3-3
3.1.2 Extending the JCA Adapter Wizard Class and Implementing its Abstract
Methods. 3-3
3.1.3 Implementing Custom Adapter Wizard Pages 3-4
3.1.4 Implementing the JcaDatalnterface 3-5
3.1.5 Using Framework Pages for Common Functionality 3-5
3.1.6 Extending the ConnectionPage 3-6
3.1.7 Extending the WsdlISelectionPage 3-6
3.1.8 Extending the JcaOperationPage 3-7
3.1.9 Using and/or Extending CustomAdapterConfig Class 3-8
3.1.10 Extending CommonAdapterSchemaPage or
CommonAdapterinOutSchemaPage 3-8
3.1.11 Adding a Finish Page 3-9
3.1.12 Performing Post Finish Handling (Optional) 3-9
3.1.13 Adding an AdapterType Element to sca-config.xml 3-10

ORACLE iii

3.1.14 Using Public Utility Methods 3-11

4 Developing an Adapter Runtime Component for Integration with

Fusion Middleware

4.1 Understanding Overall Design 4-1

4.2 Connection Configuration 4-1

4.3 Run Time Interfaces and Contracts 4-2

4.3.1 Inbound 4-2

4.3.2 JCA 1.5 Contracts and Interfaces 4-3

4.3.2.1 Interfacejavax.resource.spi.ResourceAdapter 4-3

4.3.2.2 Instantiation 4-3

4.3.2.3 Stop Method and Endpoint Activation 4-3

4.3.2.4 Connection Factory, Work Request, Endpoint Deactivation 4-4

4.3.3 Interfacejavax.resource.spi.work.Work 4-5

4.3.4 Interfacejavax.resource.spi.work.\WorkManager 4-6

4.3.5 Outbound Considerations 4-6

4.3.6 Translation Service Interface 4-6

4.4 Constructing the WebLogic JCA Resource Archive RAR 4-7

4.5 Deploying the RAR File to the WebLogic Application Server 4-8

4.6 Testing the Custom Adapter 4-8

5 Making the Custom Adapter Available in Oracle JDeveloper

6 Samples for Custom Adapter SDK Development

6.1 Source Code 6-1
6.2 Sample SCA Composite Application 6-1

7 List of JAR Files Required for Build

Index

ORACLE iv

Preface

Developing Custom Technology Adapters for Oracle Fusion Middleware describes
how to develop a custom adapter using Oracle JDeveloper, and how to develop an
adapter runtime component for integration with Oracle Fusion Middleware.

Audience

This guide is intended for developers who are interested in developing custom
adapters using Oracle JDeveloper or an adapter runtime component for integration
with Oracle Fusion Middleware.

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at ht t p: / / www. or acl e. cont pl s/ t opi ¢/ | ookup?
ct x=acc& d=docacc.

Accessible Access to Oracle Support

Oracle customers who have purchased support have access to electronic support
through My Oracle Support. For information, visit ht t p: / / www. or acl e. com pl s/t opi ¢/
| ookup?ct x=accé&i d=i nfo or visit htt p: // www. or acl e. com pl s/t opi ¢/ | ookup?

ct x=accé&i d=trs if you are hearing impaired.

Related Documents

Refer to the Oracle Fusion Middleware library on the Oracle Help Center for additional
information.

e For adapters information, see On-Premises Integration Adapters.
* For Oracle SOA Suite information, see Oracle SOA Suite.

e For versions of platforms and related software for which Oracle Technology
Adapters are certified and supported, review the Certification Matrix on OTN and
System Requirements and Specifications.

Conventions

The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

ORACLE v

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
http://www.oracle.com/technetwork/middleware/ias/downloads/fusion-certification-100350.html

ORACLE

Preface

Convention Meaning

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code

in examples, text that appears on the screen, or text that you enter.

Vi

Primary Considerations for Developing
Custom Technology Adapters

Consider the aspects discussed in the topics before you begin developing custom
technology adapters.

Oracle JCA-compliant adapters enable you to integrate your business applications,
and provide a robust, lightweight, highly-scalable and standards-based integration
framework for disparate applications to communicate with each other. You can create
your own Custom Adapters and runtime components, based on your own
requirements.

The Custom JCA Adapter wizard is a generic adapter wizard that reads and displays
its interaction/activation specs, properties, and default values from a configuration file.
The user employs the design time facilities of JDeveloper to use the wizard, select the
specs, override the default property values, and add new properties to the adapter.

This means that the Custom JCA Adapter must obtain information from the user and
use that information to create a WSDL file and a JCA file containing the interaction/
activation specs and properties that are required by the runtime adapter.

1.1 Preliminary Decision: Uni-Directional or Bidirectional

Adapter?

ORACLE

When creating a Custom Adapter, the first decision you need to make is to decide if
the Custom Adapter will be uni-directional or bidirectional-will it support invocation for
outbound (synchronous) operations-that is, through the JCA Common Client (CClI)
API. Alternatively, should the Adapter support both outbound and inbound
(asynchronous) message flow?

Once you make this decision and then create a Custom Adapter that supports
outbound and inbound message flow, it is important to know that:

e To support outbound message flow, the adapter needs to define one or more
implementations of j avax. resource. cci . I nteracti onSpec.

* To support inbound message flow, the adapter needs to define one or more
implementations of javax. resour ce. spi . Acti vati onSpec.

Each of these specs (Java Beans) provide metadata as name/value pairs that define a
specific operation that your adapter intends to support.

For example, for an FTP adapter, the interaction spec exposes a bean property named
Di rectory. When the FTP adapter is invoked, the invoker can instruct the adapter to
place the payload in a specific directory, by setting the interaction spec property
Directory - for example, by setting Ft pl nt eracti onSpec. setDirectory("/tnp/
receive")

1-1

1.2 Purpose

ORACLE

Chapter 1
Purpose

If the adapter supports different kinds or categories of invocations, which each require
a different set of properties, you can model each invocation type by a distinct
implementation of javax. resour ce. cci. I nteracti onSpec.

For example. the adapter might further implement SshFt pl nt er act i onSpec and
SSLFt pl nt eract i onSpec, with the first interaction spec supporting the S-FTP protocol
and the second interaction spec supporting the FTP/S protocol.

Knowing this information, and the potential use of your Adapter in terms of the
operations it supports, is a helpful first step in your customization.

The Custom JCA Adapter wizard has several purposes.

Customers or third party adapter providers can use the Custom Adapter Wizard
"as is" to support their custom runtime adapters. They only need to supply (or
extend) the Custom Adapter configuration file (cust omAdapt er - confi g. xm).

Customers and third party adapter providers can extend the Custom Adapter
classes if they want to create a more specific adapter (for example, they can
change the text to match their adapter)

The Custom Adapter wizard is a simple example of how to develop a new adapter
wizard (or to convert an old adapter wizard) using the JCA Adapter Framework
and hooking into the SCAEndpoint interface. After the SOA jdev extension is
installed, the Custom Adapter java source files can be found in <Oracl e

Home>/ soa/ pl ugi ns/j devel oper /i nt egrati on/ adapt er s/ sanpl es

Before you learn about creating the Adapter design-time components, you need to
understand the screens that make up the default Custom Adapter Wizard.

1-2

Custom Adapter Screens Typical
Appearance

ORACLE

A walk-through of the screens you see when they use a typical Custom Adapter
Wizard to configure an adapter.

When the user drops the Custom JCA Adapter icon to the Exposed Service or
External Reference swimlane in JDeveloper, Jdeveloper displays the Adapter
Configuration Welcome Page.

Figure 2-1 The Adapter Configuration Wizard Welcome Screen

= Adapter Configuration Wizard - Step 1 of B

Welcome

Welcome to the Adapter Configuration Wizard

This wizard helps you create a service using a Custom Adapter. You will be asked to specify configuration parameters
and define an operation for the service,

|| Skip this Page Next Time

_ teb | [[tee> | [concel |

The user then selects Next on the Welcome page.

The Service Name page appears. This enables the user to provide a Service Name.

2-1

Chapter 2

Figure 2-2 The Service Name Page

& Adapter Configuration Wizard - Step 2 of B

Service Name

Enter a Service Name,

Service Type: Custom Adapter

Service Name: !My(ustmnndapteri

Help | | <Back Mext > | Cenxel |

If the config.xm contains a <connecti on-fact or y> entry, the Custom Adapter
Wizard displays a Connection Information page that displays the default Connection
Factory Location.

Figure 2-3 Adapter Configuration Wizard Connection Information Page

& Adapter Configuration Wizard - Step 3 of B

Connection Information

Specify the connection-factory location as required by the deployment descriptor For your runtime adapter,

Connection Factory Location: | ST E sy

= T =3

The Adapter does not require a <connecti on-f act ory> entry. If the config. xnl file
does not contain a <connect i on- f act or y> entry, this page does not appear when the
user runs the Adapter Wizard.

ORACLE"

2-2

Chapter 2

The Custom Adapter Interface screen enables the user to either provide the name of
an operation and schema to generate a WSDL, or to import an existing WSDL

If the user chooses the latter, the URL of a WSDL, Port Type and Operation must be
provided as in the screenshot below.

Figure 2-4 The Adapter Configuration Wizard Adapter Interface Screen

& Adapter Configuration Wizard - Step 4 of 8

Adapter Interface

B

The adapter interface is defined by a wsdl that is generated using the operation name and schema(s) specified later in
this wizard. Optionally, the adapter interface may be defined by importing an existing WSDL,

Interface: (3) Define from operation and schema (specified later)
) Impart an exdsting WSOL

i

| <Back | hext> i Cancel

If the user selected Inbound Activation on the Custom Adapter's Operation page, the
user is provided a list of Activation Class names from the cust omAdapt er - confi g. xni
file (or translated display names as seen in this example) from which to choose.

ORACLE' 23

Chapter 2

Figure 2-5 Adapter Configuration Wizard Displaying Operation Name and
Activation Translated Display Name for an Inbound Operation

& Adapter Configuration Wizard - Step 5 of B

Operation
The Custom Adapter supparts inbound or autbound operations, Specify the Operation type and Operation Name.
Only one operation per Adapter Service may be defined using this wizard.
Select Operation Type: (3) Inbound Activation
() Qutbound Interaction
Operation Mame: E}nbmd
ActivationName : finbound Activation ~|
Help | <Back || mext> | | cancel |

If the user selects Outbound Interaction on the Custom Adapter's Operation page, a
list of Interaction Class names (or translated display names as seen in this example) is
displayed from the cust omAdapt er - confi g. xm , from which the user can choose.

Figure 2-6 Adapter Configuration Wizard Operation Screen Displaying
Outbound Interaction with Operation Name and Interaction Name

& Adapter Configuration Wizard - Step 5 of B

Operation

The Custom Adapter supports inbound or outbound operations, Specify the Operation type and Operation Narme.
Only one operation per Adapter Service may be defined using this wizard,

Select Operation Type: (7) Inbound Activation

(3) Qutbound Interaction
Operation Mame: Cutbound
Interaction Mame: |ouitbound Intaraction |
| Hep | | <Back || Next> | | Cancel

ORACLE" 2-4

Chapter 2

The next page shows properties associated with that class in the generated
cust omAdapt er - confi g. xm , depending on the Class Name selected in the previous
dialog.

Figure 2-7 Adapter Configuration Wizard JCA Properties Screen

& Adapter Configuration Wizard - Step 6 of B

JCA Properties

Specify the Mame and Value of all JCA Adapter Properties.

Properties + R
[Mame Value

!Sample Property ¥ ES

Sample Property ¥

‘Append falee

':mrnbverMessaqes 1

| Hep | <Back | Mext> | Cancel |

The user can change any default values and add or delete properties on this page.

The Messages page has the same functionality in a Custom Adapter as it would work
in other adapters that have the Messages page. It includes a checkbox to indicate if
Native format is required, a box to define the schema for native format, the URL for the
Message Schema and the Schema Element.

ORACLE' o5

Figure 2-8 The Custom Adapter Wizard Messages Page

& Adapter Configuration Wizard - Step 7 of B

Messages

*schema is Opaque’, then you do not need ko spacify a Schema,

rMessage Schema

Define the message for the Read File operation. Specify the Schema File Location and select the Schema Element that
defines the messages in the incoming files. Use the Browse button to find an existing schema definition. If you check

[Mative format translation is not required {Schema is Opaque)

URL

| Define Schema for Native Format |

[xsdfsinglestring.xsd

|

|
Schema Element |singleString

| <Back | next> | | cancel |

Chapter 2

When the user selects Finish on the Messages Page, the new Custom JCA Adapter
appears in the SOA diagram. in the JDeveloper window, and the Finish page displays

Figure 2-9 The Custom Adapter Wizard Finish Page

& Adapter Configuration Wizard - Step B of B
Finish

You have finished defining the Custom Adapter Service : MyCustomAdapter
When you click Finish, the wizard will create the C:\idev090916,2346.5495\Project 1\MyCustomAdapter .wsd file in
wour project directory.,

Help

E e)

If the user double-clicks on the Custom JCA Adapter in the SOA diagram, he/she

reenters the same Adapter wizard. This enables the user to modify values that were

previously entered.

ORACLE"

2-6

Developing a Custom Adapter Using
Oracle JDeveloper

Learn how to develop a custom adapter using Oracle JDeveloper.

You can develop your own Custom Adapter using Oracle JDeveloper. To do so, you
need to understand the basic development Framework.

3.1 Understanding the JCA Adapter Wizard Framework and
Overview

The JcaAdapt er W zar d extension allows you to add the initial wizard pages. You can
add additional wizard pages at any later time. For example, most adapter wizards add
their pages after the operation type (inbound/outbound) is selected. If the user
changes his mind and selects a different operation type, the wizard pages are
removed and new ones added.

Each wizard page collects user input. In addition, an adapter-specific context can be
registered to enable sharing information between wizard pages.

When the user selects the Finish button, the framework invokes the bui | dDat aMvbdel ()
method on each wizard page in the same order that the pages were displayed. The
bui | dDat aMbdel () on each page is responsible for copying its screen data to the data
model.

The Framework creates artifacts from the data model. Adapters can also register an
interface to be invoked before or after the framework's finish processing.

" Note:

The Adapter framework handles all WSDL generation. The (old)

bui | dWsdl () method is still invoked for each wizard page, but most wizard
pages should not override this method and leave the WSDL processing to
the super class.

The following table describes, and the diagram shows the different classes that makes
up the Custom Adapter. A Class Diagram follows.

Table 3-1 Custom Adapter Classes
|

Class Description

SOA Diagram The graphical editor for the composite.xml.

SCA Endpoint Provides a proxy between the SOA diagram and the Adapter
framework.

ORACLE 3-1

ORACLE

Chapter 3

Understanding the JCA Adapter Wizard Framework and Overview

Table 3-1 (Cont.) Custom Adapter Classes

Class Description

JcaAdapterWizard Allows you to add initial Wizard pages.

CustomAdapterWizard | Extends JcaAdapterWizard to enable overriding public methods

JcaServiceName Page | Provides the Service Name page.

CustomConnectionPag | Creates a page that will prompt for the connection-factory location
e and puts this information into the data model.

CustomWSDLSelection | Provides the user the option to select a existing WSDL, portType,
Page and operation rather than generating a default WSDL

CustomOperationPage | Add and remove wizard pages depending on the operation chosen.

CustomPropertyPage Enables the user to set activation and interaction spec properties.

Figure 3-1 Custom Adapter Class Diagram

‘ SCAEndpoint

| JcaAdapterWizard

T

| SOA Diagram _:-‘ CustomSeaEndpointimp

T

L soa-config.xm

| WsdlSelectionPage

t

—»=| CustomAdapterWizard
(Adds Wizard Pages)

v

L JcaServiceNamePage
| CustomConnectionPage

Y

4_| CustomWsdlSelectionPage

| JeaOperationPage

v
CustomOperationPage

I CustomAdapterConfig

v
‘_l CustomPropertyPage

Once you understand the basics, you can proceed to understand the implementation

details:

e Implementing the SCA Endpoint Interface

e Extending the JCA Adapter Wizard Class and Implementing its Abstract Methods.

e Implementing Custom Adapter Wizard Pages

e Implementing the JcaDatalnterface

e Using Framework Pages for Common Functionality

e Extending the ConnectionPage
e Extending the WsdlSelectionPage
e Extending the JcaOperationPage

3-2

Chapter 3
Understanding the JCA Adapter Wizard Framework and Overview

* Using and/or Extending CustomAdapterConfig Class

» Extending CommonAdapterSchemaPage or CommonAdapterinOutSchemaPage
* Adding a Finish Page

» Performing Post Finish Handling (Optional)

* Adding an AdapterType Element to sca-config.xml

* Using Public Utility Methods

3.1.1 Implementing the SCA Endpoint Interface

The SCAEndpoi nt is invoked when a new adapter is dropped onto the SOA diagram
from the JDeveloper Component Palette (SCAEndpoi nt . cr eat el npl ement at i on), when
an existing adapter is doubled-clicked within the SOA Diagram within JDeveloper
(setInterfacel nfo and di spl ayServi ceEdit or), or when an adapter is deleted from
the SOA Diagram (SCAEndpoi nt . del et e).

The SCAEndpoi nt implementation is the proxy between the SOA diagram and the
Adapter framework. It is responsible for invoking the main constructor for the adapter
wizard.

The cr eat eEndpoi nt method and updat eEndpoi nt method thus invoke the di spl ay()
method on the JcaAdapt er W zar d extension class.

See
oracle.tip.tools.ide.adapters.designtime.adapter.custom Cust onScaEndpoi nt |
mpl . j ava for an example of the above.

3.1.2 Extending the JCA Adapter Wizard Class and Implementing its
Abstract Methods.

ORACLE

You enable Adapter wizards to use the JCA Adapter Framework by extending this
oracle.tip.tools.ide.adapters. designtine.adapter.jca.JcaAdapterWzard class
and by implementing its abstract methods.

Abstract methods in this class include get Adapt er TypeString() and
get Vel coneMessage, which fill in text needed for the generic wizard pages.

The abstract method addl ni ti al W zar dPages() adds Adapter wizard pages. This
method should only add initial pages; that is, pages that are always navigated to
regardless of user input.

The initial pages usually start with the JcaSer vi ceNamePage, a Connect i onPage (if a
connection is needed), and a Wdl Sel ect i onPage (if supported by the adapter; see
detail below).

If your adapter does not support the Wdl Sel ect i onPage, the last initial wizard page
will probably be an Oper at i onPage.

User input on the WsdI Sel ecti onPage and the Oper at i onPage can modify the
navigation in the wizard (that is, it can modify which pages are displayed) and
additional wizard pages are added when the user chooses the NEXT button on those
pages.

You can optionally override public methods in JcaAdapt er W zar d.These include:

3-3

Chapter 3
Understanding the JCA Adapter Wizard Framework and Overview

* Override get Adapt er Speci fi cCont ext to register an adapter-specific method that
can be available on all pages.

* You can register an Adapt er W zar dFi ni shi nt er f ace to be invoked when the user
selects the Finish button. You register the interface by overriding the
get Adapt er W zar dFi ni sh method in your JcaAdapt er W zar d extension class.

* You can override r eadJCADat aMbdel to access your own data model rather than
using the default data model. However, this is not recommended.

See
oracle.tip.tools.ide.adapters. designtine.adapter.custom Cust omidapt er W zar
d. j ava for an example of overriding public methods.

3.1.3 Implementing Custom Adapter Wizard Pages

ORACLE

All adapter wizard pages must extend t echAdapt er W zar dPage (which inherits from
Jpanel).

The page constructors must invoke set Cont ext AndPage() which adds the page to the
Wizard and sets up other context information that is needed. See the example in
oracle.tip.tools.ide.adapters.designtine.adapter.custom Cust onConnecti onPa
ge.java

When the user chooses the Finish button, the Adapter Framework invokes the

bui | dDat aMbdel () method on each wizard page in the same order that the pages
were displayed. The bui | dDat aMbdel () method is responsible for copying its screen
data to the data model. You can do this simply with code similar to the following:

JcaDatal nterface jdata = (JcaDatal nterface)get Dat avbdel ();
jdata. setProperty(propnane, screenField.get Text().trim));

The JcaAdapt er Cont ext is available on all pages. It has many accessor methods for
obtaining useful information. Following is a partial list of accessors that will be
commonly used by wizard pages:

Table 3-2 JcaAdapterContext Accessor Methods
|

Accessor Method Notes

hj ect The Adapter context object.

get Adapt er Speci fi cContext () ;

JcaDat al nterface Obtains the data model

get Dat aMbdel () ;

Project getProject(); Obtains the jdeveloper Project object that is needed for

most jdev interactions. It contains the project name also.

Frame get Adapt er Frame(); This returns a Frame object that is required when
invoking new dialogs or pop-up error messages.

Frame get Adapt er Frame(); This returns a Frame object that is required when
invoking new dialogs or pop-up error messages.

bool ean i sUpdat eMbde(); Indicates that an existing Adapter is being updated

: Obtains a service name

String get Servi ceNamg(

)
String getServiceType(); Obtains a service type

3-4

Chapter 3
Understanding the JCA Adapter Wizard Framework and Overview

Table 3-2 (Cont.) JcaAdapterContext Accessor Methods
|

Accessor Method Notes

Védl I nfo Null if the existing WSDL is not selected. This would be

get Exi stingWsdl I nfo(); the WsdlInfo for the Wsdl/porttype the user selected on
the WsdlISelectionPage.

String get OperationName(); Obtains an Operation name

Bool ean i sl nbound(); True if the adapter is inbound (Read, Get)

Connection get Connection(); [Obtains a connection for adapters that use a connection

object, like the Database adapter.

See the
oracle.tip.tools.ide.adapters. designtinme.adapter.custom CustonPropertiesPa
ge. j ava for an example of a wizard page developed from scratch.

3.1.4 Implementing the JcaDatalnterface

Most of the methods of the JcaDat al nt er f ace have two versions:

* One version that is "spec aware" and which takes an (activation or interaction)
"spec" argument that indicates the activation or interaction spec to which a
property or attribute belongs.

* Another version is "non-spec aware" and does not have a spec argument. All the
examples in this document use the "non-spec aware" APIs.

The "non-spec" versions of these methods are for adapter wizards that only support a
single spec at a time. For example, a FileAdapter instance can either Read a file or
Write to a file. A single instance cannot do both.

The "spec aware" methods must be used by adapter wizards that support multiple
specs. For example, the MQ adapter supports a read operation that also has an
asynchronous callback.

In this case, the MQ adapter wizard generates an activation spec and an interaction
spec. Therefore, the MQ adapter wizard must use the "spec aware" methods to make
it clear which spec a property or attribute belongs to.

The spec argument contains only the spec String.

The "non-spec" API also supports older adapters where the properties can be set
before you add the activation or interaction spec.

3.1.5 Using Framework Pages for Common Functionality

ORACLE

The Welcome Page, the Service Name Page, and the Finish Page are common to all
adapter wizards. These pages are controlled by the Adapter framework, so you do not
need to add them to the wizard, but there are accessor methods for overriding the
contents of the Welcome Page (in the JcaAdapt er W zar d) and the Finish Page.

Framework pages must be extended by the adapter when you use them. A discussion
of each type of extension follows.

3-5

Chapter 3
Understanding the JCA Adapter Wizard Framework and Overview

3.1.6 Extending the ConnectionPage

Most, but not all, adapter wizards require a connection page. For example, the AQ
adapter requires a database connection page to enable the user to query and display
a list of available queues.

If your adapter wizard requires a database connection, add JcaDBConnect i onPage in
addl ni ti al Wzar dPages and use the method as is. The JDeveloper connection
objects will be available to subsequent pages by the following accessor in the

Adapt er W zar dCont ext :

Connection get Connection();
Dat abaseConnect i onl nfo get DBConnecti onl nfo();

The Custom Adapter in this guide is an example of an adapter that has its own
connection type and does not use the JcaDBConnect i onPage.

In this case, the Cust onConnect i onPage prompts for the connection-factory location
and puts this information into the data model with code similar to:

JcaDatal nterface jdata = (JcaDatal nterface)get Dat avbdel ();
j data. set ConnectionFactoryAtrribute(JcaDatal nterface.
CONNECTI ON_FACTORY
_LOCATI ON_ATTRI BUTE, connect i onText Fi el d. get Text (). trim());

3.1.7 Extending the WsdlSelectionPage

ORACLE

Many adapter wizards (such as wizards for the File, FTP, AQ, MQ, and JMS adapters)
provide the user the option to select a existing WSDL, portType, and operation rather
than generating a default WSDL Picking an operation essentially defines the schema
that will be used by the adapter.

However, selecting an existing WSDL is not supported by adapters that supply or
generate their own schemas (for example, the DB, B2B, BAM, and Oracle Application
adapters generate their own schemas).

Some adapter wizards are a mix of the two: if an existing WSDL is selected, then
certain operations that have required schemas are disabled.

If your adapter needs to support existing WSDLs, you need to create a class that
extends Védl Sel ecti onPage.

See Cust omAsdl Sel ecti onPage for an example. There are three abstract methods that
must be implemented to extend this class:

* Dbool ean adapt er SupportsSynchRead(). Returns true if the adapter has a sync
read option. This enables WSDL operations with an output element to be selected
on the WsdISelection page.

* bool ean adapt er SupportsCal | back(). Returns true if the adapter can have a
callback (inbound or outbound). If true, the Wdl Sel ecti on page enables the user
to choose two port types.

e createPagesFor Operation(). Enables you to add new wizard pages after the user
chooses the WSDL operation.

3-6

Chapter 3
Understanding the JCA Adapter Wizard Framework and Overview

Note:

Subsequent wizard pages must disable operations and features that are not
supported by the selected operation. For example, with the File and FTP
adapters, if the operation selected has an output element, all operations on
the Operation page must be disabled except the Synchronous Read
operation. See additional details under JcaQper at i onPage.

When an existing WSDL is selected, the adapter framework still generates a WSDL,
but rather than generating port types, operations, messages, and schemas in the
WSDL, the framework imports the WSDL the user has selected. A wrapper WSDL that
will import the selected WSDL. It only contains the import and the partnerlinkTypes.

Generating a wrapper WSDL is similar in approach to that of BPEL when the user
selects a WSDL that does not have a part ner Li nkType.

The adapter wrapper WSDL also defines part ner Li nkTypes and can define a header
message that is not available in the user-selected WSDL

3.1.8 Extending the JcaOperationPage

ORACLE

All wizard operation pages (pages that pick operations such as Read/Write or Get/Put)
should override JcaQper at i onPage because JcaQper at i onPage handles the WSDL
object creation, based on the operation name.

The operation name is provided by implementing the abstract method
get Oper ati onNane() .

Most operation pages add and remove wizard pages depending on the operation
chosen. The accessor method removePages() removes all wizard pages past the
current page.

The Operation page's bui | dDat aMbdel () method is responsible for setting the
Activation or Interaction spec in the data model, using code similar to:

JcaDatal nterface jdata = (JcaDatal nterface)get Dat avbdel ();
if (readRB.isSelected()){
jdata.setActivationSpec
(TH S_ADAPTERS_ACTI VATI ON_SPEC) ;

)

el se{
jdata.setlnteractionSpec(TH S_ADAPTERS_| NTERACTI ON_SPEC) ;

}

Note:

For update mode, Oper at i onPages must not enable the user to change
operation types or names because the adapter interface can be wired to a
reference that depends on the existence of that operation.

3-7

Chapter 3
Understanding the JCA Adapter Wizard Framework and Overview

See
oracle.tip.tools.ide.adapters.designtime.adapter.custom Cust onOperati onPag
e.java for an example.

3.1.9 Using and/or Extending CustomAdapterConfig Class

Some adapters can use or extend the Cust onPr oper t yPage to enable the user to set
their activation and interaction spec properties.

But most new adapters have their own property pages because this provides the
Adapters with more control of how the properties display (for example, a list of values,
a Ul control, or a validation).

The class that the Custom adapter uses to read its configuration file,
Cust omAdapt er Confi g, is public and can be used or extended by other adapters.

The Cust omAdapt er Conf i g class retrieves lists of possible specs, properties, and
connection-factories from the configuration file, cust omAdapt er - confi g. xm (which is
the default custom Adapter configuration file). You can use a different configuration file
by extending this class and overriding the get Conf i gFi | ePat h() method.

The attributes di spl ayResour ceKey and r esour ceBundl e are optional. If activation-
spec, interaction-spec, or property elements have a di spl ayResour ceKey, The
framework uses the attribute value as a key to retrieve displayable text from a
resource bundle available by the get Di spl ayString() ortoString() methods. If a
resource bundle is not available or the key is not found in the bundle, the key itself is
used as the displayable text (hence, the class is not required to have a resource
bundle).

You can pass a resource bundle to the constructor of this class, but it also can be
overriden by the r esour ceBundl e attribute on the <connection-factory> element in the
configuration file.

3.1.10 Extending CommonAdapterSchemaPage or
CommonAdapterinOutSchemaPage

ORACLE

Many adapter wizards enable the user to chose a single schema or request/reply
schema to define the messages used by the adapter.

These wizards extend the ConmonAdapt er SchenaPage (for adapters with one-way
operations) or CormonAdapt er | nQut SchenaPage (for adapters with both one-way and
request/reply operations), with options related to Schema (typeChooser, NXSD wizard,
opaque schema, and WSDL generation).

The ConmonAdapt er SchemaPage class extension only needs to implement
getIntroPronpt () to change the introductory text at the top of the page.

See
oracle.tip.tools.ide.adapters.designtime.adapter. custom Cust onSchemaPage
for an example.

The CommonAdapt er | nQut SchenaPage has several public methods that you can
override. See the following table.

3-8

Chapter 3
Understanding the JCA Adapter Wizard Framework and Overview

Table 3-3 CommonAdapterinOutSchemaPage Public Methods
|

Method Description

getlntroPronpt () Changes the introductory text at the top of the page.

get I nboundSchemalLabel () Sets the label for the Inbound Schema Panel.

get Qut boundSchemaLabel () Sets the label for the Outbound Schema Panel.

changeSequenceC | nQut SchemaP | Changes the sequence of display of Inbound and

anel s() Outbound panels. Default display is Inbound schema
panel first.

set | nQut SchemaPanel Vi si bilit |[Sets or unsets schema panel visibility.

y()

Seeoracle.tip.tools.ide. pmw zard. adapt er. ng. MQAdapt er | nQut SchenaPage for
an example.

3.1.11 Adding a Finish Page

You must add a Finish page to the wizard early in the wizard flow, rather than having
the wizard display the Finish button when the Finish page is displayed; the Finish page
displays summary information needed from other pages that have not yet been
displayed.

To help provide this order of page precedence, there are two helper methods
contained in t echAdapt er W zar dPage: addFi ni shPage() and
set Fi ni shPageCont ents():

e addFi ni shPage() adds a finish page with no contents to the wizard. Most wizards
add the Finish page when they remove and add pages

e setFinishPageContents(String title, Object contents) calls
set Fi ni shPageCont ent s when the user chooses the Next button on the last page
of the wizard (from wi zar dVal i dat ePage())

The contents of the Finish page can be a Component or a String. If you set the
contents of the Finish page to be a String, a MultiLineLabel is created for you.

3.1.12 Performing Post Finish Handling (Optional)

ORACLE

Each Adapter can register an implementation of the Adapt er W zar dFi ni shinterface
by overriding the get Adapt er W zar dFi ni sh() method in the JcaAdapt er W zar d
extension class. This enables the adapter to perform additional activities at Finish
time.

For example, the File adapter uses this Finish override to check if a
Fi | eAdapt er Header schema is in the current project and, if the schema is not in the
current project, the File Adapter copies the Header file to the project directory.

The Adapt er W zar dFi ni shl nt er f ace has two methods that either obtain control
before or after the adapter artifacts (WSDL and . j ca files) are created:

e The bef or eWsDL() method returns false to indicate that the adapter artifacts should
not be created.

3-9

Chapter 3
Understanding the JCA Adapter Wizard Framework and Overview

e The af t er W6DL() method is invoked the after WSDL file is created.

Both of these methods can be used as you require in your implementation.

3.1.13 Adding an AdapterType Element to sca-config.xml

ORACLE

The following, added to the sca-confi g. x|, tells the SOA diagram the icons and the
SCAEnNdpoint implementation class to use for the Custom Adapter, and provides
additional information. Sub-element definitions include:

e name: from the resource bundle
e description: from the resource bundle

e tooltip: from the resource bundle (shows under mouse cursor over the graphical
shape)

e iconl6x16: the icon used in the palette
e icon20x20: the icon used in the graphical shape
e remaining 4 icons are not used

<adapt er Type
resour ceBundl e="oracl e.tip.tools.ide. pm nmodul es. bi z
i ntegration.adapter.custom resource. Cust onfst ri ngResour ceBundl ">
<name>${ CUSTOM ADAPTER_COVPONENT_NAME_L} </ name>
<bi ndi ngType>j ca</ bi ndi ngType>
<bi ndi ngSubType>cust onx/ bi ndi ngSubType

<inpl enent ati onC ass>oracl e. tip.tools.ide. pm nodul es. bi zi nt egrati on. adapt er. cust om Cu
st onScaEndpoi nt | mpl </ i npl enent ati ond ass>

<descri pti on>${ CUSTOM ADAPTER_COMPONENT_DESC} </ descri pti on>

<t ool ti p>${ CUSTOM ADAPTER_COMPONENT_DESC} </t ool ti p>

<i conl6x16>/ oracl e/ tip/tool s/ide/ pm nodul es/ bi zi nt egrati on/ adapt er/ cust onl
resour ce/ cust om adapt er _16x16. png</i con16x16>

<i con20x20>/ oracl e/ ti p/tool s/ide/ pm nodul es/ bi zi nt egrati on/ adapt er/ cust onl
resour ce/ cust om adapt er _20x20. png</i con20x20>

<t opSecti onl con>oracl e/tip/tool s/idelfabric/resourcelimge/visuals_rdl/
whi t eSer vi ceTop. png</t opSect i onl con>

<ni ddl eSect i onl con>oracl e/ tip/tool s/idel/fabric/resourcel/imagel/visuals_rdl/
whi t eServi ceM ddl e. png</ m ddl eSecti onl con>

<bot t onBect i onl con>oracl e/ tip/tool s/ide/fabric/resourcel/imgel/visuals_rdl/
whi t eSer vi ceBot t om png</ bot t onBect i onl con>

<col | apsedSecti onl con>oracl e/tip/tool s/ide/fabric/

resource/ i mage/ vi sual s_rd1/ whi t eServi ceCol | apsed. png</ col | apsedSecti onl con>

</ adapt er Type>
<col | apsedSecti onl con>oracl e/tip/tool s/ide/fabric/resourcelimge/
vi sual s_rd1/ whit eServi ceCol | apsed. png</ col | apsedSect i onl con>
</ adapt er Type>

In the sca-confi g. xm , the <adapterType> has a resource bundle attribute that must
contain the class name of the bundle from which the SOA diagrammer uses to get the
translated text it uses to label endpoints in the diagram.

For example, referring to the Custom Adapter entry, the diagram will look up
CUSTOM ADAPTER_COVPONENT_NAME L in the Cust onft ri ngResour ceBundl e when it
shows the custom adapter in the diagram.

Note that internal to an adapter wizard, the diagram uses a resource bundle to get the
text for all the labels in the wizard. In the cases of the custom adapter, the same
bundle is being used.

3-10

Chapter 3

Understanding the JCA Adapter Wizard Framework and Overview

3.1.14 Using Public Utility Methods

Classes in this SDK have utility methods that have been used throughout the adapter
wizards. The following table lists these methods:

ORACLE

Method

Notes

oracle.tip.tools.ide.adapters.design
tine. adapter.jca.Jcaltil:

get Adapt er Wdl I nf o
(Adapt er W zar dCont ext _wcont ext)

Multiple flavors are available

i ni t Cont ext Fr omAsdl AndMbdel (Proj ect
proj ect, JcaAdapt er Cont ext

j caAdapt er Cont ext, dI | nfo wsdl I nf o,
JcaDat al nterface jdata)

i ni t Cont ext Fr omASDLMuI ti Oper (JcaAda
pt er Cont ext j caAdapt er Cont ext,
JcaDat al nterface jdata)

Definition
r eadAdapt er W6dl (WSDLFact ory wf act,
URL wsdl Locat i on)

oracle.tip.tools.ide.adapters. design
ti me. adapt er. CormonAdapt er SchermaPage

bui | dOpaqueSchena(Adapt er W zar dCont e
xt _wcontext, Definition

def 1) removed dSchema(Adapt er W zar dC
ontext wcontext, String

schemalLoc, String schenaNanespace)

Removes schema from definition object for a
one-way operation

removed dSchema(Adapt er W zar dCont ext
weont ext, bool ean oneway, bool ean
i sCal | back)

Removes input/output schema from definition
object for request/reply operation

3-11

Developing an Adapter Runtime
Component for Integration with Fusion
Middleware

Get an overview of the process for developing an adapter runtime component for
integration with Fusion Middleware.

There are several design and connection configuration steps involved with developing
an adapter runtime component.

e Understanding Overall Design

* Connection Configuration

* Run Time Interfaces and Contracts

* Constructing the WebLogic JCA Resource Archive RAR

* Deploying the RAR File to the WebLogic Application Server
e Testing the Custom Adapter

4.1 Understanding Overall Design

The Oracle JCA Framework provides pluggability for adapters that comply to the J2EE
Java Connector Architecture, version 1.5. That is, any adapter used with the Oracle
JCA Framework must fulfill the requirements documented in the JCA 1.5 specification.

For requirements, see JSR-112, J2EE Connector Architecture 1.5 - Final Release).

" Note:

The Oracle JCA Framework implements a lightweight JCA 1.5 container,
which enables dynamic (code-driven) deployment of inbound endpoints
(activations). This does mean a small disadvantage in precluding support for
JCA 1.5 Transaction Inflow (that is, support for XATerminator support).

4.2 Connection Configuration

ORACLE

The Oracle JCA Framework requires a JCA adapter that is deployable on a J2EE 1.4-
(or later) compliant Application Server, for example, Oracle WebLogic Server.

Any JCA adapter used with the Oracle JCA Framework must implement all the
relevant JCA SPI (Service Provider) and CCI (Common Client) interfaces as mandated
by the JCA 1.5, specification, principally the following:

e javax.resource. spi . ManagedConnecti onFact ory

4-1

http://www.jcp.org/en/jsr/detail?id=112

Chapter 4
Run Time Interfaces and Contracts

* javax.resource. cci.ConnectionFactory
e javax.resource. spi . ManagedConnection
e javax.resource. cci.Connection

The JCA adapter must define the necessary connection properties in its
ManagedConnect i onFact ory to establish a functional connection to an EIS (Enterprise
Information System, or "back-end").

Properties in the ManagedConnect i onFact ory enable the Oracle JCA Framework to
obtain a connection via a deployed JCA Adapter. Example code is:

ConnectionFactory cf = initial Context.|ookup("eis/Siebel/Siebel Appl-Connection");
Connection ¢ = cf.getConnection();

All connection properties are retrieved through the JNDI lookup contained in the
Connect i onFact ory instance.

4.3 Run Time Interfaces and Contracts

The Adapter must comply with specific interfaces and contracts to successfully interact
with the Oracle JCA Framework.

The JCA adapter must implement at least the following interfaces:

e javax.resource. spi.ResourceAdapt er
e javax.resource.spi.ActivationSpec
e javax.resource. spi.work. Wrk

e javax.resource.cci.lnteraction

e javax.resource.cci.lnteractionSpec

These SPI interfaces must be implemented to enable inbound message flow, and the
CCl interfaces must be implemented to enable outbound interactions. See the
following sub sections.

* Inbound

» JCA 1.5 Contracts and Interfaces

e Interfacejavax.resource.spi.work.Work

e Interfacejavax.resource.spi.work.WorkManager
* Outbound Considerations

* Translation Service Interface

4.3.1 Inbound

ORACLE

The J2EE Java Connector Architecture, version 1.5, provides interfaces that enable an
adapter to asynchronously push messages to endpoints managed by the J2EE
Application Server in a well-defined manner in terms of transactions (that is, when an
adapter supports transactional semantics).

In the Oracle JCA Framework, these endpoints are managed by the Adapter
Framework.

4-2

Chapter 4
Run Time Interfaces and Contracts

4.3.2 JCA 1.5 Contracts and Interfaces

The following sub-sections describe each of the Service Provider Interfaces (SPI) that
a JCA 1.5 compliant Resource Adapter must implement in order to be deployable to
Oracle Fusion Middleware.

* Interfacejavax.resource.spi.ResourceAdapter
* Instantiation
* Stop Method and Endpoint Activation

e Connection Factory_ Work Request_ Endpoint Deactivation
4.3.2.1 Interfacejavax.resource.spi.ResourceAdapter

Each JCA adapter must implement this interface. The Adapter Framework treats an
Adapter's implementation of this interface as a singleton; that is, there will be at most
be one instance of an implementation of this interface per Java Virtual Machine.

If an adapter is not used by *any* business process (in particular JVM) then it's
ResourceAdapter implementation will not be instantiated

4.3.2.2 Instantiation

The ResourceAdapter implementation is instantiated when the first composite
application using the adapter is started.

Subsequent starting composites that also use the same adapter do not cause
additional Resour ceAdapt er instances to be created, but obtain a handle to the first
(singleton) instance.

The following method is called immediately after the Resour ceAdapt er instance is
created:

public void start(BootstrapContext ctx)
throws Resour ceAdapt er | nternal Exception

The adapter should cache the Boot st rapCont ext , as it contains necessary facilities for
creating and scheduling inbound endpoint interactions.

The Boot st rapCont ext also contains a Logging service handle, which the resource
adapter should cache and use throughout all classes supporting inbound message
flow (that is. classes provided under javax. r esour ce. spi . *).

Outbound, the Logging service handle will be available through the
ConnectionFactory.

4.3.2.3 Stop Method and Endpoint Activation

The st op method is called when a resource instance is undeployed, during application
server shutdown, or when the last composite referring to the adapter is terminated.

public void stop()

ORACLE 4.3

Chapter 4
Run Time Interfaces and Contracts

If active endpoints exist, they must be deactivated before returning from the st op()
method, invoked by the adapter framework during server or composite shutdown.

Any other allocated resources must similarly be released promptly:

public void endpointActivati on(MessageEndpoi nt Fact ory endpoi nt Factory,
ActivationSpec spec)

Endpoint activation is called during the activation of a message endpoint.

Each composite that has an initiating or non-initiating JCA-based Service entry point
(that is, an entry point using bi ndi ng. j ca in the <servi ce>) causes the invocation of
endpoi nt Activation() for each associated (inbound) operation for the
ResourceAdapter referenced by the connection factory JNDI in the . j ca property file.

4.3.2.4 Connection Factory, Work Request, Endpoint Deactivation

The Adapter Framework provides, through the MessageEndpoi nt Fact ory, an instance
of the Connecti onFact ory, as defined in the <connecti on- f act ory> element in

the . j ca property file, which then can be used by the resource adapter to create
connections:

j avax. resour ce. cci . Connecti onFactory connectionFactory =
((Connect i onFact or yAssoci ati on) acti vationSpec). get Connecti onFactory();
j avax. resour ce. cci . Connection connection = connectionFactory. get Connection();

During this invocation, the resource adapter must use the MessageEndpoi nt Fact ory to
create the inbound endpoint and to submit a Work request for execution, which
constitutes the inbound thread that monitors the inbound EIS endpoint.

Resour ceAdapt er | nboundWr ker Thr ead wor kRequest =
new Resour ceAdapt er | nbound\Wr ker Thr ead(endpoi nt, activationSpec, connection);
wor kManager . st art Wr k(wor kRequest) ;

Here Resour ceAdapt er | nboundWr ker Thr ead is the resource adapter's implementation
of j avax. resour ce. spi . wor k.Wr k.

Soon after returning from st art Wor k() , the Adapter Framework allocates and assigns
a thread to the submitted wor kRequest by calling its r un() method.

The following method, endpointDeactivation, is called by the Adapter Framework when
a message endpoint is deactivated; that is, either when the composite having activated
the endpoint shuts down, or when the application server shuts down.

public void endpoint Deactivati on(MessageEndpoi nt Fact ory
endpoi nt Factory, ActivationSpec spec)

ORACLE 4-4

Chapter 4
Run Time Interfaces and Contracts

Note:

For a custom adapter to work in the Oracle Weblogic environment, the
custom adapter's Connetion Factory needs to implement
oracle.tip.adapter.api.O acl eConnecti onFactory. If the custom
adapter's Connetion Factory needs to implement
oracle.tip.adapter.api.O acl eConnectionFactory, then add a
<resour ce- adapt er > element to the <connect i on- f act ory> in the .jca
generated by JDeveloper. For example,

<connection-factory | ocation="eis/Custom Cust omAdapter"/>
<resour ce- adapt er

cl assNanme="com cust om or acl e. f usi on. adapt er . Cust omAdapt er "/ >

</ connecti on-factory>

4.3.3 Interfacejavax.resource.spi.work.\Work

ORACLE

The Work interface is:

public interface Wrk extends Runnable

Because a JCA 1.5-compliant resource adapter deployed with the Oracle SOA will be
executing in Managed Mode (that is, inside a J2EE container), it cannot create threads
on its own. Rather, the adapter must rely on the WebLogic Application Server to create
and start threads on its behalf.

To obtain a thread (for example, a thread to be used to poll an inbound endpoint), the
adapter must submit an instance of a class implementing the Work interface to the
WorkManager (which in turn is obtained via the Boot st r apCont ext).

The adapter does this by the r un method:

public void run()

This method is invoked by the WorkManager, using a newly allocated J2EE-compliant
thread. The resource adapter can use this thread until it chooses to stop (for example,
due to a unrecoverable error condition; however, this convention is not recommended)
or, more appropriately, until the adapter is signalled to stop (by the rel ease()
method):

public void rel ease()

The adapter itself invokes r el ease() when it is processing the invocation of
endpoi nt Deacti vati on made by the Adapter Framework.

This activity is called on a separate thread from the one currently executing the Work
instance, that is, from the system thread invoking endpoi nt Acti vati on.

If the resource adapter does not exit the r un() method after a preset time following the
invocation of r el ease() , the Adapter Framework attempts to forcefully stop the thread.

4-5

Chapter 4
Run Time Interfaces and Contracts

4.3.4 Interfacejavax.resource.spi.work.WorkManager

In Oracle SOA, the implementation of the Wor kManager interface is provided by the
Adapter Framework. The implementation is minimal, because it does not support
advanced thread pooling or sophisticated scheduling.

Instead, the Adapter Framework implements only one of six public methods,
schedul eVor k(Work wor k) . The other public methods are redirected to this method,
that is, call blocking is not supported (as for example, it is required by doWrk()).

The Adapter Framework leverages the SOA default Work Manager, enabling threads
freed from a finished Wr k instance to be reused in new Work submissions.

The following method accepts a Work instance for processing.
public void schedul eWork(\Wrk wor k)

throws WrkException

This call does not block and returns immediately once a Work instance has been
accepted for processing. There is no guarantee when the submitted Work instance
starts execution; that is, there is no time constraint to start execution.

4.3.5 Outbound Considerations

In outbound and inbound scenarios, the Resource Adapter must comply to the
standard contracts defined by the JCA 1.0 specification.

In the outbound scenario, when providing the runtime definition of an adapter, you
must adhere to the following requirements:

* The ManagedConnecti onFact ory of the Resource Adapter must define all of its
connection related parameters, thereby allowing the Oracle SOA runtime to simply
perform. For example:

Connecti onFactory cci ConnectionFactory =
initial Context.|ookup("eis/sanple/...");
Connection cci Connection = cci Connecti onFactory. get Connection();

e Allregular I nteracti onSpec parameters on any | nt er act i onSpec implementation
must be constituted by single argument mutator methods, using one of the
following argument types: String, int, boolean, short, long, float, double.

* The Resource Adapter must be able to function in a Managed Environment, and
as such it must be deployable on the J2EE Application Server.

4.3.6 Translation Service Interface

ORACLE

The Translation Service interface handles translation of a message to and from native
formats. The Adapter Framework determines any operation-related message
Translation to- or from- native format requirements by inspecting the I nt er act i onSpec
or Acti vati onSpec for a given WSDL Binding Operation.

If one of the indicated Specs implement the Translation marker interface
Transl ati onAwar e, the Adapter Framework supplies the corresponding XSDElement
from the WSDL types section, which defines the input message type.

4-6

Chapter 4
Constructing the WebLogic JCA Resource Archive RAR

Specifically, the Adapter Framework performs the following steps:

jcalnteractionSpec=(InteractionSpec)
C ass. forName(_i nteracti onSpecNane) . new nst ance();
if (jcalnteractionSpec instanceof TranslationAware)
{
oracl e. xm . parser. schema. XM_.Schema nXsdSchemaRoot =

get | nput MessageSchemaEl enent () ;

((Transl ati onAwar e)j cal nt eracti onSpec).
set NXSDSchemaRoot (nXsdSchemaRoot) ;
}

jcalnteraction. execute(jcal nteractionSpec, ...

4.4 Constructing the WebLogic JCA Resource Archive RAR

ORACLE

The deployment descriptor only defines an instance of <out bound- r esour ceadapt er >
because the inbound JCA runtime container is directly managed by the Oracle JCA
Framework rather than by the Oracle WebLogic Server.

To deploy a JCA adapter on a WebLogic Application Server, the user must create a
Deployment Descriptor file that defines the following properties:

e The display name

e The adapter vendor

e The EIS/back-end type
* The version numbers

e The class name of adapter implementation of
j avax. resour ce. spi . ManagedConnect i onFact ory

* The class name of the adapter implementation of
j avax.resource. cci . Connecti onFactory

e The class name of adapter implementation of j avax. r esour ce. cci . Connecti on

* The names of all bean properties exposed in the ManagedConnect i onFact ory
implementation.

The deployment descriptor file (ra. xm) must be archived into a RAR file (resource
archive), which then can be deployed using the WebLogic Server Console or through
scripting.

The RAR file that the user deploys must have the following structure:

| META- I NF/ ra. xm
[adapter.jar
[dependenci es. j ar

The adapt er . j ar file contains the implementation of the JCA adapter, and
dependenci es. j ar contains all dependent Java libraries that are not implicitly provided
by the WebLogic Application Server.

Once these constituent files have been placed in the above directory structure, you
can create the RAR file using the command:

$ jar cf nyAdapter.rar META-INF/ra.xnl adapter.jar dependencies.jar

See the appendix for a list of jar files that are required to compile a project.

4-7

Chapter 4
Deploying the RAR File to the WebLogic Application Server

4.5 Deploying the RAR File to the WebLogic Application

Server

After creating the adapter resource archive, the user must deploy the adapter on the
WebLogic Application Server, either through the Deployment section of the WLS
Management Console, or by using the WLST tool

The RAR file can also be directly copied to the aut odepl oy directory under the
WebLogic Server domain directory, where it will be automatically deployed.

After having deployed the RAR, the user can create connection factories under the
WebLogic Server Management Console Deployment section. See the following
screenshot for an example, using the Outbound Connection Pool Configuration Table.

Figure 4-1 Creating Connection Factories using the WebLogic Server
Management Console

f Deployments >AgAdapter
Settings for AgAdapter
Overview Deployment Plan Configuration Security = Targets | Control = Testing Monitoring | Motes
General Froperties | Outbound Connection Pools = Admin Objects Workload | Instrumentation
This page displays a table of Qutbound Connection Poal groups ard‘irs:ances Ec: this rescurce adapter. The top ley
Outbound Cennection Pool groups. Groups are listed by connection factory interface and the instances are listed by

obtain configuration information for a Connection Pocl instance within an Cutbound Connection Pool group. Click th
configure it. Automatically generated Connection Focls are not displayed in the table below.

Outbound Connection Pool Configuration Table

Mew
T
| Groups and Instances &% Connection Factory Interfac
| & javax.resource.cci.ConnectionFactory javax.resource.cci.ConnectionFa
| O eis/AQ/agSample Jjavax.resource.cci.ConnectionfFa
Hew

4.6 Testing the Custom Adapter

ORACLE

Samples section discusses information related to testing the Custom Adapter.

For information, see Samples for Custom Adapter SDK Development.

4-8

Making the Custom Adapter Available in
Oracle JDeveloper

Learn how to make the custom adapter that is developed available in Oracle
JDeveloper.

When the Oracle SOA Suite is installed, the Custom Adapter is not available by default
in the current release. To make the Custom Adapter available in JDeveloper:

1. Navigate to\ soa\ pl ugi ns\j devel oper\ ext ensi ons
\oracl e.sca. ui.adapters.jar .

2. Open the file META- | NF/ ext ensi on. xm and search for Custom Adapter.

3. Uncomment its entry and save ext ensi on. xm back into the
oracl e.sca. ui . adapters.jar .

4. Restart JDeveloper using the - cl ean option.

The Custom Adapter appears in the Component Palette for the SOA Diagram in
JDeveloper, as in the following screenshot.

Figure 5-1 Custom JCA Adapter Appearing in JDEV Component Palette
List

-] &
— Service Components
ga BPEL Process

@ Business Rule

&5 Human Task

<& Mediator

— Service Adapters

[B ADF-EC Service

{fﬁ AC Adapter

B2B

4§ BAM Adapter

{% 3. Custom JCA Adapter
; { Database Adapter
@ Direct Binding Service

e

External References

The <Oracl e M ddl eware Home>/ soa/integration/seed/ soal configuration/
cust omAdapt er - confi g. xnl file contains detailed options, including connection-factory
location, interaction-spec className, activation-spec className, and properties.

The properties provided in the file under an activation-spec are the properties for an
inbound adapter.

Similarly. the properties provided in the file under an interaction-spec are the
properties for an outbound adapter.

The property values are the default values shown by the Custom Adapter.

Users must modify the contents of cust omAdapt er - confi g. xml to match the options
needed by their Custom Adapter. For example, users can change all property names

ORACLE 5-1

ORACLE

Chapter 5

and their default values, add new properties, or even add multiple activation or
interaction specs.

The di spl ayResour ceKey and r esour ceBundl e attributes are optional. If an activation-
spec, interaction-spec, or property element has a di spl ayResour ceKey, the attribute
value is used as a key to retrieve displayable text from a resource bundle.

If a resource bundle is not available or the key is not found in the bundle, the key itself
is used as the displayable text (as the key is not required to have a resource bundle).

However, you can use a resource bundle used by placing the r esour ceBundl e
attribute on the connection-factory element.

The contents of the sample cust omAdapt er - confi g. xnl file used in the screenshots
below are.

<adapter-config
xmns="http://platformintegration.oracle/bl ocks/adapter/fw netadata">
<connection-factory |ocation="eis/Custonf Cust omAdapt er"
resour ceBundl e="oracl e. tip.tool s.ide. pm nodul es. bi zi nt egrati on. adapt er
cust om resour ce. Cust onSt ri ngResour ceBundl e"/ >
<endpoint-interaction >
<interaction-spec
cl assNanme="oracl e. ti p. adapt er. cust om out bound. Cust o nt er act i onSpec"
di spl ayResour ceKey="Cust om nt eracti onSpec" >
<property name="PropX" val ue="x" di spl ayResour ceKey="SAMP_PROP_X" />
<property name="PropY" val ue="y" displ ayResour ceKey="Sanpl e Property Y'/>
<property name="Append" val ue="fal se"/>
<property name="Nunber Messages" val ue="1"/>
</interaction-spec>
</ endpoi nt-interaction>
<endpoi nt-interaction >
<activation-spec
cl assName="oracl e. ti p. adapt er. cust om i nbound. Cust omAct i vat i onSpec"
di spl ayResour ceKey="Cust omAct i vat i onSpec" >
<property name="UseHeaders" val ue="fal se"/>
<property name="Physical Directory" val ue="x"/>
<property name="Recursive" value="true"/>
<property name="Del eteFile" val ue="true"/>
<property name="Incl udeFiles" val ue="x"/>
<property name="Pol | i ngFrequency" val ue="60"/>
<property name="M ni numAge" val ue="0"/>
</activation-spec>
</ endpoi nt - acti vati on>
</ adapt er - confi g>

5-2

Samples for Custom Adapter SDK
Development

Samples for custom adapter SDK deployment.

There are samples for source code, build scripts and composite applications that can
help you understand Adapter SDK development.

6.1 Source Code

Sample runtime code can be found on Oracle Technology Network under
M ddl ewar e and Tool s, Adapt er s at Sample Code for Developers and Admins.

6.2 Sample SCA Composite Application

A SCA composite application can help you to design a test scenario that provides a
thorough test of your Custom Adapter's functionality.

If the Custom Adapter provides both inbound and outbound functionality, the test
composite can employ the adapter within both an inbound and outbound (or "end-to-
end" scenario).

If the Custom Adapter is unidirectional (for example. only outbound), the test
composite can be triggered through a SOAP entry point by using the SOA test
console.

Sample custom adapter code can be found at <Oracl e M ddl eware Honme>/ soa/
pl ugi ns/ j devel oper/integration/adapters/sanpl es.

ORACLE 6-1

http://www.oracle.com/technetwork/indexes/samplecode/index.html

List of JAR Files Required for Build

ORACLE

The list of jar files that are required to do a build.

The following is a comprehensive list of jar files required for a build:

oracl e.sca. ui.adapters.jar
xbean. j ar

oracle.ide.jar fromadapt er_xbeans.jar/jdevel oper/i de/ ext ensi ons

j avat ool s-nodeps. j ar from oracl e_comon\ nodul es\oracl e.javatools _11.1.1

comoracle.ws.orawsdl _1.3.0.0.jar from nodul es

jewt4.jar fromjdeveloper/jlib

oracl e. sca. nodel er. jar from j devel oper/j dev/ ext ensi ons
share.jar fromoracle_comon/ nodul es/oracle.bali.share_11.1.1
bnp- i de- common. j ar from devel oper/integration/lib

javatool s.jar fromjdevel oper/ide/lib

oracle.jdevinpl.wsdl.jar from|devel oper/jdev/extensions

7-1

	Contents
	Preface
	Audience
	Documentation Accessibility
	Related Documents
	Conventions

	1 Primary Considerations for Developing Custom Technology Adapters
	1.1 Preliminary Decision: Uni-Directional or Bidirectional Adapter?
	1.2 Purpose

	2 Custom Adapter Screens Typical Appearance
	3 Developing a Custom Adapter Using Oracle JDeveloper
	3.1 Understanding the JCA Adapter Wizard Framework and Overview
	3.1.1 Implementing the SCA Endpoint Interface
	3.1.2 Extending the JCA Adapter Wizard Class and Implementing its Abstract Methods.
	3.1.3 Implementing Custom Adapter Wizard Pages
	3.1.4 Implementing the JcaDataInterface
	3.1.5 Using Framework Pages for Common Functionality
	3.1.6 Extending the ConnectionPage
	3.1.7 Extending the WsdlSelectionPage
	3.1.8 Extending the JcaOperationPage
	3.1.9 Using and/or Extending CustomAdapterConfig Class
	3.1.10 Extending CommonAdapterSchemaPage or CommonAdapterInOutSchemaPage
	3.1.11 Adding a Finish Page
	3.1.12 Performing Post Finish Handling (Optional)
	3.1.13 Adding an AdapterType Element to sca-config.xml
	3.1.14 Using Public Utility Methods

	4 Developing an Adapter Runtime Component for Integration with Fusion Middleware
	4.1 Understanding Overall Design
	4.2 Connection Configuration
	4.3 Run Time Interfaces and Contracts
	4.3.1 Inbound
	4.3.2 JCA 1.5 Contracts and Interfaces
	4.3.2.1 Interfacejavax.resource.spi.ResourceAdapter
	4.3.2.2 Instantiation
	4.3.2.3 Stop Method and Endpoint Activation
	4.3.2.4 Connection Factory, Work Request, Endpoint Deactivation

	4.3.3 Interfacejavax.resource.spi.work.Work
	4.3.4 Interfacejavax.resource.spi.work.WorkManager
	4.3.5 Outbound Considerations
	4.3.6 Translation Service Interface

	4.4 Constructing the WebLogic JCA Resource Archive RAR
	4.5 Deploying the RAR File to the WebLogic Application Server
	4.6 Testing the Custom Adapter

	5 Making the Custom Adapter Available in Oracle JDeveloper
	6 Samples for Custom Adapter SDK Development
	6.1 Source Code
	6.2 Sample SCA Composite Application

	7 List of JAR Files Required for Build
	Index

