
Oracle® FMW
Deploying and Managing Oracle Unified
Directory Services Manager on Kubernetes

G22971-01
March 2025

Oracle FMW Deploying and Managing Oracle Unified Directory Services Manager on Kubernetes,

G22971-01

Copyright © 2020, 2025, Oracle and/or its affiliates.

Primary Author: Russell Hodgson

This software and related documentation are provided under a license agreement containing restrictions on use and
disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or
allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit,
perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation
of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find
any errors, please report them to us in writing.

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or related
documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, then
the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software, any
programs embedded, installed, or activated on delivered hardware, and modifications of such programs) and Oracle
computer documentation or other Oracle data delivered to or accessed by U.S. Government end users are "commercial
computer software," "commercial computer software documentation," or "limited rights data" pursuant to the applicable
Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, reproduction,
duplication, release, display, disclosure, modification, preparation of derivative works, and/or adaptation of i) Oracle
programs (including any operating system, integrated software, any programs embedded, installed, or activated on
delivered hardware, and modifications of such programs), ii) Oracle computer documentation and/or iii) other Oracle
data, is subject to the rights and limitations specified in the license contained in the applicable contract. The terms
governing the U.S. Government's use of Oracle cloud services are defined by the applicable contract for such services.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications that may create a risk of
personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all
appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its
affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle®, Java, MySQL, and NetSuite are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used
under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc, and the AMD logo
are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open
Group.

This software or hardware and documentation may provide access to or information about content, products, and
services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all
warranties of any kind with respect to third-party content, products, and services unless otherwise set forth in an
applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be responsible for any loss,
costs, or damages incurred due to your access to or use of third-party content, products, or services, except as set forth
in an applicable agreement between you and Oracle.

Contents

1 What's New in This Release?

Part I Introduction to Oracle Unified Directory Services Manager on
Kubernetes

2 Introducing Oracle Unified Directory Services Manager on Kubernetes

2.1 Overview of Oracle Unified Directory Services Manager on Kubernetes 2-1

2.2 Key Features of Oracle Unified Directory Services Manager on Kubernetes 2-1

3 About the Kubernetes Deployment

3.1 What is Kubernetes? 3-1

3.2 About the Kubernetes Architecture 3-2

3.3 Key Components Used By an OUDSM Deployment 3-3

Part II Installing Oracle Unified Directory Services Manager on Kubernetes

4 Before You Begin

5 System Requirements for OUDSM on Kubernetes

6 Preparing Your Environment

6.1 Confirming the Kubernetes Cluster is Ready 6-1

6.2 Obtaining the OUDSM Container image 6-1

6.3 Creating a Persistent Volume Directory 6-2

6.4 Setting Up the Code Repository for OUDSM 6-3

iii

7 Creating Oracle Unified Directory Services Manager Instances

7.1 Creating a Kubernetes Namespace 7-1

7.2 Creating a Kubernetes Secret for the Container Registry 7-1

7.3 Creating OUDSM Instances 7-2

7.3.1 Deploying OUDSM Using a YAML File 7-3

7.3.2 Deploying OUDSM Using Set Argument 7-4

7.3.3 Helm Command Output 7-5

7.3.4 Verifying the OUDSM Deployment 7-5

8 Configuring Ingress

8.1 Installing the NGINX Repository 8-1

8.2 Creating a Kubernetes Namespace for NGINX 8-1

8.3 Installing the NGINX Controller 8-2

8.4 Accessing OUDSM Through Ingress 8-4

8.5 Validating OUDSM URLs 8-5

Part III Administering Oracle Unified Directory Services Manager on
Kubernetes

9 Scaling OUDSM Pods

9.1 Viewing Existing OUDSM Instances 9-1

9.2 Scaling Up OUDSM Instances 9-1

9.2.1 Scaling Up Using a YAML File 9-2

9.2.2 Scaling Up Using set Argument 9-2

9.2.3 Verifying the Scaling Up 9-2

9.3 Scaling Down OUDSM Instances 9-3

9.3.1 Scaling Down Using a YAML File 9-3

9.3.2 Scaling Down Using --set Argument 9-4

9.3.3 Verifying Scaling Down 9-4

10

Logging and Visualization

10.1 Installing Elasticsearch and Kibana 10-1

10.2 Creating the Logstash Pod 10-1

10.2.1 Variables Used in This Section 10-1

10.2.2 Creating a Kubernetes Secret for ELK 10-2

10.2.3 Enabling Logstash 10-3

10.2.4 Upgrading the OUDSM Deployment for ELK 10-4

10.3 Verifying the Pods 10-5

iv

10.4 Troubleshooting Pod and Logstash Errors 10-5

10.5 Verifying and Accessing the Kibana Console 10-6

11

Monitoring an Oracle Unified Directory Services Manager Instance

11.1 Creating a Kubernetes Namespace for Monitoring 11-1

11.2 Adding Prometheus and Grafana Helm Repositories 11-1

11.3 Installing the Prometheus Operator 11-2

11.4 Viewing Prometheus and Grafana Objects 11-3

11.5 Adding the NodePort for Grafana 11-5

11.6 Verifying Monitoring Using the Grafana GUI 11-6

12

Patching and Upgrading

12.1 Patching and Upgrading Within 14.1.2 12-1

12.1.1 Performing the Upgrade Within 14.1.2 12-1

12.1.2 Rolling Back the Upgrade Within 14.1.2 12-3

12.2 Upgrading from Oracle Unified Directory Services Manager 12.2.1.4 to 14.1.2 12-4

13

General Troubleshooting

13.1 Checking the Status of an OUDSM Namespace 13-1

13.2 Viewing Pod Logs 13-2

13.3 Viewing Pod Descriptions 13-2

14

Deleting an OUDSM Deployment

Part IV Appendices

A Configuration Parameters for the oudsm Helm Chart

v

List of Figures

3-1 An Illustration of the Kubernetes Cluster 3-2

vi

1
What's New in This Release?

This preface shows current and past versions of Oracle Unified Directory Services Manager
(OUDSM) 14c container images and deployment scripts on Kubernetes. If any new
functionality is added, details are outlined.

Table 1-1 Release Notes for Oracle Unified Directory Service Manager 14c on
Kubernetes

Date Version Change

March 2025 14.1.2.1.0

GitHub release version 25.1.3

Initial release of Oracle Unified
Directory Services Manager
14.1.2.1.0 on Kubernetes.

Supports Oracle Unified Directory
Services Manager 14.1.2.1.0
deployment using the OUDSM
container image.

The GitHub release version is the
latest version of the deployment
scripts used in Setting Up the
Code Repository for OUDSM.

1-1

https://github.com/oracle/fmw-kubernetes/releases

Part I
Introduction to Oracle Unified Directory
Services Manager on Kubernetes

Oracle Unified Directory Services Manager (OUDSM) can be deployed on Kubernetes.

This section includes the following chapters:

• Introducing Oracle Unified Directory Services Manager on Kubernetes

• About the Kubernetes Deployment

2
Introducing Oracle Unified Directory Services
Manager on Kubernetes

Oracle Unified Directory Services Manager (OUDSM) is supported for deployment on
Kubernetes.

This chapter includes the following topics:

• Overview of Oracle Unified Directory Services Manager on Kubernetes

• Key Features of Oracle Unified Directory Services Manager on Kubernetes

2.1 Overview of Oracle Unified Directory Services Manager on
Kubernetes

Oracle Unified Directory Services Manager (OUDSM) is an interface for managing instances of
Oracle Unified Directory. OUDSM enables you to configure the structure of the directory, define
objects in the directory, add and configure users, groups, and other entries. OUDSM is also the
interface you use to manage entries, schema, security, and other directory features.

OUDSM can be deployed using modern container orchestration with Kubernetes, bringing
enhanced agility and scalability to IT environments.

2.2 Key Features of Oracle Unified Directory Services Manager
on Kubernetes

The key features of using Oracle Unified Directory Services Manager (OUDSM) on Kubernetes
are:

• Simplified Deployment and DevOps: Containers allow teams to automate deployments
and streamline application lifecycle management, reducing manual effort, cost, and time to
deploy.

• Portability: Containerized OUDSM can run seamlessly across different environments,
including on-premises data centers, public clouds, and hybrid setups.

• Scalability: Containers allow organizations to scale their security components dynamically,
ensuring that they can handle fluctuating workloads.

• Improved Resource Efficiency: Containers provide lightweight, efficient runtime
environments that optimize resource utilization compared to traditional virtual machines.

2-1

3
About the Kubernetes Deployment

Containers offer an excellent mechanism to bundle and run applications. In a production
environment, you have to manage the containers that run the applications and ensure there is
no downtime. For example, if a container goes down, another container has to start
immediately. Kubernetes simplifies container management.

This chapter includes the following topics:

• What is Kubernetes?

• About the Kubernetes Architecture

• Key Components Used By an OUDSM Deployment

3.1 What is Kubernetes?
Kubernetes is a portable, extensible, open-source platform for managing containerized
workloads and services that facilitates both declarative configuration and automation.

Kubernetes sits on top of a container platform such as CRI-O or Docker. Kubernetes provides
a mechanism which enables container images to be deployed to a cluster of hosts. When you
deploy a container through Kubernetes, Kubernetes deploys that container on one of its worker
nodes. The placement mechanism is transparent to the user.

Kubernetes provides:

• Service Discovery and Load Balancing: Kubernetes can expose a container using the
DNS name or using their own IP address. If traffic to a container is high, Kubernetes
balances the load and distributes the network traffic so that the deployment remains stable.

• Storage Orchestration: Kubernetes enables you to automatically mount a storage system
of your choice, such as local storages, NAS storages, public cloud providers, and more.

• Automated Rollouts and Rollbacks: You can describe the desired state for your
deployed containers using Kubernetes, and it can change the actual state to the desired
state at a controlled rate. For example, you can automate Kubernetes to create new
containers for your deployment, remove existing containers, and adopt all their resources
to the new container.

• Automatic Bin Packing: If you provide Kubernetes with a cluster of nodes that it can use
to run containerized tasks, and indicate the CPU and memory (RAM) each container
needs, Kubernetes can fit containers onto the nodes to make the best use of the available
resource.

• Self-healing: Kubernetes restarts containers that fail, replaces containers, kills containers
that do not respond to your user-defined health check, and does not advertise them to
clients until they are ready to serve.

• Secret and Configuration Management: Kubernetes lets you store and manage sensitive
information such as passwords, OAuth tokens, and SSH keys. You can deploy and update
secrets and application configuration without rebuilding your container images, and without
exposing secrets in your stack configuration.

When deploying Kubernetes, Oracle highly recommends that you use the traditional
recommendations of keeping different workloads in separate Kubernetes clusters. For

3-1

example, it is not a good practice to mix development and production workloads in the same
Kubernetes cluster.

3.2 About the Kubernetes Architecture
A Kubernetes host consists of a control plane and worker nodes.

Control Plane: A control plane is responsible for managing the Kubernetes components and
deploying applications. In an enterprise deployment, you need to ensure that the Kubernetes
control plane is highly available so that the failure of a control plane host does not fail the
Kubernetes cluster.

Worker Nodes: Worker nodes which are where the containers are deployed.

Note:

An individual host can be both a control plane host and a worker host.

Figure 3-1 An Illustration of the Kubernetes Cluster

Description of Components:

• Control Plane: The control plane comprises the following:

– kube-api server: The API server is a component of the control plane that exposes the
Kubernetes APIs.

Chapter 3
About the Kubernetes Architecture

3-2

– etcd: It is used to store the Kubernetes backing store and all the cluster data.

– Scheduler: The scheduler is responsible for the placement of containers on the worker
nodes. It takes into account resource requirements, hardware and software policy
constraints, affinity specifications, and data affinity.

– Control Manager: It is responsible for running the controller processes. Controller
processes consist of:

* Node Controller

* Route Controller

* Service Controller

The control plane consists of three nodes where the Kubernetes API server is
deployed, front ended by an LBR.

• Worker Node Components: The worker nodes include the following components:

– Kubelet: An Agent that runs on each worker node in the cluster. It ensures that the
containers are running in a pod.

– Kube Proxy: Kube proxy is a network proxy that runs on each node of the cluster. It
maintains network rules, which enable inter pod communications as well as
communications outside of the cluster.

– Add-ons: Add-ons extend the cluster further, providing such services as:

* DNS

* Web UI Dashboard

* Container Resource Monitoring

* Logging

3.3 Key Components Used By an OUDSM Deployment
An Oracle Unified Directory Services Manager (OUDSM) deployment uses the Kubernetes
components such as pods and Kubernetes services.

Container Image

A container image is an unchangeable, static file that includes executable code. When
deployed into Kubernetes, it is the container image that is used to create a pod. The image
contains the system libraries, system tools, and Oracle binaries required to run in Kubernetes.
The image shares the OS kernel of its host machine.

A container image is compiled from file system layers built onto a parent or base image. These
layers encourage the reuse of various components. So, there is no need to create everything
from scratch for every project.

A pod is based on a container image. This container image is read-only. Each pod has its own
instance of a container image.

A container image contains all the software and libraries required to run the product. It does
not require the entire operating system. Many container images do not include standard
operating utilities such as the vi editor or ping.

When you upgrade a pod, you are actually instructing the pod to use a different container
image. For example, if the container image for OUDSM is based on the July Critical Patch
Update (CPU), then to upgrade the pod to use the October CPU image, you have to tell the

Chapter 3
Key Components Used By an OUDSM Deployment

3-3

pod to use the October CPU image and restart the pod. Further information on upgrading can
be found in Patching and Upgrading.

Oracle containers are built using a specific user and group ID. Oracle supplies its container
images using the user ID 1000 and group ID 0. To enable writing to file systems or persistent
volumes, you should grant the write access to this user ID. Oracle supplies all container
images using this user and group ID.

If your organization already uses this user or group ID, you should reconfigure the image to
use different IDs. This feature is outside the scope of this document.

Pods

A pod is a group of one or more containers, with shared storage/network resources, and a
specification for how to run the containers. A pod's contents are always co-located and co-
scheduled, and run in a shared context. A pod models an application-specific logical host that
contains one or more application containers which are relatively tightly coupled.

In an OUDSM deployment, each OUDSM instance runs in a different pod.

If a node becomes unavailable, Kubernetes does not delete the pods automatically. Pods that
run on an unreachable node attain the 'Terminating' or 'Unknown' state after a timeout. Pods
may also attain these states when a user attempts to delete a pod on an unreachable node
gracefully. You can remove a pod in such a state from the apiserver in one of the following
ways:

• You or the Node Controller deletes the node object.

• The kubelet on the unresponsive node starts responding, terminates the pod, and removes
the entry from the apiserver.

• You force delete the pod.

Oracle recommends the best practice of using the first or the second approach. If a node is
confirmed to be dead (for example: permanently disconnected from the network, powered
down, and so on), delete the node object. If the node suffers from a network partition, try to
resolve the issue or wait for the partition to heal. When the partition heals, the kubelet
completes the deletion of the pod and frees up its name in the apiserver.

Typically, the system completes the deletion if the pod is no longer running on a node or an
administrator has deleted it. You may override this by force deleting the pod.

Pod Scheduling

By default, Kubernetes will schedule a pod to run on any worker node that has sufficient
capacity to run that pod. In some situations, it may be desirable that scheduling occurs on a
subset of the worker nodes available. This type of scheduling can be achieved by using
Kubernetes labels.

Persistent Volumes

When a pod is created, it is based on a container image. A container image is supplied by
Oracle for the products you are deploying. When a pod gets created, a runtime environment is
created based upon that image. That environment is refreshed with the container image every
time the pod is restarted. This means that any changes you make inside a runtime
environment are lost whenever the container gets restarted.

A persistent volume is an area of disk, usually provided by NFS that is available to the pod but
not part of the image itself. This means that the data you want to keep, for example the
OUDSM domain configuration, is still available after you restart a pod, that is to say, that the
data is persistent.

Chapter 3
Key Components Used By an OUDSM Deployment

3-4

There are two ways of mounting a persistent volume (PV) to a pod:

1. Mount the PV to the pod directly, so that wherever the pod starts in the cluster the PV is
available to it. The upside to this approach is that a pod can be started anywhere without
extra configuration. The downside to this approach is that there is one NFS volume which
is mounted to the pod. If the NFS volume becomes corrupted, you will have to either revert
to a backup or have to failover to a disaster recovery site.

2. Mount the PV to the worker node and have the pod interact with it as if it was a local file
system. The advantages of this approach are that you can have different NFS volumes
mounted to different worker nodes, providing built-in redundancy. The disadvantages of
this approach are:

• Increased management overhead.

• Pods have to be restricted to nodes that use a specific version of the file system. For
example, all odd numbered pods use odd numbered worker nodes mounted to file
system 1, and all even numbered pods use even numbered worker nodes mounted to
file system 2.

• File systems have to be mounted to every worker node on which a pod may be
started. This requirement is not an issue in a small cluster, unlike in a large cluster.

• Worker nodes become linked to the application. When a worker node undergoes
maintenance, you need to ensure that file systems and appropriate labels are restored.

You will need to set up a process to ensure that the contents of the NFS volumes are kept
in sync by using something such as the rsync cron job.
If maximum redundancy and availability is your goal, then you should adopt this solution.

Kubernetes Services

Kubernetes services expose the processes running in the pods regardless of the number of
pods that are running. For example, Oracle Unified Directories, each running in different pods
will have a service associated with them. This service will redirect your request to the individual
pods in the cluster.

Kubernetes services can be internal or external to the cluster. Internal services are of the type
ClusterIP and external services are of the type NodePort.

Some deployments use a proxy in front of the service. This proxy is typically provided by an
'Ingress' load balancer such as Ngnix. Ingress allows a level of abstraction to the underlying
Kubernetes services.

When using Kubernetes, NodePort Services have a similar result as using Ingress. In the
NodePort mode, Ingress allows for consolidated management of these services.

This guide describes how to use Ingress using the Nginx Ingress Controller.

The Kubernetes services use a small port range. Therefore, when a Kubernetes service is
created, there will be a port mapping. For instance, if a pod is using port 1389, then a
Kubernetes/Ingress service may use 31389 as its port, mapping port 31389 to 1389 internally.
It is worth noting that if you are using individual NodePort Services, then the corresponding
Kubernetes service port will be reserved on every worker node in the cluster.

Kubernetes/ingress services are known to each worker node, regardless of the worker node on
which the containers are running. Therefore, a load balancer is often placed in front of the
worker node to simplify routing and worker node scalability.

To interact with a service, you have to refer to it using the format:
worker_node_hostname:Service port.

Chapter 3
Key Components Used By an OUDSM Deployment

3-5

If you have multiple worker nodes, then you should include multiple worker nodes in your calls
to remove single points of failure. You can do this in a number of ways including:

• Load balancer

• Direct proxy calls

• DNS CNames

Ingress Controller

There are two ways of interacting with your Kubernetes services. You can create an externally
facing service for each Kubernetes object you want to access. This type of service is known as
the Kubernetes NodePort Service. Alternatively, you can use an ingress service inside the
Kubernetes cluster to redirect requests internally.

Ingress is a proxy server which sits inside the Kubernetes cluster, unlike the NodePort
Services which reserve a port per service on every worker node in the cluster. With an ingress
service, you can reserve single ports for all HTTP / HTTPS traffic. An Ingress service has the
concept of virtual hosts and can terminate SSL, if required. There are various implementations
of Ingress. However, this guide describes the installation and configuration of NGNIX. The
installation will be similar for other Ingress services but the command syntax may be different.
Therefore, when you use a different Ingress, see the appropriate vendor documentation for the
equivalent commands. Ingress can proxy HTTP, HTTPS, LDAP, and LDAPS protocols. Ingress
is not mandatory.

Ingress runs inside the Kubernetes cluster. You can configure it in different ways:

• Load Balancer: Load balancer provides an external IP address to which you can connect
to interact with the Kubernetes services.

• NodePort: In this mode, Ingress acts as a simple load balancer between the Kubernetes
services. The difference between using an Ingress NodePort Service as opposed to
individual node port services is that the Ingress controller reserves one port for each
service type it offers. For example, one for all HTTP communications, another for all LDAP
communications, and so on. Individual node port services reserve one port for each
service and type used in an application.

Domain Name System

Every service defined in the cluster (including the DNS server itself) is assigned a DNS name.
By default, a client pod's DNS search list includes the pod's own namespace and the cluster's
default domain.

The following types of DNS records are created for a Kubernetes cluster:

• Services
Record Type: A or AAAA record

Name format: my-svc.namespace.svc.cluster-example.com
• Pods

Record Type: A or AAAA record

Name format: podname.namespace.pod.cluster-example.com
Kubernetes uses a built-in DNS server called 'CoreDNS' which is used for the internal
name resolution.

External name resolution (names used outside of the cluster, for example:
loadbalancer.example.com) may not possible inside the Kubernetes cluster. If you
encounter this issue, you can use one of the following options:

– Option 1 - Add a secondary DNS server to CoreDNS for the company domain.

Chapter 3
Key Components Used By an OUDSM Deployment

3-6

– Option 2 - Add individual host entries to CoreDNS for the external hosts.

Namespaces

Namespaces enable you to organize clusters into virtual sub-clusters which are helpful when
different teams or projects share a Kubernetes cluster. You can add any number of
namespaces within a cluster, each logically separated from others but with the ability to
communicate with each other.

In this guide the OUDSM deployment uses the namespace oudsmns.

Chapter 3
Key Components Used By an OUDSM Deployment

3-7

Part II
Installing Oracle Unified Directory Services
Manager on Kubernetes

Install Oracle Unified Directory Services Manager (OUDSM) on Kubernetes.

This section contains the following chapters:

• Before You Begin

• System Requirements for OUDSM on Kubernetes

• Preparing Your Environment

• Creating Oracle Unified Directory Services Manager Instances

• Configuring Ingress

4
Before You Begin

This documentation explains how to configure Oracle Unified Directory Services Manager
(OUDSM) on a Kubernetes cluster where no other Oracle Identity Management products will
be deployed. For detailed information about this type of deployment, start at System
Requirements for OUDSM on Kubernetes and follow the documentation sequentially.

Please note that this documentation does not explain how to configure a Kubernetes cluster
given the product can be deployed on any compliant Kubernetes vendor.

If you are deploying multiple Oracle Identity Management products on the same Kubernetes
cluster, then you must follow Enterprise Deployment Guide for Oracle Identity and Access
Management in a Kubernetes Cluster. Please note, you also have the option to follow
Enterprise Deployment Guide for Oracle Identity and Access Management in a Kubernetes
Cluster even if you are only installing OUDSM and no other Oracle Identity Management
products.

If you need to understand how to configure a Kubernetes cluster ready for an Oracle Unified
Directory deployment, you should follow the Enterprise Deployment Guide for Oracle Identity
and Access Management in a Kubernetes Cluster. The automation section in that guide also
contains details on automation scripts that can:

• Automate the creation of a Kubernetes cluster on Oracle Cloud Infrastructure (OCI), ready
for the deployment of Oracle Identity Management products.

• Automate the deployment of Oracle Identity Management products on any compliant
Kubernetes cluster.

4-1

5
System Requirements for OUDSM on
Kubernetes

This section provides information about the system requirements and limitations for deploying
and running Oracle Unified Directory Services Manager (OUDSM) on Kubernetes.

Kubernetes Requirements

You must have a running Kubernetes cluster that meets the following requirements:

• The Kubernetes cluster and container engine must meet the minimum version
requirements outlined in document ID 2723908.1 on My Oracle Support.

• An administrative host from which to deploy the products: This host could be a Kubernetes
Control host, a Kubernetes Worker host, or an independent host. This host must have
kubectl deployed using the same version as your cluster.

• The Kubernetes cluster must have sufficient nodes and resources.

• An installation of Helm is required on the Kubernetes cluster. Helm is used to create and
deploy the necessary resources on the Kubernetes cluster.

• A supported container engine such as CRI-O or Docker must be installed and running on
the Kubernetes cluster.

• The nodes in the Kubernetes cluster must have access to a persistent volume such as a
Network File System (NFS) mount, or a shared file system.

• The system clocks on node of the Kubernetes cluster must be synchronized. Run the date
command simultaneously on all the nodes in each cluster and then synchronize
accordingly.

Note:

This documentation does not tell you how to install a Kubernetes cluster, Helm, or the
container engine. Please refer to your vendor specific documentation for this
information. Also see Before You Begin.

Container Registry Requirements

If your Kubernetes cluster does not have network access to Oracle Container Registry, then
you must have your own container registry to store the OUDSM container images.

Your container registry must be accessible from all nodes in the Kubernetes cluster.

Alternatively if you don’t have your own container registry, you can load the images on each
worker node in the cluster. Loading the images on each worker node is not recommended as it
incurs a large administrative overhead.

5-1

https://support.oracle.com
https://container-registry.oracle.com

Note:

This documentation does not tell you how to install a container registry. Please refer
to your vendor specific documentation for this information.

Chapter 5

5-2

6
Preparing Your Environment

Before embarking on Oracle Unified Directory Services Manager (OUDSM) deployment on
Kubernetes, you must prepare your environment.

This chapter contains the following topics:

• Confirming the Kubernetes Cluster is Ready

• Obtaining the OUDSM Container image

• Creating a Persistent Volume Directory

• Setting Up the Code Repository for OUDSM

6.1 Confirming the Kubernetes Cluster is Ready
As per System Requirements for OUDSM on Kubernetes, a Kubernetes cluster should have
already been configured.

1. Run the following command on the Kubernetes administrative node to check the cluster
and worker nodes are running:

kubectl get nodes,pods -n kube-system

The output will look similar to the following:

NAME STATUS ROLES AGE VERSION
 node/worker-node1 Ready <none> 17h 1.30.3+1.el8
 node/worker-node2 Ready <none> 17h 1.30.3+1.el8
 node/master-node Ready control-plane,master 23h 1.30.3+1.el8

 NAME READY STATUS RESTARTS AGE
 pod/coredns-66bff467f8-fnhbq 1/1 Running 0 23h
 pod/coredns-66bff467f8-xtc8k 1/1 Running 0 23h
 pod/etcd-master 1/1 Running 0 21h
 pod/kube-apiserver-master-node 1/1 Running 0 21h
 pod/kube-controller-manager-master-node 1/1 Running 0 21h
 pod/kube-flannel-ds-amd64-lxsfw 1/1 Running 0 17h
 pod/kube-flannel-ds-amd64-pqrqr 1/1 Running 0 17h
 pod/kube-flannel-ds-amd64-wj5nh 1/1 Running 0 17h
 pod/kube-proxy-2kxv2 1/1 Running 0 17h
 pod/kube-proxy-82vvj 1/1 Running 0 17h
 pod/kube-proxy-nrgw9 1/1 Running 0 23h
 pod/kube-scheduler-master 1/1 Running 0 21h

6.2 Obtaining the OUDSM Container image
The Oracle Unified Directory Services Manager (OUDSM) Kubernetes deployment requires
access to an OUDSM container image.

6-1

Prebuilt OUDSM Container Image

The latest prebuilt OUDSM 14.1.2.1.0 container image can be downloaded from Oracle
Container Registry. This image is prebuilt by Oracle and includes Oracle Unified Directory
14.1.2.1.0, the latest Patch Set Update (PSU) and other fixes released with the Critical Patch
Update (CPU) program.

• The OUDSM container images available can be found on Oracle Container Registry, by
navigating to Middleware > oudsm for the initial March 2025 release, and Middleware >
oudsm_cpu for subsequent releases that contain the latest PSU and CPU fixes.

• Before using the image you must login and accept the license agreement.

• Throughout this documentation, the image repository and tag used is: container-
registry.oracle.com/middleware/oudsm_cpu:14.1.2.1.0-jdk17-ol8-<YYMMDD> where
<YYMMDD> is the date shown in the image tag. For the initial March 2025 release, replace
with container-registry.oracle.com/middleware/oudsm:14.1.2.1.0-jdk17-ol8-
<YYMMDD>.

You can use this image in the following ways:

• Pull the container image from the Oracle Container Registry automatically during the
OUDSM Kubernetes deployment.

• Manually pull the container image from the Oracle Container Registry and then upload it to
your own container registry.

• Manually pull the container image from the Oracle Container Registry and manually stage
it on each worker node.

6.3 Creating a Persistent Volume Directory
As referenced in System Requirements for OUDSM on Kubernetes the nodes in the
Kubernetes cluster must have access to a persistent volume such as a Network File System
(NFS) mount or a shared file system.

In the examples below an NFS volume is mounted on all nodes in the Kubernetes cluster, and
is accessible via the directory /nfs_volumes/oudsmpv.

Perform the following steps:

1. On the administrative host, run the following command to create an oudsm_user_projects
directory:

cd <persistent_volume>
mkdir oudsm_user_projects
sudo chown -R 1000:0 oudsm_user_projects

For example:

cd /nfs_volumes/oudsmpv
mkdir oudsm_user_projects
sudo chown -R 1000:0 oudsm_user_projects

2. On the administrative host run the following to ensure it is possible to read and write to the
persistent volume:

Chapter 6
Creating a Persistent Volume Directory

6-2

https://container-registry.oracle.com/
https://container-registry.oracle.com/
https://container-registry.oracle.com/

Note:

The following assumes the user creating the file has userid 1000 or is part of
group 0.

cd <persistent_volume>/oudsm_user_projects
touch fileadmin.txt
ls fileadmin.txt

For example:

cd /nfs_volumes/oudsmpv/oudsm_user_projects
touch fileadmin.txt
ls fileadmin.txt

6.4 Setting Up the Code Repository for OUDSM
To deploy Oracle Unified Directory Services Manager (OUDSM) you need to set up the code
repository which provides sample deployment yaml files.

The OUDSM deployment on Kubernetes leverages deployment scripts provided by Oracle for
creating OUDSM containers, using the Helm charts provided.

Perform the following steps to set up the OUDSM deployment scripts:

Note:

The steps below should be performed on the administrative node that has access to
the Kubernetes cluster.

1. Create a working directory to setup the source code:

mkdir <workdir>

For example:

mkdir /oudsmscripts

2. Download the latest OUDSM deployment scripts from the OUDSM repository:

cd <workdir>
git clone https://github.com/oracle/fmw-kubernetes.git

For example:

cd /oudsmscripts
git clone https://github.com/oracle/fmw-kubernetes.git

Chapter 6
Setting Up the Code Repository for OUDSM

6-3

The output will look similar to the following:

Cloning into 'fmw-kubernetes'...
remote: Enumerating objects: 41547, done.
remote: Counting objects: 100% (6171/6171), done.
remote: Compressing objects: 100% (504/504), done.
remote: Total 41547 (delta 5638), reused 5919 (delta 5481), pack-reused
35376 (from 3)
Receiving objects: 100% (41547/41547), 70.32 MiB | 13.12 MiB/s, done.
Resolving deltas: 100% (22214/22214), done.
Checking connectivity... done.
Checking out files: 100% (19611/19611), done

3. Set the $WORKDIR environment variable as follows:

export WORKDIR=<workdir>/fmw-kubernetes/OracleUnifiedDirectorySM

For example:

export WORKDIR=/oudsmscripts/fmw-kubernetes/OracleUnifiedDirectorySM

Chapter 6
Setting Up the Code Repository for OUDSM

6-4

7
Creating Oracle Unified Directory Services
Manager Instances

This chapter demonstrates how to deploy Oracle Unified Directory Services Manager
(OUDSM) 14c instance(s) using the Helm package manager for Kubernetes.

This chapter contains the following topics:

• Creating a Kubernetes Namespace

• Creating a Kubernetes Secret for the Container Registry

• Creating OUDSM Instances

7.1 Creating a Kubernetes Namespace
Create a Kubernetes namespace for the Oracle Unified Directory Services Manager (OUDSM)
deployment by running the following command:

kubectl create namespace <namespace>

For example:

kubectl create namespace oudsmns

The output will look similar to the following:

namespace/oudsmns created

7.2 Creating a Kubernetes Secret for the Container Registry
Create a Kubernetes secret to stores the credentials for the container registry where the
Oracle Unified Directory Services Manager (OUDSM) image is stored. This step must be
followed if using Oracle Container Registry or your own private container registry. If you are not
using a container registry and have loaded the images on each of the worker nodes, you can
skip this step.

1. Run the following command to create the secret:

kubectl create secret docker-registry "orclcred" --docker-
server=<CONTAINER_REGISTRY> \
--docker-username="<USER_NAME>" \
--docker-password=<PASSWORD> --docker-email=<EMAIL_ID> \
--namespace=<domain_namespace>

7-1

For example, if using Oracle Container Registry:

kubectl create secret docker-registry "orclcred" --docker-server=container-
registry.oracle.com \
--docker-username="user@example.com" \
--docker-password=password --docker-email=user@example.com \
--namespace=oudsmns

Replace <USER_NAME> and <PASSWORD> with the credentials for the registry with the
following caveats:

• If using Oracle Container Registry to pull the OUDSM container image, this is the
username and password used to login to Oracle Container Registry. Before you can
use this image you must login to Oracle Container Registry, navigate to Middleware >
oudsm and accept the license agreement. For future releases (post March 2025) that
contain the latest Patch Set Update (PSU) and other fixes released with the Critical
Patch Update (CPU) program, you should navigate to Middleware > oudsm_cpu.

• If using your own container registry to store the OUDSM container image, this is the
username and password (or token) for your container registry.

The output will look similar to the following:

secret/orclcred created

7.3 Creating OUDSM Instances
The oudsm Helm Chart

The oudsm Helm chart allows you to create or deploy Oracle Unified Directory Services
Manager (OUDSM) instances along with Kubernetes objects in a specified namespace.

The deployment can be initiated by running the following Helm command with reference to the
oudsm Helm chart, along with configuration parameters according to your environment:

cd $WORKDIR/kubernetes/helm14c
helm install --namespace <namespace> \
<Configuration Parameters> \
<deployment/release name> \
<Helm Chart Path/Name>

Configuration Parameters (override values in chart) can be passed on with --set arguments
on the command line and/or with -f / --values arguments when referring to files.

Note:

The examples in the following sections provide values which allow the user to
override the default values provided by the Helm chart. A full list of configuration
parameters and their default values is shown in Configuration Parameters for the
oudsm Helm Chart.

For more details about the helm command and parameters, execute helm --help and helm
install --help.

Chapter 7
Creating OUDSM Instances

7-2

https://container-registry.oracle.com/
https://container-registry.oracle.com/

Deploying OUDSM Instances

OUDSM instances can be deployed using one of the following methods:

• Deploying OUDSM Using a YAML File

• Deploying OUDSM Using Set Argument

7.3.1 Deploying OUDSM Using a YAML File

To deploy Oracle Unified Directory Services Manager (OUDSM) using a YAML file:

1. Navigate to the $WORKDIR/kubernetes/helm14c directory:

cd $WORKDIR/kubernetes/helm14c

2. Create an oudsm-values-override.yaml as follows:

image:
 repository: <image_location>
 tag: <image_tag>
 pullPolicy: IfNotPresent
imagePullSecrets:
 - name: orclcred
oudsm:
 adminUser: weblogic
 adminPass: <password>
ingress:
 tlsEnabled: false
persistence:
 type: filesystem
 filesystem:
 hostPath:
 path: <persistent_volume>/oudsm_user_projects

For example:

image:
 repository: container-registry.oracle.com/middleware/oudsm_cpu
 tag: 14.1.2.1.0-jdk17-ol8-<YYMMDD>
 pullPolicy: IfNotPresent
imagePullSecrets:
 - name: orclcred
oudsm:
 adminUser: weblogic
 adminPass: <password>
ingress:
 tlsEnabled: false
persistence:
 type: filesystem
 filesystem:
 hostPath:
 path: /nfs_volumes/oudsmpv/oudsm_user_projects

Chapter 7
Creating OUDSM Instances

7-3

The following caveats exist:

• Replace <password> with the relevant password.

• If you are not using Oracle Container Registry or your own container registry for your
OUDSM container image, then you can remove the following:

imagePullSecrets:
 - name: orclcred

• If using NFS for your persistent volume then change the persistence section as
follows:

persistence:
 type: networkstorage
 networkstorage:
 nfs:
 path: <persistent_volume>/oudsm_user_projects
 server: <NFS IP address>

3. Run the following command to deploy OUDSM:

helm install --namespace <namespace> \
--values oudsm-values-override.yaml \
<release_name> oudsm

For example:

helm install --namespace oudsmns \
--values oudsm-values-override.yaml \
oudsm oudsm

The output will be similar to that shown in Helm Command Output.

4. Check the OUDSM deployment as per Verifying the OUDSM Deployment.

7.3.2 Deploying OUDSM Using Set Argument

To deploy Oracle Unified Directory Services Manager (OUDSM) using the --set argument:

1. Navigate to the $WORKDIR/kubernetes/helm14c directory:

cd $WORKDIR/kubernetes/helm14c

2. Run the following command to create OUDSM instances:

helm install --namespace oudsmns \
--set
oudsm.adminUser=weblogic,oudsm.adminPass=<password>,ingress.tlsEnabled=fals
e,persistence.filesystem.hostPath.path=<persistent_volume>/
oudsm_user_projects,image.repository=<image_location>,image.tag=<image_tag>
 \
--set imagePullSecrets[0].name="orclcred" \
<release_name> oudsm

Chapter 7
Creating OUDSM Instances

7-4

For example:

helm install --namespace oudsmns \
--set
oudsm.adminUser=weblogic,oudsm.adminPass=<password>,ingress.tlsEnabled=fals
e,persistence.filesystem.hostPath.path=/nfs_volumes/oudsmpv/
oudsm_user_projects,image.repository=container-registry.oracle.com/
middleware/oudsm_cpu,image.tag=14.1.2.1.0-jdk17-ol8-<YYMMDD> \
--set imagePullSecrets[0].name="orclcred" \
oudsm oudsm

The following caveats exist:

• Replace <password> with the relevant password.

• If you are not using Oracle Container Registry or your own container registry for your
OUDSM container image, then you can remove the following:

--set imagePullSecrets[0].name="orclcred"

• If using NFS for your persistent volume then use:

persistence.networkstorage.nfs.path=<persistent_volume>/
oudsm_user_projects,persistence.networkstorage.nfs.server:<NFS IP
address>

3. Check the OUDSM deployment as per Verifying the OUDSM Deployment.

7.3.3 Helm Command Output
In all the examples above, the following output is shown following a successful execution of the
helm install command:

NAME: oudsm
LAST DEPLOYED: <DATE>
NAMESPACE: oudsmns
STATUS: deployed
REVISION: 1
TEST SUITE: None

7.3.4 Verifying the OUDSM Deployment
Run the following command to verify the OUDSM deployment:

kubectl --namespace <namespace> get pod,service,secret,pv,pvc,ingress -o wide

For example:

kubectl --namespace oudsmns get pod,service,secret,pv,pvc,ingress -o wide

Chapter 7
Creating OUDSM Instances

7-5

The output will look similar to the following:

NAME READY STATUS RESTARTS AGE IP
NODE NOMINATED NODE READINESS GATES
pod/oudsm-1 1/1 Running 0 73m 10.244.0.19 <worker-
node> <none> <none>

NAME TYPE CLUSTER-IP EXTERNAL-IP
PORT(S) AGE SELECTOR
service/oudsm-1 ClusterIP 10.96.108.200 <none> 7001/
TCP,7002/TCP 73m app.kubernetes.io/instance=oudsm,app.kubernetes.io/
name=oudsm,oudsm/instance=oudsm-1
service/oudsm-lbr ClusterIP 10.96.41.201 <none> 7001/
TCP,7002/TCP 73m app.kubernetes.io/instance=oudsm,app.kubernetes.io/
name=oudsm

NAME TYPE
DATA AGE
secret/orclcred kubernetes.io/dockerconfigjson
1 3h13m
secret/oudsm-creds opaque
2 73m
secret/oudsm-token-ksr4g kubernetes.io/service-account-token
3 73m
secret/sh.helm.release.v1.oudsm.v1 helm.sh/release.v1
1 73m

NAME CAPACITY ACCESS MODES RECLAIM POLICY
STATUS CLAIM STORAGECLASS REASON AGE VOLUMEMODE
persistentvolume/oudsm-pv 30Gi RWX Retain
Bound myoudsmns/oudsm-pvc manual 73m Filesystem

NAME STATUS VOLUME CAPACITY ACCESS
MODES STORAGECLASS AGE VOLUMEMODE
persistentvolumeclaim/oudsm-pvc Bound oudsm-pv 30Gi
RWX manual 73m Filesystem

NAME HOSTS
ADDRESS PORTS AGE
ingress.extensions/oudsm-ingress-nginx oudsm-1,oudsm-2,oudsm + 1 more...
100.102.51.230 80 73m

Chapter 7
Creating OUDSM Instances

7-6

Note:

It will take several minutes before all the services listed above show. While the
oudsm pods have a STATUS of 0/1 the pod is started but the OUDSM server
associated with it is currently starting. While the pod is starting you can check the
startup status in the pod logs, by running the following command:

kubectl logs <pod> -n oudsmns

For example:

kubectl logs oudsm-1 -n oudsmns

If the OUDSM deployment fails, additionally refer to General Troubleshooting for instructions
on how describe the failing pod(s). Once the problem is identified follow Deleting an OUDSM
Deployment to clean down the deployment before deploying again.

Kubernetes Objects

Kubernetes objects created by the Helm chart are detailed in the table below:

Note:

The ‘Example Name’ for each Object below is based on the value ‘oudsm’ as
deployment/release name for the Helm chart installation.

Type Name Example Name Purpose

Service Account <deployment/release
name>

oudsm Kubernetes Service
Account for the Helm
Chart deployment.

Secret <deployment/release
name>-creds

oudsm-creds Secret object for Oracle
Unified Directory
Services Manager
related critical values like
passwords.

Persistent Volume <deployment/release
name>-pv

oudsm-pv Persistent Volume for
user_projects mount.

Persistent Volume Claim <deployment/release
name>-pvc

oudsm-pvc Persistent Volume Claim
for user_projects mount.

Pod <deployment/release
name>-N

oudsm-1, oudsm-2, … Pod(s)/Container(s) for
Oracle Unified Directory
Services Manager
Instances.

Service <deployment/release
name>-N

oudsm-1, oudsm-2, … Service(s) for HTTP and
HTTPS interfaces from
Oracle Unified Directory
Services Manager
instance <deployment/
release name>-N.

Chapter 7
Creating OUDSM Instances

7-7

Type Name Example Name Purpose

Ingress <deployment/release
name>-ingress-nginx

oudsm-ingress-nginx Ingress Rules for HTTP
and HTTPS interfaces.

Chapter 7
Creating OUDSM Instances

7-8

8
Configuring Ingress

You must configure an ingress controller to allow access to Oracle Unified Directory Services
Manager (OUDSM).

The instructions below explain how to set up NGINX as the ingress controller for OUDSM.

This chapter includes the following topics:

• Installing the NGINX Repository

• Creating a Kubernetes Namespace for NGINX

• Installing the NGINX Controller

• Accessing OUDSM Through Ingress

• Validating OUDSM URLs

8.1 Installing the NGINX Repository
To install the NGINX ingress controller:

1. Add the Helm chart repository for NGINX using the following command:

helm repo add stable https://kubernetes.github.io/ingress-nginx

The output will look similar to the following:

"stable" has been added to your repositories

2. Update the repository using the following command:

helm repo update

The output will look similar to the following:

Hang tight while we grab the latest from your chart repositories...
...Successfully got an update from the "stable" chart repository
Update Complete. Happy Helming!

8.2 Creating a Kubernetes Namespace for NGINX
Create a Kubernetes namespace for the NGINX deployment by running the following
command:

kubectl create namespace <namespace>

8-1

For example:

kubectl create namespace mynginxns

The output will look similar to the following:

namespace/mynginxns created

8.3 Installing the NGINX Controller
To install the NGINX controller:

1. Navigate to the $WORKDIR/kubernetes/helm14c/ and create a nginx-ingress-values-
override.yaml that contains the following:

Note:

The configuration below:

• Assumes that you have oudsm installed with value oudsm as a deployment/
release name in the namespace oudsmns. If using a different deployment
name and/or namespace change appropriately.

• Deploys an ingress using LoadBalancer. If you prefer to use NodePort,
change the configuration accordingly. For more details about NGINX
configuration see: NGINX Ingress Controller.

controller:
 admissionWebhooks:
 enabled: false
 extraArgs:
 # The secret referred to by this flag contains the default certificate
to be used when accessing the catch-all server.
 # If this flag is not provided NGINX will use a self-signed
certificate.
 # If the TLS Secret is in different namespace, name can be mentioned
as <namespace>/<tlsSecretName>
 default-ssl-certificate: oudsmns/oudsm-tls-cert
 service:
 # controller service external IP addresses
 # externalIPs:
 # - < External IP Address >
 # To configure Ingress Controller Service as LoadBalancer type of
Service
 # Based on the Kubernetes configuration, External LoadBalancer would
be linked to the Ingress Controller Service
 type: LoadBalancer
 # Configuration for NodePort to be used for Ports exposed through
Ingress
 # If NodePorts are not defined/configured, Node Port would be assigned
automatically by Kubernetes
 # These NodePorts are helpful while accessing services directly

Chapter 8
Installing the NGINX Controller

8-2

https://kubernetes.github.io/ingress-nginx/user-guide/exposing-tcp-udp-services/

through Ingress and without having External Load Balancer.
 nodePorts:
 # For HTTP Interface exposed through LoadBalancer/Ingress
 http: 30080
 # For HTTPS Interface exposed through LoadBalancer/Ingress
 https: 30443

Note:

If you do not have an external load balancer configured for your Kubernetes
configuration, change type: LoadBalancer to type: NodePort.

2. To install and configure NGINX Ingress issue the following commands:

cd $WORKDIR/kubernetes/helm14c/

helm install --namespace <namespace> \
--values nginx-ingress-values-override.yaml \
lbr-nginx stable/ingress-nginx \
--version 4.7.2

Where:

• lbr-nginx is your deployment name

• stable/ingress-nginx is the chart reference

For example:

cd $WORKDIR/kubernetes/helm14c/

helm install --namespace mynginxns \
--values nginx-ingress-values-override.yaml \
lbr-nginx stable/ingress-nginx \
--version 4.7.2

The output will look similar to the following:

NAME: lbr-nginx
LAST DEPLOYED: <DATE>
NAMESPACE: mynginxns
STATUS: deployed
REVISION: 1
TEST SUITE: None
NOTES:
The ingress-nginx controller has been installed.
It may take a few minutes for the LoadBalancer IP to be available.
You can watch the status by running 'kubectl --namespace mynginxns get
services -o wide -w lbr-nginx-ingress-nginx-controller'

An example Ingress that makes use of the controller:
 apiVersion: networking.k8s.io/v1

Chapter 8
Installing the NGINX Controller

8-3

 kind: Ingress
 metadata:
 name: example
 namespace: foo
 spec:
 ingressClassName: nginx
 rules:
 - host: www.example.com
 http:
 paths:
 - pathType: Prefix
 backend:
 service:
 name: exampleService
 port:
 number: 80
 path: /
 # This section is only required if TLS is to be enabled for the Ingress
 tls:
 - hosts:
 - www.example.com
 secretName: example-tls

If TLS is enabled for the Ingress, a Secret containing the certificate and
key must also be provided:

 apiVersion: v1
 kind: Secret
 metadata:
 name: example-tls
 namespace: foo
 data:
 tls.crt: <base64 encoded cert>
 tls.key: <base64 encoded key>
 type: kubernetes.io/tls

8.4 Accessing OUDSM Through Ingress
Using the Helm chart, ingress objects are created according to configuration.

The following table details the rules configured in ingress object(s) for access to Oracle Unified
Directory Services Manager (OUDSM) interfaces through ingress.

Port NodePort Host Example
Hostname

Path Backend
Service:Port

Example
Service
Name:Port

http/https 30080/30443 <deployment/
release
name>-N

oudsm-N N <deployment/
release
name>-N:http

oudsm-1:http

http/https 30080/30443 * * /oudsm

/console

<deployment/
release
name>-
lbr:http

oudsm-
lbr:http

Chapter 8
Accessing OUDSM Through Ingress

8-4

Note:

In the table above, example values are based on the value ‘oudsm’ as the
deployment/release name for Helm chart installation. The NodePorts mentioned in
the table are according to ingress configuration described in the previous section.
When an External LoadBalancer is not available/configured, interfaces can be
accessed through NodePort on a Kubernetes node.

Changes in /etc/hosts to Validate Hostname Based Ingress Rules

If it is not possible to update the DNS with the OUDSM hostname interfaces, then the following
entries can be added in /etc/hosts file on the host from where OUDSM interfaces will be
accessed.

<IP Address of External LBR or Kubernetes Node> oudsm oudsm-1 oudsm-2
oudsm-N

• In the table above, hostnames are based on the value ‘oudsm’ as the deployment/release
name for Helm chart installation.

• When External LoadBalancer is not available/configured, interfaces can be accessed
through NodePort on the Kubernetes Node.

8.5 Validating OUDSM URLs
Launch a browser and access the Oracle Unified Directory Services Manager (OUDSM)
console:

• If using an External LoadBalancer: https://<External LBR Host>/oudsm
• If not using an External LoadBalancer: https://<Kubernetes Node>:30443/oudsm

Note:

Administrators should be aware of the following:

• To monitor the OUDSM WebLogic Server domain in 14.1.2.1.0 you must use the
Oracle WebLogic Remote Console. When connecting in WebLogic Remote
Console to the OUDSM domain, login with weblogic/<password> where
weblogic/<password> is the adminUser and adminPass set when creating the
OUDSM instance. For more information about installing and configuring the
console, see Getting Started Using Administration Console.

• The Oracle WebLogic Remote Console and Oracle Enterprise Manager Console
should only be used to monitor the servers in the OUDSM domain. To control the
Administration Server and OUDSM managed servers (start/stop) you must use
Kubernetes. See Scaling OUDSM Pods for more information.

Chapter 8
Validating OUDSM URLs

8-5

Part III
Administering Oracle Unified Directory
Services Manager on Kubernetes

Administer Oracle Unified Directory Services Manager (OUDSM) on Kubernetes.

This section contains the following chapters:

• Scaling OUDSM Pods

• Logging and Visualization

• Monitoring an Oracle Unified Directory Services Manager Instance

• Patching and Upgrading

• General Troubleshooting

• Deleting an OUDSM Deployment

9
Scaling OUDSM Pods

Learn the basic operations to scale Oracle Unified Directory Services Manager (OUDSM)
instances in Kubernetes.

This chapter includes the following topics:

• Viewing Existing OUDSM Instances

• Scaling Up OUDSM Instances

• Scaling Down OUDSM Instances

9.1 Viewing Existing OUDSM Instances
By default the oudsm helm chart deployment starts one pod: oudsm-1.

The number of pods started is determined by the replicaCount, which is set to 1 by default. A
value of 1 starts the pod above.

To scale up or down the number of OUDSM pods, set replicaCount accordingly.

Run the following command to view the number of pods in the OUDSM deployment:

kubectl --namespace <namespace> get pods -o wide

For example:

$ kubectl --namespace oudsmns get pods -o wide

The output will look similar to the following:

NAME READY STATUS RESTARTS AGE IP
NODE NOMINATED NODE READINESS GATES
pod/oudsm-1 1/1 Running 0 73m 10.244.0.19 <worker-
node> <none> <none>

9.2 Scaling Up OUDSM Instances
In the examples below, replicaCount is increased to 2 which creates a new Oracle Unified
Directory Services Manager (OUDSM) pod oudsm-2, with associated services created.

You can scale up the number of OUDSM pods using one of the following methods:

• Scaling Up Using a YAML File

• Scaling Up Using set Argument

9-1

9.2.1 Scaling Up Using a YAML File
1. Navigate to the $WORKDIR/kubernetes/helm14c directory:

cd $WORKDIR/kubernetes/helm14c

2. Create an oudsm-scaleup-override.yaml file that contains:

replicaCount: 2

3. Run the following command to scale up the OUDSM pods:

helm upgrade --namespace <namespace> \
--values oudsm-scaleup-override.yaml \
<release_name> oudsm --reuse-values

For example:

helm upgrade --namespace oudsmns \
--values oudsm-scaleup-override.yaml \
oudsm oudsm --reuse-values

9.2.2 Scaling Up Using set Argument
1. Run the following command to scale up the OUDSM pods:

helm upgrade --namespace <namespace> \
--set replicaCount=2 \
<release_name> oudsm --reuse-values

For example:

helm upgrade --namespace oudsmns \
--set replicaCount=2 \
oudsm oudsm --reuse-values

9.2.3 Verifying the Scaling Up
1. Verify the new OUDSM pod oudsm-2 has started:

kubectl get pod,service -o wide -n <namespace>

For example:

kubectl get pods,service -n oudsmns

Chapter 9
Scaling Up OUDSM Instances

9-2

The output will look similar to the following:

NAME READY STATUS RESTARTS AGE IP
NODE NOMINATED NODE READINESS GATES
pod/oudsm-1 1/1 Running 0 88m 10.244.0.19 <worker-
node> <none> <none>
pod/oudsm-2 1/1 Running 0 15m 10.245.3.45 <worker-
node> <none> <none>

NAME TYPE CLUSTER-IP EXTERNAL-IP
PORT(S) AGE SELECTOR
service/oudsm-1 ClusterIP 10.96.108.200 <none> 7001/
TCP,7002/TCP 88m app.kubernetes.io/instance=oudsm,app.kubernetes.io/
name=oudsm,oudsm/instance=oudsm-1
service/oudsm-2 ClusterIP 10.96.31.201 <none> 7001/
TCP,7002/TCP 15m app.kubernetes.io/instance=oudsm,app.kubernetes.io/
name=oudsm,oudsm/instance=oudsm-2
service/oudsm-lbr ClusterIP 10.96.41.201 <none> 7001/
TCP,7002/TCP 73m app.kubernetes.io/instance=oudsm,app.kubernetes.io/
name=oudsm

Note:

It will take several minutes before all the services listed above show. While the
oudsm-2 pod has a STATUS of 0/1 the pod is started but the OUDSM server
associated with it is currently starting. While the pod is starting, you can check
the startup status in the pod log, by running the following command:

kubectl logs oudsm-2 -n oudsmns

9.3 Scaling Down OUDSM Instances
Scaling down Oracle Unified Directory Services Manager (OUDSM) pods is performed in
exactly the same way as in Scaling Up OUDSM Instances except the replicaCount is reduced
to the required number of pods.

In the examples below, replicaCount is decreased to 1 from 2 which terminates the oudsm-2
pod and associated services.

You can scale down the number of OUDSM pods using one of the following methods:

• Scaling Down Using a YAML File

• Scaling Down Using --set Argument

9.3.1 Scaling Down Using a YAML File
1. Navigate to the $WORKDIR/kubernetes/helm14c directory:

cd $WORKDIR/kubernetes14c/helm

Chapter 9
Scaling Down OUDSM Instances

9-3

2. Create an oudsm-scaledown-override.yaml file and set the replicaCount:

replicaCount: 1

3. Run the following command to scale down the OUD pods:

helm upgrade --namespace <namespace> \
--values oudsm-scaledown-override.yaml \
<release_name> oudsm --reuse-values

For example:

helm upgrade --namespace oudsmns \
--values oudsm-scaledown-override.yaml \
oudsm oudsm --reuse-values

9.3.2 Scaling Down Using --set Argument
1. Run the following command to scale down the OUDSM pods:

helm upgrade --namespace <namespace> \
--set replicaCount=1 \
<release_name> oudsm --reuse-values

For example:

helm upgrade --namespace oudsmns \
--set replicaCount=1 \
oudsm oudsm --reuse-values

9.3.3 Verifying Scaling Down
1. Verify the OUDSM pod oudsm-2 is terminated:

kubectl get pods -n <namespace>

For example:

kubectl get pods -n oudsmns

The output will look similar to the following:

NAME READY STATUS RESTARTS AGE
pod/oudsm-1 1/1 Running 0 92m
pod/oudsm-2 1/1 Terminating 0 19m

The oudsm-2 pod has moved to a STATUS of Terminating.

Chapter 9
Scaling Down OUDSM Instances

9-4

The pod will take a minute or two to stop and then will disappear:

NAME READY STATUS RESTARTS AGE
pod/oudsm-1 1/1 Running 0 94m

Chapter 9
Scaling Down OUDSM Instances

9-5

10
Logging and Visualization

This chapter describes how to install and configure logging and visualization for the oudsm
Helm chart deployment.

The ELK stack consists of Elasticsearch, Logstash, and Kibana. Using ELK you can gain
insights in real-time from the log data from your applications.

Elasticsearch is a distributed, RESTful search and analytics engine capable of solving a
growing number of use cases. As the heart of the Elastic Stack, it centrally stores your data so
you can discover the expected and uncover the unexpected.

Logstash is an open source, server-side data processing pipeline that ingests data from a
multitude of sources simultaneously, transforms it, and then sends it to your favorite “stash.”

Kibana lets you visualize your Elasticsearch data and navigate the Elastic Stack. It gives you
the freedom to select the way you give shape to your data, and you don’t always have to know
what you’re looking for.

This chapter includes the following topics:

• Installing Elasticsearch and Kibana

• Creating the Logstash Pod

• Verifying the Pods

• Troubleshooting Pod and Logstash Errors

• Verifying and Accessing the Kibana Console

10.1 Installing Elasticsearch and Kibana
If you do not already have a centralized Elasticsearch (ELK) stack then you must configure this
first.

For details on how to configure the ELK stack, see Installing the Monitoring and Visualization
Software.

10.2 Creating the Logstash Pod
Topics in the section include:

• Variables Used in This Section

• Creating a Kubernetes Secret for ELK

• Enabling Logstash

• Upgrading the OUDSM Deployment for ELK

10.2.1 Variables Used in This Section
In order to create the logstash pod, you must create a yaml file. This file contains variables
which you must substitute with variables applicable to your ELK environment.

10-1

Most of the values for the variables will be based on your ELK deployment as per Installing the
Monitoring and Visualization Software.

The table below outlines the variables and values you must set:

Variable Sample Value Description

<ELK_VER> 8.3.1 The version of logstash you want
to install.

<ELK_SSL> true If SSL is enabled for ELK set the
value to true, or if NON-SSL set
to false. This value must be
lowercase.

<ELK_HOSTS> https://
elasticsearch.example.com:
9200

The URL for sending logs to
Elasticsearch. HTTP if NON-SSL
is used.

<ELK_USER> logstash_internal The name of the user for logstash
to access Elasticsearch.

<ELK_PASSWORD> password The password for <ELK_USER>.

<ELK_APIKEY> apikey The API key details.

You will also need the BASE64 version of the Certificate Authority (CA) certificate(s) that
signed the certificate of the Elasticsearch server. If using a self-signed certificate, this is the
self signed certificate of the Elasticsearch server. See Copying the Elasticsearch Certificate, for
details on how to get the correct certificate. In the example below the certificate is called
elk.crt.

10.2.2 Creating a Kubernetes Secret for ELK
1. Create a Kubernetes secret for Elasticsearch using the API Key or Password:

a. If ELK uses an API Key for authentication:

kubectl create secret generic elasticsearch-pw-elastic -n
<domain_namespace> --from-literal password=<ELK_APIKEY>

For example:

kubectl create secret generic elasticsearch-pw-elastic -n oudsmns --
from-literal password=<ELK_APIKEY>

The output will look similar to the following:

secret/elasticsearch-pw-elastic created

b. If ELK uses a password for authentication:

kubectl create secret generic elasticsearch-pw-elastic -n
<domain_namespace> --from-literal password=<ELK_PASSWORD>

Chapter 10
Creating the Logstash Pod

10-2

For example:

kubectl create secret generic elasticsearch-pw-elastic -n oudsmns --
from-literal password=<ELK_PASSWORD>

The output will look similar to the following:

secret/elasticsearch-pw-elastic created

Note:

It is recommended that the ELK Stack is created with authentication enabled. If
no authentication is enabled you may create a secret using the values above.

2. Create a Kubernetes secret to access the required images on hub.docker.com:

Note:

You must first have a user account on hub.docker.com

kubectl create secret docker-registry "dockercred" \
--docker-server="https://index.docker.io/v1/" \
--docker-username="<docker_username>" \
--docker-password=<password> \
--docker-email=<docker_email_credentials> \
--namespace=<domain_namespace>

For example:

kubectl create secret docker-registry "dockercred" \
--docker-server="https://index.docker.io/v1/" \
--docker-username="username" \
--docker-password=<password> \
--docker-email=user@example.com \
--namespace=oudsmns

The output will look similar to the following:

secret/dockercred created

10.2.3 Enabling Logstash
Navigate to the $WORKDIR/kubernetes/helm directory and create a logging-override-
values.yaml file as follows:

elk:
 imagePullSecrets:

Chapter 10
Creating the Logstash Pod

10-3

https://hub.docker.com
https://hub.docker.com

 - name: dockercred
 IntegrationEnabled: true
 logStashImage: logstash:<ELK_VER>
 logstashConfigMap: false
 esindex: oudsmlogs-00001
 sslenabled: <ELK_SSL>
 eshosts: <ELK_HOSTS>
 # Note: We need to provide either esuser,espassword or esapikey
 esuser: <ELK_USER>
 espassword: elasticsearch-pw-elastic
 esapikey: elasticsearch-pw-elastic

• Change the <ELK_VER>, <ELK_SSL>, <ELK_HOSTS>, and <ELK_USER> to match the
values for your environment.

• If using SSL, replace the elk.crt in $WORKDIR/kubernetes/helm/oud-ds-rs/certs/ with
the elk.crt for your ElasticSearch server.

• If using API KEY for your ELK authentication, leave both esuser: and espassword: with no
value.

• If using a password for ELK authentication, leave esapi_key: but delete elasticsearch-
pw-elastic.

• If no authentication is used for ELK, leave esuser, espassword, and esapi_key with no
value assigned.

• The rest of the lines in the yaml file should not be changed.

For example:

elk:
 imagePullSecrets:
 - name: dockercred
 IntegrationEnabled: true
 logStashImage: logstash:8.3.1
 logstashConfigMap: false
 esindex: oudsmlogs-00001
 sslenabled: true
 eshosts: https://elasticsearch.example.com:9200
 # Note: We need to provide either esuser,espassword or esapikey
 esuser: logstash_internal
 espassword: elasticsearch-pw-elastic
 esapikey:

10.2.4 Upgrading the OUDSM Deployment for ELK
1. Run the following command to upgrade the Oracle Unified Directory Services Manager

(OUDSM) deployment with the ELK configuration:

helm upgrade --namespace <namespace> --values <valuesfile.yaml>
<releasename> oudsm --reuse-values

Chapter 10
Creating the Logstash Pod

10-4

For example:

helm upgrade --namespace oudsmns --values logging-override-values.yaml
oudsm oudsm --reuse-values

The output should look similar to the following:

Release "oudsm" has been upgraded. Happy Helming!
NAME: oudsm
LAST DEPLOYED: <DATE>
NAMESPACE: oudsmns
STATUS: deployed
REVISION: 2
TEST SUITE: None

10.3 Verifying the Pods
1. Run the following command to check the logstash pod is created correctly:

kubectl get pods -n <namespace>

For example:

kubectl get pods -n oudsmns

The output should look similar to the following:

NAME READY STATUS RESTARTS AGE
oudsm-1 1/1 Running 0 51m
oudsm-logstash-56dbcc6d9f-mxsgj 1/1 Running 0 2m7s

Note:

Wait a couple of minutes to make sure the pod has not had any failures or
restarts. If the pod fails you can view the pod log using:

kubectl logs -f oudsm-logstash-<pod> -n oudsmns

If the logstash pod has problems, see Troubleshooting Pod and Logstash Errors.

10.4 Troubleshooting Pod and Logstash Errors
Most errors occur due to misconfiguration of the logging-override-values.yaml. This is
usually because of an incorrect value set, or the certificate was not pasted with the correct
indentation.

Chapter 10
Verifying the Pods

10-5

If the pod has errors, view the helm history to find the last working revision, for example:

helm history oudsm -n oudsmns

The output will look similar to the following:

REVISION UPDATED STATUS CHART APP VERSION
DESCRIPTION
1 <DATE> superseded oudsm-0.1 14.1.2.1.0
Install complete
2 <DATE> deployed oudsm-0.1 14.1.2.1.0
Upgrade complete

Rollback to the previous working revision by running:

helm rollback <release> <revision> -n <domain_namespace>

For example:

helm rollback oudsm 1 -n oudsmns

Once you have resolved the issue in the yaml files, run the helm upgrade command outlined
earlier to recreate the logstash pod.

10.5 Verifying and Accessing the Kibana Console
To access the Kibana console you will need the Kibana URL as per Installing the Monitoring
and Visualization Software.

Kibana Version 7.8.X or Higher

1. Access the Kibana console with http://<hostname>:<port>/app/kibana and login with
your username and password.

2. From the Navigation menu, navigate to Management > Kibana > Index Patterns.

3. In the Create Index Pattern page enter oudsmlogs* for the Index pattern and click Next
Step.

4. In the Configure settings page, from the Time Filter field name drop down menu select
@timestamp and click Create index pattern.

5. Once the index pattern is created click on Discover in the navigation menu to view the
OUDSM logs.

Kibana 7.7.x or Lower

1. Access the Kibana console with http://<hostname>:<port>/app/kibana and login with
your username and password.

2. From the Navigation menu, navigate to Management > Stack Management.

3. Click Data Views in the Kibana section.

4. Click Create Data View and enter the following information:

• Name: oudsmlogs*

Chapter 10
Verifying and Accessing the Kibana Console

10-6

• Timestamp: @timestamp
5. Click Create Data View.

6. From the Navigation menu, click Discover to view the log file entries.

7. From the drop down menu, select oudsmlogs* to view the log file entries.

Chapter 10
Verifying and Accessing the Kibana Console

10-7

11
Monitoring an Oracle Unified Directory
Services Manager Instance

You can monitor and Oracle Unified Directory Services Manager (OUDSM) instance using
Prometheus and Grafana.

This chapter includes the following topics:

• Creating a Kubernetes Namespace for Monitoring

• Adding Prometheus and Grafana Helm Repositories

• Installing the Prometheus Operator

• Viewing Prometheus and Grafana Objects

• Adding the NodePort for Grafana

• Verifying Monitoring Using the Grafana GUI

11.1 Creating a Kubernetes Namespace for Monitoring
Create a Kubernetes namespace to provide a scope for Prometheus and Grafana objects,
such as pods and services, that you create in the environment.

To create your namespace issue the following command:

kubectl create namespace <namespace>

For example:

kubectl create namespace monitoring

The output will look similar to the following:

namespace/monitoring created

11.2 Adding Prometheus and Grafana Helm Repositories
1. Add the Prometheus and Grafana Helm repositories by issuing the following command:

helm repo add prometheus https://prometheus-community.github.io/helm-charts

The output will look similar to the following:

"prometheus" has been added to your repositories

11-1

2. Run the following command to update the repositories:

helm repo update

The output will look similar to the following:

Hang tight while we grab the latest from your chart repositories...
...Successfully got an update from the "stable" chart repository
...Successfully got an update from the "prometheus" chart repository
...Successfully got an update from the "prometheus-community" chart
repository

Update Complete. Happy Helming!

11.3 Installing the Prometheus Operator
Install the Prometheus operator using the helm command:

helm install <release_name> prometheus/kube-prometheus-stack -n <namespace>

For example:

helm install monitoring prometheus/kube-prometheus-stack -n monitoring

The output should look similar to the following:

NAME: monitoring
LAST DEPLOYED: <DATE>
NAMESPACE: monitoring
STATUS: deployed
REVISION: 1
NOTES:
kube-prometheus-stack has been installed. Check its status by running:
 kubectl --namespace monitoring get pods -l "release=monitoring"

Visit https://github.com/prometheus-operator/kube-prometheus for instructions
on how to create & configure Alertmanager and Prometheus instances using the
Operator.

Chapter 11
Installing the Prometheus Operator

11-2

Note:

If your cluster does not have access to the internet to pull external images, such as
prometheus or grafana, you must load the images in a local container registry. You
must then install as follows:

helm install \
--set grafana.image.registry="container-registry.example.com" \
--set grafana.image.repository="grafana/grafana" \
--set grafana.image.tag=8.4.2 \
monitoring prometheus/kube-prometheus-stack \
-n monitoring

11.4 Viewing Prometheus and Grafana Objects
View the objects created for Prometheus and Grafana by issuing the following command

kubectl get all,service,pod -o wide -n <namespace>

For example:

kubectl get all,service,pod -o wide -n monitoring

The output will look similar to the following:

NAME READY
STATUS RESTARTS AGE IP NODE NOMINATED
NODE READINESS GATES
pod/alertmanager-monitoring-kube-prometheus-alertmanager-0 2/2
Running 0 36s 10.244.1.78 <worker-node> <none>
<none>
pod/monitoring-grafana-578f79599c-qc9gd 3/3
Running 0 47s 10.244.2.200 <worker-node> <none>
<none>
pod/monitoring-kube-prometheus-operator-65cdf7995-kndgg 1/1
Running 0 47s 10.244.2.199 <worker-node> <none>
<none>
pod/monitoring-kube-state-metrics-56bfd4f44f-85l4p 1/1
Running 0 47s 10.244.1.76 <worker-node> <none>
<none>
pod/monitoring-prometheus-node-exporter-g2x9g 1/1
Running 0 47s 100.102.48.121 <master-node> <none>
<none>
pod/monitoring-prometheus-node-exporter-p9kkq 1/1
Running 0 47s 100.102.48.84 <worker-node> <none>
<none>
pod/monitoring-prometheus-node-exporter-rzhrd 1/1
Running 0 47s 100.102.48.28 <worker-node> <none>
<none>
pod/prometheus-monitoring-kube-prometheus-prometheus-0 2/2

Chapter 11
Viewing Prometheus and Grafana Objects

11-3

Running 0 35s 10.244.1.79 <worker-node> <none>
<none>

NAME TYPE CLUSTER-
IP EXTERNAL-IP PORT(S) AGE SELECTOR
service/alertmanager-operated ClusterIP
None <none> 9093/TCP,9094/TCP,9094/UDP 36s
app.kubernetes.io/name=alertmanager
service/monitoring-grafana ClusterIP
10.110.193.30 <none> 80/TCP 47s
app.kubernetes.io/instance=monitoring,app.kubernetes.io/name=grafana
service/monitoring-kube-prometheus-alertmanager ClusterIP
10.104.2.37 <none> 9093/TCP 47s
alertmanager=monitoring-kube-prometheus-alertmanager,app.kubernetes.io/
name=alertmanager
service/monitoring-kube-prometheus-operator ClusterIP
10.99.162.229 <none> 443/TCP 47s app=kube-
prometheus-stack-operator,release=monitoring
service/monitoring-kube-prometheus-prometheus ClusterIP
10.108.161.46 <none> 9090/TCP 47s
app.kubernetes.io/name=prometheus,prometheus=monitoring-kube-prometheus-
prometheus
service/monitoring-kube-state-metrics ClusterIP
10.111.162.185 <none> 8080/TCP 47s
app.kubernetes.io/instance=monitoring,app.kubernetes.io/name=kube-state-
metrics
service/monitoring-prometheus-node-exporter ClusterIP
10.109.21.136 <none> 9100/TCP 47s
app=prometheus-node-exporter,release=monitoring
service/prometheus-operated ClusterIP
None <none> 9090/TCP 35s
app.kubernetes.io/name=prometheus

NAME DESIRED CURRENT
READY UP-TO-DATE AVAILABLE NODE SELECTOR AGE CONTAINERS
IMAGES SELECTOR
daemonset.apps/monitoring-prometheus-node-exporter 3 3
3 3 3 <none> 47s node-exporter
quay.io/prometheus/node-exporter:v1.3.1 app=prometheus-node-
exporter,release=monitoring

NAME READY UP-TO-DATE
AVAILABLE AGE CONTAINERS
IMAGES
 SELECTOR
deployment.apps/monitoring-grafana 1/1 1
1 47s grafana-sc-dashboard,grafana-sc-datasources,grafana
quay.io/kiwigrid/k8s-sidecar:1.15.6,quay.io/kiwigrid/k8s-
sidecar:1.15.6,grafana/grafana:8.4.2 app.kubernetes.io/
instance=monitoring,app.kubernetes.io/name=grafana
deployment.apps/monitoring-kube-prometheus-operator 1/1 1
1 47s kube-prometheus-stack
quay.io/prometheus-operator/prometheus-
operator:v0.55.0 app=kube-prometheus-
stack-operator,release=monitoring
deployment.apps/monitoring-kube-state-metrics 1/1 1

Chapter 11
Viewing Prometheus and Grafana Objects

11-4

1 47s kube-state-metrics
k8s.gcr.io/kube-state-metrics/kube-state-
metrics:v2.4.1 app.kubernetes.io/
instance=monitoring,app.kubernetes.io/name=kube-state-metrics

NAME DESIRED
CURRENT READY AGE CONTAINERS
IMAGES
 SELECTOR
replicaset.apps/monitoring-grafana-578f79599c 1
1 1 47s grafana-sc-dashboard,grafana-sc-datasources,grafana
quay.io/kiwigrid/k8s-sidecar:1.15.6,quay.io/kiwigrid/k8s-
sidecar:1.15.6,grafana/grafana:8.4.2 app.kubernetes.io/
instance=monitoring,app.kubernetes.io/name=grafana,pod-template-
hash=578f79599c
replicaset.apps/monitoring-kube-prometheus-operator-65cdf7995 1
1 1 47s kube-prometheus-stack
quay.io/prometheus-operator/prometheus-
operator:v0.55.0 app=kube-prometheus-
stack-operator,pod-template-hash=65cdf7995,release=monitoring
replicaset.apps/monitoring-kube-state-metrics-56bfd4f44f 1
1 1 47s kube-state-metrics
k8s.gcr.io/kube-state-metrics/kube-state-
metrics:v2.4.1 app.kubernetes.io/
instance=monitoring,app.kubernetes.io/name=kube-state-metrics,pod-template-
hash=56bfd4f44f

NAME
READY AGE CONTAINERS IMAGES
statefulset.apps/alertmanager-monitoring-kube-prometheus-alertmanager
1/1 36s alertmanager,config-reloader quay.io/prometheus/
alertmanager:v0.23.0,quay.io/prometheus-operator/prometheus-config-
reloader:v0.55.0
statefulset.apps/prometheus-monitoring-kube-prometheus-prometheus
1/1 35s prometheus,config-reloader quay.io/prometheus/
prometheus:v2.33.5,quay.io/prometheus-operator/prometheus-config-
reloader:v0.55.0

11.5 Adding the NodePort for Grafana
1. Edit the grafana service to add the NodePort:

kubectl edit service/<deployment_name>-grafana -n <namespace>

For example:

kubectl edit service/monitoring-grafana -n monitoring

Note:

This opens an edit session for the domain where parameters can be changed
using standard vi commands.

Chapter 11
Adding the NodePort for Grafana

11-5

2. Change the ports entry and add nodePort: 30091 and type: NodePort:

 ports:
 - name: http-web
 nodePort: 30091
 port: 80
 protocol: TCP
 targetPort: 3000
 selector:
 app.kubernetes.io/instance: monitoring
 app.kubernetes.io/name: grafana
 sessionAffinity: None
 type: NodePort

3. Save the file and exit (:wq).

11.6 Verifying Monitoring Using the Grafana GUI
1. Access the Grafana GUI using http://<HostIP>:<nodeport> and login with admin/prom-

operator. Change the password when prompted.

2. Download the K8 Cluster Detail Dashboard json file from: K8 Cluster Detail Dashboard.

3. Import the Grafana dashboard by navigating on the left hand menu to Dashboards >
Import.

4. Click Upload JSON file and select the json downloaded file.

5. In the Prometheus drop down box select Prometheus. Click Import. The dashboard
should be displayed.

6. Verify your installation by viewing some of the customized dashboard views.

Chapter 11
Verifying Monitoring Using the Grafana GUI

11-6

https://grafana.com/grafana/dashboards/10856

12
Patching and Upgrading

This chapter includes the following topics:

• Patching and Upgrading Within 14.1.2

• Upgrading from Oracle Unified Directory Services Manager 12.2.1.4 to 14.1.2

12.1 Patching and Upgrading Within 14.1.2
The instructions in this section relate to patching or upgrading an existing 14.1.2.1.0 Oracle
Unified Directory Services Manager (OUDSM) Kubernetes deployment with a new OUDSM
14c container image.

This section contains the following topics:

• Performing the Upgrade Within 14.1.2

• Rolling Back the Upgrade Within 14.1.2

12.1.1 Performing the Upgrade Within 14.1.2
Run the following steps to patch or upgrade an existing 14.1.2.1.0 Oracle Unified Directory
Services Manager (OUDSM) Kubernetes deployment with a new OUDSM 14c container
image:

Note:

Administrators should be aware of the following:

• If you are not using Oracle Container Registry or your own container registry,
then you must first load the new container image on all nodes in your Kubernetes
cluster.

1. Navigate to the $WORKDIR/kubernetes/helm14c directory:

cd $WORKDIR/kubernetes/helm14c

2. Create an oudsm-patch-override.yaml file that contains:

image:
 repository: <image_location>
 tag: <image_tag>
 imagePullSecrets:
 - name: orclcred

12-1

For example:

image:
 repository: container-registry.oracle.com/middleware/oudsm_cpu
 tag: 14.1.2.1.0-jdk17-ol8-<YYMMDD>
imagePullSecrets:
 - name: orclcred

Note:

If you are not using Oracle Container Registry or your own container registry for
your OUDSM container image, then you can remove the following:

imagePullSecrets:
 - name: orclcred

3. Take a backup of the persistent volume directory:

sudo cp -rp <persistent_volume>/oudsm_user_projects <persistent_volume>/
oudsm_user_projects_bkp14c_<tag>

For example:

sudo cp -rp /nfs_volumes/oudsmpv/oudsm_user_projects /nfs_volumes/oudsmpv/
oudsm_user_projects_bkp14c_old

4. Run the following command to upgrade the deployment:

helm upgrade --namespace <namespace> \
--values oudsm-patch-override.yaml \
<release_name> oudsm --reuse-values

For example:

helm upgrade --namespace oudsmns \
--values oudsm-patch-override.yaml \
oudsm oudsm --reuse-values

The helm upgrade will perform a rolling restart of the OUDSM pods.

5. Run the following command and make sure all the OUDSM pods are started:

kubectl get pods -n <namespace> -w

Note:

The -w flag allows you watch the status of the pods as they change.

Chapter 12
Patching and Upgrading Within 14.1.2

12-2

For example:

kubectl get pods -n oudsmns -w

You can also tail the logs for the pods by running:

kubectl logs -f <pod> -n oudsmns

6. Once the pods are up and running, you can run the following command to show the new
OUDSM 14c container image is used by the pods:

kubectl describe pod <pod> -n <namespace> | grep image

For example:

kubectl describe pod oudsm-1 -n oudsmns | grep image

The output will look similar to the following:

...
Containers:
 oudsm-1:
 Container ID: cri-o://
6a35ef3a0721015aa99b2aaeebdc96528c8166db7bf36176f0b9665e43c10ded
 Image: container-registry.oracle.com/middleware/
oudsm_cpu:14.1.2.1.0-jdk17-ol8-<YYMMDD>
 Image ID: container-registry.oracle.com/middleware/
oudsm_cpu@sha256:2ae38d6bdca4c411d6b62289cf80563f611a1fdcbaf01632be7b4fa6a4
169000

7. Verify the OUDSM deployment. See, Validating OUDSM URLs.

12.1.2 Rolling Back the Upgrade Within 14.1.2

If the Oracle Unified Directory Services Manager (OUDSM) upgrade fails, you can rollback to
the previous OUDSM 14c container image, fix the issue, and then retry the upgrade.

You can also rollback if the upgrade was successful but you subsequently have functional
issues.

To rollback the Oracle Unified Directory (OUDSM) installation perform the following steps:

1. Rollback the OUDSM deployment using the following command:

helm rollback <release_name> -n <namespace>

For example:

 helm rollback oudsm -n oudsmns

Chapter 12
Patching and Upgrading Within 14.1.2

12-3

The output will look similar to the following:

Rollback was a success! Happy Helming!

The helm rollback will perform a rolling restart of the OUDSM pods.

2. Run the following command and make sure all the OUDSM pods are started:

kubectl get pods -n <namespace> -w

Note:

The -w flag allows you watch the status of the pods as they change.

For example:

kubectl get pods -n oudsmns -w

You can also tail the logs for the pods by running:

kubectl logs -f <pod> -n oudsmns

3. Once the pods are up and running, you can run the following command to show the
previous OUDSM 14c container image is used by the pods:

kubectl describe pod <pod> -n <namespace> | grep image

For example:

kubectl describe pod oudsm-1 -n oudsmns | grep image

The output will look similar to the following:

...
Containers:
 oudsm-1:
 Container ID: cri-o://
6a35ef3a0721015aa99b2aaeebdc96528c8166db7bf36176f0b9665e43c10ded
 Image: container-registry.oracle.com/middleware/
oudsm_cpu:14.1.2.1.0-jdk17-ol8-<YYMMDD>
 Image ID: container-registry.oracle.com/middleware/
oudsm_cpu@sha256:2ae38d6bdca4c411d6b62289cf80563f611a1fdcbaf01632be7b4fa6a4
169000

4. Verify the OUDSM deployment. See, Validating OUDSM URLs.

12.2 Upgrading from Oracle Unified Directory Services Manager
12.2.1.4 to 14.1.2

Chapter 12
Upgrading from Oracle Unified Directory Services Manager 12.2.1.4 to 14.1.2

12-4

Upgrading an existing Oracle Unified Directory Serivces Manager (OUDSM) 12.2.1.4
deployment on Kubernetes to OUDSM 14.1.2.1.0, is not supported.

You must install a new 14.1.2.1.0 OUDSM deployment as outlined in Installing Oracle Unified
Directory Services Manager on Kubernetes.

Chapter 12
Upgrading from Oracle Unified Directory Services Manager 12.2.1.4 to 14.1.2

12-5

13
General Troubleshooting

This chapter includes the following topics:

• Checking the Status of an OUDSM Namespace

• Viewing Pod Logs

• Viewing Pod Descriptions

13.1 Checking the Status of an OUDSM Namespace
To check the status of objects in a namespace use the following command:

kubectl --namespace <namespace> get nodes,pod,service,secret,pv,pvc,ingress -
o wide

For example:

kubectl --namespace oudsmns get pod,service,secret,pv,pvc,ingress -o wide

The output will look similar to the following:

NAME READY STATUS RESTARTS AGE IP
NODE NOMINATED NODE READINESS GATES
pod/oudsm-1 1/1 Running 0 3d21h 10.244.0.173 <Worker
Node> <none> <none>

NAME TYPE CLUSTER-IP EXTERNAL-IP
PORT(S) AGE SELECTOR
service/oudsm-1 ClusterIP 10.96.102.147 <none> 7001/
TCP,7002/TCP 3d21h app.kubernetes.io/instance=oudsm,app.kubernetes.io/
name=oudsm,oudsm/instance=oudsm-1
service/oudsm-lbr ClusterIP 10.96.148.14 <none> 7001/
TCP,7002/TCP 3d21h app.kubernetes.io/instance=oudsm,app.kubernetes.io/
name=oudsm

NAME TYPE DATA AGE
secret/orclcred kubernetes.io/dockerconfigjson 1
4d17h
secret/oudsm-creds opaque 2
3d21h
secret/oudsm-tls-cert kubernetes.io/tls 2
3d21h
secret/sh.helm.release.v1.oudsm.v1 helm.sh/release.v1 1
3d21h

13-1

13.2 Viewing Pod Logs
To view logs for a pod use the following command:

kubectl logs <pod> -n <namespace>

For example:

kubectl logs oudsm-1 -n oudsmns

Note:

If you add -f to the command, then the log will be streamed.

13.3 Viewing Pod Descriptions
Details about a pod can be viewed using the kubectl describe command:

kubectl describe pod <pod> -n <namespace>

For example:

kubectl describe pod oudsm-1 -n oudsmns

Chapter 13
Viewing Pod Logs

13-2

14
Deleting an OUDSM Deployment

The following steps can be followed to delete an Oracle Unified Directory Services Manager
(OUDSM) deployment:

1. Run the following command to find the deployment release name:

helm --namespace <namespace> list

For example:

helm --namespace oudsmns list

The output will look similar to the following:

NAME NAMESPACE REVISION UPDATED STATUS
CHART APP VERSION
oudsm oudsmns 2 <DATE> deployed
oudsm-0.1 14.1.2.1.0

2. Delete the deployment using the following command:

helm uninstall --namespace <namespace> <release>

For example:

helm uninstall --namespace oudsmns oudsm

The output will look similar to the following:

release "oudsm" uninstalled

3. Run the following command to view the status:

kubectl --namespace oudsmns get pod,service,secret,pv,pvc,ingress -o wide

Initially the pods and persistent volume (PV) and persistent volume claim (PVC) will move
to a Terminating status:

NAME READY STATUS RESTARTS AGE IP
NODE NOMINATED NODE READINESS GATES

pod/oudsm-1 1/1 Terminating 0 24m 10.244.1.180
<Worker Node> <none> <none>

NAME TYPE DATA

14-1

AGE
secret/default-token-msmmd kubernetes.io/service-account-token 3
3d20h
secret/dockercred kubernetes.io/dockerconfigjson 1
3d20h
secret/orclcred kubernetes.io/dockerconfigjson 1
3d20h

NAME CAPACITY ACCESS MODES RECLAIM
POLICY STATUS CLAIM STORAGECLASS
REASON AGE VOLUMEMODE
persistentvolume/oudsm-pv 20Gi RWX
Delete Terminating oudsmns/oud-ds-rs-pvc
manual 24m Filesystem

NAME STATUS VOLUME CAPACITY
ACCESS MODES STORAGECLASS AGE VOLUMEMODE
persistentvolumeclaim/oudsm-pvc Terminating oud-ds-rs-pv 20Gi
RWX manual 24m Filesystem

4. Run the command again until the pods, PV and PVC disappear.

5. If the PV or PVC’s don’t delete, remove them manually:

kubectl delete pvc oudsm-pvc -n oudsmns
kubectl delete pv oudsm-pv -n oudsmns

6. Delete the persistent volume contents:

cd <persistent_volume>/oudsm_user_projects
rm -rf *

For example:

cd /nfs_volumes/oudsmpv/oudsm_user_projects
rm -rf *

7. Delete the ingress controller:

helm delete lbr-nginx -n <namespace>

For example:

helm delete lbr-nginx -n mynginxns

Chapter 14

14-2

Part IV
Appendices

This section includes the following topics:

• Configuration Parameters for the oudsm Helm Chart

A
Configuration Parameters for the oudsm Helm
Chart

The following table lists the configurable parameters of the oudsm chart and their default
values.

Parameter Description Default Value

replicaCount Number of Oracle Unified
Directory Services Manager
instances/pods/services to be
created

1

restartPolicyName restartPolicy to be configured for
each POD containing Oracle
Unified Directory Services
Manager instance

OnFailure

image.repository Oracle Unified Directory Services
Manager Image Registry/
Repository and name. Based on
this, image parameter would be
configured for Oracle Unified
Directory Services Manager
pods/containers.

oracle/oudsm

image.tag Oracle Unified Directory Services
Manager Image Tag. Based on
this, image parameter would be
configured for Oracle Unified
Directory Services Manager
pods/containers

14.1.2.1.0

image.pullPolicy Policy to pull the image. IfnotPresent

imagePullSecrets.name Name of Secret resource
containing private registry
credentials.

regcred

nameOverride override the fullname with this
name.

fullnameOverride Overrides the fullname with the
provided string.

serviceAccount.create Specifies whether a service
account should be created.

true

serviceAccount.name If not set and create is true, a
name is generated using the
fullname template.

oudsm-< fullname >-token-<
randomalphanum >

podSecurityContext Security context policies to add to
the controller pod.

securityContext Security context policies to add
by default.

service.type Type of controller service to
create.

ClusterIP

nodeSelector Node labels for pod assignment.

A-1

Parameter Description Default Value

tolerations Node taints to tolerate.

affinity Node/pod affinities.

ingress.enabled true

ingress.type Supported value: nginx. nginx

ingress.host Hostname to be used with
Ingress Rules. If not set,
hostname would be configured
according to fullname. Hosts
would be configured as <
fullname >-http.< domain >, <
fullname >-http-0.< domain >, <
fullname >-http-1.< domain >, etc.

ingress.domain Domain name to be used with
Ingress Rules. In ingress rules,
hosts would be configured as <
host >.< domain >, < host >-0.<
domain >, < host >-1.< domain >,
etc.

ingress.backendPort http

ingress.nginxAnnotations { kubernetes.io/ingress.class:
“nginx"
nginx.ingress.kubernetes.io/
affinity-mode: “persistent”
nginx.ingress.kubernetes.io/
affinity: “cookie” }

ingress.ingress.tlsSecret Secret name to use an already
created TLS Secret. If such
secret is not provided, one would
be created with name < fullname
>-tls-cert. If the TLS Secret is in
different namespace, name can
be mentioned as < namespace
>/< tlsSecretName >

ingress.certCN Subject’s common name (cn) for
SelfSigned Cert.

< fullname >

ingress.certValidityDays Validity of Self-Signed Cert in
days

365

ingress.ingress.tlsSecret Secret name to use an already
created TLS Secret. If such
secret is not provided, one would
be created with name < fullname
>-tls-cert. If the TLS Secret is in
different namespace, name can
be mentioned as < namespace
>/< tlsSecretName >

ingress.certCN Subject’s common name (cn) for
SelfSigned Cert.

< fullname >

ingress.certValidityDays Validity of Self-Signed Cert in
days

365

A-2

Parameter Description Default Value

secret.enabled If enabled it will use the secret
created with base64 encoding. if
value is false, secret would not be
used and input values (through –
set, –values, etc.) would be used
while creation of pods.

true

secret.name Secret name to use an already
created xecret.

oudsm-< fullname >-creds

secret.type Specifies the type of the secret Opaque

persistence.enabled If enabled, it will use the
persistent volume. if value is
false, PV and PVC would not be
used and pods would be using
the default emptyDir mount
volume.

true

persistence.pvname pvname to use an already
created Persistent Volume , If
blank will use the default name.

oudsm-< fullname >-pv

persistence.pvcname pvcname to use an already
created Persistent Volume Claim ,
If blank will use default name.

oudsm-< fullname >-pvc

persistence.type supported values: either
filesystem or networkstorage or
blockstorage or custom.

filesystem

persistence.filesystem.hostPath.p
ath

The path location mentioned
should be created and accessible
from the local host provided with
necessary privileges for the user.

/scratch/shared/
oudsm_user_projects

persistence.networkstorage.nfs.p
ath

Path of NFS Share location. /scratch/shared/
oudsm_user_projects

persistence.networkstorage.nfs.s
erver

IP or hostname of NFS Server. 0.0.0.0

persistence.custom.* Based on values/data, YAML
content would be included in
PersistenceVolume Object.

persistence.accessMode Specifies the access mode of the
location provided.
ReadWriteMany for Filesystem/
NFS, ReadWriteOnce for block
storage.

ReadWriteMany

persistence.size Specifies the size of the storage. 10Gi

persistence.storageClassCreate If true, it will create the
storageclass. if value is false,
please provide existing storage
class (storageClass) to be used.

empty

persistence.storageClass Specifies the storageclass of the
persistence volume.

empty

persistence.provisioner If storageClassCreate is true,
provide the custom provisioner if
any.

kubernetes.io/is-default-class

persistence.annotations specifies any annotations that will
be used.

{ }

oudsm.adminUser oudsm.adminUser weblogic

A-3

Parameter Description Default Value

oudsm.adminPass Password for Weblogic
Administration User

oudsm.startupTime Expected startup time. After
specified seconds
readinessProbe would start

900

oudsm.livenessProbeInitialDelay Parameter to decide
livenessProbe
initialDelaySeconds

1200

elk.logStashImage The version of logstash you want
to install.

logstash:8.3.1

elk.sslenabled If SSL is enabled for ELK set the
value to true, or if NON-SSL set
to false. This value must be
lowercase.

TRUE

elk.eshosts The URL for sending logs to
Elasticsearch. HTTP if NON-SSL
is used.

https://
elasticsearch.example.com:9200

elk.esuser The name of the user for logstash
to access Elasticsearch.

logstash_internal

elk.espassword The password for ELK_USER. password

elk.esapikey The API key details. apikey

elk.esindex The log name. oudlogs-00001

elk.imagePullSecrets Secret to be used for pulling
logstash image.

dockercred

A-4

	Contents
	List of Figures
	1 What's New in This Release?
	Part I Introduction to Oracle Unified Directory Services Manager on Kubernetes
	2 Introducing Oracle Unified Directory Services Manager on Kubernetes
	2.1 Overview of Oracle Unified Directory Services Manager on Kubernetes
	2.2 Key Features of Oracle Unified Directory Services Manager on Kubernetes

	3 About the Kubernetes Deployment
	3.1 What is Kubernetes?
	3.2 About the Kubernetes Architecture
	3.3 Key Components Used By an OUDSM Deployment

	Part II Installing Oracle Unified Directory Services Manager on Kubernetes
	4 Before You Begin
	5 System Requirements for OUDSM on Kubernetes
	6 Preparing Your Environment
	6.1 Confirming the Kubernetes Cluster is Ready
	6.2 Obtaining the OUDSM Container image
	6.3 Creating a Persistent Volume Directory
	6.4 Setting Up the Code Repository for OUDSM

	7 Creating Oracle Unified Directory Services Manager Instances
	7.1 Creating a Kubernetes Namespace
	7.2 Creating a Kubernetes Secret for the Container Registry
	7.3 Creating OUDSM Instances
	7.3.1 Deploying OUDSM Using a YAML File
	7.3.2 Deploying OUDSM Using Set Argument
	7.3.3 Helm Command Output
	7.3.4 Verifying the OUDSM Deployment

	8 Configuring Ingress
	8.1 Installing the NGINX Repository
	8.2 Creating a Kubernetes Namespace for NGINX
	8.3 Installing the NGINX Controller
	8.4 Accessing OUDSM Through Ingress
	8.5 Validating OUDSM URLs

	Part III Administering Oracle Unified Directory Services Manager on Kubernetes
	9 Scaling OUDSM Pods
	9.1 Viewing Existing OUDSM Instances
	9.2 Scaling Up OUDSM Instances
	9.2.1 Scaling Up Using a YAML File
	9.2.2 Scaling Up Using set Argument
	9.2.3 Verifying the Scaling Up

	9.3 Scaling Down OUDSM Instances
	9.3.1 Scaling Down Using a YAML File
	9.3.2 Scaling Down Using --set Argument
	9.3.3 Verifying Scaling Down

	10 Logging and Visualization
	10.1 Installing Elasticsearch and Kibana
	10.2 Creating the Logstash Pod
	10.2.1 Variables Used in This Section
	10.2.2 Creating a Kubernetes Secret for ELK
	10.2.3 Enabling Logstash
	10.2.4 Upgrading the OUDSM Deployment for ELK

	10.3 Verifying the Pods
	10.4 Troubleshooting Pod and Logstash Errors
	10.5 Verifying and Accessing the Kibana Console

	11 Monitoring an Oracle Unified Directory Services Manager Instance
	11.1 Creating a Kubernetes Namespace for Monitoring
	11.2 Adding Prometheus and Grafana Helm Repositories
	11.3 Installing the Prometheus Operator
	11.4 Viewing Prometheus and Grafana Objects
	11.5 Adding the NodePort for Grafana
	11.6 Verifying Monitoring Using the Grafana GUI

	12 Patching and Upgrading
	12.1 Patching and Upgrading Within 14.1.2
	12.1.1 Performing the Upgrade Within 14.1.2
	12.1.2 Rolling Back the Upgrade Within 14.1.2

	12.2 Upgrading from Oracle Unified Directory Services Manager 12.2.1.4 to 14.1.2

	13 General Troubleshooting
	13.1 Checking the Status of an OUDSM Namespace
	13.2 Viewing Pod Logs
	13.3 Viewing Pod Descriptions

	14 Deleting an OUDSM Deployment

	Part IV Appendices
	A Configuration Parameters for the oudsm Helm Chart

