Oracle® Fusion Middleware

Developing Plug-Ins for Oracle Unified
Directory

19¢ (19.1.0.0.0)
E97672-01
July 2018

ORACLE"



Oracle Fusion Middleware Developing Plug-Ins for Oracle Unified Directory, 19¢ (19.1.0.0.0)
E97672-01

Copyright © 2017, 2018, Oracle and/or its affiliates. All rights reserved.

Primary Author: Sandhya U.S

Contributing Authors: Devanshi Mohan

Contributors: Lawallambok Wahlang

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify,
license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means.
Reverse engineering, disassembly, or decompilation of this software, unless required by law for
interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users are
"commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-
specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the
programs, including any operating system, integrated software, any programs installed on the hardware,
and/or documentation, shall be subject to license terms and license restrictions applicable to the programs.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron,
the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro
Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be
responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.



Contents

Preface
Audience v
Documentation Accessibility %
Related Documents \Y
Conventions v
What's New in This Guide
New Features in Release 12¢ (12.2.1.3.0) Vi
1 Understanding Basic Oracle Unified Directory Plug-in Concepts
1.1 Determining Whether You Should Implement an OUD Plug-In 1-1
1.2 OUD Plug-Ins and OUD Workflows 1-2
1.3 OUD Plug-In Implementation Points 1-2
1.4  About Oracle Unified Directory Plug-Ins 1-3
2 Building and Deploying an OUD Plug-In
2.1 Before You Begin Deploying OUD Plug-in 2-1
2.2 Deploying a Plug-In to an OUD Instance 2-1
3 Using the OUD Plug-In API Reference
3.1 Overview of OUD Plug-In Configuration 3-1
3.1.1  About Storing OUD Plug-In Configuration 3-1
3.1.1.1 Example for Adding Plug-in Properties 3-2
3.1.1.2 Example for Configuring a Custom Property 3-2
3.1.2 Retrieving OUD Plug-In Configuration 3-2
3.1.3 Creating an Automated Parser for Plug-In Properties 3-3
3.1.4 Making Dynamic OUD Plug-In Configuration Changes 3-4
3.1.5 Validating Plug-In Configuration 3-4
3.2 Request Handling with OUD Plug-in API 3-5

ORACLE" iii



3.2.1 Overview of LDAP Request Handling with OUD Plug-in API 3-5

3.2.2 Modifying OUD Search Requests with Plug-in API 3-6

3.2.3 Modifying Search Requests with Wrapper Object 3-7

3.2.4 Forwarding Requests with OUD Plug-in API 3-8

3.2.5 Returning Results with OUD Plug-in API 3-9

3.3 Handling Responses in OUD Plug-in 3-10

3.3.1 Example for Intercepting bind failure 3-10

3.3.2 Example for Intercepting Search Entries and Final Search Results 3-11

3.4  About Results Handling in OUD Plug-in 3-12

3.4.1 Ignoring Search Results in OUD Plug-in 3-12

3.4.2 Intercepting Search Failures in OUD Plug-in 3-13

3.4.2.1 Logging the Failures of Search Requests 3-14

3.4.3 Counting Entries Returned by Search Requests 3-16

3.4.3.1 Logging the Number of Returned Entries of Search Requests 3-17

3.5 Configuring Filters in Search Requests 3-18

3.5.1 About Filter Processing in Search Requests 3-18

3.5.2 Example of Implementation of the FilterVisitor 3-18
3.5.3 Example for Verifying and Logging the Presence of objectclass=* in a

Search Request 3-21

3.5.4 Verifying and Logging Presence of objectclass=* in a Search Request 3-21

3.6 Configuring Internal Operations in OUD Plug-in API 3-22

3.6.1 About Internal LDAP Requests 3-23

3.6.1.1 Creating Internal LDAP Requests 3-23

3.6.2 Understanding OUD Plug-in API Internal Requests 3-23

3.6.2.1 About Mode 1 of the OUD Plug-in API 3-24

3.6.2.2 Implementing Mode 1 of the OUD Plug-in API 3-24

3.6.2.3 About Mode 2 of the OUD Plug-in API 3-25

3.6.2.4 Implementing Mode 2 of the OUD Plug-in API 3-25

3.7 About OUD Plug-in Exceptions 3-26

3.8 Logging and Debugging Exceptions in the OUD Plug-in API 3-27

3.8.1 About Logging and Debugging Exceptions in the OUD Plug-in API 3-27

3.8.2 Debugging the Plug-In When Servicing a Client Request 3-27

3.8.3 Debugging Plug-In Initialization 3-28

ORACLE iv



Preface

The Oracle Fusion Middleware Developing Plug-ins for Oracle Unified Directory
describes how to use the Oracle Unified Directory Plug-In API to programmatically
extend OUD functionality.

Audience

This document is intended for software developers who are proficient in using Oracle
Unified Directory.

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at ht t p: // www. or acl e. cont pl s/t opi ¢/ | ookup?
ctx=accé& d=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support
through My Oracle Support. For information, visit htt p: // www. or acl e. cont pl s/t opi ¢/

| ookup?ct x=acc&i d=i nfo or visit htt p: // ww. or acl e. com pl s/t opi ¢/ | ookup?ct x=acc& d=trs
if you are hearing impaired.

Related Documents

For more information, see the following documents in the Oracle Unified Directory 12¢
Release 12.2.1.3 documentation set:

* Release Notes for Oracle Identity Management

*  Oracle Fusion Middleware Installation Guide for Oracle Unified Directory

*  Oracle Fusion Middleware Oracle Unified Directory Configuration Reference
e Oracle Fusion Middleware Administrator's Guide for Oracle Unified Directory

*  Oracle Fusion Middleware Java API Reference for Oracle Unified Directory

Conventions

The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

ORACLE v


http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

ORACLE

Preface

Convention Meaning

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code

in examples, text that appears on the screen, or text that you enter.

Vi



What's New Iin This Guide

The following topics introduce the new and changed features of Oracle Fusion
Middleware Developing Plug-ins for Unified Directory, and other significant changes
that are described in this guide. This document is the new edition of the formerly titled
Oracle Unified Directory Developer's Guide.

New Features in Release 12¢ (12.2.1.3.0)

This revision contains no new features. Minor updates were made throughout the
guide.

ORACLE vii



Understanding Basic Oracle Unified
Directory Plug-in Concepts

You can decide on the benefits and cost of having a Oracle Unified Directory plug-in
implementation and OUD workflows. OUD plug-ins are used to write LDAP error
codes, on-demand password migration and authentication.

Understanding basic Oracle Unified Directory plug-in is explained in the following
sections:

*  Determining Whether You Should Implement an OUD Plug-In
e OUD Plug-Ins and OUD Workflows
e OUD Plug-In Implementation Points

e About Oracle Unified Directory Plug-Ins

1.1 Determining Whether You Should Implement an OUD
Plug-In

The Oracle Unified Directory (OUD) plug-in API provides the means to extend existing
Directory Server functionality. You may want to develop a plug-in if you have a very
specific directory server requirement that OUD cannot address straight out of the box.

For example, OUD plug-ins have been used successfully to achieve the following:

* LDAP error code and error message writing

*  On-demand password migration

e Authentication using multiple password types

e Operation routing based on criteria in user entry

Some of these plug-ins have played a role in helping Oracle customers to seamlessly
migrate to OUD. These are just examples of how Directory Server functionality can be
enhanced by customizing LDAP operations and programatically manipulating results.

As you analyze the benefits and costs of developing your own OUD plug-in, consider
the following:

e To minimize potential points of failure in your directory deployment, you should
develop your own OUD plug-in only when no existing OUD functionality, nor any
combination of OUD features, can achieve the results you require.

e When upgrading to a later release, you will have to determine whether your
custom plug-in is still relevant in light of new OUD functionality that may evolve
over time. Moreover, you may have to update your plug-in to ensure backward or
forward compatibility with later releases of OUD.

ORACLE 1-1



Chapter 1
OUD Plug-Ins and OUD Workflows

1.2 OUD Plug-Ins and OUD Workflows

An OUD plug-in can be seen as a new type of OUD workflow element. Workflows and
workflow elements are fundamental building blocks within the OUD directory
architecture.

See Understanding Oracle Unified Directory Concepts and Architecture in Oracle
Fusion Middleware Administrator's Guide for Oracle Unified Directory.

An OUD plug-in can be inserted into any OUD workflow element tree. The following
are typical tasks that an OUD plug-in can perform within a workflow element tree:

* Intercept LDAP requests from the previous workflow elements in the chain, and
keep the option to change or extend them.

* Intercept LDAP entries and results from next workflow element in the chain.
» Stack and leverage other workflow elements delivered out of the box with OUD.

* Invoke a plug-in upon receipt of LDAP requests, and after the routing decision is
done by the workflow.

The following figure illustrates a typical OUD workflow containing a Naming Context
workflow and a DN Renaming workflow element. An OUD plug-in is inserted
downstream from these building blocks, and upstream from a remote backend
workflow element.

A — Reqguest —»| Naming __ Request DN Renaming — Request 1
Client Context Workfiow
= Response 2 —| wWorkfliow % Fesponse 2 Element = Response 1

Once you have developed a number of OUD plug-ins, you can form a plug-in chain
within an OUD workflow.

1.3 OUD Plug-In Implementation Points

OUD plug-ins interact with the OUD core server through set of implementation points
such as managing and LDAP operation handling.

Following are the sets of implementation points:

*  Administrative plug-in management: startup, shutdown, status, and configuration
changes

* LDAP operation handling

* The context that is the main interface between the plug-in and the core directory
server as it is used to log requests and to create instances of objects manipulated
by the plug-in API

The implementation points for managing the plug-in are defined in the
oracl e. oud. pl ugi n. ManagedP! ugi n interface:

ORACLE 1-2



Chapter 1
About Oracle Unified Directory Plug-Ins

e TheinitializePl ugin() method is invoked when the plug-in is initialized at server
startup time.

e ThefinalizePlugin() method is invoked when the plug-in is stopped.

e The handl eConfi gur ati onChange() method is invoked whenever the plug-in
configuration is changed. See Making Dynamic OUD Plug-In Configuration
Changes.

Implementation points for intercepting LDAP operations are defined in the
oracl e. oud. pl ugi n. Request Manager interface. See Configuring Internal Operations in
OUD Plug-in API .

1.4 About Oracle Unified Directory Plug-Ins

ORACLE

An Oracle Unified Directory plug-in is an implementation of

oracl e. oud. pl ugi n. ManagedP! ugi n which is formed from the following three Java
interfaces: or acl e. oud. Request Manager , or acl e. oud. pl ugi n. Pl ugi n, and

oracl e. oud. pl ugi n. ManagedPl ugi n.

Java Interface
Description

oracle.oud.RequestManager

Defines a method for each type of operation defined by the LDAP protocol. The
method named handl eAdd is called each time the plug-in is involved in an LDAP add
operation. Similar methods exist for bi nd, conpar e, del et e, modi fy, nodi f yDN, and sear ch
operations. Exceptions exist for the abandon and unbi nd operations; these two types of
request cannot be intercepted.

oracle.oud.plugin.Plugin

Associates a name to the plug-in that is unique per instance. Identifying plug-ins is
helpful when a plug-in routes the received requests to a particular plug-in among
multiple plug-ins.

oracle.oud.plugin.ManagedPlugin

Defines the life cycle of the plug-in. The life cycle begins with the initialization of the
plug-in when the server starts or the plug-in is created. Once initialized, a plug-in is
able to receive configuration changes. When the server is shut down or the plug-in is
removed from the server configuration, the plug-in is finalized.

An OUD plug-in can be followed by one or more plug-ins in a process chain. The most
common case is an OUD plug-in that is followed by only one plug-in. This type of plug-
in receives requests, may perform extra actions such as logging or modifying the
received requests, and then forwards the requests to the next plug-in. When the LDAP
operation returns a response, similar actions can be performed.

A plug-in that has no subsequent plug-ins in the process chain is responsible for
storing the entries manipulated by the LDAP requests. The storage can be local or
remote. In both cases, the plug-in is responsible for assigning the result of the
received LDAP requests.

A plug-in that is followed by multiple plug-ins in the process chain is the most difficult
case. This type of plug-in is used for only complex architectures that include
distribution or load balancing. For example, this type of plug-in might be used for
routing bind requests on dedicated plug-ins, and routing other LDAP operations on
other plug-ins.

1-3



ORACLE

Chapter 1
About Oracle Unified Directory Plug-Ins

The OUD plug-in API provides a default implementation of the

oracl e. oud. pl ugi n. ManagedPl ugi n Java interface that is the abstract class

oracl e. oud. pl ugi n. Abstract Pl ugi n. This class provides a default implementation of a
plug-in that performs no action apart from forwarding the received requests to its next
plug-in the chain of processing. The default implementation assumes that the plug-in
has at least one subsequent plug-in. But you can overwrite appropriate methods to
change the default behavior if necessary.You should make your plug-in
implementation derive from the or acl e. oud. pl ugi n. Abst ract Pl ugi n class. This will
optimize backward compatibility in case the implemented Java interface is changed.

1-4



Building and Deploying an OUD Plug-In

You can build and deploy an Oracle Unified Directory (OUD) plug-in that does not
perform any action.
The following topics explain the building and deploying an OUD Plug-In:

Before You Begin Deploying OUD Plug-in
Deploying a Plug-In to an OUD Instance

2.1 Before You Begin Deploying OUD Plug-in

You need to prepare your development environment such as installing OUD and JDK,
before you deploy an OUD plug-in.

Complete the following tasks:

Install Oracle Unified Directory and create a new instance with fifty generated
entries.

Install the Java Development Kit with the exact same version of the Java Runtime
Environment running in the Oracle Unified Directory instance.

Create a new project for the development of your plug-in using your favorite
integrated development environment (IDE), and reference the JAR file oud- sdk. j ar
that is located in install-dir/oud/ | i b/ oud- sdk. j ar

2.2 Deploying a Plug-In to an OUD Instance

The Oracle Unified Directory (OUD) plug-in API provides the means to extend existing
Directory Server functionality.

ORACLE

Perform the following steps to deploy a plug-in to an OUD instance:

1.

Create a new class that extends the class or acl e. oud. pl ugi n. Abst ract Pl ugi n. This
class will not perform any action but will be part of the processing. For example:

package oracl e. oud. exanpl e;
i mport oracle. oud. pl ugi n. Abst ract Pl ugi n;

/**

* A plug-in that does not performany action.
*|

public class Exanpl ePlugin

extends Abstract Pl ugin

{

}
Build your plug-in project.
The content of the generated plug-in JAR file should contain the following files:

°  META- | NF/ MANI FEST. MF

2-1



ORACLE

Chapter 2
Deploying a Plug-In to an OUD Instance

e oracl e/ oud/ exanpl e/ Exanpl ePl ugi n. cl ass

To ensure that your plug-in will continue to work with subsequent releases of the
OUD plug-in API, you can embed a specific versioning file in the produced JAR
file. The name of the file to embed is pl ugi n. properti es.

Make the following modifications to the pl ugi n. properti es file:

a. To define a target version for all plug-ins contained in the JAR file, add the
following:

plugin.version=11.1.2.1.0

b. To define a target version only for the Exanpl ePl ugi n plug-in, specify the
following:

pl ugi n. Exanpl ePl ugi n. version=11.1.2.1.0

If the pl ugi n. properti es file is missing, then the behavior of the current
implementation of the plug-in API applies.

Restart the Oracle Unified Directory instance for the JAR file changes to take
effect.

a. Stop the OUD instance.

UNIX, Linux

$ cd instance-directory/ QUD bin
$ stop-ds

Windows

C:\> cd instance-directory\ OUD bat
C\> stop-ds

b. Copy the plug-in JAR file into the | i b directory.

UNIX, Linux

# cp plugin.jar lib
Windows

C\> copy plugin.jar lib

c. Restart OUD instance.

UNIX, Linux
# start-ds

Windows
C\> start-ds

Modify the server configuration so that your plug-in is part of the server
processing.

Use the dsconfi g command to declare a plug-in as a workflow element in an OUD
server. You must specify the following information:

e A plug-in name (Exanpl ePl ugi n in the example) that uniquely identifies this
plug-in instance

e The name of the Java class that implements the
oracl e. oud. pl ugi n. ManagedP! ugi n Java interface

2-2



ORACLE

Chapter 2
Deploying a Plug-In to an OUD Instance

*  Whether the plug-in is enabled or disabled
*  The name of the workflow element that is behind the plug-in to be inserted.

A plug-in may have 0, 1, or more next workflow elements depending on the
use case it implements. For example:

# dsconfig create-workflow el ement \
--set enabled:true \
--set plugin-class:oracl e. oud. exanpl e. Exanpl ePl ugin \
--set next-workflow el ements: userRoot \
--type plugin\
--el enent - nane Exanpl ePl ugi n

After creating the plug-in, insert a plug-in workflow element in a workflow. The plug-in
workflow element should appear either as the next element of a workflow, or plug-in
class as the next element of an existing workflow element. The following command
changes the configuration of the workflow user Root 0 to forward LDAP requests to the
previously added example plug-in:

# dsconfig set-workflow prop \
--wor kf | ow nane userRoot 0 \
--set workfl ow el ement: Exanpl ePl ugi n

It is possible to create several instances of the same plug-in implementation as long
each instance has a unique name.

2-3



Using the OUD Plug-In API Reference

OUD Plug-In API is used to handle requests and responses, results and configuring
filters in search requests.

See the Java API Reference for Oracle Unified Directory for detailed information about
Oracle Unified Directory (OUD) Java classes, methods, and related syntax and usage.

This chapter provides general information about using the OUD Plug-In API.

e Overview of OUD Plug-In Configuration

*  Request Handling with OUD Plug-in API

* Handling Responses in OUD Plug-in

*  About Results Handling in OUD Plug-in

»  Configuring Filters in Search Requests

*  Configuring Internal Operations in OUD Plug-in API

*  About OUD Plug-in Exceptions

* Logging and Debugging Exceptions in the OUD Plug-in API

3.1 Overview of OUD Plug-In Configuration

The OUD Plug-In API provides convenient ways to store, retrieve, modify, and validate
the plug-in configuration.

The following sections provide conceptual information and examples for working with
OUD plug-ins:

e About Storing OUD Plug-In Configuration

e Retrieving OUD Plug-In Configuration

e Creating an Automated Parser for Plug-In Properties
e Making Dynamic OUD Plug-In Configuration Changes
e Validating Plug-In Configuration

3.1.1 About Storing OUD Plug-In Configuration

ORACLE

OUD stores plug-in configuration as part of the plug-in configuration entry. The
configuration elements are stored in the OUD config.1dif file as key-value pairs. For
simplicity, you should use this mechanism. However, the OUD plug-in architecture
allows you to use alternative methods, such as an external file, to retrieve the
configuration.

The plug-in configuration is represented as a set of key-value pairs in the default
configuration model. Key and value are treated as raw strings by the OUD server and
the dsconfi g command line tools. You can set key-value pairs using the dsconfi g tool
and the pl ugi n- properties property associated with plug-in workflow elements.

3-1



Chapter 3
Overview of OUD Plug-In Configuration

For more information, see the following examples:

o Example for Adding Plug-in Properties

» Example for Configuring a Custom Property

3.1.1.1 Example for Adding Plug-in Properties

The following example for Adding Plug-in Properties demonstrates how to add plug-
in properties.

dsconfig set-workflow el ement-prop \
--el enent - name Exanpl ePl ugi n \
--add plugin-properties:custonProperty=l ocal DB1 \
--hostname host1 \
--port 4444\
--trustStorePath install-dir/OUD config/adm n-truststore \
--bi ndDN cn=Di rectory\ Manager \
--bi ndPasswor dFi | @ ****x* |\
- - no- pr onpt

3.1.1.2 Example for Configuring a Custom Property

In the following example for Configuring a Custom Property the plug-in
Exanpl ePl ugi n is configured with a custom property named cust onProperty. This
property is specified as a value of the generic pl ugi n- properti es parameter.

$dsconfig get-workflow el ement-prop --el ement-nane Exanpl ePl ugin

Property : Val ue(s)

enabled : true

next - wor kf | ow el ements : | ocal DBl

pl ugi n-class : oracle. oud. pl ugi n. exanpl e. Exanpl ePl ugi n
pl ugi n-properties : custonProperty=local DBl

3.1.2 Retrieving OUD Plug-In Configuration

ORACLE

The OUD plug-in configuration is available from the PI ugi nConfi gur ati on instance
provided during plug-in initialization.The OUD plug-in configuration can be accessed
by overriding the i ni tial i zePl ugi n method.

The following example for Overriding initializePlugin to access the OUD plug-in
configuration shows overriding the i ni ti al i zePl ugi n method.

@verride

public void initializePl ugin(Pl uginConfiguration configuration, Pl uginContext
context) throws PluginException

{

/1 Plugin configuration as a Set of properties
Set<String> properties = configuration.getProperties();

String aParaneter=null;
for(String value: properties)

{
if ( value.startsWth("custonProperty=") )

{

3-2



Chapter 3
Overview of OUD Plug-In Configuration

aParaneter = val ue. substring(val ue.indexCf("=")+1);
br eak;

}
}

/| Expected property not found
if ( aParameter == null )

{

throw new Pl ugi nExcepti on
(context. get TypeBui | der (). newMessage(" cust onProperty missing in
configuration."));

}

/1 Either use the configuration right now or make it persistent using class
menbers.

}

In this example, the configuration is retrieved from the raw configuration object as a
set of properties. Once the properties are read, they can be used immediately and/or
stored for later use in members of the Java class that implements the plug-in.

3.1.3 Creating an Automated Parser for Plug-In Properties

You can create an automated parser for plug-In properties as an alternative method to
retrieve plug-in configuration. Follow these steps to create an automated parser for the
plug-in properties.

To create an automated parser for the plug-in properties:

1. Create a Java interface that extends the class
oracl e. oud. pl ugi n. Pl ugi nConfi gurati on.

2. For each property that you expect to be retrieved, add a getter in the form
get <proper t y- name>() . The property-name must match the key of the key-value pair
defined in the plugin properties. The case of the name is ignored.

3. The returned method type must be of a class that provides a static method
val uef (String) - java.lang. String.val uedf (String) matches this assertion.

The Java interface to parse the plug-in property cust onProperty looks like the
following example for Parsing a Plug-in Property.

public interface PropertyConfiguration
extends oracl e. oud. pl ugi n. Pl ugi nConfi guration

{

/**

* Return the value associated to the key 'custonProperty'.

*

* @eturn the value associated to the key 'custonProperty'.
*|
String get Cust onProperty();
}

Then the initialization of the plugin can be rewritten as in the following example:

@wverride
public void initializePlugin(final PluginConfiguration configuration,
final PluginContext context)
throws Pl ugi nException

ORACLE 33



Chapter 3
Overview of OUD Plug-In Configuration

{

super.initializePlugin(configuration, context);

PropertyConfiguration propertyConfiguration =
this. get Configuration(PropertyConfiguration.class);

String custonProperty = propertyConfiguration. get Cust onProperty();
/'l Perform check. ..

}

3.1.4 Making Dynamic OUD Plug-In Configuration Changes

Changes to the plug-in configuration can be caught dynamically by overriding the
method handl eConf i gur at i onChange() .

The new configuration can be retrieved as shown in the following example for
Retrieving Changed Plug-In Configuration.

@verride
public voi d handl eConfi gurationChange(final Plugi nConfiguration configuration)
throws Pl ugi nException

{

/1 The new configuration is stored in the configuration object
/] parse again the plugin configuration

String aParaneter;

Set<String> properties = configuration.getProperties();

for(String value: properties)

{
if ( value.startsWth("custonProperty=") )
{
aParaneter = val ue. substring(val ue.indexCf("=")+1);
br eak;
1
}

}

The handl eConfi gurati onChange() method is invoked only when the plug-in properties
managed by the OUD server are updated. If you decide to store the configuration in an
external file, changes to the file content won't be detected dynamically by the
mechanism described here.

3.1.5 Validating Plug-In Configuration

ORACLE

The dsconfi g tool does not make any syntaxtical cases about the custom plug-in
configuration properties, so the plug-in must validate the configuration at startup or
when the configuration is modified dynamically.

The plug-in code should raise a Pl ugi nExcept i on when it cannot recover from an invalid
configuration.

The plug-in is automatically disabled when a Pl ugi nExcepti on is raised during plug-in
initialization. Invalid dynamic configuration changes can be rejected by raising a
Pl ugi nExcepti on in the handl eConfi gur ati onChange() method.

3-4



Chapter 3
Request Handling with OUD Plug-in API

3.2 Request Handling with OUD Plug-in AP

With OUD plug-in API, you will be able to process OUD server LDAP requests,
modifying search requests, forwarding requests, and returning requests.

The topics in this section include:

e Overview of LDAP Request Handling with OUD Plug-in API
e Modifying OUD Search Requests with Plug-in API

e Modifying Search Requests with Wrapper Object

e Forwarding Requests with OUD Plug-in API

e Returning Results with OUD Plug-in API

3.2.1 Overview of LDAP Request Handling with OUD Plug-in API

ORACLE

A plug-in can intercept any LDAP requests processed by the OUD server by
implementing the corresponding callbacks defined by the or acl e. oud. Request Manager
interface. Each type of LDAP operation corresponds to a handler method. For
example, add operations are managed by the handl eAdd() method and so on.

Received LDAP requests are processed by the server. Thus modifying the properties
of the requests can impact the server regarding performance, integrity, and security.

Each property contained in LDAP requests can be retrieved by getters, and modified
by setters.

Each handler takes three parameters that are tied together:

* The LDAP request that contains all request properties as provided by the workflow
element previous to this plug-in

* The Result handler that is the reference to use to return to the previous workflow
element, the result of the LDAP request once processed

* A context that is a toolbox reference that provides access to various elements of
the server such as logging subsystem, creation of plug-in API objects, client
connection, abandon of request, and so forth

The bi nd request takes a fourth parameter that is the version of the LDAP protocol and
that is provided for convenience only.The abandon and unbi nd methods cannot be
intercepted. The abandon of a request can be detected using the request's context. The
unbi nd operation means that the client connection will disconnect from the server.

The contract that must respect each plug-in in the process chain is to return the LDAP
request in the exact state as it was received. This applies to all implementations of
request handler. This is the most important thing that the plug-in does. This is
important because although a request already has a result, the request may not be
complete.

Consider this example: a plug-in is part of the processing that is performed after a
load-balancer. Modifying the requests and giving back the modified request, instead of
giving back the request in the state it was received, may make the load-balancer
function improperly. Indeed, the request will be modified on the first route, and
potentially replayed modified on the second route if the first route fails.

3-5



Chapter 3
Request Handling with OUD Plug-in API

In summary, keep in mind that requests must be submitted in the exact same form as
they are received.

3.2.2 Modifying OUD Search Requests with Plug-in API

ORACLE

OUD Search Requests are modified to change the scope of search request with Plug-
in API .

The following example modifies the scope of a search request. The search scope is
changed to BASE_OBJECT, and then restored when the search request has been
processed.

1. To intercept the search requests, override the handl eSearch(...) method in the
example plug-in.

@verride
public void handl eSearch(final RequestContext requestContext,
final SearchRequest request,
final SearchResul tHandl er resultHandler)
throws UnsupportedQperati onException {

Systemout. println("plug-in: search received " + request);

/1 Store the received search scope.
Sear chScope scopeReceived = request. get Scope();

/1 Set a base search scope for all search requests
request . set Scope( Sear chScope. BASE_OBJECT) ;

Systemout. println("plug-in: search nodified " + request);

/1 Forward the request to the next plug-in.
this. get Confi guration()
. get Fi rst Next Pl ugi n()
. handl eSear ch(request Cont ext,
request,
resul t Handl er);

/] Restore the original value to give the request back as received.
request . set Scope( scopeRecei ved) ;

}

2. Restart the Oracle Unified Directory instance for the JAR file changes to take
effect.

a. Stop the OUD instance.

UNIX, Linux

$ cd instance-directory/ QUD bin
$ stop-ds

Windows

C:\> cd instance-directory\ OUD bat
C\> stop-ds

b. Copy the plug-in JAR file into the | i b directory.

3-6



Chapter 3
Request Handling with OUD Plug-in API

UNIX, Linux
# cp plugin.jar lib

Windows
C\> copy plugin.jar lib

c. Restart OUD instance.

UNIX, Linux
# start-ds

Windows
C\> start-ds

3. Run the following command:

UNIX, Linux

$ | dapsearch --hostnane |ocal host --port 1389 --bindDN "cn=directory manager" --
bi ndPasswor dFi | e /tnp/ password --searchScope sub --baseDN "ui d=user.
1, ou=peopl e, dc=exanpl e, dc=con "(obj ectcl ass=*)"

Windows

C:\ Idapsearch --hostnane |ocal host --port 1389 --bindDN "cn=directory nanager"
--bi ndPasswor dFil e C:\tnp\password --searchScope sub --baseDN "ui d=user.
1, ou=peopl e, dc=exanpl e, dc=conf "(obj ectcl ass=*)"

4. For each command, the log file (instance-dir/OUD/ | ogs/ server. out on UNIX or
Linux, instance-dir\QuD\ | ogs\ server. out on Windows) should contain information
similar to this:

plug-in: search received SearchRequest (nane=ui d=user.

1, ou=peopl e, dc=exanpl e, dc=com scope=sub, dereferenceAl iasesPolicy=never,
sizeLimt=0, tineLimt=0, typesOnly=false, filter=(objectd ass=*),
attributes=[], controls=[])

plug-in: search nodified SearchRequest (nane=ui d=user.

1, ou=peopl e, dc=exanpl e, dc=com scope=base, dereferenceAl iasesPolicy=never,
sizeLimt=0, tineLimt=0, typesOnly=false, filter=(objectd ass=*),
attributes=[], controls=[])

" Note:
The request is passed to the next plug-in by calling:

this. get Configuration().getFirstNextPlugin().handl eSearch(...)

This is exactly what is done by the default implementation of the
Abst ract Pl ugi n. The same thing can be achieved by calling the following:

super . handl eSearch(. . .)

3.2.3 Modifying Search Requests with Wrapper Object

An alternative way of modifying requests is to wrap the original request in a special
object named wrapper. A request wrapper is an implementation that offers the same

ORACLE .



Chapter 3
Request Handling with OUD Plug-in API

exact Java interface as the request that it wraps, and then forwards all calls performed
on methods to the wrapped request.

To modify the value of the properties, override the appropriate method. The following
example demonstrates how to change the scope of search requests.

@verride
public void handl eSearch(final RequestContext requestContext,
final SearchRequest request,
final SearchResul tHandl er resultHandler)
throws UnsupportedQOperati onException {

Sear chRequest newRequest = new Sear chRequest W apper (request)

{
@verride
publ i c SearchScope get Scope()

{

/1 Change the scope of this request.
return SearchScope. BASE_OBJECT;

}
b

/1 Forward the request to the next plug-in.
this. get Configuration()
. get Fi rst Next Pl ugi n()
. handl eSear ch(request Cont ext
newRequest,
resul t Handl er);

}

This alternative has the advantage of letting the wrapped request remain untouched.
Thus, there is no need to restore the scope property as this one was not changed.

However, if you use this alternative, you may encounter problems. The wrapped
request does not know about its outbound wrapper. If processing is performed at the
level of the wrapped request, and this processing involves properties that are
redefined at the level of the wrapper, then those properties will be ignored. The
wrapped request only has access to its own properties.

A wrapper is provided for all types of requests in the package oracl e. oud. requests.

3.2.4 Forwarding Requests with OUD Plug-in API

In most situations, plug-ins intercept requests, do some processing, then forward the
request to the next workflow in the chain. In the vast majority of case, there is exactly
one next workflow element. In this case, the request can be passed to the next
element by invoking the corresponding method of the super instance.

In the case of a leaf plug-in, all request handlers implemented by
oracl e. oud. Abst ract Pl ugi n must be overridden, and a result must be returned as
described in the next section.

In some specific cases, a plug-in may be followed by several workflow elements. The
plug-in implementation must determine which workflow element the request must be

forwarded to. The list of next workflow elements can be retrieved from the

Pl ugi nConfi gurati on instance through the get Next Pl ugi ns() method. Then the request
is forwarded to the appropriate workflow element by directly invoking the appropriate

method as shown in the following example.

ORACLE 3-8



Chapter 3
Request Handling with OUD Plug-in API

@verride
public void handl eBi nd(final RequestContext requestContext,
final int version,
final BindRequest request,
Resul t Handl er resul t Handl er)
t hrows Unsupport edQperati onException

/1 Get the original bind DN fromthe bind request
DN original Dn = request. get Nane();

/1 Transformthe bind DN according to customal gorithm
DN newDn = transfornDN(ori gi nal Dn);

Bi ndRequest W apper wrapper = new Bi ndRequest W apper (request);

/1 Update the wapper object
wr apper . set Name( newDn) ;

/] Retrieve the list of next plugins and figure out which one to use
Li st <Pl ugi n> next Pl ugins = this.getConfiguration().getNextPlugins();

/] Pass the request to the appropriate plugin (assune the first one here)
next Pl ugi ns. get (0) . handl eBi nd(request Cont ext,

Version,

wr apper,

resul t Handl er);

}

3.2.5 Returning Results with OUD Plug-in API

ORACLE

In some cases, a plug-in may intercept a request and return results by themselves
instead of forwarding the request to the next workflow element of the chain.

A result object instance can be created using the newResul t () method of the

oracl e. oud. pl ugi n. Pl ugi nCont ext . TypeBui | der class. Then this result can be returned to
the plug-in caller by invoking the handl eResul t () or handl eErrorResul t () method from
the resul t Handl er object passed as an argument of the handler methods. The following
example illustrates how to intercept bi nd requests and return an Invalid Credential s
error.

@verride
public void handl eBi nd(final RequestContext requestContext,
final int version,
final BindRequest request,
Resul t Handl er resul t Handl er)
t hrows Unsupport edOperati onException

/1 Get the original bind DN fromthe bind request

DN original Dn = request.get Nane();

/1 Apply customlogic to deci de whether access is granted or not
/1 Assume invalid credentials

/] Create a Result object
Result error =

3-9



Chapter 3
Handling Responses in OUD Plug-in

get Pl ugi nCont ext (). get TypeBui | der (). newResul t (Resul t Code. | NVALI D_CREDENTI ALS) ;

I/ Return it to the plugin caller
resul t Handl er. handl eErrorResul t (error);

}

Similarly, LDAP entries can be created using the newSear chResul t Ent ry() method of the
oracl e. oud. pl ugi n. Pl ugi nCont ext . TypeBui | der class. Then this entry can be returned to
the plug-in caller by invoking the handl eSear chResul t Entry() or handl eError Resul t ()
method from the sear chResul t Handl er object passed as an argument of the

handl| eSear ch() method.

3.3 Handling Responses in OUD Plug-in

Plug-ins that need to intercept responses must explicitly register their interest by
providing their own Resul t Handl er instance before submitting the request to the next
workflow element. The handl eResul t () method of the Resul t Handl er is invoked upon
successful completion of the operation with the corresponding Resul t instance passed
in argument. Conversely, the handl eErrorResul t () of the Resul t Handl er is invoked when
an error occurred.

The custom Resul t Handl er implementation can examine the result and modify it, but it
is responsible for invoking the appropriate method (handl eResul t () or

handl eError Resul t ()) of the original Error Handl er to pass the result to the calling
workflow element. For simplicity, you should implement custom Resul t Handl er as a
specialization of the Def aul t Resul t Handl er obj ect cl ass. By default, results and errors
are passed to the workflow element upstream in the chain, and only the appropriate
methods need to be overridden by the plug-in implementation.

Similarly, Sear chResul t Handl er must be used for search operations, to intercept both
final search result and search entries. The handl eEntry() method is invoked every time
an LDAP entry is returned by the next workflow elements. The custom

Sear chResul t Handl er implementation must invoke the handl eEnt ry() method of the
original Sear chResul t Handl er to send the entry up the chain.

3.3.1 Example for Intercepting bind failure

ORACLE

OUD plug-in intercepts responses and bind failure is one such type of response.
In the following example, the plug-in intercepts bind failure only.

@verride
public void handl eBi nd(final RequestContext requestContext,
final int version,
final BindRequest request,
Resul t Handl er resul t Handl er)
throws UnsupportedQperati onException

/] Create a new ResultHandler to intercept bind result
Cust onResul t Handl er cust onBi ndHandl er = new Cust onResul t Handl er (resul t Handl er) ;

/1 Pass the request to the next plug-in with the custom Resul t Handl er
super . handl eBi nd( r equest Cont ext

ver sion,

request,

3-10



Chapter 3
Handling Responses in OUD Plug-in

cust onBi ndHandl er) ;
}
/1 inplenentation of a custom ResultHandler to intercept errors

private class CustonResul t Handl er
extends Defaul t Resul t Handl er

{
public CustonResul t Handl er (Resul t Handl er resul t Handl er)
{
super (resul t Handl er);
}
@wverride
public void handl eErrorResul t (Result error)
{
/1 Invoked when Bind fails
/'l Exam ne the result and inplement some |ogic
/] Pass the result up the chain
super. handl eErrorResul t (error);
}
}

3.3.2 Example for Intercepting Search Entries and Final Search

Results

ORACLE

OUD plug-in intercepts responses and intercepting search entries and the final search
result is one such type of response.

The following example intercepts search entries and the final search results.

@verride
public void handl eSearch(final RequestContext requestContext,
final SearchRequest request,
Sear chResul t Handl er resul t Handl er)
throws Unsupport edCperati onException

{

/] Create a new SearchResul tHandl er to intercept search entries
/1 and result
Cust onBear chResul t Handl er cust onHandl er = new

Cust onSear chResul t Handl er (resul t Handl er) ;

/1 Pass the request to the next plug-in with the custom Resul t Handl er
super . handl eSear ch(request Cont ext,

request,

cust onHandl er) ;

}

/1 inplenentation of a custom SearchResultHandl er to intercept entries and errors
private class CustonSearchResul t Handl er
extends Defaul t Sear chResul t Handl er

{

3-11



Chapter 3
About Results Handling in OUD Plug-in

publ i c CustonBear chResul t Handl er ( Sear chResul t Handl er resul t Handl er)
{
super (resul t Handl er);

}

@werride
public void handl eErrorResult (Result error)

Il 1nvoked when Search fails

Il Examine the result and inplement sonme |ogic
/1 Pass the result up the chain

super. handl eErrorResul t (error);

}

@verride
public void handl eResul t (Result result)

/1 1nvoked when Search conplete

Il Examine the result and inplement sonme |ogic
/1 Pass the result up the chain

super. handl eResul t (resul t);

}

@wverride
public bool ean handl eEntry(SearchResul tEntry entry)

Il 1nvoked for every search entry to be returned
/1 Examine the result and inplement sonme |ogic
/| Pass the entry up the chain

return super. handl eEntry(entry);

}

}

3.4 About Results Handling in OUD Plug-in

Request results are returned using objects called a result handler. All LDAP operations
share the same kind of result except the search operation. The search operation has
additional results that are entries and references. An LDAP operation is composed of a
pair: a request and a result-handler.

The request is used to access the properties of the request. The result handler is used
to post the result of the request that has been processed to the previous plug-in.

The topics in this section include:

* Ignoring Search Results in OUD Plug-in
* Intercepting Search Failures in OUD Plug-in

»  Counting Entries Returned by Search Requests

3.4.1 Ignoring Search Results in OUD Plug-in

ORACLE

You have to ignore search results in situations, where the plug-in itself is skipped and
the results returned by the next plug-in will be passed directly from the next plug-in to
the previous plug-in.

In the following example, the result handler provided by the previous plug-in is passed
directly to the next plug-in. The consequence is that the results returned by the next

3-12



Chapter 3
About Results Handling in OUD Plug-in

plug-in will be passed directly from the next plug-in to the previous plug-in, skipping
the plug-in itself. The only way to detect that the request was processed is by returning
from the handl er Search(...) call.

@verride
public void handl eSearch(final RequestContext requestContext,
final SearchRequest request,
final SearchResul tHandl er resultHandler)
t hrows Unsupport edQperati onException

/1 Pass the resul tHandl er reference received fromthe previous plug-in to
/1 the next plug-in. This inplies that the next plug-in wll post the
Il result of the search request directly to the previous plug-in.
this. get Confi guration()
. get Fi rst Next Pl ugi n()
. handl eSear ch(request Cont ext,
request,
resul t Handl er);

/'l The search request was processed by next plug-in.

}

3.4.2 Intercepting Search Failures in OUD Plug-in

To intercept results returned by a subsequent plug-in, the plug-in must provide its own
result handler.

A result handler defines two methods:

e handl eResul t (Resul t) called by the next plug-in when the request was successful

* handl eErrorResul t (Resul t) called by the next plug-in when the request was
unsuccessful

A search result handler defines two additional methods. These methods must return
Tr ue to specify that the next plug-in can still return other entries or references, or Fal se
to indicate to the next plug-in that no more entries or references are expected. For
example, no more entries or references are expected when the size limit reached.

e handl eEnt ry(SearchResul t Entry) returned by the next plug-in when an entry is
returned

* handl eRef erence(DN, SearchResul t Ref erence) returned by the next plug-in when a
reference is returned

The OUD plug-in API provides a default implementation named

oracl e. oud. pl ugi n. Def aul t Resul t Handl er for implementing result handlers. This Java
class wraps a result handler (in most cases the result handler provided by the previous
plug-in) and by default forwards the received result to the wrapped result handler. To
capture a result, a plug-in must override the kind of result it is interested in. A similar
default implementation exists for search result handler:

oracl e. oud. pl ugi n. Def aul t Sear chResul t Handl er .

The following example shows how to log the result in case the request is unsuccessful.

public class EchoErrorResul t Handl er
ext ends Def aul t Resul t Handl er
{

publi ¢ EchoErrorResul t Handl er (Resul t Handl er resul t Handl er)
{

super (resul t Handl er) ;

ORACLE 3-13



Chapter 3
About Results Handling in OUD Plug-in

}

@wverride
public void handl eErrorResult (Result error)

{

/1 Echo the result of the request.
Systemout.printIn("plug-in: error result " + error);

Il Let the default behavior forward the result to the wapped result
/1 handl er
super. handl eErrorResul t (error);

The following example illustrates how to make search operations print out the results
in case the request is not successful.

@verride
public void handl eSearch(final RequestContext requestContext,
final SearchRequest request,
final SearchResul t Handl er resul t Handl er)
throws UnsupportedQperati onException

{

/1 The result handler passed to the next plug-in will echo the result in
/'l case the request was not successful.
t his. get Configuration()
. get Fi rst Next Pl ugi n()
. handl eSear ch(request Cont ext,
request,
new EchoErrorResul t Handl er (resul t Handl er));

/'l The search request was processed by next plug-in.

}

Notice the following:

e The result handler is not associated to the request. It is up to the developer to
maintain the association by keeping a reference to the request inside the
implementation of the result handler.

e A new instance of the custom result handler is required for each instance of
received request.

3.4.2.1 Logging the Failures of Search Requests

To log the failures of search requests:

1. Change the example plug-in as shown above.

2. Restart the Oracle Unified Directory instance for the JAR file changes to take
effect.

a. Stop the OUD instance.

UNIX, Linux

$ cd instance-directory/ QUD bin
$ stop-ds

ORACLE 3-14



Chapter 3
About Results Handling in OUD Plug-in

Windows

C:\> cd instance-directory\ QUD bat
C\> stop-ds

b. Copy the plug-in JAR file into the |'i b directory.

UNIX, Linux
# cp plugin.jar lib

Windows
C\> copy plugin.jar lib

c. Restart OUD instance.

UNIX, Linux
# start-ds

Windows
C\> start-ds

3. Run the following command to search for a user that does not exist.

UNIX, Linux

| dapsearch --hostname |ocal host --port 1389 --bindDN "cn=directory manager" --
bi ndPasswor dFi | e /tnp/ password --searchScope sub --baseDN

"ui d=user . unknown, ou=peopl e, dc=exanpl e, dc=conf "(obj ectcl ass=*)"

the command di spl ays

SEARCH operation failed

Result Code: 32 (No Such Entry)

Additional Information: The search base entry

" ui d=user . unknown, ou=peopl e, dc=exanpl e, dc=com does not exi st

Mat ched DN:  ou=peopl e, dc=exanpl e, dc=com

Windows

| dapsearch --hostnane | ocal host --port 1389 --bindDN "cn=directory nanager" --
bi ndPasswordFil e C:\tnp\password --searchScope sub --baseDN

"ui d=user . unknown, ou=peopl e, dc=exanpl e, dc=conf "(obj ectclass=*)"

the command di spl ays

SEARCH operation failed

Result Code: 32 (No Such Entry)

Addi tional Information: The search base entry

" ui d=user. unknown, ou=peopl e, dc=exanpl e, dc=com does not exi st

Mat ched DN:  ou=peopl e, dc=exanpl e, dc=com

For each command, the log file (instance-dir/OUD | ogs/ server. out on UNIX, Linux
or instance-dinOUD\ | ogs\ server. out on Windows) should contain information
similar to the following:

plug-in: error result Result(resultCode="No Such Entry",

mat chedDN="ou=peopl e, dc=exanpl e, dc=conf, di agnosti cMessage="The search base
entry 'ui d=user. unknown, ou=peopl e, dc=exanpl e, dc=coni does not exist",
referral s=null, controls=[])

ORACLE 3-15



Chapter 3
About Results Handling in OUD Plug-in

3.4.3 Counting Entries Returned by Search Requests

Request results are returned using objects called a result handler. You can count the
number of entries by Ent ryCount er Resul t Handl er .

ORACLE

The following example counts the number of entries returned by search requests, and
then logs it. The Ent ryCount er Resul t Handl er increments a counter each time the
handl eEntry(...) method is called.

public class EntryCounterResul t Handl er

{

}

ext ends Def aul t Sear chResul t Handl er

/1 The nunber of search result entries returned by this search result
/1 handl er.
private int entriesCount;

public EntryCounterResul t Handl er ( Sear chResul t Handl er resul t Handl er)
{

super (resul t Handl er);

}

@verride
public bool ean handl eEntry(SearchResul tEntry entry)

{

this.entriesCount ++;

return super. handl eEntry(entry);

1
public int getEntriesCount()
{

return this.entriesCount;
1

The search request handler is modified to pass a result handler that counts returned
entries for each search request processed. Once the request processed by the next
plug-in, the number of returned entries is logged. See the following example.

@verride
public void handl eSearch(final RequestContext requestContext,

{

final SearchRequest request,
final SearchResul tHandl er resultHandler)
t hrows Unsupport edOperati onException

Ent ryCount er Resul t Handl er counter =
new Ent ryCount er Resul t Handl er (resul t Handl er) ;

/1 The result handler passed to the next plug-in will count the nunber of
/] entries returned by the next plug-in.
this. get Configuration()
. get Fi rst Next Pl ugi n()
. handl eSear ch(request Cont ext,
request,
counter);

/1 The search request was processed by next plug-in.

Systemout. printIn(String.format("plug-in: request % returned %l entries",
request,

3-16



Chapter 3
About Results Handling in OUD Plug-in

counter.getEntriesCount()));

3.4.3.1 Logging the Number of Returned Entries of Search Requests

ORACLE

To log the number of returned entries of search requests:

1.
2.

Change the example plug-in as shown in the example shown above.

Restart the Oracle Unified Directory instance for the JAR file changes to take
effect.

a. Stop the OUD instance.

UNIX, Linux

$ cd instance-directory/ QUD bin
$ stop-ds

Windows

C:\> cd instance-directory\ QUD bat
C.\> stop-ds

b. Copy the plug-in JAR file into the |'i b directory.

UNIX, Linux
# cp plugin.jar lib

Windows
C\> copy plugin.jar lib

c. Restart OUD instance.

UNIX, Linux
# start-ds

Windows
C\> start-ds

Run the following command to display all users registered:

UNIX, Linux

| dapsearch --hostnane |ocal host --port 1389 --bindDN "cn=directory nanager" --
bi ndPasswor dFi | e /tnp/ password --searchScope sub --baseDN
"ou=peopl e, dc=exanpl e, dc=cont "(obj ectcl ass=*)"

Windows

| dapsearch --hostnane | ocal host --port 1389 --bindDN "cn=directory nanager" --
bi ndPasswor dFil e C:\tnp\password --searchScope sub --baseDN
"ou=peopl e, dc=exanpl e, dc=con "(obj ectcl ass=*)"

For each command, the log file (instance-dir/ QU | ogs/ server. out on UNIX or Linux,
instance-din OUD\ | ogs\ server. out on Windows) should contain information similar to
this:

plug-in: request SearchRequest (nane=ou=peopl e, dc=exanpl e, dc=com scope=sub,
deref erenceAl i asesPol i cy=never, sizeLimt=0, tineLinmt=0, typesOnly=false,
filter=(objectCass=*), attributes=[], controls=[]) returned 51 entries

3-17



Chapter 3
Configuring Filters in Search Requests

the nunmber of returned entries corresponds to the 50 users plus the entry
ou=peopl e, dc=exanpl e, dc=com

3.5 Configuring Filters in Search Requests

Sometimes applications need to interact with filters contained in search requests. This
interaction is specified by a mechanism based on the visitor design pattern and
defined by the Java interface oracl e. oud. t ypes. Fil ter Visitor<R P>.

The topics in this section include:

e About Filter Processing in Search Requests
*  Example of Implementation of the Fil terVisitor

e Example for Verifying and Logging the Presence of obj ect cl ass=* in a Search
Request

*  Verifying and Logging Presence of obj ect cl ass=* in a Search Request

3.5.1 About Filter Processing in Search Requests

The LDAP protocol specifies ten types of filters: and, or, not, equal i t yMat ch, substri ngs,
great er O Equal , | essOr Equal , present, appr oxMat ch and ext ensi bl eMat ch.

The filter visitor defines a handler for each type of filter: vi si t AndFi I ter(...),
visitOFilter(...) and so on.

When a filter is parsed, the types of filters that compose the filter to parse are
identified. The visitor methods associated to the identified types are called in
sequence.

The Fil terVisitor<R, P> takes two parameters:

* <R is the returned type of each visitor handler.

* <P>is a parameter that can be provided to each visitor handler.

3.5.2 Example of Implementation of the ritervisitor

ORACLE

FilterVisitor checks the presence of an attribute in the filter to parse.

The following example provides an implementation of the Fil ter Vi si tor . An attribute is
present in a filter if it is associated to the value * such as obj ect ¢l ass=*. In that case,
<R> corresponds to the result of the evaluation. <R> is defined as a Boolean that has
the value TRUE if the attribute is present in the filter to parse, and FALSE if the attribute is
absent. <P> is the parameter and corresponds to a String that defines which attribute
must to be checked.If the filter to parse is obj ect ¢l ass=*, then calling the visitor with
the parameter obj ect cl ass will return TRUE. Other values will return FALSE.

Visitors that are composed of sub-filters (and, or and not ) forward the check by visiting
all the sub-filters they are composed of.

In the following example, for illustration purposes, the relevant visitors also log some
information.

private class PresenceOFilterVisitor
i mpl ements FilterVisitor<Bool ean,
String>

3-18



Chapter 3
Configuring Filters in Search Requests

{
@verride
public Bool ean visitAndFilter(final String presenceNane,
final List<Filter> subFilters)

{
Systemout.printIn("plug-in: visit ANDwith " + subFilters);

bool ean result = fal se;

Il lterate through all sub filters with this filter visitor.
for(Filter subFilter: subFilters)
{

result = subFilter.accept(this, presenceNane);

if (result)
{
break;
}
}

return result ? Bool ean. TRUE : Bool ean. FALSE;

}

@verride
public Bool ean visitApproxMatchFilter(final String presenceNane,
final String attributeDescription,
final ByteString assertionVal ue)
{
return Bool ean. FALSE;

}

@verride
public Bool ean visitEqualityMatchFilter(final String presenceNane,
final String attributeDescription,
final ByteString assertionVal ue)
{
Systemout.printin("plug-in: visit EQUAL with " + attributeDescription + "=" +
assertionVal ue);

return Bool ean. FALSE;
}

@verride

public Bool ean visitExtensibl eMatchFilter(final String presenceNane,
final String matchingRule,
final String attributeDescription,
final ByteString assertionVal ue,
final bool ean dnAttributes)

{

return Bool ean. FALSE;

}

@verride

public Bool ean visitGeaterOEqual Filter(final String presenceNane,
final String attributeDescription,
final ByteString assertionVal ue)

{
return Bool ean. FALSE;
}

@verride

ORACLE 3-19



ORACLE

Chapter 3
Configuring Filters in Search Requests

public Bool ean visitLessOrEqual Filter(final String presenceNane,
final String attributeDescription,
final ByteString assertionVal ue)

{
return Bool ean. FALSE;

}

@verride

public Boolean visitNotFilter(final String presenceNane,
final Filter subFilter)

{

Systemout.printin("plug-in: visit NOT with " + subFilter);

Il Visit the associated filter with this filter visitor.
return subFilter.accept(this, presenceNane);

}

@verride

public Boolean visitOrFilter(final String presenceNane,
final List<Filter> subFilters)

{

Systemout.printin("plug-in: visit ORwith " + subFilters);
bool ean result = fal se;

Il lterate through all sub filters with this filter visitor.
for(Filter subFilter: subFilters)
{

result = subFilter.accept(this, presenceNane);

if (result)
{
break;
}
1

return result ? Bool ean. TRUE : Bool ean. FALSE;

}

@verride
public Boolean visitPresentFilter(final String presenceNane,
final String attributeDescription)

)

{
Systemout.printIn("plug-in: visit Presence with '" + attributeDescription +
return presenceNane. equal sl gnoreCase(attributeDescription) ? Bool ean. TRUE
Bool ean. FALSE;
}
@verride

public Bool ean visitSubstringsFilter(final String presenceNane,
final String attributeDescription,
final ByteString initialSubstring,
final List<ByteString> anySubstrings,
final ByteString final Substring)
{
return Bool ean. FALSE;

}
@verride

3-20



Chapter 3
Configuring Filters in Search Requests

publ i c Bool ean visitUnrecogni zedFilter(final String presenceNang,
final byte filterTag,
final ByteString filterBytes)
{
return Bool ean. FALSE;

}

}

3.5.3 Example for Verifying and Logging the Presence of o ectciass= IN
a Search Request

You can verify and log obj ect cl ass=* in a search request filter processed by the plug-
in.

The following example verifies and logs the presence of obj ect cl ass=* in a search
request filter.

@verride

public void handl eSearch(final RequestContext requestContext,
final SearchRequest request,
final SearchResul tHandl er resultHandler)
throws UnsupportedCperati onException

{

Filter filter = request.getFilter();

Systemout. printIn("plug-in: visitor returned "
+ filter.accept(new PresenceOFFilterVisitor(),
"obj ectclass"));

/1 Pass the resul tHandl er reference received fromthe previous plug-in to
/1 the next plug-in. This inplies that the next plug-in wll post the
Il result of the search request directly to the previous plug-in.
super . handl eSear ch(request Cont ext,
request,
resul t Handl er) ;

/'l The search request was processed by next plug-in.

}

3.5.4 Verifying and Logging Presence of oy ectciass=+ IN @ Search

Request

ORACLE

You can verify and log the presence of obj ect cl ass=* in a search request filter
processed by the plug-in.

1.

Change the example plug-in as shown in Example for Verifying and Logging
the Presence of obj ect cl ass=* in a Search Request.

Restart the Oracle Unified Directory instance for the JAR file changes to take
effect.

a. Stop the OUD instance.

UNIX, Linux

$ cd instance-directory/ QUD bin
$ stop-ds

3-21



plugin: visit ANDwth [(](!(uid=user.1)))

Chapter 3
Configuring Internal Operations in OUD Plug-in API

Windows

C:\> cd instance-directory\ QUD bat
C\> stop-ds

b. Copy the plug-in JAR file into the |'i b directory.

UNIX, Linux
# cp plugin.jar lib

Windows
C\> copy plugin.jar lib

c. Restart OUD instance.

UNIX, Linux
# start-ds

Windows
C\> start-ds

Run the following command to display all users registered:

UNIX, Linux

| dapsearch --hostnane | ocal host --port 1389 --bindDN "cn=directory nanager" --
bi ndPasswor dFi | e /tnp/ password --searchScope sub --baseDN
"ou=peopl e, dc=exanpl e, dc=con "(obj ectcl ass=*)"

Windows

| dapsearch --hostnane | ocal host --port 1389 --bindDN "cn=directory nanager" --
bi ndPasswor dFil e C:\tnp\password --searchScope sub --baseDN
"ou=peopl e, dc=exanpl e, dc=con’ "(obj ectcl ass=*)"

For each command, the log file (instance-dir/OUD/ | ogs/ server. out on UNIX or
Linux, instance-dir/QUDl | ogs/ server. out on Windows) should contain similar to the
following:

plug-in: visit Presence with 'objectCass' plug-in: visitor returned true

Running the command with different filters shows how the visitor mechanism works.
Searching with the filter &(| (! (ui d=user. 1))) logs the following:

]
plugin: visit ORwith [(!(uid=user.1))]
plugin: visit NOT with (uid=user.1)
plugin: visit EQUAL with uid=user.1l
plugin: visitor returned fal se

3.6 Configuring Internal Operations in OUD Plug-in AP

ORACLE

The API provides methods to make LDAP-like calls into the OUD. In first method, plug-
in makes calls within the current plug-in workflow and in second method, the plug-in
makes LDAP-like calls into the OUD.

Configuring internal operations in OUD plug-in is described in the following section:

About Internal LDAP Requests

3-22



Chapter 3
Configuring Internal Operations in OUD Plug-in API

* Understanding OUD Plug-in API Internal Requests

3.6.1 About Internal LDAP Requests

Internal LDAP requests are internal, that are not initiated directly by external requests
from clients, but internally by plug-ins. Use internal request calls when your plug-in
needs OUD to perform an operation for which no client request exists. For instance, a
plug-in can do a search request to the user entry to retrieve additional credentials
upon reception of a bind request from a client

oracl e. oud. pl ugi n. Request Manager callbacks are invoked for every operation processed
by OUD, including internal operation. In many cases, plug-ins apply to operations
directly initiated by a client application only. It is possible to make distinction between
internal operation and regular operation by calling the i sl nternal () method on the
request object.

Internal LDAP requests are created through the oracl e. oud. pl ugi n Request Bui | der
objectclass. A reference to a request Bui | der can be retrieved from a Request Cont ext
associated with a request received from a client application through the

get Request Bui | der () method.

The user credentials used to perform an internal operation is specified at creation time.
In general, internal operations are performed within the current a security context, with
the credentials of the user which triggered the plug-in. In some situations, internal
operations require privileged access. For instance, an internal search performed
before handing a bind request will be performed as anonynous because at that point of
time, the current user is not authenticated yet.

3.6.1.1 Creating Internal LDAP Requests

To create a privilege request, use a privilege Request Bui | der with the call

request Cont ext . get Request Bui | der (true) . Only requests created from this builder can
be performed with privileges of r oot . ot her wi se, and get a default r equest Bui | der
through r equest Cont ext . get Request Bui | der (f al se) .

3.6.2 Understanding OUD Plug-in API Internal Requests

ORACLE

The OUD plug-in API provides two ways to invoke internal requests. In the first mode,
the plug-in makes calls within the current plug-in workflow by invoking the appropriate
subsequent workflow element configured in the chain if any. In the second mode, the
plug-in makes LDAP-like calls into the OUD as though they were coming from an end
client.

Each call offers the ability to let the router select appropriate workflow for the
operation.

Results from internal requests can be retrieved using result handlers, as described in
About Results Handling in OUD Plug-in.

*  About Mode 1 of the OUD Plug-in API
* Implementing Mode 1 of the OUD Plug-in API
*  About Mode 2 of the OUD Plug-in API
* Implementing Mode 2 of the OUD Plug-in API

3-23



Chapter 3
Configuring Internal Operations in OUD Plug-in API

3.6.2.1 About Mode 1 of the OUD Plug-in API

The next workflow elements of a plug-in can be retrieved from the plug-in configuration
through the call confi gurati on. get Next Pl ugi ns() . The name of these plug-ins can be
retrieved using the get Nane() method. After retrieving the name, you can select which
workflow element the request must be sent to in the situation where there are more
than one next workflow element configured. For instance, a plug-in providing a load-
balancing service would probably have several subsequent workflow elements
configured. Once the internal request is instantiated, and the target workflow element
is located, the request can be submitted via the appropriate handler method.

3.6.2.2 Implementing Mode 1 of the OUD Plug-in API

The following example requires the server schema to be modified to accept the
attribute cust onTi neSt anp. The plug-in uses an internal nodi f y operation to store the
login time in the user entry attribute cust onfli meSt anp.

Notice that a privilege request builder get Request Bui | der (true) must be used because
at that point of the processing, the bind is not yet completed. So the user is considered
to be anonymous.

@verride
public void handl eBi nd(final RequestContext requestContext,
final int version,
final BindRequest request,
Resul t Handl er resul t Handl er)
throws Unsupport edQOperati onException

/1 Get a privileged request buil der
Request Bui | der nyRequest Bui | der = request Cont ext . get Request Bui | der (true);

/1 Create a new nodify request using that buil der
/| Target LDAP entry is the user about to be authenticated
Modi f yRequest addTi mest anphMbdi f yRequest =

myRequest Bui | der . newhMbdi f yRequest (request . get Nare());

/1 Popul ate the nodification object
addTi nest anpModi f yRequest . addModi fi cati on( Modi fi cati onType. REPLACE,
"cust onTi meSt anp”, SystemcurrentTimeMI1lis()) ;

/1 Create a ResultHandler to catch the result of the nmodify operation
Resul t Handl er nodi f yResul t Handl er = new Cust omvbdi f yResul t Handl er (resul t Handl er) ;

/1 submit the request to the next workflow el enent

get Configuration().getFirstNextPl ugins().handl eMdify(request Context,
addTi nest anpModi f yRequest, nodi f yResul t Handl er);

ORACLE 3-24



Chapter 3
Configuring Internal Operations in OUD Plug-in API

3.6.2.3 About Mode 2 of the OUD Plug-in API

In this mode, the request is performed through an internal request manager object.
This object can be obtained from a Request Cont ext through the method

get I nt er nal Request Manager () . Then the request can be submitted through the
appropriate handler method.

Each request is subject to routing to the appropriate workflow, so an internal request
initiated by a plug-in within a given workflow may be routed to the same workflow.
There are situations where a plug-in can intercept requests it generated by itself. To
prevent unexpected recursive loops in the internal operation processing, it is possible
to attach an additional attachment (contextual information) to an internal operation
when it is submitted. This attachment can be retrieved and checked by the proxy upon
reception of a new request to detect loops and take the appropriate action.
Attachments can be managed via the Att achnent Hol der interface implemented by the
Request objects.

3.6.2.4 Implementing Mode 2 of the OUD Plug-in API

ORACLE

The following example searches for the cust onTi neSt anp attribute in the entry of a user
before a modification. A modify request is created with the current user credentials and
submitted through the internal request manager as if it was coming from an end client.
For clarity, exception handling was removed from the code example.

public void handl eMdify(final RequestContext requestContext,
final MdifyRequest request,
Resul t Handl er resul t Handl er)
t hrows Unsupport edQperati onException

{

/] Get a standard request buil der
Request Bui | der nyRequest Bui | der = request Cont ext . get Request Bui | der (fal se);

/1 Create a new search request using that builder

/| Target LDAP entry is the user about to be modified

Sear chRequest get Last Ti nest anpRequest = nyRequest Bui | der. newSear chRequest (
request. get Name(), SearchScope. BASE_OBJECT,
get Pl ugi nCont ext (). get TypeBui | der (). newFil ter("(objectclass=*)"),
"current Ti meSt anp");

I/ Create a ResultHandler to catch the result of the search operation
Sear chResul t Handl er searchResul t Handl er = new
Cust onBear chResul t Handl er (resul t Handl er) ;

/1 submit the request via the internal request nmanager
request Cont ext . get | nt er nal Request Manager () . handl eSear ch(request Cont ext,
get Last Ti nest anpRequest, searchResul t Handl er);

}

The following example shows how to deal with loops. The first time a search request is
received by the plug-in, it has no attachment with name nbLoops. The plug-in flags the
request with an attachment (nane=nbLoops, val ue=1), then rebalance the request to the
internal request manager. The search request will eventually come back to the plug-in.
The second time the plug-in gets the attachment, increment the value to 2 and set the

3-25



Chapter 3
About OUD Plug-in Exceptions

attainment to the request. Then rebalance it to the internal request manager. The third
time, since the value (2) is greater or equal to MAX_LOOPS, the plug-in will send the
request to the next Workflow element (with met hod super . handl eSearch(. . .)

/1 Let search requests loop 2 times within the internal request manager,
/1 before sending themto next Wrkfl owEl enent
public static final int MAX_LOOPS = 2;

@verride
public voi d handl eSear ch( Request Cont ext request Cont ext,
Sear chRequest request,
Sear chResul t Handl er resul t Handl er)
t hrows Unsupport edOperati onException

String name = "nbLoops";
I nteger nbLoops = 0;
Set<String> attachment Nanes = request. get Att achment Nanes( ) ;

/1 Get "nbLoops" attachment value, if ound in the request
if (attachment Nanes. contai ns(nane))

{

nbLoops = (Integer) request.get Attachnent(nane);

}

/1 if we reach max nunber of |oops...
if (nbLoops >= MAX_LOOPS)
{

Il ...renove attachnent

request . renmoveAt t achnent (nane);

Il forward request to next Workfl owEl ement
super . handl eSear ch(request Cont ext,
request,
resul t Handl er);
} else

Il increment nbLoops val ue
nbLoops++;

Il set attachment nbLoops new val ue
request . set Att achnment (nanme, nbLoops);

Il 1og request (as internal op) + attachment val ue

Logger |ogger = request Context.getLogger();

HashMap<String, String> map = new HashMap<String, String>();
map. put (" nbLoops”, Integer.toString(nbLoops));

| ogger. | ogSear chRequest I nt er nedi at eMessage(request, map);

Il re-balance tge search request via the internal request manager
request Cont ext . get I nt er nal Request Manager () . handl eSear ch(r equest Cont ext,

request,
resul t Handl er);

3.7 About OUD Plug-in Exceptions

Plug-in implementation can raise the subclass of Pl ugi nExcepti on when unexpected
error conditions occur.

ORACLE 3-26



Chapter 3
Logging and Debugging Exceptions in the OUD Plug-in API

The behavior of the server depends on when the exception is raised. When raised
during LDAP operation processing, a LDAP error 80 "Internal Error" is returned to the
client application. When raised during plug-in initialization, the plug-in is disabled.

3.8 Logging and Debugging Exceptions in the OUD Plug-in

API

You can handle logging and debugging exceptions in OUD plug-in API.
oracl e. oud. pl ugi n. Request Cont ext . Logger interface is used to log a message in the
OuD.

The topics in this section include:

»  About Logging and Debugging Exceptions in the OUD Plug-in API
» Debugging the Plug-In When Servicing a Client Request
*  Debugging Plug-In Initialization

3.8.1 About Logging and Debugging Exceptions in the OUD Plug-in

API

Uncaught exceptions generated within the plug-in API are logged in the OUD debug
log with the War ni ng level.

The standard output of the plug-in is redirected to the log file (instance-dir/OUD/ | ogs/
debug on UNIX or Linux, instance-dir\OUD\ | ogs\ debug on Windows) present in the OUD
directory server instance hosting the plug-in.

During plug-in development you can enable the debug log using the following dsconfi g
command:

dsconfig set-log-publisher-prop \ --publisher-nane "File-Based Debug Logger" \ --set
defaul t-debug- | evel :warning \ --set enabled:true

The plug-in implementation can log a message in the OUD access, error, or debug log
using the oracl e. oud. pl ugi n. Request Cont ext . Logger interface.

3.8.2 Debugging the Plug-In When Servicing a Client Request

ORACLE

Unexpected error conditions occur during implementation of the plug-in. You need to
debug the plug-in when servicing a client request through an IDE.

Follow these steps to debug the plug-in when servicing a client request:

1. Export CPENDS_JAVA ARGS with the value of start-ds. j ava- ar gs taken from instance-
directory! confi g/ j ava. properties plus - Xdebug -
Xrunj dwp: transport =dt _socket, address=127. 0. 0. 1: 8888, server =y, suspend=n

2. Restart the OUD instance.
This will open the debug port 8888.
3. Attach to the OUD process on port 8888, and debug the plug-in through an IDE.

3-27



Chapter 3
Logging and Debugging Exceptions in the OUD Plug-in API

3.8.3 Debugging Plug-In Initialization
Unexpected error conditions occur during implementation of the plug-in. You need to
debug plug-in initialization.
Follow these steps to debug plug-in initialization:

1. Export OPENDS_JAVA ARGS with the value of start-ds. j ava- ar gs taken from instance-
directoryl confi g/ j ava. properties plus - Xdebug -
Xrunj dwp: transport =dt _socket, address=127. 0. 0. 1: 8888, server =y, suspend=y

2. Restart the OUD instance.
This will open the debug port 8888.

3. Atthis point, you must attach three times to the OUD process on port 8888 before
you can debug the plug-in initialization code (using the pl ugi nl ni tialization()
method).

You should export OPENDS_JAVA ARGS rather than modify the j ava. properti es file.
Exporting OPENDS_JAVA ARGS does not require you to change the OUD instance
configuration files, posing no risk to exporting the debug JVM ar gs in production.

ORACLE 3-28



	Contents
	Preface
	Audience
	Documentation Accessibility
	Related Documents
	Conventions

	What's New in This Guide
	New Features in Release 12c (12.2.1.3.0)

	1 Understanding Basic Oracle Unified Directory Plug-in Concepts
	1.1 Determining Whether You Should Implement an OUD Plug-In
	1.2 OUD Plug-Ins and OUD Workflows
	1.3 OUD Plug-In Implementation Points
	1.4 About Oracle Unified Directory Plug-Ins

	2 Building and Deploying an OUD Plug-In
	2.1 Before You Begin Deploying OUD Plug-in
	2.2 Deploying a Plug-In to an OUD Instance

	3 Using the OUD Plug-In API Reference
	3.1 Overview of OUD Plug-In Configuration
	3.1.1 About Storing OUD Plug-In Configuration
	3.1.1.1 Example for Adding Plug-in Properties
	3.1.1.2 Example for Configuring a Custom Property

	3.1.2 Retrieving OUD Plug-In Configuration
	3.1.3 Creating an Automated Parser for Plug-In Properties
	3.1.4 Making Dynamic OUD Plug-In Configuration Changes
	3.1.5 Validating Plug-In Configuration

	3.2 Request Handling with OUD Plug-in API
	3.2.1 Overview of LDAP Request Handling with OUD Plug-in API
	3.2.2 Modifying OUD Search Requests with Plug-in API
	3.2.3 Modifying Search Requests with Wrapper Object
	3.2.4 Forwarding Requests with OUD Plug-in API
	3.2.5 Returning Results with OUD Plug-in API

	3.3 Handling Responses in OUD Plug-in
	3.3.1 Example for Intercepting bind failure
	3.3.2 Example for Intercepting Search Entries and Final Search Results

	3.4 About Results Handling in OUD Plug-in
	3.4.1 Ignoring Search Results in OUD Plug-in
	3.4.2 Intercepting Search Failures in OUD Plug-in
	3.4.2.1 Logging the Failures of Search Requests

	3.4.3 Counting Entries Returned by Search Requests
	3.4.3.1 Logging the Number of Returned Entries of Search Requests


	3.5 Configuring Filters in Search Requests
	3.5.1 About Filter Processing in Search Requests
	3.5.2 Example of Implementation of the FilterVisitor
	3.5.3 Example for Verifying and Logging the Presence of objectclass=* in a Search Request
	3.5.4 Verifying and Logging Presence of objectclass=* in a Search Request

	3.6 Configuring Internal Operations in OUD Plug-in API
	3.6.1 About Internal LDAP Requests
	3.6.1.1 Creating Internal LDAP Requests

	3.6.2  Understanding OUD Plug-in API Internal Requests
	3.6.2.1 About Mode 1 of the OUD Plug-in API
	3.6.2.2 Implementing Mode 1 of the OUD Plug-in API
	3.6.2.3 About Mode 2 of the OUD Plug-in API
	3.6.2.4 Implementing Mode 2 of the OUD Plug-in API


	3.7 About OUD Plug-in Exceptions
	3.8 Logging and Debugging Exceptions in the OUD Plug-in API
	3.8.1 About Logging and Debugging Exceptions in the OUD Plug-in API
	3.8.2 Debugging the Plug-In When Servicing a Client Request
	3.8.3 Debugging Plug-In Initialization



